Genexpression in Monozyten und Makrophagen:
Kleine Sputummakrophagen bei COPD und Einfluss von ultra-feinen Partikeln

Christiane M. S. Eder

Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung eines akademischen Grades eines Doktors für Naturwissenschaften
genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. S. Scherer
Prüfer der Dissertation: 1. Priv.-Doz. Dr. M. Pfaffl
 2. apl. Prof. Dr. L. Ziegler-Heitbrock,
 Ludwig-Maximilians-Universität München
 3. Univ.-Prof. Dr. H. H. D. Meyer

Die Dissertation wurde am 15.12.2008 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 05.05.2009 angenommen.
Für Oma und Opa
Abkürzungsverzeichnis

A Einleitung
A.1 Die chronisch obstruktive Lungenerkrankung (COPD) 3
A.2 Anatomie der Lunge 5
A.3 Partikel 6
A.3.1 Zusammensetzung von Feinstaub 6
A.3.2 Deposition im Körper 9
A.4 Abwehrmechanismen der Lunge 10
A.4.1 Immunologische Mechanismen 10
A.4.1.1 Phagozytose durch Makrophagen 10
A.4.1.2 Inflammatorische Reaktionen bei COPD 11
A.4.1.3 Die Rolle der Zytokine, Chemokine und Proteasen 13
A.4.2 Entgiftungsreaktionen 14
A.4.2.1 Die Monoxygenasen 15
A.4.2.2 Cytochrom-Familie P450 1 16
A.4.2.3 Cytochrom P450 1B1 17
A.5 Ziel der Arbeit 18

B Material und Methoden
B.1 Material 19
B.1.1 Reagenzien 19
B.1.2 Lösungen und Medien 22
B.1.3 Verbrauchsmaterialien 24
B.1.4 Antikörper und Isotyp-Kontrollen 25
B.1.5 Partikel 26
B.1.6 Oligonukleotide 26
B.1.7 Geräte 29
B.2 Methoden 31
B.2.1 Zellkultur 31
B.2.1.1 Bestimmung der Zellzahl 31
B.2.1.2 Mono Mac 6 31
B.2.1.3 A549 und Calu-3 32
INHALTSVERZEICHNIS

B.2.2 Arbeiten mit primären Zellen ... 32
 B.2.2.1 Isolierung von PBMC (peripheral blood mononuclear cells) 32
 B.2.2.2 MACS (magnetic cell sorting) Isolierung 33
 B.2.2.3 Herstellung von MDM (monocyte derived macrophages) und unreifen dendritischen Zellen (DC) durch in vitro Kultur . 34
 B.2.2.4 Gewinnung von induziertem Sputum und Isolierung von Sputummakrophagen .. 35
 B.2.2.5 Gewinnung von Bronchialepithelzellen 36
 B.2.2.6 Anfertigen von Zytospins .. 37
 B.2.2.7 Stimulation ... 37
 B.2.2.7.1 Partikel und Lipopolysaccharid (LPS) 37
 B.2.2.7.2 Lipophile Substanzen ... 38
 B.2.2.8 Lysate .. 38
 B.2.2.9 Durchflusszytometrie mit dem FACS (Durchflusszytometer). 39

B.2.3 Molekularbiologische Methoden ... 40
 B.2.3.1 Isolierung von mRNA ... 40
 B.2.3.2 Konzentrationsbestimmung der RNA 40
 B.2.3.3 Reverse Transkription (RT) .. 41
 B.2.3.4 Real-time-PCR .. 42
 B.2.3.5 Gelelektrophorese .. 44
 B.2.3.6 Auswertung der LC-PCR Ergebnisse 44
 B.2.3.7 Analyse der mRNA-Stabilität von CYP1B1 mit Hilfe von ActinomycinD ... 45

B.2.4 Proteinnachweis ... 45
 B.2.4.1 Isolierung von Mikrosomen .. 45
 B.2.4.2 Messung des Proteingehalts .. 46
 B.2.4.3 Western Blot .. 46
 B.2.4.4 Nachweis von CXCR4-Protein durch Durchflusszytometrie ... 47

B.2.5 Statistische Auswertung .. 48

C Ergebnisse ... 49
 C.1 Genexpression in Sputummakrophagen ... 49
 C.1.1 Aufreinigen von Sputummakrophagen 49
 C.1.2 Die Population der kleinen Sputummakrophagen 51
INHALTSVERZEICHNIS

C.1.3 Zytokinexpression in Sputummakrophagen .. 54
C.1.4 Expression der Chemokinrezeptoren CCR5, CCR9, CXCR1
 und CXCR2 in Sputummakrophagen ... 56
C.1.5 Der Chemokinrezeptor CXCR4 .. 58
 C.1.5.1 mRNA-Expression .. 58
 C.1.5.2 Protein-Daten der FACS-Analyse 58
 C.1.5.3 Ligand des CXCR4-Rezeptors 60
C.1.6 Weitere Genexpressionsunterschiede zwischen COPD-
 Patienten und gesunden Kontrollen ... 60
 C.1.6.1 Matrix-Metalloproteinase 9 und ihr Inhibitor TIMP-1 60
 C.1.6.2 Hämoxigenase1 ... 61
 C.1.6.3 Phagozytoserezeptor MARCO (macrophage receptor with
 collagenous structure) ... 62
C.1.7 Effekt von Partikeln auf die Genexpression in
 Sputummakrophagen .. 63
C.2 Effekt von Teilchen auf die Genexpression in Monozyten und
 Makrophagen .. 65
 C.2.1 Auswahl der Gene ... 65
 C.2.2 CYP1B1 und 1A1 in MDM .. 66
 C.2.3 CYP1B1 in CD14++ Monozyten 68
 C.2.4 Identifizierung der aktiven Komponente in der
 Partikelmischung ... 69
 C.2.5 Dosis-Wirkungsbeziehung zwischen P90-Exposition und der
 CYP1B1 mRNA Expression .. 70
 C.2.6 Kinetik der CYP1B1 mRNA Suppression 72
 C.2.7 Ausschluss einer LPS-Kontamination von P90 72
 C.2.8 CYP1B1 Effekt in weiteren Zelltypen 73
 C.2.9 Effekt von Benzo[a]pyren auf die CYP1B1 mRNA Expression ... 76
 C.2.10 Nachweis der RNA-Stabilität mithilfe von Actinomycin D 77
 C.2.11 CYP1B1 Expression in PBMC nach Stimulation in unter-
 schiedlichen Kulturgefäßen ... 78
 C.2.12 Wirkung weiterer Partikel auf die CYP1B1 Expression 79
 C.2.13 Effekt von P90 auf CYP1B1-Proteinebene 80
D Diskussion .. 82
 D.1 Genexpression in Sputummakrophagen 82
 D.1.1 Gewinnung von Sputummakrophagen 82
 D.1.2 Zytokinexpression in Sputummakrophagen 85
 D.1.3 Der CXCR4-Rezeptor ... 88
 D.1.4 Weitere COPD-relevante Genexpressionen 90
 D.2 Effekt von Teilchen auf die Genexpression in Monozyten und
 Makrophagen .. 93
 D.2.1 Veränderungen im mRNA-Expressionsmuster durch ultra-
 feine Partikel bei Cytochrom P450 1B1 93
 D.2.2 Individuelle Variabilität in der CYP1B1 Expression............... 95
 D.2.3 Aktive Komponente: ultra-feines Printex 90.......................... 95
 D.2.4 CYP1B1 Protein nach P90 Stimulation 98
 D.2.5 Regulation von CYP1B1 – mögliche Wirkmechanismen von
 P90 ... 100
E Zusammenfassung .. 104
F Literaturverzeichnis ... 107
G Abbildungsverzeichnis ... 114
H Tabellenverzeichnis ... 118
I Danksagung .. 119
Abkürzungsverzeichnis

bp Basenpaare
BSA Rinderserumalbumin (Bovine Serum Albumin)
COPD Chronisch obstruktive Lungenerkrankung (Chronic Obstructive Pulmonary Disease)
CYP1B1 Cytochrom P450 1B1
CYP1A1 Cytochrom P450 1A1
DEPC Diethylpyrocarbonat
DTT Dithiothreitol
EC90 Elementarer Kohlenstoff (90 steht für 90 nm Durchmesser)
EDTA Ethylendiamintetraacetat
FACS Fluorescence activated cell sorter, Durchflusszytometer
FCS fötales Kälberserum (Fetal Calf Serum)
FITC Fluorescein-Isothiocyanat
GM-CSF Granulozyten/Makrophagen Kolonie-stimulierender Faktor (granulocyte/macrophage colony-stimulating factor)
h Stunde
IgG Immunglobulin G
IL-1β Interleukin 1β
IL-1 RA Interleukin 1 Rezeptor Antagonist
IL-6 Interleukin 6
IL-8 Interleukin 8
IL-10 Interleukin 10
Kb Kilobasenpaare
kDa Kilo-Dalton
KCl Kaliumchlorid
konz konzentriert
LPS Lipopolysaccharid
M Molar
mm Millimeter
min Minute
MM6 Mono Mac 6 Zelllinie
MW Mittelwert
mRNA Messenger-RNA
P90 Printex 90 (90 steht für 90 nm Durchmesser)
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR</td>
<td>Polymerasekettenreaktion (polymerase chain reaction)</td>
</tr>
<tr>
<td>PBMC</td>
<td>periphere mononukleäre Blutzellen (peripheral blood mononuclear cells)</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphat Saline Puffer (phosphate buffer saline)</td>
</tr>
<tr>
<td>PE</td>
<td>Phycoerythrin</td>
</tr>
<tr>
<td>PMB</td>
<td>Polymyxin B</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>reverse Polymerasekettenreaktion</td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung (standard deviation)</td>
</tr>
<tr>
<td>sec</td>
<td>Sekunde</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor Nekrose Faktor</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>Titandioxid</td>
</tr>
<tr>
<td>uf</td>
<td>ultra-fein</td>
</tr>
</tbody>
</table>
A Einleitung

A.1 Die chronisch obstruktive Lungenerkrankung (COPD)

COPD wird meist hervorgerufen durch inhalierte Aerosole. Als größter Risikofaktor für die Entstehung einer COPD ist nach wie vor der Konsum von Tabak anzusehen (Pauwels et al. 2001). 90% der COPD-Patienten haben geraucht, nicht alle Raucher aber entwickeln eine COPD. Schon 1967 wurde in einer Studie von Fletcher et al. (Fletcher 1976) bei 12% der moderaten Raucher und bei 26% der starken Raucher eine COPD beobachtet. Dieses Phänomen wirft die Frage auf, ob es unterschiedliche Empfindlichkeit gegenüber Tabakrauch gibt und inwieweit genetische Faktoren eine Rolle bei der
Krankheitsentstehung spielen, zumal ca. 10-15% der betroffenen Patienten nie geraucht haben. Den einzig bisher bekannten genetischen Risikofaktor stellt der α1-Antitrypsin-Mangel dar, bei dem durch fehlende Inhibition der Elastase das Lungengewebe zerstört und so die Entstehung eines Emphysems begünstigt wird (Teramoto 2007). Diese genetische Disposition liegt bei bis zu 3% der COPD-Patienten zugrunde (Richmond and Zellner 2005).

Die COPD kann bisher nur symptomatisch behandelt werden, wobei die Progression der Erkrankung verlangsamt und die Beschwerden gelindert werden sollen. Durch die Einnahme von inhalativen (oder seltener auch systemischen) β₂-Sympathomimetika wird die Bronchialmuskulatur entspannt und die Atembeschwerden werden gemindert. Zusätzlich kann auch eine Behandlung mit Glukokortikoiden erfolgen, um eine entzündliche Schwellung zu reduzieren. COPD-Patienten profitieren auch von körperlichem Training (z.B. Atemgymnastik) oder einer Langzeitsauerstofftherapie im fortgeschrittenen Stadium der Erkrankung.
Die Ziele der Pharmakotherapie sind generell die Besserung der Symptome, eine Zunahme der körperlichen Leistungsfähigkeit, eine Steigerung der Lebensqualität sowie die Prävention von Exazerbationen.

A.2 Anatomie der Lunge

Abbildung 1: Lungenaufbau

http://krebshilfe.net/images/lunge.png

Um alle Erreger und Fremdstoffe, die durch die Atmung ständig neu in die Lunge eindringen, bekämpfen zu können, befinden sich in den Atemwegen eine Vielzahl von spezialisierten Immunzellen wie die Makrophagen.

A.3 Partikel

Auch wenn das aktive Rauchen als größter Risikofaktor für COPD betrachtet wird, kann ebenso die Feinstaubbelastung in der Luft eine Rolle bei der Krankheitsentstehung spielen (van Eeden et al. 2005).

A.3.1 Zusammensetzung von Feinstaub

6
Einleitung

Abbildung 2: Größeneinteilung von Partikeln (modifiziert nach (Brook et al. 2004)); PM = particulate matter, UFP = ultra-fine particles

PM\textsubscript{10} („particulate matter“) wird der Schwebstaub mit einem Durchmesser von kleiner als 10 µm genannt. Dieser Standard wurde 1987 von der amerikanischen „Environmental Protection Agency“ (EPA) festgelegt, um gezielt die Masse der inhalierbaren Teilchen zu erfassen, die ihren Weg bis in die oberen Atemwege und die Lunge finden. 1997 gab die EPA Richtlinien zu Grenzwerten von PM\textsubscript{2,5} heraus, wobei es sich um Partikel mit Durchmesser < 2,5 µm handelt, die die kleinen Atemwege und Alveolen erreichen können (Brook et al. 2004). Diese ultra-feinen (uf) Partikel stellen zahlenmäßig die größte Gruppe im Feinstaub dar, wohingegen sie zur Gesamtmasse sehr wenig beitragen. Die Oberfläche der uf Partikel ist sehr groß, was das Verhältnis zwischen Oberfläche und Masse erhöht. Dies könnte eine mögliche Erklärung
für die verstärkte biologische Toxizität der uf Partikel gegenüber der Toxizität der feinen Partikel darstellen (Donaldson and Stone 2003).

Die Partikel unterscheiden sich aber nicht nur hinsichtlich ihrer Größe, sondern auch durch an ihrer Oberfläche gebundene reaktive Komponenten, wie polyaromatische Kohlenwasserstoffe oder Übergangsmetalle. Bestimmend für pathophysiologische Effekte sind partikelassozierte Parameter wie Anzahl, Oberfläche und oben genannte reaktive Komponenten.

Abbildung 3: Elektronenmikroskopische Aufnahme von uf P90 – Aerosol (Gilmour et al. 2004)
A.3.2 Deposition im Körper

A.4 Abwehrmechanismen der Lunge

Um Schäden durch inhalede Aerosole zu vermeiden, verfügt das Atemsystem über vielfältige Abwehrmechanismen. Sie lassen sich in eine unspezifische mechanische Abwehr (Husten und Niesen), in eine unspezifische und spezifische immunologische Abwehr sowie in Entgiftungsmechanismen einteilen.

Aus den oberen Atemwegen werden Partikel bis zu einer Größe von ca. $1 \mu m$ mit Hilfe des mukoziliären Apparates innerhalb weniger Tage entfernt. Dieser mechanische Transport wird hier nicht genauer behandelt. Auf die immunologische Abwehr und die Entgiftungsmechanismen soll in folgenden Abschnitten näher eingegangen werden.

A.4.1 Immunologische Mechanismen

A.4.1.1 Phagozytose durch Makrophagen

Makrophagen stellen neben dendritischen Zellen und neutrophilen Granulozyten eine der drei phagozytierenden Zellarten im Immunsystem dar und sind somit auch in den Atemwegen eine wichtige Abwehr gegen eindringende Fremdkörper. Die Beseitigung von Teilchen < $1 \mu m$ aus dem Alveolarearaum bewerkstelligen die Alveolarmakrophagen, die die Partikel phagozytieren und bewirken, dass diese über das lymphatische System des Körpers oder über den mukoziliären Apparat ausgeschieden werden.

A.4.1.2 Inflammatorische Reaktionen bei COPD

Abbildung 4: Aufgaben und Effekte von Makrophagen bei COPD (Larsson 2007)

Viele Studien belegen, dass im Sputum gesunder Spender die Makrophagen die Mehrheit der Zellen darstellen, bei COPD-Patienten überwiegen hingegen die neutrophilen Granulozyten. Auch Frankenberger und Kollegen konnten
EINLEITUNG

diese Zellverteilungen bestätigen (Frankenberger et al. 2004). In dieser Studie wurde aber zum ersten Mal eine Population von Makrophagen beschrieben, die kleiner sind als die herkömmlichen Sputummakrophagen und vor allem bei COPD-Patienten in der Exazerbationsphase im Vergleich zu den großen Makrophagen stark ansteigen können. Diese kleinen Sputummakrophagen zeigten im Vergleich zur großen Population eine höhere Expression der Oberflächenmarker CD14 und HLA-DR.

A.4.1.3 Die Rolle der Zytokine, Chemokine und Proteasen

EINLEITUNG

Mittlerweile sind mehr als 50 Chemokine bekannt, die bis zu 20 Rezeptoren aktivieren (Locati et al. 2005). Aufgrund ihrer Unterschiede in der Position von entscheidenden Cystein-Resten sind sie in vier Familien unterteilt: CC (Cystein-Reste benachbart), CXC (Cystein-Reste durch eine andere Aminosäure voneinander getrennt), C (nur ein Cystein) und CX\textsubscript{3}C (zwischen den Cysteinen liegen drei andere Aminosäuren) Chemokine. Jedes Chemokin-Molekül kann an einen oder an mehrere Rezeptoren binden und so Signaltransduktionskaskaden aktivieren, die in Chemotaxis oder anderen Aktivitäten (z.B. Proliferation oder Differenzierung) resultieren (Donnelly and Barnes 2006).

A.4.2 Entgiftungsreaktionen

Neben den immunologischen Reaktionen zählen auch spezielle Entgiftungsmechanismen zu den Abwehrmechanismen der Lunge.

A.4.2.1 Die Monoxygenasen

Eine große Enzymgruppe innerhalb der Phase I-Enzyme stellen die Monoxygenasen dar. Sie übertragen ein Atom des Sauerstoffmoleküls auf den zu metabolisierenden Fremdstoff, das andere Atom wird zur Herstellung von Wasser verwendet.

Die wichtigsten Enzyme, die diese Reaktion katalysieren, sind die Cytochrom P450 Enzyme (CYPs). Diese Hämproteine erhielten ihren Namen durch die Ausbildung eines Absorptionsmaximums bei 450 nm nach Bindung eines der CO-Moleküle (Klingenberg 1958; Omura and Sato 1964a, b). CYPs sind in der Natur nahezu ubiquitär (Menschen, Tiere, Pflanzen, Bakterien) zu finden, in verschiedenen Organen und Zelltypen nachweisbar und liegen eingebettet in der Phospholipidmembran des endoplasmatischen Reticulums vor.

Es gibt eine Vielzahl von CYPs, beim Menschen z.B. sind bisher 57 Gene bekannt (Nelson). Davon ist ein Viertel in die Metabolisierung von Xenobiotika involviert. Neben ihrer Rolle im Fremdstoffmetabolismus sind CYPs aber auch an der Synthese und Metabolisierung von endogenen Stoffen beteiligt wie z.B. Steroidhormonen. Ältere Klassifikationen der verschiedenen CYP Isoenzyme erfolgten oft nach der Substratspezifität, heute beruht die Einteilung meist auf der Homologie ihrer Aminosäuresequenzen (Nelson et al. 1996). Alle Enzyme,
die eine Homologie > 40% haben, werden in einer Familie zusammengefasst, z.B. Familie CYP1. Die Einteilung in Subfamilien (Homologie > 60%) wird durch die Zuordnung eines Buchstaben gekennzeichnet, z.B. CYP1B. Eine weitere Zahl steht für die jeweilige Isoform des Enzyms, z.B. CYP1B1.

A.4.2.2 Cytochrom-Familie P450 1

Anfänglich dachte man, dass sich die CYP1 Familie aus einer Subfamilie mit zwei genau charakterisierten Mitgliedern zusammensetzt, CYP1A1 und CYP1A2. 1994 aber wurde zusätzlich ein weiteres Enzym dieser Familie entdeckt, das CYP1B1 (Sutter et al. 1994). CYP1B1 zeigt ca. 40 % Aminosäurenhomologie in Bezug auf 1A1 (und auch 1A2) und ist bisher das einzige Mitglied seiner Subfamilie (Murray et al. 2001).

A.4.2.3 Cytochrom P450 1B1

Auch wenn das CYP1B1 der CYP1 Familie zugeordnet wurde, besitzt es einige Eigenschaften, die es deutlich von den beiden anderen Mitgliedern (CYP1A1 und 1A2) unterscheidet.

Das CYP1B1 Gen ist mit einer Länge von 12 kb auf dem kurzen Arm von Chromosom 2 (p22-21) lokalisiert (CYP1A1/2 liegen auf Chromosom 15) (Murray et al. 2001). Es besteht aus drei Exons und zwei Introns, woraus eine mRNA mit 5,2 kb resultiert (CYP1A1/2 besitzen jeweils sieben Exons und sechs Introns) (Murray et al. 2001). In der 5’ Region vor dem Transkriptionsstartpunkt finden sich bei CYP1B1 sowohl basale Regulationssequenzen als auch DNA-Elemente (XRE), die auf Xenobiotica reagieren.

Das CYP1B1 Protein besitzt – wie alle Cytochrom P450-Enzyme – ein Häm (Porphyrin mit zentralem Eisenatom) als prosthetische Gruppe, welches für das Redoxpotential und die Lichtabsorption verantwortlich ist. CYP1B1 besteht aus 543 Aminosäuren und ist im Aminoterminal reich an hydrophoben Aminosäuren, die vermutlich für die Verankerung des Proteins in der Membran verantwortlich sind (Hasler and Pikuleva 1999).

Die Expression von CYP1B1 variiert stark, sowohl in unterschiedlichen Zelltypen und Geweben als auch zwischen einzelnen Individuen. Das CYP1B1 Protein wird in Tumorgewebe erhöht exprimiert, wohingegen in normalem
Einleitung

Gewebe selbst die mRNA nur in sehr geringen Mengen nachgewiesen werden konnte.

A.5 Ziel der Arbeit

Um Grundlagen für mögliche Therapien für COPD zu erarbeiten und die Krankheit genauer diagnostizieren zu können, wurden in der vorliegenden Arbeit zwei Schwerpunktthemen behandelt:

Die eine Fragestellung beschäftigte sich mit Sputummakrophagen von COPD-Patienten, vor allem mit der Population der kleinen Sputummakrophagen. In dieser Arbeit habe ich die Hypothese untersucht, dass die Sputummakrophagen bei COPD-Patienten eine andere Genexpression aufweisen als bei gesunden Rauchern und Nichtrauchern.

B Material und Methoden

B.1 Material

B.1.1 Reagenzien

<table>
<thead>
<tr>
<th>Reagenz</th>
<th>Bestellnummer</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarose</td>
<td>161-3102</td>
<td>BioRad (München)</td>
</tr>
<tr>
<td>ALLN (Calpain Inhibitor I)</td>
<td>A-6185</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>Antipain</td>
<td>A-6191</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>Aprotinin</td>
<td>A-6279</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>Benzo(a)pyren</td>
<td>12780</td>
<td>Fluka (Taufkirchen)</td>
</tr>
<tr>
<td>Bradford-Reagenz</td>
<td>5000-0006</td>
<td>BioRad (München)</td>
</tr>
<tr>
<td>Bromphenolblau</td>
<td>B-5525</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>(3',3'',5',5''-Tetrabromophenol-sulfonphthalein)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSA (Bovines Serum Albumin)</td>
<td>A-2153</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>Chloroform</td>
<td>C-2432</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>DEPC (Diethylpyrocarbonat)</td>
<td>D-5758</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>Diff-Quik®</td>
<td>130832</td>
<td>Medion Diagnostics (Düdingen, Schweiz)</td>
</tr>
<tr>
<td>dNTPs (dATP, dCTP, dGTP, dTTP)</td>
<td>N808-0007</td>
<td>Applied Biosystems (Darmstadt)</td>
</tr>
<tr>
<td>DNA-Längenstandard VI</td>
<td>11062590001</td>
<td>Roche (Mannheim)</td>
</tr>
<tr>
<td>DTT (Dithiothreitol)</td>
<td>19474</td>
<td>Merck (Darmstadt)</td>
</tr>
<tr>
<td>Dulbecco’s minimal essential medium</td>
<td>F4815</td>
<td>Biochrom (Berlin)</td>
</tr>
<tr>
<td>Ham’s F12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECL™ Western Blotting Detection Reagents</td>
<td>RPN2106</td>
<td>Amersham Biosciences (Freiburg)</td>
</tr>
<tr>
<td>EDTA (Ethyldiamintetraessigsäure)</td>
<td>E-5134</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>Ethanol (absolut)</td>
<td>1.00983.1000</td>
<td>Merck (Darmstadt)</td>
</tr>
<tr>
<td>Ethidiumbromid</td>
<td>E-2515</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>Eukitt</td>
<td></td>
<td>O. Kindler (Freiburg)</td>
</tr>
<tr>
<td>FCS (low endotoxin)</td>
<td>S 0115</td>
<td>Biochrom KG (Berlin)</td>
</tr>
<tr>
<td>Material und Methoden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂O, reinst</td>
<td>82479E</td>
<td>B.Braun (Melsungen)</td>
</tr>
<tr>
<td>Heparin-Natrium (5000 U/ml)</td>
<td>2047217N1</td>
<td>B.Braun (Melsungen)</td>
</tr>
<tr>
<td>Hyperfilm™ ECL (18 x 24 cm)</td>
<td>RPN3103</td>
<td>Amersham Biosciences (Freiburg)</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>I-9516</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>Kit (ready-to-use amplification primer mix for human MMP-9)</td>
<td>487645</td>
<td>Search LC (Heidelberg)</td>
</tr>
<tr>
<td>Kit (ready-to-use amplification primer mix for human TIMP-1)</td>
<td>487553</td>
<td>Search LC (Heidelberg)</td>
</tr>
<tr>
<td>Ladepuffer</td>
<td>B-3269</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>Leupeptin-Acetat</td>
<td>L-2023</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>Leupeptin-Propionyl</td>
<td>L-3402</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>L-Glutamin</td>
<td>25030-024</td>
<td>Gibco® Invitrogen (Karlsruhe)</td>
</tr>
<tr>
<td>LPS (S. Minnesota)</td>
<td>L-6261</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>Lymphoprep™</td>
<td>1114740</td>
<td>AXIS-SHIELD PoC AS (Oslo, Norwegen)</td>
</tr>
<tr>
<td>Magermilchpulver</td>
<td>1.15363</td>
<td>Merck (Darmstadt)</td>
</tr>
<tr>
<td>Methanol</td>
<td>1.06009.2500</td>
<td>Merck (Darmstadt)</td>
</tr>
<tr>
<td>MgCl₂ x 6H₂O</td>
<td>M-0250</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>MgCl₂ (25mM)</td>
<td>N8080130</td>
<td>GeneAmp 10 x PCR Buffer II & MgCl₂ Applera Deutschland GmbH (Darmstadt)</td>
</tr>
<tr>
<td>Mineralöl</td>
<td>M-9504</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>NaCl</td>
<td>S-9625</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>α-Naphtoflavon</td>
<td>N-5757</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>Natrium-Deoxycholat</td>
<td>D-6750-G25</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>Natriumdodecylsulfat</td>
<td>L-5750</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>NaOH</td>
<td>S-0899</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>nicht-essentielle Aminosäuren</td>
<td>11140-35</td>
<td>Invitrogen (Karlsruhe)</td>
</tr>
<tr>
<td>NuPAGE® Antioxidant</td>
<td>NP0005</td>
<td>Invitrogen (Karlsruhe)</td>
</tr>
<tr>
<td>NuPAGE® LDS Sample Buffer (4 x)</td>
<td>NP0007</td>
<td>Invitrogen (Karlsruhe)</td>
</tr>
<tr>
<td>NuPAGE® MOPS-SDS Puffer</td>
<td>NP0001</td>
<td>Invitrogen (Karlsruhe)</td>
</tr>
<tr>
<td>Material/Equipment</td>
<td>Catalog Number</td>
<td>Supplier Name and Location</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>NuPAGE® Sample Reducing Agent (10 x)</td>
<td>NP0004</td>
<td>Invitrogen (Karlsruhe)</td>
</tr>
<tr>
<td>NuPAGE® Transferpuffer</td>
<td>NP0006</td>
<td>Invitrogen (Karlsruhe)</td>
</tr>
<tr>
<td>Oligo d(T)$_{16}$</td>
<td>N808-0128</td>
<td>Applied Biosystems (Darmstadt)</td>
</tr>
<tr>
<td>OPI-Supplement (enthält: Oxalacetatsäure, Natriumpyruvat, Insulin)</td>
<td>0-5003</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>PCR-Puffer II (10 x konz)</td>
<td>N8080130</td>
<td>GeneAmp 10 x PCR Buffer II & MgCl$_2$ Applera Deutschland GmbH (Darmstadt)</td>
</tr>
<tr>
<td>Pepstatin A</td>
<td>P-4262</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>Penicillin/Streptomycin</td>
<td>15140-114</td>
<td>Invitrogen (Karlsruhe)</td>
</tr>
<tr>
<td>PMSF (Phenylmethylsulfonylfluorid)</td>
<td>P-7626</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>Reverse Transkriptase M-MuLV</td>
<td>N808-0018</td>
<td>Applied Biosystems (Darmstadt)</td>
</tr>
<tr>
<td>rhM-CSF (rekonbinanter humaner Makrophagen koloniestimulierender Faktor)</td>
<td>3A04X003</td>
<td>Genetics Institute (Cambridge, USA)</td>
</tr>
<tr>
<td>RNase Inhibitor</td>
<td>N808-0119</td>
<td>Applied Biosystems (Darmstadt)</td>
</tr>
<tr>
<td>Röntgen-Entwickler-Konzentrat</td>
<td>00011</td>
<td>Adefo Chemie GmbH (Nürnberg)</td>
</tr>
<tr>
<td>Röntgen-Fixierer-Konzentrat</td>
<td>00064</td>
<td>Adefo Chemie GmbH (Nürnberg)</td>
</tr>
<tr>
<td>RosetteSep™ Human Monocyte Enrichment Cocktail</td>
<td>15028</td>
<td>StemCell Technologies</td>
</tr>
<tr>
<td>RPMI-Medium (low endotoxin, 2g/l NaHCO$_3$)</td>
<td>F1415</td>
<td>Biochrom KG (Berlin)</td>
</tr>
<tr>
<td>SeeBlue® Plus2 Standard</td>
<td>LC5925</td>
<td>Invitrogen (Karlsruhe)</td>
</tr>
<tr>
<td>Sputolysin</td>
<td>560000</td>
<td>Calbiochem (Bad Soden)</td>
</tr>
<tr>
<td>TRI-Reagent</td>
<td>T-9424</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>TRIS-Base</td>
<td>T-6791</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>(Tris(hydroxymethyl)aminomethan)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tRNA aus Brauhefe</td>
<td>109517</td>
<td>Roche (Mannheim)</td>
</tr>
<tr>
<td>Trypanblau</td>
<td>T-8154</td>
<td>Sigma (Taufkirchen)</td>
</tr>
<tr>
<td>Lösungen und Medien</td>
<td>Zusammensetzung</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>D-PBS</td>
<td>PBS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EDTA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mit der Vakuumpumpe ca. 10 min entgasen</td>
<td></td>
</tr>
<tr>
<td>EDTA-Lösung 0,5 M</td>
<td>EDTA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ad 100 ml H₂O (reinst)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH 8,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vor Gebrauch autoklavieren</td>
<td></td>
</tr>
<tr>
<td>DEPC-H₂O</td>
<td>0,1 % DEPC zu H₂O (reinst) geben, über Nacht inkubieren, vor Gebrauch autoklavieren</td>
<td></td>
</tr>
<tr>
<td>MM6-Medium</td>
<td>RPMI 1640</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L-Glutamin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Penicillin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Streptomycin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPI-Supplement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>non essential amino acids (1x)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH 7,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Das Medium wird über einen Ultra-Steril-Filter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(#080501, Gambro, Gröbenzell) filtriert.</td>
<td></td>
</tr>
<tr>
<td>A549/Calu-3 Medium</td>
<td>Dulbecco’s minimal essential medium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(NUT mix F12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L-Glutamin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Penicillin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Streptomycin</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 1: Verwendete Reagenzien
MATERIAL UND METHODEN

<table>
<thead>
<tr>
<th>PBS</th>
<th>Na$_2$HPO$_4$ x 2 H$_2$O</th>
<th>40,48 g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KH$_2$PO$_4$</td>
<td>9,8 g</td>
</tr>
<tr>
<td></td>
<td>NaCl</td>
<td>17,5 g</td>
</tr>
<tr>
<td>ad 4 l H$_2$O (reinst)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH 7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vor Gebrauch autoklavieren</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RIPA-Puffer</th>
<th>NaCl</th>
<th>150 mM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IGEPAL CA-630</td>
<td>1 %</td>
</tr>
<tr>
<td></td>
<td>Natrium-Deoxycholat</td>
<td>0,5 %</td>
</tr>
<tr>
<td></td>
<td>SDS</td>
<td>0,1 %</td>
</tr>
<tr>
<td></td>
<td>TRIS-Base</td>
<td>50 mM</td>
</tr>
<tr>
<td></td>
<td>pH 8,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Puffer A</th>
<th>HEPES pH 7,9</th>
<th>10 mM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KCl</td>
<td>10 mM</td>
</tr>
<tr>
<td></td>
<td>MgCl$_2$</td>
<td>1,5 mM</td>
</tr>
<tr>
<td>ad 100 ml</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Puffer D</th>
<th>HEPES pH 7,9</th>
<th>20 mM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Glycerol</td>
<td>20 %</td>
</tr>
<tr>
<td></td>
<td>KCl</td>
<td>0,1 M</td>
</tr>
<tr>
<td></td>
<td>EDTA pH8</td>
<td>0,05 mM</td>
</tr>
<tr>
<td>ad 100 ml</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proteaseinhibitoren</th>
<th>Aprotinin</th>
<th>10 µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PMSF</td>
<td>1 mM</td>
</tr>
<tr>
<td></td>
<td>Leupeptin-Propionyl</td>
<td>40 µg/ml</td>
</tr>
<tr>
<td></td>
<td>Leupeptin-Acetat</td>
<td>20 µg/ml</td>
</tr>
<tr>
<td></td>
<td>Antipain</td>
<td>20 µg/ml</td>
</tr>
<tr>
<td></td>
<td>Pepstatin A</td>
<td>20 µg/ml</td>
</tr>
<tr>
<td></td>
<td>ALLN</td>
<td>400 µM</td>
</tr>
<tr>
<td></td>
<td>DTT</td>
<td>2 mM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TBE (10 x)</th>
<th>TrisBase</th>
<th>108 g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Borsäure</td>
<td>55 g</td>
</tr>
<tr>
<td></td>
<td>0,5 M EDTA (pH 8,0)</td>
<td>40 ml</td>
</tr>
<tr>
<td></td>
<td>H$_2$O (reinst)</td>
<td>ad 1 l</td>
</tr>
<tr>
<td>vor Gebrauch autoklavieren</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL UND METHODEN

<table>
<thead>
<tr>
<th>TBS</th>
<th>Tris-HCl</th>
<th>7,88 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>8,06 g</td>
<td></td>
</tr>
<tr>
<td>KCl</td>
<td>0,2 g</td>
<td></td>
</tr>
<tr>
<td>Tween®20</td>
<td>0,5 ml</td>
<td></td>
</tr>
<tr>
<td>H₂O (reinst)</td>
<td>ad 1 l</td>
<td></td>
</tr>
<tr>
<td>pH 7,5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trypanblau Trypanblau 1:2 in PBS

Tabelle 2: Verwendete Lösungen und Medien

B.1.3 Verbrauchsmaterialien

<table>
<thead>
<tr>
<th>Material</th>
<th>Bestellnummer</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deckgläser (18 x 18 mm)</td>
<td>1201-2</td>
<td>Menzelgläser (Braunschweig)</td>
</tr>
<tr>
<td>Faltenfilter 520 A1/2 (Ø 185 mm)</td>
<td>10 331 447</td>
<td>Schleicher & Schuell (Würzburg)</td>
</tr>
<tr>
<td>LD-Säulen (MidiMACS)</td>
<td>130-042-901</td>
<td>Militenyi Biotech GmbH (Bergisch Gladbach)</td>
</tr>
<tr>
<td>LightCycler Kapillaren</td>
<td>11909339001</td>
<td>Roche (Mannheim)</td>
</tr>
<tr>
<td>LS-Säulen (MidiMACS)</td>
<td>130-042-401</td>
<td>Militenyi Biotech GmbH (Bergisch Gladbach)</td>
</tr>
<tr>
<td>Mundstücke für Inhalationsgerät</td>
<td>85605</td>
<td>Schill GmbH & CoKG (Probstzella)</td>
</tr>
<tr>
<td>Nitrocellulose Membran Filterpapier Sandwich</td>
<td>LC2001</td>
<td>Novex (San Diego, USA)</td>
</tr>
<tr>
<td>NuPAGE® Bis-Tris-Gele (4-12%)</td>
<td>NP0329BOX</td>
<td>Invitrogen (Karlsruhe)</td>
</tr>
<tr>
<td>Objekttträger</td>
<td>2406/1</td>
<td>Assistent (Sondheim)</td>
</tr>
<tr>
<td>Petrischalen (d = 14,5 cm)</td>
<td>639102</td>
<td>Greiner Bio-one (Kremsmünster, Österreich)</td>
</tr>
<tr>
<td>Plastikspatel</td>
<td>759800</td>
<td>Brand (Wertheim)</td>
</tr>
<tr>
<td>Polystyren-Röhren (12x75mm)</td>
<td>352054</td>
<td>BD Bioscience (Heidelberg)</td>
</tr>
<tr>
<td>Reaktionsgefäße 1,5 ml</td>
<td>0030120086</td>
<td>Eppendorf (Hamburg)</td>
</tr>
<tr>
<td>Reaktionsgefäße 0,5 ml</td>
<td>0030121023</td>
<td>Eppendorf (Hamburg)</td>
</tr>
</tbody>
</table>
MATERIAL UND METHODEN

Zellkultur Röhrchen (PS, 12 ml) 163 160 Greiner (Frickenhausen)
Zellkulturschale (75 cm²) 3275 Costar (Bodenheim)
Zellkulturplatte (24 Vertiefungen) 3524 Costar (Bodenheim)
Zellkulturplatte (24 Vertiefungen, ultra low attachment) 3473 Costar (Bodenheim)
Zellkulturplatte (96 Vertiefungen, ultra low attachment, Flachboden) 3474 Costar (Bodenheim)
Zellsieb 40 µm 352340 BD Bioscience (Heidelberg)
Zellsieb 100 µm 352360 BD Bioscience (Heidelberg)
Zentrifugenröhrchen 1,5 ml (Ultrazentrifuge) 356090 Beckman-Coulter (Krefeld)
Zentrifugenröhrchen 15 ml 227261 Greiner (Frickenhausen)
Zentrifugenröhrchen 50 ml 188261 Greiner (Frickenhausen)

Tabelle 3: Verwendete Verbrauchsmaterialien

B.1.4 Antikörper und Isotyp-Kontrollen

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Bestellnum</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD14-MicroBeads</td>
<td>130-050-201</td>
<td>Miltenyi-Biotech (Bergisch Gladbach)</td>
</tr>
<tr>
<td>CD14 My4 FITC</td>
<td>6603511</td>
<td>Coulter (Krefeld)</td>
</tr>
<tr>
<td>CD14 Isotyp MsIgG2b FITC</td>
<td>6603034</td>
<td>Coulter (Krefeld)</td>
</tr>
<tr>
<td>CD14 RMO52 PC5</td>
<td>A07765</td>
<td>Coulter (Krefeld)</td>
</tr>
<tr>
<td>CD14 Isotyp MsIgG2a PC5</td>
<td>A09148</td>
<td>Coulter (Krefeld)</td>
</tr>
<tr>
<td>CD16-MicroBeads</td>
<td>130-045-701</td>
<td>Miltenyi-Biotech (Bergisch Gladbach)</td>
</tr>
<tr>
<td>CD16 Leu11c PE</td>
<td>347617</td>
<td>Becton Dickinson (Heidelberg)</td>
</tr>
<tr>
<td>CD16 Isotyp MsIgG1 PE</td>
<td>349043</td>
<td>Becton Dickinson (Heidelberg)</td>
</tr>
<tr>
<td>CD16b-CLB-gran11.5 PE</td>
<td>550868</td>
<td>Pharamingen (über BD Bioscience, Heidelberg)</td>
</tr>
<tr>
<td>CD66b-FITC</td>
<td>51-36805X</td>
<td>Serotec (Düsseldorf)</td>
</tr>
</tbody>
</table>
Tabelle 4: Verwendete Antikörper und Isotyp-Kontrollen

<table>
<thead>
<tr>
<th>Antikörper Typ</th>
<th>In-vitro</th>
<th>Hersteller</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>CXCR4 MAB172</td>
<td></td>
<td>R&D Systems GmbH (Wiesbaden)</td>
<td></td>
</tr>
<tr>
<td>CXCR4 Isotyp MsIgG2b</td>
<td></td>
<td>R&D Systems GmbH (Wiesbaden)</td>
<td></td>
</tr>
<tr>
<td>CYP1B1</td>
<td>CYP1B11-A</td>
<td>Alpha Diagnostics (San Antonio, USA)</td>
<td></td>
</tr>
<tr>
<td>IgG FITC goat α mouse (sekundärer Antikörper)</td>
<td>M35001</td>
<td>Caltag / Invitrogen (Karlsruhe)</td>
<td></td>
</tr>
<tr>
<td>IgG PE goat α mouse (sekundärer Antikörper)</td>
<td>M35004-1</td>
<td>Caltag / Invitrogen (Karlsruhe)</td>
<td></td>
</tr>
<tr>
<td>IgG-Peroxidase goat α rabbit (sekundärer Antikörper)</td>
<td>A0545</td>
<td>Sigma (Taufkirchen)</td>
<td></td>
</tr>
<tr>
<td>MOPC-21 (mouse IgG1k)</td>
<td>M9269</td>
<td>Sigma (Taufkirchen)</td>
<td></td>
</tr>
</tbody>
</table>

B.1.5 Partikel

<table>
<thead>
<tr>
<th>Partikel</th>
<th>Durchmesser (nm)</th>
<th>Spezif. Oberfläche (m² / g)</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feines TiO₂</td>
<td>220</td>
<td>6</td>
<td>Zur Verfügung gestellt</td>
</tr>
<tr>
<td>Ultra-feines TiO₂</td>
<td>20</td>
<td>48</td>
<td>von Dr. Wolfgang</td>
</tr>
<tr>
<td>Ultra-feines Printex 90</td>
<td>12</td>
<td>300</td>
<td>Kreyling (IHB, Helmholtz Zentrum)</td>
</tr>
<tr>
<td>Ultra-feines EC90 (elementarer Kohlenstoff)</td>
<td>90</td>
<td>600</td>
<td>München, Neuherberg</td>
</tr>
</tbody>
</table>

Tabelle 5: Verwendete Partikel

B.1.6 Oligonukleotide

26
Verwendete Oligonukleotide wurden von AG BIODV des Helmholtz Zentrums München in Neuherberg bzw. von der Firma MWG (Holzkirchen) synthetisiert. Das gelieferte Lyophilisat wurde in 200 µl DEPC-H₂O gelöst und auf 15 µM verdünnt.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequenz (5’→3’)</th>
<th>Produktlänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Enolase</td>
<td>forward: GTTAGCAAGAAACTGAACGTCACA</td>
<td>619 bp</td>
</tr>
<tr>
<td></td>
<td>reverse: TGAAGGACTTTGTACAGGTCAG</td>
<td></td>
</tr>
<tr>
<td>Chemokinrezepor</td>
<td>CCR9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>forward: TACTGGCTCGTTGTCATCGT</td>
<td>572 bp</td>
</tr>
<tr>
<td></td>
<td>reverse: TTGGCTTGATCATCGGTTG</td>
<td></td>
</tr>
<tr>
<td>Chemokinrezepor</td>
<td>CXCR1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>forward: GCCACCTGCAAGATGAAAGATT</td>
<td>423 bp</td>
</tr>
<tr>
<td></td>
<td>reverse: CAGCAGCAAGCAAACAAAA</td>
<td></td>
</tr>
<tr>
<td>Chemokinrezepor</td>
<td>CXCR2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>forward: GTGAACCAAATCCCTTGAA</td>
<td>447 bp</td>
</tr>
<tr>
<td></td>
<td>reverse: AGACGGTCCGGAAGAAT</td>
<td></td>
</tr>
<tr>
<td>Chemokinrezepor</td>
<td>CXCR4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>forward: CCTCATTTGTGCAACGTACG</td>
<td>323 bp</td>
</tr>
<tr>
<td></td>
<td>reverse: AGGATGGGGGTCGACAAACATT</td>
<td></td>
</tr>
<tr>
<td>Cytochrom P450 1B1</td>
<td>(CYP1B1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>forward: TGATGGACGGCCTTTATCTCTC</td>
<td>285 bp</td>
</tr>
<tr>
<td></td>
<td>reverse: CATAAGGAAGGCCAGGACAT</td>
<td></td>
</tr>
<tr>
<td>Cytochrom P450 1A1</td>
<td>(CYP1A1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>forward: TCTTTCTCTCTGGCTATCCT</td>
<td>596 bp</td>
</tr>
<tr>
<td></td>
<td>reverse: CTGTCTCTCCCTCTCACTCTT</td>
<td></td>
</tr>
<tr>
<td>Dual specificity</td>
<td>phosphatase 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(DUSP1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>forward: TAGCTTTTCCTCGAAAAGCAGG</td>
<td>239 bp</td>
</tr>
<tr>
<td></td>
<td>reverse: GAAGCGCAGTGCCTGACAGAGC</td>
<td></td>
</tr>
<tr>
<td>Eukaryotic translation</td>
<td>initiation factor (EIF4G3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>forward: AGCCCACACAATGGGATTAGT</td>
<td>204 bp</td>
</tr>
<tr>
<td></td>
<td>reverse: GGGTGGCTTAAACAAATGGAAGT</td>
<td></td>
</tr>
<tr>
<td>Galectin 3 (GAL3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>forward: GCCATACCATCTTTCTGGACAG</td>
<td>297 bp</td>
</tr>
<tr>
<td></td>
<td>reverse: TCTTTTCCTCTCCCTCCATTA</td>
<td></td>
</tr>
<tr>
<td>H2A histone family, member 4</td>
<td>(H2AFY)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>forward: TTCAGGGCAACTGAGAGGTG</td>
<td>315 bp</td>
</tr>
<tr>
<td></td>
<td>reverse: CCTCATGTTTCGCGGCCACTG</td>
<td></td>
</tr>
<tr>
<td>Haemoxgenase 1 (HO-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>forward: CAGGCGAGAATGGCTGAG</td>
<td>280 bp</td>
</tr>
<tr>
<td></td>
<td>reverse: GCTTCACATGCGGCTGCA</td>
<td></td>
</tr>
<tr>
<td>Heat shock protein 40</td>
<td>(HSP40)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>forward: TCAGTCATACCTCTCTCCATC</td>
<td>302 bp</td>
</tr>
<tr>
<td></td>
<td>reverse: CCACCTCTGGGAATGATGTTCA</td>
<td></td>
</tr>
<tr>
<td>Hepatitis A virus cellular</td>
<td>Receptor 2 (hepAcR2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>forward: TGGCAATTCGACTGAGCAGA</td>
<td>260 bp</td>
</tr>
<tr>
<td></td>
<td>reverse: TGCTTCATAGCGATGGACAGA</td>
<td></td>
</tr>
<tr>
<td>Hypothetisches Protein H41</td>
<td>(CDV3 Homolog)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>forward: GCCCTGACTCTCCAAATGAA</td>
<td>265 bp</td>
</tr>
<tr>
<td></td>
<td>reverse: GGAAGGACTGCTGGAAGAATA</td>
<td></td>
</tr>
<tr>
<td>Material und Methoden</td>
<td>Primerpaar</td>
<td>Länge (bp)</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| Interleukin 1β (IL-1β) | forward: AAACAGATGAAGTGCTCCTTCCAGG
reverse: TGGAGAACACCACCTTGTTGCTCCA | 388 bp |
| Interleukin 6 (IL-6) | forward: ATGAACTCCTTCTCCACAAGC
reverse: CTACATTTGCCGAAGAGCCCTGAGCTGGACTG | 639 bp |
| Interleukin 8 (IL-8) | forward: ATGACTTCCAAGCTGGCGTGGCT
reverse: TGTACGCCCCCTCTTCCAAACCTTCTC | 398 bp |
| Interleukin 10 (IL-10) | forward: GCCTAACATGCTCGCAGTTC
reverse: TTTTCTTCTCACCATTGTACAT | 204 bp |
| Jagged1 (JAG1) | forward: GATTTCCTCTTCAACCAAGGTCATGCTCG
reverse: TCTTCAACGGTCTCTCAATGGTGAA | 262 bp |
| Matrix Metalloproteinase 9 (MMP-9) | forward: GTGCTGGGGCTGCTGTTCGTGGACTG
reverse: GTCGCCCTCAAAGGTGGTTTT | 303 bp |
| Myristoylated alanine-rich protein kinase C substrate (MARCKS) | forward: CAAGGCAGAGGAAGAAGGTGT
reverse: GTGGTGCCAGGTACTGGTTTT | 206 bp |
| Osteopontin (OPN) | forward: GAATGGTGCATAAAGGCGCATC
reverse: TTGGGGTCCTACAAACCAGCATAT | 276 bp |
| Protein Tyrosin Phosphatase IVA1 (PTP4A1) | forward: TTGACCTTTCCCAAAATCATGC | 255 bp |
| Ras association domain family (RASSF5) | forward: TGCCACGTACAGGACCATTATT
reverse: TTGGGTGCTCCTTCTTCTTGAGC | 192 bp |
| Sialoadhesin precursor (SIGLEC1) | forward: GGAAGGCAGACAGCAGATGTGG
reverse: TTAGCTCCTGTGCAACTCCCC | 299 bp |
| Stromal derived factor (SDF-1α) | forward: CTGGGTTTGTGATTGCTCTG
reverse: CATTCAATGGCCACTCCAA | 354 bp |
| Transforming growth factor (TGFβ) | forward: TGACAGCAAGGATAACACAC
reverse: TGTCAGGCCTCCTAATGTAG | 326 bp |
| Tissue Inhibitor Matrix Metalloproteinase (TIMP-1) | forward: GGGGACACCAGACAGATCTTCCAGAAGGAGGAGCT | 400 bp |
| Tumornekrosefaktor (TNF) | forward: CAGAGGGAAGAGTTCCTCCAG
reverse: CCTTGGTCTGGTAGGAGACG | 325 bp |
B.1.7 Geräte

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapter für Ultrazentrifuge</td>
<td>Beckman-Coulter (Krefeld)</td>
</tr>
<tr>
<td>Analysenwaage BP 210 S</td>
<td>Sartorius (Göttingen)</td>
</tr>
<tr>
<td>Anwenderset für Inhalationsgerät (2901)</td>
<td>Schill GmbH & CoKG (Probstzella)</td>
</tr>
<tr>
<td>Autoklav (Typ 400, Varioklav®)</td>
<td>Oberschleißheim</td>
</tr>
<tr>
<td>Axioplan2 (Fluoreszenzmikroskop)</td>
<td>Zeiss (Jena)</td>
</tr>
<tr>
<td>Brutschrank</td>
<td>Binder (Tuttlingen)</td>
</tr>
<tr>
<td>eflow Inhalationsgerät (Modell 078B1001)</td>
<td>PARI GmbH (Starnberg)</td>
</tr>
<tr>
<td>Elektrophoresekammern (Horizon® 11-14)</td>
<td>GIBCO® Invitrogen (Karlsruhe)</td>
</tr>
<tr>
<td>Elektrophoresenetzgeräte (PS 305 und ST606T)</td>
<td>GIBCO® Invitrogen (Karlsruhe)</td>
</tr>
<tr>
<td>Durchflusszytometer EPICS XL</td>
<td>Coulter (Krefeld)</td>
</tr>
<tr>
<td>Durchflusszytometer FACSCalibur™</td>
<td>Becton Dickinson (Heidelberg)</td>
</tr>
<tr>
<td>Digitalkamera iAi protec JAI 2040</td>
<td>Japan</td>
</tr>
<tr>
<td>Kamera (MP-4)</td>
<td>Polaroid (Dreieich-Sprendlingen)</td>
</tr>
<tr>
<td>Laborzentrifuge 1-15</td>
<td>Sigma (Osterode)</td>
</tr>
<tr>
<td>Laborzentrifuge 1K15, kühlbar</td>
<td>Sigma (Osterode)</td>
</tr>
<tr>
<td>Laborzentrifuge 3K15, kühlbar</td>
<td>Sigma (Osterode)</td>
</tr>
<tr>
<td>Laborzentrifuge 5417C</td>
<td>Eppendorf (Hamburg)</td>
</tr>
<tr>
<td>LightCycler</td>
<td>Roche Applied Science (Mannheim)</td>
</tr>
<tr>
<td>Magnetruhrer (MR 3001)</td>
<td>Heidolph (Schwabach)</td>
</tr>
<tr>
<td>MACS-Multistand (130-042-303)</td>
<td>Miltenyi-Biotech (Bergisch-Gladbach)</td>
</tr>
<tr>
<td>Mikroskop</td>
<td>Zeiss (Jena)</td>
</tr>
<tr>
<td>pH-Meter (MultiCal®)</td>
<td>WTW (Weilheim)</td>
</tr>
<tr>
<td>ThermoCycler Touchdown</td>
<td>Hybaid (Heidelberg)</td>
</tr>
<tr>
<td>Photometer Nanodrop® ND-1000</td>
<td>Kisker (Steinfurt)</td>
</tr>
<tr>
<td>Ultraschall Inhalationsgerät multisonic (LS290)</td>
<td>Schill GmbH & CoKG (Probstzella)</td>
</tr>
<tr>
<td>Ultraschallbad (Sonorex RK 100 H)</td>
<td>Bandelin (Berlin)</td>
</tr>
<tr>
<td>Ultrazentrifuge Avanti J-25</td>
<td>Beckman-Coulter (Krefeld)</td>
</tr>
<tr>
<td>UV-Transilluminator (TS-20E)</td>
<td>Uni-Equipe (Martinsried)</td>
</tr>
<tr>
<td>Thermomixer 5437</td>
<td>Eppendorf (Hamburg)</td>
</tr>
<tr>
<td>Material und Methoden</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermomixer (S436)</td>
<td>Eppendorf (Hamburg)</td>
</tr>
<tr>
<td>Vakuumpumpe Univapo</td>
<td>KNF Neuberger (Freiburg)</td>
</tr>
<tr>
<td>Vortexer (MS 2 Minishaker)</td>
<td>IKA (Staufen)</td>
</tr>
<tr>
<td>Waage Modell PT 3100</td>
<td>Sartorius (Göttingen)</td>
</tr>
<tr>
<td>Wasserbad</td>
<td>GFL (Burgwedel)</td>
</tr>
<tr>
<td>Zählkammer (Neubauer improved)</td>
<td>Hecht Assistent (Sondheim)</td>
</tr>
</tbody>
</table>

Tabelle 7: Verwendete Geräte
B.2 Methoden

B.2.1 Zellkultur

B.2.1.1 Bestimmung der Zellzahl

Zellzahl / ml = Mittelwert aus vier Großquadraten x Verdünnungsfaktor x 10^4

Verdünnungsfaktor: hier 16
10^4: Volumen der Zählkammer (0,1 µl) umgerechnet auf 1 ml

B.2.1.2 Mono Mac 6

Die monozytäre Zelllinie Mono Mac 6 (MM6) ist ein humaner Zellklon, der aus dem Blut eines 64-jährigen Patienten mit monoblastischer Leukämie isoliert wurde (Ziegler-Heitbrock et al. 1988) und Eigenschaften reifer Blutmonozyten besitzt. MM6 Zellen wurden in Suspension in Zellkulturplatten mit 24 Vertiefungen kultiviert und zweimal pro Woche subkultiviert. Zum Ernten wurden die Zellen in jeder Vertiefung gut resuspendiert, in einem 50 ml Röhrchen gesammelt und bei 400 g für 5 min zentrifugiert. Der Überstand
wurde verworfen und das Pellet in geeigneter Menge frischem MM6-Medium aufgenommen.
Für eine Subkultivierung wurden 4×10^6 Zellen in 24 ml MM6-Medium aufgenommen, auf 12 Vertiefungen (je 2 ml) verteilt und bei 37 °C und 5 % CO2 im Brutschrank inkubiert.

B.2.1.3 A549 und Calu-3

Die alveoläre Epithelzelllinie (A549) wurde aus einem Lungenkarzinom eines 58 Jahre alten und die bronchiale Epithelzelllinie (Calu-3) aus der Lunge eines 25-jährigen Kaukasiers gewonnen. Beide wachsen adhärent in DMEM-Medium. Um die Zellen abzulösen, wurde das Medium abgesaugt, kurz mit PBS gespült und mit 2 ml Trypsin-EDTA-Lösung 5 min bei 37°C inkubiert. Um die Trypsin-Reaktion zu stoppen, wurden 10 ml frisches Medium zugegeben und die Zellen in einem 50 ml Röhrchen gesammelt. Nach 5-minütiger Zentrifugation wurde der Überstand verworfen und die Zellen in der geeigneten Menge Medium resuspendiert. Für eine Subkultivierung wurden 2×10^6 Zellen in 20 ml Medium in eine 75 cm² Zellkulturflasche gesät.

B.2.2 Arbeiten mit primären Zellen

B.2.2.1 Isolierung von PBMC (peripheral blood mononuclear cells)

Die peripheren mononukleären Blutzellen (Monozyten und Lymphozyten) wurden aus 50 ml (von COPD-Patienten) bis 100 ml (von gesunden Kontrollspendern) Blut gewonnen. Zunächst wurde das hepariniserte Blut (10 U / ml) mit dem gleichen Volumen LPS-freiem PBS verdünnt. In ein 50 ml Röhrchen wurden 14 ml Lymphoprep vorgelegt und maximal 28 ml dieser Blut-PBS Mischung überschichtet. Um einen Gradienten ausbilden zu können, wurde das Röhrchen 30 min bei 800 x g zentrifugiert (Beschleunigung 5, Bremse 2). Die Fraktion aus Monozyten und Lymphozyten befindet sich in der entstandenen Interphase, welche
abgenommen und in ein neues Reaktionsgefäß überführt wurde. Durch eine 10-
minütige Zentrifugation bei 800 x g wurden die Zellen pelletiert. Der Überstand
wurde verworfen, das Pellet in PBS (2 mM EDTA, 0,5% FCS) aufgenommen
und zweimal gewaschen. Danach wurde die Anzahl der PBMC mithilfe der
Neubauer Zählkammer ermittelt (s. B.2.1.1).

B.2.2.2 MACS (magnetic cell sorting) Isolierung

Mithilfe der MACS-Technologie können aus heterogenen Zellsuspensionen
einzelne Zelltypen in hoher Reinheit angereichert werden. Dazu werden sie
spezifisch mit paramagnetischen Partikeln, den MACS Micro Beads, markiert
und auf eine Trennsäule gegeben, die in einem Dauermagnet platziert wird.
In der Matrix der Säule entsteht ein starkes Magnetfeld, durch welches die mit
Beads markierten Zellen zurückgehalten werden, wohingegen nicht markierte
Zellen die Matrix ungehindert passieren können. Nach Entfernen der Säule aus
dem Dauermagneten können auch magnetisch zurückgehaltene Zellen eluiert
werden.

Aus PBMC können mit der MACS-Technik CD14-positive Monozyten gewonnen
werden. Nach Bestimmung der PBMC-Zellzahl wurde die Zellsuspension auf
eine entsprechende Anzahl an Eppendorf-Reaktionsgefäßen (ca. 15 x 10^6
Zellen pro Reaktionsgefäß) aufgeteilt und 5 min bei 400 x g und 4°C
zentrifugiert. Der Überstand wurde abgenommen und die Pellets in 84 µl einer
CD16 Microbeads / PBS – Mischung (60µl / 25 µl) resuspendiert und 30 min bei
4°C inkubiert. Im anschließenden Waschschritt wurde das Volumen mit 600 µl
PBS erhöht und 5 min bei 400 x g und 4°C zentrifugiert. Die entstandenen
Pellets wurden nach Verwerfen des Überstandes insgesamt in 1,5 ml
entgastem D-PBS aufgenommen und vereinigt. Nachdem die gekühlte LD-
Säule (langsene Fließgeschwindigkeit) im Dauermagneten platziert und mit 2
ml D-PBS (4°C) vorequilibrirt wurde, lässt man die 1,5 ml Zellsuspension
vollständig über die Säule laufen, spült zweimal mit 1 ml D-PBS (4°C) und fängt
das Eluat, in dem nun CD16-positive Zellen depletiert sind, auf. Dieses wurde 5
min bei 400 x g und 4°C zentrifugiert und das Pellet in 1 ml PBS resuspendiert. Nach diesem Schritt wurde die Zellzahl bestimmt und die Zellsuspension wieder auf eine entsprechende Anzahl Eppendorf-Reaktionsgefäße aufgeteilt und pelletiert.

Um CD14-positive Zellen zu separieren, wurden die Pellets in einer CD14 Microbeads / PBS – Mischung (20 µl / 80 µl) aufgenommen und 30 min bei 4°C inkubiert. Der Waschschritt wurde wie oben beschrieben durchgeführt. Die Pellets wurden in insgesamt 1,5 ml ent gastem D-PBS aufgenommen und vereinigt. Für die positive Anreicherung von CD14++-Monozyten wurde eine LS-Säule mit schneller Fließgeschwindigkeit verwendet. Diese wurde wie oben beschrieben vorequilibr iert und mit der Zellsuspension beladen. Anschließend wurde fünfmal mit 2 ml D-PBS gespült, um alle ungebundenen Zellen aus der Säule zu entfernen. Um die sich noch in der Säule befindlichen CD14++-Zellen abzulösen, wurde die Säule aus dem Dauermagneten entfernt und fünfmal je 2 ml PBS mit dem Stempel kräftig durch die Säule gedrückt. Diese Zellsuspension wurde 5 min bei 400 x g zentrifugiert, das Pellet in MM6-Medium aufgenommen und die CD14++-Zellzahl bestimmt.

Als Reinheitskontrolle wurde eine Färbung mit CD14- und CD16-Antikörpern durchgeführt und am Durchflusszytometer analysiert (siehe B.2.2.9).

B.2.2.3 Herstellung von MDM (monocyte derived macrophages) und unreifen dendritischen Zellen (DC) durch in vitro Kultur

Um MDM oder DC zu generieren, wurden auf Zellkulturplatten (24 Vertiefungen, sehr geringe Anhaftung) je 2 x 10^6 CD14++-Monozyten pro Vertiefung ausgesät und 5 Tage bei 37°C und 5 % CO₂ ausgereift. Dies geschah unter Zugabe von unterschiedlichen Substanzen:

für MDM: + M-CSF (100 ng/ml Endkonzentration)

für unreife DC: + GM-CSF (20 ng/ml Endkonzentration), + IL-13 (50 ng/ml Endkonzentration)

für alternativ aktivierte MDM: + M-CSF (100 ng/ml Endkonzentration), + IL-13 (50 ng/ml Endkonzentration)
Material und Methoden

Während der 5 Tage in Kultur reifen die Monozyten aus, was sich in der FACS-Analyse an einer Zunahme der Zellgröße und Granularität zeigt.

B.2.2.4 Gewinnung von induziertem Sputum und Isolierung von Sputummakrophagen

Die Probanden inha lien Kochsalzlösung in verschiedenen Konzentrationen, beginnend mit physiologischer Kochsalzlösung (0,9%) über 3%ige bis hin zur 5%igen NaCl-Lösung. Dafür standen zwei Inhalationsgeräte zur Verfügung: zunächst wurde das Ultraschall Inhalationsgerät multisonic LS 290 verwendet, später aufgrund verbesserter Qualität und modernerer Technik der Ultraschall-Vernebler eflow. Beide wurden nach Herstellerangaben zusammengesetzt und befüllt. Nach der Inhalation wurde durch forciertes Ausatmen das Sputum ausgeworfen und in einer Petrischale aufgefangen.

Das Gesamt-Sputum wurde mit der zwei- bis vierfachen Menge (je nach gewünschter Verdünnung und Konsistenz des Sputums) an Sputolysin (=DTT) versetzt und zur Homogenisierung ca. 45 min bei 37°C im Wasserbad inkubiert. Die Probe wurde anschließend mit dem gleichen Volumen PBS verdünnt und durch ein 100 µm und 40 µm Zellsieb filtriert. Es folgte eine Zentrifugation von 5 min bei 400 x g. Das Pellet wurde in 3 ml PBS resuspendiert und die Zellzahl mit der Neubauer Zählkammer bestimmt (siehe B.2.1.1).

Die Isolierung von Sputummakrophagen wurde durch Rosettierung erreicht. Für die Separation der Makrophagen aus Sputum wurden über spezifische bivalente Antikörper alle nicht gewünschten Leukozyten mit Erythrozyten vernetzt. Durch Dichtegradientenzentrifugation wurde das resultierende Konglomerat sedimentiert und somit von der gewünschten Zellfraktion, die in der Interphase auf dem Dichtekissen verbleibt, getrennt. Zur Zellsuspension wurden 10 µl Erythrozyten (maximal eine Woche alt und im Idealfall vom selben Spender) und 50 µl RosetteSep-Reagenz gegeben und 20 min bei RT inkubiert. Danach wurde die Mischung in einem klaren 15 ml Röhrchen auf 5 ml Lymphoprep aufgeschichtet und 30 min bei 800 x g zentrifugiert. Die
entstandene Interphase wurde abgenommen, zweimal gewaschen, in MM6-Medium aufgenommen und die Zellzahl ermittelt.

Zur Bestimmung der Reinheit wurden die Zellen vor und nach der Rosettierung mit den Antikörpern CD16b-PE, CD66b-FITC und CD14-PC5 gefärbt und die Proben wurden am Durchflusszytometer gemessen (siehe B.2.2.9).

Abbildung 6: Gewinnung von Sputummakrophagen über Rosettierung

B.2.2.5 Gewinnung von Bronchialepithelzellen

Bei Bronchoskopien, die in der Asklepios Fachklinik Gauting durchgeführt wurden, war es möglich durch eine Bürstenbiopsie primäre Bronchialepithelzellen zu gewinnen. Der bronchoskopierende Arzt nahm aus unauffälligen Regionen der Bronchien mit einer Zytologie-Bürste einen Abstrich. Die der Bürste anhaftenden Zellen wurden in 5 ml RPMI Medium ausgewaschen. Diese Prozedur wurde dreimal wiederholt, um genügend Zellmaterial zu gewinnen. Nach einer 5minütigen Zentrifugation bei 400 x g wurde der Überstand verworfen und die Pellets je nach Größe in einem entsprechendem Volumen PBS aufgenommen. Wenn die Probe sehr viel Schleim beinhaltete, folgte eine Inkubation bei 37°C im Wasserbad mit 2 ml Sputolysin, um eine homogenere Lösung zu erhalten. Darauf erfolgte eine erneute Zentrifugation für 5 min bei 400 x g. Die wieder in PBS resuspendierten

36
Zellen wurden ungezählt weiterverwendet, da sie meist in schlecht vereinzelbaren Konglomeraten vorlagen.

B.2.2.6 Anfertigen von Zytospins

Um isolierte Zellen auch mikroskopisch analysieren zu können, wurden Zytospins angefertigt. Hierzu wurden pro Zytospin ca. 1 x 10⁵ Zellen in 200 µl PBS aufgenommen und durch Zentrifugation (5 min, 400 x g) auf die Objekträger aufgebracht. Die getrockneten Zytospins wurden nach Herstellerangaben mit Diff-Quik gefärbt und mit Eukitt eingedeckt. Diff-Quik ist eine Schnellfärbemethode, deren Ergebnisse mit denen der Pappenheim-Methode gut vergleichbar sind.
Mit dem Fluoreszenzmikroskop Axioplan2 und der Digitalkamera iAi protec wurden die Zellen auf den Zytospins dokumentiert.

B.2.2.7 Stimulation

B.2.2.7.1 Partikel und Lipopolysaccharid (LPS)

Zusätzlich wurde eine Stimulation mit Lipopolysaccharid (LPS) durchgeführt, um die Genexpression im Entzündungsgeschehen zu untersuchen. Das
verwendete LPS ist ein Bestandteil der Bakterienwand von *Salmonella minnesota*. Für die Versuche wurde eine Lösung von 100 µg/ml hergestellt, die bis zu einer Woche verwendet werden kann (Lagerung bei 4°C). Für die Stimulation von Blutzellen wurde eine Konzentration von 10 ng/ml verwendet, bei Sputummakrophagen setzte ich eine Konzentration von 1 µg/ml ein.

B.2.2.7.2 Lipophile Substanzen

B.2.2.8 Lysate

Aus dem Stimulationansatz wurde nach gewünschter Stimulationsdauer eine bestimmte Zellzahl (2 x 10⁴, 1 x 10⁵, 5 x 10⁵) mit 200 µl TriReagent (phenol- und thiocyanathaltig) lysiert und gut gemischt. Die Zelllysate können bis zur weiteren Verwendung bei -20°C gelagert werden.
B.2.2.9 Durchflusszytometrie mit dem FACS (Durchflusszytometer)

Für die Reinheitsbestimmung der isolierten CD14-Monozyten wurde ein FITC-markierter Antikörper gegen das Oberflächenmolekül CD14 und ein PE-markierter Antikörper gegen das Oberflächenmolekül CD16 verwendet. Die isolierten Sputumproben wurden vor und nach dem Rosettierungsschritt mit den Antikörpern CD16b-PE, CD66b-FITC und CD14-PC5 gefärbt, um die Reinheit der isolierten Sputummakrophagen bestimmen und kleine von großen Sputummakrophagen unterscheiden zu können. Im vom Hersteller angegebenen Verhältnis wurden die Antikörper der Zellsuspension zugegeben und 20 min auf Eis inkubiert. Nach einem Waschschritt wurden die Zellen in 600
µl PBS aufgenommen und am EPICS oder FACSCalibur Durchflusszytometer gemessen.

B.2.3 Molekularbiologische Methoden

B.2.3.1 Isolierung von mRNA

Zur Isolierung der Gesamt-RNA wurden dem Lysat (siehe B.2.2.8) 3 µl tRNA (5,67 µg/ml) zur besseren Fällung zugesetzt. Um die RNA zu extrahieren wurden 40 µl Chloroform zum Homogenat gegeben und dieses 20 sek gemischt. Einer Inkubation von 20 min bei RT folgte eine Zentrifugation (20 min, 20 000 x g, 4°C), um die Phasentrennung zu erreichen. In der farblosen, wässrigen Phase befindet sich die RNA, die vorsichtig abgenommen und in ein neues Reaktionsgefäß überführt wurde. Für die RNA-Präzipitation wurde zur wässrigen Phase das gleiche Volumen an Isopropanol gegeben und 20 min bei RT inkubiert. Die RNA wurde in einer 20-minütigen Zentrifugation (20 000 x g, 4°C) pelletiert und mit 150 µl Ethanol gewaschen. Nach einer weiteren Zentrifugation (20 min, 20 000 x g, 4°C) wurde der Überstand vollständig abgenommen, das Pellet in 20 µl DEPC-Wasser gelöst und auf Eis gestellt.

B.2.3.2 Konzentrationsbestimmung der RNA

Die RNA-Menge wurde photometrisch bestimmt. Mithilfe des NanoDrop® ND-1000 Spectrophotometers misst man die Absorption von 1 µl RNA bei 260 nm. Die RNA-Menge wurde nach der Lambert-Beer-Gleichung berechnet:

\[c = \frac{(A \cdot e)}{b} \]

Hierbei ist c die zu berechnende RNA Konzentration in ng/ml, A die Absorption, e der wellenlängen-abhängige Extinktionskoeffizient und b die Messstrecke. Proteine absorbieren Licht bei 280 nm Wellenlänge. Durch den Quotienten der Absorptionen bei 260 und 280 nm können Protein-Verunreinigungen in der RNA festgestellt werden. Für eine qualitativ hochwertige RNA-Präparation sollte der Quotient zwischen 1,8 und 2,0 liegen.
Die gelöste mRNA kann bei -20°C gelagert werden.

B.2.3.3 Reverse Transkription (RT)

Zur anschließenden Amplifikation von Zielgenen wurde die isolierte mRNA durch das Enzym reverse Transkriptase in komplementäre DNA (cDNA) umgeschrieben. Für die Reaktion wurden 4 µl der Probe eingesetzt, bei der die niedrigste Konzentration gemessen wurde. Um von allen Proben die gleiche Konzentration einzusetzen, wurden die Volumina der anderen Proben entsprechend angepasst (Volumenausgleich mit DEPC-Wasser). Vor der Transkription wurde die RNA 10 min bei 70°C im Heizblock inkubiert, um Sekundärstrukturen aufzubrechen. Anschließend wurde die RNA sofort auf Eis gestellt, damit mögliche Rückfaltungen vermieden werden. Zur RNA wurden 17 µl des Transkriptions-Mixes gegeben.

<table>
<thead>
<tr>
<th>Reaktionsansatz</th>
<th>µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgCl₂ (25 mM)</td>
<td>4</td>
</tr>
<tr>
<td>10 x PCR-Puffer</td>
<td>2</td>
</tr>
<tr>
<td>Oligo d(T) (50µM)</td>
<td>1</td>
</tr>
<tr>
<td>dNTP (10 mM)</td>
<td>8</td>
</tr>
<tr>
<td>RNAse Inhibitor (20U/µl)</td>
<td>1</td>
</tr>
<tr>
<td>Reverse Transkriptase (50U/µl)</td>
<td>1</td>
</tr>
<tr>
<td>RNA</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabelle 8: RT-Transkriptions-Mix

Dieses Reaktionsgemisch wird mit ca. 5µl Mineralöl überschichtet und im Thermoblock bei 42°C für 30 min umgeschrieben. Die Inaktivierung der reversen Transkriptase erfolgte bei 99°C für 5 min.

Die so gewonnene cDNA kann bis zur weiteren Verwendung bei -20°C gelagert werden.
B.2.3.4 Real-time-PCR

Abbildung 7: Light Cycler Technologie (Quelle: Roche)

In der vorliegenden Arbeit wurde die quantitative real-time PCR mit dem LightCycler FastStart DNA Master SYBR Green I Kit von Roche durchgeführt.
MATERIAL UND METHODEN

<table>
<thead>
<tr>
<th>Reaktionsansatz</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
</tr>
<tr>
<td>MgCl₂ (25 mM)</td>
</tr>
<tr>
<td>5'-Primer (15 µM)</td>
</tr>
<tr>
<td>3'-Primer (15 µM)</td>
</tr>
<tr>
<td>SYBR Green</td>
</tr>
<tr>
<td>10,8 µl</td>
</tr>
<tr>
<td>3,2 µl</td>
</tr>
<tr>
<td>0,5 µl</td>
</tr>
<tr>
<td>0,5 µl</td>
</tr>
<tr>
<td>2 µl</td>
</tr>
</tbody>
</table>

Tabelle 9: Reaktionsansatz für die LightCycler-PCR

Alle verwendeten Primer sind in Tabelle 6 zusammengestellt.

Zu den 17 µl des Reaktionsgemisches in einer Kapillare wurden je 3 µl cDNA gegeben. Der Ansatz wurde kurz zentrifugiert, die Kapillaren in das LightCycler Karussell eingesetzt und das folgende Amplifikationsprogramm ausgeführt.

<table>
<thead>
<tr>
<th>Vorgang</th>
<th>Zyklus</th>
<th>Temperatur (°C)</th>
<th>Zeit (sek)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denaturierung</td>
<td>1</td>
<td>95°C</td>
<td>600</td>
</tr>
<tr>
<td>Amplifizierung</td>
<td>45</td>
<td>95°C</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60°C</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72°C</td>
<td>25</td>
</tr>
<tr>
<td>Schmelzen</td>
<td>1</td>
<td>95°C</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60°C</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95°C</td>
<td>0</td>
</tr>
<tr>
<td>Kühlen</td>
<td>1</td>
<td>40°C</td>
<td>30</td>
</tr>
</tbody>
</table>

Tabelle 10: Amplifikationsprogramm

Wenn die Anzahl der in einer Probe vorliegenden Kopien bestimmt werden sollte, wurde für die PCR der ready-to-use Kit (#447645, #487553, search LC, Heidelberg) verwendet und nach Herstellerangaben durchgeführt. Ermöglicht wird die genaue Bestimmung der Kopienzahl durch das Erstellen einer Standardkurve. Diese entstand durch Titration eines mitgelieferten Plasmids, dessen Kopienzahl bekannt ist. Wenn bei den zu bestimmenden Proben eine
bekannte Probe mitgeführt wurde, konnte die Standardkurve zur Auswertung herangezogen werden, um so die Kopienzahl zu errechnen.

B.2.3.5 Gelelektrophorese

Um bei neuen Primerpaaren zu überprüfen, ob das synthetisierte DNA-Amplifikat die gewünschte Größe besitzt, wurde eine Gelelektrophorese durchgeführt. Die cDNA wurde auf ein 2%iges Agarosegel mit 0,5 mg/ml Ethidiumbromid und 0,5fachem TBE-Laufpuffer aufgetragen (10 µl Probe + 1µl Auftragspuffer) und der DNA-Molecular-Weight-Marker VI (154 – 2176 bp) als Längenstandard mitgeführt. Die DNA-Fragmente wurden bei 120 V für ca. 60 min aufgetrennt und anschließend unter UV-Beleuchtung als fluoreszierende Banden mit einem Polaroid-Film (Black and White Print Film Type 667) fotografiert.

B.2.3.6 Auswertung der LC-PCR Ergebnisse

Zur Auswertung der PCR wurden die Schmelz- und Fluoreszenzkurven verwendet. Durch die spezifische Schmelztemperatur kann ein Produkt identifiziert werden, anhand der unterschiedlichen Fluoreszenzkurven können die cDNA-Mengen in den einzelnen Proben miteinander verglichen werden. Mithilfe der parallel zum Zielgen amplifizierten α-Enolase (Housekeeping-Gen) wurden die Probenwerte korrigiert, d.h. man bildet die Differenz aus Zielgen und Enolase und berechnet dafür die Potenz von 2. Für Gene, die in einem späteren Zyklus als die α-Enolase die Hintergrundfluoreszenz überschreiten, d.h. also von denen weniger Transkripte vorliegen, wurde der berechnete Wert mit negativem Vorzeichen angegeben.
B.2.3.7 Analyse der mRNA-Stabilität von CYP1B1 mit Hilfe von ActinomycinD

Um die mRNA Mengen im zeitlichen Verlauf darzustellen, wurden zunächst 1 x 10⁷ PBMC in 1 ml MM6-Medium 5 min mit 32 µg/ml P90 stimuliert. Mit dem lyophilisierten ActinomycinD wurde eine Stammlösung von 1 mg/ml MM6-Medium hergestellt. Die Zellen wurden mit einer Endkonzentration von 1 µg/ml behandelt, um die RNA-Transkription zu inhibieren. Nach 0 min, 10 min, 30 min, 1h, 3h, 6h und 22h werden die Zellen lysiert und die relativen mRNA-Mengen durch RT-PCR bestimmt.

B.2.4 Proteinnachweis

B.2.4.1 Isolierung von Mikrosomen

Da das CYP1B1 Protein zum größten Teil im endoplasmatischen Retikulum verankert vorliegt, wurden zur Protein-Gewinnung Mikrosomen isoliert. Dazu wurden Calu-3 Zellen auf Zellkulturplatten mit sechs Vertiefungen ausgesät (2,5 x 10⁶ in 3 ml / Vertiefung). Diese adhärierten mindestens 30 min, bevor die 32-stündige Stimulation mit P90 (32 µg/ml) begann. Danach wurden die stimulierten Zellen von den Kulturplatten mit dem Zellschaber abgelöst und 5 min bei 400 x g zentrifugiert. Das Pellet wurde im vierfachen Volumen Puffer A mit Proteaseinhibitoren aufgenommen und 10 min auf Eis inkubiert. Es folgte 8-mal hintereinander ein Wechsel zwischen je 10 sec Ultraschall und Inkubation.
MATERIAL UND METHODEN

46

auf Eis. Danach wurden die lysierten Zellen 10 min bei 3000 x g (4°C) zentrifugiert. Der Überstand wurde in ein neues Eppendorf-Gefäß überführt und 15 min bei 12000 x g (4°C) zentrifugiert. Für den folgenden 2-stündigen Zentrifugationsschritt in einer Beckman Ultrazentrifuge bei 25000 rpm (Rotor JA-25.50) wurden spezielle Beckman Zentrifugengefäße verwendet. Das so gewonnene Pellet stellte die isolierten Mikrosomen dar und wurde im entsprechenden Volumen Puffer D mit Proteaseinhibitoren und 0,1% SDS gelöst.

B.2.4.2 Messung des Proteingehalts

Die Bestimmung der Proteinkonzentration erfolgte nach der Methode von Bradford. In Gegenwart von Proteinen verschiebt sich das Absorptionsmaximum des Coomassie-Brilliantblaus (Farbstoff des Bradford-Reagenz) von 465 zu 595 nm, was im Spectrophotometer gemessen werden kann.

Für die Messung wurde in einer 96-Loch-Platte der BSA-Standard nach folgendem Muster aufgetragen: 0, 0,1, 0,2, 0,4, 0,6, 0,8, 1,0 und 2,0 µg BSA pro ml in 150 µl BioRad Farblösung (jeweils in Doppelwerten). Die Proben, deren Proteingehalt bestimmt werden sollte, wurden entsprechend verdünnt und ebenfalls in Duplikaten gemessen.

B.2.4.3 Western Blot

Das Blotten des Gels erfolgte mindestens 120 min lang auf eine Nitrocellulosemembran (Hybond™ECL™) mit NuPage™ Transferpuffer.
Anschließend wurde die Membran 30 min mit 5% Magermilchpulver in TBS/0,05% Tween 20 inkubiert. Über Nacht folgte die Inkubation mit dem primären Antikörper (Verdünnung 1:1000 5% Magermilchpulver in TBS/0,05% Tween) bei 4°C. Zum Entfernen des nicht-gebundenen Antikörpers wurde die Membran zweimal unter laufendem Wasser und zweimal mit TBS/0,05% Tween 20 gespült. Es folgten drei weitere Waschschritte (20 min und zweimal 10 min) mit TBS/0,05% Tween 20. Vor Zugabe des sekundären Antikörpers wurde die Membran erneut 30 min mit 5% Magermilchpulver in TBS/0,05% Tween 20 inkubiert. Der sekundäre Antikörper (mit Peroxidase konjugiert) wurde dann in einer Verdünnung von 1:750 in TBS/0,05% Tween 20/5% Magermilchpulver für 1 h auf die Membran gegeben. Nach den oben beschriebenen Waschvorgängen erfolgte die Detektion mit den ECL™ Western Blotting Detection Reagents nach Anleitung. Die Exposition des Hyperfilm™ ECL auf der Membran wurde im Dunkeln in einer Röntgenfilmkassette durchgeführt. Die Expositionszeit variierte, unter anderem in Abhängigkeit vom primären Antikörper.

B.2.4.4 Nachweis von CXCR4-Protein durch Durchflusszytometrie

Unterschiedliche Expressionen von Oberflächenrezeptoren können durch FACS-Analyse nachgewiesen werden. Um unspezifische Bindungen des Primärantikörpers zu erkennen, werden so genannte Isotyp-Kontrollen in die Analysen integriert. Als solche dienen Antikörper, die genauso markiert sind wie der Primärantikörper und dem gleichen Isotyp entsprechen, allerdings kein spezifisches Epitop erkennen.

Die zu färbbenden Zellen (mindestens 2 x 10⁶) wurden in einem Volumen von 50 µl PBS/2%FCS gefärbt. Der unmarkierte, primäre Antikörper (anti-CXCR4) und der entsprechende Isotyp (IgG2b) wurden in der Verdünnung 1:10 zugesetzt.
Nach 20-minütiger Inkubation auf Eis wurde nicht gebundener Antikörper durch 5 min Waschen mit PBS/2% FCS bei 400 x g entfernt. Hierauf erfolgte 20 min auf Eis die Färbung mit dem sekundären Antikörper (goat anti mouse FITC, Verdünnung 1:50). Wenn noch ein weiterer Oberflächenmarker für die Gating-Strategie benötigt wurde und angefärbt werden sollte, mussten freie Bindestellen nach einem weiteren Waschschritt mit MOPC21 geblockt werden (10 min auf Eis, 3 µl auf 50 µl). Ohne zu waschen wurde danach der direkt markierte, primäre CD14-PC5 Antikörper (1:20) zugegeben und für 20 min auf Eis inkubiert. Anschließend wurden die Zellen gewaschen, in 750 µl PBS/2% FCS aufgenommen und am Durchflusszytometer gemessen.

B.2.5 Statistische Auswertung

Die statistische Auswertung wurde mit dem Excel-Programm Student’s t-Test durchgeführt. Werte, die kleiner als 0,05 sind, wurden als signifikant bezeichnet und sind in den Abbildungen mit * gekennzeichnet.
C Ergebnisse

C.1 Genexpression in Sputummakrophagen

C.1.1 Aufreinigen von Sputummakrophagen

Die Aufreinigung durch RosetteSep liefert zuverlässige Ergebnisse und zeichnet sich durch gute Reproduzierbarkeit aus. Bei sehr großen Ausgangsmengen von Granulozyten kann es in seltenen Einzelfällen dazu kommen, dass diese nicht alle entfernt werden können. Auch können z.T. Verunreinigungen durch Epithelzellen auftreten, die sich im Rosettierungsschritt...
mit in der Interphase anreichern. Im Normalfall werden aber Reinheiten von über 80% Makrophagen erzielt.

C.1.2 Die Population der kleinen Sputummakrophagen

In den aufgereinigten Sputummakrophagen können durch die in B.2.2.9 beschriebene Färbung und eine spezielle Gating-Strategie zusätzlich zwei Subpopulationen unterschieden werden. Diese Unterscheidung beruht zunächst vor allem auf ihrer Größe, weshalb sie als große und kleine Sputummakrophagen bezeichnet werden. Abbildung 10 zeigt die unterschiedliche Lage der zwei Untergruppen im forward scatter. Im linken Dot Blot sind die gereinigten Makrophagen eines gesunden Nichtrauchers zu sehen, die im Vorwärtsstreulicht hauptsächlich im rechten Quadranten N4 dargestellt werden. Die Lage der Zellen eines COPD-Patienten (rechter Dot Blot) verschiebt sich deutlich nach links in den Quadranten N3, was darauf hinweist, dass diese Sputummakrophagen wesentlich kleiner sind als die des Gesunden.

Abbildung 10: Makrophagen-Populationen nach Aufreinigung mit RosetteSep (linker Dot Blot: Probe eines gesunden Spendens, rechter Dot Blot: Probe eines COPD-Patienten)

Um zu zeigen, dass die niedrigen forward scatter-Signale tatsächlich eine geringere Größe der Zellen anzeigen, wurden von den gereinigten Makrophagen Zytospin-Präparate angefertigt und gefärbt. Diese Befunde

Abbildung 11: 100fache Vergrößerung von Sputummakrophagen (Zytospin).

Der Anteil der kleinen Sputummakrophagen wurde in unterschiedlichen Kollektiven durch oben beschriebene Methoden bestimmt. Als Kontroll-Kollektiv dienten gesunde Nichtraucher (n=6). Bei ihnen lag der Anteil der kleinen Sputummakrophagen aller Makrophagen im Mittel bei 11±8%. Die zweite Gruppe wurde von gesunden Rauchern mit einem Zigarettenkonsum von durchschnittlich 34 pack years gebildet (1 pack year = 1 Schachtel Zigaretten

Abbildung 12: Prozentualer Anteil der kleinen Sputummakrophagen in der gesamten Makrophagen-Population, Vergleich von unterschiedlichen Spenderkollektiven (Kontrollen n=6, Raucher n=4, COPD ambulant n=5, COPD stationär n=9, MW ± SD)
C.1.3 Zytokinexpression in Sputummakrophagen

Da es sich bei COPD um eine entzündliche Lungenerkrankung handelt und die Entzündung zu einem erheblichen Teil von Zytokinen bestimmt wird, habe ich zunächst die Zytokinexpression in Sputummakrophagen untersucht. Die konstitutiven mRNA-Expressionen von IL-1β, IL-6, IL-8, IL-10, TNF und TGFβ wurden bestimmt und zwischen den Gruppen der Nichtraucher, Raucher und COPD-Patienten verglichen.

Bei Rauchern (11±7) und COPD-Patienten (sowohl stabile Patienten (10±4) als auch Patienten mit Exazerbation (8±4)) konnte eine erhöhte konstitutive mRNA Expression des proinflammatorischen Zytokins IL-8 im Vergleich zu Gesunden (3±1) beobachtet werden (siehe Abbildung 13), was auf eine chronische Entzündung hinweisen könnte.

Die Expressionen von IL-1β und IL-6, die beide auch entzündungsfördernd wirken, waren bei COPD-Patienten im Vergleich zu gesunden Spendern 2fach bzw. 10fach niedriger (ohne Abbildung).

Um die Zytokinexpression in vitro zu induzieren, wurden auch Stimulationsexperimente mit LPS durchgeführt. Bei allen hier untersuchten Zytokinen war die Genexpression nach 3-stündiger Behandlung mit 1 µg...
ERGEBNISSE

LPS/ml im Vergleich zur unbehandelten Probe nach 3h weder bei den gesunden Kontrollen noch bei den COPD-Patienten erhöht (Tabelle 11).

<table>
<thead>
<tr>
<th>Gen</th>
<th>Kontrollen</th>
<th>COPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3h ohne</td>
<td>3h LPS</td>
</tr>
<tr>
<td>IL-1β</td>
<td>11±6</td>
<td>13±7</td>
</tr>
<tr>
<td>IL-6</td>
<td>3±1</td>
<td>3±1</td>
</tr>
<tr>
<td>IL-8</td>
<td>34±14</td>
<td>39±10</td>
</tr>
<tr>
<td>IL-10</td>
<td>-83±72</td>
<td>-56±30</td>
</tr>
<tr>
<td>TGFβ</td>
<td>-10±3</td>
<td>-10±6</td>
</tr>
<tr>
<td>TNF</td>
<td>6±3</td>
<td>7±4</td>
</tr>
</tbody>
</table>

Tabelle 11: Expression der mRNA verschiedener Zytokine nach 3h ± 1 µg LPS/ml

In Abbildung 14 ist zu erkennen, dass TGFβ bei stationären COPD-Patienten im Vergleich zu den anderen Kontrollgruppen signifikant weniger exprimiert wird. Diese geringere Expression könnte die Entzündung bei einer Exazerbation weiter verstärken, da TGFβ als antiinflammatorisches Zytokin bekannt ist.

Abbildung 14: Konstitutive TGFβ mRNA-Expression in Sputummakrophagen, dargestellt relativ zu α-Enolase (Kontrollen n=4, Raucher n=4, COPD ambulant n=5, COPD stationär n=9, MW ± SD, * = p < 0,05 bezogen auf Kontrollen).

Die weiteren untersuchten Zytokine lieferten keine aussagekräftigen Expressionsunterschiede zwischen gesunden Spendern und COPD-Patienten.
Zur besseren Übersicht sind in Tabelle 12 die konstitutiven mRNA-Expressionsniveaus aller in den verschiedenen Kollektiven untersuchter Cytokine zusammenfassend dargestellt. Die Werte beziehen sich relativ auf die mRNA-Expression der α-Enolase (Mittelwert ± Standardabweichung).

<table>
<thead>
<tr>
<th>Gen</th>
<th>Kontrollen</th>
<th>Raucher</th>
<th>COPD stationär</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1β</td>
<td>11±6</td>
<td>11±9</td>
<td>5±4</td>
</tr>
<tr>
<td>IL-1 RA</td>
<td>-0±2</td>
<td>-1±2</td>
<td>0±2</td>
</tr>
<tr>
<td>IL-6</td>
<td>-5±2</td>
<td>-8±8</td>
<td>-46±43</td>
</tr>
<tr>
<td>IL-8</td>
<td>3±1</td>
<td>11±7</td>
<td>8±4</td>
</tr>
<tr>
<td>IL-10</td>
<td>-44±37</td>
<td>-17±22</td>
<td>-35±26</td>
</tr>
<tr>
<td>TGFβ</td>
<td>-3±4</td>
<td>-3±1</td>
<td>-17±13</td>
</tr>
<tr>
<td>TNF</td>
<td>-5±2</td>
<td>-8±11</td>
<td>-3±3</td>
</tr>
</tbody>
</table>

Tabelle 12: Konstitutive mRNA Expressionen der untersuchten Cytokine, dargestellt relativ zu α-Enolase ± SD.

Da bei IL-8 ein deutlicher Unterschied in den Expressionen beobachtet werden konnte und es auch zur Untergruppe der Chemokine gehört, sollten diese aufgrund ihrer bedeutenden Rolle im Entzündungsgeschehen genauer auf Expressionsunterschiede hin untersucht werden.

C.1.4 Expression der Chemokinrezeptoren CCR5, CCR9, CXCR1 und CXCR2 in Sputummakrophagen

Chemokine stellen eine spezielle Untergruppe der Zytokine dar, die chemotaktische Eigenschaften aufweisen. IL-8 zählt sowohl zur Gruppe der Zytokine als auch der Chemokine. Da diese im entzündlichen Prozess auch eine Rolle spielen können, wurden verschiedene Chemokinrezeptoren bezüglich ihrer mRNA Expression untersucht und ebenfalls zwischen Nichtrauchern (Kontrollen), Rauchern und COPD-Patienten (stabil und in Exazerbation) verglichen.
Bei den Rezeptoren CCR5, CCR9 und CXCR2 konnten keine signifikanten Unterschiede zwischen den Vergleichsgruppen beobachtet werden (Daten nicht gezeigt). Bei CXCR1 zeigte sich bei COPD-Patienten im Vergleich zur Kontrollgruppe eine signifikante Erhöhung der mRNA um Faktor 2,6 (Abbildung 15).

Abbildung 15: Konstitutive mRNA-Expression des Chemokinrezeptors CXCR1 in Sputummakrophagen, dargestellt relativ zu α-Enolase (Kontrollen n=6, Raucher n=4, COPD stationär n=8, COPD ambulant n=5, MW ± SD, * = p < 0,05 bezogen auf Kontrollen).

<table>
<thead>
<tr>
<th>Gen</th>
<th>Kontrollen</th>
<th>Raucher</th>
<th>COPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCR5</td>
<td>-218±143</td>
<td>-113±41</td>
<td>-79±50</td>
</tr>
<tr>
<td>CCR9</td>
<td>-32295±37879</td>
<td>-7871±5568</td>
<td>-18360±35398</td>
</tr>
<tr>
<td>CXCR1</td>
<td>-6935±2597</td>
<td>-4788±1779</td>
<td>-2711±4493</td>
</tr>
<tr>
<td>CXCR2</td>
<td>-575±299</td>
<td>-1369±462</td>
<td>-1553±2730</td>
</tr>
</tbody>
</table>

Tabelle 13: Konstitutive mRNA Expressionen der untersuchten Chemokinrezeptoren, dargestellt relativ zu α-Enolase ± SD.
C.1.5 Der Chemokinrezeptor CXCR4

C.1.5.1 mRNA-Expression

Der deutlichste Unterschied zwischen den Expressionen in den Vergleichskollektiven zeigte sich beim Rezeptor CXCR4. Dieser ist bei COPD-Patienten in Exazerbation auf mRNA-Ebene 26fach höher exprimiert als in der gesunden Kontrollgruppe. Auch bei COPD-Patienten in der stabilen Phase ist die Expression signifikant, aber irrelevant erhöht.

Abbildung 16: Konstitutive mRNA-Expression des Chemokinrezeptors CXCR1 in Sputummakrophagen, dargestellt relativ zu α-Enolase (Kontrollen n=6, Raucher n=4, COPD stationär n=13, COPD ambulant n=8, MW ± SD, * = p < 0,05 bezogen auf Kontrollen).

C.1.5.2 Protein-Daten der FACS-Analyse

Die Oberflächen-Expression des CXCR4 Proteins auf den Sputummakrophagen von Gesunden und Patienten wurde mithilfe der Durchflusszytometrie bestimmt.

Die gereinigten Sputummakrophagen wurden wie in B.2.4.4 beschrieben gefärbt und am FACSCalibur analysiert. Als Vergleichswert wird die Fläche der Fluoreszenzintensität, der sog. Mnl-Wert, herangezogen. Hier wird jeweils die Differenz zwischen der Färbung (in Abbildung 17 bunt hinterlegt) und dem entsprechenden Isotyp (in Abbildung 17 dargestellt als nicht hinterlegte Kurvenfläche) berechnet (ΔMnl), was als spezifisches Signal für die Färbung
gewertet wird. Es wurden Sputummakrophagen von 5 COPD-Patienten gewonnen und angefärbt. Hier lag der Anteil der kleinen Makrophagen im Mittel bei 82±6%. Aufgrund dieses hohen Anteils konnten auch bei Patienten nur Daten zu kleinen Sputummakrophagen erhoben werden, da für ein deutliches Fluoreszenzsignal der Anteil der großen Zellen nicht ausreichte. Dementsprechend wurde bei den drei gesunden Spendern aufgrund des geringen Anteils der kleinen Makrophagen (13±6%) nur das CXCR4-Signal auf den großen Makrophagen bestimmt.

In Abbildung 17 ist je ein Beispiel eines gesunden Spenders (linkes Histogramm) und eines COPD-Patienten (rechtes Histogramm) dargestellt. Die orange hinterlegte Fläche ist im Vergleich zur grün hinterlegten nach rechts verschoben, wohingegen der Isotyp beider Färbungen (nicht hinterlegt) an unveränderter Position bleibt.

Die mittlere Differenz der Fluoreszenzintensitäten auf den kleinen Sputummakrophagen der 5 COPD-Patienten lag bei rund 6±2, auf den großen Makrophagen von gesunden Spendern konnte ein Signal von 3±0 berechnet werden. Hiermit lässt sich die Erhöhung der CXCR4-mRNA auch auf Proteinebene bestätigen: auf kleinen Sputummakrophagen von COPD-Patienten ist der CXCR4-Rezeptor doppelt so hoch exprimiert wie auf den großen Zellen der gesunden Kontrollspender.

C.1.5.3 Ligand des CXCR4-Rezeptors

Der einzig bekannte Ligand, der an den CXCR4-Rezeptor bindet, ist SDF-1 (Stromal Derived Factor 1). Zellen, die den CXCR4-Rezeptor exprimieren, wandern chemotaktisch entlang eines Konzentrationsgradienten zum Ort mit der höchsten SDF-1 Konzentration. Deshalb habe ich die SDF-1 mRNA Menge in Bronchialepithelzellen untersucht. Die aus Bürstenbiopsien gewonnenen Bronchialzellen (siehe B.2.2.5) wurden lysiert und auf ihre konstitutive SDF-1 mRNA Expression hin untersucht. Da die Zellen vor der Lyse nicht gezählt werden konnten, wurde die Zellzahl der Bronchialepithelzellen anhand von Enolase-Äquivalenten von CD14⁺⁺-Lysaten (à 2 x 10⁴ Zellen) berechnet. Als Vergleichsgruppe wurde durch Abschaben mit einem Spatel Epithel aus Mundschleimhaut gewonnen. Auch hier wurde die konstitutive SDF-1 Expression einer bekannten Zellzahl ermittelt. Der Vergleich der beiden Kollektive ergab eine knapp 600fach höhere SDF-1 Expression im Bronchialepithel als in der Mundschleimhaut, was eine Chemotaxis der Makrophagen in die Lunge auslösen könnte.

C.1.6 Weitere Genexpressionsunterschiede zwischen COPD-Patienten und gesunden Kontrollen

C.1.6.1 Matrix-Metalloproteinase 9 und ihr Inhibitor TIMP-1

Die Matrix-Metalloproteinasen (MMPs) sind eine Gruppe von Enzymen, die morphologische Gewebeveränderungen und den Abbau z.B. von Lungengewebe verursachen können. Zu pathologischen Veränderungen kann es kommen, wenn das Verhältnis zwischen den MMPs und ihren endogenen Inhibitoren, den TIMPs, aus dem Gleichgewicht gerät. Durch Mitführen eines Standards bei der PCR ist es möglich, die Anzahl der in einer Probe vorhandenen mRNA-Kopien zu bestimmen. Das Verhältnis zwischen MMP-9 und TIMP-1 stieg bei Rauchern im Vergleich zum Nichtraucher-Kollektiv signifikant an (Abbildung 18). Diese Tendenz setzte sich
ERGEBNISSE

auch bei COPD-Patienten fort, hier ergab sich aber aufgrund der großen Streuung der Einzelwerte keine Signifikanz.

Abbildung 18: Verhältnis der mRNA-Kopien von MMP-9 und TIMP-1 in Sputummakrophagen (Kontrollen n=4, Raucher n=4, COPD stationär n=13, MW ± SD, * = p < 0,05 bezogen auf Kontrollen).

C.1.6.2 Hämoxigenase1

Die Hämoxigenase1 (HO-1) wirkt in der Lunge protektiv gegen oxidativen Stress, der durch inhalierte Partikel verursacht werden kann. Im Vergleich zu gesunden Kontrollspendern war die HO-1 mRNA Expression bei Rauchern und COPD-Patienten gesenkt. Der deutlichste Effekt war bei COPD-Patienten in Exazerbation zu beobachten: bei diesen wurde 6fach weniger HO-1 mRNA exprimiert als bei der gesunden Kontrollgruppe (Abbildung 19).
Abbildung 19: Konstitutive mRNA-Expression der Hämoxigenase1 in Sputummakrophagen, dargestellt relativ zu α-Enolase (Kontrollen n=6, Raucher n=4, COPD stationär n=8, COPD ambulant n=5, MW ± SD, ** = p < 0,005 bezogen auf Kontrollen).

C.1.6.3 Phagozytoserezeptor MARCO (macrophage receptor with collagenous structure)

C.1.7 Effekt von Partikeln auf die Genexpression in Sputummakrophagen

Da COPD meist durch inhalierte Aerosole hervorgerufen wird, wurden gereinigte Sputummakrophagen mit einer Mischung aus ultra-feinen Printex 90 und feinen TiO₂ Partikeln inkubiert und anschließend die Genexpressionen von IL-8 und CXCR4 untersucht.

Wie Abbildung 21 verdeutlicht, ließ sich weder bei IL-8 (links) noch CXCR4 (rechts) durch die 3-stündige Behandlung mit dem Partikel-Gemisch eine mRNA-Expressionsänderung induzieren. Auch beide Vergleichs-Gruppen verhielten sich ähnlich: gesunde Spender und COPD-Patienten zeigten jeweils keine nennenswerte Reaktion auf die Partikel-Exposition.

Abbildung 20: Konstitutive mRNA-Expression des Phagozytoseceptors MARCO in Sputummakrophagen, dargestellt relativ zu α-Enolase (Kontrollen n=4, Raucher n=4, COPD stationär n=8, MW ± SD, ** = p < 0,005 bezogen auf Kontrollen).
ERGEBNISSE

Abbildung 21: Expression von IL-8 (links) und CXCR4 (rechts) in Sputummakrophagen nach 3h +/- TiO$_2$/ufP90 Behandlung, dargestellt relativ zu α-Enolase (IL-8: Kontrollen n=2, COPD stationär n=5, CXCR4: Kontrollen n=1, COPD stationär n=4, MW ± SD).

C.2 Effekt von Teilchen auf die Genexpression in Monozyten und Makrophagen

C.2.1 Auswahl der Gene

Die Auswahl der in dieser Arbeit untersuchten Gene basierte auf einem bereits durchgeführten cDNA-Array, in dem MDM von gesunden Spendern und von COPD-Patienten jeweils mit LPS und einer Mischung aus fTiO₂ und uf P90 stimuliert wurden. Hierbei sollten einerseits Gene identifiziert werden, die Unterschiede in der Genexpression zwischen Gesunden und Patienten aufweisen oder die auf die Stimulation mit LPS oder der Partikel Mischung reagieren. Für die genauere Untersuchung wurden solche Gene ausgewählt, die jeweils mindestens in einem der Vergleichsparameter im Array einen Wert aufweisen, der über oder unter einem bestimmten Schwellenwert (Expressionsänderung mind. um Faktor 2) liegt. In folgender Tabelle (Tabelle 14) sind diese ausgewählten Gene in der Reihenfolge, in der sie getestet wurden, aufgelistet:

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Vollständiger Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP1B1</td>
<td>Cytochrom P4501B1</td>
</tr>
<tr>
<td>PTP4A1</td>
<td>Protein-Tyrosin-Phosphatase</td>
</tr>
<tr>
<td>CDV3</td>
<td>Carnitin-defizient-Ventrikel Homolog</td>
</tr>
<tr>
<td>JAG1</td>
<td>Jagged1</td>
</tr>
<tr>
<td>EIF4G3</td>
<td>Eukaryotic translation initiation factor</td>
</tr>
<tr>
<td>RASSF5</td>
<td>Ras association domain family</td>
</tr>
<tr>
<td>GAL3</td>
<td>Galectin 3</td>
</tr>
<tr>
<td>hepAcR2</td>
<td>Hepatitis A virus cellular Receptor 2</td>
</tr>
<tr>
<td>H2AFY</td>
<td>H2A histone family, member 4</td>
</tr>
<tr>
<td>HSP40</td>
<td>Heat shock protein 40</td>
</tr>
<tr>
<td>SIGLEC1</td>
<td>Sialoadhesin precursor</td>
</tr>
<tr>
<td>HO-1</td>
<td>Haemoxigenase 1</td>
</tr>
</tbody>
</table>
Tabelle 14: Untersuchte Gene, die im Array verändertes Expressionsmuster aufwiesen.

Nur für CYP1B1 konnte eine Regulation durch Partikel bestätigt werden.

C.2.2 CYP1B1 und 1A1 in MDM

Aus den nach 3h Inkubationszeit hergestellten Lysaten wurde RNA isoliert, revers transkribiert und eine quantitative PCR für die in Tabelle 14 aufgelisteten Zielgene und das Haushaltsgen α-Enolase durchgeführt. Die Ergebnisse wurden an α-Enolase angeglichen (B.2.3.6).

Abbildung 22 zeigt eine bei den unbehandelten Zellen eine konstitutive Expression von CYP1B1, welche 20 bis 40fach niedriger als die von Enolase.
ist. Bei COPD-Patienten fällt die relative CYP1B1 mRNA-Menge nach Partikel Stimulation um Faktor 2 ab, bei gesunden Spendern um Faktor 3.

Abbildung 22: Effekt von Partikeln auf die CYP1B1 mRNA bei MDM nach 3h Stimulation (n=5 COPD, n=3 gesund, ± SD, * = p < 0,05 gegen none).

ERGEBNISSE

Abbildung 23: Effekt von Partikeln auf die CYP1A1 mRNA bei MDM nach 3h Stimulation (n=4 COPD, n=5 gesund, ± SD, * = p < 0,05 gegen none).

C.2.3 CYP1B1 in CD14++ Monozyten

Bei Untersuchungen von gereinigten CD14++ Monozyten konnte nach Partikel-Stimulation eine wesentlich größere Abnahme der CYP1B1 mRNA festgestellt werden. Bei COPD-Patienten ließ sich eine Senkung der Expression um Faktor 85 beobachten, bei Gesunden um Faktor 60 (Abbildung 24). Aufgrund dieser viel stärkeren Effekte wurden weitere Experimente mit Monozyten durchgeführt.

Abbildung 24: Effekt von Partikeln auf die CYP1B1 mRNA bei CD14++ Monozyten nach 3h Stimulation (n=7 COPD, n=3 gesund, ± SD; * = p<0,05 gegen none).
C.2.4 Identifizierung der aktiven Komponente in der Partikelmischung

Um zu bestimmen, welcher der beiden eingesetzten Partikel den beobachteten Effekt auf CYP1B1 auslöst, wurden je 32 µg/ml P90 und fTiO₂ auf Monozyten getrennt appliziert und für 3h inkubiert. Zusätzlich wurden eine unbehandelte Kontrolle, LPS und das Partikel-Gemisch untersucht. Hierbei konnte gezeigt werden, dass P90 für den Effekt verantwortlich ist und eine 140fache Abnahme der CYP1B1 mRNA bewirkt. FTiO₂ hebt diesen signifikanten Effekt sogar wieder etwas auf (Abbildung 25).

![Abbildung 25: Relative CYP1B1 mRNA Menge nach 3h Stimulation mit P90 und fTiO₂ einzeln (n=3 gesund, ± SD, * = p<0,05 bezogen auf none).](image)

Bei Monozyten lässt sich ein ähnliches Expressionsmuster für CYP1A1 erkennen (Abbildung 26), wobei die konstitutive Expression um die Hälfte geringer ist als bei 1B1. Auch die inhibierende Wirkung von P90 fällt nicht so deutlich aus (nur 13fach statt 140fach bei CYP1B1).
C.2.5 Dosis-Wirkungsbeziehung zwischen P90-Exposition und der CYP1B1 mRNA Expression

Die Dosis-Wirkungs-Analyse erlaubt die Ermittlung der optimalen Dosis von P90, die den größten Effekt in der Abnahme der CYP1B1 mRNA bewirkt. Die gereinigten CD14++ Monozyten wurden dazu in verschiedenen Konzentrationen mit P90 (0; 0,32; 3,2; 32; 320 und 1000 µg/ml) für 3h stimuliert. In Abbildung 27 sind die Ergebnisse aus 5 unabhängigen Experimenten bei gesunden Spendern zusammengefasst. Das Ergebnis der quantitativen PCR zeigt nach einer 3-stündigen Stimulation mit P90 in jeder Konzentration einen signifikanten Abfall der CYP1B1 mRNA-Menge gegenüber der unbehandelten Probe, wobei sich bei der bisher verwendeten Konzentration von 32 µg/ml eine ca. 100fache Abnahme zeigt. Diese wird für weitere Versuche beibehalten, einerseits weil die Verwendung höherer Partikelkonzentrationen sehr materialintensiv ist, ohne dass der zweifach stärkere Effekt für die weiteren Untersuchungen von Bedeutung wäre, andererseits weil alle Konzentrationen über 32 µg/ml nicht umweltrelevant sind.
Abbildung 27: Dosis-Wirkungs-Beziehung der Expression von CYP1B1 in CD14++ Monozyten gesunder Probanden nach 3h Stimulation mit P90 (n=5, ± SD, * = p<0,05 bezogen auf 0 µg/ml).

Da sich in den anfänglichen Experimenten, die mit MDM durchgeführt wurden, nur eine wesentlich geringere Abnahme der CYP1B1 mRNA als bei gereinigten CD14++ Monozyten zeigte, wurde bei MDM noch zusätzlich eine Konzentration von 320 µg/ml P90 getestet. Bei dieser höheren Konzentration konnte im Mittel von 3 unabhängigen Experimenten ein etwas stärkerer reduzierender Effekt auf die CYP1B1 mRNA Expression nachgewiesen werden als bei Stimulation mit 32 µg/ml, der aber wegen der großen Streuung nicht signifikant war (Abbildung 28).

Abbildung 28: CYP1B1 mRNA Expression nach 3h Stimulation mit einer Dosis von 320 µg/ml P90 in MDM gesunder Spender (n=3, ± SD, * = p<0,05 bezogen auf none).
C.2.6 Kinetik der CYP1B1 mRNA Suppression

Um herauszufinden, nach welcher Zeit die deutlichste Unterdrückung der CYP1B1 mRNA durch P90 stattfindet, wurde eine Zeit-Wirkungs-Analyse erstellt. Dazu wurden die Monozyten 0,5, 1, 2, 3, 6 und 20h mit P90 in einer Konzentration von 32 µg/ml stimuliert.

Schon nach einer halben Stunde konnte nur noch die Hälfte der anfänglichen mRNA-Menge zum Zeitpunkt 0h nachgewiesen werden. Zwischen 3h und 6h erreicht die relative CYP1B1 mRNA-Menge ein Plateau (ca. 115fach weniger verglichen mit Zeitpunkt 0), wohingegen die produzierte mRNA-Menge bei 20h wieder etwas zunimmt. Basierend auf diesen Ergebnissen wurde für alle weiteren Experimente mit mRNA eine Inkubationszeit von 3h gewählt.

Abbildung 29: Zeit-Wirkungs-Beziehung der mRNA-Expression von CYP1B1 in CD14++ Monozyten gesunder Probanden nach 3h Stimulation mit P90 (n=3, ± SD, * = p<0,05 bezogen auf 0h).

C.2.7 Ausschluss einer LPS-Kontamination von P90

Auch nach LPS-Stimulation konnte eine reduzierende Wirkung auf die CYP1B1 mRNA Expression beobachtet werden. In folgendem Experiment sollte ausgeschlossen werden, dass der beobachtete P90 Effekt durch mögliche Kontamination mit LPS zustande kommt. Hierzu wird die Substanz Polymyxin B (PMB) eingesetzt, die LPS bindet und inaktiviert. Monozyten blieben als

Abbildung 30:CYP1B1 mRNA Expression nach 3h LPS- und P90- Stimulation mit und ohne PMB in CD14++-Monozyten gesunder Probanden (n=6, ± SD, * = p < 0,05).

C.2.8 CYP1B1 Effekt in weiteren Zelltypen

Da die Makrophagen in den Luftwegen bei Atmung Partikeln ausgesetzt sind, sollte die Auswirkung von Partikeln auf die CYP1B1 Expression in Sputummakrophagen untersucht werden. Hierzu wurden Makrophagen aus induziertem Sputum von gesunden Rauchern und COPD-Patienten isoliert. Die Behandlung mit P90 hatte bei Sputummakrophagen von COPD-Patienten eine 3fache und bei Nichtrauchern ein 4fache Senkung der mRNA-Menge im Vergleich zum Wert nach 3h Inkubation ohne weitere Behandlung zur Folge, wobei beides aufgrund der großen Streuung nicht signifikant war. Bei der
ERGEBNISSE

Gruppe der Raucher hingegen traten keine bemerkenswerten Expressionsänderungen auf.

Abbildung 31: CYP1B1 mRNA Expression in Sputummakrophagen von COPD-Patienten (n=7), gesunden Rauchern (n=4) und gesunden Nichtrauchern (n=2) nach 3-stündiger Behandlung mit Partikel-Gemisch (P90 und fTiO2 je 32 µg/ml) ± SD.

Bei in vitro generierten MDM, die durch IL-13 aktiviert wurden, zeigte sich durch P90 eine 3fache Abnahme der CYP1B1 mRNA. Bei unreifen dendritischen Zellen (DC), die durch Zusatz von IL-13 und GM-CSF generiert wurden, konnte kein signifikanter Effekt beobachtet werden (Abbildung 32).

Abbildung 32: Effekt von P90 auf die CYP1B1 mRNA von in vitro generierten MDM und unreifen DC von gesunden Spendern (n=4, MW ± SD, * = p<0,5).

Da inhalierte Partikel sich nicht nur in Makrophagen ansammeln, sondern auch in Epithelzellen, wurden außerdem zwei epitheliale Zelllinien A549 (alveolär)
und Calu3 (bronchial) auf den Effekt in der CYP1B1 mRNA Expression hin untersucht. Beide Zelllinien zeigen den stärksten Effekt auf P90 nach 22h. Bei A594 zeigte sich nach Inkubation mit P90 über Nacht ein 4,5facher Abfall der CYP1B1 mRNA, bei Calu3 eine deutlichere Senkung um den Faktor 9,4.

Abbildung 33: CYP1B1 mRNA Expression in den Zelllinien A549 (n=3) und Calu3 (n=4) nach 22h Stimulation, ± SD, * = p<0,05 bezogen auf none.

In primären Epithelzellen, die durch Bürstenbiopsien gewonnen wurden, konnte schon nach 3h P90 Stimulation eine rund 4fache Senkung der CYP1B1 mRNA beobachtet werden (Abbildung 34).

Abbildung 34: CYP1B1 mRNA Expression in Epithelzellen aus Bürstenbiopsien (n=7) nach 3h Stimulation mit P90 (32µg/ml), ± SD, * = p<0,05 bezogen auf none.

Diese Daten zeigen, dass uf P90 die CYP1B1 Expression in verschiedenen Zellen reduziert. Der stärkste Effekt findet sich bei Blutmonozyten.
C.2.9 Effekt von Benzo[a]pyren auf die CYP1B1 mRNA Expression

Neben anderen Xenobiotika werden auch polyzyklische aromatische Kohlenwasserstoffe (PAH) von Enzymen der CYP-Familie abgebaut. Ein repräsentatives Mitglied dieser Substanzklasse, das auch als Umwelt-Schadstoff auftritt, stellt Benzo[a]pyren (BaP) dar. BaP induziert die CYP1B1 mRNA Expression in PBMC. Zunächst wurden Experimente zur Wirkungs-Zeit-Beziehung durchgeführt, wobei PBMC für Zeitpunkte von 0h bis 22h mit 10 µM BaP behandelt wurden. BaP wurde zur besseren biologischen Verfügbarkeit in Liposomen verpackt appliziert. Verglichen zur CYP1B1-Transkript Menge zum Zeitpunkt 0h (-88±20) zeigte sich die deutlichste Erhöhung der mRNA nach 3h (-6±2) und 6h (-4±2). Basierend auf diesen Daten wurde für folgende Versuche eine Inkubationszeit von 3h gewählt.

Abbildung 35: Zeit-Wirkungs-Beziehung für die CYP1B1 mRNA Expression in PBMC nach Behandlung mit 10 µM BaP (n=3 gesund, ±SD, * = p<0,05).

Um herauszufinden, ob BaP die P90-induzierte Repression von CYP1B1 abschwächen oder sogar aufheben kann, wurden PBMC für 30 min mit 32 µg/ml P90 und mit dem CYP1B1 Inhibitor α-Naphtoflavon (5 µM, in Liposomen verpackt) vorstimuliert. Anschließend wurde den Zellen BaP in Konzentrationen von 0,1 µM, 1 µM und 10 µM zugesetzt. Um auszuschließen, dass die Zellen durch bloße Behandlung mit Liposomen beeinflusst werden, wurde auch die Zugabe von leeren Liposomen in einfacher und doppelter Menge untersucht und durch PCR analysiert. Aus Abbildung 36 wird ersichtlich, dass keine Effekte
ERGEBNISSE

durch die Liposomen-Behandlung an sich auftreten. Die Stimulation mit BaP hingegen konnte die CYP1B1 mRNA-Menge in der höchsten Konzentration um das 3,6fache anheben und P90 allein senkte die RNA Expression um den Faktor 40. Von diesem deutlich gesenkten Niveau konnte die CYP mRNA durch 0,1 µM BaP wieder um das 16fache erhöht werden, durch 10 µM BaP konnte die Senkung durch P90 sogar gänzlich aufgehoben werden.

Abbildung 36: Gegenseitige Beeinflussung der CYP1B1 mRNA Expression durch BaP und P90 in PBMC gesunder Probanden (n=4, ± SD, * = p<0,05 gegen none).

C.2.10 Nachweis der RNA-Stabilität mithilfe von Actinomycin D

Nach Analyse durch RT-PCR konnte gezeigt werden, dass die Halbwertszeit der CYP1B1 mRNA keine großen Unterschiede zwischen der Behandlung mit (HWZ 1,2h) oder ohne (HWZ 1,6h) Partikeln aufweist. Der leichte Anstieg, der bei der Enolase mRNA ohne ActD-Zusatz zu beobachten ist, kann durch wachsende Zellgröße im Laufe der Inkubationszeit erklärt werden.

Abbildung 37: Bestimmung der Halbwertszeit von CYP1B1 mRNA mit und ohne Partikel-Stimulation in PBMC gesunder Probanden (n=4, ± SD).

C.2.11 CYP1B1 Expression in PBMC nach Stimulation in unterschiedlichen Kulturgefäßen

Abbildung 38 als Redcap bezeichnet) oder auf LA-Platten (40fach) im Vergleich zum Eppendorf Reaktionsgefäß (6fach, in Abbildung 38 als Eppi bezeichnet). Diese Beobachtung muss in die Interpretation der Ergebnisse miteinbezogen werden.

Abbildung 38: Beeinflussung der CYP1B1 mRNA Regulation durch Kultur in unterschiedlichen Gefäßen (PBMC gesunder Spender, n=3, MW ± SD).

C.2.12 Wirkung weiterer Partikel auf die CYP1B1 Expression

Da in der ursprünglich verwendeten Partikelmischung von uf P90 und f TiO₂ der uf Partikel die aktive Komponente darstellt, stellt sich die Frage, ob andere uf Partikel oder uf TiO₂ einen ähnlichen Effekt auslösen können. Alle Partikel wurden für die 3-stündige Stimulation von PBMC so eingesetzt, dass sich die Oberflächen entsprechen und nicht die Masse.

Ein deutlicher Effekt zeigt sich nach wie vor nur bei uf P90 Partikeln, uf EC90 reduziert die CYP1B1 zwar auch leicht, aber nicht signifikant. Zwischen uf und f TiO₂ besteht kein Unterschied, beide beeinflussen die CYP1B1 mRNA unwesentlich.
C.2.13 Effekt von P90 auf CYP1B1-Proteinebene

Die Untersuchung, ob die Folge der beobachteten Senkung der CYP1B1 mRNA durch P90 auch eine Reduktion des CYP1B1 Proteins ist, wurde mit unterschiedlichen Experimenten durchgeführt.

Eine Möglichkeit ist, den P90-Einfluss über die Enzym-Aktivität von CYP1B1 zu untersuchen, indem Metaboliten bestimmt werden, die durch CYP1B1 aus BaP entstehen. Andererseits kann die Enzymaktivität von P450 Systemen gemessen werden, wozu die Methode des EROD-Assays am häufigsten angewendet wird.

Die in unserem Fall erfolgreichste Methode, stellte der Western Blot dar. Dazu wurden zunächst Mikrosomen aus Calu-3 Zellen isoliert. Die Zellen wurden hierfür 32h mit und ohne P90 (32 µg/ml) behandelt. Parallel zur Proteinisolierung wurde jeweils auch ein Zellysat zur Bestimmung der mRNA-Menge angefertigt.

In Abbildung 40 ist der deutliche Effekt durch P90 zu erkennen: sowohl die mRNA (im Mittel Faktor 11) als auch das CYP1B1 Protein (im Mittel Faktor 8) wurden durch P90 deutlich gesenkt. Die densitometrischen Auswertung der Blots ergab bei den unbehandelten Zellen einen Mittelwert von 2721 541 ± 379 059 units gegen 342 109 ± 46 303 units im Mittel bei mit P90 behandelten Zellen.

Abbildung 39: CYP1B1 mRNA Expression in PBMC nach 3h Inkubation mit verschiedenen Partikeln (PBMC gesunder Spender, n=5 (bei TiO₂ n=2), ± SD, * = p<0,05).
Abbildung 40: links: Proteinbanden von CYP1B1 bei 57 kDa und Aktin bei 42 kDa derselben Probe im Western Blot, jeweils ohne und mit 32h 32 µg P90/ml Behandlung (ein repräsentatives Beispiel von drei Experimenten, bei CYP1B1: 3 036 276 units für unbehandelte Zellen, 373 799 units für mit P90 behandelte Zellen); rechts: CYP1B1 mRNA Expression in Calu-3 nach 32h (MW n=3, ± SD, * = p<0,05).
D Diskussion

D.1 Genexpression in Sputummakrophagen

D.1.1 Gewinnung von Sputummakrophagen

Das Protokoll, das für die Sputuminduktion in dieser Arbeit angewendet wurde, sieht eine aufsteigende Reihenfolge der zu inhalierenden NaCl-Konzentrationen vor, beginnend mit physiologischer (0,9%) über 3%ige bis hin zu max. 5%iger hypertoner Kochsalz-Lösung. Durch die Inhalation der NaCl-Lösungen soll der Schleim, der den Atemwegen aufliegt, verflüssigt werden, damit er leichter abgehustet werden kann. Bei COPD-Patienten in der Exazerbationsphase ist aber oft nur eine Inhalation der 0,9%igen NaCl-Lösung möglich, da die konzentrierteren Lösungen zu einer stärkeren Reizung und somit auch zu Atemnot führen können. In einer Studie von Taube et al. konnten aber keine signifikanten Unterschiede hinsichtlich der totalen und differenziellen Zelldichte zwischen Sputum, das mit 0,9% und 3% Kochsalzlösung induziert wurde, festgestellt werden (Taube et al. 2001). In der vorliegenden Arbeit konnten weder qualitativ noch quantitativ Unterschiede zwischen Sputum festgestellt werden, das durch Inhalation von nur 0,9% NaCl-Lösung gewonnen wurde, und Sputum, das nach zweimaligem Inhalieren (0,9% und 3%) ausgeworfen wurde, was durch die Befunde von Taube et al. unterstützt wird. Dementsprechend
wurden auch in der vorliegenden Arbeit die Materialien nicht unterschiedlich behandelt, sondern zusammen verarbeitet und die Ergebnisse zusammengefasst.

Bei COPD-Patienten besteht ein grundlegendes Problem bei der Sputumgewinnung darin, dass die Probanden durch ihre Krankheit oft zu geschwächt sind, um die nötige Kraft aufzubringen, Sputum auszuwerfen. Für gesunde Probanden wiederum ist es teils nicht möglich, Sputum abzuhusten, da in der gesunden Lunge wenig Schleim produziert wird.

Einen limitierenden Faktor stellt der geringe Anteil von Makrophagen im Sputum von COPD-Patienten dar. Rutgers und Kollegen beobachteten im induzierten Sputum von COPD-Patienten einen signifikant höheren Anteil an neutrophilen Granulozyten (77%) und einen niedrigeren Gehalt an Makrophagen (19%) als im Sputum gesunder Kontrollspender (57% Granulozyten, 36% Makrophagen).

Wenn man die Gesamtzellzahl im Sputum je ml vergleicht, fällt aber auf, dass im Sputum von COPD-Patienten ca. doppelt so viele Zellen vorliegen wie bei
gesunden Spendern (Rutgers et al. 2000). Diese Befunde stimmen mit den Beobachtungen in der vorliegenden Arbeit überein: der Makrophagenanteil von COPD-Patienten liegt bei 14,1% (n=6) und gesunde Raucher und Nichtraucher (n=8) weisen einen hochsignifikant größeren Prozentsatz an Makrophagen von 38,8% auf.

Einen unkontrollierbaren Faktor stellt die Verunreinigung durch Mundepithelzellen dar. Versuche, die Schleimhautzellen durch MACS-Separation zu entfernen, waren nicht erfolgreich. Um sicherzustellen, dass die durch LC-PCR bestimmte mRNA-Menge der Zielgene auch wirklich die mRNA Expression der Monozyten bzw. Makrophagen widerspiegelt und nicht eventuell durch Epithel-Kontaminationen in den Proben verfälscht wird, wurde aus Mundschleimhautzellen ebenfalls RNA isoliert und für alle Zielgene eine PCR durchgeführt. Anhand dieser PCR-Ergebnisse kann für die Gene α-Enolase, CXCR4 und MARCO eine Beeinflussung durch Epithelzellen ausgeschlossen werden: die Epithelzellen exprimieren weniger als 1‰ der oben genannten Zielgene. Auch bei IL-8 und HO-1 kann man von einer sehr geringen Einflussnahme auf die mRNA-Daten ausgehen, da bei einem Epithelanteil von 90% maximal 5% zum Signal beigetragen werden. Bei CXCR1 und 2 wurden für Monozyten und Makrophagen überhaupt nur sehr schwache mRNA-Signale
gemessen, weshalb hier bei einer 10%-igen Schleimhautzellen-Verunreinigung ein Beitrag bis zu 10% des Signals möglich ist. Daher ist sogar bei erheblicher Kontamination mit Mundepithelien kein relevanter Einfluss auf die PCR-Ergebnisse zu erwarten.

D.1.2 Zytokinexpression in Sputummakrophagen

Da COPD durch eine chronische Entzündung der zentralen und peripheren Atemwege bedingt ist, sollte in vorliegender Arbeit eine Beteiligung inflammatorischer Zytokine, wie z.B. TNF oder IL-8, nachgewiesen werden. TNF wird eine zentrale Rolle im Entzündungsgeschehen bei COPD zugeschrieben (Mukhopadhyay et al. 2006). In dieser Arbeit konnte nur eine erhöhte IL-8, jedoch keine erhöhte TNF mRNA Expression in gereinigten Sputummakrophagen von COPD-Patienten im Vergleich zu einem gesunden Nichtraucher-Kontrollkollektiv gezeigt werden. Dieser Befund ist kontrovers zu Daten anderer Arbeitsgruppen, die einen signifikanten Anstieg der TNF und IL-8 Proteinkonzentration im Gesamtsputum jeweils von COPD-Patienten gegenüber gesunden Kontrollgruppen nachweisen konnten (Chung 2005; Daldegan et al. 2005; Keatings et al. 1996). Im Jahr 2005 wurde von van der Vaart et al. eine Studie zu antiinflammatorischen Wirkstoffen für mögliche Therapieansätze durchgeführt. COPD-Patienten wurde ein monoklonaler Antikörper, der TNF bindet und dessen biologische Aktivität neutralisiert, verabreicht. Die Behandlung hatte im Vergleich zur Placebo-Gruppe keine signifikanten Änderungen in der Anzahl der inflammatorischen Zellen oder des IL-8 Expressionsspiegels zur Folge (van der Vaart et al. 2005). Diese Ergebnisse lassen den Schluss zu, dass TNF möglicherweise nicht das zentrale Zytokin in der Pathophysiologie der COPD ist. Das oft beobachtete erhöhte TNF-Niveau könnte durch Exazerbation bedingt sein, wobei das TNF in Remission wieder auf Normalwerte absinkt. Die IL-8 Expression, die bei Rauchern, ambulanten und stationären COPD-Patienten im Vergleich zu Kontrollspendern signifikant erhöht war, könnte mit einer übermäßigen Rekrutierung von Neutrophilen in die Lunge in Zusammenhang gebracht

Das als anti-inflammatorisches Zytokin bekannte TGFβ ist bei stationären COPD-Patienten im Vergleich zu allen anderen Kollektiven erniedrigt, was noch verstärkt zu der bei diesen Probanden vorliegenden Exazerbation beitragen könnte.

Ein weiterer bedeutender Faktor, der in die Änderung der Genexpression eingreifen kann, ist der Konsum von Tabak. Bei der Auswertung der jeweiligen

Induzierte konstitutive Expressionen können auch auf einen Schritt in der Sputummaufarbeitung zurückzuführen sein. Da das Sputum zur Homogenisierung 30 bis 45 min bei 37°C inkubiert wird, wäre es denkbar, dass in dieser Zeit bereits durch die im Sputum vorhandenen oralen Bakterien eine Induktion der Zytokine stattfindet. Eine Möglichkeit, diesen Effekt gering zu halten, wäre eine Inkubation bei 4°C oder RT.

D.1.3 Der CXCR4-Rezeptor

In vorliegender Arbeit konnte beim CXCR4 Chemokinrezeptor im Kollektiv der COPD-Patienten eine 25fach erhöhte mRNA-Expression gegenüber dem RNA-Niveau der gesunden Probanden beobachtet werden. Da für durchflusszytometrische Analysen nur gereinigte Sputummakrophagen verwendet werden sollten, also somit nur wenig Untersuchungsmaterial zur Verfügung stand, und die CXCR4 mRNA Expression den deutlichsten Unterschied zwischen den Vergleichsgruppen aufwies, beschränkte ich mich bei der Untersuchung auf Proteinebene auf den CXCR4-Rezeptor. Bei Messungen zum CXCR4-Protein zeigte sich eine Verdopplung der mittleren Fluoreszenzintensität bei COPD-Patienten, was zwar eine Erhöhung auf Proteinebene bestätigt, aber nur in geringerem Ausmaß als es auf mRNA-Ebene beobachtet wurde. Eine mögliche Begründung hiefür liefern Hartl et al., die u.a. bei Patienten mit COPD eine proteolytische Aktivität beobachteten, die in deren Studie zu einem Abbau des CXCR1-Receptors führten (Hartl et al. 2007). Vielleicht liegen der im Vergleich zur mRNA nur geringen Erhöhung des CXCR4-Proteins ähnliche Mechanismen zugrunde. In Bezug darauf wäre es interessant, auch für die anderen auf mRNA-Ebene weniger regulierten Chemokinrezeptoren zusätzlich die Proteinexpression zu untersuchen, da z.B. durch Proteolyse entstandene Effekte erst dann zu beobachten sind.
Im Unterschied zu anderen Chemokinrezeptoren, die meist mehrere Chemokine binden können, gibt es für den CXCR4 Rezeptor nur einen passenden natürlichen Liganden, nämlich SDF-1 (stromal derived factor-1), welcher auch umgekehrt nur an CXCR binden kann (Horuk 2001). Diese Tatsache deutet darauf hin, dass der SDF-1-CXCR4-Achse eine wichtige und einzigartige biologische Rolle zukommt.

Triantafilou und Kollegen identifizierten den CXCR4-Rezeptor kürzlich als Komponente in der „LPS-Erkennungs-Maschinerie“. In Kompetitionsversuchen konnten sie zeigen, dass LPS und SDF-1 um den CXCR4-Rezeptor konkurrieren. Chemotaxis-Assays ergaben, dass LPS wie der natürliche Ligand SDF-1 direkt chemotaktisch fungieren kann. Diese LPS-vermittelte Migration ist abhängig vom G-Protein, was darauf hinweist, dass die Bindung von LPS dieselben biologischen Effekte auslöst wie SDF-1 (Triantafilou et al. 2008). Die in dieser Arbeit dokumentierte erhöhte Expression des CXCR4-Rezeptors bei COPD-Patienten könnte also auf eine Verstärkung der LPS-Signalkaskade hinweisen, was wiederum in einer Inflammation resultieren könnte.

Die Mechanismen des schnellen ersten Einströmens von reifen zirkulierenden Blutmonozyten in die Lunge z.B. bei ALI (acute lung injury) sind genauer erforscht, über die daran anschließende langsamere und länger anhaltende Rekrutierungsphase von Zellen aus dem Knochenmark über das Blut in die Lunge jedoch ist relativ wenig bekannt. Petty et al. untersuchten, inwieweit SDF-1 in diese zweite Phase der Rekrutierung eingreift. SDF-1 konnte vor allem in CD45-negativen Zellen, also im nicht leukozytären Lungenepthel, nachgewiesen werden und scheint seine höchste Aktivität in der späten Phase (nach 24h) zu erreichen. Die aus dem Knochenmark rekrutierten Zellen zeigen erhöhte CXCR4-Expression, was dazu beiträgt, dass diese Zellen selektiv in die Lunge gelockt werden (Petty et al. 2007). Ein ähnliches Szenario wäre unter Umständen bei COPD denkbar. Die Sputummakrophagen von COPD-Patienten, also vor allem die kleinen Sputummakrophagen, weisen eine hohe CXCR4 Expression auf, wodurch sie vermehrt aus dem Blut in die Lunge rekrutiert werden. Eine heterozygote Mutation im CXCR4 Gen kann zu einer seltenen Immundefizienz führen, dem WHIM-Syndrom. Die bisher beschriebenen Mutationen resultieren alle in einem CXCR4-Protein mit
verkürztem C-Terminus, was nach Receptor-Aktivierung zu mangelhafter Desensibilisierung und verstärkter Chemotaxis führt (Gulino et al. 2004). Durch diese gesteigerte Reaktion werden Neutrophile im Knochenmark zurückgehalten und am Auswandern in den Blutkreislauf gehindert. Da Untersuchungen im Rahmen dieser Arbeit ergaben, dass die SDF-1 Expression im Bronchialepithel im Vergleich zur Mundschleimhaut rund 600fach erhöht ist, könnte dies ein Hinweis darauf sein, dass die hoch CXCR4 exprimierenden kleinen Sputummakrophagen nicht nur vermehrt in die Lunge einwandern, sondern auch verstärkt in der Lunge zurückgehalten werden.

Gomperts et al. berichteten über eine CXCR4-positive Zellpopulation von Vorläufer-Epithelzellen im Knochenmark, die im Laufe der Ausreifung die CXCR4-Expression verlieren (Gomperts et al. 2006), was sich mit der Theorie vereinbaren ließe, dass die kleinen Sputummakrophagen weniger ausgereift sind als die großen und frisch aus dem Blut in die Lunge einwandern.

In einem Übersichtsartikel von Busillo et al. wurde über Studien berichtet, die nach Aktivierung von CXCR4 eine Stimulation der Metalloproteinasen beobachteten, welche in den Abbau von Geweben involviert sind (Busillo and Benovic 2007) und bei COPD-Patienten an der Emphysementwicklung beteiligt sein könnten, worauf in folgendem Abschnitt näher eingegangen werden soll.

D.1.4 Weitere COPD-relevante Genexpressionen

deren Inhibitoren kann jedoch auch bei Emphysem-Patienten ohne α_1-Antitrypsin-Mangel auftreten. Hier wird der Effekt aber vor allem auf die elastolytischen Matrix-Metalloproteinase (MMP), die von den Alveolarmakrophagen produziert werden, zurückgeführt und nicht auf die Produkte der neutrophilen Granulozyten (Abboud and Vimalanathan 2008). Studien zeigten, dass TNF und IL-1β die MMP-9 Expression von Alveolarmakrophagen steigern können, ohne aber den Inhibitor (TIMP-1) entsprechend zu erhöhen, wodurch eine Imbalance entsteht (Saren et al. 1996).

Oben beschriebene Theorien und Beobachtungen unterstützen auch die Ergebnisse dieser Arbeit: Raucher zeigten in Sputummakrophagen einen signifikant erhöhten Quotient aus MMP-9 und TIMP-1 im Vergleich zur gesunden Kontrollgruppe. Bei den untersuchten COPD-Probanden konnte eine weitere Erhöhung im berechneten Verhältnis beobachtet werden, der Wert zeigte aufgrund der großen Streuung in den Einzeldaten keine Signifikanz.

In der Pathogenese der COPD ist auch das Ungleichgewicht zwischen Oxidantien und Antioxidantien von Bedeutung (Rahman and MacNee 2000). Die Lunge ist immer wieder exogenen Oxidantien ausgesetzt (z.B. durch Zigarettenrauch), denen körpereigene antioxidative Schutzmechanismen entgegenwirken. Ein Enzym mit bedeutender antioxidativer Wirkung ist die Hämoxigenase1 (HO-1), die Lungenzellen höchst effektiv gegen oxidativen Stress schützen kann (Lakari et al. 2001). Die protektive Wirkung wird vermutlich über die Produkte vermittelt, die bei HO-1 vermittelten Abbau von HÄM entstehen: CO, Fe$^{2+}$ und Biliverdin, welches schnell zu Bilirubin weiter abgebaut wird. Jedes dieser Produkte weist Kapazitäten als Radikalfänger auf (Bach 2006). Die Reduktion in der HO-1 mRNA in Sputummakrophagen von COPD-Patienten, die in vorliegenden Untersuchungen beobachtet wurde, steht im Einklang mit den Ergebnissen von Maestrelli et al., die in Alveolarmakrophagen von COPD-Patienten eine erniedrigte HO-1-Expression im Vergleich zu gesunden Rauchern zeigten (Maestrelli et al. 2003). Diese Befunde lassen vermuten, dass COPD-Patienten eine geschwächte Abwehr gegen oxidativen Stress vorweisen. Ein weiterer interessanter Aspekt für die Immunantwort wird von Bach beschrieben: der antiinflammatorische Effekt durch IL-10 auf Makrophagen benötigt die HO-1 Expression. Wenn HO-1 blockiert wird, kann IL-10 seine antiinflammatorischen Eigenschaften nicht entfalten (Bach 2006), was wiederum die Inflammation verstärkt.
Zusammenfassend lässt sich feststellen, dass die kleinen Sputummakrophagen, die bei COPD-Patienten in Exazerbation drastisch ansteigen, eine unterschiedliche Genexpression zwischen den untersuchten Kollektiven aufweisen. Erhöhte IL-8 und erniedrigte TGFβ mRNA Expression könnten einen Beitrag zur chronischen Inflammation leisten. Die anderen differenziell exprimierten Gene, wie CXCR4, HO-1 oder MARCO könnten auch über oben diskutierte Mechanismen die Entstehung einer COPD eingreifen.

D.2 Effekt von Teilchen auf die Genexpression in Monozyten und Makrophagen

D.2.1 Veränderungen im mRNA-Expressionsmuster durch ultra-feine Partikel bei Cytochrom P450 1B1

Die Technik des cDNA-Arrays ist eine Methode, um erste Hinweise auf veränderte mRNA Expressionsmuster zu erhalten. Diese Ergebnisse müssen jedoch zusätzlich mit RT-PCR in Einzelproben verifiziert werden.
DISKUSSION

Bei nur einem von insgesamt 15 untersuchten Genen konnte durch RT-PCR die im Array beobachtete Expressionsänderung bestätigt werden: die Cytochrom P450 1B1 mRNA in MDM wurde durch Stimulation mit dem Partikel-Gemisch um Faktor 2,5 reduziert. Der Effekt konnte nicht nur in MDM bestätigt werden, in Blutmonocytes zeigten sich sogar wesentlich höhere Effekte nach Partikel-Exposition (bis zu Faktor 85). Auch Sputummakrophagen und durch IL-13 aktivierte MDM wurden bezüglich CYP1B1 Expression nach Partikel-Exposition untersucht. Hier wurde die CYP1B1 mRNA durch Partikel-Exposition um Faktor 3 bis 4 gesenkt (bei alternativ aktivierten Makrophagen signifikant), was vermuten lässt, dass CYP1B1 in Makrophagen im Gewebe auch durch P90 reguliert sein könnte. Zusammengefasst deuten diese Beobachtungen darauf hin, dass Monozyten im Laufe ihrer Ausreifung zu Makrophagen weniger sensitiv auf die Partikel reagieren könnten, was möglicherweise an einer besseren Aufnahme der Partikel in die Monozyten liegen oder durch eine verstärkte Signalkaskade in Monozyten vermittelt werden könnte.

Eine wichtige Zellart in der Lunge, die direkt von Partikelexposition betroffen ist, stellt das Bronchialepithel dar, das durch Bürstenbiopsie gewonnen werden kann. Das Material kann neben den gewünschten Epithelzellen auch Leukozyten enthalten, die die Ergebnisse beeinflussen könnten. An zwei Beispielen von Bürstenbiopsien wurde durch FACS-Analyse und Kontrolle der Zellen auf dem Zytospin die Probenzusammensetzung nachgeprüft. Die CD45-Färbung (Marker für Leukozyten) zeigte im Vergleich zu ihrem Isotyp kein nennenswertes Fluoreszenzsignal und auch die mikroskopische Auswertung bestätigte, dass die Proben weitgehend nicht mit Leukozyten kontaminiert sind. Die durch P90 verursachte Senkung der CYP1B1 mRNA kann daher auch auf die Bronchialepithelzellen bezogen werden. In den sieben untersuchten Proben traten allerdings nach der 3-stündigen P90 Inkubation unterschiedliche starke Effekte auf. Im Mittel wurde die CYP1B1 mRNA Expression um das 4fache reduziert. Beachtet werden muss jedoch hierbei, dass bei zwei Proben, die sich durch keine offensichtlichen Faktoren von den anderen unterscheiden, ein wesentlich stärkerer Effekt mit einer 14 und 35fachen Reduktion auftrat. Eine mögliche Erklärung für die weite Streuung könnte in der Auswahl der Spender liegen. Die Patienten, von denen Material aus der Lunge gewonnen wurde,
konnten nicht einheitlich nach Diagnose ausgewählt werden. So variieren hier sowohl die Erkrankung des jeweiligen Spendern als auch dessen Medikation, was sich auch auf die Suszeptibilität gegenüber den uf Partikeln und die damit verbundene CYP1B1 mRNA Expression auswirken kann.

D.2.2 Individuelle Variabilität in der CYP1B1 Expression

D.2.3 Aktive Komponente: ultra-feines Printex 90

Nachdem durch getrennte Applikation der Partikel als aktive Komponente eindeutig das uf P90 identifiziert wurde, stellten sich zwei Fragen. Zum einen, ob der beobachtete Effekt durch eine mögliche LPS Kontamination von P90
zustande kommt, zum anderen, ob die Aktivität von P90 an seinen Eigenschaften als ultra-feiner Partikel liegt, also von seiner Oberfläche abhängig ist.

Um zu klären, ob die unterschiedliche Wirkung von uf P90 und f TiO₂ auf die CYP1B1 mRNA Expression von der Partikelgröße bestimmt wird, wurden als weitere ultra-feine Teilchen uf TiO₂ in der gleichen Konzentration (32 µg/ml) und uf EC90 Partikel mit einer Konzentration von 16 µg/ml eingesetzt. Ein signifikant reduzierender Effekt zeigte sich aber weiterhin nur bei uf P90. Das könnte darauf hindeuten, dass die uf P90 vermittelte CYP1B1 Genexpressionsänderung durch dessen Partikelgröße (12 nm) und relativ große spezifische Oberfläche (300 m²/g) verursacht werden kann. Uf TiO₂ ist mit einem Durchmesser von 20 nm etwas größer und weist auch eine kleinere spezifische Oberfläche von 48 m²/g auf, was den schwächeren Effekt erklären könnte.
Ein anderer Partikel, EC90, ist im Durchmesser größer (90 nm), hat aber die größte spezifische Oberfläche von 900 m²/g, d.h., die Aggregate bilden kleinere Untereinheiten (Moller et al. 2005; Moller et al. 2002). Bei Rußpartikeln (P90, EC90) wurde das oxidative Potential auf deren Oberfläche zurückgeführt. Beck-Speier und Kollegen konnten z.B. eine hochsignifikante Korrelation zwischen der PGE₂/TXB₂ Bildung und der Partikeloberfläche, nicht aber der eingesetzten Partikel-Masse zeigen (Beck-Speier et al. 2005). Bei EC90 könnte man aufgrund der größeren Oberfläche auch einen größeren Effekt erwarten, da es aber nur mit halber Masse und folglich mit der gleichen Oberfläche wie P90 eingesetzt wurde, können keine Rückschlüsse hinsichtlich der Wechselbeziehung zwischen Oberfläche und Wirkung gezogen werden. Auch die erhöhte Assoziation zwischen Erkrankungen und uf Partikeln wird meistens auf deren große spezifische Oberfläche zurückgeführt (Donaldson et al. 2005).

Durch Inkubation mit P90 lassen sich konzentrationsabhängige Wirkungen induzieren. CD14^{++} Monozyten wurden mit P90-Konzentrationen von 0 µg/ml über 0,32 µg/ml, 3,2 µg/ml, 32 µg/ml, 320 µg/ml bis 1000 µg/ml behandelt. Mit steigender Konzentration war auch ein größerer Abfall in der CYP1B1 mRNA Expression zu verzeichnen. Da die Konzentration von 32 µg/ml schon einen starken Effekt zeigte und um Material zu sparen, wurde für die weiteren Versuche eine P90-Konzentration von 32 µg/ml ausgewählt. Diese zeigt die größte Praxisnähe, was umweltrelevante Partikelbelastung in der Luft betrifft (Hofer et al. 2004). Alle höheren Konzentrationen stellen keine realistischen physiologischen Bedingungen dar. Um auszuschließen, dass der beobachtete Effekt bei den hohen Konzentrationen (von 32 µg/ml bis 1000 µg/ml) durch Zytotoxizität zustande kommt, wurde ein Test mit Trypanblau durchgeführt, der die Vitalität der Zellen bestätigte, unabhängig davon, mit welcher P90-Konzentration sie behandelt wurden.

D.2.4 CYP1B1 Protein nach P90 Stimulation

Um zu überprüfen, welchen Effekt P90 auf die CYP1B1 Protein-Expression hat, gibt es unterschiedliche Untersuchungsmethoden.

In vorliegender Arbeit war das CYP1B1 Protein am besten im Western Blot nachweisbar. Um aussagenkräftige Daten zu erhalten, müssen alle Proben mit einheitlichen Proteinkonzentrationen eingesetzt werden. Nachdem der P90-
vermittelte Effekt in Monozyten am deutlichsten war, sollten zunächst auch diese Zellen für die Proteinbestimmung verwendet werden. Da CYP1B1 in der Membran des endoplasmatischen Retikulums gebunden ist, muss die Mikrosomenfraktion durch Ultraschall erzeugt und aus den Zellen isoliert werden. Auch nach Erhöhung der Zellzahl auf 75 x 10^6 Monozyten (Pool aus vier Spendern) konnte nicht genügend Protein isoliert werden, um im Bradfordassay die Konzentration bestimmen zu können. Da einen Zelllinie problemlos in höherer Zellzahl zur Verfügung gestellt werden kann und die Zellen auch größer sind und somit mehr Protein enthalten, wurden zur Durchführung des Western Blots Calu-3 Zellen ausgewählt. Calu-3 Zellen scheinen als Modellsystem geeignet, da sie auch eine Regulation von CYP1B1 durch P90 zeigen. Nachdem diese Zellen nach 22 h den größten P90-induzierten Abfall in der CYP1B1 mRNA Expression zeigten, wurden sie 32h (Zeitzugabe für die Translation) mit 32 µg P90 / ml behandelt, um anschließend Mikrosomen zu isolieren. Hier konnte über die Bradford Protein-Bestimmung erfolgreich Protein gemessen und von allen Proben dieselbe Menge Gesamtprotein von 10 µg in den Western Blot eingesetzt werden. Die densitometrische Analyse der Blots konnte eine Reduktion des CYP1B1 Proteins durch Behandlung mit P90 zeigen. Da die CYP1B1 mRNA in Calu-3 Zellen ähnlich reguliert ist, wie in Monozyten könnte man davon ausgehen, dass sich auch das CYP1B1 Protein in Monozyten in ähnlicher Weise verhält und ebenfalls reduziert wird.

D.2.5 Regulation von CYP1B1 – mögliche Wirkmechanismen von P90

Die Regulation des CYP1B1 und CYP1A1 Gens wird durch polyaromatisiche Kohlenwasserstoffe (PAH) über den zytosolischen Arylhydrocarbon-Rezeptor (AhR) gesteuert. Der wirksamste AhR-Agonist ist Dioxin (Murray et al. 2001), aber auch TCDD oder BaP können den Rezeptorkomplex aktivieren (Harrigan et al. 2005). Tabakrauch und Dieselruf enthält große Mengen von PAH, die auf den Partikeln absorbiert sind (Kim et al. 2004; Rouse et al. 2008). In der vorliegenden Arbeit konnte eine konzentrationsabhängige Induktion der

Die Reduzierung der CYP1B1 mRNA durch P90 kann unterschiedliche Ursachen haben. Einerseits könnte der in vorliegender Arbeit beobachtete Effekt durch eine verminderte Transkription oder posttranskriptionell durch eine erhöhte RNA Instabilität zustande kommen. Dies wurde mithilfe von Actinomycin D untersucht. Diese Substanz interkaliert in die DNA und bindet über Phenoazon spezifisch an Guanin und Cytosin reiche Stellen der DNA. Dadurch wird die DNA-abhängige RNA-Polymerase blockiert und somit die Transkription gehemmt (Delepierre et al. 1989). Nach Analyse durch RT-PCR kann die Halbwertszeit (HWZ) der vorliegenden RNA bestimmt werden. In dieser Arbeit wurde beobachtet, dass die Halbwertszeit der CYP1B1 mRNA keine großen Unterschiede zwischen der Behandlung mit (HWZ 1,2 h) oder ohne (HWZ 1,6 h) Partikel aufweist. Wenn die uf Partikel das RNA-Transkript destabilisieren würden, müsste die HWZ bei mit P90 behandeln Zellen kürzer als bei unbehandelten Zellen sein. Die hier gewonnenen Ergebnisse sprechen dafür, dass P90 die Synthese der CYP1B1 mRNA inhibiert und nicht etwa das mRNA-Transkript an sich destabilisiert.

Im Gegensatz zum Wissen, das über die Induktion von CYP-Genen vorhanden ist, ist über deren Suppression noch wenig bekannt. Dass in diesem Bereich bisher weniger untersucht wurde, liegt wohl oft an der Schwierigkeit, eine

In Bezug auf die Partikel-vermittelte Suppression könnte auch ein Zusammenhang über oxidativen Stress hergestellt werden. Bei den durch CYP katalysierten Reaktionen können O_2^- - Radikale oder H_2O_2 entstehen (Yasui et al. 2005). Diese reaktiven Sauerstoffspezies und auch Partikel, die eigenes oxidatives Potential haben, können in der Zelle zu oxidativem Stress führen. Um diesen Stress nicht noch durch weitere Katalysereaktionen durch CYP zu vergrößern, könnte die P450 Herunterregulierung, die auch in dieser Arbeit auf Behandlung mit uf P90 hin beobachtet wurde, eine Art Schutzmechanismus gegen zusätzliche oxidative Schädigungen darstellen. Andererseits könnte die
geringere CYP1B1 Expression jedoch auch bedeuten, dass sich durch ultra-feine Partikel die Empfindlichkeit gegenüber weiteren Xenobiotika erhöht, da die Entgiftungsmechanismen von CYP1B1 nicht mehr genügend effektiv arbeiten.

E Zusammenfassung

In dieser Arbeit habe ich ein neues Verfahren zur Aufreinigung der Sputummakrophagen durch Depletion aller Nicht-Makrophagen entwickelt. Damit konnte ich erstmals die Genexpression in dieser Zellpopulation untersuchen. Dabei fand ich, dass in Sputummakrophagen das proinflammatorische Zytokin IL-8 in den Kollektiven der Raucher, ambulanten und stationären COPD-Patienten im Vergleich zu Gesunden höher exprimiert ist und das antiinflammatorische Zytokin TGFβ bei stationären COPD-Patienten niedrigere mRNA Mengen zeigt, was beides auf eine erhöhte Inflammation hindeutet. Der Chemokinrezeptor CXCR4 ist sowohl auf mRNA als auch auf Protein-Ebene bei COPD-Patienten höher exprimiert als in den Vergleichsgruppen, was möglicherweise zu verstärkter Einwanderung aus dem Blut und längerem Verbleiben in der Lunge führen könnte. Das Verhältnis der Proteinmasen und Antiproteinmasen ist COPD-Patienten in Richtung der

geringere Entgiftungskapazität und fördert daher eine Schädigung des Organismus.
F Literaturverzeichnis

walled carbon nanotubes and various dyes commonly used to assess cytotoxicity *Carbon* 45, 1425-1432.

Nelson, D. R. Cytochrome P450 Homepage. Nelson, D.R.

G Abbildungsverzeichnis

Abbildung 1: Lungenaufbau ...5
Abbildung 2: Größeneinteilung von Partikeln (modifiziert nach (Brook et al. 2004)); PM = particulate matter, UFP = ultra-fine particles ...7
Abbildung 3: Elektronenmikroskopische Aufnahme von uf P90 – Aerosol (Gilmour et al. 2004) ...8
Abbildung 4: Aufgaben und Effekte von Makrophagen bei COPD (Larsson 2007) ...12
Abbildung 5: Vereinfachte schematische Darstellung der Regulation des CYP1B1 (CYP1A1) Gens über den Ah-Rezeptor ..17
Abbildung 6: Gewinnung von Sputummakrophagen über Rosettierung36
Abbildung 7: Light Cycler Technologie (Quelle: Roche) ..42
Abbildung 8: FACS-Dot Blots einer Sputumprobe eines COPD-Patienten vor Aufreinigung durch Rosettierung ...50
Abbildung 9: FACS-Dot Blots einer Sputumprobe eines COPD-Patienten nach Aufreinigung durch Rosettierung ...50
Abbildung 10: Makrophagen-Populationen nach Aufreinigung mit RosetteSep (linker Dot Blot: Probe eines gesunden Spendern, rechter Dot Blot: Probe eines COPD-Patienten) ..51
Abbildung 11: 100fache Vergrößerung von Sputummakrophagen (Zytospin). 52
Abbildung 12: Prozentualer Anteil der kleinen Sputummakrophagen in der gesamten Makrophagen-Population, Vergleich von unterschiedlichen Spenderkollektiven (Kontrollen n=6, Raucher n=4, COPD ambulant n=5, COPD stationär n=9, MW ± SD) ..53
Abbildung 13: Konstitutive IL-8 mRNA-Expression in Sputummakrophagen, dargestellt relativ zu α-Enolase (Kontrollen n=4, Raucher n=4, COPD stationär n=9, COPD ambulant n=5, MW ± SD, * = p < 0,05 bezogen auf Kontrollen) ..54
Abbildung 14: Konstitutive TGFβ mRNA-Expression in Sputummakrophagen, dargestellt relativ zu α-Enolase (Kontrollen n=4, Raucher n=4, COPD ambulant n=5, COPD stationär n=9, MW ± SD, * = p < 0,05 bezogen auf Kontrollen). ..55

Abbildung 15: Konstitutive mRNA-Expression des Chemokinrezeptors CXCR1 in Sputummakrophagen, dargestellt relativ zu α-Enolase (Kontrollen n=6, Raucher n=4, COPD stationär n=8, COPD ambulant n=5, MW ± SD, * = p < 0,05 bezogen auf Kontrollen).57

Abbildung 16: Konstitutive mRNA-Expression des Chemokinrezeptors CXCR1 in Sputummakrophagen, dargestellt relativ zu α-Enolase (Kontrollen n=6, Raucher n=4, COPD stationär n=13, COPD ambulant n=8, MW ± SD, * = p < 0,05 bezogen auf Kontrollen).58

Abbildung 17: CXCR4-FITC Fluoreszenzintensitäten mit entsprechendem Isotyp. Linkes Histogramm: CXCR4-FITC Signal auf großen Sputummakrophagen eines ausgewählten gesunden Spenders. Rechts: CXCR4-FITC Signal auf kleinen Sputummakrophagen eines COPD-Patienten. ..59

Abbildung 18: Verhältnis der mRNA-Kopien von MMP-9 und TIPM-1 in Sputummakrophagen (Kontrollen n=4, Raucher n=4, COPD stationär n=13, MW ± SD, * = p < 0,05 bezogen auf Kontrollen).61

Abbildung 19: Konstitutive mRNA-Expression der Hämoxigenase1 in Sputummakrophagen, dargestellt relativ zu α-Enolase (Kontrollen n=6, Raucher n=4, COPD stationär n=8, COPD ambulant n=5, MW ± SD, ** = p < 0,005 bezogen auf Kontrollen). ...62

Abbildung 20: Konstitutive mRNA-Expression des Phagozytoserezeptors MARCO in Sputummakrophagen, dargestellt relativ zu α-Enolase (Kontrollen n=4, Raucher n=4, COPD stationär n=8, MW ± SD, ** = p < 0,005 bezogen auf Kontrollen). ...63

Abbildung 21: Expression von IL-8 (links) und CXCR4 (rechts) in Sputummakrophagen nach 3h +/- fTiO2/ufP90 Behandlung, dargestellt relativ zu α-Enolase (IL-8: Kontrollen n=2, COPD stationär n=5, CXCR4: Kontrollen n=1, COPD stationär n=4, MW ± SD).64
Abbildung 22: Effekt von Partikeln auf die CYP1B1 mRNA bei MDM nach 3h Stimulation (n=5 COPD, n=3 gesund, ± SD, * = p < 0,05 gegen none). ...67
Abbildung 23: Effekt von Partikeln auf die CYP1A1 mRNA bei MDM nach 3h Stimulation (n=4 COPD, n=5 gesund, ± SD, * = p < 0,05 gegen none). ...68
Abbildung 24: Effekt von Partikeln auf die CYP1B1 mRNA bei CD14++ Monozyten nach 3h Stimulation (n=7 COPD, n=3 gesund, ± SD; * = p<0,05 gegen none). ..68
Abbildung 25: Relative CYP1B1 mRNA Menge nach 3h Stimulation mit P90 und fTiO$_2$ einzeln (n=3 gesund, ± SD,* = p<0,05 bezogen auf none).69
Abbildung 26: Relative CYP1A1 mRNA Menge nach 3h Stimulation mit P90 und fTiO$_2$ einzeln (n=3 gesund, ± SD,* = p<0,05 bezogen auf none).70
Abbildung 27: Dosis-Wirkungs-Beziehung der Expression von CYP1B1 in CD14++ Monozyten gesunder Probanden nach 3h Stimulation mit P90 (n=5, ± SD, * = p<0,05 bezogen auf 0 µg/ml)..71
Abbildung 28: CYP1B1 mRNA Expression nach 3h Stimulation mit einer Dosis von 320 µg/ml P90 in MDM gesunder Spender (n=3, ± SD, * = p<0,05 bezogen auf none) ...71
Abbildung 29: Zeit-Wirkungs-Beziehung der mRNA-Expression von CYP1B1 in CD14++ Monozyten gesunder Probanden nach 3h Stimulation mit P90 (n=3, ± SD, * = p<0,05 bezogen auf 0h)...............................72
Abbildung 30:CYP1B1 mRNA Expression nach 3h LPS- und P90-Stimulation mit und ohne PMB in CD14++-Monozyten gesunder Probanden (n=6, ± SD, * = p < 0,05)...73
Abbildung 31: CYP1B1 mRNA Expression in Sputummakrophagen von COPD-Patienten (n=7), gesunden Rauchern (n=4) und gesunden Nichtrauchern (n=2) nach 3-stündiger Behandlung mit Partikel-Gemisch (P90 und fTiO$_2$ je 32 µg/ml) ± SD. ...74
Abbildung 32: Effekt von P90 auf die CYP1B1 mRNA von in vitro generierten MDM und unreifen DC von gesunden Spendern (n=4, MW ± SD, * = p<0,5). ..74
Abbildung 33: CYP1B1 mRNA Expression in den Zelllinien A549 (n=3) und Calu3 (n=4) nach 22h Stimulation, ± SD, * = p<0,05 bezogen auf none...75
Abbildung 34: CYP1B1 mRNA Expression in Epithelzellen aus Bürstenbiopsien (n=7) nach 3h Stimulation mit P90 (32µg/ml), ± SD, * = p<0,05 bezogen auf none. ...75

Abbildung 35: Zeit-Wirkungs-Beziehung für die CYP1B1 mRNA Expression in PBMC nach Behandlung mit 10 µM BaP (n=3 gesund, ± SD, * = p<0,05). ..76

Abbildung 36: Gegenseitige Beeinflussung der CYP1B1 mRNA Expression durch BaP und P90 in PBMC gesunder Probanden (n=4, ± SD, * = p<0,05 gegen none). ..77

Abbildung 37: Bestimmung der Halbwertszeit von CYP1B1 mRNA mit und ohne Partikel-Stimulation in PBMC gesunder Probanden (n=4, ± SD).78

Abbildung 38: Beeinflussung der CYP1B1 mRNA Regulation durch Kultur in unterschiedlichen Gefäßen (PBMC gesunder Spender, n=3, MW ± SD) .79

Abbildung 39: CYP1B1 mRNA Expression in PBMC nach 3h Inkubation mit verschiedenen Partikeln (PBMC gesunder Spender, n=5 (bei f TiO₂ n=2), ± SD, * = p<0,05). ...80

Abbildung 40: links: Proteinbanden von CYP1B1 bei 57 kDa und Aktin bei 42 kDa derselben Probe im Western Blot, jeweils ohne und mit 32h 32 µg P90/ml Behandlung (ein repräsentatives Beispiel von drei Experimenten, bei CYP1B1: 3 036 276 units für unbehandelte Zellen, 373 799 units für mit P90 behandelte Zellen); rechts: CYP1B1 mRNA Expression in Calu-3 nach 32h (MW n=3, ± SD, * = p<0,05).81
H Tabellenverzeichnis

Tabelle 1: Verwendete Reagenzien ...19
Tabelle 2: Verwendete Lösungen und Medien...24
Tabelle 3: Verwendete Verbrauchsmaterialien...25
Tabelle 4: Verwendete Antikörper und Isotyp-Kontrollen26
Tabelle 5: Verwendete Partikel ..26
Tabelle 6: Verwendete Primerpaare ..28
Tabelle 7: Verwendete Geräte ...29
Tabelle 8: RT-Transkriptions-Mix ...41
Tabelle 9: Reaktionsansatz für die LightCycler-PCR43
Tabelle 10: Amplifikationsprogramm ...43
Tabelle 11: Expression der mRNA verschiedener Zytokine nach 3h ± 1 µg LPS/ml ..55
Tabelle 12: Konstitutive mRNA Expressionen der untersuchten Cytokine, dargestellt relativ zu α-Enolase ± SD. ...56
Tabelle 13: Konstitutive mRNA Expressionen der untersuchten Chemokinrezeptoren, dargestellt relativ zu α-Enolase ± SD.57
Tabelle 14: Untersuchte Gene, die im Array verändertes Expressionsmuster aufwiesen. ...66
I Danksagung

Zunächst danke ich Herrn Prof. Dr. Löms Ziegler-Heitbrock für die Bereitstellung des interessanten Themas und für die engagierte und umfassende Betreuung.

Bei Herrn PD Dr. Michael Pfaffl und Herrn Prof. Dr. Heinrich Meyer möchte ich mich bedanken, dass sie sich als Gutachter zur Verfügung gestellt haben. Ganz besonderer Dank gilt auch Frau Dr. Marion Frankenberger, die mir mit großer fachlicher Kompetenz und viel Geduld in jeglicher Fragestellung zur Seite stand.

Dr. Thomas Hofer danke ich ebenfalls sehr für seine hilfsbereite, kompetente und ausdauernde Betreuung. Nicht nur im Laboralltag, auch bei Computerproblemen war er mir zu jeder Zeit behilflich.

Dem Team der Station 2.2 der Asklepios Fachklinik Gauting, vor allem Herrn OA Dr. Weber, möchte ich für die große Hilfs- und Kooperationsbereitschaft danken.

Allen anderen Kollegen der KKG möchte sehr für das angenehme Arbeitsklima danken: vor allem ganz herzlich meinen Zimmerkolleginnen, Irene Heimbeck und Claudia Unterberger, und Gudrun Kaßner, die mittlerweile alle zu Freunden geworden sind. Sie bauten mich immer wieder auf und ohne sie hätte alles viel weniger Spaß gemacht. Danke auch an Dr. Winfried Möller für die Unterstützung u.a. bei PC-Problemen und Dr. Valerie Albrecht, für die herzliche Aufnahme in die Arbeitsgruppe, was mir den Start sehr erleichterte.

Bei meinen Eltern, meinem Freund und allen meinen Freunden möchte ich mich ganz besonders bedanken. Sie haben mich von Anfang bis Ende der Arbeit, jeder auf seine eigene, jeweils für mich sehr wichtige und unersetzliche Art und Weise unterstützt.