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Zusammenfassung
Kommunikations- und Informationstheorie bilden heute die Grundlage für den Entwurf

digitaler Übertragungssysteme. Interdisziplinäre Zusammenarbeit zwischen Kommunika-

tionsingenieuren und Biologen baut darauf auf, dass die zelluläre Informationsverar-

beitung auf digitalen Signalen (DNA) basiert. In diesem Zusammenhang stellt unsere Ar-

beit kommunikationstheoretische Ansätze für ausgewählte Probleme der Genetik vor. Wir

entwickeln Algorithmen zur Detektion konservierter Bereiche in multiplen, ausgerichteten

DNA-Sequenzen und zur Rekonstruktion von Faltungscodes in konservierten DNA Se-

quenzen und entwerfen auf Listen-Decodierung basierende Methoden für die Inferenz

von Gennetzwerkmodellen. Unsere Algorithmen werden zunächst mittels Simulationen

evaluiert und schließlich auf genbiologische Daten aus Datenbanken angewandt. Diese

Arbeit zeigt, dass der kommunikationstheoretische Ansatz wichtige Erkenntnisse für biol-

ogische Problemstellungen liefern kann.

Abstract
Communication and information theory provide the framework for the design of digital

systems. Recent collaboration between communication engineers and biologists is based

on the observation that information processing in living cells has a digital basis (DNA).

Within this framework, our thesis approaches reverse engineering problems arising in

computational genetics from a communication theoretic point of view. We outline algo-

rithms for unbiased detection of conserved regions in multiple DNA sequence alignments

and the reverse engineering of convolutional codes suitable to detect coding structure in

DNA sequences. We use list-decoding of Reed-Muller codes for the inference of dynamics

in stochastic gene network models. The algorithms are evaluated using simulations and

subsequently applied to genomic data obtained from databases. Our work shows how

insights to biological problems can be gained by approaching them from a communication

theoretic perspective.
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1
Introduction

Deoxyribonucleic acid (DNA) is the primary carrier of the information encoding the de-

velopment and functioning of all living organisms. In 1953, Watson and Crick (with help

of others [Bar03]) discovered the molecular structure of the DNA [CW53]. They showed

that the DNA consists of two strands, composed of four different molecules called nu-

cleotides, that are joined by hydrogen bonds, and twisted in the shape of a double helix.

The key observation motivating this thesis is that the genetic information of any organ-

ism is encoded as a long sequence of only four possible nucleotides (Adenine, Cytosine,

Guanine, and Thymine). More abstract, DNA can thus be represented as a discrete-time,

discrete-valued signal defined over a quarternary alphabet. Therefore, cellular information

processing has a digital basis.

In 2001, almost fifty years after the structure of DNA had been discovered, the Human

Genome Project (HGP) announced the first release of the complete sequence of the human

genome [LLB+01]. It was expected that the availability of the whole genome sequence and

identification of all genes would bring biologists close to understanding the complex nature

of organism development. However, quite the opposite was the case: the outcomes of the

project raised many further questions. Unexpected results included the relatively small

number of genes in the human genome compared to other organisms, long repeat sequences

of DNA, and the large fraction of non-genic DNA (at this time wrongly dismissed as junk

DNA). The lesson learned from the HGP was that merely identifying all genes would not

be sufficient to understand development of organisms and functioning of cells.

Meanwhile, rapid advances in DNA sequence technology enabled whole genome sequenc-

ing of more and more species allowing for a comparative analysis of sequence data. Sur-

prisingly, it was revealed that there was a significant amount of junk DNA in the human

genome that was almost identical in evolutionary very distant species (such as mouse, rat,

and fish) [DRA05]. This did not conform with the junk hypothesis since sequence conser-

vation is a strong indicator for natural selection and thus functionality. The function of

most of these conserved regions is not yet understood. Mattick et al. suggested that they

form a critical hidden layer of gene regulation in complex organisms [Mat07,MM06]. Once

the paradigm of non-coding DNA (=junk) vs. coding DNA (=functional) was no longer

valid, it was clear that further great efforts would be required to obtain a functional map

of the genome.



2 Chapter 1 ¥ Introduction

The ENCODE (ENCyclopedia Of DNA Elements) project, launched in 2003 by The Na-

tional Human Genome Research Institute, aims at identifying all functional elements in the

human genome sequence. In the pilot phase, the ENCODE consortium tested and com-

pared existing methods to rigorously analyze a defined portion of 1% of the human genome

sequence [The07,MCA+07]. Again, the project led to surprises [Che07]: previously, it was

believed that only the information encoded in genes would be read out from the DNA

(transcribed in terminology of biologists). Results from the ENCODE project, however,

suggest that in fact almost 80% of the whole DNA is transcribed [Che07]. Although it is

not known whether all these transcripts are functional, there is hence strong indication

that the traditional gene-centric perspective is invalid for higher organisms [Pen07].

Even identifying all functional elements in DNA will not suffice to understand life. Indi-

vidual components do often not itself perform any function but interact with other com-

ponents and molecules, forming a highly complex regulatory network that is ultimately

responsible for an organism’s form and function [Alo07]. All these findings suggest that

we are just beginning to understand the complexity of life at the molecular scale, and that

approaches beyond those developed in traditional biology may be required to decipher the

principles of how cells process the digital information represented by DNA.

Today, enormous amounts of biological data (such as DNA sequences and whole genomes)

are made available through public databases. Analytical and computational approaches

for biological data analysis are now well established. Over the last decades, molecular

biology has evolved into a highly interdisciplinary science. Bioinformatics is the field

of science in which biology, computer science, mathematics and statistics merge into a

single discipline. Recently, systems biology emerged as the analysis of components and

the interactions among them all as a part of a system instead of studying their specific

function, thereby collaborating with scientists from other disciplines such as mathematics,

physics and engineering.

In 1948, Claude E. Shannon’s publication of A mathematical theory of communica-

tion [Sha48] laid the foundation of modern digital communication theory. Based on the

theoretical framework termed information theory provided by Shannon, communication

engineers were very successful in developing optimal methods and systems to faithfully

process and transmit digital information [CHIW98]. Since cellular information processing

has a digital basis, methods from digital communication and information theory have the

potential to lead to major breakthroughs in the field of molecular biology. On the other

hand, new insights on the design of communication systems is expected to be gained from

analyzing biological systems, that achieve astonishingly robust storage and transmission

of digital information in a highly noisy and fragile environment.

Despite these facts, communication engineers and information theorists only recently be-

gan to foster cooperation with biologists. To name a few recent contributions: Hagenauer

et al. modeled the relationship between certain positions in DNA and diseases like Parkin-

son as a communication channel and applied information theoretic measures to infer their

relationships [DGH+06,DSJM05,GDHM05]. The same group showed how to apply data

compression schemes to infer the relationship of species [DHHM05,KH08]. Szpankowski et

al. extended these methods to detect alternative splice sites in genes [AKL+07]. Milenkovic
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introduced coding theoretic approaches to analyze gene networks and RNA secondary

structures [Mil06,MV04]. Rissanen’s minimum description length principle was applied

recently in numerous biological modeling frameworks [DTA08,RGH+07].

Within this framework, this thesis shows how to approach certain reverse engineering

problems, arising in molecular biology, from a communication theoretic view. In a typical

bioinformatics problem setting, one is given a set of measured observations from a biologi-

cal system and aims to infer the biological systematics explaining the data. In a first step,

an abstract model of the system needs to be built based on prior biological knowledge,

obtained from theoretical considerations or experimental evidence. In a second step, the

model needs to be theoretically analyzed, important system parameters must be specified,

and identification algorithms developed. Finally, results must be biologically interpreted

and compared to those obtained with other methods or models. We refer to such an

approach as reverse engineering.

Briefly, the outline of this thesis is as follows: since we operate at the interface of two

disciplines, Chapters 2-4 provide the necessary general theoretical background, in a way

that, hopefully, should be understandable to both communities. Chapters 5-7 present the

reverse engineering frameworks, methods, and obtained results. A brief introduction to

the specific theoretical background is given at the beginning of each chapter. Finally,

Chapter 8 presents the conclusion. The remainder of this chapter describes the outline in

more detail:

Chapter 2 introduces the basic notions of information and coding theory, and the statis-

tical methods applied in this thesis. Examples are given throughout the chapter, relating

to both, information theory and DNA sequence analysis.

Chapter 3 can be regarded as an introduction to molecular biology for communication

engineers. Prior knowledge of the reader is not expected. We review how genetic infor-

mation is processed in the cell. Similar to a communication system, we split a cellular

information processing system into layers: on the physical layer, information is encoded

into DNA, and a set of protocols defines how to process this molecule at a high fidelity

rate. On a functional level, the DNA is organized into distinct sections - the genes, car-

rying the fundamental information. Finally, genes exchange messages, and this set of

interactions allows for the formation of an information network layer. However, we shall

also emphasize fundamental differences that exist between technical and cellular systems.

Chapter 4 provides important tools from Bioinformatics which shall mainly be used in

Chapter 5. The main concepts of single and multiple sequence analysis are presented

from an information theoretic perspective. Interestingly, a main result in DNA sequence

analysis is found to be related to the channel coding theorem.

In Chapter 5, we first present likelihood methods for reconstructing models of multiple

DNA sequence evolution, referred to as phylogenetic systems. Subsequently, we focus on

the identification of conserved regions in genomes of multiple species. Such regions are

candidates for functional regions since conservation implies natural selection. We develop

a new approach based on maximum likelihood and the Kullback-Leibler divergence and

compare our algorithm to state-of-the art methods. An ENCODE region is analyzed using
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our method and results are compared to those obtained from the ENCODE project.

Recently, Battail argued, based on theoretical considerations, that such highly conserved

regions could only be explained by an error correcting code in the genome [Bat08]. Chap-

ter 6 is an attempt to systematically approach this hypothesis. We review previous work

and critically discuss Battail’s claim. Then we focus on the technical code reverse engi-

neering problem. The main contribution is the presentation of probabilistic algorithms

for the inference of convolutional encoders from a noisy data stream. We also apply our

method to conserved DNA sequences and discuss why application to sequence data is

difficult.

Code reverse engineering problems also arise when inferring the dynamics of gene networks

under algebraic expression models. In Chapter 7, we show how this problem relates to

coding theory and, in particular, to the decoding of generalized Reed-Muller codes. We

present a list-decoding approach to address reverse engineering in the noisy data and small

sample size setting. Our algorithm is applied to the gene network of the bacterium E. coli.

Chapter 8 summarizes the main contributions of this thesis. Directions of future research

are given at the end of Chapters 5,6 and 7.

Parts of this thesis were published in journals and conference proceedings as listed in

Appendix A.
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Information theory and
statistical methods

We briefly introduce the basic concepts, and statistical methods and models applied in

this thesis: Section 2.1 provides the guidelines for the mathematical notation used. Sec-

tions 2.2 and 2.3 review basic definitions and principles of information and coding theory,

referred to throughout this work. Markov chains are introduced in Section 2.4. We present

continuous Markov processes in more detail since they are important models in DNA se-

quence analysis (cf. Chapters 4 and 5) yet rarely covered in the bioinformatics literature

in a coherent way. Maximum likelihood estimation, hidden Markov models, and expec-

tation maximization (applied in Chapters 5, 4 and 6) are reviewed in Sections 2.5, 2.4.5,

and 2.6, respectively.

2.1 Mathematical notation

⋆ R and R+ denote the set of real numbers and the set of non-negative real numbers,

while Z and Z+ denote the set of integers and positive integers, respectively.

⋆ Fq denotes the finite field of order q. Addition in F2 is denoted by the symbol ⊕.

⋆ Calligraphic capitals A denote sets and alphabets, |A| denotes cardinality of a set.

⋆ FN is the N -dimensional vector field over F, AN denotes the set of sequences with

elements from A of length N .

⋆ The probability for the event that the realization of random variable X is x is

denoted by P (X = x) or simply P (x).

⋆ Sans serif capitals X indicate random variables (r. v.) with corresponding realiza-

tions x. A probability density function (pdf) is denoted as pX(x). If X is a discrete

r. v., pX(x) denotes the probability mass (pmf) function. We shall often simply

write p(x) or pX.

⋆ The notation X ∼ p(x) or x ∼ p(x) means that the random variable X is distributed

according to p(x).

⋆ A distribution p(x; θ) depends on a deterministic parameter θ, opposed to p(x|θ)
which denotes a conditional pdf in case θ is the realization of a random variable.

⋆ {Xn}n≥0 denotes a random process indexed by natural numbers n, {Xt}t≥0 denotes
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a continuous random process with t ∈ R+.

⋆ x̂ is the estimate of x.

⋆ Vectors x and matrices X are denoted by bold small and capital letters, respectively.

⋆ [x]i denotes the ith entry of x and [X]ij denotes the entry in the ith row and jth

column of matrix X.

⋆ A joint sub- and superscript xn
m denotes the sub-vector [xm, xm+1, ..., xn] of x =

[x1, .., xN ], where 0 ≤ m ≤ n ≤ N .

⋆ The abbreviations iff and iid mean if and only if and independently and identically

distributed, respectively.

2.2 Information theory

Information theory developed by Shannon in his seminal paper [Sha48] explores the fun-

damental limits of information processing. In Shannon’s framework, a communications

system consists of essentially five parts (cf. Figure 2.1):

1. An information source which produces a message or sequence of messages.

2. A transmitter which processes the signal in some way suitable for transmission

over the channel.

3. The channel is the medium used to transmit the signal.

4. The receiver performs the inverse operation of that done by the transmitter.

5. The destination.

In his paper, Shannon demonstrated how to represent the various elements of a commu-

nication system as mathematical entities “..suitably idealized from their physical coun-

terparts.” [Sha48]. This approach allows the schematic depicted in Figure 2.1 to be

applied to a broad range of scenarios arising in science and engineering and to consider

very generic problems involving information transmission and processing. This was the

brilliant achievement of Shannon.

Channel

Information
source Transmitter

Noise source

Receiver Destination

Figure 2.1: A communication system according to Shannon (modified from Fig. 1 in [Sha48]).

Information theory had the most decisive impact on the field of digital communications.

However, due to its universality, it also found important applications in various research
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areas such as economics, statistics and, more recently, biology [CT91, MV04, DGH+06,

AKL+07, Yoc05, SSGE86]. In Shannon’s universal approach, information is assumed to

be represented entirely by the stochasticity of the signal, and it is irrelevant whether the

underlying physical medium carrying the signal is an electromagnetic wave, a time series

of stock values, or biochemichal molecules. We shall briefly review Shannon’s fundamental

definitions that finally lead to a surprising result, the channel coding theorem, stating that

error free communication is possible over noisy channels up to a certain transmission rate.

Following this statement, we shall give a short introduction to coding theory and error

correcting codes that are able to practically approach the rate promised by Shannon.

2.2.1 Entropy, divergence and mutual information

Let X and Y be two finite alphabets and let X and Y be discrete random variables with

corresponding realizations x ∈ X and y ∈ Y , respectively. If not stated otherwise, X, Y

have distribution p(x, y) with marginals p(x) and p(y). Shannon defines information as

follows:

Definition 2.2.1 (Shannon information) The information that an event x ∈ X re-

veals is given by

h(x) = − log(P (X = x)). (2.1)

If the logarithm is taken to base 2 then h(x) has the unit bits1. 2

Information is a measure of how surprising it is to observe a particular realization of X.

The expected information revealed by the realizations of X is called the entropy of X:

Definition 2.2.2 (Entropy) The entropy of a discrete random variable X, denoted by

H(X), is defined as

H(X) = −
∑

x∈X

p(x) log(p(x)). (2.2)

2

Entropy is best interpreted as a measure of average uncertainty about the outcome of X.

Entropy is always non-negative and is upper bounded by log |X |:

0 ≤ H(X) ≤ log |X |, (2.3)

where |X | denotes the cardinality of the set X . Equality with the upper bound holds if

and only if X is uniformly distributed.

Example 2.2.1 (Entropy of a binary Bernoulli random variable) Consider the bi-

nary r. v. X with x ∈ {0, 1} and pdf defined by

P (x = 0) = p0, P (x = 1) = p1 = 1 − p0.

1Throughout this section, if not stated otherwise, logarithms are taken to base 2.
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The entropy of X is given by

H(X) = −p0 log(p0) − (1 − p0) log(1 − p0).

Figure 2.2 shows the entropy of X over p0. As expected, H(X) reaches a maximum of

log(|X |) = 1 bit at p0 = 0.5 and is zero in the deterministic cases p0 = 0 and p0 = 1. 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p0

H
(X

)

Figure 2.2: Entropy of a binary Bernoulli random variable X over P (X = 0) = p0.

Simply by following Definition 2.2.2, we find that the entropy of the joint random variable

(X, Y) ∈ X × Y is

H(X, Y) = −
∑

x∈X

∑

y∈Y

p(x, y) log(p(x, y)). (2.4)

H(X, Y) is called the joint entropy of X and Y. Another definition that we shall need is

conditional entropy H(X|Y):

Definition 2.2.3 (Conditional entropy) The conditional entropy of the random vari-

able X given Y is defined as

H(X|Y) = −
∑

x∈Y

∑

y∈Y

p(x, y) log (p(x|y)) (2.5a)

= −
∑

x∈Y

∑

y∈Y

p(x, y) log

(
p(x, y)

p(y)

)

(2.5b)

= −
∑

x∈Y

∑

y∈Y

p(x, y) log (p(x, y)) +
∑

y∈Y

p(y) log (p(y)) (2.5c)

= H(X, Y) − H(Y). (2.5d)

2

Conditional entropy tells how much the uncertainty about the joint (X, Y) is reduced when

gaining knowledge about Y. The definition is intuitive since the joint entropy H(X, Y) is

reduced by the entropy (uncertainty) of Y when Y is given.

Mutual information is a measure of how much two random variables tell about each other:
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Definition 2.2.4 (Mutual information (MI)) The mutual information between ran-

dom variables X and Y is defined as

I(X; Y) = H(X) − H(X|Y). (2.6)

2

A few intuitive arguments are necessary to derive the properties of MI: knowing Y can

only decrease our uncertainty about X; so H(X) ≥ H(X|Y), with equality if and only if X

and Y are statistically independent. By a similar argument, if Y determines X, we have

zero uncertainty about X and H(X|Y) = 0. Furthermore,

I(X; Y) = H(X) − H(X|Y) (2.7a)

(2.5d)
= H(X) − H(X, Y) + H(Y) (2.7b)

= H(Y) − H(Y|X) (2.7c)

= I(Y; X), (2.7d)

i.e., X tells us as much about Y as Y about X. In summary, I(X; Y) has the following

properties:

(i) 0 ≤ I(X; Y) ≤ H(X) (2.8a)

(ii) I(X; Y) = I(Y; X). (2.8b)

Mutual information is a special case of the Kullback-Leibler (KL) divergence, which is also

often termed relative entropy. The KL divergence has important applications in statistics

as a measure of divergence between two probability densities:

Definition 2.2.5 (Kullback-Leibler divergence) Let X and Y have densities pX and

pY respectively, then the Kullback-Leibler (KL) divergence D(·||·) is defined as

D(pX||pY) =
∑

x∈X

pX log

(
pX

pY

)

, (2.9)

with the convention 0 log( 0
pY

) = 0 . 2

It is well known that log(x) ≤ x − 1 with equality iff x = 1. It follows that

−D(pX||pY) =
∑

x∈X

pX log

(
pY

pX

)

(2.10a)

≤
∑

x∈X

pX

(
pY

pX

− 1

)

(2.10b)

= 0. (2.10c)

Hence, D(pX||pY) is always non-negative and is zero iff p(x) = p(y). Note that D(pX||pY)

is not a distance as it does not satisfy the triangle inequality and is not symmetric, i.e.,

D(pX||pY) 6= D(pY||pX) in general. We can now easily show that the MI is a special case

of the KL divergence:
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Theorem 1 Let X and Y have joint density p(x, y) and marginal densities p(x) and p(y)

respectively, then the Mutual information I(Y; X) is the relative entropy between the joint

and the product density p(x)p(y) of X and Y, i.e.,

D(p(x, y)||p(x)p(y)) = I(X; Y). (2.11)

2

Proof

D(p(x, y)||p(x)p(y)) =
∑

x∈X

∑

y∈Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)

(2.12a)

=
∑

x∈X

∑

y∈Y

p(x, y) (log (p(x, y)) − log (p(x)p(y))) (2.12b)

= −H(X, Y) −
∑

x∈X

p(x) log(p(x)) −
∑

y∈Y

p(y) log(p(y)) (2.12c)

= H(X) − (H(X, Y) − H(Y)) (2.12d)

(2.5d)
= H(X) − H(X|Y) (2.12e)

= I(X; Y), (2.12f)

where we used the definition of conditional entropy from Eq. (2.5d). ¥

Mutual information is therefore a measure of statistical dependence between random vari-

ables and is zero iff the random variables are statistically independent.

2.2.2 Transmission channels

Using the definitions established above, it is now possible to make important statements

about the information processing capabilities of the system depicted in Figure 2.1: a

source, modeled by a random variable X ∼ p(x), emits a message x ∈ XN that is

transmitted to a receiver. Transmission is assumed to be noisy, i.e., the sent message

may be changed during transmission. The received vector y ∈ YN is then modeled as a

random variable Y, and each input sequence x induces a probability distribution on the

output sequences y. The transmission channel is therefore formally defined as follows:

Definition 2.2.6 A discrete channel, denoted by (XN , p(y|x),YN), consists of two finite

sets XN and YN and a collection of probability mass functions p(y|x), one for each

x ∈ XN , such that for every x and y, p(y|x) ≥ 0, and for every x,
∑

x p(y|x) = 1, with

the interpretation that X is the input and Y the output of the channel.

A channel that is used without feedback, i.e.,, the input symbols do not depend on the past

output symbols, and whose ith output symbol only depends on the ith input symbol, is

called a discrete memoryless channel (DMC), and the channel transition functions factor

as

p(y|x) =
N∏

n=1

p(yn|xn). (2.13)

2
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It is often convenient to describe a channel by its transition matrix P . Here, the entry in

the ith row and jth column denotes the conditional probability p(y = j|x = i), where j

and i represent the jth and ith element of the ordered sets XN and YN , respectively.

Definition 2.2.7 A transition matrix (channel) is said to be symmetric if the rows of

the channel transition matrix p(y|x) are permutations of each other, and the columns

are permutations of each other. A channel is weakly symmetric if every row p(·|x) is

a permutation of every other row, and all the column sums
∑

x p(y|x) are equal. If a

channel is symmetric it is also weakly symmetric. 2

We are now ready for a fundamental result in information theory that we state for the

transmission over a discrete memoryless channel. The channel coding theorem - that we

are about to sketch - states that the highest transmission rate that can be sent with

arbitrary low probability of error at the receiver over a channel is given by

C = max
p(x)

I(X; Y), (2.14)

where the maximum is taken over all possible input distributions p(x). This quantity is

the famous channel capacity. At first glance, this statement seems to express a paradox,

because it seems impossible to achieve noise free transmission when errors are actually

introduced in the sent messages. The idea of proving this claim is based on the definitions

of entropy and mutual information [CT91]: suppose an iid source X ∼ p(x) produces a

long sequence x = [x1, x2, .., xN ], the message, which is to be sent over the channel

(XN , p(y|x),YN). The possible messages that the source generates fall into two groups: a

high probability group which can be shown to contain approximately 2NH(X) sequences and

the remaining sequences which will occur with vanishingly small probability. Similarly,

the received sequences will fall into a high probability group with approximately 2NH(Y)

members and the remaining sequences forming a low probability group. Each input x can

potentially produce any sequence y because of the noise. However, it can be shown that

the size of the set containing the high probability sequences produced by any x is given by

2NH(Y|X) and all other outputs outside of this set have vanishingly small probabilities. We

wish to ensure that no two messages x,x′ produce the same output y: we therefore divide

the set of high probability receive sequences in disjoint sets of size 2NH(Y|X) and associate

each of these with a unique message x. The total number of disjoint sets is less than or

equal to 2NH(Y)−NH(Y|X) = 2NI(X;Y), hence we can send at most 2NI(X;Y) distinguishable

sequences of length N . The distinguishable sequences can be represented by NI(X; Y)

bits, which results in a maximum rate of I(X; Y) information bits per message.

While the derivation outlined above gives an upper bound on the capacity, it can also

be shown that this bound can be achieved [CT91]. However, it is very important to

emphasize that the theorem only holds for large N . The following examples show how to

calculate the capacity for symmetric channels, and two types of channels with unknown

capacity.

We give an example of a quarternary alphabet since it is encountered in genetics:
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Figure 2.3: Left: The transition diagram of the quarternary symmetric channel with transition

probability 3µ. Right: Capacity of quarternary symmetric channel over transition probability µ.

Example 2.2.2 (Quarternary Symmetric Channel) Consider the channel (X ,P ,Y)

with X = Y = {1, 2, 3, 4} given by the transition matrix

PQSC =







1 − 3µ µ µ µ

µ 1 − 3µ µ µ

µ µ 1 − 3µ µ

µ µ µ 1 − 3µ







, 0 ≤ µ ≤
1

3
.

The channel transition diagram is shown in Figure 2.3. We have

I(X; Y) = H(Y) − H(Y|X)

≤ log(|Y|) − H(Y|X)

= 2 − H(Y|X),

with equality for a uniform output distribution. Setting p(x) = 1
|X |

yields

p(y) =
∑

x∈X

p(y|x)p(x) =
1

|X |

∑

x

p(y|x) = c
1

|X |
=

1

|Y|
,

where c denotes the column sum of P , which is constant because the columns are permu-

tations of each other.

This proves that choosing a uniform distribution maximizes the mutual information and

the capacity of the channel given by P is therefore

CPQSC
= max

p(x)
I(X; Y) = 2 − H(Y|X),

with

H(Y|X) =
∑

x,y

p(x)p(y|x) log

(
1

p(y|x)

)

= (1 − 3µ) log

(
1

1 − 3µ

)

+ 3µ log

(
1

µ

)

,

which follows from the property of P that the rows are permutations of each other. The

capacity of the QSC over µ is shown in Figure 2.3 . In the noiseless case (µ = 0), 2bits
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can be transmitted and with increasing µ, the capacity decreases exponentially reaching 0

at µ = 1/4. The capacity increases again when µ increases beyond 1/4, up to 2 − log(3)

bit for the extremal case µ = 1/3. The explanation for this is as follows: suppose µ = 1/3

and assume that the symbol 3 is received. Then we know that 3 was not the symbol which

had been sent and this additional information can be used to encode messages such that

transmission rate 2 − log(3) bit can be achieved. 2

When calculating the capacity in the example above, we made use of the facts that the

column sums of P were constant and that the rows were permutations of one another.

These are exactly the properties of a weakly symmetric channel, and an analytical ex-

pression for any channel from that class can be derived as shown.

If a channel is not weakly symmetric, there is no analytical expression for the capacity in

general.

2.2.3 Example: insertion and deletion channels

An iid binary deletion channel (BDC) has binary {0, 1} input X and binary output Y:

with probability 1 − d, the channel reveals y = x at the receiver. With probability d,

however, the channel does not output anything. Such a channel takes N transmitted

bits and outputs a random subsequence of the input, where the subsequence is obtained

by deleting each bit independently with probability d. Note that this is substantially

different from an erasure channel [CT91], where the receiver knows at which position an

erasure has occurred. The channel model for a single bit is shown in Figure 2.4. The iid

0

1

0

1

∅

1 − d

d

1 − d

d

BDC

0

1

0

00

01

1

10

11

1−
κ

κ/2

κ/2

1 − κ
κ/2
κ/2

BIC

Figure 2.4: Left: Transition diagram of a binary deletion channel model with deletion prob-

ability d. A deletion is represented by the symbol ∅. Right: Transition diagram for a binary

insertion channel model with insertion probability κ.

binary insertion channel (BIC), also shown in Figure 2.4, works exactly in the opposite

way: the BIC takes a binary symbol x and reveals y = x at the output with probability

1 − κ. However, with probability κ/2, the channel emits x1, and with probability κ/2 it

emits x0, inserting a random, non-transmitted symbol after the transmitted one. The iid

BIC is thus a ({0, 1}, p(y|x), {0, 1, 00, 01, 10, 11}) channel with p(y|x) = 1−κ if x = y and

κ/2 otherwise.

The BDC and the BIC are simple stochastic models of channels with synchronization

errors. Insertion and deletion channels also arise in biological information processing as
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discussed in Chapter 3, Section 3.2. The capacities for deletion and insertion channels

are unknown in the general case and were studied, for example, in [DM07]. Simulation

approaches try to approximate the transmission rates [HDE08]. Coding strategies for

these channels were presented, for example, in [Slo00,DML00,LM07].

2.3 Coding theory and error correction

The channel coding theorem promises the existence of codes that achieve capacity. Error

free transmission is achieved by dividing the set of all possible messages into distinguish-

able sequences such that a received vector y can be uniquely assigned to a sent message

with very high probability. The maximum rate at which this can happen is given by

the mutual information. However, the theorem is not constructive, i.e., does not devise

strategies how to design practically good codes. Therefore, since the appearance of Shan-

non’s original paper, people have searched for practically useful codes that achieve the

promised performance, and the field of coding theory emerged.

In 1993, Berrou et al. presented the first class of capacity achieving codes having practical

decoding complexity, the so-called Turbo-Codes [HOP96]. These codes are now an integral

part of many modern technical communication systems. Coding theory is the art of error

correction, and we will outline the basic principles in the following. For a deeper treatment

of the subject, the reader is referred to [RU07,LC83].

2.3.1 Basic principles

We consider the transmission scenario depicted in Figure 2.5: a source emits a message

x = [x1, .., xK ], and an encoder maps the message to a codeword c subsequently trans-

mitted over the channel. The channel introduces noise, and a distorted version of c is

received. The decoder performs two tasks: it first estimates which codeword has been

sent and subsequently performs the inverse operation of the encoder. The vector x̂ is

then presented to the information sink as the resulting estimate for the original message

x. We shall only consider binary codes in this section, i.e., xi ∈ F2, where F2 denotes the

field of order two.

Definition 2.3.1 (Hamming weight and distance) Given two vectors of equal length

x,y ∈ FN
2 , the Hamming weight wH(x) is defined as

wH(x) = |{i : xi 6= 0}|, (2.15)

where 0 denotes the zero element of the field F2, and the Hamming distance dH(x,y) is

defined as

dH(x,y) = wH(x − y), (2.16)

i.e., the number of positions where x and y differ. 2
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Definition 2.3.2 (Block code (N, K, dmin)) A binary block code (N,K, dmin) is a

K-dimensional subspace C of the N -dimensional binary vector space

C ⊆ FN
2 , (2.17)

such that any two vectors in C have Hamming distance at least dmin:

dmin = min
c,c′∈C
c6=c′

{dH(c, c′)}. (2.18)

We say that the code has length N and dimension K, and the parameter dmin is called

the minimum Hamming distance of the code. The code rate R = K
N

is the fraction of

information bits per symbol xi that can be sent over the channel, and the coding theorem

requires that

R < C. 2

An encoder

FK
2 → C, enc(x) 7→ c

takes one of 2K possible messages x and maps it uniquely to a codeword c of length

N > K. This codeword is transmitted over the channel. In the following, we will consider

a simple transmission scenario: suppose that upon sending the codeword c over a channel

we receive the vector

y = c + ε, ε ∈ FN
2 , (2.19)

where ε ∈ FN
2 is a binary, random noise vector. The message x and the noisy receive

vector y differ in wH(ε) positions, and our goal is to reconstruct x from y without knowing

ε.

The decoding strategy is to look for the codeword c that looks “closest” to y in some

sense. It can be shown that the optimal (maximum likelihood (ML)) decision rule for

reconstructing c is given by

ĉ = arg max
c∈C

{p(y|c)}. (2.20)

Information

source
Encoder

Channel

Decoder
Information

sink

Noise

Distortion

x

x̂

c

y

Figure 2.5: Simplified model of a coded transmission system.
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However, this is infeasible since Eq. (2.20) implies the comparison of the received word

with all possible codewords in C, in number exponentially growing with N , and the channel

coding theorem requires large N . A suboptimal, practically much more feasible, decision

rule is to look for a codeword that lies within a radius of dmin/2 around the received

word. As the code, by construction, has minimum distance dmin, this decision rule is

guaranteed to uniquely recover the correct codeword if wH(ε) < dmin/2. If no codeword

can be found within the radius we declare a decoding error. This strategy is known as

bounded minimum distance (BMD) decoding. A graphical comparison between BMD and

the ML decision rule is shown in Figure 2.6. In Chapter 7, a third decoding strategy shall

be discussed.

Many algebraic constructions for block codes were developed in the past 60 years [Bla08,

MS77]. It was shown that a certain class of block codes, so-called LDPC codes, can ap-

proach the channel capacity with a low decoding complexity [CFR+01]. We shall consider

two examples of codes: the following example introduces a trivial class of codes, repetition

codes. The next section introduces a practical class of codes, convolutional codes, that

exhibit low encoding and decoding complexity, and a good error correcting performance:

Example 2.3.1 (Repetition code) A repetition code is a (1, N,N) block code that is

formed by repeating a single bit N times. We can think of it as simply sending each source

bit N times over the channel. The code has maximum minimum distance but it consists

of only two codewords:

c1 = [0 0 ... 0],

c2 = [1 1 ... 1].

Decoding is done simply by majority voting. A repetition code cannot achieve the channel

capacity: as N goes to infinity, the error probability goes to zero (unless the channel

introduces errors with probability 1/2), but at the same time the transmission rate goes to

zero. 2

dm
in

2

Figure 2.6: Decision regions resulting from different decoding strategies. Black circles mark

codewords, crosses mark elements from FN
2 . Left: BMD decoding, Right: ML decoding.
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2.3.2 Example: convolutional codes

Convolutional codes, introduced by Elias [Eli55], are a certain class of highly structured

codes, allowing a simple implementation and good performance even for small N . A long

message x of length K is split into small blocks of length Ks

xi = [x(i−1)Ks+1, .., x(i−1)Ks+Ks ], i = 1, .., K/Ks

that enter the encoder, which maps them to output blocks of length Ns

ci = [c(i−1)Ns+1, .., c(i−1)Ns+Ns ], i = 1, .., N/Ns

that form the codeword c = [c1, ..., cN/Ns ]. The encoder possesses memory, i.e., the

encoding rule for ci depends on the actual and the previous inputs xi,xi−1, ...,xi−M up

to some constant M . The rate of the code is R = Ks/Ns = K/N . Convolutional codes

are linear, i.e., ∀c, c′ ∈ C : c + c′ ∈ C.

It can then be shown that any encoder can be represented by an encoder circuit. An

encoder with parameters Ks = 1, Ns = 2 and M = 2 is shown in Figure 2.7: at any

xi

⊕ c
(1)
i

⊕ ⊕ c
(2)
i

Figure 2.7: A simple encoder circuit of a R = 1/2 convolutional code. Boxes represent memory

elements. A bit enters a memory element at time i, which holds it for one time step, releasing

it at time i + 1.

clock cycle i, a single bit xi is shifted into the circuit, the bits in the memory elements are

released and the encoder output ci = [c
(1)
i , c

(2)
i ] is formed. Hence, the codebits are given

by the equations

c
(1)
i = xi ⊕ xi−2,

c
(2)
i = xi ⊕ xi−1 ⊕ xi−2.

The contents of the memory elements at any given time are called the state of the encoder

denoted by si = [s
(1)
i s

(2)
i ]. The code bit equations can then be rewritten as

c
(1)
i = xi ⊕ s

(2)
i ,

c
(2)
i = xi ⊕ s

(1)
i ⊕ s

(2)
i .

There are four possible states which determine the encoder output at time i, depending

on the current input. The encoder can be represented by a graphical representation called
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i = 0 i = 1 i = 2 i = 3 i i + 1
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(1)
i s

(2)
i

0 0

1 0

0 1

1 1

Figure 2.8: Trellis representation of the Rate 1/2, M = 2 convolutional encoder.

trellis diagram as shown in Figure 2.8. The nodes in the trellis graph represent the 2M

different possible states si of the encoder at time steps i = 0, 1, .. from left to right. The

nodes are arranged such that different rows represent different states (shown on the left

of each row), and different columns represent different time steps i (shown on top). The

branches denote possible state transitions depending on the input to the encoder at time

i. Dashed branches denote that a 0 has entered the decoder, solid branches denote xi = 1.

At i = 0 the encoder state is assumed to be all zero, therefore the branches start from

the node corresponding to state 0 0 at the left most trellis section. The codewords can

now directly be read off from the trellis representation. As an example, the message

x = [00110] yields the codeword c = [0000111010].

The corresponding state sequence reads as

[s0, s1, s2, s3, s4] = [00, 00, 10, 11, 01].

2.4 Markov processes

Sequence evolution of DNA sequences is modeled by continuous-time Markov processes

(Chapter 4, Section 4.1.2, Chapter 5 and Chapter 6). We therefore introduce the basic

theory of Markov processes. We stress some theory for the continuous case as this as-

pect is rarely covered in depth by books found in the bioinformatics literature. Discrete

Markov processes are also building blocks of hidden Markov processes which are used in

(Chapters 5 and 6) for modeling DNA sequences. Hidden Markov processes are briefly

discussed in Section 2.4.5.

2.4.1 Discrete time Markov process (DTMP)

We shall first consider processes in discrete time, using time index

n ∈ Z+ = {0, 1, 2, 3, ..},
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and we write {Xn}n≥0 to denote a discrete time random process. Let S be a finite set

with an enumeration S = {s0, s1, .., s|S|−1} where the elements in S represent the possible

realizations of the random variables Xn. The elements si ∈ S are called the states, and S
is called the state space of the process. We need the following definitions:

Definition 2.4.1 (Stochastic matrix) A matrix P , [P ]ij = pij, is stochastic if every

row of P is a distribution, i.e., P satisfies the following conditions:

(i) 0 ≤ pij ≤ 1 for all i, j,

(ii)
∑

j pij = 1 for all i.

We also refer to a matrix satisfying these properties as transition matrix. 2

Let λ denote a distribution over S, i.e.:

λ = [λs0 , .., , λs|S|
],

with si ∈ S, 0 ≤ λsi
≤ 1,

∑

si∈S
λsi

= 1 and λsi
= P (x = si).

Definition 2.4.2 (Markov chain) A stochastic process {Xn}n≥0 is a first order Markov

chain with initial distribution λ iff

(i) X0 has distribution λ,

(ii) for n ≥ 0, Xn+1 depends only on Xn and has distribution p(xn+1|xn).

The properties of a Markov chain are summarized more formally as

P (x0 = si0) = λsi0
, (2.21a)

P (xn+1 = sin+1 |xn = sin , .., x0 = si0) = P (xn+1 = sin+1 |xn = sin), (2.21b)

for all states sin+1 , sin , .., si0 . 2

Definition 2.4.3 (Homogeneity) A Markov chain is homogenous if the transition prob-

abilities are independent of the time index n and given by the transition matrix P , i.e.,

P (xn+1 = sj|xn = si) = P (x1 = sj|x0 = si)
·
= psisj

, ∀(si, sj) ∈ S × S, ∀n ≥ 0. (2.22)

We refer to such a process as Markov(λ,P ) with [P ]ij = psisj
. 2

A process {Xn}0≤n≤N that is Markov(λ,P ) has distribution

p(x0, x1, ..., xN) = p(x0)
N∏

n=1

p(xn|xn−1), (2.23a)

with probabilities given by

P (x0 = si0 , x1 = si1 , .., xN = siN ) = P (x0 = si0)P (x1 = si1 |x0 = si0) (2.24a)

. . . P (xN = siN |xN−1 = siN−1
) (2.24b)

= λsi0
psi0

si1
psi1

si2
...psiN−1

siN
. (2.24c)



20 Chapter 2 ¥ Information theory and statistical methods

Let the initial distribution λ be the row vector indexed by S, i.e., [λ]i = P (x0 = si)

denotes the ith entry in that vector. Further, let [P ]ij = psisj
, and further define the state

vector pn with [pn]i = P (xn = si). Then, for all n,m ≥ 0, a Markov(λ,P ) process has

P (x1 = si) =
∑

j

P (x0 = sj)P (x1 = si|x0 = sj) (2.25a)

=
∑

j

λsj
psjsi

= [λP ]i, (2.25b)

P (x2 = si) =
∑

j

P (x1 = sj)P (x2 = si|x1 = sj) (2.25c)

=
∑

j

[λP ]jpsjsi
=

∑

j,k

λsk
psksj

psjsi
= [λPP ]i (2.25d)

= [λP 2]i. (2.25e)

It follows that the state vector of the process at any time n is given by

pn = λP n. (2.26)

In order to make statements about the convergence of the process, we need to introduce

a distribution with a special property:

Definition 2.4.4 (Stationary distribution) A distribution π is stationary if

πP = π. (2.27)

The terms equilibrium and invariant distribution are also frequently used. 2

Example 2.4.1 (Stationary distribution) Consider the following transition matrix of

a two-state Markov process

P =

(
1/3 2/3

4/9 5/9

)

.

Solving the stationarity condition in Eq. (2.27) for π with the additional constraint π1 +

π2 = 1, we find that the stationary distribution for P is given by:

π = [2/5 3/5]. 2

Note that π is the left eigenvector of P corresponding to eigenvalue 1.

We assume throughout this work that psisj
> 0, ∀si, sj. In this case, it can be shown that

P has a stationary distribution (the process is ergodic). The following theorem shows

that the state vector converges to this distribution for large n.

Theorem 2 (Convergence) Suppose P has stationary distribution π and let λ be an

arbitrary distribution. Then, for a Markov(λ,P ) process {Xn}n≥0

p∞ = lim
n→∞

pn → π, (2.28)

which is independent of the starting distribution λ. 2

Proof See Appendix B. ¥
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2.4.2 Continuous time Markov process (CTMP)

Building upon the theory established for discrete times, we now consider stochastic pro-

cesses {Xt}t≥0 with finite state space S but in continuous time

t ∈ R+ = [0,∞).

The main difficulty will be to define a stochastic matrix P such that probabilities P (xt+h =

sj|xt = si) can be derived for all t, h ∈ R+. After having established this, the theory of

continuous-time Markov processes (CTMP) will follow the same lines as for discrete-time

Markov processes (DTMP).

We shall first introduce rate matrices and matrix exponentials, that play an important

role in the definition of CTMP:

Definition 2.4.5 A rate matrix on S is a matrix R, [R]ij = rsisj
, si, sj ∈ S, satisfying

the following properties:

(i) 0 ≤ rsisj
< ∞ ∀i 6= j

(ii) 0 ≤ −rsisi
< ∞ ∀i

(iii)
∑

j rsisj
= 0 ∀i

2

Note that the entries in the off-diagonals are arbitrary positive values and that the diagonal

entries are strictly negative such that the row sums are all zero. We interprete the off-

diagonals rsisj
as rates of going from state si to sj and a diagonal element rsisi

as the rate

of leaving the state si.

We saw in Eq. (2.26) that the state vector at time index n of a Markov(λ,P ) process

is determined by P n. For scalar p ∈ R+, a natural way to interpolate the sequence

pn, n = 0, 1, 2, ... is by the function etr, t ≥ 0, with r = log(p). We seek a way to

interpolate the series P n, n = 0, 1, ..., and this is done by defining the matrix exponential

of R

P
·
= eR. (2.29)

By expanding the definition in Eq. (2.29) into a Taylor series, we find the following

expression for the matrix exponential:

eR = I + R +
1

2!
RR + . . . =

∞∑

k=0

Rk

k!
, (2.30)

where I denotes the identity matrix with ones in the diagonals and zeros otherwise. We

shall find it often convenient to consider the eigenvalue decomposition of the rate matrix

that exists if R has distinct eigenvalues2. Suppose R can be decomposed as

R = UΦU−1, (2.31)

2It is shown later that this always holds true for the class of CTMP considered in this work.
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where U = [uT
1 , ..,uT

|S|] denotes the matrix of eigenvectors and

Φ = diag(φ1, .., φ|S|) =






φ1 0
. . .

0 φ|S|






the matrix with the eigenvalues of R in the diagonal. Then,

P (t) = etR =
∞∑

k=0

(tR)k

k!
=

∞∑

k=0

(tUΦU−1)k

k!
(2.32a)

(a)
= U

(
∞∑

k=0

tkΦk

k!

)

U−1 (2.32b)

= UetΦU−1, (2.32c)

with

etΦ =






etφ1 0
. . .

0 etφ|S|




 . (2.33)

In (a) we used the well known property of the decomposition:

(UΦU−1)k = (UΦU−1U
︸ ︷︷ ︸

=I

ΦU−1...UΦU−1) = UΦkU−1. (2.34)

If we can find such a matrix R with eR = P and P a stochastic matrix, then we can

interpolate the series

P n = enR.

We can then think of making the discrete steps n arbitrarily small and eventually end

up with a continuous process. It should therefore not surprise us that a continuous time

Markov process is defined by a rate matrix R and transition probabilities P (t) = etR.

We shall next establish important properties of the matrix exponential and show that the

exponential of a rate matrix is a stochastic matrix. This result then allows us to give the

fundamental definition of a CTMP.

Theorem 3 (General matrix exponential) Given a matrix R on a finite set (not

necessarily a rate matrix), set P (t) = etR, t ≥ 0. Then, P (t) has the following properties:

(i) P (h + t) = P (h)P (t), for all s, t

(ii) P (t) and R commute for all t, i.e., P (t)R = RP (t),

(iii) P (t) is the unique solution to the forward equation

d

dt
P (t) = P (t)R, P (0) = I, (2.35)

(iv) P (t) is the unique solution to the backward equation

d

dt
P (t) = RP (t), P (0) = I. (2.36)

2
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Proof If we suppose that R can be decomposed into R = UΦU−1, the proof is fairly

simple but lengthy, and was moved to Appendix B. It is also possible to prove (i)-(iv)

without assuming the existence of the eigenvalue decomposition of R (cf. [Nor97, pp. 62]),

however, we shall see that for all CTMP considered in this work, R is diagonalizable in

the required form. ¥

Theorem 4 (Rate matrix exponential) A matrix R is a rate matrix iff P (t) = etR

is a stochastic matrix for all t ≥ 0. 2

Proof For small t we have (Eq. (2.30)):

P (t) ≈ I + tR + O(t2), (2.37)

where O(t) means that there is a t0 such that O(t)/t ≤ C for all t < t0, for some

constant C. It follows that rsisj
≥ 0 for si 6= sj iff psisj

≥ 0 for small enough t. Since

P (t) = P (t/n)n for any n, we can make t/n arbitrarily small, and it follows that rsisj
≥ 0

for si 6= sj if and only if psisj
≥ 0 for all t.

Let e denote the all-one vector e = [1, 1, .., 1]T . If R has zero row sum Re = 0, so does

Rn: Rne = Rn−10 = 0. It follows that P has row sum 1 for all t:

P (t)e = etRe
(2.30)
= Ie + tRe +

1

2!
tR2e + ... = Ie = e. (2.38)

If, on the other hand, P (t)e = e, then

d

dt
(P (t)e) =

dP (t)

dt
e

(a)
= RP (t)e = Re = 0, (2.39)

where (a) is due to Theorem 3. This proves the claim since we showed that rsisj
≥ 0 iff

psisj
≥ 0 for all t and Pe = e iff Re = 0. ¥

The following theorem states the key results for CTMP:

Theorem 5 (Continuous time Markov process) Let {Xt}t≥0 be a continuous process

with state space S that satisfies the Markov property, i.e., for all h, t ≥ 0, Xt+h is con-

ditionally independent of (Xs : s ≤ t) given Xt. Let R be a rate matrix. Then, for all

n = 0, 1, 2, .. and all times t0 ≤ t1 ≤ ... ≤ tn+1 and all states si0 , si1 , ..., sin+1, we have

P (xtn+1 = sin+1 |xtn = sin , ..., xt0 = si0) = psinsin+1
(tn+1 − tn), (2.40)

2

where psisj
(t) is given by P (t) = etR, with [P (t)]ij = psisj

(t).

Proof See Appendix B. ¥

We call such a process {Xt}t≥0 a continuous time Markov process with rate matrix R

which is sometimes also referred to as generator matrix. So far, we showed that a Markov

process {Xt}t≥0 is defined by a rate matrix R and that transition probabilities at any t

are given by the matrix exponential P (t) = etR. The remainder of this section defines

homogeneity, stationarity, convergence and reversibility for this process:
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2.4.3 Properties of continuous time Markov processes

Definition 2.4.6 (Homogeneity) A continuous time Markov process is homogenous if

the transition probabilities are independent of t, i.e., for all h ≥ 0,

P (xt+h = sj|xh = si) = P (xt = sj|x0 = si). (2.41)

2

We say that a homogenous CTMP {Xt}t≥0 is Markov(λ,R), where λ is the distribution

of X0 and R the rate matrix (generator) of the process. As for DTMP the state vector

p(t) is defined as [p(t)]i = P (xt = si) with p(0) = λ and for any t, h ≥ 0

p(t) = p(0)P (t) (2.42a)

p(t + h) = p(0)P (t + h) (2.42b)

= p(t)P (h). (2.42c)

In the following, we assume that all states communicate, i.e., rsisj
> 0 for all si 6= sj.

By [Nor97, Theorem 3.2.1], this implies that also psisj
> 0 for all si, sj. As discussed above

for DTMP, the process generated by R then converges to a stationary distribution. We

stated in Definition 2.4.4 that πP = π holds for the stationary distribution of a DTMP.

Now we extend the notion of stationarity to CTMPs:

Theorem 6 (Stationarity) Let {Xt}t≥0 be Markov(λ,R), the following is equivalent:

(i) πR = 0.

(ii) πP (t) = π. 2

Proof Let R = UΦU−1, then R has eigenvalues φ1, φ2, ..., φS and P (t) has eigenvalues

etφ1 , etφ2 , ..., etφS with the same corresponding eigenvectors according to Eq. (2.32c). If

there is a stationary distribution π that satisfies πP (t) = π for all t, then π is the left

eigenvector of P (t) with corresponding eigenvalue etφ = 1. So φ must be zero and the

corresponding eigenvector π satisfies πR = 0 ¥

Definition 2.4.7 (Stationary process) A process {Xt}t≥0 is called stationary if it is

Markov(π,R) with πR = 0, i.e., {Xt}t≥0 has stationary distribution π and initial distri-

bution π. 2

Theorem 7 Let {Xt}t≥0 be Markov(π,R) with stationary distribution π, then {Xh+t}t≥0

is also Markov(π,R). 2

Proof From the property of stationarity follows that p(h) = πP (h) = π, the claim is

then clear from the Markov and homogeneity property of the process. ¥

The convergence properties are derived from the theory established for DTMP: according

to Theorem 2, the discrete time process with transition probability matrix P (t) converges

to π. So for any t fixed:

lim
n→∞

λ(P (t))n → π, for any distribution λ. (2.43)
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Since P (t)n = P (nt), it can also be easily shown that the continuous-time process gener-

ated by R converges to π [Nor97, pp.123]:

lim
t→∞

λP (t) → π for any distribution λ. (2.44)

In this work we shall only consider processes that are stationary and reversible, defined

below:

Theorem 8 Let {Xt}0≤t≤T be Markov(π,R) with stationary distribution π. Then, the

process {XT−t}0≤t≤T is Markov(π, R̂) with

πsj
r̂sjsi

= πsi
rsisj

,

Proof cf. [Nor97, pp.124] [Kel79]. ¥

Definition 2.4.8 (Reversibility) A process is called reversible if R and π are in de-

tailed balance

πsj
rsjsi

= πsi
rsisj

, for all si, sj. (2.45)

2

Due to Theorem 8, if reversibility holds the processes {Xt}0≤t≤T and {XT−t}0≤t≤T are both

Markov(π,R). Hence, for any t, the discrete time processes {Xnt}0≤n≤N and {X(N−n)t}0≤n≤N

are Markov(π,P (t)), i.e., reversible. Therefore, reversibility implies that for any t

πsj
psjsi

(t) = πsi
psisj

(t), for all si, sj ∈ S. (2.46)

Reversibility says that the expected amount of changes from state sj to si in steady state

equals the amount of changes from si to sj.

Reversibility further implies that R can be decomposed. This is shown next since we

assumed this property of R throughout this section: let Π = diag(π), then the detailed

balance equality Eq. (2.45) can be written as

ΠR = RTΠ. (2.47)

Consider the matrix Π1/2RΠ−1/2, we find that it is symmetric if reversibility is satisfied:

(Π1/2RΠ−1/2)T = Π−1/2(RTΠ)Π−1/2 (2.48a)

(2.47)
= Π−1/2(ΠR)Π−1/2 (2.48b)

= Π1/2RΠ−1/2, (2.48c)

and therefore, there exists a real orthogonal matrix U ′ such that

Π1/2RΠ−1/2 = U ′ΦU ′T , (2.49)

where Φ denotes the diagonal matrix of eigenvalues of R. It follows that

R = Π−1/2U ′ΦU ′TΠ1/2 (2.50a)

= UΦU−1, (2.50b)

with3 U
·
= Π−1/2U ′. Hence, the decomposition always exists for reversible rate matrices.

3Recall that (Π−1/2U ′)−1 = U ′−1Π1/2 and U ′−1 = U ′T
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2.4.4 Example: continuous evolution of a quarternary symbol

Consider the CTMP defined over a quaternary state space S = {1, 2, 3, 4} with generator

matrix

R =







−3α α α α

α −3α α α

α α −3α α

α α α −3α







.

By solving the forward equations (Theorem 3):






ṗ11(t) ... ṗ14(t)
...

. . .

ṗ41(t) ... ṗ44(t)




 =






p11(t) ... p14(t)
...

. . .

p41(t) ... p44(t)











−3α ... α
...

. . .

α ... −3α






with constraints 




p11(0) ... p14(0)
...

. . .

p41(0) ... p44(0)




 =






1 0
. . .

0 ... 1




 , (2.52)

we find that the transition probabilities are given by

pij =
1

4

{
1 + 3e−4αt for i = j

1 − e−4αt for i 6= j
. (2.53)

Note that such a process models a quarternary symmetric channel (QSC)4 as presented

in Example 2.2.2 with µ = 1
4
(1 − e−4αt) for a fixed αt.

Since rij > 0, ∀i 6= j in R, all states communicate, and as shown above the process then

converges to a stationary distribution π. From Theorem 6 we find that the stationary

distribution is uniform

πR
!
= 0 ⇒ π = [1/4, ..., 1/4],

and hence, the process is reversible according to Definition 2.4.8. From Eq. (2.53) we can

further derive the limiting behavior of the transition probabilities

lim
t→∞

pij(t) →
1

4
∀i, j. (2.54)

We analyze how fast the process converges by calculating the state vector p(t) for αt =

0.1, 1, 10 with initial distribution λ = [1, 0, 0, 0]:

p(0.1/α) = [0.7528, 0.0824, 0.0824, 0.0824]

p(1/α) = [0.2638, 0.2454, 0.2454, 0.2454]

p(10/α) = [0.2500, 0.2500, 0.2500, 0.2500].

4However, not all QSCs can be modeled by this process but only those with 0 ≤ µ ≤ 1
4 while a general

QSC can have 0 ≤ µ ≤ 1
3 . This implies that all channels with pii < 1

4 cannot be modeled via this process.



2.4 Markov processes 27

2.4.5 Hidden Markov processes

Hidden Markov processes are used in Chapter 5 as models of molecular evolution and to

detect potentially functional DNA regions, and in Chapter 6 as a model for noisy data

streams encoded with a convolutional code.

Markov processes are frequently used system models in engineering and science applica-

tions. Often, one is interested in controlling or tracking the state of a given system over

time. However, in practice the system state may not be directly observable, and one

can only measure variables that depend on the state. Hidden Markov processes (HMP)

are an extension of classical Markov processes, allowing to model systems with unobserv-

able state and observable variables. In the following, we define HMPs and show how to

efficiently estimate the system state from such a model.

{sn}

Memoryless

Channel

p(yn|sn)

Markov

Chain

Observation

Sequence
{yn}

Figure 2.9: A hidden Markov process can be interpreted as a Markov chain state sequence

observed through a discrete memoryless channel.

From an information theoretic perspective, an HMP is a DTMP with state space S that is

observed through a memoryless channel (S, p(yn|sn),Y) as shown in Figure 2.9. At each

time step n, the HMP emits a symbol yn ∈ Y from an observation space Y , where the yn

is emitted according to the distribution p(yn|sn). The output of the HMP is the sequence

y0, y1, y2, ..., while the state sequence s0, s1, .. cannot be observed. We can therefore define

an HMP as follows:

Definition 2.4.9 (Hidden Markov process) Let {Sn}0≤n≤N , sn ∈ S be Markov(λ,P )

as defined in Section 2.4 and let Yn, yn ∈ Y , be a random variable that depends on Sn

through p(yn|sn). The variable Sn is called the hidden state at time n, and Yn is the

observable output of the HMP at time n and is called observation. An HMP is therefore

defined by the following set of parameters {λ,P ,S, p(yn|sn),Y} which represent initial

distribution, transition, state space of the Markov chain Sn, emission probabilities, and

observation space, respectively. 2

From the equations for memoryless channels (2.13) and for the distribution of a DTMP

(cf. Eq. (2.23a)), we can derive the joint distribution of observations and states for an
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HMP:

p(y0, y1, ...yN , s0, s1, ..., sN ) = p(y0, y1, ...yN |s0, s1, ..., sN )p(s0, s1, ..., sN) (2.55a)

=

(
N∏

n=0

p(yn|sn)

) (

p(s0)
N∏

n=1

p(sn|sn−1)

)

(2.55b)

= p(y0, s0)
N∏

n=1

p(yn|sn)p(sn|sn−1) (2.55c)

= p(y0, s0)
N∏

n=1

p(yn, sn|sn−1), (2.55d)

where p(y0, s0) and p(yn, sn|sn−1) are determined from the parameters of the HMP as

follows:

p(y0, s0) = λs0p(y0|s0) (2.56a)

p(yn, sn|sn−1) = psn−1,sn p(yn|sn), n = 1, 2, ..., N. (2.56b)

We next present efficient algorithms for state estimation of an HMP given a sequence of

observations y0, y1, .., yN . The following notation is used: a single subscript yn denotes a

single observation (realization of the r. v.) at time index n. The superscript notation yn

is used to denote all observations up to time index n, i.e., y0, y1, .., yn, and a joint sub-

and superscript yN
n+1 denotes the sequence yn+1, ..., yN .

We are interested in finding the maximum a posteriori (MAP) state probability

ŝn = arg max
sn

{p(sn|y
N)}. (2.57)

The key idea is to split the calculation of p(sn,y
N) into a forward density p(sn,y

n) and

a backward density p(yN
n+1|sn):

p(sn,y
N) = p(sn,y

n,yN
n+1) (2.58a)

= p(yN
n+1|sn,y

n)p(sn,y
n) (2.58b)

(a)
= p(yN

n+1|sn)p(sn,y
n), (2.58c)

where (a) holds because of the memoryless property of the channel. To see why this is

helpful, we shall calculate the forward density for a few n:

for n = 0:

p(s0, y0) = p(y0|s0)λs0 , (2.59)

for n = 1 :

p(s1, y0, y1) =
∑

s0

p(s1, s0, y0, y1) (2.60a)

=
∑

s0

p(y0|s1, s0, y1)p(s1, s0, y1) (2.60b)

=
∑

s0

p(s0, y0)p(y1|s1)p(s1|s0), (2.60c)
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where p(s0, y0) is given from the calculation for n = 0.

For general n:

p(sn,y
n) =

∑

sn−1

p(sn−1, sn,y
n) (2.61a)

=
∑

sn−1

p(yn−1|sn, sn−1, yn)p(sn, sn−1, yn) (2.61b)

(a)
=

∑

sn−1

p(sn−1,y
n−1)p(yn|sn)p(sn|sn−1), (2.61c)

where in (a) it is used that yn−1 is independent of yn and sn given sn−1, and yn is

independent of sn−1 given sn. The forward densities can therefore be calculated in a

recursive manner, and the backward density can be calculated similarly. In Summary, the

forward and backward densities satisfy the following recursions [EM02]:

p(sn,y
n) =

{
λs0p(y0|s0) n = 0

p(yn|sn)
∑

sn−1
p(sn−1,y

n−1)psn−1sn n = 1, 2, .., N
, (2.62a)

p(yN
n+1|sn) =

{
1 n = N
∑

sn+1
p(yN

n+2|sn+1)psnsn+1p(yn+1|sn+1) n = N − 1, .., 0
. (2.62b)

The MAP estimate ŝn is then given as

ŝn = arg max
sn

{
p(sn,y

n)p(yN
n+1|sn)

∑

sn
p(sn,yn)p(yN

n+1|sn)

}

, (2.63)

where we substituted Eq. (2.58c) into p(sn|y
N) = p(sn,yN )

P

sn
p(sn,yN )

. In the context of error

correcting codes, a variant of this algorithm is known as the BCJR algorithm, used for

maximum a posteriori symbol decoding of convolutional codes [JZ99].

2.5 Maximum likelihood estimation

A frequently encountered situation in statistics is the problem of accurately estimating

model parameters from data generated by a system under study. Let the random variable

X = [X1, X2, ..] model the observable data with a parameter dependable distribution

pX(x; θ) (2.64)

specifying the system. The system is characterized by a variable parameter5 θ taking

values in some parameter space Θ. Data is used to make statements about a proposed

system model, and the goal is to infer the system state represented by the parameter θ.

Likelihood is a central concept in statistical inference and leads to an important method:

the maximum likelihood (ML) estimation, reviewed in this section.

5We will concentrate on the case where θ is a scalar value. All results can be generalized to the vector

case.
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2.5.1 Basic principle

Assume we observe a sequence of observations x = [x1, ..., xN ], then the likelihood function

of θ ∈ Θ for the data x is defined as

Θ → [0, 1], θ 7→ lx(θ) ∼ P (x; θ). (2.65)

For a fixed data vector x, the likelihood function is proportional to the probability for

observing x as a function of θ. Note the difference to a pdf p(x; θ) that is viewed as

varying with x at fixed θ. Therefore, the likelihood is not a probability density. It is

often convenient to consider the log of the likelihood, and we therefore introduce the

notation

llx(θ)
·
= log (lx(θ)) . (2.66)

Example 2.5.1 (Bernoulli distributed binary random variable) Let Xi be binary iid dis-

tributed random variables with P (xi = 1) = θ and P (xi = 0) = 1 − θ, θ ∈ [0, 1], then the

likelihood function for a vector x = [x1, ..., xN ] is given by

lx(θ) =
N∏

i=1

xiθ + (1 − xi)(1 − θ) = (1 − θ)(N−wH(x))θwH(x),

with wH(x) denoting the Hamming weight (number of non-zero elements) of x. The

likelihood function over θ for a sample realization of x with θ = 0.2 and N = 20 is shown

in Figure 2.10. 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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2.5
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×10−5

θ

lx(θ)

Figure 2.10: Likelihood function for a sample realization of an iid Bernoulli random variable.

In Figure 2.10, it can be observed that the likelihood function has a maximum around

θ = 0.2, which was actually the true value used to generate the data. The likelihood

rapidly decreases when moving away from 0.2. It seems therefore intuitive to choose an

estimator for θ that maximizes the likelihood of the observed data:
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Definition 2.5.1 (Maximum likelihood estimator) Let Xi be a discrete random vari-

able and xi take values in a finite set X , and let X = [X1, X2, .., XN ] have distribution

pX(x; θ) with model parameter θ ∈ Θ. Given the observation x = [x1, x2, ..., xN ], the

maximum likelihood estimator (MLE) for θ is defined as

θ̂MLE = arg max
θ∈Θ

{lx(θ)}. (2.67)

2

The MLE chooses the parameter θ that provides the best explanation, in the likelihood

sense, of the observed data x under the probability model (2.64).

2.5.2 Example: ML distance of temporally diverged sequences

Let X
(i)
0

and X
(i)
t , i = 1, .., N be two sequences of random variables of the Markov(π,R)

CTMP {X(i)
t }t≥0 with quarternary state space S = {1, 2, 3, 4} as given in Example 2.4.4.

Assume we observe the two sequences x0 = [x
(1)
0 , x

(2)
0 , .., x

(N)
0 ] and xt = [x

(1)
t , x

(2)
t , .., x

(N)
t ]

after fixed but unknown time t. The pairs (X
(i)
0

, X
(i)
t ), i = 1, .., N are iid according to

(cf. Example 2.4.4):

p(x
(i)
0 , x

(i)
t ; αt) = p(x

(i)
t |x(i)

0 ; αt)p(x
(i)
0 ) = πs0ps0st =

1

4
ps0st =

1

4

{
3
4

+ 1
4
e−4αt s0 = st

1
4
− 1

4
e−4αt s0 6= st

.

The parameter of interest is the temporal distance αt of the sequences. Define p =

P (x
(i)
0 6= x

(i)
t ) =

∑

x
(i)
0 6=x

(i)
t

p(x
(i)
0 , x

(i)
t ; αt), then the likelihood function for αt given the two

sequences (x0,xt) is

l(x0,xt)(αt) = P (x0,xt; αt) = (1 − p)N−dH(x0,xt)pdH(x0,xt),

where dH(x0,xt) denotes the Hamming distance between x0 and xt (number of positions

in which they differ). As the logarithm is a monotonically increasing function, we can as

well maximize ll(x0,xt)(αt). We find the MLE for αt by setting the derivative of ll(x0,xt)(αt)

with respect to p to zero:

ll(x0,xt)(αt) = (N − dH(x0,xt)) log(1 − p) + dH(x0,xt) log(p), (2.68a)

dll(x0,xt)(αt)

dp
= −(N − dH(x0,xt))

1

(1 − p)
+ dH(x0,xt)

1

p
(2.68b)

= 0. (2.68c)

This gives a very intuitive estimate for p:

p̂ =
dH(x0,xt)

N
. (2.69)

The exact probability of x
(i)
0 6= x

(i)
t is easily calculated as p = 3

4
(1 − e−4αt). Substituting

p in Eq. (2.69) finally yields

α̂t = −
1

4
log

(

1 −
4

3

dH(x0,xt)

N

)

. (2.70)

In genetics, this quantity is famously known as the Felsenstein correction [EM02,EG05]

for an estimate of evolutionary distance of DNA sequences.
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2.5.3 Properties of the MLE

To justify the choice of the MLE, we briefly state the main results in its analysis showing

that it is an optimal estimator, at least if we have a lot of observations. An important

measure in the analysis of any estimator is the Fisher information [Kay93]:

Definition 2.5.2 (Fisher information) Suppose X has distribution p(x; θ), the Fisher

information is defined to be

I(θ) =
∑

x

p(x; θ)

(
dllx(θ)

dθ

)2

= Ex

{(
dllx(θ)

dθ

)2
}

. (2.71)

2

The Fisher information is a measure for the expected curvature of the log-likelihood

function. For independent random variables Xi, the Fisher information is given as

I(θ) =
∑

i

Ii(θ), (2.72)

and for iid random variables, Ii(θ) is constant for all i, and the amount of information in

a sample of size N is exactly N times larger than that contained in a single observation

I(θ) = NI1(θ). (2.73)

The following is a fundamental result in estimation theory:

Theorem 9 (Cramér-Rao lower bound (CLRB)) Let x be a sample drawn from the

distribution p(x; θ) and let θ̂ be an unbiased estimator for θ, i.e., E{θ̂} = θ, then the

variance of the estimate θ̂ is lower bounded by the inverse of the Fisher information

E{(θ − θ̂)2} ≥ I(θ)−1. (2.74)

2

Proof cf. [SG04, pp. 138-142] ¥

Intuitively, the Cramér-Rao lower bound states that the steeper the likelihood function

around the true value, the lower the variance that an optimal estimator can attain.

One of the main reasons for the popularity of the ML estimator is that it can be shown

that the MLE is asymptotically optimal, reaching the Cramér-Rao lower bound:

Theorem 10 (Asymptotic properties of the MLE) Let x = [x1, ..., xN ] be a sample

drawn from the distribution p(x; θ), and let p(x; θ) satisfy some regularity conditions

(given in [SG04, pp.147-148]), then the MLE θ̂MLE converges in distribution for large N

to

θ̂MLE
a
∼ N (θ, I(θ)−1), (2.75)

where N (µ, σ2) denotes the normal distribution with mean µ and variance σ, I(θ) denotes

the Fisher information evaluated at the true value θ, and
a
∼ means “asymptotically dis-

tributed according to”. The MLE is hence asymptotically unbiased and optimal (attains

the CRLB). 2
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Proof cf. [SG04, pp.148-151] [Kay93, pp.211-213] ¥

This result forms the basis for claiming optimality of the MLE. However, in practice it is

often unknown how large N has to grow until the MLE reaches optimality. An analytical

expression for the pdf of the MLE is usually impossible to derive.

Finding the MLE involves the maximization of the function lx(θ). Analytical expressions

for lx(θ) can only be found in very simple cases. Hence, it is often necessary to use tools

from numerical optimization theory. Local maxima can be found by iterative methods

such as steepest descent or Newton-Raphson type algorithms that are guaranteed to

converge to the global maximum if the likelihood function is convex. If the likelihood

function is more complicated, one often has to use global optimization methods such as

evolutionary algorithms or simulated annealing [SH97]. These algorithms are used in

Chapter 5 and 6 to solve maximum likelihood problems. However, a detailed discussion

of these methods is beyond the scope of this thesis.

A special problem arises if some of the data is unobserved (such as in an HMP scenario

where the observer has only access to the outputs but can not observe the states). This

issue will be addressed next by means of the expectation maximization algorithm.

2.6 Expectation maximization algorithm

We shall apply the expectation maximization (EM) algorithm in Chapter 6 to estimate

the parameters of a convolutional code from a received data stream (or DNA sequence)

by using a probabilistic tap model.

Let a system with input x ∈ X n and output y ∈ Yn be specified by the distribution

p(x,y; θ) with (unknown) parameter θ ∈ Θ. In practice, we often face the situation that

the system can only be partially observed, i.e., we are only given access to the output

of the system y. Estimating the system state θ from y via MLE therefore requires the

maximization of the expression

θ̂ = arg max
θ∈Θ

{
∑

x∈Xn

p(x,y; θ)

}

, (2.76)

which is often difficult to solve. The expectation-maximization (EM) algorithm developed

by Dempster et al. [DLR77] iteratively approaches the objective in Eq. (2.76) by alternat-

ing between a maximization and evaluation step. The algorithm is numerically stable and

guaranteed to converge to a local maximum of the likelihood function even though con-

vergence can be slow [Moo96]. In many situations, it greatly reduces the computational

complexity. The remainder of this section outlines the basic steps in the derivation, and

the algorithm is stated at the end.

In the EM framework, x is often referred to as missing data and y as the observed data.

Recall that lx(θ) denotes the likelihood function of θ given the data x and llx(θ) =

log(lx(θ)). We start with the following identity

lly(θ) = log(p(y; θ)) = log(p(x, y; θ)) − log(p(x|y; θ)). (2.77)



34 Chapter 2 ¥ Information theory and statistical methods

Suppose we are given the observed data y and assume that we have a guess θ[k] about

our parameter, then as the left hand side of Eq. (2.77) does not depend on x, taking the

expectation with respect to p(x|y; θ[k]) on the right and left side of Eq. (2.77) yields

lly(θ) =
∑

x

p(x|y; θ[k]) log(p(y,x; θ)) −
∑

x

p(x|y; θ[k]) log(p(x|y; θ)). (2.78)

It is important to emphasize that θ[k] is a fixed and known value whereas θ is an unknown

variable parameter. Define the function

Q(θ, θ[k])
·
=

∑

x

p(x|y; θ[k]) log(p(y,x; θ)), (2.79)

which we identify as the first term in Eq. (2.78) and which we refer to as the Q-function.

The following statement is the key to the EM algorithm

Theorem 11 Suppose x ∈ Xm, y ∈ Yn, (x,y) ∼ p(x,y; θ) with parameter θ ∈ Θ.

Given the observed data y and the Q-function as defined in Eq. (2.79),

Q(θ[k∗], θ[k]) ≥ Q(θ[k], θ[k])

implies

lly(θ[k∗]) ≥ lly(θ[k]),

for any θ[k], θ[k∗] ∈ Θ. 2

Proof

δll = lly(θ) − lly(θ[k]) (2.80a)

(2.78)
=

∑

x

p(x|y; θ[k])

(

log(p(y,x; θ)) − log(p(y,x; θ[k])) + log

(
p(x|y; θ[k])

p(x|y; θ)

))

(2.9)
= Q(θ, θ[k]) − Q(θ[k], θ[k]) + D(p(x|y; θ[k])||p(x|y; θ)) (2.80b)

≥ Q(θ, θ[k]) − Q(θ[k], θ[k]). (2.80c)

As shown in Section 2.2.1, the Kullback-Leibler distance D(·||·) is strictly positive. This

property is used in Eq. (2.80c) to show that any θ[k∗] that increases Q(θ, θ[k]) with respect

to Q(θ[k], θ[k]) increases the log likelihood lly(θ[k∗]) with respect to lly(θ[k]). ¥

The procedure is given in Algorithm 2.1. In many applications the maximization of the

Q-function is much easier than maximizing the objective in Eq. (2.76).

Example 2.6.1 Consider an HMP specified as in Section 2.4.5. In the EM framework,

yN = [y0, y1, ..., yN ] represents the observed data, and sN = [s0, s1, .., sN ] is the unob-

servable state sequence, and the distribution p(yN , sN ; θ) is specified by the parameters

θ = {λ,P , p(yn|sn)}. The Q-function is given by

Q(θ; θ[k]) =
∑

sN

p(sN |yN ; θ[k]) log(p(sN ,yN ; θ)). (2.81)
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Algorithm 2.1: Expectation-maximization algorithm

Require: Observed data y, missing data x,

1: Initialization: guess an initial parameter θ[0] ∈ Θ, set a threshold th, k = 0, δll = ∞
2: while δll > th do

3: (E-step): Expectation

Q(θ, θ[k]) =
∑

x

p(x|y; θ[k]) log(p(y,x; θ)).

4: (M-step): Maximization

θ[k+1] = arg max
θ∈Θ

{Q(θ, θ[k])}

5: compute

δll = lly(θ[k+1]) − lly(θ[k])

6: k ← k + 1.

7: end while

8: output θ[k].

By Eq. (2.55d),and using the convention p(y0, s0|s−1) = p(y0, s0), we find:

log(p(sN ,yN)) =
N∑

n=0

log(p(yn, sn|sn−1)). (2.82)

Hence,

Q(θ; θ[k]) =
∑

s0,..,sn,..,sN

p(s0, .., sn, ..sN |y
N ; θ[k])

N∑

n=0

log(p(yn, sn|sn−1)) (2.83a)

=
N∑

n=0

p(sn|y
N ; θ[k]) log(p(yn, sn|sn−1)). (2.83b)

The Q-function can then efficiently be evaluated using the forward-backward recursions (2.63)

for the a posteriori state density p(sn|y
N ; θ[k]) and (2.56b) for log(p(yn, sn|sn−1; θ)).

The MLE can even be analytically derived by setting the derivative of the Q-function with

respect to θ to zero. This results in the famous Baum-Welch algorithm for estimating the

parameters of an HMP. For more details the reader is referred to [EM02,DEKM98]. 2
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2.7 Summary

This chapter gave a brief reference to the mathematical methods and models used in this

work. We started with an overview of information theory, showing how information, en-

tropy, divergence, and mutual information of random variables are related. The notion of

transmission channels was defined, and the channel coding theorem was introduced, stat-

ing that lossless transmission of information over noisy channels is theoretically possible

as long as a coding scheme operating at rates below the channel capacity is used.

Coding theory, introduced next, aims at developing practical methods that achieve the

channel capacity. Over the past decades, powerful channel coding schemes were designed

by engineers to protect digital information in the presence of noise. We described convo-

lutional codes as a practical example, that exhibit good error correcting properties at a

reasonable encoding and decoding complexity.

Markov processes are widely used as mathematical models in statistics. We shortly re-

viewed discrete time Markov chains and then focused on continuous time chains that are

used in biology as probabilistic models for DNA sequence analysis. An overview about

Hidden Markov models, an extension of Markov models, concluded this section. Hidden

Markov models can be viewed as a Markov chain observed through a discrete memoryless

channel.

Maximum likelihood methods are used throughout this thesis, and we introduced the basic

principle of maximum likelihood and its asymptotic properties. Finally, we described

the expectation maximization (EM) algorithm, an iterative procedure that is guaranteed

to approach the maximum likelihood, given certain conditions are satisfied. The EM

algorithm is particularly useful in situations when data is only partially observed. As

an example for the latter, the application of EM to hidden Markov models was briefly

discussed as an example.



3
Communication principles of
the living cells

This chapter is an introduction to molecular biology from the perspective of a commu-

nications engineer, non-extensively covering the storage and replication of information at

the sequence level, the cellular repair mechanisms, the concept of genes and the genetic

code, and their organization in gene regulatory transcription factor networks.

Section 3.1 shows that the genomic material storing the genetic information (DNA and

RNA) can be regarded as a digital, quarternary signal. During the life cycle of a cell,

the genetic information is accessed to signal and perform the production of proteins and

trigger metabolic reactions.

Like digital signals in a communications scenario, genetic information must be faithfully

replicated, decoded and repaired. This analogy is addressed in Section 3.2, where we

describe how this is achieved by enzymes, executing their task with astonishing precision

and reliability. We characterize transmission errors occurring during these processes and

show models that explain their occurrence.

Moving from the purely bio-physical to a functional layer of genome organization, Sec-

tion 3.3 introduces the term gene and shows how genes are processed in the cell. Protein

coding genes are decoded by means of the genetic code, introduced in the same section,

that defines the mapping from DNA sequence to proteins.

Finally, Section 3.4 describes the next higher level of cellular information processing: the

organization of genes in regulatory interaction networks.

3.1 The physical layer - DNA and RNA

3.1.1 Genomic material as digital signals

The information needed to construct a living organism is mainly provided by its genome, a

long sequence of nitrogenous bases that are chained together by a sugar phosphate back-
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bone. A nucleotide refers to the compound of the three chemical entities base, sugar

and phosphate, and we often speak of a sequence of nucleotides when referring to ge-

netic signals. The genome does not itself perform any active role in constructing the

organism but its main role is the storage of information which is used to regulate and

perform the production of proteins and metabolic reactions triggered by a complex series

of interactions [Lew04].

Since all nucleotides have the same type of sugar and phosphate, the information is en-

tirely contained in the sequence composition of nitrogenous bases. A nucleotide sequence

can contain four different types of bases: adenine (A), cytosine (C), guanine (G) and

thymine (T). Hence, a sequence of symbols from the quarternary alphabet {A,C,G, T}
is the minimal sufficient representation for a nucleotide sequence representing genetic

information. We shall denote the set of possible bases (or nucleotides) as

A = {A,C,G, T} ≡ {1, 2, 3, 4}, (3.1)

and allways assume an alphabetical ordering on the elements.

The bases can be divided into two chemical subgroups called pyrimidine and purine:

purines = {A,G}

pyrimidines = {C, T}.

The deoxyribonucleic acid (DNA) is formed by two nucleotide sequences that are joined

by hydrogen bonding between the nitrogenous bases. Hydrogen bonding can only occur

between C and G, while A can bond specifically only with T and vice versa. These

reactions are described as base pairing. The two strands are twisted in the shape of a

double helix.

Example 3.1.1 The following two sequences form a valid DNA sequence:

TAAAGCGTGGGTATTCTT

ATTTCGCACCCATAAGAA
2

From an information theoretic perspective, it is sufficient to reduce the representation

to a single nucleotide sequence over the alphabet A because any of the two strands of

DNA is completely determined by the other. Most genomes are DNA (some viruses

have genomes that consist of RNA, described below). The spatial dimension of the DNA

sequence differs among organisms: the human genome has 3 × 109 bases, whereas the

genome of the bacterium Escherichia coli (E. coli) comprises around 4.65 × 106 bases.

The length of the human genome is approximately 1.8 meters but must be kept in the

nucleus of the cell having a diameter of only 6µm. It is evident that the DNA must

be packed into the compartment that contains it. The DNA is therefore coiled around

a certain class of proteins that are again packed into a dense structure which is further

coiled into a higher structure. Finally, the chromosomes are at the end of this structural

organization. The structural organization of DNA is very dynamic and changes during

the cell cycle, for example, the structure may have to be locally unwound to access the

sequence information. In fact, the individual chromosomes become only visible within a

certain time period of the cell cycle [Kni06].
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Cytosine

Guanine

Adenine

Uracil

replaces Thymine in RNA

Nitrogenous

Bases

DNA

Deoxyribonucleic acid

RNA

Ribonucleic acid

Nitrogenous

Bases

Base pair
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backbone

Cytosine
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Figure 3.1: Structure of RNA (left) and DNA (right) molecules. A nucleotide sequence consists

of nitrogenous bases that are chained together by a sugar-phosphate backbone. DNA is formed

by two nucleotide sequences that are joined by hydrogen bonding between the nitrogenous bases.

RNA is single stranded, formed by a different kind of sugar compared to DNA, and in RNA the

base uracil (U) is found instead of thymine. (Figure modified from: National human genome

research institute, http://genome.gov/100012096, September 2008).
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3.1.2 From DNA to RNA

Another kind of nucleotide sequence is ribonucleic acid (RNA). The main difference is

that it is formed by a different kind of sugar compared to DNA, and that in RNA the base

uracil (U) is found instead of thymine. Cellular genomes are DNA, but viruses can have

RNA genomes. The structure of DNA and RNA is shown in Figure 3.1. In cells, RNA

is synthesized from DNA in a process called transcription. Transcription starts when the

enzyme RNA polymerase binds to the DNA at a specific binding sequence called promoter.

From this point, the polymerase moves along the DNA, synthesizing RNA, until it reaches

a stop signal. The resulting RNA is identical to one of the DNA strands from which it has

been synthesized (with T replaced by U) and complementary to the other strand which

is called the template strand.

Unlike DNA, RNA is generally produced as a single stranded molecule with a strong

affinity to fold via intramolecular base pairing. The reason for this behavior is that

the RNA molecule seeks to attain a state of lower energy. The folded, two dimensional

structure is called the secondary structure of the RNA. The mere symbolic sequence

is therefore sometimes referred to as the primary structure. An example is shown in

Figure 3.2. RNAs can form complex structures and are involved in many regulatory

processes in the cell. Recent studies suggest that the majority of mammalian genomes is

transcribed into RNAs [The07], most of whose functions are unknown [Mat07,MM06]. It

is believed that the function of most RNAs is determined by their secondary structures.

Evidence supporting this hypothesis is given by observations that secondary structure of

RNAs is often highly conserved across different species while the primary structure may

differ (different primary structures can give rise to the same secondary structure). On the

other hand, conservation of the primary structure does not necessarily imply conservation

of function, since single mutations can lead to different secondary structures [BMG+04].

The secondary structure of a long functional RNA known to be involved in the transport

of proteins, a so-called signal recognition particle, is shown in Figure 3.3.
A

A
U

G
C

G
G

A
C

C
U

A
C

G
C

U
U

G
C U U

A
U

A
A

A
A

G
U

C
C

C
A

G
U

U
U
U

UC
ACA

C
G

U
G

A
G

A
C

U
U

A
C

A
G

U
C

C A U

C
C

A
G

U
G

C
A

C
G

A
C

C
C

A
U
C

UU
GUC

C
U

U
G

A
U

G
G

U
A

A
G

A
G

U
G

AAUG
C

G
G

AC
C
U

A C
G

C
U

U G
C
U
U

A
U
A
A
A

A
G

U
CC

C
A

G
UU

U
U
U C A

C
A

CG
U

G A
G

A
C

U
U A C AG

U
C C A U C C A G

U G
C A C G A

C C
C

A
UCUUG

UC
CUUGAUGG

U
AAG

A
G

U
G

Folding
=⇒

Figure 3.2: A single stranded RNA molecule (sequence shown on the left) folds to a secondary

structure by intramolecule base pairing (right). Lines between letters indicate pairing of bases.

Structure of a random RNA sequence was predicted using the Vienna RNA package [GLB+08].
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Figure 3.3: Secondary structure of the signal recognition particle (Symbol: SRP9, Entrez

identifier: 6726). The secondary structure shown was predicted from the sequence obtained

from GenBank [BKML+08] using the Vienna RNA package [GLB+08].

3.2 Transmission and maintenance of DNA

3.2.1 DNA replication

DNA is the storage medium for genetic information, and a complete copy of DNA is kept

in each cell of an organism. When a cell divides, it first replicates its DNA and passes a

copy on to its descendants. Replication starts by unzipping the two DNA strands. Each

separated strand then serves as a template for the synthesis of a new complementary

partner strand that is identical to its former partner. An enzyme called DNA polymerase

is responsible for the synthesis of the new strand, moving along the template strand

assembling nucleotides in the order that complements the template strand. When the

replication process is complete, two identical DNA molecules have been produced. DNA

replication is semiconservative because the new molecules consist of an original strand

conserved from the “old” DNA and a complementary new strand synthesized by the

polymerase. Figure 3.4 depicts the process of DNA replication.

Replication of DNA is a noisy process, therefore, the cell is equipped with several error

correcting mechanisms to reduce the numbers of errors to a tolerable level. The fidelity

of DNA synthesis relies on the specifity of base pairing: although A-T and C-G are the

most stable base pairs, less stable pairings such as G-T or C-A can be formed. When the
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New strand

New strand

Figure 3.4: DNA replication is semi-conservative. (Figure modified from: National human

genome research institute, http://genome.gov/100012096, September 2008)

polymerase synthesizes the new strand, it can make errors that result in a “mismatch”

pairing of nucleotides. The error rate of the synthesis mechanism of DNA polymerase is

approximately 10−3 per base pair replicated which is not tolerable for producing viable

new cells. Therefore, a proofreading mechanism is implemented in the polymerase itself:

before adding a new nucleotide to the growing DNA chain, the polymerase enzyme is able

to check whether the previous one has been correctly base paired. If not, the polymerase

removes the nucleotide and repeats the synthesis. Proofreading decreases the error rate

in replication to 10−5 − 10−7 per base pair.

As we shall see, additional protein machinery is available in the cell that continuously

monitors DNA for mistakes and initiates error control, if necessary. These processes then

correct remaining errors made during DNA replication bringing the overall error rate to

< 10−9 per base pair replicated [Kni06,Lew04].

3.2.2 Error control mechanisms in the cell

Even though the DNA polymerase proceeds with astonishing accuracy, it may also in-

troduce errors into the new DNAs with a low probability. In addition, the DNA is an

unstable macromolecule which is constantly suffering from damage caused by intracellular

(e.g., thermal collision with other molecules, chemically reactive byproducts) and envi-

ronmental (e.g., sunlight, radiation) influences. We refer to these effects that cause DNA

damage as the genetic noise. Such spontaneous changes of the DNA result in alterations

of a base that do not properly pair with the partner base. For this reason, the cell is

equipped with a set of efficient repair mechanisms, and evolutionary studies suggest that

these mechanisms evolved at the early stages of evolution. This suggests that the genetic

information needed for the construction of higher organisms cannot tolerate the level of

genetic noise present in cells. Support of this hypothesis is given by the fact that it was

found that the cause of cancer in human is often related to mutations in these repair

systems [Lew04].
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Repair systems can identify a range of different DNA distortions, and each cell controls

a whole set of systems able to deal with DNA errors. Most damage creates deformation

in the structural continuity of a DNA strand, which is then detected by mismatch repair

mechanisms. Excision repair is triggered by a damaged base or a change in the spatial

path of DNA: base excision repair replaces a single damaged base by the correct one;

nucleotide excision repair removes a whole sequence of nucleotides and resynthesizes a

new stretch of DNA to replace the excised material.

When DNA is damaged such that one base is degenerated to an “invalid” chemical struc-

ture (not A, C, G, T for DNA) recognition of the “correct” strand is easy. But how is

the repair system able to identify the correct strand in case of a mismatch where the

mispairing involves two valid A, C, G, T bases caused, for example, by the replication

process? As with many processes in molecular biology, the mechanism underlying this

phenomenom is not yet fully understood [Kni06]. One hypothesis is that chemical modi-

fications of the old strand (DNA methylation) can be recognized (this can be thought of

as a “chemical time-stamp”).

In addition to small scale damage affecting only a single base or a stretch of nucleotides,

the cell is able to deal with large scale distortions that affect whole chromosomes. An

example are double strand breaks of the DNA molecule caused by environmental influence

(such as radiation) potentially leading to rearrangement of chromosomes if unrepaired.

These can result in a chromosome part being deleted, translocated to another position

or chromosome, or duplicated. Further, combinations of these events are possible [Kni06,

Lew04]. The majority of certain types of cancers show high rates of large-scale alterations

in chromosomes [Kni06,Lew04]. As a last resort, if the repair mechanisms fail, the cell can

therefore trigger programmed cell death (so-called apoptosis) causing the cell to commit

suicide if it recognizes that it has been damaged beyond an acceptable level. Apoptosis

is a key defense against cancer and crucial to the development of multicellular organisms

providing control over the total cell number.

3.2.3 Characterization of genetic errors

There are three types of small scale errors (affecting only a single or a few bases) that

can occur in transmission of genetic information: substitutions, insertions and deletions.

While a mutation is damage to the DNA that can still be corrected by the cell, these

errors are fixed in the DNA. We shall briefly describe the processes that explain genetic

errors: when a mismatch is introduced in the DNA, the repair mechanisms must correct

the error in a limited amount of time, before the cell divides. If they fail to do so, fixation

of the mutation will occur upon replication of the DNA, as shown in Figure 3.5. We call

the replacement of a base in the nucleotide sequence by another one a substitution.

Insertion errors introduce additional base pairs into the DNA molecule that were not

present previously. Deletion errors have exactly the opposite effect, erasing one or multiple

base pairs from the DNA. These types of errors are also often referred to as InDels

(Insertions and Deletions). Such errors most likely occur because of the affinity of single

stranded DNA to fold and form loops. A simple scheme explaining such errors was
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1 A section of DNA with a mis-
match caused by a mutation in
the upper strand.

2 Replication of the lower strand
“corrects” the mistake.

3 Replication of upper strand
fixes the base substitution for
all subsequent replicates of this
DNA.

1

ATGACGTCAGTC

TACTGAAGTCAG

ATGACGTCAGTC

TACTGCAGTCAG

ATGACTTCAGTC

TACTGAAGTCAG

3

2

Figure 3.5: A substitution occurs if a DNA with mismatch is replicated. A mismatch can

occur because of a mistake of the replication machinery or a false synthesis in excision repair.

developed by Streisinger in 1966 [Kni06] and is depicted in Figure 3.6.

So far, we characterized how information is represented and processed on the biochemical

level. We introduced DNA and RNA as carriers of genetic information that is contained in

sequences of nucleotides which form a finite alphabet A. Yet, we have not said anything

about the encoding of the information and how it gives rise to function. We shall now see

how genetic information is organized and structured on a higher, functional level, which

leads us to the description of a fundamental organizational genomic unit: the gene.

3.3 Information packets - the genes

On the biochemical layer, the genome consists of a number of different nucleic acid

molecules that are copied, monitored, and mantained by the cell as described in the

previous sections. The nucleotides do not proactively carry out any function but encode

information that is needed to construct functional molecular entities. These entities form

a functional layer that is organized into different genes. Genes are confined regions in

the DNA, encoding information which is further processed by molecular complexes. The

information stored in a gene is used to assemble the molecules that carry out diverse

functions within the cell. This section gives a brief overview about this functional layer.

3.3.1 What is a gene?

While the term gene is frequently used in scientific and non-scientific literature, it is not

clearly defined, and since it was first proposed, the concept of what a gene is has been fre-

quently adapted according to the rapidly changing state of current knowledge [GBR+07].

In this work, we define a gene as a genomic sequence encoding a protein or RNA product (a

simplified version of the definition given in [GBR+07]). We hence distinguish two classes
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1 DNA section with repetitions
of GC sequences.

2 Replication mistakes or incom-
plete excision repair causes
gaps in one of the strands.

3 Bases can slide along the
strand and form loops.

4a Replication of the lower strand
results in the deletion of 4 base
pairs in the daughter cell.

4b DNA synthesis and subsequent
replication of the lower strand
results in the insertion of 2 base
pairs in the daughter cell.

1

ATGACGCGCGCGCGTAGTC

TACTGCGCGCGCGCATCAG

ATGACGCGCGCGCGTAGTC

TACTGC GCGCATCAG

GC

CG

ATGACGGCGTAGTC

TACTGCCGCATCAG

ATGACGCCGCGCGCGTAGTC

TACTGCC GCATCAG

CG

TACTGCCGCATCAG

ATGACGGCGTAGTC

TACTGCCCGCGCGCGCATCAG

ATGACGCGCGCGCGCGTAGTC

2

3

3

4a 4b

Figure 3.6: A model that explains insertion and deletion mutations. Such errors most likely

occur because of the affinity of single stranded DNA to fold and form loops.

of genes: protein-coding and non-(protein-)coding genes, the latter producing RNAs that

directly execute functions, and the former producing intermediate RNAs that are further

processed to make proteins. The definition implies that all genes are transcribed into

single stranded RNAs, a process that was described in Section 3.1, summarized again in

Figure 3.7. The roles of non-coding genes are diverse, including gene regulation, RNA

processing, and protein synthesis; most of the non-coding RNAs identified in genomic

studies have yet to be ascribed any function. However, there is strong evidence that these

RNAs are biologically important.

3.3.2 Protein coding genes and the genetic code

Protein coding genes produce a special RNA called messenger RNA (mRNA) that is

further processed to make a protein. Proteins are macro molecules that are formed by

chains of amino acids. The information needed to produce the amino acid sequence is

contained within a single gene. Proteins are crucial to most cellular processes carrying out

basic and diverse cell functions such as material transport, catalysis of chemical reactions,

signal detection as well as maintaining the cell scaffold. A cell permanently produces

proteins from DNA by “decoding” the genes through gene expression that occurs by a
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template strand RNA polymerase

coding strand

DNA

RNA

Figure 3.7: Transcription of DNA to RNA is executed by RNA polymerase moving along DNA

and synthesizing RNA from the template strand. The RNA is identical to the coding strand

(with T replaced by U) and complementary to the template strand (modified from: National

human genome research institute, http://genome.gov/100012096, September 2008).

two-stage process: the transcription of the gene to mRNA and subsequent synthesis of

amino acids, called translation.

In higher organisms (eucaryotes), genes are divided into exons and introns. The informa-

tion for the production of a protein is only contained within the exons which are therefore

often called coding regions whereas all other parts of the genome are referred to as non-

coding regions. Introns are transcribed but removed from the mRNA before translation

in a process called splicing.

Exons have a well specified structure being organized in triplets of nucleotides, so-called

codons. During the translation step, a codon is mapped to an amino acid according to

the genetic code. The resulting chains forming the proteins consist of 20 different amino

acids but there are 43 = 64 different codons. Therefore, the mapping is not unique, and

some codons code for the same amino acid. Additionally, there are start and stop codons

that signalize the beginning and the end of protein synthesis. This is because only a sub-

sequence of the mRNA is translated into a protein, which is delimited by the start codon

AUG and one of the stop codons UAA, UAG, or UGA. The genetic code is shown in

Figure 3.9. The process of gene expression is summarized in Figure 3.8. Once a sequence

of amino acids has been synthesized, it folds, similar to RNA (cf. Section 3.1.2), to a

three dimensional structure called the tertiary structure of the protein. The structure of

the protein determines its function. It is, however, an open problem to predict this struc-

ture computationally in an efficient way and the characterization of all existing protein

structures in the human genomes is far from being complete.

Upon completion of gene expression, the gene product interacts with other molecules.

Some proteins can interact with DNA and thus influence the production rate of other

genes. This yields a higher level of information processing that forms a regulation network

of interacting entities, as described in the next section.
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mRNA

Codon

Ribosome

Translation Anti-codon

tRNA

Amino acid

Amino acid
chain (protein)

Transport to
cytoplasm

Mature mRNA

Transcription

DNA Nuclearmembrane

1

2

3

4

1 DNA is transcribed into mRNA
in the nucleus.

2 The mRNA is transported out-
side the nucleus (into the cyto-
plasm).

3 Translation is done by a pro-
tein/RNA complex (ribosome)
that binds to the mRNA and
starts translating in steps of nu-
cleotide triplets (codons).

4 At each step, the ribosome serves
as a platform for the trans-

fer RNA (tRNA), a functional
RNA carrying a specific amino
acid. On its opposite end, the
tRNA has a so-called anticodon,
a triplet that is complementary
to the corresponding triplet in
the genetic code. The anti-
codon binds to the current triplet
and the amino acid is added to
the growing amino acid chain.
When the ribosome encounters a
stop codon, it undocks from the
mRNA and releases the amino
acid chain.

Figure 3.8: Gene expression is a two-stage process: transcription of a gene first pro-

duces mRNA. A protein/RNA complex subsequently translates mRNA into a protein

following the genetic code (modified from: National human genome research institute,

http://genome.gov/100012096, September 2008).

3.4 Network layer: gene interaction

We saw that genetic information processing is executed in a sequential manner: genes are

transcribed into mRNAs which, in turn, are subsequently translated into proteins. Upon

modification, proteins are used either as building blocks of the cellular physical structure

or as functional units. A gene is said to be expressed if its mRNA or protein can be

found in the cell cytoplasm, and the activity of a gene is measured through the amount

of its corresponding product. Each cell holds a whole copy of the genome, and many

genes are, in fact, expressed in all cell types. On the other hand, each different cell type

also produces specialized proteins. Different expression patterns are to a great extend

responsible for the cell’s distinctive properties.

Genes, however, do not act independently from each other - they are organized in large

control networks. Cells live in a complex environment and must be able to react to

external signals (e.g., molecules from other cells, temperature, harmful chemicals), and

information about their internal state (e.g., DNA damage). Cells respond to these signals

by producing appropriate proteins that control the expression patterns of one or multiple

other genes. The cell uses special proteins called transcription factors (TF) that are

modulated by a specific environmental signal input, causing the particular TF to transit

between an inactive and active molecular state. An active TF can bind to a specific
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Figure 3.9: The genetic code defines the mapping between nucleotide triplets and amino acids.

There are three stop codons (UGA,UAA,UAG) that serve as stop signals for translation and are

not coding for an amino acid. The codon AUG represents the start codon, coding for methionine

at the same time. The codons are given as RNA code, the DNA code as it appears on the coding

strand of genes is obtained by exchanging U (Uracil) with T (Thymine).

regulatory sequence (transcription factor binding site) in proximity of its target gene(s)

to regulate the transcription rate. Transcription factors can act as activators that increase

the transcription rate of a gene, or as repressors that reduce or even completely inhibit

transcription. A TF can regulate multiple genes, and a gene is usually regulated by one or

multiple TFs. Since TFs are proteins themselves, they are also encoded by genes, which

are regulated by other TFs, which in turn may be regulated by yet other TFs, and so

on. These interactions allow the formation of complex regulatory networks (Figure 3.10).

Nodes in the network represent genes, whereas edges denote regulatory connections among

the nodes. The output of a node in the network is controlled by input received from

connected nodes.

The network thus represents a dynamical system: an environmental signal changes the

state of transcription factor activities, leading to changes in the production rate of pro-

teins. Some of those proteins are TFs themselves that further control activity of other

genes, and so on. This continues until gene expressions have reached a steady (or os-

cillating) state. Depending on the kind of signals the network receives, it will end up

in different states. In addition to transcription networks, the cell contains several other
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Genes

Transcription

factors
X1 X2 X3 X4 XM

Gene X1 Gene X2 Gene X3 Gene X4 Gene X5 Gene X6 Gene XK

Figure 3.10: Graphical representation of a transcriptional regulation network. The control of

gene activity is much more complex than this figure suggests. Figure reproduced from [Alo07,

Chapter 2]

networks of interactions, such as those based on protein-protein interactions.

A remarkable feature of transcription networks is modularity [Alo03]. One can take a

small gene network of one organism, e.g., the DNA coding for green fluorescent protein

from jellyfish, and place it in a different organism, e.g., a bacterium [Alo07], causing

the bacterium to turn green. Such organization makes transcription networks adaptable

during evolution and able to rapidly incorporate new genes or reconnect existing mod-

ules [Alo07]. In fact, there is evidence that gene networks evolve much faster than coding

regions of genes. Closely related animals exhibit conserved DNA coding regions yet their

transcription regulation is often quite different, indicating that many of the differences

between animal species lie in the different activation patterns of genes rather than in

difference on the sequence level [Alo07].

Gene networks are sparse, and there is experimental evidence that gene networks are scale

free, i.e., there are very few nodes with many connections and vice versa. A scale-free

topology has, on average, more nodes with very many connections (called hubs) and more

nodes with very few connections than appearing in random networks. It is a well known

result from graph theory that the average minimum paths between nodes in scale-free

networks are shorter than in random networks. Furthermore, the minimum path length

is typically robust to disruptions of random nodes. However, if a hub is compromised,

the distance tends to increase dramatically [SPB07]. Surprisingly, it has been observed

that there appears to be at best only a weak relationship between connectivities in the

yeast gene expression network and relative growth rates of yeast deletion mutants that

had highly connected genes removed. In other words: other than expected the network

seems to be robust with respect to the disruption of hubs [SPB07]. How this robustness is

achieved is yet unknown (some simulation studies and theories are provided by [SPB07]).

Understanding gene networks is of focal importance in order to understand cellular infor-

mation processing. Recently, a whole discipline called systems biology has emerged that

approaches modeling and simulation of gene networks by system theoretic approaches, us-

ing methods from mathematics, computer science and engineering [dG05,Alo07,DSCW05].

Some of these models are briefly reviewed in Chapter 7, followed by a coding theoretic

approach to reverse engineering of the dynamics of biological networks.
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3.5 Summary

We gave a brief overview to molecular biology and cellular information processing. We

shall briefly summarize the most important facts from this chapter that the reader should

keep in mind for the remainder of this thesis:

The genomic information of each organism is stored in its DNA. A single DNA strand

consists of four nucleotides A, C, G, T (also referred to as bases) and can thus be regarded

as a digital signal. Chemically, the nucleotides can be subdived into the purine class (A,G)

and the pyrimidine class (C,T). DNA is a double stranded molecule, with the bases of

the two strands pairing according to the following determinism: A↔T and C↔G. RNA

is similar to DNA with T replaced by U, and single stranded instead of double stranded.

RNA has the affinity to fold into complex secondary structures. The structure of the

RNA often determines its function.

Each cell contains its own copy of DNA. When the cell divides, it has to replicate its

DNA. Replication is a semi-conservative, noisy process. DNA is constantly suffering from

damage; the cell is, however, equipped with several error correcting mechanisms that are

able to detect and correct degenerated DNA. As a last resort, the cell can trigger its own

suicide (Apoptosis) when DNA damage has reached an unacceptable level. The overall

error rate per nucleotide is estimated to be 10−9 − 10−10 per cell generation, for example,

in a human cell. There are two types of small scale errors that can occur: substitution

errors exchange a DNA base by another. Insertions/deletions insert/remove a single or

multiple bases into/from the DNA strand. Insertions and deletions (InDels) occur far less

frequently than substitutions.

There is no common definition of what a gene is. Here, we define a gene as a genomic

sequence encoding a protein or RNA product. We distinguish between the class of non-

coding and protein-coding genes. We say genes are transcribed into an RNA product.

Protein-coding genes are divided into exons and introns and transcribed into mRNA.

Exons are further translated into chains of amino acids according to the genetic code

while introns are removed from the mRNA before translation. The amino acid chains

form three dimensional structures, and the final product is called a protein.

The cell responds to internal and external signals by producing appropriate proteins called

transcription factors (TFs). These bind to specific regulatory regions in proximity of

target genes causing the gene to increase (activate) or decrease (repress) its transcription

rate. Since transcription factors are encoded by genes themselves, this set of interactions

forms a complex dynamical network. The cell thus responds to external and internal

stimuli by changing its gene expression patterns.

A gene network can be drawn as a sparse graph, where nodes represent genes and edges

represent interactions among genes. It was observed that the topology of transcription

networks are not random but scale-free, i.e., they have more nodes with a very high

number of connections and fewer nodes with less connections than a random network on

average. Experiments suggest that gene networks are remarkably robust with respect to

disruption of single or multiple genes.
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Bioinformatics

We introduce important concepts from bioinformatics, focusing on probabilistic sequence

analysis. This chapter is most relevant to Chapter 5 since it introduces the basic defi-

nitions and methods of computational molecular evolution, that provide the theoretical

framework for Chapter 5.

Section 4.1 establishes the probabilistic framework for analyzing two temporally diverged

DNA sequences. Scoring schemes are used to detect sequences that have evolved from

a common ancestor. Models of sequence evolution, based on continuous time Markov

chains, are presented and classified. The concept of sequence alignment is introduced.

Section 4.2 generalizes the statistical analysis to the case when multiple sequences share

common ancestry. Phylogenetic trees are defined, and it is shown how to efficiently

calculate the likelihood of sequences on a tree using the Felsenstein algorithm. Finally,

multiple sequence alignments are briefly discussed.

4.1 Analysis of two DNA sequences

On the sequence level, many problems in bioinformatics center around analyzing the

statistical properties of so-called homologous DNA sequences:

Definition 4.1.1 (Homology, Orthology, Paralogy) A pair of DNA sequences is said

to be homologous if the sequences share common ancestry. There are two different types

of homology: the sequences are orthologous if their homology is the result of a speciation

from an immediate ancestral species, i.e. they evolved from a common ancestor sequence

in genomes of different species. They are called paralogous if they originate from a se-

quence duplication event (e.g., gene duplication caused by mutation) and then evolved

within the genome of same species. 2

A comparative analysis of homologous sequences within the same genome or among

genomes often allows to draw biologically meaningful conclusions about the sequences

or the relationship and evolutionary history of species. For example, homology of genes

may imply a similar function on the protein level. In this section, we shall briefly review

the basic concepts of probabilistic sequence analysis.
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We first describe how scoring schemes are used to detect homology between two sequences.

Then, we present probabilistic models of sequence evolution that allow for a statistical

analysis of DNA sequences.

4.1.1 Sequence homology and scoring schemes

Suppose two sequences are homologous due to a speciation or duplication event in the past.

After the event, the sequences evolved and were independently subjected to mutations as

described in Chapter 3, Section 3.2. As a result, the two sequences will both look different

from the original, ancestral sequence, and different from each other. An important task

is to reliably detect the homology of sequences. For example, we may be given a gene

sequence, and we want to detect possible orthologous genes in another species. The

question to answer is how similar the sequences have to be in order to decide for homology?

We shall first restrict our attention to point substitutions, meaning that we assume that

no insertion or deletion has occurred in the evolution of the homologous sequences. The

problem can be formalized as follows: given a short sequence x = [x1, .., xN ] ∈ AN and

a longer sequence (e.g., a genome) y = [y1, .., yM ] ∈ AM , M > N , detect homologous

representatives of x in y. For this purpose, a symmetric scoring function

s : A×A → R, (x, y) 7→ s(x, y) = s(y, x) (4.1)

is introduced that is used to score sequence matches, i.e., for each possible overlap of x

with y a score at overlap n is computed as follows:

S(n) =
N∑

i=1

s(xn+i−1, yi), n = 1, ..,M − N + 1. (4.2)

To detect sequences that are homologous with high probability, the distribution of S(n),

or at least for S(n) of high scoring segments, is desired. Let us first consider the case

of a single overlap of length N . The following scoring model is assumed: x and y are

realizations of iid random processes {Xi}
N
i=1 and {Yi}

N
i=1 with distributions Xi ∼ q(x)

and Yi ∼ q(y). A pair (Xi, Yi) of independent (non-homologous) nucleotides then has

distribution (Xi, Yi)ind ∼ q(x)q(y), and a pair of homologous nucleotides is assumed to

have distribution (Xi, Yi)hom ∼ p(x, y). Let s(x, y) be a scoring function as described

above with the additional requirements that s(x, y) is positive for at least one pair x, y

and that the expected score in two independent sequences is negative

E{s(x, y)} =
∑

x,y∈A

q(x)q(y)s(x, y) < 0.

In 1990, Karlin and Altschul showed that under these conditions, and as the size N of

the sequences grows, an optimal target distribution has the form [KA90,Alt91]

p(x, y) = q(x)q(y)eηs(x,y), (4.3)

with η implicitly determined by
∑

x,y

p(x, y) =
∑

x,y

q(x)q(y)eηs(x,y) !
= 1. (4.4)
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An optimal scoring scheme can hence be specified from any chosen target distribution

p(x, y)

s(x, y) =
1

η
log

(
p(x, y)

q(x)q(y)

)

. (4.5)

The scoring scheme has an information theoretic interpretation: if we choose η = log(2),

then the expected score in two aligned homologous sequences is

E{s(x, y)} =
∑

x,y

p(x, y) log2

(
p(x, y)

q(x)q(y)

)

= D(p(x, y)||q(x)q(y)), (4.6)

which is the Kullback-Leibler (KL) divergence between p(x, y) and q(x)q(y), according to

Eq. (2.9). If we assume that q(x) = p(x) and q(y) = p(y) are the marginals of p(x, y),

this becomes the mutual information (cf. Eq. (2.12a))

D(p(x, y)||p(x)p(y)) = I(X; Y).

Within the assumed iid scenario and two sequences of length N , it holds that: I(X;Y) =

NI(X; Y).

Now we switch back to our original problem, where we wanted to find a homologous

sequence of length N in a longer sequence of length M . Karlin and Altschul showed that

the length N of a scoring segment to be statistically significant is inverse proportional

to the mutual information and depends on the length of the sequences. They derived

exact formulas of score distributions for large N and gave the following approximation

for deciding whether a sequence match score is significant:

NI(X; Y) ' log2(NM) bits (4.8a)

log2(NM)/N / I(X; Y) (4.8b)

bits are required to decide for a statistically significant match. Hence, the more “diverged”

the sequences are in terms of their mutual information, the longer the length N of the

query sequence has to be chosen. On the other hand, for fixed N ,M , we can estimate

how large the mutual information between the sequences has to be in order to make

statistically sound statements.

It is interesting that Eq. (4.8a) gives a similar inequality condition as the fundamental

channel capacity theorem by Shannon (cf. Section 2.2.2). The interpretation follows the

one presented in Section 2.3: there are 2NI(X;Y) sequences that are distinguishable, and

we have NM different sequences in our database to compare x with. So, if we want

to identify the unique sequence among these sequences that x was derived from (i.e.,

homologous) with high probability, log2(NM)/N must not exceed I(X; Y).

Example 4.1.1 A typical protein consists of 28 amino acids. For comparing such a

sequence with a database containing 222 residues,

I(X; Y) ' log2(2
30)/N ≈ 0.1172 bits

are required to detect the homologous sequence in the database. 2
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The arguments above define an optimal scoring scheme and they state that an optimal

score is the log ratio of the target and the background distribution. However, it is not

specified how to derive the distribution p(x, y). Below, we show how to derive such

distributions based on probabilistic sequence models. The mathematical description and

the most commonly used models are presented next.

4.1.2 Models of sequence evolution

An information theoretic view of homology is depicted in Figure 4.1: the single ancestral

sequence modeled as r. v. Z is transmitted over two independent channels, and the two

observable outcomes Y, X are received. It follows that X → Z → Y form a Markov chain

p(x, y|z) = p(x|z)p(y|z). (4.9)

We wish to model the conditional distributions p(x|z) and p(y|z) in order to specify the

joint distribution for (X, Y)

p(x, y) =
∑

z

p(x, y|z)p(z) =
∑

z

p(x|z)p(y|z)p(z), (4.10)

used in Equation (4.5) to derive optimal scores. In the framework of DNA sequence

evolution, distances are assigned to sequences representing the time since divergence from

the ancestor. Let X and Y have distances t1 and t2 > t1, respectively, then we require

that I(X; Z) > I(Y; Z). Furthermore, X, Y should be independent of any previous ancestor

given Z, meaning X → Z → Y form a Markov chain. A continuous time Markov chain

model as described in Section 2.4 satisfies the required properties. Recall that such a

model is determined by a rate matrix R, and time-dependent transition probabilities are

calculated using the matrix exponential P (t) = etR. In a sequence evolution framework,

it is usually assumed that processes are homogenous and stationary with equilibrium

distribution π.

Z

Channel

p(x|z)

Channel

p(y|z)

X

Y

z

x

y

Figure 4.1: A transmission diagram of homology.

In the following, we consider the evolution of a single nucleotide: after divergence from

the common ancestor, the nucleotides evolve as two independent, identical Markov(π,R)

processes with state space A. In the evolution framework, we refer to the Markov(π,R)

process as substitution process.
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Now, suppose we know from an independent source the (fixed) divergence times t1, t2 of

the sequences, then we can calculate the transition probabilities via

P (t1) = eRt1 , P (t2) = eRt2 ,

and thus the nucleotide pair distribution given in Eq. (4.10). Note that the stationarity

assumption implies

p(z) = p(x) = p(y) = π (4.11)

because of Theorem 7 in Chapter 2.4.

For the remainder of this section, we shall consider the quarternary case A = {A,C,G, T}
for DNA sequences. Of course, the same concepts can be generalized to any finite alphabet

(e.g., amino acid alphabet). The substitution process is defined by the parameters π and

R, specified by 4 and 16 parameters respectively. Certain constraints reduce the numbers

of parameters: to yield a valid rate matrix, the diagonal elements of R must be chosen such

that Re = 0, and a valid distribution satisfies πe = 1 (where e is the all-one vector e =

[1, 1, ..1]T ). Further, as established in Theorem 6 in Chapter 2.4, the constraint πR = 0

applies for stationary processes. Therefore, an overall number of 11 parameters is required

to specify a substitution process. In practice, these parameters are unknown and have to

be estimated from data, and it is therefore often necessary to further reduce the numbers

of parameters in order to avoid overfitting effects [WLG01,Yan06,Nie05,DEKM98].

A common assumption is that the process is reversible, i.e., it is in detailed balance

(Definition (2.4.8)), i.e., for all si, sj ∈ {A,C,G, T}:

πsi
rsisj

= πsj
rsjsi

. (4.12)

We can then write R as the product of Π and a symmetric matrix Rs, i.e., R = RsΠ,

which satisfies the balance equation

ΠR = ΠRsΠ = (RsΠ)TΠ = RTΠ. (4.13)

By construction, the process has stationary distribution π. In phylogenetic theory such

a model is called general reversible (GREV) model and can be parameterized by a rate

matrix of the form1

R =







⋆ πCrα πGrβ πT rγ

πArα ⋆ πGrδ πT rǫ

πArβ πCrδ ⋆ πT rζ

πArγ πCrǫ πGrζ ⋆







, (4.14)

where the ⋆ symbols in the diagonals represent entries that are chosen such that the row

sums equal zero. The GREV model is determined by 9 parameters (6 rates plus 4 − 1

stationary frequencies because of the πe = 1 constraint).

The HKY model, determined by 5 parameters, enforces an additional constraint that

only allows differences in rates within the Purine/Pyrimidine class2, denoted rβ, and

1Throughout it is assumed that the ordering A,C,G, T applies to all rate matrices defined over the

DNA alphabet {A,C,G, T}.
2This is called a transition in biology. Whenever we refer to a transition, it should be clear from the

context whether the biological or statistical meaning applies.
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rates between the two classes, called transversions, denoted as rα:

R =







⋆ πCrα πGrβ πT rα

πArα ⋆ πGrα πT rβ

πArβ πCrα ⋆ πT rα

πArα πCrβ πGrα ⋆







. (4.15)

The Kimura 2 parameter (K2P) model is derived from this model assuming a uniform

stationary distribution π = [1/4, ..., 1/4].

The F84 model (proposed by Felsenstein in 1984 [Yan06]) has a single free rate parameter,

while allowing for an arbitrary distribution π:

R =







⋆ πCrα πGrα πT rα

πArα ⋆ πGrα πT rα

πArα πCrα ⋆ πT rα

πArα πCrα πGrα ⋆







, (4.16)

and the Jukes-Cantor (JC) model, determined via 1 parameter only, is the reduced F84

model enforcing the uniform stationary distribution. Note that the Jukes-Cantor model

gives rise to the QSC channel as discussed in Example 2.2.2. The nested relationship

among the models is depicted in Figure 4.2. The channel models resulting from the JC

and K2P rate matrices are compared in Figure 4.3.

JC F84K2PHKYGREV

9

5
2

1

4

Figure 4.2: A Venn diagram showing the relationship among models of sequence evolution.

The numbers at the top indicate the numbers of parameters that are required to specify the

model.

Remark: The assumptions of identical, stationary and reversible substitution processes

are mainly imposed to ease the computation and to reduce the number of parameters.

There is no biological justification to make these assumptions. For example, as a conse-

quence of stationarity, identical nucleotide distribution in the different sequences is as-

sumed (Theorem (7)), which is often violated in real datasets. However, in this case π can

be estimated directly from the observed sequences (e.g., by a simple frequency count), and

the number of parameters for the GREV, HKY and F84 models is then further reduced.
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Figure 4.3: Transition diagrams of Jukes-Cantor (JC) and Kimura 2-parameter (K2P) model.

Thickness of lines is proportional to probabilities: the JC model only allows for a uniform muta-

tion probability while the K2P model can allow higher mutation rates within Pyrimidine/Purine

classes than between classes.

The HKY model has two rate parameters determining rates of transitions (mutations

within the Purine/Pyrimidine class) and transversions. Different genome studies suggest

that this is a reasonable assumption [Nie05, HRY+03]. For some cases it can be shown

that the single parameter model (F84) is sufficient [YW95]. The JC and K2P assume a

uniform stationary distribution which suggests an equal frequency of nucleotides in the

observed sequences. While allowing the derivation of simple analytical expressions for

transition probabilities, the assumption is often clearly violated in real datasets. There-

fore, these models are more of theoretical than practical interest.

4.1.3 Gaps and pairwise sequence alignment

So far, we considered the evolution of sequences under point substitutions. We derived

optimal scoring schemes for homologous sequences (Eq. (4.5)) and presented models of

sequence evolution that determine nucleotide distributions. However, as discussed in

Chapter 3, Section 3.2.3, DNA sequences additionally suffer from insertions and deletions

that have to be dealt with. Since InDels most likely result in sequences of unequal

lengths, the corresponding (homologous) nucleotides have to be identified first. Therefore,

a pre-processing, that is called alignment, is necessary for most computational analysis of

sequence data:

Definition 4.1.2 (Sequence alignment) Given two sequences x ∈ AN , y ∈ AM and a

“gap” symbol denoted by “−” not in A, a pairwise alignment is a matrix A ∈ {A,−}2×L

with the following properties:

(i) max{N,M} ≤ L ≤ N + M,

(ii) there is no column of A that only contains gap symbols

(iii) the first (second) row of A with gaps removed is identical to x (y) 2
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Example 4.1.2 Given the DNA sequences

x = AAAAGCGTGGGTATTCTT

y = ATTAACGGGTCTTCTT

a possible sequence alignment is given by

AAAAGCGTGGGTATTCTT

A = | : : | : | | | | | : | | | | | ,

ATTAAC - - GGGTCTTCTT

where we show additional symbols | and : indicating match and substitution respectively.

The alignment implies that at least 4 mutations have occurred and that an insertion or

deletion has occurred in the sequences: two nucleotides GT were deleted from y or inserted

from x. This is accounted for by introducing two gap symbols in the row representing y.

Note that there are always many possible explanations of how sequences have evolved given

a particular alignment. 2

An alignment A is optimal if it maximizes some predefined cost function. Cost functions

for alignments are usually based on scoring schemes as presented in Section 4.1 extended

by scores (s(−, y), y ∈ A) for gaps, called gap penalties. It is, in general, not feasible to

examine all possible alignments. For two DNA sequences of length 1000 nucleotides, the

number of all possible alignments is well approximated by 10600 [EG05]. However, efficient

algorithms based on dynamic programming were developed that find optimal alignments

under certain cost functions. They are not discussed in this thesis, neither will be the

choice of cost functions. The reader is referred to [DEKM98,EG05,Pev00] for an in-depth

treatment of the subject.

4.2 Analysis of multiple sequences

4.2.1 Evolution model and phylogenetic trees

Many of the concepts developed in the previous section generalize to multiple sequences

as well. Instead of two sequences, we now consider N homologous sequences all having

evolved from the same ancestor sequence. This ancestor is assumed to have diverged into

two independent sequences some time ago, and every of those two sequences has become

the ancestor of another two sequences and so on. The generalized multiple sequence

evolution model is depicted in Figure 4.4. The relationship among the sequences can be

drawn as a tree-like graph which is referred to as phylogenetic tree.

Definition 4.2.1 (Phylogenetic tree) A phylogenetic tree is a graph T = {V,E} with

nodes V representing DNA sequences and edges E ⊂ {(u, v) : u, v ∈ V, u 6= v}. An edge

is drawn from node u to v if u is an ancestor of v. We refer to u as the parent of v and

v is called the child of u. A phylogenetic tree is binary, i.e., every node has either one
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Xr

p(xu|xr)

p(xu′|xr)

Xu

Xu′

p(xv|xu)

p(xw|xu)

Xv

Xw

Figure 4.4: A transmission diagram for multiple homologous nucleotides.

parent or none, and every node has either two children ore none. The single node having

no parent is called the root of the tree denoted by r, and the nodes having no children

are called the leaves. We denote the set of leaf nodes as {ℓ1, .., ℓN}. 2

A phylogenetic tree relating N homologous sequences has N leaves representing these

sequences. The inner nodes represent ancestral sequences, and the root node represents

the ancestral sequence common to all N leaf sequences. As for two sequences, the evo-

lution of sequences between parent and child is modeled as a CTMP with rate matrix

R, parameterized by any of the sequence models described above. In order to calculate

transition probabilities between nodes, we have to assign distances to the branches in the

tree.

Definition 4.2.2 A phylogenetic tree with branch lengths {T , τ} is a phylogenetic tree

with positive real numbers τ = {tuv ∈ R+,∀(u, v) ∈ E} assigned to every branch in T ,

where tuv is called the length or distance of the branch connecting u and v. 2

The branch lengths can have different meanings such as years since divergence or expected

frequency of mutations between sequences. The transition probabilities between two nodes

u and v connected by branch (u, v) ∈ E are then given by

Pu→v = etuvR. (4.17)

We shall consider the evolution of a single nucleotide given a tree with branch lengths

{T , τ} and N leaves: denote Xu as the random variable modeling the nucleotide at node

u ∈ V with realization xu. Starting from nucleotide xr in the common ancestor, at

any node u the nucleotide xu is transmitted to each child v with transition probabilities

specified by Eq (4.17). This process continues until the nucleotides xℓi
, i = 1, .., N are

observed at the leaves.

4.2.2 Felsenstein algorithm

In many applications we are interested in calculating the likelihood of observing nu-

cleotides at the leaves of a tree given the parameters {R,π, T , τ}. Denote the observable

nucleotides at the leaves as xℓ = [xℓ1 , ..xℓN
] and the unobservable ones at the inner nodes
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as xℓ− . The brute force solution to the likelihood problem yields

p(xℓ) =
∑

xℓ−

p(xℓ− ,xℓ), (4.18)

which is feasible for small N only. An efficient iterative procedure for calculating the

likelihood was presented by Felsenstein in 1981. Felsenstein’s algorithm is an instance of

the sum-product algorithm for tree-like graphical models and derived in the following: let

xℓ(u) denote the observations at the leaves of the tree rooted at u as depicted in Figure 4.5,

and let v and w be children of u. Note that xℓ(r) = xℓ and xℓ(u) = [xℓ(v),xℓ(w)]. Because

Xv and Xw are conditionally independent given Xu, we have

p(xℓ(u)|xu) = p(xℓ(v),xℓ(w)|xu) (4.19a)

= p(xℓ(v)|xu)p(xℓ(w)|xu) (4.19b)

=

(
∑

xv∈A

p(xℓ(v), xv|xu)

)

×

(
∑

xw∈A

p(xℓ(w), xw|xu)

)

(4.19c)

=

(
∑

xv∈A

p(xℓ(v)|xv)p(xv|xu)

)

×

(
∑

xw∈A

p(xℓ(w)|xw)p(xw|xu)

)

, (4.19d)

where the transition probabilities p(xv|xu) and p(xw|xu) are given by Pu→v and Pu→w

from Eq. (4.17), and p(xℓ(v)|xv) was calculated in the previous iteration.

The algorithm starts at the leaves with initial probabilities

p(x|xℓ) =

{
1 if x = xℓ

0 otherwise
, (4.20)

for a leave node xℓ and proceeds up to the root in an iterative fashion according to

Eq. (4.19d). At the root, the likelihood can finally be calculated by

p(xℓ(r)) =
∑

xr∈A

p(xℓ(r)|xr)p(xr) =
∑

xr∈A

p(xℓ(r)|xr)πxr
. (4.21)

where stationarity is assumed, therefore p(xr) is given by π, hence The algorithm can

be given in a compact vectorized form: without loss of generality, assume that A =

{A,C,G, T}. Then, using the notation

p(u) =
(
p(xℓ(u)|xu = A), p(xℓ(u)|xu = C), p(xℓ(u)|xu = G), p(xℓ(u)|xu = T )

)
, (4.22)

the update rule of the FA in (4.19d) can be written as

p(u) = (p(v)P T
u→v) ⊙ (p(w)P T

u→w), (4.23)

where ⊙ denotes the entrywise (Hadamard-)product. Equation (4.21) then becomes

p(xℓ(r)) = p(r)πT . (4.24)

A detailed listing of the FA is given in Algorithm 4.1, the message passing procedure is

summarized in Figure 4.5.
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m(v) m(w)

p(u) = m(v) ⊙ m(w)p(u′)

xℓ(w)xℓ(v) xℓ(u)

m(u) = p(u)Pu→v

[p(u)]i = P (xℓ(u)|xu = i)

r

u′ u

v w

Figure 4.5: Felsenstein algorithm for tree-like graphical models, given in vectorized form: the

algorithm starts at the leaves and proceeds by sending messages up to the root. Node u receives

the messages m(v) and m(w) and calculates m(u), which is sent to the parent of u. The vector

xℓ(u) denotes the observations at the leaves of the tree rooted at u. The ith entry of p(u) is the

probability of this observation given that the nucleotide at u was xu = i.

Remark: An evolutionary model {R,π, T , τ} can be interpreted as a probabilistic graph-

ical model, and efficient calculation of the likelihood under such models has been solved

independently in the bioinformatics and information theory/machine learning commu-

nity. In information theory, the Felsenstein algorithm is referred to as belief propagation

(first presented by Pearl) or sum-product algorithm. It is, for example, used in mod-

ern coding theory to decode some of the best performing error control codes defined on

graphs [KFL01]. Pearl and Felsenstein developed the algorithm almost at the same time,

Felsenstein published his algorithm in 1981 in the biological literature [Fel81], and Pearl

presented his result (a more general approach than Felsentein’s) 1982 at a conference

on artificial intelligence [Pea82]. Among others, Siepel and Haussler [SH05] and Jordan

et.al. [MPJ04] recently further extended the application of graphical models in phyloge-

netic analysis.
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Algorithm 4.1: Felsenstein Algorithm

Require: evolutionary model {R,π, T , τ},
1: p(r) = get message(r)

2: Output p(xℓ(r)) = p(r)πT

3: Return

Procedure get message(node u)

1: if u ∈ {ℓ1, .., ℓN} then

2: Output p(u) according to Eq. (4.20)

3: else

4: set c1 first child of u.

5: p(c1) = get message(c1)

6: set c2 second child of u.

7: p(c2) = get message(c2)

8: Output p(u) =
(
p(c1)P T

u→c1

)
⊙

(
p(c2)P T

u→c2

)

9: end if

10: Return

4.2.3 Multiple sequence alignment

As for two sequences, we need to locally reconstruct the homology of nucleotides by

aligning the sequences:

Definition 4.2.3 Given Ms sequences x1,x2, ..,xMs over A of lengths N1, N2, .., NMs ,

and denoting “−” the “gap” symbol which is not in A, a (global) multiple sequence

alignment (MSA) is a matrix A ∈ {A,−}Ms×L with the following properties:

(i) max{N1, .., NMs} ≤ L ≤
∑Ms

m=1 Nm,

(ii) there is no column of A that only contains gap symbols,

(iii) the ith row of A with gaps removed is identical to xi. 2

An optimal alignment is the one optimizing a predefined cost function, ideally derived from

a complete probabilistic model of molecular sequence evolution. Such desired evolutionary

model is too complex, and the number of possible evolutionary scenarios explaining an

alignment is huge. Simplifying assumptions partly or entirely ignoring the phylogenetic

tree must be made. We give two examples:

Example 4.2.1 (Minimum entropy scoring) Let [A]ij be the symbol in the ith se-

quence in the jth column. Let further

fj(x) =
1

Ms

|{i : [A]ij = x ∈ A}|

be the observed frequencies for residue x in column j. The empirical entropy

costj(A) = −
∑

x

fj(x) log(fj(x)),
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is a measure of the column’s nucleotide composition. An optimal alignment is then defined

as [DEKM98]

Â = arg min
A

{
L∑

j=1

costj(A)

}

.

2

Example 4.2.2 (Sum of pairs (SP) scoring) A multiple alignment can be found by

scoring all pairs of sequences:

costj(A) =
∑

k,l:k<l

s([A]kj, [A]lj),

where the score function s(·, ·) is usually a scoring scheme as described in Section 4.1 with

an additional gap penalty. The optimal alignment minimizes the sum of pairs

Â = arg max
A

{
L∑

j=1

costj(A)

}

.

Note that there is no probabilistic justification of the SP score; each sequence is scored as

if it descended from the Ms − 1 other species instead of a single ancestor. The SP scoring

is a widely used scheme for multiple sequence alignment [DEKM98]. 2

Even under simplified cost functions, the running time of the best known schemes for

finding an optimal alignment, based on dynamic programming, increases exponentially

with the number of input sequences. Modern MSA techniques rely on heuristic optimiza-

tion strategies [BKR+04, BP04, BDC+03, CSK+03]. In particular, alignments of whole

genomes require a capacity of computational resources that exceeds those of most labo-

ratories today. Upon generation, the data is centrally provided and maintained by large

databases [KBD+03] where it is freely accessible by researchers. The subject is not fur-

ther discussed in this thesis, and we shall assume throughout that we are given “perfect”

alignments whenever dealing with data produced by state-of-the-art MSA software tools

obtained from online databases. The alignment shown in Figure 4.6 was created by a

method described in [BKR+04]. It was obtained through the UCSC database [KBD+03]

and aligns DNA sequences from 22 vertebrate species annotated to the left of the corre-

sponding sequence. In each column of the alignment, the consensus nucleotide, i.e., the

nucleotide that occurs with the highest frequency in that column, is indicated by a gray

background. Deviations from consensus have white background.

human C A G A C A A C A G A A A C G C G G A T C A C C A A G C A C A T A C C T T T G T T T T C A G T G T G G A T A A T A A A A T A T T G A T G G T A G A G A T C C T A T C T T C C T T T A T C C C T G A G C T

chimp C A G A C A A C A G A A A C G C T G A T C A C C A A G C A C A T A C C T T T G T T T T C A G T G T G G A T A A T A A A A T A T T G A T G G T A G A G A T C C T A T C T T C C T T T A T C C C T G A G C T

baboon C A G A C A A C A G A A A C A C T G A T C A C C A A G C A C G T A C C T T T G T T T T C A G T G T G G A T A A T A A A A T A T T G A T G G T A G A G A T C C T A T C G T C C T T T A T C C C T G A G C T

macaque C A G A C A A C A G A A A C A C T G A T C A C C A A G C A C G T A C C T T T G T T T T C A G T G T G G A T A A T A A A A T A T T G A T G G T A G A G A T C C T A T C T T C C T T T A T C C C T G A G C T

marmoset C A G A C A A C A G A A A C A C T G A T G A C C A A G C A C A T A C C T T T G T T C T C A G T G T G G A T A A C A A A A T A T T G A C G G T A G A G A T C C T A T C T T C C T T T A T C C C T G A G C T

galago C A T A T G A C A G A A A A A C - A A T C A C C A A G C A C G T A C C T T T G T T T T C A G T G T G G A T A A C A A A A T A T T G A C A G T A G A A A T C C T A T C C T C C T T T A T G C C T G A G C T

rat - - - - T A C C A G - - A C A C T A G A C A G T A G G C A T G T A C C T T T G T T T T C A G A G T G G A C A A C A A A A T G T T G A T A G T A G A A A T C T T A T C T T C C T T T A T G C C T G A G C T

mouse - - - - - A C A A G A C A C A C A A G A C A G C A A A C A C G T A C C T T T G T T T T C A G T G T G G A C A A T A A A A T G T T G A T G G T A G A A A T C T T A T C C T C C T T T A T A C C T G A G C T

rabbit T G A G T A A C A G A A A T G C T G C T T A C C A A A C A C G T A C C T T T G T T T T C A A T G T G G A C A A C A A A A T A T T G A T G G T A G A A A T C C T A T C T T C C T T T A T G C C T G A G C T

cow C A C A C G A C A A G A A C G C C G A T C A C C A A A C A C G T A C C T T T G T T T T C A G T G T G G A C A A C A G G A T A C T G A T G G T G G A G A T C C T A T C T T C C T T G A T G C C T G A G C T

dog C A A A T G A C A G G A A C A C T G A - - - A T A A G C A C G T A C C T T G G T T T T C A G C G T G G A T A A C A A A A T A T T G A T G G T A G A A A T C C T G T C T T C C T T T A T G C C T G A G C T

rfbat C G A A C G A C A G A A A C G C T G A T T A T C A A A C A C G T A C C T T T G T T T G C A G G G T G G A T A A C A A A A T A T T G A T G G T A G A A A T C C G A T C T T C C T T T A T G C C T G A G C C

shrew C A G - - - - - - - - - - - - - T G A C C C C C A G A T A C C A A C C T T T G T T T T C A G C G T G G A C A G C A A C A T A T T G A C G G T A G A G A T C C T G T C C T C C T T G A T G C C C G A G C T

armadillo C G A A T G A C A G A A A C G C T A G T T A A C A G A C C C T T A C C T T T G T T T T C A G T G T A G A T A A C A A A A G A T T G A C G G T A G A A A T C C T A T C T T C C T T T A T G C C T G A G C T

elephant A T A A A A A C A G A A A T G A G G A T T C C T A A A C A C G T A C C T T T G T T T T C A G A G T G G A T A A C A A G A G A C T G A C G G T A G A A A T C C T G T C T T C C T T T A C G C C T G A G C T

monodelphis - - - A C A A T A G A A A T G T T C T C T A T T A A G G A C A T A C C T T G G T T C C C A G G G T G G A C A A C A A A A G A T T G A T A G T A G A A A T T C T A T C T T C C T T C A A G C C A G T A C T

platypus G G G G G G G C T T - - - - C C - G G C C G G C G G G T C C G C A C C T T G G A T C T C A G G G T G G A C A G C A G G A G G T C G A T G G T G G A G A T T C T G T C C T C T C T C A A G C C G G T G C T

chicken - - - - - - - - - - - - - - - - A G T T C - C C A T A C A C A T A C C T T A G T T T T C A G T G T G G A G A G A A G A A G A T T G A C G G T A G A A A C T T T G T C T T C C T T T A T T C C A G A A C G

xenopus G A T G C A A G G T G T A - - - A G G T C G T A A A G T A G A T A C C T T G G T T T T C A A T A G T G A A A G G A G A A G A T T G A T G G T A G A A A T A C G A T C T T C C T T T A T G C C A G T G G C

tetraodon - - - - - - - - - - - - - - - - - - - - - - - - A A A - A C T T A C T C T G G T T T T C A A A G T G G A T A A A A T A A G A T T T A C T A C A G A C A T C C T G T C T T C C T T T A T C C C T G T G C T

fugu G A A A T G G G A - - - - - - - - - - - - - - - A A A - A C T T A C T C T G G T T T T C A G T G T G G A C A A A A T A A G A T T T A C G A T A G A C A T C C T G T C T T C C T T T A T A C C T G T G C A

zebrafish T G A A T G A - - - - - - - - - - - - - - - - - A A A - A C C T A C T T T G A C T T T C A T A A T A G G T A A A A C A A A - - - T A C T A T G G A A G T C T T A C A T A T T T C C A G C A T T C T T C A

Figure 4.6: Multiple sequence alignment of 22 vertebrate species.
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4.3 Summary

The material provided in this chapter outlined the fundamental concepts from bioinfor-

matics necessary in order to understand the next Chapter 5.

Homology means that two sequences share ancestry. We showed how scoring schemes

are used to detect two homologous DNA sequences. The substitution process of DNA

sequences is modeled by a continuous time Markov process with rate matrix R. The pro-

cess is assumed to be stationary and reversible. Different constraints, based on biological

considerations, are imposed on R and lead to different substitution models with reduced

number of parameters. Some of these models do not conform with reality.

Due to evolutionary insertion and deletion (InDel) events, a sequence alignment is a

necessary preprocessing step in order to reconstruct homology on a nucleotide level. InDels

give rise to gaps in the alignment.

The evolution of multiple homologous sequences is described by a phylogenetic (binary)

tree with branch lengths accounting for evolutionary distance among species. The likeli-

hood of observed sequences given such a tree along with a model of evolution is efficiently

calculated by the Felsenstein algorithm, a variant of the sum-product algorithm.

Multiple sequence alignments are computationally hard and state-of-the-art methods are

based on suboptimal heuristics. Evaluating the quality of an alignment is also diffi-

cult. Whole genome sequence alignments are stored in centralized databases. We assume

throughout this thesis that we are given perfect alignments and neglect all issues that

arise from the alignment problem itself.



5
Identification of highly
conserved DNA sequences

Based on concepts of mathematical evolutionary models introduced in the previous chap-

ter, this chapter considers phylogenetic systems and the inference of biological insights

from multiple DNA sequences analysis. The system under study has a single discrete in-

put sequence (common ancestor) and multiple outputs (the genomes of today’s species).

Only the outputs can be observed since there is usually no information about the common

ancestor available1. Sequences evolve over time according to a stochastic substitution pro-

cess, and the system is therefore characterized by transition probabilities relating input

and output symbols. The observed sequences are not independent but depend on each

other through their phylogeny. Comparative genomics is the discipline studying these

systems in order to draw biologically meaningful conclusions from homologous DNA se-

quences of multiple species [Nie05,Yan06].

In Section 5.2, we shall first briefly discuss the reverse engineering of phylogenetic models,

i.e., the estimation of substitution process parameters and reconstruction of phylogenetic

trees, thereby focusing on maximum likelihood methods. We try to give a coherent

picture while it should be clear that, within the scope of this work, we can only outline

basic principles of this extensively studied and vibrant research topic [Yan07,Yan06,Fel81,

FC96,Nie05,WLG01,MFP05,EG05,DEKM98].

For the remainder of the chapter we then focus on a specific subproblem, that is, the

estimation of rate variation, assuming that the previously mentioned parameters of the

system were identified. We show that estimation of spatial rate variation along DNA

sequences is directly related to the identification of conserved regions that recently gained

high interest in the biology community since they are believed to be potential candidates

for fundamental functional genomic units.

Space-time processes of evolution that allow for modeling rate variation are introduced

in Section 5.3. In Section 5.4 we argue that mutual information is the best measure of

conservation (incomputable for large numbers of species) and show by simulation that

1Here we focus on DNA sequences of vertebrate species. The situation may be different for fast

evolving organisms such as viruses, where the ancestor sequence may actually be known.
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rate variation is the crucial parameter related to conservation and that other parameters

have minor influence. We present state-of-the-art methods for detecting conserved regions

and derive an ML estimator for conservation under a realistic model of rate variation in

Section 5.4.2. To the best of our knowledge ML estimation of rate variation under this

model was not analyzed previously.

We present our results in Section 5.5: first, we evaluate our method by in silico simula-

tions. Using a measure of correlation, we compare the performance of our approach to

existing methods and find that the proposed algorithm performs best within the assumed

simulation framework. Then, we apply our method to alignment data of 28 vertebrate

species which was used in the recent ENCODE project and compare our conservation

scores qualitatively to the three computational methods used in the ENCODE project.

For most parts of this Chapter we assume that evolution is solely driven by substitution

errors, completely neglecting insertion and deletion events (InDels). Gaps in a multiple

sequence alignment are then neglected, i.e., gaps in an alignment column are treated as

if the corresponding species were not present in that alignment column. In fact, most

existing conservation scores deal with gaps in this way. In contrast to that, we show

how our conservation measure is extended to take InDels into account in a probabilistic

fashion based on an algorithm developed for estimating InDel probabilities. Results on

ENCODE data are presented and compared to the standard approaches.

5.1 Background and notation

We assume that we are given an alignment A ∈ {A,−}Ms×L as defined in Section 4.2.3,

and the lth column of an alignment is denoted by al. The DNA alphabet A = {A,C,G, T}
is assumed, yet the generalization to arbitrary alphabets is straightforward. Following our

introduction in Section 4.1, a single nucleotide is modeled by a continuous time Markov

process (CTMP) {Xt}t≥0 over state space A. A DNA sequence of length N is a sequence

of N such nucleotides denoted by {X(l)
t }t≥0, l = 1, ..N .

In this chapter we assume that such a sequence evolves along a phylogenetic tree T
with branch lengths τ , subject to a substitution process specified by rate matrix R, as

described in Section 4.2. We refer to such a scenario as phylogenetic system with a single

sequence as input and multiple homologous sequences as output. The observed alignment

A represents the system output, i.e., the observed DNA sequences at the leaves of the

phylogenetic tree.

As stated above, the substitution process between any two nodes u and v in that tree is

characterized by a single rate matrix R, and the transition probabilities between u and v

are hence calculated as

Pu→v(t) = etuvR, (5.1)

where tuv denotes the branch length between u and v. The element in the ith row and jth

column of P (t) is denoted by pij(t). Substitution processes are assumed to be stationary

with equilibrium distribution π, reversible, and parameterized by one of the substitution
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models M ∈ {GREV, HKY, K2P, F84, JC} presented in Section 4.1. The following table

summarizes the basic properties (derived in Section 2.4) that R and P satisfy:

# Description Property Remark

(1) Rate matrix constraint Re = 0 e = [1, 1, 1, 1]T , Def. 2.4.5

(2) Model constraint R = RsΠ Rs = RT
s ,Π = diag(π), Eq. (4.13)

(3) Transition probability P (t) = etR t ∈ R+, Thm. 5

Pe = e Def. 2.4.1

PR = RP Thm. 3

(4) Stationarity πR = 0 Thm. 6

πP = π Def. 2.4.4

(5) Reversibility ΠR = RTΠ Def. 2.4.8

ΠP = P TΠ Eq. (2.46)

In the following, a phylogenetic system or evolutionary model is represented by the set of

parameters

ψ = {T , τ,R,π}.

A single column in the alignment then follows the distribution p(a; ψ) depending on the

evolutionary parameters. The likelihood

lA(ψ) ∼ P (A; ψ) (5.2)

of the observed sequences can be calculated by Felsenstein’s message passing algorithm

(Section 4.2.2) when ψ is known. The following section introduces likelihood based infer-

ence of a phylogenetic system from observed DNA sequences.

5.2 Identification of phylogenetic systems

5.2.1 Substitution process estimation

The substitution process is characterized by the stationary distribution π and the rate

matrix R. The rate matrix is constrained by the chosen model M of substitutions dis-

cussed in Section 4.1, i.e., M ∈ {GREV,HKY,K2P,F84,JC}. Since the process is ergodic

and assumed in equilibrium at the common ancestor, the distribution of bases is always π,

i.e., the substitution process is stationary. The stationary distribution can then be esti-

mated from the observed sequences using a simple frequency count. For a given alignment

A ∈ {A,−}Ms×L:

π̂i =
1

MsL

Ms∑

m=1

L∑

l=1

(1 − dH([A]ml, i)), i = A,C,G, T, (5.3)

where dH(·, ·) denotes the Hamming distance. While this is not an ML estimator for

π [Yan06], it is the procedure which is most commonly applied in practice. In the follow-

ing, we shall assume that π is given.
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Estimation of R is more difficult: given an evolutionary process {Xt}t≥0, the expected

number of mutations N(t) in a sequence per site after time t is calculated as

E{N(t)} =
∑

x0 6=xt

p(x0, xt) =
∑

x0

πx0

∑

xt 6=x0

p(xt|x0) (5.4a)

=
∑

x0

πx0 (1 − p(xt = x0|x0)) (5.4b)

= 1 −
∑

i

πipii(t)

[
#Mutations

site

]

, (5.4c)

where pii(t) denotes the diagonal elements in the transition matrix given by P (t) = etR,

and the unit is number of mutations per site. It is shown in Appendix B (Eq. (B.9a)) that

pii(t) and rii are related by

pii(t) = 1 + riit + o(t), (5.5)

where o(t)/t → 0 as t → 0. Plugging this into Eq. (5.4c) we find that the expected

number of mutations per time unit reads as

E{N(t)}

t
= 1/t −

∑

i

πi/t −
∑

i

πirii −
∑

i

πio(t)/t (5.6a)

= −
∑

i

πirii − o(t)/t

[
Avg. #Mutations

site × time

]

. (5.6b)

And as t gets small:

lim
t→0

E{N(t)}

t
= −

∑

i

πirii

[
Avg. #Mutations

site × time

]

. (5.7)

Substitution processes are often normalized such that

−
∑

i

πirii = −trace {ΠR} = 1/c, (5.8)

where trace{·} returns the sum of diagonal elements of its argument. In this case, phy-

logenetic branch lengths can be interpreted as having unit expected number of mutations

per c sites (c is usually chosen 1 or 100). The additional constraint reduces the number

of parameters in the substitution models by 1.

Now, given two sequences (x0,xt), where x0 = [x
(1)
0 , ..., x

(L)
0 ] is the realization of {X(l)

t }t≥0,

l = 1, ..., L at t = 0 and xt the realization at t, we need to estimate

{r̂α, r̂β, r̂δ, r̂γ , r̂ε, r̂ζ} = arg max
rα,..,rζ

{p(x0,xt)} = arg max
rα,..,rζ

{p(xt|x0)p(x0)},

s.t. RsΠe = 0, {rα, rβ, .., rζ} ⊂ M, (5.9a)

where Π = diag(π) and Rs is the symmetric part of the rate matrix with rα, .., rζ in the

upper and lower triangular entries (cf. (Eq. (4.13))). Maximization is constrained by the

properties of the rate matrix RsΠe = 0 and the constraints imposed by the chosen model
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of substitutions M (cf. Section 4.1). If we assume that sites evolve independently, we

have

arg max
rα,..,rζ

{p(x0,xt)} = arg max
rα,..,rζ

{
L∏

l=1

p(x
(l)
t |x(l)

0 )π
x
(l)
0

}

≡ arg max
rα,..,rζ

{
L∑

l=1

log
(

p(x
(l)
t |x(l)

0 )
)
}

. (5.10a)

The log likelihood function that is to be maximized depends on rα, .., rζ through P = eR.

Closed form expressions for P are only available for the most simple models (cf. Example

in Section 2.4.4) and the rates have to be found via numerical optimization techniques.

A rate matrix under the GREV model published by Siepel et al. is given by [SBP05a]:

R =







−0.9906 0.1788 0.4907 0.3211

0.2573 −1.0017 0.1866 0.5578

0.7062 0.1866 −1.1619 0.2691

0.3211 0.3876 0.1870 −0.8957







. (5.11)

It is easily checked that the matrix is reversible and calibrated such that trace {ΠR} =

−1. The corresponding stationary distribution is given by

π = [0.295, 0.205, 0.205, 0.295]. (5.12)

We generated two sequences of 5000 basepairs with t = 0.25 using this matrix. The log

likelihood function over rα is shown in Figure 5.1. The true rα is given by 0.8. Inspection

of the function yields that the maximum likelihood estimate is around r̂α ≈ 0.8. We

see that, in this case, the underlying univariate optimization problem is solved using hill

climbing techniques such as Newton-type algorithms. Schadt and Lange showed that

the derivative of eR with respect to a rate parameter r for general, reversible R (R

diagonalizable: R = UφU−1, φ = diag([φ1, .., φ4])) is given by [SL02]

∂

∂r
eR = U

[

D ⊙

(

U−1 ∂

∂r
RU

)]

U−1, (5.13)
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Figure 5.1: Log likelihood function over rα for two in silico generated sequences x0, xt of 5000

bases length with t = 0.25 using the matrix given in Eq. (5.11). The true rα is given by 0.8.
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where D is the matrix with

[D]jk =

{

eφj if j = k
eφj−eφk

φj−φk
if j 6= k

. (5.14)

Since t is fixed but unknown, we first estimate t̂R̂ and recover t̂ and R̂ as follows: Let fkj

be the frequency count of nucleotide pairs k, j appearing jointly in x0 and xt, respectively.

Then an estimate of p(x
(l)
0 = k, x

(l)
t = j) is given by

p̂(x
(l)
0 = k, x

(l)
t = j) = p̂(x

(l)
t = j|x(l)

0 = k)πk = p̂kj(t)πk
(a)
= p̂jk(t)πj =

fkj

L
, (5.15a)

where (a) is due to reversibility. Let the matrix of frequency counts be denoted by F ,

then P̂ = Π−1F . Now, if R is normalized such that Eq. (5.8) holds, then

−trace {ΠR} = 1/c (5.16a)

−trace {ΠtR} = t/c, (5.16b)

and we can recover both, t̂ and R̂:

t̂R̂ = log(P̂ ) (5.17a)

⇒ t̂/c = −trace
{

Π log(P̂ )
}

(5.17b)

⇒ R̂ = −
1/c log(P̂ )

trace
{

Π log(P̂ )
} . (5.17c)

5.2.2 Tree reconstruction and evolutionary distance

Given the multiple sequence alignment A ∈ {A,−}Ms×L the tree reconstruction problem

is to find the topology of a phylogenetic tree that “best” explains the data. A likelihood

approach will select the topology T according to

T̂ = arg max
T

{lA(T )} (5.18)

from the space of all possible topologies. Given N labels, there are
∏N

i=3(2N −3) different

trees with these labels at the leaves, and a brute force solution to Eq. (5.18) is therefore

intractable even for small N . In fact, it was shown in [CT06, Roc06] that finding the

ML tree is an NP-hard problem. The search for good heuristic methods for reconstruct-

ing phylogenetic trees from multiple sequence alignments is an ongoing area of research.

Besides ML, distance methods, maximum parsimony (a model free approach explaining

alignments with the minimum number of evolutionary events) and Bayesian methods

(taking tree priors into account) have been proposed.

Even the comparison and evaluation of statistical properties of these methods is contro-

versial [Yan06]. Today, the most commonly used method for assessing uncertainty in

estimated phylogenies is bootstrapping (sampling multiple data sets from the original
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Figure 5.2: The phylogenetic tree used in the ENCODE project.

data with replacement, so generating a whole set of phylogenies that can be analyzed,

e.g., by empirical calculation of the variance) [WLG01]. In practice, instead of selecting a

single algorithm, biologists often use a whole set of computational methods and take the

consensus of the inferred trees. In conlusion: there is no best method and if there is, the

means to assess it are yet to be developed.

The tree estimated from 28 vertebrate genomes used in the ENCODE project is depicted

in Figure 5.2. Given a fixed tree, the branch lengths can be optimized iteratively. The

likelihood of a given MSA is calculated via message passing (Section 4.2.2). Branches are

then optimized one at a time, keeping all other branches and parameters fixed. Figure 5.3

shows the log-likelihood function over varying tuv for an in silico generated alignment A

of 100 columns, where the tree in Figure 5.2 was used, and tuv represents the branch sepa-

rating the mammalian species (human,..., platypus) from the rest (chicken,..., zebrafish).

The ML estimate is close to the true value which is 0.089. We see that, in this case, we

have a convex optimization problem, and hill-climbing algorithms (such as Newton type

algorithms) can be used to find the MLE.

Felsenstein’s message passing procedure can be naturally extended to compute the deriva-

tive of the likelihood, which can then be used to speed up the optimization: In Appendix D

it is derived that update messages at node u′ with children v′ and w′ are calculated as

follows:
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Figure 5.3: Log-likelihood function over varying tuv for an in silico generated alignment span-

ning 100 columns.

∂

∂tuv

p(u′) =







( ∂
∂tuv

p(v′)P T
v′→u′) ⊙ (p(w′)P T

w′→u′) if v′ is ancestor of or equal u

(p(v′)RT P T
v′→u′) ⊙ (p(w′)P T

w′→u′) if u′ = u, v′ = v

(p(v′)P T
v′→u′) ⊙ (p(v′)RT P T

w′→u′) if u′ = u,w′ = v

0 if u′is descendant of u.

(5.19)

It was proved that under the F84 model, the log likelihood function is convex when other

branch lengths are fixed and it was conjectured that this applies to more general substitu-

tion models as well. However, as discussed by Yang in [Yan06], this does not guarantee the

multivariate problem to be convex. In fact, counter examples were constructed demon-

strating the existence of likelihood surfaces with multiple peaks even on small trees with

four species. In this case hill climbing methods get stuck in a local maximum, and (mostly

heuristic) global optimization algorithms such as stochastic optimization or genetic algo-

rithms have to be applied. Simulation studies have shown that multiple local maxima are

much less common under simplistic models like the JC model than under more realistic

parameter rich models [Yan06].

5.3 Extended models of evolution

5.3.1 A space-time process accounts for variable rates

Computational genome analysis and biological experiments show that different sites of

DNA exhibit different rates of substitutions. Suppose we are given a phylogenetic model

{T , τ,R,π}. The model describes the evolution of sequences along the phylogenetic tree

which we refer to as the time-process. The model is extended to account for variable rates
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Figure 5.4: Left: transmission model of evolution with spatial rate variation. Right: the

mutual information Iθ(X
(l)
r ;X

(l)
ℓ ) between X

(l)
r and X

(l)
ℓ over θl for a five species subtree.

by introducing a discrete space-process {Θl}l≥0, l ∈ N+, where each index l corresponds

to a site in the common ancestor DNA sequence. The spatial process “interacts” with the

time-process by scaling the distances of the tree. Evolution is now modeled as follows:

at any position l of the common ancestor sequence, the space-process is sampled yielding

the realization θl. The nucleotide at site l then evolves along the phylogenetic tree with

transition probabilities depending globally on θl through

Pu→v = eθltuvR. (5.20)

From an information theoretic perspective this is equivalent to sending information over

a channel with varying state of quality. A transmission model for the space-time model of

variable rates is depicted in Figure 5.4: the lth base at the common ancestor sequence X
(l)
r

enters the channel and the observations at the leaves of the tree represent the outcome of

the channel X
(l)
ℓ . The channel is characterized by the transition probabilities p(x

(l)
ℓ |x(l)

r , θl),

depending on the realization of the rate heterogeneity at site l. From Eq. (5.20) it is clear

that higher values of θl lead to higher substitution probabilities. The mutual information

Iθ(X
(l)
r ;X

(l)
ℓ ) between X

(l)
r and X

(l)
ℓ depending on the values of θl for a five species subtree

(including human, chimp, mouse, rat and fugu) derived from the tree shown in Figure 5.2

is also depicted in Figure 5.4. In the following, we shall often skip the site index l.

5.3.2 Models of rate heterogeneity

Different models for the space process {Θl}l≥0 were proposed. Yang [Yan93] was the first

to propose an iid model with Θl distributed according to a gamma distribution

Θ ∼ θα−1 e−θ/β

βα Γ(α)
·
= GΘ(θ; α, β), (5.21)

which was later extended to a Markov gamma process with [Yan95]

0 < Corr(Θl+1, Θl) =
1

σΘl+1
σΘl

E{(Θl+1 − E{Θl+1})(Θl − E{Θl})}, (5.22)
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and

σ2
Θl

= E{(Θl − E{Θl})
2}. (5.23)

Models assuming {Θl}l≥0 to be Markovian base on the biological observation that neigh-

boring sites of DNA sequences often have correlated rates [Nie97,YW95].

In [Yan94] the increased complexity of calculating the likelihood under such models was

reduced by discretizing the continuous r. v. Θl into rate categories. Introducing transition

probabilities among these categories leads to an HMM approach [FC96] where discretized

rates represent states of the Markov chain and alignment columns correspond to observa-

tions. Recently, Mayrose et al. suggested a gamma mixture model [MFP05] and showed

that it provides a better fit to alignment data.

It is clear that additional parameters are required to describe the rate process. For

example, under the iid gamma model the parameters α and β in Eq. (5.21) have to

be estimated from data. For HMM models, initial and transition probabilities must be

learned, using, for example, the EM algorithm as outlined in Chapter 2, Section 2.6.

5.4 Detection of potentially functional elements

Since the completion of the Human Genome Project (HGP) in 2003 that provided a

high quality sequence of the human genome, comprehensive identification of biologically

functional elements in the DNA represents a central and ambitious goal in modern ge-

nomics. The reliable detection and analysis of functional elements is crucial to a deep

understanding of how complex organisms work.

Early approaches were limited to the use of information from a single species and exploited

certain properties of the functional regions to be detected. Short, recurrent molecular

sequences, in genetics often referred to as motifs, are good candidates for functional

regions such as promoters [BST00]. A common approach was to assemble a collection of

sequences from a single genome believed to contain the region of interest and search in

these sequences for patterns that occur in a statistically significant overabundance.

Rapid progress in whole genome sequencing efforts allowed to suggest an approach taking

into account multiple sources of information: it was proposed to assemble a collection of

sequences from multiple species looking for regions that are well conserved in most or all

of the species [Ker99]. The underlying idea is the following: during evolution, the genomic

information, represented by DNA, of an organism is passed on to its descendants. DNA

is subject to mutations that cause genetic variations, and natural selection decides about

the success of the transmitted, altered information. In some regions, variation negatively

influences the fitness of an organism and diminishes its capability to reproduce, eventually

preventing it from passing its DNA to the next generation. Mutations in regions which are

not important for the fitness of the organism are passed on to further generations without

restrictions. Thus, those elements within the genome carrying information for important

basic functions are believed to remain conserved during evolution. We say those regions

are under negative selection or constraint. Today, joint analysis of DNA orthologues

from multiple species conveys important information about sequence properties. Such a
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comparative approach is a powerful concept in genome analysis today [LSM+03]. DNA

sequences with unexpected conservation across species have recently gained particular

interest [DRA05,SBP05a,BPM+04].

Throughout this Section the term conserved will refer to primary sequence conservation

among multiple species. Certainly, there are many types of conservation acting at dif-

ferent constraint levels upon the genome. Secondary and tertiary structures as well as

interactions of non-coding RNA may be preserved with little primary sequence informa-

tion remaining conserved [WRT07] (cf. Section 3.1).

The problem of measuring the conservation of sequences across multiple species has been

addressed in a number of publications: exact algorithms for the detection of small func-

tional regions (motifs) of around 5 to 25 bases were developed in [Bla01,Bla03, SBT04].

Stojanovic et. al. compared 5 different methods for scoring the conservation of a multiple

sequence alignments in gene regulatory regions [SFR+99]. Margulies et al. presented

two alignment based methods that incorporate phylogenetic information, suitable for

whole genome analysis [MBHG03]. Siepel and Haussler introduced a phylogenetic hidden

Markov model (phylo-HMM) that allows high throughput measurement of evolutionary

constraint (phastCons) [SH05]. Cooper et al. introduced GERP [CSA+05] and more re-

cently Asthana et al. presented SCONE [ARSS07], which both produce per-base scores

of conservation and constraint.

Existing genome scale methods require the a priori estimation of a neutral evolutionary

rate and measure conservation as the “surprise” of observing the analyzed data, assuming

the neutral model. Neutral substitution rates are usually estimated from fourfold degen-

erated sites (the bases in codons that can be changed to any other base without changing

the amino acid) or ancestral repeats (replications of DNA segments that happened a long

time ago, believed to evolve without evolutionary pressure) [CBS+04,HRY+03]. The EN-

CODE project2, however, revealed that about half of the analyzed functional elements

found in non-coding DNA had been classified as unconstrained [The07,MCA+07] by ex-

isting computational methods. Pheasant and Mattick [PM07], among others, have argued

that this could partly be explained by questioning the neutral rate of evolution used by

existing methods. Wrong assumptions about the neutral rate would lead to biased conser-

vation measures and eventually to an over- or underestimate of the fraction of the genome

under evolutionary constraint. For example, ancestral repeats are often assumed to evolve

neutrally, but have been previously shown to include a nontrivial amount of constrained

DNA [CSA+05,KXL06].

In the remainder of this chapter, we outline an algorithm for the detection of conserved

regions which has several improvements over existing methods allowing for a detailed

analysis of conserved DNA elements. Our method can be used to help gaining new insights

into the function of still poorly understood conserved non-coding sequences [DBN+06,

BPM+04,DRA05].

2The ENCODE (Encyclopedia of DNA elements) research consortium, launched by the National

Human Genome Research Institute in 2003, aims for the identification of all functional elements in the

human genome sequence. The pilot phase tested and compared existing computational and experimental

methods to rigorously analyze approximately 1% of the human genome sequence. The results of this pilot

phase were published in June 2007 in [The07,MCA+07].
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Our method - that we call KuLcons - avoids a priori assumptions about properties of

conserved sequences. We suggest that the maximum likelihood (ML) estimate of rate

heterogeneity is a more direct measure for sequence conservation. We obtain the ML

estimate of the rate process using an optimized window function, accounting for autocor-

relation among rates. While our approach does not require assumptions about neutral

rates, prior distribution of rates, or transition probabilities between rate categories, we

show in silico that reliable estimation in the mean squared error (MSE) sense is achieved

in regions of conserved sequence. We present a qualitative comparison of the scores cal-

culated by KuLcons and the established methods phastCons, GERP and SCONE that all

assume a neutral model. ENCODE regions were used for comparison.

Furthermore, our method allows for richer or more complex parameter models like those

taking insertion and deletion (InDel) rates into consideration. Results of scores accounting

for gaps in the alignment as InDels are presented and compared to standard methods.

5.4.1 Identification problem and overview of existing methods

We consider the following problem: given an alignment A ∈ {A,−}Ms×L, we want to iden-

tify the columns al in A that are more conserved than others. A conservation estimator

assigns a score sl to the lth column of an alignment reflecting the degree of conservation.

An ad hoc approach would simply look at how many different bases occur in one column

and assign a high conservation score when the base composition of a single column is

very diverse. However, such an approach does not take into account the phylogenetic

relationship among the species. Inconsistent bases in very distant species such as, for

instance, human and zebrafish should decrease the conservation score less than a base

change between human and, let’s say, chimp. We call such methods naive since they

approach the problem without incorporating additional knowledge about the phylogeny.

Non-trivial approaches take a model of evolution into account. In the following, we briefly

sketch algorithms that compute conservation scores for alignments. We start with naive

methods and proceed with methods taking evolutionary models into account. Then, we

derive the requirements for an optimal conservation estimator and present our approach

that is shown to satisfy these requirements.

Naive approaches

When no model of evolution is assumed, all one can do is to look how diverse the base

composition in an alignment column appears. Let fl be the frequency count of bases in

the lth column with the ith entry in fl given by

f
(i)
l =

1

Ms

Ms∑

j=1

(1 − dH(a
(j)
l , i)), i = A,C,G, T (5.24)

where a
(j)
l denotes the jth element in the alignment column al at position l. From the

vector fl, a real valued score can naturally be derived by calculating the empirical entropy
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of that column

sl = 2 − Ĥemp(fl) = 2 +
∑

i∈A

f
(i)
l log2(f

(i)
l ). (5.25)

The score is 0 when fl is uniform and 2 if the column is fully conserved (consists only of

one type of base). Conservation scores based on the empirical entropy as described above

were suggested in [SDM+05].

In order to account for the base composition of the alignment, divergence based approaches

estimate the background distribution π̂ of the alignment according to Eq. (5.3) and use

a pdf divergence measure such as the Kullback-Leibler divergence (Def. 2.2.5):

sl = D(fl||π̂). (5.26)

The score is greater or equal zero with equality iff fl = π̂. Note that this score is equiv-

alent to Eq. (5.25) if π is the uniform distribution. In [CS07], the Jensen-Shannon (JS)

divergence was suggested as a measure for the detection of functional amino acid residues

(note that for amino acids the problem setting doesn’t change except one uses a different

alphabet). The JS divergence is a symmetrized version of the KL divergence [Lin91],

JS(p||q) =
1

2
D(p||p∗) +

1

2
D(q||p∗), p∗ =

1

2
(q + p). (5.27)

The advantage of the JS divergence is that it is symmetric and bounded between zero

and one. It is zero if and only if fl = π̂.

Methods taking phylogeny into account

For the remainder of this chapter, we consider extended models of evolution, i.e., we take

rate heterogeneity among sites into account. Evolution at site l is then modeled by the

set of parameters

ψ = {T , τ,R,π, θl}, (5.28)

where θl is the realization of the rate variation process {Θl}l≥0 at position l. As before,

we often skip the index l in the following.

phastCons

Siepel et al. developed phastCons, based on the concept of phylogenetic hidden Markov

models (phylo-HMMs) [SH05]. Phylo-HMMs are hidden Markov models whose states are

associated with different evolutionary models ψ [SH04]. A phylo-HMM probabilistically

generates a multiple alignment, column by column, such that each column is defined by

the phylogenetic model corresponding to the state in which the HMM currently resides.

When moving to the next column, a new ψ is chosen randomly, conditional on the ψ in the

previous step. A four state phylo-HMM is depicted in Figure 5.5. The symbols emitted

by the HMM are alignment columns with emission probabilities p(a|sj) ≡ p(a; ψj).

In the framework of conservation estimation, a phylo-HMM is reduced to two states

denoted by ψc and ψn. The phylogenetic model ψc is supposed to describe positions
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Figure 5.5: Left: a phylogenetic hidden Markov model (phylo-HMM). Upon initiation, a phylo-

HMM randomly jumps into a state according to the initial state probabilities. At each step, the

phylo-HMM emits an alignment column drawn from the distribution associated with the current

state. Then, it randomly jumps into another state according to the state-transition probabilities.

Right: A phylo-HMM setup for conservation estimation with two states representing conserved

and non-conserved.

in the genome that are under purifying selection, i.e., positions that will be conserved

during evolution. The model ψn represents genome regions that evolve neutrally. The

models ψn and ψc are identical except for the rates θ. Note that the HMM is then

equivalent to a single phylogenetic model with the rate variation process {Θl}l≥0 modeled

as a two state discrete Markov process. Two parameters µ and ν define state-transition

and initial state probabilities as shown in Figure 5.5. These are tuning parameters that

are related to the expected coverage and expected length of conserved elements. The

expected length parameter ω = 1
µ

is given by the expected number of steps for which

the Markov chain will remain in the conserved state. The expected coverage γ = ν
µ+ν

is

the expected percentage of conserved columns in an alignment at equilibrium. A detailed

discussion about these parameters and how they relate to properties of conserved regions

is given in [SBP+05b]. It is important to note that γ and ω are a priori rather than a

posteriori quantities. They define properties of the model which influence final (posterior)

inferences. While full maximum likelihood estimation of µ and ν may seem to be an ideal

way, it does not work well in practice (according to the phastCons HOWTO available

at http://www.soe.ucsc.edu/∼acs/PhastCons-HOWTO.html, June 2005). Thus, µ and ν

may really be seen as tuning parameters.

Given the alignment A, the conservation score sl assigned to column al is the posterior

probability that the HMM was in the conserved state at site l

sl = p(sl = ψc|A), (5.29)

and is computed using the forward-backward algorithm described in Section 2.4.5.
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Figure 5.6: Mutual information over θ and rate parameter rα of a substitution matrix under

the K2P model. Because of the normalization constraint of the substitution matrix, rα cannot

exceed 2.

Likelihood and Bayesian methods

Given a fixed phylogenetic tree with branch lengths {T , τ}, the rate variation θ is the

crucial parameter for detecting evolutionary conservation. An ideal measure of conser-

vation is the mutual information between the common ancestor nucleotide Xr and the

nucleotides Xℓ at the leaves of a tree. Figure 5.6 shows the MI over θ and the rate pa-

rameter rα of a substitution matrix under the K2P model (cf. Section 4.1). A five species

subtree (including human, chimp, mouse, rat and fugu) derived from the tree shown in

Figure 5.2 was used. Note that the second parameter rβ in the K2P model is fixed due

to the trace(ΠR) = −1 constraint. For the same reason, rα cannot exceed 2. The MI

is shown for θ ∈ [0, 1]. We observe that over a large range of θ (≈ 0..0.5), the MI is

greatly influenced by θ but does not vary with rα. Furthermore, for all reasonable values

of rα, the MI is mainly influenced by the rate variation. Significant changes are only

observed when θ is high and at very low values of rα, i.e., an extremely low probability

of transversions (change from Purine to Pyrimidine and vice versa) which is usually not

observed in reality3.

The finding is intuitive: the substitution process describes the affinity of a base to mutate

to another base. However, for the mutual information, and hence for measuring conser-

vation, the quality of mutations (e.g., whether A is more likely to mutate to C than to

T) is irrelevant. The rate variation describes the expected quantity of mutations and is

therefore the important parameter for mutual information. Conservation scores should

therefore have a high correlation with this parameter because it is directly related to the

3When rα = 0, then the transversion probability is 0 and the channel model basically reduces to a

binary alphabet. As θ gets large the mutual information therefore approaches 1 for rα = 0.
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mutual information between common ancestor base and observed nucleotides.

In the following, we discuss estimators for θ under different models for rate variation.

Figure 5.7 shows the simulated log likelihood function llA(θ) for an alignment A of length

50. Alignments were sampled based on the tree in Figure 5.2 using the rate matrix in

Eq. (5.11) with different rates θs ∈ [0, 0.3] constant over the alignment. The log likelihood

is shown in the interval θ ∈ [0, 1.5]. For each simulated θs, the likelihood function was av-

eraged over 1000 sample alignments. Figure 5.7 also shows the one dimensional likelihood

functions for a single alignment of length 50 generated under θs = 0.2 and θs = 0.8.

The likelihood function is calculated using the Felsenstein algorithm (Section 4.2.2) and

has a single maximum with respect to θ. Message passing can be extended to calculate

the gradient of llA(θ). For a single column a in the alignment:

∂

∂θ
la(θ) =

∂

∂θ
p(r)πT . (5.30)

For each node u with children v, w, we calculate

∂

∂θ
p(u) = (

∂

∂θ
m(v) ⊙ m(w)) + (m(v) ⊙

∂

∂θ
m(w)) (5.31a)

∂

∂θ
m(v) = tuvp

(v)RT P T
u→v +

∂

∂θ
p(v)P T

u→v. (5.31b)

The MLE of the rate variation θ is given by

θ̂MLE = arg max
θ∈R+

{llA(θ)}, (5.32)

where θ is treated as a parameter. When sites are assumed to evolve independently:

θ̂MLE = arg max
θ∈R+

{
∑

i

llai
(θ)

}

. (5.33)

Depending on the model of rate heterogeneity, different estimators for θ were proposed

(Table 5.1): likelihood methods do not assume a prior distribution and treat θ as a

deterministic parameter. Under the discrete rates model, the likelihood for each rate is

evaluated and the one returning the highest value is chosen. Estimators for continuous

θ use the message passing approach for finding the MLE using numerical optimization

techniques (hill-climbing methods) [Nie97]. Bayesian approaches treat θ as realization of

a random variable with prior distribution. The gamma distribution is most commonly

used in this case [Yan96]. It is well known that the conditional mean estimator (CME)

is optimal in the mean squared error (MSE) sense under this assumption. Consider the

observation xℓ, the CME is given by

θ̂CME = Eθ{θ|xℓ} =

∫ ∞

0
θ p(xℓ|θ)p(θ)dθ

∫ ∞

0
p(xℓ, θ)dθ

. (5.34)

Under the discrete rates model, the rate θ takes values with probabilities p(θ = θk) = pk.

The integrals in (5.34) turn into sums, and one may calculate the posterior mean or use



5.4 Detection of potentially functional elements 81

0 0.2 0.4 0.6 0.8 1
-640
-620

-600
-580

-560

-540
-520

-500

-480

-460

-440

θ̂

θ

ll
A

(θ
)

θs = 0.2

0 0.2 0.4 0.6 0.8 1
-1900

-1800

-1700

-1600

-1500

-1400

-1300

-1200

-1100

-1000

θ̂

θ

ll
A

(θ
)

θs = 0.8
0

0.1
0.2 0 0.5 1 1.5

-2.5

-2

-1.5

-1

-0.5

0
×102

θ rα

I
(X

r
;X

ℓ)

Figure 5.7: Left: Likelihood functions for an alignment of length 50 generated with θs = 0.2

and θs = 0.8. Right: Simulated log-likelihood function varying with θ for different simulated θs.

The maximum value for each θs is indicated by triangles on the likelihood surface.

discrete iid continuous iid
discrete w auto-

correlation

Likelihood θ̂MLE = arg max
k∈{0,..,K}

{p(xℓ; θk)} θ̂MLE = arg max
θ∈R+

{p(xℓ; θ)} Á

Bayesian discrete CME/MAP θ̂CME = Eθ{θ|xℓ}
HMP: MAP using

forward backward

Table 5.1: Estimators for different models of rate heterogeneity.

the rate with highest posterior probability (maximum a posteriori probability (MAP)).

The CME for substitution rates under these models was derived by Yang in [YW95].

When discrete rates with correlation is assumed, we obtain an HMP [FC96] with states

corresponding to rates and alignment columns corresponding to observations. The poste-

rior state probabilities are estimated using the forward-backward algorithm (phastCons,

as described above, belongs to this class of approaches).
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5.4.2 KuLcons

Having reviewed existing methods for scoring conservation, the remainder of this section

presents our method focusing on the algorithmic details. Results involving simulations

and application to biological data are presented in Section 5.5 followed by a detailed

discussion in Section 5.6.

Our goal was to address the following issues:

⋆ The method should be probabilistic, taking the phylogeny among species into ac-

count using the established models of evolution.

⋆ Since we identified the rate variation process {Θl}l≥0 as the crucial parameter in

ψ responsible for conservation, we aim for a high correlation with this process.

The topology of the tree and the branch lengths τ greatly influence conservation.

However, we can assume these parameters not to change considerably over align-

ment columns. Furthermore, due to their richness of parameters, they have to be

estimated from a large amount of data and are usually fixed by their estimates for

further analysis.

⋆ As few a priori assumptions as possible should be made about the rate variation

process (such as degree of autocorrelation, distribution, mean length of conserved

element etc.). We therefore aim for a prior free likelihood approach. To our knowl-

edge, the estimation of the rate heterogeneity process under autocorrelation in the

continuous case was not analyzed before.

⋆ In particular, no assumptions about neutral rates shall be made, which is motivated

by the conjecture of Mattick et. al. that these assumptions may lead to biased

estimates overlooking many conserved regions [PM07].

⋆ The method should be extendable to richer models of evolution such as those taking

insertion and deletion events into account.

In the framework of conservation estimation, a subset of parameters in ψ will be fixed

over the alignment. For example, it is reasonable to assume that the topology T and the

branch lengths τ do not change considerably over alignment columns. These parameters

as well as the stationary distribution π are generally replaced by their ML estimates from

a large data set. We use ψ̂ to refer to the estimate of the remaining free parameters in

ψ.

We use a sliding window approach to increase reliability of estimates and to take auto-

correlation into account, meaning that we consider a section of the alignment

Al+δ
l−δ = [al−δ, . . . ,al+δ], l = δ + 1, . . . , l − δ (5.35)

of length 2δ + 1 around the column of interest to estimate the parameters4. A window

function w[n] assigns weights to the likelihoods of neighboring columns. For example,

a uniform weighting scheme could be chosen with w[n] = 1, n = 0, ..., 2δ. However,

it is well known that the choice of window functions with good spectral properties can

significantly improve estimation of autocorrelated processes. Several types of window

4For convenience, we restrict ourself to odd window sizes. The generalization to even window sizes is

trivial.
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functions optimized with respect to different properties exist, e.g., the Hamming-, Kaiser-

or Gauss-window. The Gauss-window, for example, is given as

w[n] =







e−
1
2(

n−δ
σw(n−δ))

2

n = 0, ..., 2δ

0 else
. (5.36)

The resulting estimator is then given by

ψ̂l = arg max
ψ

{
l+δ∑

n=l−δ

w[n − l + δ] log (p(an; ψ))

}

, (5.37)

yielding a set of parameters describing the local evolutionary process for the data in the

window.

In order to obtain a scalar conservation score from the estimated parameters ψ̂l, we con-

sider the probability mass function (pmf) p(a; ψ̂l) of an alignment column a under the

model ψ̂l. Avoiding assumptions about the neutral evolutionary rate, we compare the

estimated distribution to the distribution of the well defined absolute conservation, pa-

rameterized by the imaginary set of parameters ψ0 that does not allow for any substitution

to occur, i.e.,

p(a; ψ0) =







πb if ∀(i, j) : [a]i = [a]j = b ∈ A,

0 else
. (5.38)

A measure for the divergence between two probability mass functions is the Kullback-

Leibler (KL) divergence which was introduced in Section 2.2.1. Our conservation score

function is given by

sl = D(p(a; ψ0)||p(a; ψ̂l)). (5.39)

As we measure the divergence to the maximum conservation, low score values indicate

high conservation. Note that p(a; ψ0) is equal to zero whenever ∃(i, j) : [a]i 6= [a]j, i.e.,

it is only nonzero for fully conserved columns. That is, in order to evaluate Eq. (5.39) we

only have to consider the four columns having only As, Cs, Gs or Ts which are the only

possible realizations of maximum conservation. Let a[b] denote a fully conserved column

of nucleotide b, i.e., a[b] = [b, b, ..., b]T , b ∈ A. Then, p(a[b]; ψ
0) = πb under the maximum

conserving model and we can rewrite Eq. (5.39) as

∑

b∈A

πb log
πb

p(a[b]; ψ̂l)
= H(π) − E{log(p(a[b]; ψ̂l))}. (5.40)

Our algorithm works as follows: given an alignment A, we choose a suitable window type

and fix the size of our sliding window by choosing a suitable δ. Then we obtain the local

ML estimate ψ̂l over Al+δ
l−δ according to (5.37) by message passing (FA) and numerical

maximization using a Newton method. The estimate is projected to a score via Kullback-

Leibler divergence according to (5.39) and assigned to the column al. The sliding window

is shifted forward, increasing l by 1 and the procedure is repeated until l reaches L − δ.

A score sl is now assigned to every alignment column al (scores at the borders of the

alignment can be obtained by setting p(a; ψl) = 1 for l < 1 and l > L).
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5.4.3 Run time of the algorithm

Even though the run time of our algorithm is significantly higher than the computation

times achieved by algorithms designed for high throughput analysis such as phastCons,

our method is still feasible for assaying whole genome alignments. Using a single standard

Linux PC (2Gb RAM, 2.4GHz) it was possible to calculate the scores for the human (hg18)

reference 28-species alignment from UCSC Genome Browser [KBD+03] in less than one

month. The complexity of the algorithm scales linear with the length of the alignment

and linear with the number of inner nodes in the inspected phylogenetic tree. The latter

is explained by the complexity of the Felsenstein algorithm that has to visit every node

in the tree where the same update function is evaluated.

5.5 Results

5.5.1 Small sample sizes and error distribution

Since the proposed ML estimate is based on a relatively small sample size, we study

whether the ML approach is optimal in this case by comparing the density of the estimated

rate variation θ̂ to the theoretically achievable density. We assume all parameters in ψ

to be fixed except for θl. We shall check whether the MLE attains the Cramér-Rao lower

bound

E
{

(θ̂ − θ)2
}

≥ −E

{
∂2 log p(x; ψ)

∂θ2

}−1

=
1

I(θ)
, (5.41)

in the considered small sample size setting. An unbiased estimator that attains the

CRLB is a minimum variance unbiased estimator and no other estimator has a lower

variance. As discussed in Section 2.5, the MLE asymptotically achieves this bound for

large sample sizes, i.e., θ̂
a
∼ N (θ, I(θ)−1). We performed a computer simulation using

100, 000 realizations of alignments of length (2δ + 1), generated according to a fixed

evolutionary model ψ. We estimated θ̂ and computed I(θ) for each sample.

Figure 5.8 shows the theoretical achievable pdfs N (θ, I(θ)−1) versus the observed pdfs

of θ̂ for different simulated θs. Even for small window sizes, e.g., δ = 7, the MLE

closely approaches its asymptotic distribution. At low values of θ, the variances are

relatively small, i.e., different values of θ can be distinguished with high probability. It

can also be observed that the variance of the estimation increases with increasing θ.

Hence, our estimator is best discriminating between different degrees of conservation in

relatively conserved regions even at small window sizes, whereas in non-conserved regions,

the information revealed by the window is not enough to allow for precise differentiation.

We propose an estimation model for θ with a multiplicative error as follows

θ̂ = (1 + η)θ, (5.42)

where η ∼ N (0, σ2
η) is a normally distributed random variable. The variance of the

estimate θ̂ then depends on its mean and higher values will have a higher variance such
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Figure 5.8: Left: observed and theoretical pdfs of estimates θ̂ for δ = 7 simulated at different θs.

Simulation are based on 100000 realizations of alignments of length (2δ +1), sampled according

to a fixed evolutionary model ψ based on the phylogenetic tree in Fig. 5.2. Right: distribution

of rate heterogeneity estimates under a multiplicative error model.

as observed in Figure 5.8. The best fitting variance σ2
η can be determined via simulations

on synthetic data. A simulation of the multiplicative model is also shown in Figure 5.8,

demonstrating that it provides a good fit to the distribution of estimates obtained from

the simulated genomic data.

5.5.2 Sliding window estimation of a Markov gamma process

In this Section, we show via simulations of synthetic data generated in silico that our

approach is well suited for the estimation of the rate heterogeneity process under a Markov

gamma model. As discussed in Section 5.3.2, iid and Markov, continuous and discrete

space models were proposed for the rate process {Θl} among sites [Yan06, FC96]. In

the continuous case, the stationary distribution of {Θl} is commonly assumed to follow

a gamma distribution (cf. Eq. (5.21)) [Yan95]. Correlation among sites is introduced to

account for the fact that neighboring sites are likely to experience similar substitution

rates [YW95,Nie97].

Simulation model: In the context of conservation measurement, the estimator is not

required to give reliable results on the whole spectrum of possible rates, but to provide a

good estimate for the degree of conservation of a region. The situation that we simulate

mimics a moderately conserved region with “islands” of more or less conservation due

to variance and autocorrelation of the rate. A good conservation estimator takes into

account autocorrelation among sites while retaining the sensitivity of reporting variability

within regions. Using a Markov gamma rate model, we generated alignment columns and

estimated the rates using site-by-site ML estimation and the sliding window ML procedure

described in Section 5.4.2. Simulation of Markov gamma processes was performed as

described by Moran [Mor69] and Phatarfod [Pha87]. The process {Θl} has distribution
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Figure 5.9: Left: A typical sample path of the process {Θl}

200
l=0 with marginal GΘ(θ, 1.2, 0.5)

and ρθ = 0.7. Right: Probability density GΘ(θ, 1.2, 0.5) of θ that was used in the simulation.

GΘ(θl; 1.2, 0.5) and autocorrelation

ρθ
·
=

1

σΘl+1
σΘl

E{(Θl+1 − E{Θl+1})(Θl − E{Θl})}, ρθ ∈ [0, 1], (5.43)

among sites. Analysis of substitution rates in biological data sets revealed that θ is mostly

in the range [0, 1]. For the chosen parameters in this simulation, 80% of the θl are expected

to fall in this interval. We simulate an overall moderately conserved region (E{Θ} = 0.6)

with varying conservation inside, which is modeled by the rate variance (VAR{Θ} = 0.3),

and different degrees of autocorrelation. In Figure 5.9 a typical realization of the rate

process {Θl}
L
l=1 is shown for L = 200 with the parameters described above and ρθ = 0.7,

revealing several regions with different degrees of substitution rates. Alignment columns

were simulated under the described model on a subtree of the 28 species ENCODE tree,

comprising 18 species.

Simulation results of rate process estimation using sliding window ML: The

true simulated θ is compared to its estimate θ̂ obtained by the different methods. In

Figure 5.10 two performance measures are shown, the MSE and Corr(θ, θ̂), for different

window types over the range of among site rate autocorrelation ρθ. The sample correlation

(Pearson correlation coefficient) between estimated and true values was calculated as

Corr(θ̂, θl) =
L

∑L
l=1 θlθ̂l −

∑L
l=1 θl

∑L
l=1 θ̂l

√

L
∑L

l=1 θ2
l − (

∑L
l=1 θl)2

√

L
∑L

l=1 θ̂2
l − (

∑L
l=1 θ̂l)2

. (5.44)

For site-by-site ML estimates we restricted the maximum value of θ̂ to 3 because it was re-

ported by Nielsen that estimates of highly variable columns tend to go to infinity [Nie97].

Around 99% of θ will have values lower 3 under the assumed gamma distribution. Choos-

ing different maximum values had minor effects on the results.

The best MSE is achieved with the Gauss window of variance 0.2 (Eq. (5.36) with

σw = 0.2) in the complete range of ρθ. As expected, for very slowly changing rates
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Figure 5.10: Performance of ML estimation of a Markov gamma process using different window

functions. Left: correlation between true (θ) and estimated (θ̂) rate. Right: mean squared error.

(ρθ = 0.9) the performance coincides with the large rectangular window. Interestingly,

for uncorrelated sites, the large Gauss window clearly gives the best results, outperforming

the small rectangular window and site-by-site estimation. Apparently, even though the

window introduces a bias, the error variance is reduced leading to an overall performance

improvement. The minimum MSE is achieved for all simulated ρθ. The highest correla-

tion is achieved for ρθ > 0.4. The results suggest that the method is very well suited for

estimating θ with unknown prior distribution and with arbitrary autocorrelation among

adjacent sites. We found that other types of window functions did not significantly change

the performance, and therefore use the Gauss window for subsequent analysis.

5.5.3 In silico comparison of methods

Our analysis based on mutual information suggested that optimal scores should have a

high correlation with the rate variation θ. Figure 5.11 shows the result of an in silico anal-

ysis comparing KuLcons with scores produced by phastCons, and by two naive methods

not taking phylogeny into account. The empirical correlation between column-by-column

scores and true values of θl that were used to generate alignment columns is chosen as a

performance measure.

Our simulation framework is based on the assumption that biological data is highly inho-

mogeneous. We therefore used a mixed gamma process to generate alignments, switch-

ing among different distributions and degrees of autocorrelation for different alignment

sections: alignments Ai of different lengths Li were generated according to one of the

distributions shown in Figure 5.12 with autocorrelation ρθ randomly chosen from [0..0.9].

The distributions account for highly conserved, moderately conserved, and unconserved

regions, respectively. Each alignment Ai was generated using a randomly selected distri-

bution and autocorrelation. Lengths Li of alignment sections were varied uniformly and
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Figure 5.11: Result of an in silico analysis comparing KuLcons with scores produced by

phastCons and by two naive methods not taking phylogeny into account. A mixed gamma

process was used to generate alignments, switching among different distributions and degrees of

autocorrelation for different sections in the alignment.

at random between 10 and 100. Alignments Ai were appended until the overall alignment

length exceeded 1000 columns.

Conservation scores were calculated for this alignment as follows: KuLcons used a Gauss

window with σw = 0.2, phastCons scores were obtained using different models ψc and the

scores yielding the overall highest correlation were selected. The performance of phast-

Cons shown in the Figure therefore represents an upper bound on the phastCons perfor-

mance, when the optimal tuning is known. The entropy scoring (EN score, Eq. (5.25))

and the score based on the Jensen-Shannon divergence (JS score, Eq. (5.27)) suggested

in [CS07] are used as a comparison to scores that neglect phylogenetic information among

sequences.

Our approach outperforms all methods in terms of the correlation measure. Even though

the entropy and Jensen-Shannon approaches do not take an evolutionary model into

account, their performance is not much worse than phastCons’s. The entropy approach

slightly outperforms the Jensen-Shannon based measure.

Note, however, that for phastCons and KuLcons it was assumed that perfect information

about the evolutionary model ψ is available. A situation which is of course unrealistic

since estimates about the phylogeny of species from biological data are prone to uncer-

tainties.
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Figure 5.12: The distributions for θ used in the simulation based performance comparison

of conservation scoring schemes. The distributions are chosen such as to account for highly

conserved, moderately conserved, and unconserved regions, respectively.

5.5.4 Application to ENCODE data

In order to evaluate our conservation score qualitatively, we applied our algorithm to

the ENCODE data available from UCSC genome browser [KBD+03]. Three different

conservation measures are available at the browser’s conservation track for ENCODE

data: phastCons, GERP and SCONE. GERP and SCONE are likelihood based methods

that are briefly explained in Section 5.6. All three algorithms depend on the calibration of

neutral substitution rates. Figure 5.13 compares KuLcons scores to the scores produced by

phastCons over a 200 bp nucleotide sequence alignment in an ENCODE region (ENm005).

Comparison with the scores produced by GERP and SCONE are provided in Appendix C.

In order to facilitate the comparison, we show a transformed version of our score, that is,

1 −
sl

maxl{sl}
, (5.45)

where sl denotes the conservation score as derived in Section 5.4.2. This has the effect that

1 represents the highest and zero the lowest possible conservation, which is already the

case for phastCons scores. The transformation serves solely visualization purposes to ease

the qualitative comparison. We would like to emphasize that, while scores are normalized

to be in the interval [0, 1], only qualitative comparison is possible since different scores are

based on different models (c.f. Section 5.6). For the calculation of our score, all parameters

in ψ were replaced by estimates except the rate heterogeneity parameter θ. We used the

global average rate matrix R (non-conserved) published by Siepel et. al. [SBP05a] as

given in Eq. (5.11). However, using different realistic matrices had minor impact on the

scores which is in accordance with previously published observations [CSA+05, YW95]

and our own analysis discussed earlier. Single base resolution results in highly varying

scores among columns. One can suggest that functional units, such as binding sites, are

constrained at least over several neighboring base pairs. For comparison, we therefore

applied the same window function as for KuLcons to smooth SCONE and GERP scores.
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It can be observed in Figure 5.13 that our score signal is in good agreement with the

conservation estimate obtained by visual inspection of the multiple sequence alignment.

The phastCons signal shows a binary characteristic and does not allow for discrimina-

tion among different conservation degrees. Consequently, phastCons shows a relatively

rough-scale pattern of conservation which is different from the pattern revealed by KuL-

cons. This is explained by phastCon’s underlying two-state phylo-HMM model (cf. Sec-

tion 5.4.1). Interestingly, the smoothed GERP and SCONE scores (cf. Appendix C) show

a very similar characteristic to KuLcons with still some notable exceptions: in the region

around 31−37 KuLcons and GERP indicate a relatively weak conservation while SCONE

indicates higher conservation. On the other hand, KuLcons and SCONE both indicate

higher conservation around 87 − 93 while GERP deviates significantly indicating weaker

constraint. A different pattern can be observed in region 161 − 167 with KuLcons being

intermediate.
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	bc bc KuLcons b b phastCons

human C C C T C A C C T T T G A A T C C C T C T T G G T C A C C A G G G T G T A C A G G G T C T T T T T A T T C A A A T C A A A A T G G C T G C A G A C G T C C C T G G C A G C T T C C G G A C C C T G G G T

chimp C C C T C A C C T T T G A A T C C C T C T T G G T C A C C A G G G T G T A C A A G G T C T T T T T A T T C A A A T C A A A A T G G C T G C A G A C G T C C C T G G C A G C T T C C G G A C C C T G G G T

baboon C C C T C A C C T T T G A A T C C C T C T T G A T T A C C A A G G T G T A C A A G G T C T T T T T A T T C A A A T C A A A A T G G C T G C A G A C A T C C C T G G C A G C T T C C G G A C C C T G G G T

macaque C C C T C A C C T T T G A A T C C C T C T T C A T C A C C A A G G T G T A C A A G G T C T T T T T A T T C A A A T C A A A A T G G C T G C A G A C A T C C C T G G C A G C T T C C G G A C C C T G G G T

marmoset C C C T C A C C T T T G A A T C C C T C T T G G T C A C C A G G G T G T A C A A G G T C T T T T T A T T C A A A T C A A A A C G G C T G C A G A C G T C C C T G G C A G C T T C C G G A C C C T G G G T

galago T C C T T A C C T T T G A A T C C C T C T T G G T C A C C A G G G C A T A C A A G G T C T T T T T A T T C A A A T C A A A A T G G C T G C A A A C A T C T C T G G C A G C T T C G G G A C C C T G A G T

rat T T C T C A C C T T T G A A T C C C T C T T G G T T A C C A G G G C A T A C A A G G C T T T T T T A T T C A A A T C A A A A C A G C T G C A C A C A T C T C T G G C A G C T T C A G G G C C C T G G G T

mouse C T C T C A C C T T T G A A T C C C T C T T G G T C A C C A A G G C A A A C A A G G C T T T T T T A T T C A A A T C C A A A G A G C T G C A C A C A T C T C T G G C A G C T T C A G G A C C C T G G G T

rabbit C T C T C A C C T T T G A A T C C C T C T T G G T C A C C A G G G T G T A C A A G G T C T T T T T A T T C A A A T C A A A A T G G C C G C A G A C G T C C C T G G C A G C T T C A G G A C C C T G G G T

cow T C C T C A C C T T T G G A T C C C T C T T G G T C A C C A G G G T G T A C A A G G T C T T C T T A T T C A A A T C A A A A T G G C T G C A G A C G T C C C T G G C G G C C T C G G G A C C C T G G G T

dog T C C T C A C C T T T G A A T C C C T C T T G G T G G C C A G G G T G T A C A A G G T C T T T T T A T T C A A A T C A A A A T G A C T G C A G A C A T C C C T G G C A G C C T C A G G G C C C T G G G T

rfbat T C C T C A C C T T A G A A T C C C T C T T G G T C A C C A G G G T G T A C A A G G T T T T C T T A T G C A A A T C A A A A T G G C T G C A G A C A T C C C T G G C G G C C T C A G G A C C C T G G G T

hedgehog C C C T C A C C T T G G A A T C C C T C T T G T T C G C C A G G C T G T A C A A G G T C T T T T T A T T C A A G T C G A A G A G G C T G G A G A C A T C C C T G G C G G C C T C A G G G C C C T G T G T

shrew C C C T C A C C T T C G T G T C C C G C T T G G T C A C C A G G C C A T A C A A G G T T T T C T T G T T C A A A T C G A A G A G G C T A G A G A C G T C C C T G G C G G C C T C G G C C C C C T G G G C

armadillo - T C C T A C C T T T G A G T C T C T C T T G G T C A C C A G G G C A T A C A A G G G T T T T G T A T T C A A A T C A A A A T G A C T G C A G A C G T C C C T G G C C G C T T C G G G A C C C T G G G C

elephant T C C T C A C C T T T G A A T C C C G C T T G G T C A C C A G G G C G T A C A A G G G C T T T T T A T T C A G A T C A A A G T G G C T G C A G A C A T C C C T G G T A G C T T C G G C T C C C T G G G C

monodelphis T C T T T A C C T T T G G A C T T C T T A T T T T C A C C A A A C C A T A C A A C G A T T T C T T A T T G A A G T C A A A A T G A C T A T A G A A A T C C C T G G C A G C A T C T G G A C C C T G T G C

platypus C C T C T A C C T T G G G G C T C C G T C T G G T C A C C A G A G C C C G G A G G G G C T T C T T G T T G A A G T C G A A A T G G C C G T A G A C G T C G C G G G C G G C A T C C G G C C C C T G G G C

chicken A A T T T A C C T T C T T A T C T C T T T T T T T C A C T A A T G C A G G C A G A A A C T T A T T A T T G A A A T C G A A A T G A C T A A A C A C A T C C C T C G C A G T A T C T G G C C C C T G A G C

xenopus - - T T T A C C T G T T T G T C T C T C C T T T T T A A C A A A G T T G G C A A G A A T T T G T T A T G A A A A T C A A A A T G G C T G A A T A C G T C T C T G G C A C A A T C T G G T C C C T G C G C

tetraodon T T T T T A C C T G C T T G T C C T T T C T C T T T G C C A G G C C T G A C A G A G A - - - T T T A T T G A C G T G A A T G C A A T T T A G G A C C T C T C G A G C A G C C T C T G G A C C C T G A G A

fugu G T C - C A C C T T C T T G T C C T T T C T C T T T G C C A A T C C T G A T A G A G A - - - T T T A T T G A T G T G A A T G C A A C T C A G G A C C T C T C T A G C G G C C T C T G G A C C C T G A G A

zebrafish T T T T C A C C T A C T T G T C T C T T T T T C G A G C G A G T T G A C A C A G A T C - - - T T T G C C G A A C T G C A T T T G A C C G A A T A C A T C T C G T G C A G C G T C T G C A C T C T G A G A

Figure 5.13: Comparison of KuLcons score signal to the phastCons score over an ENCODE region (hg17, ENm005, chr21:32677595-32677794). A

Gauss window with σw = 0.2, size 15 (δ = 7) was used for KuLcons scores. In the alignment, bases with gray background represent bases identical

to consensus.
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human C A C C A T G G C G G T C A T C A G G C T C A G G C A G G C G C G A G C C A A C C T G C A C A G G G A A C C A G A G G A A A T C G G A C A C G T C A A C A A C A G C A G A A G C A C A G A G C C G C C T

chimp C A C C A T G G C G G T C A T C A G G C T C A G G C A G G C G C G A G C C A A C C T G C A C A G G G A A C C A G A G G A A A T C G G A C A C G T C A A G A A C A G C A G A A G C A C A G A G C C G C C T

baboon C A C C A T G G C G G C C A T C A G G C T C A G G C A G G C G C G A G C C A A C C T G T A C A G G G A G C C A G A G G A A A T C A G A C A C G T C A G C A A C A G C A G A A G - - C A G A G C C G C C T

macaque C A C C A T G G C G G C C A T C A G G C T C A G G C A G G C G C G A G C C A A C C T G T A C A G G G G G C C A A A G G A A A T C A G A C A C G T C A G C A A C A G C A G A A G - - C A G A G C C G C C T

marmoset C A C C A G G G C A G C C A T C A G G C T C A G G C A G G C A C G A G C C A A C C T G C A C A A G A A A C C A G A G G A A A C G A G A C A C G T G A G A A A C A - C A G A A G C C T A G A G C C G C C T

galago C A C C A T G G C A G C C A T C A G A T T C A G G C A G G C T C G A G C C A A C C T G C A T A G G G A T - - - G A G A A A A T C A G A C A - G T C A A G G A C A G A A G A A - - - C A A A G C C - - - -

rat C A C C A C A G C A G T C A T C A G G T C C A G G C A G G C T C G A G C C A T C C T G C A T A G G G A C - - - A G G A A G A T C A G G C C - - - C A G G G G C A G C A C T G T C A G G G A G C C - - - -

mouse C A C C A T G G C A G T C A T C A G G T C C A G G C A G G C T C G A G C C A T C C T G C A C A G G G A C - - - A G G A A T G T C A G G A A - - - T A G G A G C A G C A C T A G G A G G G A - C C - - - -

rabbit C A C C A T G G C G G C C A T C A T G T T G A G G C A G G C T C G A G C C A T C C T G C A C G G G G A C - - - A A G G A C G G C A G G C C T G T C A G G A G C A G C T C - G C C A G G G A G C C - - - -

cow C A C C A T G G C A G C C A T C A G G T T C A G G C A G G C T C G A G C C A T C C T G T T C A G G A C A - - - A G C G G G A C C T G G - - T G T C G T G A - C G G C A G G A C C A C A A G G C C C C C T

dog C A C C A T G G C G G C C A A C A G G T T C A G G C A G G C T C G A G C C A T C C T G C A C A G G G A C - - - G A G A A A A T C A G G C A T G T C A G G A A C A G C A G A A G C A C - - - - - - - - - -

rfbat C A C C A T G G C G G C C A T C A G G T T C A G G C A G G C T C G A G C C A T C C T G C A T A G G - - - - - - G G G G A A A T C A G G C A T G T C A G G A A C A G C A G A A G C A C A A A G C C A C C T

hedgehog C A C C A T G G C G G C C A T C A G G T T C A G G C A G G C T C G G G C C A T C C T G T G C G G G G A T - - - G G A G A G A T C A G G C A T G T T G T G A G G G G C A C A C A T G C A A A G T C T C C T

shrew C A C C A T G G C G G T C A G C A G G T T G A G G C A G G C G C G A G C C A T C C T G C G G G G G - - C C - - C A G G G A A T G A G G - G C G C C A G C C A C T G C A G A C G C A C C A G G C C A C C T

armadillo C A C C A G G G C G G A C A T C A G G T T C A G G C A G G C T C G A G C T G T C C T G T A C A G G - - - - C - A A G G A C A T C A G T C A T G T C A G A G A C C G - - - - A G C A C G A A G C C A C C T

elephant C A C C A G G G C C G C C A T C A G G T T C A G G C A G G C T C G A G C C A A C C T G C A C A G G - - - - - - A A G G A A A T C C G T C A G T T C A G A G A C A G T G G A A G C A C A A A G C C A C C T

monodelphis C A C C A T A G C T G A C A T G A G G T T C A A G C A G G T T T G A G T C A T T C T A C A T G T A - - - - - - A A A A A T A T A C G G T T A A T T C A A A A T A G T A G T G G C A T G A A C C T - - - -

platypus C A C C A T C G C C G C C A T G A G G T T C A G G C A G G C C C G G G A C A T C C T G C - - - - - G A G C - - G A G G G A A T G A A A C A A G T C A G C A T C A G A T A G A G A A C A G - - T C C C T T

chicken C A C C A T T G C T G A C A A C A G G G T A A G G C A C A C T C G G C T C A T C C T A A A A G - - G A A - - A G A G G A A A A C G T G C A G G T T A - - - - - - - - - - - - - - - - - - - - - - - - - T

xenopus C A C C A T G G C A G A C A A T A A A T T C A A G C A A A T C C T G G A C A T T C T G T C G A A G - - - - - A G A A A T A A T A A T A A A C A G A A A C A A C G G C - - - - - - - - - - - - - - - - - -

tetraodon C A C C A A A G C A G T C A G G A A A C C G A G G C A C T G A C G A A C A A A C C T G T G C T C A A A - - - A T G G A A C A T T A G C C T T A T G - A T G A C A G C - - - - A A A C A A C A G - T T G T

fugu C A C C A A A G C A G T C A G G A A A C T G A G G C A C T G G C G A A C A A A C C T G T A C A T A G A - - - A A A G A A T A T T A G C T T T G T G C A T C A C G C C - - - - A A T C A A A G T - G T T C

zebrafish C A C C A G A G C G G A C A G T A G A C T C A G A C A C T G G C G G A C A A A C C T G C T C - - - A A - - - A T G C A A C A A C C A C A C T T T C T T T C T C A A A - - - - A T T C A A T G C - T T C C

Figure 5.13 continued
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5.5.5 Extending ψ to model insertion and deletion events

The projection of the model ψ via KL divergence allows more than one parameter in ψ

to contribute to the conservation score. In particular, taking into account insertions and

deletions in a proper way is a challenging task in most phylogenetic analysis. We extended

the standard evolutionary model to include rates of insertions and deletions. These InDels

(cf. Section 3.2) give rise to gaps in the alignment (cf. Section 4.2.3) which are usually

neglected by most approaches for measuring the conservation. The probabilistic inference

of insertion and deletion events along a phylogenetic tree is a difficult problem. Several

methods have been proposed in the literature: Rivas showed in [Riv05] how to extend the

matrix R in order to model gaps as a fifth character. A maximum likelihood approach for

inferring InDel scenarios was proposed by Blanchette et. al. in [DMB06]. Recently, Kim

and Sinha presented an algorithm, InDelign, for the annotation of InDels in a probabilistic

framework [KS07]. Here we used InDelign to estimate the probability of deletions and

insertions in the sliding window. The estimated probabilities p̂
(e,k)
I and p̂

(e,k)
D of an InDel

of length k = 1, 2, .., 2δ + 1 on branch e were calculated. In Indelign, InDel probabilities

pI , pD are assumed to be proportional to the branch length te

pI = cIte, pD = cDte, (5.46)

where cI and cD are constants, estimated as follows: let NI ,ND be the numbers of InDels

from the parent of the two closest related species to either species. The constants are

estimated as

ĉI =
NI

(te1 + te2)L
, ĉD =

ND

(te1 + te2)L
, (5.47)

where (te1 + te2) is the sum of the distances of these species to their common ancestor,

and L is the length of the sequence which is in our case the size of the sliding window

2δ+1 [KS07]. The score was then calculated based on the 3 free parameters θ, cI , cD. Since

we are only interested in the probability of a fully conserved column, we have to calculate

the probability that such a column is observed for the estimated values. The substitution

and InDel processes are assumed to act independently, i.e., let again p(a[b]; ĉI , ĉD, θ̂) denote

the probability of a fully conserved column under the estimated parameters, then

p(a[b]; ĉI , ĉD, θ̂) = p(a[b]; ĉI , ĉI)p(a[b]; θ̂). (5.48)

Simplifying assumptions about the InDel process imposed by the InDelign algorithm allow

to express the first term as the probability that no InDel occurred on any of the branches

e, at the actual and the k preceeding positions:

p(a[b]; ĉI , ĉD, θ̂) = p(a[b]; θ̂)
∏

∀e

δ+1∏

k=1

(1 − p
(e,k)
D )k(1 − p

(e,k)
I )k. (5.49)

The scores (Eq. (5.39)) are then calculated using this probability.

In Figure 5.14 we show the application of our extended algorithm to ENCODE data.

Two different KuLcons scores for a 200bp fragment of an ENCODE region are shown.

One score (KuLcons no InDels) represents conservation estimation based only on local

substitution rate estimates, treating gaps as missing data. For the other score (KuLcons
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with InDels), 3 parameters were estimated: the substitution rate θ, and InDel parameters

ĉI and ĉD. All parameters were estimated in a rectangular sliding window of length

21(δ = 10) over the alignment. Note that in this framework ψ comprises 2 additional

parameters cI and cD.

In [SPH06], Siepel et al. present an extension of phastCons accounting for lineage-specific

“gained” or “lost” elements. Similar to our approach, the authors use a separately recon-

structed InDel history and compute emission probabilities of InDels for a phylo-HMM.

However, to our knowledge phastCons has not yet been further developed in this direction,

and the signal of phastCons shown in Figure 5.14 treats gaps as missing data.

As expected, the KuLcons score including the InDel estimation is upper bounded by the

version neglecting the InDels. The scores coincide where no gaps are observed in the

sliding window (positions 41-42) and differ when one or more gaps are observed (e.g., 74-

98). A significant difference in the scores is observed in regions with many gaps. While the

score based solely on the substitution rate indicates high conservation, the score respecting

the gaps indicates low conservation in these regions.
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	b b phastCons bc bc KuLcons with InDels × × KuLcons no InDels

human G A A A T A A T T A C G T A T T T T T A A T G C C T A T T A G G G A C C T A G A A A C C T A T T T G G G G A G G T C A G G A A A C T G G G T A T G A G A T C T G A G T C T T T G C A G G T G C T C G A T

chimp G A A A T A A T T A C G T A T T T T C A G T G C C T A T T A G G G A C C T A G A A A C C T A T T T G G G G A G G T C A G G A A A C T G G G T A T G A G A T C T G A G T C T T T G C A G G T G C T C G A T

baboon G A A A C A A T T G T G T A T T T T T A A T G C C A A T T A G G G A C C T A G A A A C C T A T T T G G G G A G G T C A G G A A A C T G G G T A T G A G A T C T G A G T C T T T G T A G G T G C T C C G T

macaque G A A A T A A T T A T G T A T T T T T A A T G C C A A T T A G G G A C C T A G A A A C C T A T T T G G G G A G G T C A G G A A A C T G G G T A T G A G A T C T G A G T C T T T G C A G G T G C T C C G T

marmoset G A A A T A A T T A C C T A T T T T T C A T G C C A A T T A G G G A C C T A G A A A C C T A T T T G A G G A G G T T A G G A A A C T G G G T A T G A G A T C T G A G T C T T C T C C A G A C A T C C A T

galago G A A A T A A T T A T G C A T T T A T A A T A C C A G - - A G A G C C C T A G A A A C C T A T T T G G A T A G G T C A G G A A A C T G G G T G T G A G A T C T G A A T C C T C G T A G G T A C T C C A T

rat G A T A T A A T T A A G T A T T T A T A A T G C T A C C C A G G A A C C T A G A A A C C T A T T T G G G - A T G T C A G G A G A T T G G G T G T G A G - - - - - - - - - - - - - - - - - T A C T G C A T

mouse G A T A T A A T T A A G T A T T T A T A A T G C C A C C C A G G A A C A T A G A A A C C T A T T T G G G A A C G T C A G G A G A C T G G G T G T G A G - - - - - - - - - - - - - - - - - C A C T G C A T

rabbit A T T A T A A T T T T G T A T T T A T A A C A T C A A T T A G G G A C C T A G A A G C T T C C C T G G G A A G G T C C G G A A A C C A G G T A T A G G A T C C - - - - - - - - - C A G A C T T T G C A G

cow G A T A T A A T T A T G T A T T T A T A A T G C T G A T T A G A G A C C T A G A A A C C T A T T T A G G A A G G T C A G G A A A C G G G G T A T G A C A T C T C A G T C T T T A C T A G T A T A A T C T

dog G A T A T A A T G A T G T A T T T A T A A T G T C A A T T A G G G A C C T A G A A A C T T A T T T G G A A A G G T C A G A G A A C T G G G T G T G A G A T C T G A G T C - - T G C A G G T A T T C C A T

rfbat G T T A T A A T T A T G T A T T T A T A A T G C C A G T T A G G G A C C C A G A A A C C T A T C T A G G A A G G T C A G A G A A A G A G G A G T G A A A T C T G A A T C T T T G C A G G T A C T T C A C

shrew G A T A T A G T T A T G T A T T T T T A A T G C C A G T C A G G G A C C T A G A A A T C T A C T T G G G A A G G T C A A G A T A C T G T G T A T G A A A T C T C A G T C T T T G C A G G T A C C C T A C

armadillo G A A A T A A A T - - - - A T - - - - - - - - - - - - - - - G A G A C C T A G A A A C C T A T T C A G G A A G G T C A G G A A A G C A G G T A T G A G A T C T G A G T C C T T G C A G G T A C T C C A T

elephant G A C - - - - - - A T A T A C T T A A A A T G C C A A C T A G T G A C C T A G A A A C C T A T T T G G G A A G G T C A G G A A A C T G G T A T T G A G A T C T G G A T C T T T G C A G G C A C T C C A T

tenrec G A T A T A A T G A T A T A T T T A T A A T G C C G A C G A G T G C T C T G G A A A C C T A G T T T T G A A G G T C A G G A G A C T G G - G G T G G G A T C T G G G T C T T T T C A A G T A C T G G G T

monodelphis G A A A T - - - - G T G T A T T T A T G G T G C T C A T T G G G T A T A T A A G A G C G G A T T G G G G - C A T C T A G G A G A T T A A T T T A G A G - - - - - - - - - - - - - - - - - - - - - - A A C

platypus A A A A T A A T T A T G C A T T T A A T A G G T T T T C T A T T T G G A G A A A A T T G T A C T C A G G - G G T A C C C A G C A C T G G T C A T - - - - - - - G - - T C T C C A G A G A - - - - - - - -

Figure 5.14: Comparison of KuLcons score taking gaps as InDels into account and KuLcons score treating them as missing data in an ENCODE

region (hg17, ENr212,chr5:142147118- 142147317). Scores are based on estimating the parameters in a rectangular window (δ = 10). PhastCons

scores are shown for comparison.
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human C T A G A A T C T C C A G G G A G A A T G T A T T T T G G A C A T A A A C A A T G A G A C G T G G A T A A G A T G G A T G G C T T A C A T C T C C C T C C C T T G G A C A G C C A A G C C C A C A G C T

chimp C T A G A A T C T C C A G G G A G A A T G T A T T T T G G A C A T A A A C A A T G A G A C G T G G A T A A G A T G G A T G G C T T A C A T C T C C C T C C C T T G G A C A G C C A A A C C C A C A G C T

baboon C T A G A A T C T C C A T G G A G A A T G T A T T T T G G A C A T A T A C A A T G A G A C C T G G A T A A G A T A G A T G G C T T A C A T C T C C C T C C C T T G G A C A G C C A A G C C C A C A G - -

macaque C T A G A A T C T C C A T G G A G A A T G T A T T T T G G A C A T A T A C A A T G A G A C C C G G A T A A G A T A G A T G G C T T A C A T C T C C C T C C C T T G G A C A G C C A A G C C T A C A G C T

marmoset C T G G A A T C T C C A G G G A G A A T G T A T T T T G G A C A C A T A C A G T G A A A C C T G G A T A G G A T A G A T G A C T T A C A T C T C C C T C C T T C A G G T A G C C A A G C C C A C G G - -

galago C T A G A G T G T C C A G G A A G A A T G T A T T T C A G A C G T A T G T A A T G A G A C C T G G A T A A G A T A A A T G G C T T A C G T C C C C C T C C C T C T A G C T G C C A A G C C C A C A G T T

rat T T A G A A A T T C C A G G A G T G A C A C A C T T T G G A C A T A T T T G A T A A G T C C T G G A T T A G A T G G A A G G C T G A T G T C T C C C T G - - - - G A G C T G C C A G C A C C A C A G T T

mouse T T A G A A A T T C C A G G A G T G A C A C A C T T T G G A C A T A T A T G A C A A G T C C T G G A T T A G A T G G A A G G C T G A C G T C T C C C T G - - - - G A G C T G C C A G T G C C A C A G C T

rabbit T C A T G C G T C C C A G G A G T A A T G - - - T T T G G G C A T C T G T A C C A A G A C C C A G G T A G G A C A A G T G G C C C A T G T C T G C T T T - - - - - - - - - - - - - - - - C C C T A G C T

cow C T G G A A - - - - - - - - - A T A A T A T A T T T T G G G C A T A A T T A A T G G C A C C T G G A T C A G A T G G - - - - G T T A T A T C T C C C T C C C T C C A G C T G - - A A C - - - - - A A C C

dog C T A G A A T C T C C T G - G A T A A T A T A T T T C G G A C A A A T T A A G C G A G A C C T A G A T A A C A T T A A C A T A T T A C A T C T C C C T T C A T T G A G C T G C C A A C T C C T T A G T T

rfbat C T A G A A C C T C C A G A A A T T A T G T A T T T C G G A C A G A T T T A A T G G - A C C T G G A T A A G A T G G G - - - C T T A C A T C T C C G T T C C T C A A G C T G C C A A C C C G A T G G T T

shrew C T A G A A T C A C A G A - A A G G A T A T A T T T T G G A C A T A T T G A A T G A G A C C T G A A C A A G A T G G - - - - C T T A C A T C T C C T T C A C T C A A G C T T - - A A C C C T G T G G T T

armadillo T T A G A A T C T C C A G G A A T A A T A T A T T T T G G A C A T A T A T T A T G A G - - - - - - - - - - - - - - - - - - - C T C A C A T C T C C C T C C T G T G A G C T G C C A G C T C C A C A - - -

elephant C T A G A A T C T C C A G G T A G A A T A T A T T T T G G A C A T G T T T A A T G A G A C C T G G A T A A G A T G - - - - - C G T A C A T C T C C - T C C C T T G A G C T G C C A A C C T C A C A A A T

tenrec G T C A A G T C T C T A G G T A G A T T G T A T T T T G G A C G T G C T C A A T G A G A C C C A G A T A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A G C T A C C A A C C T C A T G A G T

monodelphis A C A T A A C T A T T A A A T A G A A A T C A C T C T A A T C A A G G G C A A A A A G A C - - - A A C A G A G C T G - - - - C T C A C C A C A C C C T A C T G C G A G T T - - - - - - - - - - - - - - -

platypus - - - T G T T C T C C A G G G A G G G C G A A T T C T G A T C A A C C T C A A T G G - - - - - - - - - A G A A T T A A G A G C A C G T A G C T C C T G T - - - - - - - - - - T C A A G T T C A G A G A T

Figure 5.14 continued.
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5.6 Discussion

In Figure 5.13 and Appendix C we showed a comparisons of KuLcons to phastCons, GERP

and SCONE. These methods aim to detect sequence conservation and/or constraint based

on different models:

phastCons scores reflect the a posteriori state probabilities of the underlying HMM and

thus express the probability of constraint, based on the assumed degree of conservation and

the assumptions about neutral evolution imposed on the hidden Markov model. While this

is very well suited for high throughput processing, a simplistic binary model on genome

evolution is imposed. The two state HMM implies that evolution is either conserving or

neutral. The model has to be tuned with a priori information such as transition rates

among the conserved and the neutral state, which implicitly imposes assumptions about

the expected length and coverage of conserved regions. Phylogenetic HMM were analyzed

in [FZSL07] with respect to their statistical power for detection of conserved elements.

The authors found that these parameters, in fact, have major influence on the detection

power of phylo-HMMs.

The assumed binary model is clearly reflected in the scores. The phastCons score in

Figure 5.13 provides clear indication for strong or weak conservation but lacks sensitivity

for different degrees of conservation.

GERP compares observed and expected substitution rates on a phylogenetic tree with

fixed topology. The branch lengths of the observed tree are estimated for each column

separately, and branch lengths of the expected tree are compared to the average of esti-

mates from neutral sites. The final score is the difference of the observed to the expected

substitution rate induced by the corresponding estimated trees [CSA+05]. GERP predicts

constraint elements using a null model of shuffled alignments.

SCONE scores express the p-value that a position evolved neutrally given a model that

accounts for context-dependency, InDel events, and neutral evolution. Hence, the score

can as well be interpreted as a probability of constraint [ARSS07].

Another method used in the ENCODE analysis, BinCons developed by Margulies et

al. [MBHG03], was not included in the comparison because it was noted by Siepel [SH05]

that scores of BinCons and phastCons give qualitatively similar results.

In contrast to the approaches mentioned above, KuLcons considers the direct estimation

of the rate heterogeneity θl ∈ R+ or more parameters from an evolutionary model ψ via

maximum likelihood using an optimized sliding window and accounting for autocorrelation

among sites. The Kullback-Leibler divergence is used to project the estimated parameters

to a conservation score. As shown in Section 5.4.1, the rate parameter θ is the crucial

parameter for detecting evolutionary conservation, and we showed that the presented ML

sliding window approach achieves high estimation accuracy in silico, assuming a model

of gamma distributed rates with autocorrelation.

Our method allows other parameters than θ to contribute to the conservation score.

As expected, scores obtained from multiple parameter estimates, with additional free
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parameters in R, did not significantly deviate from estimates solely based on θ. For

example, estimating the score for the ENCODE data shown above using the HKY model

for R, i.e., allowing for two substitution parameters (different transition/transversion

rates) to be estimated, leads to a correlation of 0.99 to scores obtained with R fixed

(results not shown). This is in accordance with earlier results on the negligible influence

of different parameterizations of R on rate estimation [YW95, CSA+05] and our own

findings based on the mutual information analysis.

However, conservation estimation under more complex models of evolution, such as those

accounting for insertions and deletions, can be incorporated in the procedure in a proba-

bilistic fashion. As implied by our results shown in Figure 5.14, scores neglecting insertion

and deletion events and scores taking these complex evolutionary events into account can

differ significantly.

We believe that KuLcons has the following advantages:

1. The presented algorithm is free of assumptions about neutral evolutionary rates

that are notoriously hard to determine [PM07, CBS+04, HRY+03]. Furthermore,

it uses few a priori parameters that require biological considerations. We have

shown that our ML estimation of substitution rates in an optimized Gauss window

without assumptions on the rate prior leads to good performance in the MSE sense.

2. Our score reflects well the different degrees of conservations. This soft score may

disclose new possibilities in comparative genome analysis allowing the comparison

of different finescale conservation patterns within conserved regions of interest. A

first analysis in this direction was carried out in [Heg08] in which micro RNAs were

compared based on their conservation profile rather than their sequence similarity.

3. The KL divergence based measure is intuitive and makes scores obtained from

different data sets using different models ψ comparable.

4. Our method can deal with extended phylogenetic models taking into account more

evolutionary factors such as insertions and deletions. A whole set of different

process parameters can then be mapped to a conservation score via the Kullback-

Leibler divergence. A score was shown in Figure 5.14 that uses co-estimated InDel

rate parameters. Another possibility would be to assign different θ to different

subtrees thus allowing for lineage-specific rate heterogeneities.

Our results show that the KuLcons score qualitatively exhibits similar conservation pat-

terns in different regions as GERP and SCONE. This observation has two important con-

sequences: first, it is possible to score the conservation of DNA sequences without having

assumptions or estimates on neutral rates. The estimation and potential bias of these

rates have been controversially discussed in the past [CBS+04,HRY+03,KXL06,PM07].

Secondly, our results suggest that conserved elements inferred from this method would

probably not be very different from those discovered by GERP and SCONE, opposed to

the conjecture raised in [PM07]. This would mean that the discrepancies of experimentally

verified functional elements and computationally predicted conserved regions [MVH+07,

MCA+07,Che07] cannot be explained in majority by biased assumptions on neutral rates.

One explanation might be that low scoring sequences experience constraints at a different

information level (e.g., secondary structure) that is not detectable by simple sequence
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alignments but rather structural alignments. An alternative explanation is that species

specific functional elements that are not conserved across a given set of species are more

important in functional evolution than currently discussed. In our opinion, it would be

highly desirable to develop test sets for objective comparison of the different methods

based on in silico and biological data. Other disciplines from computational biology are

fostering similar concerted efforts by computational and experimental biologists [SMC07,

MSY03]. However, for various reasons this may be more difficult in the discipline of

comparative genomics.

5.7 Summary

This chapter dealt with the identification of phylogenetic systems from multiple species se-

quence data under a probabilistic model of DNA evolution. It was assumed that evolution

of species is modeled by a phylogenetic tree, evolutionary distances, and a substitution

process as introduced in Chapter 4. It was further assumed that a perfect multiple se-

quence alignment was available for the considered sequences.

We first briefly introduced methods for reconstructing the tree topology as well as for es-

timating branch lengths and substitution process parameters. After extending the model

of evolution to account for variable rates among sites, introducing a rate variation param-

eter, we focused on the problem of detecting DNA sequences that are conserved among

species. Conserved regions recently are candidates for potentially functional elements.

This is motivated by the assumption that conservation is a strong indicator for natural

selection.

Previously applied detection methods were reviewed and classified, distinguishing between

naive (model free) methods and those taking phylogenetic models into account. We then

presented our method KuLcons, which is based on a continuous, autocorrelated model

of rate variation. KuLcons proceeds in two steps: it first locally estimates phylogenetic

parameters in a sliding window and then uses the Kullback-Leibler divergence to calculate

a score that is independent of assumptions about neutral substitution rates.

We carried out simulation studies to analyze KuLcons: results suggest that the MLE

is nearly optimal even if the size of the sliding window is relatively small, and that it

can reliably estimate the rate variation parameter under the continuous, autocorrelated

model. An in silico comparison with previous methods was performed under a very general

simulation model of rate variation. KuLcons achieved the best performance compared to

phastCons and model free methods. The gain in performance is expected to increase

when alignments with more species are considered.

We applied KuLcons to recent alignment data from the ENCODE project and qualita-

tively compared our score to those of phastCons, GERP and SCONE, that were applied

in the ENCODE project. We found that KuLcons better reflects the different degrees of

conservation than phastCons that only gives a rough scale pattern of conservation. Our

comparison with GERP and SCONE further suggested that biased estimates of neutral

evolutionary rates is not the major cause of computational methods overlooking func-
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tional DNA regions. This had been proposed as an explanation for the discrepancy

between computationally predicted and experimentally verified functional regions in the

ENCODE project [PM07].

A major advantage of our score is that it is easily extendable to take multiple factors

contributing to evolutionary conservation into account. We showed how scores can be

calculated under insertion and deletion models, applying our modified scoring scheme to

an ENCODE region. Comparison suggests that these scores can diverge significantly in

regions where gaps are observed.

A discussion of the obtained results concluded this chapter.

5.8 Future research

While the presented conservation score KuLcons was shown to better identify conserved

DNA sequences, its computational complexity makes high-throughput application diffi-

cult, at least for the user without access to a high performance computer. Reduction of

running time without sacrificing accuracy would be highly desirable. One way to achieve

this could be the use of simplified evolutionary models, e.g., the use of substitution rate

matrices that allow for analytical solutions of the transition probabilities between nodes

in the tree graph. In this case, singular value decompositions - which are costly - can be

avoided, and the running time is expected to be significantly decreased. In the framework

of communication theory, Hagenauer et al. developed approximate message passing algo-

rithms using metrics instead of probabilities known as log-max approximation [HOP96].

These were shown to provide sufficient accuracy while significantly reducing the algo-

rithmic complexity in data transmission applications. An application to the Felsenstein

algorithm for large-scale phylogenetic analysis could lead to interesting results.

KuLcons provides a soft score that may prove more helpful in deciphering and classifying

functional DNA than scores that behave binary such as phastCons. In fact, first re-

sults [Heg08] suggest that KuLcons scores of micro RNAs (miRNAs) exhibit statistically

significant similarities using Pearson correlation as well as empirical mutual information

as divergence measures. Does conservation of score patterns imply similar function? It

would be interesting to investigate whether miRNAs or other conserved regions could be

clustered on a functional level using soft scores. However, this requires a large, carefuly

curated and annotated database that allows for rapid whole genome analysis.

Our algorithm has the advantage to be easily extendable to more complex models of

evolution. Such models could allow for different substitution rates in different lineages or

take context-dependency into account. Here, we presented an extension to the case when

gaps in multiple sequence alignments are modeled as insertions and deletions instead of

neglecting them (as done by most algorithms). Different evolutionary models exist, and

our algorithm enables comparison of conservation scores under different models - to be

investigated in extending work.



6
On the DNA code reverse
engineering problem

This chapter is a first attempt to systematically address the question whether there is an

error correcting code in the DNA that protects genetic information from mutations.

In Section 6.1 we analyze known error correcting mechanisms in the cell from a coding

theoretic perspective and review previous investigations on the hypothesis of nature us-

ing a channel coding scheme in the DNA. We present the theoretical and experimental

evidences previously found and also give a critical discussion on these evidences.

Most of the remainder of this chapter then focuses on the formal code reverse engineering

problem. Maximum likelihood methods for reconstructing a convolutional encoder from

observed noisy coded bits are presented. The methods are based on a probabilistic encoder

tap model transforming the problem into the log-likelihood ratio domain. Section 6.2.2

presents an approach based on the expectation maximization algorithm. Section 6.2.6

introduces a method based on global stochastic maximization, and Section 6.2.7 provides

the extension to non-binary alphabets. Simulation results are shown for both methods

(Sections 6.2.5 and 6.2.8).

Finally, in Section 6.3, an application to DNA sequence data is presented. Our method

is used to analyze an ultraconserved sequence, 100% identical in the human, mouse, and

rat genome. However, our results based on comparison to a a random sequence show

no evidence that the ultraconserved region belongs to the class of convolutional codes

considered in the analysis.

6.1 Is there an error correcting code in the DNA?

It is an astonishing fact that DNA is a digital signal, i.e., a discrete sequence of symbols

from a finite - in case of DNA quarternary - alphabet (cf. Chapter 3, Section 3.1). As

discussed in Chapter 3, all cellular information processing problems on the DNA level

are essentially related to reliable storage and transmission of digital information. Over

the past decades, communication engineers have developed many powerful tools and al-
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gorithms in order to design digital data transmission systems. It should not surprise us

if nature and engineers partly developed similar concepts in dealing with transmission of

digital information.

A main result of information theory is the channel coding theorem stating that faith-

ful transmission of information is possible even if signals are distorted by noise during

transmission (cf. Chapter 2, Section 2.2.2). One of the main advantages of digital com-

munication systems is the possibility of using forward error correction or channel cod-

ing schemes allowing to reconstruct messages at the receiver from noisy signals. Very

powerful error correcting mechanisms were developed over the last 60 years by commu-

nication engineers, that are now an integral part of any modern communication sys-

tem [CHIW98,HOP96,CFR+01,RU07].

6.1.1 DNA error correction from a coding theoretic perspective

The DNA replication machinery reproduces DNA with an astonishing accuracy. It intro-

duces an error only every 10−3−10−5 base pairs. The known error correcting mechanisms

(base excision and mismatch repair, cf. Chapter 3, Section 3.2) further reduce the rate of

nucleotide substitution error to 10−9 − 10−10 per cell generation. Do these repair mecha-

nisms make use of error correcting codes? As we shall see in this section, the answer is

clearly yes; but from a coding theoretic perspective, most of these are trivial.

Recall that, formally, a code C is a collection of elements which form a subset of all pos-

sible elements. A crucial parameter of a code is its minimum distance, i.e., the minimum

distance between any two elements from C (cf. Chapter 2, Section 2.3 for a brief intro-

duction). Nature uses A,C,G,T as an alphabet. However, there are many more chemical

structures that could be used. Donail, for example, lists 16 possible nucleotides or nu-

cleotide analogues. Some of those were experimentally shown to be replicated in vivo by

cellular replication machinery implying that larger alphabets were in fact possible [Dón06].

So the alphabet of DNA forms a subset of all possible elements, which could be inter-

preted as a code. Consider a nucleotide x ∈ {A,C,G, T} that experiences a mutation and

mutates to x′. Most mutations that occur do not result in a change of the nucleotide but

alter it in a way that it is not a “valid” nucleotide (not A,C,G,T) anymore. In words of

a coding theorist: the mutation results in an element that is not an element of the code

A,C,G,T. As a result, the error can be detected. Now, in a coding theoretic approach,

one would look for the element A,C,G,T which is closest to the mutated x′. However, this

is not what happens in the cell; the cell rather uses a repetition code to correct mutated

bases: recall that DNA is a double stranded molecule consisting of base pairs that pair

up according to deterministic rules (A with T, C with G). A coding theorist calls this a

repetition code (cf. Chapter 2, Example 2.3.1). Once an error is detected (first code),

the mutated nucleotide x′ can be corrected by simply looking at its complementary base

(second code).

The genetic code can be interpreted as a block code: recall that the genetic code maps

triplets of nucleotides to amino acids. There are 64 distinct triplets but only 20 different

amino acids. The genetic code is hence a rate log4(20)/3 ≈ 0.72 block code. There
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exist pairs of triplets in the code that code for different amino acids and only differ in one

position (cf. Figure 3.9). The minimum distance of the code is therefore 1. To summarize,

the genetic code is a (3, log4(20), 1) block code. A minimum distance 1 code is of course not

a good code since there exist triplets for which the code does not have error correcting nor

error detecting capability. Still, the code provides some error tolerance afterall (e.g., some

third positions of triplets are completely interchangeable without altering the resulting

amino acid). The code can even be shown to be close to optimal when taking into account

that properties of proteins are almost invariant to substitutions of amino acids with similar

properties [FH98].

The latter observation is actually a crucial point: when considering cellular information

processing systems, it is not enough to count the overall number of errors. Rather, one has

to take a distortion measure into account: different kind of errors have different effects.

For example, the change of an amino acid to another might be tolerable as long as the

property of the resulting proteins are conserved. However, such effects are not taken into

account by classical coding theory that concentrates on minimizing the total number of

errors. Furthermore, systems in nature are mostly designed such as to optimize multiple

objectives. For example, it was shown that the genetic code, in addition to its error distor-

tion minimizing property, is nearly optimal with respect to frameshift errors [BVK07] and

in allowing for additional signals to be embedded as secondary information [IA07,SP07].

Error correction mechanisms are spread among the different layers of cellular information

processing. For instance, it was observed that genetic networks are robust with respect to

the failure of a single gene. Knockout experiments have shown that other genes are able to

take over the tasks of silenced genes. A very simple explanation is that most genes occur

in multiple copies in the genome. In fact, in the cells of eukaryotic organisms each gene

occurs twice, since each cell contains two sets of chromosomes (repetition code). However,

gene copies cannot explain all experimental observations regarding network robustness.

For instance, experiments that completely removed some ultraconserved regions from the

mouse genome generated viable mice [NZPF+04], not showing any phenotype. How the

robustness of genetic networks is achieved is not completely understood; it shows, however,

that there is an error correcting mechanism beyond the DNA sequence level.

To summarize, known cellular repair mechanisms seem to function according to the fol-

lowing principles:

⋆ The mechanisms are very simple from a coding theoretic perspective (repetition

codes, very small codes).

⋆ Not the overall number of errors but rather some resulting distortion is minimized.

Classical coding theory is therefore probably not sufficient for an analysis of ge-

nomic codes. Such an analysis, however, is difficult since the underlying distortion

measures are often impossible to model or quantify.

⋆ Cellular systems often have multiple objectives. As an example, the genetic code

jointly provides robustness against substitution errors and frameshifts [BVK07], and

allows for inclusion of additional secondary information [IA07].

⋆ Error correction happens at different levels of information processing (sequence level,

network level, etc.). Mechanisms are probably linked across the different layers.
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Coming back to our original question, one may conclude that it might therefore seem

too naive to look for a classical error correcting mechanism on the DNA sequence level.

On the other hand, there are observations of sequence error correction that still cannot

be explained with known mechanisms: how does the mismatch repair system, facing

two mispaired nucleotides, know on which strand the error occurred in the first place

(cf. Chapter 3, Section 3.2.2)? How can the non-mendelian inheritance of sequence

information in Arabidopsis be explained [LVYP05]? How is the surprising robustness of

gene networks achieved?

6.1.2 Theoretical and experimental evidence

Recently, Gérard Battail published a series of papers that consider the problem of con-

serving genomic information from an information theoretic perspective [Bat08, Bat06].

Battail postulates that

“Any genome belongs to an efficient error-correcting code [...]. Its necessity

stems from the need of a faithful conservation of the genetic information.”

He then mathematically shows that, under certain assumptions, genome conservation can

only be explained by the presence of such codes in the genome. He further discusses

biological consequences that his hypothesis would imply and compares them to the situ-

ation observed in reality. He finally concludes that a genomic error correcting code must

exist [Bat08].

Battail regards DNA as a memory in a noisy environment. He assumes that the infor-

mation contained within this memory is to be preserved ultimatively. Information theory

enables measuring the ability of a channel or memory element to convey information via

the channel capacity (cf. Chapter 2, Section 2.2.2). Battail calculates the capacity of a

DNA strand assuming the following model:

Consider a symbol from the alphabet A = {A,C,G, T} and assume that this symbol

incurs a substitution during the infinitesimal time interval dt with probability αdt, with

constant α. Battail finds that the probability of substitution psu(t) can be expressed as

psu(t) = 3/4(1 − e−3/4αt). (6.1)

Note that this is equivalent to the Jukes-Cantor (JC) substitution process model intro-

duced in Chapter 4, Section 4.1.2. In Section 2.4.4, the substitution probability expressed

in Eq. (6.1) was derived for the JC model. We also know from Chapter 4 that the JC

model is equivalent to the quarternary symmetric channel (QSC) as defined in Chap-

ter 2, Section 2.2.2. The capacity of the QSC channel was derived in Example 2.2.2, and

substituting Eq. (6.1) we find that

CDNA(t) = 2 − [(1 − psu(t)) log2(1/(1 − psu(t))) + psu(t) log2(1/(3psu(t)))] . (6.2)

The capacity depends on evolutionary time through the product αt. We show a plot of

the capacity over αt in Figure 6.1. For t = 0, the DNA reveals 2 bit of information as
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Figure 6.1: Time-variant capacity of a single stranded DNA under Battail’s model.

expected. For t > 0, however, the capacity decreases exponentially fast and approaches

0 for t → ∞. Battail also extends these calculations to the case of double stranded DNA

and erasure errors and shows that the capacity also vanishes exponentially in these cases.

Battail concludes that, under any reasonable assumptions about mutation rates, DNA is

an ephemeral memory, hence unable to conserve hereditary information during geological

timescales. He argues that an intrinsic error-correcting code must frequently act upon

the genome to efficiently regenerate the genome before its capacity has decreased beyond

a level that precludes regeneration.

Recently, Battail’s hypothesis was strengthened by experimental results from plant biol-

ogy: Lolle et. al. experimentally introduced a substitution in a single position of a gene

from Arabidopsis thaliana [LVYP05]. According to the mendelian rules, the offspring of

these modified plants must inherit the same mutation from their parents. Surprisingly, a

non-negligible (10%) fraction of plants was observed that inherited sequence information

that was not present in the chromosomal genome of their parents but had been present

in previous generations. The authors conjectured that an ancestral RNA sequence cache

is inherited, that can serve as a template to restore the original sequence information;

yet there is no experimental evidence for this hypothesis, and the exact error correcting

mechanism is still not understood.

6.1.3 Limitations of Battail’s model

From a purely information theoretic point of view, there is no other explanation for

genome conservation than the existence of a genomic error correcting code under Battail’s

model. However, the model is based on certain assumptions that do not conform with

reality: Battail assumes that the primary goal in nature is genome conservation. However,

evolution is a constant process of competition for resources and adaptation to a changing

environment. A certain amount of mutations must be possible in order to allow species

to develop new traits and adapt to the environment. For example, a main reason of
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why finding a cure to HIV is so difficult is the high mutation rate of the virus; it allows

HIV to adapt quickly to new treatments, developing new resistances. Even the human

genome is quite different from individual to individual. Single nucleotide polymorphisms

(SNPs) denote nucleotide positions in the genome that vary in at least 1% of a given

population. SNPs occur every 100 to 300 bases along the human genome. Recently, a

comparative study of 270 individuals from four different populations revealed that more

than 1140 regions in the genome differ in the number of copies in which they occur in

a given genome (copy number variation). These regions cover no less than 12% of the

genome [RIF+06].

Still, it can be argued that there are parts in (at least) eukaryotic genomes that are so

fundamental to the organism that they must be conserved. Comparative genomic studies

support this assumption: it was found that there are many (ultra-)conserved elements

located in, for example, the human coding and non-coding regions. Some of those are

several hundreds of basepairs in length and 100% conserved among human, rat, and

mouse. Applying Battail’s model to these sequences, such high degree of conservation is

only explicable by error correcting codes. However, this is only true when death as an error

correcting mechanism is excluded from the model as done in Battail’s considerations. A

more realistic model would account for the fact that a genome is sometimes not passed on

to the next generation at all, i.e., would account for natural selection. We saw in Chapter 3

that death is in fact an important concept in cell development: a cell has the ability to

monitor its DNA for errors and can trigger programmed cell death (apoptosis) when the

DNA is damaged beyond an acceptable level. This mechanism is crucial: mutations in

cells that damage the pathway of apoptosis are known to be related to certain types

of cancers [Kni06]. Furthermore, in Battail’s model a genome is replicated once per

generation which is actually not the case since higher organisms produce a whole set of

germ cells that (simplified spoken) already compete for passing on their genome.

A more realistic model of DNA evolution must consider these factors. This is, however,

admittedly very difficult.

6.1.4 Previous work

Several researchers have conjectured that there might exist a channel coding scheme also

in DNA, protecting genetic information from mutations: in 1981, Forsdyke proposed a

model of introns serving as in-series error detecting sequences [For81]. A protein coding

gene is not a continuous coding sequence but is subdivided into exons (actually coding

for the amino acids following the genetic code) and introns, spliced out before translation.

At that time, the function of introns was not well understood yet it was known that they

differ in sequence from the exons, not showing any similarity nor following the genetic

code. Forsdyke therefore proposed a parity check code where parities are stored in the

introns and information symbols in the exons (coding part of a gene). Such a parity model

accounts for the unsimilarity between exons and their corresponding introns as well as

for their difference in length. Access to DNA sequence data was difficult in 1981, and

Forsdyke did not test his hypothesis on biological data. Also, Forsdyke’s contribution was

not constructive in the sense that it provided algorithms how to detect such a code.
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Liebovitch et. al. [LTTL96], in 1996, were the first to propose a simple method how to

find a linear parity-check block code in the DNA base sequence. They presented two

approaches based on brute force search and on Gaussian elimination of variables, respec-

tively. It was not considered that sequences could be distorted by noise. The method was

applied to two genes and compared to results obtained from random sequences. How-

ever, the authors could not find evidence for the existence of a linear block code in the

considered genes.

In 2003, Mac Dónaill presented a parity-check nucleotide model, showing that, under some

assumptions, the nucleotides A,C,G,T exhibit optimal error correcting properties [Dón03].

The author then suggested how a parity code structure in the alphabet could offer a

replication fidelity advantage. His conclusion suggests that A,C,G,T/U were not selected

by accident as nature’s alphabet but because of their optimal parity check properties.

The remainder of this chapter is a first attempt to systematically approach the problem

of identifying a code in a DNA sequence. We first concentrate on the formal code reverse

engineering problem. Since most of the previous work in DNA code identification con-

sidered block codes without finding indication for such a code in DNA, we shall focus on

convolutional codes.

6.2 The code reverse engineering problem

We address a problem strongly related to cryptanalysis and data security: in a reverse

engineering context, an observer wants to extract the transmitted information from a

received data stream without knowing all the parameters of the transmission. It is further

assumed that the observed signal was corrupted by noise during transmission. Even

without employing advanced cryptologic protocols, modern communication systems are

hard to decipher if the parameters of the different elements of the transmission chain

are not, or only partially, known. Reverse engineering of channel codes (cf. Figure 6.2)

was considered for communication systems [Clu06,Fil97,Ric95,Val01] and also for DNA

sequences [LTTL96,For81], looking for possible error correcting codes in the genetic code.

Most of these works concentrate on linear block codes and algebraic approaches.

Source
Channel encoderu

Channel
c

Source Channel encoder
u

Channel
c y

?

Figure 6.2: Code reverse engineering problem. A source emits a data stream u. An observer

has only access to the noise corrupted version of the channel encoded stream y and wants to

estimate the channel coding scheme.

In the following, we derive a new probabilistic algorithm for the estimation of encoder

parameters of a convolutional code from a noisy data stream. Reverse engineering of

convolutional encoders was considered in an algebraic framework by Rice [Ric95] and
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later by Filiol [Fil97, Fil00]: parameters are recovered from a subsequence of bits that

is unaffected by noise and then tested for significance on the whole observed sequence.

However, if no noise-free subsequence exists for which the parameters can be algebraically

recovered, the method will fail.

Here, we introduce iterative, probabilistic approaches based on the Expectation Max-

imization (EM) algorithm and stochastic global optimization. The EM algorithm, as

presented in Chapter 2, Section 2.6, is a standard statistical method for local likelihood

maximization, applied in many communications and signal processing problems today,

such as blind channel estimation [KV94] and system identification [Moo96]. These prob-

lems are closely related to the one considered here. In fact the problem is essentially

the same as fitting a hidden Markov model, typically done with the Baum-Welch algo-

rithm, a variant of the EM [EM02]. Unlike in these cases, we investigate systems where

computations are carried out in a finite field, and methods developed for traditional blind

estimation scenarios do not apply. This implies that an approach has to combine concepts

from both, coding theory and blind signal processing.

Moon [Moo02] applied the EM algorithm to the synthesis of linear feedback shift-registers

in a similar framework. However, here we show how to transform the problem into the

log likelihood ratio domain (LLR) and use LLR algebra [HOP96] to greatly simplify the

derivation of our algorithm. We find that local optimization can only recover systematic

encoders, and we show how global optimization techniques can be used to overcome this

limitation. Furthermore, we extend the methods to sequences defined over arbitrary

alphabets, and show simulation results for the binary and quarternary (DNA) case. The

next sections introduce the problem more formally and describe our methods.

6.2.1 Problem statement

We assume that an information stream u = [u0, u1, . . . , ut, . . .], ut ∈ {+1,−1} passes

through a convolutional encoder with memory M as introduced in Chapter 2, Section 2.3.2.

We shall first consider codes defined over the binary field F2 with elements {+1,−1}, where

+1 represents the zero element under the ⊕ addition. Our approach is presented for codes

of rate 1
N

, i.e., the encoder has a single input and N outputs. We exclude encoders with

feedback from our considerations. The algorithm is easily generalized to any rate K
N

.

In Figure 6.3, the situation for the nth output of such a convolutional encoder is shown:

the encoder taps g(n) = [g
(n)
0 , . . . , g

(n)
M ] determine how the information symbol ut and the

content of the memory elements, i.e., [ut−1, . . . , ut−M ], at time t, are mapped to the nth

coded output symbol c
(n)
t . We assume that the received symbol y

(n)
t is observed through

a binary symmetric channel (BSC) modeled by a r. v. ε with P (ε = −1) = pε, i.e.,

y
(n)
t = c

(n)
t ⊕ ε. (6.3)

We define the encoder state st as the concatenation of the current input symbol with the

content of the memory elements, i.e.,

st = [st0 , . . . , stM ] = [ut, ut−1, . . . , ut−M ], (6.4)
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Figure 6.3: Convolutional encoder with memory M and encoder parameters {g
(n)
m }. Mapping

of ut to the nth output c
(n)
t is shown. Additive, memoryless noise leads to observation y

(n)
t .

and we can therefore write

y
(n)
t =

M∑

m=0

⊕stkg
(n)
m ⊕ ε, (6.5)

where multiplication and addition are in F2. Note that the nth output only depends on

the nth parameter subset g(n), and that the N outputs are not independent since each

output yt = [y
(1)
t , . . . , y

(N)
t ] depends on the same encoder state st.

An encoder is fully specified by the vector

g = [g(1), . . . , g(n)] ∈ {+1,−1}N(M+1), (6.6)

which are the parameters that we are about to estimate given the observation

y = [y(1), . . . ,y(N)], where y(n) = [y
(n)
1 , . . . , y

(n)
T ]. (6.7)

The length of y is NT .

In the next section we show how to obtain the maximum likelihood estimate on g in an

iterative manner, using the expectation maximization algorithm.

6.2.2 EM encoder tap estimation

The Expectation Maximization (EM) Algorithm iteratively approaches the maximum like-

lihood solution in what are called incomplete-data problems [Moo96]. The EM algorithm

was derived earlier in Chapter 2, Section 2.6. In brief: let y be the observed data and

x the unobservable data, that depend on a deterministic parameter θ that we want to

estimate. With a fixed current estimate on the parameter, say θ[k], the expected value of

log (p(x,y; θ)) (so-called Q-function Q(θ,θ[k])) is evaluated with respect to x and condi-

tional on y in the E-Step. In the M-step of the algorithm, Q(θ,θ[k]) is maximized with

respect to θ to yield a new estimate θ[k+1] in iteration k + 1:

Q(θ,θ[k]) =
∑

x

p(x|y; θ[k]) log (p(x,y; θ)) (E-Step), (6.8a)

θ[k+1] = arg max
θ

{Q(θ,θ[k])} (M-Step). (6.8b)
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The EM algorithm is guaranteed (cf. Theorem 11) to converge to a stationary point which

is a global maximum, yielding the unique ML estimate of θ.

In our setting, we identify y as the observed and s as the missing data. The unobserved

state at time t, st, is mapped to the observation yt = [y
(1)
t , . . . , y

(N)
t ], and the joint distri-

bution of (s,y) depends on the parameter g of the convolutional encoder (cf. Chapter2,

Section 2.4.5 and [EM02,Moo02]):

p(s,y; g) = p(s1)
T∏

t=1

p(st+1|st)p(yt|st; g). (6.9)

Applying Eq. (6.8a) yields the Q-function

Q(g; g[k]) =
∑

s

p(s|y; g[k])

(

log(p(s1)) +
T∑

t=1

(log(p(st+1|st)) + log(p(yt|st; g))

)

(6.10a)

=
∑

s1

p(s1|y; g[k]) log(p(s1))

︸ ︷︷ ︸

independent of g

+
T∑

t=1

∑

st+1,st

p(st+1, st|y; g[k]) log(p(st+1|st))

︸ ︷︷ ︸

independent of g

+
T∑

t=1

∑

st

p(st|y; g[k]) log(p(yt|st; g)) (6.10b)

which, according to (6.8b), has to be maximized with respect to g. The state transition

probabilities do not depend on g, nor does the initial state distribution p(s1). Applied to

our problem, the maximization in (6.8b) can therefore be written as

g[k+1] = arg max
g

{
T∑

t=1

∑

st

p(st|y; g[k]) log(p(yt|st; g))

}

(6.11a)

= arg max
g

{
T∑

t=1

∑

st

p(st|y; g[k])
N∑

n=1

log(p(y
(n)
t |st; g

(n)))

}

. (6.11b)

Note that, given the state st, the N outputs y
(n)
t at time t are independent of each other

and depend only on the subset of parameters g(n), therefore:

log (p(yt|st; g)) =
N∑

n=1

log(p(y
(n)
t |st; g

(n))). (6.12)

So far, we regarded g as an element from a discrete parameter space. However, the

EM based approach requires the parameter space to be continuous. We achieve this by

transforming the parameters into the log-likelihood ratio (LLR) space, which shall allow

us to apply the concept of LLR algebra [HOP96]. The next sections describe this approach

and derive the computations necessary to perform an EM iteration in the LLR domain.
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6.2.3 Transformation into the log-likelihood domain

Instead of regarding the encoder parameters as discrete values, we shall work with prob-

abilities. In iterative decoding, calculations are carried out using log-likelihood ratios

and log-likelihood ratio (LLR) algebra is applied [HOP96]. We shall see that it is also a

natural choice for our problem.

Definition 6.2.1 (LLR and soft bit) A log-likelihood ratio L(x) of the binary random

variable X with pdf pX(x) = [PX(x = +1), PX(x = −1)] is defined as

L(x) = log

(
PX(x = +1)

PX(x = −1)

)

. (6.13)

2

This quantity has the following properties [HOP96]:

PX(x = ±1) =
±eL(x)/2

eL(x)/2 + e−L(x)/2
, (6.14a)

x̄
·
= E{x} = tanh

(
L(x)

2

)

, (6.14b)

L(x1 ⊕ x2)
·
= L(x1) ⊞ L(x2) = 2 tanh−1 (x̄1x̄2) , (6.14c)

sign (L(x)) = sign (x). (6.14d)

The expected value of x, the so-called soft bit, is denoted by x̄. A special operator ⊞, the

boxplus, is introduced to calculate the LLR of a sum of binary variables. The magnitude of

the absolute value of L(x) can be interpreted as the reliability about x, i.e., high positive

values indicate that x = +1, and high negative values indicate x = −1.

We denote the log-likelihood ratio and the soft bit of the encoder parameter g
(n)
m as

L(n)
m = log

(

P (g
(n)
m = +1)

P (g
(n)
m = −1)

)

and ḡ(n)
m = E{g(n)

m } = tanh

(

L
(n)
m

2

)

. (6.15)

Furthermore, we denote

L = [L(1), ..,L(N)] = [L
(1)
0 , L

(1)
1 , .., L

(N)
M−1, L

(N)
M ] (6.16)

as our parameter vector.

For the EM approach we now consider Q(L,L[k]), and the objective function in (6.11a)

transforms into
T∑

t=1

∑

st

p(st|y; L[k]) log(p(yt|st; L)), (6.17)

now maximized with respect to L ∈ RN(M+1), i.e., in a continuous parameter space. In

order to find an analytical solution, we relax the strict maximization of (6.17) and require

only Q(L[k+1],L[k]) > Q(L[k],L[k]), which, according to Theorem 11, suffices to increase

the likelihood in iteration step k + 1. This approach is commonly referred to as the
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generalized EM algorithm [EM02]. An increase of Q(·, ·) is achieved by a steepest ascent

approach, i.e., the maximization is replaced by

L(n),[k+1]
m = L(n),[k]

m + µstep
∂Q(L,L[k])

∂L
(n)
m

, (6.18)

where µstep is a suitable chosen step size. The gradient is evaluated at L
(n),[k]
m .

As mentioned earlier, most of the terms in Q(L,L[k]) do not depend on L and only

equation (6.17) has to be considered for the derivative of the Q-function. We observe that

in (6.17) only the logarithmal factor depends on the variable and that the other factor is

evaluated at a fixed L[k]. With the independence property from (6.12), this yields

∂Q(L,L[k])

∂L
(n)
m

=
∑

t, st

p(st|y; L[k])
∂

∂L
(n)
m

log
(

p(y
(n)
t |st; L

(n))
)

. (6.19)

We identify p(st|y; L[k]) as the a posteriori probability distribution for the state of the

encoder at time t, given all observations and the current guess of the LLRs. It was shown

in Chapter 2, Section 2.4.5 how to efficiently compute this quantity. A number of com-

putationally efficient and numerically stable forward-backward recursions were developed

to calculate this distribution since it is of great interest in coding and signal processing

(cf. [EM02] for an overview).

For the evaluation of (6.19), we need an analytical expression for the derivative of the

conditional log-likelihood of y
(n)
t . At this point, the choice of log-likelihood ratios for the

parameters turns out to be an elegant solution: remember that, assuming a BSC channel

model, y
(n)
t is a modulo 2 sum (Eq. (6.5)):

y
(n)
t =

M∑

m=0

⊕stmg(n)
m + ε. (6.20)

Using the boxplus notation, the LLR of y
(n)
t is given as

L(y
(n)
t |st) =

M∑

m=0
stm=−1

⊞ L(n)
m ⊞ L(ε) = 2 tanh−1






M∏

m=0
stm=−1

tanh(
L

(n)
m

2
) tanh(

L(ε)

2
)




 .

Note that L(y
(n)
t |st) inherently depends on the parameter L(n) which shall not explic-

itly appear in the notation for the sake of simplicity. For the BSC channel model with

transition probability pε we set

L(ε) = log

(
1 − pε

pε

)

. (6.22)

Introducing LLRs allows for a convenient way to process soft channel values, and different

expressions of L(y
(n)
t |st) for the Gaussian or the multiplicative fading channel can be

derived [HOP96]. This is an obvious advantage of our probabilistic approach compared

to the algebraic solution presented in [Fil97] and is expected to lead to better results alike

decoding methods that process soft-values outperform their algebraic counterparts. In

the following, we concentrate on the BSC channel model.
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6.2.4 Derivation of the gradient

In order to yield an analytical solution for (6.19), we have to evaluate an expression of

the form
∂

∂θm

log (p(y; θ)) , (6.23)

i.e., the derivative of a log-likelihood depending on a parameter vector θ with respect to

a single parameter θm.

Substituting

p(y = ±1; θ) =
e±L(y;θ)/2

eL(y;θ)/2 + e−L(y;θ)/2
(6.24)

in (6.23) and carrying out some simple calculations, we find that

∂ log (p(y = ±1; θ))

∂θm

= ±p(y = ∓1; θ)
∂

∂θm

L(y; θ). (6.25)

In the log-domain, Eq. (6.23) now reads as

∂

∂θm

log (p(y = ±1; θ)) =
±e∓L(y;θ)/2

eL(y;θ)/2 + e−L(y;θ)/2

∂L(y; θ)

∂θm

. (6.26)

It remains to find the derivative of L(y; θ) which we identify as L(y
(n)
t |st). As shown in

Eq. (6.21), the LLR of the encoder output is a boxplus-sum:

∂L(y
(n)
t |st)

∂L
(n)
m

=
∂

∂L
(n)
m

∑

j,stj =−1

⊞ L
(n)
j ⊞ L(ε) (6.27a)

=

∏

j:(j 6=m∧stj =−1)

tanh
(

L
(n)
j /2

)

tanh

(
L(ε)

2

)

1 −




∏

j:(stj =−1)

tanh

(

L
(n)
j

2

)

tanh

(
L(ε)

2

)




2



1 − tanh

(

L
(n)
m

2

)2




(6.27b)

=
ε̄

ḡ
(n)
m

E{(g(n)
m − ḡ

(n)
m )2}

1 − (ε̄
∏

j:(stj =−1)

ḡ
(n)
j )2

∏

j:(stj =−1)

ḡ
(n)
j . (6.27c)

The gradient is zero if stm = +1 as (6.21) does not depend on L
(n)
m in this case. Equa-

tion (6.27c) depends only on soft bits and the variance of g
(n)
m , where we used the relation

E{(g(n)
m − ḡ(n)

m )2} = 1 − (ḡ(n)
m )2 = 2

∂ḡ
(n)
m

∂L
(n)
m

. (6.28)

Our algorithm starts with an initialization of L[0]. Setting the LLRs of the parame-

ters close to zero indicates maximum uncertainty. One EM iteration is performed by
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multiplying the terms obtained from Eqs. (6.26) and (6.27c) with the state probabili-

ties p(st|y; L), summing up over all possible states and timesteps. The gradient of the

Q-function (Eq. (6.19)) is then used to update the parameter estimates according to

Eq. (6.18), where a suitable step size µstep has to be chosen. Iterations are performed

until a certain stop condition is met such as the exceeding of a maximum number of iter-

ations or undershooting of minimum increase in likelihood. The procedure is summarized

in Algorithm 6.1.

Algorithm 6.1: EM algorithm for estimating convolutional encoder parameters

Require: Observation y, rate 1
N

, memory M convolutional code, noise distribution pε.

1: Set k = 0

2: Choose µstep

3: Initialize L[0]

4: while stopcondition = false do

5: L[k+1] = L[k]

6: for all t and st do

7: β
[k]
st = p(st|y; L[k]) (forward-backward)

8: for all n = 1, . . . , N and m = 0, . . . ,M do

9: γ
(n)
t,m = ∂

∂L
(n)
m

log
(

p(y
(n)
t |st; L

(n),[k])
)

with (6.26), (6.27c)

10: L
(n),[k+1]
m ← L

(n),[k+1]
m + µstep β

[k]
st γ

(n)
t,m

11: end for

12: end for

13: k ← k + 1

14: end while

15: return ĝ = sign (L[k−1])

6.2.5 Simulation results

Information bits were encoded using a rate 1
4

non-systematic encoder with M = 4

([53, 51, 63, 73] in octal form) and sent over a BSC with transition probability pε = 0.1.

For each output, 1000 noisy bits were observed, i.e., we expect 100 wrong bits per out-

put. A brute force approach would evaluate and compare 220 likelihood values. In Fig-

ure 6.4(a) and 6.4(b) we show the progression of the LLRs of the parameters g(1) and

g(4) over 20 EM iterations. On the y-axis, the LLRs are multiplied with the true values,

i.e., L̃
(n)
m = L

(n)
m g

(n)
m , for visualization purposes. As a result, positive values indicate the

correct estimation of a parameter after hard decision, whereas negative values indicate

a false estimate. Upon initialization, several parameters start to move in the wrong di-

rection, reaching even high reliability. After a certain number of iterations, however, the

algorithm is able to correct those values, and at iteration 19 the LLRs predict the correct

encoder. Once all LLRs are correct, their absolute values are highly increased towards

the correct direction. Since absolute values of the LLRs reflect the reliability about an

estimate, we stop iterating when no unreliable values are left in L[k]. Figure 6.4(c) shows

the corresponding log-likelihood log
(
p(y; L[k+1])

)
. A constant increase is observed and a
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steep increase for the last iterations where the algorithm found the correct configuration.

In Figure 6.5, we show the results for the same simulation parameters for the case that

the algorithm converges to a false solution. The L̃
(n)
m are shown for outputs n = 2 and

n = 4. At iteration 20, some of the LLRs L̃
(n)
m still show negative values indicating

an incorrect estimate after hard decision. The corresponding log-likelihood does not

significantly increase, and it can be assumed that the algorithm got stuck in a local

minimum. Nevertheless, the small absolute values of the LLRs indicate that the estimate

is not reliable. Observing an unreliable convergence, the algorithm could be restarted from

a new random initial point until a sufficient level of certainty is reached. Consequently,

by monitoring the reliability of convergence, it is possible to keep the rate of false positive

estimates very low.
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Figure 6.4: Sample of a successful estimation after 20 iterations of a rate 1
4 , M = 4, non-

systematic encoder from 4000 observed coded bits and ε = 0.1.
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Figure 6.5: Non-successful estimation after 20 iterations of a rate 1
4 , M = 4, non-systematic

encoder from 4000 observed bits and noise level ε = 0.1.

Figure 6.6(a) shows the rate of correct convergence for different numbers of observed

coded bits and varying noise levels in case of systematic convolutional encoding. Infor-

mation streams were encoded with a rate 1
4
, memory M = 4, optimal distance profile

code with generator polynomial [g(2), . . . , g(4)] = [56, 62, 72] (the first output being sys-

tematic) [JZ99]. Correct convergence refers to L indicating high reliability (here defined

as |L(n)
m | ≥ 2 ∀m,n) and correct estimate of g after hard decision. Figure 6.6(b) shows

the corresponding mean number of iterations required until reliability is achieved. An

error was declared when convergence in the defined sense was not achieved within 50
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Figure 6.6: Percentage of correct convergence and mean number of required iterations for dif-

ferent numbers of observed coded bits and varying noise level in case of systematic convolutional

encoding.

iterations. We observe high rates of convergence even at high noise levels for a relatively

small number of observed coded bits. For example with 400 coded bits at a noise level

pε ≤ 0.05 we are always able to recover the correct encoder.

Considering non-systematic encoders, we observed poor convergence rates using the EM

based approach. The success seems to heavily depend on the starting value, and the

gradient ascent often causes the algorithm to get stuck in a local maximum immediately.

We show how to use global optimization techniques to overcome this problem in the next

section.

6.2.6 Inference via global optimization

In this Section, we use the global optimization approach based on stochastic differential

equations presented by Schäffler [Sch97] to reconstruct encoder taps. The method has been

previously applied to error correcting codes by Schäffler and Hagenauer in the framework

of maximum likelihood decoding of BCH and Turbo codes [SH97].

Briefly, the global approach works as follows: define ly(L)
·
= − log(p(y; L)) as the likeli-

hood function depending on the tap LLRs, and denote

L∗ : ly(L∗) ≤ ly(L), ∀L (6.29)

the global minimizer of this function. We consider a random variable L whose density is

given by

pL(L) =
exp(−2 ly (L)−ly (L∗)

ǫ2
)

∫

RN(M+1) exp(−2 ly (L)−ly (L∗)

ǫ2
)dL

. (6.30)

This density has the interesting property that it has its global maximum where ly(L)

has its global minimum. If we were able to draw samples from L having this density, we

could expect that a non-negligible fraction of samples will be in proximity of the global
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minimizer of ly(L). Consider the following stochastic differential equation:

Lǫ(t) = Lǫ
0 −

∫ t

0

∂

∂L
ly(Lǫ(τ))dτ + ǫB(t), (6.31)

where Lǫ
0 is an arbitrary starting point and B(t) denotes the N(M + 1) dimensional

Brownian motion. The integral can be interpreted as the deterministic part that moves

the solution in the direction of the gradient. The stochastic part introduces random-

ness (noise) in order to avoid the method getting stuck in local minima. Unlike for

local minimization, successive decrease of the function is not desired. The key to global

optimization is that the solution to integral Equation (6.31) can be shown to have the

following properties [Sch97]:

1. The density of the random variable Lǫ(t) converges for t → ∞ to the density given

in Eq. (6.30) (Note that the density is independent of the starting value Lǫ
0).

2. For any γ > 0: P (inf{t : ||Lǫ(t) − L∗|| < γ} < ∞) = 1, i.e., any function Lǫ(t)

approaches the global minimum arbitrarily close within finite time, independent of

Lǫ
0.

Based on these properties, it is sufficient to numerically find a solution to Eq. (6.31)

for any starting value Lǫ
0. Here, we used the semi-implicit Euler method as described

in [Sch97].

In order to apply this method in our framework, we must be able to calculate the likelihood

function lL(y) and its derivative. Straightforward calculation of p(y; L) is numerically

unstable for long sequences y. However, stable and efficient recursions for calculating

p(y; L) were presented in [CBM98]. These involve calculation of the likelihood p(yt|st)

and its derivatives. These quantities are easily calculated using log-likelihood algebra as

presented previously in Section 6.2.4.

Algorithm 6.2 summarizes how the procedure is applied to the data stream. We start

with a randomly sampled initial parameter vector. After each iteration of the numerical

integration, the current likelihood is compared with the initial one. If the likelihood has

increased beyond a certain threshold, it is tested whether the corresponding hard decision

of the current estimate is consistent with the observed data. If this is not the case, the

algorithm is restarted from a new random initialization.

6.2.7 Extension to quarternary alphabet

In order to apply the methods described above to symbolic datastreams, such as DNA

sequences, we have to extend the log-likelihood formalism to the non-binary case. In

general, the nth output of the encoder is a symbolic sequence y(n) of length T , where

y
(n)
t are elements from a finite set Z of cardinality |Z| = q. In the considered framework,

addition and multiplication (+, ·) for the elements in Z must be defined and Z must be

closed under these operations. We assume that there is a 0 element for which a · 0 =

0 ∀a ∈ Z. We denote the elements of Z as {α0, α1, .., αq−1}, where α0 denotes the 0

element.
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Algorithm 6.2: Encoder estimation using global optimization

Require: Noisy coded bits y and known noise distribution pε.

1: while 1 do

2: sample a random starting point Lǫ
0

3: S = ∅, t0 = 0, k = 0

4: Choose kstop

5: while k < kstop do

6: sample from Lǫ(t) using the Euler-integration method described in [Sch97] and

add samples to S

S ← S ∪ Lǫ(tk)

7: tk ← tk + △tk
8: k ← k + 1

9: end while

10: find current maximum likelihood and corresponding estimate

lmax = max
L∈S

{ly(L)}, Lmax = arg max
L∈S

{ly(L)}

11: if hard decision of Lmax consistent with y then

12: return Lmax

13: end if

14: end while

As we move to the non-binary case, log-likelihood ratios (LLR) are extended to qary log-

likelihood ratio vectors. In [WSM04,Ber01], these vectors are defined by normalizing the

probabilities to the probability of the 0 element (any other element could be used):

Definition 6.2.2 (LLR vector) For a random variable X with realizations x ∈ Z, the

LLR vector L(x) ∈ Rq−1 is defined as

L(x) =

[

log

(
P (x = α1)

P (x = α0)

)

, ..., log

(
P (x = αq−1)

P (x = α0)

)]

, (6.32)

where the following notation applies:

L(αi) = L(x = αi) = log

(
P (x = αi)

P (x = α0)

)

, i = 1, .., q − 1 (6.33a)

L(α0) = L(x = α0) = 0 (6.33b)

2

It is easily verified that the probabilities can be recovered from

P (x = αi) =
eL(x=αi)

∑q−1
k=0 eL(x=αk)

. (6.34)

The generalized non-binary boxplus and its derivative are derived in Appendix E. In the

convolutional encoder, each tap is now modeled as a (q − 1)ary LLR vector

L(n)
m =

[

log

(

P (g
(n)
m = α1)

P (g
(n)
m = α0)

)

, ..., log

(

P (g
(n)
m = αq−1)

P (g
(n)
m = α0)

)]

. (6.35)
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The conditional state probability for the nth output of the encoder at time t is given by

p(y
(n)
t = αj|st) = p(

M∑

m=0

stmg(n)
m = αj), (6.36)

with the corresponding LLR vector as derived in Eq. (E.3c). Finally, the derivative of the

log-likelihood with respect to L(xm = αj) is calculated as

∂ p(y
(n)
t = αj|st)

∂L
(n)
m (αi)

=
eL(y

(n)
t =αj)

(
∑

k eL(y
(n)
t =αk))2

(

∂L(y
(n)
t = αj)

∂L
(n)
m (αi)

∑

k

eL(y
(n)
t =αk)

−
∑

k

eL(y
(n)
t =αk)∂L(y

(n)
t = αk)

∂L
(n)
m (αi)

)

. (6.37)

Algorithm 6.2 is then easily extended to symbolic sequences over Z.

6.2.8 Simulation results

Figure 6.7 shows simulation results for the binary and quarternary (q = 4) case for non-

systematic encoders with N = 3 and varying memory M . Optimum distance profile

encoders, taken from [JZ99, Chapter 8], were used in the binary case. Quarternary en-

coders were randomly selected. The global optimization procedure described above was

applied to the observed data streams. By tuning the stopping criteria, it is possible to

achieve a very low false positive rate. In fact, we never obtained a wrong encoder estimate

using the procedure outlined in Algorithm 6.2.

The Figure shows the mean number of iterations required until a consistent solution was

found, over the number of observed coded symbols. Each point in the Figure represents

the average of 1000 simulated data streams. A common characteristic observed is that

the number of iterations first rapidly decreases with increasing number of symbols. After

that, the curves show a saturation effect.

The noise levels in all simulations was pε = 0.01. For comparison we also show one

example with a highly increased noise level (pε = 0.1 for the quarternary case, M = 1).

The comparison shows that reconstruction is also possible in the high noise regime, and

that more iterations or longer streams are required in this case.

6.3 Application to DNA sequence data

The previous sections introduced likelihood based methods for reconstructing convolu-

tional encoders from observed noisy codesymbols. Various other methods focusing on lin-

ear block- and convolutional codes were proposed previously [Clu06,LTTL96,Val01,Fil97].

However, we are facing the following difficult issues when applying these methods to DNA

sequence data in order to find error correcting codes in the genome:
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Figure 6.7: Simulation results of encoder reconstruction based on global optimization. For the

quarternary case, computations were carried out in the Galois field F4.

1. Where to apply?

The length of the human genome is 3 × 109 bases. Assuming that only parts of

the genome are encoded by a channel coding scheme, one has to identify candidate

sequences to apply reverse engineering methods to. Previous approaches concen-

trated on coding regions in genes [LTTL96,Ros06] without giving any justification

why they chose a particular region or gene.

2. What is the algebra of DNA?

DNA is a sequence of symbols from a quarternary alphabet. There is, however,

no indication that these four symbols form an algebraic structure that allows to

carry out mathematical operations such as addition and multiplication within this

alphabet. In other words, what is the result of A + C or G× T? Which nucleotide is

the zero element among A, C, G, T? It is also not clear how to interprete operations

like addition or multiplications biochemically.

3. What are the parameters of the code?

Most approaches to the code reverse engineering problem assume that at least a

few of the parameters, such as rate, block length etc., are known. This is of course

not the case for DNA sequences. In particular for convolutional codes, the memory

and rate of the encoder, and the synchronization of the code bits in the data stream

have to be determined.

We believe that we can provide a reasonable answer at least to the first question: recently

identified ultraconserved [BPM+04] regions were found to be 100% identical over geolog-

ical timescales, i.e., among the human, rat, and mouse genome. It seems that sequence
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conservation in these regions is of primary interest to the cell. If Battail’s hypothesis is

true, an error correcting code should be present in these regions.

Sequence data was obtained from a recently developed database (UCbase) of ultracon-

served regions [TFV+08]. We analyzed the longest of those ultraconserved DNA region

(No. 462 in UCbase, located on human X chromosome), 779 nucleotides in length, using

our reconstruction algorithm. DNA symbols A, C, G, T were assumed to be elements from

the finite field F4. Algorithm 6.2 was applied to the ultraconserved sequence and a ran-

dom sequence, derived from the ultraconserved one by random shuffling. The algorithm

was applied to all possible mappings of the finite field elements to A, C, G, T (24 possible

combinations), memory M = 1, 2, number of encoder outputs N = 2..4, and possible num-

ber of frameshifts NS = 0..N −1 yielding an overall number of (24×2× (2+3+4) = 432)

parameter combinations. Since the sequence is conserved in human, rat, and mouse, it

can be assumed that the noise level is very close to zero. For each possible finite field map-

ping, and each possible combination of parameters (M,N,NS), 500 samples were taken

using the implicit Euler integration method and kstop = 15. The maximum likelihood

observed was stored for both, the ultraconserved and the randomly shuffled sequence.

Figure 6.8 shows the log-likelihood ratios1 over all possible parameter configurations. If
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Figure 6.8: Log ratios of the observed maximum likelihood obtained after 500 samples for an

ultraconserved and a random sequence. Within the considered ranges of parameters, one ratio

is shown for each possible combination of encoder parameters.

a convolutional code was present in the ultraconserved sequence, its likelihood should

be much higher than that of the random sequence, resulting in a very high peak. The

Figure, however, does not indicate evidence for the ultraconserved element belonging to

1We refer to the ratios of likelihood for the observed sequences. This is not to be confused with the

LLRs of encoder taps considered previously in this chapter.
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a convolutional code having the considered parameters (assuming DNA uses finite field

F4 computations).

Here, we only analyzed a single candidate sequence, assuming a particular coding scheme

(convolutional codes). A complete approach needs to consider many conserved regions,

and has to apply additional methods [Clu06,LTTL96,Val01] to detect all kinds of codes.

More coding scheme parameters have to be considered and mathematical structures of

the A, C, G, T alphabet tested. This seems to be, however, not very practical. A more

promising approach must take biochemical considerations into account. One should first

ask: what kind of computations can be realized with the nucleotides A, C, G, T on the

biochemical level? What kind of code constructions are possible using such computations?

These investigations may lead to interesting new results for both, coding theory and

molecular biology.

6.4 Summary

We considered the problem of estimating the parameters of a convolutional encoder given

only the noisy coded symbols. We were motivated by the question whether there is an

error correcting code in the DNA base sequence. Most of the previous work on error

correcting codes in DNA rely on theoretical considerations and models. Few constructive

results how to detect such codes were presented, all of those concentrating on linear block

codes. In an attempt to approach the DNA error code hypothesis more systematically,

we considered the formal code reverse engineering problem in which an observer wants

to detect the coding scheme from intercepted noisy codewords. We thereby focused on a

particular class of error correcting codes, convolutional codes. Algebraic methods for the

reverse engineering problem in this framework were considered before [Ric95,Fil97]. Here,

we presented an iterative, probabilistic approach based on the EM algorithm, combining

soft-taps, modeled as log-likelihood ratios (LLRs), and LLR algebra with blind signal

processing techniques.

Simulation results on distorted data streams suggest that high rates of correct reconstruc-

tion can be achieved even at high noise levels in case of systematic encoder structures.

The algorithm, however, was found to exhibit poor convergence rates for non-systematic

encoders, presumably caused by local maxima of the likelihood function. We therefore

presented an extended approach based on stochastic global optimization to overcome this

limitation. Furthermore, we provided the generalization to the non-binary case, where

symbols from a q-ary alphabet are encoded. Simulation results suggest that reverse en-

gineering encoder structures is possible within few iterations (compared to brute force

maximum likelihood), at a very low false positive rate, for both, the binary and quar-

ternary case.

We believe that our method has several advantages compared to the algebraic approach:

1) Our method is applicable at high noise levels. 2) The LLR based approach is easily

extended to AWGN or fading channels and thus able to process soft values. 3) A priori

information about parameters is easily incorporated by adapting initial LLRs. In this way,
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knowledge on the design rules of convolutional encoders can help to choose good starting

values. In a similar fashion, constraints on the state sequence imposed by tail-biting

codes could be incorporated in our algorithm. 4) Opposed to the algebraic method, our

probabilistic approach allows for the co-estimation of the noise level pε by simply treating

it as an additional parameter.

An outline of previous work addressing the genomic code hypothesis was given. In partic-

ular, the hypothesis of Battail and experimental evidence for a previously unknown error

correcting mechanism in Arabidopsis were discussed. Known DNA repair mechanisms

were analyzed from a coding theoretic perspective. Finally, we presented an applica-

tion of our method to DNA sequence data. An ultraconserved region, 100% identical in

the human, rat, and mouse genome was chosen as a test candidate. Our algorithm was

applied using a variety of different parameters, and the maximum likelihood of the ultra-

conserved sequence was compared to the maximum likelihood obtained with a random

sequence. Our results showed that, under the chosen parameters and assumptions, there

is no evidence that the ultraconserved region belongs to an error correcting code. We also

discussed the difficulties of applying such reverse engineering methods to DNA sequences.

6.5 Future research

The question whether an error correcting code in the genome exists remains unresolved.

Many known error correcting mechanisms exist across different layers of molecular in-

teractions that are clearly linked to enable a concerted DNA-damage response. The

information theoretic modeling and analysis of cellular DNA-damage repair mechanisms

represents a great challenge. A first step in this direction could extend Battail’s model of

evolution to a more realistic one taking into account cell death and natural selection. An-

other approach could try to synthetically (in silico) create a model which is then further

refined to conform to biological reality.

While algorithms for a broad class of codes exist, reverse engineering of such codes on

the DNA sequence level remains difficult because of the reasons discussed in Section 6.3.

In our oppinion, these issues need to be addressed before going further in this direction.

A reasonable starting point may be to ask “what is the algebra of DNA - and what kind

of codes can be built using the pertinent possible computations?”. Such an approach

requires a deep understanding of the biochemical properties of DNA and, certainly, proper

experimental validation.

There is also room for extensions as far as the technical reverse engineering problem is

concerned. Here, we modeled noise as an additive discrete random variable. However, the

probabilistic nature of our approach allows for a much broader class of channel models

to be considered, such as additive Gaussian or fading models. We throughout assumed

that key parameters of the encoding scheme such as memory and rate were known at the

receiver and application to biological data was done using a brute force approach. A priori

or joint estimation of these parameters could help to significantly reduce the running time

of the reverse engineering algorithms.
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7
List-decoding methods for
algebraic gene network models

Gene regulatory networks1 (GRNs), and in particular, transcriptional networks, are a

topic of outstanding importance in the field of systems biology [de 02]. This interest

mainly comes from the fact that complex interaction patterns of transcription factors

that regulate the expressions of genes (cf. Chapter 3, Section 3.4) provide important cues

for understanding disease development and progression on the level of a single cell.

In this chapter we present a coding theoretic approach to the reverse engineering of the

dynamics of gene networks, cast within a recently proposed algebraic modeling frame-

work [JLSS07]. We show how list-decoding can be applied to expression data in order to

account for stochasticity of networks and noise. We present application to both, simulated

networks and the global E. coli network based on available expression data.

Sections 7.1 and 7.2 give a short introduction to the problem, provide the used notation

and necessary definitions and present common modeling frameworks. In Section 7.2.6, the

algebraic model considered in the remainder of this chapter is introduced. Section 7.3 for-

mulates the reverse engineering problem and presents the algorithm developed in [JLSS07]

based on tools from computational algebra. In 7.4 we establish the connection to coding

theory and show how decoding algorithms, especially list-decoding, can be applied to fit

expression data in a stochastic framework. Section 7.6 then describes our algorithm in

detail and provides theoretical and simulation analysis. Application to biological data is

presented in Section 7.7, where we test our method on an E. coli sub-network as well as

on the whole transcription factor network of E. coli. Section 7.8 discusses the obtained

results and gives directions for possible extensions.

1In this chapter, we focus on transcriptional control networks, simply referred to as gene regulatory

networks.
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7.1 Background

Genes interact through their corresponding RNA and protein products, involved in so-

phisticated promoting, enhancing, and suppression processes. The bio-chemical processes

supporting the expression of a gene occur with different rates and at different times and

are inherently random. As a consequence, gene expressions and interaction profiles can

be inferred only when averaged over large number of cells and over sufficiently long time

intervals.

Modeling the averaged dynamics of GRNs is largely facilitated by high-throughput data

obtained from DNA microarrays (cf. Section 7.6.1). Microarrays are biological sensors

capable of identifying cDNA (complementary DNA) targets, corresponding to RNA tran-

scripts of genes, through a process known as selective hybridization. Hybridization repre-

sents stacked bonding between Watson-Crick complementary bases on two DNA strands

that leads to stable DNA duplexes.

The current costs of DNA microarray measurements are too large to allow for collecting

a sufficiently large number of sample points needed for accurate time-series analysis of

gene expressions. Consequently, one is facing the very difficult task of reverse engineering

networks based on small sample sets that may contain a fairly large amount of noise.

The coupled dynamics of gene expression patterns are most accurately modeled via sys-

tems of coupled differential equations, derived by analyzing involved biochemical reactions

of the cell cycle [de 02]. Besides their accuracy, these modeling approaches also have the

advantage that they lend themselves to stochastic extensions that capture uncertainties

in biological systems [Wil06]. However, systems of differential equations have very high

parametric complexity and can often only be built bottom-up, i.e., by looking at a de-

tailed list of reactions involved in gene transcription and by determining parameters of

the model through extensive experimental studies.

An alternative approach to modeling gene networks relies on very coarse approximations

of the system’s dynamics; this coarse approximation allows only for capturing qualita-

tive features of gene networks, rather than their exact dynamics. This approach was

pioneered by Kauffman, who proposed using Boolean networks (BN) as models of gene

regulatory networks (GRN) [Kau69]. Probabilistic Boolean networks (PBN) represent

stochastic extensions of Boolean models [SDKZ02]. In a PBN, a list of Boolean func-

tions is associated with each node in the network, and each time the state of a gene is

updated, only one of these functions is randomly chosen to compute the new state of

the gene [SDKZ02]. Many generalizations of these models exist, including hybrid sys-

tems [TT98], finite state linear models [BS03], and deterministic and probabilistic finite

dynamical systems [AGM04,JLSS07].

Significant research effort has been devoted to fitting discrete models of GRNs to high

throughput measurements in a manner that allows for good predictive descriptions of

experimental data. Such a reverse engineering approach is fundamentally different from

the bottom-up methods as it tries to select a model based purely on the observed data,

without making use of detailed biochemical information. Early approaches to reverse
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engineering of GRNs under both, Boolean and PBN models have assumed that time

series data from a network can be perfectly observed [AMK00, LFS98]. More recent

methods account for uncertainty in the data by invoking information theoretic tech-

niques. In [DTA08] it was shown that using the minimum description length principle

allows for developing reverse engineering methods that outperform purely deterministic

approaches. In addition, algebraic analytical frameworks allow for fitting a finite dynam-

ical system model to time course microarray expressions, assuming purely deterministic

observations [LS04, DJLS07]. However, noise in the expression measurements and the

inherently stochastic nature of biological processes make reverse engineering within any

of the above described deterministic frameworks only of limited practical value.

In this chapter, we present a new approach for reverse engineering gene expression dynam-

ics that is casted within the algebraic framework developed in [LS04]. First, we develop

a theoretical framework for the study of the reverse engineering problem and show that

it is closely related to problems arising in coding theory. We then focus on the statistical

predictive inference problem of network dynamics given the topology of the network. We

address randomness, measurement errors, and small sample size issues jointly by applying

powerful list-decoding algorithms that can be shown to optimally deal with missing ob-

servations and noise from a coding theoretic perspective [PW04]. This method overcomes

the drawbacks of models that assume noiseless observations and that rely on large sample

set sizes.

Our method is first validated and compared to existing methods using synthetic simula-

tions. It is subsequently applied to E. coli DNA microarray data, and successfully used

for decoding the responses of genes in the SOS repair network. We further introduce a

framework for performance evaluation based on the notion of the influence of a gene, and

show how the inferred network dynamics can be used to compute this variable. Our anal-

ysis of the complete transcription factor network of E. coli, available from the database

RegulonDB [GCJJPG+08], reveals that the predictions made by the list-decoding algo-

rithm can significantly improve the discrimination of basic features of network dynamics

when compared to standard algebraic methods. To the best of our knowledge, this is the

first analysis performed on real expression data and networks under the discrete algebraic

model.

7.2 System and methods

This section introduces a formal description of gene networks and different models for

their dynamic behavior. The choice of a model class involves a classical tradeoff: quan-

titative models are fine scale approaches that capture detailed low-level phenomena and

consider factors associated with regulation of gene expression at various levels such as

transcriptional regulation, protein concentrations, and reaction kinetics. Ordinary dif-

ferential equation models are probably most widely used within this framework [dG05].

Reverse engineering quantitative models will therefore require large amounts of highly

accurate data in order to avoid overfitting.
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In contrast, qualitative models define gene networks on a higher level of abstraction than

quantitative models. For example, Boolean networks are a very coarse-scale approxima-

tion, allowing genes to be either “ON” or “OFF”. Qualitative models with lower complex-

ity emphasize generic principles rather than quantitative biochemical details. In general,

quantitative models can be applied to relatively small and isolated genetic subsystems,

whereas qualitative models are more suited to analyze global measurements (such as those

produced by microarrays). Stochastic extensions, available for both classes, account for

the fact that chemical reactions are basically stochastic processes, and that randomness is

therefore inherent in biological systems. Many approaches for modeling gene regulatory

networks exist, and we can only give a brief summary of the most important models here.

For a more thorough overview on the subject, the reader is referred to [de 02,SB07,DLS00]

and references therein.

7.2.1 Basic definitions

Virtually all models start by defining a gene network as a graph. Here, we shall model

GRNs as a directed graph as follows:

Definition 7.2.1 (Gene regulatory network (GRN)) A GRN is a directed graph

G = {V,E} with vertices V = {v1, ..., vNG
} representing genes and edges E ⊆ {1, .., NG}×

{1, .., NG} describing relationships among the genes. An edge (j, i) is drawn from gene vj

to gene vi if gene vj regulates the expression of gene vi. In this case, we say that vj is a

regulator of vi, and that vi is a regulatee of vj. 2

Note that this very general definition allows for cycles as well as self-loops in the graph

which are in fact prominent features of biological networks. Let v̆i denote the vector of

regulators of gene vi, i.e.,

v̆i
·
= (vi1 , .., vim(i)

), ∀ik : (ik, i) ∈ E. (7.1)

We refer to the number of regulators m(i) of a gene as its in-degree. The term dynamics of

the network refers to the trajectories of the gene expression levels over time. We introduce

a temporal dimension t and let vi(t) denote the expression of gene vi at time t. The state

of a network is the collection of current gene expression values and represented by the

vector

v(t)
·
= [v1(t), .., vNG

(t)]. (7.2)

For continuous models, the expression at time t + h, t, h ∈ R+, is a function of the

expression values of its regulators at time t

fi : Rm(i)
+ → R+, vi(t + h) = fi(v̆i(t), h). (7.3)

The term steady state refers to the long-run behaviour of the network state vector v(t).

In this work, we focus on discrete time models and can therefore assume, without loss

of generality, that t ∈ N0. Dynamics refer to the progression of network states at times
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t = 0, 1, 2, 3, .... The expression at time t + 1 is a function of the expression values of its

regulators at time t

vi(t + 1) = fi(v̆i(t)). (7.4)

Different models of GRNs differ in the choice of the type of functions fi, and expression

time and amplitude quantization schemes. The following sections introduce some of these

models.

7.2.2 Ordinary differential equations:

Ordinary differential equation (ODE) models represent GRNs by continuous time systems

of rate equations describing the dynamics of gene expression according to

dvi(t)

dt
= fi(v̆1(t), ..., v̆m(i)(t)), (7.5)

where fi : Rm(i)
+ → R+ is some non-linear function that depends on several parameters.

A commonly used model obtains fi by distinguishing between activating and inhibiting

genes and multiplying together their sigmoidal contributions:

dvi(t)

dt
= fi(v̆i(t)) − bivi(t), (7.6a)

fi = Vi

∏

j∈Ji

(

1 +
v

hij

j

v
hij

j + α
hij

ij

)

×
∏

k∈Ki

(

vhik
k

vhik
k + βhik

ik

)

, (7.6b)

where Ji (Ki) represents the indices associated with the activators (inhibitors) of gene vi.

The model expressed by Eq. (7.6b) depends on many parameters (described in Table 7.1).

Such a model can be quantitatively very accurate since it is based on detailed modeling

of biochemical reactions involved. It is, however, apparent that a reverse engineering

approach would require a lot of data, and that such models need to be built bottom-up.

Parameter Description

Vi Basal rate of expression

hij Hill coefficient

αj Activator half-saturation constant

βi Inhibitor half-saturation constant

bi Degradation rate

Table 7.1: Parameters of the ODE model expressed in Eq. (7.6b).

Identification of nonlinear behavior is difficult, and a simpler approach considers only

small perturbations of the network from the steady state, for which the gene expression
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behaviors can be approximated by a system of linear equations of the form

dvi(t)

dt
=

m(i)
∑

j=1

cjiv̆j(t). (7.7)

Connectivity factors cji ∈ R model the influence of gene j on gene i.

A further simplification of the ODE model leads to a setting in which one can simply

assume that the expression level of gene vi is a linear combination of the expressions of

its regulators:

vi(t) =

m(i)
∑

j=1

cjiv̆j(t). (7.8)

Neural network models [TB03] introduce an additional feature into the linear model by

applying a nonlinear transform g : R → R+ to the linear combination of (7.8), i.e.,

vi(t) = g





m(i)
∑

j=1

ajiv̆j(t)



 , (7.9)

where g is usually chosen to be the sigmoidal squashing function

g(x) =
1

1 + e−x
. (7.10)

The function g can be seen as capturing the expression saturation effects that arise for

highly expressed genes. Recently, this model was shown to achieve high predictive power

for a particular bacterial gene regulatory system under a sparseness constraint for the net-

work topology [BRS+06]. Clearly, steady state models can only be used to infer topology

but not dynamics of a gene network.

7.2.3 Stochastic master equations

Recognizing that biochemical reactions are stochastic processes, stochastic master equa-

tions (SME) provide extensions of deterministic ODE models. In contrast to the determin-

istic case, SMEs model the temporal evolution of probability distributions of the number

of molecules of the different molecular species involved in the biochemical reactions under

consideration. Discrete amounts of molecules are taken as state variables, and the joint

pdf p(v, t) expresses the probability that at time t the cell contains v1 ∈ N0 products of

gene 1, v2 ∈ N0 products of gene 2 and so on. The evolution of the system’s state pdf can

now be specified as follows [de Jong, 2000; Cai et al., 2007]:

p(v, t + ∆t) = p(v, t)

(

1 −
R∑

r=1

αr∆t

)

+
R∑

r=1

βr∆t, (7.11)

where parameters are described in Table 7.2, and the stochastic master equation is ob-

tained by taking the limit ∆t → 0:

∂

∂t
p(v, t) =

R∑

r=1

(βr − αrp(v, t)). (7.12)
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Parameter Description

p(v, t) Joint pdf of number of molecules at time t

R Number of reactions that can occur in the system

αr∆t Probability that reaction r occurs in [t, t + ∆t]

given system state v

βr∆t Probability that reaction r will bring system into

state v

Table 7.2: Description of parameters in the stochastic model (Eq. (7.11)).

Behavior of small metabolic systems can be very accurately predicted using models of this

kind. However, the master equation is difficult to solve analytically, and also numerical

simulations are complicated [de 02]. Simulation approaches are often used to approximate

molecular reality of gene regulation [CW07]. However, even the simulation of such models

becomes intractable for large, genome-wide systems.

The models presented above assume a continuous time scale and (quasi)-continuous ex-

pression values. The complexity of arbitrary non-linear models is usually to high to be of

practical value, while linear models are too simple to capture the most important features

of GRNs. Discrete models, which rely on quantizing both, time and expression values,

represent an alternative to continuous schemes. Discrete models are capable of reducing

the complexity of continuous models while at the same time incorporating non-linear fea-

tures into the GRN structure. In what follows, we henceforth focus on probabilistic and

deterministic discrete models of gene interaction.

7.2.4 Boolean network models

Boolean network (BN) models [Kau69] are discrete deterministic models which allow genes

to be only in two different states - “ON” or “OFF”. In other words, expression levels can

be seen as elements from a finite field with two elements, denoted by F2. A BN model is

defined via a map of the binary state vector from time t to t + 1, i.e.,

F : FNG
2 → FNG

2 , v(t) 7→ F(v(t)), (7.13)

that can be decomposed into NG Boolean functions

fi : Fm(i)
2 → F2, i = 1, .., NG, (7.14)

each associated with one gene vi in the network. The binary expression of gene vi at time

t + 1 is a Boolean rule on the state of the regulators at time t

vi(t + 1) = fi(v̆i(t)). (7.15)

To construct a BN, continuous expression values vi(t) ∈ R+, t ∈ R+ are first quantized

at discrete time steps,

vi(t) ∈ F2, t ∈ N0. (7.16)
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The dynamics of the network are simulated by starting from an initial state vector v(0),

and by iteratively and synchronously updating the Boolean functions fi. This gives rise

to a sequence of states:

F F F
v(0) → v(1) → v(2) → ...

(7.17)

It is clear that the dynamics of the network are completely deterministic. From the char-

acterization of the dynamical behavior of the state sequence such as analyzing attractor

states and cycles, biological conclusions can be drawn [SD05,Sch06].

Probabilistic Boolean networks (PBN) are stochastic extensions of Boolean networks. In

a PBN, a whole list of functions

Li = {f (1)
i , f

(2)
i , ..., f

(|Li|)
i } (7.18)

is assigned to each gene vi. At a given instant of time, a function is randomly selected

from Li to predict the output vi(t + 1). The map F is now a random variable, and a

realization of the PBN at a given time is determined by the vector function

F : FNG
2 → FNG

2 , v̆i(t) 7→ f
(k)
i (v̆(t)), i = 1, ..., NG, (7.19)

where k is randomly chosen from 1, ..., |Li| according to some pdf.

When defined as above, a PBN forms a finite-state Markov chain (cf. Chapter 2 Sec-

tion 2.4), and it was shown in [SDKZ02] how to derive explicit formulas for the state

transition probabilities, depending on the gene functions f
(k)
i . Several extensions were

presented, accounting for memory in the function selection process and noise caused by

external factors [SD05]. The reverse engineering of PBNs from a single time course expres-

sion data sequence was discussed in [MXD07]. In [SDZ02], a strategy was presented how

to control the behavior of such networks by carefully applied perturbations. PBNs are

closely related to probabilistic graphical models, that are also widely used for modeling

GRNs, which we shall describe next.

7.2.5 Probabilistic models

The inherent stochastic nature of biological processes makes deterministic models only

of limited practical interest. Friedman et al. were among the first to apply Bayesian

networks, well studied probabilistic graphical models, to the analysis of gene expression

data [FLNP00]. In this framework, genes are assigned a finite number of states vi ∈ S =

{1, 2, ..., q}, where S denotes the sample space of a random variable Vi with appropriate

distribution function. Each node in the network is represented by a conditional probability

distribution p
V|V̆(vi|v̆i), and the factorization of the joint probability distribution pV(v)

is inferred from the expression data, usually by Monte-Carlo type approaches. A severe

drawback of Bayesian networks is the fact that only undirected acyclic graphs can be

learned. This is clearly not the case observed in reality, since cycles are an important

feature of GRNs [SPB07,Alo07].
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Factor graphs [KFL01] are generalizations of Bayesian networks and Markov random

fields. The main difference between factor graphs and Bayesian networks is that factor

graphs are not required to be acyclic. Milenkovic et.al. [MV04] proposed a factor graph

(FG) model for GRNs that allows for accommodating cycles in biological networks. In

Figure 7.1, a gene network and its corresponding FG model are shown. As described
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Figure 7.1: Gene network and corresponding factor graph model.

above, gene expressions are assumed to be discretized and dependencies among genes

are modeled as conditional probability distributions p
V|V̆(vi|v̆i). The random variables Yi

represent the measured expression levels of the genes, and one can think of pY|V(yi|vi)

as describing the unknown and noisy measurement channel. The joint probability of the

variables (V, Y) factors as

pV,Y ∼

Ng∏

i=1

pY|V(yi|vi)pV|V̆(vi|v̆i).

Recently, Gat-Viks et al. [GVTRS06] applied this model to two yeast networks consisting

of 50 and 140 genes, respectively. Their approach is based on assuming at least partial or

complete knowledge about the topology of the GRN. Loopy belief propagation [KFL01]

is employed to learn the conditional probabilities p
V|V̆(vi|v̆i). Different methods for in-

ference of these distributions and the “channel” pYV(yi|vi) were proposed and analyzed

in [GVTRS06].

We next describe the model considered in this chapter. Wee shall see that it is a gener-

alization of PBNs to multivalued discretization of gene expression, cast in an algebraic

framework.

7.2.6 Polynomial dynamical systems model

The algebraic framework for gene expression profiles considered in the remainder of this

chapter is a generalization of Boolean networks and was first introduced in [LS04]. It

allows for a finer representation of gene expression states while maintaining the analytical

tractability of BN models by imposing a special form on the update functions fi. More

specifically, a gene is assumed to be in a finite number of states q that represent different
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expression levels. The number of states is restricted to be a power of a prime p,

q = ps, s ∈ N, (7.20)

so that the states of the genes correspond to elements of a finite field, denoted by Fq, i.e.,

vi(t) ∈ Fq.

This is not an overly restrictive assumption since many small integers such as 2, 3, 4, 5,

7, 8, 9, 11 can be expressed in the form of Eq. (7.20), and since very fine quantization

schemes are not of practical interest. Analogous to Boolean networks, the dynamics of the

system are specified through the equivalent mapping of the state vector v(t) ∈ Fn
q , t ∈ N0:

Fq : Fn
q → Fn

q , v(t) 7→ v(t + 1) = F(v(t)). (7.21)

A crucial point for the methods used in this paper is the well known fact that any pos-

sible function f : Fm
q → Fq defined over an arbitrary finite field Fq is represented by a

multivariate polynomial, i.e., every function f can be expressed as

f =
∑

i1,...,im

ai1i2...imxi1
1 ...xim

m , ai1i2...im ∈ Fq. (7.22)

We use Fq[x1, x2, ..., xm] to represent the set of all possible multivariate polynomials in m

variables given by Eq. (7.22). Hence, in our model, a function fi associated with a node vi

in the GRN is a multivariate polynomial in the variables v̆i, the regulators of vi. In what

follows, we refer to this model as a polynomial dynamical system (PDS). Note that a PDS

can be generalized to capture probabilistic behavior in the same way as PBNs represent

stochastic extensions of Boolean networks. We call a PDS that describes each gene by a

list of randomly selected polynomials a stochastic polynomial dynamical system (SPDS).

7.3 Reverse engineering frameworks

We are interested in modeling the dynamics of gene expression via an SPDS model.

We consider the following reverse engineering problem: one is given the topology of the

network and a limited set of time course expression points for the genes in the network.

In this setting, a reverse engineering algorithm has to infer an SPDS that explains the

observed time course data.

7.3.1 Deterministic case and the Laubenbacher-Stigler algorithm

Let us first assume that the expression data is error-free and that a PDS model perfectly

characterizes the real dynamics of the GRN. Then, we have to solve the following problem,

which we henceforth refer to as the noiseless reconstruction problem:

Definition 7.3.1 (Noiseless reconstruction problem) Given a time series of T + 1

transitions, i.e., for each gene vi in a network G we observe inputs v̆i(t) and corresponding
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outputs vi(t + 1):

Vi = {(v̆i(0), vi(1)), ..., (v̆i(T ), vi(T + 1))}
·
= {(v̆i(t), vi(t + 1))}T

t=0, i = 1, .., NG,

find the functions fi that reproduce the time series exactly. 2

This is the framework originally considered in [LS04] and follow-up work [DJLS07,AGM04,

Jus06,DE09]. Due to small sample sizes, we are facing an underdetermined system, and

it is clear that model constraints need to be imposed. In [LS04] the selection process in

the noiseless reconstruction problem consists in identifying a minimal solution. Such a

solution is obtained by first interpolating a polynomial fi,(0) through the T + 1 points.

Here, fi,(0) satisfies

fi,(0)(v̆i(t)) = vi(t + 1), ∀t = 0, ..., T. (7.23)

Next, the set

I(Vi) = {gi ∈ Fq[x1, .., xm] : gi(v̆i(t)) = 0, t = 0, ..., T}, (7.24)

of polynomials vanishing on the input points in Vi is constructed. Such a set, called a

vanishing ideal, has the obvious property that any interpolator fi,(0) lies in the set

fi + I(Vi) = {fi + gi : gi ∈ I(Vi)}, (7.25)

where fi denotes an interpolator that cannot be further decomposed, i.e, a reduced inter-

polator. A reduced interpolator is defined by the following property:

∄(f
′

i ∈ Fq[x1, .., xm], g
′

i ∈ I(Vi)) : fi = f
′

i + g
′

i. (7.26)

In other words, gi represents the part of fi,(0) that lies in I(Vi) and fi represents the

reduction of fi,(0) with respect to I(Vi). The reduced solution fi subsequently serves

as an update model for the node vi. It is a well known result from computer algebra

that the ideal of vanishing polynomials I(Vi) has a finite polynomial basis, a so-called

Gröbner basis [CLO92]. This basis can be computed, for example, by the Buchberger-

Möller algorithm, and then be used for identifying minimal solutions [LS04,DJLS07]. In

the following, we shall refer to this procedure as the Laubenbacher-Stigler (LS) algorithm.

The LS algorithm has the following drawback: as noted by the authors in [LS04], the

interpolation method is extremely sensitive to measurement errors and it does not consider

missing expression observations. These problems arise due to the fact that in the first

step of the modeling process, an interpolation polynomial is found that passes through

all data points, which may cause over-fitting in the presence of noise.

An alternative approach to the method above is to use an SPDS model and to approximate

the time series by using lists of update functions, thereby accounting for missing samples

and read-out errors caused by noise. To implement this approach, we describe next

how this reverse engineering problem is connected to coding theory, and introduce a

reconstruction method based on list-decoding. List-decoders can identify the exact update

functions in the presence of both, missing values and noise, provided that the total number

of missing values and errors is properly bounded. Robustness with respect to measurement

errors is achieved by bounding the degree of the update polynomial, thus allowing the

interpolated functions in the list to agree only with a fraction of the observed transitions.
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7.3.2 Accounting for stochasticity and noise

We now turn our attention to a more rigorous formulation of the reverse engineering

problem. In this context, we address two important issues: availability of only a lim-

ited amount of time course data, even for the best studied organisms; and errors in the

measured data. Noise in the data arises both due to measurement errors and the fact

that biological systems are inherently stochastic and influenced by factors that cannot be

measured. In this case, the purely deterministic view within the framework of the noise-

less reconstruction problem represents an inadequate approach. We therefore propose to

recast the reverse engineering problem into a probabilistic framework and consider the

following noisy reconstruction problem:

Definition 7.3.2 (Noisy reconstruction problem) Given a time series of T +1 noisy

transitions for each gene vi, i.e., a sequence of pairs of inputs and corresponding outputs

Vε
i = {(v̆i(t), vi(t + 1))}T

t=0, (7.27)

find a set of functions Li = {f (1)
i , .., f

(L)
i } that jointly provide the best approximation for

the observed time series. 2

Here, an additive noise model is assumed

vi(t + 1) = f
(l)
i (v̆i(t)) + εi(t + 1), (7.28)

where εi(t) ∈ Fq, and P (εi(t) 6= 0) = pε denotes the noise samples. Note that in this

setting, small sample sets and measurement errors are accounted for by forming a list of

possible node update functions, similarly as for the case of probabilistic Boolean network

models [SDKZ02], but with some major differences summarized in the exposition to follow.

Measurement noise affects both the inputs and the outputs of the time series. However, one

can assume that only an output noise component exists, since the effect of input noise can

be transformed into an equivalent output noise component. To clarify this issue, assume

that the noise free input is v̆′
i(t), with corresponding noise free output v′

i(t + 1), and that

a noise sample ε̆′
i(t) is added to the input, and a noise sample ε′i(t + 1) is added to the

output. Let

v̆i(t)
·
= v̆′

i(t) + ε̆′
i(t) (7.29)

and let

εi(t + 1)
·
= fi(v̆i(t)) − v′

i(t + 1) + ε′i(t + 1) (7.30)

denote the transformed noise affecting only the output. Then,

fi(v̆
′
i(t) + ε̆′

i(t)) + ε′i(t + 1) = fi(v̆
′
i(t)) + εi(t + 1) = v′

i(t + 1) + εi(t + 1), (7.31)

as claimed.
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7.4 Tools from coding theory

As shown above, the noiseless and noisy reverse engineering problems are essentially in-

terpolation and approximation problems for polynomials over finite fields. This is a well

studied subject in coding theory, due to its application in various decoding algorithms

for polynomial codes. In this section, we briefly present the concept of codes defined over

polynomials and their decoding; then we establish the connection to the noisy reconstruc-

tion problem.

7.4.1 Polynomial codes

Reed-Solomon (RS) codes are one of the most widely used class of codes today. RS codes

are algebraic codes defined over univariate finite field polynomials of bounded degree.

More precisely, let Fq[x] denote the ring of univariate finite polynomials, a generalized

Reed-Solomon code RSq(n, u) over a finite field Fq is defined as

RSq(n, u) = {(f(α0), ..., f(αn−1)) : f ∈ Fq[x] ∧ deg (f) < u}, (7.32)

where the points (α0, ..., αn−1), αi ∈ Fq are called the evaluation set of the code and deg (f)

denotes the degree of the polynomial. The polynomials f that form the RS code are called

message polynomials. It is clear that the RSq(n, u) code is linear, i.e., c ∈ RSq(n, u) and

c′ ∈ RSq(n, u) implies (c + c′) ∈ RSq(n, u), since the set of polynomials of bounded

degree is closed under addition. By definition, the all zero word (polynomial with all

coefficients zero has degree u = 0) is an element of the code. The code has length n and

rate u/n. Reed-Solomon codes belong to the class of maximum distance separable codes

which says that they meet the largest minimum Hamming distance a linear code can have:

an important result in coding theory, the Singleton bound, states that a linear block code

of length n and rate u/n cannot have larger minimum distance than n − u + 1 [MS77].

It is easy to show that an RS code, in fact, has the highest possible minimum distance:

recall that a message polynomial of degree u − 1 has at most u − 1 zeros. Therefore, the

minimum distance of an RSq(n, u) code is given by

dmin = min
c,c′∈RS

{dH(c, c′)} (7.33a)

= min
c,c′∈RS

{wH(c − c′)} (7.33b)

= min
c′′∈RS

{wH(c′′)} (7.33c)

≥ n − u + 1, (7.33d)

where Eq. (7.33b) and (7.33c) follow from the linearity of the code, and the lower bound

Eq. (7.33d) is due to the fact that a polynomial in the RSq(u, n) has at most u− 1 zeros.

Since the Singleton bound provides an upper bound on the minimum distance, Eq. (7.33d)

holds with equality and

dmin = n − u + 1. (7.34)
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An RSq(n, u) code is therefore a (n, u, n − u + 1) linear block code, and a message

polynomial f can be uniquely recovered via bounded distance decoding from noisy samples

(f(α0) + ε0, .., f(αqm−1) + εqm−1),

as long as the number of errors e (i.e., number of indices i for which εi 6= 0) satisfies (cf.

Chapter 2, Section 2.3)

e ≤ ⌊
dmin − 1

2
⌋. (7.35)

The reverse engineering problem described in this chapter deals with multivariate poly-

nomials in Fq. This can be seen as the problem of decoding q-ary Reed-Muller codes. The

coding-theoretic objects of interest are generalized q-ary Reed-Muller codes, a multivari-

ate generalization of RS codes, defined as follows: let a multivariate polynomial f be of

the form (7.22), then the total degree of f is defined as

totdeg = max{i1 + i2 + ... + im : ai1i2...im 6= 0}. (7.36)

A q-ary Reed-Muller (RM) code RMq(u,m) is the set of all m-variate polynomials f ∈
Fq[x1, .., xm] with totdeg(f) ≤ u, evaluated at the qm distinct elements of the finite field

αj ∈ Fqm , i.e.,

RMq(u,m) = {(f(α0), ..., f(αqm−1)) : f ∈ Fq[x1, .., xm] ∧ totdeg(f) < u}. (7.37)

As already pointed out, in RM codes the encoded messages - codewords - are multivariate

polynomials of bounded degree. Given the noisy sample vector

cε = (f(α0) + ε0, .., f(αqm−1) + εqm−1), (7.38)

an optimal maximum-likelihood RM decoder has to find the polynomial f of bounded

total degree u that most likely led to the observation cε. However, this problem is compu-

tationally intractable for long codeword lengths, and suboptimal decoders must be used

instead.

Recently, a class of algorithms was described in coding literature that can closely approach

the optimal performance with polynomial computational times. Among these decoding

algorithms, list-decoders are of special interest since they can operate in extremely noisy

regimes. From the discussion above, it is apparent that the decoding problem is equivalent

to the noisy reconstruction problem.

7.4.2 List-decoding

List-decoding algorithms can handle very large noise levels and missing sample points

while allowing the decoder to generate a list of possible solutions, rather than a unique

output. Bounded minimum distance (BMD) decoding was discussed in Chapter 2, Sec-

tion 2.3. In contrast to BMD decoding, list-decoding does not stop at the dmin/2 bound
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d/2 d/2

Figure 7.2: List-decoding allows codewords that lie beyond half the minimum Hamming dis-

tance. This can result in non-unique decisions. Black circles mark codewords, crosses mark

elements from FN
2 . Half the minimum distance is represented by d/2. Left: decision regions for

BMD decoding, Right: decision regions for List-decoding.

but also looks for codewords that lie beyond that bound (cf. Figure 7.2). As a conse-

quence, the decoder may find several codewords explaining the observed data instead of

a single one. However, depending on how much the bound is increased, the probability

of such a situation can be extremely small (cf. [McE03, Example 1]). With small sample

sizes encountered in gene network reconstruction problems, one inevitably has to employ

list-decoding and allow for non-unique solutions.

In 1997, Madhu Sudan showed that a polynomial time algorithm exists that is capable

of decoding certain Reed-Solomon codes far beyond the classical dmin/2 bound [Sud97].

In 1999 Guruswami and Sudan significantly improved this result, presenting a method

capable of decoding virtually every RS code beyond the bounded distance decoding

limit [GS99]. More precisely, given an RSq(n, u) code with evaluation set (α0, ..., αn−1),

the Guruswami-Sudan (GS) algorithm takes the noisy sample vector cε and an adjustable

parameter ϑ and produces a list {g1, ..., gL} that contains all polynomials g ∈ Fq[x] of

total degree less or equal u, such that the Hamming distance of g and cε is smaller than

or equal to a predefined constant eϑ, called the decoding radius. Alternatively, the list

includes polynomials g such that

|{j : g(αj) 6= f(αj) + εj}| ≤ eϑ, (7.39)

where eϑ can be close to the bound guaranteed by Shannon. Note that the parameters L

and eϑ are intimately connected to the error rate, and that each list-decoding algorithm

provides different operational regions for these parameters. Detailed overviews of list-

decoding algorithms can be found in [GS99,GR06,GKS07,San07].

For the reverse engineering of SPDS models, we require list-decoding algorithms for Reed-

Muller codes. We focus our attention on a list-decoding method recently described by

Pellikaan and Wu [PW04] that exploits the fact that RMq(u,m) codes defined over Fq

are subfield-subcodes of generalized Reed-Solomon (RS) codes, defined over Fqm . The

Pelilikaan-Wu (PW) algorithm is just one of many possible list-decoders for RM codes:

some recent results that offer excellent performance for small field sizes include [GKZ08].
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7.5 The Pellikaan-Wu list-decoder

We briefly describe the used list-decoder by Pellikaan and Wu lying at the heart of our

gene reverse engineering algorithm [PW04]. A detailed listing of the algorithm is given in

Algorithm 7.1.

For the purpose of RM list-decoding, the field Fqm with primitive element ξ is viewed as

an m-dimensional vector space over Fq, with basis elements {1, ξ, .., ξm−1}, so that

ξj =
m−1∑

i=0

aijξ
i, 0 ≤ j ≤ qm − 2, aij ∈ Fq. (7.40)

The vector space (field Fqm) has n = qm points

α0 = (0, .., 0)

αj = (a0,j−1, .., am−1,j−1), j = 1, .., n − 1, (7.41a)

denoted by α0, α1, .., αn−1. It is well known that

RMq(u
⊥,m), u⊥ = m(q − 1) − u − 1 (7.42)

is the dual code of the RMq(u,m) code. Let σ, ρ be the factor and remainder after

division of u⊥ + 1 by q − 1, i.e.,

u⊥ + 1 = σ(q − 1) + ρ, ρ < q − 1. (7.43)

The minimum distance of the code RMq(u,m), dmin, between any two different code-

words, equals [PW04,KLP68]

dmin = (ρ + 1)qσ. (7.44)

As shown in the previous section, RS codes are specializations of RM codes to the case

of univariate polynomials of bounded degree. Therefore, it can also be shown via enu-

meration of points in (7.41a) that the code RMq(u,m) is a subfield-subcode of the code

RSqm(n, n − dmin + 1) with evaluation set (α0, .., αn) = (0, 1, ξ, ξ2, .., ξqm−2):

RMq(u,m) ⊆ (RSqm(n, n − dmin + 1) ∩ Fn
q ), (7.45)

i.e., a subset of the vectors from RSqm(n, n − dmin + 1) with elements from Fq.

List-decoding of RM codes proceeds in three steps: first, the received word is interpreted

as a noisy version of an RS codeword; second, an RS list-decoder is used to decode the

received word; third, a check is performed to see if the decoded word belongs to an RM

subfield-subcode of the RS code. Algorithm 7.1 summarizes the list-decoding procedure

for RM-codes introduced by Pellikaan and Wu.

Note that the decoding radii of the PW and Guruswami-Sudan-RS decoding algorithms

are the same, and equal to

eϑ = n(1 −
√

((n − dmin)/n)). (7.46)
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The list size of the latter algorithm Lϑ is conservatively bounded from above by [McE03]:

Lϑ ≤ (ϑ + 1/2)

√
n

u − 1
, (7.47)

where ϑ denotes the so-called multiplicity parameter of the GS algorithm. Since RM codes

are subfield subcodes of RS codes, their corresponding Lϑ parameter may be smaller. Note

that the above given decoding radius is only obtained for ϑ → ∞, while in practice we

have to use smaller values of ϑ in order to limit the decoding complexity.

Algorithm 7.1: List-Decoding of RM codes according to the PW algorithm. [PW04]

Require: n = qm, y ∈ Fn
q .

1: Compute the minimum distance dmin of RMq(u,m) and a parameter

E = ⌈n −
√

n(n − dmin) − 1⌉.

2: Construct the extension field Fqm with primitive element ξ.

3: Generate the code RSqm(n, n − dmin + 1) using the evaluation set

(α0, .., αqm−1) = (0, 1, ξ, ξ2, .., ξqm−2).

4: Compute a parity check matrix H over Fq for RMq(u,m).

5: Using the Guruswami-Sudan list-decoding algorithm find the set of codewords C1 of

all codewords c ∈ RSqm(n, n− dmin + 1) that satisfy dH(c,y) ≤ E, where dH denotes

the Hamming distance.

6: Find the set of codewords C2 with elements in Fq

C2 = C1 ∩ Fn
q .

7: Find the codewords in C2 that belong to RMq(u,m) using the parity check matrix

C = {c ∈ C2 : Hc = 0}

8: Output C.

Exactly the same procedure can be applied for reverse engineering SPDS models for

GRNs. In this case, the inputs v̆i(t) of the m(i) regulators are interpreted as points from

the vector field Fm(i)
q corresponding to the evaluation points αi of the Reed-Muller code

with m = m(i) in Eq. (7.37). The node function fi ∈ Fq[x1, ..., xm(i)] corresponds to the

encoded message and the outputs vi(t+1) represent (noisy) codeword symbols of the RM

code. Note that the assumption of bounded degree of RM codewords does not impose a

severe restriction on the biological properties of gene networks, since this parameter can

be freely chosen and fairly large values for the degree bound can be tested in a sequential

manner. A detailed description of our reverse engineering method under the SPDS model

is described in the following.
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7.6 The reverse engineering algorithm

This section presents our algorithm and provides theoretical and simulation analysis. We

shall first briefly discuss microarray technology that is used to generate the data sets

virtually used in all reverse engineering approaches. We describe how we obtained and

preprocessed the data, then we explain our reverse engineering procedure in detail. We

show that coding theoretic results lead to bounds on the required number of data samples,

and we present performance comparisons with the Laubenbacher-Stigler (LS) algorithm

(cf. Section 7.3) under in silico generated expression data.

7.6.1 Microarrays

The DNA microarray chip technology allows for surveying patterns of gene activity by

assaying the expressions of thousands of genes simultaneously in a single experiment. A

microarray chip, typically a glass slide or a quartz wafer, consist of a large number of spots

arranged in a grid, each containing immobilized multiple samples of single stranded DNA

of the gene to be monitored. Recall that a DNA sequence is a strand of nucleotides that can

be viewed as a sequence over the alphabet {A,C,G, T} (cf. Chapter 3). The nucleotides

tend to bind in a complementary fashion, i.e., A always binds to T and C binds to G,

and vice versa. The single stranded DNA sequences spotted on the microarray will bind

- hybridize - to their complementary sequence. When a gene is expressed, it produces

mRNA and as already pointed out, the amount of this mRNA is a direct measure of

activity of a gene. The DNA sequences on the microarray are designed so as to uniquely

bind to the mRNA of the respective gene. In order to measure the expression pattern of a

cell under specific conditions, the mRNA has to be extracted from a cell population. The

purified mRNAs are labeled with a fluorescent dye and flushed over the DNA microarray,

so that they hybridize with their complementary spotted DNA sequences. Laser light is

used after hybridization to scan the chip, producing an image from which an intensity

measurement is derived that should be correlated to the gene expression value in the

sample.

Stochastic variations in the experiment, e.g., differences between array spotting tech-

niques and changing environmental conditions lead to different measurements even for

the same sample. Systematic effects afflict a large number of measurements (for example

the measurements on one array), whereas stochastic effects or noise are random with no

well-understood pattern. In order to draw meaningful conclusions from microarray exper-

iments, the raw data has to be pre-processed to account for these stochastic fluctuations

in the measurement. The processing of the data that makes measurements from different

arrays comparable is known as normalization [Spe03]. There are two classes of microarray

data sets: static and time course data. Static data measures the expression pattern of

a given sample at one particular time, usually after the gene network has arrived into a

steady state. Time-course data is obtained by applying a certain treatment to a sample

and taking snapshots of gene expressions at consecutive time points until a steady state

is reached. It is obvious that for the analysis of dynamic behavior, time course data is

required.
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7.6.2 Microarray data preprocessing

We quantized gene expressions using q levels, in terms of k-means clustering. Quanti-

zation of microarray data is a critical step in the reverse engineering process, and the

influence of quantization on network dynamics inference is still not completely under-

stood. Still, quantization is an integral step of all finite state gene network modeling ap-

proaches [BS03,de 02,SB07] including Bayesian network techniques. Quantization is most

often performed using simple thresholding and clustering techniques or fitting Gaussian

mixture models [BE05,GVTRS06,PREF01, SZ02]. To the best of our knowledge, there

still does not exist a quantization technique that takes into account error models for DNA

microarray measurements [ITSH00]. As a consequence, different quantizers may lead to

quite different outputs of the reverse engineering algorithm. By using a sufficiently large

number of quantization levels, this problem can be avoided to a certain degree, and this

motivates the use of non-binary network dynamics models.

Here, we used microarray data from a recently developed database called M3D and filtered

time course experiments providing at least one transition of the network. The data set

used is further described in Section 7.7.1.

7.6.3 Constructing lists of approximating polynomials

As described in the previous section, we are given a set of noisy transitions for each node

in the network. The first step in the reconstruction algorithm is to reduce the observations

to a set of unique transitions. The observed inputs v̆i(t) in the set Vε
i may not be unique,

i.e., there may exist pairs of indices (t, t′) ∈ {0, .., T}2, t 6= t′, for which v̆i(t) = v̆i(t
′).

Note that due to noise, the existence of such pairs does not imply that the corresponding

outputs vi(t + 1) and vi(t
′ + 1) are equal. Hence, we can encounter multiple transitions

for the same input.

Multiple transitions are coped with according to the procedure described next. First,

the observed set Vε
i is reduced to a set of unique transitions Ui as follows: assume we

observe the same input to gene vi exactly r times, v̆i(t1) = v̆i(t2) =, .., = v̆i(tr), with

corresponding outputs vi(t1 + 1), .., vi(tr + 1). We retain only one transition pair in Ui,

with input v̆i(t1) and corresponding output equal to the majority vote of the observed

outputs. Ties are broken arbitrarily. The inputs in Ui are subsequently regarded as the

sample points of an RM code of unknown dimension, i.e., unknown bounded degree u of

the encoder function fi; then, the corresponding outputs represent noisy sample points of

this polynomial. Upon reduction of the set Vε
i , we have qm −|Ui| missing transitions (due

to small sample sizes) at node vi that we model as erasures during decoding.

List-decoding is used to explore the space of low-degree polynomials that approximate

the above described time series: one starts with the smallest possible degree u = 1, and

then tries to find polynomials that approximate the transitions in Ui. In other words, the

goal is to try to find interpolating functions that can disagree with the pairs in Ui up to

a fraction of points. In the next iteration, we increase u by one and repeat the decoding

process. For each value of u, the list of decoded codewords is stored in C(u)
i . The output
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of the algorithm for node vi is the list Ci =
⋃

u C
(u)
i . Optionally, the solution found by the

Gröbner basis method as described in Section 7.3 can be added to the list as well.

Algorithm 7.2: List-Decoding of node vi in the network

Require: T +1 transitions for node vi: {(v̆i(t), vi(t+1)}T
t=0, v̆i(t) ∈ Fm(i)

q , vi(t+1) ∈ Fq.

1: Reduce the set of transitions to the reduced set Ui and regard

eval(fi) = {v̆i(t)}
T
t=0

as the evaluation points and

cε = {vi(t + 1)}T
t=0

as the corresponding noisy codeword from a Reed Muller code.

2: With primitive element ξ of Fqm :

ξj =
m−1∑

i=0

aijξ
i, 0 ≤ j ≤ qm − 2, aij ∈ Fq, (7.48)

enumerate the points in Fqm :

α0 = (0, .., 0)

αj = (a0,j−1, .., am−1,j−1), j = 1, .., n − 1.

3: Sort eval(fi) and the elements in cε according to the enumeration.

4: Compute the number of missing values (erasures) for node vi:

s = qm(i) − |eval(fi)|.

5: Set u = 1. Choose threshold th(u).

6: while s < th(u) do

7: Try to decode cε using Algorithm 7.1 and store the output in C(u).

8: Increase u

9: Compute the new erasure decoding radius λu.

10: end while

11: Output

Li =
⋃

u=1

C(u).

When the algorithm produces a non-empty list for a given node, its output is replaced

by one of the decoded words and the measurements of its regulatees are updated. In

this way parent nodes can be used to aid the decoding of their children by correcting

their input measurements. Our algorithm accounts for this feature through an iterative

refinement technique that is used until no changes in the regulatee’s lists are observed. The

complexity of the algorithm is determined by the complexity of the list-decoding algorithm

at hand, which for the PW method is roughly O(|Ui|
2ϑ4) operations per gene. Here, ϑ ≥ 1

denotes an adjustable integer parameter that determines the designed decoding radius eϑ

given in Eq. (7.39). As each node in the network is decoded separately, the complexity
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Figure 7.3: Flowchart of our method.

grows approximately linear with the number of nodes in the network (approximately

because of the iterative update scheme). The steps of this algorithm are summarized in

the Listing 7.2. A flowchart of the overall procedure is shown in Figure 7.3.

7.6.4 Reconstruction bounds

Consider the collection of noisy samples in Eq. (7.38). There are two types of errors:

an erasure occurs when a sample is erased from the observations. This is equivalent to

an unobserved transition at a given network node that arises due to small sample set

sizes. An error due to noise occurs at positions j corresponding to εj 6= 0. Note the

important difference between erasures and errors: in the former case, the positions of

inaccurate symbols are known a priori to the algorithm, whereas in the latter case those

positions are unknown. Based on the list-decoding framework, it is possible to describe

exact analytical bounds for the minimum required number of measured transitions for

reconstructing update function lists of a given size. It is easy to show that the polynomial

f can be uniquely recovered from the noisy samples as long as the combined number of

errors e and erasures s satisfies s+2e < dmin, where dmin denotes the minimum Hamming
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distance between any two codewords. Note that this bound applies to both the noiseless

problem (for which pε = 0), as well as the noisy reconstruction problem. It is known that

for an RM code, dmin depends on the total degree of the polynomials, and dmin decreases

when u increases [PW04]. This is a very intuitive result because it basically states that

the more non-linearity is present in our network the more samples must be taken in order

to infer the functions and less noise can be tolerated in this case.

in-degree 2 in-degree 3

u eϑ Lϑ u eϑ Lϑ

1 13 9 1 66 11

2 8 3 2 44 11

3 5 5 3 27 11

4 2 1 4 12 1

5 1 1 5 9 1

Table 7.3: Decoding radius eϑ for different total degrees u and list size upper bound Lϑ.

When list-decoding is employed, the number of errors and erasures that can be accounted

for is significantly larger - linear in the size of the complete dataset. For illustration,

several examples of performance characteristics for list-decoders of RM codes with small

values of q are shown in Table 7.3. These numerical values are based on the bounds

described in the previous section.

7.6.5 Synthetic networks

Performance of our algorithm was tested on random synthetic networks. We simulated

1000 PDS over the alphabet F5, with 20 nodes and random topologies. Nodes had either

in-degree 0 (30%), 2 (50%) or 3 (20%). The degrees of the node update functions were

randomly chosen from {1, 2, 3, 4, 5}. We restricted our attention to small degrees only,

since biological networks have similar properties. The network was initialized with a

random state v(0) ∈ F20
5 , and five transitions of the network were recorded. This was

repeated 50 times, producing a set of 250 synthetic expression samples. Additive white

noise samples were added to these “measurements”. Figure 7.4 shows the fraction of

correctly inferred node functions of our reverse engineering approach for the simulated

network, given different noise levels. For comparison, the performance of the LS method

described in Section 7.3 is shown as well. Our algorithm significantly outperforms the

latter. Even in the noiseless case, we achieve a significantly higher reconstruction rate

and the performance of the Gröbner approach drops quite fast when noise is introduced

to the measurements. The weak performance of the LS algorithm in the noiseless case is

caused by erasures that are independent of measurement noise but arise from the small

sample sizes. Note that for the simulations, noise was also added to the inputs v̆i(t) and

the probability that any symbol in the data was changed is termed “the noise level”.
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Figure 7.4: In silico performance of the proposed algorithm compared to the LS method.

7.7 Application to the E. coli network

In this work, our ultimate goal was to apply our algorithms to real data. As a first step,

we had to identify datasets (i.e., topologies and microarray data), suitable to carry out

meaningful experiments. In this Section, we apply our algorithm to two well studied

networks (described below), using data from a recently developed database [FDFe08] (cf.

Section 7.7.1). In fact, to the best of our knowledge we are the first to present such

an analysis based on biological data under the multi-valued discrete model. In the first

analysis (Section 7.7.2), we show that polynomials inferred with our algorithm are statis-

tically significant, using a bootstrap approach. In the second analysis (Section 7.7.3), we

consider a whole genome network and develop a new, innovative approach for evaluating

our algorithm based on a gene influence measure. We first describe the microarray data

used, followed by detailed description of the experiments performed.

7.7.1 Data

Microarray experiments, especially those generating time course data, are still very ex-

pensive, and often only extremely small datasets are available for a time course analysis

of expression profiles. The number of time points measured in such experiments is typi-

cally in the range of 5− 15. That is why many studies based on time course experiments

concentrate on synthetically generated data.

Yet, the many small microarray datasets generated by different research groups represent

a large resource for network inference. Several online databases provide a central repos-
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itory of expression data. However, as pointed out more thoroughly in [FDFe08], several

problems prevent the efficient exploration or analysis of this data: platform-specific biases

in expression data, lack of uniformity in the format and incompleteness and inconsistency

of metadata describing the details of each experimental condition that make data fusion

very difficult. The data deposited does often not employ a uniform preprocessing ap-

proach, nor is the raw intensity data or all the necessary information for normalization

provided.

In order to facilitate the analysis of expression data compiled from multiple laboratories,

Faith et al. recently developed M3D, a unified microarray database for several microbial

organisms [FDFe08]. M3D contains only single-channel arrays using the same platform,

and the raw expression data is uniformly normalized to enable the analysis across differ-

ent experiments without any additional user-dependent processing. Among the species

investigated in M3D is the bacterium E. coli., which is one of the best studied organisms

today. In fact, the complete topology of the regulatory net of E. coli. is believed to be

known. We used the M3D microarray data for E. coli. and filtered time course experi-

ments providing at least one transition of the network. We found a total of 90 time-points

from 21 different experiments, resulting in a total of 69 transitions.

7.7.2 E. coli SOS response network

We extracted a small sub-network consisting of 9 genes whose topology was inferred

in [GdLC03]. DNA is constantly suffering from environmental stresses. The bacterium

E. coli responds to these attacks by expressing a certain number of genes allowing the

DNA to be repaired or replicated despite damage, or to trigger other mechanisms such as

apoptosis. In E. coli and other bacteria, the regulatory system coordinating this response

is called the SOS regulon [dG05]. The topology of the network is depicted in Figure 7.5.

Our nine gene test network includes the transcription factors lexA and recA, genes that

catalyze DNA strand exchange and renaturation. Both genes are known to interact with

each other and to regulate many genes directly and tens or possibly hundreds indirectly.

LexA is a transcription factor repressing the genes of the SOS regulon during normal

growth. RecA functions as a detector of DNA damage while LexA regulates the response

to this stress. The four genes (ssb, recF, dinI and umuDC ) are regulatory genes involved

in the SOS response system, while the three genes (rpoD, rpoH and rpoS ) code for sigma

factors, important proteins involved in the process of gene transcription.

We applied our algorithm using different numbers of quantization levels q. At quantization

level q = 5 we found statistically significant low-degree approximating polynomials for

three of the nine genes in the network. The inferred input/output responses are shown

in Figure 7.6. Statistical significance was evaluated by randomly choosing nine genes

from the available set of 4292 genes, and by applying the reverse engineering algorithm

assuming the same topology as in Figure 7.5. Functions found in this way are counted as

false positives. This experiment was repeated 1000 times and the number of non-empty

lists was counted. Only in six out of the 1000 iterations, three nodes were simultaneously

inferred in the same network. The overall observed false positive rate per node was

less than 3.8%. The sigma factors rpoS and rpoH exhibit identical responses; both are
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Figure 7.5: Diagram of interactions in the SOS network as described in [GdLC03]. Angled

boxes denote genes, small rounded boxes proteins.

regulated by rpoD and include a self-loop, which may explain this finding. All inferred

polynomials are linear (u = 1), indicating that non-linear functions could not be found

with the provided number of samples and quality of data.

7.7.3 Global E. coli transcription factor network

We also applied our method to the complete transcription factor gene network available

at the RegulonDB database [GCJJPG+08]. RegulonDB provides curated information on

gene organization and regulation in E. coli.. The information includes the transcription

units and the mechanical details of regulation at various levels. Among other information,

the whole transcriptional regulation network is available for download. We removed all

genes from the RegulonDB transcriptional regulation network for which there were no

matching entries in the M3D database, so that the reduced network consisted of 1384 genes.

Our algorithm was applied to all nodes in this network with in-degree 2 or 3 (a total of

526 genes), by setting q = 3 for all nodes. In-degree distribution of the network is shown

in Figure 7.7. Additionally, polynomials inferred by the LS method were added to the

lists. In order to verify that the new constructive approach can improve the prediction of



150 Chapter 7 ¥ List-decoding methods for algebraic gene network models

E
xp

re
ss

io
n 

Le
ve

l

lexA respone

 

 

E
xp

re
ss

io
n 

Le
ve

l

rpoS response

 

 

E
xp

re
ss

io
n 

Le
ve

l

rpoH response

 

 

E
xp

re
ss

io
n 

Le
ve

l

 

 
Input Combinations

1st Regulator

2nd Regulator

0
0

0
0

0
0

0
0

5

5

5

5

10

10

10

10

15

15

15

15

20

20

20

20

25

25

25

25

2

2

2

2

4

4

4

4

Figure 7.6: Inferred responses of the E. coli. genes lexA, rpoS, rpoH. Each of these genes has

2 regulators that can take 5 different values resulting in 52 = 25 possible input combinations

v̆i(t) that are shown in the last row. Rows 1 to 3 show the quinternary response vi(t + 1) of the

genes to the corresponding input at time t depicted in row 4.

0
0 1 2 3 4 5 6 7 8 9 10 11

100

200

300

400

500

600

N
u
m

b
er

of
ge

n
es

In-degree

Figure 7.7: In-degree distribution in the considered RegulonDB gene network.



7.8 Discussion 151

the system dynamics, the following experiment was performed: first, an influence measure

was developed as follows. With the notation x(j,k) = (x1, .., xj = k, .., xm), the influence

of gene vj on vi is defined as

Iji = Ex







1

2

∑

(k,l)
k 6=l

fi(x
(j,k)) − fi(x

(j,l))

k − l







. (7.49)

Equation (7) is a mathematical formalism for measuring the influence of a gene on its

regulatees. For all input combinations, we calculate the change in the output of gene

vi when changing the input of vj from l to k, while fixing all regulators other than vj.

Expression levels are regarded as integers, and the expectation is taken with respect to all

regulators except vj. The resulting variable Iji should have the following properties: the

sign of Iji must give the type of regulation (activating or repressing). The magnitude |Iji|
should correlate with the strength of this interaction. Note that several other influence

measures could be used.

In the second step, the values of Iji were used to indicate an activating influence (Iji > 0)

of gene vj on gene vi, or repressing influence (Iji < 0). The magnitude Iji reflects the

strength of the influence.

We compared our predictions obtained from Eq. (7.49) with the influences of regulators

annotated in RegulonDB. Influences Iji for all edges that connect to a gene with in-degree

2 or 3 (1225 edges) were calculated before and after applying list-decoding. Calculation

of the influence before decoding was based on taking the consensus of a gene’s output for

multiple transitions and simply neglecting unobserved input combinations in Eq. (7.49).

We then ranked interactions according to their influence magnitude |Iji| and compared

the influence predictions based on sign(Iji) to the RegulonDB annotation for different set

sizes of high ranking interactions. Figure 7.8 shows the fraction of the top 600, 500, ..., 200

ranked genes in terms of |Iji| matching the annotation in RegulonDB. While there is no

indication for correlation of matching predictions with high |Iji| before “decoding” we

observe that after “decoding” the predictions were significantly improved up to approx.

70% matching for the 200 highest ranked interactions. The distributions of normalized

influence values for the interactions in the E.coli network before and after decoding are

shown in Figure 7.9. It is observed that the decoding leads to a notable change in the

distributions which improves the predictions of interactions as indicated by the results

shown in Figure 7.8.

7.8 Discussion

The presented approach to the reverse engineering of gene network dynamics builds upon

two important principles: that biological systems are inherently stochastic and that only

small and possibly erroneous data sets are available for analysis. Our approach accounts

for these facts by setting the problem into a probabilistic and noisy framework, and

by allowing for non-unique solutions explaining each node dynamics with a whole list
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of functions. Our algorithm is guaranteed to find all approximating polynomials that

generate time series within a predefined Hamming distance from the measured data, as

long as the combined number of missing values (erasures) and errors does not exceed

the decoding radius of the list-decoder. The search space of all possible polynomials,

however, can still be considerably large. The list-decoding algorithms applied here allow

to find these polynomials with very reasonable complexity. Ideally, we would take the

measurement error quantitatively into account and select solutions that are optimal under

model selection criteria such as the minimum description length principle, the Bayesian

information or Akaike information criterion [Gru04]. However, since the noise cannot be

quantified, we successively raise the degree bound and add all solutions to the list that can

be found via list-decoding for a certain degree restriction (i.e., we add all the polynomials

that lie within the list-decoding radius). The final list then contains a mix of high degree

and low degree polynomials.

The decoding radius of the list-decoder is influenced by an adjustable parameter and can

be increased at the expense of increased reconstruction complexity. In our simulations,

we used the parameter setting that ensures lowest complexity. Thus, the performance

of our algorithm represents a lower bound on the achievable performance. As expected,

our algorithm outperforms the approach presented by LS significantly both in the noisy

and noiseless scenario. We used the LS method as a comparative reference; however, we

would like to point out that this method was originally developed for joint inference of

both, the topology and the dynamics of the network. Many methods concentrating solely

on the inference of the network topology are known [DJLS07], and it may be reasonable

to separate these two problems. While there exist many approaches focussing on the

reverse engineering of network topology, few studies analyze the problem of inferring the

dynamics assuming that information about the network topology is given a priori under

the discrete model. In fact, we are not aware of any prior approach taking into account

multivalued discrete models, noise, and missing data samples jointly. To the best of

our knowledge, this work is the first to establish a connection between the reconstruction

problem and coding theory, allowing for a rigorous theoretical analysis of the problem such

as the derivation of minimal number of timepoints required. We therefore believe that

our analysis can have great impact on both, theory and practice of the reverse engineering

gene regulatory network problem, all within this modeling framework.

The application of our algorithm to time course data from E. coli validates the usefulness

of our approach even with the present small amount of data available. The analysis on

the SOS network suggests that at least some gene functions can be approximated by low

degree polynomials while more data seems to be necessary for robust regression of other

functions. Furthermore, our approach is constructive in the sense that it predicts well

defined functions that specify the response to all possible combinations of inputs, even

those that are not observed in the data. The E.coli SOS subnetwork involves transcription

factors, genes coding for sigma factors, repair genes, and other genes involved in the SOS

response. In its present form it is not possible to model multiple levels of gene expression

in different ways with the algebraic model. However, this applies to discrete gene models

in general. One could argue whether this is a drawback or a feature of these models.

Discrete models define gene networks on a higher level of abstraction than, for example,
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quantitative models based on differential equations.

The results regarding the transcription factor network of E. coli also show that our con-

structive approach can significantly improve the analysis of certain features of system

dynamics, such as gene influence. Furthermore, the presented framework based on influ-

ence measures could serve as an evaluation standard for other methods developed in the

future.

7.9 Summary

In this chapter, we applied list-decoding of Reed-Muller codes to infer polynomials in

algebraic gene network models. Our analysis is cast within a new modeling framework

recently presented by Laubenbacher et al. [JLSS07], where each gene in the network is

described by a multivariate polynomial over a finite field.

Our reverse engineering approach was based on two observations: that gene networks are

inherently stochastic and that expression data obtained from microarray experiments are

noisy. To account for noise, we proposed to search for solutions that approximate time

series of gene expression, similar to a regression analysis. Stochasticity and small sample

sizes were taken into consideration by describing each gene with a whole probabilistic list

of functions, instead of a single deterministic solution. Interpolation and approximation

of polynomials is a well studied problem in coding theory due to its application in the

decoding of certain codes defined over polynomials. Here, we showed that the reverse

engineering problem is connected to the decoding of generalized Reed-Muller codes.

We subsequently presented a list-decoding based algorithm for the construction of lists of

polynomials for each gene from time course expression data. Using simulated networks,

our algorithm was shown to outperform the algorithm presented by Laubenbacher and

Stigler [JLSS07]. Our ultimate goal, however, was to apply our algorithm to biological

expression data. Making use of a recently developed database, we were able to find

polynomials for genes in a sub-network of E. coli, and statistical significance was confirmed

using a bootstrap approach. Applied to the global E. coli transcription factor network,

our decoding algorithm could significantly improve predictions about network features

compared to an ad-hoc application of quantized expression data. Evaluation was based

on a measure of gene influence developed for this purpose. To our knowledge we are the

first to apply the multivalued discrete model to biological expression data - previous work

was purely based on simulations.
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7.10 Future research

A key step in the application of discrete gene network models to expression data is quan-

tization. Although this is a well known fact, the development of quantization schemes

especially designed for expression values has drawn only little attention. It is, in general,

unknown how different reverse engineering methods perform under different quantization

schemes. For example, a rigorous analysis of the influence of the number of quantization

levels on the accuracy of the reconstruction method was beyond the scope of the present

work and could be adressed in future contributions.

Since gene functions are not arbitrary, a major improvement is expected from incorpo-

rating biological prior knowledge into the reverse engineering procedure. In our case,

this amounts to using a subset of codewords of RM codes, rather than the whole code.

Subsets must be chosen based on biological considerations. On the algorithmic side, our

method could be improved using information obtained from multiple state transitions.

Such information is currently neglected but may be used in soft-decision list-decoding al-

gorithms [KV03] that provide more accurate reconstructions than those obtainable from

quantized data.

We used a heuristic approach to fit expression data under the multivalued discrete model

that increased the total degree of polynomials until a stopping condition was reached.

Ideally, we would trade-off goodness of fit versus parametric complexity of the polynomial

class using model selection principles. However, such an approach would require to quan-

tify the noise in expression data which might be difficult. We therefore recommend to

investigate model selection as an extension as soon as measurement noise of microarray

data is better understood.
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8
Conclusion

The results of the Human Genome and the ENCODE project have shown that cellular

information processing, in particular in higher organisms is far more complex than previ-

ously thought [LLB+01,The07,MCA+07,Che07]. Information and communication theory

constitute the frameworks for an analysis and optimization of digital systems. Due to

the digital nature of biological systems on the molecular level, these can be meaningfully

applied in this context as well. Based on the idea that methods used in human-made

systems could prove useful to explain phenomena observed in the cell, communication

engineers recently started to cooperate with biologists [DGH+06, GDHM05, DHHM05,

KH08, Mil06, MV04, AKL+07, DTA08, RGH+07]. This thesis aimed at further fostering

this cooperation and achieving appreciation for this interdisciplinary approach in both

scientific communities. We considered three problems in computational biology that have

analogies to problems considered in communication theory. For each of the three cases,

we developed algorithms based on probabilistic models and evaluated their performance

using simulated data. Then, we applied our algorithms to carefully chosen biological data

sets. This was the ultimate goal of this thesis since we believe that application to biologi-

cal data must be included in any meaningful analysis in computational biology. We shall

briefly summarize this work by pointing out the main achievements:

In Chapter 5, we considered the problem of identifying DNA sequences that are conserved

among multiple species. Such sequences are potential candidates for basic functional units

in the genome. We introduced probabilistic phylogenetic models of evolution from a single

common ancestor DNA sequence to sequences observed in today’s species (single input

multiple output system). We showed how such systems are reconstructed under a con-

tinuous time Markov substitution model using maximum likelihood methods. We then

focused on the detection of conserved sequences that evolve under such a model and pre-

sented current state-of-the-art approaches. We introduced our new method, KuLcons,

based on relative entropy that allows for a fine-scale conservation score without assump-

tions about neutral substitution rates - an important advantage compared to most earlier

approaches. After an analysis of our algorithm, simulations aiming at the comparison

with other state-of-the-art methods were performed. Results based on a very general

simulation model suggest that our approach outperforms other methods. We applied

KuLcons to an ENCODE region and compared our scores qualitatively with those used

by the ENCODE project consortium. It was observed that our scores were in agreement
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with two of the three ENCODE scores. Since our score is independent of neutral substi-

tution rates, our result suggests that the discrepancy between computationally predicted

and experimentally verified functional regions in the ENCODE project is most likely not

a result of biased neutral substitution rate estimates - opposed to the conjecture raised

by several researchers before [MVH+07,MCA+07,Che07,PM07].

In Chapter 6, we presented a first systematic approach to the claim of Battail that highly

conserved regions, such as those detected by KuLcons, could only be explained by a ge-

nomic error correcting code [Bat08]. We discussed Battail’s hypothesis and presented a

coding theoretic view on known cellular error correcting mechanisms. We then focused on

the technical code reverse engineering problem of convolutional codes given an observed

noisy sequence of coded symbols. Our approach was based on maximum likelihood esti-

mation under a log-likelihood ratio encoder tap model. Simulation results on synthetic

data showed that reconstruction of encoders is achieved at very low false positive rates

from a reasonable number of observed symbols for binary and quarternary alphabets. We

applied the algorithm to an ultraconserved DNA region but found no indication for a cod-

ing structure compared to a random sequence. We also discussed difficulties of such an

analysis and listed issues that remain to be resolved before further going in this direction.

A code reverse engineering problem also arises in the analysis of the dynamics of algebraic

gene network models, generalizations of probabilistic Boolean models [SDKZ02, JLSS07,

AGM04, Jus06, DE09]. In Chapter 7, we showed how the reverse engineering problem

of inferring the network dynamics is related to coding theory and in particular the de-

coding of Reed-Muller codes. We then presented an algorithm based on list-decoding to

account for noise and small sample size of expression data, and the inherent stochasticity

of biological networks. We applied our algorithm to biological expression data - to our

knowledge for the first time under the discrete multivalued model - adressing issues such

as reconstruction bounds, data quantization, and multiple transitions. Using a boot-

strap approach we obtained statistically significant results on a small E. coli network.

Predictions of gene influence in the whole genome E. coli gene network were shown to

be significantly improved after processing the data with our decoding algorithm. The

established relation to coding theory is expected to lead to major improvements in the

theoretical analysis of gene networks under the discrete model.

⋆ ⋆ ⋆

Our work showed that important insights to biological problems can be gained approach-

ing them from a communication theoretic perspective. Analytical methods are becoming

increasingly important in molecular biology, and new interdisciplinary sciences such as

systems biology and synthetic biology just started to emerge. We believe that the for-

mal, system-theoretic view provided by communication and information theory can play

a major role in these research areas.
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B
Proofs

B.1 Proof of Theorem 2

Proof Due to the Perron-Frobenius theorem [Mey00, Chapter 8], a stochastic matrix

with strictly positive entries has a simple eigenvalue ω1 = 1, and all other eigenvalues

lie inside the unit disk, i.e., ω1 > |ωi|, ∀i = 2, .., |S|. From Definition 2.4.4 of the

stationary distribution, we see that π is the left eigenvector of P corresponding to ω1 = 1.

Suppose P can be decomposed as P = U−1ΩU , where Ω = diag(ω1, ..., ω|S|) denotes the

diagonal matrix with the eigenvalues in the diagonal and zeros in the off-diagonals, and

U = [πT ,uT
2 ...,uT

S ]T denotes the corresponding left eigenvectors. Define U−1 = V =

[vT
1 ,vT

2 , ..], then for any distribution λ as n goes to infinity:

p∞ = lim
n→∞

λP n = λV lim
n→∞

ΩnU (B.1a)

= λV











1 0 ... 0

0 0 ... 0
...

...

0 ... 0











U = λV











π

0
...

0











= λ(π ⊗ vT
1 ) (B.1b)

= πλvT
1 = πc, (B.1c)

where ⊗ denotes the Kronecker symbol (π ⊗ vT
1 ) = (π1v

T
1 , π2v

T
1 , ..., πSvT

1 ). Since p∞ has

to be a distribution, the constant λvT
1 must be 1 and therefore p∞ = π. ¥

B.2 Proof of Theorem 3

Proof Suppose R can be decomposed into R = UΦU−1,

(i) For any h, t ∈ R+,

P (h + t) = Ue(h+t)ΦU−1 = UehΦetΦU−1 (B.2a)

= UehΦU−1UetΦU−1 = P (h)P (t). (B.2b)
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(ii) For any t ∈ R,

P (t)R = UetΦU−1UΦU−1 = UetΦΦU−1 (B.3a)

= UΦetΦU−1 = UΦU−1UetΦU−1 = RP (t). (B.3b)

(iii) For t ≥ 0,

d

dt
P (t) = U

d

dt
etΦU−1 = UetΦΦU−1 = UetΦU−1UΦU−1 = P (t)R. (B.4)

It remains to show that P (t) = etR is the unique solution: assume that M (t)

satisfies the equation, then

d

dt
(M (t)e−tR) =

d

dt
M (t)e−tR + M (t)

d

dt
e−tR (B.5a)

= M (t)Re−tR + M (t)(−R)e−tR = 0. (B.5b)

Hence M (t)e−tR is constant and M (t) = P (t).

(iv) Follows from (iii) and (ii). ¥

B.3 Proof of Theorem 5

Proof Let Tsisj
be the time that the process spends in state si before entering sj, and

let Tsisi
be the time that the process spends in si. Assume that Tsisj

and Tsisi
are

exponentially distributed with means E{Tsisj
} = 1

rsisj
and E{Tsisi

} = − 1
rsisi

respectively:

Tsisj
∼ rsisj

e−rsisj Tsisj ,

Tsisi
∼ −rsisi

ersisiTsisi .

Suppose Tsisj
and Tsisi

have these distributions, let o(t) = f(t) mean f(t)/t → 0 as t → 0.

Then for a small h

P (xt+h = si|xt = si) = Pii(h) = P (Tsisi
≥ h) = ersisih = 1 + rsisi

h + o(h), (B.6)

P (xt+h = sj|xt = si) = Pij(h) ≥ P (Tsisj
≤ h, Tsjsj

≥ h) (B.7a)

= (1 − e−rsisj h)(e−rsjsj h) = rsisj
h + o(h). (B.7b)

By taking the sum of transition probabilities over j we see that there must be equality

in (B.7a)

1 =
∑

j

Pij(h) = 1 + h
∑

j

rsisj
+ o(h) = 1 + o(h). (B.8)

So we find that the transition rates and transition probabilities are related by

Pii(h) = 1 + rsisi
h + o(h), (B.9a)

Pij(h) = rsisj
h + o(h). (B.9b)
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Denote pij = P (xt = sj|x0 = si), for any t, h ≥ 0

P (xt+h = sj|x0 = si) =
∑

k

P (xt = sk|x0 = si)P (xt+h = sj|xt = sk)

pij(t + h) =
∑

k

pik(t)Pkj(h) (B.10a)

(B.9a)
(B.9b)
=

∑

k
k 6=j

pik(t)(rsksj
h + o(h)) + pij(1 + rsjsj

h + o(h)), (B.10b)

and as h goes to zero,

lim
h→0

pij(t + h) − pij(t)

h
=

∑

k

pik(t)rsksj
, (B.11a)

d

dt
pij(t) =

∑

k

pik(t)rsksj
. (B.11b)

Hence, P (t) must satisfy the forward equation

d

dt
P (t) = PR, P (0) = I.

By Theorem 3, P = etR is the unique solution to this equation.

We have assumed that Tsisj
, Tsisi

are exponentially distributed and we have shown that

if a process has such Tsisj
, Tsisi

, then its transition probabilities are given by P = etR.

But P determines the distribution of {Xt}t≥0 and hence the distribution of Tsisj
and Tsisi

.

So every process satisfying P = etR must satisfy the assumption. The definitions of the

process in terms of P = etR and Tsisj
, Tsisi

are equivalent. ¥

It is possible to prove a stronger version of this Theorem in a more rigorous way. How-

ever, we have presented a simplified version, as additional Definitions and Theorems are

necessary in this case that are of limited interest for the rest of this work.
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C
Comparison of KuLcons on
ENCODE data

Plots of KuLcons scores versus smoothed versions of SCONE (Figure C.1) and GERP

(Figure C.2) scores obtained from the UCSC database over an ENCODE region. In order

to facilitate the comparison, we show a transformed version of our score, that is,

1 −
sl

maxl{sl}
, (C.1)

where sl denotes the conservation score as derived in Section 5.4.2. A similar transforma-

tion was applied to the GERP scores. This has the effect that 1 represents the highest and

zero the lowest possible conservation, which is already the case for SCONE scores. Note

that only qualitative comparison is possible since different scores are based on different

models as briefly discussed in Section 5.6.
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Figure C.1: Comparison of KuLcons score signal to the SCONE scores over an ENCODE region (hg17, ENm005, chr21:32677595-32677794).

Scores were smoothed using a Gauss window with σw = 0.2, size 15 (δ = 7).
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rabbit C A C C A T G G C G G C C A T C A T G T T G A G G C A G G C T C G A G C C A T C C T G C A C G G G G A C - - - A A G G A C G G C A G G C C T G T C A G G A G C A G C T C - G C C A G G G A G C C - - - -

cow C A C C A T G G C A G C C A T C A G G T T C A G G C A G G C T C G A G C C A T C C T G T T C A G G A C A - - - A G C G G G A C C T G G - - T G T C G T G A - C G G C A G G A C C A C A A G G C C C C C T

dog C A C C A T G G C G G C C A A C A G G T T C A G G C A G G C T C G A G C C A T C C T G C A C A G G G A C - - - G A G A A A A T C A G G C A T G T C A G G A A C A G C A G A A G C A C - - - - - - - - - -

rfbat C A C C A T G G C G G C C A T C A G G T T C A G G C A G G C T C G A G C C A T C C T G C A T A G G - - - - - - G G G G A A A T C A G G C A T G T C A G G A A C A G C A G A A G C A C A A A G C C A C C T

hedgehog C A C C A T G G C G G C C A T C A G G T T C A G G C A G G C T C G G G C C A T C C T G T G C G G G G A T - - - G G A G A G A T C A G G C A T G T T G T G A G G G G C A C A C A T G C A A A G T C T C C T

shrew C A C C A T G G C G G T C A G C A G G T T G A G G C A G G C G C G A G C C A T C C T G C G G G G G - - C C - - C A G G G A A T G A G G - G C G C C A G C C A C T G C A G A C G C A C C A G G C C A C C T

armadillo C A C C A G G G C G G A C A T C A G G T T C A G G C A G G C T C G A G C T G T C C T G T A C A G G - - - - C - A A G G A C A T C A G T C A T G T C A G A G A C C G - - - - A G C A C G A A G C C A C C T

elephant C A C C A G G G C C G C C A T C A G G T T C A G G C A G G C T C G A G C C A A C C T G C A C A G G - - - - - - A A G G A A A T C C G T C A G T T C A G A G A C A G T G G A A G C A C A A A G C C A C C T

monodelphis C A C C A T A G C T G A C A T G A G G T T C A A G C A G G T T T G A G T C A T T C T A C A T G T A - - - - - - A A A A A T A T A C G G T T A A T T C A A A A T A G T A G T G G C A T G A A C C T - - - -

platypus C A C C A T C G C C G C C A T G A G G T T C A G G C A G G C C C G G G A C A T C C T G C - - - - - G A G C - - G A G G G A A T G A A A C A A G T C A G C A T C A G A T A G A G A A C A G - - T C C C T T

chicken C A C C A T T G C T G A C A A C A G G G T A A G G C A C A C T C G G C T C A T C C T A A A A G - - G A A - - A G A G G A A A A C G T G C A G G T T A - - - - - - - - - - - - - - - - - - - - - - - - - T

xenopus C A C C A T G G C A G A C A A T A A A T T C A A G C A A A T C C T G G A C A T T C T G T C G A A G - - - - - A G A A A T A A T A A T A A A C A G A A A C A A C G G C - - - - - - - - - - - - - - - - - -

tetraodon C A C C A A A G C A G T C A G G A A A C C G A G G C A C T G A C G A A C A A A C C T G T G C T C A A A - - - A T G G A A C A T T A G C C T T A T G - A T G A C A G C - - - - A A A C A A C A G - T T G T

fugu C A C C A A A G C A G T C A G G A A A C T G A G G C A C T G G C G A A C A A A C C T G T A C A T A G A - - - A A A G A A T A T T A G C T T T G T G C A T C A C G C C - - - - A A T C A A A G T - G T T C

zebrafish C A C C A G A G C G G A C A G T A G A C T C A G A C A C T G G C G G A C A A A C C T G C T C - - - A A - - - A T G C A A C A A C C A C A C T T T C T T T C T C A A A - - - - A T T C A A T G C - T T C C

Figure C.1 continued
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human C C C T C A C C T T T G A A T C C C T C T T G G T C A C C A G G G T G T A C A G G G T C T T T T T A T T C A A A T C A A A A T G G C T G C A G A C G T C C C T G G C A G C T T C C G G A C C C T G G G T

chimp C C C T C A C C T T T G A A T C C C T C T T G G T C A C C A G G G T G T A C A A G G T C T T T T T A T T C A A A T C A A A A T G G C T G C A G A C G T C C C T G G C A G C T T C C G G A C C C T G G G T

baboon C C C T C A C C T T T G A A T C C C T C T T G A T T A C C A A G G T G T A C A A G G T C T T T T T A T T C A A A T C A A A A T G G C T G C A G A C A T C C C T G G C A G C T T C C G G A C C C T G G G T

macaque C C C T C A C C T T T G A A T C C C T C T T C A T C A C C A A G G T G T A C A A G G T C T T T T T A T T C A A A T C A A A A T G G C T G C A G A C A T C C C T G G C A G C T T C C G G A C C C T G G G T

marmoset C C C T C A C C T T T G A A T C C C T C T T G G T C A C C A G G G T G T A C A A G G T C T T T T T A T T C A A A T C A A A A C G G C T G C A G A C G T C C C T G G C A G C T T C C G G A C C C T G G G T

galago T C C T T A C C T T T G A A T C C C T C T T G G T C A C C A G G G C A T A C A A G G T C T T T T T A T T C A A A T C A A A A T G G C T G C A A A C A T C T C T G G C A G C T T C G G G A C C C T G A G T

rat T T C T C A C C T T T G A A T C C C T C T T G G T T A C C A G G G C A T A C A A G G C T T T T T T A T T C A A A T C A A A A C A G C T G C A C A C A T C T C T G G C A G C T T C A G G G C C C T G G G T

mouse C T C T C A C C T T T G A A T C C C T C T T G G T C A C C A A G G C A A A C A A G G C T T T T T T A T T C A A A T C C A A A G A G C T G C A C A C A T C T C T G G C A G C T T C A G G A C C C T G G G T

rabbit C T C T C A C C T T T G A A T C C C T C T T G G T C A C C A G G G T G T A C A A G G T C T T T T T A T T C A A A T C A A A A T G G C C G C A G A C G T C C C T G G C A G C T T C A G G A C C C T G G G T

cow T C C T C A C C T T T G G A T C C C T C T T G G T C A C C A G G G T G T A C A A G G T C T T C T T A T T C A A A T C A A A A T G G C T G C A G A C G T C C C T G G C G G C C T C G G G A C C C T G G G T

dog T C C T C A C C T T T G A A T C C C T C T T G G T G G C C A G G G T G T A C A A G G T C T T T T T A T T C A A A T C A A A A T G A C T G C A G A C A T C C C T G G C A G C C T C A G G G C C C T G G G T

rfbat T C C T C A C C T T A G A A T C C C T C T T G G T C A C C A G G G T G T A C A A G G T T T T C T T A T G C A A A T C A A A A T G G C T G C A G A C A T C C C T G G C G G C C T C A G G A C C C T G G G T

hedgehog C C C T C A C C T T G G A A T C C C T C T T G T T C G C C A G G C T G T A C A A G G T C T T T T T A T T C A A G T C G A A G A G G C T G G A G A C A T C C C T G G C G G C C T C A G G G C C C T G T G T

shrew C C C T C A C C T T C G T G T C C C G C T T G G T C A C C A G G C C A T A C A A G G T T T T C T T G T T C A A A T C G A A G A G G C T A G A G A C G T C C C T G G C G G C C T C G G C C C C C T G G G C

armadillo - T C C T A C C T T T G A G T C T C T C T T G G T C A C C A G G G C A T A C A A G G G T T T T G T A T T C A A A T C A A A A T G A C T G C A G A C G T C C C T G G C C G C T T C G G G A C C C T G G G C

elephant T C C T C A C C T T T G A A T C C C G C T T G G T C A C C A G G G C G T A C A A G G G C T T T T T A T T C A G A T C A A A G T G G C T G C A G A C A T C C C T G G T A G C T T C G G C T C C C T G G G C

monodelphis T C T T T A C C T T T G G A C T T C T T A T T T T C A C C A A A C C A T A C A A C G A T T T C T T A T T G A A G T C A A A A T G A C T A T A G A A A T C C C T G G C A G C A T C T G G A C C C T G T G C

platypus C C T C T A C C T T G G G G C T C C G T C T G G T C A C C A G A G C C C G G A G G G G C T T C T T G T T G A A G T C G A A A T G G C C G T A G A C G T C G C G G G C G G C A T C C G G C C C C T G G G C

chicken A A T T T A C C T T C T T A T C T C T T T T T T T C A C T A A T G C A G G C A G A A A C T T A T T A T T G A A A T C G A A A T G A C T A A A C A C A T C C C T C G C A G T A T C T G G C C C C T G A G C

xenopus - - T T T A C C T G T T T G T C T C T C C T T T T T A A C A A A G T T G G C A A G A A T T T G T T A T G A A A A T C A A A A T G G C T G A A T A C G T C T C T G G C A C A A T C T G G T C C C T G C G C

tetraodon T T T T T A C C T G C T T G T C C T T T C T C T T T G C C A G G C C T G A C A G A G A - - - T T T A T T G A C G T G A A T G C A A T T T A G G A C C T C T C G A G C A G C C T C T G G A C C C T G A G A

fugu G T C - C A C C T T C T T G T C C T T T C T C T T T G C C A A T C C T G A T A G A G A - - - T T T A T T G A T G T G A A T G C A A C T C A G G A C C T C T C T A G C G G C C T C T G G A C C C T G A G A

zebrafish T T T T C A C C T A C T T G T C T C T T T T T C G A G C G A G T T G A C A C A G A T C - - - T T T G C C G A A C T G C A T T T G A C C G A A T A C A T C T C G T G C A G C G T C T G C A C T C T G A G A

Figure C.2: Comparison of KuLcons score signal to the GERP scores over an ENCODE region (hg17, ENm005, chr21:32677595-32677794).

Scores were smoothed using a Gauss window with σw = 0.2, size 15 (δ = 7).
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human C A C C A T G G C G G T C A T C A G G C T C A G G C A G G C G C G A G C C A A C C T G C A C A G G G A A C C A G A G G A A A T C G G A C A C G T C A A C A A C A G C A G A A G C A C A G A G C C G C C T

chimp C A C C A T G G C G G T C A T C A G G C T C A G G C A G G C G C G A G C C A A C C T G C A C A G G G A A C C A G A G G A A A T C G G A C A C G T C A A G A A C A G C A G A A G C A C A G A G C C G C C T

baboon C A C C A T G G C G G C C A T C A G G C T C A G G C A G G C G C G A G C C A A C C T G T A C A G G G A G C C A G A G G A A A T C A G A C A C G T C A G C A A C A G C A G A A G - - C A G A G C C G C C T

macaque C A C C A T G G C G G C C A T C A G G C T C A G G C A G G C G C G A G C C A A C C T G T A C A G G G G G C C A A A G G A A A T C A G A C A C G T C A G C A A C A G C A G A A G - - C A G A G C C G C C T

marmoset C A C C A G G G C A G C C A T C A G G C T C A G G C A G G C A C G A G C C A A C C T G C A C A A G A A A C C A G A G G A A A C G A G A C A C G T G A G A A A C A - C A G A A G C C T A G A G C C G C C T

galago C A C C A T G G C A G C C A T C A G A T T C A G G C A G G C T C G A G C C A A C C T G C A T A G G G A T - - - G A G A A A A T C A G A C A - G T C A A G G A C A G A A G A A - - - C A A A G C C - - - -

rat C A C C A C A G C A G T C A T C A G G T C C A G G C A G G C T C G A G C C A T C C T G C A T A G G G A C - - - A G G A A G A T C A G G C C - - - C A G G G G C A G C A C T G T C A G G G A G C C - - - -

mouse C A C C A T G G C A G T C A T C A G G T C C A G G C A G G C T C G A G C C A T C C T G C A C A G G G A C - - - A G G A A T G T C A G G A A - - - T A G G A G C A G C A C T A G G A G G G A - C C - - - -

rabbit C A C C A T G G C G G C C A T C A T G T T G A G G C A G G C T C G A G C C A T C C T G C A C G G G G A C - - - A A G G A C G G C A G G C C T G T C A G G A G C A G C T C - G C C A G G G A G C C - - - -

cow C A C C A T G G C A G C C A T C A G G T T C A G G C A G G C T C G A G C C A T C C T G T T C A G G A C A - - - A G C G G G A C C T G G - - T G T C G T G A - C G G C A G G A C C A C A A G G C C C C C T

dog C A C C A T G G C G G C C A A C A G G T T C A G G C A G G C T C G A G C C A T C C T G C A C A G G G A C - - - G A G A A A A T C A G G C A T G T C A G G A A C A G C A G A A G C A C - - - - - - - - - -

rfbat C A C C A T G G C G G C C A T C A G G T T C A G G C A G G C T C G A G C C A T C C T G C A T A G G - - - - - - G G G G A A A T C A G G C A T G T C A G G A A C A G C A G A A G C A C A A A G C C A C C T

hedgehog C A C C A T G G C G G C C A T C A G G T T C A G G C A G G C T C G G G C C A T C C T G T G C G G G G A T - - - G G A G A G A T C A G G C A T G T T G T G A G G G G C A C A C A T G C A A A G T C T C C T

shrew C A C C A T G G C G G T C A G C A G G T T G A G G C A G G C G C G A G C C A T C C T G C G G G G G - - C C - - C A G G G A A T G A G G - G C G C C A G C C A C T G C A G A C G C A C C A G G C C A C C T

armadillo C A C C A G G G C G G A C A T C A G G T T C A G G C A G G C T C G A G C T G T C C T G T A C A G G - - - - C - A A G G A C A T C A G T C A T G T C A G A G A C C G - - - - A G C A C G A A G C C A C C T

elephant C A C C A G G G C C G C C A T C A G G T T C A G G C A G G C T C G A G C C A A C C T G C A C A G G - - - - - - A A G G A A A T C C G T C A G T T C A G A G A C A G T G G A A G C A C A A A G C C A C C T

monodelphis C A C C A T A G C T G A C A T G A G G T T C A A G C A G G T T T G A G T C A T T C T A C A T G T A - - - - - - A A A A A T A T A C G G T T A A T T C A A A A T A G T A G T G G C A T G A A C C T - - - -

platypus C A C C A T C G C C G C C A T G A G G T T C A G G C A G G C C C G G G A C A T C C T G C - - - - - G A G C - - G A G G G A A T G A A A C A A G T C A G C A T C A G A T A G A G A A C A G - - T C C C T T

chicken C A C C A T T G C T G A C A A C A G G G T A A G G C A C A C T C G G C T C A T C C T A A A A G - - G A A - - A G A G G A A A A C G T G C A G G T T A - - - - - - - - - - - - - - - - - - - - - - - - - T

xenopus C A C C A T G G C A G A C A A T A A A T T C A A G C A A A T C C T G G A C A T T C T G T C G A A G - - - - - A G A A A T A A T A A T A A A C A G A A A C A A C G G C - - - - - - - - - - - - - - - - - -

tetraodon C A C C A A A G C A G T C A G G A A A C C G A G G C A C T G A C G A A C A A A C C T G T G C T C A A A - - - A T G G A A C A T T A G C C T T A T G - A T G A C A G C - - - - A A A C A A C A G - T T G T

fugu C A C C A A A G C A G T C A G G A A A C T G A G G C A C T G G C G A A C A A A C C T G T A C A T A G A - - - A A A G A A T A T T A G C T T T G T G C A T C A C G C C - - - - A A T C A A A G T - G T T C

zebrafish C A C C A G A G C G G A C A G T A G A C T C A G A C A C T G G C G G A C A A A C C T G C T C - - - A A - - - A T G C A A C A A C C A C A C T T T C T T T C T C A A A - - - - A T T C A A T G C - T T C C

Figure C.2 continued
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D
Update rules for branch length
gradient

We derive the update rules for the iterative calculation of branch length gradients in a

phylogenetic tree, given in Eq. (5.19), Chapter 5.

Given a phylogentic tree T , suppose node u in that tree has children v and w and we are

interested in computing the derivative of lx(tuv) with respect to branchlength tuv for a

given alignment column x:

∂

∂tuv

lx(tuv) =
∂

∂tuv

p(xℓ(r))
(4.21)
=

∂

∂tuv

∑

xr∈A

p(xℓ(r)|xr)π(xr) (D.1a)

= (
∂

∂tuv

p(r))πT . (D.1b)

Applying the matrix derivative rules

∂

∂x
(AB) = (

∂

∂x
A)B + A(

∂

∂x
B) (D.2a)

∂

∂x
(A ⊙ B) = (

∂

∂x
A) ⊙ B + A ⊙ (

∂

∂x
B), (D.2b)

we calculate for each node u′ with children v′ and w′:

∂

∂tuv

p(u′) =
∂

∂tuv

(

p(v′)P T
v′→u′

)

⊙
(

p(w′)P T
w′→u′

)

(D.3a)

= (
∂

∂tuv

p(v′)P T
v′→u′ + p(v′) ∂

∂tuv

P T
v′→u′) ⊙ (p(w′)P T

w′→u′) (D.3b)

+ (p(v′)P T
v′→u′) ⊙

∂

∂tuv

(p(w′)P T
w′→u′). (D.3c)

We have to distinguish 3 cases:
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(i) v′ is ancestor of or equal to u (⇒ w′ is not an ancestor nor equal to u):

⇒
∂

∂tuv

(p(w′)P T
w′→u′) = 0

⇒
∂

∂tuv

P T
v′→u′ = 0.

(ii) u′ is a descendant of u

⇒
∂

∂tuv

p(u′) = 0

(iii) u′ = u and v′ = v:

⇒
∂

∂tuv

(p(w′)P T
w′→u′) = 0

⇒
∂

∂tuv

P T
v′→u′ = RT P T

v→u

⇒
∂

∂tuv

p(v′) = 0.

Messages on node u are therefore calculated as follows:

∂

∂tuv

p(u′) =







( ∂
∂tuv

p(v′)P T
v′→u′) ⊙ (p(w′)P T

w′→u′) if v′ is ancestor of or equal to u

(p(v′)RT P T
v′→u′) ⊙ (p(w′)P T

w′→u′) if u′ = u, v′ = v

(p(v′)P T
v′→u′) ⊙ (p(v′)RT P T

w′→u′) if u′ = u,w′ = v

0 if u′is descendant of u.



E
Non-binary boxplus

Denote the elements of a finite set Z of cardinality |Z| = q as {α0, α1, .., αq−1}, and let

cm ∈ Z be constant coefficients.

It is assumed that there is a zero element, which we denote by α0. It is further assumed

that addition and multiplication (+, ·) are defined for the elements in Z, and that Z is

closed under addition and multiplication.

The log likelihood ratio (LLR) vector L(x) ∈ Rq−1 is defined as

L(x) =

[

log

(
P (x = α1)

P (x = α0)

)

, ..., log

(
P (x = αq−1)

P (x = α0)

)]

. (E.1)

where the following notation applies:

L(x = αi) = log

(
P (x = αi)

P (x = α0)

)

, i = 1, .., q − 1 (E.2a)

L(x = α0) = 0 (E.2b)

Consider a set of random variables X1, .., XM over Z. The boxplus in the non-binary case
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is derived as follows:

L(
M∑

m=1

cmxm = αi) = log











∑

β1,..,βM :
PM

m cmβm=αi

P (x1 = β1)...P (xM = βM)

∑

β1,..,βM :
PM

m cmβm=α0

P (x1 = β1)...P (xM = βM)











(E.3a)

= log












∑

β1,..,βM :
PM

m cmβm=αi

P (x1 = β1)...P (xM = βM)

P (x1 = α0)...P (xM = α0)

∑

β1,..,βM :
PM

m cmβm=α0

P (x1 = β1)...P (xM = βM)

P (x1 = α0)...P (xM = α0)












(E.3b)

= log







∑

β1,..,βM :
PM

m cmβm=αi

eL(x1=β1)+L(x2=β2)+...+L(xM=βM )







− log







∑

β1,..,βM :
PM

m cmβm=α0

eL(x1=β1)+L(x2=β2)+...+L(xM=βM )







. (E.3c)

The derivative of Eq. (E.3c) w.r.t. L(xm = αj) is given as

∂L(
∑M

m=1 cmxm = αi)

∂L(xm = αj)
=

1

c(αi)

∑

β1,..,βm=αj ,..βM :
PM

m cmβm=αi

eL(x1=β1)+..+L(xm=αj)+..+L(xM=βM )

−
1

c(α0)

∑

β1,..,βm=αj ,..βM :
PM

m cmβm=α0

eL(x1=β1)+..+L(xm=αj)+..+L(xM=βM ),

where c(αi) is

c(αi) =
∑

β1,..,βM :
PM

m cmβm=αi

eL(x1=β1)+L(x2=β2)+...+L(xM=βM ). (E.5)



Nomenclature

Abbreviations

A adenine, page 38

BDC binary deletion channel, page 13

BIC binary insertion channel, page 13

BMD bounded minimum distance, page 16

BN Boolean network, page 126

C cytosine, page 38

cDNA complementary DNA, page 126

CME conditional mean estimator, page 81

CTMP continuous time Markov process, page 21

DMC discrete memoryless channel, page 10

DNA deoxyribonucleic acid, page 38

DTMP discrete time Markov process, page 21

E. coli Escherichia coli , page 38

ENCODE ENCyclopedia Of DNA Elements, page 1

F84 Felsentstein 1984 model of nucleotide substitions, page 56

FG factor graph, page 133

G guanine, page 38

GERP method introduced in [CSA+05] for detecting conserved DNA sequences, page 76

GREV general reversible substitution model, page 55

GRN gene regulatory network, page 125

GS Guruswami-Sudan, page 139
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HGP Human Genome Project, page 1

HKY Hasegawa, Kishino, and Yano substitution model, page 55

iff if and only if, page 6

iid independently and identically distributed, page 6

InDel insertion and deletion, page 43

JC Jukes-Cantor, page 56

JS Jensen-Shannon, page 77

K2P Kimura 2 parameter, page 56

KL Kullback-Leibler, page 9

KuLcons our method for detecting conserved DNA sequences, page 76

LLR log likelihood ratio, page 108

LS Laubenbacher-Stigler, page 135

MAP maximum a posteriori probability, page 28

MI mutual information, page 9

ML maximum likelihood, page 15

mRNA messenger RNA, page 40

MSA multiple sequence alignment, page 62

MSE mean squared error, page 81

ODE ordinary differential equation, page 129

PBN probabilistic Boolean network, page 126

pdf probability density function, page 6

PDS polynomial dynamical system, page 134

phylo-HMM phylogenetic hidden Markov model, page 77

pmf probability mass function, page 6

PW Pellikaan-Wu, page 139

r. v. random variable, page 6

RM Reed-Muller, page 138

RNA ribonucleic acid, page 40
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RS Reed-Solomon, page 137

s.t. subject to, page 68

SCONE method introduced in [ARSS07] for detecting conserved DNA sequences, page 76

SME stochastic master equation, page 130

SPDS stochastic polynomial dynamical system, page 134

T thymine, page 38

U uracil, page 38

UCSC University of Santa Cruz, page 63

Notation

(·)T transpose of argument, page 6

·
= “is defined as”, page 21

≡ equivalence relation, page 69

∂
∂x

partial derivative with respect to x, page 70

sign(·) returns sign of argument, page 111

⊞ boxplus operator, page 111

⊙ element-wise product of two matrices or vectors of the same dimension, page 60

⊕ binary addition, page 17

E{·} expected value of a random variable, page 15

arg maxx{f(x)} returns x maximizing f(x), page 16

Fq Field of order q, page 14

Fq[x1, x2, ..., xm] ring of multivariate polynomials in m variables over Fq, page 134

deg (f) degree of polynomial f , page 137

totdeg(f) total degree of multivariate polynomial f , page 138

P (X = x),P (x) probability of the event X = x, page 5

pX(x) probability density function (pdf) of random variable X with realization x, page 6

pX(x; θ) a pdf for X that depends on a deterministic parameter θ, page 29

R+ the non-negative real numbers including zero, page 21
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X calligraphic symbols represent finite sets, page 7

| · | cardinality of a set, page 7

Θ parameter space, page 29

θ a parameter specifying a distribution, page 29

x̂ estimate of x, page 14

X sans serif letters denote random variables, page 6

{Xn}n≥0 discrete time random process, page 19

{Xt}t≥0 continuous time random process, page 21

X boldface capital letters denote matrices, page 11

x boldface lowercase letters denote vectors, page 10

[X]ij element in ith row and jth column of matrix X., page 19

trace{·} sum of diagonal matrix elements, page 68

[x]i ith element of the vector x, page 20

xn the sequence x0, x1, ..., xn, page 28

xn
m the sequence xm, x1, ..., xn, defined for m ≤ n, page 28

dH(x,y) Hamming distance between vectors y and x, page 14

wH(x) Hamming weight of vector x, page 14

Z+ set of positive integers including 0, page 19

List of Symbols

A an alignment of two or multiple sequences, page 57

al lth column of an alignment, page 66

a[b] fully conserved alignment column of nucleotide b, page 83

A nucleotide alphabet {A,C,G, T}, page 38

{A,−} extended symbol alphabet for sequence alignments, page 57

− gap symbol in sequence alignments, page 57

c a codeword, page 15

cε noisy sample vector, page 138
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C a collection of vectors forming a code, page 15

c a constant, page 68

c
(n)
t coded output symbol of a convolutional encoder, page 108

C channel capacity, page 11

D(pX || pY) Kullback-Leibler (KL) distance, page 9

d deletion probability, page 13

dmin minimum Hamming distance of a code, page 15

e all one column vector [1, 1, ..., 1]T , page 23

E set of edges in a graph, page 58

e number of errors, page 138

fi function associated with gene vi, page 128

fj(x) observed nucleotide frequencies for residue x in alignment column j, page 63

g(n) vector of discrete convolutional encoder taps, page 108

g
(n)
m tap in a convolutional encoder, page 108

GΘ(θ; α, β) gamma distribution over θ with parameters α,β, page 85

H(X | Y) conditional entropy, page 8

H(X) entropy of random variable X, page 7

h(x) information content revealed by the event x, page 7

I identity matrix, page 21

I(X; Y) mutual information, page 9

I(θ) Fisher information, page 32

Iji measure of influence from gene vj on vi, page 151

L(x) log likelihood ratio vector for non-binary random variable X, page 118

L log likelihood ratio encoder tap vector, page 111

L[k] log likelihood ratio tap vector at iteration k, page 111

L(x) log likelihood ratio of binary random variable X, page 111

L
(n)
m log likelihood ratio of encoder tap, page 111

Li list of functions or polynomials for network node i, page 132
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lx(θ) likelihood function depending on θ given x, page 30

llx(θ) logarithm of the likelihood function depending on θ given data x, page 30

M one of the sequence evolution models {GREV,HKY,K2P,F84,JC}, page 67

M memory of a convolutional encoder, page 17

m(i) number of regulators of gene vi, page 128

Ms number of species in multiple sequence alignment, page 62

N (µ, σ2) normal distribution with mean µ and variance σ2, page 32

N length of vector or series., page 13

NG number of genes in gene network G, page 128

P transition probability matrix, page 11

P (t) time dependend transition probability matrix of a CTMP, page 22

p(t) state vector of a continuous time Markov process, page 24

p(u) probability vector of observing the leafs given the nucleotide at node u, page 61

pn state vector of a discrete time Markov process, page 20

Pu→w transition probability matrix between nodes u and v in phylogenetic tree, page 60

pε probability of ε being non zero, page 108

psisj
transition probability from state si to sj, page 19

Q(·, ·) Q-function in the EM algorithm, page 34

R rate matrix of a continuous time Markov process, page 21

Rs symmetric part of a rate matrix, page 55

RMq(u,m) Reed-Muller code over Fq with parameters u,m, page 138

RSq(n, u) Reed-Solomon code over Fq with parameters n, u, page 137

r root node in a phylogenetic tree, page 59

R code rate in bits/symbol, page 15

rα, rβ, rγ , rδ, rǫ, rζ rate parameters in a substitution rate matrix, page 55

rsisi
escape rate from state si of a CTMP, page 21

rsisj
rate of a CTMP of going from state si to sj, page 21

si state of the convolutional encoder at time i, page 17
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sl conservation score for lth alignment column, page 76

s number of erasures, page 139

s(·, ·) symmetric scoring function, page 52

S(n) score at position n of two or multiple aligned sequences, page 52

S state space, page 19

si state from state space S, page 19

T phylogenetic tree, page 58

tuv positive real number assigning a distance to branch connecting u and v in a phy-

logenetic tree, page 59

U the matrix of eigenvectors of a rate matrix, page 22

u information stream, page 108

ut symbol fed into the convolutional encoder at time t, page 108

Ui set of unique transitions for gene vi, page 143

Vε
i set of noisy transitions for gene vi, page 136

Vi time series of transitions for gene vi, page 135

V set of nodes in a graph, page 58

vi gene i in a gene regulatory network, page 128

vi(t) expression level of gene i at time t, page 128

v(t) state vector of gene network at time t, page 128

v̆i vector of regulators of gene vi, page 128

w[n] window function, page 82

x̄ soft bit of random variable X, page 111

xℓ(u) realizations at the leaves of the subtree of T rooted at u, page 60

xℓ− realizations at the leaves of T , page 60

xℓ− realizations on the nodes T excluding the leaves, page 60

y
(n)
t noisy output of a convolutional encoder, page 108

Z finite set with zero element and defined operations (+, ·), page 117

δ specifies size of sliding window, page 82



182 NOMENCLATURE

ε,ε realization of a noise random variable, page 15

Φ diagonal matrix containing the eigenvalues of a rate matrix, page 25

φi ith eigenvector of a rate matrix, page 22

κ insertion probability, page 13

λ Initial distribution of a Markov process, page 19

µ transition probability, page 12

Π diagonal matrix with π in the diagonal and zero in off-diagonals, page 55

π stationary distribution of a Markov process, page 55

ψ set of parameters specifying a phylogenetic system, page 67

ψ0 evolutionary model of maximum conservation, page 83

ρθ autocorrelation of the rate variation process, page 86

σ2
X

variance of random variable X, page 84

τ set of distances assigned to the branches of a phylogenetic tree, page 59

ϑ adjustable multiplicity parameter in the Guruswami-Sudan algorithm, page 139

θl realization of rate variation at position l, page 73

{Θl}l≥0 rate variation random process, page 73
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[WLG01] S. Whelan, P. Liò, and N. Goldman, “Molecular phylogenetics: state-of-

the-art methods for looking into the past.” Trends Genet, vol. 17, no. 5,

pp. 262–72, May 2001.

[WRT07] A. Wang, W. Ruzzo, and M. Tompa, “How accurately is ncRNA aligned

within whole-genome multiple alignments?” BMC Bioinformatics, vol. 8,

no. 417, Oct 2007.

[WSM04] H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-domain decoding

of LDPC codes over GF(q),” in Proc of the IEEE International Conference

on Communications (ICC04), vol. 2, 2004, pp. 772–776.

[Yan93] Z. Yang, “Maximum-likelihood estimation of phylogeny from DNA se-

quences when substitution rates differ over sites.” Mol Biol Evol, vol. 10,

no. 6, pp. 1396–401, Nov 1993.

[Yan94] ——, “Maximum likelihood phylogenetic estimation from DNA sequences

with variable rates over sites: approximate methods.” J Mol Evol, vol. 39,

no. 3, pp. 306–14, Sep 1994.

[Yan95] ——, “A space-time process model for the evolution of DNA sequences.”

Genetics, vol. 139, no. 2, pp. 993–1005, Feb 1995.

[Yan96] ——, “Among-site rate variation and its impact on phylogenetic analyses,”

TREE, vol. 11, no. 9, pp. 367–372, Sep 1996.

[Yan06] ——, Computational Molecular Evolution, ser. Oxford Series in Ecology

and Evolution. Oxford University Press, 2006.

[Yan07] ——, “Paml 4: Phylogenetic analysis by maximum likelihood.” Mol Biol

Evol, vol. 24, no. 8, pp. 1586–91, Aug 2007.

[Yoc05] H. P. Yockey, Information Theory, Evolution and The Origin of Life.

Cambridge University Press, 2005.

[YW95] Z. Yang and T. Wang, “Mixed model analysis of DNA sequence evolution,”

Biometrics, vol. 51, pp. 552–561, Jun 1995.


