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ABSTRACT

In orthogonal frequency division multiplexing (OFDM), car-
rier frequency offset (CFO) must be mitigated since it genera-
tes interference between received symbols transmitted through
different sub-carriers. This paper presents a new algorithm for
CFO estimation with reduced computational complexity. The
new approach is based on the segmentation of the input-signal
autocorrelation matrix into the noise and signal subspaces,
the latter being employed to estimate the desired CFO. Si-
mulations validate the effectiveness of the new algorithm in
comparison to the traditional parametric estimation technique
ESPRIT.

Index Terms— Signal processing, Digital communicati-
ons, Parameter estimation

1. INTRODUCTION

The increased demand for bandwidth in modern communica-
tions systems leads to severe degradation due to intersymbol
interference (ISI). One of the most efficient techniques to mit-
igate ISI is the use of orthogonal carriers for transmission.

Multicarrier communication systems have been used in
a variety of scenarios, such as digital television, digital au-
dio broadcasting, or broadband access to the Internet using
copper wires [1]. In those applications, the multicarrier mo-
dulation is known as OFDM, which uses the inverse discrete
Fourier transform (IDFT) to modulate data using orthogonal
carriers for the transmission. When used with cyclic prefix
(CP) chosen with proper dimensions, multicarrier modulati-
on and demodulation using IDFT and DFT, respectively, may
avoid ISI even in a scenario with severe multipath [2].

The orthogonality among the different subcarriers trans-
forms a frequency selective channel into a set of independent
memoryless subchannels. The unmatching between frequen-
cies of the local oscillators causes the loss of orthogonality
on the receiver side, the so-called CFO. Therefore, there is in-
tercarrier interference (ICI) within a given transmitted block
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which degrades the overall system performance. The estimati-
on of CFO performed in the receiver is crucial for its compen-
sation and subsequent restoration of orthogonality among the
subcarriers. The development of an ESPRIT-based method in
[3] represented the first effort in generating a blind parametric
algorithm for CFO estimation. The present paper introduces
a new algorithm for the same purpose but with reduced com-
putational complexity.

This article is structured as follows: In section 2, we state
the CFO problem and define the notation. We describe the
blind CFO estimation applying the estimation of parameters
via rotational invariance technique (ESPRIT) and the propo-
sed covariance-based (CB) technique in section 3. In section
4, we provide a comparison between the ESPRIT and pro-
posed algorithm with respect to the corresponding compu-
tational complexities. Section 5 presents simulations of both
techniques illustrating similar performances achieved by both
methods, with much less computational effort provided by the
CB-CFO algorithm. Section 6 concludes the paper emphasi-
zing its main contributions.

2. SYSTEM MODELING

2.1. Problem Formulation

In OFDM, data belonging to a single source is first divided in
blocks. Then an IDFT is performed on each block and a CP
is added with proper length, which must be longer than the
length of the channel impulse response. In the receiver, the
CP is removed and data is transformed again to the frequency
domain using DFT, then a set of 1-tap equalizations is perfor-
med. Such multicarrier scenario completely mitigates ISI and
ICI distortions as long as the channel model does not change
during one OFDM symbol. Considering that only P out of
N subcarriers are effectively used, the remaining (N − P )
subcarriers are null, denominated virtual subcarriers [3].

Consider the vectors x(k) ∈ �N and s(k) ∈ �P inclu-
ding only the samples related to the non-virtual subcarriers
and k ∈ � is the block index. Therefore, those vectors are
related by

x(k) = WP s(k),
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where WP ∈ �N×P includes only the first P columns of the
N × N IDFT matrix W, where [W]m,n = 1√

N
ej 2πmn

N and
m, n = 0, 1, .., N − 1.

Consider the circulant matrix H ∈ �N×N , generated by
the use of the CP of length L on the original data, such that

Λ = WHHW ∈ �N×N

is diagonal. Selecting the first P rows and P columns of Λ,
one can form ΛP ∈ �P×P , and the received signal after CP
removal can be written as [3]

y(k) = WPΛP s(k) ∈ �N . (1)

Representing the per-subcarrier 1-tap equalizer by the diago-
nal matrix G ∈ �P×P , then, after the DFT block at the re-
ceiver, one gets

z(k) = GWH
P y(k) = GΛP s(k) ∈ �P .

If GΛP = IP , then s(k) can be recovered from z(k).
For a normalized (by the subcarrier spacing) determini-

stic CFO φ, symbols belonging to different blocks are cumu-
latively distorted. Each ith sample of the kth OFDM symbol is
modulated by ej((k−1)(N+LCP)+i)φ, for i = 0, 1, . . . , N − 1.

Taking into account the removed CP, the received signal
y(k), defined in equation (1), becomes

y(k) = EWPΛP s(k)ej(k−1)φ(N+LCP),

where E = diag
{
ejnφ

}N−1

n=0
∈ �N×N represents the diffe-

rent multiplying CFO terms inside a given block.
Defining s̃(k) = ΛP s(k)ej(k−1)φ(N+LCP) ∈ �P , then it

follows that

z(k) = GWH
P EWP s̃(k) = GQs̃(k),

where Q = WH
P EWP ∈ �P×P is a circulant matrix. Since

G does not cancel Λp, due to the presence of Q, ICI arises.
The elimination of the ICI requires estimation of the fre-

quency offset and its proper compensation.

2.2. Signal Subspace Estimation

Estimation of parameters via rotational invariance technique
(ESPRIT) [4] is an algorithm which performs parametric esti-
mation when the signal presents some inherent redundancy. In
order to use ESPRIT for estimating CFO in OFDM systems,
Tureli et. al employed in [3] special structures for represen-
ting received data, also used in the CB-DoA algorithm.

Consider that yi(k) is the ith element of the vector y(k),
and define the (N −M) auxiliary forward and backward vec-

tors y(i)
F (k),y(i)

B (k) ∈ �M+1 as in [3]

y(i)
F (k) = [yi−1(k), yi(k), . . . , yi+M−1(k)]T ,

y(i)
B (k) = [yN−i(k), yN−i−1(k), . . . , yN−i−M (k)]H ,

for i = 1, 2, . . . , N −M and N > M ≥ P .

Using the auxiliary matrices

EM+1 = diag
{
ejmφ

}M

m=0
∈ �(M+1)×(M+1),

Δ = diag
{
ej(φ+pω)

}P−1

p=0
∈ �P×P , (2)

where ω = 2π/M , then, the signal y(i)
F (k) can be expressed

as
y(i)

F (k) = EM+1WM+1Δis̃(k),

where WM+1 ∈ �(M+1)×P comprises the first M + 1 rows
of WP .

Consider another auxiliary vector described by

r(k) = e−jφ(N−1)diag
{
ejpω(N−1)

}P−1

p=0
s̃∗(k).

Then, the signal y(i)
B (k) is given by [3]

y(i)
B (k) = EM+1WM+1Δir(k).

The matrix Y(i)
E (k) ∈ �(M+1)×(M+1) used for perfor-

ming ESPRIT comes from the sum for each i

Y(i)
E (k) = y(i)

F (k)
(
y(i)

F (k)
)H

+ y(i)
B (k)

(
y(i)

B (k)
)H

.

Defining A = EM+1WM+1 ∈ �(M+1)×P , then a mean
value is described for Y(i)

E (k),

R̂yy =
1

K(N −M)

K∑
k=1

N−M∑
i=1

Y(i)
E (k)

= A
K∑

k=1

N−M∑
i=1

(
s̃(k) (s̃(k))H + r(k) (r(k))H

)
AH

= AR̂s̃s̃AH ∈ �(M+1)×(M+1). (3)

As in eigendecomposition-based methods [5], R̂yy may be
decomposed in signal and noise subspaces. The eigenvectors
corresponding to the P largest eigenvalues of R̂yy are asso-
ciated to the signal subspace. Consider US ∈ �(M+1)×P the
matrix whose columns comprise the P eigenvectors of R̂yy

associated to the signal subspace. Then US and A span the
same subspace. Therefore, they are related by a full-rank li-
near transformation T ∈ �P×P such that [4]

A = UST. (4)

3. BLIND CFO ESTIMATION

3.1. ESPRIT-based CFO Estimation

Define the selection matrices

J1 = [IM 0] ∈ �M×(M+1) and

J2 = [0 IM ] ∈ �M×(M+1),
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where J1 selects the first M rows of a matrix and J2 the last
M rows.

Due to the assumption of cumulative CFO between sub-
carriers, one can infer from the definition in (2) that

J1AΔ = J2A, (5)

Applying (4) one gets

J1USTΔ = J2UST. (6)

Using the non-singular matrix Ψ = TΔT−1 ∈ �P×P , (6)
becomes

J1USΨ = J2US, (7)

which is the so-called invariance equation that can be solved
by means of least squares (LS), total least squares (TLS) [4],
or structured least squares methods (SLS) [6].

Since Ψ and Δ are related via a similarity transformati-
on, both have the same eigenvalues, i.e., the elements in the
diagonal of Δ are the eigenvalues of Ψ. That means, Δ can
be obtained via an eigenvalue decomposition (EVD) of Ψ.

After estimating Δ, the CFO parameter φ may be estima-
ted by its first element, or by [3]

φ =
1
j

ln
tr(Δ)

P−1∑
k=0

ejkω

.

3.2. Covariance-Based CFO Estimation

In this subsection, a low-complexity algorithm for CFO para-
metric estimation is presented. The algorithm originates from
another derived in a framework of direction-of-arrival [7],
using a data modeling defined by Matrix-Pencil methods [8].

As in section 3.1, consider the matrix R̂yy defined in (3).
Besides that, consider R0 ∈ �M×M containing the first M
rows and M columns of R̂yy, i.e. R0 = J1R̂yyJT

1 .
The EVD of R0 is given by

R0 = UΣUH .

Defining matrices ΣS ∈ �P×P and US ∈ �M×P contai-
ning the P largest eigenvalues of R0 and their corresponding
eigenvectors, there is a matrix V ∈ �P×P which gives

J1A = USΣSV. (8)

Using the cross-correlation matrix R1,0 ∈ �M×M , defined
as

R1,0 = J2R̂yyJT
1 ,

in equations (3) and (5), one has that

R1,0 = J2AR̂s̃s̃AHJT
1 = J1AΔR̂s̃s̃AHJT

1 . (9)

Each non-zero element of the diagonal matrix R̂s̃s̃ has a dif-
ferent real value, due to the assumption of uncorrelated in-
puts and the definitions of s̃(k) and r(k). Upon defining F =
Σ−1

s UH
s ∈ �P×M and using (8), one gets

R1,0 = USΣSVΔR̂s̃s̃VHΣH
S UH

S ,

or equivalently

FR1,0FH = VΔR̂s̃s̃VH . (10)

Since the entries of R̂s̃s̃ are real, Δ may be obtained by per-
forming an EVD on the left-hand side of (10) and extracting
the phase component of each element.

4. COMPUTATIONAL COMPLEXITY

This section presents a comparison between the computatio-
nal complexity of the proposed covariance-based CFO (CB-
CFO) estimation and the most popular implementation of ES-
PRIT, the TLS-ESPRI[4], in a CFO estimation framework.
The main steps required by each algorithm are summarized
in Table 1.

Table 1. Comparison between TLS-ESPRIT for CFO estima-
tion [4] and Covariance-Based CFO estimation.

TLS-ESPRIT Covariance-Based

[Us,Σs] = EVD
“
R̂yy

”
R0 = J1R̂yyJ

T
1

E0 = J1Us R1,0 = J2R̂yyJ
T
1

E1 = J2Us [Us,Σs] = EVD(R0)

Ea =

»
EH

0

EH
1

– ˆ
E0 E1

˜
F = Σ−1

s UH
s

[E,Λ] = EVD(Ea) R1 = FR1,0F
H

E =

»
E11 E12

E21 E22

–

Ψ = −E12E
−1
22

[T,Δ] = EVD(Ψ) [V,Δ] = EVD(R1)

From Table 1, we verify that TLS-ESPRIT requires: 3
EVDs (1 for a 2P ×2P Hermitian matrix, 1 for an (M +1)×
(M + 1) Hermitian matrix and 1 for a P × P non-Hermitian
matrix); 1 full inversion of a P ×P matrix; and 5 matrix mul-
tiplications (4 between P ×M matrices and M ×P matrices
and 1 between two P × P matrices).

On the other hand, the CB-CFO estimation method requi-
res 2 EVDs (1 for an M ×M Hermitian matrix and 1 for a
P × P Hermitian matrix); 1 inversion of a P × P diagonal
matrix; and 3 matrix multiplications (1 between a P ×P ma-
trix and a P ×M matrix, 1 between a P ×M matrix and an
M×M matrix and 1 between a P ×M matrix and an M×P
matrix).

A more direct comparison between the number of math
operations required by both TLS-ESPRIT and CB-CFO is
presented in Table 2, where asymptotic complexity for each
operation is stated according to [9]. It is possible to verify that
the most computationally complex operations are the EVD
and matrix multiplications. The proposed CB-CFO requires
less computationally demanding operations than ESPRIT. Be-
sides that, while ESPRIT requires inversion of a full-matrix,
CB-CFO requires the inversion of a diagonal matrix.
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Table 2. Summarized comparison of TLS-ESPRIT and CB-
CFO in terms of number of matrix operations.

Operation Compl. [9] ESPRIT CB-CFO
Non-Herm. Eigend. O(25n3) 1 –

Herm. Eigend. O(n2) 2 2
Full Inversion O(2n3/3) 1 –

Diag. Inversion O(n) – 1
Multiplication O(n3) 5 3

5. SIMULATIONS

Some computer simulations were performed in order to as-
sess the error performance of TLS-ESPRIT and CB-CFO al-
gorithms. The metrics used for assessment is the normalized
mean-square error, as defined in [3]

NMSE =
1
Q

Q∑
i=1

(
φ̂− φ

ω

)2

, (11)

where Q denotes the number of Monte-Carlo runs. In our fra-
mework, Q = 50. The other parameters used for simulation
were based on the Long-Term Evolution standard for 3GSM
networks, N = 512 and P = 310. The CFO estimation was
performed for 200 OFDM blocks. The channel used for simu-
lation is the 12-tap urban channel (U) and the rural channel
(R) standardized for GSM systems in [10]. Moreover we ha-
ve empirically set M = 511 and cyclic prefix length L = 55
for the urban channel and L = 11 for the rural channel. The
results are presented in Fig.1. As can be observed, for a wide
range of values of SNR the CB-CFO meets the performance
of ESPRIT with much reduced computation demand.

6. CONCLUSIONS

In this article, we presented a blind algorithm for estimating
the carrier frequency offset (CFO) in OFDM systems. The
so-called CB-CFO scheme is characterized by a substantially
lower computational complexity when compared to the stan-
dard parametric method TLS-ESPRIT. Despite such a simpli-
fied implementation, CB-CFO algorithm presents equivalent
NMSE performance in comparison to the TLS-ESPRIT.
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