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Abstract—We investigate the sum rate maximization in the
MIMO broadcast channel when linear filtering is applied. Our
particular interest lies in usually not considered system config-
urations where the base station is equipped with less antennas
than the user terminals have in sum. For such scenarios, conven-
tional block-diagonalization or zero-forcing techniques cannot be
applied and even asymptotic results on the sum rate do not seem

to exist. We show that the nonconvex problem at hand is closely
related to a combinatorial stream selection and that choosing
the number of active streams too high reduces the multiplexing
gain and can even lead to a saturation of the sum rate, i.e.,
a multiplexing gain of zero. Besides the full featured reference
algorithm probing all feasible stream allocation combinations, a
reduced complexity successive version is presented as well. Both
variants are based on the projected gradient algorithm.

I. STATE OF THE ART & CONTRIBUTIONS

While the sum rate maximization with nonlinear dirty-

paper coding is a well-known convex problem for which

several efficient algorithms exist (see for example [1], [2],

[3]), maximizing the sum rate constrained to linear filtering

is a highly nonconvex problem featuring several suboptimum

local maxima. Indeed, asymptotic results on the rate loss of

linear precoding compared to dirty paper coding are available

when the base station is equipped with enough antennas [4],

[5], but MIMO scenarios where the users’ terminals have more

antennas in sum than the base station have only been tackled

by simulations so far. Suitable only for the scenarios with

enough antennas, the block-diagonalization and zero-forcing

approaches are usually designed in the downlink [6], [7],

whereas algorithms being capable of handling also the latter,

more difficult antenna configurations with less antennas at the

base utilize a duality to create a dual multiple access channel

offering simpler rate expressions. The algorithms employing

a duality can furthermore be classified either to work in a

stream-wise fashion where the individual streams of a single

user are treated as interference, or in a user-wise fashion,

where all streams of a single user are decoded jointly.

The authors in [8] make use of their stream-wise mean

square error (MSE) duality in [9] and apply a complete se-

quential quadratic programming (SQP) procedure in every it-

eration of their algorithm to find a power allocation that locally

maximizes the sum rate for given beamformers. Moreover,

they switch between the virtual uplink and the downlink in

every iteration yielding a computationally complex algorithm.

A similar approach is presented in [10], where instead of an

SQP an interior point problem solver is used to minimize the

product of the streams’ MSEs for fixed transmit and receive

beamformers. This geometric program has to be solved with

high accuracy in every single iteration in order to let the

outer optimization come close to a local maximum of the

sum-rate. In addition, it features a very high computational

complexity. Again, frequent conversions from the uplink to

the downlink via the stream-wise MSE duality in [11] increase

the computational complexity. In contrast to the former two

stream-wise optimizations, a projected gradient based sum-rate

maximization was proposed in [12] where all streams of an

individual user are decoded jointly. Since the duality of [13]

employed by [12] does not preserve the individual rates, when

the users decode their streams jointly, the approach in [12]

delivers only valid results in the dual uplink. However, the

rate duality of [14] for the joint stream decoding enables an

extension to the BC. In [15], an efficient implementation of a

zero-forcing based successive stream allocation is presented.

Contributions on the sum-rate maximization for single-

antenna terminals intuitively limit the number of active streams

to the number of available transmit antennas at the base station,

when more antennas are present at the terminals than at the

base station, see e.g. [16], [17]. We prove in the following

that allocating more active streams than antennas available

at the base is indeed suboptimum also in the MIMO case

since it reduces the multiplexing gain, but can also lead to a

saturation of the achieved sum rate when the transmit power is

increased. An immediate consequence is that the multiplexing

gain can be zero in the worst case. Noticing that at most as

many streams are active as the base station has antennas and

that the sum rate maximization with linear beamforming is

highly nonconvex, a combinatorial search over all possible

stream allocations becomes inevitable when seeking for the

global optimum. We present a gradient projection based local

rate maximization algorithm for fixed stream initializations

and probe all possible combinations of active streams in order

to get a reference algorithm for the performance evaluation of

other sum rate maximizing algorithms. In order to overcome

the high computational effort resulting from the complete

combinatorial search, we additionally present a successive

stream allocation policy probing significantly less combina-

tions without noticeable rate loss.

II. SYSTEM MODEL AND DUAL UPLINK PROBLEM

The rate duality in [14] allows us to tackle the sum rate

maximization in the dual uplink and convert the obtained



solution back to the broadcast channel. In contrast to the

approaches in [8] and [10], the duality therefore has to be

invoked only once and not in every iteration. Let Hk ∈ CN×rk

denote the channel matrix describing the propagation from the

kth user to the base station in the dual uplink with N being

the number of antennas at the base and rk being the number

of antennas of user k. A precoder matrix Tk ∈ Crk×Bk maps

the Bk data streams of user k onto his rk antennas. Under

these assumptions, the rate of user k seeing interference from

all other users reads as (see [14])
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with the total power consumption
∑K

k=1 ‖Tk‖2F = PTx.

III. MULTIPLEXING GAIN DEGRADATION WHEN SERVING

TOO MANY STREAMS

While the rate expression (1) is in general only valid if

the individual users jointly decode their own streams, the

precoders Tk can be extended by isometries Wk decorrelating

the received signal such that the same rate can also be achieved

by a stream-wise decoding operation, see [14]. However, these

isometries lead to the fact that user k has at most rk active

data streams with nonzero power. Thus we have to ensure that

Bk ≤ rk holds for all users k ∈ {1, . . . , K} all the time, which

intuitively makes sense. For the proof that allocating more than

N active streams is suboptimum and can lead to a saturation

of the rate when the transmit power PTx is increased, we

can therefore restrict ourselves to a stream-wise decoding

which simplifies the proof. Treating each of the b transmitted

streams as a virtual user, we can interpret the dual uplink

system as a multi-user SIMO system with b =
∑K

k=1 Bk

virtual users, where the ith virtual user is characterized by

an effective vector-valued channel ci = Hm[i]ui, where m[·]
maps a virtual user index to the actual user index and ui is

the corresponding unit norm beamformer, i.e., the respective

normalized column of Tm[i]Wm[i]. Thus, the rate of the ith
stream can be expressed as
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We investigate linear power allocation policies of the form

pi = p̄iPTx, where PTx =
∑

i pi denotes the total sum

power and 0 ≤ p̄i ≤ 1 is no function of PTx. Introducing

the canonical unit vector ei of appropriate dimension with the

one at the ith position, the effective N × b channel matrix

Cb = [c1, . . . , cb], and the diagonal nonnegative b × b power

matrix Pb = diag{pi}bi=1, we can reformulate (2) as
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For an appropriate choice of the decorrelation isometries Wk,

we have
∑b

i=1 ri =
∑K

k=1 Rk, see [14], i.e., the system with

stream-wise decoding can achieve the same rates as the jointly

decoded system with user rates in (1). Now let us assume that

we serve at most as many virtual users as we have antennas

at the base station, i.e., b ≤ N and p1, . . . , pb > 0. As there

are r =
∑K

k=1 rk antennas at the transmitter side available,

we can freely select b out of the r possible virtual streams to

be the active ones with nonzero power. Clearly, the specific

choice of the active streams influences the sum rate of the

system, and this degree of freedom can later on be chosen

to increase the performance. The sum rate obtained by the b
active streams reads as

Rtot = − log2

b
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e
T
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)−1
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where Ab = CH
b Cb. Letting PTx become large and assuming

that the active virtual users have been chosen such that their

effective channels are linearly independent, the sum rate Rtot

asymptotically reads as

Rtot
∼= b log2 PTx − log2

b
∏

i=1

[

A
−1
b

]

i,i
+ log2

b
∏
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where p̄k = pk/PTx > 0 is the normalized power of the kth
virtual stream and the asymptotic equivalence a ∼= b means

that the difference a− b vanishes in the high power limit. The

third summand of (5) is maximized by evenly distributing the

normalized powers to the virtual users, i.e., p̄i = 1/b, cf. [18].
It can immediately be seen that the achieved multiplexing gain

is b, and the multiplexing gain can be increased with b until

b = N . If b > N , Ab is rank deficient and above calculation

is no longer valid. Finally, the second summand influences the

rate offset and depends only on the effective channels of the

virtual users, i.e., on the choice which virtual users are served

and on their beamforming vectors. However, it is independent

of the power allocation policy.

In the following, we show that b > N decreases the

multiplexing gain from N to N − 1 or even less. In the worst

case, the multiplexing gain is zero.

Theorem III.1: Allocating more than N active streams in a

MAC or BC communication scenario with linear transceivers

where the terminals of the users have more antennas in sum

than the N -antenna base station, and where the number of

streams per user is upper bounded by its number of antennas,

yields a multiplexing gain between zero and N−1.

For the proof of above theorem, the N+1-th virtual user with

pN+1 > 0 is added to the system. The sum rate changes to

Rtot = − log2
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∏
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e
T
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1
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where AN+1 = CH
N+1CN+1 which has only rank N making

the asymptotic analysis slightly more complicated. Introducing



the matrix partitioning

A
′
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In the following, we compute the diagonal entries of the matrix

A
′−1
N+1 when PTx becomes large. Applying the inversion rules

for block partitioned matrices, we find that the first N diagonal

entries of A
′−1
N+1 read with i ∈ {1, . . . , N} as
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since ‖cN+1‖22 = bHA
−1
N b. Combining (13) and (12), it can

be observed that the N + 1-th diagonal element of A
′−1
N+1

increases linearly in PTx. For an asymptotic analysis of (11),

we exploit the asymptotic equivalences eT
i A
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and [A′−1
N ]i,i ∼= [A−1

N ]i,i. The ith diagonal element of A
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with i ∈ {1, . . . , N} then asymptotically reads as

[

A
′−1
N+1

]

i,i
∼=

[

A
−1
N

]

i,i
+
|eT

i A
−1
N b|2

d′ − bHA
′−1
N b

. (14)

While the first summand is constant, the second one increases

linearly with PTx in the limit as the numerator is no function

of PTx and the denominator is inversely proportional to PTx

in the limit, see (13). The only way to prevent from the

linear increase is when |eT
i A

−1
N b|2 is zero. This is obtained

when the N +1-th effective channel cN+1 is orthogonal to

the projection of ci onto Ni, where Ni is the orthogonal

complement of the span of {c1, . . . , cN} \ {ci}. In other

words, cN+1 has to be orthogonal to that part of ci which

does not lie in the span of the other effective channels cj

for all j ∈ {1, . . . , N} \ {i}. Then, (14) is constant and

asymptotically equivalent to [A−1
N ]i,i. Summing up, each of

the first N diagonal elements of the inverse in (10) asymptoti-

cally increases linearly with PTx irrespective of the normalized

power distribution p̄1, . . . , p̄N+1 > 0 except when the effective

channel cN+1 of the N +1-th stream is orthogonal to one

or more effective channels ci of the first N users after

projection onto Ni. In such a case, the respective diagonal

elements do not increase with PTx. In conjunction with the

prefactor 1/PN+1
Tx , we can conclude that the multiplexing gain

is reduced by one for every stream to whose projected effective

channel the added stream’s channel is not orthogonal. In the

worst case, the multiplexing gain is zero. Having proven that

for large enough transmit power one has to allocate exactly

N active streams (if the users have less than N antennas in

sum, then every user has to activate as many streams as he has

transmit antennas, i.e., Bk = rk), we conjecture that even for

moderate transmit power, serving more than N active streams

can never be optimum in the sum rate sense.

IV. COMBINATORIAL SEARCH FOR THE OPTIMUM

STREAM SELECTION

In the low power regime, it is well known that the sum

rate maximizing transmission strategy is to allocate only a

single active stream belonging to the strongest eigenmode of

all users’ channels. Raising the transmit power, more and

more streams have to be allocated until in the asymptotic

limit, b = N out of r streams are active. Note that the

nonconvexity of the problem leads to the fact that the optimum

stream allocation cannot be obtained by an iterative sum rate

maximizing algorithm from all stream initialization points

in general. This is a drawback which one does not have

to face when dirty paper coding or successive interference

cancellation is applied instead of linear filtering.

In order to find out which sum rates can at least be

achieved by means of a linear precoding scheme, our reference

algorithm probes all reasonable stream allocations. To this end,

we distribute b active streams over the K users, where b ranges
from 1 to N . Keeping in mind that the rate expression (1)

depends only on the covariance matrices TℓT
H
ℓ of all users ℓ,

it does not make sense to allocate more streams to a single

user than he has transmit antennas as any full rank rk × rk

covariance matrix can be achieved with a rank rk precoder.

Thus, the constraint Bk ≤ rk must be satisfied for all users k.
To illustrate this, Table I shows the possible stream allocations

to the users in a system where K = 3 users each having

r1 = r2 = r3 = 2 antennas communicate with an N = 4
antenna base station.

Depending on the number of active streams per user, the

precoders are differently initialized. Here, we apply truncated

identity matrices for the active precoding matrices. Initializa-

tion examples for the precoder Tk of user k with either 0, 1,
or 2 active streams are therefore

Tk =

[

0
0

]

, Tk =

[

1
0

]

, or Tk =

[

1 0
0 1

]

, (15)

respectively. Given a fixed stream allocation as initialization,

we apply a projected gradient ascent algorithm to increase the



Number of streams b Stream allocation for the users

1 100, 010, 001

2 200, 020, 002, 110, 101, 011

3 111, 120, 102, 210, 201, 012, 021

4 220, 202, 022, 211, 121, 112

TABLE I

POSSIBLE STREAM ALLOCATIONS FOR K = 3 USERS, N = 4 ANTENNAS

AT THE BASE STATION, AND rk = 2 ∀k ANTENNAS AT THE TERMINALS.

sum rate, where we update the precoders of all users according

to their gradients and afterwards project the resulting precoders

on the transmit power constraint set defined by the equality
∑K

k=1 ‖Tk‖2F = PTx. Hence, the projection simply scales the

magnitude of all precoders by an iteration-dependent common

factor α(n). Doing so, the update rule for the precoder of

user m in iteration n+1 reads as

T
(n+1)
m = α(n)

(

T
(n)
m + p(n)s(n) · ∂
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where the iteration-dependent preconditioning scalar is
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s(n) is the adaptive step-size which is initialized with one

and multiplied by a factor smaller than one (we chose 2/3)
every time the utility tends to decrease. The individual rates

Rk are defined in (1). Making use of the two substitutions

X = IN +
∑K

ℓ=1 HℓTℓT
H
ℓ HH

ℓ and Xk = X−HkTkT H
k HH

k ,

the partial derivative of the sum rate can be expressed very

efficiently as

∂
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k=1 Rk
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m

=
1

ln 2
H

H
m

(

KX
−1−

∑

k 6=m

X
−1
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)
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According to (16) and (18), the updated precoder T
(n+1)
m

follows from T
(n)
m via left-hand multiplication with another

matrix. Thus, the rank of T
(n+1)
m cannot become larger than

the rank of T
(n)
m , so the initially chosen number of active

streams cannot increase during the gradient ascent steps.

Although we probe all possible initialization combinations,

it is not clear whether the global optimum can be obtained

by the gradient ascent or not. Because of the nonconvexity

of the problem, only a local maximum in the vicinity of the

initialization can be reached. However, simulations revealed

that brute-forcing all possible allocations aided by the gradient

projection algorithm outperforms the hitherto existing rate

maximizing algorithms [10], [12]. Note that above algorithm

can easily be extended to maximize the weighted sum rate.

V. SUCCESSIVE STREAM SELECTION WITH REDUCED

COMPLEXITY

Even for the simple system configuration with only K = 3
two antenna users communicating with an N = 4 antenna base

station, 22 different stream allocations have to be probed (see

Table I). In order to reduce this high computational complexity,

we propose a successive variant which adds one more stream

to one of the K users in every iteration subject to the

constraints that at most N streams are active, no user features

more streams Bk than he has antennas rk , and the updated

stream allocation differs from that in the previous iteration

for only one user. For example, assuming that the gradient

ascent algorithm achieves a larger rate for the particular stream

initialization 100 than for 010 and 001, we do not have to test

the allocations 020, 002, and 011 when a second stream is

added. Assuming furthermore, that 110 is the best initialization

in the second iteration with b = 2, and 210 is optimum for

b = 3, only the bold stream distributions in Table I have to be

checked. Only 11 out of the 22 possible stream allocations

have to be probed during the successive stream allocation

halvening the computational complexity. If, for example, the

sum rate for b = 3 active streams is not larger than for b = 2
streams, b = 4 active streams do not have to be probed at all.

VI. SIMULATION RESULTS

For a system configuration where K = 3 two-antenna

users are served by a base station with N = 4 anten-

nas, we simulated the sum rate achieved by the presented

combinatorial approach in combination with the projected

gradient algorithm (dashed curve), its drastically less complex

successive version (solid curve), the geometric programming

based approach in [10] (square marker), and the algorithm

in [12] (circle marker). As a reference, we added the sum rate

curve achieved via dirty paper coding (triangle-up marker).

Due to the huge computational complexity of the algorithm

in [10], we averaged over only 50 channel realizations. In the

low power regime in Fig. 1, all linear schemes show almost

the same performance, since only few of the four possible

streams are activated. This behavior changes when going to

a higher transmit power, see Fig. 2. First of all, we observe

that the successive stream allocation algorithm presented in the

previous section features almost no performance degradation

with respect to the full featured combinatorial search, i.e., the

dashed and the solid curve coincide. Despite the complexity

reduction, there is almost no loss of rate. The geometric

programming based algorithm in [10] shows a performance

degradation for transmit powers larger than 20 dB. However,

its computational load to compute the optimum precoders

is very high. Finally, the approach in [12] also has to face

problems in the high SNR regime. Since the users have all

their streams activated (6 in sum) during the initialization in

this algorithm, the optimum stream allocation apparently is

not achieved by their gradient approach. Due to the similarity

of the algorithm in [8] with the one in [10], we expect them

to have equivalent performance.

VII. ALGORITHMIC IMPLEMENTATION

A pseudo-code implementation of the successive stream

selection algorithm from Section V can be found in Algo-

rithm 1. Note that B(m) denotes the ordered set of active

streams B
(m)
1 , . . . , B

(m)
K in iteration m.



Algorithm 1 Successive Stream Selection Pseudo Code

1: B(0) ← (0, . . . , 0)
2: for m = 1 to min(N, r) do

3: B(m) is feasible if

4: · ∃i : B
(m)
i = B

(m−1)
i + 1

5: · B(m)
k = B

(m−1)
k ∀k 6= i

6: · B(m)
k ≤ rk ∀k

7: for all B(m) that are feasible do

8: Initialize precoders according to (15)

9: Compute maximum sum rate via projected gradient

algorithm using (16) - (18)

10: end for

11: Save best B(m) with maximum sum rate R
(m)
max

12: Stop, if R
(m)
max ≤ R

(m−1)
max

13: end for
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Fig. 1. Sum rate vs. transmit power for a system with K = 3 two-antenna
users and a N = 4 antenna base station - low power regime.
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