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ABSTRACT

This dissertation delivers new results in the model reduction of large-scale linear time-

invariant dynamical systems. In particular, it suggests solutions for the well-known

problem of finding a suitable interpolation point in order reduction by moment matching.

As a first step, a new time-domain model order reduction method based on matching

some of the first Laguerre coefficients of the impulse response is presented. Then, the

equivalence between the classical moment matching and the Laguerre-based reduction

approaches both in time- and frequency-domain is shown. In addition, this equivalence

is generalized to include a larger family of coefficients known as generalized Markov

parameters. This allows a first time-domain interpretation of the moment matching

approach which has been until now developed and applied only in the frequency domain.

Moreover, using this equivalence, the open problem of choosing an optimal expansion

point in the rational Krylov subspace reduction methods (moment matching about s0 �=
0) is reformulated to the problem of finding the optimal parameter α in the Laguerre-

based reduction methods. Based on the Laguerre representation of the system, two

methods for the choice of the Laguerre parameter and, consequently, the single expansion

point in rational interpolation order reduction are presented. Accordingly, different model

reduction algorithms are suggested. The importance of these approaches lies in the

fact that they try to approximate the impulse response of the original system, have a

simple structure, are numerically efficient, and are suitable for the reduction of large-scale

systems.
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2.2.2 The Bilinear/Möbius transformation . . . . . . . . . . . . . . . . 14

2.2.3 Stability and passivity . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4 Controllability and observability . . . . . . . . . . . . . . . . . . . 16

2.3 Laguerre polynomials and functions . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Orthonormality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Time and frequency-domain orthonormal basis . . . . . . . . . . . 19

2.3.4 The Laguerre differential equation . . . . . . . . . . . . . . . . . . 20

Chapter 3: Krylov-based order reduction 21

3.1 Moments and Markov parameters . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Moment and Markov parameters matching: the SISO case . . . . . . . . 23

3.3 Moment and Markov parameters matching: the MIMO case . . . . . . . 26

3.4 Rational interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Main properties of Krylov-subspace methods . . . . . . . . . . . . . . . . 27

3.6 Numerical algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6.1 The Arnoldi algorithm . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6.2 The Lanczos algorithm . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6.3 The two-sided Arnoldi algorithm . . . . . . . . . . . . . . . . . . 31

3.7 Open problems in Krylov-based MOR . . . . . . . . . . . . . . . . . . . . 32

ii



3.7.1 Passivity/Stability preservation . . . . . . . . . . . . . . . . . . . 32

3.7.2 A time-domain interpretation . . . . . . . . . . . . . . . . . . . . 33

3.7.3 A general error bound . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7.4 Choice of the reduced order . . . . . . . . . . . . . . . . . . . . . 36

3.7.5 Choice of the expansion point(s) . . . . . . . . . . . . . . . . . . . 36

3.7.6 Systems with high number of terminals . . . . . . . . . . . . . . . 38

3.8 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter 4: Laguerre-based Model Reduction in Frequency Domain 43

4.1 Moments and Laguerre coefficients . . . . . . . . . . . . . . . . . . . . . 44

4.2 The order reduction approach . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 5: A new Time-Domain Reduction Scheme using Laguerre

Functions 49

5.1 Approximation of the state vector . . . . . . . . . . . . . . . . . . . . . . 50

5.2 The reduction approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Matching the Laguerre coefficients of the system’s response to different

inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Chapter 6: The Equivalence 65

6.1 Property of Krylov subspaces . . . . . . . . . . . . . . . . . . . . . . . . 66

iii



6.2 Invariance property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3 The equivalence in frequency-domain . . . . . . . . . . . . . . . . . . . . 68

6.4 The generalized equivalence . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.5 Time-domain interpretation of moment matching . . . . . . . . . . . . . 73

6.6 The connection between MOR in discrete and continuous-time . . . . . . 75

6.7 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 7: Choice of the interpolation point in moment matching 81

7.1 Property of the Laguerre Function . . . . . . . . . . . . . . . . . . . . . . 83

7.2 An optimal Laguerre parameter . . . . . . . . . . . . . . . . . . . . . . . 84

7.3 Calculation of M1 and M2 for LTI systems . . . . . . . . . . . . . . . . . 85

7.4 Rational Krylov with an optimal interpolation point . . . . . . . . . . . . 88

7.5 Rational krylov with an optimal error minimizing interpolation point . . 91

7.6 The discrete-time case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.7 Calculation of M1 and M2 for LTI discrete systems . . . . . . . . . . . . 96

7.8 Illustrative examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.8.1 The CD Player . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.8.2 A random model . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Chapter 8: Conclusions and Future Work 107

Appendix A: Numerical algorithms 109

iv



A.1 Arnoldi Algorithm with deflation using modified Gram-Schmidt . . . . . 109

A.2 Lanczos Algorithm with deflation and

full orthogonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.3 Two-sided Arnoldi algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 111

Bibliography 112

v



LIST OF FIGURES

2.1 The first six Laguerre polynomials. . . . . . . . . . . . . . . . . . . . . . 17

2.2 The first five Laguerre functions with the parameter α = 1. . . . . . . . . 18

3.1 The reduced order model by projection. . . . . . . . . . . . . . . . . . . . 24

3.2 The schematic of the CD player . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 The impulse responses of the original system and the reduced order models

of order 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 The Bode diagram of the original system and the reduced order models of

order 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 The impulse responses of the original and reduced systems (q = 10) to-

gether with the Laguerre functions for s0 = α = 1. . . . . . . . . . . . . . 61

5.2 The impulse responses of the original and reduced systems (q = 10) to-

gether with the Laguerre functions for s0 = α = 10. . . . . . . . . . . . . 62

5.3 The impulse responses of the original and reduced systems (q = 10) to-

gether with the Laguerre functions for s0 = α = 200. . . . . . . . . . . . 63

6.1 Moments and Laguerre coefficients of the original and reduced systems. . 79

7.1 The impulse responses of the original and reduced systems. . . . . . . . . 99

vi



7.2 The expansion point for the CD player model. . . . . . . . . . . . . . . 100

7.3 The amplitude of the Bode Diagram of the original CD player model and

the reduced model by RK-ICOP. . . . . . . . . . . . . . . . . . . . . . . 101

7.4 Comparison of the approximated impulse responses of the CD player. . . 102

7.5 The pole-zero plot of the random model. . . . . . . . . . . . . . . . . . . 103

7.6 The impulse responses of the reduced systems of order 12. . . . . . . . . 104

7.7 The expansion point for the random model. . . . . . . . . . . . . . . . . 105

7.8 The amplitude of the Bode Diagram of the original random model and the

reduced model by RK-ICOP. . . . . . . . . . . . . . . . . . . . . . . . . . 106

vii



GLOSSARY

Notations

R The set of real numbers

C The set of complex numbers

Rn The set of all vectors of dimension n with real entries

Rn×m The set of all n × m matrices with real entries

E,A,B,C State space matrices of the original MIMO state space system

E,A,b, cT State space matrices of the original SISO state space system

x The vector of state variables of the original state space system

n Order of the original state space model

Er,Ar,Br,Cr State space matrices of the reduced MIMO state space system

Er,Ar,br, c
T
r State space matrices of the reduced SISO state space system

xr The vector of state variables of the reduced state space system

q Order of the reduced state space model

u The input function

u The vector of input functions

y The output function

y The vector of output functions

mi i-th moment of a SISO system

mi i-th moment of a MIMO system

Mi i-th Markov parameter of a SISO system

Mi i-th Markov parameter of a MIMO system

viii



KQ(., .) The Krylov subspace

V,W Projection matrices for the reduction in state space

L2(R+) The Hilbert space.

li(t) the i-th Laguerre polynomial

φα
i (t) the i-th Laguerre function

H2 The Hardy space

Abbreviations

LTI Linear Time Invariant

TBR Truncated Balanced Realization

MEMS Micro-Electro-Mechanical System

SISO Single Input Single Output

MIMO Multi Input Multi Output

FEM Finite Element Method

SVD Singular Value Decomposition

MOR Model Order Reduction

LHS Left Hand Side

RHS Right Hand Side

I/O Input-Output

HSV Hankel Singular Value

ix





Chapter 1

INTRODUCTION

The problem of model order reduction (MOR) of linear and nonlinear dynamical sys-

tems has been widely studied in the last two decades and still considered nowadays as

a hot topic. From one side, this is due to the increasing capability of methods and

computers to accurately model real-world systems, for instance, in VLSI circuits design

[70], civil engineering, aerospace engineering [83], earthquake engineering [61], mechan-

ical and Micro-Electro-Mechanical Systems (MEMS) [8, 72], in molecular biology and

environmental engineering [5]. And from the other side, it is due to the unavoidable

requirement of being able to handle those generated models for the purpose of e.g. sim-

ulation (also real-time), optimization, and control.

Given a large-scale linear or nonlinear system with a predefined output, the model reduc-

tion problem can be simply formulated as finding a simpler system that approximates the

behavior of the original one. As linear systems are generally described by a mathemati-

cal model that involves mainly first and/or second order differential equations, simpler,

in this context means having fewer states. In other words, the lower the order of the

differential equations, the simpler the model is and the easier to work with. The ap-

proximation concept is based generally on the minimization of some predefined errors

between the original and approximated outputs. In the literature, different error systems

have been applied and accordingly reduction methods minimizing these differences be-

tween the systems have been presented. For instance, H2 and H∞ error norms have been
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considered in [43] and [49] respectively. Also, approximation errors based on the Hankel

operator are widely used and are the key idea of the famous Balancing and Truncation

(TBR) method [35]. Krylov-based order reduction can be also considered to zero the

error between the original and reduced transfer functions at predefined frequencies.

Nowadays, the definition of the model reduction problem can be extended to include

several properties of the system to be preserved by the reduction method, in addition

to minimizing the approximation error. For instance, it may be required to preserve

the stability or passivity of the original system, the matrix special structure or sparsity,

or to reduce the computational cost of the method so that it could be applied to very

high-order system and keep the reduction step numerically justified.

1.1 Main approaches of order reduction

After around twenty years of research in the field of MOR of linear systems, the developed

methods and algorithms can be classified under two main approaches: the Singular Value

Decomposition (SVD)-based approximation and the Krylov subspace methods.

1.1.1 Balancing and truncation

The most famous and commonly used method in SVD-based approaches is the Lyapunov

balancing and truncation known also as truncated balanced realization (TBR) [5, 35, 63].

The basic idea of this approach is to try to delete the states that do not contribute

’considerably’ to the system input-output behavior. In order to study the contribution

of each state, the input-output response is divided into input-to-state and state-to-output

responses. The controllability gramian, which is defined as the integral of the product of

the input-to-state response and its complex conjugate,

P =

∫ ∞

0

eAτBBT eAT τdτ,



1.1. Main approaches of order reduction 3

is used as an indicator of the amount of input energy needed to reach a certain state.

Whereas the observability gramian, defined as the integral of the state-to-output response

and its complex conjugate,

Q =

∫ ∞

0

eAT τCTCeAτdτ,

is used as an indicator of the effect of any given initial state on the output.

It can be shown that these gramians can be calculated by solving the following two

Lyapunov equations involving matrices in the size of the original model:

AP + PAT + BBT = 0,

ATQ + QA + CTC = 0.

However, states that are difficult to control, i. e. requiring a large amount of input en-

ergy, may not be difficult to observe and vice-versa. Thus, there is a need for a certain

representation of the system which makes the states difficult to control also difficult to

observe and vice-versa. This can be achieved by the so-called balancing transformation.

Balancing was first introduced by Mullis and Roberts [64] in the design of digital filters

and was later brought to the field of control and order reduction by Moore in the be-

ginning of the 80’s [63]. By balancing, a state transformation T is found which, after

being applied to the system matrices, makes the controllability and observability grami-

ans diagonal, equal, and having the Hankel singular values (HSV) on their diameter. By

definition, the Hankel singular values of an observable, controllable, and stable system

are the positive square roots of the eigenvalues of the product of the gramians and are

input-output invariants.

Now, for a balanced stable system, the contribution of each state to the input-output

behavior can be measured by the relative magnitude of its Hankel singular value. Hence,

after balancing the original system and computing the Hankel singular values, a clear

idea about the contribution of each state to the system I/O behavior can be extracted.

The truncation of the least contributing states results in the reduced order model.
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One of the most important advantages of balancing and truncation is preserving the

stability of the original model, i. e. if the original high-order model is stable, then the

obtained reduced model will be also stable. Also, a global apriori error bound between the

original and reduced systems exists and depends only on the neglected Hankel singular

values [35]. In [14, 58, 74, 75], different reduction approaches that modify the original

TBR were introduced. The method of balancing is then changed with the aim of achieving

better approximations or preserving system properties like passivity.

While TBR is theoretically attractive and yields to excellent approximate models in prac-

tice, its use for model reduction of large scale systems (a few ten thousands) is costly

by growing computational complexity in solving two Lyapunov equations. Many works

tried to extend the application of TBR to higher order systems by parallel computa-

tion [13, 14], and approximate solution of Lyapunov or Sylvester equations, leading to

low rank gramians, and resulting in what is known nowadays as approximate balancing

and truncation [40, 45, 68, 69, 81].

1.1.2 Krylov subspace methods

The second main approach in MOR of linear systems is Krylov-based order reduction

which is a projection-based method that was initially developed to solve large-scale linear

mathematical problems, and at a later stage applied to the control engineering field and

subsequently to model order reduction [29, 32, 33, 37, 48, 86].

In this family of methods, the aim is to match some of the first coefficients of the Taylor

series expansion of the transfer functions of the original and reduced models. When the

series expansion is developed about a finite point, we speak about moment matching and

Padé interpolation however when it is about s = ∞, we speak about Markov parameter

matching and partial realization. This is in fact the reason behind calling this approach

moment matching or order reduction by moment matching.

Krylov subspaces are needed in this approach to calculate the projection matrices that
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are shown to form bases of these subspaces when aiming at moment and/or Markov

parameter matching. To this end, numerically efficient and iterative methods known

as the Lanczos [57], the Arnoldi [6] and the two-sided Arnoldi [24, 77] algorithms are

employed. Once calculated, these projection matrices are applied to the system matrices

of the original model resulting in a reduced-order model matching some of the moments

and/or the Markov parameters.

When comparing TBR to Krylov subspaces methods, it can be clearly stated that TBR is

superior to Krylov subspaces when stability of the reduced system and error bound are in

question. However, Krylov subspaces methods are superior to TBR when computational

effort and memory requirements are in question. These methods involve mainly matrix-

vector multiplications and the reduced order model is obtained directly by a projection

to a lower dimensional subspace calculated through a completely iterative approach.

This makes them suitable for the reduction of very large-scale systems (hundreds of

thousands), far above the orders achieved by balancing and truncation.

1.2 Thesis contributions

In model order reduction of large-scale systems, Krylov subspace methods are considered

one of the most successful and widely used approaches. However, it is still early to

speak about an automatic Krylov-based order reduction where the user just defines how

accurate the reduced-order model should be and keep the rest for the algorithm, as in the

case of TBR. This is mainly due to the absence of a global error bound and to the fact

that several parameters of this approach have still to be heuristically determined by the

user based on the results obtained. These parameters are mainly the order of the reduced

model and the number and location of the expansion points s0 about which the moments

are to be matched. The latter problem constitutes one of the main focuses of this

work. Here, the case of a single expansion point is considered as it is the most common

case in practice and the numerically cheapest way to calculate the reduced model. In
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addition, the interpretation of these methods is restricted to be a local approximation

of the frequency response of the original system, where the frequency range of interest

is determined by the expansion point(s). Hence, moment matching methods can not

guarantee a good approximation of the time responses of the original system. This is due

to the fact that it is generally hard in practice to predict the time-domain approximation

from the frequency-domain one.

The contributions of this dissertation can be summarized as follows:

• A new time-domain Laguerre-based order reduction method based on matching the

Laguerre coefficients of the impulse response of the original and reduced systems is

introduced. This method is shown to be computationally efficient and applicable

to large-scale systems by employing suitable Krylov subspaces.

• The complete equivalence between all Laguerre-based methods and moment match-

ing about a single interpolation is proven both in the time and frequency-domain.

• A new time-domain interpretation for moment matching via the Laguerre repre-

sentation of the system is presented.

• New time-domain algorithms for the choice of the expansion point s0 in Krylov-

based MOR are developed.

These results offer now the possibility to have a look at moment matching from a time-

domain perspective and make a step towards a completely automatic Krylov-based order

reduction.

1.3 Dissertation overview

This introductory chapter is concluded with summaries of the different chapters of this

dissertation.
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In the next chapter, a brief overview of the relevant definitions of linear algebra and

system theory is presented including a. o. Krylov subspace, projection, and stability of

dynamical systems. In addition, the Laguerre polynomials and functions together with

some of their important properties are introduced.

The third chapter provides a complete overview of Krylov-based model order reduction.

The framework of this method together with all the theoretical and numerical aspects are

presented. A special section is dedicated to describe the main properties of this approach

from the mathematical and engineering point of views. The chapter is concluded with a

detailed study of the main open problems of this method.

In chapter 4, as an alternative to moment matching, a reduction method based on match-

ing the coefficients of the Laguerre series expansion of the transfer function is presented.

Using the fact that a Laguerre series expansion can be connected to a Taylor series by a

certain bilinear transformation, this method uses the numerically robust and efficient al-

gorithms, implemented for moment matching, to achieve Laguerre coefficients matching.

A new time-domain model order reduction method based on the Laguerre function ex-

pansion of the impulse response is presented in chapter 5. The Laguerre coefficients of

the impulse response of the reduced-order model, which is calculated using a projection

whose matrices form bases of appropriate Krylov subspaces, match, up to a given order,

those of the original system. It is also shown that this matching of coefficients applies to

the response on any other input signal u(t) ∈ L2(R+).

In Chapter 6, the equivalence between the classical moment matching and the Laguerre-

based reduction approach in frequency-domain is shown. This equivalence is then general-

ized to include a family of coefficients known as generalized Markov parameters. A similar

equivalence between the time-domain Laguerre-based approach and moment matching

about a single expansion point is also presented. Moreover, the connection between MOR

in continuous and discrete-time is investigated and the equivalence between matching the

Markov parameters in the z-domain and the moment matching about a single point is
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shown.

In chapter 7, several solutions for the well-known problem of finding a suitable interpo-

lation point in order reduction via moment matching by Krylov subspaces are presented.

By using the equivalence property of moment matching and Laguerre-based order reduc-

tion in time-domain, the problem is reformulated as finding the best choice for the free

parameter α in the Laguerre basis. Minimizing appropriate cost functions using the sys-

tem’s Laguerre representation is the key point toward finding this optimal interpolation

point.

The dissertation is concluded with a summary of the results and possible future works.



Chapter 2

PRELIMINARIES

In this chapter, definitions and properties from linear algebra, linear system theory, and

Laguerre polynomials, relevant to this dissertation, are presented. Krylov subspaces, pro-

jections, stability, the Tustin transformation, controllability and observability, together

with the definition of Laguerre polynomials and their various properties are briefly de-

scribed.

2.1 Linear algebra

One of the main components of Krylov-based order reduction are Krylov subspaces, which

are quite famous in linear algebra and almost unknown in the field of automatic control.

As the reduced system in all the MOR methods of this work is obtained by a projection

to a lower dimensional Krylov subspace, it is of great importance to review the definition

of this subspace and of a projector and its application to solve linear systems.

2.1.1 The Krylov subspace

A Krylov subspace is spanned by a certain sequence of vectors generated by a matrix

and a vector as follows: Given a matrix Ã and a starting vector b̃, the q-th Krylov

subspace Kq(Ã, b̃) is spanned by the following sequence of q column vectors called basic

vectors [5, 7, 33]:

Kq(Ã, b̃) = span{b̃, Ãb̃, · · · , Ãq−1b̃}, (2.1)
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where Ã ∈ Rn×n, and b̃ ∈ Rn is called starting vector. The first linearly independent

basic vectors constitute what is known as basis of a Krylov subspace.

Now when there exist more than one starting vector i.e. b̃ is not a vector but a matrix

B̃, equation (2.1) is generalized to the block Krylov subspace as follows:

Kq(Ã, B̃) = span{B̃, ÃB̃, · · · , Ãq−1B̃}, (2.2)

where Ã ∈ Rn×n, and B̃ ∈ Rn×m are the starting vectors. The block Krylov subspace

with m starting vectors can be considered as a union of m Krylov subspaces defined for

each starting vector [76].

2.1.2 Orthogonal projection

A matrix P ∈ Rn×n is called a projector onto a subspace S ⊆ Rn if it satisfies:

range(P) = S, and P2 = P. (2.3)

From this definition, it can be shown that if x ∈ Rn, then it can be rewritten as

x = Px + (I − P)x.

This allows to decompose the subspace Rn into two subspaces as,

R
n = span(S1 + S2), (2.4)

where range(P) = S1 and null(P) = S2. In other words, a projector P separates Rn

into two subspaces and projects onto S1 along or parallel to S2.

Based on this subspace decomposition, two bases are required to obtain a matrix rep-

resentation of a projector: a basis V = [v1,v2, · · · ,vq] for the subspace S1 and W =

[w1,w2, · · · ,wq] for the subspace S2. If these bases are biorthogonal, i.e. WTV = I,

then it follows that the matrix projector is,

P = VWT , (2.5)
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otherwise,

P = V(WTV)−1WT . (2.6)

Definition 2.1. An orthogonal projector is one that projects onto a subspace S1 along a

space S2 where S1 and S2 are orthogonal. Algebraically, a projector is orthogonal when

PT = P.

It should be noted that orthogonal projectors do not have necessarily biorthogonal bases.

2.1.3 Petrov Galerkin projection

Assume we want to try to express the solution (or state) x(t) ∈ Rn of the system

(2.9) with only q variables. The solution can be thus written as x(t) = Vxr(t), where

xr(t) ∈ R
n and V ∈ R

n×q. If this approximated solution is put into the original state-

space model (2.9), we get,

EVẋr(t) = AVxr(t) + Bu(t) + ε(t), (2.7)

where ε(t) is the residual. For x(t) = Vxr(t) to be an exact solution, ε(t) should be equal

to zero for all t.

This system is generally over determined as it has n equations but only q unknowns in

xr(t). To find a unique solution, it is generally imposed that the projection (given by

WT ) of the residual ε(t) onto the subspace spanned by V is zero, leading to WT ε(t) = 0.

This results in the equation,

WTEVẋr(t) = WTAVxr(t) + WTBu(t), (2.8)

which is exactly defined as the Petrov Galerkin projection of (2.9) with P = VWT under

the assumption that V and W are biorthogonal, and P = V(WTV)−1WT otherwise.

This approach constitutes in fact the fundamental of all projection methods for model

order reduction, including the ones involved in this work. Notice that if WT = VT , this

projection is called a Galerkin projection.
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2.2 Linear dynamical systems

This section presents the necessary background on LTI dynamical systems based on

[5, 47] and the references therein. In addition, an overview of the properties induced by

the Tustin and bilinear transformations when applied to a state-space model is described.

Consider the continuous-time state-space dynamical system⎧⎨⎩ Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(2.9)

where E,A ∈ Rn×n, B ∈ Rn×m,C ∈ Rp×n are the constant system’s matrices, u(t) ∈ Rm,

y(t) ∈ Rp, x(t) ∈ Rn are respectively the input, output and states vectors of the system.

For SISO systems, i. e. p = m = 1, the matrices B and C become the vectors b and cT ,

the vectors u and y become the scalars u and y.

After integration and assuming zero initial conditions, the state equation of system (2.9)

becomes

Ex(t) = A

∫ t

0

x(τ)dτ + b

∫ t

0

u(τ)dτ, (2.10)

and its impulse response can be shown to be

h(t) = Cx(t) = Ce(E−1A)tE−1B. (2.11)

The transfer function of the system (2.9) in the Laplace domain is then:

H(s) = L(h(t)) =

∫ ∞

0

h(t)e−stdt = C(sE −A)−1B. (2.12)

Similarly, by considering the discrete-time state-space dynamical system,⎧⎨⎩ Edx(k + 1) = Adx(k) + Bdu(k),

y(k) = Cdx(k).
(2.13)

its impulse response assuming zero initial conditions can be shown to be,

h(k) = CdEdA
k−1
d E−1

d Bd, (2.14)
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and its transfer function in the z-domain,

H(z) = Z(h(k)) =
∞∑

n=0

h(n)z−n = Cd(zEd − Ad)
−1Bd. (2.15)

2.2.1 The Tustin transformation

The Tustin transformation is one possibility to transform the continuous-time system

(2.9) in the s-domain to a time-discrete system (2.13) in the z-domain, given a sampling

period T .

Based on the fact that z = esT , the Tustin transformation is chosen to be the Padé ap-

proximation of the exponential function having a first order polynomial in the numerator

and denominator. This is in fact the highest first order function possible to approximate

an exponential function:

z = esT =
esT/2

e−sT/2
≈ 1 − sT/2

1 + sT/2
. (2.16)

its inverse is then:

s =
1

T
ln(z) =

2

T

[
z − 1

z + 1
+

1

3

(
z − 1

z + 1

)3

+
1

5

(
z − 1

z + 1

)5

+
1

7

(
z − 1

z + 1

)7

+ · · ·
]

≈ 2

T

z − 1

z + 1
.

Hence, this bilinear transformation maps the open left half of the complex plane onto

the inside of the unit circle, and the imaginary axis onto the unit circle. The state-

space matrices in the z -domain (discrete-time system) can be derived from those in the

s-domain (assuming E = I, otherwise multiply the state equation by E−1 ) as follows [5]:

Ad = (w0I + A)(w0I − A)−1 (2.17)

Bd =
√

2wo(w0I − A)−1B (2.18)

Cd =
√

2woC(w0I − A)−1 (2.19)

Dd = D − C(w0I − A)−1B (2.20)

where w0 = 2/T is not an eigenvalue of A.
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2.2.2 The Bilinear/Möbius transformation

A more general transformation than the Tustin transformation is the bilinear transfor-

mation, also known as Möbius transformation:

s =
au + b

cu + d
⇐⇒ u =

b − ds

cs − a
with ad − bc �= 0 (2.21)

In fact, all the common methods (e.g. prewarped Tustin, forward or backward rectangu-

lar) that transform a continuous system into a discrete one, and vice versa, are special

cases of this transformation (with u = z).

The continuous open right half plane defined by Re(s) > 0 is mapped by this bilinear

transformation to a region in the u-plane, interior or exterior of the circle Cu, having its

center (xc, yc) and radius r according to the following equation [22]:

xc = −ad + bc

2ac
, yc = 0, r2 =

(
ad + bc

2ac

)2

− db

ac
.

Note that the circle Cu is the unit circle if −b/a = d/c = ±1.

Lemma 2.1. The state-space matrices in the u-domain can be derived from those in the

s-domain as follows [22]:

Au = (dA− bI)(aI − cA)−1 (2.22)

Bu = (ad − bc)(aI − cA)−1B (2.23)

Cu = C(aI − cA)−1 (2.24)

Du = D + cC(aI − cA)−1B (2.25)

This transformation will play a major role in Chapter 6 where the results of the equiva-

lence between the Laguerre-based order reduction and moment matching are presented.

Also, it will be employed to establish the connection between moment and Markov pa-

rameter matching in the continuous and discrete-time domains.
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2.2.3 Stability and passivity

Definition 2.2. The continuous dynamical system (2.9) (assuming E = I, otherwise

multiply the state equation by E−1) is:

• asymptotically stable, if and only if all the eigenvalues of A have negative real parts.

• stable, if and only if all eigenvalues of A have nonpositive real parts, and, in addi-

tion, all pure imaginary eigenvalues have multiplicity one.

• Bounded Input Bounded Output (BIBO) stable, if its impulse response is absolutely

integrable, i. e.
∫ ∞

0
|h(t)|dt < ∞

Accordingly, the discrete system (2.13), is asymptotically stable if all the eigenvalues of

A are inside the unit circle, and stable, when they have a norm at most one and those

on the unit circle have multiplicity one. For more details and a more general definition

of stability, see e. g. [5, 80].

Roughly speaking, passive systems are systems that do not generate energy. In other

words, the energy dissipated in the system is never greater than the energy supplied to

it. In fact, it can be proven that any linear dynamical system is passive if and only if its

transfer matrix is positive real [31].

Definition 2.3. A square (m = p) transfer matrix H(s) : C 
→ (Cm×m ∪∞) is positive

real if

1. H(s) has no pole in the right half complex plane, and

2. H(s∗) = (H(s))∗ for all s ∈ C, and

3. Re
(
wHH(s)w

) ≥ 0 for all s ∈ C with Re(s) > 0 and w ∈ Cm.
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2.2.4 Controllability and observability

Definition 2.4. A dynamical system is controllable if there exists a finite energy input

ũ(t) that takes its state x(t) from any initial value x0 to zero in a finite time.

It can be shown that the LTI dynamical system (2.9) is controllable if and only if its

controllability matrix C(A,B), as defined below, has full rank,

rank(C(A,B)) = rank
([

B,AB,A2B, · · · ,An−1B
])

= n.

Definition 2.5. A dynamical system is observable if there exists a finite time t̃ such that

from the given input u(t) and the output y(t) over the interval [0, t̃], the initial value x0

can be uniquely determined.

It can be shown that the LTI dynamical system (2.9) is observable if and only if its

observability matrix O(A,C), as defined below, has full rank,

rank(O(A,C)) = rank
([

CT ,ATCT ,
(
AT

)2
CT , · · · ,

(
AT

)n−1
CT

])
= n.

2.3 Laguerre polynomials and functions

Named after the famous French mathematician Edmond Laguerre, Laguerre polynomials

became in the last years an efficient mathematical tool for engineers working in the field

of identification, order reduction and filters design. Their orthogonality and their various

properties made them a widely used family of polynomials in the engineering community.

Restricting the interest into the fields of model reduction and system approximation,

the Laguerre polynomials and functions are presented in time, frequency, and z-domain,

together with some of their basic properties. Other relevant properties will be presented

in details prior to their use in the coming chapters.
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2.3.1 Definition

The i-th Laguerre polynomial is defined as follows [84]:

li(t) =
et

i!

di

dti
(e−tti), (2.26)

and the scaled Laguerre functions are defined as [84]:

φα
i (t) =

√
2αe−αtli(2αt), (2.27)

where α is a positive scaling parameter called time-scale factor. It is clear from the

previous definition that the Laguerre functions are exponentially decreasing functions

over the time where the free parameter α determines their time-spreading. This is one

of the properties that makes them very suitable to approximate the impulse response of

LTI systems, unlike the Laguerre polynomials that are unbounded increasing functions

(see figures 2.1 and 2.2).

0 5 10 15 20
−10

−5

0

5

10

15
Laguerre polynomials

Time (sec.)

Figure 2.1: The first six Laguerre polynomials.
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Figure 2.2: The first five Laguerre functions with the parameter α = 1.

In frequency domain, the sequence of Laplace transforms of the scaled Laguerre functions

(2.27) can be shown to be [84]:

Φα
i (s) = L (φα

i (t)) =

√
2α

s + α

(
s − α

s + α

)i

, n = 0, 1, · · · . (2.28)

and in the z-domain,

Φα
i (z) = Z (φα

i (t)) =

√
1 − α2

z − α

(
1 − αz

z − α

)k−1

, k = 1, 2, · · · . (2.29)

with |α| < 1.

2.3.2 Orthonormality

The Laguerre functions defined in time and frequency domains (2.26), (2.27), and (2.29)

are orthonormal over [0,∞], [−∞,∞] and on the unit circle, respectively ,∫ ∞

0

φα
i (t)φα

j (t)dt =
1

2π

∫ j∞

−j∞
Φα

n(s)Φα
m(−s)ds =

1

2πj

∮
C

Φα
m(z)Φα

n(z−1)z−1dz = δmn

(2.30)
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where δmn is the standard Dirac function that is equal to 1 when m = n and 0 in all

other cases [84, 91].

2.3.3 Time and frequency-domain orthonormal basis

The scaled Laguerre functions of (2.27) form in time-domain a uniformly bounded or-

thonormal basis for the Hilbert space L2(R+) of all real-valued and square integrable

functions f(t) on R+ with the following inner product [91]:

< f, g >=

∫ ∞

0

f(t)g(t)dt. (2.31)

Hence, any function f ∈ L2(R+) can be expanded as

f(t) =

∞∑
n=0

fnφ
α
n(t), (2.32)

where fn are the Laguerre coefficients of f(t) which due to the orthogonality property

can be calculated as fn =< f, φα
n >.

Similarly, in the frequency domain, considering the Hardy space H2 consisting of all

complex valued functions that are analytic and square integrable in the open right-half

plane, the corresponding inner product is defined as follows:

< F, G >=
1

2π

∫ ∞

−∞
F (jω)G(−jω)dω. (2.33)

Now, as the Hardy space is the Laplace transform of the Hilbert space defined previously,

the Laplace transform of an orthonormal basis of L2(R+) is an orthonormal basis of H2.

Hence, any function F ∈ H2 can be expanded as

F (s) =

∞∑
n=0

FnΦ
α
n(s), (2.34)

where Fn are the Laguerre coefficients of F (s) defined as Fn =< F, Φα
n > .

Similarly, the above derivation can be done with the z-transform of the Laguerre function

(2.29), however with the following inner product:

< f, g >=
1

2πj

∮
C

Φα
m(z)Φα

n(z−1)z−1dz, (2.35)
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where C is a contour around the origin in the z-domain, generally taken as |z| = 1.

2.3.4 The Laguerre differential equation

The Laguerre polynomials (2.26) can be shown to be the canonical solutions of the

second-order linear differential equation [84]:

xÿ + (1 − x)(̇y) + ny = 0 with n �= 0,

which results in the famous Laguerre differential equation:

tl̈i(t) + (1 − t)l̇i(t) + ili(t) = 0 with n �= 0,

This equation will play a major role when calculating the optimal parameter α of the

Laguerre function in Chapter 7.



Chapter 3

KRYLOV-BASED ORDER REDUCTION

In reduced order modeling of large scale systems, the methods based on matching the

moments and/or Markov parameters of the original and reduced models using the Krylov

subspaces are among the best choices [5, 7, 29, 32, 33, 37, 48, 76, 86]. These methods find

the reduced order model in a relatively short time with a good numerical accuracy via a

projection whose columns form bases of particular Krylov subspaces. The main advantage

of this approach is that it requires a low computational effort and small memory storage

especially when compared to other reduction approaches. However, generally speaking,

the stability of the reduced order model can not be guaranteed and neither an a priori

nor an a posteriori error bound measuring the accuracy of the approximation exists.

In this chapter, Krylov-based model order reduction is introduced together with the

definitions of moments and Markov parameters. The projection framework and the

theorems for matching the moments about one or several expansion points and/or the

Markov parameters are reviewed. In addition, the main properties of this approach

together with some of its major open problems are discussed in detail.

3.1 Moments and Markov parameters

The transfer matrix (2.12) of the system (2.9) can be rewritten as:

H(s) = −C(I − sA−1E)−1A−1B, (3.1)
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and by making use of the Neumann expansion,

(I − sA−1E)−1 =
∞∑
i=0

(A−1Es)i (3.2)

reformulated to the Taylor series,

H(s) = −CA−1B − CA−1EA−1Bs − · · · −C(A−1E)iA−1Bsi − · · · . (3.3)

The moments about zero, are consequently defined as being the negative coefficients of

the Taylor series expansion about zero of the system’s transfer function and are calculated

as [5, 37, 76]:

mi = C(A−1E)iA−1B i = 0, 1, · · · . (3.4)

They can also be shown using (3.3) to be the value and subsequent derivatives of the

transfer function H(s) at the point s = 0:

m0
i = −1

i

diH(s)

dsi

∣∣∣∣
s=0

. (3.5)

By replacing s in the transfer matrix with the shifted variable (s − s0),

H(s) = C[(s − s0)E− (A − s0E)]−1B, (3.6)

and repeating the derivation above, the moments about s0 can be computed by replacing

A by (A− s0E) in (3.4) (assuming that (A − s0E) is nonsingular),

ms0
i = C((A − s0E)−1E)i(A − s0E)−1B i = 0, 1, · · · . (3.7)

The Markov parameters are defined as being the coefficient of the Taylor series of the

transfer matrix when s0 in (3.6) tends to infinity (s0 → ∞) [5]. Using the infinite

geometric series, the transfer matrix H(s) can be reformulated as,

H(s) =
1

s
C

(
I − 1

s
E−1A

)−1

E−1B

=
1

s
C

[
I +

(
E−1A

)
s−1 +

(
E−1A

)2
s−2 + · · ·

]
E−1B

= CE−1Bs−1 + C
(
E−1A

)
E−1Bs−2 + C

(
E−1A

)
E−1Bs−3 + · · · ,
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which allows calculating the Markov parameters in closed form as:

Mi = C(E−1A)iE−1B i = 0, 1, · · · . (3.8)

In addition, it can be shown that the i-th Markov parameter is in fact equal to the i-th

derivative of the impulse response of the system (2.9) at time zero [47],

Mi =
dih(t)

dti

∣∣∣∣
t=0

. (3.9)

Hence, the first Markov parameter M0 is the system’s impulse response value at t = 0.

3.2 Moment and Markov parameters matching: the

SISO case

The aim of order reduction by moment matching is to find a reduced order model of

order q � n, whose moments match some of those of the original one [5, 33, 86]. When

some of the moments about s = 0 are matched, the reduced-order model is known as

Padé approximant. For the case of s = s0, we speak about a shifted Padé approximant.

If the following projection:

x = Vxr + ε, V ∈ R
n×q, x ∈ R

n, xr ∈ R
q, (3.10)

with q < n, is applied to the system (2.9) for the SISO case, and after multiplying the

state equation by the transpose of a matrix W ∈ Rn×q, the following model with

reduced order q is found:⎧⎨⎩ WTEVẋr(t) = WTAVxr(t) + WTbu(t),

y(t) = cTVxr(t).
(3.11)

Consequently, the system matrices of the reduced order model in state space are:

Er = WTEV, Ar = WTAV, br = WTb, cT
r = cTV. (3.12)
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r r r

r

Figure 3.1: The reduced order model by projection.

Figure 3.1 illustrates the concept of order reduction of dynamical system by projection.

In order to match the moments of the transfer function of the original and reduced

order models about the point s0 = 0, without explicitly calculating them, the projection

matrices V and W should form a basis of a suitably chosen Krylov subspace as stated

in the following two theorems:

Theorem 3.1. [5, 33, 37] If the columns of the matrix V used in (3.11), form a basis

for the Krylov subspace Kq(A
−1E,A−1b) and the matrix W ∈ Rn×q is chosen such the

matrix Ar is nonsingular, then the first q moments about zero of the original and reduced

order systems match.

The subspace Kq(A
−1E,A−1b) is called input Krylov subspace and the order reduction

method implementing theorem 3.1 is called one-sided Krylov subspace method.

Dual to the input Krylov subspace is the output Krylov subspace Kq(A
−TET ,A−Tc).

Using the duality property, and this Krylov subspace, matching of the first q moments

can be achieved by choosing the matrix W as a basis of the output Krylov subspace and

the matrix V arbitrarily. The method is also considered as a one-sided Krylov subspace

method.

One typical and common choice of the projection matrices in one-sided Krylov subspaces
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methods is W = V. This choice may be advantageous for some specific large scale

models when aiming at preserving the stability or passivity of the reduced order [32, 65].

The previous theorems have in fact one degree of freedom which is the free choice of one

of the two required projection matrices, V and W. If the results of those two theorems

are combined, the number of matched moments can be doubled to 2q.

Theorem 3.2. [5, 33, 37] If the columns of the matrices V and W used in (3.11), form

bases for the Krylov subspaces Kq(A
−1E,A−1b) and Kq(A

−TET ,A−Tc) respectively, then

the first 2q moments about zero of the original and reduced order systems match. It is

assumed that A and Ar are invertible.

The order reduction method implementing theorem 3.2 is called two-sided Krylov sub-

space method as it involves both the input and output Krylov subspaces.

In all the previously presented theorems, the aim was matching the moments about s0 =

0. However, these theorems can be easily extended to match the moments about s0 �= 0

by simply substituting the matrix A by the matrix (A− s0E) in all the involved Krylov

subspaces. Consequently, the input and output Krylov subspaces become respectively,

Kq((A − s0E)−1E, (A− s0E)−1b), (3.13)

Kq((A − s0E)−TET , (A− s0E)−Tc). (3.14)

In order to approximate the high frequencies of the original model (s → ∞), a reduced

order model that matches some of the Markov parameters is required. This model,

known as partial realization, captures mainly the very fast dynamics of the system as

these parameters corresponds to the impulse response and its derivatives at t = 0 (see

(3.9)). Up to the author’s knowledge, methods that extend the partial realization of

large-scale systems to different time segments are not available.

A more general approach that tries to capture the slow and fast dynamics of the origi-

nal system consists of simultaneously matching some of the first moments and Markov

parameters. This is in fact the most general formulation of Krylov-based order reduction.
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Theorem 3.3. If the columns of the matrix V used in (3.11), form a basis for the Krylov

subspace Kq(A
−1E, (E−1A)lA−1b) where l ∈ Z and 0 ≤ l ≤ q and the matrix W ∈ Rn×q

is chosen such the matrices Ar and Er are nonsingular, then the first q− l moments and

the first l Markov parameters of the original and reduced order systems match.

Also in this method, the number of matched moments and Markov parameters can be

doubled by considering the suitable input and output Krylov subspaces when calculating

the projection matrices V and W.

Theorem 3.4. If the columns of the matrices V and W used in (3.11), form bases

for the Krylov subspaces Kq(A
−1E, (E−1A)l1A−1b) and Kq(A

−TET , (E−TAT )l2A−Tc)

respectively, where l1, l2 ∈ Z and 0 ≤ l1, l2 ≤ q, then the first 2q − l1 − l2 moments and

the first l1 + l2 Markov parameters of the original and reduced order systems match.

3.3 Moment and Markov parameters matching: the

MIMO case

By using the block Krylov subspaces that were introduced in (2.2), all the previous theo-

rems defining the projection matrices V and W for moment and/or Markov parameters

matching can be generalized to be applied to MIMO systems. The resulting generalized

reduced order system of (3.11) with m inputs and p outputs is of the form:⎧⎨⎩ WTEVẋr(t) = WTAVxr(t) + WTBu(t),

y(t) = CVxr(t).
(3.15)

For instance, the input and output block Krylov subspaces that generalize theorem 3.2

for MIMO systems are: Kq1(A
−1E,A−1B) and Kq2(A

−TET ,A−TCT ). Hence, similar to

what has been presented in section (3.2), q1

m
moments will be matched in a one-sided

method, and q1

m
+ q2

p
in a two-sided one. Note that, for the projection matrices V and W

to have the appropriate dimensions, the order of the reduced system should be a multiple

of the number of inputs and outputs.
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3.4 Rational interpolation

When a reduced-order model is calculated so that it interpolates the frequency response

and its derivatives at multiple expansion points, it is denoted as multipoint Padé approx-

imant or rational interpolant [3].

Assuming the moments are to be matched about s1, · · · sk, k different Krylov subspaces

are to be considered and a projection matrix whose columns form a basis of the union

of these subspaces is to be found. In other words, it is aimed at matching qi moments

about each of the points si with q1 + · · ·+ qk = q.

Theorem 3.5. If the matrix V used in (3.11) is chosen such that,

k⋃
i=1

Kqi

(
(A− siE)−1E, (A− siE)−1b

) ⊆ colspanV (3.16)

with an arbitrary full rank matrix W, then the first qi moments about si of the original

and reduced models match, for i = 1, · · · , k. It is assumed that the matrix pencil (A−siE)

and the reduced order pencil (Ar − siEr) are both nonsingular.

Similarly to the previous theorems, these results can be generalized for the two-sided

method and for the MIMO case. In a two-sided method, it will be then possible to

match the double number of moments about each of the points si while keeping the

order of the reduced system equal to q.

3.5 Main properties of Krylov-subspace methods

This approach guarantees moment and/or Markov parameters matching without the

need of explicitly calculating these coefficients. This is an important advantage for large-

scale systems for which this calculation is numerically ill-conditioned and thus considered

unfeasible.

Also, the resulting reduced-order model by this family of methods is in fact a Hermite

interpolant of the transfer function as it matches some of the coefficients of its Taylor
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series expansion about a certain point. Now, when considering two-sided methods, thus

matching the maximum number of 2q coefficients, it can be shown that the reduced order

model is a Padé approximant. In fact, 2q is the maximum number because there are q

free coefficients available respectively in the numerator and denominator of the transfer

function of a reduced order system of order q.

From the numerical point of view, Krylov-subspace methods are considered to require

a relatively low computational effort and memory storage which favors them for the

reduction of large systems. For matching any given number of moments about a single

expansion point, only one LU factorization of the pencil (A − siE) is required. The

remaining operations are then only matrix-vector multiplications. Depending on the

order of the reduced system, each of the columns of the projection matrices V and W is

iteratively calculated from the previous one using the numerically stable Arnoldi [6] or

Lanczos [57] algorithms or one of their modified versions. Finally, the reduced model is

directly calculated through a projection to the lower dimensional subspace. Consequently,

in addition to the computational cost of the LU factorization, this approach needs only

O(q.n2) flops when dealing with dense systems and roughly O(q.n) for sparse ones, and

a memory requirement of only O(q.n).

When examining the reduced order model delivered by this approach, it is remarked that,

through the projection framework, the physical interpretability of the original states gets

lost. However, an approximation of the original state vector can be always calculated by

a back projection, i. e. x ≈ Vxr.

In addition, stability, which is one of the most important properties for the analysis of

dynamical systems, can not be generally preserved. In fact, there is no well established

and accepted method that guarantees the stability of the reduced system (in one- or

two-sided methods) under the only assumption that the original system is stable. For

further application of the reduced system in simulation, control or optimization, there is

a need to measure its accuracy and thus the quality of the approximation achieved by
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the Krylov-based model reduction. Generally speaking, this is not possible due to the

absence of a general error bound that describes the difference between the original and

reduced models.

Due to these facts, it is still early to speak about an automatic Krylov-based order

reduction where the user has just to define how accurate the reduced-order model should

be and keep the rest to the algorithm, as in the case of TBR. What is currently happening

in practice can be described by an iterative process, where the user has to specify a certain

set of parameters (the reduced order, the frequency of interest . . . ) to which the different

algorithms and the projection matrices are adjusted, examine the resulting reduced-order

models, and then re-tune the parameters until satisfactory results are achieved.

3.6 Numerical algorithms

After a detailed presentation of the Krylov-based MOR framework, the question that is

still to be answered is how to numerically calculate the matrices V and W.

Based on the definition of the Krylov subspace (2.1) and for instance theorem 3.1, a trivial

approach would be to use a ”for” loop that calculates the matrix A−1E and its powers in

the input Krylov subspace. Even though this would be theoretically possible, practically

the obtained matrix V, that is supposed to be full rank, is not, even for moderate values

of n and q, as its columns tend to become linearly dependent. Hence, the use of the

Arnoldi and Lanczos algorithms or one of their improved versions is unavoidable for the

proper calculation of the projection matrices, and thus to guarantee obtaining a reduced

order model of order q.

3.6.1 The Arnoldi algorithm

The most popular algorithm in one-sided methods for the calculation of the projection

matrices is the Arnoldi algorithm [6, 31], which finds an orthonormal basis for a given
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Krylov subspace. Specifically, it finds a set of normalized vectors that are orthogonal to

each others, i.e. satisfying the following equality:

VTV = I, (3.17)

and form a basis for the given Krylov subspace. In each step, one more vector orthogonal

to all the previous ones is constructed and normalized. However, when q is relatively

large, this algorithm may produce a set of basic vectors that are not linearly independent

anymore. In this case, what is called deflation should be introduced to delete linearly

dependent vectors (up to a certain accuracy) [23]. In addition to finding an orthonormal

basis V for the given Krylov subspace, this algorithm results in a specific structure of

the reduced order system matrices Br and Ar [76]. For instance, for a SISO system with

a single starting vector, the reduced matrix Ar is an upper Hessenberg matrix where all

elements under the diameter, except for the sub-diagonal entries, are zero and the vector

br is a multiple of the first unit vector.

For a detailed implementation of the Arnoldi algorithm with deflation using modified

Gram-Schmidt orthogonalization [76] refer to Appendix A.

3.6.2 The Lanczos algorithm

The most popular algorithm in two-sided methods for the calculation of the projection

matrices V and W simultaneously is the Lanczos algorithm [29, 57], which generates

two sequences of basis vectors spanning the input and output Krylov subspaces. The

generated basis vectors are also orthogonal to each other, i.e.,

WTV = I. (3.18)

The first and standard version of this algorithm is limited to the Krylov subspace with

one starting vector and consequently can not be used for the reduction of MIMO sys-

tem. In [2], this disadvantage was overcome and a Lanczos algorithm that works with

multiple starting vectors was presented. The standard version suffers from the loss of bi-

orthogonality when the number of iterations increases, thus the algorithm use is limited
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to reasonable order reduced model. This problem was solved in [15] by introducing what

is defined as reorthogonalization and deflation.

In addition to finding two bases orthogonal to each other for the given Krylov subspaces,

this algorithm results also in a specific structure of the reduced order system matrices

Br and Ar [76]. For instance, for a SISO system with a single starting vector and

considering reorthogonalization and deflation, the resulting reduced matrix Ar is an

upper Hessenberg matrix where all elements under the diameter, except for the sub-

diagonal entries, are zero and the vector br is a multiple of the first unit vector. However,

when using the standard Lanczos algorithm the matrix Ar will be tridiagonal.

For an implementation of the Lanczos algorithm with full orthogonalization and defla-

tion [76] refer to Appendix A.

3.6.3 The two-sided Arnoldi algorithm

This algorithm is based on the original Arnoldi algorithm presented in section (3.6.1) but

with the performance of the Lanczos algorithm and without numerical problems. It is

used in two-sided Krylov subspace methods and results in the same reduced order model

obtained by the Lanczos algorithm. However, it is easier to implement and is numerically

more stable.

Note that in the Lanczos algorithm the bases are orthogonal to each other, i.e. WTV = I,

however for the two-sided Arnoldi algorithm, each basis is itself orthonormal, i.e. VTV =

I and WTW = I.

For a detailed implementation of this algorithm when applied for order reduction [76]

refer to Appendix A.



32 CHAPTER 3. KRYLOV-BASED ORDER REDUCTION

3.7 Open problems in Krylov-based MOR

After around a decade of research in the field of Krylov-based MOR, numerous theoretical

and numerical problems of this approach have been tackled and solved, but many are

still open or were only solved for particular systems or under specific conditions. In this

section, some of the most relevant open problems are exposed, together with an overview

of the important work that has been achieved towards solving them.

3.7.1 Passivity/Stability preservation

It is well known that stability is one of the most important requirements for any dynamical

system for its analysis, proper operation and control. Consequently, for the reduced order

model to be valid and adopted instead of the original one, and even before discussing

the accuracy and effectiveness of its approximation, it should be stable. This however

can not be generally guaranteed by Krylov subspace methods. The simplest and most

intuitive solution to this problem would be to vary the order q of the reduced system

until obtaining a stable reduced model. However, what if all the low order models are

unstable? or the stable q-th order model is not an acceptable approximation of the

original system?

After a survey of the literature treating the stability preservation problem of Krylov

subspace methods, it is easily observed that until now no general method can guarantee

the stability of the reduced system under the only assumption that the original system

is stable. However, several works tackled this problem and several methods that can be

grouped under three main approaches have been suggested. The first group are passivity-

based methods, see e. g. [33, 50, 65], which offered a very high accuracy and guaranteed

the passivity, and thus stability, of the reduced model assuming a passive original system.

The second group are post-processing methods which remove the unstable poles of the

reduced system by using restarted algorithms like the implicitly and explicitly restarted

Arnoldi and Lanczos algorithms [9, 36, 45]. The third group are interpolation-based

methods which preserve the passivity of the original system through the interpolation of
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the spectral zeros [4, 82].

The drawbacks of the passivity-based methods are mainly their limitation to a narrow

set of systems and their restriction to the one-sided Krylov methods which have generally

a lower accuracy than the two-sided methods. For the case of the restarted algorithms,

they are mostly implemented for the SISO case, and have a relatively high numerical

effort compared to the classical case. In addition, they can not preserve the moment

matching after deleting the unstable poles and can not always guarantee to find a stable

reduced model with a finite number of restarts. The interpolation methods have proven

to be theoretically very promising however they are clearly numerically more expensive

than the classical Krylov-based MOR. In addition, several questions related to the choice

of the interpolation points which should not only preserve the passivity but also result

in a good system approximation, and to the choice of some others parameters in this

method, have still to be answered. An interesting work in this direction can be found

in [71], where several algorithms for the calculation of the dominant poles of large-scale

systems have been presented.

3.7.2 A time-domain interpretation

In order to investigate the Krylov-based MOR from a time-domain perspective, the

definitions of moments about a general expansion point s0 and Markov parameters in

time-domain and their possible significance are discussed.

Let us first calculate the moments about s0 = 0 in the time-domain. Consider the

definition of the Laplace transform of the impulse response,

H(s) =

∫ ∞

0

h(t)e−stdt.

After a Taylor series expansion of the exponential term,

H(s) =

∫ ∞

0

h(t)

[
1 − st +

s2t2

2!
− s3t3

3!
+ · · ·

]
dt

=

∫ ∞

0

h(t)dt − s

∫ ∞

0

th(t)dt + s2

∫ ∞

0

t2

2!
h(t)dt + · · · .
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Thus, the ith moment about s0 = 0 in time-domain is:

mi =
(−1)i

i!

∫ ∞

o

tih(t)dt.

This definition can be found in e.g. [5], and is frequently used in physics and statistics.

Now, using the fact that the moments of H(s) about s0 are equal to the moments of

H(s + s0) about s0 = 0,

H(s + s0) =

∫ ∞

0

h(t)e−s−s0tdt =

∫ ∞

0

h(t)e−s0t

[
1 − st +

s2t2

2!
− s3t3

3!
+ · · ·

]
dt

=

∫ ∞

0

h(t)e−s0tdt − s

∫ ∞

0

te−s0th(t)dt + s2

∫ ∞

0

t2

2!
e−s0th(t)dt + · · · ,

which leads to the time-domain definition of the moments about s0,

ms0
i =

(−1)i

i!

∫ ∞

0

tie−s0th(t)dt.

As the functions tie−s0t and ti are not orthogonal, the time-domain moments are not the

coefficients of the series expansion of the impulse response h(t) having tie−s0t or ti as

basis functions. This can be easily proven based on the generalized Fourier series theory,

or by contradiction, assuming first that h(t) =
∑∞

i=0 mit
i, and then showing that:∫ ∞

0

tjh(t)dt =

∫ ∞

0

tj

( ∞∑
i=0

mit
i

)
dt �= mj .

Hence, when calculating a reduced-order model matching the moments in the frequency-

domain, these time-domain moments are also matched however without offering any

useful theoretical or physical time-domain interpretation.

On the other hand, it is is well known that the i-th Markov parameter is in fact the i-th

derivative of the value of the impulse response at time zero [47] and that the first Markov

parameter M0 is the impulse response at t = 0 (see (3.9)). However, neither a method

nor an interpretation for an extended partial realization at some other time instant are

relevant. In [92], a theoretical definition of the modified Markov parameters as being the

coefficients of the series (s − s0)
−i has been presented. However, no system theoretical

interpretation or relevance to model reduction were discussed.
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In frequency-domain, order reduction by moment matching is known to be a local approx-

imation of the frequency response of the original system. The frequency range of interest

is determined by the interpolation point about which the moments in the frequency-

domain are matched. Consequently, this family of methods can not directly guarantee a

good approximation of the impulse response, as it is quite hard in most practical cases,

to predict the accuracy of the time-domain response of the reduced-order model from its

frequency-domain one.

Accordingly, it can be generally concluded that no clear and useful time-domain inter-

pretation of the Krylov-based model reduction approach exists.

This open problem has been a focus point in this work, and a new time-domain method

based on matching the Laguerre coefficients of the impulse response is presented in Chap-

ter 5. In addition, a time-interpretation for MOR by moment matching based on the

Laguerre representation of the system is presented in Chapter 6.

3.7.3 A general error bound

Another open problem in Krylov-based order reduction is the absence of a general error

bound describing the difference between the original and reduced models for the complete

spectrum, while being at the same time numerically cheap to be calculated. The existing

methods presented e.g. in [10, 37] are only valid under some special conditions or offer an

approximation (or local approximation) of the reduction error. In [11], several heuristic

error indicators were presented, however without any theoretical proof. The first one

is based on the observation that the error between the original and reduced systems is

approximately equal to the one between two successive reduced systems. The second error

indicator is based on the observation that the HSV of the reduced system approximate

those of the original one. This error indicator is in fact an approximation of the global

error bound of TBR by using the HSV of the reduced system instead of those of the

original one.
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To conclude, it should be noted that in order to be able to derive an exact error bound,

the knowledge of both the reduced-order model and the error system are required. This

indirectly implies the need to involve the original system in any error bounds calculation

which becomes numerically unfeasible when dealing with large-scale systems.

3.7.4 Choice of the reduced order

Up to the author’s knowledge, there are very few works dealing with the choice of the

order of the reduced system in Krylov-based order reduction based on a stopping crite-

rion connecting the original and reduced systems. This is in fact due to the absence of a

general error bound that, if existing, would allow to adaptively determines the reduced

order required to satisfy a prescribed error tolerance. The majority of the available meth-

ods connect the choice of the reduced order (or a stopping criterion) to the calculation

of the projection matrices. For instance, the reduced order can be determined when in

the Arnoldi or Lanczos algorithms no more new linearly independent columns, up to a

certain accuracy (deflation principle), can be found, e.g. [77]. Another approach employs

the error indicators mentioned in the previous section and increases the reduced order

until a certain approximated error tolerance is satisfied.

However, in practice, the user typically specifies a reduced order to which the algorithm

and the projection matrices are then adjusted, examines the results, and then reduces or

increases the order until satisfactory results and stability are achieved.

3.7.5 Choice of the expansion point(s)

One of the most important parameter in Krylov subspace method is the expansion point

about which the moments are matched. The value and number of the expansion point(s)

steer the quality and the ”location” of the approximation of the frequency response and

the numerical effort needed to calculate the reduced order model.

By definition, s0 is the point around which the Taylor series of the transfer function of the
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system is expanded. Accordingly, matching the moments and/or the Markov parameters

about this point can be directly interpreted from a system theory point of view and

employed to describe the similarity between the original and reduced models based on

the following facts:

1. With s0 = 0, the reduced and original model have the same DC gain and steady

state accuracy is achieved.

2. Small values of s0 result in a reduced model with a good approximation of the slow

dynamics.

3. Large values of s0 and/or matching the Markov parameters result in a reduced

model approximating the high frequencies and thus the transient response.

4. When matching the moments about different frequency points s0, a better approx-

imation on a wider frequency band or on a specific frequency band of interest can

be achieved.

Even though these facts give an idea on the choice of the expansion point, no exact value

of s0 can be derived based on them.

Consequently, the choice of the interpolation point(s) in moment matching became and

is still an active field of research. In [37], the basic principles for this choice have been

established and the different possibilities involving real and/or imaginary, single and

multiple expansion points, have been considered and discussed, leading to the following

conclusions:

1. A purely imaginary expansion point leads to very good local approximation and to

a very slow convergence at all frequencies away from s0.

2. A real interpolation point offer a good approximation in a large neighborhood

around s0, except around some lightly damped eigenvalues on the imaginary axis.
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3. The combination of real, imaginary, and complex expansion points is generally

preferred over a single interpolation point, however the choice and number of these

points is not straightforward.

In [82], the problem of passivity preserving order reduction has been addressed and a

rational Krylov algorithm with q interpolation points selected as spectral zeros of the

original transfer function has been presented (see section 3.7.1). In [39], an iteratively

corrected rational Krylov algorithm (IRKA) for H2 model reduction of SISO systems has

been suggested. The interpolation-based idea consists of matching only the first moment

about q expansion points chosen at the mirror image of the poles of the reduced system.

These results have been generalized to the MIMO and H2α cases. For more details, refer

to [56] and the references therein. The determination of appropriate starting values and

the convergence of this iterative algorithm are still considered as open questions. In

addition, the complexity and numerical costs of these approaches still play significant

roles especially when compared to a reduction with a single expansion point.

In summary, the choice of s0 is still often an ad-hoc process, where the user has to

try several expansion points (or several ones simultaneously) and pick up the one(s)

resulting in a satisfactory approximation for his system. The choice s0 = 0 is widely

spread and comes generally at the first place as it often delivers very good result in a

large neighborhood of the low-frequency part of the spectrum, including the steady state.

This open problem constitutes one focus of this thesis and several algorithms for the

choice of a single expansion point in Krylov-based MOR, ensuring a good approximation

of the impulse response, will be presented in Chapter 7.

3.7.6 Systems with high number of terminals

It is well-known that Krylov subspace methods are nowadays well suited for the reduc-

tion of large-scale SISO systems or MIMO systems with very few inputs and outputs.

However, these methods can not be anymore applicable when the original system has a
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high number of terminals which in some cases may get as high as the number of state

variables. This is typical in many engineering fields, for instance, in the field of VLSI

design and simulation.

The problem lies in fact in the calculation of the projection matrices V and W and thus

in the resulting reduced order. Assuming a system having order n with m inputs and p

outputs, the input and output block Krylov subspaces will have then m and p starting

vectors, respectively. Hence, for every additional moment to be matched, m columns

need to be added to the V matrix, and p to W. Thus, the order of the reduced model

will be increased by m, if m = p, and to the next common multiple of m and p, if m �= p.

As an example, consider a system having an order of 5,000 with 500 inputs and outputs.

Just by matching the first 10 moments, the reduced order model will have the order of

the original one!

The recently proposed methods SVDMOR [28] and RecMOR [30] which are considered

as first works in this field, are based on approximating the input and output matrices

using the dominant singular vectors of the transfer function at steady state. A main

drawback of these approaches is that they are limited to systems where the responses

at different I/O ports are highly correlated, which is not generally the case, and that

the computed reduced order model do not preserve any moment matching properties.

In addition, the frequency dependence of these I/O responses is not considered as the

SVD of the transfer matrix with s = 0 is employed. A solution for the latter problem

was presented in [67] where the frequency dependence has been considered and moment

matching in the sense of tangential interpolation has been proven. Another interesting

method based on the superposition principle in linear systems can be found in [12]. The

reduction is performed separately using each column of the input matrix and the output

response of the original multi-input system is approximated by the summation of the

output responses of each of the single-input reduced systems.
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3.8 Illustrative example

In the last decade, numerous works related to the Krylov subspace methods have been

published and the efficiency and suitability of these methods have been demonstrated by

various numerical examples. Many of these examples can be found in the Benchmark

collection of [18]. In order not to repeat the known results from the literature, the

numerical simulations in this section will be targeting the open problem of Krylov-based

MOR that is treated in this work, namely, the choice of the expansion point s0. To

Figure 3.2: The schematic of the CD player

this aim, the widely spread Compact Disk (CD) player model 1 is considered. The most

important part in this system is the optical unit consisting of different lenses, laser diode,

photodetectors and micro actuators (see figure 3.2). The main task here is to control

the arm holding the optical unit to read the required track on the disk and to adjust

the position of the focusing lens to adjust the depth of the laser beam penetrating the

disc. In order to achieve this task, the system should be modeled by finite element

method (FEM) leading to a differential equation of order 120. From figure 3.3, the

effect of the choice of the expansion point s0 on the impulse response approximation is

studied. The order of the reduced model has been set to a constant, here q = 10, and

1available online at http://www.win.tue.nl/niconet/NIC2/benchmodred.html.
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Figure 3.3: The impulse responses of the original system and the reduced order models
of order 10.

the expansion point has been varied. Clearly, the best choice for this system and this

specific reduced order is s0 = 100 which was obtained here by trial and error. It should

be noted that when the expansion point is chosen to be very large, the approximation is

then concentrated at the beginning of the impulse response, i.e. transient behavior. This

is to be expected as matching the moments about a high value of s0 results in a system

that approximates the system’s behavior as t tends to zero. When trying to examine

the effect of the choice of the expansion point in the frequency-domain, figure 3.4 shows

that the reduced order model corresponding to s0 = 100 is the only model matching the

resonant peak of the Bode diagram, which partly explains the excellent approximation

of the impulse response in figure 3.3. However, generally speaking, none of the reduced

systems offer an acceptable overall approximation of the original frequency response.
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Figure 3.4: The Bode diagram of the original system and the reduced order models of
order 10.

This shows from one side that it is more difficult to approximate the original system in

the frequency domain (more degrees of freedom are needed) and from the other side that

the connection between a well-approximated time and frequency response is not as clear

as one may think.

These facts, which are not restricted to the current example, confirms what was already

presented in section 3.7 and proves that there is a need for a method that calculates an

’optimal’ expansion point guaranteeing a good approximation in the time-domain.



Chapter 4

LAGUERRE-BASED MODEL

REDUCTION IN FREQUENCY DOMAIN

The interesting properties of orthogonal functions have made them a powerful tool for

modeling, identification, simplification, signal processing and controller design. The most

commonly used orthogonal functions by Engineers and Mathematicians are Laguerre,

Chebyshev, Legendre, and Kautz. Among all these sets of orthogonal functions, Laguerre

polynomials are widely employed because of their interesting properties: the definition

on the wide range [0,∞], forming a basis for the Hilbert space, the recursive calculation

of each polynomial, and the special form of their Laplace transform which consists of the

product of a low-pass filter and some first order all-pass filters.

Since the early sixties, many researchers have been trying to approximate finite and

infinite-dimensional systems based on truncating the Laguerre series expansion and have

investigated the proper choice of the approximation order and the optimal value of the

time-scale factor; see for instance [38, 62, 89] and the references therein. For system

identification, employing the Laguerre functions has been proposed by several authors;

e.g. [20, 87]. Some other applications may be found in the signal processing community

for filters design [91], and in control engineering for the design of decentralized adaptive

controllers [1]. The Laguerre series expansion has been also integrated into the Balancing

and Truncation reduction method in order to avoid the expensive computation of the

gramians [93].
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To improve the results of moment matching, to preserve stability, or to provide an error

bound, some researchers have tried to replace the Taylor series by other series expan-

sions. For instance in [46] and [17], a transformed Legendre polynomial and a Chebyshev

expansion have been respectively used for order reduction.

In [52], the Laguerre series was first used for the purpose of order reduction of state-space

models based on matching some of the first Laguerre coefficients instead of the moments

of the transfer function; see also [42]. An advantage of the Laguerre functions is that

the corresponding series expansion can be transformed to a Taylor series by applying

a certain bilinear transformation. This property simplifies the reduction procedure and

makes it possible to use the numerically robust and efficient algorithms implemented

for moment matching. In [26], this method has been generalized for the reduction of

second-order systems.

The Laguerre-based order reduction has been further investigated and generalized by

several other authors, [53, 55]. A reduction method based on truncating the Laguerre

series is presented in [90]. Although this method preserves stability and provides an error

bound, it locates all poles of the reduced system at a single real point making it difficult

to approximate systems with dominant complex conjugate poles.

In this chapter, the basic Laguerre-based order reduction approach for state-space sys-

tems which was first presented in [52] is reviewed.

4.1 Moments and Laguerre coefficients

For the ease of presentation, the SISO case is considered here, however all the results in

this chapter can be easily generalized to the MIMO case.

Consider the dynamical system of the form:⎧⎨⎩ Eẋ(t) = Ax(t) + bu(t),

y(t) = cTx(t).
(4.1)
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It is assumed that the the transfer function H(s) of any state space model (2.12) belongs

to the Hardy space H2. Consequently, it can be expanded into the orthonormal basis

formed by the Laplace transforms of the scaled Laguerre functions φα
n(t) as:

H(s) = cT (sE− A)−1b =

∞∑
i=0

FiΦ
α
i (s), (4.2)

which is equivalent to:

H(s) = cT (sE −A)−1b =

√
2α

s + α

∞∑
i=0

Fi

(
s − α

s + α

)i

, (4.3)

with the Fi being the Laguerre coefficients. By considering the following bilinear trans-

formation,

s = α
1 + v

1 − v
, (4.4)

the Laguerre expansion is mapped from the s-domain into the v-domain, leading to the

following equality:

H(s)
∣∣
s(v) = H(v) = (1−v) cT [(αE− A) + v(αE + A)]−1b︸ ︷︷ ︸

Hv(v)

= (1−v)
1√
2α

∞∑
i=0

Fiv
i. (4.5)

Neglecting the factor 1√
2α

, the Laguerre coefficients Fi are now the moments of the system

Hv(v) in the v-domain having the following system matrices:

Ev = αE + A, (4.6)

Av = −αE + A. (4.7)

Since Hv(v) is the only high order and dynamic part of the system H(v), it can be inferred

that a qth-order Padé approximation of the modified transfer function Hv(v) in the v-

domain is equivalent to a qth-order Laguerre approximation of H(s) in the s-domain

[52].

4.2 The order reduction approach

Based on the mapping of the Laguerre expansion of the transfer function from the s-

domain into a Taylor series in the v-domain, the Laguerre coefficients Fi of the original
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system in the s-domain are now the moments of an intermediate model that we call

modified state space model in the v-domain.

The next step after calculating this intermediate model, is to reduce it using suitable

Krylov subspace methods, i.e. moment matching. Thus, the obtained reduced order

model, still in the v-domain, matches the moments of the modified original one, which

are in fact the Laguerre coefficients of the original state-space model. Finally, this mod-

ified reduced order model is transformed back to the s-domain to result in the required

reduced-order model.

The Krylov subspace reduction methods introduced in the previous chapter together with

their corresponding projection framework are employed to calculate the reduced order

system according to the following theorems:

Theorem 4.1. If the columns of the matrix V used in (3.11), form a basis for the Krylov

subspace Kq(A
−1
v Ev,A

−1
v b) and the matrix W ∈ Rn×q is chosen such the matrix Av and

WTAvV are nonsingular, then the first q Laguerre coefficients of the original and reduced

order systems match.

Proof: Consider the modified original model in the v-domain formed by the matrices

Ev, Av, and having the transfer function function defined in the LHS of (4.5). If the

projection matrices V and W calculated according to this theorem are applied to this

model, a reduced model called modified reduced model is obtained. This model matches

according to theorem 3.1, q moments of the original modified model, which are in fact

the Laguerre coefficients of the original model. The modified reduced system is still in

the v-domain and have the following form:⎧⎨⎩ WTEvVẋr(t) = WTAvVxr(t) + WTbu(t),

y(t) = cTVxr(t),
(4.8)

The transfer function of this system in the v-domain is:

cTV(vWTEvV −WTAvV)−1WTb =
1√
2α

∞∑
i=0

Friv
i (4.9)
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Applying the back transformation from the v-domain to the s-domain as defined in (4.4),

and after substituting the matrices in the v-domain by their values in (4.6), (4.7), we

get:

(s + α)

2α
cTV(sWTEV − WTAV)−1WTB︸ ︷︷ ︸

Hr(s)

=
1√
2α

∞∑
i=0

Fri

(
s − α

s + α

)
, (4.10)

where the first q Laguerre coefficients Fr0 to Frq−1 are the same as the first q of the

original model F0 to Fq−1.

Consequently, from (4.10), Hr(s) can be written in the s-domain as:

Hr(s) =

√
2α

s + α

∞∑
i=0

Fri

(
s − α

s + α

)
, (4.11)

which is in fact the required Laguerre approximation of the reduced system transfer

function.

Remark 4.1. This transfer function corresponds to the reduced system in the s-domain

obtained by directly applying the projection matrices V and W to the original model

(see eq. (4.10)) and thus no need to calculate the modified reduced model and apply a

back transformation.

In other words, the modified system matrices Eu and Au are only involved in the calcu-

lation of V and W, and the projection is directly applied to the original model in the

s-domain to calculate the reduced system, ensuring the Laguerre coefficients matching.

A typical and common choice in theorem 4.1 is W = V, however in order to double

the number of matched Laguerre coefficients, the calculation of the matrices V and W

should be done according to the following theorem:

Theorem 4.2. If the columns of the matrices V and W used in (3.11), form bases for the

Krylov subspaces Kq(A
−1
v Ev,A

−1
v b) and Kq(A

−T
v ET

v ,A−T
v c) respectively, then the first 2q

Laguerre coefficients of the original and reduced order systems match. It is assumed that

Av and WTAvV are invertible.
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Proof: Similar proof of theorem 4.1. However the number of matched Laguerre coeffi-

cients is doubled to 2q by using theorem 3.2.

The numerical calculation of the projection matrices is achieved by applying the known

Lanczos or Arnoldi algorithms or one of their improved versions [5, 6, 24, 57, 76], as the

formulation of both theorems is very similar to that of moment matching.

The discussion related to the possible choices of the free parameter α will be skipped

here as it constitutes one of the main subject of this thesis and will be detailed in the

following chapters.



Chapter 5

A NEW TIME-DOMAIN REDUCTION

SCHEME USING LAGUERRE

FUNCTIONS

In chapter 3, it was shown that Krylov subspace methods are restricted to being a local

approximation of the frequency response, and thus, can not generally guarantee a good

overall approximation of the impulse response.

Hence, it is more natural to do order reduction directly in the time-domain through

the approximation of the system’s impulse response while benefiting from the numerical

and computational advantages of the Krylov subspace methods. The first work in this

direction appeared to be [41], where some of the first derivatives of the time response of

the nonlinear system and those of its corresponding reduced-order model are matched.

However, up the author’s knowledge, no work dealing with linear system exists, except

the works based on matching the Markov parameters which is limited to matching the

impulse response and its derivatives at t = 0.

Lately, based on the success of several methods approximating the impulse response using

orthogonal polynomials for low-order systems, several works tried to improve and further

develop these methods to make them suitable for the reduction of large-scale systems.

The key point consists of projecting the time response of the original system onto an

efficiently calculated lower order dimensional subspace spanned by an orthogonal basis.
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Consequently, some of the first coefficients of the infinite orthogonal series expansion of

the impulse response of the reduced order model match those of the original one. For in-

stance, in [88], the Chebyshev expansion has been used in time-domain for passive model

order reduction of interconnect networks. In [19], a time-domain approach involving the

Laguerre polynomials and some Krylov subspaces for the approximation of the impulse

response has been presented. A disadvantage of this method is that it employed the

Laguerre polynomials which are known to form an unbounded basis for the Hilbert space

L2(R+), and thus are inadequate for the approximation of the impulse response of stable

systems.

In this chapter, the results of [19] are generalized to a new purely time-domain Krylov-

based model reduction involving the Laguerre functions - instead of the Laguerre poly-

nomials - which are exponentially decreasing functions and form a bounded orthonormal

basis for L2(R+). In this new approach, the Laguerre coefficients of the impulse response

of the reduced-order model, which is calculated using a projection whose matrices form

basis of appropriate Krylov subspaces, match, up to a given order, those of the original

system. In the next chapter, it will be shown that the obtained reduced-order model

in time-domain, is equivalent to the one obtained by the classical moment matching

around a single expansion point in frequency-domain. Accordingly, a new time-domain

interpretation for the rational interpolation problem is deduced.

5.1 Approximation of the state vector

As a first step towards the approximation of the impulse response, the state vector x(t)

is approximated using the Laguerre functions as

x(t) ≈ xq(t) =

q−1∑
i=0

liφ
α
i (t). (5.1)
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Based on [59, 84], the integral of x(t) can be expressed as∫ t

0

x(τ)dτ =
1

α

∞∑
i=0

(
li + 4

i−1∑
j=0

(−1)i+jlj

)
φα

i (t), (5.2)

and thus the integral equation of the state equation

Ex(t) = A

∫ t

0

x(τ)dτ + b

∫ t

0

u(τ)dτ, (5.3)

can be rewritten, after replacing x(t) by xq(t) and assuming u(t) = δ(t), as:

E

q−1∑
i=0

liφ
α
i (t) − A

α

q−1∑
i=0

liφ
α
i (t) − 4A

α

q−1∑
i=0

i−1∑
j=0

(−1)i+jljφ
α
i (t) = b.

This equation can be represented in matrix form by

Φ

⎡⎢⎢⎢⎢⎢⎢⎣
lq−1

...

l1

l0

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0
...

0

b

⎤⎥⎥⎥⎥⎥⎥⎦ , (5.4)

where

Φ=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(αE− A)−1 −4A 4A −4A 4A

· · · · · ·
(αE− A)−1 −4A 4A

(αE− A)−1 −4A

α (αE− A)−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with q in this case being an even integer.

As the first q entries of the vector on the RHS of (5.4) are zero, the Laguerre coefficients

li of xq(t) can be then expressed using the following recursive formulae:

l0 = α (αE− A)−1 b, (5.5)

li = (αE −A)−1
i−1∑
j=0

(−1)i+j4Alj, 1 ≤ i ≤ q − 1. (5.6)
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Based on the approximation (5.1), xq(t) can be reformulated as:

xq(t) = Lq

⎡⎢⎢⎢⎢⎢⎢⎣
φα

0 (t)

φα
1 (t)
...

φα
q−1(t)

⎤⎥⎥⎥⎥⎥⎥⎦ , (5.7)

with

Lq =
[

l0 l1 · · · lq−1

]
. (5.8)

Thus, xq(t) lies in the subspace spanned by the columns of Lq for all t.

In this section, for the ease of presentation, it was considered that the state vector xq(t)

consists of a truncated Laguerre series expansion. However in the proposed method it is

assumed that an infinite series, which coefficients are matched, is involved.

5.2 The reduction approach

The key idea of the reduction method presented in this section consists of projecting

the state vector x(t) of the original system (2.9) onto the q-th subspace spanned by the

first q Laguerre functions φα
i (t). This results in a reduced order model whose impulse

response’s Laguerre coefficients match some of the first coefficients of the original response

y(t). For the simplicity of exposition, the SISO case is only considered, however all the

results presented in this section can be easily generalized to the MIMO case.

Similar to the classical moment matching, the reduced order system is obtained by ap-

plying the known projection x(t) = Vx̂(t), V ∈ Rq×n, q < n to the system (2.9) and

multiplying the state equation by the transpose of the matrix W, e.g. with W = V,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ê︷ ︸︸ ︷

WTEV ˙̂x(t) =

Â︷ ︸︸ ︷
WTAV x̂(t) +

b̂︷ ︸︸ ︷
WTb u(t),

y(t) =
T

cTV︸︷︷︸
ĉ

x̂(t),

(5.9)

where q is the order of the reduced system.
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Lemma 5.1. If the columns of V used in (5.9), form an orthonormal basis for the sub-

space spanned by the columns of Lq, then the first q Laguerre coefficients of the Laguerre

series expansions of the original and reduced state vectors satisfy

li = Vl̂i, 0 ≤ i ≤ q − 1. (5.10)

with x(t) =
∑∞

i=0 liφ
α
i (t) and x̂(t) =

∑∞
i=0 l̂iφ

α
i (t).

Proof: After integration, the state equation of system (5.9) becomes

WTEVx̂(t) −WTAV

∫ t

0

x̂(τ)dτ = WTb, (5.11)

with x̂(t) as its solution. As the coefficients li ∈ colspan(V), they can be written as a

linear combination of the columns of V,

li = Vzi, 0 ≤ i ≤ q − 1.

By substituting the above equation in (5.4) and multiplying both sides by WT , we get

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
αÊ − Â

)−1 −4Â 4Â −4Â 4Â

· · · · · ·(
αÊ − Â

)−1
−4Â 4Â(

αÊ − Â
)−1

−4Â

α
(
αÊ − Â

)−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zq−1

...

...

...

z1

z0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
...
...

0

b̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.12)

Now, from (5.11) and (5.4), the equations for l̂i are found to be

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
αÊ − Â

)−1 −4Â 4Â −4Â 4Â

· · · · · ·(
αÊ − Â

)−1 −4Â 4Â(
αÊ − Â

)−1 −4Â

α
(
αÊ − Â

)−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l̂q−1

...

...

...

l̂1

l̂0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
...
...

0

b̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.13)

The proof is completed by comparing (5.13) and (5.12).
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Remark 5.1. Due to the fact that the Laguerre functions φα
i (t) =

√
2αe−αtli(2αt) are not

polynomials, a proof of lemma 5.1 by simply comparing the coefficients in x(t) = Vx̂(t),

i.e.
∑∞

i=0 liφ
α
i (t) = V

∑∞
i=0 l̂iφ

α
i (t), is not possible.

Based on the previous lemma, the main theorem describing the choice of the projection

matrix in order to match the Laguerre coefficients of the impulse response is then:

Theorem 5.1. If the columns of V used in (5.9), form an orthonormal basis for the

subspace spanned by the columns of Lq, and W is chosen such that (A − αE) and

WT (A − αE)V are nonsingular, then the first q Laguerre coefficients of the Laguerre

series expansions of the impulse response of the original and reduced systems match, i.e.,

fi = f̂i, 0 ≤ i ≤ q − 1, (5.14)

with h(t) =
∑∞

i=0 fiφ
α
i (t) and ĥ(t) =

∑∞
i=0 f̂iφ

α
i (t).

Proof: From (2.9), we have fi = cT li, and similarly from (5.9), f̂i = ĉT l̂i. Based on the

fact that WTV = I and lemma 5.1, it can be easily shown that l̂i = WT li. Hence, using

Lemma 5.1, VWT li = VWTVl̂i = Vl̂i = li. Finally,

f̂i = ĉT l̂i = cTVWT li = cT li = fi.

Even though the previous theorem offers a theoretical proof and tool to find a re-

duced order model that matches the Laguerre coefficients, it suffers from the famous

ill-conditioning problem that occurs when explicitly calculating the Laguerre coefficients.

Fortunately, it can be shown that the subspace spanned by the columns of Lq is a Krylov

subspace involving the system matrices. This guarantees matching the Laguerre coeffi-

cients without explicitly calculating them, similar to the moment matching case.

Lemma 5.2. The subspace spanned by the columns of Lq is equal to the Krylov subspace:

Kq

(
(A− αE)−1A, (A− αE)−1b

)
. (5.15)
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Proof: Let li and ki be the basic blocks of the matrix Lq and the Krylov subspace

Kq , respectively. It is shown that the basic blocks of the two subspaces span the same

space by proving that the ith basic block of each subspace can be written as a linear

combination of the first i blocks of the other.

As α is a constant, and based on (5.5), it is clear that the starting vectors are the same,

i.e., l0 = −αk0. Recall that multiplying any basic block by a minus sign or a constant

does not affect the spanned subspace. For the next two basic blocks, we have,

l1 = (A − αE)−1(4Al0) = −4α(A − αE)−1A(A− αE)−1b = −4αk1.

l2 = (A − αE)−1[4A(−l0 + l1)]

= −l1 + 4α(A− αE)−1A(A − αE)−1A(A− αE)−1b

= 4αk1 + 4αk2.

Now consider that ln =
∑n

j=1 βjkj for n = 2, · · · , q − 1, where βn is a constant. For an

even1 i = q, we have, based on (5.6),

lq = (A − αE)−1[4A(−l0 + l1 + · · · − lq−1)]

= −4l1 + 4l2 + · · · − 4(A− αE)−1Alq−1 =

q−2∑
j=1

β ′
jkj − 4(A − αE)−1Alk−1

=

q−2∑
j=1

β ′
jkj − (A − αE)−1A

q−1∑
j=1

β ′
jkj =

q−2∑
j=1

β ′
jkj −

q∑
j=2

β ′
jkj.

This part of the proof is completed by induction leading to

colspan(Lk) ⊂ Kq

(
(A− αE)−1A, (A − αE)−1b

)
. (5.16)

Now, the columns of Kq are shown to be a linear combination of those of the matrix Lk.

It is clear that the two first vectors are the same up to a constant, i.e., k0 = − 1
α
l0 and

k1 = − 1
4α

l1.

1for an odd q the same proof is valid, however the subsequent derivation will have the opposite
alternating sign of the coefficients because of the (−1)i+j in (5.6).
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The equation (5.6) can be reformulated as,

li = (αE− A)−1
i−1∑
j=0

(−1)i+j4Alj = li−1 + 4 (αE −A)−1 Ali−1, (5.17)

which for i = 2 becomes

l2 = −l1 + 4 (αE− A)−1 Al1 (5.18)

= −l1 − 42α (αE− A)−1 Ak1

= −l1 − 42αk2

leading to

k2 = − 1

42α
(l1 + l2). (5.19)

Similarly, by using (5.19) and (5.18),

l3 = −l2 + 4 (αE −A)−1 Al2

= −l2 + 4 (αE −A)−1 A[−42αk2 − l1]

= −l2 − 43αk3 − l1 − l2

leading to

k3 = − 1

43α
(l1 + 2l2 + l3). (5.20)

Now assume that kn = − 1
4nα

∑n−1
j=0

(
n−1

j

)
lj+1 for n = 2, · · · , q − 1. For n + 1, we have,

ln+1 = −ln + 4 (αE −A)−1 Aln

= −ln + 4α (αE −A)−1 A

[
−4nαkn −

(
n − 1

0

)
l1 −

(
n − 1

1

)
l2 − · · · −

(
n − 1

n − 2

)
ln−1

]
= −ln − 4n+1kn+1 −

(
n − 1

0

)
(l1 + l2) −

(
n − 1

1

)
(l3 + l2) − · · · −

(
n − 1

n − 2

)
(ln + ln−1),

which, by regrouping the different li terms, leads to

kn+1 = − 1

4n+1α

n∑
j=0

(
n

j

)
lj+1.

This part of the proof is completed by induction leading to

Kq

(
(A − αE)−1A, (A− αE)−1b

) ⊂ colspan(Lk). (5.21)
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Finally,

Kq

(
(A− αE)−1A, (A− αE)−1b

)
= colspan(Lk). (5.22)

The importance of this theorem lies in the fact that it allows a numerically stable and

computationally efficient way of calculating the projection matrix V using the well-known

Arnoldi and Lanczos algorithms or one of their improved versions [5, 76]. In addition, it

reflects the direct dependance of the projection matrix V, and thus the reduced system,

on the parameter α. By varying α, different basis functions φα
i (t) are generated and

consequently the error-spreading of the approximation of the impulse response along the

temporal axis can be controlled. The possible choices of the parameter α will be detailed

in Chapter 7.

By using the duality principle, it can be stated that if the columns of the matrix W

used in (5.9), form a basis for the Krylov subspace Kq

(
(A − αE)−TAT , (A − αE)−Tc

)
,

and V is chosen such that (A− αE) and WT (A− αE)V are nonsingular, then the first

q Laguerre coefficients of the Laguerre series expansions of the impulse response of the

original and reduced systems match.

Now, if the choices of the matrix V and W are combined, the number of matched

Laguerre coefficients can be doubled to 2q.

Theorem 5.2. If the columns of the matrices V and W, form bases for the Krylov

subspaces Kq ((A − αE)−1A, (A− αE)−1b) and Kq

(
(A − αE)−TAT , (A − αE)−Tc

)
re-

spectively, then the first 2q Laguerre coefficients of the impulse response of the original

and reduced order systems match. It is assumed that (A− αE) and WT (A− αE)V are

nonsingular.

Proof: According to theorem 5.1, the first q Laguerre coefficients match. The vector

(A−αE)−Tc is in the output Krylov subspace and can be written as a linear combination
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of the columns of matrix W,

∃r0 ∈ R
q : (A− αE)−Tc = Wr0,

Thus, cTV(αEr −Ar)
−1Ar = cT

(
(αE− A)−1(αE− A)

)
V(αEr −Ar)

−1Ar

= rT
0 WT (αE− A)V(αEr −Ar)

−1Ar

= rT
0 WTAV = cT (αE −A)−1AV. (5.23)

In addition, based on (5.5) and lemma 5.1,

Vl̂q−1 = lq−1 (5.24)

= (αE −A)−1A
[
(−1)(q−1)4αI + · · · − 4(αE−A)−(q−2)Aq−2

]
(αE− A)−1b.

The qth Laguerre coefficient of the impulse response of the reduced system is

cT
r l̂q = cTV(αEr −Ar)

−1A
[
(−1)q4αI + · · · − 4(αEr − Ar)

−(q−1)Aq−1
]
(αEr − Ar)

−1b

= cTV(αEr −Ar)
−1Ar

[
(−1)q4αI + · · · − 4(αEr −Ar)

−(q−2)Aq−2
]
(αEr − Ar)

−1br

+ 4cTV(αEr − Ar)
−1Ar(αEr − Ar)

−(q−1)Aq−1
r (αEr −Ar)

−1br.

Now, by using (5.23) and (5.24),

cT
r l̂q = cT lq−1 + 4cTV(αEr − Ar)

−1Ar︸ ︷︷ ︸
cT (αE−A)−1AV

(αEr −Ar)
−(q−1)Aq−1

r (αEr − Ar)
−1br. (5.25)

Due to the fact that the (q − 1)th Laguerre coefficient is matched and the subspace

spanned by the columns of Lq is equivalent to Kq ((A − αE)−1A, (A− αE)−1b), we

have

V(αEr − Ar)
−(q−1)Aq−1

r (αEr −Ar)
−1br = (αE− A)−(q−1)Aq−1(αE− A)−1b. (5.26)

Now, by replacing the previous equation in (5.27),

cT
r l̂q = cT lq−1 + cT (αE −A)−1A(αE− A)−(q−1)Aq−1(αE− A)−1b = cT lq (5.27)

which completes the proof.

This proof is repeated with the next vector of W until showing that cT
r l̂2q−1 = cT l2q−1

and thus that 2q Laguerre coefficients match.
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5.3 Matching the Laguerre coefficients of the sys-

tem’s response to different inputs

Consider that the dynamical system (2.9) has been formulated in terms of the Laguerre

functions φα
i (t) , i.e.,

u(t) =

∞∑
i=0

uiφ
α
i (t), (5.28)

h(t) =
∞∑
i=0

fiφ
α
i (t), (5.29)

y(t) =

∞∑
i=0

yiφ
α
i (t), (5.30)

with u(t), h(t) and y(t) being respectively the system’s input, impulse response and

output. Assume further that this system has been reduced using the method of the

previous section. Consequently, the Laguerre coefficients of the impulse response of

the reduced-order model match, up to a given order, those of the original system, i.e.

f̂i = fi, for i = 0, · · · , q − 1.

It is well known that in order to calculate the system’s response to inputs different

than the impulse function, the input in question has to be convoluted with the system’s

impulse response,

y(t) = h(t) ∗ u(t) =

∞∑
m=0

fmφα
m(t) ∗

∞∑
n=0

unφ
α
n(t) =

∞∑
m=0

∞∑
n=0

fmunφα
m(t) ∗ φα

n(t) (5.31)

Now inspired from the work in [21], the following convolution property of the Laguerre

function can be derived:

Lemma 5.3. For any two Laguerre functions φα
m(t) and φα

n(t),

φα
m(t) ∗ φα

n(t) =
1√
2α

(
φα

m+n(t) − φα
m+n+1(t)

)
. (5.32)
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Proof:

L [φα
m(t) ∗ φα

n(t)] = φα
m(s)φα

n(s) = 2α
(s − α)m

(s + α)m+1

(s − α)n

(s + α)n+1
= 2α

(s − α)m+n

(s + α)m+n+2

=

(
(s − α)m+n

(s + α)m+n+1
− (s − α)m+n+1

(s + α)m+n+2

)
=

1√
2α

(
φα

m+n(s) − φα
m+n+1(s)

)
=

1√
2α

(L [
φα

m+n(t)
]− L [

φα
m+n+1(t)

])
.

Hence, it can be shown that the reduced-order model, obtained by the approach intro-

duced in this chapter, does not only match the coefficients of the impulse response but

also those of the system’s response to different inputs. This result is formulated and

proven in the following theorem:

Theorem 5.3. The reduced order model calculated by the time-domain approach match-

ing the laguerre coefficients of the impulse response, matches also the coefficients of the

system’s response to any input u(t) ∈ L2(R+).

Proof: The response of the reduced system to an input u(t) in the form (5.28) is

ŷ(t) =
∞∑

p=0

ŷpφ
α
p (t) = ĥ(t)∗u(t) =

∞∑
m=0

f̂mφα
m(t)∗

∞∑
n=0

unφ
α
n(t) =

∞∑
m=0

∞∑
n=0

f̂munφα
m(t)∗φα

n(t).

Using lemma 5.3, the previous equation becomes

ŷ(t) =
∞∑

p=0

ŷpφ
α
p (t) =

1√
2α

∞∑
m=0

∞∑
n=0

f̂mun

(
φα

m+n(t) − φα
m+n+1(t)

)
.

However, φα
p (t) can only appear on the r.h.s. of the equation above when either m+n = p

or m + n + 1 = p. Thus,

ŷpφ
α
p (t) =

s=p∑
s=0

f̂sφ
α
p−s(t) −

s=p−1∑
s=0

usφ
α
p−1−s(t). (5.33)

As it is assumed that the reduced and original systems have the same input, and that

f̂i = fi, for i = 0, · · · , q, it can be concluded based on (5.33) that ŷp = yp for p = 0, · · · , q.
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5.4 Illustrative example

In the next chapter, the equivalence between the time-domain Laguerre-based and mo-

ment matching about a single expansion will be shown. Hence, at this stage, it is not

really meaningful to show simulation results due to the fact that the reduced-order mod-

els obtained by both methods are exactly the same. However, it is interesting to illustrate

the effect of varying the parameter α on the approximation of the impulse response. It

should be noted that an infinite Laguerre series expansion is considered, however only

the first five Laguerre functions are plotted, which generally speaking, is enough to get

an idea of the time-spread of those functions. The original system considered here is the

CD player introduced in Chapter 3 and its reduced-order model of order 10.
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Figure 5.1: The impulse responses of the original and reduced systems (q = 10) together
with the Laguerre functions for s0 = α = 1.

In figure 5.1, it can be seen that the decay of the first Laguerre functions within the

considered time-window of interest 0 − 0.5 seconds is very slow, which results in a

bad approximation of the system’s impulse response. In figure 5.2, the value of α is
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increased which resulted in a faster decreasing Laguerre functions within the time-window

of interest. This lead to a better approximation then the previous case. With α = 200,

fast decaying functions suitable for the dynamics of this system were generated resulting

in a very good approximation of the impulse response as shown in figure 5.3. In fact,
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Figure 5.2: The impulse responses of the original and reduced systems (q = 10) together
with the Laguerre functions for s0 = α = 10.

by varying α a time horizon of interest is implicitly introduced. Hence, the quality and

location of the approximation can be controlled, where lower values of α spread out the

region of approximation, and higher ones makes it tighter. Consequently, depending on

the system’s dynamics, a suitable value has to be found based on some knowledge of the

original impulse response.
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Figure 5.3: The impulse responses of the original and reduced systems (q = 10) together
with the Laguerre functions for s0 = α = 200.





Chapter 6

THE EQUIVALENCE

As the Laguerre-based order reduction, both in frequency and time-domain, has been

receiving more and more attention and started to be considered as an independent re-

duction approach which is developing parallel to that of moment matching, it is of great

importance to investigate the connection between these two approaches and under which

conditions they are equivalent.

Towards this aim, the connection between the Krylov subspaces involved in each of the

approaches will be first analyzed. Then, the effect of these subspaces on the transfer

function of each of the obtained reduced models is described.

This analysis will lead to three main results that can be summarized as follows:

1. In Section 6.3, it will be shown that all the Laguerre-based reduction methods in

frequency-domain, e.g. [42, 52], are equivalent to the classical moment matching

about a single expansion point [27].

2. In section 6.4, this equivalence is then generalized to the case of the so-called

generalized Markov parameters. It is shown that by matching the moment about

s0, this family of coefficients are matched including the Laguerre coefficients in

frequency-domain as a special case.

3. In Section 6.5, the equivalence between the time-domain Laguerre-based reduction

approach of Chapter 5 [25], and moment matching about a single expansion point
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is shown. This results in a time-domain interpretation of the classical moment

matching approach based on the fact that the reduced order models obtained by

both approaches are exactly the same.

6.1 Property of Krylov subspaces

In the following, a lemma and a theorem, that exploit some properties of the Krylov

subspaces, are introduced. These properties will play a key role in this chapter when

showing the equivalence between the Laguerre-based and moment matching reduction

approaches, both in time-and frequency-domain.

Lemma 6.1. The Krylov subspaces Kq(M,v) and Kq(N,v) with M + cN = γI where

0 �= c, γ ∈ R, are identical.

Proof: From definition (2.1) we have:

Kq(M,v) = Range(S1), S1 =
[

v Mv M2v · · · Mq−1v
]
,

Kq(N,v) = Range(S2), S2 =
[

v Nv N2v · · · Nq−1v
]
.

As N = 1
c
(γI − M), S2 can be rewritten as

[
s2
0 s2

1 · · · s2
q−1

]
with

s2
j =

(
γI −M

c

)j

v =

j∑
i=0

kijM
iv =

j∑
i=0

kijs
1
i , (6.1)

where kij ∈ R and s1
i is the ith column of S1. From (6.1), it can be seen that the columns

of S2 are a linear combination of those of S1, and thus Kq(N,v) ⊂ Kq(M,v). Similarly,

because M = γI − cN, Kq(M,v) ⊂ Kq(N,v), which leads to Kq(N,v) = Kq(M,v).

This lemma expresses in fact the shift invariance property of Krylov subspaces however

reformulated for the purpose of connecting the subspaces involved in the Laguerre-based

reduction and moment matching.

Theorem 6.1. The Krylov subspaces Kq ((P − αQ)−1Q,v) and Kq (γ(P − αQ)−1

(P− βQ),v) with α �= β and γ �= 0, are identical.
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Proof: Set N = (P − αQ)−1Q and M = γ(P − αQ)−1(P− βQ). M can be written as:

M = γ(P − αQ)−1(P − βQ + αQ − αQ)

= γI + γ(α − β)[(P− αQ)−1Q] = γI − cN.

By applying Lemma 6.1, the proof is completed.

Remark 6.1. This theorem and Lemma 6.1 can be easily generalized to the multiple

starting vectors case. We note that some results related to the Theorem 6.1 can be found

in [60] and [37] but used in a different context.

6.2 Invariance property

Another main component for proving the equivalence between the two reduction ap-

proaches is the invariance property of the transfer function of the reduced order model

to the change of basis of the Krylov subspaces.

Theorem 6.2. The transfer function of the reduced-order model depends only on the

choice of the Krylov subspaces and not on the bases of these subspaces.

Proof: Consider two reduced order models by using pairs of bases V1,W1 and V2,W2.

The corresponding reduced order models are⎧⎨⎩ WT
1 EV1ẋr1(t) = WT

1 AV1xr1(t) + WT
1 Bu(t),

y = CV1xr1(t),
(6.2)

⎧⎨⎩ WT
2 EV2ẋr2(t) = WT

2 AV2xr2(t) + WT
2 Bu(t),

y = CV2xr2(t).
(6.3)

The columns of the matrices V2 and W2 are, respectively, in the input and output Krylov

subspaces. Hence, they can be written as a linear combination of the other bases which

are the columns of matrices V1 and W1, and there exist square matrices Qv and Qw of

compatible dimensions such that,

V2 = V1Qv, W2 = W1Qw. (6.4)
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Since V1, V2, W1 and W2 have full rank, the matrices Qv and Qw are invertible. By

substituting equation (6.4) into the system (6.3) and multiplying both sides of the state

equation by the invertible matrix Q−T
w we get,⎧⎨⎩ WT

1 EV1Qvẋr2(t) = WT
1 AV1Qvxr2(t) + WT

1 Bu(t),

y = CV1Qvxr2(t).

Applying the state transformation z = Qvxr2 to this system, converts it into (6.2). Thus,

the reduced order models (6.2) and (6.3) have the same transfer functions.

6.3 The equivalence in frequency-domain

After reducing the original system by the Laguerre-based method of chapter 4, and

matching for instance 2q Laguerre coefficients, the original and reduced model transfer

functions H(s) and Hr(s) can be written based on (4.3) as:

H(s) =

√
2α

s + α

[
F0 + F1

(
s − α

s + α

)
+ . . . + F2q−1

(
s − α

s + α

)2q−1

+ F2q

(
s − α

s + α

)2q

+ . . .

]

Hr(s) =

√
2α

s + α

[
Fr0 + Fr1

(
s − α

s + α

)
+ . . . + Fr2q−1

(
s − α

s + α

)2q−1

+ Fr2q

(
s − α

s + α

)2q

+ . . .

]
with Fi = Fri for i = 0, . . . , 2q−1. By calculating the first two derivatives of the reduced

system’s transfer function at s = s0 = α, we get:

mα
r0 = Hr(s)|s=s0=α =

Fr0√
2α

= H(s)|s=s0=α = mα
0 (6.5)

mα
r1 =

dHr(s)

ds

∣∣∣∣
s=s0=α

=
√

2α

( −Fr0

(s + α)2
+

Fr1(3α − s)

(s + α)3

)∣∣∣∣
s=s0=α

=
Fr1 − Fr0

2α
√

2α
=

dH(s)

ds

∣∣∣∣
s=s0=α

= mα
1 . (6.6)

with mα
i and mα

ri being the ith moment about α of the original and reduced systems,

respectively. The jth derivative of H(s) and Hr(s) at s = α, includes only the first j

Laguerre coefficients, because the remaining terms vanish as they have an (s−α) factor

in the numerator that becomes zero at s = α. Moreover, it can be shown that all the

derivatives are a linear combination of the Laguerre coefficients and the constant α.
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Theorem 6.3. When matching some of the first (up to 2q) Laguerre coefficients of

the transfer functions of the original and reduced models, the same number of the first

moments about s = s0 = α will also match.

Proof: The moments of a transfer function are defined as its derivatives with respect

to s about a certain point s0. As in (6.5) and (6.6), it can be shown by straightforward

calculations that some of the first (up to 2q) derivatives of H(s) and Hr(s) match due to

the matching of some of the first (up to 2q) Laguerre coefficients Fi. This implies that

the same number of moments is also matched.

Even though the above theorem establishes already the connection between both reduc-

tion approaches and their corresponding coefficients, it does not imply that the reduced

systems found by the two methods are the same.

Now, considering a projection-based reduction approach, we know that a reduced system

obtained by a two-sided reduction method is unique. Using theorem 6.3, it can be stated

that, in this case, the reduced systems calculated by moment matching and Laguerre

coefficients matching are the same. However, nothing can be said about the reduced

systems obtained by a one-sided method.

In order to consider this problem in a more general way, the Krylov subspaces involved in

every method are investigated. It is well known that to match some of the first moments

about s0 = α, the projection matrices V and W should be chosen as bases of the Krylov

subspaces,

Kq

(
(A − αE)−1E, (A− αE)−1b

)
, (6.7)

Kq

(
(A− αE)−TET , (A− αE)−Tc

)
, (6.8)

and to match the Laguerre coefficients, they should constitute bases of the subspaces

Kq

(
(A − αE)−1(A + αE), (A− αE)−1b

)
, (6.9)

Kq

(
(A − αE)−T (A + αE)T , (A − αE)−Tc

)
. (6.10)
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Based on these subspaces, the following theorem generalizes the results of theorem 6.3

by showing the equivalence of the two approaches for the one and two-sided methods.

Theorem 6.4. The transfer functions of the reduced systems obtained by a one-sided

(W = V) or a two-sided Krylov subspace method by matching either the moments about

s0 or the Laguerre coefficients, are equal if s0 = α.

Proof: By applying Theorem 6.1 to the subspaces pair (6.7) and (6.9) and to (6.8) and

(6.10) with s0 = α, γ = 1 and β = −α, it can be concluded that the subspaces involved

in the Laguerre-based order reduction and moment matching about s0 = α are the same.

Theorem 6.2 completes the proof.

Remark 6.2. Based on Theorem 6.4, if order reduction is carried out to match some of

the first moments about s0, the same number of the first Laguerre coefficients with the

parameter α = s0 automatically match. Similarly, if order reduction is carried out to

match some of the first Laguerre coefficients with the parameter α, the same number of

moments about s0 = α automatically match.

It should be noted that the fact of matching the Laguerre coefficients implies matching the

moments about an appropriate point (and vice versa) is totally independent of the method

used to find the reduced system. However, it is worth mentioning that the equivalence

result of Theorem 6.4 covers the different Laguerre reduction methods presented in [19,

42, 52].

Remark 6.3. Theorem 6.4 states that the reduced systems obtained by the two different

methods have the same input-output behavior, however, they may generally possess

different realizations. Since the two methods employ equal subspaces with a common

starting vector, the resulting reduced models will have exactly the same realization when

using the same numerical algorithm (e.g. Lanczos or Arnoldi) for the calculation of the

projection matrices.

This equivalence gives one more credit to moment matching as it implies that by only

matching the moments about a certain frequency point, the Laguerre coefficients are
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implicitly matched. Also, as it establishes the missing link between these two methods,

a possibility is offered to exploit the interesting properties of the Laguerre functions, like

their orthogonality (which does not have a counterpart in the Padé-Krylov approach)

for the improvement of moment matching-based reduction methods (and possibly vice

versa). For instance, the results of this section reformulate the open problem of choosing

an optimal expansion point in the rational Krylov subspace reduction methods, to the

problem of finding the optimal parameter α in the Laguerre-based reduction methods

[53, 89].

From the numerical point of view, depending on the system to be reduced, one of the

Laguerre-based or moment matching methods may be preferred, since they suggest the

calculation of the projection matrices in two different ways based on different represen-

tations of the same Krylov subspace. However, when α tends to zero (or infinity) the

Laguerre technique breaks down while the moment (or Markov parameter) matching ap-

proach remains theoretically valid and numerically applicable. In addition, for the case

where E = I, the Laguerre-based formulation is numerically more expensive.

6.4 The generalized equivalence

The results of the previous section can be in fact taken a step further and generalized to

the so-called generalized Markov parameters. These parameters, first introduced in [92],

are obtained by generalizing the Taylor series to a series having a first order polynomial

in the numerator and denominator, i.e.,

T (s) =
δs + η

μs + β
, (6.11)

where δ, η, μ and β are real numbers satisfying δβ − ημ �= 0. The importance of this

formulation is that it includes many of the well-known series coefficients as a special

case, as it will be shown subsequently.
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Now, define the operator u = T (s), and

G(u) = H(T−1(u)) (6.12)

where T−1(u) is the inverse transformation of T (s).

Assuming that G(u) is proper, i.e.,

lim
u→∞

‖G(u)‖ < ∞ (6.13)

and based on Laurent’s theorem, G(u) can be written as a series in the negative powers

of u as,

G(u) =
∞∑

k=0

Gku
−k, |u| > ρ (6.14)

where Gk are real matrices called the generalized Markov parameters and ρ is the radius

of a sufficiently large circle enclosing the origin and all the singular points of G(u) [92].

Many of the well-known coefficients used in order reduction constitute a subset of the

previously defined Gk. In fact, the choice of the parameters (δ, η, μ, β) in the bilinear

transformation T (s) is responsible of determining the coefficients matched during the

reduction procedure. For instance, with the set (0, 1, 1, 0), the moments about zero,

with (1, 0, 0, 1) the Markov parameters, and with (1, α, 1,−α) (see 4.4) the Laguerre

coefficients in frequency-domain are matched [51, 92].

Theorem 6.5. Matching the moments about β/μ, i.e. (0, 1, μ, β) is equivalent to match-

ing the generalized Markov parameters Gk.

Proof: With δ, μ �= 0, (otherwise we are restricted to moment or Markov parameters

matching), the bilinear transformation (6.11) can be rewritten as,

T (s) = γ
s + α′

s − β ′ , (6.15)

with γ = −δ/μ, α′ = η/δ, and β ′ = β/μ. Consequently, by similar analysis to section

6.3, the Krylov subspaces involved in the reduction approach are:

Kq

(
γ(A − β ′E)−1(A + α′E), (A− β ′E)−1B

)
, (6.16)

Kq

(
γ(A− β ′E)−T (A + α′E)T , (A − β ′E)−TCT

)
. (6.17)
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By means of Theorem 6.2, (6.16) and (6.17) are equivalent to the subspaces

Kq

(
(A − β ′E)−1E, (A− β ′E)−1B

)
, (6.18)

Kq

(
(A − β ′E)−TET , (A− β ′E)−TCT

)
, (6.19)

which are the subspaces needed to achieve moment matching about s = β ′.

Even though the results of this section are theoretically very interesting, in practice, it

is still unclear how to benefit from them. In other words, there are no methods that

suggests a choice for the parameters α, β, γ, and δ in order for the corresponding reduced

system to have certain properties or for the reduction method to preserve, for instance,

stability.

6.5 Time-domain interpretation of moment match-

ing

Based on the work in [27], where the equivalence between the classical moment matching

and the Laguerre-based reduction approach in frequency-domain [52] has been shown,

a similar equivalence between the time-domain Laguerre-based approach and moment

matching about a single expansion point is presented in this section.

It was shown in Chapter 5 that in order to match the Laguerre coefficients of the impulse

response, the projection matrices V and W should be chosen as bases of the Krylov

subspaces,

Kq

(
(A − αE)−1A, (A− αE)−1b

)
, (6.20)

Kq

(
(A − αE)−TAT , (A− αE)−Tc

)
(6.21)

and to match the moments about s0,

Kq

(
(A − αE)−1E, (A− αE)−1b

)
, (6.22)

Kq

(
(A− αE)−TET , (A− αE)−Tc

)
. (6.23)
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Theorem 6.6. The Krylov subspaces pairs Kq ((A − αE)−1E,v) and Kq ((A − αE)−1A,v),

and Kq

(
(A − αE)−TET ,v

)
and Kq

(
(A − αE)−TAT ,v

)
are identical.

Proof: Set N = (A− αE)−1E and M = (A− αE)−1A. M can be rewritten as:

M = (A − αE)−1(A − αE + αE)

= I + α(A− αE)−1E

= I + αN.

By applying Lemma 6.1 with γ = 1 and c = −α, the proof is completed. This proof can

be slightly modified to prove the equivalence for the case of the second pair.

Based on what was presented, the main theorem stating the equivalence of the two

approaches is the following:

Theorem 6.7. Reducing a state space model in time-domain by matching the Laguerre

coefficients of the impulse responses of the original and reduced models is equivalent to

matching the moments of their transfer functions about s = α in the frequency-domain.

Proof: Using theorem 6.6, it is shown that the subspaces involved in both approaches

are equivalent, and using the fact that the transfer function of the reduced-order model

depends only on the choice of the Krylov subspaces as stated in theorem 6.2, the proof

is completed.

Based on Theorem 6.7, an important time-domain interpretation of the moment match-

ing approach can be deduced. In fact, if order reduction is carried out in time-domain to

match some of the first Laguerre coefficients with a certain parameter α as proposed in

section 5, the same number of moments about s0 = α in the frequency-domain automat-

ically match. Similarly, if order reduction is carried out in frequency-domain to match

some of the first moments about s0, the same number of the first Laguerre coefficients of

the Laguerre series expansion of the impulse response with α = s0 automatically match.
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The importance of this equivalence lies in the fact that it allows a first time interpretation

of the moment matching approach which has been until now developed and applied only

in the frequency domain. in the time-domain. In addition, by showing that the time scale

factor α in the Laguerre functions corresponds to the expansion point in the frequency-

domain, the open problem of choosing a suitable expansion point in the rational Krylov

subspace reduction methods, is converted into the problem of finding an optimal time-

scale α in the time-domain Laguerre-based methods.

Similarly to the frequency-domain case, Theorem 6.7 indirectly states that the reduced

systems obtained by the two different methods have the same input-output behavior,

however, they may generally possess different realizations. Now, since the two meth-

ods employ equal subspaces, the resulting reduced models will have exactly the same

realization when using the same numerical algorithm (e.g. Lanczos or Arnoldi) for the

calculation of the projection matrices.

6.6 The connection between MOR in discrete and

continuous-time

Applying the Tustin transformation introduced in section 2.2.1, to discretize a given

SISO1 dynamical system (with E = I), results in a discrete-time system having the

following matrices:

Ad = (w0I + A)(w0I − A)−1 (6.24)

bd =
√

2wo(w0I − A)−1b (6.25)

cd =
√

2woc
T (w0I − A)−1 (6.26)

Dd = D − cT (w0I −A)−1b (6.27)

where w0 = 2/T is not an eigenvalue of A.

1For the ease of presentation. The results are also valid for the MIMO case
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Theorem 6.8. The reduced system obtained by matching the Markov parameters in the

z-domain is exactly equivalent to the one obtained by matching the moment about s0 = w0

in the s-domain.

Proof: Based on what presented in chapter 3, the Krylov subspaces required to match

the Markov parameters of the discrete-time system, are the following:

Kq (Ad,bd) and Kq

(
AT

d , cd

)
. (6.28)

By replacing the matrices by their values in function of the continuous-time ones,

Kq (Ad,bd) = Kq

(
(w0I + A)(w0I − A)−1,

√
2wo (A− w0I)

−1 b
)
,

Kq

(
AT

d , cd

)
= Kq

(
(w0I − A)−T (w0I + A)T ,

√
2wo (A − w0I)

−T c
)

.

Similar to the Laguerre series case, by applying lemma 6.1 and theorem 6.2, the proof is

completed.

It is well known that the Markov parameters in the z-domain are the values of the

discrete-time impulse response. Hence, it can be stated based on the previous theorem

that by matching q (2q) moments about w0, the discrete-time impulse responses of the

original and reduced systems matches in the first q (2q) steps. In addition, it can be

remarked that the inverse of the sampling frequency T appears in the expansion point,

which suggests that the latter should be chosen so that the state vectors of the discrete-

time system contain sufficient information for describing the model.

These facts offer a possible answer to the question raised by Grimme in his Ph.D thesis

[37] about the physical interpretation and good approximation results of real interpolation

points. Since they are real, these points can not be connected to the accuracy of the

approximation of the frequency response where only imaginary interpolation points of

the form s = jw can play a direct role.
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6.7 Illustrative Example

To illustrate the equivalence between the moment matching and laguerre-based order

reduction presented in this chapter, the following system is considered:

H(s) =
(s + 2)(s + 4)

(s + 1)(s + 2)2(s + 6)(s + 10)
.

The corresponding state space matrices are:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 3 1.7321 0 0

0 −2 1.7321 0 0

0 0 −2 1 0

0 0 0 −10 1

0 0 0 0 −6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

bT =
[

0 0 0 0 1
]
,

c =
[

1.7321 1.7321 1 0 0
]
.

This system is reduced to order q = 3 using the two different methods. In order to match

the moments about s0 = 0.5, the projection matrix,

Vm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.4888 2.2838 −2.3204

−0.4060 0.4260 −0.2951

−0.5861 0.3804 −0.1799

−1.4652 0.3650 −0.0694

−15.3846 2.3669 −0.3641

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 10−2,

whose columns form a basis for the Krylov subspace K3 ((A − 0.5I)−1, (A − 0.5I)−1b),

is used (with W = V), leading to the following reduced system Hm:

Am =

⎡⎢⎢⎢⎣
−11.0319 1 0

−37.4282 −0.5 1

−29.6068 0 0.5

⎤⎥⎥⎥⎦ ,

bT
m =

[
−11.5319 −37.4282 −29.6068

]
,

cm =
[
−0.0387 0.0507 −0.0471

]
.
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The first six moments of the original and reduced systems denoted as m and mr are

shown in figure 6.1. As expected, the first 3 moments are matching.

In order to match the Laguerre coefficients with α = 0.5, the projection matrix,

VL =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.4888 0.7949 0.7583

−0.4060 0.0199 0.1509

−0.5861 −0.2057 −0.0052

−1.4652 −1.1002 −0.8047

−15.3846 −13.0178 −11.0150

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 10−2,

whose columns form a basis for the Krylov subspace K3

(
(A − 0.5I)−1 (A + 0.5I),

(A − 0.5I)−1 b
)
, is used (with W = V), leading to the reduced system HL:

AL =

⎡⎢⎢⎢⎣
−3.21 −2.71 −2.71

21.79 22.29 22.79

−29.61 −29.61 −29.11

⎤⎥⎥⎥⎦ ,

bT
L =

[
−3.71 21.79 −29.61

]
,

cL =
[
−0.03868 0.01206 0.0157

]
.

The first six Laguerre coefficients of the original and reduced systems denoted as F and

Fr are shown in figure 6.1. As expected, the first 3 coefficients are matching.

Although the two systems Hm and HL appears to be different, they are connected by the

similarity transformation,

Q =

⎡⎢⎢⎢⎣
1 −1 1

0 1 −2

0 0 1

⎤⎥⎥⎥⎦ ,

and have the same transfer function,

Hm(s) = HL(s) =
−0.0584(s − 4.484)(s + 4.415)

(s + 5.921)(s + 3.441)(s + 0.67)
.

Moreover, the projection matrices satisfy the relationship VL = VmQ as stated in Lemma

6.1.
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This confirms the results of Theorem 6.4 and therefore the reduced system Hm matches

also the first 3 Laguerre coefficients of the original system and the reduced system HL

matches also the first 3 moments.

Figure 6.1: Moments and Laguerre coefficients of the original and reduced systems.

As illustrated in figure 6.1, the equivalence property does not imply that the Laguerre

coefficients are equal to the moments but only states that matching one set of coefficients

results in matching the other one.

Note that the current example has been chosen with a very low order to make the

calculations more transparent and to easily illustrate the reduction steps and results.





Chapter 7

CHOICE OF THE INTERPOLATION

POINT IN MOMENT MATCHING

Even though the reduced-order model by Krylov-based MOR methods is calculated, via

a projection, in a relatively short time with a good numerical accuracy, the interpretation

of these methods is restricted to being a local approximation of the frequency response

of the original system. The frequency range of interest is determined by the so-called

interpolation point about which the moments in the frequency-domain are matched.

Hence, it can not be guaranteed that a good approximation of the time responses of the

system can be achieved, as it is generally hard in practice to predict the time-domain

approximation from the frequency one. It is then more natural to do order reduction

directly in the time-domain, for instance, through the approximation of the impulse

response.

Furthermore, the appropriate choice of the interpolation point in moment matching is

not straightforward and is still an active field of research as its value and number can

drastically affect the quality of the approximation and the numerical effort needed to

calculate the reduced model. In the literature, different choices for the single or multiple

interpolation points have been presented, targeting different aims. In [82], the problem of

passivity preserving order reduction has been addressed and a rational Krylov algorithm

with interpolation points selected as spectral zeros of the original transfer function has

been presented. In [39], an iteratively corrected rational Krylov algorithm for H2 model
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reduction has been suggested. However, both methods are based on interpolating the

transfer function at q or 2q points which is more expensive when compared to a single

interpolation as considered in this work. In addition, these methods do not consider

the time responses in any form. Up to date and to the author’s knowledge, no method

exists for the choice of a single interpolation point based on a time-domain perspective

of moment matching.

Lately, several successful methods for approximating the impulse response using orthog-

onal polynomials have been proposed [19, 25, 52, 88, 90]. Among these approaches,

the Laguerre-based reduction of [25] has shown to be very suitable for the reduction of

large-scale systems as it can be reformulated (both in time and frequency domain) to

benefit from the numerical and computational advantages of the Krylov subspace-based

methods.

In order to optimize the approximation using the Laguerre basis functions, the choice of

the Laguerre pole, also known as time-scale factor, is crucial. Numerous works treated

this problem in system identification [87], approximation [34, 54, 62, 66, 85, 89], and

signal processing [16].

Based on the results in the previous chapter, the open problem of choosing an optimal

expansion point in the rational Krylov subspace reduction methods (moment matching

about s0 �= 0) is now reformulated to the problem of finding an optimal parameter α

in the Laguerre-based reduction methods. This makes it possible to be solved in the

time-domain through the Laguerre representation of the original system.

In this chapter, it is first shown that the key parameter for the impulse response approx-

imation of the original system can be calculated optimally in a closed-form by solving

appropriate Lyapunov equations. Then, two time-domain methods for the choice of

an optimal Laguerre parameter and consequently the single expansion point in rational

interpolation order reduction are presented. Accordingly, different model reduction al-

gorithms are suggested and their advantages and disadvantages are pointed out. The
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importance of these approaches lies in the fact that they try to minimize the effect of

the higher order terms in the infinite Laguerre series expansions of the impulse response,

and that they simultaneously consider the moment matching approach, which is origi-

nally developed in frequency domain, from a time-domain perspective. In addition, the

methods have a simple structure and are numerically efficient and thus suitable for the

reduction of large-scale systems.

7.1 Property of the Laguerre Function

The key point to investigate the Laguerre parameter is the differential equation satisfied

by the Laguerre functions. It is well-known that the Laguerre polynomial li(t) satisfies

the following differential equation [84],

tl̈i(t) + (1 − t)l̇i(t) + ili(t) = 0.

Considering the Laguerre function and the variable t̃ = 2αt, the following relations hold,

li(t̃) =
1√
2α

eαtφα
i (t),

d

dt̃
li(t̃) =

1

2α
√

2α
eαt

(
φ̇α

i (t) + αφα
i (t)

)
,

d2

dt̃2
li(t̃) =

1

4α2
√

2α
eαt

(
φ̈α

i (t) + 2αφ̇α
i (t) + α2φα

i (t)
)

.

Combining these equations with the following equation,

2αtl̈i(2αt) + (1 − 2αt)l̇i(2αt) + ili(2αt) = 0,

leads to the differential equation that is satisfied by the Laguerre function,

t
(
φ̈α

i (t) + 2αφ̇α
i (t) + α2φα

i (t)
)

+ (1 − 2αt)
(
φ̇α

i (t) + αφα
i (t)

)
+ 2αiφα

i (t) = 0 ⇒
tφ̈α

i (t) + φ̇α
i (t) − α2tφα

i (t) + αφα
i (t) + 2αiφα

i (t) = 0 ⇒
−tφ̈α

i (t) − φ̇α
i (t) + α2tφα

i (t) = 2α(i + 1
2
)φα

i (t). (7.1)

The differential equation (7.1) which is found by a direct calculation in time-domain is

the same as in [66] where it was derived in the s-domain using the Laplace transform of
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the Laguerre function. This property will play a key role when solving for the optimal1

α in the following sections.

7.2 An optimal Laguerre parameter

Following the results in [66] and assuming that h(t) is the impulse response of a stable

system, one can write

−
∫ ∞

0

th(t)ḧ(t)dt −
∫ ∞

0

h(t)ḣ(t)dt + α2

∫ ∞

0

th2(t)dt

=

∫ ∞

0

[
−t

∞∑
i=0

fiφ̈
α
i (t) −

∞∑
i=0

fiφ̇
α
i (t) + α2t

∞∑
i=0

fiφ
α
i (t)

]
h(t)dt

=

∫ ∞

0

[ ∞∑
i=0

fi

(
−tφ̈α

i (t) − φ̇α
i (t) + α2tφα

i (t)
)]

h(t)dt.

By using the differential equation (7.1),∫ ∞

0

[ ∞∑
i=0

fi

(
−tφ̈α

i (t) − φ̇α
i (t) + α2tφα

i (t)
)]

h(t)dt =

∫ ∞

0

[ ∞∑
i=0

fi

(
2α(i +

1

2
)

)
φα

i (t)

]
h(t)dt

=
∞∑
i=0

[
fi

(
2α(i +

1

2
)

)∫ ∞

0

φα
i (t)h(t)dt

]
=

∞∑
i=0

2f 2
i α(i +

1

2
).

Consequently,

−
∫ ∞

0

t h(t)ḧ(t)dt −
∫ ∞

0

h(t)ḣ(t)dt + α2

∫ ∞

0

t h2(t)dt =
∞∑
i=0

2f 2
i α(i +

1

2
).

Now define the cost function,

min
α

J(α) = min
α

∞∑
i=0

if 2
i . (7.2)

By minimizing this cost function that imposes more weight on the coefficients with higher

index, it can be shown that the convergence of the infinite sum of the Laguerre functions

is accelerated. In other words, minimizing J(α) leads to a basis where only few of the first

1The definition of optimality in the context of this dissertation will be explained in the next section.



7.3. Calculation of M1 and M2 for LTI systems 85

terms are almost enough to describe the impulse response in terms of Laguerre functions,

as the higher indexed fi are made small.

To calculate J(α), assume that lim
t→∞

h(t) = 0, lim
t→0

h(t) < ∞, lim
t→∞

ḣ(t) = 0 and
∑∞

i=0 f 2
i =

‖h(t)‖2
2 =

∫∞
0

h2(t)dt and,

−
∫ ∞

0

t h(t)ḧ(t)dt −
∫ ∞

0

h(t)ḣ(t)dt + α2

∫ ∞

0

t h2(t)dt = 2αJ + α
∞∑
i=0

f 2
i . (7.3)

Then,

−
∫ ∞

0

t h(t)ḧ(t)dt = − t h(t)ḣ(t)
]∞

0
+

∫ ∞

0

ḣ(t)(h(t) + tḣ(t))dt (7.4)

which leads to ∫ ∞

0

t ḣ2(t)dt + α2

∫ ∞

0

t h2(t)dt = 2αJ + α‖h(t)‖2
2.

Consequently,

J = ‖h(t)‖2
2

α2M1 + M2

2α
− 1

2
‖h(t)‖2

2, (7.5)

with M1 =

∫∞
0

t h2(t)dt∫∞
0

h2(t)dt
, and M2 =

∫∞
0

t ḣ2(t)dt∫∞
0

h2(t)dt
. (7.6)

The optimal value of α, defined as the value minimizing the cost function J(α), can be

found as follows

dJ

dα
= ‖h(t)‖2

2

2α2M1 − 2M2

4α2
= 0 ⇒

α∗ =

√
M2

M1
, J∗ = ‖h(t)‖2

2

(√
M2M1 − 1

2

)
. (7.7)

Based on their definition, the parameters M1 and M2 can be physically interpreted as

being, respectively, the decay rate and smoothness of the system’s impulse response.

7.3 Calculation of M1 and M2 for LTI systems

The main question arising in this context is the calculation of the optimal parameter α

in practice. Although the problem looks complicated in the general case, it may be easily
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solved for LTI systems. Consider the continuous-time dynamical system in state-space

Σ :

⎧⎨⎩ ẋ(t) = Ax(t) + bu(t),

y(t) = cTx(t),
(7.8)

with h(t) = cTeAtb being its impulse response, assuming zero initial conditions. The

square of the two-norm of this system is known to be,

‖h(t)‖2
2 =

∫ ∞

0

h2(t)dt = cTXc.

where X is the controllability gramian and satisfies the following Lyapunov equation,

AX + XAT + bbT = 0, and X =

∫ ∞

0

eAtbbT eAT tdt. (7.9)

Lemma 7.1. For the system (7.8), the optimal parameter that minimizes the cost func-

tion (7.5) can be calculated as follows:

α∗ =

√
cTAYATc

cTYc
, (7.10)

where Y is the solution of the Lyapunov equation,

AY + YAT + X = 0, (7.11)

and X is the controllability gramian.

Proof: First the numerator of M1 for a system of the form (7.8) is calculated,∫ ∞

0

t h2(t)dt = cT

∫ ∞

0

t eAtbbT eAT tdt︸ ︷︷ ︸
Y

c.

Assuming that the system is stable and considering equation (7.9), we have,

AY =

∫ ∞

0

tAeAtbbT eAT tdt

= t eAtbbT eAT t
]∞

0
−

∫ ∞

0

t eAtbbT eAT tdt −
∫ ∞

0

t eAtbbT eAT tdtAT = 0 − X −YAT .
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Therefore,

AY + YAT + X = 0, and M1 =
cTYc

cTXc
. (7.12)

To calculate M2, we have,

∫ ∞

0

t ḣ2(t)dt = cTA

∫ ∞

0

t eAtbbT eAT tdtATc

= cTAYATc ⇒ M2 =
cTAYATc

cTXc
. (7.13)

Applying equation (7.7) completes the proof.

Remark 7.1. If the original system is stable then X and Y are positive definite. Therefore,

M1, M2 > 0 and α∗ is real.

Remark 7.2. If the impulse response data is already available, for instance, after a system

simulation, the calculation of M1 and M2 is then numerically possible and straightfor-

ward. All what is needed is to numerically evaluate the integrals involved in the definition

of these parameters (7.6) and thus there will be no need for the lyapunov equations de-

rived in Lemma 7.1.

Remark 7.3. The closed form calculation of the parameters M1 and M2 involves the

controllability gramian known from the TBR reduction method. This is an interesting

point to be further investigated, as it indirectly connects the moment matching method

to the TBR method through the choice of the single interpolation point s0.

According to Lemma 7.1, the cost function J can now be easily minimized and the optimal

parameter α is found by (7.10). Such a calculation is straightforward as J depends only

on the original system and the parameter α.
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7.4 Rational Krylov with an optimal interpolation

point

The previously presented approach for the choice of the parameter α can be employed to

achieve an optimal approximation of the system’s impulse response when representing it

with a truncated Laguerre series while minimizing the number of coefficients. However,

this series is not truncated when reducing the system using the Laguerre-based order

reduction of Chapter 5. Hence, the idea of using α∗ here as an optimal interpolation

point in the Krylov-based order reduction. This is possible due to the equivalence results

of the previous chapter where it was shown that this Laguerre parameter corresponds to

the expansion point s0 in moment matching.

Remark 7.4. Due to the fact that when matching the Laguerre coefficients of the im-

pulse response, the coefficients of the system’s response to all inputs u(t) ∈ L2(R+) are

matched, this choice of α∗ is then not only optimal for an impulse input but also for all

these inputs u(t) ∈ L2(R+).

Accordingly, the following algorithm is suggested:

Algorithm 7.1. Rational Krylov with an Optimal Point (RK-OP)

1. Solve the Lyapunov equations (7.9), (7.11) to calculate X and Y.

2. Calculate α∗ using (7.10) to minimize the function (7.2).

3. Find the reduced system (3.11) using α∗ and with a given order q using (3.13) and

(3.14), i.e. classical moment matching about a single point s0 = α∗.

Once the impulse response data is not available, the calculation of α∗ will be costly as

two Lyapunov equations in the size of the original system are to be solved. By finding

an approximate solution of the Lyapunov equations involved in the RK-OP algorithm,

the cost of calculation can be dramatically reduced.
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In the following, X and Y are approximately calculated using a reduced system by means

of the so-called Galerkin conditions [44, 73].

Consider the Lyapunov equation associated with the reduced system Σr in (3.11),

WTAVXr + XrV
TATW + WTbbTW = 0. (7.14)

If we approximate the original controllability gramian as,

X ≈ X̂ = VXrV
T , (7.15)

and assuming W = V, the following Galerkin condition is satisfied,

WT
(
AX̂ + X̂A

T
+ bbT

)
W = 0. (7.16)

Using the approximate gramian to calculate Y results in

WTAVYr + YrV
TATW + Xr = 0, (7.17)

Y ≈ Ŷ = VYrV
T , (7.18)

WT
(
AŶ + ŶA

T
+ Xr

)
W = 0. (7.19)

Accordingly, the optimal parameter is then approximated as,

α∗ ≈
√

cTAVYrVTATc

cTVYrVTc
. (7.20)

Such an approximation depends on the reduced system itself and the optimization is

hence not straightforward. To converge to an optimal solution as in the RK-OP algo-

rithm, it is proposed to iterate between the optimal parameter and the reduced system

starting from an initial parameter.

Algorithm 7.2. Rational Krylov with an Iteratively Calculated Optimal Point (RK-

ICOP)

1. Reduce the original system using an arbitrary value α0 and set i = 1.
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2. Solve the corresponding Lyapunov equations for the reduced system to calculate Xr

and Yr.

3. Calculate the approximation of the optimal parameter α∗
i using (7.20).

4. Reduce the system using α∗
i with a given order q.

5. Increase i and go back to step 2.

The algorithm may be terminated if |αi − αi−1| ≤ ε for a given tolerance ε. The conver-

gence of this algorithm will be discussed in the following section.

The idea of approximating the solution of the Lyapunov equations using Krylov subspaces

is based on the first works in this direction presented in [44, 73]. In these works, a basis of

the subspace Kq (A,b) has been used to reduce the original system, then the Lyapunov

equations were solved using the reduced system and their solutions projected back as in

eq. 7.15 leading to the approximate solution. In the recent works [78] and [79], it was

shown that the quality of the approximation can be dramatically improved when the

Krylov subspaces involving the matrix A−1 and/or
(
A − s0I

−1
)

are employed. These

facts have been confirmed in this work, and it is suggested to employ the subspace

Kq

((
A − αI−1

)
,b

)
. In addition, it was observed that for the IK-ICOP algorithm, the

starting value of the parameter α does not affect the convergence.

Remark 7.5. A common method to approximate or identify complex systems is based on

truncating the Laguerre series expansion. Assume that h(t) is approximated by the sum

of the first N terms as ĥ(t) =
∑N−1

i=0 fiφ
α
i (t). Then,

‖h(t) − ĥ(t)‖2
2 =

∞∑
i=N

f 2
i ≤ 1

N

∞∑
i=0

if 2
i =

1

N
J ⇒

‖h(t) − ĥ(t)‖2
2

‖h(t)‖2
2

≤ 1

N

α2M1 + M2

2α
− 1

2N
. (7.21)

This suggests to minimize J to find an optimal α that minimizes the upper bound of

the relative error norm of the approximation. Such a reduced system usually does not
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lead to satisfactory result mainly because all its poles are located in a single point −α.

Furthermore, although the cost function J appears as the upper bound of the error,

it does not really reflect the magnitude of the error system. In most applications, the

bound given above is far from the real two-norm of the error as the weighting i increases

to infinity.

7.5 Rational krylov with an optimal error minimiz-

ing interpolation point

Consider the order reduction problem by matching the first q Laguerre coefficients. An

alternative cost function to the one considered before would be to minimize the difference

between the rest of the coefficients, i.e. the unmatched ones. This suggests the new cost

function,

Jd =

∞∑
i=q

i(fi − fri)
2 =

∞∑
i=0

if 2
i +

∞∑
i=0

if 2
ri − 2

∞∑
i=0

ififri. (7.22)

with fi = fri for i = 1, · · · , q − 1. (7.23)

The value of α suggested by minimizing the cost function Jd will lead to accurate reduced

systems as the first coefficients are matched and the weighted sum of the unmatched ones

is minimized.

In the following, the optimal parameter for this cost function is calculated. The first two

terms in (7.22) are calculated using equation (7.5) and the result of section 7.2. For the

last term, the method in section 7.1 is followed and the differential equation (7.1) is used,

−
∫ ∞

0

t hr(t)ḧ(t)dt −
∫ ∞

0

hr(t)ḣ(t)dt + α2

∫ ∞

0

t h(t)hr(t)dt

=

∫ ∞

0

[ ∞∑
i=0

fi2α

(
i +

1

2

)
φα

i (t)

]
hr(t)dt

= 2α

∞∑
i=0

ififri + α

∞∑
i=0

fifri = 2α

∞∑
i=0

ififri + α

∫ ∞

0

h(t)hr(t)dt.
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Consequently, by simplifying the integral terms we have,

−
∫ ∞

0

t hr(t)ḧ(t)dt −
∫ ∞

0

hr(t)ḣ(t)dt +α2

∫ ∞

0

t h(t)hr(t)dt = 2α

∞∑
i=0

ififri +

∫ ∞

0

h(t)hr(t)dt

⇒
∞∑
i=0

ififri =
1

2α

(∫ ∞

0

t ḣr(t)ḣ(t)dt + α2

∫ ∞

0

t h(t)hr(t)dt −
∫ ∞

0

h(t)hr(t)dt

)

Consider the original and its projected reduced system with hr(t) = cTVeWT AVtWTb,

then, ∫ ∞

0

h(t)hr(t)dt = cT

∫ ∞

0

eAtbbTWeVT AT WtdtVTc = cT X̃V
T
c.

where X̃ is the solution of the following Sylvester equation,

AX̃ + X̃V
T
ATW + bbTW = 0. (7.24)

Assuming that the original and reduced systems are stable and considering the solution

of the Sylvester equation (7.24),∫ ∞

0

t hr(t)h(t)dt = cT ỸV
T
c. (7.25)

where the new variable Ỹ satisfies,

AỸ + ỸV
T
ATW + X̃ = 0, and Ỹ =

∫ ∞

0

eAtbbTWeVT AT Wttdt

Finally, it is straightforward to show that,∫ ∞

0

t ḣr(t)ḣ(t)dt = cTAỸV
T
ATWVTc. (7.26)

For the ease of presentation, the preceding results are summarized in the following lemma.

Lemma 7.2. Consider an LTI system that has been reduced by projection. The cost

function Jd in equation (7.22) satisfies,

Jd =

(
α2M̃1 + M̃2

2α
− ‖h(t)‖2

2
− ‖hr(t)‖2

2
+ cT X̃V

T
c

)
,
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where,

M̃1 = cT
(
Y + VYrV

T − 2ỸV
T
)

c, (7.27)

M̃2 = cT
(
AYAT + VWTAVYrV

TATWVT −2AỸV
T
ATWVT

)
c. (7.28)

What restricts the application of the cost function given in lemma 7.2 is the dependency

of the RHS on the reduced system. However, if the reduced system is assumed to be given,

the upper bound can be minimized leading to the suboptimal parameter α∗ =
√

M̃2

M̃1
.

Algorithm 7.3. Rational Krylov with an Optimal Error Minimizing Point (RK-OEMP)

1. Solve the Lyapunov equations for the original system to find X and Y.

2. Reduce the original system using an arbitrary value α0 and set i = 1.

3. Solve the corresponding Lyapunov and Sylvester equations for the reduced system

to calculate Xr, Yr, X̃ and Ỹ.

4. Calculate the parameter αi =
√

M̃2

M̃1
where M̃2 and M̃1 are defined in theorem 7.2.

5. Reduce the system using αi with a given order q.

6. Increase i and go back to step 3.

It should be noted that the value of X and Y should be calculated only once and the best

choice for the starting parameter is α0 =
√

M2

M1
. To reduce the computational cost and

avoid solving Lyapunov equations in the size of original system, similar to algorithm 7.2,

the Galerkin method is employed leading to the next algorithm. Note that calculating

X̃ and Ỹ is not numerically expensive as they are n × q matrices with q << n.
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Algorithm 7.4. Rational Krylov with a Near Optimal Error Minimizing Point (RK-

NOEMP)

1. Reduce the original system using an arbitrary value α0 and set i = 1.

2. Solve the corresponding Lyapunov and Sylvester equations for the reduced system

to calculate Xr, Yr, X̃ and Ỹ and set Y = VYrV
T .

3. Calculate the parameter αi =
√

M̃2

M̃1
where M̃2 and M̃1 are defined in theorem 7.2.

4. Reduce the system using αi with a given order q.

5. Increase i and go back to step 2.

In order to analyze the convergence of the algorithms 7.2 and 7.4, consider the original

system Σ that has been reduced to Σ0 by matching the first q Laguerre coefficients

associated with α0. This system approximates some of the major dynamics of Σ from a

Laguerre approximation point of view. In addition, based on the theory in, e.g. [44, 73]

this reduced model can be already used to approximately solve the lyapunov equations

(7.9), (7.11) that are involved in the calculation of the optimal parameter α∗.

In the next step, the parameter α1 calculated from Σ0 is employed to calculate the reduced

system Σ1. This is the first reduced system found based on the results of this section.

Now, since α2 is extracted from Σ1, it is expected that the difference α2−α∗ tends to zero.

Applying the proposed algorithms to several technical systems confirms this theoretical

interpretation and shows that no significant changes occur in αi, typically, after the third

iteration. Also, it was remarked that as long as it results in a stable reduced model, the

initial value α0 can be arbitrarily chosen.

In fact, it is still an open problem to mathematically proof those observations and to

quantize the convergence speed of each of the presented algorithms. In other words, it is

required to prove that the information required from the impulse response (i.e. M1 and
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M2) is preserved after an order reduction step using moment matching about α. The fact

that the optimal parameter α in all the suggested algorithms is expressed as a Rayleigh

quotient could offer a possibility to investigate those observations.

7.6 The discrete-time case

In this section, the optimization approach of this chapter is generalized to the case

of discrete systems. Even though the general framework is very similar, the resulting

optimal choice of the parameter α is different.

Consider the discrete system

⎧⎨⎩ x(k + 1) = Adx(k) + bdu(k),

y(k) = cT
d x(k).

(7.29)

If this system is stable, its impulse response can be expressed by using a discrete Laguerre

expansion as:

h(n) =
∞∑
i=0

fiφ
α
i (n). (7.30)

Similar to the continuous case and based on the same logic, the cost function

Jdis(α) =
∞∑
i=0

if 2
i (α), (7.31)

is considered, and it is aimed at finding an optimal α which minimizes it.

Based on the work in [34], the cost function can be rewritten as,

Jdis(α) =
αM2 + (1 − α)2M1 + α − α2

1 − α2
‖h‖2 (7.32)
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where

M1 =
1

‖h‖2

∞∑
n=0

nh2(n), (7.33)

M2 =
1

‖h‖2

∞∑
n=0

n(h(n + 1) − h(n))2, (7.34)

‖h‖2 =

∞∑
n=0

h2(n) =

∞∑
n=0

f 2
n . (7.35)

From (7.32), we have

α2(M1 + Jdis − 1) + α(M2 − 2M1 + 1) + (M1 − Jdis) = 0 (7.36)

Thus, for a real α, the following equation should be satisfied:

(M2 − 2M1 + 1)2 − 4(M1 + Jdis − 1)(M1 − J) ≥ 0,

leading to,

Jdismin
=

1 +
√

4M1M2 − M2
2 − 2M2

2
(7.37)

α∗
dis =

2M1 − 1 − M2

2M1 − 1 +
√

4M1M2 − M2
2 − 2M2

(7.38)

Based on the fact that (4M1 − M2 − 2) =
∑∞

n=0 n[h(n) + h(n + 1)]2, which can not be

negative, it can concluded that (4M1M2 − M2
2 − 2M2) ≥ 0 is always true [34].

From the above equations it can be remarked that the problem formulation in the

discrete-time domain results in a different optimal choice α∗
dis.

7.7 Calculation of M1 and M2 for LTI discrete sys-

tems

In this section, a closed form for the calculation of the optimal parameter α∗
dis and its

main components M1 and M2 is derived.
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Consider the discrete-time system (7.29) with its impulse response h(n). Its two norm

can be calculated using the Stein (discrete Lyapunov equation) equation,

‖h(n)‖2 =
∞∑
i=1

cTAi−1bbTAT (i−1)c = cT

( ∞∑
i=0

AibbTAT i

)
c = cTXc. (7.39)

where X is the solution of the following equation,

AXAT − X + bbT = 0. (7.40)

Following the above scheme,

∞∑
i=n

nh2(n) = cT

( ∞∑
n=1

nAn−1bbT AT (n−1)

)
c.

Now, by defining Y =
∑∞

i=1 nAn−1bbT AT (n−1), it can be shown that

Y =

∞∑
i=0

(n + 1)AnbbT ATn = A

∞∑
n=0

nAn−1bbT AT (n−1)

︸ ︷︷ ︸
Y

AT +

∞∑
n=0

AnbbT ATn

︸ ︷︷ ︸
X

,

which can be summarized as,

AYAT −Y + X = 0. (7.41)

where X is the solution of the equation (7.40). Finally, this leads to the closed form

expression of M1,

M1 =
1

‖h‖2

∞∑
n=0

nh2(n) =
cTYTc

cTXc
. (7.42)

On the other hand,

∞∑
n=0

n(h(n + 1) − h(n))2 =
∞∑

n=0

nh̃2(n),

h̃(n) = h(n + 1) − h(n) = cTAnb − cTAn−1b

= cTAn−1(A − I)b.
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This is in fact the impulse response of the system,⎧⎨⎩ x(n + 1) = Ax(n) + (A− I)bu(n),

y = cTx(n).

Using the above system and similar to the calculation of M1, it can be shown that

M2 =
1

‖h‖2

∞∑
n=0

nh̃2(n) =
cTWTc

cTXc
. (7.43)

with

AZAT − Z + (A − I)bbT (AT − I) = 0. (7.44)

AWAT − W + Z = 0. (7.45)

Accordingly, the algorithms presented for the continuous case can be modified and applied

to the reduction of discrete systems. As an example, algorithm 7.1 modified and adapted

to the discrete system case is presented.

Algorithm 7.5. Rational Krylov with an Optimal Point (RK-OP)(Discrete case)

1. Solve the discrete Lyapunov equations (7.40), (7.41), (7.44), and (7.44) to calculate

X, Y, Z, and W .

2. Calculate the parameters M1 and M2 using (7.42) and (7.43)

3. Calculate α∗
dis using (7.38) to minimize the function (7.32).

4. Find the reduced system (3.11) using α∗
dis and with a given order q using (3.13) and

(3.14), i.e. classical moment matching about a single point s0 = α∗
dis.

7.8 Illustrative examples

In order to illustrate the suitability and efficiency of each of the algorithms developed in

this thesis, we apply them for the reduction of two different Benchmark models.
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The results presented here are the one obtained using a one-sided Krylov method and will

be compared with the results obtained from TBR and moment matching about s0 = 0.

This widely spread value of s0 is generally used when no information about the original

system is available as it often delivers very good result in a large neighborhood of the

low-frequency part of the spectrum, including the steady state.
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Figure 7.1: The impulse responses of the original and reduced systems.

7.8.1 The CD Player

The CD player model of order 120 which has been considered throughout this dissertation

has been reduced to order 8 by applying the four new algorithms.

Minimizing the cost function (7.5) in RK-OP lead to α∗ = 292.8794. By running the

algorithm 7.2, RK-ICOP, the parameter converged in three steps to α∗ = 291.8036 which

has less than 0.4% error when compared to the solution using the full order model. The

algorithm RK-OEMP lead to the optimized parameter α∗ = 728.553. For this system,

the approximated version RK-NOEMP did not converge but oscillated around the value

delivered by RK-OEMP. This in fact happened due to the approximation of the Y matrix
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Figure 7.2: The expansion point for the CD player model.

by VYrV
T in both equations (7.27) and (7.28) when calculating M̃1 and M̃2. When the

first term cTYc is well approximated by cTVYrV
Tc, the relative approximation error is

very small, however the value of M̃1 will be significantly changed. This is due to the large

absolute error when considering the sum of three terms of M̃1 when no approximation

is used, i. e. RK-OEMP. These facts are also valid for the calculation of M̃2. Note that

this sometimes results in a negative M̃1 or M̃2, leading to a breakdown of the algorithm.

In addition, it has to be noted that this problem gets worse when the relative difference

between fi and fri gets small which explains the oscillations around the value obtained

by the RK-OEMP algorithm. Figure 7.2 illustrates the parameter α in terms of iterations

for all algorithms. A fast convergence to the desired value of parameter can be observed

in the case of the RK-ICOP and RK-OEMP algorithms. The impulse response of the

reduced systems is excellently approximated, as it can be seen in figure 7.1.

For this system, both methods, namely minimizing the two different cost functions (7.5)
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Figure 7.3: The amplitude of the Bode Diagram of the original CD player model and the
reduced model by RK-ICOP.

and (7.22) lead to almost the same results in the time-domain even though they minimize

different cost functions. When considering the approximation results in the frequency-

domain, a very good matching of the peak region of the Bode diagram can be seen in

figure 7.3. This in fact explains the excellent approximation of the impulse response.

Moreover, it can be seen that the expansion point found by the algorithm RK-OP and

its iterative version RK-ICOP tends to the resonant frequency of the Bode diagram, as

shown in figure 7.3. Based on the fact that the Bode diagram of the original system is

not or can not be calculated, this is a very important feature of the new algorithm. In

other words, this algorithm automatically captures the peak region of the Bode diagram

without the need of calculating or giving any hint about this diagram.

In Figure 7.4, the results of the suggested methods are compared with the results of the

TBR method and the moment matching about s0 = 0. It can be seen that the result of

the new method are almost equal to those of the TBR and much better than those of
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Figure 7.4: Comparison of the approximated impulse responses of the CD player.

moment matching about s0 = 0. Note that the order of the considered reduced model is

q = 8 for all the methods.

7.8.2 A random model

The random model from the collection of Benchmark examples [18] is considered. The

system was randomly generated and has an order of 200. The real and complex conjugate

poles of the system matrix A are all close to each others and no real pole dominance can

be detected from the eigenvalues plot (see figure7.5). This results in an oscillating impulse

response that takes around 10 minutes to approach zero. The system has been reduced to

order 12. Minimizing the cost function (7.5) in RK-OP lead to α∗ = 798.0345. By running

the algorithm 7.2, RK-ICOP, the parameter converged in two steps to α∗ = 789.0346

which has almost zero error when compared to the solution using the full order model.
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Figure 7.5: The pole-zero plot of the random model.

The two algorithms RK-OEMP and the approximated version RK-NOEMP lead, also

after 2 iterations, to the optimized parameter α∗ = 789.113 and 798.245, respectively.

The difference between the result using the full order model and the reduced one is less

than 0.1%. The impulse response of the reduced systems is very well approximated until

the settling time, as it can be seen in figure 7.6. Note that for this specific system both

methods, i. e. RK-OP (RK-ICOP) and RK-OEMP (RK-NOEMP) delivered the same

parameter s0 = α∗, however this is not the general rule.

Also here, the expansion point found by the algorithm RK-OP and its iterative version

RK-ICOP tends to the resonant frequency of the Bode diagram, as shown in figure 7.8.

This confirms one more time this special feature of the new suggested algorithm.

When compared with the TBR method, the result of the suggested methods showed to

be almost the same. Note that no comparison with moment matching about s0 = 0 was

possible due to the instability of the obtained reduced model.
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Figure 7.6: The impulse responses of the reduced systems of order 12.

Generally speaking, all examples investigated so far have confirmed that algorithm 7.2

converges quickly (typically, within max. 4 steps) towards the results of algorithm 7.1.

The convergence of algorithm 7.4 can not be always guaranteed due to the numerical

problems explained in the previous subsection. However, the obtained expansion point

by both approaches results in an excellent approximation of the time-domain system

responses.

In addition, numerous simulations have shown that the initial value of the parameter

does not affect neither the convergence in general nor its speed, nor the accuracy of the

result. However, all the reduced systems involved in the iterative process have to be

stable for the proper functioning of the algorithms. In addition, it is needed that the

user sets the reduced order to which the original model has to be reduced.
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Figure 7.7: The expansion point for the random model.

Apart from that, it is observed that the approximation using the Galerkin conditions

showed to be particularly useful and efficient when the order of the reduced system is

high enough for a good approximation of the Lyapunov equations. Clearly, the choice

of the reduced order is highly dependent on the complexity of the considered original

system.

Finally, based on all the examples investigated, the superiority of the RK-OP algo-

rithm and its iterative version RK-ICOP has been confirmed, even though the time and

frequency-domain results of the four algorithms are very close to each other. This supe-

riority is mainly due to the numerical stability of the iterative version and to the feature

of capturing the peak of Bode diagram without the need of calculating this diagram.
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Chapter 8

CONCLUSIONS AND FUTURE WORK

A new time-domain order reduction method based on the Laguerre function expansion

of the impulse response has been presented. By showing that the subspace spanned

by the Laguerre coefficients vectors is a Krylov subspace and thus can be computed

very efficiently, the method can be applied for the reduction of large-scale systems. In

addition, a time-domain interpretation of the classical moment matching approach has

been developed. It is based on the fact that the reduced order model obtained by the

new method and the one obtained by order reduction by rational interpolation around a

single point, are exactly the same.

In fact, the equivalence between all the existing Laguerre-based order reduction method

and moment matching around s = α was proved, both in time and frequency-domains.

Moreover, it was shown that, by matching the moments, a family of coefficients called

generalized Markov parameters (including the Laguerre coefficients as a special case) are

also matched.

Then, two time-domain algorithms for the choice of a single expansion point in Krylov-

based order reduction have been presented, both in the continuous and discrete-time

cases. The algorithms are numerically cheap when approximating the solution of the

required Lyapunov equations and deliver excellent approximation of the impulse response,

once the order of the reduced system has been set by the user. Applying the proposed

algorithms to several technical systems confirms their fast convergence and showed that

negligible improvements in the accuracy of the reduced order model occur after the
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fourth iteration step. In addition, the RK-OP and its iterative version RK-ICOP have

the feature of calculating an expansion point that detects the peak of the Bode diagram

without the need of calculating or giving any hint about this diagram.

The presented equivalence in this work establishes the missing link between the Laguerre-

based order reduction and rational interpolation around a single point. Hence, a possi-

bility is offered to exploit the interesting properties of the first method in order to solve

many of the open problems of moment matching.

For instance, it would be now possible to further develop and adapt the numerous error

bounds and indicators existing for the impulse response in the Laguerre representation

to serve for moment matching. This will then allow to develop an algorithm for finding

the minimum required reduced order to achieve a pre-defined approximation accuracy.

In addition it is of high interest to investigate the connection of the results of this dis-

sertation to L2 optimality or even to further develop them to achieve optimality in the

sense of a well-known norm. Future works include also the generalization of the presented

algorithms to the MIMO case and the investigation of the possibility to extend them to

the case of rational interpolation with multiple points.

Apart from that, it would be interesting to further investigate the connection between

the suggested approach and Balancing and Truncation as both methods share the use of

the controllability gramian, and to make use of the automatic detection of the peak of

the Bode diagram to develop, e. .g an aposteriori H∞ error indicator.
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Appendix A

NUMERICAL ALGORITHMS

In this appendix, the detailed implementation steps of the Arnoldi, Lanczos, and two-

sided Arnoldi algorithms including deflation are presented as in [76].

A.1 Arnoldi Algorithm with deflation using modi-

fied Gram-Schmidt

1. Delete all linearly dependent starting vectors to find m1 independent starting vec-

tors for the given Krylov subspace then set

v1 =
b1

‖b1‖2

where b1 is the first starting vector after deleting the dependent starting vectors

2. For j = 2, 3, · · · , do,

(a) Calculation of the next vector: if j ≤ m1, the next vector is the j-th starting

vector. Otherwise, the next vector is:

rj = Ãvj−m1

(b) Orthogonalization: Set v̂j = rj then for i = 1 to j − 1 do:

hi,j−1 = v̂T
j vi

v̂j = v̂j − hi,j−1vi
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(c) Normalization: if v̂j �= 0, the i-th column is

hi,j−1 = ‖v̂j‖2 , vj =
v̂j

hi,j−1

increase j and go to step (2a).

(d) Deflation: Reduce m1 to m1 − 1 and if m1 is nonzero go to the next step and

if m1 is zero break the loop.

(e) Go to step (2a) without increasing j.

A.2 Lanczos Algorithm with deflation and

full orthogonalization

1. Delete all linearly dependent starting vectors to find m1 and p1 independent start-

ing vectors, b̆1, · · · , b̆m1 and ĉ1, · · · , ĉp1 for the given input and output Krylov

subspaces respectively then set

v1 =
b̆1√
|ĉT

1 b̆1|
, w1 =

ĉ1

−
√

|ĉT
1 b̆1|

2. For j = 2, 3, · · · , do,

(a) Calculation of the next vector: for the input Krylov subspace, if j ≤ m1, then

rj = b̆j . Otherwise, the next vector is:

rj = Ăvj−m1

for the output Krylov subspace, if j ≤ p1, then rj = ĉj. Otherwise, the next

vector is:

lj = Âwj−p1
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(b) Orthogonalization: Set v̂j = rj and ŵj = lj then for i = 1 to j − 1 do:

ĥi,j−1 = ŵT
j vi , h̆i,j−1 = v̂T

j wi

v̂j = v̂j − h̆i,j−1vi , ŵj = ŵj − ĥi,j−1wi

(c) Normalization: if v̂T
i ŵi �= 0, then

vj =
v̂j√
|ŵT

j v̂j |
, wj =

ŵj

−
√

|ŵT
j v̂j |

increase j and go to step (2a).

(d) Deflation: If v̂j = 0, reduce m1 to m1 − 1 and if m1 and if m1 is zero break

the loop.

If ŵj = 0, reduce p1 to p1 − 1 and if p1 and is zero break the loop.

(e) Go to step (2a) without increasing j.

A.3 Two-sided Arnoldi algorithm

1. Choose the appropriate input and output Krylov subspaces for the original system,

KQ(A−1E,A−1b) and KQ(A−TET ,A−Tc).

2. Apply Arnoldi algorithm A.1 to the input Krylov subspace to find the matrix V.

3. Apply Arnoldi algorithm A.1 to the output Krylov subspace to find the matrix W.

4. Find the reduced order model as defined in (3.11).
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