Metabolite and isotopologue profiling in plants.

Studies on the biosynthesis of terpenoids and alkaloids.

Elena Ostrozhenkova
To my parents, my friends, and me
When a thing was new, people said “It is not true”. Later, when the truth became obvious, people said “Anyway, it is not important”. And when its importance could not be denied, people said, “Anyway it is not new”.

William James (1842-1920).
Experiments were carried out at the Department of Biochemistry, Technische Universität München, Garching from April 2003 to April 2008.
ACKNOWLEDGEMENT

I wish to thank my Doktorvater PD Dr. Wolfgang Eisenreich for suggesting me an exciting and modern scientific theme; for constant and patient guidance and support; for numerous useful discussions (on scientific matters and beyond); for opening me the doors into the world of “big” science, with international conferences and collaborations. My special thanks to Wolfgang for teaching me NMR spectroscopy.

I am thankful to Prof. Dr. Dr. Adelbert Bacher for the opportunity to spend five great years at the Lehrstuhl für Organische Chemie und Biochemie and for his helpful mentorship.

I am very grateful to Prof. Dr. Michael Groll for a friendly atmosphere in the Lehrstuhl für Biochemie, for his encouraging smiles, and for allowing me to finish my Ph.D. study.

I am indebted to Dr. Felix Rohdich for offering enzymes for my experiments.

I wish to thank Mr. Fitz Wendling (Computer-Man) for many beautiful pictures, for his professional assistance with computer and HPLC problems, and for familiarizing me with ‘die hochbayrische Sprache’.

I am thankful to Mr. Richard Feicht, Mrs. Christine Schwarz, Ms. Birgit Keil, Ms. Katrin Gärtner, Mrs. Astrid König, Dr. Melissa Poynor, and Mrs. Ute Kashoa for taking care of my flowers while I was away and for creating and maintaining a nice and friendly atmosphere in the lab. My special thanks to Mrs. Christine Schwarz and Ms. Birgit Keil for HPLC and NMR analysis.

I am indebted to Dr. Tanja Radykewicz, Dr. Ralf Laupitz, Dr. Lilla-Margl-Römisch, Dr. Werner Römisch-Margl, Ms. Silke Marsch, Dr. Monika Joshi for their friendly attitude towards me, and just for being around.

I want to thank Ms. Susan Lauw and Mr. Matthias Lee for helping me to prepare my thesis and concomitant documents, for their assistance in computer matters, and for their friendship.

I am grateful to Dr. Victoria Illarionova and Dr. Boris Illarionov for their great help during my first months in Germany, for their constant friendly support, and for not allowing me to forget the Russian.

It is a pleasure to thank Dr. Stefan Hecht for introducing me into NMR technique, for his patience, and for helping me along.
I thank Ms. Eva Eylert and Dr. Claudia Huber for assisting me with the analysis of my probes by GC-MS spectrometry and for their friendly attitude.

My sincere thanks to Mr. Christoph Graßberger for maintaining a warm and friendly atmosphere in our lab, for helping me with many things, for amazing philosophical disputes, and for everyday encouraging ‘Grüß Gott’.

Thanks a lot to Dr. Nicholas Schramek for his collaboration.

Many thanks to Hans-Fischer Gesellschaft and Phytochemical Society of Europe (PSE) for their financial support.

It is my please to thank Dr. Leo Jirovetz (University of Vienna, Austria) for a nice friendship, permanent support, and for constant desire to help.

My very special thanks to ‘Frau Professor’ Rosa Cusido, Prof. Javier Palazón, and Prof. Mercè Bonfill (University of Barcelona, Spain) for the great time in Barcelona and for our fruitful collaboration, which (I strongly believe) will continue.

Dear Rosa! I am so happy that our virtual acquaintance in 2002 has become real and personal in 2007!

I am grateful to Prof. Avi Golan (Ben Gurion University of Negev, Israel) for an interesting and fruitful year of joint work. I am looking forward for our future collaboration.

I want to say a lot of thanks to Prof. Dr. Maike Petersen (Philipps-Universität Marburg, Germany). Dear Maike! I am so happy that I can call you my Friend!

I am thankful to my dear friend in metabolomics, Prof. Dr. Rob Verpoorte. Dear Rob! Thank you so much for my (our) talk in Cambridge in 2007. As you said me there, “If you are afraid now, you will be afraid forever!” This saying helps me ever since, thank you for believing in me. I deeply thank you for wonderful years of our contacts, for our conversations and meetings, and for our victories!

I’m very grateful to my friends in Munich Dr. Gagik Gurzadyan (Gagarin), Dr. Anatoly Zharikov (Tolik), Dr. Andrey Susha (Andryuha), Dr. Olga Manoilova (Olik). My special thanks to Dr. Maxim Gelin (Maximo). Lots of thanks to all my friends in Russia and elsewhere.

My most sincere thanks to my parents and my family for your love, support, patience, and believing in me.
Publications

Posters and lectures

Table of contents

1. Introduction ... 1
 1.1. Metabolomics and metabolite profiling ... 1
 1.2. Biosynthetic pathways and fluxes ... 3
 1.3. The methods to determine the metabolic pathways and fluxes 12
 1.4. Objectives ... 16

2. Materials and Methods ... 17
 2.1. Instruments ... 17
 2.2. Materials ... 18
 2.2.1. Chemicals ... 18
 2.2.2. Enzymes .. 19
 2.2.3. Media for separation .. 20
 2.2.4. Spray reagents .. 21
 2.2.5.1. Medium for Nicotiana tabacum ... 21
 2.2.5.2. Medium for Allium schoenoprasum .. 22
 2.2.6. Plants ... 22
 2.2.6.1. Allium schoenoprasum .. 22
 2.2.6.2. Hypericum perforatum .. 22
 2.2.6.3. Mercurialis annua L. ... 23
 2.2.6.4. Nicotiana tabacum, var. havanna piperita 23
 2.2.6.5. Salvia divinorum .. 23
 2.3. Methods .. 23
 2.3.1. Experiments with Allium schoenoprasum ... 23
 2.3.2. Metabolite profiling in Allium schoenoprasum 24
 2.3.3. NMR spectroscopy .. 24
 2.3.4. Experiments with Hypericum perforatum ... 24
 2.3.5. Isolaton of hyperforin .. 25
 2.3.6. NMR Spectroscopy ... 25
 2.3.7. Isotopologue abundance by NMR spectroscopy 25
 2.3.8. Protein hydrolysis and amino acid derivatization 27
 2.3.9. Mass spectrometry ... 27
 2.3.10. Isotopologue abundances by GC-MS .. 27
2.3.11. Experiments with Mercurialis annua L. ... 29
 2.3.11.1. Metabolite profiling in M. annua ... 29
 2.3.11.2. Experiments with [U-13C6]glucose 29
 2.3.11.3. Experiments with 13CO2 .. 29
 2.3.11.4. Experiments with [1-13C1]glucose 30
 2.3.11.5. Experiments with [13C4, 15N1]aspartate 30
 2.3.11.6. Isolation of hermidin ... 30
 2.3.11.7. NMR spectroscopy .. 30

2.3.12. Experiments with Nicotiana tabacum 30

2.3.13. Isolation of nicotine ... 30

2.3.14. NMR spectroscopy .. 31

2.3.15. Isolation of glucose ... 31

2.3.16. Isolation of glucose from cellulose .. 32

2.3.17. NMR spectroscopy .. 32

2.3.18. Experiments with Salvia divinorum .. 32
 2.3.18.1. Experiments with [U-13C6]glucose 32
 2.3.18.2. Experiments with 13CO2 .. 32
 2.3.18.3. Isolation of salvinorin A .. 33
 2.3.18.4. Purification of salvinorin A with column chromatography……... 33
 2.3.18.5. Purification of salvinorin A with HPLC 33
 2.3.18.6. Protein hydrolysis and amino acid derivatization 33
 2.3.19. Isolation of amino acids .. 33

2.3.20. Identification of amino acids .. 34

2.3.21. Enzymatic syntheses .. 35
 2.3.21.1. Preparation of [3,4,5-13C3]1-Deoxy-D-xylulose 5-phosphate ... 35
 2.3.21.2. Preparation of [1,3,4-13C3]2C-Methyl-D-erythritol 4-phosphate .. 35
 2.3.21.3. Preparation of [1,3,4-13C3]4-Diphosphocytidyl-2C-methyl-D-erythritol .. 36
 2.3.21.4. Preparation of [1,3,4-13C3]4-Diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate .. 36

3. Results and discussion ... 37

3.1. Biological objects .. 37
 3.1.1. Allium schoenoprasum L. ... 37
3.1.2. Hypericum perforatum L. .. 38
3.1.3. Mercurialis annua L. .. 39
3.1.4. Nicotiana tabacum .. 40
3.1.5. Salvia divinorum ... 41
3.2. Metabolite profiling .. 42
 3.2.1. Metabolite profiling in Allium schoenoprasum 42
 3.2.2. Metabolite profiling in Mercurialis annua 47
3.3. Preparation and properties of isotope-labelled 4-diphospho
cytidyl-2C-methyl-D-erythritol 2-phosphate .. 52
3.4. Biosynthesis of hyperforin in Hypericum perforatum: experiment with 13CO$_2$... 59
 3.4. Use of 13CO$_2$ as metabolic tracer. Biosynthesis of salvinorin A 66
3.5. Isotopolog perturbation-relaxation experiments with growing Nicotiana tabacum ... 72
 3.5.1. Experiments with [U-13C$_6$]glucose 74
 3.5.2. Experiments with 13CO$_2$.. 80
 3.5.3. Experiments with [1-13C$_1$]glucose 83
 3.5.4. Experiments with [13C$_4$, 15N$_1$]aspartate 88
4. Summary ... 90
References ... 94
Abbreviations

ADP Adenosine-5´-diphosphate
AMP Adenosine-5´-monophosphate
ATP Adenosine-5´-triphosphate
CDP Cytidine diphosphate
CMP Cytidine monophosphate
CTP Cytidine triphosphate
COSY Correlated spectroscopy
δ Chemical shift
d Doublet
dd Double doublet
DHAP Dihydroxyacetone phosphate
DMAPP Dimethylallyl diphosphate
DMSO Dimethylsulfoxide
DX 1-Deoxy-D-xylulose
DXP 1-Deoxy-D-xylulose 5-phosphate
DXS 1-Deoxy-D-xylulose 5-phosphate synthase
GAP Glyceraldehyde 3-phosphate
HMBC Heteronuclear multiple bond correlation
HMQC Heteronuclear multiple quantum coherence
HPLC High performance liquid chromatography
IPP Isopentenyl diphosphate
IspC 1-Deoxy-D-xylulose 5-phosphate reductoisomerase
IspD 4-Diphosphocytidyl-2C-methyl-D-erythritol synthase
IspE 4-Diphosphocytidyl-2C-methyl-D-erythritol kinase
INADEQUATE Incredible Natural Abundance Double Quantum Transfer Experiment
J Coupling constant
LB-Medium Luria-Bertani Medium
m Multiplet
MEP 2C-Methyl-D-erythritol 4-phosphate
MS Mass spectrometry
MS-GC Mass spectrometry – Gas chromatography
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADP</td>
<td>Nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NADP⁺</td>
<td>Nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>n.d.</td>
<td>Not detected</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>ppm</td>
<td>Partsper million</td>
</tr>
<tr>
<td>q</td>
<td>Quadruplet</td>
</tr>
<tr>
<td>Rₚ</td>
<td>Retention factor</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>s</td>
<td>Singlet</td>
</tr>
<tr>
<td>t</td>
<td>Triplet</td>
</tr>
<tr>
<td>TEMED</td>
<td>Tetramethylethyldiamine</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>TOCSY</td>
<td>Total correlation spectroscopy</td>
</tr>
<tr>
<td>TPP</td>
<td>Thiamine pyrophosphate</td>
</tr>
<tr>
<td>TSP</td>
<td>3-(Trimethylsilyl)-1-propanesulfonic acid</td>
</tr>
</tbody>
</table>
1. Introduction

1.1. Metabolomics and metabolite profiling

The term metabolomics refers to the systematic study of the unique chemical fingerprints that specific cellular processes leave behind and specifically, the study of their small-molecule metabolite profiles. The subject has been covered in recent reviews (Last et al., 2007; Ward et al., 2007; Lindon et al., 2007; Verpoorte et al., 2007; Aranibar et al., 2006).

In recent years, more and more attention is being paid to the chemical characterization of the phenotype. Chemical characterization can be done on the level of macromolecules (e.g., proteomics and characterization of polysaccharides and lignins) or low molecular weight compounds (the metabolome). The metabolome consists of two types of compounds, the primary metabolites and the secondary metabolites. The primary metabolites are compounds involved in the basic functions of the living cell, such as respiration and biosynthesis of the amino acids and other compounds needed for a living cell. The primary metabolites in plants are important for the growth and agricultural yields. The secondary metabolites are species specific, they play a role in the interaction of a cell with its environment, which can be other cells in the organism or external organisms (Verpoorte et al., 2007). The interest in plant secondary metabolites was in part driven by medicinal aspects. The pure preparations of plant metabolites continue to provide important drugs such as atropine (Facchini, 2001), taxol (Eisenreich et al., 1996), morphine (Novak et al., 2000; Poeaknapo et al., 2004), and artemisinin (Covello et al., 2007).

Metabolomics originate from metabolite profiling. The earliest metabolite profiling publications originated from the Baylor College of Medicine in the early 1970s (Devaus et al., 1971; Horning and Horning, 1970, 1971). These authors illustrated their concept through the multicomponent analysis of steroids, acids, and neutral and acidic urinary drug metabolites using GC-MS. They are also credited with coining term “metabolite profiling” to refer to qualitative and quantitative analysis of complex mixtures of physiological origin. Soon afterwards, the concept of using metabolite profiles to screen, diagnose, and assess health began to spread (Cunnick et al., 1972; Mroczek, 1972). Thompson and Markey expanded on the quantitative aspects of using GC-MS for metabolite profiling in 1975 (Thompson and Markey, 1975) and by the late 1970s the methodology had attained enough interest to support a review article
(Gates and Sweeley, 1978). During the early 1980s, results from the application of HPLC and NMR for metabolite profiling (Bales et al., 1984, 1988) began appearing in the literature.

A number of different analytical strategies are employed, as shown in Table 1, with the ultimate goal of analysing a large fraction or all of the metabolites present. Realistically, a range of analytical technologies and not one will be employed to analyse all metabolites present (Dunn et al., 2005; Goodacre et al., 2004; Fiehn, 2002; Sumner et al., 2003).

Table 1. The range of different strategies employed in metabolic experiments (Dunn et al., 2005)

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolomics</td>
<td>Non-biased identification and quantification of all metabolites in a biological system. The analytical techniques must be highly selective and sensitive. No one analytical technique, or combination of techniques, can currently determine all metabolites present in microbial, plant or mammalian metabolomes.</td>
</tr>
<tr>
<td>Metabonomics</td>
<td>The quantitative measurement of the dynamic multiparametric metabolic response of living systems to pathophysiological stimuli or genetic modification.</td>
</tr>
<tr>
<td>Metabolite target analysis</td>
<td>Quantitative determination of one or few metabolites related to a specific metabolic pathway after extensive sample preparation and separation from the sample matrix and employing chromatographic separation and sensitive detection.</td>
</tr>
<tr>
<td>Metabolite profiling/metabolic profiling</td>
<td>Analysis to identify and quantify metabolites related though similar chemistries or metabolic pathways. Normally employ chromatographic separation before detection with minimal metabolite isolation after sampling.</td>
</tr>
<tr>
<td>Metabolic fingerprinting</td>
<td>Global rapid and high-throughput analysis of crude samples or samples extracts for sample classification or screening of samples. Identification and quantification is not performed. Minimal sample preparation.</td>
</tr>
<tr>
<td>Metabolic footprinting</td>
<td>Global measurement of metabolites secreted from the intra-cellular volume into the extra-cellular spent growth medium. High-throughput method not requiring rapid quenching and time consuming extraction of intra-cellular metabolites for microbial metabolomics.</td>
</tr>
</tbody>
</table>
1.2. Biosynthetic pathways and fluxes

Metabolism is based on the enzyme-catalysed interconversion of metabolites, and the resulting network of reactions and transport steps can be characterized in terms of the fluxes between different parts of the network. The plant metabolism is characterized by its varied biosynthetic capacity entailing the presence of multiple pathways for the synthesis of upward of 200,000 secondary metabolites across the plant kingdom (Sumner et al., 2003), by extensive subcellular compartmentation, which imposes a requirement for a substantial number of metabolite transfers between compartments (Knappe et al., 2003), and by the existence of identical metabolic steps and even pathways in different compartments. Thus, there is extensive duplication of the pathways of carbohydrate oxidation in the cytosolic and plastidic compartments of plant cells (Fig. 1; Neuhaus and Emes, 2000) and this is a major complication, for example, in analysing the operation of the oxidative pentose phosphate pathway (Kruger and von Schaewen, 2003).

Figure 1. The carbohydrate pathways in cytosolic and plastidic compartments
Most of the steps are reversible and communication between the cytosol and the plastids is facilitated by transporters. OPPP, oxidative pentose phosphate pathway; Fru-6-P, fructose 6-phosphate; Glc-6-P, glucose 6-phosphate; PEP, phosphoenolpyruvate.
Tracer studies using isotopes are among the most important methods for the study of biosynthetic pathways in both primary and secondary metabolism. For decades, the area was dominated by radioactive tracers which could be detected with high-sensitivity and accuracy using comparatively simple techniques. The application for biosynthetic work of stable isotopes had to await sensitive and specific detection methods, i.e. advanced mass spectrometry and high-resolution NMR spectroscopy.

Isotope incorporation studies, irrespective of the radioactive or non-radioactive character of the tracer, are most of the time interpreted in terms of simple source-and-sink models (Fig. 2). If the isotope from the proffered tracer (i.e. source) is diverted to the compound under study (i.e. the sink) there must be some metabolic pathway that explains this result. In fact, the diversion of an isotope from a given source to a given sink can vary over orders of magnitude. If the transfer rate is high or very high, there can be hardly any doubt about the existence of a close metabolic connection. On the other hand, is the transmission is in the low percent range or even lower, the result is open to many different interpretations.

Natural organic matter comprises the two stable isotopes of carbon, 12C and 13C, in approximately ratio of 99:1. The two isotopes are normally distributed to different molecular positions in an almost random (although not strictly random) fashion. The pure organic compound is a complex mixture of different isotopologues. Similar considerations apply to the stable isotopes of hydrogen and nitrogen too.

For any organic molecule comprising n carbon atoms, the number of carbon isotopologues is 2^n, and isotopologue space for that molecular species has 2^n dimensions. For example, natural glucose consists of 64 carbon isotopologues, where $[^{12}$C$_6]^{[U}$glucose is the most abundant species that accounts for about 93 mol% and each molecular species carrying a single 13C atom accounts for about 1.1 mol%.

A comprehensive isotopologue perturbation/relaxation analysis would involve the assessment of all isotopologues of all low weight metabolites in a given experimental system. The building blocks for complex natural products are extracted from a relatively small set of central metabolic intermediates and primary metabolites, and these are metabolically connected by known pathways of intermediary metabolites. For example, on the basis of known pathways of amino acids biosynthesis, the labelling pattern of central intermediates can be reconstructed from additional amino acids, as shown in Figure 3.

\footnote{Isotopologues are molecules differing in isotopic composition.}
Figure 2. Section of a metabolic network. A and B: In a source-and-sink model, an isotopically-labelled compound Y is applied to an organism. The fact that the target metabolite L acquires label is typically explained by a close biogenetic relationship of Y and L (case A), but can also be a consequence of a more complex biosynthetic history of L where Y is converted into intermediate E that serves as a precursor of L via a completely different pathway (case B). With a general precursor (such as glucose or CO₂) most if not all metabolites in the network acquire label (case C). The complex but specific isotopologue profiles can be deconvoluted by advanced bioanalytical methods (i.e. quantitative NMR spectroscopy and mass spectrometry). With multiple isotopologue profiles at hand, biosynthetic pathways and metabolite flux can be assessed on a quantitative basis.
Figure 3. Reconstruction of isotopologue compositions in central intermediates (compounds indicated in boxes) by retrobiosynthetic analysis of sink metabolites (e.g. amino acids) in plants. PRPP, phosphoribosyl pyrophosphate; TPP, thiamine pyrophosphate; PEP, phosphoenol pyruvate.

More recently, stable isotope experiments monitored by NMR spectroscopy and/or mass spectrometry have been adapted to studies with plant systems. A major aim of these studies is to provide a rational basis for the improvement of biomass and/or specific plant products. In recent years several techniques in plant sciences have been reported (Roscher et al., 2000; Ratcliffe and Shachar-Hill, 2001; 2006; Shachar-Hill, 2002; Kruger et al., 2003; Schwender et al., 2004; Krishnan et al., 2005).

The plant cells, tissues or embryos can be immersed or submersed in a nutrient medium, and a variety of isotope-labelled precursors can be used to generate a skewed isotopologue distribution that can subsequently evolve by metabolic processes that are
interpreted as a relaxation process following the initial perturbation. Specifically or uniformly 13C-labelled glucose and sucrose have been used, but in principle any labelled metabolite, such as amino acids, mevalonate and acetate that are absorbed by the cells or tissues, at a sufficient rate is suitable (Fig. 4). The label of the general precursor is diverted through the metabolic network by the reaction of the central metabolism and finally results in specific labelling patterns of metabolic products such as amino acids or secondary metabolites. As examples, metabolic flux patterns have been reported for tobacco plants (Ettenhuber et al., 2005a), and kernel cultures of *Zea mays* (Glawischnig et al., 2003; Ettenhuber et al., 2005b; Spielbauer et al., 2006).

A variety of methods are available for the application of isotope-labelled tracer compounds in studies with plants. (i) Aqueous tracer solutions can be fed to cut plant segments. (ii) Certain tracers such as isotope-labelled glucose can be applied via the root system of plants that have been grown under aseptic conditions. (iii) Cultured plant cells can be grown in medium containing the tracer.

Each of these methods has specific shortcomings. The use of cut segments involves massive traumatization of the plant tissue followed by rapid functional decline. Aseptically grown plants and/or tissue cultures are available for certain plant species but not for others. Moreover, cultured plant cells tend to lose biosynthetic potential and may display metabolic alterations by comparison with whole plants.

The application of labelled precursors presents technical problems for studies with whole plants too. Injection or infiltration of metabolites such as glucose is possible with tall species such as maize, but the dynamics of the distribution of the tracer in the whole plant is hard to control.

By comparison with these techniques, the use of 13CO$_2$ as tracer is absolutely atraumatic. Labelling experiments can be performed with whole plants under a wide variety of experimental conditions, and the extent of labelling can be modulated over a relatively wide range via the experimental conditions of the 13CO$_2$ pulse and the length of a consecutive chase period in normal air.
Figure 4. Functional description of biosynthetic pathways and metabolic networks under *in vivo* conditions.

$^{14}\text{CO}_2$ Labelling was a fundamental tool in the pioneering studies on photosynthesis by Calvin, Bassham and their co-workers (for review, see Bassham, 2003). On the other hand, there are hitherto few examples for the use of $^{13}\text{CO}_2$ as tracer in plant physiology (Schaefer *et al.*, 1975, 1980; Hutchinson *et al.*, 1976; Römisch-Margl *et al.*, 2007). The technology is based on the concept that a pool of multiply labelled photosynthate, predominantly in the form of monomeric and polymeric hexose derivatives, can be generated in an atmosphere of synthetic air containing highly enriched $^{13}\text{CO}_2$. Catabolic processing of these second generation tracer compounds (second generation by comparison with the applied $^{13}\text{CO}_2$) can afford a variety of multiply labelled third generation metabolites which can then be combined by anabolic processes with molecular species derived from unlabelled biomass. As a result, one can expect the formation of metabolites which can be interpreted as molecular mosaics assembled at random from labelled as well as unlabelled precursors. In the final outcome, the labelling patterns of the anabolites resulting from these processes may be
similar to the patterns expected for experiments with multiply labelled carbohydrate tracers such as [U-13C₆]glucose.

A classical milestone in plant sciences was the elucidation of nicotine biosynthesis in *Nicotiana tabacum*. Source-and-sink experiments clearly indicated that nicotinic acid (1) is a building block in the biosynthesis of the alkaloid (Dawson *et al.*, 1960). More recently, three different pathways for the biosynthesis of nicotinic acid have been described in nature, (i) starting from dihydroxyacetone phosphate (2) and aspartate (3) as building blocks, (ii) starting from N-formyl aspartate (4) and acetyl-CoA (5), and (iii) starting from tryptophan (6). It was therefore decided to quantitatively assess possible contributions of the respective pathways in the plant under physiological conditions. A labelling experiment with 13CO₂ as precursor showed the presence of multiple 13C-labelled isotopologues in nicotine (Römisch-Margl *et al.*, 2007). Retrobiosynthetic analysis of this labelling pattern was perfectly in line with a prediction by nicotinic acid formation *via* the aspartate pathway (Fig. 5B).

![Figure 5](https://example.com/figure5.png)

Figure 5. Possible biosynthetic pathways for the formation of nicotinic acid (1).

Retrobiosynthetic analysis has also been essential to assign the biosynthetic origin of many plant terpenes and isoprenoids. This class of compounds represents one of the largest groups of natural products, including essential plant metabolites such as sterols, carotenoids or the phytol moiety of chlorophylls.
All plant terpenoids studies up to about 1990 had been assigned a mevalonate origin on the basis of isotope incorporation experiments with mevalonate or acetate. Although these experiments typically proceeded with low incorporation levels attributed to permeability barriers, the label distribution, when analysed carefully, was in line with the mevalonate pathway.

Ultimately, the impossibility to reconcile certain biosynthetic data with the mevalonate paradigm was independently recognized by Rohmer, Arigoni and their co-workers (Rohmer et al., 1993; Schwarz, 1994; Broers, 1994). Rohmer and his co-workers studied the incorporation of various \(^{13}C_1\)glucose isotopomers and \(^{13}C\)acetate isotopomers into hopanoids in certain eubacteria and found the location of the label in the target molecules to be strangely at odds with the mevalonate prediction (Rohmer et al., 1993). Arigoni and Schwarz, observed the joint transfer of three contiguous carbon atoms from \([U-^{13}C_6]\)glucose into ginkgolides in seedlings of the tree *Ginkgo biloba*. This finding was not compatible with a mevalonate origin, since mevalonate is assembled from two-carbon precursors (Schwarz, 1994). Moreover, with \(^{13}C_1\)glucose as a precursor, Arigoni and Broers showed that labeling pattern of ubiquinone formed in *Escherichia coli* cannot be explained in terms of the mevalonate pathway (Broers, 1994). The labeling patterns were in line with 1-deoxy-D-xylulose 5-phosphate as precursor. The role of this intermediate was strongly supported by efficient incorporation of \(^2\)H-labelled 1-deoxy-D-xylulose into ubiquinones of *E. coli* (Broers, 1994). Earlier work had already shown that the carbon skeleton of 1-deoxy-D-xylulose can be incorporated into pyridoxal (vitamin B\(_6\)) (Hill et al., 1989) and into the thiazole ring of thiamine (vitamin B\(_1\)) (White, 1978; David et al., 1981; David et al., 1982). Thus, 1-deoxy-D-xylulose or a derivative thereof appeared to qualify as the branching intermediate for the biosynthetic pathway of vitamins B\(_1\) and B\(_6\) and a novel, non-mevalonate pathway of isoprenoid biosynthesis.

Follow-up studies using the retrobiosynthetic approach showed that the universal isoprenoid precursors, isopentenyl diphosphate (IPP, 7, Fig. 6) and dimethylallyl diphosphate (DMAPP, 8), for the vast majority of plant terpenes and isoprenoids are at least partially contributed from the non-mevalonate pathway (Eisenreich et al., 2001; Eisenreich et al., 2004a; Rohmer, 2006; Rohdich et al., 2005, 2003). Whereas the classical pathway proceeds via acetyl-CoA (5) and mevalonate (9) in the plant cell cytoplasm, the alternative pathway via 1-deoxyxylulose 5-phosphate (10) and 2-C-methylerythritol 4-phosphate (11) is operative in plastids (Fig. 6).
The recent studies have established that in plants the compartmental separation between the two isoprenoid pathways is not an absolute one. Minor amounts of metabolites common to both pathways can be exchanged in both directions via the plastid membranes. Thus, label of 1-deoxyxylulose-derived isoprenoid moieties can be diverted to the cytoplasm, where it can become part of sterol molecules (Arigoni et al., 1997). Likewise, a small fraction of isoprenoid moieties derived from the mevalonate pathway find their way into the plastid compartment where they become part of mono- and diterpenes which are predominantly obtained via the plastid-based deoxyxylulose pathway (Schwarz, 1994; Nabeta et al., 1995; Piel et al., 1998; Schuhr et al., 2003).

A wide variety of monoterpenes and diterpenes has been shown to be synthesized predominantly via deoxyxylulose pathway (Eisenreich et al., 1998). Most notably, the phytol side chain which recruits chlorophylls, the most abundant organic pigment, to the thylakoid membrane, is predominantly formed via deoxyxylulose pathway in higher plants. Carotenoids, which play a central role in all green plants as light-protecting and light-harvesting agents as well as specific roles as pigments in flowers, are derived from the deoxyxylulose pathway.

A powerful strategy for quantitative assessment of the differential contribution of the two isoprenoids pathways for the biosynthesis of individual terpenes uses 13C-labelled glucose as precursor for metabolic studies with whole plants, plant tissues or cultured plant cells (Adam and Zapp, 1998; Yang and Orihara, 2002; Eisenreich et al., 1997; Werner et al., 1997; Eichinger et al., 1999; Adam et al., 2002; Lichtenthaler et al., 1997; Kutrzeba et al., 2007). Since glucose is a general intermediary metabolite, the isotope from the proffered carbohydrate can be diverted to virtually all metabolic compartments and intermediates in plant cells. Using 13C NMR spectroscopy, the 13C enrichment for all non-isochronous carbon atoms can be determined with high precision. Biosynthetic information can then be derived from the positional aspects of the label distribution in the target molecule rather than from the net transfer of isotope. NMR spectroscopy can diagnose the joint transfer of 13C atom groups, even in case an intramolecular rearrangement, by a detailed analysis of the 13C coupling pattern via one- and two-dimensional experiments, and indeed, the NMR detection of 13C$_3$ fragments in plant terpenoids from experiments with [U-13C$_6$]glucose was crucial for the discovery of the non-mevalonate pathway in plants (Schwarz, 1994; Eisenreich et al., 1996).
Moreover, the formation of target enzyme products of non-mevalonate pathway was monitored with 13C NMR spectroscopy (Illarionova et al., 2006; Kaiser et al., 2007). Optically monitored assays that are also suitable for high-throughput screening have been reported for three protein of non-mevalonate pathway (Illarionova et al., 2006; Kuzuyama et al., 2000b; Bernal et al., 2005).

1.3. The methods to determine the metabolic pathways and fluxes

In metabolomics studies there are three phases. The first one is a qualitative phase in which as many as possible of the signals observed in the NMR are assigned to compounds. After this phase, it is necessary to determine the biological variation for the system studied, that means measuring a large number of samples, e.g., young and old leaves, different times of the day, and different stages of development of the plant. The last step is to compare the model system under different experimental conditions. An important aspect is the extraction method. Plants contain a wide variety of compounds
with totally different polarities. No single method is able to detect all metabolites in a single operation (Verpoorte et al., 2007).

Many analytical technologies have been enlisted to profile the metabolome. Methods based on infrared spectroscopy (IR) (Oliver et al., 1998), nuclear magnetic resonance (NMR) (Eisenreich and Bacher, 2007; Lewis et al., 2007; Verpoorte et al., 2007), thin layer chromatography (TLC) (Tweeddale et al., 1998), HPLC with ultraviolet and photodiode array detection (LC-UV-PDA) (Fraser et al., 2000), capillary electrophoresis coupled to ultraviolet absorbance detection (CE-UV) (Baggett et al., 2002), capillary electrophoresis coupled to laser induced fluorescence detection (CE-LIF) (Arlt et al., 2001), capillary electrophoresis coupled to mass spectrometry (CE-MS) (Soga et al., 2002), gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS) (Huhman and Sumner, 2002), HPLC coupled with both mass spectrometry and nuclear magnetic resonance detection (LC-NMR-MS) (Bailey et al., 2000) have been used (Sumner et al., 2003).

MS allows the determination of the molecular weight, and in case of high resolution also of the elemental composition, but this is not always sufficient to determine the structure. MS can help to identify in such case the compound through its fragmentation pattern, but in case of novel compounds further spectral data are required (Verpoorte et al., 2007).

By comparison with HPLC, GC, CE, MS, GC-MS and LC-MS, the amount of sample required is much larger in NMR spectrometry.

NMR spectroscopy is a powerful technique for the structural identification of metabolites that have been isolated in pure or at least partially purified form using appropriate techniques. It is also possible to record NMR spectra from crude metabolite mixtures and to extract the relative amounts of different metabolites by systematic signal deconvolution (Choi et al., 2006; Widarto et al., 2006; Yang et al., 2006). Because NMR is based on the fact that nuclei such as 1H, 13C, 31P can exist at different energy levels in a strong magnetic field because they possess nuclear spin, it can generate valuable structural information (Goodacre et al., 2004). The chemical shift range for 1H is small, and the 1H spectra of complex mixtures are necessarily crowded.

The combined application of advanced NMR spectroscopy allows the rapid mapping of spin networks yielding information on the homotopic 1H-1H and 13C-13C relations, and on the heterotopic 1H-13C relations. In order to determine the chemical
structure of an unknown molecule, the information on spin topology must be translated into a plausible chemical structure (Eisenreich and Bacher, 2007).

Although one-dimensional (1D) NMR studies are extremely useful in classifying similar groups of samples, problems with large numbers of overlapping peaks can make actual identification of large numbers of metabolites difficult. Two-dimensional (2D) NMR studies can help to overcome these problems. The use of 2D NMR for metabolomics is usually restricted to the characterization of unidentified compounds from the 1D spectra. The increased resolution provided by the second dimension can allow for the characterization of components in an unFractionated or partially fractionated mixture (Ward et al., 2007).

Two-dimensional NMR methods are used to increase spectral resolution, to establish connections between signals for metabolite identification and other purposes, and to achieve sensitivity enhancement. Homonuclear correlation experiments, such as correlation spectroscopy (COSY) (Piantini et al., 1982) or total correlation spectroscopy (TOCSY) (Braunschweiler and Ernst, 1983; Bax and Davis, 1985a; Davis and Bax, 1985a,b; Griesinger et al., 1988) recorded with different mixing times, are invaluable for analysing the 1H spectra of complex mixtures, such as root exudates and cell extracts (Fan, 1996), because they allow subsets of peaks in the crowded one-dimensional 1H spectra to be linked and assigned to specific metabolites. Heteronuclear experiments are similarly informative when the extracted metabolites have been labelled with 13C or 15N. For example, the proton-detected 1H-13C correlation experiments with gradient selection of magnetization transfer, e.g. heteronuclear multiple quantum coherence (HMQC) spectroscopy (Müller, 1979; Bax et al., 1983), heteronuclear single quantum coherence (HSQC) spectroscopy (Bodenhausen and Ruben, 1980) or heteronuclear multiple bond coherence (HMBC) spectroscopy (Bax and Summers, 1986) improve metabolite identification by providing information on the relationship between the signals from two different nuclei (Fan, 1996; Shachar-Hill et al., 1996; Mesnard et al., 2000; Ratcliffe and Shachar-Hill, 2005). Two-dimensional experiments, such as nuclear Overhauser effect spectroscopy (NOESY) (Macura and Ernst, 1980) or rotating frame Overhauser effect spectroscopy (ROESY) (Bothner-By et al., 1984; Bax and Devis, 1985b) provide information about dipolar couplings through space. On the basis of these experiments, a set of constraints for the constitution and the configuration of a molecule can be obtained which may provide sufficient information to unambiguously assign the
structure of a typical metabolite (see Fig. 7 for example) (Ostrozhenkova et al., 2007; Eisenreich and Bacher, 2007; Verpoorte et al., 2007).

On the other hand, the chemical shift values of organic molecules in solution are unfortunately not invariable. Rather, they are influenced in subtle ways by a variety of temperature, changes (even minor changes) in solvent makeup, and the concentration of the compound under study as well as all other compounds present in the mixture (Daviss, 2005).

Figure 7. HMBC spectrum of the hermidin from *Mercurialis annua* showing correlations between 13C and 1H via long-range coupling through bonds.

On the positive side, NMR spectroscopy has numerous advantages by comparison with other methods that should be viewed as complementary rather than competitive. In contrast to GC-MS, extracts can be directly or with little sample preparation steps analyzed by NMR analysis without prior derivatization and metabolite concentration can be determined an unbiased manner (Lindon et al., 2003; Nicholson and Wilson, 2003; Eisenreich and Bacher, 2007). However, the combination of NMR and MS-based technologies coupled with state of the art chromatographic assays presents a chance to fulfil the strived high-flying aim of developing metabolic profiling toward a sturdy
analysing platform indispensable in the comprehensive analysis of complex biological systems (Seger and Sturm, 2007). Hence, a metabolic fingerprinting approach yields data of a similar format: the first list contains mass-to-charge (m/z) ratios, chemical shifts or wave numbers for MS, NMR or Fourier transform-IR (FT-IR), respectively, and the second list contains their relative contribution (Alm and Arkin, 2003).

1.4. Objectives

In this thesis, metabolite profiles of plant extracts were determined by 1H NMR spectroscopy in order to estimate the impact of stress factors, such as saline and heavy metal ions. More specifically, *Mercurialis annua* (female and male plants) and *Allium schoenoprasum* were supplemented with saline or Cd$^{2+}$ salts. Extracts were then made from various parts of the plants and 1H NMR spectra were measured. The complex spectra of the mixtures were partially assigned by comparison with reference spectra from a spectral library (Chenomx).

The biosynthetic pathways of the hyperforin from *Hypericum perforatum*, salvinorin A from *Salvia divinorum*, hermidin from *M. annua* and nicotine from *Nicotiana tabacum* wild-type and *N. tabacum* mutants were investigated using labelled precursors such as 13CO$_2$ and [U-13C$_6$]glucose. As a general goal of the thesis, the 13CO$_2$ method should be compared with experimental settings using [U-13C$_6$]glucose as a precursor.

With the model studies mentioned above, labelling and profiling methods should be developed as general tools for the analysis of plant metabolism.
2. Materials and Methods

2.1. Instruments

Fractions collector: Pharmacia LKB-SuperFrac (Amersham Pharmacia Biotech, Freiburg, Germany)

Thermostat: Psycrotherm (New Brunswick Scientific Corp., New Brunswick, USA)

CO₂ Incubator: BIOBOX (GWS, Berlin, Germany)

Multi-Purpose equipment for UV 254/366 nm and illumination: DESAGA (Heidelberg, Germany)

HPLC pump: Wellchrom (preparative) (KNAUER, Germany)

Refractometer: (GAT LCD 201, Gamma Analysen Techik GmbH, Bremerhaven, Germany)

Heatblock: Techne DRI. BLOCK DB-2A (Wertheim, Germany)

Lyophylizer: CHRIST ALFA 1-4 (Osterode am Harz, Germany)

NMR: AVANCE DRX500, Spectrometer (Bruker, Karlruhe, Germany)

... FT-NMR AM 360, Spectrometer (Bruker, Karlruhe, Germany)

pH Meter: E512 Metrohm AG CH-9100 (Herisau, Switzerland)

Shaker: Lab Shaker and Certomat MO (B. Braun, Melsungen, Germany)

Spectrophotometer: Ultraspec 2000 (Amersham Pharmacia Biotech, Freiburg, Germany)

Sonifier: Sonifier B-12 (Branson SONIC Power Company, USA)

Scales: SCALTEC SBA 32, max 120 g, d=0.0001 g

Centrifuge: RC2-B with GSA-rotor (Sorvall, Connecticut, USA)

Table-centrifuge: GS-15R, rotor S4180 (Beckman, Fullerton, USA)

Eppendorf, Germany

Rotary evaporator: Vacuuumpump (Vacuubrand GmbH & Co, Wertheim, Germany)

Evaporator RE 120 (Büchi, Germany)

Water bath: (Köttermann, Germany)
2.2. Materials

2.2.1. Chemicals

All chemical substances were purchased from Merck (Darmstadt), Sigma-Aldrich (Deisenhofen), Serva (Heidelberg) and Fluka (Ulm), Isotec (Miamisburg), ChromaDex (Germany).

\[^2\text{HCl} \text{ (37\%; 99 \text{ atom-\% } ^2\text{H})} \quad \text{Aldrich Chem. Co. (Steinheim, Germany)} \]
\[^2\text{H}_2\text{O} \text{ (99,9\% atom-\% } ^2\text{H}) \quad \text{ISOTEC inc. A Matheson, USA Company (USA)} \]
\[C^2\text{HCl}_3 \text{ (99.8\% atom-\% } ^2\text{H}) \quad \text{Cortec (Paris, France)} \]
\[\text{DMSO-}^2\text{H}_6 \quad \text{ISOTEC inc. A Matheson, USA Company (USA)} \]
\[[U-^{13}\text{C}_6]\text{D-glucose} \quad \text{ISOTEC inc. A Matheson, USA Company (USA)} \]
\[[1-^{13}\text{C}_1]\text{D-glucose} \quad \text{Omicron (Soth Bend, Indiana, USA)} \]
\[[1-^2\text{H}_1]\text{D-glucose} \quad \text{Omicron (Soth Bend, Indiana, USA)} \]
\[\text{L-Asparagine-}^{13}\text{C}_4, ^{15}\text{N}_2 \quad \text{(98\% atom-\% } ^{13}\text{C}, \]
\[98\% \text{ atom-\% } ^{15}\text{N}) \quad \text{ISOTEC (Miamisburg, Germany)} \]
\[\text{Methanol-}^2\text{H}_4 \quad \text{(99.8\% atom-\% } ^2\text{H}) \quad \text{Aldrich (St. Luis, USA)} \]
\[\text{Pyridine-}^2\text{H}_5 \quad \text{(99\% atom-\% } ^2\text{H}) \quad \text{Sigma-Aldrich (Steinheim, Germany)} \]
\[\text{Salvinorin A} \quad \text{ChromaDex (Germany)} \]
\[\text{Sodium pyruvate } [3-^{13}\text{C}_3] \quad \text{(99\% atom-\% } ^{13}\text{C}) \quad \text{Cambridge Isotop Laboratories (Cambridge, UK)} \]
\[\text{K}^2\text{H}_2\text{PO}_4 \text{ (~95 atom-\% } ^2\text{H}) \quad \text{KH}_2\text{PO}_4 \text{ several times extracted with } \text{D}_2\text{O and} \]
Materials and Methods

lyophilised

Boronate Gel Bio-Rad Laboratories GmbH, Munich, Germany

*All organic solvents were distilled for analysis and isolations.

2.2.2. Enzymes

All commercial enzymes (Table 1) were purchased from Sigma (Deisenhofen, Germany), Fluka (Steinheim, Germany) and Boehringer (Mannheim, Germany).

Table 1. Commercial enzymes

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>EC-Number</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexokinase</td>
<td>2.7.1.1</td>
<td>Yeast</td>
</tr>
<tr>
<td>Glucose-6-phosphateisomerase</td>
<td>1.1.1.49</td>
<td>Yeast</td>
</tr>
<tr>
<td>Phosphofructokinase</td>
<td>2.7.1.11</td>
<td>Rabbit muscle</td>
</tr>
<tr>
<td>Aldolase</td>
<td>4.1.2.13</td>
<td>Rabbit muscle</td>
</tr>
<tr>
<td>Triosephosphateisomerase</td>
<td>5.3.1.1</td>
<td>Rabbit muscle</td>
</tr>
<tr>
<td>Pyruvatekinase</td>
<td>2.7.1.40</td>
<td>Rabbit muscle</td>
</tr>
<tr>
<td>Glucosedehydrogenase</td>
<td>1.1.1.47</td>
<td>Bacillus megaterium</td>
</tr>
<tr>
<td>Alkaline phosphatase</td>
<td>3.1.3.1</td>
<td>Mucous coat of stomach of bull</td>
</tr>
</tbody>
</table>

Non-commercial enzymes (Table 2) were isolated and purified as described (Wungsintaweekul, 2001; Herz, 2000).

Table 2. Non-commercial enzymes

<table>
<thead>
<tr>
<th>Name</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Deoxy-D-xylulose-5-phosphate synthase</td>
<td>B. subtilis (expression in E. coli)</td>
</tr>
<tr>
<td>1-Deoxy-D-xylulose-5-phosphate reductoisomerase</td>
<td>E. coli</td>
</tr>
<tr>
<td>4-Diphosphocytidyl-2C-methyl-D-erythritol synthase</td>
<td>E. coli</td>
</tr>
<tr>
<td>4-Diphosphocytidyl-2C-methyl-D-erythritol kinase</td>
<td>E. coli</td>
</tr>
</tbody>
</table>
2.2.3. Media for separation

Materials for column chromatography:

- Dowex 50 Wx8; Serva (Heidelberg, Germany)
- Dowex 1x8; Serva (Heidelberg, Germany)
- Kieselgel (Silica gel) 60; Merk (Darmstadt, Germany)
- Cellulose microcrystalline for column chromatography Merck (Darmstadt, Germany)

Materials for TLC:

- Microcrystalline cellulose; Stürmer & Schüle GmbH (Germany)
- Kieselgel 60 F254; Merk (Darmstadt; Germany)

HPLC:

- Column RP 18, Lichrosorb (preparative, 250 x 7.8 mm)
- Column RP 18, Lichrosorb (analytical, 250 x 4.5 mm)
- Luna-NH2, Phenomenex (preparative, 250 x 20 mm)

Preparation of Dowex 50 Wx8 (cation exchange, NH₄⁺-form)

Dowex 50 Wx8 material (NH₄⁺-form) (approx. 120 g) was steeped in 400 ml of sodium hydroxide for 3 h. The suspension was washed with water until neutral pH. Then, the material was steeped with 400 ml of 3 M HCl for 3 h, and then washed with water until neutral pH again. Then, the material was steeped in 400 ml of 2 M NH₄HCOO⁻ for 15 h and washed several times with water.

Preparation of Dowex 1x8 (anion exchange, formic-form)

Dowex 1x8 material (Cl⁻-form) (approx. 120 g) was steeped in 400 ml of 1 M HCl for 2 h. The suspension was washed with water until neutral pH. Then, the material was steeped with 400 ml of 1 M NaOH for 1 h, and then washed with water until neutral pH again. Then, the material was steeped in 400 ml of 2 M NH₄HCOO⁻ for 15 h and washed several times with water.
2.2.4. Spray reagents

2.2.4.1. Spray reagents for TLC:

1) *Anisaldehyde reagent* (Jork et al., 1998):
acetic acid/sulphuric acid/anisaldehyde (100:1:2, v/v).

2) *Ninhydrine reagent* (Jork et al., 1998):
Ninhydrine/butanol (3 mg/100 ml).

3) *Spray reagent for sugars*:
5.0 g trichloracetic acid
2.5 g phtalate acid
0.6 g aminohippuric acid
100 ml ethanol

2.2.5.1. Medium for *Nicotiana tabacum* (B5 medium/l):

3.1 g of salt mixture (Table 3)
10 ml of solution of vitamins (Table 3)
0.9 g of MgSO₄ x 7 H₂O
20 g of sucrose
7.0 g of bacteriological agar

Table 3. Salt and vitamins mixtures for the B5 medium

<table>
<thead>
<tr>
<th>Mixture</th>
<th>Components</th>
<th>mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt</td>
<td>EDTA</td>
<td>40.00</td>
</tr>
<tr>
<td></td>
<td>KJ</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>H₃BO₃</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>MnSO₄ x H₂O</td>
<td>10.00</td>
</tr>
<tr>
<td></td>
<td>ZnSO₄ x 7H₂O</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>Na₂MoO₄ x 2H₂O</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>CuSO₄ x 5H₂O</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>CoCl₂ x 6H₂O</td>
<td>0.025</td>
</tr>
<tr>
<td>Vitamins</td>
<td>Inosite</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Pyridoxine-HCl</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Thiamine-HCl</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Nicotinic acid</td>
<td>1</td>
</tr>
</tbody>
</table>
2.2.5.2. Medium for *Allium schoenoprasum* (Hougland medium):

Table 4. Components of Hoagland medium

<table>
<thead>
<tr>
<th>Components</th>
<th>g/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgSO$_4$ x 7H$_2$O</td>
<td>36.97</td>
</tr>
<tr>
<td>K$_2$SO$_4$</td>
<td>34.85</td>
</tr>
<tr>
<td>CaCl$_2$ x 2H$_2$O</td>
<td>58.81</td>
</tr>
<tr>
<td>NaH$_2$PO$_4$ x 2H$_2$O</td>
<td>22.71</td>
</tr>
<tr>
<td>Na$_2$HPO$_4$ x 2H$_2$O</td>
<td>1.91</td>
</tr>
<tr>
<td>H$_3$BO$_3$</td>
<td>17.2</td>
</tr>
<tr>
<td>ZnSO$_4$ x 7H$_2$O</td>
<td>9.3</td>
</tr>
<tr>
<td>MnSO$_4$ x H$_2$O</td>
<td>1.3</td>
</tr>
<tr>
<td>Na$_2$MoO$_4$ x 2H$_2$O</td>
<td>0.12</td>
</tr>
<tr>
<td>CuSO$_4$ x 5H$_2$O</td>
<td>1.65</td>
</tr>
<tr>
<td>Fe-citrate</td>
<td>1.06</td>
</tr>
<tr>
<td>FeSO$_4$ x 2H$_2$O</td>
<td>3.28</td>
</tr>
<tr>
<td>NaNO$_3$</td>
<td>84.98</td>
</tr>
<tr>
<td>NH$_4$Cl</td>
<td>53.49</td>
</tr>
<tr>
<td>NH$_4$NO$_3$</td>
<td>20.01</td>
</tr>
</tbody>
</table>

2.2.6. Plants

2.2.6.1. *Allium schoenoprasum*

Seedlings of *A. schoenoprasum* were grown in the greenhouse using commercial gardening soil mixture (Terreau Professional Gepac Einheits Erde, Germany) (provided by Prof. P. Schröder, GSF, Munich). The growth conditions were: 14 h light per day; day temperature, 25-28 °C; night temperature, 20-23 °C; relative humidity, 50%. Six to eight weeks old seedlings were used for the labelling experiments.

2.2.6.2. *Hypericum perforatum*

The plants of *H. perforatum* 'Elixier' were obtained from Rühlemann's Gärtnerei (Horstedt, Germany).
2.2.6.3. *Mercurialis annua* L.

Seedlings of *M. annua* L. were grown in the greenhouse using commercial gardening soil mixture (Terreau Professional Gepac Einheits Erde, Germany). The growth conditions were: 14 h light per day; day temperature, 25-28 °C; night temperature, 20-23 °C; relative humidity, 50%. Six to eight weeks old seedlings were used for the labelling experiments.

2.2.6.4. *Nicotiana tabacum*, var. *havanna piperita*

N. tabacum wild-type and *N. tabacum* mutants (*rpoA* mutants) were grown under aseptic conditions from sterilised seed or shoot cutting explanted on B5 medium (Manandhar and Gresshoff, 1980) containing 2% (w/v) sucrose and solidified with 0.7% bacteriological agar and a mixture of \([U-^{13}C_6]\)glucose and unlabelled sucrose at 25 °C with 8/16 h dark/light illumination cycles at a light intensity of 0.5-1 Wm\(^{-2}\) (Osram L85W/25 Universal fluorescent lamps) in the Institute of Botany, Ludwig Maximilian Universität München by Prof. Dr. Koop. *rpoA* Mutants lack an active photosynthetic system and display a white phenotype.

2.2.6.5. *Salvia divinorum*

The plants of *S. divinorum* were obtained in 2006 from Blumenschule, Schongau (Schongau, Germany). Notably, the distribution of *S. divinorum* has been restricted by decision of government in Germany from 01.03.2008.

2.3. Methods

2.3.1. Experiments with *Allium schoenoprasum*

Seeds of *Allium schoenoprasum* (Michal cv.) were germinated in commercial gardening soil mixture (Terreau Professional Gepac Einheits Erde, Germany). Experiments were carried out in Hoagland liquid medium. Seedlings were removed from the soil and the roots thoroughly washed in water before putting in the liquid medium. The plants were left to adapt to the medium for seven days, and then various nutritional conditions were applied: control – Hoagland medium; treatment medium: cadmium 50 μM Cd\(^{2+}\) was added. The growth conditions were: photoperiod, 14 h light and 10 h dark; day temperature, 25-28 °C and night temperature, approx. 16 °C; relative humidity, 50%. At given intervals samples were taken for analyses.
2.3.2. Metabolite profiling in *Allium schoenoprasum*

Plant material (fresh weight, 1.5 g) each from shoots and roots was triturated with liquid nitrogen. The cold slurry was extracted with 4 ml of 1 M perchloric acid. The slurry was centrifuged at 4000 rpm for 30 min. The supernatant was neutralised with 1 M potassium hydroxide and centrifuged at 4000 rpm for 15 min. The supernatant was lyophilised. The residue was dissolved in the mixture of 700 µl ²H₂O, and 50 µl of 150mM K²H₂PO₄ and centrifuged at 4000 rpm for 15 min. To the supernatant (550 µl) 10 µl of 3-(trimethylsilyl)-1-propanesulfonic acid, sodium salt (TSP) were added as internal standard.

2.3.3. NMR spectroscopy

The samples were analysed by ¹H NMR and recorded at 500 MHz with presaturation of the solvent (water) signal. The parameters for ¹H-NMR spectra were following: the temperature - 300 K; the frequency - 500,13 MHz; a set of data - 32 K; 45° Pulse-angle 4 µs; spectral width - 5,5 Hz; watersupression at 4,75 ppm. NMR signals were analysed with “Chenomx NMR Suite 4,6”. With this software, metabolites were assigned and the concentration was calculated using the known concentration of the internal standard, TSP (0.19 mM).

2.3.4. Experiments with *Hypericum perforatum*

Four plants of *H. perforatum* ´Elixier´ with a height of about 40 cm were placed in a closed plant growth chamber (BIOBOX, GWS, Berlin). During an adaptation light period of 5 hours at 26 °C and a dark period of 12 hours at 22 °C and 66 % humidity, the plants were exposed to synthetic air containing 20.5 % oxygen and 600 ppm CO₂. Prior to the labelling period, the chamber was flushed with synthetic air containing only oxygen and nitrogen. Then, the plants were exposed to synthetic air containing 600 ppm ¹³CO₂ (Campro Scientific, Berlin, Germany, > 99 % ¹³C abundance) as the only carbon source and were illuminated with white light (about 20,000 lux) at 26 °C for 5 hours. During this period, the plants consumed about 1.4 L of ¹³CO₂. Subsequently, the plants were kept for 18 hours in the dark and were then allowed to grow under standard greenhouse conditions at ambient temperature for 5 days. After the chase phase, the plants were harvested and lyophilized.
2.3.5. Isolation of hyperforin

Hyperforin was isolated as described previously (Adam et al., 2002). The flowers (fresh weight, 25 g) were triturated with liquid nitrogen. The cold slurry was transferred into a flask and extracted with 150 ml of n-heptane under a nitrogen atmosphere for 15 min. The slurry was filtered. The solution was concentrated to dryness under reduced pressure. The residue was dissolved in 100 ml of n-heptane, which had been saturated with methanol. The yellow solution was extracted three times with 50 ml of methanol saturated with n-heptane. The alcoholic fractions were combined and concentrated to dryness under reduced pressure. The residue (80 mg) was applied to a column of silica gel (Silica Gel 60, Sigma-Aldrich Chemie, Steinheim, Germany, 20 × 1 cm), which was developed with a mixture of hexane and ethyl acetate (9:1; v/v). Aliquots were spotted on thin-layer plates (TLC) (Silica Gel 60 F254, Fluka) that were developed with the same solvent mixture. The TLC plates were dried and sprayed with a mixture of anisaldehyde/sulfuric acid/acetic acid (1:2:100, v/v). Hyperforin afforded a blue spot with an Rf value of 0.40. Fractions were combined and concentrated to dryness under reduced pressure affording 60 mg of a colourless oil.

2.3.6. NMR Spectroscopy

Hyperforin was dissolved in C2H4O. 1H and 13C NMR spectra were recorded at 500 MHz and 125 MHz, respectively, using a Bruker DRX 500 spectrometer at a temperature of 17 °C. The parameters for 13C NMR spectra were following: a set of data size 32 K; 30° pulse-angle, 3 µs; spectral width, 5,5 Hz.

2.3.7. Isotopologue abundance by NMR spectroscopy

Relative 13C abundance was determined by comparing the signal intensities of the biosynthetic samples with the signals of samples with natural 13C abundance measured under identical spectroscopic conditions (Eisenreich and Bacher, 2000) (Equation 1).

\[
\%
\text{C}_{\text{rel.}}^{13} = \frac{c I^*}{c I} \times \frac{1}{f} \times 100
\]

Equation 1

\%
\text{C}_{\text{rel.}}^{13}: \text{relative } 13\text{C enrichment;}

c I^*: \text{integral of } 13\text{C signal of labelled sample in NMR spectra;}

Materials and Methods

$^c I$: integral of 13C signal of sample in NMR spectra with natural abundance of 13C enrichment:

f : factor of calibration: the smallest data of $^{c}I^{*}$.

Absolute 13C abundances of individual isotopologues were determined as described earlier (Eisenreich and Bacher, 2000) (Equation 2).

$$\%^{13}C_{abs.} = \frac{^{H}I_{s}}{^{H}I_{s} + ^{H}I_{Z}} \times 100$$

Equation 2

$^{13}C_{abs.}$: absolute 13C enrichment;

$^{H}I_{s}$: the sum of integrals of satellites in 1H NMR spectra;

$^{H}I_{Z}$: integral of central signal in 1H NMR spectra.

Isotopomers carrying blocks of two or more 13C atoms which are connected by one, two or three bonds give rise to satellites by 13C coupling. The abundance of multiply-labelled isotopomers can therefore be easily separated from that of single-labelled isotopomers which give rise to central signals (Equation 3).

$$\%^{13}C^{^{13}}C = \frac{^{c}I_{s}}{^{c}I_{s} + ^{c}I_{Z}} \times 100$$

Equation 3

$^{13}C^{^{13}}C$: percent 13C13C coupling;

$^{c}I_{s}$: the sum of integrals of satellites in 13C NMR spectra;

$^{c}I_{Z}$: integral of central signal in 13C NMR spectra.

The multiplication of absolute 13C enrichment of 13C atom under study with calculated $\%^{^{13}}C^{^{13}}C$ gives the concentration of isotopologues or isotopologue groups in mol% (Equation 4).
Materials and Methods

\[
mol\% = \frac{\%^{13}C^{13}C \times 13C_{abs}}{100}
\]

Equation 4

\[mol\% : \text{concentration of isotopologue groups in mol \%;} \]
\[\%^{13}C^{13}C : \text{13C-13C-coupling in the }^{13}\text{C NMR spectrum of a given C-atom;} \]
\[13C_{abs} : \text{absolute }^{13}\text{C enrichment of a given C-atom.} \]

2.3.8. Protein hydrolysis and amino acid derivatization.

Freeze-dried plant material (100 mg) was suspended in 2 ml of 6 M hydrochloric acid. The mixture was heated at 105 °C for 24 h under an inert atmosphere and was then centrifuged. An aliquot (500 µl) of the supernatant was dried under a stream of nitrogen. The residue was dissolved in 50 µL of acetonitrile. N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide containing 1% tert-butyldimethyl-silylchloride (50 µl) was added. The mixture was kept at 70 °C for 30 min and was used for GC-MS analysis without further work-up.

2.3.9. Mass spectrometry

GC-MS analysis was performed using a GC-17A Gas Chromatograph (Shimadzu, Duisburg, Germany) equipped with a fused silica capillary column (Equity TM-5; 30 m x 0.25 mm x 0.25 µm film thickness; SUPELCO, Bellafonte, PA) and a QP-5000 mass selective detector (Shimadzu, Duisburg, Germany) working with electron impact ionization at 70 eV. An aliquot (1 µl) of a solution containing TBDMS amino acids was injected in 1:5 split mode (interface temperature, 260 °C; helium inlet pressure, 70 kPa). The column was developed at 150 °C for 3 min and then with a temperature gradient of 7 °C/min to a final temperature of 280 °C that was held for 3 min. Data were collected using the Class 5000 software (Shimadzu, Duisburg, Germany). Selected ion monitoring data were acquired using a 0.3 s sampling rate (for details, see also Römisch-Margl et al., 2007). Samples were analysed at least three times.

2.3.10. Isotopologue abundances by GC-MS

Data evaluation was performed using Microsoft Excel Software. Theoretical isotope ratio and numerical deconvolution of the data were computed according to Lee et al. (1991) (Equations 5-8) resulting in molar excess of carbon isotopologue groups (X-groups) or isotopologues of the amino acid skeleton. The isotopomer with the base
mass (lowest mass) is designated as \(X_0 \), and the other isotopomers are represented by \(X_1, X_2, X_3, \ldots, X_r \), where the subscripted numbers are the incremental masses of the isotopomer over the base mass, and there are \((r + 1) \) isotopomers of the compound \(X \).

The relative abundance (fractional molar abundance) of these isotopic species are represented by \(p_0, p_1, p_2, \ldots, p_r \), and the sum of all the \(ps \) equals to 1 \((\Sigma p_i = 1)\).

The component \(X \) is a mixture of these molecules and can be represented by a normalized distribution (Equation 5):

\[
(p_0X_0 + p_1X_1 + p_2X_2 + \ldots + p_iX_i), \quad \text{Equation 5}
\]

and \(\Sigma p_i = 1 \).

Similarly, a mixture of the molecules of a component \(Y \) can be denoted by
(Equation 6):

\[
(q_0Y_0 + q_1Y_1 + q_2Y_2 + \ldots + q_sY_s) \quad \text{Equation 6}
\]

and \(\Sigma q_i = 1 \).

For a compound consisting of components \(X \) and \(Y \), the mass isotopomer distribution for the compound \(XY \) is given by the product (Equation 7):

\[
(p_0X_0 + p_1X_1 + p_2X_2 + \ldots) \times (q_0Y_0 + q_1Y_1 + q_2Y_2 + \ldots) =
= (p_0q_0X_0Y_0 + p_0q_1X_0Y_1 + p_0q_2X_0Y_2 + \ldots) \quad \text{Equation 7}
\]

The relationship between the mass isotopomer distribution \((m_0, m_1, m_2, \ldots, m(r + s))\) and the individual relative isotope abundance of \(X \) \((p_0, p_1, p_2, \ldots, p_r)\) and \(Y \) \((q_0, q_1, q_2, \ldots, q_s)\) can be represented by matrix multiplication. The set of liner equations resulted from the matrix multiplication is shown below (Equation 8):

\[
\begin{align*}
p_0q_0 &= m_0 \\
p_1q_0 + p_0q_1 &= m_1 \\
p_2q_0 + p_1q_1 + p_0q_2 &= m_2 \\
p_3q_0 + p_2q_1 + p_1q_2 + p_0q_3 &= m_3 \\
&\quad \ldots \\
p_rq_{s-1} + p_{r-1}q_s &= m(r + s - 1)
\end{align*} \quad \text{Equation 8}
\]
The above relationship can be used to predict the mass isotopomer distribution of a compound XY when the mass isotopomer distribution of the components X and Y are known.

2.3.11. Experiments with *Mercurialis annua* L.

2.3.11.1. Metabolite profiling in *M. annua*

Seeds of *M. annua* were germinated in commercial gardening soil mixture (Terreau Professional Gepac Einheits Erde, Germany). The young plants were divided into two groups: control and experimental plants. All plants were grown under the following conditions: photoperiod, 14 h light and 10 h dark; day temperature, 25-28 °C and night temperature, approx. 16 °C; relative humidity, 50%. The plants were poured with 50 mM of 0.9% sodium chloride (salinity) for four days. After four days the plants from both groups were harvested for analysis.

The samples for \(^1\)H NMR were prepared as described under Methods 2.3.3.

2.3.11.2. Experiments with \([U-\text{13}C_6]\)glucose

Cut seedlings of *M. annua* (approximately 15 g, fresh weight) were immersed into a solution containing 0.05% \([U-\text{13}C_6]\)glucose (99.9% 13C enrichment), 0.95% (w/w) unlabelled glucose and 1 mM ascorbic acid. The samples were incubated in the dark for 5 days. The seedlings consumed approximately 100 ml of the solution.

2.3.11.3. Experiments with \(^{13}\text{CO}_2\)

Growing plants of *M. annua* with a height of about 20 cm were placed in a plant growth chamber (BIOBOX, GWS, Berlin). During an adaption light period of 6 hours at 26 °C and a light period of 12 h at 22 °C and 66% humidity, the plants were exposed to synthetic air containing 20.5% oxygen and 600 ppm CO\(_2\). The chamber was flushed with an oxygen/nitrogen mixture (20:80, v/v), and the plants were then exposed to synthetic air containing 600 ppm \(^{13}\text{CO}_2\) under white light (20,000 lux) at 26 °C for 3 h. The plants consumed approximately 0.8 L of \(^{13}\text{CO}_2\). Subsequently, the plants were kept in the dark for 18 h and were then allowed to grow under standard greenhouse conditions at ambient temperature for 4 days.
2.3.11.4. Experiments with $[1^{-13}C_1]$glucose
Cut seedlings of *M. annua* (approximately 12 g, fresh weight) were immersed into a solution containing 55 mM $[1^{-13}C_1]$glucose (99.9% 13C enrichment) and 1 mM ascorbic acid. The samples were incubated in the dark for 7 days. The seedlings consumed approximately 200 ml of the solution.

2.3.11.5. Experiments with $[^{13}C_4, ^{15}N_1]$aspartate
Cut seedlings of *M. annua* (approximately 18 g, fresh weight) were immersed into a solution containing 5 mM $[^{13}C_4, ^{15}N_1]$aspartate (>98% 13C and 15N enrichment) and 1 mM ascorbic acid. The samples were incubated in the dark for 5 days. The seedlings consumed approximately 100 ml of the solution.

2.3.11.6. Isolation of hermidin
Plant material (fresh weight, 15 g) was triturated with liquid nitrogen. To the cold slurry, 150 ml of distilled water and 5 ml of chloroform were added, and the mixture was kept under a nitrogen atmosphere for 45 min. The slurry was filtered, and sodium dithionite (500 mg) was added. The mixture was extracted with two 100 ml portions of chloroform. The organic phase was evaporated to dryness under reduced pressure.

2.3.11.7. NMR spectroscopy
NMR spectra were recorded at 27°C using a DRX 500 spectrometer (Bruker Instruments, Karlsruhe, Germany). Hermidin was measured in C2HCl3 as solvent. Two-dimensional COSY, HMQCl, HMBC experiments were measured with standard Bruker software (TopSpin).

2.3.12. Experiments with *Nicotiana tabacum*
Sterile plants of *N. tabacum* wild-type and *N. tabacum* mutants lacking plastidic RNA polymerase (*rpoA* mutants) were grown on agar containing a mixture of 400 mg of $[U^{-13}C_6]$glucose (99% 13C abundance) and 19.8 g of unlabelled sucrose per liter. The plants were grown at 25 °C with 8/16 h dark/light illumination cycles.

2.3.13. Isolation of nicotine
Tobacco leaves (fresh weight, 15 g) were harvested after a growth period of 20 days. They were frozen with liquid nitrogen, pulverized with Ultra Turax and extracted
with 300 ml of methanol. The dark green solution (after filtration) was reduced to approx. 5-10 mL. The solution was extracted with 300 mL of ether. After separation of the ether phase, the pH of the water phase containing nicotine was adjusted to 11 with 25% solution of ammonium hydroxide. Then the water solution was extracted with 300 mL of ether again. Then, after separation of ether phase, the water phase was extracted with 1 ml of C$_2$HCl$_3$. The solution of C$_2$HCl$_3$ was separated from the water phase and analyzed by 1H and 13C NMR.

2.3.14. NMR spectroscopy

NMR spectra were recorded at 27 °C using a DRX 500 spectrometer (Bruker Instruments, Karlsruhe, Germany). Nicotine was measured in C$_2$HCl$_3$ as solvent.

2.3.15. Isolation of glucose

Tobacco leaves (approx. 15 g wet weight after isolation of nicotine) were extracted with 300 ml of water. The mixture was centrifuged, and 300 ml of methanol were added. The solution was filtered and evaporated to dryness under reduced pressure. The residue was dissolved in 2 ml of water and pH of solution was corrected to 11 by addition of 1 ml of 25% ammonia. The isolation and purification of glucose were described previously (Römisch-Margl et al., 2007). Briefly, the solution was applied to a Boronate Gel column (Bio-Rad Laboratories GmbH, Munich, Germany) which was washed with 0.25% ammonia until all colored components were removed. The column was then developed with 1% formic acid. Fractions containing glucose were combined and evaporated to a volume of 5 ml under reduced pressure. The solution was applied to a Dowex 1 x 8 column (Serva Electropheresis GmbH, Heidelberg, Germany) which was eluted with water. Fractions with glucose were combined and evaporated to a volume of 5 ml under reduced pressure. Aliquots were applied to a Luna NH$_4$ HPLC column (Phenomenex, TorranceCA, USA, 250 x 20) which was developed with a mixture of acetonitril/water (85:15, v/v) (40°C; flow rate, 30 ml/min). The effluent was monitored refractometrically using a GAT LCD 201 differential refractometer from Gamma Analysen Technik GmbH, Bremerhaven, Germany. Fractions were combined and lyophilised.
2.3.16. Isolation of glucose from cellulose (Sun, et al., 2004)

The plant material (dry weight, 50 mg) was extracted with 2 ml of 80% acetic acid and 0.2 ml of concentrated nitric acid at 120°C for 30 min. 20 ml of ethanol were added and the mixture was centrifuged at 4000 rpm for 15 min. The supernatant was concentrated under reduced pressure. The residue was heated with 1 M sulfuric acid at 120°C for 30 min. The supernatant was neutralized with barium hydroxide, centrifuged and concentrated under reduce pressure. Glucose was isolated and purified with HPLC as described under Methods 2.3.15.

2.3.17. NMR spectroscopy

Glucose was dissolved in D2O. 1H and 13C NMR spectra were recorded at 27 °C using a DRX 500 spectrometer (Bruker Instruments, Karlsruhe, Germany). Glucose was measured as described under Methods 2.3.3 and 2.3.6.

2.3.18. Experiments with Salvia divinorum

2.3.18.1. Experiments with [U-13C6]glucose

Cut seedlings of S. divinorum (approx. 30 g, fresh weight) were immersed into a solution containing 0.05% [U-13C6]glucose (99.9% 13C enrichment), 0.95% (w/w) unlabelled glucose. The samples were incubated in the dark for 14 days. The seedlings consumed approximately 200 ml of the solution.

2.3.18.2. Experiments with 13CO2

A plant of S. divinorum with a height of about 20 cm was placed into a plant growth chamber (BIOBOX, GWS, Berlin). During an adaptation light period of 6 hours at 26 °C and a light period of 12 h at 22 °C and 66% humidity, the plant was exposed to synthetic air containing 20.5% oxygen and 700 ppm CO2. The chamber was flushed with an oxygen/nitrogen mixture (20:80, v/v), and the plant was then exposed to synthetic air containing 600 ppm 13CO2 under white light (20,000 lux) at 26 °C for 4 h. The plant consumed approximately 0.5 L of 13CO2. Subsequently, the plant was kept in the dark for 18 h and was then allowed to grow under standard greenhouse conditions at ambient temperature for 10 days.
2.3.18.3. Isolation of salvinorin A

Dried leaves of *S. divinorum* (5.0 g) were powdered and steeped with two 150 ml portions of acetone. Filtration and concentration of the filtrate under reduced pressure gave a dark green oil (250 mg).

2.3.18.4. Purification of salvinorin A with column chromatography

The residue (250 mg) was applied to a column of silica gel (Silica Gel 60, Merck, Darmstadt, Germany, 20 x 1 cm), which was developed with a mixture of ether and hexane stepwise from 50 to 90% ether (v/v). Salvinorin A was eluted with ether/hexane (90/10, %). Aliquots were spotted on thin-layer chromatography (TLC) (Silica Gel 60 F₂₅₄, Merck), which was developed with the same solvent mixture. The TLC plates were dried and sprayed with anisaldehyde reagent (anisaldehyde/sulphuric acid/acetic acid; 1:2:100; v/v). Salvinorin A afforded a violet spot with an *R*_f value of 0.63. Fractions were combined and concentrated to dryness under reduced pressure (yellow oil, 120 mg).

2.3.18.5. Purification of salvinorin A with HPLC

The residue (120 mg) was dissolved in 250 µl of acetonitril. Aliquots were applied to a HPLC column RP-18 (250 x 4.6 mm) which was developed with acetonitril/water (45:55, v/v) (flow rate, 1 ml/min). Salvinorin A was detected by UV absorption at 208 nm. The *R*_f value of salvinorin A was approximately 20 ml.

2.3.18.6. Protein hydrolysis and amino acid derivatization

The amino acids were isolated, derivatized and analysed as described under Methods 2.3.8, 2.3.9, and 2.3.10.

2.3.19. Isolation of amino acids (Eisenreich *et al.*, 1991)

The labelled plant material was heated with 150 ml of 6 M HCl and 4 ml of thioglycolic acid at 110°C for 24 h. The suspension was filtered and evaporated under reduced pressure to a small volume.
Materials and Methods

The first column: Dowex 50 Wx8 (NH\textsubscript{4}+-form)

The first column (200-300 mesh, 2 x 30 cm) was used for separation of neutral amino acids (fraction 1), phenylalanine/tyrosine (fraction 2), lysine (fraction 3), histidine (fraction 4), and arginine (fraction 5).

The sample was applied to the column and washed with 200 ml of water. The column was developed stepwise with: 1000 ml of 0.2 M ammonium formiate (pH 4.5); 1500 ml of 0.2 M ammonium formiate (pH 6.5), and 1000 ml of 0.5 M ammonium formiate (pH 4.5) (flow rate, approximately 18 ml/min). Fractions 1-5 were lyophylised.

The second column: Dowex 1x8 (COO--form)

The dry powder containing neutral and acid amino acids (fraction 1) was dissolved in 20 ml of water and applied to a column of Dowex 1x8 (COO--form) (200-300 mesh, 2 x 35 cm) which was developed with 200 ml of water and 300 ml of 10mM formic acid (flow rate, approximately 18 ml/min). The fractions with glutamate and aspartate were combined and lyophilised. The fractions with neutral amino acids were combined, lyophilised, dissolved in 20 ml of water, and applied to the third column.

The third column: Dowex 50 Wx8 (H+-form)

The sample containing neutral amino acids was applied to a column of Dowex 50 Wx8 (H+-form) (200-300 mesh, 3 x 30 cm) which was developed with 200 ml of water and 2000 ml of a lineal gradient of 0-3 M HCl (flow rate, approximately 15 ml/min). The fractions containing amino acids: serine/threonine, glycine/alanine, valine, proline, isoleucine and leucine were lyophilised.

2.3.20. Identification of amino acids

Aliquots were spotted on thin-layer chromatography (TLC) (Cellulose, Merck), which was developed with a mixture of n-butanol/acetic acid/water (50/20/30, v/v/v). The TLC plates were dried and sprayed with a ninhydrine reagent. Most amino acids afforded violet spots with the exception of proline (yellow) and tyrosine (brown). The fractions with amino acids were analysed by 1H and 13C NMR spectroscopy using 2H\textsubscript{2}O as solvent.
Materials and Methods

2.3.21. Enzymatic syntheses

2.3.21.1. Preparation of [3,4,5-13C3]1-Deoxy-D-xylulose 5-phosphate (10)

[3,4,5-13C3]1-Deoxy-D-xylulose 5-phosphate (10) was prepared according to published procedures (Illarionova et al., 2006; Hecht, et al., 2001; Rohdich et al., 2000) with some modifications. A reaction mixture containing 150 mM Tris hydrochloride, 10 mM magnesium chloride, 1 g (4.9 mmol) of [U-13C6]glucose, 0.099 g (0.18 mmol) of ATP, 0.23 g (1.5 mmol) of dithiothreitol, 0.3 g (0.65 mmol) of thiamine diphosphate, and 2.2 g (10.6 mmol) of potassium phosphoenolpyruvate in a total volume of 300 ml was adjusted to pH 8.0 by the addition of 5 M sodium hydroxide. To this mixture, 9 mg (750 U) of hexokinase, 1.1 mg (570 U) of glucose 6-phosphate isomerase, 13 mg (50 U) of fructose 6-phosphate kinase, 0.1 mg (620 U) of triose phosphate isomerase, 18 mg (60 U) of fructose 1,6-biphosphate aldolase, 1.7 mg (590 U) of pyruvate kinase, and 12 mg (30 U) of 1-deoxy-D-xylulose 5-phosphate synthase (Dxs) were added. The final volume was 320 ml. The mixture was incubated at 37 °C. Aliquots of 100 µl were retrieved at 1 h intervals; 2H2O was added to a volume 500 µl and 13C NMR spectra were obtained in order to monitor the reaction progress. The reaction was finished after 3 h. The solution was filtered and lyophilised.

Aliquots (8 g) of the crude product were dissolved in 40 ml of 2-propanol/methanol/water (4:2:4, v/v). The solution was placed on a column of microcrystalline cellulose (3 x 50 cm) which was developed with 2 l of 2-propanol/methanol/water (4:2:4, v/v) (flow rate, 1.5 ml/min). Aliquots were spotted on thin-layer chromatography (TLC) (Cellulose, Merck), which was developed with the same solvent. The plates were dried, sprayed with a mixture of acetic acid/sulphuric acid/anisaldehyde (100:1:2, v/v), and heated at 110 °C. The product afforded violet spots (Rf=0.7). Fractions were combined and evaporated to a volume of about 100 ml under reduced pressure. The solution was lyophilised. The yield was about 75%. The concentration of product was determined by 13C NMR using [1-13C1]glucose as internal standard.

2.3.21.2. Preparation of [1,3,4-13C3]2C-Methyl-D-erythritol 4-phosphate (11)

To a solution of [3,4,5-13C3]1-Deoxy-D-xylulose 5-phosphate (10), 2.25 g (11 mmol) of unlabelled glucose, 250 mg (300 mmol) of NADP+, 1.4 mg (150 U) of glucose dehydrogenase, and 24 mg (100 U) of IspC protein were added, and the mixture
was incubated at 37 °C. The formation of [1,3,4-\(^{13}\)C\(_3\)]2C-methyl-D-erythritol 4-phosphate (11) was monitored by \(^{13}\)C NMR and was found completed after 3 h. The mixture was filtered and lyophilised. Aliquots of the crude product were purified as described for [3,4,5-\(^{13}\)C\(_3\)]1-Deoxy-D-xylulose 5-phosphate (10). The concentration of product was monitored by \(^{13}\)C NMR using [1-\(^{13}\)C\(_1\)]glucose as internal standard.

2.3.21.3. Preparation of [1,3,4-\(^{13}\)C\(_3\)]4-Diphosphocytidyl-2C-methyl-D-erythritol (14)

A reaction mixture containing 150 mM Tris hydrochloride, pH 8.0, 10 mM magnesium chloride, 0.23 g (1.5 mmol) of dithiothreitol, 2.3 g (4.3 mmol) of CTP, 4.2 mmol of [1,3,4-\(^{13}\)C\(_3\)]2C-Methyl-D-erythritol 4-phosphate (11), 6 mg (50 U) of IspD protein, and 0.1 mg (100 U) of inorganic pyrophosphatase in a volume of 150 ml was incubated at 37 °C. The formation of product (14) was monitored by \(^{13}\)C NMR.

2.3.21.4. Preparation of [1,3,4-\(^{13}\)C\(_3\)]4-Diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate (15)

A reaction mixture containing 150 mM Tris hydrochloride, pH 8.0, 10 mM magnesium chloride, 0.23 g (1.5 mmol) of dithiothreitol, 2.3 g (4.3 mmol) of CTP, 165 mg (0.3 mmol) of ATP, 1.23 g (6 mmol) of potassium phosphoenolpyruvate, 4.2 mmol of [1,3,4-\(^{13}\)C\(_3\)]2C-Methyl-D-erythritol 4-phosphate (11), 6 mg (50 U) of IspD protein, 14 mg (46 U) of IspE protein, 0.8 mg (280 U) of pyruvate kinase, and 0.1 (100 U) of inorganic pyrophosphatase in a volume of 150 ml was incubated at 37 °C. The formation of [1,3,4-\(^{13}\)C\(_3\)]4-Diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate (15) was monitored by \(^{13}\)C NMR.
3. Results and discussion

3.1. Biological objects

In this thesis, metabolite profiles of *Allium schoenoprasum* and *Mercurialis annua* L. were analyzed by 1H NMR spectroscopy. The metabolic response of *A. schoenoprasum* upon exposition with heavy metal ions was quantified. The modulation of the metabolite profiles due to gender (female or male) and due to treatment with 0.9% of sodium chloride (salinity) was quantified in plants of *M. annua*.

Biosynthetic pathways and metabolic flux were assessed by labelling experiments with *H. perforatum*, *N. tabacum*, *S. divinorum*.

3.1.1. *Allium schoenoprasum* L.

Chives (*Allium schoenoprasum*), an important Central European spice plant, is morphologically well adapted to dry and sunny habitats (tubiform leaves with a small transpiring surface, geophytic mode of life with a bulb as water reservoir). In urban ecosystems, it occurs (spontaneously or deliberately grown) on green roof tops, which are dry and exposed habitats (Buttschardt, 2001). *A. schoenoprasum* has numerous morphological variations (Poulsen, 1990). In Europe, young leaves are appreciated as an early vitamin source in spring and are used as a condiment for salads, sauces and special dishes (Poulsen, 1990; Hanelt, 2001). The ß-carotene and vitamin C contents of chive are the highest among the onion vegetables and are much higher than those of Welsh onion (Loś-Kuczera, 1990). Especially, ß-carotene is an important substance: its antioxidant activity might protect against free radical damage and it is potentially anticarcinogenic (Steimetz, 1996; Umehara *et al*., 2006).

Chive like most *Allium* species is highly rich in pungent sulphur containing volatile compounds which attribute the unique flavour and aroma (Barazani *et al*., 2004).
Figure 8. *Allium schoenoprasum* L.

3.1.2. *Hypericum perforatum* L. (St. John’s wort)

Saint John’s wort, also called common or perforate St. John’s wort (Fig. 9), belongs to the family Clusiaceae (formerly Hypericaceae or Guttiferae). The species name “perforatum” is Latin for “perforated”. The leaves of *H. perforatum*, when held to the light, reveal translucent dots, giving the impression of perforated leaves. The dots are large spherical glands spanning the whole leaf from the upper to the lower epidermis (Weiss, 1988). They contain essential oil comprising caryophyllene, pinenes, limonene, and myrcene as major components.

Figure 9. *Hypericum perforatum* L.
Today, *H. perforatum* is one of the best studied medicinal plants and hyperforin its best characterized constituent (Kurth and Spreemann, 1998; Beerhues, 2006). Phytomedicines based on extracts from the plant’s flowering upper parts are widely used as mild antidepressants (Müller, 2003; Butterweck, 2003).

3.1.3. *Mercurialis annua* L.

Mercurialis annua L. (Euphorbiaceae) is an annual dioecious weed, native to the Mediterranean basin. It grows in cultivated areas and wastelands. Aqueous solutions of the plant contain the chromogen, hermidin, on autoxidation rapidly turn blue, then green and finally yellow-brown which suggests that radicals may be implicated in the transformation of hermidin (Forrester, 1984). Indeed, the blue material was identified as a radical anion, cyanohermidin, that is formed from hermidin by reaction with molecular oxygen (Forrester, 1984; Swan, 1984; Boger and Baldino, 1993). Cyanohermidin dimerises spontaneously into a product that is further oxidised with molecular oxygen to the yellow-brown-colored chrysohermidin (Haas and Hill, 1925; Cannan, 1926; Swan, 1985). As reported earlier by Swan (1985), hermidin is present in *Mercurialis* at relatively high concentration.

![Figure 10. *Mercurialis annua* female (A) and male (B) plants.](image)

A B
3.1.4. *Nicotiana tabacum*

N. tabacum is a very popular plant in the world. *N. tabacum var. havanna piperita* is a smaller species of *N. tabacum* (Cheeke and Schull, 1985). Nicotine is biosynthesised in roots and then transported to leaves.

![Figure 11. Nicotiana tabacum wild-type (A) and rpoA mutant (B).](image)

Plastids of higher plants operate with at least two distinct DNA-dependent RNA polymerases, which are encoded in the organelle (PEP) and in the nucleus (NEP), respectively. Plastids run-on assays and Northern analyses were employed to analyse gene expression in tobacco mutant plastids lacking the PEP genes *rpoA*, *rpoB* or *rpoC1* (Krause *et al.*, 2000). In comparison to wild-type chloroplast, which are characterized by preferential transcription of photosynthesis-related genes in the light, mutant plastids exhibit a different transcription pattern with less pronounced differences in the hybridisation intensities between the individual genes. The accumulation of large transcripts in the mutant plastids indicates that processing of primary transcripts may be impaired in the absence of PEP (Krause *et al.*, 2000).
3.1.5. *Salvia divinorum*

The genus *Salvia*, containing over 900 species internationally, is one of the largest in the family Lamiaceae (or Labiatae). The largest subgenus is the South American *Calosphace* (or *Jungia*), of which over 300 species are found in Mexico. The plant is a perennial shrub growing to about 1.5 m, preferring moist shady sites at high elevations. While the flowers are distinctive (Fig. 12), the plant’s appearance is nondescript during vegetative growth apart from the unusual square stem.

![Salvia divinorum](image)

Figure 12. *Salvia divinorum*.

Traditionally, *S. divinorum* is ingested as a quid or smoked for its psychoactive properties and has been reported to have potent hallucinatory actions (Roth *et al.*, 2002). The leaves of *S. divinorum* are used as a traditional medicine by the Mazatec Indians of the Oaxaca region. The disorders treated include gastrointestinal problems, headaches, rheumatism, anaemia and swelling of the stomach.
3.2. Metabolite profiling

3.2.1. Metabolite profiling in *Allium schoenoprasum*

Toxic metal pollution of waters and soils is a major environmental problem, and most conventional remediation approaches do not acceptable solutions. The use of specially selected and engineered metal-accumulating plants for environmental clean-up is an emerging technology called phytoremediation. Three subsets of this technology are applicable to toxic metal remediation: (1) Phytoextraction – the use of metal-accumulating plants to remove toxic metals from soil; (2) Rhizofiltration – the use of plant roots to remove toxic metals from polluted waters; (3) Phytostabilization – the use of plants to eliminate the bioavailability of toxic metals in soils (Salt *et al.*., 1995).

All plants have the ability to accumulate, from soil and water, those heavy metals which are essential for their growth and development. These metals include Fe, Mn, Zn, Cu, Mg, Mo, and possibly Ni. Certain plants also have the ability to accumulate heavy metals which have no known biological function, these include Cd, Cr, Pb, Co, Ag, Se, and Hg (Baker and Brooks, 1989; Raskin *et al.*., 1994). However, excessive accumulation of these heavy metals can be toxic to most plants (Baker and Brooks, 1989; Ernst *et al.*., 1992).

The optimum plant for the phytoextraction process should not only be able to tolerate and accumulate high levels of heavy metals in its harvestable parts but also have a rapid growth rate and the potential to produce a high biomass in the field. Because most of the metal-accumulating wild plants are relatively small in size and have slow growth rates, their potential for phytoextraction may be limited.

An ideal plant for rhizofiltration should have rapidly growing roots with the ability to remove toxic metals from solution over extended periods of time. Mechanisms of toxic metal removal by plant roots include a combination of such physical and chemical processes as chelation, ion exchange and specific adsorption. Metal-chelating proteins, perhaps related to metallothioneins (Robinson *et al.*., 1993) or phytochelatins (Rauser, 1990) may also function as siderophores in plants (Salt *et al.*., 1995).

As an example, cadmium ions accumulate within the vacuole (Vogeli-Lange and Wagner, 1990) where they associate with the family of thiol rich peptides, called phytochelatins (Raus, 1990; Steffens, 1990). The recent discovery of mechanisms for the transport of both Cd$^{2+}$ and Cd-phytochelatin complexes across the tonoplast (Salt...
and Wagner, 1993) support the suggestion that Cd detoxification is achieved by the accumulation of Cd\(^{2+}\), associated with phytochelatins, within the vacuole.

Previously, Barazani and co-workers (Barazani et al., 2004) have shown that treatment of *A. schoenoprasum* plants with cadmium ions in the medium at concentrations of 50 µM and 250 µM, respectively, a high concentration of Cd\(^{2+}\) was accumulated in the shoots and roots. They have also shown that the concentrations of SH-compounds including glutathione in the roots and in the shoots of Cd treated plants were higher than in control plants.

In our experiments, we have treated plants of *A. schoenoprasum* with cadmium salt as described under **Methods 2.3.1.** After extraction of shoots and roots with percloric acid, the extracts were analyzed by \(^1\)H NMR spectroscopy (Figs. 13 and 14). The concentrations of polar compounds were assessed by \(^1\)H NMR spectroscopy using a spectral library comprising \(^1\)H NMR spectra (Chenomx NMR Suite 4.6) (Figs. 15 and 16).

The NMR signal assignments were confirmed by titration with reference compounds. For this purpose, 10 µl of 22 standard solutions of sugars and amino acids at concentrations of 10 – 100 mM were added to the NMR samples. NMR spectra of samples after titration were compared with the original spectra. Using this approach, NMR signals could be assigned for 25 compounds (Figs. 15 and 16).

As examples, NMR signals at \(\delta = 5.40\) (d, \(J = 3.7\) Hz), \(\delta = 5.20\) (d, \(J = 7.0\) Hz), and 4.10 (d, \(J = 7.5\) Hz) were assigned the protons at anomeric carbons of sucrose, \(\alpha\)-glucose, and fructose, respectively. In the aromatic region (\(\delta = 5.5 – 9.0\)), the amino acids, phenylalanine and tyrosine, and unknown compounds were detected at low levels.

Several aliphatic amino acids including asparagine, aspartate, glutamine, glutamate, proline, serine, and threonine were identified as major compounds in the extract.

The concentrations of assigned compounds in the extracts of the shoots and the roots are summarized in Figs. 15 and 16. It turned out that the concentration of asparagine was approximately 7 times higher in the shoots of Cd-treated plants than in the shoots of control plants (Fig. 15). On the other hand, the concentration of asparagine was approximately 2 times higher in the roots of the control than in the roots of plants treated with Cd\(^{2+}\) (Fig. 16). We suppose that asparagine serves as a complexating agent for Cd\(^{2+}\) ions and is accumulating in the shoots. Moreover, the concentrations of
glutamine and serine were significantly higher in the shoots of Cd-treated plants than in the shoots of control plants (3 and 3.5 times, respectively) (Fig. 15). The concentrations of glycine, malate, proline, sucrose, isoleucine, and valine were also higher by a factor of approximately 2.5 than in the control plants (Fig. 15). The concentrations of those metabolites in the roots of plants grown with Cd$^{2+}$ were similar as in the roots of control plants (Fig. 16).

Most plant species are sensitive to very low concentration of Cd$^{2+}$ (Pietrini et al., 2003) and toxic symptoms as inhibition of plant growth, browning of root tips can be easily seen (Das et al., 1997). Exposure of A. schoenoprasum to Cd$^{2+}$ at 50 µM did not have any effect on leaf nor root elongation, thus indicating high tolerance of A. schoenoprasum to the metal (Barazani et al., 2004; Masahiro, 2005). On the other hand, the metabolite profile was modulated especially in the shoots of the plants upon treatment with Cd$^{2+}$ via the root system.

It was reported early that one of the mechanisms involved in plant tolerance to Cd$^{2+}$ is the synthesis of the heavy metal binding ligand, phytochelatin (PC) from a reduced glutathione (GSH) (for reviews see Clemens, 2001). The biosynthetic pathway of phytochelatins (PCs) starts from the precursors, glutamine, cysteine, and glycine (Noctor and Foyer, 1998).

In addition, the stimulation of PC formation by Cd$^{2+}$ has been reported in roots as well as in the leaves of various plant species (Gekeler et al., 1989; Rauser et al., 1990). Our results did not provide evidence of increased levels as of PCs or their precursors GSH, glycine, glutamine and cysteine. In the perchloric acid extract of shoots and roots, the concentration of those and related compounds appeared at similar levels. On the other hand, we detected a large increase of asparagines in the shoots of A. schoenoprasum treated with Cd$^{2+}$. This could reflect that PCs are not the prominent agents for Cd-detoxification under the experimental settings used in this study. Rather, the simpler compound asparagine appears to be involved in the process.
Results and discussion

Figure 13. 1H NMR spectra of the shoot extracts from the control (A) and cadmium treatment (B) plants of *A. schoenoprasum*.

Figure 14. 1H NMR spectra of the root extracts from the control (A) and cadmium treatment (B) plants of *A. schoenoprasum*.
Results and discussion

Concentration of the metabolites in the shoots of *Allium schoenoprasum*

Figure 15. Concentration of the metabolites in the shoots of *A. schoenoprasum*.

Concentration of the metabolites in the roots of *Allium schoenoprasum*

Figure 16. Concentration of the metabolites in the roots of *A. schoenoprasum*.

References

Cadmium treatment ■ Control
3.2.2. Metabolite profiling in *Mercurialis annua*

The majority of the research on Na⁺ metabolism in plants has been concerned with the initial uptake across the ‘root cell plasmalemma’. At a minimum, it is likely that the plasmalemma and tonoplast have different systems, and though the salt relations of organelles in the cytosolic milieu have not been studied extensively, the apparent control of chloroplast Na⁺ contents suggests an additional system there (Robinson *et al.*, 1983).

Salinity can seriously change the photosynthetic carbon metabolism, leaf-chlorophyll content, as well as photosynthetic efficiency (Seeman and Critchley, 1985). However, salinity is known to boost the nodular carbohydrate content, and sucrose is the predominant carbohydrate in legume root nodules (Fougère *et al.*, 1991; Gordon *et al.*, 1997). In addition, phosphoenolpyruvate carboxylase (PEPC) and malate dehydrogenase (MDH) activities in root nodules produce malate, which is the preferred substrate for supporting nitrogenase activity (Delgado *et al.*, 1993; Kim and Copeland, 1996). The simulation of these activities under saline conditions may be a consequence of the increase in the oxygen-diffusion barrier (Irigoyen *et al.*, 1992; Delgado *et al.*, 1993).

Salt promotes the accumulation of ammonium, nitrate and free amino acids in plants (Hatata, 1982; Pessarakli *et al.*, 1989), and tends to depress the activity of the enzymes involved in ammonium assimilation. It was reported earlier that in *Vicia faba*, glutamine synthetase (GS) activity proved to be more inhibited by salinity than NADH-glutamate synthase activity (Cordovilla *et al.*, 1994). Proline and carbohydrates are accumulated in plant tissues under saline stress, and these substances are suspected of contributing to osmotic adjustment (Fougère *et al.*, 1991; Delauney and Verma, 1993).

The plants of *M. annua* were treated with 50 mM of 0.9% sodium chloride (salinity) as described under Methods 2.3.11.1. After extraction with perchloric acid, the concentrations of polar compounds were detected by ¹H NMR spectroscopy (Figs. 17-20).

Specifically, we have compared the concentrations of polar compounds in the leaves and the roots of salt-stressed and control plants, and in the leaves and the roots of female and male plants of *M. annua*. The compounds were again identified by comparison with reference spectra in the “Chenomx” library and titration of several NMR samples with reference compounds. Using this approach, NMR signals were assigned for 30 compounds (Figs. 21-24).
The concentrations of all polar compounds were similar in female and male plants. The concentrations of glucose and sucrose in the leaves and the roots of female and male salt-treated plants were higher than in control plants (Figs. 21-24). This can be explained by an osmolytic effect. The concentration of malate was approximately 2-5 times higher in the leaves and in the roots of control than in salt-treated plants (Figs. 21-24). On the other hand, the concentrations of aspartate and oxalacetate were higher upon saline stress (Figs. 21-24). This points at rather robust metabolism in *M. annua* which is only modulated by the sex of the plants in a very subtle way. Malate is a precursor of oxalacetate and aspartate. It appears that salinity conditions increase the formation of oxalacetate and aspartate *via* malate. Notably, malate dehydrogenase requires NAD as a co-factor, and it appears that the NAD\(^+/\)NADH steady state ratio is modulated by salt stress.

Figure 17. \(^1\)H NMR spectra of the shoots extract from the control (A) and salinity treatment (B) plants of *M. annua* female.
Results and discussion

Figure 18. 1H NMR spectra of the roots extract from the control (A) and salinity treatment (B) plants of *M. annua* female.

Figure 19. 1H NMR spectra of the shoots extract from the control (A) and salinity treatment (B) plants of *M. annua* male.
Results and discussion

Figure 20. 1H NMR spectra of the roots extract from the control (A) and salinity treatment (B) plants of *M. annua* male.

Concentration of the metabolites in the leaves of *Mercurialis annua* female

Figure 21. The concentration of the metabolites in the leaves of *M. annua* female in the control and salt-stressed plants.
Results and discussion

Concentration of the metabolites in the leaves of *Mercurialis annua* male

Figure 22. The concentration of the metabolites in the leaves of *M. annua* male in the control and salt-stressed plants.

Concentration of the metabolites in the roots of *Mercurialis annua* female

Figure 23. The concentration of the metabolites in the roots of *M. annua* female in the control and salt-stressed plants.
Results and discussion

Concentration of the metabolites in the roots of *Mercurialis annua* male

Figure 24. The concentration of the metabolites in the roots of *M. annua* male in the control and salt-stressed plants.

3.3. Preparation and properties of isotope-labelled 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate

Isotope-labelled precursors were crucial in the investigation of the alternative terpenoid pathway. 13C-Labelled 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate was helpful for the studies of identifying downstream metabolites as well as mechanisms of the non-mevalonate pathway enzymes (Rohdich *et al*., 2000).

The non-mevalonate pathway of isoprenoid biosynthesis (Fig. 25) is a potential target for antiinfective drug development (Bacher *et al*., 2001). On the basis of the more than 600 completely sequenced genomes in public databases, it is clear that the vast majority of pathogenic bacteria (with the exception of Gram-positive cocci including *Staphylococcus*, *Enterococcus*, and *Streptococcus* spp.) use this pathway for the biosynthesis of essential metabolic products including quinine cofactors required for respiration (for review, see refs Rohdich *et al*., 2004 and Rohdich *et al*., 2005; Illarionova *et al*., 2006).

The preparation of isotope-labelled 15 using recombinant enzymes of the deoxyxylulose pathway has already been described (Rohdich *et al*., 2000). The 13C-
labelled precursor, in our case $[^{13}C_6]$glucose, is converted into 15 by reactions involving up to 14 enzyme catalysts (Fig. 25). The required enzymes are either commercially available or can be prepared relatively easily from recombinant *Escherichia coli* strains (Sprenger *et al*., 1997; Lois *et al*., 1998; Kuzuyama *et al*., 2000a; Rohdich *et al*., 1999).

The methods described make extensive use of cofactor recycling (Fig. 25). The formation of D-glyceraldehyde 3-phosphate from glucose requires ATP that can be regenerated by pyruvate kinase using phosphoenolpyruvate as a substrate. Similar, CTP can be recycled by the inclusion of nucleoside monophosphate kinase and nucleoside diphosphate kinase into the reaction mixture. NADPH can be regenerated in situ by reduction of NADP$^+$ with glucose and glucose dehydrogenase.

The entire reaction sequence from $[^{13}C_6]$glucose (16) to [1,3,4-13C$_3$]-15 can be monitored in real time by 13C NMR spectroscopy. Pyruvate is not required for the synthesis of [1,3,4-13C$_3$]-15 since it is generated in situ from the phosphoenolpyruvate that is used for the regeneration of ATP. The equilibrium substrate and product concentrations in reaction mixtures containing large amounts of enzymes could also be monitored by 13C NMR spectroscopy using 13C-labelled substrates (Table 5).

The study shows that complex biochemical reaction sequences comprising numerous reaction steps can be executed in vitro with high efficacy. The enzyme-based approach provides unique opportunities for the generation of isotopomers with complex labelling patterns.

The present strategy enables the incorporation of stable isotopes as well as radioisotopes into various positions of 15. Notably, 13C can be incorporated into virtually any position of the polyol moiety from appropriately labelled glucose and/or pyruvate as starting material.

The data of chemical shifts and coupling constants are summarized in Table 5. Two first precursors (10 and 11) were purified by column chromatography as described under Methods 2.3.21.1.
Table 5. 13C NMR data of the reactants used

<table>
<thead>
<tr>
<th>Position</th>
<th>Chemical shift, ppm</th>
<th>Couplings constant, Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>J_{CC}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[3,4,5-13C$_3$]1-deoxy-D-xylulose 5-phosphate (10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>76.9</td>
<td>39.3</td>
</tr>
<tr>
<td>4</td>
<td>70.7</td>
<td>39.8, 43.2</td>
</tr>
<tr>
<td>5</td>
<td>64.1</td>
<td>43.2</td>
</tr>
<tr>
<td>[1,3,4-13C$_3$]2C-methyl-D-erythritol 4-phosphate (11)</td>
<td>1</td>
<td>66.5</td>
</tr>
<tr>
<td>3</td>
<td>73.9</td>
<td>42.0</td>
</tr>
<tr>
<td>4</td>
<td>64.8</td>
<td>42.0</td>
</tr>
<tr>
<td>[1,3,4-13C$_3$]4-diphosphocytidyl-2C-methyl-D-erythritol (14)</td>
<td>1</td>
<td>66.3</td>
</tr>
<tr>
<td>3</td>
<td>73.4</td>
<td>42.9</td>
</tr>
<tr>
<td>4</td>
<td>66.8</td>
<td>42.9</td>
</tr>
<tr>
<td>[1,3,4-13C$_3$]4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate (15)</td>
<td>1</td>
<td>65.6</td>
</tr>
<tr>
<td>3</td>
<td>73.1</td>
<td>42.9</td>
</tr>
<tr>
<td>4</td>
<td>66.9</td>
<td>42.5</td>
</tr>
</tbody>
</table>

*Referenced to external trimethylsilylpropanone sulfonate.

The procedures described under Methods 2.3.21 also provide improved technology for the preparation of large amounts (multigram scale) of 10 and 11. Specifically, the improved procedure affords a yield of about 70-75% of 13C-labelled 10 and 11.

The non-mevalonate pathway of isoprenoid biosynthesis serves as the unique source of terpenoids in numerous pathogenic eubacteria and apicoplast-type protozoa, most notably Plasmodium, but is absent in mammalian cells. It is therefore an attractive target for anti-infective chemotherapy. The first committed step of the non-mevalonate pathway is catalyzed by 2-C-methyl-D-erythritol 4-phosphate synthase (IspC). Using photometric and NMR spectroscopy assays, we screened extracts of Mediterranean plants for inhibitors of the enzyme. Strongest inhibitory activity was found in leaf extracts of Cercis siliquastrum.

The enzyme substrate was multiply labelled with 13C ([3,4,5-13C$_3$]-10). As a consequence of specific 13C-labelling, 13C-signals of C-3, C-4 and C-5 of the substrate and C-1, C-3 and C-4 of the product, [1,3,4-13C$_3$]-11, were detected with high selectivity in the 13C NMR spectrum.
Figure 25. Synthesis of [1,3,4-13C$_3$]4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate.
Results and discussion

Figure 26. 13C NMR signals of [3,4,5-13C$_3$]-1-deoxy-D-xylulose 5-phosphate (10). Coupling patterns are indicated.

Figure 27. 13C NMR signals of [1,3,4-13C$_3$]-2C-methyl-D-erythritol 4-phosphate (11). Coupling patterns are indicated.
Figure 28. 13C NMR signals of [1,3,4-13C$_3$]4-diphosphocytidyl-2C-methyl-D-erythritol (14). Coupling patterns are indicated.

Figure 29. 13C NMR signals of [1,3,4-13C$_3$]4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate (15). Coupling patterns are indicated.
The signals of [3,4,5-13C\textsubscript{3}]-10 in an assay mixture without protein are shown in Figure 30A. The signals detected in a standard assay without an inhibitory agent are in Figure 30B. It is immediately obvious that the signals due to [3,4,5-13C\textsubscript{3}]-10 disappeared and that three new signals due to [1,3,4-13C\textsubscript{3}]-11 appeared since the substrate was completely converted into the product. The 13C NMR signals of the same assay mixture in the presence of 6 µl of an extract from \textit{C. siliquastrum} are shown in Figure 30C.

![Figure 30. 13C NMR signals observed with IspC reaction mixtures. A, reference sample of [3,4,5-13C\textsubscript{3}]1-deoxyxylulose 5-phosphate; B, after inhibition with IspC protein from \textit{E. coli}; C, after incubation with IspC protein with IspC protein from \textit{E. coli} in the presence of 6 µl of an extract of \textit{C. siliquastrum}. Multiply 13C-labeling is indicated by filled bars and squares in the formulae of the substrate, [3,4,5-13C\textsubscript{3}]1-deoxyxylulose 5-phosphate, and the product [1,3,4-13C\textsubscript{3}]2C-methyl-D-erythritol 4-phosphate.](image-url)
3.4. Biosynthesis of hyperforin in *Hypericum perforatum*: experiment with 13CO$_2$

Tracer experiments can be conducted with single-labelled or multiply labelled precursors. Experiments with single-labelled tracers document the transfer of isotope from a given position in the precursor to one or several positions in each of one or several target compounds. Experiments with multiply labelled precursors document the transfer or individual isotope atoms or contiguous groups of isotope atoms to specific locations in each of one or several target compounds; colloquially the search for transfer of contiguous groups of labelled atom has been attributed as “bond labelling”.

Whereas the early pioneers of the CO$_2$ labelling technology were limited to radioactivity measurements using 14CO$_2$, there are now powerful NMR and mass spectrometry methods that allow the use of non-radioactive 13CO$_2$ as tracer. Even more important, whereas the 14CO$_2$ technique could only detect the transfer of single 13C atoms from CO$_2$ to more complex organic molecules, it is now possible to diagnose the incorporation of multiple 13C atoms into a given metabolite and to follow a block of contiguous 13C atoms through a series of biosynthetic transformations affording a complex natural product.

In order to further establish the possibilities and potential limitations of this approach, the isotopologue patterns of hyperforin (Fig. 31) obtained by labelling with 13CO$_2$ and [U-13C$_6$]glucose were compared (as observed in earlier study).

The earlier study using [U-13C$_6$]glucose and cut plant segments showed that the prenyl side chains of hyperforin are predominantly biosynthesized *via* the non-mevalonate pathway and that the carbocyclic moiety has a polyketide origin (Adam *et al.*, 2004).

Hypericum perforatum plants with a height of approximately 40 cm were exposed to an atmosphere containing 600 ppm 13CO$_2$ for five hours (see Materials and Methods 2.3.4). The ratio of 12C:13C in the incubation chamber (Fig. 32) was monitored online and was approximately 1:8 (80 ppm 12CO$_2$ and 600 ppm 13CO$_2$) during the incubation period. During the subsequent chase phase, the plants were kept in the greenhouse under ambient conditions for 5 days. 10 mg of hyperforin were isolated from 25 g fresh weight of flowers from labelled plants and then were analyzed by 13C NMR spectroscopy.

The 13C signals of biosynthetic hyperforin displayed intense satellites caused by 13C-13C couplings (Fig. 33). On the basis of the coupling constants (Table 6), these
signals can be attributed to specific multiple 13C-labelled isotopologues. As an example, the 13C NMR signal of C-9 comprised a central line and two pairs of 13C-coupled satellites with considerable intensity that were caused by 13C coupling with C-1 (coupling constant 38.7 Hz) and C-5 (coupling constant 35.2 Hz) reflecting the presence of [1,9-13C$_2$]- and [5,9-13C$_2$]-isotopologues, respectively. The signal intensities of the satellite signals for [1,9-13C$_2$]- and [5,9-13C$_2$]-isotopologues were identical (19.0 % of the overall signal intensity for each isotopologue group) (Table 6).

Some of the satellites showed couplings via two or three carbon bonds. For example, each of the satellite signals for C-21, C-22, C-26 and C-27, showed three lines (Fig. 33). The central signals in each satellite patterns reflected the coupling between C-21 and C-22, or C-26 and C-27, respectively. The fine splitting of the satellite signals was caused by simultaneous coupling to an additional 13C-atom via two or three bonds (long-range coupling). On the basis of the coupling constants (i.e., one large coupling via one bond with a coupling constant of 43.4 Hz and one long-range coupling via two or three bonds with coupling constants of 3.1 and 4.5 Hz respectively), these signals can be tentatively assigned to [26,27,30-13C$_3$]- and [21,21,25-13C$_3$]hyperforin. Notably, the same signal patterns were also found in the experiment with [U-13C$_6$]glucose (Adam et al., 2002).

The analysis of all carbon signals is summarized in Table 6. It became obvious that the isotopologue composition of hyperforin labelled from 13CO$_2$ was highly complex and a complete isotopologue deconvolution was not possible on the basis of the observed 13C-pattern. Notably, hyperforin comprises 35 carbon atoms and, in principle, $2^{35} = 3.4^{10}$ different carbon isotopologues can be present in the compound.

However, the number of possible carbon isotopologues can be drastically reduced by looking at given biosynthetic modules, such as the prenyl moieties or the phloroglucinol ring system.
Table 6. NMR data of hyperforin from the $^{13}\text{C}_2$ experiment monitored by NMR spectroscopy

<table>
<thead>
<tr>
<th>Position</th>
<th>Chemical shift, ^{13}C, (ppm)</th>
<th>Coupling constant, (Hz)</th>
<th>$% ^{13}\text{C}/^{13}\text{C}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>2</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>3</td>
<td>122.3</td>
<td>63.7 (2 or 4)</td>
<td>36.9 (2 or 4)</td>
</tr>
<tr>
<td>4</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>5</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>6</td>
<td>49.7</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>7</td>
<td>43.2</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>8</td>
<td>40.9</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>9</td>
<td>208.9</td>
<td>38.7 (1 or 5)</td>
<td>38.7 (1 or 5)</td>
</tr>
<tr>
<td>10</td>
<td>211.8</td>
<td>40.7 (5 or 11)</td>
<td>22.2 (5 and 11)</td>
</tr>
<tr>
<td>11</td>
<td>43.2</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>12</td>
<td>22.2</td>
<td>43.6 (11)</td>
<td>24.9 (11 and 10)</td>
</tr>
<tr>
<td>13</td>
<td>21.4</td>
<td>34.1 (11)</td>
<td>43.3 (11)</td>
</tr>
<tr>
<td>14</td>
<td>15.5</td>
<td>36.0 (6)</td>
<td>44.8 (6)</td>
</tr>
<tr>
<td>15</td>
<td>38.1</td>
<td>33.4 (6or16)</td>
<td>27.5 (6 or 16)</td>
</tr>
<tr>
<td>16</td>
<td>25.6</td>
<td>40.5 (17)</td>
<td>37.9 (17, 17 and 20)</td>
</tr>
<tr>
<td>17</td>
<td>126.2</td>
<td>43.6 (16)</td>
<td>17.9 (16)</td>
</tr>
<tr>
<td>18</td>
<td>131.9</td>
<td>42.2 (19or20)</td>
<td>26.0 (19 and 20)</td>
</tr>
<tr>
<td>19</td>
<td>18.3</td>
<td>44.2 (18)</td>
<td>42.0 (18)</td>
</tr>
<tr>
<td>20</td>
<td>26.1</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>21</td>
<td>28.8</td>
<td>43.2 (22)</td>
<td>36.5 (22, 22 and 25)</td>
</tr>
<tr>
<td>22</td>
<td>123.9</td>
<td>33.0 (23)</td>
<td>32.9 (24 or 25)</td>
</tr>
<tr>
<td>23</td>
<td>134.4</td>
<td>42.5 (24 or 25)</td>
<td>32.9 (24 or 25)</td>
</tr>
<tr>
<td>24</td>
<td>18.3</td>
<td>42.2 (23)</td>
<td>42.0 (23)</td>
</tr>
<tr>
<td>26</td>
<td>22.7</td>
<td>43.6 (27)</td>
<td>39.2 (27, 27 and 30)</td>
</tr>
<tr>
<td>27</td>
<td>122.7</td>
<td>43.1 (26)</td>
<td>17.9 (26)</td>
</tr>
<tr>
<td>28</td>
<td>133.8</td>
<td>42.0 (29 or 30)</td>
<td>27.1 (29 or 30)</td>
</tr>
<tr>
<td>29</td>
<td>26.3</td>
<td>42.5 (28)</td>
<td>43.2 (28)</td>
</tr>
<tr>
<td>30</td>
<td>18.0</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>31</td>
<td>30.8</td>
<td>44.4 (32)</td>
<td>39.2 (32, 32 and 35)</td>
</tr>
<tr>
<td>32</td>
<td>121.0</td>
<td>44.4 (31)</td>
<td>18.7 (31)</td>
</tr>
<tr>
<td>33</td>
<td>134.8</td>
<td>42.2 (34 or 35)</td>
<td>24.5 (34 or 35)</td>
</tr>
<tr>
<td>34</td>
<td>18.5</td>
<td>42.5 (33)</td>
<td>45.0 (33)</td>
</tr>
<tr>
<td>35</td>
<td>26.4</td>
<td>41.2 (33)</td>
<td>n.d.</td>
</tr>
</tbody>
</table>
Results and discussion

As already mentioned above, an earlier experiment using cut sprouts of \textit{H. perforatum} immersed into a solution containing [U-13C\textsubscript{6}]glucose indicated that the major fraction of the C5 precursors of the terpenoid units in hyperforin was formed via the non-mevalonate pathway and that the phloroglucinol moiety is derived from the polyketide pathway (Adam \textit{et al.}, 2002). Nevertheless, it remained open whether the same pathways are operative in the whole plant under undisturbed (i.e. physiological) conditions.

To answer this question, the isotopologue composition of the prenyl moieties in hyperforin isolated from the experiment with 13CO\textsubscript{2} was analysed. In order to describe the complex isotopologue space of prenyl moieties, we use a notation where the carbon skeleton of prenyl moiety is represented by a six-digit binary number with the first digit representing C-1, the second digit representing C-2, etc.; 1 signifies 13C, 0 (zero) signifies 12C, and X or Y signifies either 12C or 13C. In the present example, C-1 represents the carbon where the respective isoprenyl unit attached (see Table 7). For example, \{011XXX\} designates a set of isotopologues carrying 12C in the C-5 prenyl attaching carbon, 13C in positions 1 and 2 of the isoprenyl moiety, and 13C or 12C in any of the positions 3-5 of the isoprenyl unit (see also structure inset in Table 7); isotopologue sets of this type are subsequently designated as XY-groups (Römisch-Margl \textit{et al.}, 2007). While the labelling status of X positions is totally undefined, the overall number of 13C-labelled atoms in all Y-positions, given outside the brackets of

Figure 31. Structure of hyperforin.
the X-group, is a known parameter. For example, in cases of the carbon where the NMR data can only be assigned to the sum of two simple X-groups, \{011XXX and 110XXX\} and \{Y1YXXX\} (Römisch-Margl et al., 2007).

To simplify the analysis, the X-group abundances detected for each prenyl moiety were averaged (Table 7). Indeed, the low standard deviations indicate that all prenyl units in hyperforin originate from common precursor units. This provided a data set consisting of 14 averaged X-group abundances for the prenyl units (Table 7).

Table 7. Relative abundance of X groups in prenyl moieties of hyperforin from the experiments with 13CO$_2$ and [U-13C$_6$]glucose

<table>
<thead>
<tr>
<th>X-groups</th>
<th>Experiments with 13CO$_2$</th>
<th>Experiments with [U-13C$_6$]glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Relative abundance of X groups in prenyl moieties, %</td>
<td>Relative abundance of X groups in prenyl moieties, %</td>
</tr>
<tr>
<td></td>
<td>C 15-20</td>
<td>C7, 21-25</td>
</tr>
<tr>
<td>{011XXX}</td>
<td>37.9</td>
<td>36.5</td>
</tr>
<tr>
<td>{111XXX}</td>
<td>15.7</td>
<td>13.6</td>
</tr>
<tr>
<td>{010XXX}</td>
<td>46.4</td>
<td>49.9</td>
</tr>
<tr>
<td>{011XXX}</td>
<td>17.9</td>
<td>18.2</td>
</tr>
<tr>
<td>{0110YY}</td>
<td>11.9</td>
<td>12.2</td>
</tr>
<tr>
<td></td>
<td>8.8</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>15.6</td>
<td>16.7</td>
</tr>
<tr>
<td>X010XX</td>
<td>45.8</td>
<td>44.8</td>
</tr>
<tr>
<td>[XX01YY]</td>
<td>26.0</td>
<td>32.9</td>
</tr>
<tr>
<td></td>
<td>11.6</td>
<td>8.9</td>
</tr>
<tr>
<td>[XX01XX]</td>
<td>13.7</td>
<td>6.5</td>
</tr>
<tr>
<td>[XX01XX]</td>
<td>48.7</td>
<td>51.7</td>
</tr>
<tr>
<td>[XX11Y]</td>
<td>13.0</td>
<td>16.5</td>
</tr>
<tr>
<td>[XXX01X]</td>
<td>86.3</td>
<td>93.5</td>
</tr>
</tbody>
</table>
The X-groups profiles of hyperforin from the labelling experiments using $^{13}\text{CO}_2$ and [U-$^{13}\text{C}_6$]glucose as tracer, were now compared from the prenyl and polyketide moieties, respectively. The X-groups \{011XXX\} and \{XX01YY\}1 in the prenyl moieties and \{XY1YX\}1 in the polyketide moiety, respectively, were highly similarly (Tables 7 and 8) in both experiments. On the other hand, the relative abundances of \{0110XX\} and \{0110YY\}1 in the prenyl moieties were different (Table 7). The relative abundances of \{0110YY\}1 were approximately 2 time higher than \{0110XX\} in the experiments with [U-$^{13}\text{C}_6$]glucose. On the other hand, the relative abundances of \{0110XX\} were lightly higher than \{0110YY\}1 in the experiments with $^{13}\text{CO}_2$.

Table 8. Relative abundance of X groups in the polyketide moiety of hyperforin from the experiments with $^{13}\text{CO}_2$ and [U-$^{13}\text{C}_6$]glucose.

<table>
<thead>
<tr>
<th>Experiments with $^{13}\text{CO}_2$</th>
<th>Relative abundance of X groups in the polyketide moiety, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative abundance of X groups in the polyketide moiety, %</td>
<td></td>
</tr>
<tr>
<td>{XY1YX}1</td>
<td>38.7</td>
</tr>
<tr>
<td>{X111X}</td>
<td>13.1</td>
</tr>
<tr>
<td>{X010X}</td>
<td>48.2</td>
</tr>
<tr>
<td>Experiments with [U-$^{13}\text{C}_6$]glucose</td>
<td></td>
</tr>
<tr>
<td>Relative abundance of X groups in the polyketide moiety, %</td>
<td></td>
</tr>
<tr>
<td>{XY1YX}1</td>
<td>31.4</td>
</tr>
<tr>
<td>{X111X}</td>
<td></td>
</tr>
<tr>
<td>{X010X}</td>
<td></td>
</tr>
</tbody>
</table>

Table 8. Relative abundance of X groups in the polyketide moiety of hyperforin from the experiments with $^{13}\text{CO}_2$ and [U-$^{13}\text{C}_6$]glucose.
Results and discussion

Figure 32. The chamber for incubation of plants with 13CO$_2$.

Figure 33. 13C NMR signals of hyperforin from the experiments with 13CO$_2$. Coupling patterns are indicated. The asterisks indicate signals from impurities.
In conclusion, the labelling patterns of the isoprenyl moieties were found to be similar indicating that the isoprenoid units used in the biosynthesis of hyperforin are predominantly of non-mevalonate origin in both settings. However, due to the large number of hypothetical isotopologues in 13CO$_2$ experiments, a concise isotopologue deconvolution is not possible and experimental factors need to be optimized in order to photosynthetically generate a high level of coherent multilabelling in precursor pools during the pulse period with 13CO$_2$. In case of biosynthesis of hyperforin using [U-13C$_6$]glucose as precursor, the labelling patterns of hyperforin can be interpreted on the basis of the known utilization of exogenous glucose by plants (Margl et al., 2001; Goese et al., 1999).

The result of the present study conducted with unperturbed whole plants under strictly physiological conditions is well in line with the earlier results and can serve as a basis for the critical evaluation of the 13CO$_2$ labeling technology as opposed to studies with more complex organic tracer compounds.

3.4. Use of 13CO$_2$ as metabolic tracer. Biosynthesis of salvinorin A

Salvia divinorum whose main active ingredient is the neoclerodane diterpene salvinorin A, is a hallucinogenic plant of the mint family that has been used in traditional spiritual practices for its psychoactive properties by the Mazatecs of Oaxaca, Mexico. More recently, *S. divinorum* extracts and salvinorin A have become more widely used in the USA, as legal hallucinogens (Roth et al., 2002). In Germany, *S. divinorum* is an illegal plant since March 2008 (841. Sitzung des Bundesrates, 2008).

During our experimental work, results from labelling experiments with *in vitro* sterile cultures of *S. divinorum* microshoots using [1-13C]glucose, [Me-13C]methionine, and [1-13C; 3,4-2H$_2$]-1-deoxy-D-xylulose as precursors were published (Kutrzeba et al., 2007). NMR spectroscopic analysis suggested that salvinorin A is biosynthesized via 1-deoxy-D-xylulose 5-phosphate. In addition, analysis of salvinorin A produced by plants grown in the presence of [Me-13C]methionine indicated that methylation of the C-4 carboxyl group is catalyzed by a type III S-adenosyl-L-methionine-dependent O-methyltransferase (Kutrzeba et al., 2007).

In this thesis, different experimental settings were used. More specifically, cut stems of *S. divinorum* were immersed for 14 days into a solution of [U-13C$_6$]glucose as described under Methods 2.3.18.1. Those labelling experiments were conducive to 13C enrichment of the acetyl moiety of salvinorin A (Fig. 35). More specifically, the 13C
Results and discussion

NMR spectrum of salvinorin A showed satellite signals for C-21 and C-22 due to 13C-13C coupling, whereas the signals of the diterpene moiety including carbon atom C-11 showed only central lines (Fig. 35). The signal intensities of the satellite signals for $[21,22-^{13}$C$_2]$-salvinorin A was calculated (Table 9) and gave approximately 20% in the overall signal intensity of C-21 or C-22, respectively. This means that approximately 0.2 mol% $[21,22-^{13}$C$_2]$salvinorin A was present. The data implied that salvinorin A can be obtained from unlabeled salvinorin B by acetylation involving a 13C$_2$-labelled acetyl donor. However, the approach was not successful for delineation of the core moiety in the diterpene. Obviously, the early steps and/or cyclisation reactions were not active in the cut plant system. For this reason, we used the 13CO$_2$ approach which is based on the labelling of a whole plant under “undisturbed” conditions, where plant metabolism should be fully active.

In this experiment, *S. divinorum* plants were exposed to a synthetic atmosphere containing 600 ppm 13CO$_2$ for 4 hours as described under Methods 2.3.18.2. The isotopologue composition of salvinorin A was analysed by 13C NMR spectroscopy. As shown in Figure 36 certain signals of salvinorin A appeared as multiplets comprising 3 to 5 lines due to 13C-13C coupling. The presence of multiply 13C-labelled isotopologues in considerable excess over their natural occurrence showed that the 13C labelling pulse had afforded multiply 13C-labelled compounds. This signifies the presence of isotopologues comprising groups of 13C atoms which were biosynthesized from multiply labelled metabolic intermediates. All NMR lines (central signals and coupling satellites) were integrated separately.

The interpretation of the satellite signatures in Figure 37 depends crucially on unequivocal signal assignments for all 20 carbon atoms of the salvinorin A skeleton. Giner and co-workers (Giner et al., 2007) have assigned the 1H and 13C NMR spectra of salvinorin A (Fig. 34) in three different NMR solvents using HSQC, HMBC and COSY. They confirmed the spectral data published early by Ortega (Ortega et. al., 1982). The detailed analysis of the coupling constants detected in the 13C-enriched sample was in line with these 13C NMR assignments (Table 10).

On basis of the 13C assignments, the coupling patterns summarized in Table 10 indicate the presence of 6 pairs of directly adjacent 13C atoms. For example, the satellite signatures of C-14 and C-15 are more complex but can be easily explained by the superposition of the signatures of molecular species carrying 2 and 3 13C atoms, respectively. More specifically, both signal groups feature a doublet component
indicating the presence of the [14,15-13C_2]-isotopologue at significant abundance. A second signal component can be easily interpreted as a triplet arising by coupling of C-14 and C-15 to each other with a coupling constant of 70.3 Hz and by coupling to a third 13C atom with a smaller coupling constant of 3.0 or 3.7 Hz, respectively, which indicates coupling via 2 to 3 bonds. The 13C that can couple to C-14 and C-15, respectively, via long-range coupling must be located only in position 12.

The presence of triple labelled isotopologues demonstrated that a significant fraction of salvinorin A, is biosynthesized \textit{via} IPP and DMAPP precursors the non-mevalonate pathway (Fig. 6) because a block of three labelled carbon atoms (Fig. 37A) can be transferred only by the deoxyxylulose pathway (i.e. \textit{via} 13C_3glyceraldehyde 3-phosphate). On the other hand, the mevalonate pathway can at best transfer blocks of two labelled atoms (i.e. \textit{via} [U-13C_2]acetyl-CoA. A cyclisation mechanism is proposed on basis of the isoprenoide dissection (Fig. 37).

Table 9. NMR data of the acetyl moiety of salvinorin A from the experiment with [U-13C_6]glucose

<table>
<thead>
<tr>
<th>Position</th>
<th>%13C13C</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>19 (22)</td>
</tr>
<tr>
<td>22</td>
<td>21 (21)</td>
</tr>
</tbody>
</table>

The clerodane class of diterpenes is biosynthesized from geranylgeranyl diphosphohate (GGPP) (21) through enzymatic cyclization initiated by electrophilic protonation, followed by a series of methyl and hydride shifts (Akhila \textit{et al.}, 1991; Merritt and Ley, 1992; Eguchi \textit{et al.}, 2003) (Fig. 37A). As depicted in Figure 37A, the cyclisation of GGPP (21) followed by a series of methyl and hydride shifts to form an intermediary C-4 cation (23). The methyl groups C-19 or C-20 are shifted to ring in an allylic diphosphate intermediate (24). Conversion of C-21 gives the final diterpene, salvinorin A, in a complex sequence of hitherto unknown steps involving the introduction of O-atoms and the acyl moiety.

The labelling data of the 13CO_2 experiment were in line with the suggested cyclase mechanism with C-19 methyl shift (originally the \textit{cis}-configured methyl group in C-21).
Results and discussion

As shown in Figure 37, it can be proposed that cyclization of salvinorin A in α-methyl at C-10 and a β-H at C-5 is generated. A C-19 methyl shift to C-5 produces \textit{trans}-clerodane skeleton.

Table 10. NMR data of salvinorin A from the experiment with 13CO$_2$

<table>
<thead>
<tr>
<th>Position</th>
<th>Chemical shift</th>
<th>Coupling constant</th>
<th>13C abundance 13C13C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13C δ, ppm</td>
<td>1H δ, ppm</td>
<td>J_{CC}, Hz</td>
</tr>
<tr>
<td>1</td>
<td>202.0</td>
<td>42.0(6)</td>
<td>20 (6)</td>
</tr>
<tr>
<td>2</td>
<td>75.0</td>
<td>36.5(3)</td>
<td>24 (3)</td>
</tr>
<tr>
<td>3</td>
<td>30.7</td>
<td>36.0(2)</td>
<td>23 (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.9(18)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>53.5</td>
<td>35.7(19)</td>
<td>10 (19)</td>
</tr>
<tr>
<td>5</td>
<td>42.0</td>
<td>36.0(6)</td>
<td>18 (6)</td>
</tr>
<tr>
<td>6,(a)</td>
<td>38.1</td>
<td>34.7(5)</td>
<td>23 (5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.1(1)</td>
<td></td>
</tr>
<tr>
<td>7(β)</td>
<td>18.1</td>
<td>33.4(11)</td>
<td>20 (11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.3(9)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>51.3</td>
<td>52.6(17)</td>
<td>16 (17)</td>
</tr>
<tr>
<td>9</td>
<td>35.4</td>
<td>32.3(11)</td>
<td>18 (11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0(7)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>64.0</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>11(α)</td>
<td>43.3</td>
<td>33.4(9)</td>
<td>18 (9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0(7)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>72.0</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>13</td>
<td>125.2</td>
<td>72.6(16)</td>
<td>30 (16)</td>
</tr>
<tr>
<td>14</td>
<td>108.3</td>
<td>70.3(15)</td>
<td>22 (15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0(12)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>143.7</td>
<td>70.3(14)</td>
<td>28 (14)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.7(12)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>139.4</td>
<td>73.8(13)</td>
<td>22 (13)</td>
</tr>
<tr>
<td>17</td>
<td>171.1</td>
<td>51.1(8)</td>
<td>22 (8)</td>
</tr>
<tr>
<td>18</td>
<td>171.5</td>
<td>3.5(3)</td>
<td>12 (3)</td>
</tr>
<tr>
<td>19</td>
<td>16.4</td>
<td>35.1(4)</td>
<td>16 (4)</td>
</tr>
<tr>
<td>20</td>
<td>15.2</td>
<td>35.1(10)</td>
<td>10 (10)</td>
</tr>
<tr>
<td>21</td>
<td>169.9</td>
<td>59.7(22)</td>
<td>31 (22)</td>
</tr>
<tr>
<td>22</td>
<td>20.5</td>
<td>59.9(21)</td>
<td>31 (21)</td>
</tr>
<tr>
<td>23</td>
<td>51.9</td>
<td>3.74(s)</td>
<td></td>
</tr>
</tbody>
</table>
Results and discussion

Figure 34. Structure of salvinorin A.

Figure 35. 13C NMR signals of salvinorin A from the experiment with [U-13C$_{6}$]glucose.

Figure 36. 13C NMR signals of salvinorin A from the experiment with 13CO$_{2}$.
Figure 37. Mechanism of biosynthesis of salvinorin A and isotopologue composition of salvinorin A and its precursors (A); isoprenoide moieties of salvinorin A and its precursors (B). Multiple 13C-labelled isotopologues are indicated by bars, single-labelled isotopologues by filled dots. Arrows connect three 13C atoms (indicated by filled dots).
3.5. Isotopolog perturbation-relaxation experiments with growing *Nicotiana tabacum*

In our experiments, sterile plants of *Nicotiana tabacum* wild-type and *N. tabacum* mutants lacking plastidic RNA polymerase (*rpoA* mutants) were grown on agar containing a mixture of [U-\(^{13}\text{C}_6\)]glucose and unlabelled sucrose as described under Methods 2.3.12. Nicotine was isolated and analyzed by \(^{13}\text{C}\) NMR spectroscopy as described under Methods 2.3.13 – 2.3.17.

The isotopologue profiles of nicotine were also determined by \(^{13}\text{C}\) NMR spectroscopy (Fig. 38). The signals were characterized by coupling satellites reflecting the presence of multiply \(^{13}\text{C}\)-labelled isotopologues. Analysis of the coupling patterns revealed the isotopologue composition shown in Figure 39. The isotopologue profile confirms the formation of the pyridine ring of the alkaloid from aspartate (3) and glyceraldehyde 3-phosphate (12) via nicotinic acid (1) and formation of the pyrrolidine ring from putrescine (20) (Fig. 40). Interestingly, the isotopologue patterns of the glyceraldehyde phosphate building blocks were different in nicotine from both plant materials. Specifically, no [3,4-\(^{13}\text{C}_2\)]-isotopologue of nicotine (reflecting [2,3-\(^{13}\text{C}\)]glyceraldehyde 3-phosphate) was detected in the *rpoA* mutant plants. This indicates that the transketolase reaction of the pentose phosphate pathway (conducive to the formation of [2,3-\(^{13}\text{C}_2\)]glyceraldehyde 3-phosphate from [U-\(^{13}\text{C}_6\)]glucose) does not contribute to glucose cycling in the root system of the wild-type plant. Therefore, it appears that an active photosynthetic system modulates the carbohydrate fluxes in the metabolic network of the roots.
Results and discussion

Figure 38. 13C-NMR signals of nicotine from the $rpoA$ mutant (A) and wild-type (B); * indicate signals from impurities.

Figure 39. A, structure of nicotine; B, 13C isotopologue composition of nicotine from $N.\ tabacum$ wild-type; C, 13C isotopologue composition of nicotine from the $rpoA$ mutant of $N.\ tabacum$. Multiple 13C-labelled isotopologues are indicated by bars. 13C-Enrichments of single 13C-labelled isotopologues are indicated by filled dot. Numbers indicate the corresponding 13C-enrichments values in mol%.
Figure 40. Isotopologue profiling of nicotine from the \textit{rpoA} mutant in the experiment with [U-13C$_6$]glucose. For other details, see Figure 39 and text.

The example shows that perturbation-relaxation analysis of isotopologue abundance using 13C-labelled glucose is well qualified to determine the impact of mutations on metabolite flux in central intermediary metabolism of plants. Generally, the comparison of isotopologue relaxation in central metabolites with the relaxation behaviour of secondary metabolites constitutes a multi-dimensional analytical tool for the assessment of the metabolome in compartmented plant systems.

3.5. Biosynthesis of the chromogen hermidin from \textit{Mercurialis annua}

3.5.1. Experiments with [U-13C$_6$]glucose

In these experiments, cut seedlings of \textit{M. annua} were supplied with solutions containing 5 mM [U-13C$_6$]glucose and 50 mM unlabelled glucose as described under \textbf{Methods 2.3.11.2}. The survival of the plant material was improved considerably by the addition of ascorbic acid to the glucose solution; the vitamin is believed to act as an antioxidant that reduces damage to the cut plant material.
Herminidin was isolated from the labelled plant material as described under Methods 2.3.11.6. The compound turned out to be highly unstable, and it was essential to run 13C NMR experiments immediately after isolation.

Since only 1H NMR assignments for herminidin were available from the literature (Swan, 1984), the 13C signals were assigned by HMQC and HMBC experiments. Moreover, multiply 13C labelled samples from the labelling experiments afforded 13C-13C coupling constants that confirmed the assignments and were required for the subsequent biosynthetic studies. Data are summarized in Table 11 and Figure 7.

13C Signals of the herminidin sample from the experiment with $[U-^{13}$C$_6]$glucose are shown in Figure 41A. The signal of C-5 comprises a central line and 4 satellite lines of considerable intensity that arise by 13C-13C coupling in multiply labelled molecular species. The other 13C signals appear with relatively low intensity that is due to slow relaxation in the absence of directly bound protons. Even so, satellites resulting from 13C-13C coupling can be identified for C-4 and C-6 (Table 12).

The labelling pattern shows unequivocally that up to three 13C atoms can be incorporated en bloc into carbon atoms 4 - 6 of the pyridinone ring. A more detailed analysis shows the presence of a triple-labelled as well as two different double-labelled isotopologues in the herminidin sample. The data are summarized in Figure 42A where abundances of individual isotopologues are indicated by the width of the bars connecting jointly transferred clusters of 13C atoms. Isotopologue abundances are indicated numerically in mol%.

Biomass remaining after herminidin isolation was hydrolyzed with 6 M hydrochloric acid, and alanine and aspartate from the hydrolysate were chemically converted into the tert-butyl-di-methylsilyl derivatives, respectively, that were then analysed by mass spectrometry.

On the basis of the known fragmentation pattern of the derivative (Dauner and Sauer, 2000), isotopologue abundances can be determined for ions comprising all carbon atoms of the original amino acid (corresponding to a fragment with $m/z = 260$ from TBDMS-alanine; cf. Table 13), and for ions comprising the carbon atoms of the original amino acids without the carboxylic acid atom ($m/z = 158$ or 232 from TBDMS-alanine). After correcting the detected intensities of the mass peaks using the method described by Lee et al. (1991), molar abundances for carbon isotopologues of the amino acid moiety can be calculated (Table 13). The isotopologue pattern is derived from the
Results and discussion

abundances of isotopologue groups (XY-groups) as described elsewhere (Römisch-Margl et al., 2007).

Table 11. 1H and 13C NMR data of hermidin

<table>
<thead>
<tr>
<th>Position</th>
<th>Chemical shifts, ppm</th>
<th>13C</th>
<th>13C13C</th>
<th>J$_{CC}$ Coupling constantsa, Hz</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1H</td>
<td>13C</td>
<td>13C13C</td>
<td>HMQC</td>
<td>HMBC</td>
</tr>
<tr>
<td>1´</td>
<td>3.2</td>
<td>26.9</td>
<td>-</td>
<td>1´</td>
<td>2, 6</td>
</tr>
<tr>
<td>2</td>
<td>165.9</td>
<td>73.0 (3)</td>
<td></td>
<td>OH (3)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>122.7</td>
<td>73.4 (2)</td>
<td></td>
<td>OH (3), 5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>140.1</td>
<td>49.1 (5)</td>
<td>4</td>
<td>3, 4´</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.5</td>
<td>35.8</td>
<td>50.0 (4), 50.0 (6)</td>
<td>5</td>
<td>3, 4, 6</td>
</tr>
<tr>
<td>6</td>
<td>167.5</td>
<td>50.9 (5)</td>
<td></td>
<td>1´, 5</td>
<td></td>
</tr>
<tr>
<td>4´</td>
<td>4.1</td>
<td>58.8</td>
<td>-</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>OH (3)</td>
<td>5.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

a observed with 13C-enriched samples. The coupling partner of the index carbon atom is given in parentheses.

The data summarized in Table 14 showed the presence of the universally labelled [U-13C$_3$]alanine and a double-labelled [2,3-13C$_2$]alanine (cf. also Fig. 42A). On the other hand, protein-derived aspartate analysed by the same method showed no significant 13C labelling.
Figure 41. 13C NMR signals of hermidin from the experiments with [U-13C$_6$]glucose (A) and 13CO$_2$ (B). Coupling patterns are indicated. The asterisks indicate signals from impurities.
Table 12. Labelling data of hermidin from the experiment with [U-\(^{13}\text{C}_6\)]glucose monitored by NMR spectroscopy.

<table>
<thead>
<tr>
<th>Position</th>
<th>(^{13}\text{C}^{13}\text{C})</th>
<th>% (^{13}\text{C})</th>
<th>Abundance of multiple labelled isotopologues, mol%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1'</td>
<td>< 1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>< 1.3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>< 1.3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>32.4 (5)</td>
<td>n.d.</td>
<td>1.0 [4,5,6-(^{13}\text{C}_3)] + [4,5-(^{13}\text{C}_2)]</td>
</tr>
<tr>
<td>5</td>
<td>25.5 (4 and 6)</td>
<td>2.9</td>
<td>0.7 [4,5,6-(^{13}\text{C}_3)]</td>
</tr>
<tr>
<td></td>
<td>14.0 (4 or 6)</td>
<td></td>
<td>0.4 [4,5-(^{13}\text{C}_2)] + [5,6-(^{13}\text{C}_2)]</td>
</tr>
<tr>
<td>6</td>
<td>34.2 (5)</td>
<td>2.3</td>
<td>0.8 [4,5,6-(^{13}\text{C}_3)] + [5,6-(^{13}\text{C}_2)]</td>
</tr>
<tr>
<td>4'</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(a\) Fraction of \(^{13}\text{C}\) coupled satellite signals in the overall signal integral of a given carbon atom. \(^{13}\text{C}\) Atoms that give rise to the coupling signature are indicated in parentheses.

Table 13. GC/MS analysis of TBDMS-alanine. The derivative was made from alanine obtained from protein hydrolysates of seedlings of *Mercurialis annua* labelled with [U-\(^{13}\text{C}_6\)]glucose.

<table>
<thead>
<tr>
<th>Fragment(^a) m/z</th>
<th>Isotopologue / X-group(^b)</th>
<th>mol[%]</th>
<th>SD[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>232</td>
<td>{X00}</td>
<td>98.40</td>
<td>0.42</td>
</tr>
<tr>
<td>232 + 1</td>
<td>{XYY}(^1)</td>
<td>0.56</td>
<td>0.26</td>
</tr>
<tr>
<td>232 + 2</td>
<td>{X11}</td>
<td>1.04</td>
<td>0.25</td>
</tr>
<tr>
<td>158</td>
<td>{X00}</td>
<td>97.96</td>
<td>0.41</td>
</tr>
<tr>
<td>158 + 1</td>
<td>{XYY}(^1)</td>
<td>0.56</td>
<td>0.51</td>
</tr>
<tr>
<td>158 + 2</td>
<td>{X11}</td>
<td>1.48</td>
<td>0.10</td>
</tr>
<tr>
<td>260</td>
<td>{000}</td>
<td>90.92</td>
<td>4.69</td>
</tr>
<tr>
<td>260 + 1</td>
<td>{YYY}(^1)</td>
<td>7.69</td>
<td>4.73</td>
</tr>
<tr>
<td>260 + 2</td>
<td>{YYY}(^2)</td>
<td>0.76</td>
<td>0.23</td>
</tr>
<tr>
<td>260 + 3</td>
<td>{111}</td>
<td>0.63</td>
<td>0.25</td>
</tr>
</tbody>
</table>

\(a\) Fragment 232: loss of the tert-butyl group from the TBDMS derivate and the CO unit from the amino acid (M-85)\(^+\); fragment 260: loss of the tert-butyl group from the TBDMS derivative (M-57)\(^+\); fragment 158: loss of C(O)-TBDMS ion (M – 159)\(^-\).

\(b\) The XY-group notation of isotopologues is adapted from Römisch-Margl et al. (2007).
Results and discussion

Figure 42. A, 13C Isotopologue composition of hermidin from *M. annua* in the experiment with [U-13C$_6$]glucose; B, 13C isotopologue composition of hermidin from *M. annua* in the experiment with 13CO$_2$. Multiple 13C-labelled isotopologues are indicated by bars, single labelled isotopologues by filled dots. The numbers indicate 13C-enrichments values in mol%.

Figure 43. Comparison of the labelling patterns in hermidin labelled with [U-13C$_6$]glucose (A) and 13CO$_2$ (B) as precursors observed by quantitative NMR spectroscopy with predicted patterns *via* the aspartate route. The prediction is based on
the observed profiles in alanine and aspartate (shown in boxes). For details see Results
and legend to Figure 42.

3.5.2. Experiments with 13CO$_2$

In our experiments, we exposed *M. annua* plants to a synthetic atmosphere containing 600 ppm 13CO$_2$ as described under Methods 2.3.11.3.

Carbon NMR signals of hermidin from the 13CO$_2$ experiment are shown in Figure 41B. The relative intensity of the satellite signals indicative of multiply labelled hermidin isotopologues are generally larger in the 13CO$_2$ experiment as compared to the experiment with [U-13C$_6$]glucose (cf. also Table 14). The satellite patterns of carbon atoms 4 – 6 are similar in the two experiments. Carbon atoms 2 and 3 appear as pseudotriplets with satellites signalling the joint transfer of two 13C atoms to these adjacent positions, in contrast to the experiment with the [U-13C$_6$]glucose experiment where these carbon signals were devoid of apparent satellites. The isotopologue patterns in the 13CO$_2$ experiment are summarized in Figure 42B.

Table 14. Labelling data of hermidin from the 13CO$_2$ experiment monitored by NMR spectroscopy.

<table>
<thead>
<tr>
<th>Position</th>
<th>%13C13Ca</th>
<th>%13C</th>
<th>Abundance of multiple labelled isotopologues, mol%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1´</td>
<td>5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>35.0 (3)</td>
<td>7.4</td>
<td>2.6 [2,3-13C$_2$]</td>
</tr>
<tr>
<td>3</td>
<td>38.3 (2)</td>
<td>7.0</td>
<td>2.7 [2,3-13C$_2$]</td>
</tr>
<tr>
<td>4</td>
<td>60.6 (5)</td>
<td>8.0</td>
<td>4.9 [4,5,6-13C$_3$] + [4,5-13C$_2$]</td>
</tr>
<tr>
<td>5</td>
<td>39.2 (4 and 6)</td>
<td>7.9</td>
<td>3.1 [4,5,6-13C$_3$]</td>
</tr>
<tr>
<td></td>
<td>32.5 (4 or 6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>54.1 (5)</td>
<td>7.7</td>
<td>4.2 [4,5,6-13C$_3$]+ [5,6-13C$_2$]</td>
</tr>
<tr>
<td>4´</td>
<td>6.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Fraction of 13C coupled satellite signals in the overall signal integral of a given carbon atom. 13C Atoms that give rise to the coupling signature are indicated in parentheses.
Results and discussion

Table 15. GC/MS analysis of TBDMS-alanine. The derivative was made from alanine obtained from protein hydrolysates of leaves of *Mercurialis annua*. The leaves were cut from plants grown in the presence of 13CO$_2$. For more details, see also footnotes of Table 15.

<table>
<thead>
<tr>
<th>Fragment m/z</th>
<th>Isotopologue / X-group</th>
<th>mol[/%]</th>
<th>SD[/%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>232</td>
<td>{X00}</td>
<td>92.59</td>
<td>0.22</td>
</tr>
<tr>
<td>232 + 1</td>
<td>{XYY}</td>
<td>3.81</td>
<td>0.03</td>
</tr>
<tr>
<td>232 + 2</td>
<td>{X11}</td>
<td>3.60</td>
<td>0.18</td>
</tr>
<tr>
<td>158</td>
<td>{X00}</td>
<td>92.86</td>
<td>0.21</td>
</tr>
<tr>
<td>158 + 1</td>
<td>{XYY}</td>
<td>3.70</td>
<td>0.25</td>
</tr>
<tr>
<td>158 + 2</td>
<td>{X11}</td>
<td>3.44</td>
<td>0.22</td>
</tr>
<tr>
<td>260</td>
<td>{000}</td>
<td>85.74</td>
<td>1.55</td>
</tr>
<tr>
<td>260 + 1</td>
<td>{YYY}</td>
<td>9.39</td>
<td>1.58</td>
</tr>
<tr>
<td>260 + 2</td>
<td>{YYY}</td>
<td>2.73</td>
<td>0.06</td>
</tr>
<tr>
<td>260 + 3</td>
<td>{111}</td>
<td>2.14</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Table 16. GC/MS analysis of TBDMS-aspartate obtained from protein hydrolysates of leaves of *Mercurialis annua*. The leaves were cut from plants grown in the presence of 13CO$_2$.

<table>
<thead>
<tr>
<th>Fragmenta m/z</th>
<th>Isotopologue / X-group</th>
<th>mol[/%]</th>
<th>SD[/%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>302</td>
<td>{00XX}</td>
<td>93.90</td>
<td>0.17</td>
</tr>
<tr>
<td>302 + 1</td>
<td>{YYXX}</td>
<td>3.76</td>
<td>0.10</td>
</tr>
<tr>
<td>302 + 2</td>
<td>{11XX}</td>
<td>2.34</td>
<td>0.11</td>
</tr>
<tr>
<td>316</td>
<td>{X000}</td>
<td>91.08</td>
<td>0.33</td>
</tr>
<tr>
<td>316 + 1</td>
<td>{XYYY}</td>
<td>5.02</td>
<td>0.17</td>
</tr>
<tr>
<td>316 + 2</td>
<td>{XYYY}</td>
<td>2.79</td>
<td>0.15</td>
</tr>
<tr>
<td>316 + 3</td>
<td>{X111}</td>
<td>1.11</td>
<td>0.05</td>
</tr>
<tr>
<td>390</td>
<td>{X000}</td>
<td>91.52</td>
<td>0.39</td>
</tr>
<tr>
<td>390 + 1</td>
<td>{XYYY}</td>
<td>5.60</td>
<td>0.15</td>
</tr>
<tr>
<td>390 + 2</td>
<td>{XYYY}</td>
<td>1.49</td>
<td>0.74</td>
</tr>
<tr>
<td>390 + 3</td>
<td>{X111}</td>
<td>1.39</td>
<td>0.39</td>
</tr>
<tr>
<td>418</td>
<td>{0000}</td>
<td>89.51</td>
<td>0.25</td>
</tr>
<tr>
<td>418 + 1</td>
<td>{YYYY}</td>
<td>4.85</td>
<td>0.22</td>
</tr>
<tr>
<td>418 + 2</td>
<td>{YYYY}</td>
<td>3.10</td>
<td>0.28</td>
</tr>
<tr>
<td>418 + 3</td>
<td>{YYYY}</td>
<td>1.84</td>
<td>0.20</td>
</tr>
<tr>
<td>418 + 4</td>
<td>{1111}</td>
<td>0.71</td>
<td>0.09</td>
</tr>
</tbody>
</table>

a Fragment 390: loss of the tert-butyl group from the TBDMS derivate and the CO unit from the amino acid (M-85)$^+$; fragment 418: loss of the tert-butyl group from the TBDMS derivative (M-57)$^+$; fragment 316: loss of C(O)-TBDMS ion (M – 159)$^+$; fragment 302: double silylated C$_1$-C$_2$ fragment (302)$^+$.
Results and discussion

The isotopologue pattern derived from the mass spectral data of biosynthetic alanine from the 13CO$_2$ experiment is summarized in Table 15 and Figure 43B and appears similar to that observed in the labelling experiment with [U-13C$_6$]glucose, except that the amino acid from the 13CO$_2$ experiment shows a higher level of label, in line with the observed isotopologue pattern of hermidin. Several multiply 13C-labelled aspartate isotopologues were detected at significant abundance (Table 16 and Fig. 43B), whereas aspartate had been found to be virtually without label in the experiment with [U-13C$_6$]glucose. It may reflect the breakdown of aspartate biosynthesis under the experimental conditions with cut seedlings.

Figure 44. Comparison of labelling patterns in hermidin and nicotine from the [U-13C$_6$]glucose experiment (A) and the 13CO$_2$ experiment (B). The bars indicate multiple labelled isotopologues. Due to the different scaling factors the labelling patterns are shown only qualitatively. The nicotine pattern from the 13CO$_2$ experiment is published in Römisch-Margl et al., 2007. The pattern from the [U-13C$_6$]glucose experiment is unpublished.

In order to analyze the biosynthesis of hermidin, which was previously unknown, the data from two labelling experiments using [U-13C$_6$]glucose and 13CO$_2$ were compared. The pattern of hermidin reminds of the biosynthesis of the pyridine ring in nicotinic acid where also a three carbon unit coming from dihydroxyacetone
phosphate and a two carbon unit coming from aspartate are found as biosynthetic units. In order to verify this hypothesis, we predicted the labelling pattern of hermidin via the nicotinic acid pathway (Figs. 44 and 45). Notably, the ^{13}C abundance is considerably lower in the experiment with ^{13}C-labelled glucose, and that is easily explained by the fact that the tissue segments undergo rapid attrition. However, both experiments unequivocally show the diversion of up to three ^{13}C atoms in tandem to carbon atoms 4 - 6 of hermidin. Significant pairwise incorporation of adjacent ^{13}C atoms into carbon atoms 2 and 3 was only observed in case of the $^{13}\text{CO}_2$ experiment, but this difference may be due to the generally low label transfer in the experiment with labelled glucose.

Nicotinic acid biosynthesis in plants, which was already known in considerable detail, (for reviews see Leete, 1992) is assumed to start from dihydroxyacetone phosphate and iminoaspartate (derived from aspartate by aspartate oxidase, NadB protein, cf. Fig. 45) which undergo a condensation affording quinolate catalysed by quinolate synthase (NadA protein) (Fig. 45) (for review, see Noctor et al., 2006). Using the experimentally determined labelling patterns of the amino acids from the experiments with $^{13}\text{CO}_2$ or [U-$^{13}\text{C}_6$]glucose as tracers, the labelling patterns of hermidin can be simulated using the retrobiosynthetic concept (Bacher et al., 1999). The retrobiosynthetic reconstruction agrees well with the experimentally observed labelling patterns of hermidin. Notably, aspartate from the $^{13}\text{CO}_2$ experiment shows multiply labelled isotopologues in significant abundance, whereas these isotopologues are below the detection limit in the experiment with [U-$^{13}\text{C}_6$]glucose. This finding corresponds very well with the presence of [2,3-$^{13}\text{C}_2$]hermidin in the sample from $^{13}\text{CO}_2$ labelling and its absence in the sample from [U-$^{13}\text{C}_6$]glucose labelling.

3.5.3. Experiments with [1-$^{13}\text{C}_1$]glucose

Cut seedlings of *M. annua* L. were supplied with solutions containing 55 mM [1-$^{13}\text{C}_1$]glucose and 1 mM ascorbic acid as described under Methods 2.3.11.4. The pyridinone type chromogen, hermidin, was again isolated and analyzed by NMR spectroscopy as described under Methods 2.3.11.6 and 2.3.11.7.

The ^{13}C abundances for carbon atoms were calculated on the basis of the ^{13}C NMR signal intensities using a reference value of 1.1% for carbon atom C-5. The signals of C-2, C-3 and C-4 comprised a central line and four satellites lines with considerable intensity. The signals of C-5 and C-6 comprised only two satellites with low intensity. The labelling data are summarized in Table 17.
Several multiply 13C-labelled hermidin isotopologues were detected at significant abundance (Table 17 and Fig. 47). As shown in Figure 47, the 13C-enrichment of carbon C-4 was higher than at carbons C-2, C-3 or C-5 (for details see Figure 46).
Results and discussion

Table 17. Labelling data of hermidin from the experiment with [1-13C\textsubscript{1}]glucose

<table>
<thead>
<tr>
<th>Position</th>
<th>%13C\textsubscript{abs}</th>
<th>%13C13C</th>
<th>Abundance of multiple-labelled isotopologues, (mol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1'</td>
<td>3.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>4.5</td>
<td>11.0 (3)</td>
<td>2.9 [2-13C\textsubscript{1}]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23.0 (4)</td>
<td>0.5 [2,3-13C\textsubscript{2}]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0 [2,4-13C\textsubscript{2}]</td>
</tr>
<tr>
<td>3</td>
<td>4.5</td>
<td>9.7 (2)</td>
<td>3.0 [3-13C\textsubscript{1}]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25.8 (4)</td>
<td>0.4 [2,3-13C\textsubscript{2}]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2 [3,4-13C\textsubscript{2}]</td>
</tr>
<tr>
<td>4</td>
<td>4.9</td>
<td>13.6 (3)</td>
<td>3.6 [4-13C\textsubscript{1}]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.6 (2)</td>
<td>0.7 [3,4-13C\textsubscript{2}]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.7 [2,4-13C\textsubscript{2}]</td>
</tr>
<tr>
<td>5</td>
<td>1.1</td>
<td>8.8 (4)</td>
<td>1.0 [5-13C\textsubscript{1}]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1 [4,5-13C\textsubscript{2}]</td>
</tr>
<tr>
<td>6</td>
<td>2.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4'</td>
<td>3.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OH (3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

As noted above and shown in Figure 40, \textbf{(Results and discussion 3.4)}, the formation of the pyridine ring of nicotinic acid is assumed to originate from aspartate (3) and glyceraldehyde 3-phosphate (12) but alternative pathways are thinkable. On the basis of utilization of exogenous [1-13C]glucose \textit{via} the glycolytic pathway, glycogenesis, and the pentose phosphate pathway, the labelling patterns of potential building blocs in hermidin biosynthesis can now be predicted. As shown in Figure 46A, the isotopologue compositions of triose phosphate, pyruvate, and acetyl-CoA are characterized by [3-13C]glyceraldehyde 3-phosphate, [3-13C]pyruvate, and [2-13C]acetyl-CoA. [2,3-13C\textsubscript{2}]-Aspartate is explained \textit{via} the citrate cycle and randomization of the label due to the symmetrical succinate (Fig. 46B).

The labelling pattern for hermidin can now be constructed with the labelling patterns of the early precursors \textit{via} different potential biosynthetic pathways (Fig. 48). As shown in Figure 48, the labelling patterns of hermidin starting from ribulose 5-phosphate (Fig. 48C) or from 1-deoxy-D-xylulose 5-phosphate in a vitamin B\textsubscript{8} – like
mechanism (Tambasco-Studart et al., 2005) (Fig. 48D) or in a anabasine-like biosynthesis starting from lysine (Mathews et al., 1999) (Fig. 48F) are at odds with the observed pattern in hermidin. However, the observed pattern is in well agreement with the predicted pattern predicted via the aspartate route of nicotinic acid biosynthesis (Fig. 48B). The result can be taken as strong evidence that the aspartate route is valid for hermidin biosynthesis.

Figure 46. A, Biosynthesis of acetyl-CoA via glycolysis; B, biosynthesis of aspartate via citrate cycle. 13C-label is indicated by dots.
Figure 47. 13C-Enriched isotopologues of hermidin observed in the experiment with [1-13C$_1$]glucose isolated from *Mercurialis annua*. 13C-label is indicated by dots.

Figure 48. Comparison of the labelling patterns in hermidin from the experiment with [1-13C$_1$]glucose, (A) observed by quantitative NMR spectroscopy with (B-F) predicted patterns (B) via the aspartate route of nicotinic acid biosynthesis; (C), via a vitamin B$_6$ like biosynthesis starting from ribulose 5-phosphate; (D), via a vitamin B$_6$
like biosynthesis starting from aspartate and 1-deoxy-D-xylulose 5-phosphate; (E), via a
polyketide like biosynthesis starting from acetyl-CoA; (F), via anabasine like
biosynthesis starting from lysine. 13C-label is indicated by dots.

3.5.4. Experiments with $[^{13}$C$_4$, 15N$_1]$aspartate

Another support for hermidin biosynthesis via aspartate and nicotinic acid was
elaborated in incorporation experiments with 13C$_4$, 15N$_1$ – labelled aspartate.

Specifically, cut seedlings of *M. annua* L. were supplied with solutions containing
5 mM $[^U$-13C$_4$, 15N$_1]$aspartate as described under Methods 2.3.11.5. Hermidin was
isolated and analyzed by NMR spectroscopy.

Carbon NMR signals of hermidin are shown in Figure 49. Satellites resulting from
13C13C or 13C15N coupling were detected only for C-2 and C-3 (Table 19).

This demonstrates that the biosynthesis of hermidin can be via biosynthetic
pathway of nicotinic acid starting from aspartate.

<table>
<thead>
<tr>
<th>Position</th>
<th>Chemical shifts, ppm</th>
<th>J Coupling constants*, Hz</th>
<th>%13C13C</th>
<th>rel. % 13C15N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1'</td>
<td>3.2</td>
<td>26.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>165.9</td>
<td>72.9 (3)</td>
<td>6.6</td>
<td>12.3</td>
</tr>
<tr>
<td>3</td>
<td>122.7</td>
<td>73.4 (2)</td>
<td>3.5</td>
<td>15.3</td>
</tr>
<tr>
<td>4</td>
<td>140.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3.5</td>
<td>35.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>167.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4'</td>
<td>4.1</td>
<td>58.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OH (3)</td>
<td>5.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

As shown in Table 18 and Figure 49, the pairwise incorporation of low adjacent
13C atoms in the experiment with $[^U$-13C$_4$, 15N$_1]$aspartate was only observed into carbon
atoms 2 and 3.
Figure 49. 13C NMR signals of hermidin from the experiment with $[U-^{13}\text{C}_4,^{15}\text{N}]$aspargate.
4. Summary

The term metabolomics refers to the systematic study of the unique chemical fingerprints that specific cellular processes generate. Specifically, metabolomics relate to small-molecule metabolite profiles, but can be extended to isotopologue profiles due to labelling experiments using stable-isotope enriched precursors. Indeed, tracer studies using isotopes are among the most important methods for the study of biosynthetic pathways in both primary and secondary metabolism.

Stable isotope experiments monitored by NMR spectroscopy and/or mass spectrometry have also been adapted to studies with plant systems. A major aim of these studies is to provide a rational basis for the improvement of biomass and/or specific plant products. Specifically or uniformly 13C-labelled glucose and sucrose have been used, but in principle any labelled metabolite, such as amino acids, mevalonate or acetate that are absorbed by the cells or tissues at a sufficient rate is suitable.

In this thesis, we have treated plants of *Allium schoenoprasum* with cadmium salt at a concentration of 50 mM. After extraction of shoots and roots with perchloric acid, the extracts were analysed by NMR spectroscopy. The concentrations of polar compounds were assessed by 1H NMR spectroscopy using a spectral library comprising 1H NMR spectra of over 260 reference compounds (Chenomx NMR Suite 4,6). Several aliphatic amino acids including asparagine, aspartate, glutamine, glutamate, proline, serine, and threonine were identified as major compounds in the extracts. The concentration of asparagine was approximately 7 times higher in the shoots of Cd-treated plants than in the shoots of control plants. We suppose that asparagine serves as a complexing agent for Cd^{2+} ions in the shoots.

In a second experiment, we have treated plants of *Mercurialis annua* with 0.9% sodium chloride (salinity). After extraction with perchloric acid, the concentrations of polar compounds were again determined by 1H NMR spectroscopy. Specifically, we have compared the concentrations of polar compounds in the leaves and the roots of salt-stressed and control plants of female or male origin. The concentrations were similar in the extracts of female and male plants. However, the concentrations of glucose and sucrose in the leaves and the roots of salt-treated plants were higher than in the respective control plants. This can be explained by an osmolytic effect. The concentration of malate was approximately 2-5 times higher in the leaves and in the...
roots of control than in salt-treated plants. On the other hand, the concentrations of aspartate and oxalacetate were higher upon salinity stress.

Metabolite profiling can be complemented with isotopologue profiles obtained from labelling experiments. The concept was challenged in several model studies focussed on the elucidation of terpenoid and alkaloid biosynthesis.

Using 13CO$_2$ as precursor, the biosynthesis of hyperforin from *Hypericum perforatum*, a commercially important medicinal plant, was studied. The isotopologue compositions of the prenyl and polyketide moieties of hyperforin were analysed. In order to describe the complex isotopologue space of prenyl moieties, a six-digit binary number of the carbon skeleton was used. The low standard deviations indicate that all prenyl units in hyperforin originate from common precursor units. The labelling patterns showed that the isoprenoid units in prenyl moieties are predominantly of non-mevalonate origin.

The biosynthesis of the psychoactive diterpene salvinorin A in *Salvia divinorum* plants was studied using [U-13C$_6$]glucose and 13CO$_2$ as precursors. The isotopologue composition of salvinorin A from the 13CO$_2$ experiment was analysed by 13C NMR spectroscopy. The presence of multiply 13C-labelled isotopologues in considerable excess over their natural occurrence showed that the 13C labelling pulse had afforded multiply 13C-labeled compounds. The presence of triple labelled isotopologues demonstrated that IPP and DMAPP precursors of the diterpene were predominantly biosynthesized via the non-mevalonate pathway. The labelling patterns also showed that the methyl groups C-19 and C-20 were shifted to the neighboured carbon atoms in an allylic diphosphate intermediate (24, Fig. 37) of salvinorin A. The exclusive 13C enrichment of the acetyl carbon atoms in salvinorin A from [U-13C$_6$]glucose indicates that unlabelled salvinorin B is converted into salvinorin A by acetylation.

In perturbation-relaxation experiments with *Nicotiana tabacum*, the plants were grown on agar containing a mixture of [U-13C$_6$]glucose and unlabelled sucrose. The isotopologue profiles of nicotine were determined by 13C NMR spectroscopy. Specifically, no $[3,4-{^{13}}$C$_2]$-isotopologue of nicotine (reflecting $[2,3-{^{13}}$C]glyceraldehyde 3-phosphate) was detected in the wild-type plants. This suggests that the transketolase reaction of the pentose phosphate pathway (conducive to the formation of $[2,3-$
Summary

13C$_2$glyceraldehyde 3-phosphate from [U-13C$_6$glucose) does not contribute to glucose cycling in the root system of the wild-type plant. Therefore, it appears that an active photosynthetic system modulates the carbohydrate fluxes in the metabolic network of the roots.

In labelling experiments with M. annua plants, we used [U-13C$_6$]glucose, 13CO$_2$, [1-13C$_1$]glucose, and [13C$_4$,15N$_1$]aspartate as precursors. The pyridinone type chromogen, hermidin, was isolated and analyzed by NMR spectroscopy. Since only 1H NMR assignments for hermidin were available from the literature, the 13C signals were assigned by HMQC and HMBC experiments.

The labelling pattern in the experiment with [U-13C$_6$]glucose showed that up to three 13C atoms can be incorporated en bloc into carbon atoms 4-6 of the pyridinone ring of hermidin. A more detailed analysis showed the presence of a triple-labelled as well as two different double-labelled isotopologues in the hermidin sample. NMR analysis of amino acids obtained by acid hydrolysis of labelled biomass demonstrated the presence of [U-13C$_3$]alanine, whereas aspartate was found to be virtually unlabelled. Photosynthetic pulse labelling of M. annua plants with 13CO$_2$ followed by a chase period in normal air afforded [4,5,6-13C$_3$]- and [2,3-13C$_2$]-hermidin with significant abundance. [U-13C$_3$]Alanine and multiply 13C-labelled aspartate isotopologues were also found in significant abundance.

The labelling patterns of hermidin obtained in the experiments with [U-13C$_6$]glucose and 13CO$_2$ closely resemble those observed for the pyridine ring of nicotine under similar experimental conditions. This suggests that hermidin, like nicotine, is biosynthesized via the nicotinic acid pathway from dihydroxyacetone phosphate and aspartate.

In an experiment with [1-13C$_1$]glucose, hermidin was again isolated and analyzed by NMR spectroscopy. The 13C-enrichment of carbon C-4 was higher than at carbons C-2, C-3 or C-5. On the basis of utilization of exogenous [1-13C]glucose via the glycolytic pathway, glycogen, and the pentose phosphate pathway, the labelling patterns of potential building units in hermidin biosynthesis were predicted. The observed pattern in hermidin was in good agreement with the predicted pattern via the aspartate route of nicotinic acid biosynthesis. Another support for hermidin biosynthesis via aspartate and nicotinic acid was elaborated in incorporation experiments with 13C$_4$, 15N$_1$-labelled aspartate. Satellites resulting from 13C-13C or 13C-15N coupling were
detected only for C-2 and C-3 demonstrating that aspartate can be used as a biosynthetic precursor in a pathway via nicotinic acid.

Although the use of general precursors (e.g. 13CO$_2$ and 13C-glucose) afforded detailed information about metabolic pathways and fluxes, the synthesis and employment of specific precursors is still important to identify individual steps in pathways. In this context, 13C-labelled 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate was synthesized for identifying downstream metabolites as well as mechanisms of the non-mevalonate pathway enzymes. The non-mevalonate pathway of isoprenoid biosynthesis serves as the unique source of terpenoids in numerous pathogenic eubacteria and apicoplast-type protozoa. It is therefore an attractive target for anti-infective chemotherapy. In photometric and NMR spectroscopy assays, the synthesized substrates were used to screen extracts of Mediterranean plants for inhibitors of the enzymes. In case of IspC protein, strongest inhibitory activity was found in leaf extracts of *Cercis siliquastrum*.
References

References

Beerhues, L. Hyperforin. Phytochemistry 67, 2201-2207.

References

References

Leete, E., 1992. The biosynthesis of nicotine and related alkaloids in intact plants, isolated plant parts, tissue cultures, and cell-free systems. Environmental Science Research 44, (Secondary-Metabolite Biosynthesis and Metabolism), 121-139.

References

References

References

References

References

