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Abstract - Two learning algon'thms for Disnte-Time Cellular Neunal Networks (DTCNNs) 
are p1~posed, which do not requin? the a priori knowledge of the output tmjectory of the ne t  
work. A cost function w defined, which is minimized by Direct Scorch optimization methods and 
Samdated A n d i n g .  Applications of the algorithms are presented in a companion paper. 

1 Introduction 
The Discrete-Time Cellular Neural Network (DTCNN) is a discrete-time, nonlinear, first- 
order dynamical system consisting of M identical cells on a 1D or 2D cell grid. M input 
ports are placed on an input grid with identical dimensions. The DTCNN was introduced 
in 111 as a discrete-time version of the continuous-time Cellular Neural Network (CNN) 
[Z]. It is defined by a state equation and an output equation 

+1 for s,,(t) 20 
-1 for s,,(t) < 0 , y,(t) = SGN(s,(t)) := 

and the initial state y,,(O) = y,,,.~. u,,(t), y,,(t),  and z,,(t) are the input signal at port p, the 
output signal and the state of cell p, respectively, at time-step t. t is a non-negative integer 
corresponding to the time-step. a = (U,,) and b = (by) are the feedbbdr and feedforward 
connections between the cells and the inputs and the cells. Due to the translational 
invariance of the network parameters, a and b are also called template coeficienb. a is 
the cell bias. Let p denote the panrmeter vector, which contains the template coefficients 
a, b and the bias a.  n / ( p )  is the neighborhood of cell p on the cell grid. The use of the 
neighborhoods in the summations implies that the connections between the cella are only 
local. In most cases, neighborhood sizes are r = 1 or r = 2. The cell grid is surrounded 
by r layers of dummy cells. 

Due to its discontinuous cell nonlinearities and the local interconnection scheme, the 
DTCNN is difficult to analyze. This is especially true for the learning problem, i.e. the 
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problem of finding the network parameterr, so that the network fulfills a desired tark. M a t  
neural network learning problems are inherently difficult [3]. In the case of the DTCNN, 
the network has to map a set of input images onto corresponding desired output images, 
which are usually required to be stable. Almost all the proposed learning algorithms 
for DTCNNs and CNNs (with the exception of [4]) are d e w  algorithms rather than 
leurnzng algorithms [5], [6], [7]. They work either by just setting the fixed points of the 
system, or they require that the trajectory of the network is known for each time-step. 
This last condition is not satisfied for many practical learning problems. Therefore, two 
"global" learning algorithms arc proposed in this work, which extract the information on 
the network parameters from a given set of input images and the desired output images. 
The trajectory of the network is thus designed by the learning algorithms. Learning is 
done by transforming the learning problem into a more general optimization problem. 
Applications of the two learning algorithms are presented in a companion paper [8]. 

2 Objective hnct ion  
Let P 3 p denote the parameter space. We define an Objective function o(p) (also called 
cost function), which is a mapping o : P + [0, 11. The objective function measures the 
deviation of the actual output behavior of the network from the desired output behavior. 
We apply optimization algorithms to the objective function in order to find a parameter 
vector p, so that the network performs the desired mapping as well as possible. Therefore, 
the problem of learning is mapped onto a general, nonlinear optimization problem. 

Let y[q(t, p) denote the vector of network output signals, when input signals u[q(t) are 
fed into the network (including an associated initial state) and the network is operated 
with a parameter vector p. Let d[q denote the vector of desired cell output vectors 
associated with the input signals u[q(t). The distance measure A[q(p) quantifies the 
deviation of the actual network response from the desired response for item 1 

up E [0,1] and d ( t )  E ( O , l ]  are weighting factors used for attaching different importance 
to different cells of the network and for weighting the contributions to the objective 
function at different time-steps, respectively. Usually, the network behavior during the 
transient is of minor importance. k t  Tf! and T.$c be the transient length and cycle 
length of the network, respectively, when the input signals dq(t) are fed into the network. 
Since the DTCNN is a discrete-time system with binary output values, TZ! and T i c  can 
be determined easily during the operation of the network. Oscillatory behavior is very 
common in DTCNNs, and therefore a reasonable strategy to set the u[q(t) in practice is 

If oscillations cannot be tolerated, t h p  it is possible to define A[q(p) = 1 whenever 
T$lc > 1, thereby punishing oscillatory behavior. Let L be the number of (input/desired 
output) pairs in the training set. Then the objective function o(p) is defined by 
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The coefbcients Cl1 E [0,1] are again weighting factors used for attaching different impor- 
tance to different items 1. 

The global dynamics of the DTCNN are uniquely determined by the local mapping 
at cell level as given in &. 1. Since each call of the DTCNN is a standard perceptton 
and the network parameters are translationally invariant, it follows from the existing 
theory on Threshold Logic that the parameter space P of the DTCNN is segmented into 
a large, but finite number of convex cones [9]. Let the length of the parame& vector p 
be N + 1. Then, the number of convex cones grows with O ( p / N ! ) .  Each of the convex 
cones corresponds to a possibly different global mapping of the DTCNN, and thus the 
behavior of the DTCNN and therefore the value of the objective function is constant for 
parameter vectors p from one convex coae. At the boundaries between the convex cones, 
the behavior of the network and the objeeive function can change abruptly, and therefore 
the gradient V,o(p) is either zero or undefined. Since the number of possible network 
behaviors is finite, the problem of minimising the objective function o(p) belongs to the 
class of combanatorid optimitotion problems [lo]. 

3 Algorithms 
Due to the lack of gradient information, standard optimization methods like steepest- 
descent, conjugate-gradient, or quasi-Newton methods (111 cannot be applied. Exact, 
non-polynomial classes of algorithms used for the solution of m y  combinatorial opti- 
mization problems l i e  Partid Enum& Schemes (e.g. Branch-and-Bound methods) 
or Polyhedral methods (e.g. Cutting-Plane algorithms) [lo] are also not applicable, because 
they require the existence of certain reasonably tight lower bounds on the value of the 
objective function for certain subsets of the search space. However, there are Optimization 
algorithms that can deal with difficult objective functions like &. 4. 

3.1 HYBFUD Algorithm 

The HYBRID algorithm is a heuristically motivated algorithm, which relies on the exper- 
imental observation that the macro-structure of the error surface of the objective function 
is reasonably well-behaved and 'smooth". We use Direct Search methods [12] (optimiza- 
tion methods not requiring gradient i d m a t i o n )  for the minimisation of Eq. 4. These 
algorithms are generally less efficient from a computational point of view when compared 
to algorithms using first or higher order gradient information. A number of algorithms 
were tested, including the Simpla algorithm, Rosmbrock's method, the Pattern Search 

' method, the DSC method, and a random search method 1121. It turned out that a 
combination of the Simplex algorithm (the modified version by Nelder and Mead) and 
Rasenbrock's method is the best alternative for the minimisation of the objective function 
&. 4. Both methods are givea in Appendix A. 

The Simplex algorithm works quite well in the beginning of the optimization process, 
i.e. when the objective function is still high. This is due to the fact that the Simplex 
method scans large areas of the parameter space with relatively few evaluations of the 
objective function. If the algorithm has descended into narrow valleys on the error surface, 
the performance of the method deteriorates. In those cases, when the current point has 
a lower objective function value than most of the surrounding areas in the parameter 
space, Rosenbrock's method performs much better, because it relies on a local search of 
the neighborhood of the current point. 
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Thus for the HYBRID method, the Simplex method is used, until the objective func- 
tion value reaches a certain lower bound. Then, the minimization is continued by Rosa- 
brock’s method, using the best result of the Simplex method as the starting point for 
Rosenbrock’s method. The optimal value for the switching point is problem-dependent, 
and it has to be found experimentally. However, the exact value of the switching point is 
not very critical. The HYBRID method has been applied succersfully to several difficult 
learning problems, for which no solutions have been found before by design methods. 

3.2 Simulated Annealing 

Simulated Annealing (SA) methods have been introduced in 1983 as a flexible tool for 
difficult combinatorial optimisation problems [13], and since then they have been ap- 
plied successfully to many different practical optimization problems in various fields. The 
algorithm is computationally expensive, but it is very easy to implement, and many re- 
searchers report that it almost constantly comes up with approximate solutions of good 
quality. The SA algorithm is mainly specified by the choice of a cooling schedule, which 
determines, how the system temperature, an internal parameter, is changed. See [14] for 
a good and recent review of SA theory md cooling schedules. 

SA methods were used to minimize the objective function Eq. 4. The algorithm is 
given in Appendix A. In absence of a more suitable method, the abstract states required 
for the SA algorithm were simply mapped onto the parameter vector p (non-injective 
mapping). Different cooling schedules were tested experimentally. It turned out that the 
quality of the final result depends mainly on the total number of function evaluations, 
not so much on the choice of a specific cooling schedule. SA methods come up with good 
solutions more constantly that the HYBRID algorithm, but they are worse in terms of 
execution time. 

4 Conclusions 
An objective function was defined, which is used to reformulate the learning problem for 
DTCNNs as a general optimization problem. The objective function was minimized by the 
HYBRID method, which is a combination of two Direct Search methods, and Simulated 
Annealing methods. By using this strategy, much more complex trajectories arc feasible. 

In a companion paper [8), both algorithms are used to find the template co&cients 
for a DTCNN in Texture Classification, Texture Segmentation, and Text Segmentation 
applications. The results underline the usefulness of the proposed learning methods. 

A 
The SIMPLEX algorithm, Roeenbrock’s method, and the Simulated Annealing algorithm 
a given in a PIDGIN ALGOL description [lo]. In all cases, os is the objective function 
value corresponding to the parameter vector p+. The function Gram-Schmidt defiotes an 
orthonormalization process (starting with the first argument). 

PIDGIN ALGOL Description of the Algorithms 

begin Simplex algorithm;/*a= 1.1,p=2,~=0.6, Au=0.005, A-= 
initidlizesimplex(p[ol,. . . , p [ ~ + ~ l )  ; f * regular Simplex */ 
do / *  main loop */ 

label-1 : r e l abe l -ve r t i ce~(p~~~ ,  . . . , P[N+1] )  ; /* then:opl < . . .I O [ N + ~ I * /  

if O[N+~] - opl < A- /* b e d u o r a t  vertex t o o  close ? */  
then begin ra~domizo(p~~~,.  . . , p [ N + l ] )  ; goto 1abol-l; end 
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pc = ( P ~ I  t P ~ I  + - t ppq) ; /* centroid */ 
if lipc - p[N+1]11 < Amin /* simplex collapses ? */ 

prrc = pc t u(pC - P[N+1]); /* reflected vertex */ 
if 4cr > q01 and 4.r < qq 

then p [ ~ + ~ ]  = M; /* accept reflection */ 

then begin randomize ( p [ ~ + ~ ] )  ; goto l a b e l l  ; end 

else if 4cr I q01 
then begin /*  expanded vertex */ 

Pup = Pc + B ( P d  - Pel; 
if oerp 5 q01 then PIN+l] = pexp; else 

if 4rz 2 qN+1] 

if ocon < 4ct then P[N+~I = peon; 

P[N+l) = Prd; 
end 
else begin /* contracted vertex */ 

then Peon = Pc + ̂ I(P[N+l] - Pc); 
else 

else for U = 1 to N t 1 do pi,,] = ~(p[,]+- pro]); 

Pcon = Pc t r(Pd - Pc); 

end 
until( terminationzriterion) ; 

end Simplex algorithm; 

begin Ftosenbrock’s method; /* ~=3,/3=-0.5,6=10-~ */ 
initialize(po,t) ; raudomize(r0,. . . , rN) ; Gram-Schmidt(r0,. . . , rN) ; 
for u = O  to N do &,=a; 
do /* main loop */ 

Pcur = Popti 
for U =  0 to  N do begin A,=O; q , , = O ;  end 
do /* exploratory phaae */ 

{io,. . . , i ~ }  = randpera((0,. . . , N}) ;/*create random permutation*/ 
for U = 0 to N do begin 

~ s x p  =  cur + 4, * ri,; 
if ooLp~ocur  

then begin /* auccess */ 
 cur = Perpi Ai, = 4. t 4, = Q . ai,; 
if qi, = 0 then 9i, = 1; /* record succeaa */ 

end 
else begin /* failure */ 

Pew = pnvi 4, = P ‘ &,,; 
if q, = 1 then qi, = 2; /* record failure */ 

end 
end 

until(qu = 2 V U = 0,. . ., N); 

/*  reorthonondization phaae */ 
80 = pew - pON; /* t o t a l  progreaa from the exploratory phase */ 
popt = pew; for U = 1 to  N do IS, = sV-1 - A,-1 rv-l; 
for U = 0 to  N do r, = s.,; Cram-Schmidt (ro, .. . , r N >  ; 

until( t erminat ioecriterion) ; 
end Rosenbrock’s method; 
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begin S M a t  ed-Anneal ing ; 
init ializeatate(3-) ; oopt = 1; T = To; 
do /* outer loop */ 
do /* l4ETROPOLIS or h e r  loop */ 

sPCr = generatestate(s-1; /* generate new s ta te  */ 
if on,, < oopt then sopr = b; /* save optimum s ta te  */ 
if accept(%e,,o,,T) then J, = hew; /* accept new state  */ 

until( inner-loop criterion f d s e ) ;  
T = update-T(T); /* decrease temperature */ 

end Simulatedlumealing ; 
until(outer-loop criterion false); 

References 
[ 11 H. Harrer and J. A. Nossek, “Discrete-Time Cellular Neural Networks,” International 

Journal of Circuit Theory and Applications, vol. 20, pp. 453467, Sept. 1992. 
[2] L. 0. Chua and L. Yang, “Cellular neural networks: Theory,” IEEE Trans. on Cir- 

cuits and Systems, vol. 35, pp. 1257-1272, Oct. 1988. 
[3] S. Judd, “Learning in networks is hard,” in IEEE First International Conference on 

Neural Networks, vol. 2, pp. 685-692, 1987. 
[4] T. Kozek, T. Roska, and L. 0. Chua, “Genetic algorithm for CNN template learn- 

ing,” IEEE Transactions on Circuits and Systems - I: findumental Theory and 
Applications, vol. 40, pp. 392-401, June 1993. 

(51 P. Nachbar, Robuster Entwurf won Neumnalen Netzen. PhD thesis, Technical Uni- 
versity Munich, Munich, Germany, Dec. 1993. 

[6] G. Seiler, Grundlagen des Entwurfs Zellvlarer Neuronaler Netze. PhD thesis, Tech- 
nical University Munich, Munich, Germany, Feb. 1993. 

[7] H. Harrer, J. A. Nossek, and F. Zou, “A learning algorithm for Discrete-Time Cellular 
Neural Networks,” in IJCNIV’SI Pmc., (Singapore), pp. 717-722, Nov. 1991. 

[8] A. Kellner, H. Magnussen, and J. A. Nossek, “Texture classification, texture segmen- 
tation and text segmentation with discrete-time cellular neural networks (to appear),” 
in Proc. Third IEEE International Workshop on Cellular Neural Networks and their 
Applications CNNA-94, (Rome, Italy), Dec. 1994. 

191 H. Magnussen and J. A. Nossek, “A geometric approach to properties of the discrete- 
time cellular neural network (to be published),” IEEE %amactions on Circuits and 
Systems - I: Fundamental Theory and Applications, 1994. 

[lo] C. H. Papadimitriou and K. Steiglitz, Combinatorid Optimization: Algorithms and 
Complexity. Prentice-Hall, 1. ed., 1982. 

[ll] R. Fletcher, Practical Methods of Optimization. John Wiley and Sons, 2 ed., 1987. 
[12] W. Swann, “Direct search methods,” in Numerical Methods for Unconstrained Opti- 

[13] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by simulated annealing,” 

[14] F. Romeo and A. Sangiovanni-Vincentelli, “A theoretical framework for simulated 

mization (W. Murray, ed.), ch. 2, pp. 13-28, Academic Press, 1972. 

Science, vol. 220, pp. 671-680, May 1983. 

annealing,” Algorithmica, vol. 6, no. 3, pp. 302-345, 1991. 

170 

Authorized licensed use limited to: T U MUENCHEN. Downloaded on March 2, 2009 at 05:13 from IEEE Xplore.  Restrictions apply.


