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Abstract

Sliding mode control provides insensitivity to parameter variations and disturbances.
These robustness properties make this discontinuous control strategy very attractive. How-
ever, its implementation in the presence of unmodeled dynamics leads to high-frequency
oscillations termed chattering. This effect degrades the control performance and might
damage the system. Many current implementations suffer from this drawback.

In this thesis, a novel sliding mode control strategy for mechanical systems with electric
motors as actuators is proposed. The chattering problem is tackled by including actuator
dynamics, which has so far been ignored, in the control unit design. The switching control
law incorporates the dynamics of the electrical and the mechanical subsystem. The pulse
width modulation (PWM) used in most present day implementations is eliminated and
the controller directly drives the power switches. Hence, the discontinuous control inputs
are the switched voltages applied to the motor.

In addition, a comprehensive methodology to realize the proposed control scheme is devel-
oped. It allows the systematic design of sliding mode controllers for complex electrome-
chanical systems. Compared to the existing design procedures, it is applicable to a wider
class of systems. It can handle nonlinear systems governed by a set of coupled differential
equations of arbitrary order in canonical form, as well as infinite dimensional systems. This
thesis identifies and solves implementation issues of the generalized block control princi-
ple. Presented are necessary observers and a method to reject disturbances with known
structure.

The complete design procedure is illustrated by controlling an inverted pendulum system
driven by a DC and a synchronous motor, as well as an induction machine. Simulations
and experiments demonstrate the high performance and the robustness of the proposed
control architecture. An essential contribution of this thesis is the position control of an
induction machine that lays a foundation for building more robust and inexpensive robotic
systems.



Zusammenfassung

Sliding Mode Regelungen zeichnen sich durch hohe Robustheit gegenüber Parameterunsi-
cherheiten und Störungen aus. Jedoch kann die Implementierung dieser schaltenden Re-
gelung zu hochfrequenten Schwingungen im Regelkreis führen, wenn Dynamiken der Re-
gelstrecke beim Entwurf nicht berücksichtigt wurden. Dieses sogenannte Chattering ver-
schlechtert die Regelgüte und kann das System beschädigen. Viele gegenwärtige Implemen-
tierungen weisen diesen Nachteil auf.

Die vorliegende Dissertation behandelt ein neuartiges Konzept zur Sliding Mode Rege-
lung mechanischer Systeme, die von Elektromotoren angesteuert werden. Es bezieht Ak-
tordynamiken, die in herkömmlichen Sliding Mode Regelungen vernachlässigt wurden, in
den Reglerentwurf ein und kann so Chattering-Effekte stark reduzieren. Die Regelung
berücksichtigt sowohl Dynamiken des elektrischen als auch des mechanischen Systems. Die
in den meisten bestehenden Implementierungen verwendete Pulsweitenmodulation (PWM)
entfällt und der Regler steuert direkt die Leistungsschalter an. Die diskontinuierlichen Stell-
größen des Systems sind somit die geschalteten Versorgungsspannungen des Motors.

In dieser Arbeit wird in geschlossener Form eine Methodik zur systematischen Sliding Mode

Reglersynthese für komplexe elektromechanische Systeme entwickelt. Sie erlaubt die einfa-
che Umsetzung des vorgeschlagenen Konzeptes. Die Entwurfsmethode ist für nichtlineare
Systeme, die mit gekoppelten Differentialgleichungen beliebiger Ordnung in kanonischer
Form beschrieben werden, und für unendlich dimensionale Systeme geeignet. Damit ist
sie auf eine größere Systemklasse als bestehende Methoden anwendbar. Als Lösungen für
Anwendungsprobleme des Generalized Block Control Principle werden sowohl Entwurfsme-
thoden für Beobachter als auch eine Methode zur Unterdrückung von Störungen bekannter
Dynamik präsentiert.

Die vorgestellte Designmethode wird für die Positionsregelung eines von einem Gleich-
strom-, Synchron- und Asynchronmotor angesteuerten invertierten Pendels angewandt.
Die Ergebnisse der Simulationen und Experimente zeigen die Robustheit und die hohe
Regelperformanz des vorgeschlagenen Konzeptes. Eine besondere Innovation stellt die ent-
wickelte Positionsregelung einer Asynchronmaschine dar, die den Weg für robustere und
kostengünstigere Robotiksysteme weist.
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Notation

Within the scope of this thesis lowercase letters represent scalars, bold lowercase letters
represent vectors and bold uppercase letters represent matrices.

Abbreviations

PWM pulse width modulation
BCP Block Control Principle
BCF Block Control Form
GBCP Generalized Block Control Principle
GBCF Generalized Block Control Form

PD-Controller controller with proportional and differential component
PT2-function proportional, time-delayed function of 2nd order

∀ for all

Mathematical Conventions

x a scalar
x a vector
x(.) a scalar function
x(.) a vector function
|x| modulus of vector x

ẋ , ẍ first and second time derivative of x: dt
dt

x , d2

dt2
x

(i)
x ith time derivative of x: di

dti
x

XT transpose of matrix X
X−1 inverse of matrix X
X+ pseudo inverse of matrix X
rank(M) rank of matrix M
det(M) determinant of matrix M
λ eigenvalue
dim(x) dimension of vector x

sinh(x) hyperbolic sine function, sinh(x) = ex−e−x

2

cosh(x) hyperbolic cosine function, cosh(x) ex+e−x

2

sign(x) sign function, sign(x) =

{

1 for x > 0
−1 for x < 0

v



Notation

sat(x) saturation function, sat(x) =







1 for x ≥ 1
x for − 1 < x < 1

−1 for x ≤ −1

∇ vector differential operator,
∇ = [ ∂

∂x1

∂
∂x2

. . . ∂
∂xn

] for x = [x1 x2 . . . xn]T ∈ R
n

Lfg Lie derivative, Lfg = ∇g f

N set of natural numbers
R set of real numbers
R

+ set of positive real numbers
V Lyapunov function candidate
ε constant value , ε ∈ R

+

ℜ real part of a complex number
ℑ imaginary part of a complex number
p Laplace operator
X(p) Transformation of variable x into Laplace domain
j complex number j2 = −1
σ real part of a complex variable
υ imaginary part of a complex variable
ω frequency of a sinusoidal function

Sub- and Superscripts

x∗ desired value of x

xnom nominal value of x

x0 initial value of x

xT target value of x

x error value: x = x̂ − x

x̄ constant value
x̂ observer state

xTA control parameter of the twisting algorithm
xSTA control parameter of the super twisting algorithm

xabc signals in stator coordinates (a, b, c)
xαβ signals in rotating stator coordinates (α, β)
xdq signals in rotating rotor coordinates (d, q)

Symbols

System

x state vector
n order of the system

vi



f(x) system function
G(x) system input matrix
gi(x) ith column of the system input matrix
u system control input
m order of control input u

z(x) unknown parameter uncertainties and external disturbances
of the system

t time
σ (p) step function

Sliding Mode Control

s(x) switching function
u+(x) ,u−(x) switched feedback signal
f−(x) ,f+(x) two possible limits of the state velocity vectors of a system

in the neighborhood of a point of discontinuity
ueq equivalent control input

Chattering Reduction Concepts

ulin(x) continuous feedback signal (component-wise control law,
hybrid control algorithm)

Ū(x) diagonal matrix, rankŪ(x) = m, Ū(x) possesses the
elements ui(x) , i = 1 . . . m (component-wise control law)

λmin control design parameter, smallest eigenvalue of the
matrix (component-wise control law) 1

2

(

∇sGŪ + (∇sGŪ)T
)

φ(x) scalar function for control design (unit control law)
M, ε, δ control design parameters (boundary layer solution,

state-dependent, gain modification, twisting algorithm)
B(ε) boundary layer around a manifold, s(x) = 0,

B(ε) = {x | |s(x)| < ε}
σ switching ratio (switching ratio-dependent gain)
udis discontinuous control signal (hybrid control algorithm)

f̃(x) feedback function (observer-based solution)
R, c control design parameter (second order sliding mode, twisting

algorithm)
F ,Gm , GM system parameters (twisting and super-twisting algorithm)
VM , Vm control design parameters (twisting and super-twisting

algorithm)
ρSTA , εSTA control design parameters (super-twisting algorithm)

Generalized Block Control Principle

xi state of the ithe subsystem of system
r number of the considered subsystems
φ system transformation, φ : R

n 7→ R
n

vii



Notation

f̃ system function
Λ ,M , c , λi control design parameters
v , w system state
ci control design parameters

J0 , θ ,K ,m , g , l model parameters (rotational inverted pendulum system)

Flexible Shaft System

q degree of rotation of the torsion bar in time domain
x position along the torsion bar
e basic rotation of the shaft without flexibility
f rotation caused by the flexibility of the bar
M torque attacking at the left side of the shaft

a =
√

G
ρ

velocity of propagation in the shaft

G modulus of rigidity
Ip geometrical moment of inertia of the shaft
r radius of the torsion bar
J mass moment of inertia of the load
mL mass of the load
rL radius of the load

At {p} , Ãt {p} , operators with respect to time

Bt {p} , B̃t {p}
Ax {p} operator with respect to location
g1 (p) , g2 (p) algebraic functions
τ = l

a
time delay

s1 , s2 , s3 , s4 state variables of the flexible shaft system in GBCF,
(s1 = q , s2 = q̇)

V1 , V2 parameters of the sliding mode observer for the flexible
shaft system

TL disturbance attacking at the load

T̃L amplitude, slope or peak value of a disturbance

Electromechanics

xmech state of the mechanical subsystem
xel state of the electrical subsystem
xmag state of the magnetical subsystem
τ torque
ua supply voltages for the electric motor
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θ angular position
ω angular velocity
τL load torque
Jm mass of inertia of the machine
J mass of inertia of the system
m pendulum mass
g gravitation constant
l pendulum length
µ coefficient of friction

DC Motor

i armature current
ua supplied voltage
Ra armature resistance
L armature inductance
Kn induction constant
Km torque constant
w control parameter (observer)

D,ω0 linear control parameters (damping and frequency of the
closed control loop)

Synchronous Motor

ii current components
ui voltages components
R resistance
L inductance
p number of permanent magnet pole pairs
k motor constant
ua supplied voltage
r internal resistance of the switching devices

g switch commands vector
udq vector of rotor voltages
idq vector of rotor currents

Π dissipative power loss of the synchronous machine
H Hamilton function

Q abbreviation, Q =
√

f2

J2 + 2fk2

3(R+r)J2

S abbreviation, S = sinh(qT )

K abbreviation, K = S(θT−θ0)
2D−qTS

D abbreviation, D = cosh(qT ) − 1
ŭ abbreviation, ŭ := uq − 2

3
kω

A system matrix of a linear system
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Induction Machine

λr rotor flux components
ii stator current components
ui stator voltage components
Lr rotor inductance
Ls stator inductance
Lh mutual inductance
Rr rotor resistance
Rs stator resistance
ωe electrical machine velocity
η abbreviation: η = Rr

Lr

σ abbreviation: σ = 1 − Lh
2

LsLr

β abbreviation: β = Lh

σLsLr

γ abbreviation: γ = 1
σLs

(Rs + Lh
2

Lr
2 Rr)

Nr number of pole pairs

U0 supply voltage
g switch command vector
G transformation matrix

Aa,b,c
α,β ,Ad,q

α,β transformation matrices

C flux dependent transformation matrix
e state dependent vector

εM , κM , Um control parameters (multiphase inverter algorithms)
d1, d2 abbreviations: d1 = 3LhNr

2(LrLs−L2
h
)
, d2 = LhRr

LrLs−L2
h

q1 , q2 stator voltages vectors for lookup table
a1, a2 coordinates in stator voltages for lookup table

Implementation/ Simulation Issues

Ton ”’on”’ time of a pulse width modulation signal
Toff ”’off”’ time of a pulse width modulation signal
α duty cycle of a pulse width modulation

ts simulation time
T sampling time
Tmin minimum delay time
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1 Introduction

Forcing a mechanical structure to follow a desired trajectory is a fundamental task for
various applications and products in e.g. aerospace, automotive industry, manufacturing,
and robotics. To achieve this, algorithms have to be found that generate adequate forces
and/or torques. For these systems the demands on precision and fast response time rise
steadily. In most applications the mechanical systems are governed by a set of nonlinear and
strongly coupled differential equations. These properties pose a challenge when designing
control algorithms that meet the requirements stated above.

The performance of linear controllers becomes poor or unstable when the required operat-
ing range is large. If there are significant deviations from the linearization point nonlinear-
ities cannot be properly compensated. Moreover, nonlinearities such as Coulomb friction
or saturation are not linearizable as required by linear control tools. The gain scheduling
approach [62] is also based on linear controllers, but it can cover the complete operation
range by selecting more than one operating point and designing linear controllers around
each point. Between the operation points, the controller parameters are interpolated. This
design method is conceptually simple, but stability cannot always be guaranteed.

Among the nonlinear methods the design approaches based on Lyapunov’s direct method
or the phase plane methods offer analysis tools that guide the construction of nonlinear
controllers. Since they are not systematic, their application to complex systems often fails.

The trajectory control problem for mechanical systems can be solved by decoupling and
compensation approaches. A common solution for robotic systems is the computed torque
control [88]. It cancels effects like gravity, friction, manipulator inertia, as well as Coriolis
and centrifugal forces. The original system model is transformed to an equivalent but
simpler system model. However, when the dynamic model of the mechanical system cannot
be assigned precisely, the decoupling and compensation in the control structure is not
accurate, which may result in insufficient control performance. Sources for these errors in
the dynamic model are parameter variations, e.g. unknown loads or inaccuracies of the
actuator parameters that even exist in a well structured system, as well as unmodeled
dynamics, which result e.g. from imprecise friction models, or neglected actuator and
sensor dynamics. This is the major drawback of all feedback linearization approaches,
including the backstepping approach [40] and the control unit design based on flatness
[28, 29]: They do not guarantee robustness in the presence of parameter uncertainties or
unmodeled dynamics.

Adaptive control [2, 52] handles systems with known dynamic structure and unknown con-
stant or slowly-varying parameters. However, they do not solve the problem of robustness
in general, especially when the parameters change quickly.

The trajectory control of mechanical systems requires control schemes that take nonlin-
earities of the system, modeling uncertainties as well as disturbances into account. Sliding
mode control theory [74, 75] provides means to overcome these problems. Sliding mode
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1 Introduction

control algorithms ensure that the desired system dynamics is insensitive against param-
eter variations and external perturbations. As long as the upper and lower bounds of
the model parameters and the disturbances are known, sliding mode controllers with high
accuracy within finite transient time can be designed. The otherwise complex design pro-
cedure for nonlinear systems is inherently simplified because it is broken down into two
simpler subproblems.

Table 1.1 summarizes challenges that arise when controlling mechanical systems, as well as
solutions provided by the sliding mode control theory. This comparison shows that sliding
mode control strategies present an efficient way to control mechanical systems. The theory
offers simple tools for the design process and tackles the problem of robustness.

Challenges in Controlling Mechani-
cal Systems

Solutions offered by Sliding Mode
Control Strategies

- Mechanical systems are governed
by a set of nonlinear and strongly
coupled differential equations

- Decoupling and order reduction

- Unknown system parameters (e.g.
unknown friction coefficients, un-
known loads)

- Robustness against unknown dis-
turbances and parameter uncertain-
ties

Table 1.1: Challenges in controlling mechanical systems and solutions offered by sliding mode
control strategies.

Most of the applications of sliding mode control theory to mechanical systems show the
undesired effect known as chattering. These are finite-amplitude high-frequency oscillations
of the controlled structure. Chattering can cause audible noise, low control accuracy, high
wear of moving mechanical parts, and high heat losses in power circuits.

Sliding mode control has successfully been applied in different trajectory tracking appli-
cations of mechanical structures: [82] presents a wide range of automotive applications.
In [68, 69] a linear approximation of the discontinuous control input is used in order to
reduce chattering. [14, 38] use an integrator to smooth the switching function. [3] and [57]
propose sliding mode control designs based on Lyapunov functions in order to simplify the
design. Many works combine continuous nonlinear control approaches with sliding mode
control in order to improve robustness, e.g. [25] combines flatness properties, [30] combines
adaptive control methods with sliding mode control theory. Recent works merge fuzzy or
neural networks with sliding mode control theory [32, 54]. The results show that slid-
ing mode successfully addresses the problem of nonlinearities and eliminates disturbances.
Simulations and experiments prove accuracy in the presence of modeling errors. However,
in all the approaches mentioned above the objectives of high robustness and low chattering
are competing with each other.

This thesis investigates sliding mode control designs of mechanical systems with a focus
on means to overcome chattering while maintaining control accuracy and robustness. The
analysis considers only mechanical systems that use electric motors as actuators due to the
following reasons: Firstly, electric motors are widely spread actuators. They are extremely
versatile, offer high energy efficiency and may be controlled in a comparatively simple way.
Secondly, these actuators usually are driven by power elements which inherently include
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1.1 Challenges

switching devices. Therefore it is straightforward to apply the discontinuous control law
of the sliding mode control theory to them.

1.1 Challenges

The main challenges when implementing sliding mode controllers are chattering and com-
plexity of the design procedure. Both problems will be addressed in this thesis.

Design Issues

A systematic approach for sliding mode control design is the block control principle (BCP)
[21, 22, 45, 47]. By transforming the system into the regular form [48] it is broken down
into a set of subsystems. The control law can be designed independently for each of these
subsystems. The subsystems are of lower dimension than the original system. As the
dimensions of the control input and the system state are equal for each subsystem, the
control design becomes elementary. The idea is to use the system state of each subsystem
as a virtual control input for the preceding subsystem. On the one hand, designing a
control law for the subproblem is simpler, but on the other hand, the BCP approach may
lead to a very large number of nonlinear transformations needed for the decomposition.
Finding the right nonlinear system transformation into the regular form can be difficult
for some systems and is non-existent in some cases.

A challenge addressed in this thesis is the research for a design method that does not need a
consequent decomposition of the system into the afore mentioned subproblems. A limited
decomposition of the electromechanical system into electrical and mechanical subsystems
may shorten the design procedure.

Chattering Issue

The causes of chattering are limited- and consequently finite- switching frequencies and
fast dynamics that have been neglected in the plant model. These reasons may be assigned
to different components of the electromechanical system, as illustrated in Figure 1.1.

Sliding mode theory is based on the assumption that the discontinuous control input can be
switched infinitely fast. However, in practice digital as well as analog implementations give
rise to finite time delays that lead to limited switching frequencies. Digital implementations
are inherently time-discrete. They depend on finite sampling rates of the analog to digital
and digital to analog converters and on a finite clock rate of the processor calculating
the control output. The time delays are subject to the complexity of the calculations
involved. Greater complexity results in lower switching frequencies. The finite switching
times of the components in the power converter or inverter driving the electric actuator
limit the switching frequencies as well. Because there is a constant energy loss per switching
operation, the energy losses increase linearly with the switching frequency. Furthermore,
the resulting finite switching frequencies cause discretization chatter because the control is
constant within the sampling intervals allowing the state of the system to drift away from
the desired trajectory during this period.
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Figure 1.1: Reasons for chattering in sliding mode controlled electromechanical systems.

Assuming that the control unit can switch ideally, chattering may also be caused by un-
modeled dynamics in the plant. Sliding mode controllers are discontinuous controllers. Due
to the fast switching, the control input contains high-frequency components. These excite
high-frequency dynamics in the plant, which are usually neglected in plant models, as pro-
posed by singular perturbation theory. Actuator or sensor dynamics in electromechanical
systems are typical examples of such neglected high-frequency dynamics. As mentioned
above there usually is a trade-off between chattering reduction and robustness. Chattering
can be reduced without sacrificing robustness when actuator dynamics is not neglected but
considered in the control unit design. The cost of this approach is the increased complexity
of the plant model resulting in an increased number of nonlinear transformations needed
to decompose the system into subsystems.

This thesis targets the goal conflict explained above. It focuses on finding a control concept
for electromechanical systems that leads to chattering reduction while maintaining robust-
ness properties. A main challenge faced is the development of an appropriate methodology
that keeps the control unit design process simple.

1.2 Main Contributions of this Thesis

This work proposes sliding mode control concepts for mechanical systems driven by dif-
ferent types of electric motors. The main motivation is to overcome chattering while
preserving robustness and keeping the design procedure manageable. A core contribution
is the development of a control unit design concept for mechanical systems that takes actu-
ator dynamics into account. A comprehensive methodology that simplifies the application
of the proposed control principle to arbitrary electromechanical systems is developed. As
a practical illustration, the design of a position controller of a mechanical system driven
by an induction machine is discussed in detail.
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1.2 Main Contributions of this Thesis

Methodology to Overcome Control Unit Design Difficulties

In this thesis, a novel comprehensive control unit design methodology for electromechan-
ical systems, composed of subsystems in canonical form, the Generalized Block Control
Principle (GBCP) is proposed. It is an extension of the design procedure presented in
[78], which is formulated for nonlinear mechanical systems governed by a set of intercon-
nected second-order equations. The design method waives the requirement of the BCP
that the control input and the state of the subsystem must have equal dimension. The
decomposition into subsystems can thereby be simplified. The complexity of the control
unit design process is reduced and the range of dynamic systems to which the principle
can be applied is enlarged. The GBCP allows to handle the control unit design process
for complex system models that include the actuator dynamics.

Control Concept that Solves the Chattering Problem

This thesis investigates and develops a control concept for mechanical systems that takes
actuator dynamics into account. The electric actuators considered are different types of
electric motors. The control law incorporates the dynamics of the electrical and mechanical
subsystem. In this case, the voltages applied to the actuator are the actual discontinuous
control input vector instead of the torques and/or the forces. Thereby, chattering due
to unmodeled actuator dynamics is avoided while retaining robustness and disturbance
rejection, the main benefits of sliding mode control. The discontinuous output signal of
the switching controller directly drives the power switches and the pulse width modulation
(PWM) used in most present day controllers, which converts the continuous output of
the control algorithm into a variable duty cycle, is eliminated. The implementation of
the control law is simple, since the control signals are discontinuous and digital to analog
converters are not required. Chattering due to finite switching frequencies is also reduced
because the inductance of the motor coil forms a low pass filter for the motor current.

Present-day semiconductor technologies offer high-speed low-loss solid state switches that
allow high switching frequencies. They constitute the technological basis for the imple-
mentation of the proposed sliding mode control concept.

Position Control of an Induction Machine

Induction machines have a number of desirable features: They are inexpensive, robust,
compact, highly efficient and have a small mass inertia. However, the control of induction
machines is far from trivial, because even very simplified models are high-dimensional and
nonlinear. Additionally, most existing control algorithms require knowledge of all state
variables and/or machine parameters, which are not always measurable.

The GBCP as well as the sliding mode control theory simplify the control unit design
for complex systems. With the help of these two tools, two position control algorithms
for a mechanical system driven by an induction machine are developed in this thesis.
The proposed control schemes include actuator dynamics into the control design and the
voltages impressed on the actuator are the actual discontinuous control input vector. The
control strategies benefit from the strong robustness and fast dynamics of the sliding mode
control scheme. At the same time chattering effects due to unmodeled actuator dynamics
are decreased.
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1.3 Outline of this Thesis

Chapter 2 summarizes the sliding mode control theory and surveys the state of the art of
applied sliding mode control algorithms. In Chapter 3, the GBCP is introduced. The de-
sign principle is formulated for systems composed of interconnected subsystems in canonical
form. Chapter 4 illustrates the benefits of the novel control concept for electromechanical
systems when the voltages impressed on the actuator are the actual discontinuous control
input vector. Chapter 5 focuses on the application of the GBCP to control the position
of an induction machine. Again, discontinuous signals are used as control input vector.
Moreover, in Chapter 5 multilevel control strategies are discussed as methods to reduce
chattering in the control loop. Finally, chapter 6 concludes this thesis and discusses future
research directions. An overview of the state of the art in the considered research fields is
given at the beginning of each chapter.
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2 Sliding Mode Control Theory: Fundamentals
and State of the Art

Based on the sliding mode control theory robust controllers for high-order nonlinear plants
operating under various uncertainty conditions can be designed. However, their implemen-
tation may lead to oscillations of finite amplitude and frequency in the control loop. These
chattering effects often result in poor control accuracy, high wear of moving mechanical
parts or even break down of the controlled structure. Several methods to reduce chattering
have been developed. But these solutions usually either suffer from decreased robustness
or increased implementation complexity.

This chapter gives an overview of the sliding mode control theory and introduces the
design tools that are used later in this thesis. It contributes a comprehensive report of
existing chattering reduction methods. The final evaluation and comparison of the methods
provides a basis for decisions on implementations of sliding mode controllers.

Section 2.1 presents the fundamental mathematical concepts of the sliding mode control
theory. It introduces the system class considered in this thesis and illustrates the principle
of sliding mode. Furthermore, it explains shortly the features of sliding mode control
theory, the system motion in sliding mode; the existence conditions, and the sliding mode
control design. The state-of-the-art techniques for solving the problem of chattering are
presented and discussed in Section 2.2.

2.1 Fundamentals of Sliding Mode Control Theory

Detailed explanations of the issues dealt with in this section can be found in the books
[81, 11] and the pioneering article [80].

2.1.1 System Class

The class of nonlinear time-invariant systems, which are linear with respect to control,

ẋ = f(x) + G(x)u + z(x)

= f(x) +
m

∑

i=1

gi(x)ui + z(x) with x(t0) = x0 ,
(2.1)

where x ∈ R
n is the system state and u ∈ R

m represents the control input, is considered.
The vector functions f , g : R

n 7→ R
n and the matrix G(x) = (g1 g2 . . . gm) are assumed to

be continuously differentiable. The vector function z : R
n 7→ R

n summarizes the unknown
parameter uncertainties and external disturbances.
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2 Sliding Mode Control Theory: Fundamentals and State of the Art

The sliding mode control theory deals with state feedback control schemes that use switch-
ing control actions. Therefore, the control input u(x) is chosen as a discontinuous function
of the system state

u(x) =

{

u+(x) for s(x) > 0
u−(x) for s(x) < 0

(2.2)

where s : R
n 7→ R

m is a continuously differentiable function. The feedback signal u(x)
exhibits a point of discontinuity at s(x) = 0 ;

lim
s(x)→0

u+(x) 6= lim
s(x)→0

u−(x)

and is not a continuous function of time.

2.1.2 Principle of Sliding Mode

To answer the question What is sliding mode? a simple 2-dimensional system is considered
at first.

Example 2.1 (Sliding Mode Control of a 2-dimensional System with Scalar Control Input)
Let x = (x1, x2)

T be the system state. If a scalar control input u is regarded, then the function
s(x) is scalar as well and its points of discontinuity, S = {x ∈ R

n| s(x) = 0} are a line in
the state space. When a control algorithm is designed based on (2.2), the control input u(x)
is chosen in such a way that the tangent vectors of the state trajectory are oriented toward the
manifold S. After reaching the manifold S, the state is forced back onto the manifold whenever
a deviation occurs. Assuming infinitely fast switching the system will move along the manifold
after finite time. This motion is called sliding mode. This is the ideal movement of the system.
In all practical applications the system trajectory deviates from the manifold because chattering
occurs. Figure 2.1 shows an example of an actual movement of the system state in the state
plane.

The idea, demonstrated for the scalar control case, can easily be extended to the vector
case. For systems with m-dimensional control input, the components of the vector s

are chosen with s(x) = 0 defining m manifolds such that their intersection is of the
dimension (n − m). Now, sliding modes may be enforced individually on the manifolds or
directly on their intersections.

The principle of sliding mode is to constrain the system state to stay on a manifold on
which the system will exhibit desirable features. A sliding mode control scheme forces the
system state to reach the manifold s(x) = 0 from any initial condition. Having reached
s = 0, it ensures that the control action is capable of maintaining the system state on the
manifold s(x) = 0.

2.1.3 Features of Sliding Mode Control Strategies

The sliding mode control theory offers several advantages when compared to continuous
controls schemes, such as low sensitivity to plant parameter variations and disturbances,
which relaxes the necessity of exact modeling. Moreover, the original control problem
decomposes into two subproblems of lower dimensions in the design process.
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Figure 2.1: Phase portrait of a 2-dimensional system with scalar control input: Example of
an actual movement of the system state if a sliding mode control algorithm is applied.
The movement is divided into the reaching phase and sliding mode. Finite switching is
considered for better illustration.

Order Reduction and Decoupled Design Process

In the sliding mode theory the system trajectory is located in a space of lower dimension
than that of the original system. The order of the differential equations describing the
sliding motion is reduced to (n−m). As a result the control unit design can be decoupled
into two simpler subproblems. These are:

• selecting a suitable sliding manifold of dimension (n − m) in order to assign the
desired dynamics and

• designing a discontinuous control function in the subspace of dimension m that en-
forces sliding mode on the sliding manifold.

This decomposition into subproblems is of particular interest in the control of high-
dimensional plants as it decreases the complexity of the problem .

Robustness

Continuous controllers, whether linear or nonlinear, set the commands for the actuators
in continuous dependence of the output error. The performance limits of the actuators
are only reached in the presence of large control errors. For smaller errors, the actuators
operate below their potential. Discontinuous controllers in contrast are very sensitive to
small deviations and provide infinitely high gains to correct the smallest error. This is why
the capacity of discontinuous controllers to suppress disturbances is superior compared to
continuous controllers.

Sliding mode for the system (2.1) is invariant with respect to disturbances z(x), if an
upper limit for the system uncertainties and disturbances z̄

|z(x)| ≤ z , z̄ = constant (2.3)
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exists and is known and there exists a vector γ ∈ R
m such that the matching condition

z(x) = G(x) γ(x) (2.4)

is satisfied. [24]

This condition depends neither on the selected sliding manifold nor on the sliding mode
controller, it rather provides a design rule for the selection and the placement of the
system actuators. In the case that this condition is not satisfied and the disturbances are
significant, the position of the actuators in the system should be changed or an additional
actuator should be used to provide better controllability with respect to the disturbance.

Chattering

Sliding mode controllers according to (2.2) do exhibit the chattering, finite-amplitude
high-frequency oscillations of the controlled structure. Chattering can cause low control
accuracy, high wear of moving mechanical parts, or might even damage the system being
controlled. Chattering is the main obstacle in implementing sliding mode controllers. The
unwanted effect has two causes: First, high bandwidth dynamics are often neglected in
the open-loop plant model used for control design. In sliding mode control implementa-
tions this dynamics is excited by the switched control input. Furthermore, the infinitely
high switching frequencies assumed in sliding mode theory cannot be realized in practice.
Methods to reduce chattering will be discussed in the second part of this chapter.

2.1.4 System Motion in Sliding Mode

To describe the dynamics of systems with discontinuous control inputs, special mathemat-
ical methods are required. In the case of closed loop operation of system (2.1) with the
feedback (2.2) and assuming z = 0, the system dynamics are

ẋ =

{

f(x) + G(x)u+(x) = f+(x) for s(x) > 0
f(x) + G(x)u−(x) = f−(x) for s(x) < 0 .

(2.5)

Sliding mode is the solution of these system equations together for s(x) = 0. The dif-
ferential equations have a point of discontinuity at s(x) = 0, the system thus is not
Lipschitz-continuous at s(x) = 0 and conventional approaches to get a unique solution for
the differential equation (2.5) cannot be applied.

Different mathematical methods have been developed to find a solution for (2.5) at the
points of discontinuity. The solutions replace the discontinuity in different ways. What
they have in common is that they define a velocity vector, which is tangential to the
sliding manifold. The length as well as the direction of the velocity vector may vary with
the method used. Depending on the application on hand, one solution may describe the
real sliding mode motion of the system better then the other does.

Approaches to describe the discontinuities of sliding mode are e.g. Filippov’s method [26]
or the equivalent control method [74, 75, 81]. For systems which are linear with respect
to the control input, these two methods lead to the same solution. However, for arbitrary
systems

ẋ = f(x ,u ,z) with x(t0) = x0 , (2.6)
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the solutions may differ. Due to this reason, the systems being treated in this thesis are
all linear with respect to the control input. (See Section 2.1.1, (2.1))

Example 2.2 (Equivalent Control Method [74, 75, 81])
In order to describe the system dynamics in sliding mode this technique introduces a continuous
control input ueq so that a conventional solution to the differential equation (2.1) exists. Assume,
that x(t = 0) of system (2.1) lies on the manifold s = 0 and sliding mode is enforced. Hence, for
all future times s = 0 will holds and

ṡ(x) = 0 (2.7)

will be true. Since the continuous equivalent control input ueq is meant for describing sliding
mode dynamics, it can be calculated using the condition (2.7). The approach

ṡ(x) = ∇s(x) ẋ (2.8)

= ∇s(x)f(x) + ∇s g(x)ueq (2.9)

= Lfs(x) + Lgs(x)ueq = 0 (2.10)

leads to

ueq = −
Lfs(x)

Lgs(x)
. (2.11)

Hence, the closed-loop dynamics- the sliding mode dynamics- is given by

ẋ = f(x) + g(x)ueq(x) . (2.12)

2.1.5 Existence Conditions and Control Design

To ensure that the system state stays in sliding mode after reaching it, the existence
conditions

lim
s(x)→0+

ṡ(x) < 0 and lim
s(x)→0−

ṡ(x) > 0 (2.13)

have to be fulfilled. [79]

To ensure that the manifold is reached after a finite period of time and independent of the
initial conditions of the system, in addition to (2.13) the sufficient reaching condition

sṡ < 0, ∀s 6= 0 (2.14)

has to be fulfilled.

In terms of Lyapunov’s theory the existence and reaching conditions for sliding mode can
be summarized as follows: if there exists a Lyapunov function

V (s) ∈ R
+ :

{

V (s) = 0 for s = 0
V (s) > 0 for s 6= 0

(2.15)

and a constant ε > 0 satisfying the condition

V̇ (s) ≤ −ε
√

V (2.16)
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2 Sliding Mode Control Theory: Fundamentals and State of the Art

sliding mode exists on the manifold s = 0 and is reached within finite time after starting
from any initial state. Condition (2.16) guarantees finite transient time. If only V̇ (s) < 0
were fulfilled for all s 6= 0 but lim V̇ (s)s→0

= 0, points of attraction defined by s = 0
would only be asymptotically stable and would not be reached in finite periods of time.
This situation is common for differential equations with a right-hand side satisfying the
Lipschitz condition.

Domains of attraction for sliding mode controllers may be found based on nonlinear control
theory.

The reaching condition provides a design rule for sliding mode controller. Two possible
sliding mode control unit design approaches for systems with vector control input will be
explained next, the component-wise control and the unit control approach.

Component-Wise Control Law

The components of the control input u1, . . . , um are chosen to undergo discontinuities on
the corresponding surfaces s1(x) = 0 , . . . , sm(x) = 0,

ui(x) =

{

ui
+(x) for si(x) > 0

ui
−(x) for si(x) < 0

i = 1 . . . m . (2.17)

Example 2.3 (Component-Wise Control Law)
The control input

u(x) = unom(x) + Ū(x) sign s (2.18)

with the continuous function unom(x), the diagonal matrix Ū(x) possessing the non-zero elements
ūi(x) with i = 1 . . .m, and sign s = ( sign s1 , sign s2 , . . . , sign sm)T , represents an example of a
component-wise control law. In order to assign its parameters, the reaching condition (2.16) has
to be evaluated for the Lyapunov function candidate

V = ( sign s)T s . (2.19)

These considerations, which can be found in detail in [83], Section 2.5, especially page 33, yield
the sufficient condition

∇sGŪ + (∇sGŪ)T > 0 and (2.20)

λmin ≥
√

m
∣

∣∇s(f + GŪ + z)
∣

∣ + ε, ε > 0 (2.21)

where parameter λmin denotes the smallest eigenvalue of the matrix

1

2

(

∇sGŪ + (∇sGŪ)T
)

. (2.22)

Concerning condition (2.21), the design of the component-wise controller (2.18) requires the
estimation of the upper limits of the disturbances. Finding a function Ū(x) such that (2.21) is
fulfilled is challenging, since eigenvalues for symbolic matrices are hard to calculate.
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2.2 Chattering Reduction Concepts

Unit Control Law

Sliding mode can be enforced even if not all components of u are designed individually as
discontinuous state functions.

Example 2.4 (Unit Control Law)
An example of an unit control law is given in [19, 63]:

u = −φ(x)
(∇s G)T s

|(∇s G)T s| rank (∇s G) = m. (2.23)

With a scalar function

φ(x) >
∣

∣(∇s G)−1∇s (f(x) + z(x))
∣

∣ . (2.24)

it enforces sliding mode in the intersection s(x) = 0 of m. This existence condition for sliding
mode can be derived on a Lyapunov function candidate

V =
1

2
sT s . (2.25)

Compared to the component-wise control law design this is a more straight forward approach.
Nevertheless, it requires the full rank of matrix ∇s G. To be able to calculate the function φ(x),
the limits of the disturbances have to be estimated. The complete derivation of this control law
can be found in [83], Section 3.5, especially page 45.

The component-wise control undergoes discontinuities as soon as any of the components
of the vector s changes its sign, whereas the unit control undergoes discontinuities only if
the manifold s(x) = 0 is reached.

2.1.6 Conclusion

This section summarizes the sliding mode control theory, introduces the design tools that
are used in this thesis, and highlights the main characteristics of sliding mode control
strategies. The theory presented presumes that

• the model of the controlled system is known exactly and

• the switching frequency of the control input is infinite.

Both assumptions do not hold for real-life applications. As a result, real-life applications
of sliding mode control schemes often show chattering effects and insufficient performance.

In order to provide a basis for further investigations into implementation issues of slid-
ing mode controllers, the next section summarizes the state-of-the-art solutions to the
chattering problem.

2.2 Chattering Reduction Concepts

The most attractive feature of sliding mode control is robustness against parameter vari-
ations and disturbances. However, sliding mode comes along with the undesirable phe-
nomenon of chattering.

13



2 Sliding Mode Control Theory: Fundamentals and State of the Art

Many different concepts exist that try to reduce the effect of chattering. They can be
categorized as methods that modify the hardware or the control structure as illustrated in
Figure 2.2. Schemes that change the control structure can be classified in gain modification
algorithms and structural methods. Some methods offer a trade-off between chattering
reduction and robustness, while others are quite effective but hard to implement. The
following sections provide an overview of theses techniques, which are mainly given in the
overview papers [89] and [84].

Unmodeled dynamics Limited switching frequencies  

 

EXISTING SOLUTIONS 

REASONS FOR CHATTERING 

- Discrete-time sliding mode 

- Linear approximation and 

  PMW-unit  

- Seperated current control   

  (analog implementation) 

- Asymptotic observers 

 

 

 

 

- Take actuator dynamics  

- into account  
CONTRIBUTION OF THIS THESIS 

HARDWARE MODIFICATIONS 

 

 

 

 

Gain modification algorithms: 

 

 

 

 

Structural Methods: 

 

 

 

 

 

- State-dependent gain 

- Switching ratio dependent  

- gain 

 

 

- Boundary layer solution 

 

 

 

 

- Hybrid control 

- Twisting algorithm 

- Supertwisting algorithm 

 

 

 

 MODIFICATIONS OF THE CONTROL STRUCTURE 

 

 

 

 

Figure 2.2: Chattering reduction methods.

2.2.1 Hardware Modifications

The problem of chattering caused by limited switching frequencies can be solved by the im-
plementation of discrete-time sliding mode [23, 76]. Chattering may also be suppressed by
a linear approximation of the switching control and implementation via pulse width mod-
ulated signals. An advantage of this control architecture is determined sampling times.
In contrast to floating switching frequencies, constant switching frequencies are more con-
venient for filtering. Additionally, PWM-units can be optimized for low energy losses. If
the control of the electrical variables, namely current, is separated from the control of the
mechanical variables and implemented by analog devices, chattering due to finite switching
frequencies may be decreased as well.
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2.2 Chattering Reduction Concepts

2.2.2 Gain Modification Algorithms

The algorithms presented in this subsection reduce chattering by modifying the gain of the
discontinuous control function u(x) in a neighborhood of the sliding manifold.

Boundary Layer Solution

This technique replaces the discontinuous control law with a continuous approximation
such that unmodeled dynamics is not excited [69, 68]. Chattering can be reduced if the
approximation decreases the control gain. Inside a boundary layer defined around the
manifold B(ε) = {x | |s(x)| < ε} with B ⊂ R

n, the discontinuous control function is ap-
proximated by a smooth or piecewise linear function. For example the scalar control
function

u = − sign(s) (2.26)

can be approximated by the linear function

u = −M sat(
s

ε
) M, ε ∈ R

+ (2.27)

or the continuous nonlinear approximation

u = −M
s

|s| + ε
M, ε ∈ R

+ , (2.28)

as shown in Figure 2.3. Outside of B, a control law, as before, guarantees that the state
reaches the boundary layer B after a finite period of time and then stays there.

The singular perturbation theory [39] can be used to analyze the stability properties of the
closed loop with the approximated control law. Using appropriate Lyapunov functions, it
can be shown that the motion of systems disregarding unmodeled dynamics is unstable in
a finite vicinity of the discontinuity surface, while the trajectories converge to this surface
for larger deviations. A precondition is that the unmodeled dynamics have to be stable
and faster than the system dynamics themselves. Thus, the bandwidth of the closed loop
system and the gain of the linear feedback are limited. This in turn limits the robustness
of the system.

With the boundary layer solution approach, the sliding manifold is tracked with a guar-
anteed imprecision ε. If the width ε of the boundary layer is chosen to be large, the linear
gain within the ε-vicinity of the sliding manifold gets smaller and robustness is reduced. In
order to reject unknown disturbances, sufficiently high gains are needed. If ε is too small,
chattering is not completely eliminated. Usually neglected high-frequency dynamics must
be considered when designing the approximation in order to avoid instability inside the
boundary layer.

State Dependent Gain Modification

This approach follows the original variable structure control methodology [84]. The loop
gain does not depend on s(x) but only on one state variable x of the system. For the
control law (2.26) this means

u = −M(
|x|
ε

+ δ) sign(s) M, ε, δ ∈ R
+ . (2.29)
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sat
s

ε

s

|s| + ε

11

−1−1

εε −ε−ε ss

Figure 2.3: Linear and nonlinear continuous approximation of a scalar discontinuous control
function.

The major advantage of this method is its ease of implementation: the required rate of
change of the gain M is determined by the dynamics of x(t), whereas in the continuous
approximation method, the gain needs to change with the sampling rate.

Switching Ratio Dependent Gain

A single input system with u ∈ {+M ;−M} is considered. Chattering is reduced by
decreasing the gain of the discontinuous control function related to a reference switching
ratio [84]

σ =
Ton − Toff

Ton + Toff

, (2.30)

where Ton represents the time when control input u = +M and Toff represents the time
when the control input u = −M . The switching ratio is the average of the function sign(s),
which can in practice be implement using a low-pass filter. Based on the switching ratio,
the control is chosen to be

u = −M(|σ − σ∗| + δ) sign(s) M, ε, δ ∈ R
+ . (2.31)

where σ and σ∗ represent actual and reference switching ratios.

A problem with this method is to find an appropriate reference switching ratio σ∗ as it
depends on system parameters and disturbances.

2.2.3 Structural Methods

The algorithms presented in this section modify not only the gain but the whole structure
of the control system. The objective is to go beyond the limits of the previous algorithms
and to try to suppress both sources of chattering while improving convergence behavior.

Observer-Based Solution

As a solution to reduce the chattering effect, an asymptotic observer to the system as
shown in Figure 2.4 can be introduced [20].

˙̂x = f̂(x̂) + Ĝ(x̂)u + f̃(x̂ − x) x̂ ∈ R
n (2.32)
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2.2 Chattering Reduction Concepts

where x̂ represents the observer state, functions f̂ and Ĝ describe modeled system dynam-
ics, and the feedback function f̃ corrects the difference between real and observed state,
x = x̂ − x, to zero.

Unmodeled dynamics does not appear in the observer dynamics, hence chattering is sup-
pressed. Moreover, since the control action is calculated based on the observer state x̂,
chattering is suppressed in the control loop as well.

v̇ = f(v,u)

unmodeled dynamics

ẋ = f(x) + G(x)u
x(t)vu

˙̂x = f̂(x̂) + Ĝ(x̂)u + f̃(x̂ − x)

x̂(t)−s(x̂)

observer

loop

Figure 2.4: Observer-based solution.

However, this approach assumes that an asymptotic observer can be designed such that
the observation error converges to zero asymptotically. Disturbances may effect the con-
vergence of asymptotic observers and therefore methods which estimate both the state
and the disturbances have to be applied. The method only removes the chattering caused
by unmodeled dynamics while the chattering caused by finite switching frequencies is not
reduced. This chattering can be reduced as well when the observer approach is combined
with any of the gain modification algorithms. The observer-based solution requires some
effort in the control unit design and is sensitive to sensor noise.

Hybrid Control Method

The control signal is divided into a continuous control signal ulin and a discontinuous
control signal udis,

u = ulin + udis . (2.33)

The control component ulin assures ideal performance under the assumption that the
system model is well known [11]. When disturbances or parameter uncertainties appear,
the discontinuous control component udis is required to preserve robustness, as was shown
before. Using this control method the major part of the control task is realized by the
linear control making the non linear control negligible. Therefore robustness degrades.
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2 Sliding Mode Control Theory: Fundamentals and State of the Art

Second Order Sliding Mode

While one of the main features of standard sliding mode control is finite time convergence,
the convergence behavior of the standard second order sliding mode control [5] is asymp-
totic. The standard sliding mode control is of first order, e.g. ṡ is discontinuous. In second
order sliding mode, s̈ is discontinuous and ṡ is continuous. The order of state of the plant
is artificially increased by introducing another state variable xn+1. E.g. for a single input
system, the discontinuous control signal u

u̇ = −R sign(xn+1 + cs) R, c ∈ R
+ (2.34)

is chosen to be the derivative of the control signal. Since the discontinuous control signal
passes an integrator, the control signal u fed to the plant is continuous. Chattering can
only be reduced by finding a trade-off with disturbance rejection capability. Second order
sliding mode converges only ṡ = 0 within finite time. Depending on implementation, the
basic algorithm may require an observer.

dynamics

s
c −1 R

u̇ ∫
u

xn+1

Figure 2.5: Second-order sliding mode algorithm.

Twisting Algorithm

The twisting algorithm [42] is a special form of second order sliding mode that provides
finite time convergence. It is applicable only to single input systems. The sliding mode
control problem is formulated as a finite time stabilization problem for uncertain second
order systems

s̈ = f(x) + g(x)u̇ (2.35)

with |f(x)| ≤ F ,Gm ≤ g ≤ GM , F,Gm, GM ∈ R
+.

The algorithm features a bounded control input continuously depending on time with
discontinuities in the control input time-derivative, which is given by

u̇ = RTA ·







−u for |u| > MTA

−VMTA
sign(s) for s ṡ > 0 and |u| ≤ MTA

−VmTA
sign(s) for s ṡ ≤ 0 and |u| ≤ MTA

(2.36)

RTA , VmTA
, VMTA

∈ R
+ . (2.37)

If the sufficient conditions

VMTA
> VmTA

(2.38)

VmTA
>

4GM

MTA

(2.39)

VmTA
>

F

GM

(2.40)

GmVMTA
− F > GMVmTA

+ F (2.41)

18



2.2 Chattering Reduction Concepts

are fulfilled, the system converges in finite time to s = ṡ = 0. The algorithm can be

implemented following Figure 2.6 where parameters are chosen as c1TA
=

VMTA
+VmTA

2
and

c2TA
=

VMTA
−VmTA

2
, c1TA

> c2TA
> 0. The sign of the time derivative of s can only be

approximated by

sign(ṡ(t)) ≈ sign(s(t) − s(t − ∆T )) . (2.42)

s

ṡ −1

−1 c1TA

c2TA

t

f

|u| < MTA

RTA

∫ u

Figure 2.6: Twisting algorithm.

Super-Twisting Algorithm

This derivative from the twisting algorithm does not need any information about the time
derivative of s. For single input systems it is given by [9]

u = −c1STA

∫

sign(s)dt − c2STA

{

|s|ρSTA sign(s) if |s| ≤ εSTA

|εSTA|ρSTA sign(s) if |s| > εSTA
(2.43)

c1STA
, c2STA

, ρSTA , εSTA ∈ R
+ . (2.44)

Sufficient conditions for the system’s finite convergence to ṡ = s = 0 are

c1STA
>

F

Gm

(2.45)

c2STA

2 ≥ 4F

G2
m

GM(c1STA
+ F )

Gm(c1STA
− F )

(2.46)

0 < ρSTA ≤ 0.5 . (2.47)

s
−1 c1STA

∫

c2STA

u

Figure 2.7: Super-twisting algorithm.
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2.2.4 Discussion

In practical applications of sliding mode control, chattering due to unmodeled dynamics
and limited switching frequencies may pose a problem. Present attempts to reduce or
eliminate chattering included hardware changes as well as modifications of the control
algorithm.

The proposed solutions based on hardware modification require considerable changes of
the control unit. By decreasing the loop gain, the gain modification algorithms reduce
chattering significantly but the ability to reject disturbances deteriorates. An efficient way
to reduce chattering due to unmodeled dynamics is the use of asymptotic observers. But
this method as well as other structural methods substantially increase the complexity of
the implementation compared to conventional sliding mode control. The twisting and the
super twisting algorithm represent very efficient chattering reduction methods. However,
up to now their application is restricted to single input systems.

Table 2.1 summarizes the features of the pure sliding mode control algorithm and chattering
reduction concepts that can be found in the current literature. The comparison shows that
none of the existing chattering reduction methods is able to preserve both main advantages
of sliding mode control which are simple implementation and robustness.

Method Chattering Robustness Design
reduction complexity

Pure sliding mode control algorithm + +++ +++

Discrete-time sliding mode +++ + ++

Linear approximation or PMW-unit ++ ++ +

Separated current control ++ + +

Boundary layer solution +++ ++ +

State-dependent gain modification ++ ++ +++

Switching ratio dependent gain ++ ++ ++

Observer based solution +++ +++ +

Hybrid control ++ + ++

Second order sliding mode ++ + +

Twisting algorithm +++ ++ +

Supertwisting algorithm +++ ++ ++

Table 2.1: Evaluation of existing chattering reduction concepts. The summary is a result of
numerical simulations, in which an electromechanical system of third order was exposed to
both sources of chattering, unmodeled dynamics and limited switching frequencies. The
denotation of the symbols in column one and two is adequate (+), moderate (++), and
excellent (+++). The denotation in column three is high (+), moderate (++), and low
(+++). The design complexity criterion regards the hardware as well as the calculation
capacities that are required for the implementation of the control algorithm.
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2.3 Conclusion

This chapter illustrates the theory and implementation issues of sliding mode controllers.
It is shown that all implementations are a trade-off between chattering, robustness and
implementation complexity. For this purpose an evaluation and comparison of the existing
chattering reduction methods is given that provides a basis for control design decisions.

Nevertheless, with present-day technologies the more complex implementations become
competitive. Since the computing power of the control units increases continuously, more
complex solutions, e.g. adding an observer, no longer add significantly to the cost of im-
plementation. In recent years, semiconductor technologies have rapidly improved. Today
solid state switches that allow high switching frequencies together with minor energy losses
are available. These modern devices make pure sliding mode control algorithms a viable
option.

Based on the summary of the state of the art given in this chapter, this thesis investi-
gates sliding mode control schemes that take advantage of state-of-the-art technological
developments. For electromechanical systems a novel control concept is developed that
provides excellent chattering reduction and robustness while accepting high implementa-
tion efforts. The proposed control scheme needs a control unit that provides very high
switching frequencies and is based on a high-order system model. The control design pro-
cess therefore becomes costlier. Both requirements can be met: As explained in the last
paragraph, the latest technologies provide the necessary hardware. In Chapter 3 a control
design methodologies is formulated that simplifies the design problem.
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3 The Generalized Block Control Principle

On the one hand, if fast system dynamics is not neglected and more accurate system models
are used for the sliding mode control design, chattering can be reduced. On the other hand,
the control design for more accurate systems becomes more complicated. The block control
principle (BCP) [21, 22, 45, 47] represents a method that simplifies the control unit design
for complex systems. It is based on a system transformation into the block control form
(BCF). This is a decomposition of the original system into independent subsystems of lower
dimension for which the control is designed simpler than for the initial system. However,
not every nonlinear system can be transformed into the BCF and finding the right nonlinear
system transformation into the BCF can be difficult. Even if these transformations exist,
the BCP-approach may lead to a very large number of nonlinear transformations needed
for decomposing. When investigating chattering reduction by taking unmodeled dynamics
into account, a main challenge is to find a design method that can handle the more accurate
system models without disproportionate effort.

This chapter proposes a design technique that does not require a consequent decomposition
of the system in the afore mentioned BCF, thus allowing to handle more accurate system
models. The derived generalized block control principle (GBCP) is based on the idea
that in the majority of cases electromechanical systems consist of subsystems in canonical
form. Because the control design may easily be performed for these subsystems in canonical
form, the strict transformation of the system into the BCF is not reasonable. A limited
system decomposition may shorten the design procedure. The GBCP extends an existing
generalized design procedure, which is introduced in [78]. Compared to this method the
GBCP handles interconnected systems of arbitrary order in canonical form as well as
systems with infinite dimension.

The innovation presented in this chapter is a closed methodology for the systematic control
unit design for electromechanical systems. For the first time, solutions to implementation
problems of sliding mode control based on the BCP are given. The main contribution is a
new method for disturbance rejection.

In this chapter, Section 3.1 explains the BCP as the state-of-the-art design method. Sec-
tion 3.2 states the limitations of the BCP and introduces as a solution to the problem the
approach given in [78]. Section 3.3 extends the existing design procedures to nonlinear
systems with subsystems in canonical form, which are common for mechanical and elec-
tromechanical plants, and introduces the GBCP. Section 3.4 illustrates the existing sliding
mode control of a flexible shaft as a successful application of the GBCP to an infinite
dimensional system. Practical issues of the proposed GBCP are discussed in Section 3.5.
Necessary observers as well as a method to reject disturbances with known structure are
presented. This chapter concludes with a summary in Section 3.6.
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3.1 State of the Art: The Block Control Principle

The BCP is a control unit design principle that simplifies the design process for complex
systems. Using a system transformation into BCF the control design problem is broken
down into a set of design problems of lower dimensions. In [21, 22] the BCP is developed
for linear systems and linked to the design of discontinuous control. In [45, 47] extensions
to nonlinear systems are done. This section introduces the BCP.

The BCP is based on the BCF, which is a generalization of the regular form [48].

Definition 3.1: Regular Form.

A nonlinear system (2.1) in regular form is given as

ẋ1 = f 1(x1,x2)

ẋ2 = f 2(x1,x2) + G2(x1,x2)u
(3.1)

where x1 ∈ R
n−m, x2 ∈ R

m, and det(G2) 6= 0

The necessary and sufficient conditions for the system transformation of system (2.1) into
the regular form,

x
φ7→

(

x1

x2

)

φ : R
n 7→ R

n ; x1 ∈ R
(n−m) ,x2 ∈ R

(m) , (3.2)

are based on tools from differential geometry. They are found in [48] and are not discussed
in detail in this thesis.

The control unit design for system (3.1) can be performed easily by decomposing it into
two subsystems of lower dimension: The sub-vector x2 is handled as a virtual control input
and selected as a function of the sub-vector x1 to provide desired dynamics in the first
subsystem. This is a design problem in the system of (n−m)th order with m-dimensional
control input. The control of the second subsystem is chosen to set the error between
the real and the desired value of x2 asymptotically stable. This control problem for a
m-dimensional system is rather simple since the dimension of the state x2 and the control
input u coincide.

The design problem for system (3.1) can be simplified again by partitioning the first equa-
tion of the system (3.1) into two independent subproblems of lower order:

x1
φ17→

(

x11

x12

)

φ1 : R
(n−m) 7→ R

(n−m) ; x11 ∈ R
(n−2m) ,x12 ∈ R

(m) . (3.3)

If required, further simplification of the design procedure is achieved by further partitioning
of the first equation of the resulting systems. This decomposition of the original design
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problem into a set of trivial ones with equal dimension of control input and state is called
BCF.

Definition 3.2: Block Control Form.
A nonlinear system (2.1) in Block Control Form is given as

ẋi = f i(xr, . . . ,xi) + Gi(xr, . . . ,xi)xi−1 for i = 2 . . . r

ẋ1 = f 1(xr, . . . x1) + G1(xr, . . . ,x1)u for i = 1 .
(3.4)

where dim(xi) = m and dim(xr) ≤ m for i = 1 . . . (r − 1). Subsystems with the
state xi (i = 1 . . . r) are called blocks.

The procedure of transformation of the nonlinear system (2.1) into the BCF (3.4) consists
of (r−1) steps. In each step a transformation of a subsystem into the regular form is done.
Therefore, a system transformation into the BCF exists, if in each step the necessary and
sufficient conditions for the transformation of the considered subsystem into the regular
form, which are given in [48], are fulfilled. In [44, 45] the existence conditions of the BCF
(3.4) for nonlinear systems are given. They also hold for systems with a control matrix of
incomplete rank, meaning rank(G) < m.

To realize the control objective limt→inf x∗
r(t) = 0 for system (3.4), following the BCP, the

control unit design is done as follows: The state of the second block xr−1 is handled as
virtual control input for the first block in order to assign a desired dynamics ẋ∗

r = f ∗
r(x

∗
r),

e.g. ẋ∗
r = Λx∗

r with matrix Λ satisfying the Hurwitz condition. To realize these desired
dynamics ẋr

∗, derived from (3.4) the virtual control input

x∗
r−1 = G+

r

(

f ∗
r(x

∗
r) − f r(x

∗
r)

)

= f̃ r−1(x
∗
r) (3.5)

is required. For the following block, the dynamics of the error between the desired and
real value of the virtual control input is assigned to be asymptotically stable. Following
(3.4), the dynamics of the error

sr−1 = xr−1 − x∗
r−1 (3.6)

results in

ṡr−1 = ẋr−1 − f̃ r−1(x
∗
r) (3.7)

= f r−1(xr ,xr−1) + Gr−1(xr ,xr−1)xr−2 − f̃ r−1(x
∗
r) . (3.8)

Based on (3.8), a desired behavior ṡ∗
r−1 = f ∗

r(s
∗
r−1) can be realized by choosing the virtual

control input

x∗
r−2 = G+

r−1(x
∗
r ,x∗

r−1)
(

ṡ∗
r−1 − f r−1(x

∗
r ,x∗

r−1) + f̃ r−1(x
∗
r)

)

= f̃ r−2(x
∗
r ,x∗

r−1) .

This procedure is repeated for each block (i = (r − 2) . . . 2). The desired dynamics for

ṡi = ẋi − f̃ i(x
∗
r , . . . ,x∗

i+1) (3.9)

= f i(xr , . . . ,xi) + Gi(xr , . . . ,xi)xi−1 − f̃ i(x
∗
r , . . . ,x∗

i+1) (3.10)
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is realized by the virtual control input

x∗
i−1 = G+

i (x∗
r , . . . ,x∗

i )
(

ṡ∗
i − f̃ i(x

∗
r , . . . ,x∗

i ) + f i(xr , . . . ,xi+1)
)

= f̃ i−1(x
∗
r , . . . ,x∗

i ) .

Finally, the desired dynamics for the last block is calculated with

x∗
1 = G+

2 (x∗
r . . . ,x∗

2)
(

ṡ∗
2 − f 2(x

∗
r , . . . ,x∗

1) + f̃ 2(x
∗
r , . . . ,x∗

3)
)

= f̃ 1(x
∗
r , . . . ,x∗

2)

and the feedback control u(x) has to be chosen such that

s1 = x1 − x∗
1 = 0 (3.11)

is fulfilled. Regarding (3.4), follows

ṡ1 = ẋ1 − f̃ 1(x
∗
r , . . . ,x∗

2) (3.12)

= f 1(xr , . . . ,x1) + G1(xr , . . . ,x1)u − f̃ 1(x
∗
r , . . . ,x∗

2) . (3.13)

A linear feedback to establish limt→∞ s1 = 0 could be

u = G+
1 (xr . . . ,x1)

(

Λ1s1 − f 1(xr , . . . ,x1) + f̃ 1(x , . . . ,x2)
)

, (3.14)

where matrix Λ1 has to fulfill the Hurwitz condition in order to guarantee asymptotic
stability. A discontinuous control could be

u = −M sign(s1) , M ∈ R
m×m (3.15)

by selecting M based on the design methodology of sliding mode control. Then sliding
mode is enforced on the surface s1 = 0 and leads to

s1 = 0 (3.16)

after a finite time.

If the error s1 gets zero in finite or infinite time all other desired dynamics is realized and

ẋ∗
i = f̃

∗
i (x

∗
r , . . . ,x∗

i+1) , i = 2 . . . r . (3.17)

The resulting motion of the system is described by pre-selected desired dynamics. Using
the BCP the initial design problem is reduced to r simple subproblems. Control laws have
to be found only for subsystems of low order with equal dimensions of the control input
and the state.

3.2 Problem Statement

The BCP simplifies the design procedure. However, for high-order systems, the principle
may complicate the control unit design. A problem arises from the potentially high number
of subproblems necessary to be solved. It can be very large and correspondingly, a very
large number of coordinate transformations is needed to get the system into the BCF, a
system description the BCP can be applied to. In addition, for nonlinear systems, these
coordinate transformations may not always exist [48]. Therefore, in this chapter a new
control algorithm is developed. It is applicable to systems in generalized block control form
(GBCF). Compared to the BCP the GBCP requires less system transformations during the
design procedure and it preserves the design simplicity of subsystems in canonical form.
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3.2 Problem Statement

The GBCP is applicable to systems in GBCF. As systems in BCF, systems in GBCF consist
of r subsystems and the state of each subsystem can be seen as intermediate control input
for the preceding subsystem. But in contrast to the BCF, the subsystems are given in
canonical form. This means that the dimension of the intermediate control xi−1 may be
less than the dimension of the state xi for i = 2 . . . r. The system dynamics of a block
does not have to be linearly dependent on the state of the preceding block.

Definition 3.3: Generalized Block Control Form.
A nonlinear system (2.1) in Generalized Block Control Form (GBCF) is given as

(ni)
x i,1 =

(ni−1)
x i,2= . . . = ẋi,ni

= fi(xr, . . . ,xi ,xi−1) for i = 2 . . . r

(3.18)

(n1)
x 1,1 =

(n1−1)
x 1,2= . . . = ẋ1,n1

= f1(xr, . . . ,x1) + gT
1 (xr, . . . ,x1)u for i = 1

where subsystems with the state xi (i = 1 . . . r), xT
i = [xi,1 . . . xi,ni

] ∈ R
ni are

called blocks.

The system transformation into the GBCF follows the methods from the BCF. But the sys-
tem decomposition into independent subsystems is stopped as soon as subsystems in canon-
ical form appear. This way, additional blocks and system transformations are avoided. It
is not efficient to decompose all subsystems, because for systems in canonical form the con-
trol input may be found easily in terms of the original blocks even if the control dimension
is less than that of the system.

Example 3.5 (Illustration of the Inefficiency of the BCP)
The system

ẍ2 = f2(x1, x2, ẋ1, ẋ2)

ẍ1 = f1(x1, x2, ẋ1, ẋ2) + g2(x1, x2, ẋ1, ẋ2)u ,
(3.19)

is given in GBCF (3.18) and not in BCF (3.4) since for both blocks the dimension of the control
input is one and therefore lower than the dimension of the blocks themselves, which is two. To
assign desired right-hand sides for each block of the system (3.19), for example

ẍ∗
1 = −c1x

∗
1 − c2ẋ

∗
1 (3.20)

with the control parameters c1 and c2 satisfying the Hurwitz conditions, a simple algebraic
equations has to be solved with respect to control. The desired dynamics (3.20) holds, if

−c1x1 − c2ẋ1
!
= f1(x1, x2, ẋ1, ẋ2) + g2(x1, x2, ẋ1, ẋ2)u

∗ (3.21)

↔ u∗ =
−c1x1 − c2ẋ1 − f1(x1, x2, ẋ1, ẋ2)

g2(x1, x2, ẋ1, ẋ2)
, g2 6= 0 . (3.22)

Application of the BCP would be much more complicated. It would require two system trans-
formations and lead to four equations for which desired dynamics has to be assigned.

Nevertheless, the direct application of the BCP to systems in GBCF is not always possible,
as it may lead to unstable internal dynamics. Therefore new methods have to be developed.
The new design method is referred to as the GBCP.
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3 The Generalized Block Control Principle

Remark 3.1 (The Hidden Problem of Unstable Internal Dynamics) In [78] the
problem of unstable internal dynamics is illustrated. As an example, a rotational inverted
pendulum system is regarded, that is actuated by a DC motor (Figure 3.1).

 

u

θ0

θ1

m1 , J1

b1

DC
motor

Figure 3.1: Rotational inverted pendulum system.

The system dynamics is of fourth order, dynamics of the rotational angle of the dc motor
θ̈0 are influenced by friction and torque input u, dynamics of the inverted pendulum θ̈1 are
characterized by friction, gravity and torque caused by base rotation:

J0θ̈0 = K1θ̇0 + u

J1θ̈1 = −K2θ̇1 +
mgl

sin
θ1 −

K1K3

J0

θ̇0 +
K3

J0

u .
(3.23)

In these equations J0 , J1 , l ,m , g ,K1 , K2 , K3 ∈ R
+ represent model parameters. The

state transformation

(θ0 , θ1) 7→ (v = θ0 −
J1

K3

θ1, θ1) (3.24)

yields new system equations

v̈ =
K2

K3

θ̇1 −
mgl

K3

sin θ1

θ̈1 = −K3K1

J0J1

v̇ − (
K2

J1

+
K1

J0

)θ̇1 +
mgl

J1

sin θ1 +
K3

J0J1

u

(3.25)

in the GBCF (3.18), but in contrast to (3.4), dim(xi) > dim(u) holds (dim(x1) =
dim(x2) = 2; dim(u) = 1). The decomposition into two subsystems is illustrated in Fig-
ure 3.2. The electromechanical system (3.25) and respectively system (3.23) are under-
actuated systems. They have fewer control inputs than degrees of freedom.

u

θ̈ = f1(θ1 , θ̇1 , v̇ , u) v̈ = f2(θ1 , θ̇1)
θ1, θ̇1

v̇

v

Figure 3.2: Subsystems of the rotational inverted pendulum system in the GBCF, see (3.25).
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3.3 The Design Principle for Nonlinear Finite Systems

Now, following the GBCP, the state of the second block (θ1, θ̇1) is handled as fictitious
control for the first block in such a way that

v̈∗ =
K2

K3

θ̇∗1 −
mgl

K3

sin θ∗1 = −c1v
∗ − c2v̇

∗ (c1,2 ∈ R) (3.26)

is the desired equation for v. Assuming θ∗1 is realized by appropriate feedback control,
resulting dynamics is

s =
K2

K3

θ̇∗1 −
mgl

K3

sin θ∗1 + c1v + c2v̇ = 0 . (3.27)

Although the state v decays at the desired rate, the equilibrium point θ1 = 0 of the system
is unstable, since for s = 0 and v = 0

lim
t→∞

v(t) = 0 → θ̇1 =
mgl

K2

sin θ1 (3.28)

and the state θ1 is diverging. With regard to the control objective s = 0 unstable zero
dynamics appears and the direct application of the proposed design methodology to an
under-actuated system fails.

3.3 The Design Principle for Nonlinear Finite Systems

In this section the design approach given in [78] for interconnected systems of second
order is extended. For a start, the resulting design principle- the GBCP- is introduced for
systems consisting of two blocks of arbitrary order in canonical form.

Systems given in GBCF (3.18) consisting of two blocks of arbitrary order in canonical form
are described by

(n2)
x 2,1=

(n2−1)
x 2,2= . . . = ẋ2,n2

= f2(x2 ,x1)

(n1)
x 1,1=

(n1−1)
x 1,2= . . . = ẋ1,n1

= f1(x2 ,x1) + gT
1 (x2 ,x1)u

(3.29)

or summarized for substates

ẋ2 = f 2(x2 ,x1)

ẋ1 = f 1(x2 ,x1) + G1(x2 ,x1)u
(3.30)

where xT
i = [xi,1 . . . xi,ni

] ∈ R
ni for i = 1, 2, u ∈ R

m, and g1(x2 ,x1)) 6= 0, or respectively
G1(x2 ,x1) 6= 0. In Figure 3.3 the structure of the system is illustrated. It is assumed
that the origin in the state space is an equilibrium point of the system, meaning

0 = f 2(x2 = 0 ,x1 = 0) (3.31)

0 = f 1(x2 = 0 ,x1 = 0) . (3.32)
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3 The Generalized Block Control Principle

∫

u x1 x2f 1(x2 ,x1) + G1(x2 ,x1)u f 2(x2 ,x1)

Figure 3.3: Structure of a system in GBCF consisting of two blocks of arbitrary order in
canonical form. In contrast to the BCF the condition dim(xi) ≤ dim(u) for i = 1, 2 is
not required. The dimension of the substates x1 or x2 can be higher than that of the
control input u.

As long as the dimension of the dimension of the state of the first block x2 is not higher
than the dimension of the intermediate control input x1 - n1 ≥ n2 - the GBCP is directly
applicable, because there are no internal dynamics which can become unstable. But, as
explained in the preceding section, if the dimension of the intermediate control input x1

is less than the dimension of the first block x2 - n1 < n2 - the direct application of the
GBCP may lead to unstable zero dynamics. Regarding (3.29), this happens, because the
block dynamics ẋ2 may not only depend on the first time derivative of the control input of
the preceding block u but also on its higher time derivates of u̇ , ü , . . .. In the following,
aspects of the control design based on the GBCP are explained. Systems for which the the
zero dynamics with substate x1 as output is stable or with substate x2 as output is stable
as well as system for which the dynamics ẋ2 does not depend on the time derivatives of
the subspace x1 are discussed in detail.

Case 1: The Zero Dynamics with Substate x1 as Output Is Stable

The zero dynamics with the substate x1 as output is given by the first equation of (3.30)
with x1 = 0:

ẋ2 = f 2(x1 = 0, x2) (3.33)

It is of the same order as the substate x2. In case it is stable, the overall system is stabilized
by enforcing

s = x1,n1
− x∗

1,n1
= 0 (3.34)

e.g. with

ẋ∗
1,n1

=

n1−1
∑

i=1

λi x1,i (3.35)

where the coefficients λi satisfy the Hurwitz conditions. The control objective (3.34) can
be realized in finite time if a discontinuous control input

u = −m sign(s) , m ∈ R
m (3.36)

is chosen with selecting vector m based on the design methodology of sliding mode control.
Hereby, condition rank(G1) = m has to be fulfilled. Then, if s = 0 the state x1 decays to
zero and due to the stability of the zero dynamics (3.33) the substate x2 decays as well.
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Case 2: The Zero Dynamics with Substate x2 as Output Is Stable

The zero dynamics with the substate x2 as output is given by the first equation of (3.30)
with x2 = 0:

f 2(x2 = 0 ,x1) = 0 (3.37)

This dynamics is of less order than the one governed in (3.33). In case it is stable, the
overall system is stabilized by enforcing

s = f2(x2 ,x1) − x∗
2,n2

= 0 (3.38)

e.g. with

ẋ∗
2,n2

=

n2−1
∑

i=1

λi x2,i (3.39)

where the coefficients λi satisfy the Hurwitz conditions. Then the control objective (3.38)
can be realized in finite time if a discontinuous control input

u = −m sign(s) , m ∈ R
m (3.40)

is chosen with selecting vector m based on the design methodology of sliding mode control.
Hereby, condition rank(G1) = m has to be fulfilled. Then, if s = 0

ẋ2,n2
= f2(x2 ,x1) =

n2−1
∑

i=1

λi x2,i (3.41)

and the state variable x2,n2
decays to zero. Consequently, the subspace x2 decays to zero

and due to the stability of the zero dynamics (3.37) the substate x1 decays as well. The
assumption dim(x2) ≤ dim(x1) guarantees that all components of ṡ can be influenced by
the control input u.

Case 3: The Dynamics ẋ2 Does Not Depend on the Time Derivatives of the
Substate x1

If the dynamics of the subspace x2 does not depend on the time derivatives of the state
variable x1,n1

,

(n2)
x 2,1=

(n2−1)
x 2,2= . . . = f2(x2 , x1,n1

) (3.42)

the system of the new class (3.29) can be stabilized similar to [78]. Sliding mode is enforced
on the manifold

s1 =

(n2−1)
∑

i=0

ci

(i)
s = 0 , (3.43)

where the coefficients ci satisfy the Hurwitz conditions. Hereby

s = f2(x2 , x1,n1
) − x∗

2,n2
= 0 (3.44)
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e.g. with

ẋ∗
2,n2

=

n2−1
∑

i=1

λi x2,i (3.45)

where the coefficients λi satisfy the Hurwitz conditions. For this case stability of zero
dynamics is not required. Regarding (3.45), if s = 0, s tends to zero and based on (3.44)

n2−1
∑

i=1

λi x2,i = f2(x2 ,x1) = ẋ2,n2
(3.46)

is obtained. As a result the state variable x2,n2
decays to zero. Consequently, the subspace

x2 decays to zero. Finally, the substate x1 is calculated from the algebraic equations 0 =
f2(x2 , x1,n1

). Because the origin of the state space is an equilibrium point of the system,
the substate x1 decays to zero as well. As in Case 2 the assumption dim(x2) ≤ dim(x1)
guarantees that all components of ṡ can be influenced by the control input u.

Remark 3.2 (How to Find the Right System Transformation) There are special
systems of the class (3.29) with unstable zero dynamics for which system transforma-
tions exist that transform the system into a form that fits in Case 3. It is assumed that
f 1 is an affine function with respect to ẋ1,

ẋ2 = f 21(x2,x1) + f 22(x1)ẋ1

ẋ1 = f 1(x2,x1) + gT
1 (x2 ,x1)u .

(3.47)

Now even if the zero dynamics with x2 as output

0 = f 21(x2 = 0 ,x1) + f 22(x1)ẋ1 (3.48)

is unstable, the system can be stabilized based on the GBCP. The state transformation

(x2 ,x1) 7→ (v = x2 − φ(x1) ,x2) (3.49)

yields the system equations

v̇ = f 21 (x2 ,v + φ(x2)) + f ′
22(x2)ẋ2 −

∂φ(x2)

∂x2

ẋ2

ẋ1 = f 1(x2 ,x1) + gT
1 (x2 ,x1)u .

(3.50)

If the transformation function φ(x2) is chosen in such a way that ∂φ(x2)
∂x2

= f 22(x2), the
first block does not depend on the derivative of the state of the second block. The GBCP
is applicable to the resulting reduced order system

v̇ = f 21 (x2,v + φ(x2))

ẋ1 = f 2(x2 ,x1) + gT
2 (x1 ,x2)u

(3.51)

The state x2 is handled as an intermediate control input. It is realized after a finite time
transient by enforcing sliding mode in the manifold

s = x2 − x∗
2 = 0 . (3.52)
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3.3 The Design Principle for Nonlinear Finite Systems

Remark 3.3 The described design methods are applicable to systems fulfilling the con-
dition n2 ≤ n1. If this condition does not hold, the design procedure explained in [45, 44]
can be used.

Example 3.6 (Application of the Proposed Coordinate Transformation [78])
The inverted rotational pendulum will be considered again. As illustrated in Remark 3.1 direct
application of the GBCP to system (3.25) yields unstable zero dynamics. This problem can be
solved by applying a coordinate transformation such that the first block after decomposition
does not depend on the derivative as offered in [78] and explained in Remark 3.2. The state
transformation

(v, θ1) 7→ (w = v̇ −
K2

K3
θ1, θ1) (3.53)

yields to

ẇ = −mgl

K3
sin θ1

θ̈1 = −K1K3

J0J1
w − (

K2

J1
+

K1

J0
)θ̇1 +

mgl

J1
sin θ1 −

K1K2

J0J1
θ1 +

K1K2

J0J1
u .

(3.54)

In the system equations (3.54) the dynamics of the first block is independent of the derivatives of
the state of the second block with respect to time and the in Case 3 described design procedure is
applicable. Following the proposed GBCP a virtual control θ∗1 is determined such that the state
variable w follows desired dynamics

ẇ∗ = −c1w c1 ∈ R
+ . (3.55)

The derivative of the error between the real and the desired dynamics of w

s = ẇ − ẇ∗ =
mgl

K3
sin θ1 + c1w = 0 . (3.56)

with respect to time does not depend on the control input u. But the derivative of

s1 = ṡ + c2s = 0 c2 ∈ R
+ (3.57)

with respect to time depends on the control input u. Therefore sliding mode can be enforced in
the manifold s1 = 0. The condition for existence of sliding mode can be found in [78]. In sliding
mode according to (3.57) limt→∞ s = 0 and regarding (3.55) and (3.56) also limt→∞ w(t) = 0.
Consequently

lim
t→∞

(

mgl

K3
sin θ1

)

= 0 (3.58)

meaning limt→∞ θ1 = 0. Following (3.53) and (3.24) the dynamics of the state variables v and θ0

tend to zero as well,

lim
t→∞

v̇ = lim
t→∞

(w +
K2

K3
θ1) = 0 (3.59)

and

lim
t→∞

θ̇0 = lim
t→∞

(v +
J1

K3
θ1) = 0 . (3.60)
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The offered solution suppresses instability, but it cannot be taken as the final one, because the
coordinate θ0 is not diverging, but tends to some final value, which will generally be different from
zero. Asymptotic stability can be achieved by slightly modifying the function s on the switching
surface s = sin θ1 + c1(w + v) = 0.

The application of the GBCP to two interconnected systems of arbitrary order in canonical
form proves to be fruitful. As long as a coordinate transformation into the system class
described in Case 1, 2 or 3 exists, the problem of unstable zero dynamics can be solved.

3.4 The Design Principle for Infinite Dimensional Systems

The objective of this section is to illustrate the application of the GBCP to infinite di-
mensional systems. As an example, the control of the rotation angle of a torsion bar with
torque as control input is considered. The idea of this control concept is based on a system
transformation into a system with delay and can be found in [23] and [79]. This section
forms the basis for the discussion of the practical issues of the GBCP and the extension of
the existing sliding mode control in order to reject disturbances.

The following control unit design procedure points out two advantages of the GBCP.
Firstly, it shows, that the GBCP is applicable to systems, where the BCP fails. The
motion equations of the flexible shaft system cannot be transformed into a set of blocks
governed by differential equations of the same order as the control input. Secondly, it
illustrates that the GBCP offers an alternative to design control for infinite dimensional
systems base on the accurate model. In contrast to commonly used control strategies which
are based on modal forms, the GBCP does not deal with approximations.

The model of the flexible shaft is introduced in Section 3.4.1. In Section 3.4.2 the model
is changed in order to receive a form that is appropriate for the application of the GBCP.
Finally, the control is designed in Section 3.4.3.

3.4.1 Model of a Flexible Shaft

The system considered is a torsion bar, see Figure 3.4, which belongs to the class of
distributed and therefore infinite dimensional systems. The bar’s length is l, the position
on it is described by the variable x. At position x = 0 the torque M is the input to the
shaft. On the opposite side there is a load with inertia J . The degree of rotation at each
position x is given by the angle

q(x, t) = e(t) + f(x, t) . (3.61)

Angle e is proportional to the torque input M , angle f results from additional torsion
effects.

The dynamics of the flexible shaft is given by the partial differential equation

∂2q(x, t)

∂t2
= a2∂2q(x, t)

∂x2
(3.62)
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M

J

x
l

e(t)e(t) e(t)
f(x, t) f(l, t)

Figure 3.4: Flexible shaft.

where the material constant a is derived from the stiffness of the torsion bar. The boundary
conditions for (3.62) are:

M(0, t) = −GIp
∂q(0, t)

∂x
= −GIp∇q(0, t) and (3.63)

J
∂2q(l, t)

∂t2
= Jq̈(l, t) = −GIp

∂q(l, t)

∂x
= −GIp∇2q(l, t) . (3.64)

The first condition (3.63) describes that on the left side of the torsion bar, only the torque
M(0, t) attacks and causes a deflection ∇q(0, t). This deflection is directed against the
movement generated by M , because M changes the position q(0, t) whereas the rest of the
shaft wants to remain in its original position. Thus M and ∇q have different signs. The
parameter G is a material constant describing the necessary moment to evoke a certain
torsion of the shaft. The parameter Ip is the geometrical moment of inertia of the bar
depending on the shaft’s shape. For the cylindrical shaft with the radius r it is calculated
Ip = π

2
r4.

The second boundary condition (3.64) describes the torque attacking to the right side of
the shaft. The torque given to the system by the load depends linear on the acceleration.
With mL as the mass of the load and rL as its radius and assuming that the load has a
massive cylindrical body th parameter J can be calculated as J = mL

2
r2
L.

3.4.2 System Transformation into the Generalized Block Control
Form

The objective is to control the rotation position q(x, t) of the flexible shaft (3.62) at the
position of the load x = l.

Before the control algorithm is developed in detail, in the following paragraphs some general
considerations are done.

A partial differential equation is an equation containing operators of time and location.

At {q(x, t)} + Ax {q(x, t)} + Bt {u(t)} = 0 (3.65)

35



3 The Generalized Block Control Principle

where At and Bt are operators of time, e.g. derivatives, integrators or delays, and Ax is an
operator which can provide derivatives, integrals or translations with respect to location.
The variable u(t) is a control input to this system. Equation (3.65) cannot be solved by
conventional mathematical methods.

Therefore, the first goal is to transform the mathematical description of the torsion bar
3.62 in such a way that conventional methods are applicable. That is done in two steps
which consist of a Laplace transformation with adjacent solution of the resulting equation
and a retransformation into time domain at the position of the load.

When the Laplace transformation is applied, all operators of time change into the algebraic
functions g1 (p) and g2 (p). Thus an ordinary differential equation with respect to x

g1 (Q(x, p)) + Ax {Q(x, p)} + g2 (U(p)) = 0 (3.66)

is received. The solution of (3.66) can be transformed back into the time domain for the
position x = l. The result is an equation that only contains operators of time forming an
ordinary differential equation with partly delayed arguments in the case of the torsion bar.
This equation is no longer dependent on the variable x.

Ãt {q(l, t)} + B̃t {u(t)} = 0 (3.67)

To this system model conventional control design methods can be applied.

In the case of the flexible shaft this equation consists of derivatives and delays of the
rotation q(l, t) and therefore it is not trivial to solve.

The presented approach to control a distributed system is not universal because it may
lead to dead ends. For example some transformations could not be possible or the ordinary
differential equation into the Laplace domain could not be solvable. How to achieve the
differential-difference equation that is less difficult to control than the the original descrip-
tion of the given sample system (3.62) is described in the following sections in detail.

Step 1: Transfer Function Approach

For applying the Laplace transformation to system (3.62) the initial conditions

q(x, 0) = 0 (3.68)

q̇(x, 0) = 0 (3.69)

are assumed.

The position of the load q(l, t) is considered as the system output and the input torque
M as the control input u(t). The latter is replaced during Laplace transformation by
U(p). Written in the Laplace domain, system (3.62) and the boundary conditions (3.63)
and (3.64) are:

p2Q(x, p) = a2∂2Q(x, p)

∂x2
(3.70)

U(p) = −GIp
∂Q(0, p)

∂x
(3.71)

p2JQ(l, p) = −GIp
∂Q(l, p)

∂x
. (3.72)
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To solve the ordinary differential equation (3.70) the standard approach for finding a
solution of a homogeneous differential equation Q(x) = eλx is applied which delivers the
characteristic polynomial of (3.70):

λ2 − p2

a2
= 0 (3.73)

⇒ λ1/2 = ±p

a
. (3.74)

The solution of the homogeneous differential equation (3.70) is:

Q(x, p) = c1e
p

a
x + c2e

− p

a
x . (3.75)

To find out the parameters c1 and c2 the boundary conditions (3.71) and (3.72) have to by
analyzed for the derivative of (3.75) with respect to x,

∂Q(x, p)

∂x
= c1

p

a
e

p

a
x − c2

p

a
e−

p

a
x . (3.76)

Putting (3.71) and (3.72) into (3.76) leads to the parameters c1 and c2,

c1 =

(

1 − Jap
GIp

)

e−
l
a
p

p
(

(

Jp + GIp

a

)

e
l
a
p +

(

Jp − GIp

a

)

e−
l
a
p
) U(p) (3.77)

c2 =

(

1 + Jap
GIp

)

e
l
a
p

p
(

(

Jp + GIp

a

)

e
l
a
p +

(

Jp − GIp

a

)

e−
l
a
p
) U(p) (3.78)

The solution of (3.75) can be written in the transfer function form Q(x, p) = W (x, p) U(p)
then,

Q(x, p) =

(

1 − Jap
GIp

)

e−
l−x

a
p +

(

1 + Jap
GIp

)

e
l−x

a
p

p
(

(

Jp + GIp

a

)

e
l
a
p +

(

Jp − GIp

a

)

e−
l
a
p
) U(p) . (3.79)

To the system model (3.79) conventional control design methods based on transfer function
system descriptions are applicable. Another option is to transform the system again and
apply design methods into the time domain. Latter approach is is chosen here.

Step 2: Time Domain

The transformation of the transfer function (3.79) into the time domain is done at the
position x = l,

Q(l, p) =
2e−

l
a
p

p
(

(

Jp + GIp

a

)

+
(

Jp − GIp

a

)

e−
2l
a

p
) U(p) . (3.80)
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It yields

p
(

(

Jp +
GIp

a

)

+
(

Jp − GIp

a

)

e−
2l
a

p
)

Q(l, p) = 2e−
l
a
p U(p) (3.81)

Jq̈(t) +
GIp

a
q̇(t) + Jq̈(t − 2τ) − GIp

a
q̇(t − 2τ) = 2u(t − τ) , (3.82)

with τ = l
a
. By setting

s1(t) = q(t) (3.83)

s3(t) = Jq̈(t) +
GIp

a
q̇(t) (3.84)

the difference-differential equation (3.82) can be transformed into the GBCF (3.18),

s̈1(t) = −GIp

Ja
ṡ1(t) +

1

J
s3(t) (3.85)

s3(t) = 2
GIp

a
ṡ1(t − 2τ) − s3(t − 2τ) + 2u(t − τ) . (3.86)

There are two blocks. The differential equation of second order (3.85) represents the first
block. The scalar variable s3 can be seen as virtual control input for it. The second
order difference equation (3.86) forms the second block. It contains all state variables with
delayed arguments but no derivatives. Its control input is u(t).

The step response of the uncontrolled, free motion of system (3.85) can be seen in Fig-
ure 3.5 . A step input torque is applied to the unexcited shaft, so it moves with a constant
acceleration after a possible transient process. A constant acceleration means that the
position is a parabolic function of time, so the shaft’s simulated behavior meets exactly
the expectation.
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Figure 3.5: Simulation results: Trajectory of the rotational angle q(l) at the end of the flexible
shaft. The initial conditions are zero. At time t = 0.01 s the shaft responses to a step in
the moment from 0 Nm to 1 Nm, which is given to the beginning of the shaft.
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Now, the equations of the flexible shaft are retransformed into the time domain and the
system is given in GBCF. In GBCF the differential and difference terms are separated.
This way the control design can be simplified.

3.4.3 Sliding Mode Control Design

Following the GBCP, the control design for the system (3.85 - 3.86) is done in two steps.
In the first step the state s3(t) of the second block (3.86) is considered as virtual control
input for the first block (3.85). To assign desired dynamics for s1(t)

s̈∗1(t) = −GIp

Ja
ṡ∗1(t) +

1

J
s∗3(t) = −c1s

∗
1(t) − c2ṡ

∗
1(t) (c1, c2 ∈ R

+) (3.87)

the state variable s3(t) has to be chosen as

s∗3(t) = k1s
∗
1(t) + k2ṡ

∗
1(t) with k1 = −Jc1 and k2 =

GIp

a
− Jc2 . (3.88)

This choice of s3(t) corresponds with taking a PD-Controller to govern system (3.85). In
the second step the real control input u(t) has to be chosen such that

s(t) = s3(t) − s∗3(t) = 0 (3.89)

is fulfilled. The control input ueq(t) can be calculated based on (3.89) and (3.88)

ueq(t) =
1

2

(

k1s1(t + τ) + k2s2(t + τ) + s3(t − τ) − 2
GIp

a
s2(t − τ)

)

. (3.90)

As system (3.86) is a discrete-time system, a continuous control input ueq(t) necessary
to receive sliding mode in the manifold (3.89) after finite time, only s∗3(t) may show up
discontinuities. It If the input is bounded, u(t) should be of the form

u(t) =

{

ueq(t) |ueq(t)| ≤ |Mmax|
Mmax sign (ueq(t)) |ueq(t)| > |Mmax|

, (3.91)

where Mmax is the maximal torque that can be given to the system.

Remark 3.4 (Identification of s1(t + τ ) and s2(t + τ ) = ṡ1(t + τ )) For the im-
plementation of the control ueq(t) all values are known, except those for s1(t + τ) and
s2(t + τ) which have to be estimated. Therefore system (3.85) is needed again. With

s2(t) = ṡ1(t) (3.92)

it can be written as
(

ṡ1(t)
ṡ2(t)

)

= A

(

s1(t)
s2(t)

)

+
1

J

(

0
s3(t)

)

(3.93)
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where A =

(

0 1

0 −GIp

aJ

)

. The analytical solution of the above system is:

(

s1(t)
s2(t)

)

= eAt

(

s1(0)
s2(0)

)

+
1

J

∫ t

0

eA(t−ξ)

(

0
s3(ξ)

)

dξ p (3.94)

Substituting t by t + τ in (3.94), it can easily be shown that the following extrapolator is
reached and estimates the values of s1(t + τ) and s2(t + τ).

(

s1(t + τ)
s2(t + τ)

)

= eAτ

(

s1(t)
s2(t)

)

+
1

J

∫ t+τ

t

eA(t+τ−ξ)

(

0
s3(ξ)

)

dξ (3.95)

with

s3(ξ) = 2
GIp

a
s2(ξ − 2τ) − s3(ξ − 2τ) + 2u(ξ − τ) − TL(ξ) − TL(ξ − 2τ)

and t ≤ ξ ≤ t + τ p

Because of this definition of s3(t) with delayed variables, it is possible to solve the integral
appearing in (3.95) and so the missing values of s1(t + τ) and s2(t + τ) can be found
according to [79].

There is no zero dynamics. If the error s(t) gets zero in finite time, the desired dynamics
(3.88) are realized. The resulting motion of the system is described by (3.87). If the
parameters c1 and c2 fulfill the Hurwitz condition asymptotic stability is guaranteed.

The result of the sliding mode control applied to system (3.85), (3.86) is illustrated in
Figure 3.6 . Initially the system is unexcited. At time 1s, the target position of the shaft
jumps to 1rad and it can be seen how the system follows and reaches the new target
position.

The derived control strategy for the flexible shaft has got two weak points: It requires
information of all state variables, but in applications the variables ṡ1 and s3 cannot always
be measured. Moreover, the GBCP calculates the desired dynamics based on a system
model. Uncertain system parameters and unknown disturbances may lead to calculation
errors and reduced control performance. In the following section these practical issues of
the GBCP are discussed in detail.

3.5 Practical Issues

This section focuses on two practical issues of the GBCP. These are the necessity of com-
plete state information and the problem of reduced robustness of sliding mode controls
which are developed based on the GBCP. Both application challenges as are discussed
examplarily for the system of the flexible shaft, which is in introduced in Section 3.4. In
Section 3.5.1 required observers are derived. In Section 3.5.2 as a solution to the problem
of reduced robustness, a disturbance rejection method is developed.

The BCP deals with the same implementation problems as the GBCP. The methods pro-
posed in this section can be applied to BCP problems without any changes.
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Figure 3.6: Simulation results: Sliding Mode controlled flexible shaft system. The initial
conditions are zero. At time t = 1 s the shaft response to a step in the input position
q(0, t) from 0 rad to 1 rad.

3.5.1 Observers

The in Section 3.4.3 presented sliding mode control needs the state variables s1, ṡ1 and s3

as input variables at different times. It is assumed that only the current rotation position
s1(t) of the torsion bar can be measured. Thus, to find the missing variables an observer is
implemented. This thesis proposes a sliding mode observer that consists of a parallel model
of the flexible shaft with approximated system parameters as illustrated in Figure 3.7.

−

u(t) s1(t)

ŝ1(t)
ŝ2(t)

ŝ3(t)

shaft

control

observer

Figure 3.7: Observer architecture for the flexible shaft system.
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Based on the system equations (3.85 - 3.86) the observer dynamics is assigned

˙̂s1(t) = ŝ2(t) − V1 sign (ŝ1(t) − s1(t))

˙̂s2(t) = −GIp

aJ
ŝ2(t) +

1

J
ŝ3(t) − V2 sign (ŝ1(t) − s1(t))

ŝ3(t) = −ŝ3(t − 2τ) + 2
GIp

a
ŝ2(t − 2τ) + 2u(t − τ)

(3.96)

with V1 > 0 and V2 = l V1 ; l > 0. The variables ŝ1(t), ŝ2(t) and ŝ3(t) are the estimates of
the the variables s1(t), s2(t) = ṡ1(t) and s3(t). If the estimation errors are defined as

s̄i(t) = ŝi(t) − si(t) for i = 1, 2, 3 (3.97)

the error dynamics is

˙̄s1(t) = s̄2(t) − V1 sign (s̄1(t)) (3.98)

˙̄s2(t) = −GIp

aJ
s̄2(t) +

1

J
s̄3(t) − V2 sign (s̄1(t)) (3.99)

s̄3(t) = −s̄3(t − 2τ) + 2
GIp

a
s̄2(t − 2τ) . (3.100)

The stability of the sliding mode observer is shown in three steps. First, it is shown that
s̄1(t) = 0 is reached in finite time. Then it is proved one after the other that s̄2(t) = 0 and
finally s̄3(t) = 0 is reached asymptotically.

Observation of s1(t)

To prove the stability of the observer for s1(t), it is shown, that sliding mode is enforced
in the manifold

s̄1(t) = 0 . (3.101)

The continuously differentiable Lyapunov function

V (t) =
1

2
s̄2
1(t) (3.102)

with

V ≥ 0 (3.103)

V = 0 for s̄1(t) = 0 (3.104)

lim
s→∞

V = ∞ (3.105)

is considered. It’s derivative with respect to time is

V̇ (t) = s̄1(t) ˙̄s1(t) = s̄1(t)
(

s̄2(t) − V1 sign(s̄1(t))
)

. (3.106)
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Taking an appropriate choice of V1,

V1 > |s̄2(t)| +
ε

|s̄1(t)|
, (3.107)

follows

V̇ (t) < −ε with ε > 0 (3.108)

and s̄1(t) = 0, that is ŝ1(t) = s1(t), is reached in finite time.

Observation of s2(t)

To demonstrate that ŝ2(t) approaches s2(t) asymptotically, the equation (3.99) is trans-
formed into an ordinary homogeneous differential equation of first order. Then the stability
of this differential equation is proved.

From (3.99) follows

s̄3(t − 2τ) =
GIp

a
s̄2(t − 2τ) + J ˙̄s2(t − 2τ) + JV2 sign (s̄1(t − 2τ)) . (3.109)

Replacing s̄3(t − 2τ) in (3.100) using (3.109) yields

s̄3(t) =
GIp

a
s̄2(t − 2τ) − J ˙̄s2(t − 2τ) − JV2 sign (s̄1(t − 2τ)) (3.110)

and (3.99) can be written as

˙̄s2(t) = −GIp

aJ
s̄2(t) +

GIp

Ja
s̄2(t − 2τ) − ˙̄s2(t − 2τ) − V2 sign (s̄1(t − 2τ)) − V2 sign (s̄1(t)) .

(3.111)

Based on the equivalent control method [74, 75], the discontinuous terms in (3.111) can
be replace by continuous terms

V1 sign(s(t)) = v1,eq(t) (3.112)

V2 sign(s(t)) = lv1,eq(t) . (3.113)

If sliding mode is enforced in the manifold s̄1(t) = 0, equation (3.100) yields

v1,eq(t) = s̄2(t) (3.114)

and

V1 sign(s(t)) = s̄2(t) (3.115)

V2 sign(s(t)) = ls̄2(t) . (3.116)

Finally, the dynamics for s2 can be described by

˙̄s2(t) = −
(

l +
GIp

aJ

)

s̄2(t) +

(

GIp

aJ
− l

)

s̄2(t − 2τ) − ˙̄s2(t − 2τ) . (3.117)

If the ordinary homogeneous differential equation (3.117) provides stable, that is decreas-
ing, solutions, then limt→∞ s̄2(t) = 0. This proof of stability is demonstrated first for the
case of τ approaching zero, which represents a stiff shaft. Then the flexible shaft is consid-
ered. In this case the stability proof is based on a contradiction between the assumption
of the system being instable and the resulting condition of the system being stable.
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Theorem 3.1 In case of a stiff shaft, solutions to (3.117) are stable.

Proof: In case of a stiff shaft

lim
τ→0

s̄2(t − 2τ) = s̄2(t)

holds. Applied to (3.117) follows

˙̄s2(t) = −ls̄2(t), (3.118)

which has stable solution ∀ l > 0.

Theorem 3.2 In case of a flexible shaft, for a certain range of l with l > 0, solutions to
(3.117) are stable.

Proof: To solve the ordinary differential equation (3.117) the standard approach s̄2(t) =
ceλt is applied. The stability of s̄2(t) only depends on the real part of the generally complex
number λ = σ + jυ, which is

ℜ(s̄2(t)) = ceσt cos(υt) (3.119)

The imaginary part does not have any influence on the stability. Therefore, it is sufficient to
base the following proof on the assumption that λ would be real. If the proof is successful,
the system will also be stable in the case of a complex eigenvalue λ.

With λ being real number, the solution s̄2(t) shows monotonic behavior. Then sys-
tem (3.117) can be considered to be monotonic as well, thus,it is not oscillating. So
˙̄s2(t) and its delayed equivalent have the same signs, which also applies to s̄2(t) and its
delayed correspondent. That means

˙̄s2(t) · ˙̄s2(t − 2τ) > 0

s̄2(t) · s̄2(t − 2τ) > 0 .
(3.120)

It is assumed that the system (3.117) is unstable or periodically stable but not asymptot-
ically stable. Then, following the consideration above, the condition

| ˙̄s2(t − 2τ)| ≤ | ˙̄s2(t)| (3.121)

|s̄2(t − 2τ)| ≤ |s̄2(t)| (3.122)

holds. Additionally, the variable s̄2(t) has the same sign as ˙̄s2(t) in case of an instability.
This also applies to s̄2(t − 2τ) and ˙̄s2(t − 2τ),

s̄2(t) ˙̄s2(t) > 0

s̄2(t − 2τ) ˙̄s2(t − 2τ) > 0 .
(3.123)
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Looking at the continuous differential equation in a certain time interval t1 ≤ t ≤ t2 with
t1, t2 ∈ [0;∞), it is possible to find in such an interval with an appropriate choice of t1 and
t2 an upper limit of difference between the state variables and their delayed equivalents.
Replacing the actual differences at each time t ∈ [t1; t2] by this maximum deviation for
the whole time interval, this represents the worst case of instability. Another similar and
conservative proceeding is achieved, if at each time t ∈ [t1; t2] a factor describing a linear
relation between s̄2(t) and s̄2(t − 2τ) like s̄2(t − 2τ) = cs̄2(t) can be set up. Taking the
lowest factor appearing in this interval as a constant factor for all relations in this time
interval, the worst case of instability is assumed. When the factor goes versus zero, then
the difference between s̄2(t) and its delayed form approaches infinity. So for the estimation
error s̄2(t−2τ), its derivative with respect to time ˙̄s2(t) and its delayed equivalent ˙̄s2(t−2τ),
linear relations can be introduced for the special time interval [t1; t2],

| ˙̄s2(t − 2τ)| ≥ c1 | ˙̄s2(t)| (3.124)

|s̄2(t − 2τ)| ≥ c2 |s̄2(t)| . (3.125)

Knowing that s̄2(t) and s̄2(t− 2τ) have the same signs, which is also true for their deriva-
tives, c1 > 0 and c2 > 0. The upper limit of c1 and c2 has the value one, which describes
the periodically stable system. Applying relation (3.124) and (3.125) on the differential
equation (3.117), the following result is obtained:

˙̄s2(t) = − l (1 + c2) + GIp

aJ
(1 − c2)

1 + c1

s̄2(t) . (3.126)

Considering 0 < c1 ≤ 1 , 0 < c2 ≤ 1 and l > 0,

l (1 + c2) + GIp

aJ
(1 − c2)

1 + c1

> 0 . (3.127)

Therefore, ˙̄s2(t) and s̄2(t) have different signs, which is contradictory to condition (3.123).
Equation (3.126) describes an asymptotically stable, homogeneous differential equation.
This is controversial to the assumption (3.121), (3.122) that the equation is unstable or
periodically stable.

Thus, resulting from the monotonic properties of s̄2(t), equation (3.126) must be asymp-
totically stable in the time interval t ∈ [t1; t2]. As equation (3.126) is asymptotically
stable in one time interval, it is asymptotically stable in [0;∞] because of its monotony
and the inability of s̄2(t) with the approach (3.119) to change its sign.

The asymptotic stability of the dynamics ˙̄s2(t) is proved and

lim
t→∞

s̄2(t) − ŝ2(t) = s2(t) = 0 . (3.128)

Observation of s3(t)

If limt→∞ s̄2(t) = 0, for the time derivative limt→∞ ˙̄s2(t) = 0 holds as well. Moreover,
if sliding mode is enforced in the manifold s̄1(t) = 0, V1 sign(s(t)) = s̄2(t) With these
assumptions (3.117) leads to

s̄3(t) =
GIp

a
s̄2(t) + J ˙̄s2(t) + Jls̄2(t) (3.129)
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follows s̄3(t) = 0 , and ŝ3(t) = s3(t) .

Now, the stability of the observer (3.96) is proved. Enforcing sliding mode in the manifold
s̄1(t) = 0 implies s̄2(t) = s̄3(t) = 0 , and thereby ŝ1(t) = s1(t), ŝ2(t) = s2(t) and ŝ3(t) =
s3(t). All not measurable system state variables are now available for the control design.
The transient process of the observer is illustrated in Figures 3.8 - 3.10 and below. In
each figure, the real system state variables s1(t), s2(t) and s3(t) are compared to the
corresponding estimates. It can be seen that the observer is able to reach the variables
s1(t), s2(t) and s3(t) quite fast with s3(t) having the slowest approximation process.
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Figure 3.8: Simulation results: Sliding mode observer output ŝ1(t) following the uncontrolled
system output s1(t) of the flexible shaft. The initial values of the state variables of the
observer and the shaft system are zero, except for s1(0) = −10.

3.5.2 Estimation of Disturbances

This section discusses the problem of reduced robustness of sliding mode control algorithms
that are derived based on the GBCP and the BCP. As a solution, this section presents
disturbance rejections methods. As an example, the in the last section explained sliding
mode control is extended in order to reject disturbances. The developed rejection method
provides a stable, fast and very robust control of the flexible mechanical system. The
proposed control compensates the effects of perturbations completely.

Problem Statement

Generally, sliding mode control is known for its high robustness. But the sliding mode
control algorithm developed in Section 3.4.3 cannot control the flexible shaft system with
disturbances, as illustrated in Figure 3.11. At first, the transient process of the flexible
shaft controlled by sliding mode, known from Figure 3.6, can be seen. When a constant
disturbance in form of torque attacks at the load a constant control error appears. This
happens, because a discrete-time system is considered and there is a continuous control
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Figure 3.9: Simulation results: Sliding mode observer output ŝ2(t) following the uncontrolled
system output s2(t) of the flexible shaft. The initial values of the state variables of the
observer and the shaft system are zero, except for s2(0) = −5.
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Figure 3.10: Simulation results: Sliding mode observer output ŝ3(t) following the uncontrolled
system output s3(t) of the flexible shaft. The initial values of the state variables of the
observer and the shaft system are zero.
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input, thus in contrast to discontinuous control inputs the capability of tolerating errors is
much lower. The control input u(t − τ) is calculated based on modeled system dynamics,
compare (3.90). Any additional unknown term in (3.135) leads to an error s(t) 6= 0 and
consequently, the desired behavior of the system is not achieved.

The GBCP is robust only with respect to the state of the last block, because the discon-
tinuous control is only used to assign desired dynamics in the last block. Nevertheless, if
some informations of disturbances are given, they can be estimated and control gets more
robust.
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Figure 3.11: Simulation results: Sliding mode controlled system. The initial conditions are
zero At time 1s the shaft’s response on a step in the input position q(0, t) from 0 rad to
1 rad. At time 2s a disturbance in form of a 1Nm step is given to the end of the bar. A
constant control error appears.

In literature two main approaches to reject the influence of perturbations on any system
are mentioned [24], [6]. The first is to utilize high gain and the second is to compensate
the disturbances by measuring or knowing them. This thesis follows the second approach.
A control concept is developed, that estimates the unknown disturbances at first and
then compensates them. For that purpose the existing sliding mode control is extended
accordingly.

It is assumed that an additional torque attacks at the end of the shaft. The partial
differential equation describing the behavior of the flexible shaft remains the same

q̈(x, t) = a2 ∂2q(x, t)

∂x2
. (3.130)

But the boundary condition at position x = l changes to

M(0, t) = −GIp
∂q(0, t)

∂x

TL(l, t) + Jq̈(l, t) = −GIp
∂q(l, t)

∂x
(3.131)
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whereas the initial conditions are still zero.

q(x, 0) = 0

q̇(x, 0) = 0

The variable TL represents a disturbance that attacks in form of torque at the load.

As done in Section 3.4.2 the equations (3.130) and (3.131) may be rewritten as a transfer
function in the Laplace domain,

Q(x, p) =

(

1 − Jap
GIp

)

e−
l−x

a
p +

(

1 + Jap
GIp

)

e
l−x

a
p

p
(

(

Jp + GIp

a

)

e
l
a
p +

(

Jp − GIp

a

)

e−
l
a
p
) U(p)

+
−

(

e
x
a
p + e−

x
a
p
)

p
(

(

Jp + GIp

a

)

e
l
a
p +

(

Jp − GIp

a

)

e−
l
a
p
) TL(l, p) . (3.132)

Evaluating (3.132) at position x = l delivers the transfer function which can be transformed
back into the time domain.

Q(l, p) =
2e−

l
a
p

p
(

(

Jp + GIp

a

)

+
(

Jp − GIp

a

)

e−
2l
a

p
) U(p)

− 1 + e−
2l
a

p

p
(

(

Jp + GIp

a

)

+
(

Jp − GIp

a

)

e−
2l
a

p
) TL(l, p) (3.133)

Completing the retransformation, the differential equation with delay

Jq̈(t) +
GIp

a
q̇(t) + Jq̈(t − 2τ) − GIp

a
q̇(t − 2τ)

= 2u(t − τ) − TL(t) − TL(t − 2τ)
(3.134)

is achieved. Writing (3.134) as a differential-difference system in block-control form, the
following result is obtained:

s̈1(t) = −GIp

aJ
ṡ1 +

1

J
s3 (3.135)

s3(t) = 2
GIp

a
ṡ1(t − 2τ) + s3(t − τ) − s3(t − 2τ) + 2u(t − τ) − TL(t) − TL(t − 2τ)

(3.136)

Remark 3.5 When developing a control architecture that compensates the disturbance
applied to the load of the system, then at first it has to be shown that it is possible at all
to reject such a perturbation. For this purpose, it is generally expected that the control
input and the disturbance fulfill the so called matching condition.
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So this matching condition is certainly not satisfied as the control input is added on
the left side to the shaft and the disturbance attacks on the right side, see (3.131).
This can be interpreted as control input vector and perturbation vector not being
collinear. But this matching condition is too strong for only being interested in con-
trolling the rotation degree q(l, t) at the position of the load. There, the control input
u(t) and the perturbation TL(t) are collinear. According to (3.134), an input u(t)
can be found that compensates the disturbance TL(t) and leads to the desired output
q(l, t). So the sufficient matching condition only valid for the position of the load is fulfilled.

Physically speaking, this means that it is only possible to control the rotation at one
position xc, whereas all other state variables q(x, t) cannot be governed. To achieve the
desired rotation q(xc, t) at the load (xc = l) under influence of perturbations, e.g. keep
q(l, t) equal to zero, it is necessary to apply a certain u(t) at the beginning of the shaft.
This input leads to uncontrollable oscillations along the bar. Only at the end of the shaft
the rotation remains zero and the required torque −TL(t) to compensate the effect of the
disturbance turns up. The disturbed system can be controlled at the position x = l.

Rejecting any kinds of perturbations is a difficult task. In order to simplify the problem,
this thesis assumes that differential equations of the disturbances attacking the system of
the flexible shaft exist and that they are known except of their initial conditions.

In this thesis an observer is built, that estimates the disturbance and then compensates it.
This approach is mathematically speaking similar to extending the existing PD-Controller
s∗3(t) = k1s1(t) + k2s2(t). Depending on the differential equation of the disturbance to be
rejected, different extensions would be necessary. For a constant perturbation for example,
the existing PD-Controller would be supplemented by an I-Component.

Remark 3.6 The assumption, that disturbances are known except of their initial condi-
tions, is not totally unrealistic because it is usually known what types of perturbations
appear in the area the torsion bar is used. These influences could for example be fric-
tion, oscillations, start-up procedures or torque. With these reflections a wide range of
functions of disturbances can be covered, e.g. polynomials, products, exponential and
sinusoidal functions etc.

Sliding Mode Control of the System with Disturbances

The proposed sliding mode control architecture can be seen in Figure 3.12. In contrast to
the architecture presented in Section 3.4.3, a perturbation TL(t) influences the system of
the flexible shaft. The observer equals that of the real system. In order to work correctly, it
requires the value of the disturbance as well. It receives this value T̂L(t) from the estimator
which estimates the unknown perturbation. This estimated value is also put into the sliding
mode control of the whole system to compensate the effect of the real disturbance. The
not yet in detail described blocks are discussed in the paragraphs below.

In the following paragraphs three kinds of disturbances are discussed, all of them attacking
in form of additional torque at the end of the torsion bar, at the load.
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ŝ1(t)

ŝ2(t)
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TL(t)

SMC

SMC shaft

observer

estimator

Figure 3.12: Sliding mode control architecture with disturbance rejection.

At first constant disturbances, e.g. a constant torque applied to the end of the bar which
starts at a certain time t1 with amplitude T̃L, are examined. So it can be described as a
step function

TL(t) = T̃Lσ(t − t1) , (3.137)

whose Laplace transformation is

TL(p) = T̃L
e−t1p

p
(t1 ≥ 0) . (3.138)

The torque could for example result from friction between the load and the environment
or a mass, which is clutched in at time t1 and shall be lifted by a rotation of the shaft. In
this case the friction is independent of the load’s rotation speed.

The second type to be looked at are linear disturbances which consist of a ramp function,
that begins at time t1 with slope T̃L

TL(t) = T̃L (t − t1)σ(t − t1) , (3.139)

where

L{TL(t)} = T̃L
e−t1p

p2
(t1 ≥ 0) . (3.140)

Such linear disturbance function may be caused by a device, which is pressed increasingly
stronger against the load of the shaft. Applications could be brake processes or start-up
procedures.

At last, sinusoidal disturbances are analyzed. The sine-function is again time controlled
with the peak value T̃L.

TL(t) = T̃L sin(t)σ(t − t1) , (3.141)
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Such disturbances appear, if the load is influenced by some irregularitive device that
oscillates. Thus, the torque of the perturbation would increase and decrease periodically
with time t.

With the proposed approach to reject disturbances a really wide range of different pertur-
bations can be covered. The amount dealt with here has been limited to the three cases of
constant, linear and sinusoidal disturbances. Although most perturbations will consist of
nonlinear functions, the choice of the three kinds corresponds with the dominating behav-
ior of a lot of mechanical perturbations in a certain interval. Moreover, the general idea of
rejecting disturbances can be illustrated very good with these three examples.

The sliding mode control design for system (3.135 - 3.136) follows, the proceeding in
Section 3.4.3. To assign desired dynamics for s1(t) (3.87) , the state variable s3(t) has to
be chosen as in (3.88). To guarantee that

s(t) = s3(t) − s∗3(t) = 0 (3.142)

in a finite time interval, the control input u(t) must satisfy the following equation:

ueq(t) =
1

2

(

k1s1(t + τ) + k2s2(t + τ) + s3(t − τ) − 2
GIp

a
s2(t − τ) . . .

+ TL(t + τ) + TL(t − τ)
)

(3.143)

The calculation of the control input now requires informations about the value of the
disturbance.

The values of s1(t) and s2(t) = ṡ1(t) can be estimated with the extrapolator introduced in
Remark 3.4,

(

s1(t + τ)
s2(t + τ)

)

= eAτ

(

s1(t)
s2(t)

)

+
1

J

∫ t+τ

t

eA(t+τ−ξ)

(

0
s3(ξ)

)

dξ (3.144)

where

s3(ξ) = 2
GIp

a
s2(ξ − 2τ) − s3(ξ − 2τ) + 2u(ξ − τ) − TL(ξ) − TL(ξ − 2τ)

and t ≤ ξ ≤ t + τ p

Equations (3.143) and (3.144) contain values of TL at several times. That means, if the
disturbances are not known, values of TL have to be found in a different way. Assuming
the differential equations of the disturbances are known, an observer can be designed to
find the influences on the shaft.

−

s1
∗(t)

ŝ1(t) = s1(t)

T̂L(t)
estimator

form of disturbance TL(t)

Figure 3.13: Estimator of disturbances

52



3.5 Practical Issues

As shown in Figure 3.13, the proposed estimator requires two inputs to calculate the miss-
ing value of a disturbance, The first is some information about the form of the disturbance.
The second is the difference between the reference value and the observer or real system
output

s1
∗(t) − ŝ1(t) = s∗1(t) − s1(t) . (3.145)

In the undisturbed system no steady state error exists. So if a remaining difference occurs,
then it can be concluded that a disturbance attacks the flexible shaft. Based on this error,
the estimator can find the real value of the disturbance. When the perturbation is ap-
proximated, this deviation will vanish. A necessary requirement is that the disturbance is
estimated with a structure that corresponds with the structure of the disturbance. There-
fore the type of perturbation and so its differential equations except their initial conditions
have to be known, so that the accurate structure is provided for the estimator to calculate
the disturbance. This structure is shown below for the three types of perturbations dealt
with in this thesis.

A constant disturbance’s first derivative with respect to time is zero (ṪL(t) = 0). Thus
an integrator is necessary to find the height of this unknown input. For a ramp-like
perturbation two integrators are needed, because its second derivative is zero (T̈L(t) = 0).
No time derivative of a sinusoidal disturbance is zero for all times, so a slightly differ-
ent form of estimator is used here. The second time derivative is defined as follows:
T̈L(t) = −ω2TL(t). Therefore two integrators with a feedback loop, which form a
PT2-function, are applied to estimate the disturbance. So it is possible that the input
of this PT2-function becomes zero as in the cases before, but, however, the disturbance
is estimated accurately. Additionally, the denominator of the PT2-function should be
without damping. Otherwise an input difference between the reference value s∗1(t) and the
system output ŝ1(t) = s1(t) remaining on the value zero would not be achieved.

This way the disturbance at time t can be found. The control input ueq(t) also depends on
several values of TL in the past. To receive these delayed values of TL, the present TL(t)has
to be stored and then may be used when it is necessary. Future disturbances TL(t + τ)
have to be approximated with the knowledge of its previous behavior.

Future values of a perturbation can only be found in continuous parts of a disturbance’s
function. At times of discontinuity, the future values cannot be found. But that is not
a too serious problem, because the error in governing the shaft at this time is primarily
caused by the transient process of the estimator trying to find the disturbance. The not
suitable future value TL(t + τ) only plays a subordinate role in this situation. After the
transient process however, the value of the perturbation lying ahead is necessary to reduce
the difference between the target position and the actual position to zero. Here the future
value of the disturbance is approximated by developing TL(t+τ) in a Taylor Series starting
from TL(t).

TL(t + τ) =
n

∑

i=0

1

i!

∂iTL(t)

∂ti
τ i (3.146)

If n → ∞, the Taylor Series is exact, of course, but as τ is very small (τ < 1 · 10−3s) it
is sufficient for simulation purposes to take n = 2. In order to find TL(t + τ) the first
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and second time derivative of TL(t) must be calculated. To avoid problems with the
derivatives at times of discontinuities, they are filtered. For the purposes of quickness
and stability, a different filter is used for each derivative. A filter of first order is applied
to the first time derivative of TL(t) and a filter of second order to the second time derivative.

Observer

To find the system state variables that are necessary for implementing the sliding mode
control algorithm with disturbance rejection, the in Section 3.5.1 introduced observer has
to be expanded. The perturbation dynamics is added to the observer dynamics.

˙̂s1(t) = ŝ2(t) − V1 sign (ŝ1(t) − s1(t))

˙̂s2(t) = −GIp

aJ
ŝ2(t) +

1

J
ŝ3(t) − V2 sign (ŝ1(t) − s1(t))

ŝ3(t) = −ŝ3(t − 2τ) + 2
GIp

a
ŝ2(t − 2τ) + 2u(t − τ) − TL(t) − TL(t − 2τ)

(3.147)

This observer is also controlled by sliding mode based on the difference between observer
and real output ŝ1(t)− s1(t). The stability of this observer can be proved in the same way
as in Section 3.5.1. This time, the real disturbance and the estimated one compensate each
other, so that s̄3(t) approaches zero. Otherwise, s̄3(t) would become equal to the value of
the disturbance.

Simulation Results

In this section, the theoretically discussed results of the above developed disturbance re-
jection are validated in numerical simulations with Matlab/Simulink.

Firstly, simulation results are given for step-like and ramp-like disturbance functions. Ini-
tially the flexible shaft is unexcited, only the end of the shaft is not zero, s1(t = 0) = 0.5 rad.
At time t = 1 s the reference value jumps from 0 to 1 rad. At time t = 2 s the different
disturbances attack the system.

In case of constant disturbances, see Figure 3.14, the fast response of the observer can
be seen. When the target value changes the sliding mode controlled system (3.135 -
3.136) follows immediately. The trajectory T̂L(t) shows the quick approximation of the
perturbation by the estimator. The step-like disturbance is estimated with an I-controller,
which corresponds to the structure of TL(t) and leads to a control error zero. For reasons
of fast performance and stability, a proportional and a derivative component are added to
the estimator. Because of the transient process of the estimator approximating the new
value TL(t) at the time of the perturbation’s jump, the system output s1(t) reacts slowly to
the disturbance. After a short time period the system approaches the target value again.
During the whole process, the trajectory s̄1 = ŝ1 − s1 demonstrates the abilities of the
observer.
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Figure 3.14: Simulation results: Sliding mode controlled system. The initial conditions are
zero. The system responses to a step in the input position q(0, t) from 0 rad to 1 rad
at time t = 1 s is shown. Additionally, a step-like disturbance attacks at the end of the
torsion bar at time t = 2s.
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Figure 3.15: Simulation results: Close-up of Figure 3.14.
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Figure 3.16 illustrates the behavior of system (3.135) when a ramp-like disturbance attacks.
The disturbance is estimated quickly due to a PD-controller added to the necessary double
I-controller.
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Figure 3.16: Simulation results: Sliding mode controlled system. The initial conditions are
zero. At time t = 1 s the shaft responses to a step in the input position q(0, t) from 0 rad
to 1 rad. Additionally, a ramp-like disturbance with slope T̃L(t) = 1 rad
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Figure 3.17: Simulation results: Close-up of Figure 3.16.
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Figure 3.18 shows the simulation result if a sinusoidal disturbance functions attacks. Ini-
tially the flexible shaft is unexcited, only the end of the shaft is not zero, s1(t = 0) = 0.5 rad.
There is a sinusoidal reference value with frequency ω = 2s−1 and amplitude T̃L = 1rad
starting at time t = 1s. The system output s1(t) = ŝ1(t) oscillates with decreasing ampli-
tude around the trajectory of the target value and tends toward it. At time 2s, a sinusoidal
disturbance with frequency ω = 1s−1 and amplitude T̃L = 1rad attacks the flexible shaft.
Its oscillations around the target value increase a bit at first and then becomes smaller
again. This time, the estimation process of the disturbance features huge oscillations,
which result from the choice of parameters of the PT2-function supported by a P- and
D-component in its nominator.
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Figure 3.18: Simulation results: Sliding mode controlled system. The initial conditions are
zero, At time t = 1 s the shaft responses to a sinusoidal reference value with amplitude
Ad = 1 rad and frequency ω = 2 s−1. Additionally, a sinusoidal disturbance with amplitude
T̃L = 1 rad and frequency ω = 1s−1 attacks the load of the torsion bar at time t = 2 s.

3.5.3 Discussion

In this section the implementation of the sliding mode control algorithm, which was de-
veloped in Section 3.4 was discussed. A concept for the estimation of disturbances and
the observation of not measurable system state variables has been developed. It assumes
that the forms of the disturbances are known, only their initial conditions are not known.
Simulation results illustrated the abilities of the developed control architecture.

The proposed disturbance estimation concept meets the drawback of the GBPC/ BCP
of reduced robustness. By estimating the disturbances and using this information in the
observer and control algorithm the the control performance improves significantly.
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Up to now, the estimator has to be told manually which structure to use for the estimation
process dependent on the form of the differential equation of the disturbance. A switching
logic could be implemented that recognizes the type of perturbation and choose automat-
ically a suitable structure to calculate this unknown influence. This switching logic could
also be extended in a way, that different kinds of disturbances could appear synchronously
and would be estimated accurately.

At the moment, the frequency of a sinusoidal perturbation has to be known to be able
to estimate this disturbance correctly. If the frequency was taken as an additional state
variable of the perturbation, it could be found in a similar way as the estimator of the
disturbances works. When the unknown frequency is constant, then an integrator would
be able to find its value. Thus the PT2-function that is used to approximate sinusoidal
disturbances could have an adaptive frequency, so different values and different forms of
frequencies could be covered.

3.6 Conclusion

In this chapter an existing design procedure was extended to the GBCP, which presents a
closed methodology for the systematic control unit design for electromechanical systems.
Compared to the existing BCP, the GBCP simplifies the control design and does not
require equal dimension of block states and intermediate controls.

Based on the in [23] presented sliding mode control of an flexible shaft an application
example of the GBCP to infinite dimensional systems was given. That proved the appli-
cability of GBCP to a larger system class than the BCP. For the first time, solutions to
implementation problems of sliding mode control based on the GBCP and respectively the
BCP, were given. A new method for disturbance rejection was contributed.

Supplementary to the theoretical considerations in this chapter, in this thesis the GBCP
is tested in experiments. They show the performance of the newly derived theory. It is
applied to control inverted pendulum systems, which are driven by different electric motors.
Chapter 4 considers a DC motor (Section 4.1) and a synchronous motor (Section 4.1) as
actuators. Chapter 5 discusses an induction machine as actuator to control the position of
a mechanical system.
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∗ŝ1

time t / s

en
d

of
sh

af
t
s 1

=
q
(l

)
/

ra
d
·1

04

2.5

2

1.5

1

0.5

0

−0.5

−1

0 2 41 3 5

Figure 3.19: Simulation results: Close-up of Figure 3.18.
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4 The Benefits of Sliding Mode Control of
Electromechanical Systems

Conventional architectures for the trajectory control of mechanical systems use torque or
force -the actual control input of the mechanical subsystem- as the control input of the
feedback loop. Such a control scheme is illustrated in Figure 4.1. The inner control loop,
which regulates the desired torques τ ∗, comprises a control unit and a power amplifier
that provides the supply voltages ua for the electric motor. In most implementations the
power amplifier is based on pulse-width modulation (PWM). It is assumed that the inner
control loop, which provides the desired torques or forces, is fast compared to the outer
control loop of the mechanical system. This inner loop is therefore supposed to be an ideal
source in the ansatz, implying that the given reference torques will be tracked ideally. In
an outer control loop the mechanical part of the system is controlled to follow the reference
signal τ ∗, which represents the desired position and velocity trajectories. The control law
generates desired motor torques τ ∗ that are computed based on the knowledge of the
mechanical variables xmech only.

Control

law

τ ∗x∗

mech uAmplifier

with control unit

Electric

actuator

τ Mechanical

system

xmech

xel

Current/ torque control loop

Figure 4.1: Schematic diagram of a conventional control scheme for a mechanical system
driven by an electric motor.

The application of sliding mode control theory to the shown control loop promises insen-
sitivity to parameter variations and compensation of disturbances. However, it involves a
difficulty:

Forces or torques provided by electric motors are always time-continuous signals. The
is because the current in the motor coil cannot change instantaneously when the volt-
ages at the coil are limited. A conventional sliding mode controller implemented into
the control scheme of Figure 4.1 would produce force/control output signals τ ∗ that are
time-discontinuous on the timescale of the sampling time. The conversion of the time-
discontinuous controller output signals to an actually continuous input signal of the me-
chanical system τ , which is given by the characteristic dynamics of the current/torque
control loop would mean to neglect dynamics in the control loop which results in chatter-
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Controller Controller output τ ∗ Control variable

PID controller continuous continuous
(torques/forces τ ∗)

Conventional control discontinuous continuous
architecture with sliding (torques/forces τ ∗)
mode controller

Sliding mode controller discontinuous discontinuous
that takes actuator dy- (impressed voltages ua)
namics into account

Table 4.1: Comparison of control schemes for electromechanical systems.

ing. If the the conventional control structure of Figure 4.1 is thus used to implement a
discontinuous control, the control loop inherently comprises unmodeled dynamics.

This problem can be dealt with by including actuator dynamics in the system model and
by using voltages as discontinuous control inputs. This idea is shown in Figure 4.2. In
addition to the mechanical variables xmech, the variables of the electrical subsystem xel

are fed back to the controller.

x∗

mech τsliding mode
control

u electric
actuator

mechanical
system

xel

xmech

Figure 4.2: Schematic diagram of the proposed sliding mode control scheme for a mechanical
system driven by an electric motor.

This chapter faces the challenge of sliding mode control for mechanical systems driven by
electric actuators in order to improve robustness of these systems. The key problem of an
increased complexity of the design process due to a more detailed system model is met
by applying the GBCP to the design problems. The application of the proposed control
concept is demonstrated for two sample systems: The position control of an inverted pen-
dulum system driven by a DC motor is considered in Section 4.1. A novel position control
of a synchronous motor is derived in Section 4.2. The benefits of the proposed sliding mode
control are demonstrated in numerical simulations and experiments. Section 4.3 concludes
this chapter.

4.1 Position Control of a DC Motor

Sliding mode control for electromechanical systems is discussed and validated for an in-
verted pendulum as introduced in section A.1 driven by a DC motor and compared to a
linear control structure. First, the state of the art of sliding mode control of DC motors is
summarized in Section 4.1.1 and the model of the electric actuator is given in Section 4.1.2.
Then a sliding mode position control is developed. Subsequently in Section 4.1.4 a lin-
ear control algorithm is derived and an observer is designed in Section 4.1.5. Finally, the
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results of numerical simulations and experimental results are given in Sections 4.1.6 and
discussed in 4.1.7.

4.1.1 State of the Art

Utkin deals with the problem of controlling a DC motor using a sliding mode control
approach in [77] and designs a control algorithm based on a cascaded control structure and
proves that this control structure provides strong robustness. This method only considers
the mechanical part of the system and assumes that the torque can be switched, which
is not possible in practice. However, the neglected electrical dynamics can be excited
by the discontinuous control input leading to the so called chattering phenomenon. In
[79] Utkin also discusses an integrated structure for speed control accomplishing current
control implicitly based on numerical simulations. For the implementation of this control
algorithm angular acceleration in the mechanical system is needed. Cavallo et al. propose
in [10] a sliding mode control with a partial state feedback where only the mechanical
variables of the motor are considered. This approach provides robustness and avoids large
peaks in the input signal of the PWM unit and consequently constant current ripples occur.
The efficiency of sliding mode control approach for a complete electromechanical system
driven by a DC motor has not been analyzed yet.

Several applications of sliding mode control of DC motors, induction motors and syn-
chronous motors have been proposed, e.g. in [77]. In the outer control loop of the control
scheme shown in Figure 4.1 PD or PID control is usually implemented. Moreover, in order
to improve robustness, tracking problems for position and angular speed of a DC motor
also have been solved based on a sliding mode control approach [10]. Improvement of
robustness by adding sliding mode control of mechanical system for an induction motor
drive with forced dynamics has been shown [86]. Nevertheless, this approach still is based
on a cascade control structure assuming fast ideal low-level feedback loops.

4.1.2 Modeling

The dynamics of the electrical system is given by

Li̇ = ua − Rai − Knω (4.1)

where i is the armature current, ua the supplied voltage, Ra the armature resistance and
L the armature inductance; Kn represents the induction constant of the DC motor and ω

the angular velocity. The generated torque of the motor is defined by τ = Kmi, where Km

represents the torque constant.

4.1.3 Sliding Mode Control Algorithm

The electromechanical system consists of a mechanical subsystem

Jθ̈ = mgl sin θ − γω + Kmi (4.2)
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and an electrical subsystem (4.1) as illustrated in Figure 4.3. The control input of the
whole system is the voltage applied to the DC motor, ua. This real control input does
not influence the dynamics of the mechanical subsystem directly, but only the dynamics
of the electrical subsystem. The current i can be treated as intermediate control input of
the mechanical subsystem.

θ
subsystemsubsystem

mechanicalelectrical

ω

ua

i

Figure 4.3: Decomposition into subsystems (inverted pendulum driven by a dc motor).

Based on this decomposition, a control algorithm can be assigned based on the GBCP. In
the first step the intermediate control input current i or the proportionate torque τ = Kmi

is chosen such that the mechanical system follows desired dynamics. Then in the second
step, the real control input, voltage ua, is utilized in order to enforce sliding mode such
that the real torque equals the desired torque.

Desired dynamics for the mechanical system

θ̈ = −c1θ − c2θ̇ c1 , c2 ∈ R
+ (4.3)

is obtained if

−c1θ − c2ω
!
=

mgl

J
sin θ − µ

J
ω +

Km

J
i∗ (4.4)

↔ i∗ = −mgl

Km

sin θ − J

Km

c1θ +
µ − Jc2

Km

ω (4.5)

Finally, the discontinuous control input ua is chosen to set the error between the real and
the desired dynamics of the armature current to zero after a finite time

ua = −ūa sign(s) ūa ∈ R
+ (4.6)

where

s = i∗ − i = 0 . (4.7)

When sliding mode is reached, implying s = 0, the system state will converge to

i = i∗ (4.8)

and the assigned dynamics is realized. This chosen dynamics (4.3) corresponds to the
characteristic polynom

∆s = s2 + c2s + c1 . (4.9)

Choosing the constants of the characteristic polynom as follows

c1 = ω2
0 (4.10)

c2 = 2Dω0 (4.11)

leads to the desired dynamics of a second order system with the damping ratio D and the
characteristic frequency ω0.
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Theorem 4.1 The control law (4.6) enforces sliding mode after a finite time.

Proof: To prove that control law (4.6) fulfills the sliding mode reaching condition (2.14),
variable s is derived with respect to time

ṡ = ˙i∗ − i̇ = ˙i∗ − Ra

L
i +

Kn

L
ω − 1

L
ua (4.12)

→ sṡ = s( ˙i∗ − Ra

L
i +

Kn

L
ω) − s

L
ua (4.13)

= s( ˙i∗ − Ra

L
i +

Kn

L
ω) − ū

L
|s| . (4.14)

There exists a ū > 0 fulfilling the inequation sṡ < 0, since

sṡ < 0 ↔ s( ˙i∗ − Ra

L
i +

Kn

L
ω) <

ū

L
|s| (4.15)

↔ s

|s|(L
˙i∗ − Rai + Knω) < ū (4.16)

where term s
|s| is equal to 1 or −1, the terms L ˙i∗ and Ra

L
i are limited because the current

of the actuator and its slope are limited and the voltage drop Knω is restricted as well.

4.1.4 Linear Control Algorithm

In this section the proposed sliding mode control is compared to the linear control scheme
described in Figure 4.1. In the outer control loop of the electromechanical system only the
state variables representing the angle and angular velocity are included in the control law.
The third variable, the current, is considered as a manipulated variable and controlled by
PWM in the inner electrical control loop. The control law for the mechanical system is
implemented as a feedback linearization control.

The feedback linearization with respect to the output, y = θ, can be realized introducing
the virtual control input

v =
u − Km

J
mgl sin θ

J

(4.17)

leading to the integrator chain below

y = x′
1 (4.18)

ẋ′
1 = x′

2 (4.19)

ẋ′
2 = u . (4.20)

The parameters of the linear feedback loop are calculated based on the ITAE (Integral
Time Multiplied Absolute Error) criterion. As before, damping rate and characteristic
frequency can be assigned.
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4.1.5 Observer Design

In the experimental setup a sliding mode observer is used to estimate the angular velocity ω,
see Figure 4.4.

i

ua

dc motor

sign()

model of
the dc motor

î

w

Figure 4.4: Schematic diagram of the observer.

Assuming that the current i can be measured, based on the dc motor equation (4.1), the
observer dynamics is designed using the following formulation

L
˙̂
i = ua − Raî − w (4.21)

where î is the observed current. If the term w is defined as a switching function of the
tracking error of the observer ī = î − i

w = w̄ sign (̄i) w̄ ∈ R
+ , (4.22)

the error dynamics is

Li̇ = −Rai + Knω − w̄ sign(̄i) . (4.23)

The constant w̄ is chosen in such a way that sliding mode is enforced in the manifold
s = î− i = 0 and ī is set to zero after a finite time. Using the concept of equivalent control
in sliding mode

0 = Knω −
(

w̄ sign(i)
)

eq
(4.24)

is obtained and the angular velocity ω̂ can be estimated as

ω =
(w̄ sign (̄i))eq

Kn

. (4.25)

Theorem 4.2 The control law(4.22) enforces sliding mode after a finite time.

Proof: The sliding mode existence condition can be derived based on (4.1):

Lṡ = L
˙̂
i − Li

= −Ras + Knω − w̄ sign(s)
(4.26)

Next to the sliding manifold s = 0 the term Ras is very small and so it can be neglected.
That implies

w̄ > Knω for s > 0

w̄ > −Knω for s < 0 ,
(4.27)

summarizing w̄ > |Knω|, the existence condition for sliding mode is fulfilled.
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Remark 4.1 In the experimental setup the value of (w̄ sign (̄i))eq can be determined by a
low pass filter

4.1.6 Results

Figure 4.5 shows the trajectories of the angle θ, and angular position ω. Detailed tra-
jectories of the angle can be seen in Figure 4.6. Figure 4.7 illustrates influence of the
control parameters on the transient response of the system. Figure 4.8 shows trajectories
of angular and angular speed if sliding mode is applied and actuator dynamics is taken
into account and if it is not considered.
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Figure 4.5: Simulation results: Sliding mode control and linear control of the electromechan-
ical system with disturbances and parameter variations. Numerical simulations are carried
out using variable stepsize while the minimal stepsize is Ta = 10−6 s. The sampling time
of the controller is assigned as Tsample = 10−4s. In order to provide comparability of sim-
ulation results, the same dynamics for all methods is specified. That means for all control
strategies the dynamics of the closed loop is characterized by ω0 = 500 and D = 1√

2
.

In case of linear control law the current is simulated by PWM control based on 20 kHz
sampling rate. For all systems the control objective is θ = 0 and the initial angle is
θ0 = −0.1 rad. In simulations a disturbance of 1 Nm is added at time t = 0.06 s for a time
period of 0.02 s and the inertia of the mechanical system is set to 110% of the inertia J

used in control design. Friction is neglected (µ = 0). A zero order hold, sampling time
T = 0.0001 s, was added in order to simulate discrete control. In the simulations the
observer is not used.

Figure 4.9 and 4.10 present the trajectories of angle as well as measured current if the
proposed sliding mode control is applied to the electromechanical system described in
Appendix A.1 and A.2. Measurements were repeated for different loads.
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Figure 4.6: Simulation results: Sliding mode control and linear control of the electromechan-
ical system and benchmark control with disturbances and parameter variations- Close up.

4.1.7 Discussion

The efficiency of the sliding mode controller is proved by means of numerical simulations
as well as experiments. The sliding mode control for the electromechanical system, which
was derived based on the GBCP, offers high robustness and fast dynamics.

• Robustness

The sliding mode controlled system proved to be very robust against parameter varia-
tions. Changing the load approximately 5% does not effect performance considerably.
The control objective is achieved without steady state error. The feedback lineariza-
tion as well as pole placement with the help of the ITAE criterion require well known
models. Therefore while using sliding mode control, it is easier to compensate a
perturbation of the torque load.

• Simple Implementation

Implementation of the proposed sliding mode control is simple and stability analysis
can be carried out seamlessly using the sliding mode condition (2.13). Nevertheless,
fast hardware is required: A control unit offering at least 1 kHz sampling rate is
necessary to achieve acceptable results concerning current and angle ripple.

4.2 Position Control of a Synchronous Motor

This section focuses on sliding mode position control of a three-phase permanent magnet
synchronous motor. Firstly, the motor and inverter model are derived in Section 4.2.1.
Then in Section 4.2.2 following the control concept proposed in Figure 4.2 a sliding mode
position control is derived based on the GBCP. Finally the experimental results are pre-
sented in Section 4.2.3 and discussed in Section 4.2.4.
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Figure 4.7: Simulation results: Sliding mode control of the electromechanical system with
disturbances. Transient response for different design parameters. When ω0 is increased
the transient system response is achieved faster.
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Figure 4.8: Simulation results: Sliding mode control of the electromechanical compared to
sliding mode control of the mechanical system. If actuator dynamics is taken into account,
chattering effects are reduced.
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Figure 4.9: Experimental results: Sliding mode control of the electromechanical system. Po-
sition control with different, not assignable loads.
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Figure 4.10: Experimental results: Sliding mode control of the electromechanical system.
Position control with different, not assignable loads- Close up.

4.2.1 Modeling

In a permanent magnet synchronous motor a rotating magnetic field is generated by an
alternating current in the motor windings, which are usually located on the stator. Me-
chanical torque is then generated by attraction and repulsion of one or several permanent
magnets, that are usually located on the rotor. The rotor then starts to rotate with the
permanent magnets aligned to the rotating magnetic field of the motor windings. If an ex-
ternal resisting torque is applied to the shaft, the rotating permanent magnets lag behind
the motion of the rotating field.
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Motor Model

For control unit design the synchronous motor is modeled in rotating rotor coordinates
{d, q}. Unlike in stator coordinates {a, b, c} or {α, β}, where the signals have to be modu-
lated on sine waves in order to propel the machine, the waveform of all variables in rotor
coordinates is unconstrained and the modulation is carried out implicitly during transfor-
mation from rotor to stator coordinates. The model is given by the following differential
equations

Li̇d = −Rid + pωLiq + ud

Li̇q = −Riq + −pωLid +
2

3
kωuq

(4.28)

Jω̇ = kiq − µω + τL

θ̇ = ω .
(4.29)

Here ud and uq are rotor voltages in {d, q} coordinates, id and iq are rotor currents in {d, q}
coordinates, θ is the angular position and ω is the angular velocity of the motor shaft.
Parameters R and L represent respectively the winding resistance and the inductance; J is
the rotor and shaft inertia, p is the number of permanent magnet pole pairs, k is a machine
constant and µ represents the coefficient of friction. Variable τL represents the disturbing
external torque.

Inverter Model

The real control input of the synchronous motor are the switch commands g not the
voltages ud and uq. Based on the inverter model given in Section 5.2.1 the transformations
from switch commands g to voltage uqd and vice versa can be carried out seamlessly.
Besides the transformations described in Section 5.2.1, the transformation from {α, β}
coordinates to {d, q} coordinates is required for control unit design

udq =

[

cos θ sin θ

− sin θ cos θ

]

uαβ (4.30)

uαβ =

[

cos θ − sin θ

sin θ cos θ

]

udq (4.31)

where θ represents the rotor angle. The backward transformation matrix in (4.31) is the
transposed forward transformation matrix in (4.30). The same transformations can be
applied for transformations between stator and rotor currents. The direct transformation
from phase voltage uabc to rotor voltage uqd can be calculated using the matrices in (4.31),
(5.9) and resulting as follows (4.30)

udq =
2

3

[

cos θ cos(θ − 2
3
π) cos(θ − 4

3
π)

− sin θ − sin(θ − 2
3
π) − sin(θ − 4

3
π)

]

uabc (4.32)

uabc =





cos θ − sin θ

cos(θ − 2
3
π) − sin(θ − 2

3
π)

cos(θ − 4
3
π) − sin(θ − 4

3
π)



udq , (4.33)
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after substituting 1
2

= − cos(2
3
π) = − cos(4

3
π) and

√
3

2
= sin(2

3
π) = − sin(4

3
π). The back-

ward transformation matrix in (4.33) is the Moore-Penrose pseudo inverse of the forward
transformation matrix in (4.32).

4.2.2 Sliding Mode Control Design

The position control design for the synchronous motor is accomplished based on the GBCP.
The desired dynamics is chosen so as to provide optimal system dynamics with respect to
a given cost functional.

As illustrated in Figure 4.11, the electromechanical system consists of two subsystems that
are the electrical (4.28) and the mechanical (4.29) ones. The electromagnetic force of the
motor is generated by magnetic attraction and repulsion between the rotating magnetic
field and the permanent magnets. If the system model is given in field oriented coordinates,
the current component iq is oriented parallel to the peak flux of the permanent magnets and
it does not generate any torque. But if the current component id is oriented perpendicular
to the peak flux, it generates torque. This torque is proportional to the current component
iq as long as the machine’s iron is not saturated.

θ
subsystemsubsystem

mechanicalelectrical

ω

udq

τ = kiq

Figure 4.11: Decomposition into subsystems (synchronous motor with load).

Dynamics of the mechanical subsystem described by the state variables

xmech =

(

θ

ω

)

(4.34)

depends only on the current component iq only and it does not depend on the control input

udq =

(

ud

uq

)

, (4.35)

but the dynamics of the electrical subsystem described by the state variables

xel = idq

(

id
iq

)

(4.36)

depends on udq.

Based on this decomposition into subsystems following the GBCP a control algorithm
can be designed as follows: In the first step desired optimal dynamics for the mechanical
subsystem with respect to a given cost functional is assigned. The state of the electrical
subsystem is then handled as a virtual control input for the mechanical subsystem in order
to assign that desired dynamics. In the second step the dynamics of the error between
the desired and real values of the electrical state is assigned to be asymptotically stable.
Therefore the control input udq is used to enforce sliding mode in a manifold, which is
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defined by the error between the real value xel and the desired value x∗
el of the electrical

state:

s = x∗
el − xel = 0 . (4.37)

If sliding mode is enforced, the error s is set to zero after a finite time and the desired
dynamics for the mechanical subsystem is realized.

The resulting control structure is shown in Figure 5.5. In the outer control loop desired
continuous dynamics for the mechanical subsystem is calculated, producing desired contin-
uous dynamics s∗

el for the state of the inner control loop. This desired dynamics is exerted
on the synchronous motor by using a sliding mode control with discontinuous control input
u ∈ R

3 (switched voltages), that is provided by an inverter which itself is controlled by
on/off signals g for the switching devices.

θ∗ sliding mode control
calculation of optimal

dynamics with respect to

a given cost functional
(i∗d and i∗q)

inverter
synchronous

machine

θ, ω
observer

i∗ g u

τ

θ

θ, ω

Figure 4.12: Sliding mode position control for a synchronous motor based on the GBCP.

Desired dynamics of the mechanical system is chosen in such a way that the dissipative
power loss of the synchronous motor is minimized during operation. In Appendix B the
approach how the desired dynamics x∗

mech is found is explained in detail. The result is
then desired acceleration

ω̇∗(t) = Qω0

[

sinh(Qt) − C

S
cosh(Qt)

]

+
QωT

S
cosh(Qt) + . . .

. . . +
Q2S(θT − θ0) − QD(ω0 + ωT )

2D − QTS

[

sinh(Qt) − D

S
cosh(Qt)

]

, (4.38)

which leads to the desired current component following (4.29)

i∗d =
J

k
ω̇∗ + µωτL (4.39)

= fid(θ0, ω0, θT , ωT , T, t) (4.40)

Finally, the discontinuous control input uT
dq = (ud, uq) is chosen to set the error between

real and desired dynamics for the stator current components to zero after a finite time.

udq =

(

sign(s1)

sign(s2)

)

= −U0 sign(s) (4.41)
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where
s1 = i∗d − id = 0

s2 = i∗q − iq = 0 .
(4.42)

When sliding mode is reached, s =
(

s1

s2

)

= 0, the system will converge to

id = i∗d (4.43)

iq = i∗q (4.44)

and the assigned dynamics described by the formulas (B.10) and (B.11) is realized.

Nevertheless, switching takes place in stator coordinates {a, b, c}, while the motor phase
voltages take values from the limited set {−u0, u0}. The switching control law must there-
fore be in the form of

u123 = U signs123 (4.45)

where |U | = u0 and s̃ ∈ R
3 being a transformation of (4.42) in stator coordinates

s123 =





sd cos(pθ) − sq sin(pθ)
sd cos

(

pθ − 2
3
π
)

− sq sin
(

pθ − 2
3
π
)

sd cos
(

pθ − 4
3
π
)

− sq sin
(

pθ − 4
3
π
)



 (4.46)

with [sd sq]
T = s∗ from (4.42).

4.2.3 Experiments

Since the proposed sliding mode controller requires complete state information, an observer
is used to reconstruct the missing state variables ω, ω̇ and id.

Figures 4.13 and 4.14 show the trajectories of the angular position θ if the proposed
control is applied to the test bench which is explained in Appendix A.3. Two different
transition times T were set. Figure 4.13 illustrates the optimal trajectory due to a longer
transition time better whereas Figure 4.14 demonstrates the performance of the controlled
motor. There is no visible difference in the resulting trajectories when the disturbance
is considered, as long as the disturbing torque does not surpass the maximal torque the
motor can handle.

4.2.4 Discussion

The GBPC can be used to design a sliding mode position controller that provides optimal
system dynamics with respect to a given cost functional. During sliding mode the system
dynamics follows an optimal trajectory which is calculated based on well known methods
of constrained continuous dynamic optimization. The developed control algorithm proved
working on a test system. Despite exerting external disturbing torques, the motor reaches
a target position on an optimal path, minimizing its dissipative power losses on the way.

74



4.2 Position Control of a Synchronous Motor

−0.8

−1.0

−1.2

−1.4

−1.6

−1.8

−2.0

−2.2

−2.4

−2.6
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t/ s

θ
/

ra
d

Figure 4.13: Experimental result: Trajectory of the change of the angular position θ when
cost functional minimizing sliding mode control for T = 2 s is applied. Control starts at
time t = 0 s for the condition that the target angle is set to θT = −3 rad. At t = 1 s the
target angle is changed to θT = −1 rad.
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Figure 4.14: Experimental result: Trajectory of the change of the angular position θ when
cost functional minimizing sliding mode control for T = 0.1 s is applied. Control starts at
time t = 0 s for the condition that the target angle is set to θT = −3 rad. At t = 1 s the
target angle is changed to θT = −1 rad.

75



4 The Benefits of Sliding Mode Control of Electromechanical Systems

4.3 Conclusion

In this chapter the problem of chattering, which remains the main obstacle for sliding
mode control theory to be used in modern control applications, was approached. A sliding
mode control concept for mechanical systems that takes actuator dynamics into account
was successfully applied to two electromechanical systems. Numerical simulations and ex-
perimental results prove, that if the control law incorporates the dynamics of the electrical
and mechanical subsystem, chattering effects are reduced while robustness and disturbance
rejection, the main benefits of sliding mode control, are retained. The GBCP allows to
handle the control unit design process for more complex system models that include the
actuator dynamics. The implementation of the control law is simple, since the control
signals are discontinuous and digital to analog converters are not required.

Based on th tools of constrained continuous dynamic optimization, the application of
the GBCP can be extended. In this chapter a three-step control unit design method
was developed to design a sliding mode control strategy, that provides optimal system
dynamics with respect to a given cost functional. It allows a systematic control unit
design and therefore reduces the time to find an appropriate sliding mode control law.

The proposed control scheme reaches its limit, if the switching frequency is too low with re-
spect to the systems inertia. Then the system gets excited by the switching frequency. For
mechanical systems, this can be audible in the best case, but it also may lead to vibration
which eventually fatigues the material. But meanwhile, new switching devices providing
higher frequencies have been developed. Provided that the necessary computations includ-
ing both, control law and state estimation, can be handled on-line at a high enough rate
or the control law and state estimation can be implemented using analog devices, pure
sliding mode control algorithms using switching control laws are a viable and extremely
high performance option if controllers for electromechanical systems have to be found.
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The advantages of induction machines, compared to other electric drives, are their relia-
bility, low-maintenance and their low cost. They are mechanically robust actuators. Their
compactness, small mass moment of inertia and high efficiency are the reasons to employ
them for high-precision position control tasks. However, the control of induction machines
is far from trivial, because even very simplified models are high-dimensional and non-linear.

Sliding mode control theory simplifies control design and uses applied voltages as real dis-
continuous control inputs. It meets requirements for high-precision position control, which
is applied in different areas of robotics and industrial machinery, like good dynamical re-
sponse, disturbance rejection and low sensitivity to machine and load parameter variations.
Existing applications of sliding mode control to induction machines show an excellent per-
formance, including insensitivity to parameter variations and rejection of disturbances.
However, the chattering problem is a major obstacle in implementation.

In this chapter two novel sliding mode position control strategies of induction machines are
developed and validated by an experimental setup. The first control unit design is based
on the GBCP, which is explained in Section 3 of this thesis. The second control approach
is an extension of an existing sliding mode torque control schemes for induction machines.
In Section 5.1 an overview of control schemes for the position control of induction machines
and existing sliding mode controllers and observer concepts for induction machines is given.
Within the same chapter the significance of induction machines in robotics is discussed
shortly. Section 5.2 includes how the novel position control units are designed. At the
beginning of this section the used models for the induction machine and the inverters are
given. Then the respective control designs are explained. Finally the chosen observers
are presented and experimental results are given and discussed. Section 5.3 discusses the
use of multilevel inverters in order to reduce chattering effects. Two different solutions to
realize multilevel controls are developed and tested in numerical simulations. Section 5.4
concludes this chapter.

5.1 State of the Art

Generally, closed loop control schemes for the position control of induction machines can
be divided into two classes, field oriented control and direct torque control.

Field oriented control, also known as vector control, has been researched since 1972 [8,
35]. It is a cascaded control model based on rotor, stator or main flux oriented motor
models. Due to the chosen motor model, flux as well as torque generating current may
be controlled decoupled in an inner control loop. The corresponding reference signals
are generated in the outer control loop. Due to the utilization of PWM-units in the
inner control loop the field oriented control offers the advantage of constant switching
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frequencies. Furthermore, the direct current control enables simple current limiting. While
the coordinate transformation of the machine variables in flux oriented signals provides a
very simple control, which is comparable to that of dc motors, it requires very complicated
on-line computations. This transformation is dependent on precise determination of the
flux angle and precise knowledge of the induction machine parameters. Variations of
the parameters and improper flux angle data influence the decoupling of flux and torque
generating currents and lead to reduced torque and decreased control performance.

Direct torque control [71, 72] or direct self control [15] are intended to control torque
and flux of an induction machine by direct selecting the power converter voltage space
vectors through a look-up table. Since it is based on stator coordinates oriented motor
models, direct torque control avoids coordinate transformations which depend on exact
knowledge of the machine parameters and the frequency. Therefore this control scheme is
very robust. Moreover, its implementation is very simple, because no current controllers are
needed. Direct torque control achieves quick and precise torque control response. But in
steady-state operations notable torque pulsation and current ripple appear. These ripples
may be reduced by improving the look-up tables and hysteresis controllers or by using
PWM-units [33, 34]. Latter method corresponds to the implementation of a stator flux
oriented control and leads to reduced dynamics increasing sensitivity against parameters
and reduced dynamics. The direct torque control is the establish cause of variable switching
frequencies, because the switching devices are directly controlled by hysteresis controllers.
To achieve high performance direct torque control requires high sampling frequencies. If
the same average switching frequencies are used, the performance of direct torque control
is worse than that of field oriented control concerning current and torque ripple.

Sliding Mode Control of Induction Machines

Sliding mode control of induction machines was developed first by [64]. Speed control
was successfully applied to an experimental setup for the case when the references were
chosen out of the nominal rotation speed range. In [77] besides the non cascaded speed
and rotor flux control, an extension of the traditional field oriented control benefiting
from the above mentioned advantages of sliding mode control is discussed. Sophisticated
semiconductor technologies achieve high commutation frequencies, increasing efficiency
and decreasing the cost of modern switching devices. They allow realization of fast control
units for sliding mode control, required for implementation. Thus, sliding mode control of
induction machines is a current field of research.

To increase robustness in existing field oriented speed control schemes, linear speed and
flux controllers were replaced by sliding mode controllers [16, 86, 87, 43, 4]. Nevertheless,
the cascaded structure of field oriented control (there is an inner control loop for current,
which requires exact knowledge of the magnetic flux) is still used in these concepts.

The implementation of discontinuous control may lead to undesired high frequency oscilla-
tions in the closed loop, which result in excessive use and mechanical wear of the actuators.
Discontinuous current control results in high current ripples. There are many publications
that investigate the problem of reduction of current and torque ripple. They use either the
explained cascaded control structure with linear current control or the concept of equiv-
alent control, in order to control PMW–units [65, 53, 61]. In [13] the minimization of
chattering effects by modification of switching manifolds was discussed. Among others a
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sliding mode speed controller without inner current control loop is developed in [7]. Ex-
perimental results are satisfying for the control of moderate speeds, when a sliding mode
observer is used to keep track of magnetic flux.

In [31] a different sliding mode position control strategy is discussed. However, their
approaches are also based on rotor flux oriented machine models and cascaded control
structures, which require precise estimation of flux. Parameter deviations affect dynamic
performance and stability significantly.

Observer Concepts

For the control of induction machines, parameter identification algorithms as well as state
variables observers are very important. For instance, magnetic flux in induction machines
can be measured only after expending high efforts. In squirrel cage induction machines
without changing the mechanical construction, it is not measurable at all. But it is required
in almost all control algorithms.

Especially for field oriented control many observer concepts for magnetic flux, rotor resis-
tance and load were developed. Here observers, based on parallel models, which calculate
speed and magnetic flux based on dynamic motor models measuring applied voltages and
stator currents prove to be efficient for speeds above to 1.8 rev/min [56, 55, 66]. If addi-
tional syste, and harmonic content in control input and state variables can be provided,
new researches may realize high dynamic control loops possessing low speed objectives as
well as zero speed control [37].

Actual research focuses on sensorless control of induction machines, which means control
of induction machines without sensors for mechanical signals like speed and position. Sen-
sorless control is highly reliable and low-priced. If speed can not be measured, it must
be calculated based on the measurements of the stator voltages based on excellent ma-
chine models. Therefore, especially for sensorless control, Kalman-filters or Luenberger
-observers with variable parameters were investigated and developed. [60, 18, 85]. In low
speed range there are only small losses compared to the dynamics of control with me-
chanical sensors depending on the used parameter identification algorithm. In zero speed
control, precision of systems with sensors are not achieved.

Many publications deal with the problem of sliding mode observers for induction machine
control. Controllers derived by [41, 49] are based on non-linear adaptive flux observers
with rotor resistance estimators. They require transformations of control variables from
stator to rotor coordinates requiring high computational efforts. Moreover this approach
increases sensitivity against model uncertainties. Therefore [46] suggests a concept, that
uses stator-oriented signals for both control and observers. There also exist an observer
for the friction forces in the machine [1]. In [17], the other observer concepts can be found,
which are based on field oriented control. Precision of discontinuous observers may be
increased by using adaptive algorithms [73].

With only some exceptions in publications there are not any stability analysis for observer
based control algorithms. Stability analysis for sensorless control in [51] and [50] are valid
only for concepts, which are based on current fed electromechanical motor models.
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Induction Machines in Robotics

Basic discussions about induction machines as actuators in robotics began in the 1990s.
Field oriented control was judged as inefficient, because it is sensitive against parameter
variations when low speed should be controlled. Implementation of switching control based
on static characteristics led to promising results [12].

For the time being, induction machines are widespread and of great importance in indus-
trial applications. Sensorless drives are employed under operation conditions of low speed
forshor duration.

Advantages of induction machines compared to other electric actuators are their low cost.
Moreover, they are low-maintenance. Using them in hazardous environments is possible,
because there are neither sparkling nor corrosion problems, leading to early wear. They
do not have any disturbance torques, as for instance synchronous machines develop due to
magnetic hysteresis and inhomogeneous distributed magnetic resistances. Although there
are many other advantages of induction machines they are not used very often in robotic
applications. In the author’s opinion, the reason for this unavailability is only nonexistence
of simple implementable control concepts. Sliding mode control of induction machines has
a high application potential in robotics to improve the capability of robots significantly

5.2 Control Design

This section begins with the presentation of the model of an induction machine and the
drive system applied for control. Based on this fundamental modeling, in Section 5.2.2
two novel position controllers are developed. In Section 5.2.3 experimental results are
presented. The flux and angular velocity observers employed, are introduced. Finally,
advantages and disadvantages of the developed sliding mode position control algorithms
are discussed in Section 5.2.4.

5.2.1 Modeling

Induction machines belong to the category of alternating current drives. The stator consists
of three inductors oriented by 120◦. Each inductor is fed by an alternating input current
generating a rotating magnetic field inside the motor. This field induces current in the
rotor, inducing itself an opposite magnetic field. A torque is then generated accordin to
the Lenz law.

Motor Model

For the control unit design a motor model in the stator fixed coordinate system with indices
(α, β), where stator current components and rotor flux components are the state variables
is used. The dynamical equations are

λ̇αr = −ηλαr − ωeλβr + ηLhiαs

λ̇βr = −ηλβr + ωeλαr + ηLhiβs

(5.1)
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i̇α = βηλαr + βωeλβr − γiα +
1

σLs

uα

i̇β = βηλβr − βωeλαr − γiβ +
1

σLs

uβ

(5.2)

with

η =
Rr

Lr

σ = 1 − Lh
2

LsLr

β =
Lh

σLsLr

γ =
1

σLs

(Rs +
Lh

2

Lr
2 Rr) . (5.3)

Within that equation set λαr and λβr are rotor flux components in (α, β) coordinates, iα
and iβ are stator currents in (α, β) coordinates, and uα and uβ are stator voltages in (α, β)
coordinates. Parameters Lr, Ls and Lh represent rotor, stator and mutual inductance.
Parameters Rr and Rs represent rotor and stator resistance, and ω represents the rotor
angular velocity. The number of pole pairs Nr influences the motor torque τ

τ =
3

2
Nr

Lh

Lr

(iβλαr − iαλβr) , (5.4)

and the electrical rotor angular velocity is defined by

ωe = Nrω . (5.5)

Choosing the load torque τl and the mass moment of inertia J , the electrical state space
description is completed by equations for mechanical motion

ω̇ =
1

J
(τ − τL)

θ̇ = ω

(5.6)

where θ represents the rotor angle.

The model is based on the assumption of balanced phase and unsaturated operation, short-
circuited rotor windings, and symmetrical construction. Further assumptions are that iron
losses are zero and all parameters like inductances and resistances are constant. Those
assumptions may lead to errors in a real system as the inductors change depending on the
rotor position and the resistances depending on motor temperature.

Inverter Model

The three-phase two-level inverter shown in Figure 5.1 is the commonly used circuit for
vector control of the induction motor. With this circuit, a DC voltage can be transformed
into three AC voltages feeding the three stator inductors of the motor. Using star connec-
tion the output voltage of this converter is either

√
3

2
U0 or −

√
3

2
U0 for each phase, where

U0 is the maximum value of the supplied voltage.

Three-phase multilevel inverters as described in [67] and the circuit shown in Figure 5.2
is an extension for chattering reduction. Using star connection, the output voltage of this
converter is either

√
3

2
U0, −

√
3

2
U0 or 0 V for each phase.

The output voltage of the inverters is controlled by the switch command vector g. As the
inverters have three phases, this vector has three elements:

g =





g1

g2

g3 .



 (5.7)
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2U0

Figure 5.1: Two-level inverter.

U0

U0

Figure 5.2: Three-level neutral point clamped inverter.

The switch command vector vector g takes discrete values between −1 and 1. Therefore
the output voltage for each phase i is gi U0. For a two-level inverter, the three elements of
g take values from the discrete set {−1, 1}. For a three-level inverter, the three elements
of g take values from the discrete set {−1, 0, 1}.

The control input for the motor model is defined as the stator voltage vector u =
(

uα

uβ

)

.

This is a fictive voltage vector and for its calculation from the switch command vector g,
the inverter model is necessary.

The relationship between the switch command vector g and the three stator phase voltages
uabc is given by:

uabc =





ua

ub

uc



 =
U0

3
Gg G =





2 −1 −1
−1 2 −1
−1 −1 2



 . (5.8)

The relationship between the stator voltage vector uα β and the three phase voltages uabc

is given by:
(

uα

uβ

)

= Aa,b,c
α,β ua,b,c Aa,b,c

α,β =
2

3

(

1 −1
2

−1
2

0
√

3
2

−
√

3
2

)

. (5.9)

When (5.8) is written in (5.9), the relation between the switch command vector g and the
stator voltage vector uα β is given by

uα β =

(

uα

uβ

)

= Aa,b,c
α,β

U0

3
G g =

U0

3

(

2 −1 −1

0
√

3 −
√

3

)





g1

g2

g3



 . (5.10)
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With this forward model, and the knowledge that the elements of the switch command
vector takes values from a discrete set, all possible stator voltages can be calculated.

three-level inverter

two-level inverter

uβ

U0

uα

U0

4
3

2√
3

Figure 5.3: Stator voltages for the two-level (x) and three-level (o) inverter.

For a two-level inverter, the elements of g take values from {−1, 1}, therefore eight switch
combinations are possible. As there is one redundancy, there are seven possible stator
voltages, marked by an ’x’ in Figure 5.3. The redundancy appears when all three switches
are at the same position, either gT = (1, 1, 1) or gT = (−1,−1,−1), leading to the stator
voltage vector uα β =

(

0
0

)

.

For a three-level inverter, the elements of g take values from {−1, 0, 1}, therefore twenty
seven switch combinations are possible. Eight of those twenty seven switch combinations
are redundancies, therefore ninteen stator voltages are possible, marked by ’x’ and ’o’ in
Figure 5.3. The same stator voltage vectors are possible for the three-level inverter as were
for the two-level inverter.

5.2.2 Control Unit Design

In this section two novel sliding mode position control algorithms of the induction machine
are developed. The first approach is based on the GBCP as explained in detail in Section 3.
It takes advantage of the special structure of the electromechanical system. Based on a
decomposition of the system into mechanical, magnetical and electrical subsystems, the
control unit design can be simplified. The discontinuous control input of the overall system
is directly used, which is the phase voltages in this case.

The second control approach is based on the existing sliding mode speed control algorithm
of induction machines. This control method is extended. Using the chattering reduction
methods, which were shown in Section 2.2, a robust position control is derived, that offers
acceptable chattering and high control accuracy. Because voltages are used directly as
control input, no complicated hardware is required.
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5 Position Control of an Induction Machine

Sliding Mode Position Control Algorithm based on the Generalized Block Control
Principle

As illustrated in Figure 5.4, the induction machine system consists of three subsystems,
which are the magnetical (5.1), the electrical (5.2), and the mechanical (5.6) subsystems.
Dynamics of the state of the mechanical subsystem

xmech =

(

θ

ω

)

(5.11)

depends on the states of the magnetical and electrical subsystems

xmag = λr =

(

λαr

λβr

)

and xel = is =

(

iαs

iβs

)

, (5.12)

dynamics of the state of the mechanical and magnetical subsystems does not depend on
the control input

u =

(

uα

uβ

)

, (5.13)

but is dependent on the dynamics of the state of the electrical subsystem.

θ
subsystem

subsystem

subsystem

mechanicalelectrical

magnetical

ω

ω

u

λr

λr

i

i

Figure 5.4: Decomposition into subsystems (induction machine with load).

Based on this decomposition into subsystems, following the GBCP, the control algorithm
can be designed as follows: In the first step desired dynamics for the magnetical and
mechanical subsystem are determined. The state of the electrical subsystem is handled
as virtual control input for theses subsystems in order to assign theses desired dynamics.
In the second step the dynamics of the error between the desired and real values of the
electrical state is assigned to be asymptotically stable. Therefore, the discontinuous control
input u is used to enforce sliding mode in a manifold, which is defined by the error between
the real value xel and the desired value x∗

el of the electrical state:

s = x∗
el − xel = 0 . (5.14)

If sliding mode is enforced, the error s takes the value zero in finite time and the desired
dynamics for the mechanical subsystem is realized.
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The resulting control unit design is shown in Figure 5.5. In the outer control loop desired
continuous dynamics for the magnetical and mechanical subsystem is controlled, producing
desired continuous dynamics for the state of the inner control loop. These desired dynamics
is routed to the induction machine by using a sliding mode control with discontinuous
control input u ∈ R

3 (switched voltages), which is provided by an inverter which itself is
controlled by the on/ off signals g of the switching devices.

θ∗
sliding mode controlcalculation of

desired dynamics (|λr| and i)
inverter

induction
machine

λr and τθ, ω
observer observer

i∗
λrnom g u

i

λαr,λβr

τ

θ

θ, ω

Figure 5.5: Sliding mode position control for an induction machine based on the GBCP.

Based on the induction machine equation (5.1), with λrnom as nominal value for the mod-
ulus of the rotor flux, desired dynamics for the magnetical subsystem

‖λ̇r‖ = λrnom − c3‖λr‖ c3 ∈ R
+ . (5.15)

is given, if

λrnom − c3‖λr‖ !
=

√

λ̇2
αr + λ̇2

βr (5.16)

=
√

(−ηλαr − ωeλβr + ηLhiαs)2 + (−ηλβr + ωeλαr + ηLhiβs)2 . (5.17)

This condition leads to a current component iα, which depends on not only the machine
parameters but also the rotor flux components and as well as the stator current component
iβ

i∗α = fiα(λαr , λβr , iβ) . (5.18)

Based on the induction machine equation (5.4), desired dynamics for the mechanical sub-
system

ω̇∗ = −c1θ
∗ − c2ω

∗ c1 , c2 ∈ R
+ (5.19)

is given, if

−c1θ − c2ω
!
=

1

J
(τ − τL) (5.20)

↔ −J(c1θ + c2ω) + τL =
3

2
Nr

Lh

Lr

(iβλαr − iαλαr) (5.21)
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which leads to a current component iβ, which depends on not only the machine parameters
but also the rotor flux components and as well as the stator current component iα

↔ i∗β =
−J(c1θ + c2ω) + τL + 3

2
Nr

Lh

Lr
λβriα

3
2
Nr

Lh

Lr
λαr

= fiβ(λαr , λβr , θ , ω) . (5.22)

Regarding (5.18) and (5.22) the stator current components, which produce desired dynam-
ics for the magnetical and mechanical subsystem, can be calculated as functions of the
actual angular position θ, rotor speed ω and rotor flux:

i∗α = f ′
iα(λαr , λβr , θ , ω) (5.23)

i∗β = f ′
iβ

(λαr , λβr , θ , ω) (5.24)

Finally, the discontinuous control input uT = (uα, uβ) is chosen to set the error between
real and desired dynamics of the stator current components to zero after a finite time.

uαβ =

(

sign(s1)

sign(s2)

)

= −U0 sign(s) (5.25)

with

s1 = i∗α − iα = 0 (5.26)

s2 = i∗β − iβ = 0 . (5.27)

When sliding mode is reached, yielding s =
(

s1

s2

)

= 0, the stator current components will
converge to

iα = i∗α (5.28)

iβ = i∗β (5.29)

and the assigned dynamics (5.15) and (5.19) are realized.

Theorem 5.1 The control equation (5.25) enforces sliding mode after a finite time.

Proof: The continuously differentiable Lyapunov function

V =
1

2
sT s , s =

(

s1

s2

)

(5.30)

with

V ≥ 0 (5.31)

V = 0 for s = 0 (5.32)

lim
s→∞

V = ∞ (5.33)

is chosen. When the derivative of V is taken with respect to time

V̇ = sT ṡ (5.34)

= sT (e + Cu) < 0 , (5.35)
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where vector e depends on the state variables λr and is, and on the machine parameters,
due to the the sliding manifolds (5.51) and (5.52) and machine equations (5.1)-(5.6). Be-
sides machine parameters, matrix C depends on rotor flux componenets λαr and λαr only.
Let

(s̃)T : = sTC Aa,b,c
α,β G (5.36)

↔ s̃ = (C Aa,b,c
α,β G)T s (5.37)

with vector s̃ ∈ R
3 and s ∈ R

2. Since the matrix (C Aa,b,c
α,β G)T ∈ R

3×2 is not invertablke,

to express s in terms of s̃, the pseudoinverse
(

(C Aa,b,c
α,β G)T

)+

has to be used

s =
(

(C Aa,b,c
α,β G)T

)+

s̃ (5.38)

↔ sT = (s̃)T (C Aa,b,c
α,β G)+ . (5.39)

Based on (5.10) equation (5.35) can be rewritten as

V̇ = sT e + sTC Aa,b,c
α,β

U0

3
G g (5.40)

= (s̃)T (C Aa,b,c
α,β G)+ e + (s̃)T U0

3
g . (5.41)

If the switching commands are implemented as

g = −





sign(s̃1)
sign(s̃2)
sign(s̃3)



 s̃ =





s̃1

s̃2

s̃3



 (5.42)

equation (5.41) yields

V̇ = (s̃)T (C Aa,b,c
α,β G)+ e − (s̃)T U0

3
sign(s̃) (5.43)

≤
∣

∣(s̃)T
∣

∣

∣

∣

∣
(C Aa,b,c

α,β G)+)
∣

∣

∣
|e| − U0

3
|s̃| (5.44)

If the supply voltage is high enough: U0 ≥
∣

∣

∣
(C Aa,b,c

α,β G)+)
∣

∣

∣
|e|, holds V̇ < 0 so that sliding

mode can occur. This proves, that if the inverter model is considered and the control input
is g, the control law takes the form

g = − sign(C Aαβ
a,b,c Gs) , (5.45)

which leads to s = 0 after a finite time.

Remark 5.1 From the physical configuration of the inverter circuit it can be deduced,
that the sum of the phase voltages has to be always equal to zero:

∫ t

0

(ua + ub + uc)dt = 0 (5.46)
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This condition holds, if sliding mode is implemented directly in terms of switching com-
mands g. As it can be concluded from (5.8): There exist eight combinations for the on/off
states of the three switches g1, g2 and g3. For cases g1 = g2 = g3 = 1 or g1 = g2 = g3 = −1,
u = 0. For the other six combinations the value of one phase voltage is ±2

3
U0 while the

magnitude of the other two phase voltages is ∓1
3
U0. Obviously, all eight possible combina-

tions satisfy the balance condition (5.46). Three phase voltages may be implemented only,
if they satisfy the balance condition (5.46).

Sliding Mode Position Control Algorithm Based on Fast Torque and Flux Control

In this section a position control for induction machines is developed, based on theexisting
sliding mode speed controller introduced in the works [64] and [79] . The new concept is
illustrated in Figure 5.6. The induction machine is controlled by the discontinuous control
input u ∈ R

3, which is provided by an inverter which itself is controlled by on/ off signals
g of the switching devices. The control of the mechanical system is realized by the torque
or force signals as the control action. It is assumed that there exists a fast inner control
loop providing the desired torque.

In the outer control loop a super twisting algorithm is used to produce the continuous
reference signals for the inner loop. In the inner control loop the torque τ and the rotor
flux λr are controlled using sliding mode control. To simplify control, the rotor flux is set
to a constant nominal value λrnom.

Remark 5.2 Since the virtual control input for the mechanical system v =

(

xel

xmag

)

∈
R

4 is of higher order than the mechanical system xmech ∈ R
2, two degrees of freedom

exist in the system. They are used to reduce the order of the magnetical subsystem to its
modulus

x∗
mag = ‖λr‖ =

√

λ2
αr + λ2

βr . (5.47)

θ∗

λrnom

sliding mode control

(super twisting) of θ

sliding mode control

of λr and τ
inverter induction

machine

observer observer

g

θ and ω

τ ∗
u

i

θ

τ λr and τ

λαr, λβr, τθ, ω

Figure 5.6: Control scheme: sliding mode position control of an induction machine based on
fast torque and flux control.
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The torque reference signal in the outer control loop can not be obtained by implenenting
sliding mode control first, because if sliding mode were enforced in the manifold

s3 = c1(θ
∗ − θ) + c2(ω

∗ − ω) = 0 c1 , c2 ∈ R
+ . (5.48)

where c1 and c2 are the control parameters, it would produce discontinuous referenced
dynamics for the torque

τ ∗ =

{

+τ̄ for s3 > 0
−τ̄ for s3 < 0 .

(5.49)

These can not be realized using sliding mode control in the inner control loop. As a solution
the super twisting algorithm is applied to obtain the reference torque signal for the inner
control loop:

τ ∗ = −(c1STA

∫

sign(s3)dt + c2STA

{

|s3|ρSTA sign(s3) if |s| ≤ εSTA

|εSTA|ρSTA sign(s3) if |s| > εSTA
, (5.50)

where c1STA
, c2STA

, εSTA > 0 and 0 < ρSTA ≤ 1. This algorithm generates a smooth and
continuous torque reference, so that the chattering phenomen is avoided and robustness is
maintained.

The inner control loop for flux and torque is similar to that shown in [79]. The sliding
manifolds are defined so that the torque τ is controlled to the desired value τ ∗ and the rotor
flux is regulated to the nominal rotor flux λrnom, in order to avoid weak field operation.
That yields

s1 = τ ∗ − τ = 0 (5.51)

s2 = c1(λrnom − |λr|) + c2(λ̇rnom −
∣

∣

∣λ̇r

∣

∣

∣) = 0 c1 , c2 ∈ R (5.52)

where c1 and c2 are representing positive control parameters. The discontinuous control
input to enforce sliding mode are the phase voltages

uαβ =

(

uα

uβ

)

= −U0 sign(s) , (5.53)

more detailed

uα =

{

−U0 for s1 > 0
+U0 for s1 < 0

(5.54)

uβ =

{

−U0 for s2 > 0
+U0 for s2 < 0 .

(5.55)

When sliding mode is reached, s =

(

s1

s2

)

= 0, the system will converge to

|λr| =
√

λ2
αr + λ2

βr = λrnom and (5.56)

τ = τ ∗ . (5.57)
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As shown in [79] using a high enough peak voltage U0 sliding mode can be reached in the
inner control loop after a finite time. This proof takes into account, that in the experimental
setup not the phase voltages uα and uβ but the switching commands g are the control input.
The inverter model, which enables the transformation from stator voltages to real control
inputs, which are on/off-signals to the inverter switches, is considered in the stability proof
as well.

Remark 5.3 The transformation matrix (D A
α,β
a,b,cG)T , which transform manifolds s to

s̃ performs a calculation of a desired stator flux change in rotor flux coordinates (d, q)
followed by a transformation from rotor flux coordinates (d, q) to stator coordinates (α, β).
Therefore the principle of this controller is similar to th eprinciple of the decoupling vector
control algorithms. Vector s̃ is in stator coordinates, which makes sense as the control
input of the induction motor is also in stator coordinates.

5.2.3 Experiments

In this section the control algorithms, which were derived in the last section, are validated.
Since not all of the state variables are measurable, first the observers used are introduced.
Then, exerimental results of the control algorithm that is based on the GBCP as well as
the results of the sliding mode position control algorithm based on fast flux and torque
control are interpreted.

Flux Observer

Both proposed control approaches require knowledge of rotor flux, which is not measurable
in off-the-shelf industry motors, since induction machines equipped with special sensors
loose either one or both of the advantages of being cheap and reliable. That’s why the
proposed control concept includes a flux observer.

The observer used in the experimental setup is based on the work [79]. The original motion
equations (5.1) are directly used as observer equations:

dλ̂αr

dt
= −ηλ̂αr − ωeλ̂βr + ηLhiα (5.58)

dλ̂βr

dt
= −ηλ̂βr + ωeλ̂αr + ηLhiβ (5.59)

where λ̂αr and λ̂βr are the estimates of the rotor flux components. If the estimation errors

are defined as λαr = λ̂αr − λαr and λβr = λ̂βr − λβr the error dynamics is

dλαr

dt
= −Rr

Lr

λαr − ωeλβr (5.60)

dλβr

dt
= −Rr

Lr

λβr + ωeλαr . (5.61)

The stability of the observer can be proven with the help of the Lyapunov function

V =
1

2
(λ

2

αr + λ
2

βr) > 0 . (5.62)
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When it’s derivate is taken with respect to time,

V̇ = −η(λ
2

αr + λ
2

βr) = −2ηV < 0 . (5.63)

The rate of convergence depends on the rotor time constant 1
η
.

Speed Observer

Control performance may be effected strongly, if the velocity signal is not measured di-
rectly and instead a differentiated position signal. Especially if operation mode is slow
discontinuous changes of the position signal cause high peaks in the velocity signal, which
finally cause chattering. In order to solve this problem, the velocity signal is not calcu-
lated by differentiation of the position signal but reconstructed by a linear observer. The
quality of an estimated signal may even be better than the one from a measured signal,
as the measurement noise is avoided (e.g. tachometer signal for very low speeds). For the
following observer design it is assumed, that the flux observer is sufficiently fast.

Based on the motion equations (5.6), dynamics of the observed state variables is described
by the differential equations

˙̂
θ = ω̂ + k1(θ̂ − θ) (5.64)

˙̂ω =
1

J
(τ − τL) + k2(θ̂ − θ) k1 , k2 ∈ R

+ (5.65)

where θ̂ and ω̂ are estimates of the angular position and velocity. If the estimation errors
are defined as θ = θ̂ − θ and ω = ω̂ − ω, error dynamics is expressed by the following
equations

θ̇ = ω + k1θ (5.66)

ω̇ = k2θ . (5.67)

The stability of this linear observer can be garanteed by eigenvalue placement by choosing
appropriate parameters k1 and k2. The rate of convergence can be determined by eigenvalue
placement as well. The observer requires the torque signal as well as the measured position
signal. The position signal garantees zero steady state error, the torque signal increases
dynamics of the observer.

Results

The advantages and disadvantages of the presented control methods are evaluated and
compared in experiments. As load an inverted pendulum is charged to the system. The
control objective is to change the angular position of the pendulum from 0o to 50o at time
t = 0 s and than after 2.5 s back to 0o.
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In Figure 5.7 step responses of the angular position θ for the control algorithm that is
based on the GBCP are shown. Three different desired dynamics are assigned by choosing
the parameters in (5.19). The chattering effect is low, the stationary accuracy deviating
relatively from the target position by a maximum angle of ±0.5 o. In order to achieve the
given accuracy, the position control algorithm based on the GBCP requires a tuning of the
model parameters to get the average of the steady state error zero. The accuracy decreases
if the machine parameters and the load are not known exactly.
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Figure 5.7: Experimental results: Position trajectories if the sliding mode position control al-
gorithm based on the GBCP is applied. Three different desired dynamics for the mechanical
system were chosen (c1 = 1 and c2 = 0.04 , 0.06 , 0.08).

In Figure 5.8 step responses of the angular position θ for the control that is based on fast
torque and flux control is illustrated. Again, three different desired dynamics are assigned.
They are chosen by the parameters in (5.48). Chattering is higher than in Figure 5.7.
The stationary accuracy one receives is a relative deviating from the target position by
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maximally ±0.6 o. If the desired dynamics is a fast response, the experimental results
are supporting the usage of the strategy. However when a slower dynamics is desired,
it is obvious that this method is not a viable control option. There exists noise in the
system. The cascaded control approach proved to be very robust. For control unit design
only a rough estimate of the load is required in order to assign sufficiently good observers.
If a direct vector control decoupling controller is implemented in the inner control loop
accuracy is getting worse, but noise is reduced.
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Figure 5.8: Experimental results: Position trajectories if the sliding mode position control
algorithm based on fast flux and torque controllers is applied. Three different desired
dynamics for the mechanical system were chosen (c1 = 1 and c2 = 0.04 , 0.06 , 0.08).

93



5 Position Control of an Induction Machine

5.2.4 Discussion

The result presented prove, that the position control of an induction machine based on
sliding mode techniques is possible. Both proposed control algorithms offer high dynamics.
Their performances are quite similar. In the experimental setup accuracies of about 0.5◦

are achieved and the chatter effects are reduced to not hearable noise.

As expected, the cascaded control scheme is very robust, Contrary to expectations, the
control algorithm based on the GBCP is quite robust as well. Nevertheless, due to a limited
switching frequency and a given machine inductance for both control strategies chattering
effects remain. The required hardware for both control approaches is simple. The design
of the control algorithm base on the GBCP is simpler. It uses phase voltages are directly.
The cascaded sliding mode control algorithm suffers from more chattering effects.

For both proposed controls besides measurement of the angular position and the current
the implementation requires measurement or estimation of the angular speed and the
acceleration signal. The application of other more appropriate observer concepts may
increase the shown results.

5.3 Performance using Multiphase Inverter

In both proposed control algorithms the control action is the switching commands g enter-
ing the inverter. However, only four out of the seven stator voltages shown in Figure 5.3
are applied, as specified in [70]. The reason for this is equation (5.53), which makes the
control inputs uα = 0 or uβ = 0 impossible, excluding three of the seven possible stator
voltages. Furthermore, the controllers are not applicable to multilevel inverters, as the
inverse model of the inverter is a linear transformation, providing against the handling
of the appearing switching redundancies (multiple switch positions that lead to the same
stator voltage vector g).

Following the motor model (5.2), the stator voltages act on the derivative of the stator
currents. The stator currents then act on the derivative of the rotor flux. Both stator
currents and rotor flux act on the torque. Therefore the smoothness of the current is
directly related to the chattering in the torque and the rotor flux. It is also affected by the
quantization of the stator voltages.

Therefore, this section investigates, how performance of sliding mode controllers can be
improved by using multiphase converters. Exemplary, the controller based on fast flux and
torque control of section 5.2.2 will be extended in order to generate a continuous control
output uαβ. This will allow the application of methods that use all possible stator voltages
for either two-level or multilevel inverters, in order to improve quantization of the control
input.

5.3.1 Control Unit Design

In order to achieve the goal of designing a controller allowing the usage of all stator
voltages, the discontinuous control law (5.53) is replaced by a new control law delivering a
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continuous stator voltage vector uαβ that can then be applied as reference voltage to the
inverter and then be converted to appropriate switching actions g.

Based on the sliding manifolds (5.51) and (5.52) two new sliding manifolds are defined

s̆ =

(

s̆1

s̆2

)

= CT s (5.68)

=









d1λβr −d2

λαr

|λr|
−d1λαr −d2

λβr

|λr|









(

s1

s2

)

(5.69)

= − 1

|λr|

(

λrα −λrβ

λrβ λrα

) (

d2s2

|λr| d1s1

)

(5.70)

= −A
d,q
α,β

(

d2s2

|λr| d1s1

)

(5.71)

d1 =
3LhNr

2(LrLs − L2
h)

, d2 =
LhRr

LrLs − L2
h

. (5.72)

Vector
(

d2s2

‖λ‖d1s1

)

is a vector in the (d, q) coordinate system aligned along the rotor flux.

More specifically, it is related to the desired stator flux change in (d, q) coordinates. As
Ad,q

α,β is a rotation matrix from (d, q) coordinates to (α, β) coordinates, vector components
of s̆ represent the desired stator flux change in the stator fixed coordinate system (α, β).
Therefore control law (5.53) compensates the desired stator flux change s̆. This also shows
that it makes sense to relate the stator voltage uαβ to the offset from the sliding manifold
s̆ = 0.

Computation of a desired stator flux change in stator coordinates is the general procedure
for vector control of the induction machine. For sliding mode control, this can be accom-
plished explicitly as in [61] where the desired stator flux is used for the sliding manifold.
This implies that switching is performed in (d, q)-coordinates, and the switching results
must then be transformed into (α, β)-coordinates. Or this can be realized implicitly, as
when Lyapunov design is applied, so that switching is done directly in (α, β)-coordinates.
Latter is chosen for the new control law. Therefore, matrix C and vector s̆ are both kept.
Only control law (5.53) is replaced by a continuous function.

A simple continuous approximation of the control law as presented in section 2.2.2 may be
effective for special applications but does not reach sliding mode s̆ = 0. Consequently, an
integrator is added as in the super-twisting algorithm described in section 2.2.3. The new
control law is defined as

uαβ = −U0 sat(
s̆

εM

+
1

κM

∫

s̆

εM

dt) (5.73)

Parameter εM regards the connection between the controller output uαβ and the offset
from the sliding manifold s̆ = 0. Parameter 1

κM
is the parameter defining the rise rate of

the integrator signal. The integrator signal is responsible for reaching sliding mode s̆ = 0.
It should be set slightly higher than the sampling rate. Since if it is close to the sampling
rate, chattering can not be reduced. When chatter is too high, accuracy is affected.
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Theorem 5.2 The εM -vicinity around s = 0 is reached in finite time when control law
(5.73) is applied.

Proof: The continuously differentiable Lyapunov function

V =
1

2
sT s , s =

(

s1

s2

)

(5.74)

with

V ≥ 0 (5.75)

V = 0 for s = 0 (5.76)

lim
s→∞

V = ∞ . (5.77)

is considered. When the derivative of V is taken with respect to time

V̇ = sT ṡ (5.78)

= sT (e + Cuαβ) , (5.79)

where e is independent of the control input uαβ and matrix C, is dependent on it. Vector
e and matrix C can be directly derived from the motor model (5.2) and (5.1).

V̇ = ((CT )−1s̆T )T (e + Cuαβ) (5.80)

= s̆T ((CT )−1)T (e + Cuαβ) (5.81)

= s̆TC−1(e + Cuαβ) (5.82)

= s̆TC−1e + s̆T uαβ (5.83)

≤ s̆TC−1e − U0s̆
T sign(s̆) (5.84)

≤ s̆TC−1e − U0 |s̆| (5.85)

This equation is now simplified. The second right hand term is splitted

|s̆| = s̆T sign(s̆) ≤ |s̆1| + |s̆2| (5.86)

and the first right hand term is simplified

e′ = C−1e =

(

e′1
e′2

)

(5.87)

Inequation (5.85) is then

V̇ ≤ s̆1e
′
1 + s∗2e

′
2 − U0 |s̃| (5.88)

≤ s̆1e
′
1 + s∗2e

′
2 − U0 |s̆1| − U0 |s̆2| (5.89)

With the knowledge that vector
(

e′
1

e′
2

)

is bounded, which can be shown by calculation of

(5.87), and

U0 > |ei
∗| i = 1, 2 (5.90)
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condition

V̇ < 0 (5.91)

is fulfilled. Therefore, when the supply voltage U0 is high enough, the system is converging
to ε-vicinity around s = 0 in finite time.

Outside of the ε-vicinity around s = 0, the control law (5.73) can be designed as

uαβ ≤ −U0 sign(s̃) (5.92)

This approximation is only valid for

|s∗| ≥
(

ε

ε

)

. (5.93)

5.3.2 Implementation of Multiphase Inverter Control Algorithms

For the implementation of the proposed multilevel flux and torque control two possibilities
exist. An inverse inverter model can be applied to the control input uαβ in order to quantize
this stator voltage and generate the matching switch command vector g. An alternative
to this is to apply the continuous voltage as reference to a pulse width modulated inverter.

Implementation by Using the Inverse Model of the Inverter

The controller delivers a stator voltage uαβ as control input. To find the right switch
command vector g an inverse model of the inverter is required.

Unfortunately, equation (5.10) cannot just be inverted due to the many redundancies of
this transformation. Choosing the right switch command when redundancies are available
is important for the thermal balance of the inverter electronics. Therefore, for the inverse
model of the inverter, the following algorithm is proposed.

As can be seen in Figure 5.9, all possible voltages are aligned on parallel lines orthogonal
to the vectors p1 and p2. Those two vectors can be calculated by the forward model (5.10)
and are given by:

p1 =
1

2

(√
3

1

)

(5.94)

p2 =
1

2

(

−
√

3
1

)

(5.95)

A linear transformation is applied in order to find out a projection of uα β to those two
vectors, introducing the coordinates

(

a1

a2

)

(

a1

a2

)

=
1

U0

(

qT
1

qT
2

)

uα β =
1

2U0

( √
3 1

−
√

3 1

) (

uα

uβ

)

. (5.96)
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Figure 5.9: Stator voltages for the two- and three-level inverter.

The coordinates
(

a1

a2

)

are then quantized. For the two-level inverter, they are quantized to
take values from {−1, 0, 1}. For the three-level inverter, they are quantized to take values
from {−1,−0.5, 0, 0.5, 1}. Those quantized coordinates all match exactly one possible
stator voltage as shown in Figure 5.9. Consequently,

(

a1

a2

)

are the indices for the lookup-
tables, Table 5.1 is prepared for the two-level inverter, and Table 5.2 for the three level
inverter. The output of these lookup-tables is the desired switch command vector g.

The redundancies (multiple switch positions that lead to the same stator voltage vector)
can be used to maintain a good thermal balance of the inverter as follows: All applicable
switch command vectors g are read out of the lookup-table, after which an additional
algorithm decides which one to take. Decision parameters can be that those switches that
have been used excessively in the past are avoided.

The method can be extended to control any other multilevel inverter, only the quantization
of

(

a1

a2

)

and the lookup-table have to be adapted. Furthermore, when using the quantization
algorithm, it should be noted that the values do not exceed their ranges. So the stator
voltages have to be limited to their maximum values

−4U0

3
≤ uα ≤ 4U0

3
(5.97)

−2U0√
3
≤ uβ ≤ 2U0√

3
(5.98)

as follows from the forward model (5.10). This will avoid that the algorithm wants to look
up empty positions in the lookup-table, as for example

(

a1

a2

)

=
(

1
1

)

. The coordinates
(

a1

a2

)

have to be limited to

−1 ≤ a1 ≤ 1 (5.99)

−1 ≤ a2 ≤ 1 (5.100)
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a1
. . . a2 -1 0 1
1 (1,-1,-1) (1,1,-1)
0 (1,-1,1) (1,1,1);(-1,-1,-1) (-1,1,-1)
-1 (-1,-1,1) (-1,1,1)

Table 5.1: Lookup-table for the 2-level inverter.

a1
. . . a2 -1 -0.5 0 0.5 1
1 (1,-1,-1) (1,0,-1) (1,1,-1)

0.5 (1,-1,0) (1,0,0),(0,-1,-1) (1,1,0),(0,0,-1) (0,1,-1)
0 (1,-1,1) (1,0,1),(0,-1,0) (1,1,1),(0,0,0),(-1,-1,-1) (0,1,0),(-1,0,-1) (-1,1,-1)

-0.5 (0,-1,1) (0,0,1),(-1,-1,0) (0,1,1),(-1,0,0) (-1,1,0)
-1 (-1,-1,1) (-1,0,1) (-1,1,1)

Table 5.2: Lookup-table for the 3-level inverter.

Implementation by Using PWM Operation of a Three-Phase Inverter

An alternative to the inverse inverter model is the pulse width modulation. A three-phase
inverter can be controlled by three independent pulse width modulators, one for each phase.

From the desired stator voltage vector uαβ, the three desired phase voltages uabc are
calculated. As in [79], the pseudo inverse of matrix Aabc

αβ from equation (5.9) is applied:





ua

ub

uc



 = (Aa,b,c
α,β )+

(

uα

uβ

)

= A
α,β
a,b,c

(

uα

uβ

)

=





1 0

−1
2

√
3

2

−1
2

−
√

3
2





(

uα

uβ

)

. (5.101)

Out of the desired phase voltage ui, the switch command for the respective phase gi must
be calculated. This is carried out by the pulse width modulation, where the pulse width
is set by the duty cycle α. The duty cycle α is defined as the ratio of ”on” time to ”off”
time

α =
Ton

Ton + Toff

, Ton + Toff = T , Ton = αT (5.102)

Here, T corresponds to the sampling interval of the control system that generates the
desired stator voltage vector uαβ.

For the two-level inverter, generation of the switch command is easy, as the duty cycle is
directly proportional to the phase voltage ui. The duty cycle is calculated by

αi =
ui + U0

2U0

, i = a, b, c (5.103)

and the switch command is generated by

{

gi = +1 0 ≤ t < αiT

gi = −1 αiT ≤ t < T
, i = a, b, c (5.104)
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For a three-level inverter, this is moderately complicated as each element of the switch
command vector can take three different values out of the set {−1, 0, 1}. The advantage
is that the voltage resolution is higher, so for a positive output voltage, switch commands
{1, 0} are applied, whereas for negative voltages, switch commands {−1, 0} are applied. As
a result, three cases can be distinguished, based on a constant Um > 0, which is specified
later:

1. ui ≥ Um

αi =
ui

U0

, i = a, b, c (5.105)

then
{

gi = +1 0 ≤ t < αiT

gi = 0 αiT ≤ t < T
, i = a, b, c (5.106)

2. ui ≤ −Um

αi =
−ui

U0

, i = a, b, c (5.107)

then
{

gi = −1 0 ≤ t < αiT

gi = 0 αiT ≤ t < T
, i = a, b, c (5.108)

3. −Um < ui < Um

αi =
ui + U0

2U0

, i = a, b, c (5.109)

then
{

gi = +1 0 ≤ t < αiT

gi = −1 αiT ≤ t < T
, i = a, b, c (5.110)

An arising problem is that minimum delay times must be kept in the switching range of a
power switch. Because of this, the full range of the duty cycle 0 ≤ α ≤ 1 is not available.
When the minimum delay time is Tmin, the duty cycle is limited to

Tmin

T
≤ α ≤ (1 − Tmin

T
) (5.111)

This will also limit the maximum phase voltage applied to the induction motor. For a
two-level inverter, the phase voltage ui cannot vary between −U0 and U0, but will be kept
in the range

−U0(1 − 2Tmin

T
) ≤ ui ≤ U0(1 − 2Tmin

T
) (5.112)

For a three-level inverter, this range is

−U0(1 − Tmin

T
) ≤ ui ≤ U0(1 − Tmin

T
) (5.113)
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The value for Um for the three level inverter follows from the same problem and is therefore
given as

Um =
Tmin

T
U0 (5.114)

The redundancies (multiple switch positions that lead to the same stator voltage vector)
can again be used to maintain a good thermal balance of the inverter: The stator voltages
uαβ are related to the difference between the phase voltages uabc. Hence, setting the phase

voltages to u∗
abc = uabc + ux, where ux =





ux

ux

ux



 is any voltage generated by an additional

algorithm, will lead to the same stator voltages but loading the switches in a different way.

5.3.3 Simulation Results

The sliding mode position controller presented in the previous section is evaluated in terms
of simulation. Both the inverse inverter model and pulse-width modulation are tested for
the control method presented in Section 5.2.2. The simulations are executed for a two-
and three-level inverter and for an inverter delivering continuous output voltage in order
to see the performance of the multilevel converter solution. The simulation details and
results are presented in Section C.

Results show that the control algorithm with inverse inverter model does not show improve-
ment. Control algorithm implemented with pulse width modulation is a great improvement
when compared to the existing controllers and the implementation with inverse inverter
model. It can also be seen that the three-level inverter is not such a great improvement
when compared with the two-level inverter. For the implementation of the multiphase
inverter control algorithm with pulse width modulation, the error as well as the high-
frequency deviation are reduced on all three sliding manifolds, implying that chattering is
reduced while control performance is improved.

5.3.4 Discussion

The new control law including the inverse inverter model does not improve control perfor-
mance significantly. The results show that the new controller with inverse inverter model
is worse that the existing controllers. However, one advantage is that it requires less elec-
trical power than the other controllers. When a three-level inverter is applied, control
performance is acceptable.

The new controller with a continuous voltage inverter was simulated in order to see the
maximal performance of the new control law derived in the previous section. The results
show that the new controller combined with pulse width modulation is a great improvement
to the controller and the new controller with inverse inverter model. It can also be seen
that the three-level inverter is not such a that great improvement compared to the two-
level inverter. The new controller, that is applied together with a pulse-width modulated
inverter, comes very close to that maximal performance and therefore is a great improve-
ment at only low additional cost. The chattering problem can be considered as solved.
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The three-level inverter is a slight improvement, however, it is a very small improvement
at a very high cost.

The advantage of the inverse inverter model is that it is possible to benefit from the full
voltage U0 for each phase. However, the phase voltage will only change when an important
deviation from s̆ = 0 appears. For pulse width modulated operation, only a part of the full
voltage U0 is available for each phase, but the phase voltage will be adapted continuously
to the control input without the neccesity of a deviation from s̆ = 0 is necessary. Therefore,
to access chattering reduction, pulse width modulation seems to be more promising.

5.4 Conlusion

In this chapter two position control algorithms for a mechanical system driven by an
induction machine were developed. The control unit design for the complex systems was
done based on the sliding mode control theory as well as the GBCP, which was introduced
in Chapter 3 in this thesis.

The consequent inclusion of the actuator dynamics into the control design proved to be
very efficient for the application example. In experiments the proposed control schemes
show high dynamics. Chattering effects are low while robustness and disturbance rejection,
the main benefits of sliding mode control, are retained. Accuracies of 0.5 ◦ and 0.5 ◦ were
achieved. The GBCP allows to handle the control unit design process for thee complex
system models that include the actuator dynamics. The implementation of the control law
is very simple since the voltages impressed on the actuator are the actual discontinuous
control input vector.

Unfortunately, in simulations the use of multiphase converters could not improve the per-
formance of sliding mode controllers.

The experimental results, which were given in this chapter, show that the integration of
inexpensive, robust and compact induction machines in control units for robotic systems
by using sliding mode control concepts for electromechanical systems is possible. High
robustness and high dynamics can be achieved. Induction machine are efficient electric sc-
tuators and have small mass inertias. Therefore, in many cases their use in robotic systems
would not require a gear box like other electric actuators. Then, improved performance in
robotic systems, e.g. in telepresence applications, could be achieved.
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6.1 Concluding Remarks

In this work sliding mode control strategies for mechanical systems driven by different
types of electric motors were investigated.

The developed closed methodology for systematic sliding mode control design, the GBCP,
simplifies the application of sliding mode control to arbitrary electromechanical systems.
The number of nonlinear system transformations needed to design a control law was re-
duced e.g. from five transformations with the BCP to two transformations with the GBCP
for the induction machine which drives an inverted pendulum system. The advantages of
the GBCP over the BCP will scale with the complexity of the system considered.

The GBCP is applicable to a wider system class than the BCP. The sliding mode control
of a flexible shaft was presented as an example of a system with infinite dimension.

Two implementation problems of the control design based on the BCP/GBCP were solved
for the first time. The solutions have been verified in simulations. A method to reject
disturbances with known structure as well as the necessary observer design was presented.

A sliding mode control concept for mechanical systems driven by electric motors that re-
duces chattering while preserving robustness was developed. It takes actuator dynamics
into account and uses the voltages impressed on the actuator as the actual discontinuous
control input vector. The efficiency of the control concept was proved for three applica-
tions by numerical simulations as well as experiments: the position control of an inverted
pendulum system driven by a DC motor, a synchronous motor, and an induction machine.
In addition, a benchmark control system was developed for the DC setup.

Theoretical stability in the presence of bounded parameter uncertainties or bounded dis-
turbances was proved for all three application examples.

The examined systems were found to be very robust against parameter variations. Load
changes applied to the three systems did not effect the performance of any of the setups
considerably as long as the maximal force/torque provided by the actuators was not ex-
ceeded. In contrast, load changes applied to the benchmark controlled system generated
a steady state error.

Compared to sliding mode control ignoring actuator dynamics, the application of the new
control concept reduced chattering and increased the control accuracy. There was no steady
state error in any of the experiments. For the induction machine a position accuracy of
±0.5 ◦ was achieved.

The new control scheme allows fast control tasks, because the control bandwidth is limited
only by the characteristics of the electric actuator. The transient response time was found
to decrease by 25% compared to the benchmark controlled system.
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The implementation of the proposed sliding mode control is simple and the stability anal-
ysis can be made without problems using the sliding mode conditions. Nevertheless, fast
hardware is required: A control unit offering at least 1 kHz sampling rate is necessary
to get acceptable results regarding current and angle ripple. A special innovation of this
thesis is the development of a position control for an induction machine providing high
robustness and high control accuracy. This application example highlights the advantages
of the proposed control concept. Even though the parameters of the used induction ma-
chine were not known exactly, the control performance was excellent and showed strong
robustness.

The control approach developed in this thesis significantly improves and expands the ap-
plicability of sliding mode control to electromechanical systems. It addresses e.g. the
requirements of human-interactive robotic devices. These applications require the devices
to be fast in response to human contact while maintaining accurate position and force
tracking. The performance of these systems is commonly limited by the underlying con-
troller and amplifier architecture and the proposed control scheme is able to overcome
these limitations.

6.2 Future Work

Further investigations of the sliding mode control concept, which is presented in this thesis,
may build on the promising experimental results. They prove the applicability of sliding
mode control algorithms to electromechanical systems without significant design efforts
and underline their advantage of high robustness. The remaining chattering effects, which
decrease the control accuracy, may be reduced by using faster hardware or sophisticated
observers and disturbance estimators. Therefore, a challenging research direction is the
investigation of an adaptive disturbance estimator for the flexible shaft system, which
does not require information about the structure of a disturbance or the the frequency of
periodical perturbations. The performance of the presented position control of an induction
machine may be improved by implementing better observers for flux as well as for the
angular velocity. Additionally, an estimator that provides information about the unknown
load may lead to a more accurate control performance.

The given experimental results motivate to more experimental investigation in order to
find the limits of the proposed control strategy for high-dimensional non-linear systems
with unknown loads, e.g. multi-link robots or human-machine interfaces.

An rewarding future research direction is the evaluation of the power consumption of the
proposed sliding mode control concept compared to other control algorithms. This analysis
should include power losses due to switching processes of electronic devices in the power
amplifier.
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A Models and Experimental Setups

A.1 Inverted Pendulum System

The dynamics of the inverted pendulum system shown in Figure A.1 is given by

Jθ̈ = mgl sin(θ) − µω + τ (A.1)

where m is the pendulum mass, g the gravitational constant, l the pendulum length and θ

the angle of the pendulum with the upright position being zero. Parameter µ is a frictional
constant

[

Nms
rad

]

) . The moment of inertia of the pendulum system is given by J = ml2.

m
θ = 0

l

θ

Figure A.1: Schematic diagram of the considered mechanical sample system, an inverted
pendulum.

m = 0.01 kg (pendulum mass)
g = 9.81 m

s2
(gravitation constant)

l = 0.5 m (pendulum length)

Table A.1: Parameters of the inverted pendulum system used for control design and in nu-
merical simulations.

A.2 DC Motor

The proposed control algorithm is applied to the sample system (Figure A.1). The actuator
is a 150 W Maxon DC motor with gear (1:90) as described in Section A.2. The mass and
length of the pendulum can be modified and so different loads can be realized. An H-Bridge
provides the required discontinuous control input for the sliding mode control. In the linear
control system the DC motor is powered by a Copley PWM-amplifier. As framework for
the control system Matlab/ Simulink Real Time Workshop is used. The controller runs
under RT-Linux with a sampling time of 0.1 ms.
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Ra = 0.316 Ω (resistance)
L = 0.00008 H (inductance)

Km = 0.0302 Nm
A (torque constant)

Kn = 60/317 Vs (induction constant)
Jm = 1.3400e − 005 kg m2 (mass moment of inertia of the motor)
uA = 24 V (supplied voltage)

Table A.2: DC motor setup- parameters.

A.3 Synchronous Motor

The experimental setup shown in Figure A.2 consists of a synchronous motor Maxon EC45,
a three phase electronic inverter ST L6234, a Megatron MCP05 potentiometer for absolute
measurement of the shaft position angle θ and a PC. Communication from the PC to the
inverter is done via the PC’s parallel port (maximal sampling frequency 400 Hz). The
potentiometer is connected to an analog digital converter card Advantech PCI-1714. The

RTW

analog digital converter

parallel port

PC
inverter

synchronous motor

potentiometer

Figure A.2: Experimental setup (synchronous motor).

control algorithm is implemented in Matlab/ Simulink running on a Linux Real Time
operating system. An executable target is generated using Matlab Real Time Workshop.

A.4 Induction Machine

The derived control schemes are tested on an experimental setup with a 1, 1 kW three
phase squirrel cage induction machine as shown in Figure A.5. The control algorithm
is implemented using Matlab/ Real Time Workshop based on the real time operation
system Linux RTAI on a PC. As illustrated in Figure A.4 the PC communicates via the
parallel port with the inverter, which drives the induction machine. The maximal sampling
frequency of the parallel port is 400 Hz, the maximal switching frequency of the IGBTs

106



A.4 Induction Machine

R = 0.6 Ω (resistance)
L = 0.000205 H (inductance)
p = 8 (number of permanent pole pairs)
k = 0.0255 Vs (motor constant)

Jm = 9.25 · 10−6 kg m2

u = 12 V (supplied voltage)
i2d + i2q ≤ 2.3 A (quadratic voltage)

µ =5.033 · 10−6 Nms (frictional coefficient- estimated)
r =0.3 Ω (internal resistance of the switching devices)

Table A.3: Synchronous motor setup- parameters.

Figure A.3: Synchronous motor.

Llr = 15.7 · 10−3 H (rotor inductance)
Lls = 18.9 · 10−3 H (stator inductance)
Lh = 439 · 10−3 H (mutual inductance)
Rr = 6.8 Ω (rotor resistance)
Rs = 10 Ω (stator resistance)
Nr = 2 (number of pole pairs)
Jm = 3.5 · 10−3 kgm2 (mass moment of inertia of the machine)
cm = 5.752 · 10−3 Nms (friction coefficient of the machine)
λ0 = 2.95 mVs (nominal rotor flux)

Table A.4: Induction machine setup- parameters.

is approximately 70 kHz. Control signals are sent via optical fibers. Thus, problems like
noise and electromagnetic disturbances are avoided. The inverter controls the three phase
currents of the induction machine, which are measured by Hall sensors and sent back to
the PC via an analog digital converter ( PCI-1714, clock signal 60 MHz). An encoder
possessing the accuracy of 0.018◦, which is fixed at the motor shaft, sends the angular
position of the motor shaft via an other analog digital converter (Sensoray 626) to the PC.
Sampling rates for all experiments are Ta = 20 kHz. Table A.4 summarizes the parameters
of the used induction machine.
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=0

PC

RTW

parallel port

optical fiber adapter

optical fiber

inverter

current sensors

induction machine

nonlinear load

encoder

digital analog/ analog digital converter

analog digital converter

Figure A.4: Experimental setup (induction machine).

Figure A.5: Induction machine.
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B Cost Functional Minimizing Sliding Mode
Control Design for a Synchronous Motor

Desired dynamics of the mechanical system is chosen in such a way that the dissipative
power loss Π of the synchronous machine

Π =
3

2
(R + r)(i2d + i2q) + µω2 (B.1)

is minimized during operation. Parameter r represents the internal resistance of the switch-
ing devices connected in series to the winding resistance R for each phase of the three-phase
system.1 Transient time T , initial position θ0 and target position θT are taken into account
for the optimization problem.

In order to be able to carry out the optimization analytically, a simplified motor model
is used. This model is derived from the original motor model equations (4.28) and (4.29)
by neglecting electrical time constants, which are very small compared to the mechanical
ones. This simplification, based on the theory of singular perturbation is done by setting

i̇d = 0 (B.2)

i̇q = 0 . (B.3)

Furthermore, equation (4.29) shows that the direct current id does not contribute to the
motor torque kiq. The optimization task can therefore be further simplified by fixing id
to an optimal value i∗d using control input ud. Considering the cost function (B.1), the
optimal value of id is

i∗d = 0 . (B.4)

With (B.3) and (B.4) the reduced state space model of the synchronous motor

ẋ =

[

θ̇

ω̇

]

=

[

ω

−µ
J
ω + k

RJ

(

uq − 2
3
kω

)

− 1
J
τL

]

=

[

f1(x)
f2(x, τL, uq)

]

= f(x, τL, uq)

(B.5)

is obtained. For optimization the value of the disturbance τL is set to be zero

τ̄L = 0 . (B.6)

1The resistance factor r is equal to 3

2
as a result of the transformation of the three dependent phase

currents ia, ib and ic into the two independent currents id and iq.
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B Cost Functional Minimizing Sliding Mode Control Design for a Synchronous Motor

The angles θ0 and θT being initial and target angular positions respectively and T being the
selectable transition time from initial to target position, the optimization problem turns
into a problem of finding

argmin
uq(t)

J(x, τ̄L, uq, T ) = argmin
uq(t)

∫ T

0

Π(x, τ̄L, uq)dt (B.7)

taking into account the equality constraint

ẋ − f(x, τ̄L, uq) = 0 (B.8)

and the boundary conditions

x(0) =

[

θ0

0

]

and x(T ) =

[

θT

0

]

. (B.9)

The solution is the optimal feedback control law

θ∗(t) = θ0 + K

[

sinh(Qt) − D

S
[cosh(Qt) − 1] − qt

]

(B.10)

ω∗(t) = KQD

[

1 − 1

S
sinh(Qt)

]

(B.11)

where

Q =

√

f 2

J2
+

2µk2

3(R + r)J2
,

S = sinh(QT ) ,

K =
S(θT − θ0)

2D − QTS
and

D = cosh(QT ) − 1 .

(B.12)

Remark B.1 To find the optimal continuous control u∗
q(x) or directly the optimally con-

trolled trajectory x∗ =
(

θ∗

ω∗

)

, the constrained continuous dynamic optimization theory is
applied. That means Hamilton equations are set up and solved.

The necessary conditions for minimizing Π are

∂H

∂x
= −λ̇

T
(B.13)

∂H

∂λ
= ẋT (B.14)

∂H

∂u
= 0T . (B.15)
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When the necessary conditions are substituted in (B.5) - where state vector x = [θ ω]T ,
co-state vector λ = [λθ λω]T , control input u = uq, nominal disturbance values (B.6) and
loss function (B.1) the Hamiltonian system

∂H

∂λθ

= ω = θ̇ (B.16)

∂H

∂λω

= −f

J
ω +

k

RJ
ŭ − Lk

RJ
i̇q −

1

J
M = ω̇ (B.17)

∂H

∂θ
= 0 = −λ̇θ →= λθ = constant (B.18)

∂H

∂ω
=

3(R + r)

R2
ũ

2

3
kω + 2fω −

(

f

J
+

2k2

3RJ

)

λω = −λ̇ω (B.19)

∂H

∂uq

=
3(R + r)

R2
ŭ +

k

RJ
λω = 0 → ũ =

Rk

3(R + r)J
λω (B.20)

where ŭ represents

ŭ := uq −
2

3
kω (B.21)

is obtained. The Hamilton function takes the form

H(x, uq,λ) = Π(x, uq) + λT f(x, z̄, uq) . (B.22)

Substitution of ũ leads to the following four dimensional Hamiltonian system

θ̇ = ω (B.23)

ω̇ = −µ

J
ω − k2

3J2(R + r)
λω (B.24)

λθ = constant (B.25)

λ̇ω = −2µω +
µ

J
λω − λθ . (B.26)

Since λθ is constant and (B.25) and (B.26) do not depend on θ, only the reduced system

˙̃x = Ax̃ + ũ (B.27)

where

x̃ = [ω λω]T (B.28)

A =

[

−µ
J

− k2

3J2(R+r)

−2µ µ
J

]

(B.29)

ũ = [0 − λθ]
T (B.30)

has to be solved.
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C Performance using Multiphase Converter:
Simulation Results

The multiphase converter control scheme introduced in Section 5.3 is tested based on
the sliding mode position control algorithm that is presented in Section 5.2.2 Table C.1
summarizes the parameters of the machine and the control parameters which are used in
the numerical simulations.

The load consists of the inertia of the machine and a pendulum, which is a point mass of
0.1 kg at a distance of 0.5 m from the motor axis. Angle θ is the angle from the top vertical
position. Initially, the position is θ = π rad, meaning that the mass of the pendulum is
at the lower vertical. Three sliding manifolds are to be evaluated, s1 = 0 for the torque,
s2 = 0 for the rotor flux and s3 = 0 for the position. Initially, the position is θ = π rad,
meaning that the mass of the pendulum is at the lower vertical position. The control
objective is to reach the position θ = π

2
rad. The simulation time is ts = 1 s. All evaluation

factors are computed after t = 0.1 s to allow the machine and controller to initialize and
reach sliding mode. For the controllers applying pulse-width modulation, the sampling
rate is set to 2 kHz, for all other controllers the sampling rate is set to 10 kHz.. Those
settings sound reasonable for an example switching device requiring Tmin = 50 µs delay
between switching.

Results of the case, when seven instead of four control input signals are generated by
switching commands, are shown in Figures C.1 to C.2. The results belonging to the case,
when a 3-level inverter is used, are shown in Figures C.4 to C.4.
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Figure C.1: Simulation results: Position control of an induction machine with inverse inverter
model and a 2-level inverter.
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Figure C.2: Simulation results: Position control of an induction machine with PWM and a
2-level inverter.

115



C Performance using Multiphase Converter: Simulation Results

angle θ / rad

torque τ / Nm

modulus of flux ‖λ‖ / Vs

voltage uα / V

voltage uβ / V

current iα / A

current iβ / A

θ
τ

‖λ
‖

u
α

u
β

i α
i β

time t / s

0.25

100

100

-100

-100

-2

-2

0.2

0

0

0

0

0

2

2

2

2.5

3

-5

5

0

0

0

0

0

0

0

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.9

0.9

0.9

0.9

0.9

0.9

0.9

1

1

1

1

1

1

1

Figure C.3: Simulation results: Position control of an induction machine with inverse inverter
model and a 3-level inverter.
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Figure C.4: Simulation results: Position control of an induction machine with PWM and a
3-level inverter.
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Lh = 454 · 10−3 H (mutual inductance)
Lr = 458 · 10−3 H (rotor inductance)
Ls = 439 · 10−3 H (stator inductance)
Rr = 6.8 Ohm (rotor resistance)
Rs = 10 Ohm (stator resistance)
Nr = 2 (number of pole pairs)
cm = 5.75 · 10−3 Nms (friction coefficient of the machine)
Jm = 3.5 10−3 kgm2 (mass moment of inertia of the machine)

λr0 = 0.2 Vs (nominal rotor flux)
τmax = 4 N (maximal torque)
U0 = 120 V (supply voltage)
c1 = 42.5 (control parameter)
c2 = 800 (control parameter)
c3 = 0.1 (control parameter)

c1STA
= 0.4 (control design parameter - super twisting algorithm)

c2STA
= 57.3 (control design parameter - super twisting algorithm)

ρSTA = 0.75 (control design parameter - super twisting algorithm)
κM = 2 ms (control parameter)
εM = 5000 (control parameter)

Table C.1: Multiphase converter control of an induction machine- simulation parameters.
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