Large-scale changes in ratio of C₃ and C₄ plants in central Asian grassland during the last century as recovered from wool archives K. Auerswald¹, T. Maennel¹, Y.F. Bai², M. Wittmer¹, H. Schnyder¹ ¹Technische Universität München, Lehrstuhl für Grünlandlehre, Am Hochanger 1, D-85350 Freising-Weihenstephan. E-mail: auerswald @ wzw. tum. de, ² Research Center of Plant Ecology, Chinese Academy of Sciences 20 Nanxincun, Xiangshan 10009, Beijing, China Key words: Carbon Isotope Discrimination, C3 plants, C4 plants, Central Asian Grassland **Introduction** The Central Asian grassland is one of the largest biomes on earth with significant influence on global biogeochemical cycles. It is characterized by the co-existence of plant species with either C_4 or C_3 photosynthetic pathways, which differ in carbon isotope composition. The C_3/C_4 ratio is controlled by climate and land use which have changed during the past century (global warming and atmospheric CO_2 increase; increased stocking rates). However, it is unknown if these changes have actually elicited changes in the C_3/C_4 ratio. We used old and modern woollen materials and carbon isotope analysis to reconstruct vegetation changes, which are recorded in the hair of the grazing animals. Material and methods 414 wool samples from 99 sites in Inner Mongolia (Figure 1) dating form 1928 to 2005 were collected and analyzed for carbon isotope composition. The C_3/C_4 ratio was then computed from the carbon isotope composition by taking into account the change in the carbon isotope composition of atmospheric CO_2 and the influence of aridity on the carbon isotope composition of the C_3 component. Results Average C_4 abundance in Inner Mongolia increased in two steps from 1% (1928—1962) to 9% (1963—1998) and 25% (1999—2005) with simultaneously increasing scatter due to the evolution of a spatial pattern. No significant trends in C_4 abundance and scatter occurred within any period. These findings contradict predicted decreases in C_4 abundance due to rising CO_2 concentrations. The increase in C_4 abundance seems to be caused by a combination of rising regional temperature, increased human impact (increased stocking rate and decreased herd mobility) and short-term weather events, all favouring the spread of C_4 plants. The C_4 abundance especially increased around large towns in the desert steppe. Figure 1 Location of the sampling sites in Inner Mongolia. The shades of grey display the mean annual precipitation of the last normal period. Figure 2 Proportion of C_1 plants in feed of small grazers (mean \pm standard deviation). Conclusions The C₄ abundance in the Inner Mongolian steppe increased probably due to overgrazing and regional warming. These factors were strong enough to override the effect of the rising atmospheric CO₂, which should have favour C₃ expansion. ## Multifunctional Grasslands in a Changing World ## Volume I EDITED BY ORGANIZING COMMITTEE OF 2008 IGC / IRC CONFERENCE