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Nothing in Biology Makes Sense Except in the Light of Evolution

Theodosius Dobzhansky



Abstract

A phylogeny represents the evolutionary relationship between species. In this thesis,
we answer questions arising in the process of reconstructing and analyzing phylo-
genies. We develop and discuss a general class of neutral models for speciation and
extinction. These results are used in our novel algorithm for dating supertrees as well
as for drawing lineages-through-time plots. Further, using the analytic results, we
can calculate p-values of our introduced statistic to test the evolutionary hypothesis
of lineage-specific bursting. We provide accurate simulation tools for models which
cannot or have not been analyzed. Widely used simulation algorithms are shown
to be wrong for these general models. We end the thesis by providing a complex-
ity result for dating phylogenies with reticulation events. In general, a phylogeny
with reticulations does not necessarily have a valid temporal dating. We prove that
adding missing species in an optimal way, such that the altered phylogeny has a
dating, is NP-complete. The main mathematical tools used in this thesis come from
stochastics, statistics, combinatorics and complexity theory.



Zusammenfassung

Eine Phylogenie reprasentiert die Verwandtschaftsbeziehungen zwischen Spezies. In
der vorliegenden Arbeit beantworten wir Fragestellungen, die bei der Rekonstruk-
tion und Analyse von Phylogenien auftreten. Wir entwickeln eine allgemeine Klasse
von neutralen Modellen fiir Speziation und Aussterben. Die Ergebnisse werden in
unserem neuen Algorithmus zur Datierung von Supertrees sowie zur Erstellung
von so genannten lineages-through-time Plots verwendet. Des Weiteren benutzen
wir unsere theoretischen Ergebnisse, um p-Werte fiir die entwickelte Statistik zum
Testen von Phylogenien auf Linien-spezifische Bursts zu berechnen. Fiir Modelle,
die nicht analysiert werden konnen oder nicht analysiert wurden, stellen wir Sim-
ulationsalgorithmen zur Verfiigung. Wir zeigen, dass weit verbreitete Simulation-
sprogramme selbst unter gangigen Modellen fehlerhaft arbeiten. Zum Abschluss der
Arbeit beschéftigen wir uns mit der Datierung von Phylogenien, in denen Retiku-
lationsereignisse auftreten. Eine Phylogenie mit Retikulationen besitzt nicht im-
mer eine zuléssige zeitliche Datierung. Wir beweisen, dass das optimale Hinzufiigen
von fehlenden Spezies, so dass die neue Phylogenie eine Datierung besitzt, NP-
vollstandig ist. Die in dieser Arbeit verwendeten mathematischen Methoden kommen
hauptsachlich aus der Stochastik, Statistik, Kombinatorik und Komplexitatstheorie.
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Chapter 1

Introduction

In phylogenetics, the central goal is to reconstruct the evolutionary relationship
between known species — the phylogeny of the species. The commonly used re-
construction methods are distance-based methods, maximum parsimony, maximum
likelihood, and Markov chain Monte Carlo (MCMC) methods, for a detailed dis-
cussion see [21]. Reconstruction methods assume some model for the evolution of
species, a macro-evolutionary model. In this thesis, we will extensively discuss such
models.

Species evolve because of changes of the four nucleotides (adenine, cytosine,
guanine, thymine) in the desoxyribonucleic acid (DNA). There are various models
describing these changes. The simplest model is the Jukes-Cantor model [43], where
each base in the DNA sequence has an equal chance of undergoing a substitution
event. Under this model, when a base changes, it mutates to one of the three other
bases with equal probability. More general models have been proposed in the liter-
ature [49, 55, 21].

Branching processes are used for modeling speciation and extinction. A muta-
tion model then evolves on the branching process: A sequence of nucleotides mutates
along a branch of the species tree. At a speciation event, the sequence is copied, and
one sequence is evolving on each descending branch. A branching process with a
mutation model specifies a macro-evolutionary model. A variety of branching pro-
cesses as models for speciation and extinction have been proposed. The simplest
model is the Yule model [101], where each species evolves independently and pro-
duces new species at a constant rate A. The Yule model is extended to models with
extinction by introducing a constant death rate p, such a model is called constant
rate birth-death process [20, 47). The case u = A, a critical branching process, has
been studied in detail as a model for speciation and extinction in [74, 2]. Departing
from this classical birth-death model, there have been proposed a variety of more
complex models where the speciation rate is a function of the age of the species or
the size of the population. Further, speciation rates might change over time by a
random process. For an overview of these models see [64]. Other models have been
proposed where the rates depend on a character state of the species [60].

However, even the simple models are not well-understood, which becomes ap-
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parent in incorrect sampling algorithms for these models (see Chapter 5). We will
define and investigate a broad class of neutral models for speciation and extinc-
tion (Chapter 2 and 3), this class includes the constant rate birth-death process. In
Chapter 2, we model trees without specifying a time between speciation events. We
call the considered class of models uniform rank (UR) models. Note that we model
the ordering of the speciation events, but not the time between speciation events.
This generalizes the o model [23] and 5 model [1], which are inducing a distribution
only on tree shapes, without an ordering of the speciation events. In Chapter 3, we
specify the speciation times; the considered model is a constant rate birth-death
process (BDP) [20, 47].

The derived analytic results for the BDP in Section 3.4 are used in the MCMC
inference program BEAST [16]: Given an alignment of sequences, and a prior dis-
tribution on the evolutionary trees, BEAST calculates the posterior distribution on
trees with the given sequences being the leaves. The coalescent is used as a prior for
micro-evolution (i.e. evolution within a species). For macro-evolution, the uniform
distribution on trees has been used as a prior. Recently, our derived prior under the
constant rate birth-death process has been implemented into BEAST .

Reconstruction methods depend to a great extent on the model which is assumed.
In order to develop realistic models, we need to understand the biological process
of speciation and extinction. Known phylogenies are compared to the prediction of
commonly used models. A powerful statistic is required in order to decide if the
model is reasonable for the phylogeny.

Standard statistics are the Colless statistic [11] and the ~ statistic [76] with its
visualization through lineages-through-time (LTT) plots [35]. The Colless statistic
performs on tree shapes, i.e. phylogenies without edge lengths. The tree shape is
a purely combinatorial structure. The distribution of the Colless values under the
BDP is known [81]. The ~ statistic and the corresponding LTT plot consider the
time between speciation events, but not the tree shape. We derive analytic results
for the LTT plot of trees with n species under the BDP in Section 3.6 and 3.8.

In 2004, Joseph Felsenstein pointed out in his fundamental book on inferring
phylogenies [21] the lack of a statistical test which incorporates tree shape and timing
information. He wrote, “At present we are lacking the following: (i) Any method
that uses both of these kinds of information (tree shapes and branch lengths). (ii)
Any framework that takes into account the uncertainty of branch lengths and tree
shapes.”

Chapter 4 introduces a new statistic on ranked trees which combines relative
ordering of speciation events and tree shape, the runs statistic. A statistic on relative
timing is more robust towards uncertainties in edge lengths than a statistic on the
actual edge lengths. Further, using relative timing instead of edge lengths allows
us to apply the statistic not only to speciation models, but also to the coalescent
[53, 51, 52] with varying population size, the standard model in population genetics.
We derive analytic results for the distribution of the runs statistic under the BDP
and the UR model. The statistic is applied to different data sets to investigate the
underlying evolutionary process for these data.



When reconstructing a phylogeny for a clade, we might have missing species, i.e.
not all species are sampled. Incomplete sampling is modeled by choosing uniformly
at random some leaves from the tree on all extant species. This is called random
tazon sampling. The Colless statistic, as well as the runs statistic, is invariant under
random taxon sampling. For LTT plots, we discuss the effect of random taxon sam-
pling (Section 3.7). In particular, we show that expected LTT plots of trees with
random taxon sampling look like LTT plots of trees with complete taxon sampling
and a smaller death rate. Therefore, from the LTT plots, incomplete taxon sam-
pling cannot be detected. Further, since the ranked tree distribution is invariant
under random taxon sampling, missing taxa cannot be detected by the shape of the
phylogeny.

Analytic results for the BDP also find application in supertree methods. A su-
pertree is a phylogeny on lots of species, inferred by combining many trees on subsets
of the species. In supertree reconstruction, we are usually not able to date all specia-
tion events. For undated nodes, estimates are required. In [98], an undated speciation
event is estimated via the expectation of the time of that vertex under a BDP with-
out extinction, the Yule model. The expectation is obtained via simulations. The
author of [98] asked for a fast analytic approach (personal communication). In Sec-
tion 3.1.1 we calculate the distribution and the expectation for the time of a vertex
in polynomial time for any BDP model. The analytic method for dating supertrees is
coded as part of my Python package CAss [89]. Currently, Jonathan Davies is using
Cass for dating his Carnivora supertree. In Section 3.9, the ideas are generalized
for dating trees where the time of some speciation events is known.

If we consider more complex models than the BDP, it is often difficult to obtain
analytic solutions, or analytic solutions might not exist for the considered problem.
In order to get a better understanding of the model, we need to simulate trees on
n species. This has some pitfalls, and commonly used simulation tools actually do
not produce the correct distribution. We develop correct algorithms for arbitrary
models of speciation and extinction. Klaas Hartmann coded the algorithms in Perl
and provides a stand-alone application [33].

The evolution within a species, i.e. the evolution of a population, is modeled by a
micro-evolutionary model. A lot of the results and methods developed in this thesis
for macro-evolutionary models apply to micro-evolutionary models as well. We will
describe the coalescent as the standard micro-evolutionary model, and point out the
relationships to macro-evolutionary models in the different chapters.

So far, we assumed that evolution is tree-like, i.e. species pass on their genetic ma-
terial to daughter species. However, reticulate evolution is observed for some classes
of species. Reticulate evolution means that genetic material is passed to co-existing
lineages (horizontal gene transfer), or two lineages join to a hybrid (hybridization).
Horizontal gene transfer is observed in bacteria, hybridization in plants and fish.
Reticulate evolution is modeled as a binary network. Note that in a tree, a valid
dating for the speciation events always exists; we provide estimates for the dates
under a BDP in Chapter 3. However, reticulation networks might not have a valid
dating. By adding (non-sampled) species, we can alter the network such that a valid
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dating exists [4]. In Chapter 6, we show that determing the minimum number of
species to add such that the network has a valid dating is NP-complete.

This thesis is organized as follows. In the remainder of this chapter, we for-
mally introduce the main objects studied in the thesis, models for speciation and
extinction, as well as the concept of neutrality and the terminology used in the the-
sis. In Chapter 2, a broad class of neutral models for speciation and extinction is
introduced; the time between speciation events is not specified. These results are
fundamental for the later chapters in the thesis. Chapter 3 derives analytic results
for the BDP, a neutral model with an exponential distributed lifetime of a species.
The analytic results are used for understanding the effect of random taxon sampling
(Section 3.7), obtaining LTT plots (Section 3.6 and 3.8), and dating phylogenies
(Section 3.1.1). The methods for dating phylogenies are extended to trees where
some vertices have a known date (Section 3.9) — we condition on the known dates to
calculate the expectation of the other dates. Chapter 4 introduces the new statistic
on phylogenies, the runs statistic. The statistic is applied to a data set of the Hepati-
tis C virus [58, 78], to ant phylogenies [66, 67] and to the genus Dina (family leech)
in the ancient Lake Ohrid [96]. Algorithms for simulating trees under an arbitrary
model for speciation are provided in Chapter 5. In Chapter 6, we discuss some issues
arising in the case of reticulate evolution.

Most of Chapter 2 and Chapter 4 is joint work with Daniel Ford and Erick
Matsen. The application of the statistic to the genus Dina in Lake Ohrid is joint
work with the group of Tom Wilke at the University of Gieflen. Chapter 5 is joint
work with Klaas Hartmann and Dennis Wong. I published or submitted the results
of this thesis in the following articles:

T. Gernhard. New analytic results for speciation times in neutral models. Bull.
Math. Biol., 70(4): 1082-1097, 2008.

T. Gernhard. The conditioned reconstructed process. J. Theo. Biol., 253(4): 769-
778, 2008.

T. Gernhard, K. Hartmann, M. Steel. Stochastic properties of generalised Yule
models, with biodiversity applications. J. Math. Biol., 57: 713-735, 2008.

T. Stadler. Lineages-through-time plots of neutral models for speciation. Math.
Biosci., 216: 163-171, 2008.

D. Ford, E. Matsen, T. Stadler. A method for investigating relative timing in-
formation on phylogenetic trees. Under review, 2008.

K. Hartmann, T. Stadler, D. Wong. Sampling trees from evolutionary models.
Under review, 2008.

S. Trajanovski, C. Albrecht, R. Schultheif}, T. Gernhard, M. Benke, T. Wilke.
Testing the temporal framework of speciation in an ancient lake species flock: the
genus Dina (Hirudinea: Erpobdellidae) in Lake Ohrid. Under review, 2008.
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The major methods introduced in Chapter 2—4 are implemented in Python
in the package CAss [89], the package can be downloaded from my website
http://www.tb.ethz.ch /people/tstadler. The algorithms in Chapter 5 have been im-
plemented in PERL by Klaas Hartmann [33].

1.1 Evolving tree (ET) models

The main part of this thesis deals with tree-like evolution, i.e. it is assumed that
species pass on genetic material only to their descendants (and not to sister species).
A phylogeny connecting species through a tree is called a phylogenetic tree. Tree-like
evolution is modeled in a very general way by a stochastic process where the leaves
in a tree bifurcate and produce two new leaves. The time of bifurcation of a leaf is
determined by the stochastic process. If we have an extinction event, the leaf which
goes extinct will not speciate further. We call this class of bifurcation and extinction
models the evolving tree (ET) models. To distinguish between the two new leaves
after a bifurcation event, we label one edge descending from a bifurcation with left
and the other edge with right. Any evolutionary process on binary trees can be
modeled by an ET model: leaves bifurcate in an arbitrary fashion and produce new
leaves. A pure-birth ET model is an ET model without extinction.

We condition the ET models to have n extant leaves today. This is crucial for
comparing the ET model to a given phylogeny on n species. Let today be time 0 and
the origin of the tree be time t,. > 0, so time is increasing going into the past. If ¢,,
is not known, we assume a uniform prior on (0, c0) for the time of origin as it has
been done in [2, 74]. Note that this prior does not integrate to 1. For any constant
function, the integral is co. Therefore the prior is not a density. Such a prior is called
improper; a discussion and justification is found e.g. in [5]; the idea is that a uniform
prior is defined on (0,7") and then we take the limit 7" — co. Conditioning ¢, on
obtaining n species today yields,

_ f(n|tor)f(tor) _ f(n|tor)
I f(tor,m)dtor [ f(nltor)dto,”

i.e. t,, conditioned on n is a well-defined distribution if co > fooo f(n|ty)dt,. > 0. In
[28], it is shown that oo > fooo f(n|ty)dt,, if the expected lifetime of each species is
finite. For the models we consider, we have an expected finite lifetime. Further, for
our models, we have f(n|t,) > 0 for ¢, € (0,00), which yields [;* f(n|to,)dto. > 0.

f(tor|n) (1.1)

1.2 Neutral models

Neutral models are pure chance models, where no prior assumptions are made [3].
We introduce uniform rank (UR) models as a general neutral pure-birth model
(Chapter 2). In an UR model, each ordering (or rank function, as defined in Section
1.3) of speciation events in a phylogenetic tree is equally likely. This means that the
UR models are neutral in the sense that no ordering on a given tree is favored. A
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more restrictive though widely used class of neutral models is the class of entirely
homogeneous models; it is assumed that throughout time, whenever a speciation (or
extinction) event occurs, each species is equally likely to be the one undergoing that
event. We call the class of homogeneous models the constant across lineages (CAL)
class of models. We will see that in this class each “ranked oriented tree” (as defined
in Section 1.3) on n species is equally likely. Note that this is different from the PDA
(proportional-to-distinguishable-arrangements) model [82]. Under the PDA model,
each oriented (or labeled) tree is equally likely. For the CAL models, each ranked
oriented tree is equally likely, i.e. each oriented tree with a rank function. The pure-
birth CAL models are a subset of the UR models.

Note that a model in the CAL class can be formulated without specifying spe-
ciation times. In Chapter 3 we investigate the constant rate birth-death process
[20, 47] as it is probably the most accepted and most popular homogeneous model
with specified speciation times. A constant rate birth-death process is a stochastic
process which starts with an initial species. A species gives birth to a new species
after an exponential (rate A\) waiting time and dies after an exponential (rate pu)
waiting time, where 0 < p < A. The species evolve independently. Special cases
of the birth-death process are the Yule model [101] where u = 0 and the critical
branching process (CBP) [2, 74] where u = A. Note that for all birth-death processes
where ;1 < A, the expected number of extant species is increasing exponentially. For
i = A, we do not have an expected exponential increase, which is more reasonable
biologically [3]. However, the process goes extinct with probability 1. So if a BDP
is assumed, the death rate p should be chosen slightly smaller than A. In [80, 61],
the extinction rate is estimated from data to be p = 0.9\. For an overview of the
connection between the discussed models in the thesis, see Figure 1.1.

Of course speciation is not just random — lineages will differ in their expected
diversification rates for both instrinsic and extrinsic factors [64]. However, for reject-
ing a neutral model for some data set, we need to know characteristics of the neutral
models, for example the tree balance distribution or the speciation times distribu-
tion. We then test whether the data set also has these characteristics. On the other
hand, if we may assume a neutral model for some phylogeny, we can make further
statements about the evolution of the phylogeny — inferred from the characteristics
of the neutral model. Chapter 2 and 3 discuss some characteristics of neutral models.
Chapter 4 uses the analytic results of the neutral models for calculating the p-values
of the runs statistic.

1.3 Terminology
In this section, we introduce the terminology for trees used throughout the thesis.

Definition 1.3.1. An oriented tree is a rooted binary tree where the descending
edges of each vertex have distinct orientations, left / right. Above the root, there is
an additional edge without orientation, the root edge. The parent vertex of the root
edge is the origin of the tree. For an example see Figure 1.2, right.
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ET
U

UR

U U
CAL CRP

U
BDP

U U
Yule CBP

Figure 1.1: Overview of the discussed classes of evolving tree models in this thesis.
Note that the PDA model is not listed, since it is not described as an evolving tree
model but defined as each labeled tree being equally likely.

Definition 1.3.2. A complete oriented tree is an oriented tree where each edge has
a positive real value assigned, the length of the edge. For an example see Figure 1.2,
left.

Definition 1.3.3. A reconstructed oriented tree is a complete oriented tree where
the length of any path from the root to a leaf is the same. For an example see Figure
1.2, middle.

Note that a realization of the ET model is a complete oriented tree. A complete
oriented tree induces a reconstructed oriented tree in the following way: We delete the
extinct leaves together with the attached edges from the complete oriented tree. This
results in degree-two vertices in the remaining tree. Replace iteratively each degree-
two vertex and its two incident edges by a single edge, with orientation inherited
from the deleted edge which was closer to the origin. This results in a binary tree
where each vertex (except of the origin) has a descending edge left and right. An
oriented tree is induced by the reconstructed oriented tree when dropping the edge
lengths. We use the following notation for a (complete / reconstructed) oriented tree
induced by an ET model.

Definition 1.3.4. The most recent common ancestor (mrca)in a (complete / recon-
structed) oriented tree which is induced by an ET model is the “earliest” bifurcation
in the tree where the left and right branch have extant species descending. Note that
for a (reconstructed) oriented tree, the mrca coincides with the root of the tree. The
sum of edge lengths on a path from the origin to the extant leaves is the age of the
tree or the time since origin. Today or the present is the time of the extant leaves.
The time of today shall be zero, time is increasing going into the past.
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root edge

tor origin OW \orzgm

root mrca / Toot
mrca / root

IR h (a

Figure 1.2: A complete oriented tree (left) and its reconstructed, oriented tree (mid-
dle). The length of an edge is defined by the vertical time axis. Below each bifurca-
tion, the branch on the left has orientation [ (for left) and the branch on the right
orientation r (for right). The right tree is the ranked, oriented tree induced by the
reconstructed, oriented tree.

Definition 1.3.5. We denote the set of interior vertices in an oriented tree — i.e.
the set of all vertices except of the leaves and the origin of the tree — by V. A rank
function r [85] on an oriented tree is a bijection from V — {1,2,...,|V|} where the
ranks are increasing on any path from the root to the leaves. A ranked oriented tree
is an oriented tree with a rank function. For an example see Figure 1.2, right. The
set of all rank functions on an oriented tree 7 is denoted by (7).

A rank function induces a total order on V which can be interpreted as the order
of speciation events in the oriented tree. A vertex with rank £ is the k-th speciation
event in the oriented tree.

Definition 1.3.6. A labeled oriented tree is an oriented tree where the leaves are
uniquely labeled. A labeled tree is a labeled oriented tree without the orientation, i.e.
a binary rooted labeled tree with root edge. A tree shape is an oriented tree without
the orientation. The shape of an oriented tree 7 is the tree shape induced by 7 via
dropping the orientation. Note that the shape of a tree is also called the topology
of a tree in the literature. A complete / reconstructed / ranked labeled tree and a
complete / reconstructed / ranked tree shape is defined analogue.

When inferring a tree from some data, we obtain a complete tree if the fossil
record is included. For data consisting only of extant species, we obtain a recon-
structed tree. Since most methods infer trees on extant species, it is crucial to
understand the distribution on reconstructed trees induced by ET models.

In the biological application, when inferring trees on the extant species, we obtain
reconstructed labeled trees. In an evolving labeled tree, we assign a unique label for
each new leaf and eliminate the label in case of extinction. For trees on n leaves
evolving under a speciation and extinction model, however, we cannot guarantee
that all such trees on n species have the same leaf labels (due to random extinction
events). Therefore, it will be convenient to discuss oriented trees rather than labeled
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trees. This allows us to distinguish the children of each vertex without having to
explicitly label species which may later become extinct.



Chapter 2

Neutral models for ranked trees

In this chapter, we will discuss properties of ET models and introduce neutral classes
of ET models. Throughout this chapter, we do not specify the time between succes-
sive speciation events. The results hold for any specification of waiting time between
speciation events. We discuss the distribution on ranked trees which are induced by
an E'T model. We introduce tree shuffles which are equivalent to rank functions. For
many arguments, shuffles are more convenient to use than rank functions, because
shuffles define a rank function recursively. The results in this chapter are extensively
used in the later chapters.

2.1 Shuffles and ranks

There is a bijection between the rank function of a tree, and a tree shuffie as defined
in this section. We will need the notation of shuffles, since shuffles define a rank
function recursively. This recursive formulation will be of particular use in Chapter 4.

For an internal node v € V of an oriented tree T, define 7, to be the subtree of
T rooted in v containing all the descendants of v. The daughter trees of v are the
two subtrees of 7, which we obtain by deleting v and its two incident edges.

A total order on a set is a binary relation (usually written <) such that for any
two distinct elements a and b of the set either a < b or b < a. Note that a rank
function on a set is equivalent to a total order on that set: given a total order one
can rank the elements in increasing order of rank, and given a rank function one can
define a total order by numerical inequality of rank. Thus a ranked labeled tree is
exactly a tree equipped with a total order on its internal nodes.

An (m,n) shuffle on symbols p and ¢ is a sequence of length m + n containing
m p’s and n ¢’s. For example pgppq is a (3,2) shuffle on p and ¢. The usefulness of
these shuffles in the present context is summarized in the following lemma.

Lemma 2.1.1. Given totally-ordered sets P and @, the total orderings of P U Q

respecting the given orderings of P and @) are in one-to-one correspondence with the
(|P|,|Q]) shuffles on symbols p and q.

10
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Figure 2.1: A shuffle at a given internal node. Bifurcations on the left subtree are
marked with a hollow circle, and those on the right subtree are marked with a
solid circle. The relative timing for these events is shown beside the tree; we call
this sequence of symbols a shuffle. A set of shuffles for every internal node of a
phylogenetic tree exactly determines the relative order of speciation events. Similar
type symbols occurring together as in the left tree is evidence of lineage-specific
bursts.

Proof. Assume total orders p; < po < - < ppon Pand ¢ < ¢ < -+ < @, on
() are given, along with an (m,n) shuffle on p and ¢. The required total ordering
on P U (Q is obtained by progressing along the shuffle and substituting p; and g;
for p and ¢ in order: for example the shuffle pgppg uniquely defines the total order
P < q < py < p3 < g when p; < py < p3 and ¢; < go. In the other direction, a
total ordering on P U @ uniquely defines a (| P|, |@Q]) shuffie and a total ordering on
each of P and Q. O

We will now define shuffles on a tree. Assume that v is an internal node of a tree
and that the tree 7, containing the descendants of v is composed of two daughter
subtrees L, and R,. Assume L, and R, have m and n internal nodes, respectively.
We define a shuffle at the internal node v to be an (m,n) shuffle on symbols ¢ and
r. The intuition behind the shuffle idea at vertices is presented in Figure 2.1. As
shown in this figure, the relative order of speciation events for an internal node of a
tree is determined by the sequence of full and hollow circles on the left side of each
tree. This sequence induces a shuffle at node v.

We can use shuffles to develop a recursive formulation of ranked oriented trees.
By Lemma 2.1.1, a total ordering on the internal nodes of 7, respecting the orderings
on the internal nodes of L, and R, is equivalent to a shuffle at the internal node
v. Therefore we can recursively reconstruct the rank function for any ranked tree
given a shuffle at each internal node. We define a tree shuffle to be such a choice
of shuffles. With Lemma 2.1.1, we have the following result, which is crucial to our
analysis:

Lemma 2.1.2. Fach rank function on a given tree being equally likely is equivalent
to the statement: For each internal node v, each shuffie at v is equally likely and
these shuffles are independent.

Shuffles also have a natural interpretation in terms of evolutionary history.
Namely, bursting diversification leads to symbols of a shuffle clustering together.
The opposite situation, where there is a post-diversification delay before a lineage
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can diversify again, can be recognized by the interspersing of different symbols. This
latter situation has been called refractory diversification [57].

2.2 Ranked oriented trees

We will discuss the distribution on ranked oriented trees and on ranked tree shapes.
This will be useful when introducing the runs statistic in Chapter 4.

Proposition 2.2.1. There are (n — 1)! ranked oriented trees on n leaves.

Proof. Proceed by induction on n; for n = 2 the statement is obviously true, there
is only one ranked oriented tree. Suppose there are (n — 1)! ranked oriented trees on
n leaves. A ranked oriented tree on n + 1 leaves is uniquely determined by a tree on
n leaves and an additional leaf which evolved at the n-th bifurcation event. There
are n possibilities to attach the additional leaf. Thus there will be n(n — 1)! = n!
ranked oriented trees on n + 1 leaves. O

Lemma 2.2.2. Given a ranked oriented tree with n leaves, there are n(n + 1) ways
to add an additional leaf.

Proof. First, decide which rank the new internal node will have, from 1 (earliest)

to n (latest). If the new internal node has rank & then there are k choices at that

level for the edge to add it to, and then 2 choices for which side of this edge the
n(n+1)

new pendant leaf will sit. This gives a total of 23" i = 225~ = n(n + 1) ways

to insert the new leaf edge. O

In Section 4.3 we consider, for computational convenience, the likelihood of rank
functions on tree shapes rather than on oriented trees. The following proposition
and corollary show that the uniform distributions on rank functions on a given
oriented tree induce the uniform distributions on rank functions on a given tree
shape when orientation is forgotten. In particular, p-values for such rank functions
may be computed over either oriented trees or tree shapes.

First, define a symmetric vertex to be a vertex for which the unoriented shapes of
the two descending subtree are the same (isomorphic as tree shapes). A non-trivial
symmetric vertex is a symmetric vertex with more than two leaves below.

Proposition 2.2.3. A uniform distribution on rank functions on a given oriented
tree induces a uniform distribution on rank functions on its corresponding tree shape.

Proof. Let T be an oriented tree with n leaves and 7 its corresponding tree shape. Let
q denote the number of non-trivial symmetric vertices of 7. We prove the following
statement for oriented trees by induction on n: for each ranking r on 7 there are
exactly 27 rankings on 7 with 7 and 7 being the corresponding ranked tree shape.
This establishes the proposition.

For n = 2, which implies ¢ = 0, we have for the ranking on 7 exactly 1 = 2°
ranking on 7. For n > 2, the induction breaks into three cases.
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Case 1: Suppose the two subtrees descending the root branch-point of 7 are non-
isomorphic tree shapes, each having more than 1 leaf. The subtrees may therefore
be distinguished from each other, and given a ranking on 7, the shuffle at the root
node of 7 is determined. Call the two daughter subtrees 77, 75, with corresponding
shapes 71, 5 and ¢1, g2 non-trivial symmetric vertices, respectively. By the inductive
assumption, there are 27 rankings for 7; and 2% rankings for 75. This gives 29114
total since there is no choice for the shuffle at the root branch-point of 7. ¢; + g9 is
the number of non-trivial symmetric vertices of 7.

Case 2: Suppose the two subtrees descending the root branch-point of 7 are
non-isomorphic tree shapes, one of the children being a leaf. The subtrees may
therefore be distinguished from each other, and given a ranking on 7 the shuffle at
the root node of 7 is determined. The bigger subtree 7, has ¢, non-trivial symmetry
vertices. By the inductive assumption, there are 2% rankings for 7, which map to
the corresponding rank function on its shape. Attaching a leaf to 7, to obtain 7
does not change the number of rankings for 7 or 7. Therefore, there are 2% rank
functions on 7 which map to the given rank function on 7, and ¢, is the number of
non-trivial symmetric vertices of 7.

Case 3: Suppose that the two children of 7 are isomorphic. Therefore they may
not be distinguished except by the ranking. Therefore the shuffle at the root branch-
point of 7 is only determined up to swapping the left and right subtrees. After this
choice the two subtrees are distinguished: which subtree of 7 is “left” and which is
“right” is determined by the shuffle. The rest of the argument proceeds as before,
except that this time there are 29079+ rank functions on 7 which map to the given
rank function on 7, and ¢; + g2 + 1 is the number of non-trivial symmetric vertices
of 7.

The result now follows by induction. O

The proposition directly yields:

Corollary 2.2.4. If a probability function on ranked oriented trees is uniform on
rank functions conditioned on the oriented tree, then it is also uniform on rank
functions of an (unoriented) tree shape when conditioned on that (unoriented) tree
shape.

This corollary allows us to apply our runs statistic in Chapter 4 to trees which
are given without orientation — ranked tree shapes.

2.3 Neutral ET models

We now define pure-chance ET models, the CAL, CRP and UR models. Some models
in the CAL class have been widely used in the literature as neutral models for
speciation. The CRP class allows clades to evolve with different rates. The UR class
generalizes the pure-birth CAL class and the CRP class. We will use the CAL and
UR class of models as neutral models for the runs statistic in Chapter 4.
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2.3.1 Constant across lineages (CAL) models

We define a constant across lineages (CAL) model to be an ET model such that any
new (speciation or extinction) event is equally likely to occur in any extant lineage.
You may also think of the projection of this process onto ranked tree shapes, by
forgetting the orientation of children at each internal vertex. Any model described
in terms of rates is a CAL model if the speciation and extinction rates are equal
between lineages at any given time. However, these rates may vary in an arbitrary
fashion depending on time or the current state of the process. This class of models
includes the Yule model [101], the critical branching process [2] and the constant
rate birth-death process [71] which will be discusssed in detail in Chapter 3.

However, the CAL class is more general. It includes macroevolutionary models
that have global speciation and extinction rate variation (i.e. the rate changes si-
multaneously in all species), for example due to global environmental conditions.
Furthermore, it is also possible to incorporate models which take into account in-
complete random taxon sampling, which is equivalent to the deletion of k species
uniformly at random from the complete tree. Indeed, if the complete tree evolved
under a CAL model then we simply run the model for longer with the probability of
speciation set to zero and the extinction probability non-zero (and uniform across
taxa). This extended model is clearly still within the CAL class.

The CAL class also includes microevolutionary models such as the coalescent
with arbitrary population size history. This very simple but important fact means
that the tests for non-neutral diversification described in Chapter 4 are not fooled by
ancestral population size variation (as are a number of other tests in the literature).

Proposition 2.3.1. At all times, the distribution of ranked oriented trees with n
leaves is uniform under a CAL model.

Proof. Assume that after k events, all (m — 1)! ranked oriented trees of size m are
equally likely. If the next event is a speciation then, because the result of each (tree,
speciation event) pair is distinct, after this event all m! ranked oriented trees with
m + 1 leaves are equally likely. Similarly, if the next event is an extinction then
for each of the (m — 1)! equally likely trees there are m equally likely choices for
which leaf to extinguish, giving m! possibilities in all. By Lemma 2.2.2 each ranked
oriented tree with m — 1 leaves results from m(m — 1) of these tree-plus-leaf choices.
Thus each ranked oriented tree with m — 1 leaves is equally likely, with probability
m(m —1)/m! =1/(m — 2)\.

Since this is true for any such sequence of speciations and extinctions it is true
at all times. O

Of course, any model giving the uniform distribution on ranked oriented trees
with n leaves gives the uniform distribution on rank assignments given an oriented
tree with n leaves. Thus we have the following corollary,

Corollary 2.3.2. Any CAL model gives the uniform distribution on rank assign-
ments (and thus tree shuffles) given an oriented tree.



2.3. NEUTRAL ET MODELS 15

We have the following limited converse of Proposition 2.3.1.

Proposition 2.3.3. Pure-birth CAL models are precisely the set of pure-birth ET
models which, for any n > 1, give the uniform distribution on ranked oriented trees
with n taxa when halted as soon as n taxa are present.

Proof. By the proof of Proposition 2.3.1, pure-birth CAL models result in a uniform
distribution on ranked oriented trees of size n (since there have been exactly n — 1
events).

Now consider a model which does not satisfy the CAL condition. Assume that
the k-th speciation event was the first speciation event not picked uniformly among
lineages, i.e. there is a ranked tree 7, with lineages [; and [, which have probabilities
p1 # pe to speciate. Let 77 (respectively 73) be the ranked tree produced if [
(respectively ly) speciates. In a pure birth process, 7; and 73 may only be reached
in this way. Now

P(Ti] = PITe) - p1 # P[To] - p» = P[T3)

which shows that this model cannot give the uniform distribution on ranked trees
when the process is halted after the k-th speciation event. There is only one way to
build each ranked oriented tree with n leaves so the distribution on these cannot be
uniform. Thus, by contradiction, there is no such k£ and so no such model. O

Note that in the last proposition, the restriction to a pure-birth process is needed.
Consider a process with extinction where speciation is equally likely for each species
but extinction is history dependent: whenever an extinction event occurs, it undoes
the most recent speciation event. This model clearly does not belong to the class of
CAL models. However, it gives a uniform distribution on ranked trees of some fixed
size.

2.3.2 Constant relative probability (CRP) models

The motivation for the constant relative probability (CRP) models comes from con-
sidering the models on ranked trees which might emerge from non-selective diver-
sification, perhaps based on physical or reproductive barriers. For example, assume
we could watch a set of species emerge via allopatric (geographic) speciation, and
the fundamental geographic barrier is a mountain range dividing land into two re-
gions, A and B. These regions may differ in size or fecundity, so there may be
some difference in the rate of diversification in A versus B. However, our neutral
assumption for the CRP class is that the relative rate stays constant over time. In
contrast, non-neutral models might dictate that a speciation in one region will shift
the equilibrium such that further diversification in that region will become more
likely (“bursting” diversification) or less likely (“refractory” diversification). Again,
for convenience, we work with ranked oriented trees so we may distinguish the two
children of any speciation event.

A constant relative probability (CRP) model is a pure-birth ET model with a
density P on the unit interval [0, 1], where each internal vertex has a real number,
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l .0
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Figure 2.2: A tree which evolved under the CRP model with the bifurcation proba-
bilities p, for each internal vertex v. Given we see a speciation event, the probability
for the leaf on path [, 1 (from root to leaf) to speciate next is .5 x .3 = .15. Note that
under the CAL model, each leaf is equally likely to speciate with probability 1/5.

P, associated with it. Each new speciation occurring in the clade below v occurs
in L, with probability p,, and occurs in R, with probability 1 — p,. For each new
speciation event (internal vertex), v, choose the value p, by an independent draw
from P. As with CAL models, there is no constraint of any kind on waiting times
between speciation events. For an example see Figure 2.2.

Proposition 2.3.4. At all times, the distribution of rank functions on a given ori-
ented tree is the uniform distribution under a CRP model.

Proof. Consider the distribution of ranked oriented trees resulting from the stopped
CRP. Consider a particular oriented tree, 7, with k internal vertices vy, ..., v. Let
n; and m; denote the number of internal vertices below the left and right subtrees,
respectively, of vertex v;. Consider a ranking on the tree 7. We now compute the
probability of this ranked oriented tree under the model (conditional on the total
number of leaves). Consider an assignment of p,, to each internal vertex v;. Given
this choice, the probability of the given ranked oriented tree is the product of the
probabilities of each speciation event. For a speciation at vertex v;, the probability
of this event is the product of p,; for all v; for which v; lies on its left subtree times
the product of (1 —p,,) for all v; for which v; lies on its right subtree. In the product
of these probabilities over all v;, the term p,, occurs exactly n; times (once for each
internal vertex on the left subtree of v;) and the term (1 — p,,) occurs exactly m;
times (once for each internal vertex on the right subtree of v;). Thus, the probability
of this ranked oriented tree (given the choice of p,) is:

Hpnj 1 - pvj

Note that the probability is independent of the ranking. Since the p,, are picked
independently from a distribution P, the probability of the ranked oriented tree 7°
is
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which is again independent of the ranking. Therefore, all rankings of this oriented
tree are equally likely. O

2.3.3 Uniform ranking (UR) models

In Proposition 2.3.3 we established that the class of pure-birth CAL models is pre-
cisly the class of pure-birth ET models which induces a uniform distribution on
ranked, oriented trees.

In Proposition 2.3.4, it is shown that the CRP models induce a uniform distri-
bution on rankings given the oriented tree. In the following, we will characterize the
whole class of pure-birth models in the pure-birth ET class which induce a uniform
distribution on rankings given the oriented tree, we call that class the uniform rank
(UR) class of model. Note that each ranking being equally likely on an oriented tree
is equivalent to each ranking being equally likely on a tree shape (Corollary 2.2.4).
Each ranking on an oriented tree being equally likely means that each shuffie on
an interior vertex is equally likely (Lemma 2.1.2). So UR models are neutral in the
sense that no shuffle at an interior vertex is favored. The runs statistic introduced
in Chapter 4 can test for deviation from the UR class of models.

First we note that any ET model is equivalent to the following process. If we
have a tree on n leaves and add another leaf (i.e. a species speciates), we choose
in which of the two subtrees below the root this leaf should be attached (call the
subtree descending from the left branch the left subtree and the other one the right
subtree.) In the root of the chosen subtree, we again choose one of the two subtrees.
We continue until we end in a leaf. This leaf shall speciate.

We will describe the necessary and sufficient condition for the probabilities in
choosing the left /right subtree below a vertex in order to obtain a uniform distri-
bution on shuffles. This characterizes the set of UR models. A root shuffle of an
oriented tree 7 is a shuffle at the root of 7.

Let p be the root (i.e. the first speciation event) in our evolving tree, with N
speciation events below; n events in the left subtree and N — n events in the right
subtree. The sequence of I’s and r’s (for left and right) of successive speciation
events is called the (n, N — n) shuffle on p, we write s, y_, for such a sequence.
Let p?(S,,n—n) be the probability, that given N shuffle elements, we have n {’s (and
therefore (N —n) r’s) in the order s, y_,. In the following, we determine the set of
models such that each (n, N —n) shuffle on the vertex p is equally likely for fixed n
(0 < n < N), that probability is p;N_n := p”(Sp.N—n) Where s, y_, is an arbitrary
(n, N — n) shuffle.

Now, let s1, s3 be (n, N —n) shuffles, both having the same probability. Let plp‘s1
(resp. plp|82) be the probability that an [ is the next shuffle element after s; (resp. s3).
If pjj,, # pjj,, then the shuffles (s10) and (s2!) have different probabilities. Therefore
we do not have a uniform distribution on (n + 1, N — n) shuffles. So we assume
pf|81 = pf|82 for all si,s5. Let plp‘nvN_n (resp. pfm’N_n) be the probability that an I
(resp. r) is added to an (n, N — n) shuffle. For N = 1, each (n, N —n — 1) shuffle
has equal probability, since we only have one (0, 0) shuffle. Now let N > 1. For fixed
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n, assume that each (n, N —n — 1) shuffle has equal probability (0 <n < N —1).
Under this assumption, any (n, N —n) shuffle having equal probability is equivalent
to requiring:

P P P P
pl\n—l,N—npn—l,N—n - pr|n,N—n—1pn,N—n—l

(1 - pﬁn,N—n—l)pr,N—n—l'

Therefore the following condition is necessary and sufficient for each (n, N — n)
shuffle to have the same probability:

p
pn—l,N—n o

L- pl|n—1,N—n'

pﬁn,N—n—l = (21)

p7pL7N—n—l

We may determine pf"mN_n_l for one n where 0 < n < N. W.l.o.g. determine
pﬁo’ ~_1» 1.e. the probability that we add a vertex to the left subtree, given the tree
has zero interior vertices in the left subtree and N — 1 in the right subtree.

The recursion in Equation (2.1) and determining pﬁo’  for all N defines precisely
the set of models which have a uniform distribution on the root shuffles. The proba-
bilities for the other interior vertices are determined in the same way (each interior
vertex is root of a subtree).

Since a uniform distribution on shuffies for each interior vertex is equivalent to a
uniform distribution on rankings (given the oriented tree), we characterized the set
of models with uniform rankings given the oriented tree.

Theorem 2.3.5. Defining plp\O,N = p} for all N and each p € V induces the CRP
class of models.

Proof. We proof the theorem by induction on N. Set p? = 1—p{. For N = 0, we have
plp|00 = p] by definition. Assume for all & < N,n < k that pﬂn v, = D Note that

this implies p}, , , = (p))"(pr)*=" for all k < N. For N = k, we have for 1 <n < N,

o
Pn—1N-n+1 ,

= 1= pl\n—l,N—n—l—l

p
p _

ln,N—n pr,N—n
()"~

() (phy N e

1 —

We proceed with an induction on n. We have pf"o v = P} by definition. Assume
pﬁm N_m = D) for m < n, therefore,

o _ 4 (p{’)"‘l(pﬁ)N‘"“pp
l|n,N—n (plp)n(pP)N—n l

T

which proves the theorem. O
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Theorem 2.3.6. Defining pf"ow = NLH for all N and each p € V induces the CAL
class of models.

Proof. Let the oriented tree 7 have N + 2 leaves, and the left subtree under the root
having n + 1 leaves. Under the CAL model, each leaf is equally likely to speciate
next, so the probability for a leaf speciating in the left subtree next is

n+1

pf‘mN_n = N3 5 (2.2)

We will show that the UR models with plp|0’ N = ﬁ fulfil Equation (2.2). For

N =0, pl”m0 = 5 by definition. Assume that py,—n = z—ié for k < N,n < k. This
implies

nl(k —n)! 1
pfz,k—n =

(k+1)! (") (k+1)

for all K < N,n < k. For N =k,

p
Pn—1N-n+1 ,

= 1- Dljn—1,N—n+1

p
pl\n,N—n pP N
n,N—n
N—-n+1

n

p

= 1= pl\n—l,N—n—l—l'

1

N3 Py definition. Assume

We proceed with an induction on n. We have plpm, N =

_ m+1

P
Plim,N—m = Nt2 for m < n, therefore,

N—-n+1 n n+1

P = 1— =
Pijn, N—n n N+2 N+2

which establishes the theorem. O

2.4 Calculating the rank distribution for a vertex

The considered neutral models for speciation in the thesis, the CAL, CRP and UR
models, induce a uniform distribution on rank functions. In the next chapters, we
will need the probability of a rank of a vertex in a given oriented tree 7 which
evolved under one of these models. In this section, we explain how to calculate the
required probability. Let r be a rank function on the oriented tree 7. For an interior
vertex u of T, define p, := (P[r(u) = 7])iz1,..n-1. In [27], we gave a formula for
calculating p,: Label the vertices on the path from the vertex u to the most recent
common ancestor mrca with v = x1,29,..., 2, = mrca, see Fig. 2.3. Define \; as
the number of leaves below x; minus 1. With that notation, we get from [27] that

. Mm_le_g Ce M161
|Mm—le—2 cee M1€1|1

Pu (2.3)
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Figure 2.3: Labeling of the tree for calculating the probability for the rank of a
vertex.

where | - |; is the l-norm, e; = (1,0,0,...,0)” and the matrix M; is defined as
follows,
0 ifj<i—1—(>\k+1—)\k),
(Mg)i; =14 0 ifj>i—1,

( Met1—1 )( 2 ) else.

Ney1—M—itj+1) \imj—1
The algorithm RANKPROB in [27] calculates p, according to Equation (2.3).

For an edge e = (u,v) in 7, we will need the probability p,,(i,7) := Plr(u) =
i,7(v) = j|. First, let e be an interior edge. In [27], we calculate p, (7, j),1 <i < j <
n — 1 by running RANKPROB on different subtrees of 7. In the following, we give
an expression to calculate p, (7, j) directly from p, (i) which makes the calculations
faster. Let 7, be the daughter tree of v, see Fig. 2.3. The subtree 7, has n, leaves.
Let 7(7") be the set of rank functions on 7.

The number of rank functions where r(u) = i is p,(i) - |[7(7)]. Assume we fix
the rank of the first ¢ interior nodes, with u being the i-th node. There are ("n_vl__ll)
possibilities to shuffle the interior vertices in 7, with the remaining interior vertices.
Only ("n_ul__zj ) of those shuffles assign rank j to vertex v (note that we have n, — 1
interior vertices in 7,, but we do not count vertex v since it has rank j). Overall, we

therefore get for the number of rank functions with r(u) =4 and r(v) = j:
n—1—j
( nU—QJ)
n—1—1\ °
( Ny—1 )
For the probability p, (i, 7), we have to divide the previous equation by the number
of rank functions. Therefore
()

pU,U(ivj) = pu(l) : (n—l—i) .

ny—1

pu() - [7(T)]

This is equivalent to

: ny—1 ny—2n—j—k . . . .
.o pu'lm -1 =ik’ 1fn—]—|—12nv,1§z<]<n,
Pu(is ) :{ 0 W= i ke (2.4)
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We will extend the distribution p,, for leaves. Since the leaves are after the
(n—1)-st speciation event, we can assume that all leaves have rank n. So for pendant
edges, we have

. w(1), if v is a leaf;
Pu(i;1) = { g " else. (2.5)

Further, we will define p,,p,, for the origin p. The origin is always the very first
vertex, the most recent common ancestor (mrca) is its descendant. Therefore, we
define,

pp(o) - 1> pp,v(oai) = pv(l) (26)



Chapter 3

Neutral models with constant rate

In the previous section, we discussed models which induce distributions on ranked
trees. The time between speciation events has not been modeled. In this chapter,
we discuss the most widely used model where the speciation times are specified —
the CAL model with an exponential distributed time between speciation/extinction
events — the constant rate birth-death process (BDP). Special cases of a BDP are
the Yule model where no extinction occurs (Section 3.2) and the critical branching
process where the birth and death rate are equal (Section 3.3). Since the BDP is a
CAL model, the distribution on ranked oriented trees is the uniform distribution.
We will now calculate the time of the speciation events. This completely describes
the distribution of reconstructed oriented trees induced by the BDP.

These theoretic results on reconstructed oriented trees under the BDP can be
applied to a variety of applications. For example, the latest version of the MCMC
program BEAST for inferring phylogenies uses our derived densities for calculating
the prior distribution under the BDP (Section 3.4.3).

When reconstructing phylogenetic supertrees, we combine small phylogenetic
trees to one single big phylogenetic tree. In supertrees, we often cannot infer the
speciation times due to the absence of a molecular clock or due to incomplete se-
quences. Our formulae for the expected time of speciation events are used for dating
supertrees (Section 3.1, 3.4.7 and 3.9).

Lineages-through time (LTT) plots are a popular graphical tool for comparing
the reconstructed phylogeny with models. Using the analytic results for the expected
time of speciation events allows us to draw these LTT plots without simulations
(Section 3.6). Since the data is often incomplete, i.e. some species of a clade are
missing, our method for drawing L'TT plots is extended to the scenario of incomplete
taxon sampling (Section 3.7).

Even though we have a lot of analytic results for the BDP, some complex ques-
tions can still only be answered via simulations. In Chapter 5 we provide accurate
algorithms to sample under general speciation models. With the theoretic results
of this chapter, we develop a more efficient algorithm for the BDP models (Section
5.1.5).

We start this chapter by giving the general idea of calculating the time of speci-

22
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ation events under the BDP.

3.1 Calculating the time of speciation events

Let an oriented tree 7 evolve under a CAL model with a specified time between
speciation and extinction events. Let A5 be the random variable ‘length of edge e in
the oriented tree 7~ with density function f4e . Let A% be the random variable ‘time
of the speciation event u in the oriented tree 7~ with density function f4u. In an
oriented tree with n species, let A%’ be the random variable ‘time between the i—th
and the j—th speciation event’ with density function f ;. Let A be the random
variable ‘time of the k—th speciation event’ with density function f4x. With k = 0,
we denote the origin of the tree. With k& = n, we denote the present, i.e. the time of
the leaves. Time is set zero at the present, and is increasing going into the past. In
the following, we calculate the density and expectation for A%, A% AbJ Ak

The CAL models induces a uniform distribution on ranked oriented trees on
n species as shown in Proposition 2.3.1. We use the notation from Section 2.4: Let
pu(i) be the proability that vertex u in the oriented tree 7 has rank i; let p, (7, j) be
the probability that vertex u has rank 7 and vertex v has rank j. For a CAL model,
where the speciation times AF are independent of a given ranked oriented tree on
n species, we can calculate the density and expectation of the random variables
Al AL AL AS in the following way. For the density, we have, with e = (u,v),

—_

n—

fau(s) = ' fai (8)pu(9); (3.1)
Fa(s) = 33 FuoIpunlivg) 32)

Note that for interior edges, p,,(i,n) = 0; for pendant edges (except of the root
edge), pu(i,j) = 0 for j < n; and for the root edge, p,,(0,1) = 1. For the expecta-
tion, we obtain from E[AF],

BlAY = YR 53)
BIAY) = E[A)-EAL  0<i<j<n 3.9
ElA7] = E[A7] - E[A7] = D E[A](pu(i) - po(). (3.5)

Note that A? is the present. Hence, E[A?] = 0.

We can calculate the probabilities p, (i), puo(7,j) as described in Section 2.4,
Equations (2.3)-(2.6), so it is left to calculate fis(s), fax(s) and E[AF]. The three
values will be computed both conditioning and not conditioning on the age of the
tree. This is done for the Yule model in Section 3.2 and for the BDP in Section 3.4.
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Knowing the expectation of A we can calculate expected LTT plots which
is done in Section 3.6. Further, we can date phylogenies as explained in the next
section.

3.1.1 Application: Estimating divergence times

Analytic results for the expectation of A% find application in supertree methods.
Supertree methods infer a phylogeny by combining many small phylogenies. With the
supertree methods, we are usually not able to date all speciation events. For undated
nodes, estimates are required. Standard procedures assume the Yule model as the
model for speciation in the tree. In the primate phylogeny [75] and the mammal
phylogeny [7], the time of the undated speciation events is estimated — assuming the
Yule model — in the following way. Let u be the undated vertex, and let the time of
birth of the direct ancestor of u be ¢,. Let the clade size of the ancestor be ¢, and
the clade size of u be ¢,. Then we estimate the date of u, t,, as t,, = t,logc,/ logc,.
The motivation for this estimate is given in [75]. This estimate has a bias though.
[teratively estimating nodes with the described procedure biases the model to have
a slow-down in the diversification rate [98]. In [98], an undated speciation event is
estimated via the expectation of the time of that vertex under the Yule model. The
expectation is obtained via simulations. The advantage of taking the expectation
of the speciation event as an estimate is, that it is not biased toward a slow-down
in the diversification rate [98]. Arne Mooers and Rutger Vos asked for an analytic
approach (personal communication). In Section 3.4.5, we calculate the expectation
of A* under any BDP which yields the expectation of A% with Equation (3.3). This
analytic method for dating supertrees is coded as part of the Python package CASS
[89]. In Section 3.9, the method for dating trees is extended to trees where some
dates are known; we use the known dates in a tree in order to estimate the unknown
dates.

3.2 The Yule model

The simplest and most widely used null model for speciation is the Yule model
[3, 18, 101] which G.U. Yule introduced in 1924 for modeling the size of genera.
Under the Yule model, no extinction occurs and each species speciates after an
exponential (rate A\) waiting time. The Yule model is often used as a null model,
even though extinction clearly occurs in nature. But being a pure-birth model with
exponential waiting times, the Yule model is relatively simple to analyze which
makes it attractive to use. For example, common procedures for estimating the time
of undated divergence times in supertrees assume the Yule model [7, 75, 98|, even
though extinction clearly occurred in the considered phylogenies.

Under the Yule model, each species has an exponential (rate A) lifetime. Since the
exponential distribution is memoryless, this is equivalent to having an exponential
(rate kA) waiting time in a tree with k species until the next speciation event:
After the (k — 1)-th speciation event, we have k extant species with independent
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exponential (rate \) distributed lifetimes S, Ss, . .., Sk. The random variable A*~1F
the time between the (k — 1)-th and the k-th speciation event (without conditioning
on observing n species today), is distributed as follows,

k
P[Ak—l,k Z t] _ P[Sl,S2, . -7Sk Z t] = HP[Sj Z t] = e_Akt.

j=1

The density function far-1.x(t) is therefore

Faorn(t) = L1 Z PLAFR > 4]) = Ape Mt

Cdt
which is the exponential (rate \k) distribution. This yields

E[A® 4] = % Var[ A1 =

(AR)*

Whenever a speciation event occurs, each extant species is equally likely to speciate
next. Therefore the Yule model belongs to the class of CAL models. We will set
A = 1 in the following. Note that from results for A = 1, we get results for a general
A via the following property. Let F)(t) be the exponential (rate \) distribution, the
lifetime of a species. We have

F\(t) = e = Fy(\t).

Therefore, changing from rate A to 1 is scaling time by a factor of \.

Since the exponential distribution is memoryless, at any point in time of a Yule
process, the time until the next speciation event is independent of the current ranked
oriented tree. This establishes the following lemma,

Lemma 3.2.1. For a given Yule tree on n species, the ranked, oriented tree is
independent of the time of the speciation events.

Therefore, we can use Equations (3.1),(3.2),(3.3),(3.4),(3.5) in order to calculate
the density of A%, A% and the expectation of A%, A% A%, In the following, we
calculate the distribution of A¥ A% and the expectation of A*. In Section 3.2.1,

we assume a uniform prior for the time since origin, and in Section 3.2.2, we condition
on the age t of the tree.

3.2.1 Unknown age of the tree

First, we do not condition on the age of the tree, t, but assume a uniform prior for
the age of the tree. A first ancestor species was created at any point in the past with
equal probability. Since we want to obtain n species today, the time of origin has to
be conditioned to obtain n species today.

This is equivalent to growing a tree and stopping the process at a time between
the (n — 1)-th and n-th speciation event. Therefore, the waiting time between the
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(k — 1)-th speciation event and the k-th speciation event in a tree which has n
species today is AF~1F = AF=LF for k < n. The stopping time is independent of the
realization up to the (n — 1)-th speciation event due to the memoryless exponential
distribution. We need to determine A"~!, the time between the (n—1)-th speciation
event and today. The time between the (n—1)-th and n-th speciation event, A"~1" is
exponential (rate n) distributed. Note that the probability of observing a particular
tree on n species with A"~ 1" = ¢, is proportional to o, (if o, is very small, the
n-th speciation event occured very soon after the (n — 1)-th speciation event, and
therefore, it is unlikely to observe the tree with exactly n species being present).

Since we assume a uniform prior, we stop at a time chosen uniformly at random
between the (n— 1)-th and n-th speciation event, each stopping time has probability
1/o,.

Overall, we therefore obtain by integrating over all possible o,

o0 1
Fap(s) o / O fanin (00) —do, = ™,

n

therefore A"~ is the exponential (rate n) distribution. The time between the (n—1)-

th speciation event and today equals the time between the (n — 1)-th speciation

event and the n-th speciation event. The same result is derived in a different way in

Remark 3.4.12. This issue is discussed in detail for general models in Chapter 5.
This establishes, AF =>"" A" and,

i=k+1

Theorem 3.2.2. The expectation of AF is (0<i<n—1),

EA=E[Y A= ) ¢ (3.6)

i=k+1 i=k+1

For the variance, we get, since A=Y, AI=Y9 are independent for i # j,

Var[A%] = Var] i A7) = i %2

i=k+1 i=k+1

For the second moment, we get

n

1 w1
k\2] _ k k1\2 _
B[] = VA + B = 3 5+ Y Y o
i=k+1 i=k+1 j=k+1
Define Y7 := 7. A5~ Note that A% = V;", | and A% = Y/, ,. In the following,
we will obtain the density function for Y;.

Let X,Y be independent non-negative random variables. Then the density of
7 = X 4+Y is the convolution of X,Y:

fals) = /0 " () (s — )
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In [59], a formula for the convolution of n exponential distributed random variables
is established. Note that Y7 := 377 _. A*=1* is a convolution of j —i + 1 exponential
distributed random variables. From the general formula for the convolution in [59],
we obtain for our setting

inj(S) =1q- (Z + 1) e je_jngj_H_l(S) (37)

where ¢, (s) =[5 €"pn_1(x)dz and ¢1(s) = 1. We need the following lemma for
obtaining a closed form for the density function f,(s) in our setting.

Lemma 3.2.3. With the notation above, we have,

eals) = oy~ 0" (33)

Proof. We prove this lemma by induction on n. The formula is true for n = 1, and
if it holds for an arbitrary specific value of n, then it also holds for the next value,
since

o) = | Se%(x)daszﬁ | e =i

o= ) [(ew " DT S

(n—1 n 0 n!
U
Lemma 3.2.4. The density of Yij is
. — ] —Jjs( .8 j—i
fYZ_J(s) = Z(Z,)e (e* —1)77"
Proof. With Equation (3.7) and (3.8) we obtain
fyi(s) = di-(i+1)-...-je’* ! (5 —1)7"
" (=)'
= i(‘j_)e_js(es — 1)
i
U

Since A¥ = Y™ |, we have established the following theorem.

Theorem 3.2.5. The density of A" is,

() =G 1 e i

where 0 <1 <n— 1.
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Since Al = Y7, |, we have established the following theorem.

Theorem 3.2.6. The density of A7 is,
. j —J78( .S j —1—
fpio(s)=(+ 1)(Z L 1)6 (et — 1) (3.9)
where 0 <1 < 7 <n.

Remark 3.2.7. Note that A*1* AL are independent for k # [. This implies
that A% and A*! are independent for i < j < k < [.

3.2.2 Known age of the tree

Next we calculate the density and expectation of A* and the density of A%/ condi-
tioned on the age t of the tree.

Theorem 3.2.8. The random variable Aﬁ (1 <k <n-—1) conditioned on the age
t of the Yule tree has the density function:

-1
fAi;;(S‘t) _ k(n . )(1 o e—t)l—ne—ks(l . e—s)n—k—l(l _ 6_(t_s))k_1.
For k =0, we have fao(s|t) = (s —t) were 6 is the Dirac delta function.

Proof. The distribution for £ = 0 is obvious, since we condition on the age t of the
tree. So now let k > 0. Note that A% and A" are independent (Remark 3.2.7).
Denote the joint density function of A%* AF™ as f 0k gk, and apply Equation (3.9)
to obtain:

Fas(slt) = fan(s] A% = 1)
fAI:L,n A%k(S,t - S)

ngv" (t>
nlS k(T —s
_ Jan(8)f et — 5) (3.10)
fA%” (t)
(k + 1)(k.?.1) e—ns(es _ 1)n—k—1ke—k(t—s) (6t—s _ 1)k—1
o ne—nt(et _ 1)n—1
—1
_ k(n . )(1 o 6—t)1—ne—ks(1 _ e—s)n—k—l(l . 6—(t—s))k—1.
]
Theorem 3.2.9. The expectation of AL (for 1 <k <n —1) conditioned on t is:
n—k—1 k—1
E[A% 1] = By o (1 — €7 (70 — ((k + by — k)t + 1)e”FFRE

2=0

k
with Br, i, = k(",1) ("0 (L) (DR 2 (k 4 ky — ko) 72,

For k =0, we have E[A%|t] = t.
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Proof. The expectation for k£ = 0 is obvious since we condition on the age ¢ of the
tree. Now let £ > 0. We have

Bl = [ shalsinis
_ k(n;l) (1 ety i: ’“Z:(n— —1)(k];1)

t
(_1)k1+k26—k2t / 86_(k+k1_k2)5d8.
0

Using integration by parts,

b
1
/ se”“ds = [—fe—“]g + -
" c c

b 1 .
/a e “ds = —g[(sc + 1)e™,.

Therefore, with By, 4, == k(") ("_kli_l) ('El)(—l)kﬁ'k?(k: + ki — ky)™2, we have:

—k—1 k—
Ak‘t — Z Z o, k2 1 — e )l—n(e—th o ((]{Z + kl o ]{ZQ)t + 1)6—(k+k1)t>

which establishes the theorem. O
Theorem 3.2.10. The random variable A% (1 < i < j < n — 1) conditioned on
the age t has the density function:

i— n—,

G

et ST T — )

1 7—1
e(n—=i)s
Bklkg
k1=0 ko=0

with By, = (i +1)( ) (") () (87 S
For A" with i < n, we have f yin(slt) = fa (s|t).

For A} we have f 0. (s|t) = f 4 (t — s|t).

Proof. First, consider 1 <i < j <n— 1. We can write f(s|t) as

Fas(sl) = Fo(slAtn = 1)
Pt )
fA%”( )
e )
fA%” (t)
faii (S)fA9Lvi+A{’;” (t—s)
fA%” (t) .

(3.11)
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The last equality holds since A%/ and A%" + A7™ are independent, because the
AE=LE are independent (see Remark 3.2.7). We will now obtain an expression for
f a0, qm (t—s). The random variables A)*, AJ", j > i are independent (see Remark
3.2.7). So f g0, gn(t — s) is the convolution of A}*, AJ",

t—s
fpoiypn(t —s) = / fpoi(u) fggn(t — s —u)du
0
t—s
= / ie ™ (e" — 1) 4+ 1) x
0
( n )e—n(t—s—u) (et—s—u . 1)n—j—1du

J+1

i—1 n—j-1 ,. .
. n ol Z Z 1— 1\ (n—75—1
J + 1 k1=0 ko=0 kl k2

(_1)n+i—j—k1—k2

T R ), (3.12)
Equation (3.11) combined with Equations 3.12 and 3.9 gives the formula described
in Theorem 3.2.10.

For j = n, we have by definition fin(s[t) = fa; (s|t). The time between i = 0
and j is the age of the tree minus the time from today to the j-th speciation event.
This is ¢ — A7, which completes the proof. O

3.3 The critical branching process (CBP)

The constant rate critical branching process (CBP) as a model for speciation and
extinction has first been introduced in [74]. This process generalizes the Yule model
by including extinction. The CBP is a one-parameter process operating as follows.
We start with one species at some time ¢ in the past, the time of origin. A species has
an exponential (rate A) lifetime, in the course of which it gives birth to new species
at Poisson (rate A) times. Different branches of the tree behave independently. Since
the time until speciation (extinction) of an extant species is exponentially (rate \)
distributed, an individual is equally likely to die or to speciate next. Further, since
the exponential distribution is memoryless, each species is equally likely to be the
next undergoing a speciation (extinction) event. Therefore the CBP belongs to the
CAL class of models.

The CBP with conditioning on having n extant individuals today is called a con-
ditioned constant rate critical branching process (cCBP). The asymptotic behavior
of the cCBP for large n has been analyzed [2, 74]. The authors point out that the
model is of biological significance mainly for small n (i.e. for small clades). They cal-
culate the distribution and expectation of AL, the time of the most recent common
ancestor of n extant species. We extend this idea and calculate the distribution and
all moments of A* (k=1,...,n — 1) in Section 3.4 as a special case of the cBDP
model.
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The probability of a CBP going extinct is 1 (since the process is critical). In
the remainder of the section, we investigate the realizations of the CBP which went
extinct. For CBP trees on n extant species, we have a uniform distribution on ranked,
oriented trees (Proposition 2.3.1). For extinct CBP trees on n extinct species, we
establish a uniform distribution on oriented trees.

3.3.1 Extinct trees under the CBP

We calculate the distribution on oriented trees on n extinct species and no extant
species which evolved under the CBP. For the remainder of this section, let T" be
an extinct realization of the CBP where we do not keep track of the timing of the
speciation and extinction events. Therefore T' is an oriented tree. Let Vi be the
number of leaves in 7T'.

Lemma 3.3.1. Let T be an extinct realization of the CBP as defined above. We
have,
PV =n] = (1/2)"" ' ¢,y

with ¢, = %H(Q:) being the n-th Catalan number.

Proof. We prove the statement by induction on n. The probability that the tree goes
extinct with n = 1 lineages has probability 1/2 (since the probability of extinction
of a lineage is 1/2 under the CBP) .

Let the lemma be true for all £ < n. For an extinct tree T" with Vi = n, let L
be the left daughter tree, and R be the right daugther tree. The number of leaves
of L shall be k, where 1 < k < n. We have,

P[V;, = k|P[Vr = n — k],

which is the probability of the first lineage speciating (1/2) times the probability
that the left tree has k leaves and the right tree has n — k leaves. The product is
summed over all possible k. With our induction assumption, we have,

n—1

PVr=n] = (1/2"")  ci1cnia

k=1

= (1/2 " eny

where the last equation follows from the recursion for Catalan numbers (see for
example [83]),



32 CHAPTER 3. NEUTRAL MODELS WITH CONSTANT RATE

Theorem 3.3.2. We have
n

which is the uniform distribution on oriented trees with n leaves.

P[T|Vy = n] =

Proof. We will establish the theorem by induction on n. For n = 1, we only have
one tree, an edge from the root to the leaf. Its probability is 1.

For n > 1, denote the left daughter tree of T" with L and the right daughter tree
with R, we define k := V}, and therefore Vz = n — k. We have,

PT|Vr =n] = P[L,R|Vr =n]
= IP’[L,R|VL:k:,VR:n—k‘]IP’[VL:k,VR:n—k|VT:n].
Since L and R evolve independently,

P[VL:]{?,VR:TL—/{?,VT :n]
]P)[VT:TL]

P[T|\Vr =n] = P[L|V, = k|P[R|Vg =n — K] ,
We have

1
PV, =k Ve=n—kVr=n = PVi=kVa=n—k = PV, =kP[Vz=n—Fk

where 1/2 is the probability that the first speciation event occurs such that L and
R can evolve. Overall, by the induction assumption and Lemma 3.3.1,

1 PV, = k|P[Vk = n — k]
PT|\Vr=n] = ZPILIV, =k|P[R|Vg=n—k
[TV =n] = SPILIVL = PRIV = n— Kot
B n
T [2(n—1
(o)
which proves the theorem. O

Note that for CBP trees on n extant species, we have the uniform distribution on
ranked oriented trees since the CBP belongs to the CAL class of models. For CBP
trees on n extinct species, we now established the uniform distribution on oriented
trees. Note that the same distribution is induced under the PDA model (see Section
1.2).

3.4 The constant rate birth-death process (BDP)

In this section, we consider a generalization of the Yule model and the CBP model,
the constant rate birth-death process (BDP) model. The BDP model is a two-
parameter model, where each species has an exponential (rate u) lifetime during
which it produces new species according to an exponential (rate \) distribution
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(with A > > 0). In a tree with k species, this is equivalent to an exponential dis-
tributed (rate k) waiting time until the next speciation event and an exponential
distributed (rate kp) waiting time until the next extinction event. If we observe a
speciation / extinction event, each species is equally likely to be the one speciating /
going extinct. This is due to the memoryless exponential distribution (see Section 3.2
for a detailed discussion). Therefore, the BDP belongs to the class of CAL models.
We condition the BDP to have n species at the present, this is called the condi-
tioned birth-death process (¢cBDP). Since the BDP and therefore also the ¢cBDP
belong to the CAL class of models, we establish with Proposition 2.3.1 that the dis-
tribution on ranked oriented trees induced by the cBDP is the uniform distribution.
In [95], it is established, that the distribution on speciation times is independent of
the ranked, oriented tree. This is due to the memoryless exponential distribution.
Therefore Equations (3.1),(3.2),(3.3),(3.4),(3.5) hold for the cCBP. In this section,
we calculate the density of A%, A%/ and the expectation of A% for the cCBP. In order
to do so, we introduce the point process representation of a cBDP.

In [71], the reconstructed tree of a BDP after time ¢ is discussed. We condition on
having n extant species, since this allows us to compare the model with phylogenies
on n extant species. The age t of the tree is either fixed, or a uniform prior is assumed.
We will obtain the density for each speciation event in a tree with n species. The
joint probability for all speciation times and the shape as well as conditioning on the
shape has been established in [95]. However, no individual probabilities have been
established. For establishing the individual probabilities, we introduce the point
process representation for reconstructed trees (Section 3.4.1). This had been done
for the critical branching process in [2, 74].

The results are used for dating phylogenies (Section 3.1.1), for obtaining LTT
plots (Section 3.6), as a prior in the MCMC program BEAST (Section 3.4.3) and for
simulating trees (Chapter 5).

3.4.1 The point process

It will be very convenient to use a point process representation for reconstructed trees
in order to establish various theorems in this chapter. The following point process
has first been considered in connection with trees in [2, 74].

Definition 3.4.1. A point process in R? of size n and age t,, is defined as follows.
We have n points (0,1), (0,2), ..., (0,n). Further, we have n—1 points at (i+1/2, s;),
i=1,2,...,(n—1) with 0 < s; < t, and s; # s, for i # j.

Lemma 3.4.2. We have a bijection between reconstructed oriented trees of age t,,
and the point process of age t,,..

Proof. “Draw” the given reconstructed oriented tree from the top (origin) to the
bottom (leaves). At each speciation event, choose the branch with label right to
be on the right and with label left on the left. The leaves are located at position
(0,1),(0,2),...(0,n) from left to right. Define s; to be the time of the speciation
event having leaf at position (0,7) as a descendant in the left daughter tree and
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Figure 3.1: Reconstructed oriented tree and the corresponding point process. The
time of origin of the process is t,,, the time of the most recent common ancestor is
1.

leaf at position (0,7 + 1) in the right daughter tree. This defines (i +1/2,s;), i =
1,2,...,(n—1);0 < s; < t,, the n — 1 points of the point process, see also Figure
3.1. The mapping to the point process is obviously injective and surjective, i.e.
bijective. O

For completeness, we give the mapping from the point process to the recon-
structed oriented trees. Consider a realization of the point process. Connect the
most recent “speciation event” (the smallest s;) with its two neighboring leaves (i.e.
if s; < s; for all ¢ # j then connect s; with (0,7),(0,j + 1)). This most recent
speciation event replaces the two neighboring leaves in the leaf set. Continue in this
way until all points are connected. This gives us the corresponding reconstructed
oriented tree. An example of the point process is given in Figure 3.1.

Corollary 3.4.3. FEach permutation of the n — 1 speciation points si,...,S,_1 of
the point process induced by the cBDP has equal probability.

Proof. We have a bijection between the reconstructed oriented trees and the point
process (Lemma 3.4.2). Choosing the n — 1 speciation points sy, ..., S,_1 induces a
ranked oriented tree, let the probability of that tree be p. Now permute the n — 1
speciation points s; arbitrary. This induces a different ranked oriented tree. Since
we have a uniform distribution on ranked oriented trees (Proposition 2.3.1), the
probability of the new tree is again p. So each permutation is equally likely. U

For obtaining the density of the speciation time s;, we need the following results.
Under a birth-death process, the probability that a lineage leaves n descendants
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after time t is p,(t). From [48], we know for A > pu >0,

p(l — et

polt) = A — pe=A=mt
(A Ve~ (A-mt
nt) = ()\_Ze O=t)2’
pa(t) = (/)" () [po(®)]" (3.13)

Let 7 be the oriented tree with n leaves and x; > x5 > ... > x,,_; the time of the
speciation events. Note that the x;,i = {1,2,...,n — 1} is the order statistic of the

values s;,1 = {1,2,...,n — 1} of the point process.
Let t; be the time of the mrca in a reconstructed oriented tree. In [95], page 56,
the density ¢ of the ordered speciation times, zo > x3 > ... > x,_1, given n and

r1 = tp is derived,

n—1

p1(Ii)
|t =t,n) = (n —2)! .
g(flfg,.flfg, y & 1‘ 1 n) (n ) gupo(t)

This joint density is used in [100] in order to infer reconstructed trees with Bayesian
methods. We will calculate the density for each speciation event separately; this will
enable us to estimate the speciation times separately. The variables zq, x3,..., 2,
are the order statistic of say s», s3,...,s,_1. Each permutation of the n — 2 random
variables s, s3, ..., S,_1 has equal probability (Corollary 3.4.3), and therefore the
density f of the speciation times is,

f(SQ, e Sn_1|t1 = t,n) =

g(Ta, 3, ..., xplty =1, n) H pl
(n—2)! P

which (by definition of independence) shows that the s; are i.i.d., and therefore,

pl(Si) 6_(>\_‘u)si A\ — Me_()‘_ﬂ)t
Iz = (A —p)? — o
po(t) (A — pe=(A=msi)2 1 — e=(=p)

Note that the expression for the density of s; does not depend on n, we have the
same distribution for any n. Therefore, we do not need to condition on n. For the
distribution, we obtain by integrating Equation (3.14) w.r.t. s;,

f(silti=1t,n) =

(3.14)

1 —e Ommsi N — e (-mt
A — ,ue_o\_li)si 1 — e=(A=p)t

Flsilti = 1) = (3.15)

Note that the probabilities are conditioned on ¢, the time of the most recent common
ancestor (mrca). It is of interest to condition on t,, instead, the time since origin
of the tree. We have the property that

f(si|t1 = t) = f(8i|tor - t) (316)
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Figure 3.2: Reconstructed tree 7 with daughter trees 77, 75. We have mrca(7) =
origin(Ty) = origin(Tz) = t;.

The following argument verifies Equation (3.16). Suppose we have a tree where
the mrca was at time t;. The daughter trees 7,,7,, of the mrca have n, m extant
species. The speciation times in 7,,, 7,, occured according to Equation (3.14). On the
other hand, since the two daughter trees of the mrca evolve independently, the tree
7, can be regarded as a birth-death process which is conditioned to have n species
today and the time of origin was t,, = t. Therefore f(s;|t; =t) = f(si|tor = t), see
also Figure 3.2. This establishes the following theorem.

Theorem 3.4.4. The speciation times Sq,...,S,_1 in a reconstructed oriented tree
with n species conditioned on the age of the tree are i.i.d. The speciation times
S9,. .., 8p_1 In a reconstructed oriented tree with n species conditioned on the mrca
are i.i.d. The time s of a speciation event given (i) the time since the origin of
the tree is t,., or (ii) the time since the mrca is ty, has the following density and
distribution for A > pu >0,

()\_u)Zef(/\fp‘)s )\—/1/67(/\7“)7:

] <
Fslt) = Flsltor =) = f(sltr = t) = { OoperOmp 1mevmmr S <,
0 else,
1—e~(A=m)s N—pe—(A-—m)t . <
F(S‘t) = F(S|tor = t) = F(s‘tl = t) = A—pe=A=p)s 1—e=(A=p)t ZfS <t
1 else.

Since conditioning a tree to have the mrca at time ¢t can be interpreted as con-
ditioning the two daughter trees 7, and 7,, of 7 to have the origin at time ¢, we
will only condition on the origin of the tree in the following.

Special models

The Yule model
For the special case of a pure birth process, i.e. u = 0, which is the Yule model,
Equation (3.14) simplifies to

)\e—)\s
f(slt) = T— o

1— —As
F(slt) = —°

1 —e M
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which has already been established in [70] — the author conditions on the time since
the mrca though.

The conditioned critical branching process
In a ¢cCBP, we have A = p. As u — A, we get in the limit using Equation (3.14),
(3.15) and (3.16), and the property e=¢ ~ 1 — ¢ for € — 0,

1 1+ M
el = e

s 1+ At
F(sl|t) = —
I = T

This has already been established in a different way for A =1 in [2, 74].

Remark 3.4.5. The point process representation will be used in Chapter 5 in order
to simulate cBDP trees on n species efficiently.

3.4.2 The time of origin

Suppose nothing is known about ¢, the time of origin of a tree. As in [2, 74|, we
then assume a uniform prior on (0,00), i.e. a tree is equally likely to originate at
any point in time. This is an improper prior as mentioned in Section 1.1. Assuming
this uniform prior, we will establish the density for ¢ given n extant species. From
Equation (3.13), we have the probability of n extant species given the time of origin
is t,
o (1 — e—(A—u)t)n—le—(A—u)t

(A — pie=Ommtyntl
with A > > 0. In order to derive the density for ¢ given n, we need the following
lemma.

Bor[nlf] = A1 (A — o)

Lemma 3.4.6. Let P,.[n|t] be the probability that a tree has n extant species given
the time of origin t. We have for X > > 0,

o 1
P = —.
/0 or |1 |t]dt -

iy n
Proof. The derivative of <%> is, using the quotient rule,

i L(A_H)t ' = n (1 _ e_(A_H)t)nﬂ ()\ _ )26—()\—u)t
dt \ X — pe=(—mt (A — pe—O=mt)n+l K

and therefore,

00 AL 1 — 6—()\—u)t nq e
P,.[n|tldt =
[ et = S| (),
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which establishes the lemma.
]

Theorem 3.4.7. We assume the uniform prior on (0,00) for the time of origin of a
tree. Conditioning the tree on having n species today, the time of origin has density
function,

(1 — e=O=mtyn=le=(A=p)t

— o\ 2
Gor (t[n) = A" (A — 1) (A — pe=Cmmtynti (3.17)
where A > > 0.
Proof. With Bayes’ law, we have
]:P)OTnthT t ]:P)OTnthT t
Gor(tln) = Ep‘ ][n] 2= waP‘ %n tgd)t
or 0 or 7
_ Por[n]t]gor (7) Py [n[t]
fO ]P)or[n|t]qor(t)dt fo or n|t
Lemm:a 3.4.6 )\an« [n|t]
— e~ A=t yn—1,—(A—p)t
o n 2 (1 € ) €
- nA" (A = ) (A — pe—O=mtyntl
O
Remark 3.4.8. For A\ = u, we have
ntn—l

which is obtained from Theorem 3.4.7 by taking the limit © — A. The density has
already been established in [2].

3.4.3 Properties of the speciation times

In Section 3.4.1, we showed that under the cBDP, a reconstructed tree of age ¢t can
be interpreted as a point process on n — 1 points which are i.i.d. We will see in this
section, that the same is not true if we do not condition on the age of the tree but
assume a uniform prior.

From Theorem 3.4.4 we obtain the density function for x = (z1,...,2,_1), the
order statistic of the speciation times, conditioned on the time of origin, ¢,

- e~ A=mzi \ — e~ (A=t
f(z|t,n) = (n —1)! 1:[ py— (/\ E A p—— e
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With the uniform prior on the time of origin, we obtain the density for =, given we
have n extant species, f(x|n), for 0 < p < A,

fleln) = / F (et m)gor (tl) el
. L 2 —(A—p)z; 00 e~ (A—p)t
= nl) )\ ,U <H \ — pe—(A—mzi )/5;1 ()\_Me—()\_“)t)th
B

)2
l‘fo 1\ A— 2 _>\ e 1 =
oo < = <wz>2 0~ W0~ pe O

x1

:s
,_.»—A

(
(
(
(

i=1

~.

e~ (A—pz1 - 2 e~ A=)z

o n—1
= nl)\ (A—M))\ Jie— O U)\ pre= A=)

(3.19)

If the n — 1 speciation pomts were i.i.d. with density function g, we would have
flzln) = (n — DT g(wiln). Such a function g does not exist due to the x,
i.e. the s; are not i.i.d. However, since each permutation of the s; is equally likely
(Corollary 3.4.3), the s; are distributed identical. If we condition on the time of the
mrca, r1, we again have independent points, as stated in Theorem 3.4.4.

For ;1 = 0, i.e. for the Yule model, we establish the analogous result,

[e'e) n—1 0o
flzln) = / for(x\t,n)qor(t\n)dt:n!)\"He_Mi/ e Mdt
X1 i=1 X1
n—1
= pl\"le A H e AT
=1

For the limit 4 — A, we obtain an analog result with the property e~
e — 0,

€~ 1—c€for

n—1
n! A

Remark 3.4.9. In the latest implementation of BEAST [16], an MCMC-program for
inferring trees, the BDP model is implemented as a possible tree prior. The density
of a tree assuming the BDP prior is calculated in BEAST using the above results,
i.e. with the formula for f(z|n) given in Equation (3.19).

Remark 3.4.10. Let us now consider the joint probability of the n — 1 speciation
events and the time of origin, f(z,t|n). With ¢ := x,, we have,

(A — ,u) e~ (A—p)m;
)\—,ue (A= M)x1)27

Fl@o, @1, xna|n) = fl@r, .. To1lt,n)qo(t|n) _anA

=0

i.e. xg,x1,...xT,_1 is the order statistic of n i.i.d. random variables.
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3.4.4 The time of speciation events

In this section, we calculate the density for the time of the k-th speciation event
under the cBDP given we have n species today. We condition on the age of the tree,
t, as well as assuming a uniform prior for ¢.

Known age of the tree

Let A% be again the time of the k-th speciation event in a reconstructed tree with
n extant species. We condition on the age of the tree t. The n — 1 speciation events
(conditioned on t) are i.i.d. and have the density function f(s|t), see Theorem 3.4.4.
The density of AX is therefore the (n — k)-th order statistic, which is (see e.g. [14],
Theorem 9.17),

Fal) = =07 L) Fel0r 0 e, 620

for s <t and fax(s|t) = 0 else. The distribution function of A% conditioned on ¢ is

k—

Fa(s ("‘ 1) S (1 = F(s|t)) (3.21)

i

for s <t and Fu(s|t) =1 else.

Unknown age of the tree

If the time of origin is unknown, we assume a uniform prior for the time of origin.
Using this assumption, we will calculate the density function for A¥, the time of the
k-th speciation event in a tree with n extant species.

Theorem 3.4.11. Let A* be the time of the k-th speciation event in a tree with n
extant species. We have for 0 < p < A,

n 1— e—()x—u)s)n—k—l
. —_ 1 n—=k/y _ ,\k+2 —(A—u)(k—i—l)s( )
fAn(S) (k + )(]{7 + 1) A ()\ ,U) € ()\ _ Me—()\—u)s)n—l—l

Proof. For a fixed time ¢ of origin, we have the density fx(s[t) for the time of the
k-th speciation event (Equation 3.20). With the uniform prior, the time of origin
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has density function go,(t|n). The density f4x(s) is therefore
fa(s) = / o sl0)a (1)t

()\ pe” (A—=p) )n k( (A us)n k—1
T
(1—e —(A=p)t )i Le=(A—p)t
(A — pe= O=mtyntl
e~ (A=mbs(] — =(A=p)s)n—k-1

_ —1 k+3 n€
- ( ) (A —pe Oy °
— e

(A—p)(t— s))k 16—()\ wt
dt

/ (A — pem ottt

()\—,u)ks(l 6—()\—,u)s)n—k—1

_ -1 o k+3 n€
— nk( i )()\ 1)STEN O — 0 X
e—()\—u)s 1—6 (A=p)(t—s
k(A = p) (A — pe= (=) ( A — pe=Ommt )

_ n n—k k+2—)\,uk+ls(]‘_e “)
N UsﬁLl)(k:H)A S (A — pe=Cmms)nt

X

nA"(\ — p)? dt

—k—1

which establishs the theorem. O

Remark 3.4.12. Under the Yule model, i.e. setting ¢ = 0 and A\ arbitrary in
Theorem 3.4.11, we have,

(eAs o 1)n—k—1

o) = (1

which has been established in Section 3.2 for A = 1 in a different way.
Under the cCBP the birth rate equals the death rate, A = p. Taking the limit
i — A\, we obtain from Theorem 3.4.11 using the fact e™€ ~ 1 — ¢,

Sn—k—l

o = et

which can also be obtained with the functions F'(s|t), f(s|t), gor(t|n) for the cCBP
directly (see [26]).

3.4.5 Expected speciation times

In this section, we calculate the expected time of the k-th speciation event in a
reconstructed tree with n species analytically. Our Python implementation CASS for
dating trees uses the analytic results. Higher moments are calculated numerically.
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Known age of the tree

Theorem 3.4.13. The expectation of AX conditioned on t is, for 0 < p < X,

k=1 i . n—j—1
n—1\ /1 i (A — pem At !
s - () (e ()

0= S8 (I (e )

[ln <7A6(A_u)t —n ) N (" —J- 2) % (AeP#F — )™ — (A = u)_m)]

A— L — m
and
BT v
h(.]7 m) = (A—pre— Q—mtym+f+2—n_(y_ym+i+2—n ]
m+j+2-—n eLse.

For =0, we have,

n—k—1k—1 k(nk )(n k— 1)( )( 1)i+j y
Ak +1 —3)2

(1 —e )™M — ((k+1d — )Nt + 1)e” BFDM),

ElAlt] =

For = X\, we have

wen - EECO)) ()

=0 j=

n—j—1 —1+1
1 14 M)
[)\t—(n—j—llnl—l—)\t—i—E <n J ) (—ntd +1)—z
l

Proof. Under the Yule model, i.e. ;1 = 0, the expectation of A has been calculated
in Theorem 3.2.9 for A =1,

n—k—lk—lkn—l n—I?—l k—'l 1 itj
EA*\=1)t] = ' Z (" )(])( )

‘ (k+i—j)?
(1—e ) (e™ " — ((k+1i— j)t + 1)),

X
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For general A, since

N O )

—1
far(s]t) = k(n i ))\(6_’\8 — e MyE e (1= eMyn—1

we have

t —As\n—k—1
k _ n—1 —Xs _ _—At\k—1_—M\s (I—e)
E[A7(N)|t] = /0 k:( i ))\s(e e e (1= o ds.

Substituting x = As yields

N A e i i =
ELAS = DA

A
For 0 < p < A, we have,
t
0 0
/n—-1
:t_zz(n )() /|
i=0 7=0 0

- - () (e ()
N =0 j=0 1-e ()\ W
b1 e (s \"TIT
/ ( p —O- )s) ds
0 \A— pe=A=n
k-1 ¢ n—j—1 n—1 i n—i_1
= =22 ( .)()( / y—wﬂ”
i=0 j=0 =0 ! J
A — Me—()x—u)t n=j—1 e_()\_ﬂ)ls
( 1 — e~ (=mt ) / A\ — pe—(A=ps g1 ds:
0 (A—pe )
With the substitution z = A — pe~ =% we obtain for [ > 0,

-1
t —()\—}L)IS 1 A—uef(kfﬂ)t <ﬂ)
/ € - dS e 7/ uidx
o ( A

X — e 0oy T (3 =) I

4

3

(3.22)

1 (-1 e [
) Z( m )(_1)mAl 1 m/A— !

o

S ey D G GRS e

m+j+1—ndl,
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where
—pe—(A—p)t . .
‘ In Mf\T , itm+j+1—n=-1,
h(]> m) = (A—pe~A—mtym+i+2—n_(\_ ym+i+2—n 1
m+j+2—n else.

For | = 0, we have with the substitution z = Ae®~#s — 1

t
1
) = —d
g(]) /0 ()\—Me_(A_/’l‘)s)n_]_l S

b A n—j—D)s
- | w

1 AeGA=mt_y (H_u)n—j—2
X
= — =t
()\ - lu’))‘ A—u an—i=l !
1 n—;j—2 _i_9 AeA=mt_y,
_ —n_j_l (n J )Ium/ I'_m_ldl'
(A B ,u))\ m=0 m A—p
1
(A = p)An=it
AeP=mt _ "I -2 T
n{— | — M)y (=)™ |
[“( - ) m:l< " )m(f3 P = (A=) ")

So overall,

k-1 i : — Oty i1
& o, =1\ (1Y, it A — pe~An
st - 55T (o ()
=0 j=0

TS i |G L e m>] |

=1 m=0 m )\_M>’ul

For p = A, we obtain from Equation (3.22),

g = =23 () (e () [ (55) -

Substituting © = 1 + As, we get,

t s n—j—1
/0<1+)\s) ds
1+t n—j—1
- ()
—j—1 ) 14+t
( e

n—j—1 e i
[)xt —j—=1)In(1 4+ Xt) + (n ? 1) (_1)l (1+ )\1t) l 1
1=2
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This finally yields,

wen - -EE ()55 ()

=0 j=

n—j—1 —1+1
1 1 1
[)\t—(n—j—llnl—l—)\t—i—E < ~J ) (—ntd +A1t)_l
l

Unknown age of the tree

A closed form solution for the first and second moment (for all k) of A* under the
Yule model (for A = 1) is given in Theorem 3.2.2,

Bl = Y 2 (3.23)
i=k+1 !
EVef(AR)?] = Z —+ Z Z — (3.24)
1= k-‘rl i=k+1j= k-‘rl

Theorem 3.4.14. Under the cCBP (with A\ = 1), the expectation and variance of

A are

n—k
o

n(n — k)

E[A;] = Bk—1)

Var[AF] =

In general, the expectation of the m-th moment of AF is

"D .
E[(A,)"] = (ky k= (3.25)
0, else.

Note that for k =1, we have Var[Al] = o

Proof. For calculating the moments, we need the following result which can be found
e.g. in [56],

1

gl - iftb>a+1,

_ds = —a— 2

| ot ={ e-a- ) | (3.26)
o0 else,

where a,b € Ng. With Remark 3.4.12, we have for the moments of A¥

s =640, 1) [ s
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For k < m, the value of the integral is infinite by Equation (3.26) and therefore
E[(A%)™] = co. For k > m, we obtain with Equation (3.26),

B = k(L )

n—k+m— ) (k—m+1)
nl(k —m)l(n —k+m—1)1  ("Fm)
kl(n — k—1)n! B (5)
which completes the proof of Theorem 3.4.14. O

Corollary 3.4.15. Recursively, we have for the moments of Ak,
E[(A})™] = E[(Ap)"E[(A™ ).

Proof. From Theorem 3.4.14, we obtain for k£ > m

sy = ) (m) ) iy o no b

Multiplying those expectations yields the formula for E[(.A*)™] in Theorem 3.4.14.
U

For general A, i1, we have the following analytic expression for the expectation.

Theorem 3.4.16. For 0 < ju < X, the moments of AX are, with p == p/\,

= ) (T e ()

1=

(i) 5696 ()]

J=1

For =0 we have

and for = X\ we have

In particular, the expectations basically only depend on p. Different X just scale time
by 1/,

Proof. For = 0 and for ;1 = A, the expectation is established with Remark 3.4.12
and Equations (3.23) and (3.25). For p # 0 and p # A we have with Theorem 3.4.11,

k > n n—k k42— (ha)s (1 — e” skl
e A A e e et
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Set
n
= (k+1 NN — )2
R | P PR
—(A—p)s\n—k—1
fls) = ez )
()\ _ /L6_()‘_“)S)n+1 ’
Therefore,
E[A"] = C'l/ f(s)sds = C1[F(s)s]|e° — C’l/ F(s)ds
0 0
where F(s) := [ f(s)
In the followmg, we calculate F(s). We use the following substitution:
o e~ (A-w)s de _ MA— p)e” s O _ AT
A — pe~(A=m)s ds (X — pe=(A—n)s)2 1+ px

This yields

F(s) = _ﬁ/ " (#)H_ld;ﬁ
1

T — k _ _ n—k—1
) W(A 0 / #L= o)™ da
n—k—1 n—k—1
TN ) ( ) (=) [ i
B " k= 1) (A=)t (e kit
: i=0 E+i+1 A — pe~(A-p)s :

We have lim,_o, F(s)s = 0 and F'(0) - 0 = 0 and therefore,

SM?T

E[A}] = —C, /OO F(s)ds.

Substitute z = X\ — pe~ A,

_ 1 n_zk_l n—k—1 (_()\_—,u))z—l/oo ﬂ k+i+1d8
Ak 0 i k+i+1 o\ — pe~(A-ws

1 "_k_l<n—l;;—1)(_()\_—u))i_1/:u ((Af)m

kE+i+1 (X = p) kit

n—k—1 i i1 k+i \
_ (n —k— 1) A—p)? (1) 5 (k + z) N ),W,_j/ G gy
Ak i k+i+1 pktitt j .

Jj=0
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Evaluating the integral yields

k" k-1 i—2
_ n—k—1\(A-p) 1
Fy(s) = )\n k ; < i ) k+i+1 pktitl X
lo + . N\ A— )
[ e — u> ; j ; [ (A —p)

Therefore, with p := u/\,
n—k—1 ;
—k—=1\(A—p)kt 1
E[AY] = (k+1 ) § j " .
Aal = (et )<k+1) ( ’ )k+z+1uk+z+1x

[“g ()% (k? e (1 : <ﬁ)j>]

J=1

e E ()

which establishes the theorem. O

3.4.6 The time between speciation events

Under the birth-death process, species speciate and die with exponential waiting
times. However, we condition the process to obtain a reconstructed tree with n
extant species today. We will determine the time between two speciation events in
the reconstructed tree on n species.

Theorem 3.4.17. Consider the backwards process of the conditioned birth-death
process — going back in time, the n extant species coalesce. A pair of species coalesces
according to the density function f(s|t) from Theorem 3.4.4.

Proof. Consider a fixed pair of species out of the n species. Obviously, we can put
them next to each other on the z-axis of the point process, at location (i,i+41). Their
coalescent point is (i +1/2,s;), see Theorem 3.4.4. The time s; has the distribution
with density function f(s|t) from Theorem 3.4.4. O

In a reconstructed tree with n species, the time until the last speciation event,
i.e. the time between the (n — 1)-st speciation event and today is A"~!. The time
between the k-th and the (k + 1)-th speciation event can be calculated as follows.
First note that since the n — 1 points in the point process are i.i.d. with density
function f(s|t), the density function g of point j; being at time s;, and j, being at
time s, Is,

9l550s52lt) = F (35100 (3510).
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Assume the k-th speciation event is at time 7 and the (k 4 1)-st speciation event is
at time 7 — s. We have n — 1 possibilities choosing the point for the k-th speciation
event from the n — 1 points, and n — 2 possibilities to choose the point for the
(k 4+ 1)-st speciation event. The density function for having a speciation event at
time 7 and 7 — s is therefore (n —1)(n—2) f(7|t) f(T — s|t). The probability for k —1
speciation points of the remaining n — 3 speciation points being earlier than 7 is
(7~3)(1 = F(r]t))"~". The probability that the remaining n — k —2 speciation points
occured after 7 — s is F(7 — s[t)""*~2. Overall,

n—3

Pl = [ =n0-2)(} 3 =Pl Fir—slor 2 el (sl

The time between the k-th and [-th speciation event (k < [) in a tree of age ¢
can be obtained in the same way. In addition to above, we require [ — k — 1 points
to be between 7 and 7 — s,

ptel = [=ne- (323 (32T a- e
(F(t|t) — F(1 — s|t)) " E(r — s|t)" 7L (r]t) f (1 — s|t)dT.

Note that A%~1* is the time until a coalescent event for k species in the recon-
structed tree. Recall that we found analytic solutions for the above integrals under
the Yule model (Section 3.2). For p # 0, the densities can be obtained with nu-
merical integration using the CAsS package. However, obtaining the expectation for
AbL can be done analytically, E[A%!] = E[A*] — E[AL]. If assuming a uniform prior
for the time of origin, we additionally need to integrate the above densities over t,
weighted by ¢, (t|n). Again, for the Yule model, we have analytic solutions (Section
3.2).

Remark 3.4.18. For obtaining the density of the time of the k-th speciation event,
AP under the Yule model, we have the point process approach in this section,
as well as the approach in Section 3.2. However, it is difficult to obtain a simple
expression for the moments of A* from the point process approach. Further, there is
no obvious way to obtain a simple expression for the density of A%! from the point
process approach. In Section 3.2, we obtained simple expressions for these quantities.

3.4.7 Comparing the extreme neutral models: Yule and

CBP

As established in Proposition 2.3.1 the Yule model and the cCBP induce the same
distribution on ranked oriented trees, the uniform distribution. However, the speci-
ation times differ. In Equation (3.6) we established Ey ;. [A¥] = >, | 1. Since

i=k+1 7
. 1
lim g ——Inn| =v
n—oo 7

i=1
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o Oryctolagus cuniculus T Oryctolagus cuniculus
v2 v2
[ Homo sapiens Homo sapiens
vi Bos taurus vi —————— Bostaurus
V5 i v5 .
Erinaceus europaeus Erinaceus europaeus
v3 Scalopus agaticus v3 Scalopus agaticus

Equus caballus Equus caballus
_ o1 Equus asinus _ o1 Equus asinus

Figure 3.3: Given the labeled tree, we obtained the displayed expected edge lengths
under the cCBP (left) and Yule model (right).

— v6 — v6
— V5 — V5
— v4 — v4
— v3 — v3

— V2 — V2
3.0 vl 30 vl

2.5 2.5
2.0] 2.0)

1.5 1.5

05 0.5 /

0.0 0.0

Figure 3.4: Density functions of the time of each interior vertex in the labeled tree
shown in Figure 3.3 under the cCBP (left) and Yule model (right). Since f4x(0) =0
for k <n—1,but f n-1(0) # 0, we obtain fy,(0) # 0 if and only if P[r(v) = n—1] >
0.

with v being the Euler constant, we have

n

1
Z—_ =1Inn+vy+o(1)
-1
as n — oo and therefore, for fixed k, 37", % = Inn 4+ O(1). Asymptotically, this
n—k n

is > 4.1 T ~ Inn. From Theorem 3.4.14, we have E.cpp[Ak] = %2 ~ % So

Ey e[ AF] ~ In (Eccnp [Aﬁ])

for fixed k. In particular, the root of the tree is expected to be at time n — 1 under
cCBP, but at time Inn under Yule.

We will now compare the speciation times in a given tree for the Yule and cCBP
model. Consider as an example the phylogenetic tree found in Figure 3.3, available
on TreeBase [91]. The data tree had no time scale, only the tree shape was inferred.
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We will calculate the speciation times for the interior vertices in the given tree
shape with the theory established in this chapter. Note that we consider this tree to
show how our methods work — we will not discuss if for that particular phylogeny,
a neutral assumption is reasonable.

We calculated for each interior vertex the density function for the time of spe-
ciation under the cCBP and under the Yule model with Equation (3.1), see Figure
3.4. Further, we calculated the expected speciation times with Equation (3.3), see
Figure 3.3. Note that not only the dates, but also the ranking of the obtained ex-
pected tree can be different for those two models (even though the distribution on
ranked trees is the same for both models). We have E.cpp[v2] > E.cpp[vb] but
Eyue[v2] < Eyqye[v5]. The expectations with the standard deviation are listed be-
low. All calculations are done with our CASS package.

E.cpp[vl] = 6.0000 + oo Eyuelvl] = 1.5929 + 0.7154
E.cpp[v2] = 1.0300 + 1.6968 Eywe[v2] = 0.5629 £ 0.4759
E.cpplv3] = 2.2667 + 2.7439 Eywe[v3] = 1.0262 =+ 0.5072
E.cpplvd] = 0.6178 + 0.8059 Eywe[v4] = 0.4084 + 0.3474
ccgp[v5] = 0.9133 £ 0.9794 Eywe[v5] = 0.5695 =+ 0.3667
Eocpp[v6] = 0.3222 + 0.4063 Eyue[v6] = 0.2473 £ 0.2343

3.5 Connections to the coalescent

3.5.1 The point process of the coalescent

The coalescent is the standard neutral model for population genetics [53, 51, 52].
The n individuals in a population are assumed to coalesce as follows. For the most
recent coalescent event, pick two of the n individuals uniformly at random, the time
between today and their coalescence is exponentially distributed (rate (5)A) where
A encodes the population size. Note that if considering the coalescent in forward
time, it is a CAL model: each lineage is equally likely to bifurcate next. We will
show that the coalescent — even though it is very similar to the Yule process — does

not have a point process representation with i.i.d. coalescent points.

Let © = (z1,%2,...,2,-1) be the order statistic of the coalescent times (with
ry > Xy... > x,_1). Note that z; — z;4; is distributed exponentially with rate
(”1))\ The density function for z is therefore,

e )

I(n —1)! .

_ nl(n ! iz,

= THM :
i=1

f(x[n)



52 CHAPTER 3. NEUTRAL MODELS WITH CONSTANT RATE

Conditioning on the time of the most recent common ancestor, x;, we get,

f(z|n) nl(n —1)! L

= >\ —Xix; — )\ —Mwl
f(x1|n> ,’,U1|’n, 2" 1H € xh H e

f(xln, )

where h is a function only depending on xq,n. If the n — 2 coalescent points were
i.i.d. with density function g, we would have f(z|n,z1) = (n —2)' [, g(@, x1,n).
However, due to the factor 7 in e~*®i this property is not satisfied, therefore the
n — 2 points are not i.i.d. However, in the coalescent, also each ranked oriented
tree is equally likely (Proposition 2.3.1), therefore each permutation of the s; has
the same probability. That means that the s; are identically distributed — but not
independent.

3.5.2 The CBP and the coalescent

We will show a surprising connection between the cCBP and the coalescent. Under
the coalescent setting, the random variable A*~1* ‘waiting time between the k-th
and the (k — 1)-th coalescent event’ is exponential ()\ (g)) distributed. For the first
moment of A* under the coalescent, we have for A = 1,

n

- i—1, 2 : 2
ECoal[-Afz] = E A, = i(i—1)
i=k+1 i=k+1

C o1 —1/n)—2(1— 1k = 2Rk 2

= “E.cpp[AL.
n

So in expectation, the coalescent with rate 1 is equivalent to the cCBP with rate
A = 5. The ranked trees under the coalescent are distributed uniformly at random
since the coalescent in forward-time is a CAL model — so the distribution is the
same as under the cCBP. Therefore the cCBP and the coalescent are alike when
only considering tree shapes and the expected time of the interior vertices. However,
when considering higher moments, the models differ, since,

ECoal[(Aﬁ)2] = VarCoal [A ] (ECoal[A Z VarCoal AZ 11] (ECoal [Afl])2
i=k+1
"1 2n —k)\”
- Z i\ 2 +< = k )) ’
i=k+1 (2) n

i.e. the second moments of AF are finite under the coalescent, whereas under the
cCBP model, the second moment of A! is co.

3.6 Horizontal LTT plots

Knowing the expected time of the k-th speciation event allows us to draw a lineages-
through-time (LTT) plot [71] analytically. In an LTT plot, the time vs. the number
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—< Yule
cBDP25 <
—x— cBDP50
— cBDP75 e
—< cBDP90
—<— cCBP

number of species

1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (scaled)

Figure 3.5: Lineages-through-time plot for n = 10 species. Time is scaled such that
the mrca is at 0 and today is 1. We have p = 0,0.25,0.5,0.75,0.9,1 from top to
bottom. Note that for variing A, time is scaled by 1/A (compared to A = 1). That
means, since we scale time, the plots are the same for any .

of species at that time (on a logarithmic scale) is drawn. LTT plots are a popular
graphical tool to compare the data (i.e. the reconstructed tree) with arbitrary mod-
els. For example, in [7], LTT plots are used to investigate if the rise of mammals
coincided with the Cretaceous/Tertiary boundary. Using an almost complete phy-
logeny of the present-day mammals, the authors postulate that the mass extinction
occurring at the Cretaceous/Tertiary boundary did not have a major influence on
the rise of mammals.

Commonly, the LTT plots for different models are obtained via simulations. For
the Yule model, we simulate until we reach n species. If extinction occurs, we would
have to simulate forever, since n species can always reoccur. Therefore an analytic
approach for drawing LTT plots is of special interest.

Since we know the expected time of the speciation events under the cBDP model
analytically, we can plot the LTT plot without simulations, see Figure 3.5. The plot
is “horizontal”, i.e. we fix the k-th speciation event, and have a distribution for the
time; we plot the expected time. Between events, we interpolate with a straight line.

Often, when collecting data, some species are missing in our data set. If each
existing species has equal probability of not being sampled, then we can model the
scenario via random tazon sampling. In Section 3.7, we will determine the LTT
plots for ¢cBDP models under random taxon sampling. We will see that random
taxon sampling cannot be detected by LTT plots.

Note that it is also interesting to consider the “vertical” expected LTT plot: fix
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a time and calculate the expected number of species at that time. Analytic results
for the vertical plots are established in Section 3.8.

3.7 Speciation times under random taxon sam-
pling

In this section, we discuss the influence of random taxon sampling on reconstructed
oriented trees. We first discuss the distribution on ranked oriented trees and then
the distribution on speciation times under random taxon sampling. These two dis-
tributions are independent for the cBDP [95] and determine the overall distribution
on reconstructed oriented trees. We will see that LTT plots are affected by random
taxon sampling. However, LTT plots under random taxon sampling look like LTT
plots with complete taxon sampling but a different extinction rate. Therefore, meth-
ods for estimating the birth- and death rates of a phylogeny from an LTT plot [71]
are biased under random taxon sampling, and extra care has to be taken.

First, we formally define random taxon sampling. Consider a reconstructed ori-
ented tree on n leaves, 7. Random tazon sampling is choosing uniformly at random
a subset of some size k from the set of leaves in 7. We consider the subtree 7"
of 7 which is the minimal subtree of 7 containing the k chosen leaves. Note that
obtaining such a subtree is equivalent to deleting n — k leaves uniformly at random
from 7. In 77, degree-two vertices (except of the root) are suppressed: The degree-
two vertex with its two adjacent edges is replaced by a single edge. Therefore, 7" is
again a reconstructed oriented tree. We investigate the distribution on reconstructed
oriented trees which are the result of random taxon sampling.

Note that the results in Section 3.7.1 and Section 3.7.2 apply to any speciation
model which induces a uniform distribution on ranked oriented trees (we do not
require a constant rate of speciation). Section 3.7.3 applies the results to the cBDP.

3.7.1 Ranked oriented tree distribution

The following theorem is implicitly proven in Proposition 2.3.1 and has been estab-
lished before in [31, 95, 3]:

Theorem 3.7.1. Consider the uniform distribution on ranked oriented trees with
n leaves. Deleting one leaf uniformly at random induces a uniform distribution on
ranked oriented trees with n — 1 leaves.

Therefore the ranked oriented tree distribution for trees with n leaves after ran-
dom taxon sampling is the same as the ranked oriented tree distribution for trees
with n leaves and complete taxon sampling. This means that the ranked oriented
tree distribution is invariant under random taxon sampling.
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Figure 3.6: Since sy has a leaf attached, we observe event s,(L). Further, we observe
event s9(5), since sy has 5 leaves descending. If we delete leaf 1, we delete so, i.e. we
observe sy(D).

3.7.2 Speciation times

We established that the ranked oriented tree distribution is invariant under random
taxon sampling. In this section, we will see that the time of the k-th speciation event
changes under random taxon sampling. The aim of this section is to calculate the
time of the k-th speciation event in a tree where m out of the n leaves are sampled
uniformly at random, Afl,m (the age of the tree might be fixed, or a uniform prior
is assumed).

From a ranked oriented tree on n leaves, we delete one leaf uniformly at random.
We calculate the probability that we delete a leaf which is attached to the k-th
speciation event, s, (k = 1,...,n — 1). This can be considered as deleting the
speciation event s, call that deletion event “si(D)”. Note that s can only be
deleted if a leaf is attached to sj. Call the event that s is attached to a leaf “si(L£)”
and the event that s, has j descendant leaves “si(j)”. For an example, see Figure
3.6.

We will calculate the probability of s (D) in order to obtain the distribution of
AL . We will need the following lemma [87].

Lemma 3.7.2. Given a uniform distribution on ranked oriented trees on n species,
the probability for one subtree below the root having k leaves, k =1,2,...,n—1, is

2 1
—— for k 2
S Ty
Therefore, the probability for the left (resp. right) subtree below the root having k
leaves, k=1,2,...,n—1, is

for k =n/2.

1
(n—1)

Theorem 3.7.3. Pick a ranked oriented tree on n leaves uniformly at random.
Delete a leaf uniformly at random from that tree. The probability that the deleted

leaf was attached to the interior vertex with rank k is

2k

Plsi(D)] = ———
[Sk( )] n(n _ 1)

for1<k<n-—1.
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Proof. The probability of s;(D), 2 < k <n — 2 is,

Plsi(D)] = Plsi(D)]sr(L)]P[sr(L)]
= Z Pls (D) sk (L)PLsk(L)|sx(5)PLs ()]
n—k+1 9

j=2

The last equality holds, since, for j > 2 the probability of having a leaf attached
to the root in an oriented tree with j leaves is 2/(j — 1) (Lemma 3.7.2) and the
probability of choosing a specific leaf in a tree with n leaves is 1/n since we assume
random taxon sampling. For j = 2, the probability of a leaf being attached to s is
1. The probability of choosing one of the leaves below s is 2/n.

To calculate P[s; ()], note the following. Each ranked oriented tree on n leaves is
equally likely. We will now count the number of trees with s;(j). There are (j — 1)!
ranked oriented trees on j leaves. There are (n — j — 1)! trees on n — j leaves.
For fixed ranked oriented trees 7;,7,_; on j,n — j leaves, the root s; of 7; has
to be attached to 7,_; in order to obtain a ranked oriented tree with s;(j) on
n leaves. The ancestor a of s has possible ranks ¢ = 1,...,k — 1. There are i
different lineages in 7,,_; to attach the vertex a with rank ¢ and two orientations.
So overall, there are 25 %" "i = k(k — 1) possibilities to attach s;. The number of
ways to order the j — 2 interior vertices in 7; below s, and the n — j — 1 — (k — 2)
vertices in 7,,_; of rank bigger than £ is ("_j _ffgﬂ _2) = (";fgl) Therefore, there
are k(k — 1)(j — D!(n — j — 1)‘(";'_?1) possible ranked oriented trees on n leaves
where s; has j leaves descending. Since each ranked oriented tree is equally likely,
and we have (n — 1)! ranked oriented trees on n leaves overall, we have

(j—l)!(n—j—l)!(n—k;—l).

(n—1)! j—2
Overall, with 37, (7) = (7F]) (see e.g. [93], p.32), we have,

k+1
n—k+1 ) )
-

Plsk(7)] = k(k —1)

= 2k(k —1
= ( ) n! (n—k—j+1)!
B 2]{;'(7”L—l{,‘—1)'n_kJrl n—j—1
B n! = k—2
n—3
_ le(n—k 1)! ( j )
' n! k—2
j=k—2
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So far we considered the cases kK = 2,...,n — 2. Since the probability of having
a leaf attached to the root in an oriented tree with n leaves is 2/(n — 1), we have
2
P[s1(D)] = ——.
[Sl( )] n(n — 1)

For k = n — 1, we know that two leaves are attached to s,_; (since it is the most
recent speciation event), and therefore

Pls,a(D)] = >

O

Remark 3.7.4. The distribution established in the last theorem also appears in a
different context. Consider a labeled tree on n species, and let x be a leaf label. Let
N be the number of leaves in the subtree descending the root which contains z. The
distribution of N under the Yule model is established in [92]:

2k
n(n—1)

Therefore, we have the equality P[N = k| = P[sx(D)].

PN = k] =

Consider an arbitrary model for speciation which induces a uniform distribution
on ranked oriented trees. Under the chosen model, let A be the random variable
“time of k-th speciation event in an oriented tree with n species,” 1 < k < n — 1.
Now delete one leaf uniformly at random from a tree with n leaves. Let A% | be
the random variable “time of k-th speciation event in an oriented tree with n — 1
uniformly sampled species, out of n species overall”, 1 < k < n—2. With probability
P(s;(D)), we delete speciation event j. If j < k then Af = AFFLf § >k then
An .1 = AF. Therefore, the density for the time of the k-th speciation event in the
oriented tree with n — 1 leaves after random taxon sampling is,

n—1
fAﬁn 1(8) = P( fAk —l—ZP 8] fAk+1( s), 1<k<n-2
Jj=k+1
n—1
- n( Ll Z s fn (o
j=k+1

B _(k+1) ) (k:+1)k .
- (1 —n(n_l))m() + B o)

With more non-sampled taxa, we can proceed recursively:

Theorem 3.7.5. Let A’;,m be the random wvariable “k-th speciation event in an
oriented tree with m uniformly sampled species, out of n species overall”. We have,

B (k41 (k+1)k (s
0 = (1= ) 0 S )

Jor1<k<m-—2and2<m<n, and AL, = A"

n-

fa

n,m—1
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Corollary 3.7.6. The expectation of Ay ., is,

(k+ 1)k
m(m — 1)

(k+ 1)k

B, ] = (1- )Lt R

3.7.3 Constant rate birth-death processes

With the results of the last section, we can calculate the expected speciation times
under random taxon sampling for the cBDP. We will calculate the time of the k-th
speciation event assuming a uniform prior for the time of origin; further we obtain
the horizontal LTT plot. The calculations for a fixed age of the tree are analogous.

The expectation of A for the cBDP is stated in Theorem 3.4.16. With Corollary
3.7.6, we can calculate the expectation of A . Note that for the cBDP, E[A}] is
a function of p := p/\ multiplied by + (Theorem 3.4.16) . So when scaling time,
E[A%] only depends on p = /.

In Figure 3.7, the expected LTT plots for m = 10 and different values for n, p
are shown. We scale time such that the mrca, i.e. the first speciation event, is at
time zero and the present is at time one. In Figure 3.8, we plot the expected age
of the mrca — this visualizes how much scaling we do for the different parameter
combinations n, p.

Remark 3.7.7. The cCBP is a ¢cBDP with A\ = p. After scaling time, the expected
k-th speciation time in a tree with m leaves is invariant when sampling from bigger
trees:
B, = (1o S s S e
Thm._3.4.16 <1_(k‘—|—1)k)n—k (k+1Dkn—k—1
nin—1)) Mk nn—1) AMk+1)
nn—1-k) n

- An— 1k = Al

Note that the invariance does not hold for a general cBDP as displayed in Figure
3.7. Further, it does not hold if conditioning the cCBP on an age t as displayed
in Figure 3.9. Note that for obtaining this figure, we used the analytic results in
Theorem 3.4.13, so again no simulations were involved.

Further, we derive a closed form equation for the expectation of A’;,m under the
cCBP.

Theorem 3.7.8. Consider the cCBP. We have

n(m—k)‘

3.27
mk ( )

E[A},] = —E[A}] =

i.e. for m, k fixed, the expectation increases linear with n.
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»—x 0 missing taxa
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Figure 3.7: Expected speciation times for p = 0,1/2,3/4,1 (left to right and top to
bottom) and m = 10 species today (time is on x-axis, number of species is on y-
axis). We sample leaves from bigger trees as labeled in the figure. For each parameter
combination, time is scaled such that the mrca is at time zero and today is one.
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Figure 3.8: Expected age of the mrca in a tree with 10 leaves for different values of
p and original tree sizes variing between 10 and 20. Note that under the cCBP we
have a linear curve.
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»— 6 missing taxa
»—x 8 missing taxa
10 missing taxa

Figure 3.9: Expected speciation times for 4 = A = 1 conditioning on the age of the
tree being ¢ = 10 and m = 10 species today (time is on x-axis, number of species is
on y-axis). We sample leaves from bigger trees as labeled in the figure.
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Proof. We prove the theorem by induction on m. Equation (3.27) holds for m = n,
since A¥ = A by definition and E[A¥] = "% (Theorem 3.4.16).

Assume Equation (3.27) holds for all M with n > M > m. Then the expectation
of A% .4 is with Corollary 3.7.6,

Bl ] = (1- D Bl S R
(k+1Dk\ nim—k) (k+1)k nim—k—1)
(1 ~ m(m — 1)) ok m(m—1) Am(k+1)
n m-—k—1 n &
T m—1 Xk :m—lE[’Am_l]’

0

There have been methods proposed to estimate the birth and death parameter,
A and p, for a phylogeny from the information contained in the LTT plot [71]; the
method assumes complete taxon sampling. As we see in Figure 3.7, the LTT plot
becomes “less convex” under incomplete taxon sampling. Further, the LTT plot
becomes “less convex” for decreasing . Therefore, the death parameter y is under-
estimated if taxon sampling is incomplete. In particular, a ¢cBDP with a positive
death rate and many non-sampled taxa looks like a cBDP with p = 0 and complete
taxon sampling.

Remark 3.7.9. The expected coalescent times under the coalescent model [53, 51,
52] equal the expected speciation times under the cCBP (Section 3.5.2). Therefore,
Figure 3.7 (bottom right) and Figure 3.8 (straight line) show the expected behavior
of the coalescent.

3.8 Vertical LTT plots

In the previous sections, we calculated the time of the k-th speciation event. Another
approach for obtaining LTT plots is to calculate the number of species at a fixed
time. In Section 3.8.1, this is done for trees of known age, in Section 3.8.2, a uniform
prior is assumed. We assume complete taxon sampling.

3.8.1 LTT plots for trees of known age

In a reconstructed oriented tree of age t, we calculate the density and expectation
of the number of species at time ot after origin, M, ; (o € [0, 1]). We condition M,
on M, ; = n, i.e. having n species today.

Theorem 3.8.1. In a reconstructed oriented tree of age t with n extant species, the
probability that at time ot after origin (o € [0,1]), we have exactly m species is,

o1\ ot
P[Ma,t = m|M1,t = n] — (m—l) (1+f(0,t7p,5))n71 me SN
0 else
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(1_670'515)67(170')515

with f(o,t,p,6) = (1—p) (1—e(—15)(1_pe—07) and p = p/A, 0= p— A

Proof. We will need the following functions as defined in [71]:

A—p
1— 6_(A_N)t

Since we are considering reconstructed trees, we obviouly have P[M,; = m|M;, =
n] = 0 if m > n. For m < n, we have with Bayes’ law,
P[Ma,t = m]

P{My. = ml My = n] = B[My = nl My = m] et =0
1t —

(3.30)

The probability that a lineage at time ot after origin has m descendants today (i.e.
after time t) is [46]

P[Mi (1—op = m] = (1 —u((1 — o)t))u((1 — o)t)™ "

Therefore, with N being the normalizing constant, and e = (1,1,...,1)7, we get
1 . .
]P)[Ml,t = n‘Mo,t - m] = N Z H]P)[Ml,(l—a)t = Zk]
ieN™ k=1
iTe=n
1 . .
= < ST —u(@ = o)t)u((1 - oyt)s!
ieN™ k=1
iTe=n
1 m n—m
= % Y (—u((1 = o)) u((1 - o))
ieN™
iT'e=n
1
= NHZ e N":iTe =n}|(1 —u((l —o)t))u((1 — o)t)" ™.
We determine |[{i € N™ : iTe = n}|. Since we have i), > 1,k = 1,...,m, determining

[{i € N™:iTe = n}| is equivalent to counting in how many ways we can distribute
n — m ones to m components. Distributing the n — m ones to m components is
equivalent to drawing n — m times from a urn with m different balls and returning
the ball to the urn after each draw. There are ("_Z"fx_l) = (:;_11) different outcomes.
So |[{i e N :iTe =n}| = (:1__11) Therefore,
PIMy = 0l My =] = < (170 ) (4= (1 = o))yt - o)y
=n|M,; =m] =— —u((l—0o u((l—o :
1 ot N\m-—1

In [71], the authors establish (Equation (9) and (3)),

P[M,, —=m] — (1 — u(ot) Jf ®) ) <u(at) Jf ®) )m_l,
PMy, —n] = PE)(1— u(t))u

—~
~
S~—
3
|
—
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Plugging these equations into Equation (3.30) yields
P[Mo’t = m\MLt = n]

_ %(” B 1) (1 —u((1—=a)t)™u((l— o))" ™

m—1

_ Ln=1\ (o 1-ul(l=o)t) P(t) ml
= N(m—l)( ) —a—om P(at))

u((1—=0)t)" (1 —u((1 — o)1)

_ %(:@_—11) (u(o_t)l—u((l—a)t P(t) m_lgg,t,n

(1_u(at)%)

where gy, = u((1 —o)t)" (1 — u((1 — o)) By arugye—T- 10 the following, we
determine N. Since probabilities add up to 1, we have Y " _ P[M,; = m|M;; =
n] = 1. We have with the binomial theorem,

N =N PM,; =m|M,=n]= (1 + u(at)l ;&Li(i ;;))t> Jig))n_ Gotn-

m=1

Therefore,

P[Mo’t = m|M1’t = ’n,] — (

m—1
1—u((1—0)t) P(t)
n— 1) (“(Ut) w((1—0)7) P(at))
m—1 1—u((l-o)t) P() \" 1
<1+“(‘7t) w((1—0)t) P(ot)

We evaluate

L—u((l-0)t) P(t) (1= ety Omi-o)
u((1—o)t) Plot) (A=n) (1 — e~ Q== (X — pe=O=wt)

u(ot)

with P(t) and u(t) from Equation (3.28) and (3.29). We define,

1—wu((1—o)t) P(t) (1 — %)~ (1=o)t
t,p,0) = t —(1— .
Therefore,
n—1 o,t,p,0)m !
P =iy =n] = (17 ) LI
which establishes the theorem. O

Remark 3.8.2. Note that f(o,t,p,d) = f(o,0t,p,1). Therefore, the conditional
distribution P[M,; = m|M,;; = n] with parameters p, ¢ is the same as P[M,5 =
m| My s = n| with parameters p, 1.
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Corollary 3.8.3. The expectation of My, given My, = n is,

L+nf(o,t p,0)

E[M,|Mi; =n| = :
Moo =0 = T o 1.0.8)

Proof. From Theorem 3.8.1, we get
E[My | My =n] = > mP[M, =m|M;, =n]

m=1

n—1 1
= nlzm+1 ( )f(a,t,p,é)m
ﬂ+f®tp, =

! n—1 - n—1 m
(1+ f(o,t,p,8)" " (1+ flont,p.0)) +mZ::1m< m )f(a,t,p,5) ]

(n—1)f(o,t,p,0 n—2 1
- 1+(1+f(gtp7 nlz Ut7p75)

(n—l)f(a,t,p, )(1—|—f(0',t,p, 6)) B
(1+ f(oyt,p,0))""

1+nf(o,t,p,9)

1+ f(o,t,p,9)

= 1+

which establishes the corollary. O

Note that for a fixed n, the conditional expectation E[M,;|M;,; = n| only de-
pends on p and 0t. For p = 0,1/4,1/2,3/4,1, t = 10 and varying values of §, we
calculated the expectation, see Figure 3.10. The graph looks quite unfamiliar for an
LTT plot of a reconstructed tree since we have concave curves, and the Yule model
is — for large A — “more convex” than models with extinction.

This behavior is due to conditioning on both ¢ and n: Consider the curves for
arbitrary A and g = 0. We condition on the age t of the tree. If \ is very large,
i.e. the process (if not conditioned on n) will have more than n lineages at time ¢
with high probability, then the most likely trees with n species are the trees where
nothing happens at the beginning, and later we have speciation. If many speciation
events occur at the beginning, we would later allow all species to only speciate rarely,
since we want to end up with n species. This is very unlikely though, since A is big.
If at the beginning, the one lineage does not speciate, and after a while, we have
“normal” speciation, this is much more likely, since we only force the first lineages
to behave abnormally. This yields a “very convex” LTT plot.

In the case of A being small compared to t, we need the early lineages to speciate
a lot. Then the later lineages can behave quite “normal” in order to end up with n
lineages today. This yields “very concave” LTT plots.

The following result had already been established with a different approach in
[71].
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number of species

time

Figure 3.10: Expected number of species given we have n = 10 species at time
t = 10 (the present) for A = 5,2,1,0.5,0.2,0.1,0.01, from bottom to top. The
different colours correspond to, green: p = 0, yellow: p = 1/4, blue: p = 1/2, red:
p = 3/4, black: p = 1.

Corollary 3.8.4. The expected number of species at time ot after origin conditioned
on the process surviving until t is

>\ — Iue_()‘_:u')t
A — Me_()‘_ﬂ)(l_at) '

E[M,,|M;; > 0] = eA-et

Proof. From [46], we have P[M;; = n|M;; > 0] = (1 — u(t))u(t)""'. We can write
the expectation as,

E[M, | My, > 0] = > E[M,|M, = n|P[M, = n|My, > 0]
n=1
B f: L+nf(o,t,p,9) A1 )e—(/\—u)t(l — e~ Oyt
B L+ f(o,t,p,0) (N — pe—O—mt)n

n=1

_ (A — p)e” At i AL — e~ O\ ™
(T4 floyt,p,0)) (A — peOmmt) &= N — pe= (it

()x ,u)e (A= utf a t p, in )\(1 _ e_()‘_l‘)t) n—1
(1 + f(U’ L, p, 5))()‘ pe A=p)t A\ — ,ue—(A—#)t ’

n:l
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Evaluating the geometric series yields,
(>\ — ,U/)e_o‘_”)t 1
(L+ flo,t,p,0)) (X — pe=Ammt) g Ad—em7mh)

)\—lu,efo\*ﬂ)t
(A — e XM f(o,t,p,0) (A — pe” At
(L+ f(o,t,p,0)) (A — pe A=) XA — pu)2e=(Amt

E[My+|Mys > 0] =

d 1
| Aty
)\—lu,e*()‘*/i)t
1 f(aa t,p, 5)()‘ — ue—()\—ﬂ)t)

14 f(o,t,p,0)  (1+ f(o,t,p,0)) (N — p)e=O=mt’

The corollary follows by plugging the definition of f(o,¢,p,0) into the derived ex-
pression. ]

Conditioning on the most recent common ancestor

So far, we conditioned on the time of origin of our tree. In other situations, we might
know the time of the mrca of the extant species opposed to the time of origin.

Let M7/“* be the random variable “number of lineages in a reconstructed ori-
ented tree at time ot after the mrca given the time since the mrca is t”.

Corollary 3.8.5. For M/, we have the following conditional density,

1L fla,t,p,0) —

i n—k—1
n—1(1+f(atp, )= 2k:1;(l—1)<m—l—l)'

form <n and PIMJ7* = m| M7}/ = n] =0 otherwise.

Proof. Label the two daughter trees of the reconstructed oriented tree 7 by 77, 75,
these two trees originate at the time of the mrca of 7, and together they have n
leaves. The random variable “number of leaves of tree 7; (having age t) at time ot”
is MZ, i € {1,2}. The probability that 7; has k leaves (k = 1,2,...n — 1) is —

ot n—1

(Lemma 3.7.2). Therefore,

P[Mmrca — m‘MﬁTCCL — n]
-1

IP)[M;?;TZ”C(I — m|M{7";T‘Ca — n]

= m|M{} =k, M{% =n— k|

=1
-1 k

- =1, M3 =m— M} =k, M =n—k
=1 =1
-1 k

= Z (M, = 1My = KPIM]3 = m — I|M3 = n — k]

1 f(atp, §)m—2 L n—Fk—1
 n—=1(1+ f(o,t,p,0)"2 Z(l—l)(m—l—l)

k=1 l=1
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which establishes the theorem. O

Corollary 3.8.6. For M, we have the following conditional expectation,

2+nf(o,t,p,0)
1+f(0-7t7p76> ‘

E [Mmrca | M{T;T’Ca — n] —

Proof. Label the two daughter trees of the reconstructed oriented tree 7 by 77, 7s,
these two trees originate at the time of the mrca of 7, and together they have n
leaves. The random variable “number of leaves of tree 7; (having age t) at time ot”
is M(,Tt, i € {1,2}. Since the probability of 7; having k leaves (k =1,2,...n —1) is
L (Lemma 3.7.2), we have

E[M7 | M7 = n] = E[M7}|M{; = k| + E[MZ}|M{; = n — k)]

B 1 "_12+nf(a,t,p,6)
N n—lkz:; 1+ f(o,t,p,90)
2+nf(o,t,p,0)
1+ f(o,t,p,9)

which completes the proof. O

3.8.2 LTT plots for trees of unknown age

So far, we assumed that the time since origin is known to be t. We then calculated
the expected number of species for each point in time between the origin and today.
We will now assume a uniform prior on (0,00) for the time of origin. Let M, be
the random variable “number of lineages in a reconstructed oriented tree when the
fraction o of the time between the origin and the present has passed”. We obtain:

Remark 3.8.7. The probability of having m lineages in the reconstructed oriented
tree after the fraction o € [0, 1] of time between the origin and the present has
passed, given n species at the present, is:

P[M, = m|M; =n| = / P[M,; = m|M;; = n]qo(t|n)dt
0

We did not find an analytic expression for this integral.

Theorem 3.8.8. The expectation of M, given My =n 1is

n—2 m-2\ (-D)* 4 :
L+ n(n 1> ko(k)ﬁﬁ;mo if =0,
E[M,| M, =n]={ 1+n(n—1)0 [~ ara t ST dt if =X,

0 e (2 U)t_672t —e n 2
1+ n(n 1)(1 -0 /s i ((ll—pe rrdt  else.
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Proof. We have,
E[M,|M; = n]

oo

E[My 4| M ¢ = n|qor(t|n)dt

0o ( (n—=1)f(o,t,p, 5)) (n)\"()\ i (1-— e—()\—u)t)n—le—()\—u)t) »

0 1+ f(gv t,p, 6) ()\ — ,ue—(/\—u)t)nﬂ
= 1+nmn-—DI"\—p)?
% g=(A=m)2=0)t _ o=(A=m2t (] _ g=(A=p)t)n=2
8 /0 A — pe=A=m=a)t (X — e=(A-pit)n+l t

oo ,—(2—0o)t __ ,—2t _ ,—t\yn—2
o b [N e (1= e
2 L n(n - DAY — p) /0 T e

0o —(2—0)t _ =2t (1 _ ,—t\n—2
p=p/A B Y e et (1—e)
2 | L n(n — 1)1 — p) /0 o (3.32)

S— o—

(3.31)

dt

Note that the expectation only depends on p = p/A. In general, we could not find
an analytic solution for the integral. However, for the Yule model, x = 0, we can
evaluate the integral. From Equation (3.32), we get

EYule[MJ|M1 = n] = l+4+n(n-— 1)/ (6—(2—0)1& _ e—2t)(1 _ e—t)n—2dt
0
n—2 9 00
= 1+n(n-1))_ (n ) ) / ~(kr2m)t _ o=(k2)0) gy
k=0 0
n—2 1
_ _ ) —(k+2—0)t —(k+2)t
= lnn 1);:0( ) { k+2—a et
n—2
n—2\(-1) o
- H”(”_l);o( k )k+2 K12 o

For the ¢cCBP, i.e. A = u, we observe with the property e ¢ ~ 1 — ¢ for ¢ — 0, from
Equation (3.31),

Ecpp[M,|M; =n]
= lim (1 +n(n—1) /OOO T AT = ) (A = p)at) (A — p)t)"~ )

=X L= (A=)l =a)t))(A—pl—(A—p)t)"
& Aot !
= 1 —1
+nln—1) /0 030 =)0 L
[e¢) tn—l
= 1+n(n—1)a/0 (1+(1—a)t)(1+t)"+1dt'
This establishes the theorem. O

Note that the expectation of M, only depends on p (i.e. is independent of ¢). In
particular, the expectation for 4 = 0 and g = X\ is independent of X. The expectation

[e.e]

0
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sigma

Figure 3.11: Expected number of species given we have n = 10 species today. Ac-
cording to Theorem 3.8.8, the expectation only depends on p = u/\, we calculated
p = 0,1/4,1/2,3/4,9/10,1 (from top to bottom). The dashed black line is the
straight line. Note that the curve for the Yule model is “more convex” than the
straight line.

of M, is plotted for different values of p, see Figure 3.11. The numerical integration
was done with the Matlab ode45 tool.

3.9 Estimating divergence times in partially
dated phylogenies

We estimate the speciation times in a given phylogeny by the expected speciation
time of a vertex (Section 3.1.1). This estimate does not have a bias opposed to the
method in [75]. However, in reconstructed phylogenies, we often have some speciation
events dated. The approach in Section 3.1.1 does not use the information of the
dated vertices for estimating the other dates, the approach only uses the tree shape
information.

Assuming the cBDP, we calculate in this section the density and expectation for
the time of any undated interior vertex in a given oriented tree 7, conditioning on
the dates t,, > ... > t,  for the dated vertices vy,..., v, (v; € f/, i=1,...,m).
Let vy be the origin of the tree and v,,,; an arbitrary leaf.

For an undated vertex v in an oriented tree 7 on n species, the density of the
time ¢, of vertex v conditioning on the times t,, > ... > ¢, of vertices vy,..., v,
can be calculated as follows. Let r(7") be the set of rank functions on 7', and for a
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given rank function r, r(v) is the rank of vertex v. Let xp, k = 1,...,n — 1 be the
time of speciation event with rank k. Let t,. be the time of origin and x,, = 0 be
today. We have for the density of ¢,,, conditioned on the speciation times t,,,...,t,,, .

the time of origin t,, and the oriented tree 7,

fo(sltors - topntor T) = Y fo(s.7ltes o tostor, T)
rer(T)
= D fu(slrte ot tor T (Pt -t tor, T).
rer(T)

(3.33)

Note that, since under the cBDP the ranked tree is independent of the time of the
k-th speciation event [95],

flrite, ... ty, |tor, T)
>reriry f(Fotuns st ltor, T)
@)y - s Trgop) tor, T) f(r|tor, T)
Zfer(T) f(%(vl), e 7xf(vm)‘tor7 T)f(Fltor, T)
J(@rorys - s Tpop) [tor, 1)
Zfer(’]') f(l'f(vl), cee ,fl?f(vm)|tor> n)

.f(r|tvl’ c 7tU7n7 tOT’) T)

(3.34)

where n is the number of species in 7. Note that f(r|t,,7) is the uniform distri-
bution and therefore cancels out. We calculate f(Z,(w,); - - -, Tr(wy)|tor, n) as,

F@rtonys - Triofors ) = / F@ns e 2o ltor n)dar, -z (3.35)

where {z,,py, ... xp .} = Az i € {1,....,n =1} \ {r(v1),...,r(vm)}};
we integrate over all possible values of x,,%.,,...,2, . The density
f(xy, 29, ... xy_1|ter,m) is calculated via

n—1

flan, @, apilter,n) = (n = D] f(@iltor)

i=1

with f(x;|t,) given in Theorem 3.4.4.

Next, we derive the density f;, (s|r,ty,, ..., ty, tor, 7). Since the cBDP before
the k-th speciation event is independent from the process after the k-th speciation
event (more precise, the process only depends on the time of the k-th speciation
event), we have,

ftu (S‘Tv tUl’ cee 7tvm7 tor, T) = f:vr(y)(5|x7‘(v1)7 <o Lpe(ug) s t0T> = f:vr(u)(s|x7‘(va)v Lr(vat1)s tOT)

where a € {0,1,...,m + 1} is determined such that r(v,) < 7(t,) < 7(v4r1). Set
r(ve) =: k,7(vay1) =: j,r(v) =: i. Note that between the k-th and j-th bifurcation
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event, we have j — k —1 bifurcation events which follow the point process introduced
in Section 3.4.1; the point process is conditioned to have the j—k—1 points appearing
in the interval (x;, ;). The j —k—1 speciation times between x) and x; conditioned
on t,. are i.i.d. as established in Section 3.4.1, and we obtain for the density with
f(s|tor) from Theorem 3.4.4,

B f(sltor) o f(sltor)
g(S|tor,Ik,fL’j> - fxﬂ;k f(8|tor) - F(xk‘tor> _ F(l’j‘tm)

for z, > s > x; and g(s|t,, xx, x;) = 0 else. The distribution of g is

F(s|tor) — F(z5]tor)
F($k|tor) - F(xj|tor)'

G(s|tor, Tp, ) =

The density of x; (¢ € {k+1,...,j—1}), conditioned on z;, xj and t,, is the (j—i)-th
order statistic of j —k —1 i.i.d. random variables with density g(s|t,., x;, zx), this is

—k—1 o
foi(sltor, wp, ) = (5 —1) (j J—i )G(S‘tor,xm%‘)jﬂ_l X

(1 — G(ltor, 71, 7)) L g(s|tor, tr, t)- (3.36)

With Equations (3.33), (3.34), (3.35), and (3.36) we established the density for the
time of an undated speciation event v, t,, in a partially dated phylogeny of age t,,,

7(Var1) — 1(vg) — 1
Loy ooty Jtor, T) = . _ y
fr, (sltw, m ) Z (7(Vat1) r(v))( rouns) — (0)
rer(T)
G(S|tor, Tr(va)> $r(va+1))r(v“+1)_r(v)_l %
(1 - G(S|tom Tr(va)s xr(v““)))T(U)_r(va)_lg(sﬁom tT(’Ua)? tT(Ua+l)) X

[ flxr, 20, . 2 altor, n)dy, ... dxy,
ZFET(T) f f(l‘l, T2, ... xn—1|tor7 n)dm;l c. dl’;nimil

(3.37)

where for each rank function r, we choose a € {0, ..., m+1} such that r(v,) < r(v) <
7(Vay1)- If o is not known, we have to integrate Equation (3.37) over t,, weighted
by the prior distribution q,.(t,:|n) (Equation 3.17) to obtain f; (s|t,,, ..., ts,, 7).

The expectation of ¢, can be obtained numerically with Equation (3.37). The
expectation is an estimate for the speciation time of v. The estimate uses all the
information given in the data. We do not use any estimated vertices to date another
vertex, and therefore do not get a bias.



Chapter 4

Neutrality test on ranked trees

In this chapter we present a new statistical test to investigate the timing of branching
events in phylogenetic trees. Our method explicitly considers the relative timing of
diversification events between sister clades; as such it is complementary to existing
methods using LTT plots which consider diversification in aggregate. The method
looks for evidence of diversification happening in lineage-specific bursts, or the op-
posite, where diversification between two clades happens in an unusually regular
fashion. The null models of our statistical test are the CAL and the UR models.
For calculating the p-values, we use the analytic results for the CAL and UR class
of models derived in the previous chapters. We apply the new statistic to several
data sets: first, we show that the evolution of the Hepatitis C virus appears to pro-
ceed in a lineage-specific bursting fashion. Second, we analyze a large tree of ants,
demonstrating that a period of elevated diversification rates does not appear to have
occurred in a bursting manner. Last, we test the phylogeny of the genus Dina for
lineage-specific bursting. We detect less balanced trees than under a CAL model,
but there is no evidence for lineage-specific bursts.

4.1 Motivation

Understanding the tempo and mode of diversification is one of the major challenges
of evolutionary biology. Phylogenetic trees with timing information are powerful
tools for answering questions about tempo and mode. Such trees were once avail-
able only in situations with a rich fossil record, where the timing information might
have come from radiocarbon dating or stratigraphic information (layering of rocks).
However, modern techniques of phylogenetic analysis are capable of reconstructing
not only the shape of phylogenetic trees, but can also reconstruct information about
the timing of diversification events even when limited or no fossil evidence is avail-
able. This can be done in one of a number of ways. One can first test if a molecular
clock is appropriate (see [21] p. 323), then reconstruct under the assumption of a
molecular clock. One can reconstruct a tree with branch lengths using any method
and then apply rate smoothing [84]. One may also choose from the variety of relazed
clock methods which allow the rate of substitution to vary within the tree [29, 40, 15].

72
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Figure 4.1: Example for lineage-specific bursting diversification.

Of course, the accuracy of any these techniques depends on a correct choice of model
and a strong phylogenetic signal along with perhaps some fossil calibration points.

Phylogenetic trees with timing information can then be used to make inferences
about the forces guiding the evolution of the taxa. For example, the paper of [66]
notes that there was a period of high diversification rate in ant lineages during the
rise of angiosperms (flowering plants). Another paper by [32] uses the deviation of
four groups of lizards from the pure-birth model of diversification to make inferences
about their evolutionary radiations.

Given the number of methods available for reconstructing phylogenetic trees
with diversification timing information, and the interest in investigating temporal
properties of those trees, the number of direct methods available to investigate tim-
ing information on phylogenetic trees is surprisingly small. The most popular ways
of investigating timing in phylogenetic trees are LTT plots and the associated ~
statistic. LTT plots have time ¢ on the x axis and simply show the number of lin-
eages which were present in the phylogenetic tree at time ¢ on the y axis (Section
3.6). The ~y statistic is computed based on the periods during which the LTT plot
stays constant (called the inter-node intervals); the « for a pure-birth diversification
process will have a standard normal distribution. Broadly speaking v < 0 implies
that diversification rates were high early in history, while v > 0 implies that most
diversification has happened more recently [76].

However, much more information is available in a phylogenetic tree with diver-
sification timing information than can be summarized in a LTT plot or a derivative
statistic. Consider the tree in Figure 4.1, with two sets of sister taxa, A and B.
The extant taxa in B had a period of relatively high diversification rate early in
evolutionary history, during which time the lineage leading to A is in a period of
stasis. Then lineage A experiences a burst of diversification, and the taxa in B do
not experience any lineage-splitting events during this time. We will call the sort of
diversification seen in Figure 4.1 lineage-specific bursting (LSB) diversification.

The lineage-specific bursting diversification seen in Figure 4.1 would not be ap-
parent in an LTT plot. Indeed, LTT plots take the timing information out of the
context of the phylogenetic tree from which they are derived, and thus ignore infor-
mation about how the timings relate to the shape of the tree. This context can be
crucial, as we now argue.
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One would like to be able to say if, for example, the pattern seen in Figure 4.1
arose simply by chance. In order to do so, we need two things: first, a convenient
way to summarize the timing information, and second, a set of null models which
define what we mean with “by chance.” For a given internal node, we summarize the
timing information at that node by writing down the order of diversification events
by clade. For instance, we associate with the root node of Figure 4.1 the sequence
s = BBBBBAAAAAAAB which we call a shuffle, as defined in Section 2.1.

Now that we have summarized the timing information at the root node as a
shuffle s, we would like to think about if s arose “by chance”, i.e. if no shuffle is
favored over another shuffle. This is equivalent to each shuffle being equally likely.
The UR models introduced in Section 2.3.3 induce the uniform distribution on shuf-
fles. Recall that the UR models are precisely the set of pure-birth ET models which
induce a uniform distribution on shuffles.

The uniform distribution in this setting is what one would get by throwing the
A’s and B’s of the shuffle into a bag and drawing them out one by one uniformly.
Thus it seems reasonably unlikely that the shuffle s would arise by chance, having
first a long run of B’s then a long run of A’s.

Note that the pure-birth CAL models are a subset of the UR models. Under a
CAL model, each species evolves in the same way. We will assume the UR as well
as the CAL model as null models for our statistic. Departure of a CAL model can
be interpreted as different clades evolving with different rates. Departure of the UR
model means that speciation events are clustered in an unusual fashion. Given a
tree shape, some shuffles are favored over other shuffles.

We can attach a p-value to a shuffle by using the runs distribution. The number
of runs is simply the number of sequences of the same letter: in the example above,
there is a run of B’s, then a run of A’s, then another B. That totals three runs.
Under the uniform distribution, the probability of seeing a given number of runs in
this setting is known from classical statistics, and can be calculated via Equation
(4.1). The probability of seeing 3 runs with 6 A’s and 7 B’s is about 0.00641, and
the probability of seeing 2 runs is about 0.00117. We can interpret the sum of these
two probabilities, 0.00758, as the significance level of the LSB diversification seen
in Figure 4.1. Being below the 1% significance level, we can interpret this shuffle as
being quite significant; thus if the tree in Figure 4.1 came from data, the observed
lineage-specific diversification might require some explanation. Please note that for
simplicity this example only considers the root shuffle; however the main body of
the chapter is dedicated to investigating all shuffles simultaneously.

Above we defined the clustering of the same letter in the shuffle as “lineage-
specific bursting (LSB) diversification,” but would like to note that clustering of
the same letter might also have other reasons than different relative diversification
rates. For example, assume in the macroevolutionary case that there are two lineages
descending from the root; the left lineage has a moderate speciation rate and no
extinction, whereas the right lineage has a very high speciation and extinction rate.
Because of the high extinction rates, the right lineage will have most of its internal
nodes at a time close to the present day. This phenomenon has been called “the pull
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of the present” [69].

However, we do not think that such biases will in general pose a problem for
the following reasons. Although the “pull of the present” is a phenomenon which
generally comes with extinction, it will only pose a problem for our method when
extinction rates differ significantly between pairs of sister clades. Also, because we
are taking the sum of the numbers of runs across all internal nodes of the tree it
is not enough to have just a single pair of sister clades with significantly differing
extinction rates: there must be a general pattern of such extinction rate differences
across the tree. Although this is certainly possible, we will call cases with number
of runs significantly fewer than expectation “lineage-specific bursting speciation.”

We further note that, since the uniform ranked oriented tree distribution is in-
variant under random (uniform) taxon sampling (Theorem 3.7.1), the shuffle p-value
is not biased by random taxon sampling. However, like any method based on phy-
logenetic trees, the shuffle p-value is subject to biases introduced by non-uniform
taxon sampling. It is not hard to devise a sampling scheme which would bias the
results. For example, say we have two subpopulations descending from a single in-
ternal node by a process that induces the uniform distribution on shuffles. On side
A sampling is done uniformly, whereas on side B similar lineages are unlikely to be
part of the sampling. Such a scheme would bias the surviving internal nodes in B
to be further back in the past, resulting in a non-uniform distribution on shuffles.

In Section 4.2, we provide analytic tools to compare diversification rates between
lineages. In doing so, we hope to provide a complementary perspective to that pro-
vided by LTT plots and associated statistics. In particular, our method can detect
LSB diversification. One might expect LSB diversification if a lineage diversifies to
fill variants of a single niche, or if a key innovation appears which makes further
diversifications more likely. By comparing the results of our analysis to results using
LLT plots, we may be able to tease apart causes of diversification rate changes —
are they lineage-specific or due to global events? The assumed null models are the
UR models and the CAL models. Under the UR models, each ranking given the
oriented tree is equally likely. Under the CAL model, each ranked oriented tree is
equally likely.

In Section 4.3, we apply our statistic on various data. Our first example ap-
plication uses Hepatitis C virus (HCV) data, and shows that trees from this data
demonstrate a limited but significant amount of LSB diversification. This analysis
may imply a note of caution for researchers using coalescent methods to analyze
HCV data. Our second application is to the ant data of [66] and [67], the lineages
of which do not appear to demonstrate significant LSB diversification, despite some
other interesting characteristics of their history. For the phylogeny of the genus Dina
in an ancient lake, we do not observe a significant departure from the UR models,
i.e. we do not observe evidence for LSB diversification.
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4.2 Tests for bursting diversification based on
shuffles

In this section we describe a way of testing for deviation from the uniform distri-
bution on tree shuffles, and thus test for deviation from the neutral models, the
UR models. We emphasize that this can go significantly beyond testing the coa-
lescent / Yule model, which is typically considered to be the definition of neutrality.
Indeed, rejection of the uniform distribution on shuffles rejects all of the UR models
simultaneously, and the coalescent/Yule model is only one model in this class. We
note further that although the focus of this section is to consider all of the shuffles
of a ranked tree at once, one can also consider a shuffle at a particular node as
described in the last section.

There are several useful tools available to test whether a shuffle is likely to have
come from the uniform distribution on shuffles. In fact, a number of tests in the
statistics literature have been developed for testing equality of distributions which
actually implement a test of deviation from the uniform distribution for shuffles.
These tests work as follows: assume we are given two sets of samples {f;}i=1, m
and {r;};—1_, and would like to test the hypothesis that they are draws from the
same distribution. To test, combine the draws and put the samples in increasing
order (assume that all draws are distinct). This clearly gives a shuffle on symbols ¢
and r. If the draws are from identical distributions then the induced distribution on
shuffles will be uniform; if on the other hand symbols cluster together in the shuffle,
there is some evidence that the draws are from unequal distributions.

One can then test deviation from the uniform distribution on shuffles in one of
several ways. One way is to count the number of runs. As described in Section 4.1, a
run is simply a sequence within the shuffle using only one symbol; the shuffle £¢rrrrt
has three runs. Let X,,,, denote the number of runs under the uniform distribution
on shuffles on m symbols of one type and n of another. The distribution of X, ,, is
classical (see, e.g. [38]):

("G + () () |
(") (4.1)

P = 2} = L)

Asymptotic results for the mean and variance are also known:

mn_l mn_2
11, Var[Xp,) = Hme = Dlima = 2),
m+n ’ m-+n—1

P{X,n =2k+1} =

mn

E[Xm,n] = Umn = 2

The usual application of the runs test makes a shuffle from the two draws as
described above, calculates the number of runs in the shuffle, and then uses the
above-calculated probabilities to test deviation from the uniform distribution on
shuffles. In the present case, we can use an analogous process to investigate tree
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shuffles as introduced in Section 2.1. A tree shuffle simply assigns a shuffle of appro-
priate size to each internal node of the tree; these shuffles are distributed uniformly
under the UR models. Using runs we can test whether a single shuffle is drawn from
the uniform distribution, but some method is needed to combine this information
across the internal nodes of the tree.

For a ranked tree shape 7, we chose to combine our data from each vertex by
simply summing the number of runs across all of the shuffles in the corresponding
tree shuffle. Let R(7) denote this number. The distribution of R(7) (under the
assumption that each shuffle is equally likely) can be calculated recursively as shown
in the next several paragraphs. Note that under the UR model, each rank function
conditioned on an oriented tree is equally likely. With Corollary 2.2.4, this yields
each rank function on a given tree shape being equally likely under the UR model.
Therefore we may consider tree shapes rather than oriented trees, which reduces the
time complexity of the calculations.

There are two cases to consider. First, one may condition on the observed tree
shape and calculate the neutral distribution of R(7) in that setting. A second option
is to test deviation from a neutral model which gives the uniform distribution on
ranked oriented trees. This is a stronger statement than saying that a given model
induces the uniform distribution on shuffles conditioned on the tree shape.

We first condition on the observed tree. Uniform shuffles conditioned on the tree
shape are obtained in the UR class of models. In the case of pure-birth models, the
class of models which induce a uniform distribution on shuffies is exactly the set of
UR models. For a tree with one leaf, we have P{R(7) = 0} = 1. For a tree with two
leaves, we also have P{R(7) = 0} = 1 (the two daughter subtrees have no internal
nodes).

For a tree shape 7 with uniform random ranking, composed of two ranked sub-
trees L and R with m and n leaves, respectively, we have:

PIR(T) = K} = Y P(X 11 =1} Y P(R(L) = YP(R(R) = h—i—j}. (42)

It is shown in the next section, that this distribution can be calculated on a tree
with n leaves in time O(n®log®n). Thus it is practical to obtain a p-value for R(7)
analytically.

Now we take the second approach, assuming we want to test a model such that
each ranked oriented tree is equally likely. This includes the CAL models, and in
the case of pure-birth models, this is exactly the set of the CAL models (Proposi-
tion 2.3.3). Let R(n) be the random variable “number of runs of an oriented tree
with n leaves” where the tree is drawn from the uniform distribution on ranked ori-
ented trees. The distribution of R(n) can again be obtained recursively. Note that
for a uniform ranked oriented tree on n leaves, the probability that the left daughter
tree has size r and the right daughter tree has size n—ris 1/(n—1) for all r (Lemma
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3.7.2). Thus
P{R(n):k}:n - ; > P{X, 101 = i} X
e (4.3)
Z P{R(r) = j}P{R(n —r) =k —i—j}.

The complexity for recursively calculating the distribution of runs for trees with n
leaves is O(n?log®n), by an argument analogous to that for Equation (4.2).

Note that there are a number of alternative ways to “sums of runs” for testing
deviation from the uniform distribution on shuffles. First, we have made one choice
— namely, summation — concerning how the statistics for each shuffle are combined.
One certainly could use an alternative method, potentially including weights. Sec-
ond, there are other statistics such as Mann-Whitney-Wilcoxon which could be used
in place of the runs statistic. The advantage of summation is that it results in simple
formulae. Further, through summation the runs statistic has a recursive formulation
analogue to the Colless statistic. For a ranked tree 7 with the daughter trees L, R,
the number of runs in 7, R(7) is,

R(7) = R(L) + R(R) + R(p),

where R(p) is the number of runs in the root shuffle of 7. The advantage of the runs
statistic is that it is easy to interpret. We have not tested any alternate formulations.

Computing quantiles of shuffles is available in the CAss package. One of the
main features is the ability to calculate the quantile of the runs statistic assuming
a uniform distribution on rankings for a set of input trees. The quantiles can be
calculated conditioned on a given tree shape, or under the assumption of a uniform
distribution on ranked trees. For a collection of trees (e.g. a sample from the Bayesian
posterior), the individual quantiles can be averaged. In addition to the calculation
of the runs statistic and the quantile for the whole tree, the package can calculate
the runs statistic and quantile for each interior vertex of a tree. This feature may
be useful for biologists looking for signals of a key innovation.

4.2.1 Complexity of computing the runs distribution

Here we provide a proof of the time-complexity bound for the computation of the
runs distribution R(7) (i.e. conditioning on a given tree shape). This distribution
may be computed easily for certain tree shapes, such as the comb tree. However,
here we provide a bound which holds for all tree shapes. This bound makes use of
a bound on the number of runs in a ranked tree shape.

Let r(n) denote the maximum number of runs for a ranked tree shape with n
leaves. Thus r(1) =r(2) =0, r(3) = 1 and r(4) = 2. Let I,—, o be 1if i =n/2 and 0
otherwise. For a tree with at least 2 leaves, if the first branch point has 7 leaves on
one side and n — i leaves on the other, with ¢ < n — i, then the number of runs at
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this vertex may be up to 2(i —1) +1 — I;—,» (note that we have an (i —1,n—i—1)
shuffle at this vertex). This maximum is obtained by a shuffle which interleaves the
elements from each set, one from each side for as long as possible, starting with the
largest side.

Thus, r(n) satisfies the following recurrence: r(1) = r(2) = 0 and for n > 2:

r(n) = 15’122(/2 (20 = 1= Lizyo + (i) + r(n — i)

Proposition 4.2.1. For all integers n > 1, r(n) < nlog, n.

Proof. The statement is true for n = 1. Suppose that the statement is true for all
k < n. Then,

r(n) = 1222(/2 (20 =1 = Lipjo + (i) + r(n — 1))

< 1525;/2 (20 — 1+ ilogyi+ (n—1i)logy(n —1)).

Note that 2i — 1, ilogy i and (n — i) logy(n — i) are all convex functions of i so their
sum is convex also. Thus, the maximum of 2i — 1 +1ilog, i+ (n — 1) log,(n — i) occurs
at an extreme value. Setting ¢ = 1 gives 1 + 0 + (n — 1) log,(n — 1), while setting
i =5 gives 25 — 1+ 2% log, § = n(log, 2 +log, 5) — 1 = nlog,n — 1. Both of these
values are less than nlog, n and so r(n) must be at most nlog, n. The result follows
for all n > 1 by induction. O

We now proceed to bound the complexity of computing the distribution of runs
for a tree. For a tree shape 7 with 1 or 2 leaves, the number of runs is always 0.

Let 7 be a tree shape with n > 3 leaves; we assume a uniform distribution on
tree shuffles. Let L and R be the two randomly ranked subtees of 7, with a and b
leaves respectively.

Equation (4.2) may be rewritten as follows:

Aq Az
PR(r) =k} = D P{Xerpa =i} D P{R(L) = JIP{R(R) = k i - j}

Ay
= Y P{X, 151 = i}P{R(L) + R(R) = k — i} (4.4)

where A; = min(k,n) and Ay = min(k — i,7(a)). Note that a +b = n > 3 implies
Xap > 1and R(7) > 1.

Since R(7) is supported on (i.e. zero outside of) k = 1,..., [nlog,n], the cost
of computing its distribution with this formula is (|nlog,n|)(2n — 1) arithmetic
operations plus the cost of computing P{X,_1,-1 =i} fori =1,...,nand P{R(L)+
R(R) =z} forz =0,...,7r(n) — 1 <nlog,n — 1.

For these fixed a and b, the values of P{X,; = i} can be calculated using Equa-
tion (4.1) in constant time (at most 5% 244 = 14 arithmetic operations each) with
a linear overhead as follows. The binomial coefficients (Z) fora <band £ < bin
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Equation (4.1) may be calculated with at most two arithmetic operations from the
factorials, j! for 1 < j < n, which may in turn be pre-calculated in linear time (n—1
multiplications). Thus, calculating P{X,, = i} for i = 1,...,n takes at most 14n
arithmetic operations, with a one-time overhead of n — 1.

The distribution of P{R(L)+R(R) = x} is supported on z = 0, ..., |nlog, n|—1.
It may be computed by repeated application of the formula

[(n—1) logy(n—1)]
P{R(L)+R(R) =2} = .  P{R(L)=j}B{R(R) =z — j}

J=0

as long as the distributions of R(L) and R(R) are known. This computation re-
quires at most nlog,n (2(n — 1)logy(n — 1) + 1) arithmetic operations: at most
(n — 1)logy(n — 1) + 1 multiplications and (n — 1)log,(n — 1) additions for each
of nlog,n values of x. Note that the distribution of P{R(L)} is supported by
j=0,...,[(n—1)logy(n —1)], since L has at most n — 1 leaves.

So, if the distribution of R(L) and R(R) are known, the distribution of R(7)
may be calculated in at most

(|nlogyn])(2n — 1) + 14n + nlogyn (2(n — 1) logy(n — 1) + 1)
arithmetic operations. This is at most
2n?log, n + 2n*logsn + 14n

for all n > 3. Since R(7) is 0 for n = 1,2 the time to calculate it is 0.

This procedure may be applied recursively, computing the distribution of runs
of all subtrees before finally computing the run distribution of 7. Since there are
n — 1 internal vertices and each has at most n leaves below it, the total number
of arithmetic operations required is at most n(2n*log,n + 2n?logsn + 14n + 1)
(including the overhead for pre-computing j!). This is O(n®log n).

4.2.2 Shuffles in the Bayesian setting

In our work up to now, we have assumed that the correct tree and diversification tim-
ing information is known. This assumption is not realistic for a number of datasets.
For example, below we apply our methodology to a sample of Hepatitis C viruses,
which probably do not have enough sequence divergence to perfectly reconstruct a
tree with timing information.

One way of working with such datasets is to take a Bayesian approach, where
rather than a single tree one gets a posterior distribution on trees. For each single
tree, one can compute the p-value of the total runs statistic, either conditioning on
the topology or assuming a uniform distribution on ranked oriented trees. We then
simply take the average of the p-values thus computed for each tree. The average of
p-values in this case is a simple type of posterior predictive p-value [63, 79]. As such,
it is not exactly uniformly distributed under the neutral model as a proper p-value
should be, although the average does share many of the characteristics of a classical
p-value.
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4.2.3 Neutrality in population genetics

The coalescent is the standard model in population genetics. When introducing the
coalescent in Section 3.5 we implicitly assumed a constant population size through
time. However, the population size might vary in a lot of cases. The runs statistic
can be used to test the coalescent in the presence of ancestral population size vari-
ation since this process is still a CAL model — each individual evolves in the same
way. Tests of neutrality in the presence of historical population size variation are of
particular recent importance, as new coalescent-based methods are in use to infer
population size history in a Bayesian framework [17, 73]. If these methods are to be
used on a given set of sequences it is important to test the central assumption of
the methods, namely that the sequences have a genealogy which can be accurately
described using the coalescent with arbitrary population size history.

Unfortunately, classical statistics such as the D statistics of [94] and [24] confound
ancestral population size changes and non-neutral evolution. One solution to this
problem is to investigate the Bayesian posterior on phylogenetic trees for evidence
of non-neutral evolution rather than using the sequence information directly. Since
the coalescent with arbitrary population size history is a CAL model and thus will
induce the uniform distribution on ranked oriented trees, we can apply the runs
statistic; thus by rejecting the CAL class we reject a general coalescent model. We
will apply this fact below in the example application to Hepatitis C data.

4.2.4 Generalization for non-binary trees

Polytomies (i.e. non-binary splits) are common in reconstructed phylogenetic trees.
Some polytomies are certainly due to a lack of information to resolve the splits,
however it has been argued that molecular and species level polytomies actually exist
[41, 88]. The methodology described in this chapter can be extended to trees with
hard polytomies, i.e. cases of multiple divergence which are essentially simultaneous
in evolutionary time.

The new ingredient needed is the multiple runs distribution, i.e. the analog of
(4.1) for shuffles on more than two symbols. This is described in [12]. Using these
distributions, the probability of a shuffie consisting of symbols from the k& daughter
trees can be found for a shuffle at a non-bifurcating split v.

4.3 Example applications

In this section we describe three distinct applications of the runs statistic. First, we
apply the methods to E1 gene data for the Hepatitis C virus (HCV). This data set
shows some limited — though consistent — lineage-specific bursting diversification,
showing that neither CAL nor the more general UR models accurately describe the
sort of evolution observed. An analysis not conditioning on tree shape clearly rejects
any CAL model, such as the coalescent with varying population size. The second
application is to phylogenetic trees for ants, whose timing information was recon-
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structed through fossils and the r8s [84] rates smoothing program. These ant trees
do not show any evidence of lineage-specific bursting evolution, despite some inter-
esting history in terms of diversification rates. Last, we investigate the phylogeny of
the genus Dina. There is no evidence of lineage-specific bursting. However, the tree
shape is less balanced than under a CAL model.

4.3.1 Hepatitis C Virus

Our HCV data comes from two independent studies: one in China [58], and one in
Egypt [78]. The HCV alignments were retrieved from the LANL HCV database [54]
via PubMed article ID numbers. The Chinese dataset contained samples from 132
infected individuals, and the Egyptian dataset had samples from 71 individuals. We
randomly partitioned the taxa from the Chinese dataset into three sets of 44 taxa
each and used the corresponding sub-alignments as distinct data sets. The Egyptian
data was similarly split into two sub-alignments of size 37 and 36. This partitioning
was done in order to have a larger number of similar datasets from which we could
investigate the dynamics of HCV evolution, and to demonstrate that non-neutral
evolution can be seen even with a moderate number of taxa.

In order to avoid confounding temporal information with molecular rate varia-
tion, we applied the relaxed clock model of [15] as implemented in the BEASTv1.4
suite of computer programs [16]. We chose uncorrelated lognormally distributed lo-
cal clocks, the HKY model, and four categories of gamma rate parameters in the
gamma -+ invariant sites model of sequence evolution. We used both the constant
population size and exponential growth coalescent priors. All other parameters were
left as default; the corresponding BEAST XML input files are available from the
authors upon request.

In each case the MCMC chain was run for 10 million generations, and conver-
gence to stationarity was checked with the BEAST program Tracer. For each model
parameter, the minimum effective sample size was at least 164, with most being
significantly greater. The coefficient of variation of the relaxed clocks in the analysis
had a minimum of 0.336 and an average of 0.491, indicating a significant deviation
from a strict clock for this data set. The first 10% of the run was removed and 100
trees were taken from the tree log file, equally spaced along the run of the MCMC
chain. We interpret these trees as being independent samples from the posterior. As
a check, the analysis was run with an empty alignment and no consistent deviation
from the uniform distribution on shuffles was detected (results not shown).

We have displayed the results in Table 4.1. In the columns labeled “UR” we
show the quantile of the number of runs conditioning on tree shape, calculated as
in Equation (4.2). As can be seen, the results are substantially below one half, with
the maximum being 0.308. Although this is not exceptionally strong lineage-specific
bursting behavior, it does so consistently across five samples from two independent
studies. Thus we feel confident in saying that the evolution of HCV displays lineage-
specific bursting behavior. It might also be noted that these results were gained
despite the fact that the coalescent was used as a prior. That is, if any bias could
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Data set Const. UR  Exp. UR | Const. CAL Exp. CAL
China set 1 0.232 0.254 0.0415 0.0601
China set 2 0.191 0.17 0.041 0.0349
China set 3 0.239 0.259 0.0287 0.0265
Egypt set 1 0.261 0.299 0.045 0.0624
Egypt set 2 0.308 0.256 0.0242 0.0188

Table 4.1: Expected quantiles of the number of runs in the posterior for a Bayesian
analysis as described in the text. Each row represents one dataset. “Const.” means
the BEAST analysis with a constant population coalescent prior, and “Exp.” denotes
analysis with an exponentially increasing population size coalescent prior. The “UR”
label means that we analyze conditional on the tree shape, which gives us thus the
quantile for any neutral model inducing the uniform distribution on shuffles. The
UR models are precisely the class of pure-birth models with this property. “CAL”
denotes the runs quantile under the assumption of the uniform distribution on ranked
oriented trees, as would be the case for any CAL model, such as the coalescent with
arbitrary population size history. As described in the text, the “UR” columns show
that some limited lineage-specific bursting is seen, and the “CAL” column rejects
the coalescent with arbitrary population size history.

be expected in the Bayesian analysis, it would be towards a coalescent prior and a
uniform distribution on shuffles, thus we believe our results form an upper bound
for the actual statistics of the HCV lineages.

We have displayed a graphical representation of the results for the second Chinese
data set in Figure 4.2. Each horizontal bar represents one of the 100 ranked trees
from the posterior. One side of the bar gives the number of runs in the ranked tree
T, and the other side gives the expected number of runs for a neutral (i.e. CAL
or UR) tree of the same unranked tree shape as 7. If 7" has more runs than the
expectation, the bar is colored gray; if fewer it is colored black. In both the cases
of constant population size and exponentially increasing population size coalescent
prior for BEAST, it can be seen that there are fewer runs than the expectation,
meaning that it appears that the HCV data under investigation may have had
periodic bursts of diversification in its past.

Now we apply our techniques as a statistical test for the coalescent with ancestral
population size variation as described above. This is topical: we note that the [7§]
HCV data was analyzed by [73] as an example application of a reversible-jump
Bayesian MCMC algorithm for estimating demographic history of the virus. In doing
so they made an implicit assumption of neutrality because their method [and other
such methods [17]] are based on the coalescent. They did not test this neutrality
assumption as no methods were available at the time to test for neutral evolution
in the presence of ancestral population size changes.

Our method can do so. Specifically, we compare the number of runs to the
distribution for an arbitrary CAL model, as in Equation (4.3). By the results in
the right half of Table 4.1, one can see that the data does not follow a coalescent
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Figure 4.2: A visualization of the number of runs in a posterior sample of trees
for an alignment of Hepatitis C sequence data of [78]. Black bars represent fewer
runs than neutral, and gray the opposite. As described in the text, the width of the
bars represents the amount of divergence from a broad class of neutral models. Said
simply, each black bar represents a tree in the posterior which displays evidence of
lineage-specific bursting diversification, and the longer the bar, the more bursting the
tree. The bars are sorted vertically by increasing size (with sign.) Figure (a) shows
the results when the tree prior in BEAST was taken to be coalescent with constant
population size. Figure (b) shows the corresponding results with the exponentially
increasing population size prior.
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model with arbitrary population size history. This implies a significant model mis-
specification in the [73] paper; it would be interesting to know how this would impact
the historical population size estimates in their paper.

4.3.2 Ants

For the second application we investigated two different trees of ant taxa. The first
tree is that of [66], showing the diversification of the major ant lineages. The timing
information in this tree is quite remarkable, in that the corresponding LTT plot
shows a substantial increase in diversification rate during the Late Cretaceous to
Early Eocene, which corresponds to the rise of angiosperms (flowering plants). Given
the tools at our disposal, one might wonder if this increase in diversification rates
affected all lineages equally, or if it occurred in lineage-specific bursts. The second
ant tree we investigated was that of Pheidole, a “hyperdiverse” ant genus. Pheidole
is almost certainly monophyletic, and yet comprises about 9.5% of the ant species
in the world, according to latest estimates [67]. Moreau has recently reconstructed
a phylogeny of this genus which we have analyzed along with the tree of the ant
lineages in general. Both trees were reconstructed via maximum likelihood, then
made ultrametric using the penalized likelihood method of the r8s rates smoothing
program [84].

In Figure 4.3 we show a plot of the internal nodes of each tree. The z coordinate
in the plot is the number of taxa below an internal node, and the y axis is the
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Figure 4.3: The distribution of the runs statistic for the internal nodes in two trees
of ant taxa. Each point in each plot represents an internal node in the corresponding
tree; the x axis gives the number of taxa below the internal node and the y axis
gives the quantile of that internal node in terms of the runs statistic. Figure (a) is
the tree of [66], and Figure (b) is a tree of Pheidole. These two trees do not appear
to consistently show either lineage-specific bursting or refractory diversification.

quantile of the number of runs in the shuffle statistic. As can be seen, there is no
clear correlation between number of taxa below an internal node and the shuffle
statistic, and at no stage does diversification appear to be consistently bursting
or refractory in a lineage-specific sense. We can also compute the quantile of the
total number of runs across the tree: for tree (a) this is about 0.9052 and for tree
(b) this is about 0.6718. Thus for these two ant trees we do not see any significant
evidence of lineage-specific bursting or refractory diversification. This analysis forms
an interesting counterpoint to the LTT results for the ants, which shows an overall
increase in diversification in rate during the Late Cretaceous to Early Eocene across
the entire tree.

4.3.3 The genus Dina

In order to reduce sampling artifacts in speciation studies, some workers utilize
relatively small isolated systems with a high number of endemic species such as
oceanic islands, dessert spring systems or ancient lakes systems (ancient lakes are
lakes with an age of more than 100, 000 years). Particularly ancient lakes constitute
a prime system for studying evolutionary processes as they often harbor species rich,
monophyletic groups of endemic species (so called ancient lake species flocks) that
are presumably little affected by surrounding biota.

We will infer and analyze the phylogeny of the genus Dina Blanchard 1892.
The species of the genus Dina were collected in the ancient Lake Ohrid. The genus
Dina belongs to the family of leech. A Bayesian posterior sample for 14 species is
generated in MrBayes under the assumption of the molecular clock and a K2P model
of sequence evolution. We then take the 1000 best trees of the Bayesian sample for
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further analysis. For details of the collected sample and the inference method refer
to our paper [96].

In order to test for variation in speciation rates over time, we used two indepen-
dent approaches. First we tested for lineage specific bursting, i.e., whether subsets
of taxa were likely to speciate faster than others. Then we investigated whether,
over the whole tree, there are changes in speciation rates over time by testing for
deviation from a BDP.

Lineage specific bursting

The average quantile for the run statistic (over the 1000 best trees in the posterior)
is 0.6204, i.e. we clearly do not reject the neutral model in favour of lineage specific
bursting.

Global speciation rate changes

We did not detect lineage-specific bursting. However, there could be a global change
in the speciation rate which we test in the following via LTT plots and the v statistic.
As the individual trees have different node depths, we scaled all trees such that the
most recent common ancestor of the Dina species flock always resides at time 0 and
the leaves of the tree at time 1. Then we averaged over the number of lineages at
each point in time between zero and one, see Figure 4.4.

The results were compared to a BDP. Maximum likelihood estimates of p and
A for the Bayesian trees showed that the death rate is almost zero, so we can focus
on a pure-birth BDP, i.e. a Yule model. We calculated the maximum likelihood
of parameter A\ for each tree, the average over all estimated A is Ay, = 87.139
(standard deviation: 5.126).

First we obtained a visualization of the speciation times via LTT plots under
the Yule model. We took two approaches. We calculated the expected LTT plot
conditioned on observing 14 species today. We used a uniform prior for the time of
origin. This plot is obtained with Theorem 3.8.8, see Figure 4.4.

Further, we calculated the expected LTT plot under a Yule model with parameter
Ay evolving for a time 1 after the mrca (not conditioning on observing 14 species).
For obtaining the LTT plot, we applied the following theory for Yule processes.
The probability that a single lineage has 7 lineages at time ¢ later has a geometric
distribution (see e.g. [71]),

pt(i) — e—)\t(l o 6—)\t)i—l

After divergence of the mrca, we have two independently evolving lineages, each
having a geometric distribution for the number of descendants at time t. The con-
volution of two independent geometric distributions with parameter p is a negative
binomial distribution with parameters p, 2. Therefore, the probability of obtaining
1 lineages at time ¢ after the mrca is,

i) = (6~ De (1 — )2
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Figure 4.4: Average LTT plot for the posterior trees of the Dina samples. Addition-
ally, we calculate the expected LTT plots of the Yule model. Expected LTT1 is the
expected LTT plot of the Yule model assuming a speciation rate ;5. Expected
LTT2 is the expected LTT plot of the Yule model conditioning on n species today
(see Theorem 3.8.8).

The expectation is 2eM and its variance is 2(1 — e =),

This allows us to plot the expected LTT plot with its standard deviation for a
Yule process evolving for a time 1 after the mrca, see Figure 4.4.

To test if the LTT plot of the data is significantly different from a purely stochas-
tic process, in our case the Yule model, we calculate the « statistic [76] for all trees
in the Bayesian posterior sample and averaged over all v values. Under the Yule
model, we expect v = 0. A y-value smaller than zero means that speciation oc-
curred closer to the root than under the Yule model. A ~-value bigger than zero
means that speciation occurred closer to the leaves (which is the case for a BDP
with positive extinction rate).

The average ~ value for the thousand trees is 7y = —1, 642. This shows again that
we can neglect a positive death rate — for a positive death rate, we should obtain
positive v-values. Under the Yule model, we expect v = 0 and we can reject the
hypothesis of a Yule process with a 5% error, if v < —1.645. So for our sample, the
null hypothesis, a constant speciation model, can not be rejected.

4.4 Discussion of the new statistic

The method in this chapter was conceived for the macroevolutionary case, in order
to find historical evolutionary patterns requiring explanation. However, it is also
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quite applicable in the microevolutionary case, where it can test neutrality in the
presence of historical population size variation. This is particularly relevant as meth-
ods are becoming available to describe historical population size under a coalescent
assumption.

We emphasize that our methodology can go substantially beyond testing for
deviation from the BDP, which are usually the entire class of neutral models consid-
ered. Indeed, because any UR model induces the uniform distribution on shuffles,
deviation from this distribution is evidence to reject any model in the UR class.
Such a conclusion is much stronger than deviation from a BDP, which is only one
of the CAL models.

However, sometimes one may wish to test only a more restricted set of models,
such as only the CAL models (which include the coalescent with arbitrary popula-
tion size history) and not the more general UR models. By testing a more restricted
class of models, a particular dataset will be more likely to fall outside the chosen
class. For example, in the application of our methods to the Hepatitis C data above,
the data consistently shows evidence of not coming from an UR model, although
the corresponding quantile is in the 0.17 to 0.31 range. However, if one tests for con-
formity to the CAL class (again, including the coalescent with arbitrary population
size history) one obtains rejection at the 5% level. Note that rejecting the class of
CAL (resp. UR) models for a dataset where extinction might be present, we even
reject a broader class of models — all models which induce a uniform distribution
on ranked oriented trees (resp. rankings given the tree shape). However, classifying
these models is tricky, see Section 2.3.

We recall that our method uses “relative” timing information rather than actual
branch lengths. In many ways this is an advantage. In a microevolutionary setting
this means that the corresponding tests are invariant to changes in ancestral popula-
tion size, and thus our test for neutrality is not “fooled” by ancestral population size
variation. In a macroevolutionary setting the statistics are robust to branch length
estimation error over long time scales. Such estimations are known to be difficult
[50]. We note further that from a modeling perspective it is possible to specify a
probability distribution on ranked phylogenetic trees without specifying a particu-
lar distribution on branch lengths. This flexibility means that it may be possible to
reject many models at once as described above.

Nevertheless it may be useful at some future stage to combine tree shape and
continuous branch length information, rather than the discretized version considered
here. However, quantifying the shape of such objects appears to be challenging, as
the relevant geometry is quite intricate [6, 68]. In contrast, by discretization to
ranked trees we obtain a purely combinatorial object.



Chapter 5

Samples of trees via simulations

A wide range of evolutionary models for speciation have been developed, some of the
neutral models were discussed in the previous chapters. These models can be used to
test evolutionary hypotheses (as done in Chapter 4) and provide comparisons with
phylogenetic trees constructed from real data (e.g. via LTT plots, see Section 3.6).
To carry out these tests and comparisons it is often necessary to sample — or simulate
— trees from the evolutionary models, since no analytic results are available for most
models. Even for simple models, simulations might be necessary. For example only
little is known about the distribution of the ~y statistic [76] under a ¢cBDP.

For most models sampling trees appears to be a relatively easy exercise. If the aim
is to produce trees of a given age this is indeed true. However in many circumstances
it is preferable to sample trees with a given number of species. There are numerous
ways to produce trees with a given number of species from an evolutionary model,
however many seemingly intuitive approaches sample trees from unexpected and
unrealistic distributions. This introduces some potential pitfalls, a problem that
is exacerbated by the fact that there is no easy method for testing whether the
sampling approach is correct.

Some simple approaches for sampling trees with a given number of species are
in common usage. We show that these approaches are appropriate for the widely
used Yule and coalescent models but there are some fundamental problems applying
these approaches to other evolutionary models. We provide alternative sampling
approaches that are theoretically sound and easy to apply.

We investigate the importance of using our correct sampling approach over es-
tablished methods. This is achieved by comparing samples of trees produced by the
different sampling approaches for given models. Existing sampling approaches in-
troduce a strong bias in the age of a tree and a less pronounced bias in the relative
timing of the speciation events. For the considered models, existing approaches in-
troduce a negligible bias in the tree shape distribution and in an incomplete taxon
sampling scenario. We identify attributes of other models that will result in existing
sampling approaches producing more biased samples.

The methods we present are not the fastest or most sophisticated, however in
our opinion they are the easiest to implement and applicable to the broadest pos-

89
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sible range of models. Klaas Hartmann implemented the algorithms in the PERL
B1o::PHYLO package, where they can easily be applied to any suitable evolutionary
model. For those users unfamiliar with PERL we have also made them available
using a stand-alone GUI TREESAMPLE. These tools are freely available [33]. Lastly
we note that although we present our work in the context of evolutionary mod-
els of species diversification, our methods can be applied to other scenarios where
birth-death processes are modeled, for example gene trees [72, 44, 30].

5.1 Sampling methods

Our aim is to produce a correct sample from the tree probability distribution induced
by an evolutionary model. The first problem is that this tree probability distribu-
tion is ill defined for most evolutionary models. Under most models trees evolve
perpetually — trees of all ages are possible and the expected age of the tree (the time
between the root and the leaves) is infinite. To obtain a probability distribution it
is therefore necessary to condition on some aspect of the tree; the number of species
or the age of the tree are arguably the two most common and useful choices.

Conditioning on the age of a tree is appropriate if we wish to compare a model
with trees of known age or if we want to test methods on simulated trees of a given
age. It is relatively easy to sample trees of a given age from an evolutionary model.
The tree is simply evolved according to the model until it has reached the desired
age. This process is repeated until a sufficient number of trees have been sampled.

Conditioning on the number of species, n, in a tree may be of more interest for
real applications. The age of a reconstructed tree may only be known with limited
accuracy, however the number of species in the (reconstructed) tree is fixed. Conse-
quently it may be more appropriate to use samples from an evolutionary model with
a fixed number of species (we also consider incomplete taxon sampling). Sampling
from the tree distribution conditional on the number of species, p(7|n), is the basis
of this chapter.

Throughout this chapter we assume a uniform prior on the age of the tree as
introduced in Section 1.1. Consider a large number of simulation runs that begin
at a uniformly distributed time before the present. Trees obtained by selecting only
those simulations that have n species at the present are a sample from p(7 |n). This
is a convenient way of interpreting the distribution but is not a practical sampling
approach as the simulation starting time is taken from an ill defined distribution
(between an infinite time in the past and the present). A given model (and its pa-
rameters) will induce a distribution on the age of the tree given its size as explained
in Section 1.1, Equation (1.1). All our knowledge about the age of a tree is encapsu-
lated in the model and the chosen parameter values; the uniform prior on the tree
age represents the fact that we have no further knowledge about the tree age outside
of these parameters.
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5.1.1 Current approaches

One simple sampling approach (which we refer to as SSA) for sampling trees with n
species has seen wide usage. With this approach a tree is evolved under the model
until it has n+ 1 species and the last speciation event is disregarded. This approach
produces trees conditional on the next speciation event occurring immediately after
the end of the tree, which as we show here is generally not the same distribution
as p(7|n). It is difficult to justify this approach as it produces a sample of trees
equivalent to what we would expect if all ‘real’ trees were observed immediately
prior to a speciation event.

PhyloGen [77] is a freely available tree sampler that has been used in a number
of studies (for example [39, 86, 97, 99]). It permits users to sample trees from the
BDP and episodic speciation models. These trees are conditioned on the age of the
tree or the number of species, n. Conditioning on n in PhyloGen simply terminates
a tree after it first reaches n species. Trees sampled with PhyloGen are younger
than expected for our definition of p(7 |n) and the pendant edges are shorter than
expected — in fact the species produced by the last speciation event have zero length
edges. If the last speciation event is removed (creating a tree with n — 1 species)
sampling trees with PhyloGen is equivalent to SSA with n — 1 species. Due to this
similarity throughout the remainder of this chapter we only consider SSA. There
are three main possible problems with SSA and PhyloGen:

Problem 1. As has already been noted the pendant edge lengths produced by
SSA and PhyloGen have what appears to be extreme values. With PhyloGen the
pendant edges are as short as possible and with SSA they seem too long (this will
be discussed in more detail later).

Problem 2. SSA and PhyloGen stop evolving the tree during (or just after) the
first period of time where the tree has n species. For models with extinction the
number of species will fluctuate up and down so there may be many periods during
which the tree has n leaves. For such models SSA and PhyloGen will result in
younger trees than expected.

Problem 3. A final concern with SSA and PhyloGen is that each model simulation
run makes the same contribution to the final sample — one single tree. However, from
our definition of p(7|n) the probability of observing a given simulation depends on
the duration for which the simulated tree had n species — for example, if this duration
is short it is unlikely that the simulated tree will be observed whilst it has n species.

5.1.2 Pure-birth memoryless models

We begin by considering pure-birth memoryless models — models that do not explic-
itly include extinction (pure-birth) and where future evolution depends only on the
number of extant species (memoryless). This class of models is of particular interest
as an approach similar to SSA can be used to correctly sample phylogenetic trees
from them. Furthermore this class of models includes the most widely used specia-
tion model — the Yule model (Section 3.2) — and the most widely used null model
in population genetics — the coalescent (Section 3.5).
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Figure 5.1: Some of the notation used throughout this chapter is illustrated in this
figure where n = 5. 7 is the simulated tree until the point in time when the tree
first has greater than n species. This point in time is the speciation event creating
the (n + 1)-th species, s,41. The duration for which a simulated tree has n species
is denoted by o, this is the time between the creation of the n-th species (s,) and
the (n + 1)-th species (s,+1). The time for which an observed tree has n species is
necessarily less than o, and is denoted by 4.

Recall that under the Yule model each species has the same probability of spe-
ciating per unit time and this speciation rate is constant over time. Consequently
the time between speciation events is exponentially distributed with parameter mA,
where m is the number of species that are extant and A is the rate of speciation.
The coalescent is derived from population genetics principles but is essentially the
same as the Yule model with one exception — the time between coalescent events is
exponentially distributed with parameter (g”) A where \ encodes the population size.
In the following we will use ‘speciation’ for both speciation and coalescent events.

In this section we show that although SSA is generally inappropriate for pure-
birth memoryless models it is actually a correct approach for the Yule model and
the coalescent. As these models are pure-birth models there will only be one period
during which n species exist, so Problem 2 does not apply. This leaves Problems
1 and 3 which we will show cancel each other out under the Yule model and the
coalescent. We speculate that the suitability of SSA for sampling from the most
widely used null models has led to its application to other models for which it is
unsuitable.

An important aspect of memoryless models is that the evolution after the spe-
ciation event that created the n-th species (s,) is completely independent of the
evolution that occurred up to that point. Consequently it is possible to simulate
trees from these models in two separate stages. Firstly, using the model, a tree is
simulated to the speciation event that created the n-th species (denoted by s,; see
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Figure 5.1). A length ¢ is then added onto the pendant edges to produce the final
tree. Due to the independence of these two processes, Problems 1 and 3 do not effect
the simulation to s, and are addressed entirely by an appropriate choice of . This
raises the question from what probability density, h(J), the additional time § should
be sampled.

We begin by noting that any pure-birth memoryless model can be uniquely
defined by the probability densities of the intervals between speciation events. We
denote the time between the speciation event that created the n-th and the (n+1)-th
species by o, (the time between s, and s,.1) and its probability density by g, (o).

Note that SSA makes the assumption that

h(0) = gn(0).

This effectively produces a tree with n species conditional on the next speciation
event occurring immediately — clearly not what was intended.

A seemingly better (but still generally incorrect) approach would be to simulate
the tree until s, 11 and randomly terminate the tree between s, and s, (since all
trees between these two events should be equally likely). This addresses Problem 1
and gives us:

W) = / " h(3]0)ga(0)dor,

- / 9n(n) do,,
4 On

However this does not take into account the variable contribution to the p(7|n)
that different values of o,, should make (Problem 3.).

From the definition of p(7 |n) the contribution from a simulated tree with a given
o, should be proportional to o,, therefore the correct distribution from which to
sample 0 is:

h(d) o /6 onh(0|0)gn(0n)doy,
— /5 gn(an)dan (5.1)

Thus the following will produce correct samples from p(7 |n) for any pure-birth
memoryless model:

Pure-birth memoryless sampling approach (PBMSA)
1. Simulate a tree terminating at s,

2. Add a distance, J, to the pendant edges using the correct h(d) from Equa-
tion (5.1)

3. Repeat from step 1 until all samples are obtained
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a) b)

Figure 5.2: Consider an evolutionary model where ‘young’ species have a higher
chance of speciating. Under this model the tree in Panel a is expected to have four
species for a shorter duration than the tree in Panel b. The tree in Panel b should
therefore make a greater contribution to our sample if we want to sample trees from
the model conditional on them having four leaves.

For SSA to be appropriate we require h(d) = g,(0). Inspection of Equation (5.1)
reveals that this requirement is met if g,,(0,,) is an exponential distribution. Further-
more as the model is memoryless the parameter may depend only on the number
of species that are extant. These conditions are clearly satisfied by the Yule model,
the coalescent and the related Moran [65] and Hey models [37].

PBMSA is appropriate for any model where the time between speciation events
depends only on the number of extant species, however the Yule model and the
coalescent are the only widely used models that fit this category. PBMSA is in-
appropriate for models with explicit extinction events and models with a memory.
Explicit extinction events will result in a simulated tree that may have n species
for several intervals — PBMSA would only sample from the first of these intervals
resulting in a tree that is younger than expected.

Many models feature a memory, this may be in the form of hereditary speciation
rates (e.g. [36]) or a dependence of speciation rates on the absolute age of a tree
or a species (e.g. [9]). PBMSA cannot sample from such models as the evolution
before and after s,, is not independent and different simulations to s, should make
different contributions to the final sample. Consider a model where young species
are much more likely to speciate than their older counterparts. Figure 5.2 shows two
simulated trees to s, where n = 4. In Figure 5.2a there are four young species, in
Figure 5.2b there are only two young species (those produced at s,). Consequently
the tree in Figure 5.2a is expected to have n species for a shorter time than the tree
in Figure 5.2b and by the definition of p(7|n), the tree in Figure 5.2a should give
a smaller contribution to that density than the tree in Figure 5.2b. Consequently
it is necessary to take different numbers of samples from each of the evolutionary
histories and PBMSA cannot be used.
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5.1.3 A general sampling approach

We now introduce a general sampling method that works for a broad class of models
that can include both speciation and extinction events. Our sampling approach
simulates a tree, 7, until it is highly unlikely that the tree will return to n species.
This will occur either when all species are extinct or when there has been sufficient
speciation such that the number of extinctions required to return to n species are
highly improbable.

The only restriction on the class of models from which our algorithm can sample
is that we must be able to guarantee that each simulation ‘run’ will eventually
terminate. The efficiency of the algorithm depends on the time that is required until
a simulation terminates. An example of a model to which this algorithm can not
be applied is one where the number of species perpetually fluctuates over a range
including n.

Determining how unlikely a tree is to return to n species depends on the model.
Throughout the remainder of this section we assume that we can determine a critical
number of species, n*, from which it is unlikely that extinctions will bring the number
of species back to n. A simulation therefore ends when the number of species reaches
0 or n*.

For some models the termination condition may be much more complicated,
consider a model with evolving speciation and extinction rates — an appropriate ter-
mination condition will depend both on the number of species and on the speciation
and extinction rates.

A simulation run will have k periods during which n species were extant, we de-
note the length of each of these periods by ¢;,7 =1,..., k. As previously discussed,
the probability of observing a simulated tree whilst it has n species is directly pro-
portional to the duration for which n species existed: ® = Zle ¢;. The value ¢ will
vary between simulations so each simulation should make a different contribution
to the final sample — a simulated tree where n species existed for a short period of
time should make a lower contribution to the sample than a simulated tree where n
species existed for a longer period.

The question remains how to decide on the number of samples to take from a
given simulated tree, this should be proportional to ®. To take this into account we
introduce a sampling rate, r, such that we will take r® sampled trees from a given
simulated tree. As we can only take whole samples of trees, for each simulated tree
r® will be randomly rounded: If r® is between integers k and k + 1, it is rounded
down with probability r® — k and up with probability 1 — (r® — k). This ensures
that the randomly rounded r® has an expected value of r®.

If the sampling rate is too low many simulations will be required for each sampled
tree and the process will be very inefficient. If it is too high many sampled trees
may be derived from a single simulated tree and these sampled trees will have a
higher degree of correlation than expected for random samples. Ideally r should be
determined experimentally (by simulations) such that it is as high as possible whilst
ensuring that many simulated trees produce trees toward the final sample.

Lastly we introduce S;(7) as the set of trees that can be obtained by truncating
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a simulated tree during the i-th interval during which it had n species. Combining
these elements we have the following sampling approach:

General sampling approach (GSA)

1. Determine a suitable sampling rate, r, and a critical number of species, n*
2. Simulate a tree, 7, until n* species or extinction is reached

3. Find the number of trees to sample from 7: r® = Zle ro;

4. Randomly round r®

5. For each sample required:

(a) Randomly choose an interval, i, according to the weights ¢;

(b) Sample a tree uniformly at random from S;(7)

6. Repeat from step 2 until the required number of samples has been obtained

5.1.4 Extension of GSA to incomplete taxon sampling

Most n species trees based on real data will be a subsample of the m species contained
in the true underlying tree, such that m — n species are missing. This problem is
referred to as incomplete taxon sampling (see e.g. [102]) and may be due to several
reasons including inability to sample the species or a species being ‘undiscovered’.
If the number of species that are missing in a tree is substantial, incomplete taxon
sampling should be included explicitly. A common approach is to sample trees with
m species and randomly remove m — n species, thus producing an n species tree as
desired. For example, if only 75% of species are being sampled and we wish to sample
a tree with 30 species, we would generate a tree with 40 species and remove 10 species
uniformly at random. The problem with this approach is that we will generally only
have an estimate of the number of missing species (25% in our example), hence
we should consider a range of possible missing numbers of species. For instance in
the previous example the true tree may have somewhere between, say, 35 and 50
species. We extend GSA to explicitly take into account incomplete taxon sampling.
This extension of GSA requires either an estimate of the probability, s, of any given
species being sampled or alternatively the probability distribution of the size of the
true tree m, given the number of sampled species n, p(m|n). Without one of these
quantities our method cannot be applied and indeed, it is difficult to see how to
proceed otherwise. Our method also assumes that sampled species are uniformly at
random distributed through the tree. It is relatively straightforward to relax this
last assumption, although we do not present any details here. One instance where
this would be necessary is if the probability of sampling any two species is positively
correlated to their proximity in the phylogenetic tree (as might be the case if whole
clades are likely to be missed, or thoroughly sampled).
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Given the sampling probability s, for a given real tree size, m, the number of
sampled species, n, will be distributed according to a binomial distribution:

m

platm) = ()= . (52)

However the number of sampled species, n, is the size of the final tree and is what
we wish to condition on, thus Bayes’ Law gives us:

n

p(m|n) oc p(njm)p(m), (5.3)

where p(m) is the probability of a tree having m leaves and p(n|m) is the probability
of sampling n of those leaves. For m > n it is always possible to obtain n leaves
from a tree with m leaves, however the probability of this occurring decreases with
m, such that p(n|m) becomes small enough to make p(m|n) negligible. This permits
us to restrict the range of m that must be examined to n < m < m* where m* is
a limit that needs to be established. If we assume that p(m) does not increase with
m, an appropriate condition to solve for m* is:

plalm” +1) < Y p“]’\‘fm, (5.4)

where N is the number of trees which are being sampled. This condition ensures
that the first value of m being excluded is expected to contribute less than one tree
to the final sample. If p(m) increases with m extra analysis will be required to find
an appropriate m* (eg. using simulation studies).

Given a particular simulated tree we have p(m) o< ®,, (the duration for which a
simulated tree had m species), hence substitution in Equation (5.3) gives:

plonkn) x 2, ()11 = 7, (5.5)

which is readily normalised to give p(m|n). The expected contribution to the sample
from a given simulated tree consists of the expected contribution for each value of
m:

r Z ®,,p(m|n). (5.6)

When a tree is simulated, the expected contribution to the sample is found and a
sample of the corresponding size is taken. This process is repeated until the sample
has the desired size.

GSA with incomplete taxon sampling

1. Find m* analytically or by simulation / investigation (eg. Equation (5.4))

2. Simulate a tree, 7, until m* species are reached or all species become extinct
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3. If p(m|n) is not given, calculate p(m|n) for all m for this simulated tree (use
Equation (5.5) )

4. Find the expected number of samples to take from 7 (Equation (5.6))
5. Randomly round the expected number of samples
6. For each sample:

(a) Randomly choose the original tree size, m, according to p(m|n)
(b) Uniformly at random choose a time when 7 had m species

(¢c) Randomly delete m — n species

7. Repeat from step 2 until all samples have been obtained

5.1.5 Efficient sampling from the BDP

In this section we present an efficient algorithm for sampling trees with n species
from the ¢cBDP via inverse transform sampling. The method we propose relies on
representing an oriented tree as a point process, as introduced in Section 3.4.1. In
that section, we showed that the times s; of the point process are independent and
identically distributed. For A > u, we have, from Theorem 3.4.4, the distribution
function for a point in the point process:

1 — 6_(>‘_:u')s )\ J— Iue_()‘_:u')t

F(S‘t’ At n> - A — ,ue—(A—M)s 1 — (A=)t

where ¢ is the time of origin of the tree. The inverse of F'(s|t, A, u,n) is:

A — Iue—()\—p,)t _ :U’(l _ 6_()‘_N)t)3
-1 —
F ($|t, )\nua n) - )\ — 1 In ()\ — lue—(k—ﬂ)t — )\(1 — 6_(>‘—H)t)$

Further, for our sampling approach, we need the probability density of the time
of origin of the tree, ¢, conditional on having n species at the present (assuming a
uniform prior for the age of the tree). This distribution is derived in Theorem 3.4.7
for A > p:

p Me—(A—H)t

Q(tIA pn) = (A(l - e—(A—u)t))n.

The inverse of @) is

1 1 — &gt/n
1 o A
Q (t|)\,u,n)——)\_uln<71_t1/n).
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For A = p, the functions F'(s|t, A\, \,n) and Q(t|\, A\, n) are the limiting functions of
F(s|t,\, u,n) and Q(t|A, u,n) as p — A. In Section 3.4, we obtained,

s 14+ M
F(s|t,\,A\,n) = s 1
1 st
F (S|t,)\,)\,n) = m
M\
Q(tIA, A\, n) = (m)
_ 1
Q'(tIA\ An) = NE=T)

Combining these probability distributions and the point process representation we
obtain the following algorithm:

Constant rate birth-death approach (BDA)

1. Sample 7o, ..., 7,-1 uniformly at random from [0, 1]

2. Calculate the age of the tree, t = Q! (ro|\, p, n)

Calculate the n — 1 branching times, s; = F~'(ri|t, \, pi,n), i =1,...,n — 1

Construct the sampled tree from the point process representation

AR ol

Repeat from step 1 until all samples have been obtained

The advantage of this method over GSA is that it is unnecessary to determine n*
and r. The disadvantage of this method is that it gives no information about extinct
lineages (regardless of the value of u). If this information is required, GSA must be
used for sampling from the BDP. Finally note that a sample from the Yule model
can be obtained by setting pu = 0.

5.1.6 Other sampling approaches

We have presented two main sampling approaches — PBMSA and GSA. PBMSA
applies only to a limited class of evolutionary models that includes the Yule model
and the coalescent (for which PBMSA becomes equivalent to SSA). GSA applies
to a much wider class of models including some for which SSA has been used in-
appropriately. Application of GSA to a given model is relatively straightforward
regardless of the model’s complexity. However the generality of this approach makes
it a mathematically unsatisfying and relatively inefficient process (from a computa-
tional perspective).

For some models it may be possible to derive the probability density for the time
of individual speciation events explicitly. This has been done for the cBDP, trees
can be sampled from the model via BDA — this is the most efficient way to sample
trees from a ¢cBDP of which we are aware.
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For other models it may be possible to obtain the joint density of the speciation
times. For example this was all that was known for the ¢cBDP [100], prior to the
result discussed in Section 5.1.5. In such cases an MCMC approach can be used to
sample trees from this density.

5.2 Comparison of the sampling approaches

We have shown that SSA is only appropriate for models without extinction where the
time between speciation events is exponentially distributed with a rate parameter
that depends only on the number of species that are extant. The two most popular
models — the Yule and coalescent — satisfy these conditions and it is appropriate to
sample from them using SSA. We speculate that the simplicity of SSA combined
with its correctness for the two most popular models has resulted in its inappropriate
application to other models.

Existing approaches (such as SSA) are conceptually and computationally simpler
than those introduced in this chapter, they have also been applied to many situ-
ations in existing studies for which they are inappropriate. It is therefore of great
importance to consider how significantly the samples produced by the approaches
differ. In situations where the difference is minimal it may be appropriate to use
the simpler existing approaches to produce an approximate sample, if the differ-
ence is great it will be necessary to use more complicated approaches such as those
presented here.

Lastly we note that for the remainder of this chapter we will disregard the events
before the mrca. We define the mrca age of a sampled tree as the distance between
the mrca and the leaves. This corresponds to realistic situations where it is often
difficult to determine the evolutionary history before the mrca.

5.2.1 Speciation times under the cBDP

We begin by comparing SSA and GSA using a cBDP model. A ¢BDP includes two
parameters — the speciation rate and the extinction rate — for our analysis it is
sufficient to consider the ratio of these, hence we set the speciation rate to one. If
the extinction rate is zero the model is equivalent to the Yule model. By increasing
the extinction rate from zero to one the model becomes increasingly different from
the Yule model and SSA should become increasingly inappropriate.

Figure 5.3 shows the expected mrca age of the tree as a function of the extinction
rate for samples of five thousand trees produced by both sampling algorithms. When
the extinction rate is zero the model is equivalent to the Yule model and the two
approaches provide the same sample of speciation times. As the extinction rate is
increased, the mrca age of the trees sampled by GSA also increases as this effectively
reduces the net speciation rate, resulting in older trees.

We have shown that the absolute mrca age of the tree differs for the two sam-
pling approaches, however in some situations the relative timing of the speciation
events may be all that matters. To investigate this feature we consider LTT plots
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Figure 5.3: This figure shows the expected mrca age for twenty-species trees sampled
from the BDP as a function of the extinction risk. The speciation rate was set to
one and five thousand trees were sampled for each extinction rate using SSA (dotted
line) and GSA (solid line). The mrca age of the trees sample by GSA increases as
the extinction rate increases — this is because the net speciation rate is effectively
reduced. SSA only considers the first time period during which n species existed,
hence trees sampled using SSA do not exhibit the same mrca age increase.

(introduced in Section 3.6). Figure 5.4 shows the expectation of the LTT plot for an
extinction rate of 0.95 from a sample of five thousand trees produced using the two
algorithms. There is a clear difference between GSA and SSA.

The slope near the origin of a log transformed LTT plot can be used to give an
estimate of the net speciation rate. In Figure 5.4 we consider the difference between
this slope for the two methods, as a function of the extinction rate. Interestingly
around an extinction rate of 0.9 the bias switches from negative to positive.

Extinction rates have been estimated to be around 0.9 of the speciation rate [61,
80]. At this value the two sampling approaches differ significantly in the estimated
mrca age of the tree. For the relative timing of speciation events the result is not
as clear, the severity (and direction) of the bias depends strongly on the extinction
rate.

5.2.2 Tree shapes

The shape or topology of a tree is the structure obtained by disregarding the timing
of speciation events. All memoryless models are CAL models and produce trees with
the same tree shape distribution at all times — the uniform distribution on ranked
oriented trees, see Proposition 2.3.1. The reason for this is that there is nothing to
differentiate between species, hence, regardless of the model, each species is always
equally likely to be the one that undergoes the next speciation or extinction event.
Since SSA does not distinguish between species it correctly samples the tree shape
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Figure 5.4: Panel a: An expected LTT plot is shown here for five thousand, twenty-
species trees sampled from a BDP using both SSA and GSA. The speciation rate
was set to one and the extinction rate to 0.95. The trees have been rescaled to have
mrca age one — this removes the effect seen in Figure 5.3 and permits us to explore
the relative speciation times of both samples. Panel b: The initial slope in Panel a
gives an estimate of the net speciation rate. Here we depict the percentage deviation
of the slope obtained using SSA to that obtained with GSA for different extinction
rates. The point corresponding to Panel a is marked.

distribution for memoryless models (with or without extinction).

SSA may incorrectly sample the tree shape distribution from models that fea-
ture a memory. For pure-birth models, the mechanism behind this would require a
correlation between the shape of a tree and the duration for which n species exist.
This correlation is not explicit in any common models of which we are aware, but
may exist implicitly; the strength of the correlation will determine the suitability
of SSA to sample from a given model. We investigated two of the more common
models with a memory [36, 8] and found minimal bias in the tree shape distribution
produced by SSA.

For other models SSA may introduce a more serious bias in the tree shape dis-
tribution. One of the most obvious cases is a model with extinction where the tree
shape distribution changes over time — as we have seen SSA produces trees that are
too young, hence the tree shape distribution would be sampled too early.

5.2.3 Incomplete taxon sampling

The most common approach for incomplete taxon sampling samples a tree containing
the expected true number of species, m, and then randomly deletes n — m of these
species. We applied this common approach and our developed approach in Section
5.1.4 to the cBDP and found that the sampled trees differed negligibly for these two
approaches. There are two main issues with the common approach, in this section
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we illustrate why each issue results in only a negligible bias:

Issue 1: Consider the cBDP, Figure 5.5 top panal shows how the expected mrca
age of a ten-species tree suffering from incomplete taxon sampling increases as a
function of the true tree size. It is important to note that this is near-linear; in Section
3.7.3 we showed that for the cBDP the relationship is linear when the extinction
rate is one, and becomes slightly non-linear as the extinction rate is decreased. If
this relationship were perfectly linear, for arbitrary m > n, simulating a tree with
m species and then deleting m — n species gives a correct sample up to scaling time
linearly (i.e. determining the mrca age of the tree). For the ¢cBDP the deviation
from linearity seems sufficiently small to be irrelevant for most purposes.

Issue 2: Given a probability s of sampling each species, a naive method for
calculating the expected number of species would be m = n/s. In Figure 5.5 bottom
panal we show the distribution of the true tree size as calculated using Equation (5.5)
for s = 0.7, due to the asymmetry of this distribution, its expecation exceeds n/s. In
this example the difference between these expectations is about 0.5, this will result
in a small bias towards younger trees.

For the ¢cBDP, the bias introduced by using a simplistic incomplete sampling
method is insignificant in contrast with uncertainty regarding the true number of
species. For other models it may be necessary to use the approach outlined above.
This will particularly be the case for models that exhibit a strong non-linearity in
the expected mrca age curve shown in Figure 5.5.

5.3 Concluding comments on sampling trees

When exploring evolutionary models, analytic results are preferable to simulation
studies because of the smaller computational burden and greater insight they pro-
vide. However analytic results may be difficult to obtain and simulation studies may
answer questions more quickly — once a result has been confirmed by simulation
studies an analytic approach can be pursued with extra confidence.

Simulation studies have an inherent danger — it is extremely easy to simulate trees
using a given model, however understanding what distribution these trees come from
can be difficult. This makes it easy to proceed with a (possibly incorrect) method and
therefore sample of trees. This is particularly problematic with more complicated
evolutionary models where seemingly intuitive methods of simulating trees (such as
SSA) often sample from undesirable and unrealistic probability distributions.

We have shown that a commonly used sampling approach is appropriate for
two of the most common evolutionary models — the Yule model and the coalescent.
However this approach is inappropriate for many other models to which it has been
applied. For the ¢cBDP, SSA produces a strong bias in the mrca age of the tree
and the relative timing of speciation events. It does not produce a bias in the tree
shape distribution. Further, for the cBDP, the common approach for incorporating
incomplete taxon sampling seems adequate for most applications. More complex
models with certain characteristics as discussed in this chapter may result in stronger
biases of any of these attributes of a sampled tree.
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Figure 5.5: Top panel: The circles show the expected mrca age of a ten-species cBDP
tree that has been sampled by constructing an m species tree and deleting m — 10
species. The speciation rate was set to 1 and the extinction rate to 0.9, the plot is
drawn analytically with the formulae in Section 3.7.3. The crosses show the expected
time of the speciation events in the same situation. The bottom panel shows the
probability distribution of the true tree size, m, as calculated from Equation (5.5)
for a sampling probability of s = 0.7. Also depicted are the expectation of this
distribution (about 14.8) and a simple estimate of this, n/s (about 14.3). The plot
is drawn via simulating a sample of five thousand trees for each value of m.
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We suggest that for some of the studies that have sampled trees using PhyloGen
and SSA, it would have been more appropriate to use our presented methods. It
should be noted that in the cited studies the sampled trees were only one part of
a complicated process (eg. to generate a data set for testing a tree construction
method) and it is unlikely that the results would have been significantly effected
by the chosen sampling method. For studies explicitly comparing speciation times
in trees or sampling from more complicated models the distinction between these
distributions will become crucial.

Our simulation package TREESAMPLE [33] has built in support for the Yule
model and the general cBDP model and is extendable to permit sampling from
additional models.



Chapter 6

Reticulate evolution

Reticulation events are evolutionary events in which species pass on genetic ma-
terial to co-existing lineages. Evolution with reticulation events, “reticulate evolu-
tion”, cannot be displayed by a tree; binary networks are used to represent reticulate
evolution. The common reconstruction methods for inferring these “reticulation net-
works” do not infer timing information. However, there are some restrictions for the
dating of the vertices in a network without timing information: Reticulation events
are assumed to happen instantaneously, whereas the time between successive specia-
tion events is strictly positive. A network which can be dated with these constraints
has a temporal labeling. Networks which do not have a temporal labeling can be
modified via adding new taxa — species which we did not sample or which are ex-
tinct — to have a temporal labeling, see Figure 6.1. We show that determining the
minimal number of taxa to add such that the network has a temporal labeling is
NP-complete. This minimal number is a lower bound for the number of non-sampled
taxa or extinct species in a (correctly) reconstructed network.

6.1 Introduction

The most common way to think of evolution is tree-like: Species evolve and pass
genetic information to descendant species. However, for various organisms, reticulate
evolution is a common process: genetic material is passed to co-existing lineages. We
can have different reasons for reticulate evolution. In this chapter we consider the
two major reticulation scenarios, hybridization and horizontal gene transfer (HGT).
In the case of hybridization, two ancestor species combine their DNA and form a
new species. This process is commonly found in plants and fish. In the case of HGT,
one species contributes some DNA to another lineage, which especially occurs in
bacteria. Directed acyclic graphs are used to model reticulate evolution, we call
the graph displaying reticulate evolution a reticulation network. There are several
algorithms around to infer a reticulation network for some given species, see for
example the review article [62]. However, the reconstructed networks may not fulfill
the necessary biological condition: We can assign a time to all nodes (temporal
labeling) such that all species exist for a strictly positive time, whereas reticulation

106
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Figure 6.1: Network on species a and b with two reticulation events (vq,v2) and
(w1, ws) at time t, := t(vy) = t(ve) and t,, := t(w;) = t(ws). The network does not
have a valid dating, since edge e; requires t, to be before t,, and edge e, requires t,,
to be before t,. When inserting an additional species x, the resulting vertex has a
temporal labeling: first we observe reticulation edge (vq,vy), then reticulation edge

(w, ws).

events happen instantaneously, see Figure 6.1.

If we have incomplete taxon sampling or extinct species not displayed, this condi-
tion can be violated in a (correctly) reconstructed network. When adding the missing
taxa, the network again has a temporal labeling [4]. For example, the network in
Figure 6.1 on species a, b,z has a temporal labeling, but the network restricted to
species a, b has no temporal labeling. A natural question arises: Assume we have re-
constructed a reticulation network correctly. What is the minimum number of taxa
we do not display? We call this problem ADDTAXA. We will show that ADDTAXA is
NP-complete via a reduction from FEEDBACKVERTEXSET. However we also show
that ADDTAXA is fixed parameter tractable.

Algorithms on reticulation networks like calculating the parsimony score of a
reticulation network [42] implicitly assume a temporal labeling. In order to run
these algorithms on any reconstructed network, we need to modify the reconstructed
networks such that they have a temporal labeling. Adding the minimal number of
(possibly) non-sampled taxa seems a reasonable way for the modification.

In Section 6.2, we define reticulation networks and temporal labelings formally
and discuss their properties. In Section 6.3, we establish a reduction from FEED-
BACKVERTEXSET to ADDTAXA for HGT networks. We will see that HG'T networks
can be considered as special hybridization networks. Since FEEDBACKVERTEXSET
is NP-hard, also ADDTAXA for hybridization or HGT networks is NP-hard. We will
show how to use FEEDBACKVERTEXSET algorithms for solving ADDTAXA for HGT
or hybridization networks in Section 6.4.

6.2 Modeling reticulate evolution

Directed acyclic graphs are commonly used to model reticulate evolution.
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Definition 6.2.1. A directed connected acyclic graph is called a general reticulation
network N' = (Vjr, Ex), if its vertices belong to one of the following groups:

e root (outdegree 2, indegree 0)

e [eaves (indegree 1, outdegree 0)

e tree vertices (indegree 1, outdegree 2)

e reticulation vertices (indegree 2, outdegree 1)

We will write u < v for u,v € V) if there is a directed path from u to v, i.e. u
is an ancestor of v, v is a descendant of u. The edge (u,v) is called parent edge of
v.Further, u is a direct ancestor of v, and v a direct descendant of u.

A reticulation vertex due to hybridization is also called a hybridization vertex. We
call the two edges pointing to a hybridization vertex a reticulation or hybridization
edge. A reticulation vertex due to HGT is also called a HGT wvertex. We call the
edge pointing to an HGT vertex which contributes some DNA to the other lineage
a reticulation or HGT edge. In the displayed networks, an arrow corresponds to a
reticulation edge.

Note that for a hybridization vertex, both parent edges are hybridization edges,
whereas for an HGT vertex, only one parent edge is an HGT edge. The remaining
edges are called tree edges.

We will assign dates to all interior vertices, modeling the time between specia-
tion events. In doing so, we will see that it is sufficient to consider recombination
networks (which will be defined below) instead of general recombination networks.
We formalize the idea of assigning dates to the vertices:

Definition 6.2.2. A labeling of a network is any map from the set of interior
vertices of the network to the real numbers. The real number assigned to a vertex
by a labeling is called the vertex label. A temporal labeling is a labeling with the
property that the vertices adjacent to a reticulation edge have the same labels and
all other vertex labels are strictly increasing on any path from the root to the leaves.

In a general reticulation network, we could encounter (i) a species x undergoing
two hybridization events at the same time and then immediately becoming extinct,
see Figure 6.2, left. This scenario seems biologically not plausible. There must be
the non-sampled species 2’ or 2", we add one of them.

Further, we could encounter (ii) the scenario that a hybrid x passes on DNA
and goes extinct in the very moment of being created, see Figure 6.2, right. This
scenario seems not plausible either. The non-sample species ' must exist, and thus
we add it.

By adding the species 2’ or z” in the cases (i) and (ii), we can consider reticula-
tion networks which are specific general reticulation networks without the described
anomalies (i) or (ii):



6.2. MODELING RETICULATE EVOLUTION 109

- — —

8
8 .-

Figure 6.2: Reason for only considering reticulation networks and not general retic-
ulation networks. In the left case,  would pass DNA to two different new species
at the very same time and then go instinct which is not observed in biology. In the
right case, x would pass on DNA in the moment of creation and go extinct which is
not observed either. Therefore we add 2’ (or 2”) and consider reticulation networks
instead of general reticulation networks.

Definition 6.2.3. A reticulation network is a general reticulation network where
at least one tree edge is descending from any interior vertex. A hybridization /
HGT network is a reticulation network where all reticulation events are due to
hybridization / HGT. Figure 6.3 shows a hybridization network and Figure 6.4
shows an HGT network. A reticulation network N is a temporal network, if it has a
temporal labeling.

If a reticulation network does not have a temporal labeling, we identify the
reticulation vertices which are problematic:

Definition 6.2.4. Let (v,v;) be a reticulation edge in the reticulation network
N. Let V, be the subset of Vi with w € V, iff v < w but —(v; < w). We call
V, the critical area of v. The vertex v is called critical vertex, if V, contains at
least one reticulation vertex. If v is critical, the reticulation event v; is called a
critical reticulation vertex or critical reticulation event.

Consider a hybridization network. We will show that if the critical reticulation
vertices and the critical vertices have a labeling such that the vertex labels increase
on any path from the root to a leaf (constant on reticulation edges and strictly
increasing otherwise), the whole network has a temporal labeling. We will see later
that the temporal labeling of an HGT network can be described in a hybridization
network setting, therefore the next lemma also holds for HGT networks.

Lemma 6.2.5. Consider a hybridization network. Suppose we have a labeling for
all critical reticulation events and all critical vertices, such that the vertex labels are
increasing on any path from the root to a leaf (constant on reticulation edges and
strictly increasing otherwise). Then N has a temporal labeling.

Proof. W.l.o.g. let the labels of the critical vertices be bigger than zero. First, we
show that we can find a labeling for the non-critical reticulation events such that the
labelings are increasing on any path from the root to a leaf (constant on reticulation
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Figure 6.3: Network modeling hybridization. The vertices v’, w,w’ are critical ver-
tices, i.e. the hybridization events vy, w; are critical hybridization events. The critical
area of w is indicated by the dotted circle. Note that the network does not have a
temporal labeling.

Figure 6.4: Network modeling horizontal gene transfer. The vertices v, w, z are crit-
ical vertices, i.e. the HGT events vy, w;,x; are critical HGT events. The critical
area of w is indicated by the dotted circle. Note that the network does not have a
temporal labeling.

edges and strictly increasing otherwise). Let the reticulation vertex v; be without
a label, with the parent vertices v and v’. The vertices v and v are tree vertices
(by definition of a hybridization network — each vertex has at least one tree edge
descending, i.e. the indegree of v and v is one) and have only tree vertices in V,
and V,, (since vy is a non-critical reticulation vertex). If v; has descendants with
a label, the label of the oldest descendant is denoted by t4. If there is no labeled
descendant, set t; = oo. If v; has a labeled ancestor, the label of the youngest
labeled ancestor is denoted by t,. If there is no labeled ancestor, set t, = 0. Label
the vertices v, vy, v" with ¢, € (t,,t4). In that way we assure t; — t, > 0 throughout
the whole construction of the labeling.

Once this labeling is done for all reticulation events, we only have tree vertices
left to label. Start at the root, call it v,.. Set the label of the root to 0. Define
V,. := (0. Set the label of the leaves to t; where ¢; is bigger than any existing label.
The following algorithm dates all tree vertices.

1. Consider V7, the largest connected subset of tree vertices which is connected
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Figure 6.5: The result of applying the operation add(N,v) to the network A/ shown
in Figure 6.4. The new network has a temporal labeling.

to v,. Let the label of v, be t,. Add the set of direct descendants of V7 to V.
Let t4 be the smallest label of the direct descendant of V7. Assign labels with
values in (t,,t4) to the vertices in Vr such that the labels are increasing on
any path from the root to the leaves.

2. If V, = 0, stop the algorithm. The whole network is labeled. If V, # (), take
any node v, from V,, delete it from V,. Proceed with (1).

O

Note that we can modify any network N, such that only non-critical vertices are
in the network, with the following operation:

Definition 6.2.6. Given an edge e = (v,v;) in a reticulation network A Delete e.
Rename vertex v to v,y and add a new vertex v. Add an edge (vyq,v) and an edge
(v,v1). Add a taxa x below v. This operation is called add(N,v), for an illustration
see Figure 6.5. Consider a set of vertices V in N. The result of applying add(N,v)
for all v € V to N is called add(N, V).

In a given network N, we can eliminate all critical vertices in the following way:
For a reticulation edge (v,v;) where v is critical, do the operation add(N,v). The
new vertex v is non-critical, since the descendant x is just a leave. In a hybridization
network without critical vertices, we can always find a temporal labeling according
to Lemma 6.2.5. So we can modify any hybridization network N by adding new taxa,
i.e. new leaves, such that it has a temporal labeling. This motivates the following
definition.

Definition 6.2.7. ADDTAXA

INSTANCE: Reticulation Network A" = (V, E), positive integer K.

QUESTION: Is it possible to obtain a network with a temporal labeling by adding &
new taxa to NV, k < K?

Remark 6.2.8. A HGT network as an input for ADDTAXA can be seen as a special
case of a hybridization network. Let e = (v, v;) be an HGT edge in an HGT network.
Let w be the second direct ancestor of v;. Do the operation add(N,w). Note that
the new w and v; can always occur at the same time since w has as a directed
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Figure 6.6: The critical graph Cy of the network A shown in Figure 6.4.

descendant (besides v;) only a leaf z. So if we want to know whether an HGT
network has a temporal labeling, we add a taxa to each HGT event as described
here. We can then check if this modified network has a temporal labeling under
hybridization. If the HGT network does not have a temporal labeling, the number
of taxa we have to add is the same as in the modified hybridization network, since
v and w can always occur instantaneously (v; again being an HGT vertex, and w
being the direct ancestor where a new taxa was attached).

It is possible to check in polynomial time whether a hybridization network has
a temporal labeling [4]. So the problem ADDTAXA is in NP.

We will show that ADDTAXA is actually NP-complete. To do so, we prove that
ADDTAXA is NP-complete for HGT networks. Since the HGT networks can be
considered as a special class of hybridization networks (Remark 6.2.8), we establish
that ADDTAXA is NP-complete for hybridization networks as well.

6.3 Proof: ADDTAXA is NP-complete

6.3.1 The critical graph

Given an HGT network, we want to add taxa such that the critical reticulation
events and critical vertices have a labeling where labels are increasing on any path
from the root to the leaves (constant on reticulation edges and strictly increasing
otherwise). Then the whole network has a temporal labeling by Lemma 6.2.5. Note
that adding taxa to non-critical reticulation events does not influence the existence
of a temporal labeling. We will introduce the critical graph for a network, in order
to prove NP-completeness of ADDTAXA. For the HGT network N, construct the
critical graph Cyr as follows.

e The vertex set V¢, is the set of critical vertices of N.
e The edge set Eg,, is defined as follows. (v,u) € Eg,, iff (v < u) or (v < ;) in
N (where u; is the reticulation vertex adjacent to u). Note that the edges of

Cnr are directed.

We define an operation on Cy:
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Definition 6.3.1. Delete vertex v and all its incident edges in Cy. This operation
is called delete(Cpr,v). Consider a set of vertices V in Cy. The result of applying
delete(Cpr,v) for all v € V to Cy is called delete(Cpr, V).

Theorem 6.3.2. For a vertex v € Cyr, we have
Cadd(N vy = delete(Cpr, v).

Proof. We add a taxa z between v and v; by add(N,v). The new parent v of v;
has just the new taxa x as a descendant. In particular, v has no HGT vertex as
a descendant in V;,, so v is non-critical. So the vertex set of Cyqan,v) is the vertex
set of Cyr excluding v. The edges between the remaining vertices are the same as in
Ec, . S0 Cagan vy = delete(Car,v). O

Lemma 6.3.3. Let G = (V, E) be a finite acyclic graph. Then G has a vertex with
indegree 0.

Proof. Let G = (V, E) be a finite acyclic graph with n vertices. Assume G contains
no vertex with indegree 0. Choose any vertex u; € V. This vertex is an endpoint of
the edge (ug,u;) since its indegree is non-zero. Vertex us has non-zero indegree, so
there exists an edge (us, us). Proceed in that way until the n vertices are chosen or

a cycle is closed. Suppose the path u,,u,_1,...,u; contains no cycle. Since u,, has
non-zero indegree, we have an edge (u;,u,) which closes a cycle. This contradicts
our assumption. O

Theorem 6.3.4.
Cy is acyclic & N has a temporal labeling.

Proof. ' =’ Since Cy is acyclic, it has a vertex v with indegree 0 by Lemma 6.3.3.
In N, the edge (v,v;) is the reticulation edge attached to v. Note that no vertex
in Cyr is ancestor of v or v; in N since v has indegree 0. Let the labels of vy, v be
t(vy) = t(v) = 1. Delete v in Cy. The remaining graph again has a vertex with
indegree 0, the label of the corresponding reticulation event shall be 2. Continue
until we end up with the empty graph. Now label the remaining vertices in N.
This is straightforward; only tree nodes and non-critical HGT events are left. These
vertices can be labeled such that we have a temporal labeling according to Remark
6.2.8 and Lemma 6.2.5.

"<’ Assume Cy has a cycle u, v, . .., u. Let uy, v; be the reticulation vertices adjacent
to u, v. Because of the cycle, u is an ancestor of v or vy, and also v is an ancestor of
uw or up. This violates the assumption of the existence of a temporal labeling. O

Corollary 6.3.5. Let V be a subset of vertices of Cnr. Then
add(N, V) has temporal labeling < delete(Cy, V) is acyclic

Proof. With Theorem 6.3.2, we have C,qqnv,v) = delete(Cyr, V). Theorem 6.3.4 es-
tablishes the corollary. O
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A where A  —

A A A A
1 2 3 4

3

Figure 6.7: Network Nj. Note that Cy;, = Gp.

The following problem can be reduced to ADDTAXA as we will show below.

Definition 6.3.6. FEEDBACKVERTEXSET
INSTANCE: Directed connected graph G = (V, E), positive integer K < |V].
QUESTION: Is there a subset V/ C V with |V’| < K such that G \ V" is acyclic?

FEEDBACKVERTEXSET is NP-complete [45]. Tt is even NP-complete for input
graphs of indegree at most two and outdegree at most two (degree-two graphs), we
call that problem FEEDBACKVERTEXSET2.

With Corollary 6.3.5, we have for an HGT network N,

ADDTAXA(N, K) = FEEDBACKVERTEXSET (Cy, K),

i.e. solving ADDTAXA for V is equivalent to solving FEEDBACKVERTEXSET for the
critical graph Cys.

In the following, we reduce FEEDBACKVERTEXSET2 to ADDTAXA — we show
that we can convert (in polynomial time) any input graph G for FEEDBACKVER-
TEXSET2 to an HGT network A with Cyy = G. Since ADDTAXA(N,K) and
FEEDBACKVERTEXSET2(Cys, K) return the same answer, and since we know that
FEEDBACKVERTEXSETZ2 is NP-hard, ADDTAXA is also NP-hard.

6.3.2 The reduction

Let G be any degree-two graph with n vertices. We want to convert GG into an HGT
network N, such that Cyy = G. We will show that this conversion is always possible
by giving a polynomial algorithm for the conversion. This will establish the NP-
completeness of ADDTAXA, since we can solve FEEDBACKVERTEXSET2 with an
algorithm for ADDTAXA.

We will show by induction on k that for any degree-two graph with k edges, Gy,
there is a network Ny with Cy;, = Gy. For k = 0, we have Cy;, = G for the network
Ny as shown in Figure 6.7. Assume that for for all m < k, we have for arbitrary G,,
a network N, such that Cy;,, = G,,.

For arbitrary Gy, we will now construct a network N such that Cy, = Gj.
Delete an arbitrary edge (u,v) from Gy, to obtain the graph Gy_;. By our induction
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Figure 6.8: Network N,_;. In the gray area, we have some arbitrary network struc-
ture with reticulation edge (u,u1). Note that u is not an ancestor of v or v;.

Figure 6.9: The network A,_; in Figure 6.8 is altered to a network N}, shown in this
figure. The gray area remains unchanged. We rename u, u; to y,y; and v, vy to z, 21.
The critical graph of N is the critical graph of N;_; with the additional edge (u,v).
Note that each dashed HGT edge e in N has a new taxa attached with add(N, e).
We did not display the additional taxa for more clarity in the figure.
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assumption we have a network Nj_; with Cy;,_, = Gr_1. Now we alter Nj_; to Ny
such that we have Cy, = Gy,.

Since there is no edge (u,v) in Gy_1, the network N, _; has a structure as dis-
played in Figure 6.8. In the gray area, we have some network structure. The impor-
tance is, that vertex u is not an ancestor of v or v;.

We convert N,_; to the network N, as shown in Figure 6.9. Note that each
dashed HGT edge e does have a taxa added as well (add(Ny, e)). So the HGT event
is non-critical. We did not display the added taxa for more clarity of the figure. The
gray area has the same network structure as the gray area in Figure 6.8. Vertices
u, uy,v,v; are renamed to y,yi, z,2;. It is easy to check that any ancestor of v
(resp. u) in Nj_; remains an ancestor of v or vy (resp. u or uy) in N}. Further any
descendant of v (resp. u) in Nj_; remains a descendant of v (resp. u) in N. All
other relationships between critical vertices remain unchanged as well since we do
not change the gray area. As we intended, u is now an ancestor of v, and overall
Cn,, = G-

So for any degree-two graph G, we can iteratively obtain a network N with
Cn = G. Since we add 13 new taxa and 9 new reticulation events to the network
in each step, the network grows linear with the number of edges in G. Therefore
the conversion from the degree-two graph to an HGT network is polynomial. This
shows that every instance of FEEDBACKVERTEXSET2 can be reduced to ADDTAXA,
therefore we have proven,

Theorem 6.3.7. The problem ADDTAXA is NP-complete.

Note that ADDTAXA is NP-complete for HGT networks as well as hybridization
networks, since HGT networks can be considered as a special case of hybridization

networks (Remark 6.2.8).

6.4 Algorithms for solving ADDTAXA

6.4.1 HGT and hybridization networks

For HGT networks, the previous section provides an algorithm for solving AD-
DTAXA: We construct the critical graph and use an algorithm for FEEDBACKVER-
TEXSET (see Section 6.4.2). For hybridization networks, we can do the same ap-
proach. First, we define the critical graph for a hybridization network N:

e The vertex set V¢, is the set of critical vertices of N.

e The edge set Eg,, is defined as follows. (v,u) € E¢,, iff (v <wu) or (v < uy) or
(v <) in N (where u; is the reticulation vertex with direct ancestors u, u').

It is straightforward to see that Theorem 6.3.2 holds for the critical graph of
hybridization networks as well. Theorem 6.3.4 is also valid for hybridization net-
works: Indeed, consider the hybridization vertex v; with parents v,v’. Note that if
v and v’ are in the critical graph, then (u,v) € E¢,, < (u,v') € E¢,, by definition
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of the critical graph. Therefore vertex v having indegree 0 is equivalent to vertex
v’ having indegree 0. For assigning the labels, proceed as in the proof of Theorem
6.3.4: Choose a critical vertex v with indegree 0. Label t(v) = t(v') = t(v1) = 1.
Delete v, v" from Cpr. Choose the next vertex with indegree 0 and so on.

Since Theorem 6.3.2 and 6.3.4 hold for hybridization networks, Corollary 6.3.5
also holds for hybridization networks. Therefore solving ADDTAXA for hybridization
or HGT networks can be done by solving FEEDBACKVERTEXSET on the critical
graph.

6.4.2 Algorithms for solving FEEDBACKVERTEXSET

FEEDBACKVERTEXSET and FEEDBACKVERTEXSET2 are NP-complete. In [10] it is
shown that FEEDBACKVERTEXSET for directed graphs is fixed parameter tractable.
The authors provide an algorithm which solves FEEDBACKVERTEXSET(G, k) in
O(4Fk!n®M) where n is the number of vertices in G.

No polynomial time approximation algorithms with constant ratio have been
found. There is a polynomial time approximation algorithm with a ratio of
O(log kloglog k) [19] where k is the size of the minimum feedback vertex set.

FEEDBACKVERTEXSET?2 is reducible to ADDTAXA, therefore ADDTAXA is NP-
hard. Furter, ADDTAXA is reducible to FEEDBACKVERTEXSET, therefore AD-
DTAXA is fixed parameter tractable. The size of our critical graph is determined
by the number of critical vertices which is less than the number of reticulation
events and this is usually much less than the size of the network. Therefore, for
biological reticulation networks, the critical graph will be reasonable “small”.

6.5 Summary

We showed that determining the minimal number of taxa to add to a hybridization
or HGT network, such that the network has a temporal labeling (ADDTAXA) is
NP-complete. However, the critical graph of a reticulation network will be reason-
able “small” for most biological instances, and therefore even brute-force algorithms
might be feasible. Furthermore, ADDTAXA is fixed parameter tractable.



Chapter 7

Outlook

The analytic results in the thesis have been applied to improve a variety of methods
as explained in the different chapters. Concluding the thesis, I would like to point
out the — in my opinion — next most important steps to generalize the various results
and methods and to obtain further conclusions about evolution, in particular about
the process of speciation and extinction.

We exhaustively discussed models for speciation and extinction, these models
induce the “species tree distribution”. Furthermore, we briefly discussed the coales-
cent as a model for the evolution within a population, the coalescent induces the
“gene tree distribution”. Note that when reconstructing phylogenies from genes, we
actually reconstruct a gene tree which is evolving on a species tree. It is commonly
assumed that the gene tree and the species tree are equal, therefore we reconstructed
the species tree. However, this does not have to be the case. Recently, surprising and
maybe unexpected results have been established for gene trees evolving on species
trees [13]. I am very curious to see whether and how the distributions discussed in
this thesis change, when considering gene trees evolving on species trees, rather than
considering only species trees as done in the thesis. In particular, it will be interest-
ing to understand the distribution of coalescent gene trees evolving on ¢cBDP species
trees — note that the cBDP and the coalescent on their own both induce a uniform
distribution on ranked, oriented trees as discussed in the thesis. Another challenge
is to establish the distribution of the Colless statistic and the runs statistic when
gene trees are evolving on species trees.

In this thesis, we established the prior distribution for the cBDP which is imple-
mented in the Bayesian inference program BEAST. Since most clades are not fully
sampled, an obvious next goal is to derive a prior which incooporates random taxon
sampling.

Supertrees, like the primate tree of Rutger Vos and Arne Mooers, can now be
dated efficiently without introducing a bias. It will be exciting seeing this method
applied to other undated phylogenies, currently Jonathan Davies is using CASS for
dating his Carnivora supertree. As soon as having an understanding of more complex
models for speciation than the cBDP, establishing a method for dating phylogenies
under such complex models should be addressed.
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We derived LTT plots for the cBDP analytically. For the corresponding ~ statis-
tic, we only have limited analytic knowledge. In order to avoid unnecessary simula-
tions, it will be useful to derive analytic results for the ~ statistic as well.

Phylogenies can be tested for lineage-specific bursting with the runs statistic. We
applied the statistic to example applications. It would be of great value to apply the
statistic to the known dated phylogenies to investigate how frequent lineage-specific
bursting appears. With our package CASS this is possible as soon as enough data
is available. For the Colless statistic, such an analysis had been done on published
tree shapes, with the result that data trees are less balanced than expected under
the neutral models. Since the Colless statistic considers tree shapes, but our analysis
requires a ranking with the shape, we cannot apply the runs statistic to the data
used for the Colless analysis.

Note that the runs statistic is not only useful for phylogenies — samples of popu-
lations can be tested for neutrality with the runs statistic. As a great advantage over
other tests, this test is not fooled by population size variation. Therefore, previous
work assuming the coalescent for estimating the population size history should be
checked again by applying the runs statistic to the data. This will indicate whether
the coalescent is an appropriate assumption for the considered data.
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