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Abstract. A technique to optimize regularization parameters for a 
given supervised training problem is presented. A training database 
is applied to minimize a regularized cost function, and a validation 
database is used to estimate and optimize generalization proper- 
ties by means of a modification of regularization. The performance 
is validated for a vowel classification task and compared to other 
approaches. 

INTRODUCTION 

In supervised training, finding the optimal complexity of a model is of major 
concern in the model design. Given only a very few number of training 
examples, an overly complex model tends to memorize the training set rather 
then representing the systematic structure of the data. A less complex model 
can represent the data only in a coarse approximation. In both cases, the 
model performs poorly on unknown data, expressed by a high generalization 
error [4]. 

Optimizing the model complexity therefore requires an estimation of gen- 
eralization ability, achieved by a partitioning of the given data into a training 
set and a validation set. The model parameters are optimized in order to fit 
the training data, whereas the model complexity is optimized in order to 
minimize the validation error. 

Besides growing [3, 21 and pruning techniques [6, 9, 101 which modify the 
number of model parameters, regularization affects the effective model com- 
plexity, encouraging smooth mappings by adding a penalty term to the error 
function [l, 51. The necessary amount of regularization depends on the data 
structure and therefore has to be adapted during the training process. In (71 
an adaptive regularization method was presented, based on the computation 
of the inverse Hessian of the loss function. In this work we propose an alter- 
native, where the gradient information is sufficient to adapt the proportion 
of regularization. 
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TRAINING AND ADAPTIVE REGULARIZATION 

Suppose a given nonlinear and differentiable model with adaptive parameters 
w and an error function E ( w , T )  to be minimized in a supervised training 
process for a given database 7. Preventing the model from overfitting the 
given data, a model based regularizer term R(w,T) is added to penalize 
immoderate curvature mappings. The amount of regularization is parame- 
terized with vector T and limits the effective model complexity. 

Usually, the regularizer is composed of a weighted sum of penalty terms 

R(w, .) = 7'; P ( W i ) ,  
i 

each regarding a subset of adaptive parameters wi c w and contributing 
with a positive weight r; 2 0 to the augmented cost function 

'C(W,T,T) = E ( w , T )  +R(w,r). (1) 

Let ' L ~ ) ( T )  be the minimum of the cost function (1) for a given regulariza- 
tion weight T :  

W ( T )  = argminC(w,r ,T) .  W (2) 

Further let E ( ~ ( T ) ,  V )  be the estimated generalization error for this solution, 
based on a validation dataset Y. The subject of adaptive regularization is to 
find optimal regularization parameters T *  , minimizing the validation error in 
the manifold W ( T ) :  

T*  = argminE(w(r),Y) r ST T 2 0. (3) 

With this, the optimal model parameters are given by 

w* = argminC(w,r* ,T) .  W (4) 

We suppose an iterative update of, parameters w and r for the combined 
optimization problem (2) and (3) with the following heuristic: Let (2) be 
optimized using an update rule 

P S ( T ) >  (5) 
Wnew - Wold - - 

with an appropriate step size p and a search direction 

a 
S ( T )  = -C(W,T,T). dW 

To avoid the effect of overfitting, this update ( 6 )  must also decrease the val- 
idation error. A necessary condition to avoid overfitting is that the search 
direction S ( T )  points in the direction of the validation error gradient. There- 
fore, we suggest minimizing the divergence of the gradient vectors form loss 
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function (1) and validation error E(w,V) in a least squares sense w.r.t. the 
regularization parameters T 

Optimal regularization parameters are determined for each update (5),  
constituting the program for adaptive regularization 

with the subst it ution 

I Gradient space 

Figure 1: Key motivation of the gradient based adaptive regularization method. 
Update (8), (9) is repeated, until T converges to an equilibrium P, i.e. 

llrnew - ~ ~ ' ~ 1 1  5 6 Stop adaptive regularization, .i. = mew. 
for a small value 6. At this point, the cost function (1) is finally optimized 
with constant regularization parameters .i. and the complete available training 
data 

7"" = T u  v. 

THE CHOICE OF VALIDATION DATA 

One critical aspect of validation is to appropriately choose the training and 
validation set from an available training database X. A common technique 
(see e.g 17)) is to split X in two disjoint sets 7 and V ,  whereas the choice of 
the split ratio is a nontrivial task. 

~ C X ,  V c X ,  7 u v = X ,  7 n V = 0  (10) 
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According to this technique, we constitute the training set to be a subset 
7 c X, e.g. half of the available training data. Optimization of the cost 
function with this limited representation of data will favor an overfitting of 
the training set 7. This overfitting effect is compensated by the regularizer, 
based on the estimation of generalization. The validation database V should 
represent the underlying data structure as well as possible, to give a reliable 
estimation of the generalization ability of the model. Therefore we propose 
to use all available training data for validation (including 7>. 

T C X ,  V = X .  (11) 

Moreover, the regularizer is prevented from immoderately favoring an arbi- 
trary selection of validation data, provided by a selection of V according to 

The standard benchmark databases usually are provided with a disjoint 
test set B in addition to the training data X. This dataset represents unknown 
data of the application and is applied to compare the performance of different 
approaches. This data is never applied to optimize any of the model weights 
or regularization parameters. 

(10). 

G U 7 = 0 ,  G U V = 0 .  1 available 

training data estimation of 
generalization 

G test database to benchmark the performance 

Table 1: Databases of a benchmark problem. K is available for optimization and 
G is used to test the performance. 

REGULARIZING NEURAL CLASSIFIERS 

Consider a K-class classification problem with features z E RD to be mapped 
on a corresponding binary target vector t E (0; l}K, indicating feature z to 
be of class wi, if ti = 1 and t j  = 0 V j  # i. The database X = { Z C ; ~ } ~  
consists of P training tuples and is taken for validation V = X. The training 
set 7 c X is composed of P / 2  patterns from X with prior probabilities 

Let a given classifier model perform a differentiable decision funct,ion 
f(z, ut) : RD I+ (0, l)K, parameterized by weight vector w. Denoting f,' as 
the i-th output of the classifier for an input pattern z3, the classifier is trained 
in order to provide an estimation of the posterior probabilities f! =!= p(w;lzj) 
by minimizing the normalized negative log-likelihood cost function [ 11 

P ( W i 1 7 )  = P(WiIX). 
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Let f(w,z) be a L-layer feedforward neural network with layers i = 
1 . .  . L performing the nonlinear mapping 

yi(z) = tanh(W; ~;-~(z) - si),  YO(^) := 2 

The j - th  row of weight matrix W; contains the weights to neuron j of the 
i-th layer and the corresponding bias is the j- th component of vector s;. 
With the affine transformation fj(z) = 0.5(1 + y~~ (z)), the output values 
are normalized to the interval (0 , l ) .  

An appropriate regularizer for neural networks is given with the sum- 
of-squares penalty term (weight decay [5]) p ( ~ )  = wq/2. Following [l], 
to ensure consistency of the weight decay with certain scaling properties of 
network mapping, we apply one penalty term for each layer and exclude the 
bias values s from regularization. Thus, the regularizer is 

with vector w; containing all components of weight matrix W;. Let 

be the gradient w.r.t. weights w;, the least squares problem (7) with regu- 
larizer (13) has the solution 

In the first few iterations of the adaptive regularization training, (14) 
may provide invalid negative solutions for r;.  Then, instead of solving the 
quadratic programming problem (7) subject to inequality constraints r; 2 0, 
we suggest using the absolute value of the solution (14) for the regularization 
parameters. 

SIMULATIONS 

We used the Peterson Barney vowel benchmark database [8, 111 for verifica- 
tion of the presented adaptive regularization method. The database consists 
of K = 10 different vowels pronounced twice by 76 speakers (33 male, 28 
female and 15 children), represented by the D = 4 first formant frequencies. 
The total number of 1520 input-output pairs were split into two disjoint data 
sets, i.e. a data set X with 760 patterns, and a test set G with 760 patterns 
to report the performance of the proposed adaptive regularization algorithm. 
Set X contains data from 16 male, 14 female and 8 child speakers, set B 
contains the remaining 17 male, 14 female and 7 child speakers. According 
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to section 2, a subset 7 c X of 8 male, 7 female and 4 child speakers was 
applied for training and the set Y = X was used for validation. 

For the first simulation we applied a 2-layer neural network with 4 inputs, 
10 hidden neurons and 10 output neurons, thus having a total number of 160 
weights (including bias) and 2 regularization parameters. The reported re- 
sults are based on 40 training runs and show the mean error with its standard 
deviation on the test set 8. 

In the second simulation we used 100 hidden neurons (i.e. 1510 weights) 
to report the effect of adaptive regularization in a highly oversized network. 

The results of the presented adaptive regularization (ADREG) method 
are compared with the early-stopping (ES) technique [l], a common applied 
heuristic to prevent the network from overtraining. Here, no regularization 
term limits the complexity. Instead, training is stopped a t  a minimum of the 
validation error. For the ES method, the same sets of training patterns 7, 
validation patterns V and test patte1 

Adaptive Regularization: (10 hidden neurons) 

I, _-. ~. ". " " 
".",--I . \ e ,  

x .  

0 100 200 300 
Epoches 

-~ 

ms B have been applied. 
Adaptive Regularization: (10 hidden neurons) 

G g lo+ 

8 
$10- 

9 
0. 
E - 

ol 
K 

0 100 200 300 
Epoches 

Figure 2: Typical run of the adaptive regularization 
Early Stopping: (10 hidden neurons) 
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ure 3: Typical run of the early stopping training 
NN 11 ADREG I ES 

4-10-10 11 12.3 (f0.74) I 14.1 (f1.17) 
I 4-100-10 11 11.7 (f0.52) I 13.8 (f0.801 1 

Table 2: Misclassifications for the Peterson Barney test set 
runs 

(in %) based on 40 
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Lots of results for the applied database have been published recently, 
based on different classification strategies. Referring to [7], a different adap- 
tive regularization method for neural classifiers combined with a pruning 
strategy was reported, misclassifying 12.2% of the test data without pruning 
and 11.9% after pruning. This method requires the computation of the in- 
verse Hessian matrix to adapt the regularization parameters but has about 
the same performance as our conceptually simple gradient based update 
method. As reported in [7], the k-nearest neighbor (KNN) classification rule 
performs a higher error of 15.3% on this benchmark problem. 

CONCLUSIONS 

This paper presented a method to adapt regularization parameters for a given 
supervised training problem. The benefit of this approach to other concepts 
is based on the conceptually simple update rule for the regularization param- 
eters, where only the gradient of the error function is required. Compared 
to other techniques working with a validation database (like early stopping), 
the presented method allows the use of all available data for training, af- 
ter optimal regularization parameters are determined. Therefore, the model 
approximates the underlying data structure more exactly, resulting in an 
improvement of generalization. Is was shown, that with this method, even 
highly oversized models do not tend to overfit the given training data. 
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