
Truly Incremental Locally Linear Embedding
Sebastian Schuon, Marko Ðurković, Klaus Diepold

Lehrstuhl für Datenverarbeitung
Technische Universität München

Email: schuon@mytum.de, durkovic, kldi@tum.de

Jürgen Scheuerle, Stefan Markward
Department of Mathematics

Technische Universität München
Email: scheurle, markward@ma.tum.de

Abstract—We describe an incremental version of the Locally
Linear Embedding (LLE) method for manifold learning. Such an
incremental LLE algorithm is suitable for real time application,
where measurement data is coming in continuously. We are able
to incrementally calculate embeddings which provide the same
level of accuracy as the original LLE algorithm. For situations
where data is appended constantly, the proposed algorithm
achieves a significant speed up.

I. INTRODUCTION

Locally Linear Embedding (LLE) has been proposed by
Saul and Roweis [1], and is an algorithm for nonlinear dimen-
sionality reduction, belonging to the family of (unsupervised)
manifold learning techniques. Manifold learning is particularly
interesting, because of recent findings in neuroscience, where
it is believed to be similar to the human brain’s learning
process. In The Manifold Ways of Perception Sueng et al. [2]
describe this new hypothesis and LLE is suggested as one
possible algorithm.

Manifold learning algorithms are very demanding in terms
of computing power. One major drawback of these techniques
is, that they operate in batch mode, i.e. they process large
blocks of data points at once. The algorithm is unable to
reuse any information from a previous run and has to restart
the whole computation from scratch even for the slightest
change in a data set. While this is appropriate for the offline
analysis of recorded data sets, it is a huge problem for time
critical analysis when operating online mode. Then significant
computing resources in terms of CPU power and memory are
required when points are being continuously added to a given
data set.

Moreover, batch mode processing introduces a significant
delay, which may be detrimental for certain applications where
the system has to react on an input. In order to make manifold
learning suitable for real-time applications, where sensor data
is arriving at a high rate, an incremental formulation of the
algorithms is required. One possible application for an incre-
mental version of LLE could be the feature extraction from
audio data [3] in real-time for tasks like speech recognition or
feature extraction from raw sound signals.

There exist a few earlier attempts to formulate an incremen-
tal implementation for LLE [1], [4], which all suffer from a
loss of accuracy. We present a solution which is based on a
reformulation of the originally proposed LLE algorithm, and
which is able to handle continuous data flows.

In the course of this paper we will give a short overview over
the state of the art in chapter 2, briefly introduce the principles
of the LLE algorithm in chapter 3 and show our extension
to LLE with some experimental results in chapters 4 and 5.
We will conclude with proposals how to further optimize the
operation in chapter 6.

II. RELATED WORK

Several authors have addressed the problem of handling
continuously incoming data efficiently: Saul and Roweis pro-
posed a simple approach [1] to compute an embedding for an
initial set of data points. Once new data points arrive, they
would linearize the previously computed manifold to deter-
mine the embedding of the new data points. This algorithm’s
remarkable advantages is, that it has very low computational
requirements and that its complexity is bounded by O(N),
where N denotes the number of data points to be embedded.
However, this algorithm returns satisfactory results only in
those cases, where new data points are quite similar to the
data points which have been processed previously. If the new
data points carry significant new information relevant for the
manifold structure, this information will not be incorporated
due to the linearization of the manifold. Such new data points
are of high interest for most applications at hand and thus this
algorithm is generally not to be used.

Bengio et al. [5] try to create a general extension for several
manifold learning techniques to allow one to apply a trained
model to out-of-sample points without having to recompute
eigenvectors.

Another approximate algorithm has been proposed by
Kouropteva et al. [4], which delays the approximation to a later
stage. Their algorithm approximates the new embedding (by
assuming Eigenvalues to be constant, for details see Section
III), but over time their estimate drifts away from the true
embedding. To compensate for that, regular recomputation of
the true embedding and reinitialization of their algorithm is
required.

III. THE LLE ALGORITHM

LLE is an algorithm for dimensionality reduction of a
given data set. LLE takes N data samples (observations) of
dimensionality D and calculates a new data set consisting of
N points with dimensionality d (D >> d), while preserving
the structure of the data. This is done, by assuming that all
data points are lying on a low dimensional manifold A ∈ Md,



that is embedded in the high dimensional space D. The basic
idea of the algorithm is to compute the embedding, or map of
manifold A into the lower d dimensional space.

Accordingly the algorithm takes N data samples which are
all points on the surface of A. The input data is stored in
a matrix X ∈ RD×N where each column represents one
sample. The algorithm will find an embedding Y ∈ Rd×N

which preserves neighborhood structure most accurately.
The algorithm itself can be divided into three different

steps which will be described separately here. The first step
selects the K nearest neighbors of any point, the second step
computes the optimal reconstruction weights for each point
by its nearest neighbors. Finally the third step performs the
embedding by preserving the reconstruction weights of any
point in the low dimensional space.

A. Step I: Nearest Neighbors

In the first place, the K nearest neighbors for each data
sample (i.e. for each column of X) have to be determined.
In terms of differential geometry the geodesic distance would
be the most appropriate metric to identify nearest neighbors.
Since we are dealing with a sampled manifold, this metric can
not be computed. Several other metrics could be imagined,
such as infinity norm, but Euclidean distances are the most
common ones used.

Hence we construct a matrix L ∈ RK×N where each
column j includes the data point indices (the i-th column of
X refers to the index i) that are the nearest neighbors to the
j-th data sample.

B. Step II: Reconstruction Weights

Now one needs to find the optimal reconstruction for each
point by its neighbors. Speaking mathematically, this can
be expressed in minimizing the reconstruction error, or cost
function

ε(wj) =

∥∥∥∥∥∥x−
K∑

j=1

wjnj

∥∥∥∥∥∥
2

2

(1)

where x denotes the current data point, nj is a nearest neighbor
point and wj the corresponding reconstruction weight. We
introduce a normalization constraint

∑
j wj = 1 to fix scale

and rewrite Eq. 1:

ε =
∑

j

∑
k

wjwk(x− nj) · (x− nk) (2)

introducing a Gram matrix G with the matrix’ entries to be
Gj,k = (x− nj) · (x− nk), arriving at

ε =
K∑

j=1

K∑
k=1

wjwkGj,k .

Minimizing ε is generally a convex problem. In the case of a
l2 norm, it reduces to a least squares problem. It is numerically
save to solve first

∑K
k=1 Gj,kwk = 1 and then to normalize

the weights afterwards.

If K > D, the matrix G becomes singular (i.e. matrix G has
only rank D); i.e. infinite linear combinations exist to represent
a data point optimally. A particular solution can be enforced by
applying any regularizer. Having computed the reconstruction
weights for each point, we arrive at a weight matrix W̃ , which
requires the index information from matrix L. To this end, we
store the weights in a matrix W ∈ RN×N . Here the i, j-th
element wij represents the reconstruction weight of sample xi

by the data point xj . As normally N � K, this matrix will
be heavily sparse.

C. Step III: Embedding

Using the reconstruction weights for each point, the embed-
ding into d dimensional space is performed. This yields the
matrix Y ∈ Rd×N . We formulate this task as a minimization
problem using a cost function

σ(Y ) =
N∑

i=1

∥∥∥∥∥∥yi −
N∑

j=1

Wi,j · yj

∥∥∥∥∥∥
2

2

(3)

This reflects the idea of minimizing the reconstruction error
of low dimensional points. Now we introduce a matrix M ∈
RN×N with elements

Mi,j = δi,j −Wi,j −Wj,i +
N∑

k=1

Wk,iWk,j

where δi,j = 1 for j = i, else it equals 0. Given such a matrix
M , Eq. 3 can be expressed in quadratic form

σ(Y ) =
N∑

i=1

N∑
j=1

Mi,j(yi · yj) = yT My.

We solve this problem by computing the singular value de-
composition (SVD) of M = UΣV T . Since M is symmetric
by construction, eigenvector decomposition (EVD) and SVD
coincide.

The weight matrix W can be interpreted as an adjacency
matrix and is closely related to the Laplacian in spectral graph
theory. If the graph represented by the matrix is connected, the
smallest eigenvalue is zero and all components of the corre-
sponding eigenvector have the same value [6]. We leave out the
eigenvector for the eigenvalue zero and use the eigenvectors
corresponding to the remaining d smallest eigenvalues as the
orthogonal basis for our low dimensional map.

IV. INCREMENTAL LLE

An incremental version of LLE will speed up the calculation
of a new embedding when an existing data set is being mod-
ified slightly. When one data sample is added to the set and
the existing embedding has to be extended, incremental LLE
will try to reuse information and intermediate results gathered
by generating the previous embedding. Table I shows roughly
what runtime is taken by the different parts of the original
algorithm. An incremental formulation needs to update all
three steps of LLE, but they themselves can be examined
individually. For a hardware implementation this yields the



Step Action performed % of runtime
1 Compute distances between samples 9.9
1 Find nearest neighbors 28.4
2 Compute restoration weights 4.6
2 Save restoration weights 20.9
3 Perform embedding 25.2

Other tasks 11.0

TABLE I: Most time-consuming parts of LLE

advantage, that the algorithm can be implemented in a three
step pipeline, thus speeding up overall processing. In the
following we will address all three steps involved separately.
Furthermore we assume, that only one data point is to be added
at a time. More than one point can be handled by repeatedly
executing the proposed algorithm.

One of our primary goals for our incremental version was
to keep the level of accuracy of the original algorithm. All
changes we introduce are constructed in a way to exactly
reproduce the same results of the classic LLE.

A. Step I: Nearest Neighbors

By keeping the previous L matrix we are able to create
the new L matrix by a simple extension and a few updates.
For the new point, we need to determine its nearest neighbors,
accordingly the distance between the new point and all existing
points has to be computed. The nearest neighbors identified
are appended in form of a row to the matrix L. Now we
still have the problem, that the new point could be nearest
neighbour to one of the other data samples. Therefore we are
also caching the distances for each point to its nearest neigbors
in a K ×N -matrix H , where each entry Hij corresponds to
the distance between the i-th sample and its j-th neighbour
as denoted by the index in L. If the distance from the new
point to an existing data sample is lower than any entry in the
corresponding column in H , then L and H have to be updated
accordingly.

B. Step II: Reconstruction Weights

Since most distances are not changing between incremental
runs of LLE, the W matrix can be cached and kept up to
date by a few simple operations. Since the nearest neighbor
structure has not only changed for the new point, but also
for its neighbors, we have to recompute the weights for these
points. It is helpful to keep track which entries of L have
changed, in order to determine which rows of W need to be
recalculated. This is done in the very same fashion as in the
non-incremental case. W is extended by one row and one
column to reflect the addition of the new data point.

C. Step III: Embedding

Within this step, the system matrix M is computed as
before, since the computational effort is low. To obtain the
new embedding, we require the eigenvalue decomposition of
M . This is the most time intensive part of the overall algorithm
that not lends itsself towards a simple incremental formulation.
In literature, update algorithms for EVD/SVDs are known for

Fig. 1: Swissroll Manifold

such rank one updates [7]. Sadly all this algorithms rely on
M being spawned by a wide matrix F as M = FT F . Under
these circumstances, the computation of the SVD of M can
be reduced to computing the EVD for F . Since this property
does not apply, EVD update algorithms are not feasible for
LLE.

Nevertheless we can find a incremental formulation by not-
ing that the lower Eigenvalues change only little by appending
one data point (see Fig. 2). This is a safe assumption since
for a large matrix the changes introduced by one update
are rather little. Observing that all modern algorithms for
computing an EVD are of iterative nature, we use the old
EVD as initialization to these algorithms. This will allow these
algorithms to converge with very little iterations.

Although the proposed iterative method represents local
optimization, it has to converge to the same solution as
with the original global approach, since the embedding’s cost
function in Eq. 3 is convex.

V. EXPERIMENTAL RESULTS

The algorithm proposed in the previous section is demon-
strated on a swissroll manifold, similar to the one found
in the first paper on LLE [8]. In Fig. 1 we have depicted
this manifold, with data points that are to be added later on
being colored. This manifold has been generated by sampling
the analytic manifold with N = 500 points and randomly
sampling another Nnew = 50 points to be added later to the
embedding.

Before performing the embedding, it seems reasonable to
verify the assumption that only little changes occur in the small
Eigenvalues. Hence we added, starting from the initial sampled
manifold, points one after another and computed the smallest
Eigenvalues. The magnitude of the Eigenvalues of interest has
been plotted in Fig. 2. Here we note that magnitude is nearly
constant, but for some sudden changes. These changes repre-
sent data points which contribute significant new information
on the structure of the manifold. Such cases are also well
handled by the algorithm, requiring only some more iteration
in the Eigensolver. Overall we can find the assumption of only
little changes in Eigenvalue to hold true.



500 510 520 530 540 550
10

−8

10
−7

10
−6

10
−5

10
−4

Number of Data Points

M
ag

ni
tu

de
 o

f E
ig

en
va

lu
e

 

 

2nd smallest Eigenvalue
3rd smallest Eigenvalue

Fig. 2: Plot of Eigenvalues

500 510 520 530 540 550
0

200

400

600

800

1000

1200

Number of Samples (N)

Ite
ra

tio
n 

re
qu

ire
d

 

 

Iterative LLE
LLE

Fig. 3: Comparison of iterations needed to find EVD

We started with a data set consiting of 500 samples from
the swissroll and computed the embedding. Next we compared
standard LLE to our incremental LLE by repeatedly adding
new samples to the set and recomputing the corresponding
embedding. Using Power Iterations to find selective Eigenval-
ues of a sparse matrix, we recorded the number of iterations
required by the proposed algorithm to update the embedding
for the same setup described above. In Fig. 3 the iteration
count has been plotted, both for computing the EVD with
standard LLE and the proposed incremental LLE.

For a better comparison, Fig. 4 shows the speed-up multiple
gained by using the incremental algorithm proposed. On aver-
age for the time critical step III our new algorithm performs
11 times faster than classic LLE.

For each data point added, we also took measurements of the
error introduced by the incremental computation. Fig. 5 shows
the cumulative relative error measured using sum of absolute
differences between the ground truth manifold and the online
updated one. It can be seen that our proposed algorithm is

500 510 520 530 540 550
0

10

20

30

40

50

60

70

80

90

100

Number of Samples (N)

Ite
ra

tio
n 

re
qu

ire
d

 

 

Speed Up Multiple

Fig. 4: Speedup by Iterative LLE compared to the original
algorithm

500 510 520 530 540 550
10

−15

10
−10

10
−5

10
0

R
el

at
iv

e 
D

iff
er

en
ce

Number of Samples (N)

 

 

Proposed method
Saul and Roweis

Fig. 5: Relative error for the computed eigenvalues

vastly superior to the simple method Roweis et al. suggested.
Looking at the relative errors in Fig. 5 it can be seen that
our error is around 10−10 at all times, which is near the
precision of the optimized eigensolvers used (MATLAB) and
is therefore negligible. This result in terms of accuracy was
expected, since the new formulation of the algorithm has by
construction the same precision as the original one.

VI. CONCLUSION

In this paper we have described an incremental version
of the LLE algorithm, that is able to handle constantly
incoming data in a much more efficient manner. In terms
of conputing power our version is considerably faster and it
produces exactly the same results as the original algorithm.
Unlike previous work our solution does not suffer from the
degradation of accuracy and does not rely on frequent time
consuming batch recalculations.

Incremental LLE is especially interesting for applications
where data is gathered constantly and information has to be
processed as it arrives. One possible problem with this version



of LLE is, that the processing time is not contant and grows
as the data set becomes larger. Step I has a computational
complexity of O(n) since it basically consists of 2 × n
comparisons. Step II is somewhat constant in time, because
the weight problem has to be solved for ≈ K samples in
every iteration. The most significant problem is the spectral
decomposition in step III, that has a complexity > O(n).

One way to address this problem is to keep the amount
of data low. In future we will need techniques to identify
and expunge data samples, that do not contribute significantly
or any information at all about the structure of the problem.
By aging out those samples we would be able to keep the
data set at a manageable size and the computational costs at
a reasonable low.

REFERENCES

[1] L. Saul and S. Roweis, “Think Globally, Fit Locally: Unsupervised
Learning of Low Dimensional Manifolds,” Journal of Machine Learning
Research, vol. 4, no. 2, pp. 119–155, 2004.

[2] H. Seung and D. Lee, “The manifold ways of perception,” Science, vol.
290, no. 5500, pp. 2268–2269, 2000.

[3] V. Jain and L. K. Saul, “Exploratory analysis and visualization of speech
and music by locally linear embedding.” 2004.

[4] O. Kouropteva, O. Okun, and M. Pietikäinen, “Incremental locally linear
embedding algorithm,” Image Analysis, pp. 521–530, 2005.

[5] Y. Bengio, J.-F. Paiement, and P. Vincent, “Out-of-Sample Extensions for
LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering,” 2003.

[6] F. R. K. Chung, Spectral Graph Theory, 1997.
[7] J. R. Bunch and C. P. Nielsen, “Updating the singular value decomposi-

tion,” Numerische Mathematik, vol. 31, no. 2, pp. 111–129, 1978.
[8] S. Roweis and L. Saul, “Nonlinear Dimensionality Reduction by Locally

Linear Embedding,” 2000.


