
Institute for Data Processing
Technische Universität München

Prof. Dr.-Ing. Klaus Diepold

Pose Estimation of a Camera
using Newton Optimization

on the Manifold

Technical Report





Pose Estimation of a Camera using
Newton Optimization on the Manifold

Michel Sarkis?, Alexander Schwing and Klaus Diepold

Institute for Data Processing, Technische Universität München,
Arcisstr. 21, 80290 Munich, Germany

Emails: [michel,kldi]@tum.de,alexander.schwing@mytum.de

Abstract. Bundle adjustment is a minimization method frequently used to refine
the structure and motion parameters of a moving camera. In this work, we present
a Newton-based approach to enhance the accuracy of the estimated motion pa-
rameters in the bundle adjustment framework. The key issue is to parameterize
the motion variables of a camera on the manifold of the Euclidean motion by
using the underlying Lie group structure of the motion representation. We then
reformulate the bundle adjustment cost function and derive the gradient and the
Hessian formulation on the manifold to minimize the cost function in such a
manner that the minimum is the desired estimate of the motion. This results in a
more compact derivation of the Hessian which allows us to use its complete form
in the minimization process. Compared to the Levenberg-Marquardt scheme, the
proposed algorithm is shown to provide more accurate results while having a
comparable complexity although the latter uses an approximate form of the Hes-
sian. The experimental results we performed on simulated and real image sets are
evidence that demonstrate our claims.

1 Introduction

Extracting the motion parameters of a moving camera is a significant aim in computer
vision and robotics. Based on some features in a sequence of images, it is possible to
obtain the initial estimates of the 3D structure of a scene along with the corresponding
camera positions. Then, bundle adjustment (BA) is applied to refine those estimates.
Examples of algorithms employing BA are reflected in [1–5] while in [6] an excellent
survey on the different methodologies to implement this scheme is presented. The core
of BA is to minimize the pixel reprojection error of the 3D points so that both the
structure and the motion are corrected simultaneously. The error is expressed as the
sum of the squared distances between some computed image points obtained via robust
feature detectors and the estimated image points from the reprojections of the 3D points.
BA is usually implemented using the Levenberg-Marquardt (LM) algorithm, which is
an optimization scheme that leads to the least-squares solution of the problem in a non-
linear sense [7, 8]. LM has the properties of both the steepest descent and the Gauss-
Newton iterative techniques. Similarly to steepest descent, LM converges slowly to the

? This research is sponsored by the German Research Foundation (DFG) as a part of the SFB
453 project, High-Fidelity Telepresence and Teleaction.



2 Michel Sarkis, Alexander Schwing and Klaus Diepold

solution if the initial estimate is far away from the real solution while it converges fast
like Gauss-Newton methods when the initial estimate is close to the real solution.

In order to apply LM, the variables have to be parameterized in such a way that
the minimization algorithm can avoid the local minima. The points of the structure are
usually described using their 3D coordinates since they reflect the overall degrees of
freedom (DOF) of the entity. The translation vector is done in the same way since it
consists of 3 entries that represents its 3 DOF. The rotation is described by a 3×3 ma-
trix consisting in a total of 9 entries although it has only 3 DOF. Parameterizing the
3D rotation using the 3 Euler angles is not a good idea in practice since it results in
numerical instabilities due to the singularities and the uneven regions that the angles
cover. A rotation can be expressed using unit quaternions or using local perturbations
of an existing rotation. However, each of these parameterizations has its own drawback.
The unit quaternion has to be constrained so that the vector has a unit norm while the
update step of the rotation using local perturbations does not result exactly in a rotation
matrix [6, 1]. Apart from the parameterization, LM uses in its minimization an approxi-
mate formula of the Hessian because the second order derivatives are dropped out in the
formulation of the algorithm [7, 8]. It is usually applied in structure from motion prob-
lems with the hope that the initial estimates of structure and pose are accurate enough so
that the overall system can converge to a global solution. This fact might create instabil-
ity problems if this is not the case. This can be justified from the fact that BA is a large
scale minimization problem. By ignoring the second order terms in the Hessian makes
the optimization more susceptible to being stuck in local minima since the minimizer is
much small for the terms to be minimized [9], i.e. the reprojection errors.

In this work, we first recall that the motion estimate of the camera in BA can be
estimated more accurately by deriving the complete Hessian formulation in a Newton
minimization scheme than by just taking its approximation as usually done in LM. We
therefore derive a Newton scheme in the vector space with the goal to refine the motion
of the camera. Tested on real and simulated data sets, the algorithm is shown to result
in a noticeable improvement in the motion estimate when compared to LM. This is due
to the complete computation of the Hessian at the cost of an increase in the complexity.
We then argue that parameterizing the motion of the camera on the six dimensional
manifold of the rigid motion is more favorable than using the current parameterization
schemes. To justify that, we formulate a projective Newton-type optimization technique
which exploits such parameterization to minimize the BA cost function on the manifold.
The proposed scheme is shown also to have a better performance than LM in terms of
accuracy of the estimated motion. The advantage in the optimization on a manifold
is that the gradient and Hessian computations are easier to derive than in the vector
space since they boil down to matrix multiplications [10]. This makes the complexity
of the latter considerably less than that of the Newton algorithm in the vector space and
comparable to that of LM.

The rest of this work is divided as follows. Section 2 presents a brief overview
on BA along with a callback on Newton minimization schemes. Section 3 derives the
proposed algorithm. Section 4 evaluates the performance of the technique. In the end,
we conclude the paper with some discussions in Section 5.



Pose Estimation of a Camera using Newton Optimization on the Manifold 3

2 Related Work

Bundle adjustment is to jointly adjust some noisy estimates of the 3D structure along
with the motion of the cameras in order to satisfy all the equations of the camera per-
spective projection with the least possible error. Given are L camera views and N re-
constructed points, the cost function f to be minimized is given by

f =
L∑

i=1

N∑
j=1

d
(
xi

j ,RiXj + ti

)2
, (1)

where xi
j are the homogeneous coordinates of the 2D measured points in the ith image

(camera), Ri is a 3 × 3 rotation matrix representing the orientation of the ith camera
in the world coordinate system, ti is the translation vector of the corresponding camera
between the origin of the world and that of the camera, Xj are the homogeneous coor-
dinates of the jth point in the 3D structure and d is the geometrical distance measure
between a reprojected point x̂i

j = RiXj + ti and the corresponding measured point
xi

j . The measure d can be any scale invariant distance such as the Mahalanobis, the L2
norm or the cosine distances.

Assuming that the camera is calibrated, the cost function f has to be minimized
over every Ri and ti and Xj . To parameterize the translation vector and the points
of the structure, i.e. Xj , it is sufficient to take the 3 entries of each as the variables.
To parameterize the rotation, it is necessary to find a minimal parametrization which
reflects its 3 DOF. A rotational transformation in R3 is represented by the elements of
the special orthogonal group SO3. Its associated Lie algebra so3 is the set of 3×3 skew-
symmetric matrices which are considered as the tangent space of SO3 at the identity.
The isomorphism Ω that allows to identify so3 with R3 is defined as

Ω
(
ωi

)
: R3 −→ so3,

ωi
1

ωi
2

ωi
3


×

=

 0 −ωi
3 ωi

2

ωi
3 0 −ωi

1

−ωi
2 ωi

1 0

 . (2)

To connect the Lie algebra to the Lie group, the exponential map is usually used.
The rotation matrix Ri can thus be expressed in the form Ri = expm

(
Ω

(
ωi

))
. It can

be written using the Taylor series expansion of the exponential function as

Ri = expm
(
Ω

(
ωi

))
= I + Ω

(
ωi

)
·
sin

(
‖ωi‖

)
‖ωi‖

+ Ω2
(
ωi

)
·
1− cos

(
‖ωi‖

)
‖ωi‖2

. (3)

The term to the right is known as the Rodrigues formula of the rotation matrix. If the
magnitude of the vector ωi is small, it can be approximated with I + Ω

(
ωi

)
which is

nothing but the local perturbation around Ri [6]. Assuming that the magnitude of ωi is
small is not always accurate especially if the initial estimate of the motion is contains
high amount of noise. In our implementations of LM and the vector space Newton,
we will be applying the whole term in order to have an accurate parametrization of
the 3D rotation. Another reason for this choice is that the Manifold based optimization
algorithm results in the accurate rotation matrix. Thus, taking the whole term makes the
comparison among the techniques fair.



4 Michel Sarkis, Alexander Schwing and Klaus Diepold

Note that the main contribution in this work is mainly emphasized by the param-
eterization the motion variables and developing a projective Newton scheme to fulfill
this task. The structure parameterization is left intact as usually done in the literature,
see. [6, 1] for example. For simplicity, we will assume throughout this work that the
structure is constant; therefore, it will be ignored in the presented derivations unless
otherwise specified. With this assumption, the problem in hand turns equivalent to es-
timating the relative poses of a moving camera. In this direction, one can find several
linear and non-linear algorithms that can accomplish this task as the techniques that are
presented in [11–14]. The goal of this work, however, is to enhance the accuracy of a
Newton minimization scheme without significantly increasing the accompanying com-
putational complexity. For this reason, we will be stating next a brief overview about
the Levenberg-Marquardt technique and illustrate its differences from a generalized
Newton algorithm.

2.1 Levenberg-Marquardt Algorithm

We will be noting by ai =
[
ωiT tT

i

]T ∈ R6 as the vector that represents the 6
parameters of each camera and p as the vector that holds the parameters of all the
cameras, i.e. p =

[
aT

1 , . . . ,aT
L

]T ∈ R6L. In order to apply LM, f needs to be for-
mulated in the form f = gTg where g = [g1,1, . . . , gN,1, . . . , gN,L]T ∈ RN·L and
gj,i = d

(
xi

j ,RiXj + ti

)
. LM tries to find the solution vector p̃ that minimizes Equa-

tion (1) iteratively. The update step at the kth iteration can be expressed as

p(k+1) = p(k) −
(
JT
g · Jg + µ · I

)−1
JT
g · g. (4)

I ∈ R6L×6L is the identity matrix, µ is the damping term that controls the step size of
the iteration and Jg is the Jacobian matrix which is computed by taking the first order
derivatives of g with respect to every ai

Jg =


∂g1,1

∂aT
1

. . .
∂g1,1

∂aT
L

...
...

∂gN,L

∂aT
1

. . .
∂gN,L

∂aT
L

 ∈ RN·L×6L. (5)

The term JT
g ·Jg is the approximation of the Hessian matrix used in the Gauss-Newton

algorithm. Hence, µ·I6 can be thought of as a regularization term for the Hessian in case
if it is close to singularity. Due to this term, LM has the properties of both the steep-
est descent and the Gauss-Newton iterative techniques. Similarly to steepest descent,
LM converges slowly to the solution if the initial estimate is far away from the global
solution while it converges fast like Gauss-Newton methods when the initial estimate
is close. When solving for Equation (4), LM can be tremendously accelerated when
the sparsity of the Hessian is taken into account. A thorough analysis of the scheme is
found in [7, 8, 6, 15, 1].

2.2 Newton Algorithm in the Vector Space

The aim of a Newton-type algorithm is to find the extrenum of a given cost function in
an iterative scheme. In our case, the update step used to minimize Equation (1) has the



Pose Estimation of a Camera using Newton Optimization on the Manifold 5

following form
p(k+1) = p(k) −H−1

f · ∇f, (6)

where k is the iteration number as before, ∇f = 2JT
g · g is the gradient of the cost

function f and Hf ∈ R6·L×6·L is the corresponding Hessian. The Hessian Hf is ex-
pressed by

Hf = 2JT
g · Jg + 2

L∑
i=1

N∑
j=1

(
gj,i ·Hgj,i

)
. (7)

The matrix Hgj,i denotes the Hessian with respect to each term of g. It is given by

Hgj,i =


∂

∂aT
1

∂gj,i

∂a1
. . . ∂

∂aT
L

∂gj,i

∂a1

...
...

∂
∂aT

1

∂gj,i

∂aL
. . . ∂

∂aT
L

∂gj,i

∂aL

 ∈ R6·L×6·L. (8)

By setting the second term of Equation (7) to zero, the approximated Hessian obtained,
i.e. Ĥf = 2JT

g · Jg, is what is used in a Gauss-Newton iterative technique. By adding
the damping term µ·I to Ĥf leads us to the approximate Hessian used in LM, see Equa-
tion (4). The complexity induced by the computation of Hgj,i is the reason that makes
LM more favorable in BA. The optimization in hand is, however, a large-scale problem.
Failing to take Hgj,i

into account in such a case makes the output diverges from the
global solution especially if the initial estimate of the motion is noisy or far from the
global solution [9]. This can be justified since the minimization without these terms will
be more susceptible to be stuck in local minima. It is important to note that the sparsity
of Hf can be explored as in LM to increase the speed of the computations by taking
advantage of the zero patterns in the matrix. It is also possible to add a damping factor
µ · I to Hf like in Equation (4) to regularize the Hessian if it is close to singularity or to
vary the speed of convergence. A good description on how to perform such adjustments
to the Hessian are found in [15].

3 The Proposed Projective Newton-Type Approach

Computation of the second order terms in a Newton algorithm, i.e. right addend in
Equation (7), is not favorable due to the complexity arising from the computation of
the Hessian. To get a glimpse of how the computational complexity rises, the number
of floating point operations (FLOPS) required per camera per iteration are illustrated in
Table 1. As can be noticed, including these terms makes the complexity required for the
motion refinement rises to 5 times more when compared to that needed in LM. The aim
of this section is, therefore, to propose an optimization method to enhance the accuracy
of the motion estimate in BA without a significant increase in the complexity. To do
that, a Newton minimization scheme on the manifold will be derived. A manifold is a
topological space in which each point has a neighborhood that looks like the Euclidean
space. Designing an optimization scheme on a manifold can be visualized as making
the minimization iteratively walk on the surface of the curve described by the variables



6 Michel Sarkis, Alexander Schwing and Klaus Diepold

Fig. 1. Projective Newton-type algorithm on the manifold. A local parameterization maps the
variables from R6 to the manifold of the rigid motion. The minimization is then performed in
two steps: The optimization direction and step size are computed on the tangent space to the
manifold. The calculated values are then projected back on the manifold to update the motion.

until the minimum is achieved. In order to perform such operations, it is necessary that
the manifold possesses a special structure. It has to be differentiable and smooth so that
notions like distances and angles, necessary to determine the direction of optimization
in a Newton scheme, can be defined. Examples are the Riemannian manifolds where
each has the nice property of being equipped with a tangent space that allows the transi-
tions from a point to another one to be smooth. An instance of a Riemannian manifold
is the special orthogonal group SO3 that describes the 3× 3 rotations matrices, see
Equation (2). The tangent space to this group is its associated Lie algebra so3 which is
related to the latter using the exponential map. To derive a Newton-type method, it is
necessary to compute first and second order derivatives. An intrinsic Newton method,
that is, a Newton method which is intrinsically defined on the Riemannian manifold
without referring to any embedding vector space, requires the notion of a Riemannian
gradient and a Riemannian Hessian. This idea often requires an overhead of differen-
tial geometric machinery. Here, a projected Newton-type method is formulated instead
that exploits a local parameterization of the variables on the manifold. The direction
and step size of the optimization are computed using the associated tangent space. The
result is then projected back on the manifold to update the variables. The mechanism of
such schemes is illustrated in Figure 1. To apply this approach, however, a suitable local
parameterization of the rigid motion of the camera must be first determined. For good
references that provide detailed discussions about Lie theory and differential geometry,
see [16, 10, 17–19].

In the following, the derivations will be for simplicity made for one camera since
the motion variables of each pose are independent from each other. The index i in
Equation (1) that designates the camera number will thus be dropped. The extension of
the algorithm to more than one camera is among its lines.

3.1 Parametrization of the Rigid Motion

The rigid motion in R6 is represented by the elements of the special Euclidean group
SE3 which consists of all the 4×4 matrices M ∈ SE3 of the form

M =
[
R t
0 1

]
, (9)



Pose Estimation of a Camera using Newton Optimization on the Manifold 7

where R ∈ SO3 and t ∈ R3 are the rotation and the translation of the camera, respec-
tively. The Lie algebra se3 associated to SE3 is the set of 4×4 matrices m ∈ se3

m =
[
Ω (ω) v

0 0

]
, (10)

where Ω (ω) ∈ so3 is a skew symmetric-matrix as shown in Equation (2) and v is a vec-
tor in R3. The matrix m is related to M via the exponential map, i.e. M = expm (m).
Using the Taylor series expansion of the exponential, it can be easily shown that the
translation can be written as

t =
(
I +

1− cos (θ)
θ2

·Ω (ω) +
θ − sin (θ)

θ3
·Ω (ω)2

)
· v = Θ · v, (11)

where θ =
√

1
2 trace (ΩT (ω) ·Ω (ω)). The rotation R remains the same as was defined

in Equation (3), i.e. R = expm (Ω (ω)). To design a Newton-type optimization scheme
on a manifold, it is necessary to employ ω and v to parameterize the rotation and the
translation, i.e. a =

[
ωT vT

]T
, respectively. We therefore propose the following

smooth and local parametrization φ of SE3 at the camera motion M to be

φ(M) : R6 → SE3, φ(M) (a) = expm
([

Ω (S1a) S2a
0 0

])
·M = expm (Λφ) ·M,

(12)
where S1 = [I 0] ∈ R3×6 and S2 = [0 I] ∈ R3×6 select the appropriate variables.

3.2 Minimization of the Cost Function

A projected Newton-type method computes a Newton step for the composition f ◦φ of
the cost function f with the local parametrization φ and maps (projects) the update step
back to the manifold using the parametrization again, see Figure 1. We slightly abuse
the notation to write f ◦ φ(M) to denote the mapping

f ◦ φ(M) : R6 → R, (13)

which corresponds here to the cost function for each pose of the camera to be minimized
on the manifold. It is defined by

f ◦ φ(m)(a) :=
N∑

j=1

d (xj , x̂j)
2 (14)

=
N∑

j=1

d (xj , π · expm (Λφ) ·M ·Xj)
2
,

where d (xj , x̂j) is the distance that measures the reprojection error, e.g. Mahalanobis,
cosine distance or L2 norm and π is a mapping to scale the multiplication of the right



8 Michel Sarkis, Alexander Schwing and Klaus Diepold

term of the distance function from R4 to R3 to preserve the dimensions. The gradient
∇(f ◦ φ(M))(0) ∈ R6 of the cost function can be calculated from

d
dε

(f ◦ φ(M))(εa)
∣∣∣∣
ε=0

= ∇(f ◦ φ(M))(0)T · a. (15)

The explicit formula for the gradient of the local cost function of BA at zero is

∇(f ◦ φ(M))(0) = 2
N∑

j=1

[−Ω (πMXj) I]T · ∂d (xj , x̂j)
∂x̂j︸ ︷︷ ︸

→Ji

·d (xj , x̂j)︸ ︷︷ ︸
→gi

 (16)

= 2JT

i · gi,

where ∂d(xj ,x̂j)
∂x̂j

∈ R3 is the standard Euclidean derivative of the distance function with
respect to x̂ and I ∈ R3×3 is the identity matrix. Equation (16) corresponds to the
gradient of the ith camera. It is possible to gather the equations of all the cameras by
padding each column vector Ji into a block diagonal matrix and each gi into a single
vector. This leads us to

∇(f ◦ φ(M1,···,ML))(0) = 2JT
f◦φ(M1,···,ML,)

· g, (17)

where ∇(f ◦ φ(M1,···,ML,))(0) is the total gradient and Jf◦φ(M1,···,ML) is the corre-
sponding Jacobian matrix for all the system. The Hessian matrix Hf◦φ(M)(0) ∈ R6×6

of the local cost function evaluated at zero can be calculated from the quadratic form

d2

dε2
(f ◦ φ(M))(εa)

∣∣∣∣
ε=0

= aT ·Hf◦φ(M)(0) · a (18)

via polarization. The explicit formula of the Hessian is given by

Hf◦φ(M)(0) = 2JT
i · Ji + 2

∑N
j=1

(
ST

1 Ω
(

∂d(xj ,x̂j)
∂x̂j

)
[Ω (πMXj) I]d (xj , x̂j)

)
(19)

+2
∑N

j=1

(
[−Ω (πMXj) I]T · ∂2d(xj ,x̂j)

∂x̂2
j

[−Ω (πMXj) I]d (xj , x̂j)
)

,

where ∂d2(xj ,x̂j)

∂x̂2
j

∈ R3×3 is the second order derivative of the distance function with

respect to x̂. As in Equation (17), the Hessian from each camera can be assembled into
a sparse block diagonal matrix Hf◦φ(M1,···,ML)(0) ∈ R6L×6L.

By considering the computed gradient and Hessian, we can observe that their form
is compact. There is no lengthy computations in the evaluation of the first and second
order derivatives of the distance function as in Equations (5) and (7) in the vector space.
The only derivatives that need to be evaluated are the first and second order Euclidean
derivatives of the cost function with respect to x̂, i.e. ∂d(xj ,x̂j)

∂x̂j
and ∂d2(xj ,x̂j)

∂x̂2
j

, which
are simple to obtain. The reason for this is that the computation of the derivatives with



Pose Estimation of a Camera using Newton Optimization on the Manifold 9

respect to the motion parameters reduces to matrix multiplications which is a property
of the projective Newton type optimization algorithms on Riemannian manifolds [10].
This can be illustrated in our derivations by the term [−Ω (πMXj) I]T which repre-
sents the derivative with respect to the camera parameters. By comparing Equations (16)
and (19), we can see that a lot of terms needed for the computations of the Hessian have
to be also computed for the gradient, i.e. [−Ω (πMXj) I]T and ∂d(xj ,x̂j)

∂x̂j
.

3.3 Algorithm

Given some initial estimates of the motion Mi and 3D structure, the proposed optimiza-
tion algorithm will iterate the following update scheme:

Step 1: (Newton step) Compute the vector p =
[
aT

1 , . . . ,aT
L

]T ∈ R6L by solving

−
(
µ · I + Hf◦φ(M1,···,ML)(0)

)
· p = ∇(f ◦ φ(M1,···,ML))(0). (20)

Step 2: Update the motion parameters of each camera

Mi ← expm (Λφ) ·Mi (21)

Step 3: Update the reprojections x̂i
j and compute the mean reprojection error.

Step 4: Repeat until convergence.

3.4 Analysis of the Derived Scheme

The projective Newton-based minimization algorithm is initialized by some initial val-
ues of structure and motion. Then, it proceeds with the iterative scheme illustrated in
the previous section. Each iteration, the algorithm performs an optimization step in
Equation (20) on the tangent space of the manifold of the rigid motion followed by
a projection step which is an analytic geodesic search described in Equation (21), see
Figure 1. The proposed technique implements the Riemannian Newton algorithm on
a small neighborhood of the set of local minima of the cost function. Outside of this
neighborhood where the Hessian is close to singularity or indefinite, the algorithm
might fail. For this reason, Equation (20) is modified using the damping factor µ as
in case of the LM technique to regularize the Hessian. This modification is necessary
here to enlarge the attraction domain of the local minima and to control the speed of
convergence of the algorithm. The direction of the step is determined via the Newton
direction and it is zero only when the gradient is zero. Consequently, the algorithm
converges to a critical point of the cost function when the gradient is zero.

3.5 Complexity Analysis of the Algorithms

The general core of the proposed Newton-type algorithm in both of its versions is pretty
similar to LM. The only difference resides in the way the gradients and the Hessians
are evaluated. In order to emphasize on the computational complexity of these terms,
we present in Table 1 a comparison of the computational costs required for the gradient



10 Michel Sarkis, Alexander Schwing and Klaus Diepold

and Hessian for each of the minimization algorithms in a single iteration. The factors
multiplied by L × N are the operations that have to be evaluated for each point and
each view while the ones multiplied by L are only required per view, e.g. Rodrigues
formula in Equation (3) to compute the rotations. Each of the shown numbers in the
table designates the equivalent amount of flops needed while the operations that require
more than one flop, e.g. cosine and sine, are mentioned by there names since they de-
pend on the machine used. LM requires the least computational effort to compute these
terms while the Newton algorithm in the vector space requires the most. This shows
why the evaluation of the full Hessian shown in Equation (7) is usually avoided in BA.
However, the amount of computations required by the projective Newton algorithm on
the manifold is considerably less (60%) than that of the vector space due to the sim-
pler derivations. Compared to LM, the complexity induced by the proposed method is
slightly higher. However, its application will lead to an improvement in the accuracy of
the motion estimates and will make the result more robust against the noise. This point
will be emphasized in the results.

Algorithm Number of Flops
Levenberg Marquardt L × N(114 + 2 · sqrt) + L(227 + sqrt + cos + sin+expm)

Newton Manifold L × N(241 + 2 · sqrt) + L(15 + expm)

Newton Vectorspace L × N(564 + 2 · sqrt) + L(1024 + sqrt + sin+ cos+expm)

Table 1. Number of flops needed for the computation of the gradient and the Hessian per iteration.
N is the number of points, L is the number of cameras, sqrt is the scalar square root, cos is the
scalar cosine, sin is the scalar sine and expm is the matrix exponential.

3.6 Integrating the Structure Optimization

The method is till the moment only derived for the camera poses. We will briefly sketch
now how to integrate the structure in the optimization. Let us recall that each point
Xj of the structure can be parameterized using its coordinates in 3D space. The cost
function shown in Equation (14) should be reformulated to designate the mapping

f ◦ φ(M1,···,ML,X1,···,XN )(z) : R6L+3N → R (22)

:=
L∑

i=1

N∑
j=1

d
(
xi

j , π · expm
(
Λi

φ

)
·Mi ·Xj

)2
,

where the vector z ∈ R6L+3N holds the parameters of all the camera parameters and the
3D points. The derivations of the gradient∇

(
f ◦ φ(M1,···,ML,X1,···,XN )

)
(0) ∈ R6L+3N

and the Hessian Hf◦φ(M1,···,ML,X1,···,XN )(0) ∈ R6L+3N×6L+3N of the cost function at
zero are then computed following a similar concept to Equations (15) and (18). These
are used after that to calculate the solution vector z using the following update scheme

−
(
µ · I + Hf◦φ(M1,···,ML,X1,···,XN )(0)

)
· z = ∇

(
f ◦ φ(M1,···,ML,X1,···,XN )

)
(0).

(23)



Pose Estimation of a Camera using Newton Optimization on the Manifold 11

The Hessian matrix of the overall system is sparse in nature due to the formulation of
BA. Therefore, the zero patterns of this entity can be exploited in the inversion oper-
ation to obtain the non-linear least-squares solution of z. For more information about
this topic, the interested reader may refer to [1, 20] to see how this issue is usually
performed.

4 Experimental Results

We will describe in this section a comparison regarding the application of LM, the
Newton algorithm in the vector space and the proposed method. We will be testing the
techniques using one simulated data set and three real image sequences. The goal of our
tests is to demonstrate the performance of the algorithms in terms of the convergence
and the accuracy of the estimated motion. We will therefore not perform any structure
optimization in order to assess the robustness of each of the optimization schemes. For
every algorithm, it is assumed that the cameras are intrinsically calibrated and that the
3D structure is already computed along with the corresponding image projections. It
is important to point out that the three methods are implemented in Matlab and they
possess the same structure. The only dissimilarity among them resides in the way the
gradients and the Hessians are evaluated which was thoroughly discussed in the previ-
ous sections and illustrated in Table 1. Consequently, the divergence in the execution is
only dependent on this difference.

Figure 2 shows the output of the algorithms when applied to the simulated data set.
The set was generated by creating 100 random 3D points and projecting them on four
random 256×256 images in the noise free case. The feature points and the ground truth
3D structure present the inputs to the Newton algorithms while the initial estimate for
the motion was randomly chosen. The error in the rotation is measured by transforming
the rotation matrix to the Euler angles, i.e. roll, pitch and yaw, and then calculating the
absolute difference between the estimated and the ground truth values. For the trans-
lation, the error is computed by evaluating the distance between the estimated vectors
and the corresponding true values. The results illustrated in the plots show the average
over 1000 trials. They demonstrate that taking the total Hessian formula and not just the
approximation leads to more accuracy in the estimated motion.

The first real image sequence that we will test the algorithms on is the Hall stereo
sequence which was acquired by ourselves. Example images from the sequence are il-
lustrated in Figure 3. The sequence consists of nine stereo images of size 640 × 480.
The intrinsic and extrinsic parameters of the stereo rig were computed using the camera
calibration toolbox for Matlab [21]. The motion of the rig consists of both rotational and
translational movements. The ground truth values of these movements are known. Us-
ing some features tracked over all the sequence, we computed nine partial 3D structures
using each stereo pair by triangulating the points with the computed camera matrices of
the stereo rig. In order to improve the accuracy of the estimate of the scene, we deter-
mined the epipolar geometry between each pair using the robust version of the five-point
algorithm of [22] proposed in [23], and used the epipolar constraint to eliminate the out-
liers and to increase the number of feature points by guiding the correspondences. We
then applied the absolute orientation technique of [24] to compute a linear estimate of



12 Michel Sarkis, Alexander Schwing and Klaus Diepold

(a) (b) (c)

(d) (e)

Fig. 2. Result of the algorithms on the simulated data sets. From a to d in the respective order:
Error in the roll, pitch, yaw and translation estimates respectively versus the number of iterations
to converge in the noise free set. e: Mean reprojection error versus the number of iterations aver-
aged over all images. The result is for 100 points, 4 images of size 256× 256 and random initial
estimates of the motion for each camera averaged over 1000 trials.

the motion by calculating a homography between the sequential partial structures and
hence resulting in eight initial estimates for the motion. We used these estimates to ob-
tain an initial alignment of the nine partial structures into a single one. The structure
was then inputted along with the initial estimates of the motion to refine its alignment
with the minimization schemes. The result of this experiment is depicted in Figure 4.
We show here the average error in the estimated motion for each frame as was done in
the simulated data sets but using the ground truth values of the motion along with the
average mean reprojection error versus the number of iterations. As a reference, we also
provided the output of the linear algorithm of Ref [24]. The first thing we can notice
is that the proposed Newton algorithm in its both versions is able to reduce the mean
reprojection error to the order of 10−5 while LM is not able to effectively minimize
the error of the linear method. We can also realize that the average error in the motion
variables is almost constant among all the frames of the sequence and is much lower
than the output of LM. This result motivates for the employment of the manifold based
Newton algorithm in BA since the error does not propagate as in LM.

The last two data sets we will use are the Corridor and the Dinosaur sequences
where each one consists of 11 and 36 frames, respectively1. As a preprocessing step,
we first matched and tracked some feature points over each image sequence. We esti-
mated the intrinsic parameters of the images by applying the technique of [25]. Using
the algorithm of [23], we computed the essential matrices between the sequential im-

1 The two sequences can be downloaded from the website of the VGG group at the University
of Oxford: www.robots.ox.ac.uk/˜vgg/data/data-mview.html.



Pose Estimation of a Camera using Newton Optimization on the Manifold 13

Fig. 3. Example images from the Hall stereo sequence.

(a) (b) (c)

(d) (e)

Fig. 4. Result of the minimization algorithms on the Hall stereo sequence using close linear initial
estimate of the motion. From a to d: Error in the estimates of the roll, pitch, yaw and translation
respectively. e: Mean reprojection error versus the number of iterations averaged over all the
sequence.

ages, rejected the feature matches that do not satisfy the epipolar constraint and then
computed more correspondences by guiding the matches. The initial estimates of the
motion are computed by factorizing the essential matrices, triangulating some of the
match points and checking which of the possible camera matrices satisfy the chierali-
ties [1]. The 3D structure was then obtained by triangulating the points with the initial
camera matrices. Using the three minimization schemes, we refined the motion esti-
mates and the results are shown in Figure 5. In both sequences, the proposed Newton
method and the one in the vector space result in a much more accurate estimate of the
motion. By just optimizing the motion, the techniques were able to recover the shapes
of the motion. The obtained poses of the camera in the Corridor sequence look pretty
similar to the ones shown in [26] while those of the Dinosaur sequence, which is ac-
tually a turn-table sequence see [27], have a closed circular shape. The ground truth
set of the latter was taken in steps of 10◦ rotation with a standard deviation of 0.05.



14 Michel Sarkis, Alexander Schwing and Klaus Diepold

Algorithm Mean Std Number of Outliers
Ground Truth 10 0.05 0

LM 1.11 58.3 20
Newton Vectorspace 10 0.360 0

Newton Manifold 10 0.389 0

Table 2. Results of the minimization schemes on the Dinosaur sequence along with the ground
truth values of the motion. The mean and standard deviation of the overall camera poses are in
degrees. The outliers are the camera positions that are not lying on the circle.

The values obtained with each of the algorithms are depicted in Table 2 along with the
number of outliers which reflect the positions that are not lying on the circle. This ta-
ble also confirms that the estimated camera motion of the proposed scheme is pretty
accurate. The LM has failed in these sets since the obtained initial estimates are not
as close as it is usually ensured in such problems. In addition, the proposed projective
Newton scheme was able to accurately capture the motion while requiring around 60%
less computational requirements than the Newton algorithm in the vector space.

5 Conclusion

We presented in this paper an Newton-type minimization scheme which refines the
motion of the camera by optimizing on a Riemannian manifold. We modified the cost
function of BA to accommodate for the new parametrization scheme and then derived
the full formulas of the gradients and the Hessians to be used in the optimization. Com-
pared to a similar Newton-based technique in the vector space, the proposed algorithm
has a simpler evaluation of the gradient and the Hessian since the derivations on a Rie-
mannian manifold are more compact. Compared to LM, the method has a comparable
complexity in terms of the evaluation of the gradient and Hessian. In addition, its appli-
cation leads to more accurate results and it is more robust against the noise. For these
reasons, the proposed Newton algorithm on the manifold seems to be a more promising
implementation for the non-linear minimization problems arising in BA.

As a future work, we are exploring the possibilities to parameterize the 3D structure
by analyzing the underlying manifold it describes. Our aim is to uncover the hidden
dimensions of the structure by exploiting the manifold properties in order to optimize it
with BA using fewer parameters.

References

1. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge Univer-
sity Press (2004)

2. Pollefeys, M., Gool, L.V., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.:
Visual modeling with a hand-held camera. Int. J. Computer Vision 59 (2004) 207–232

3. Bartoli, A., Sturm, P.: Structure-from-motion using lines: Representation, triangulation, and
bundle adjustment. Computer Vision and Image Understanding 100 (2005) 516–441



Pose Estimation of a Camera using Newton Optimization on the Manifold 15

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 5. Result of applying the algorithms to the Corridor and the Dinosaur sequences. a and d:
Extracted camera poses of the Corridor and Dinosaur sequences respectively using Levenberg-
Marquardt. b and e: same as a and d but using Newton Vectorspace. c and f: same as a and d
but using the proposed manifold scheme. g and h: Mean reprojection error versus the number of
iterations averaged over all the sequence of the Corridor and Dinosaur sequences respectively.

4. Stewénius, H., Engels, C., Nistér, D.: Recent developments on direct relative orientation.
ISPRS J. Photogrammetry and Remote Sensing 60 (2006) 284–294

5. Ni, K., Steedly, D., Dellaert, F.: Out-of-core bundle adjustment for large-scale 3D recon-
struction. In: Int. Conf. Computer Vision. (2007) 1–8

6. Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle adjustment - a modern
synthesis. In: Proc. Int. Workshop on Vision Algorithms. (2000) 298–375

7. Levenberg, K.: A method for the solution of certain non-linear problems in least-squares.
Quarterly of Applied Mathematics 2 (1944) 164–168

8. Marquardt, D.: An algorithm for the least-squares estimation for non-linear parameters.
SIAM J. Applied Mathematics 11 (1963) 431–441

9. Dennis, J.E., Gay, D.M., Walsh, R.E.: An adaptive nonlinear least-squares algorithm. ACM
Transactions on Mathematical Software 7 (1981)

10. Udriste, C.: Convex functions and optimization methods on Riemannian manifolds. Kluwer
Academic Publishers (1994)

11. Kumar, R., Hanson, A.R.: Robust methods for estimating pose and a sensitivity analysis.
Computer Vision, Graphics, and Image Processing: Image Understanding 60 (1994) 313–
342



16 Michel Sarkis, Alexander Schwing and Klaus Diepold

12. Quan, L., Lan, Z.: Linear n-point camera pose determination. IEEE Trans. Pattern Analysis
and Machine Intelligence 21 (1999) 774–780

13. Lu, C.P.: Fast and globally convergent pose estimation from video images. IEEE Trans.
Pattern Analysis and Machine Intelligence 22 (2000) 610–622

14. Ansar, A., Daniilidis, K.: Linear pose estimation from points or lines. IEEE Trans. Pattern
Analysis and Machine Intelligence 25 (2003) 1–22

15. Nocedal, J., Wright, S.: Numerical optimization. Springer (2000)
16. Taylor, C.J., Kriegman, D.J.: Minimization on the lie group SO(3) and related manifolds.

Technical Report 9405, Yale University (1994)
17. Baker, A.: Matrix groups: An introduction to Lie group theory. Springer (2003)
18. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: An invitation to 3-D vision. Springer (2005)
19. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)
20. Lourakis, M., Argyros, A.: The design and implementation of a generic sparse bun-

dle adjustment software package based on the levenberg-marquardt algorithm. Tech-
nical Report 340, Institute of Computer Science - FORTH, Heraklion, Greece (2004)
http://www.ics.forth.gr/vlourakis/sba/.

21. Bouguet, J.Y.: Camera calibration toolbox for MATLAB. Computational Vision Group,
California Institute of Technology, Pasadena, CA, USA. (2001) http://www.vision.cal-
tech.edu/bouguetj/calib doc.

22. Helmke, U., Hüper, K., Lee, P., Moore, J.: Essential matrix estimation using Gauss-Newton
iterations on a manifold. Int. J. Computer Vision 74 (2007) 117–136

23. Sarkis, M., Diepold, K., Hüper, K.: A fast and robust solution to the five-point relative pose
problem using gauss-newton optimization on a manifold. In: IEEE Int. Conf. Acoustics,
Speech and Signal Processing. (2007) I–681–I–684

24. Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. J. Optical
Society of America A 4 (1987) 629–642

25. Pollefeys, M., Koch, R., Gool, L.V.: Self-calibration and metric reconstruction in spite of
varying and unknown internal camera parameters. In: Int. Conf. Computer Vision. (1998)
90–95

26. Fitzgibbon, A.W., Cross, G., Zisserman, A.: Automatic 3D model construction for turn-table
sequences. In: Proc. SMILE Workshop on Structure from Multiple Images in Large Scale
Environments. (1998) 154–170

27. Niem, W.: Robust and fast modelling of 3D natural objects from multiple views. In: SPIE
Image and Video Processing II. (1994) 338–397


