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Abstract
We study two practical applications of linear and integer mathematical programming that are both
instances of general packing problems under balancing constraints. In the Vrst part, we investigate
the causes for power loss in semiconductor circuits and develop a mathematical optimization model
encompassing all relevant parameters. We then characterize the optimal solutions and present an
eXcient algorithm for the solution of the problem. In the second part, an application in airport
Wight scheduling is considered, wich can also be modeled as a packing problem subject to balancing
constraints. We study the structure of optimal and non-optimal Wight schedules and devise a
comprehensive optimization model, that is then successfully evaluated on a real-world instance.

Zusammenfassung
Ausgehend von zwei praktischen Problemstellungen werden in dieser Arbeit lineare und ganz-
zahlige mathematische Optimierungsmodelle entwickelt, analysiert und gelöst, die sich allgemein
als Packungsprobleme unter Ausgleichs-Nebenbedingungen beschreiben lassen. Im ersten Teil
wird die Entstehung von Verlustleistung in modernen Halbleiter-Schaltkreisen untersucht; ein
mathematisches Optimierungsmodell, das alle relevanten Problemparameter enthält, wird entwi-
ckelt. Eine Charakterisierung der optimalen Lösungen ermöglicht die Entwicklung eines eXzienten
Algorithmus für die Lösung des Problems. Im zweiten Teil wird ein Modell für die Erstellung von
Flugplänen vorgestellt, das ebenfalls auf Packungsproblemen mit Ausgleichs-Nebenbedingungen
beruht. Die Struktur optimaler und nicht-optimaler Lösungen wird vergleichend untersucht und
ein umfassendes Optimierungsmodell entwickelt, das abschließend erfolgreich an Problemdaten
aus der Praxis getestet wird.
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Chapter 1

Introduction

1.1 Packing under Balancing Constraints

Among the most important and most widely applied problems in combinatorial optimization are
the many variants of packing problems. In its most simple form, a packing problem is speciVed by
a set of items and some sort of container (which may be deVned by a set of abstract constraints),
and the task is to choose a maximum subset of the items that Vts into the container. The Knapsack
problem is a prototypical incarnation of this simple packing problem: Given a set of items, each of
a speciVed weight and value, and a container of a certain maximum weight capacity, which items
should be packed into the container so as to maximize the sum of their values? A somehow “dual”
viewpoint is expressed by the Bin Packing problem: Given a number of items, each of a speciVed
weight, and a container with a certain maximum capacity, how many containers of that same type
are needed in order to pack all the items?
In the Knapsack and the Bin Packing problem neither the form nor the order of the items

in the container is of any interest. However, for practical applications these aspects are often
of considerable importance. A prominent example is the problem of loading a freight container
with heterogeneous goods: If only the weight or volume of the items that are to be loaded is
considered in a mathematical model, the optimal solutions produced by this model will virtually
never be realizable in practice. This leads to higher-dimensional and more complex variants of Bin
Packing or Knapsack problems, where the geometry of both the items and the container(s) is
taken into account. Examples of such problems include Pallet Loading, Container Loading,
and Multi-Processor Scheduling; for more information on these topics see, e. g., the articles
[GMM90], [CGJ97] and [LMV02].

In practical applications, there is also a variety of loading problems where the arrangement and
distribution of the load is restricted in some way. Constraints of this “balancing type” arise for
instance in aircraft loading, where it is important to balance the load such that the center of gravity
falls within a speciVed region around the geometrical center of the aircraft. Thus it is not only
the value and the weight and/or volume of the items loaded that need to be considered, but also
their arrangement within the container, which deVnes the load’s center of gravity. For an aircraft,
the question of Vnding an optimal distribution of the goods can be reduced to a one-dimensional
problem, namely along the longitudinal axis of the airplane, because there is only little movement
along the vertical and lateral axes while an aircraft is airborne. A more detailed treatment of that
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Chapter 1 Introduction

problem can be found in [ABIVZ92] and in [CY85]. Of course, similar problems exist in higher
dimensions. A two-dimensional version would be natural for a freight container, where it is
desirable to avoid tilt while lifting the container upon transshipping; a three-dimensional version
arises if the aim is to position the center of gravity not only close to the center of a container’s Woor,
but also not too high above the Woor for reasons of stability. More on such problems is reported in
the articles [BR95] and [DB99].

We would like to mention one more example, which will later exhibit a diUerent (and somewhat
surprising) connection to one of the problems we are dealing with in this thesis, namely the
Turbine Runner Balancing problem. A hydraulic turbine runner consists of a cylindrical center
piece and a number of blades welded to the center piece at regular distances. Such a blade may
weigh up to 16 tons and due to manufacturing imperfections, not all the blades are identical with
respect to their mass distribution. As a consequence, when the blades are welded to the center
piece, the center of gravity might not coincide with the axis of the turbine runner, which leads
to unbalance. During operations, such unbalance causes increased mechanical load and may
ultimately lead to the destruction of the turbine runner. To minimize this unwanted eUect, one
may change the arrangement of the blades on the center piece and thus try to move the center
of gravity as close as possible towards the axis; again a problem where the order of the items is
crucial to the solution. For details on the Turbine Runner Balancing problem see [LM88; Mos86]
and [Woe03].
All those problems have some characteristics in common: There is a collection of items (boxes,

turbine runners) that have to be positioned within a given container (in many applications, the
container is a cube or a parallelepiped, where the dimension is often between one and three,
sometimes higher). To evaluate the quality of a packing, there is an imbalance measure, i. e., a
function that assigns a real value to every packing. That function can be the distance of the center
of gravity of the items to some given point (e. g., the geometrical center of the container) or it can
be a little more abstract. The goal is then either to minimize the imbalance itself, or to optimize
some other objective subject to an upper bound on the imbalance.
For the classical problem of loading 𝑘 items of masses𝑚1, . . . ,𝑚𝑘 into a container, the imbal-

ance of a packing can be computed by a function like

𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝑥1, . . . , 𝑥𝑘) := 𝑐− 1∑︀𝑘
𝑖=1𝑚𝑖

𝑘∑︁
𝑖=1
𝑚𝑖𝑥𝑖,

where 𝑥1, . . . , 𝑥𝑘 are the positions of the items and 𝑐 is the geometrical center point of the
container. The objective here is to minimize 𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 subject to constraints on the packing (e. g.,
space or weight constraints). Obviously, the imbalance function here decomposes into a sum of
univariate functions, so each item’s contribution to the total imbalance is determined by its own
position alone (and, of course, by its mass and the center point). Similar imbalance functions can
be given for the other problems we mentioned above.

In this thesis, we will study two practical applications of packing problems under more complex
balancing constraints. The Vrst problem is formally a two-stage problem, where we ask not only

2



1.2 Optimal Wire Ordering and Spacing

for an optimal packing of the given items, but also for an arrangement that maximizes the potential
for optimization in the positioning step. The second problem is an example for a maximum packing
problem subject to complex local and global balancing constraints. In the rest of this chapter we
will brieWy describe the applications leading to and motivating these problems and introduce their
most important aspects. In Section 1.4 we will also collect some mathematical preliminaries and
clarify notations used throughout this thesis. Chapters 2–4 will then provide an in-depth treatment
of various aspects of the application problems.

1.2 Optimal Wire Ordering and Spacing

In today’s technological world, semiconductor circuits serve an abundance of diUerent purposes.
Key issues in the area of semiconductor design include mobility of electronic devices and miniatur-
ization of the relevant technology. Not only notebook computers and increasingly popular mobile
multimedia devices need to combine high computational power with a slim form factor and long
battery lifetime; low energy consumption is also of major importance for medical applications or
electronic devices used in spacecraft technology. Besides the desire to maximize the operating time
before a battery recharge becomes necessary, there are other advantages that make a good case for
the use of low energy circuits also for non-mobile devices. High power consumption usually results
in an increased emission of heat, which can lead to erratic behavior of the circuit and even cause
permanent damage of the silicon substrate. To avoid this, costly cooling measures, often combined
with special housing material for the circuits, have to be implemented. Also, electronic circuits
account for a signiVcant part of the CO2 emissions in industrialized societies, clearly exhibiting an
increasing trend. For these reasons, the design of low power circuits has become an important and
active area of research.
Power consumption in electric circuits depends heavily on the capacitances between adjacent

wires. Recent technology requires the typical on-chip wire’s thickness (see Figure 1.1) to become
larger than both its width and the wire distance, so one can think of on-chip wires as parallel metal
plates, see Figure 1.1 for an illustration. Whenever an activity change occurs on one of the wires,
the electric Veld between this wire and its neighbors changes; thereby dissipating energy stored in
the Veld in the form of heat.
The amount of power loss depends mainly on two factors, namely the amount of signal tran-

sitions that occur on each particular wire (referred to as switching frequency) and the distance
between two neighboring wires. The higher the distance, the less energy is consumed when a
switch occurs on one of the wires. More precisely, the energy 𝐸 stored in an electric Veld within a
capacitor is determined by the formula

𝐸 = 𝐶 · 𝑈2,

where 𝑈 is the operating voltage of the circuit and 𝐶 is the capacitance. For a parallel-plate
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th
ic
kn
es
s

width

Figure 1.1: Schematic drawing of a one-layered semiconductor circuit. The substrate (green) with the
transistors (yellow) contains the semiconductor elements, which are connected to one another
by wires (gray). The wires within one layer are all routed in the same direction and are
connected to the transistors (and possibly to other layers above and below) by so called vias.
Whenever an activity change on one of the wires occurs, the electric Velds between neighboring
wires (symbolized by orange arrows) change, thereby causing energy loss in the form of heat.

capacitor, the capacitance 𝐶 is

𝐶 = 𝜀 · 𝐴
𝑑
,

where 𝐴 is the area of the plates, 𝑑 is the distance between them and 𝜀 is the so called dielectric
coeXcient, a constant that depends on the material between the two parallel plates. As all wires
have the same dimensions (at least on local patches of a complex circuit, see Section 2.1 for a
thorough discussion of the model assumptions), and the operating voltage is considered Vxed, the
power loss depends only on the distance of neighboring wires and on their switching frequencies
𝛼(𝑤). Thus (up to a constant term) the total power loss can be expressed as

∑︁
𝑤∈𝑊

(︃
𝛼(𝑤)
𝑥left(𝑤) + 𝛼(𝑤)

𝑥right(𝑤)

)︃
, (1.1)

where𝑊 is the set of all wires.
Naturally, space is limited in a semiconductor circuit, thus the natural question is “How should

one distribute the available space between the wires in order to minimize power loss?”, or, in other
words,

“How should one arrange the wires on the chip such as to comply with the packing
constraints (i. e., the available space) and such as to minimize power loss?”

This is clearly a packing problem with an imbalance objective, very similar to the ones we have
encountered in Section 1.1. The goal is to position a collection of items (the wires) within a given
container (the space available on the semiconductor) such as to minimize the imbalance measure
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1.3 Flight Scheduling for Airport Operations

deVned by (1.1). However, there is an important diUerence to the examples given above, namely
in the nature of the imbalance measure. Notice that 𝑥left(𝑤) and 𝑥right(𝑤) do not depend on the
position of 𝑤 alone, but also on the position of its left and right neighbor, and hence the objective
function (1.1) does not decompose into univariate functions, but instead into functions of position
pairs. Further, not all possible pairs are considered, but only those of neighboring wires are relevant
for the imbalance measure, giving the objective function both an analytical (the distance terms)
and a combinatorial (the arrangement of the wires) aspect.
The fact that we have to consider pairs should make the problem more diXcult at Vrst sight.

On the positive side, there is not a large number of hard packing constraint here. Basically, we
just have to observe the space restriction, and we may not place wires too close together for
technological reasons. In Chapter 2 we show how these constraints can be used to characterize the
optimal distances of the wires analytically.

What really makes the problem challenging is the fact that only neighboring wires are considered
in the objective. By this requirement, the order of the wires acquires an inWuence on the objective.
Indeed, as we will see in Chapter 2 later, the quest for an optimal order will lead to a Traveling
Salesman problem (which is known to be𝒩𝒫-hard, cf. [GJ79]). Fortunately, by making use of the
analytical characterization of the optimal distances, we will be able to reduce the general problem
to an instance that will turn out to be easily solvable. Thus we will be able to derive an algorithm
that completely solves the Optimal Wire Placement problem in running time polynomial in the
number of wires.

1.3 Flight Scheduling for Airport Operations

Over the last decades, civil air traXc has seen a tremendous increase both in terms of air transport
movements and in passenger numbers. For an illustration see Figure 1.2, where the increase of both
passenger numbers and Wight movements from 1987 to 2007 is depicted for München airport. In
the year 2007, München airport (cf. [MUC07]) has handled a total of 431 815 Wight movements and
33 959 422 passengers (the numbers for Germany’s largest airport Frankfurt/Main were 492 569
Wight movements and 54 167 817 passengers, respectively, cf. [FRA07]). For München, this is an
increase in Wight movements by almost 145% over the last twenty years. To give an impression of
the recent rapid growth of air traXc: For the old München airport at Riem the mark of 30 million
passengers was reached in 1972, counting every passenger from the opening of the airport in 1949
(cf. [MUC06]). Today, the same number of passengers is handled at München airport within less
than one year. The corresponding numbers for Frankfurt exhibit the same trend, but are a little
less impressive in their growth rates, because München had (and still has) some spare capacity,
while Frankfurt has been operating at its capacity limit for years.

With these developments, airports around the world are increasingly facing the problem of
insuXcient capacity to serve all requests from airlines. Building new runways, parking positions
and terminal buildings is impossible in many cases due to space restrictions, and even if additional
capacities can be built, this is often a lengthy process. Additionally, the development of new
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year
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Figure 1.2: Passenger numbers (above, red) and commercial Wight traXc (below, blue) at München airport
for the years 1987 to 2007. (Numbers according to [MUC07].)

aircraft types that can accommodate a growing number of passengers requires complex handling
operations for the airports’ ground personnel and also gives rise to new air and ground safety
concerns. The location of cities as well as of Wora/fauna habitats near an airport naturally poses
another problem: The noise emitted by the aircrafts requires a complex noise regulation policy in
order to protect the environment and residents of nearby cities. As a result, most major airports
around the world become congested at certain times because the demand exceeds one or more of
the factors limiting air side capacity.

To resolve this situation, the so called slot system has been developed as a means of appropriately
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1.3 Flight Scheduling for Airport Operations

allocating the available capacity to the airlines. The slot system addresses such questions as fairness
issues, property rights, customary law and ensuring competition by providing for suXciently
low market entrance barriers. In air traXc, there is a summer schedule ranging from March to
October and a winter schedule ranging from October to March, and Wight scheduling is applied
for allocating airport capacities in the creation of these schedules. In contrast to that long-term
planning problem is the short-term rescheduling process employed in daily airport operations,
which is necessary due to unforeseeable circumstances such as delays enforced by bad weather or
early arrival due to beneVcial winds. In this thesis, we will solely be concerned with the long-term
scheduling task, although some of our methods can also be applied to short-term rescheduling.
However, there is often an on-line component involved with short-term decisions, which will not
be considered here.
Under the slot system, an airline wishing to oUer an air connection to and from some airport

Vrst needs to acquire the right to land and take oU at that airport at a speciVed time. Such rights
are referred to as slots (more precisely, arrival or departure slots), hence the name slot system.
To avoid governments giving privileges to national carriers, the European Union has passed
authoritative legislation on the allocation of slots to airlines, thereby introducing the slot system
for all of its member states. The system which is in eUect today was described in 1993 in the
council regulation 95/1993 ([EU93]) and has since been amended in 2002 ([EU02]), 2003 ([EU03])
and 2004 ([EU04]). These documents provide the legal basis for the allocation of airport capacity
to airlines at all European airports. Similar legislation or procedures are in eUect for all major
airports, often regulated by scheduling guidelines [IATA07] of the IATA (International Air TraXc
Organization). Thus the slot system is used to regulate air traXc in all regions of the world, though
often with minor modiVcations in the side constraints.
Slot allocation is subject to a number of restrictions (which will be detailed in Chapter 4), but

the most important class of constraints is speciVed by giving a “time window” and an associated
bound on the number of Wights within. More precisely, such a constraint consists of a class of
time intervals of the same length together with three bound values limiting the number of arrivals
and departures as well as the number of total Wight movements within each of the intervals
(naturally, the latter value will usually be smaller than the sum of arrivals and departures bound).
For example, such a restriction could allow for a maximum of 25 arrivals, 25 departures and 40
total Wight movements within each 60 minute interval, starting on the hour throughout the whole
planning horizon.
These “time window bounds” come in two slightly diUerent Wavors (see Figure 1.3 for an

illustration): In most cases, they are applied as so called shifting bounds, which means the bound
is applied for every time window of the respective length. Imagine taking the time window and
slowly shifting it over the entire time scale, counting the number of arrivals and departures that lie
within the time window as you move along. Then the three given bounds must not be exceeded
anywhere along the time scale. As small delays are practically unavoidable in air traXc, Wight
schedules are not precise to the minute, but usually use ten minute time steps (for more details, see
Section 4.1 and time notions in the glossary), thus it suXces to shift the time window in steps of
ten minutes (providing for a Vnite number of constraints). In contrast to the shifting bounds, the
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Chapter 1 Introduction

time windows may also be applied consecutively to one another, i. e., the respective intervals do
not overlap. We will refer to that variant as non-shifting bounds or consecutive bounds.

time
0:00 0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20 1:30

shifting

non-shifting

Figure 1.3: Example of shifting bounds and non-shifting bounds. A time window of 30 minutes is moved
over the time scale in a shifting and non-shifting way.

The task encountered in Wight scheduling is typical for a packing problem:

“Find a Wight schedule subject to one or more time window bounds, shifting or
non-shifting, that consists of a maximum number of Wights.”

While the non-shifting bounds are very similar to classical knapsack constraints, the shifting
variant is of a more complex type. Here, in addition to the local restrictions on the Wights within
each time window, the overlap of the time windows provides for a “spread-out” of the eUect of
allocating a speciVc slot to one Wight, so the local constraints are to some extent “globalized”.
The imbalance measure of a Wight schedule is thus determined by a number of time intervals,
where each Wight inWuences not just one, but several of these intervals, so the imbalance function
is not easily decomposable anymore. In contrast to the Wire Placement problem described in
Section 1.2, the imbalance is not part of the objective function here, but is solely bounded above
resulting in a constraint on the distribution of the Wights.

In Chapter 3, we will present an abstract model of Wight scheduling that allows us to investigate
complexity issues as well as the structure of an optimal distribution of Wights subject to diUerent
time window constraints. We will discuss properties of “good” and “bad” (we will make these
notions precise in Chapter 3) slot allocations and present some ideas of how to avoid the latter.
Following the theoretical treatment, Chapter 4 presents a concise mathematical model encom-

passing numerous constraints that are relevant for slot allocation in an application-speciVc context.
The model is then tested extensively on real-world and realistic simulated data. We will see
that the results of these tests exhibit many of the structural properties devised by the theoretical
reWections of Chapter 3. Finally, alternative constraint structures motivated by Chapter 3 are
considered and tested in a realistic setting.
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1.4 Notational Conventions

The purpose of this section is to introduce some of the notation that will be used frequently
throughout this thesis and to clarify the terminology. This section may be skipped without any
loss and used for reference in case the reader should encounter some unfamiliar notation later. A
short overview is also given in the list of symbols on page 169.

1.4.1 Vectors, Matrices and Inequalities

For the vector space R𝑛, we denote the 𝑖-th unit vector by 𝑢𝑖, the all-ones vector by 1 (or 1𝑛, if
the length 𝑛 is not clear from the context), and for any subset 𝐼 ⊂ {1, . . . , 𝑛} the vector

∑︀
𝑖∈𝐼 𝑢𝑖

by 1𝐼 . Similarly, for a Vnite set 𝐺 = {𝑔1, . . . , 𝑔𝑚}, we write 𝑢𝑔𝑖 = 𝑢𝑖 for the incidence vector of
{𝑔𝑖}, and, more generally,

1𝑆 :=
∑︁
𝑔∈𝑆
𝑢𝑔

for any subset 𝑆 ⊂ 𝐺.
For two vectors 𝑥, 𝑦 ∈ R𝑛 the inequality 𝑥 ≤ 𝑦 is meant to hold component-wise, and 𝑥 < 𝑦 if
𝑥 ≤ 𝑦 and 𝑥𝑖 < 𝑦𝑖 for at least one 𝑖 ∈ {1, . . . , 𝑛}. The notations 𝑥 ≥ 𝑦 and 𝑥 > 𝑦 are analogous.
For a matrix 𝐴 ∈ R𝑚×𝑛 the matrix entries will commonly be written as 𝐴 =

(︀
𝑎𝑖𝑗
)︀
. The 𝑖-th

row of 𝐴 is denoted by 𝑎𝑇𝑖 , while 𝑎
(𝑗) means the 𝑗-th column.

1.4.2 Special Sets

For an arbitrary set 𝑆 we denote by 𝒫(𝑆) the power set of 𝑆, i. e., the set of all subsets (including
the empty set), and by 𝑆′ ⊂ 𝑆 we mean that 𝑆′ is a (not necessarily strict) subset of 𝑆. Furthermore,
(𝑆)⋆ denotes the set 𝑆 amended by the element “∞” (which will be used as a symbol to denote a
special situation in various contexts), i. e.,

(𝑆)⋆ := 𝑆 ∪ {∞} .

For 𝑎, 𝑏 ∈ Z, 𝑎 ≤ 𝑏, the integer interval {𝑎, 𝑎+ 1, . . . , 𝑏} is denoted by [𝑎, 𝑏] := {𝑎, 𝑎+ 1, . . . , 𝑏}.
For an integer 𝑛 ∈ N the intervals [1, 𝑛] and [0, 𝑛− 1] will be abbreviated by [𝑛] and [𝑛]∘ (to
denote an interval of length 𝑛), respectively.
For a Vnite ground set 𝐺, a subset 𝑆 ⊂ 𝐺 and some function 𝑓 : 𝐺→ R we denote by 𝑓(𝑆)

the sum
𝑓(𝑆) :=

∑︁
𝑠∈𝑆
𝑓(𝑠).

To simplify notation, we deVne 𝑓(𝑠′) := 0 for any 𝑠′ /∈ 𝐺, and consequently

𝑓(𝑆′) := 𝑓(𝑆′ ∩𝐺)

9
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for an arbitrary set 𝑆′. The same notation will be used for a vector 𝑐 ∈ R𝑛 and a subset
𝑆 ⊂ {1, . . . , 𝑛}:

𝑐(𝑆) :=
∑︁
𝑠∈𝑆
𝑐𝑠,

where we mean to imply 𝑐𝑠′ = 0 for 𝑠′ /∈ {1, . . . , 𝑛}.

1.4.3 Numbers

For our models, we will frequently have to restrict numbers like indices to some speciVed discrete
interval. In more complex expressions, however, this often gives rise to somewhat clobbered
notation, because several special cases need to be handled separately. In order to avoid this
unnecessary complication, we introduce a special notation.

DeVnition 1.1
Let 𝑛 ∈ N and𝑚 ∈ Z be two integers. Then we use the following notation:

1. J𝑚K𝑛 is the unique integer 𝑘 ∈ {0, . . . , 𝑛− 1} such that 𝑘 ≡ 𝑚 mod 𝑛.

2. J𝑚K[𝑛] is the unique integer 𝑘′ ∈ {1, . . . , 𝑛} such that 𝑘′ ≡ 𝑚 mod 𝑛.

Let 𝑆 ⊂ [𝑛] and let 𝑡 ∈ [𝑛], then the circular Minkowski sum with respect to [𝑛] is deVned as

J𝑡+ 𝑆K[𝑛] :=
{︁
J𝑡+ 𝑠K[𝑛] : 𝑠 ∈ 𝑆

}︁
.

In Chapter 4, we will sometimes measure the distance of two numbers with respect to a directed
circle of given length 𝑛 (rather than along the line). For 𝑛 ∈ N and 𝑎, 𝑑 ∈ N let

dist𝑛(𝑎, 𝑑) := J𝑑− 𝑎K𝑛

be the circular distance of 𝑎 and 𝑑 with respect to 𝑛.

Example 1.2
Let us illustrate the above deVnitions by a small example. For 𝑛 = 5, we have

J8K5 = 3 and J8K[5] = 3;
J10K5 = 0 and J10K[5] = 5.

For 𝑆 = {2, 4}, we get J2 + 𝑆K[5] = {4, 1}. The circular distance from 2 to 4 is dist5(2, 4) =
J2K5 = 2. Notice that the circular distance depends on the order of the operands, dist5(4, 2) =
J2− 4K5 = J−2K5 = 3; see Figure 1.4 for an illustration. ♢
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1

2

34

5

dist5(2, 4) = 2

dist5(4, 2) = 3

Figure 1.4: Illustration of the circular distances dist5(2, 4) and dist5(4, 2), respectively.

1.4.4 Matroids

In Chapter 3, matroid techniques will be used to provide some complexity results for Wight
scheduling problems. We collect the necessary terminology and some important results from
matroid theory here as a reference. Details on matroid theory, including the proofs of the results
cited here, can be found in [Wel95; Bix82; NW99].

Matroids were Vrst deVned by Whitney in 1935, who also gave a number of characterizations in
his paper [Whi35]. We mainly follow [Bix82] for our notation.

DeVnition 1.3
An independence system (𝑀,ℳ) consists of a Vnite ground set𝑀 and a nonempty collection
ℳ⊂ 𝒫(𝑀) of subsets of𝑀 called independent sets such that the following conditions hold:

1. ∅ ∈ ℳ

2. 𝑆 ∈ℳ and 𝑆′ ⊂ 𝑆 ⇒𝑆′ ∈ℳ

For any subset 𝑆 ⊂𝑀 , a set 𝐵 ⊂ 𝑆 is called maximal independent set in 𝑆 if 𝐵 ∪ {𝑖} /∈ℳ for
all 𝑖 ∈ 𝑆∖𝐵. If for all 𝑆 ⊂ 𝑀 all maximal independent subsets of 𝑆 have the same cardinality,
then (𝑀,ℳ) is called a matroid. For a matroid (𝑀,ℳ), the maximal independent subsets of𝑀
are called the bases of the matroid.

11
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One prominent class of matroids is constituted by the partition matroids, which will naturally
arise from our applications in Wight scheduling in Chapter 3. To unify the statements there, we
now give a brief description of partition matroids.

Theorem 1.4
For a Vnite ground set 𝑀 , let 𝑀1, . . . ,𝑀𝑘 be a partition of 𝑀 into disjoint subsets and let
𝑚1, . . . ,𝑚𝑘 ∈ N0. Then the deVnition

ℳ := {𝑁 ⊂𝑀 : |𝑁 ∩𝑀𝑖| ≤ 𝑚𝑖 for all 𝑖 ∈ {1, . . . , 𝑘}}

yields a matroid (𝑀,ℳ) known as partition matroid.

Proof. Clearly, |∅ ∩𝑀𝑖| = 0 ≤ 𝑚𝑖 for all 𝑖 ∈ {1, . . . , 𝑘}, and for every subset 𝑁 ′ ⊂ 𝑁
of a set 𝑁 ∈ ℳ the inequalities |𝑁 ′ ∩𝑀𝑖| ≤ |𝑁 ∩𝑀𝑖| ≤ 𝑚𝑖 hold for all 𝑖 ∈ {1, . . . , 𝑘},
thus (𝑀,ℳ) is an independence system. For the matroid property, let 𝐵,𝐵′ ∈ ℳ be two
maximal independent sets and suppose |𝐵| > |𝐵′|. Then there is at least one 𝑗 ∈ {1, . . . , 𝑘}
where |𝐵 ∩𝑀𝑗 | > |𝐵′ ∩𝑀𝑗 |, hence we can choose an element 𝑏 ∈ (𝐵 ∩𝑀𝑗) ∖ (𝐵′ ∩𝑀𝑗). As
𝑀1, . . . ,𝑀𝑘 is a partition of𝑀 , we know 𝑏 ∈ 𝐵 and 𝑏 /∈ 𝐵′, thus 𝐵* := 𝐵′ ∪ {𝑏} is a strict
superset of 𝐵′. As |𝐵* ∩𝑀𝑗 | ≤ |𝐵 ∩𝑀𝑗 | ≤ 𝑚𝑗 and |𝐵* ∩𝑀𝑖| = |𝐵′ ∩𝑀𝑖| ≤ 𝑚𝑖 for all
𝑖 ∈ {1, . . . , 𝑘} ∖ {𝑗}, the set 𝐵* is an element ofℳ, contradicting maximality of 𝐵′. 2

We will later use an important characterization of matroids, which is also due to Whitney, cf.
[Whi35]. A proof formulated in the terminology used here can be found in [Bix82].

Theorem 1.5 (Matroid Exchange Property, [Whi35])
An independence system (𝑀,ℳ) over the ground set𝑀 is a matroid if and only if for any two
independent sets 𝑈, 𝑉 ∈ℳ with |𝑈 | = |𝑉 |+ 1 there exists 𝑢 ∈ 𝑈∖𝑉 such that 𝑉 ∪ {𝑢} ∈ ℳ.

The primary interest in matroids in the Veld of combinatorial optimization stems mainly from
two algorithmic results.

Theorem 1.6 (Greedy Algorithm and Two Matroid Intersection)
1. Let (𝑀,ℳ) be a matroid and 𝑤 :𝑀 → Q a weight function on the elements of𝑀 . Then

the problem of identifying a set𝑀 ′ ∈ℳ of maximum weight 𝑤(𝑀 ′) can be solved by a
greedy algorithm (for details on the formulation of the algorithm see [Bix82]).

2. Let (𝑀,ℳ1) and (𝑀,ℳ2) be two matroids on the same ground set𝑀 and let𝑤 :𝑀 → Q

be a weight function on the elements of𝑀 . Then a maximum-weight set𝑀 ′ ∈ℳ1 ∩ℳ2
(weighted matroid intersection problem) can be found in polynomial time, provided
membership inℳ1 andℳ2 can be tested in polynomial time.

The algorithm proving the latter result is generally referred to as two matroid intersection algorithm.
More details on the greedy property of matroids and a rigorous formulation of the greedy algorithm
can be found in [Bix82]. The matroid intersection algorithm uses results by Lawler and Edmonds
(see [Law75] and [Edm79], a textbook treatment can be found, e. g., in [NW99]).
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Chapter 2

Optimal Wire Placement for Low Power
Semiconductor Circuit Design

In this chapter, we will analyze the main cause for power loss in recent semiconductor circuits,
namely capacitances emerging between adjacent circuit wires. As outlined in Chapter 1, the
power consumption of a semiconductor circuit depends on the distances of adjacent wires and
the frequency of power switches on these wires. Determining an optimal spacing and possibly
reordering of parallel wires is a key issue in the design of low power semiconductor circuits. We
begin by presenting and analyzing a mathematical model that encompasses all major aspects of
the Wire Placement problem (which combines an optimal spacing and ordering of the wires)
in integrated circuit design. As the Vrst step towards a concise algorithm we then consider
the Optimal Wire Spacing (OWS) problem separately. As it turns out, the underlying convex
optimization problem can essentially be solved analytically. This can be utilized to reduce the
combined wire ordering and spacing problem to a speciVc kind of Minimum Hamilton Path
(MHP) problem (or Traveling Salesman problem, TSP). While the general MHP is notoriously
𝒩𝒫-hard, our algorithm for the Optimal Wire Placement (OWP) problem on 𝑁 parallel wires
relies on strong new structural results and will be shown to run in total worst-case 𝒪 (𝑁 log𝑁)
time.
Both wire ordering and wire spacing according to various objectives have a long history in

electronic design automation, see [YK99; MMP01; MPS03; MMK06]. Loosely related to wire spacing
is a technique called wire spreading that was presented in 1997 (cf. [SD97]) and is implemented in
most commercial software packages for semiconductor circuit design. Here the spacing of the wires
is changed locally in order to decrease the probability of a short circuit caused by small material
defects on the silicon wafers used in chip production, so the main objective of wire spreading is an
increased chip yield, a decrease in power consumption is merely a byproduct. Wire spacing as a
means of decreasing power consumption was Vrst investigated in [MMP02], where a heuristic was
suggested to decrease power dissipation. Wire ordering Vrst appears in the literature in [Gro89],
although in a very diUerent context. Around the year 2000, the idea of wire ordering as a means
of reducing power consumption is taken up by various authors. In [SS01] a simulated annealing
approach for reordering chip wires is suggested and experimental results showing signiVcant
power savings are reported. The authors of [SM06] investigate a model of Wire Ordering as a
Traveling Salesman problem and use the TSP solver Concorde (cf. [ABCC03]) to provide an
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optimal wire ordering. However, their model and methodology diUer signiVcantly from the one
presented in this work; and no wire spacing component is employed. Besides power, diUerent
objectives are used in the literature, e. g., timing, area, crosstalk avoidance, yield and combinations
of these. For a detailed overview of the literature concerning wire ordering and spacing we refer
the reader to [Zub07, Chapter 3].

In this Chapter, we will derive a model of Wire Placement as a Packing problem with power
loss as a measure of imbalance in the objective function and distance requirements as packing type
side constraints. Subsequently, an eXcient rigorous algorithm for power optimal Wire Placement
is presented. The following Section 2.1 gives relevant background information on low power
semiconductor design to motivate and justify the mathematical model for the Wire Placement
problem that will be presented afterwards, together with the main result of this chapter. As
mentioned earlier, we will Vrst investigate the Wire Spacing problem, solve the underlying
convex optimization problem and derive an eXcient algorithm for Optimal Wire Spacing in
Section 2.2. Based on these results, Section 2.3 will then add the optimal wire ordering task and
reduce the combined placement problem to the solution of a certain class of Minimum Hamilton
Path problems. We will study the structure of this class of problems, relate it to a certain class of
Traveling Salesman problems and derive an eXcient algorithm which will subsequently lead to
the asserted𝒪 (𝑁 log𝑁) algorithm for the combined wire ordering and spacing problem presented
in Section 2.4. Finally, Section 2.5 contains some remarks regarding applicability, practical results
and directions for future research.

2.1 Low Power Semiconductor Design
We will now give some background information on power issues in semiconductor circuits and
introduce wire spacing and wire ordering as a means of decreasing power loss. A Vrst mathematical
description of the optimal placement problem, still formulated from a natural application speciVc
perspective, will subsequently be reVned and abstracted to allow us to take up a more mathematical
position for the problem statements.
Naturally, we do not aim at a comprehensive treatment of all relevant aspects from electrical

engineering here but will concentrate on those that motivate and justify our concise mathematical
model given in Section 2.1.2. For further information and more technical background we refer the
reader to [Vyg04; CKP01; MWK06], the International Technology Roadmap for Semiconductors
[SIA07] and Paul Zuber’s doctoral thesis in electrical engineering [Zub07] as well as the articles
and references quoted therein.

2.1.1 Power Loss in Semiconductor Circuits
Typically, a semiconductor circuit is designed in several consecutive steps. After the circuit diagram
has been Vnalized, placement, routing and simulation are used to reach the Vnal design for use in
production of the semiconductor. A manufactured semiconductor circuit is assembled in several
layers that are stacked on top of each other, see Figure 2.1 and Figure 1.1 for an illustration. The
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bottom layer (substrate) is made of silicon and contains the transistors and possibly other electronic
components. Above that layer, one or more metal layers stacked on top of each other follow. The
metal layers contain wires (called interconnects) that connect the transistors to each other and to
input/output pins of the circuit. Within a single metal layer all wires are of the same thickness
and the wires are all parallel (possibly with the exception of some very small wire segments);
the direction of the wires within one layer is called that layer’s preferred routing direction. The
preferred routing directions alter perpendicularly between two adjacent metal layers. To connect
the wires within one layer to the bottom and to neighboring layers small contacts (called vias) exist
between the layers. To give the reader an idea of the dimensions, a modern microprocessor (as of
2008) has a die size of 100mm2 to 200mm2 and consists of about 400 to 800 million transistors,1

ten to twenty metal layers and several kilometers of total wire length.

Silicon Layer

Metal Layer 1

Metal Layer 3

Metal Layer 2

Metal Layer 4

Figure 2.1: Schematic illustration of a typical semiconductor circuit composed of a bottom silicon layer and
four metal layers. The wires in the metal layers are connected to the silicon and to each other
by contacts, so called vias. Wires within one metal layer are routed in the same direction.

In digital semiconductor circuits, there are only two possible states for a signal, zero or one. A
high voltage level (today in the order of magnitude of 1V) represents a one, a low voltage level
(0V) represents a zero. So whenever the state of a circuit changes, the voltage level on one or more
wires changes from 0 to 1 or vice versa; we will say that a signal transition occurs or simply a
switch occurs on a wire. When this happens, the electric Velds between a switching wire and any

1For instance, an Intel Xeon quad core processor (“Harpertown”) comprises 820 million transistors on a die size of
214mm2; thermal design power (which roughly means “heat emission”) currently rises up to 130W. For more data on
current microprocessors, see the survey [Ben08]. By the end of the year 2008, processors with more than two billion
transistors could be launched (currently in development, see [Win08]).
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adjacent metal surface change. To build up the Veld, energy is required, half of which is dissipated
as heat, and the other half is stored in the Veld. When the Veld diminishes, the energy stored in
the Veld is dissipated as heat as well.
To be precise, the power consumption of a semiconductor circuit is usually decomposed into

two parts, a static component attributed to leakage at transistor level and a dynamic component
caused by switching capacitances between adjacent wires and short circuit currents.2 As of today,
capacitances between adjacent wires account for the major part of total power consumption, and
although leakage has increased over the past years, simultaneously a relatively increasing fraction
of the capacitances has moved from transistors to wires as the following quote from [Per06]
illustrates (for more details see [SIA07]):

“Engineers today recognize interconnects as a major impediment to the performance
trajectory that microprocessors have been on for the past 35 years. It is the wires, not
the transistors themselves, that are sucking up power, threatening chip performance,
and dragging out design cycles. In today’s billion-plus transistor chips, which have
multiple layers of wires connecting transistors and many kilometers of interconnects
per square centimeter, the wires cost more than the transistors.”

This aspect is of special importance at low ambient temperature (where leakage is lower due to
physical reasons) or in low leakage circuits frequently found in mobile devices, where in non-idle
phases the dynamic component exceeds the static component by several orders of magnitude. Even
if circuit design is not focused on low leakage, static and dynamic power loss may be balanced
against each other: By changing the ratio of threshold voltage and operating voltage of a circuit,
the leakage may be decreased at the cost of higher dynamic power loss. For these reasons we
concentrate on the dynamic aspects of power loss here.

The amount of energy stored in an electric Veld between two adjacent metal surfaces is directly
proportional to the capacitance, which can be expressed as the quotient of the adjacent surface area
and the distance of the two wires, as outlined in Section 1.2. Power loss caused by interconnects
in semiconductor circuits is mainly due to capacitances emerging between neighboring wires
whenever their relative voltage changes. Over the last years, the demand for ever higher integration
densities has substantially increased, and for technical reasons this requires the typical on-chip
wire’s thickness3 to become larger than both its width and the wire distances. This technological
change results in a change of relevance of the diUerent kinds of occurring capacitances. While
in the past the highest fraction of the sum of capacitances was caused by the coupling between
diUerent layers and the bottom areas of the substrate, now the edge-to-edge capacitances within
one layer dominate; see [WZS02].

2These short circuit currents are due to transistor behavior: A transistor “opens” when a certain voltage is available
on one of its gates. On the other hand, the transistor “closes” when that voltage drops below a certain threshold, which
is usually lower than the “opening threshold”. As a consequence, whenever a signal transition occurs, some transistors
may be open at the same time as power rises or falls, which may lead to short-time short circuits.

3Note that by thickness we mean here the elevation of a wire above the ground level of a metal layer, see Figure 1.1
for an illustration. While a bit unusual in geometry, this terminology is standard in electrical engineering.
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Figure 2.2: Capacitances in a 0.13 µm process. Not shown are two minor capacitances on the right hand
side, which are equal to those on the left.

Figure 2.2 shows the capacitances in a layout simulated with the software package QuickCap
(see [CI92], now distributed by Magma Design Automation). The test setup comprises a wire (red)
on the third metal layer of a typical 0.13 µm process embedded into a fully crowded proximity. The
capacitances between the wire and its immediate neighbors clearly dominate all other capacitance
components. The fraction may reach up to 40% on each side in case of less population in the
layers above and below.

In summary, the power loss caused by capacitances between adjacent wires depends on two
diUerent factors. As the electric Veld between two wires remains constant as long as the voltages
of the wires do not change, electric power is lost only when a signal transition occurs on one of the
wires. The frequency of such a toggle is called the switching frequency of a wire 𝑤 and is modeled
as a positive number 𝛼(𝑤). If the switches lead to changes between zero voltage and the operating
voltage (that is constant throughout the whole part of the chip), the (suitably normalized) number
𝛼(𝑤) can be interpreted as the probability of a signal transition on the wire 𝑤 at any of the given
periods of time. For an existing layout, this value can be derived by a simulation; it then represents
the actual number of toggles of a wire.

We will assume that the physical dimensions of the wires are Vxed. For the thickness and
width of the wires this is due to technological constraints, for the length of the wires we assume
that we are working on a local patch of the complete circuit which consists of parallel wires of
the same length (see below for comments on this assumption). Thus only the distances between
wires matter for the determination of the capacitances between a wire and its respective neighbors.
More speciVcally, the power loss for a wire 𝑤 depends on the distances 𝑥left and 𝑥right to the two
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neighboring wires on each side, and (up to a constant) can be expressed as

𝛼(𝑤) ·
(︃

1
𝑥left

+ 1
𝑥right

)︃
,

where two neighbors at distances 𝑥left and 𝑥right are present. (Here we tacitly assume that
neighboring wires do not switch simultaneously, see below and also Section 2.5 for comments on
that assumption.) Hence by optimizing the distances of the wires one can expect a decrease in
power loss. In addition to that, we will also see that reordering the wires can have an eUect on the
total power loss of a circuit. We can specify a wire placement by the relative positions of the wires,
i. e., by associating with each wire a real number in a given interval [0, 𝑟]. We assume here that 𝑟
represents the actual available space, i. e., the given space reduced by the wire widths, so that we
can regard a wire as having zero width for the model. Naturally, wires must not be placed too
close together, so a minimum distance 𝑑 must be enforced.
Before we formalize the model, let us comment on our assumptions. First, we only consider

parallel wires of equal length. As we already mentioned, wires within one layer generally run
in the same direction, so parallel wires are a very natural assumption. On the other hand, the
wires within one layer are certainly not all of equal length, but normally end in diUerently placed
vias connecting the wires’ ends to layers above and below. However, local patches where our
assumption holds may easily be identiVed and real-world circuits contain a considerable amount
of such areas. Application of Wire Spacing to such patches may require the addition of small
“detours” (see Figure 2.3 for an illustration) to the wires, which is technologically feasible with
very little impact on power consumption and possible other objectives of the routing process.
More details on the identiVcation and selection of suitable local patches can be found in [Zub07,
Chapters 4 and 5]. Application of wire ordering to local patches requires a little more eUort, as
locally reordered wires have to be connected to their original positions so as not to inWuence the
routing outside of the selected patch. To this end, a so called permutation network can be used. A
permutation network is basically an extra layer containing the necessary connections between the
original wires and the reordered wires at both ends of the selected patch (of course, one such extra
layer may contain more than one permutation network). These connections are generally very
short and hence do not add considerable overhead in terms of extra power loss, timing and area.
The eUects of permutation networks have been studied in detail in [MMP01] with the conclusion
that the overhead is more than compensated for by the beneVt of wire ordering.
It should also be mentioned that both Wire Placement and Wire Ordering can be applied

straightforward to bus connections on a chip, where often the connections at both ends of a
bus may be ordered arbitrarily in the routing process, thus enabling the use of wire ordering
without resorting to permutation networks. Such bus connections are fairly common for modern
microprocessor architectures, especially when many cores are integrated on a common chip,
connected to each other by bus wires. A third aspect exploits the fact that today’s circuit designs
are often IP-based (“Intellectual Property based”), meaning that a number of pre-developed modules
exist that are then combined to design new circuits. The connections of these modules to the rest
of the circuit (called pads) is usually Vxed arbitrarily in the design process of the modules. As the
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modules are relatively small, reordering the wires within the modules may already be possible by
just reordering the pads (i. e., not using permutation networks), hence an optimal wire placement
can be applied in the design of such modules. This aspect is all the more important as the modules
are reused in many diUerent designs thousands of times, so even small power savings within an IP
module add up to considerable amounts in practice.

local patch

Figure 2.3: Local wire spacing using small detours. The circles mark the original connects of the wires, a
diUerent spacing is applied within the gray area limited by two border wires.

In our model, we also assume a common minimum distance 𝑑 between any two wires. While
this is true for most wires of a semiconductor circuit, there may be cases where a larger minimum
distance is required. This situation may occur for power supply wires, which are sometimes
wider than ordinary signal wires, thus requiring a larger minimum distance to be manufacturable.
Often these power supply wires build a ring around the entire core of the chip and are not subject
to optimization; in some larger circuits (and only on a fraction of the existing layers), power
meshes may even be drawn through the chip. In the latter case, the power wires can be regarded
as natural boundaries of the relevant problems, as these wires cannot be moved and no signal
transitions occur on a power supply wire (hence such a wire partitions the wires considered
into two completely independent parts). A second reason for larger minimum distances is signal
integrity. In order to avoid crosstalk (i. e., signal transitions on one wire inWuencing the signal on
a neighboring wire) wires with high signal levels should be placed at a somewhat larger distance
to each other than to wires with low signal levels. Unfortunately, predicting crosstalk issues from
switching activities and other parameters of the wires still presents a technological challenge to
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engineers, so integrating these issues into the model does not seem a viable approach. Generally,
crosstalk issues are handled by a Vnal “post polishing step” after the layout has been optimized,
using various simulations and then slightly moving wires where crosstalk issues may occur until
the problems are solved. For these reasons, it is common practice to largely ignore crosstalk in
the modeling step. However, as we will see later, our approach places larger distances between
wires with high switching activities, hence the solutions obtained from our model should be less
susceptible to crosstalk anyway. It should be noted at this point that wire spacing with diUerent,
wire dependent minimal distances does not pose any problems to our wire spacing approach, this
aspect can be integrated in a straightforward manner.

One last important assumption that we will make is that signal transitions on neighboring wires
generally do not occur simultaneously. For a simultaneous switch the electric Veld between two
neighboring wires may not change at all (if the same transition occurs on the two wires) or it may
be reversed (if an opposite transition occurs). Hence the power loss is either zero (in the Vrst case)
or twice the usual value (in the second case). However, integration of simultaneous switching into
the model would require knowledge about the correlated switching activities of all wires, which is
not only harder to obtain (much more simulations are needed), but would also bloat the model to a
large extent. In a complex semiconductor circuit, one can generally assume that the probabilities of
a signal transition on any two neighboring wires are independent to a large extent, so one should
expect that the eUects of simultaneous transitions cancel out on average and this aspect may safely
be ignored.

2.1.2 A Model for Optimal Wire Placement

We consider a scenario involving 𝑁 parallel wires which are regarded as being enclosed between
two static wires with switching frequencies 0. On a chip these boundary wires could be power or
shield wires.
In the following let 𝑁 ∈ N, and let 𝑤1, . . . , 𝑤𝑁 denote diUerent (proper) parallel wires.

Further, let 𝑤0 and 𝑤𝑁+1 be two additional dummy wires, and set 𝑊 = {𝑤1, . . . , 𝑤𝑁} and̂︁𝑊 =𝑊 ∪ {𝑤0, 𝑤𝑁+1}.
Let 𝑟 ∈ ]0, ∞[ be the given spacing range, and let 𝑑 ∈ ]0, 𝑟] be the minimum accepted inter

wire distance. Both wire spacing and wire ordering can be determined by allocating to each wire
a real number in the interval [0, 𝑟], so we deVne a wire placement to be a map 𝜙 : ̂︁𝑊 → [0, 𝑟]
with the properties

𝜙(𝑤0) = 0 and 𝜙(𝑤𝑁+1) ≥ 𝜙(𝑤) for 𝑤 ∈𝑊 ;

|𝜙(𝑤)− 𝜙(𝑤′)| ≥ 𝑑 for 𝑤,𝑤′ ∈ ̂︁𝑊 with 𝑤 ̸= 𝑤′.

As it turns out, the underlying optimization problem can be described best in terms of the two
separate tasks of wire ordering and wire spacing. A wire ordering is a bijection 𝜋 : ̂︁𝑊 →
{0, 1, . . . , 𝑁,𝑁 + 1} such that 𝜋(𝑤0) = 0 and 𝜋(𝑤𝑁+1) = 𝑁 + 1. Let 𝒫𝑁 denote the set
of all wire orderings for a given number of wires 𝑁 . An admissible wire spacing is a function
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𝛿 : {0, 1, . . . , 𝑁,𝑁 + 1} → [0, 𝑟] with

𝛿(0) = 0 and 𝛿(𝑗) + 𝑑 ≤ 𝛿(𝑘) for any 𝑗, 𝑘 ∈ {0, 1, . . . , 𝑁 + 1} with 𝑗 < 𝑘.

Let 𝒟𝑁 (𝑟, 𝑑) denote the set of all admissible wire spacings. Note that the above constraints are
already implied by the conditions on all pairs of adjacent positions.

Of course, any pair (𝜋, 𝛿) of a wire ordering and a wire spacing constitutes a wire placement 𝜙
via 𝜙 = 𝛿 ∘ 𝜋 and vice versa. Hence we will not distinguish between those and, in particular, also
speak of (𝜋, 𝛿) as a wire placement.
Finally, let 𝛼 :𝑊 → [0, ∞[ encode the switching frequencies of the proper wires. The set of

all such functions will be denoted by 𝒜𝑁 .
Then, the power loss 𝐿(𝜋, 𝛿) (being the imbalance measure) of a wire placement (𝜋, 𝛿) is given

by

𝐿(𝜋, 𝛿) =
∑︁
𝑤∈𝑊
𝛼(𝑤)

(︂ 1
𝛿(𝜋(𝑤))− 𝛿(𝜋(𝑤)− 1) + 1

𝛿(𝜋(𝑤) + 1)− 𝛿(𝜋(𝑤))

)︂
,

and the Optimal Wire Placement problem is the following task: Given 𝑁 ∈ N, 𝑟, 𝑑 ∈ ]0, ∞[
and 𝛼 ∈ 𝒜𝑁 , Vnd 𝜋* ∈ 𝒫𝑁 and 𝛿* ∈ 𝒟𝑁 (𝑟, 𝑑) such that

𝐿(𝜋*, 𝛿*) = min {𝐿(𝜋, 𝛿) : 𝜋 ∈ 𝒫𝑁 ∧ 𝛿 ∈ 𝒟𝑁 (𝑟, 𝑑)} ,

or decide that no such minimum exists.

2.1.3 The Optimal Wire Placement Problem

Note that in the preceding subsection, the speciVc set𝑊 does not play any role; all that matters
are the switching frequencies associated with the wires. Also the function 𝜋 can be identiVed with
a permutation on {1, . . . , 𝑁}. Using this abstraction, we can give a more concise mathematical
formulation of Optimal Wire Placement: We will describe the task in terms of the variables 𝑥𝑖,
denoting the distance of the 𝑖-th wire from its left neighbor for 𝑖 = 1, . . . , 𝑁 + 1. These variables
are related to the functions 𝜋 and 𝛿 through

𝑥𝜋(𝑤) = 𝛿(𝜋(𝑤))− 𝛿(𝜋(𝑤)− 1)

Furthermore, the switching frequencies will be encoded by a vector (𝑠1, . . . , 𝑠𝑁 ) where 𝑠𝑖 = 𝛼(𝑤𝑖)
for 𝑖 = 1, . . . , 𝑁 , and 𝒮𝑁 shall denote the symmetric group on 𝑁 elements. Then Optimal Wire
Placement can be formalized as the following mathematical optimization problem:

Problem 2.1: Optimal Wire Placement (OWP)
Instance: 𝑁 ∈ N; 𝑠1, . . . , 𝑠𝑁 ∈ [0, ∞[; 𝑑, 𝑟 ∈ ]0, ∞[.
Question: Decide whether there exists a solution (𝜋, 𝑥) ∈ 𝒮𝑁 ×R𝑁+1 of
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min
𝑁∑︁
𝑖=1
𝑠𝜋(𝑖)

(︂ 1
𝑥𝑖

+ 1
𝑥𝑖+1

)︂

s. t.
𝑁+1∑︁
𝑖=1
𝑥𝑖 ≤ 𝑟

𝑥𝑖 ≥ 𝑑 for 𝑖 = 1, . . . , 𝑁 + 1
𝜋 ∈ 𝒮𝑁

and, if so, give one.

In addition, an instance of OWP will be called all-distinct, if the values 𝑠1, . . . , 𝑠𝑁 are distinct,
i. e., if |{𝑠1, . . . , 𝑠𝑁}| = 𝑁 . When the permutation 𝜋 is Vxed, we are confronted with an instance
of Optimal Wire Spacing (OWS); the input is the same but the objective is to just Vnd optimal
wire distances 𝑥𝑖; see Section 2.2. While Optimal Wire Spacing is a nonlinear programming
problem under linear side constraints, the minimization over all permutations makes Optimal
Wire Placement a combinatorial optimization problem with nonlinear objective function.

As we will see, in order to compute the distances that solve Optimal Wire Spacing we need
to be able to compute the square roots of the switching frequencies, thus we formally have to
handle real numbers of arbitrary length in a single elementary operation. This is why we employ a
model of computation diUerent from the Turing machine, namely the real Random Access Machine
(RAM) for most of our results. For a detailed introduction into this concept see [PS85], or [Pap95]
for a more formal treatment; in context of our results it will be suXcient to think of a real RAM as
a computation device (similar to a Turing machine) that can handle arbitrarily long real numbers.

The main result of this chapter is to show that both Optimal Wire Spacing and Optimal Wire
Placement can be solved eXciently.

Theorem 2.2
Both problems, Optimal Wire Spacing and Optimal Wire Placement can be solved using at
most 𝒪 (𝑁 log𝑁) time in the real RAM model.

Similar results can be obtained for the binary Turing machine model when the input is restricted to
the rationals and the output is computed up to a precision given as part of the input; see Sections 2.2
and 2.3 for an analysis of the algorithms using the binary Turing machine model.

2.2 The Wire Spacing Problem
2.2.1 Characterization of Optimal Wire Distances
In this section, we will consider the Optimal Wire Spacing problem separately, so assume a
permutation 𝜋 ∈ 𝒮𝑁 is given and is Vxed throughout this section. Without loss of generality we
may assume that 𝜋 is the identity for more convenient notation. In the following we use a slight
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reformulation which uses 𝑠0 = 𝑠𝑁+1 = 0 and 𝑞𝑖 = 𝑠𝑖−1 + 𝑠𝑖 for 𝑖 = 1, . . . , 𝑁 + 1, thus we are
confronted with the following convex optimization problem:

Problem 2.3: Optimal Wire Spacing (OWS)
Instance: 𝑁 ∈ N; 𝑞1, . . . , 𝑞𝑁+1 ∈ [0, ∞[; 𝑑, 𝑟 ∈ ]0, ∞[.
Question: Decide whether there exists a solution 𝑥 ∈ R𝑁+1 of

min 𝐹 (𝑥) =
𝑁+1∑︁
𝑖=1

𝑞𝑖
𝑥𝑖

s. t.
𝑁+1∑︁
𝑖=1
𝑥𝑖 ≤ 𝑟

𝑥𝑖 ≥ 𝑑 for 𝑖 = 1, . . . , 𝑁 + 1

and, if so, give one.

In a given instance of OWS the parameters 𝑞1, . . . , 𝑞𝑁+1 do not explicitly rely on 𝑠1, . . . , 𝑠𝑁+1
and can hence be ordered without loss of generality. Note, however, that a diUerent order of the
switching frequencies leads to a diUerent set of 𝑞1, . . . , 𝑞𝑁+1.
The feasible region 𝑃 of an instance of OWS is compact, in fact a simplex. Since the objective

function 𝐹 is continuous on the feasible region (𝑥𝑖 ≥ 𝑑 > 0 for all 𝑖), the minimum is indeed
attained unless 𝑃 is empty. But 𝑃 = ∅ if and only if 𝑟 < (𝑁 + 1)𝑑, otherwise 𝑥 = 𝑑 ·1 is always
a feasible point. In fact, for (𝑁 + 1)𝑑 = 𝑟, there exists only this trivial solution, hence we may
subsequently assume that 𝑟 > (𝑁 + 1)𝑑. Also, we may require (and will do so for convenience)
that 𝑞1, . . . , 𝑞𝑁+1 > 0 rather than 𝑞1, . . . , 𝑞𝑁+1 ≥ 0, since for 𝑞1 = · · · = 𝑞𝑁+1 = 0 any feasible
𝑥 ∈ 𝑃 is optimal, and 𝑞𝑖0 = 0 for some 𝑖0 ∈ {1, . . . , 𝑁 + 1} implies 𝑥*𝑖0 = 𝑑 for each optimal
solution 𝑥* of the given instance.
The following lemma characterizes optimal wire spacings.

Lemma 2.4
Let (𝑁, 𝑞1, . . . , 𝑞𝑁+1, 𝑟, 𝑑) be an instance of OWS with 𝑟 > (𝑁 + 1)𝑑 and 𝑞1, . . . , 𝑞𝑁+1 > 0.
Then the objective function 𝐹 is strictly convex on the feasible region 𝑃 , and the minimum of 𝐹
over 𝑃 is uniquely determined.
For 𝑥 = (𝑥1, . . . , 𝑥𝑁+1)𝑇 ∈ R𝑁+1 deVne

𝐷(𝑥) =
{︀
𝑖 ∈ {1, . . . , 𝑁 + 1} : 𝑥𝑖 = 𝑑

}︀
and 𝑅(𝑥) = {1, . . . , 𝑁 + 1} ∖𝐷(𝑥).

Then a vector 𝑥* = (𝑥*1, . . . , 𝑥*𝑁+1)𝑇 is the optimal solution, if and only if

𝑑 < 𝑥*𝑘 =
√
𝑞𝑘
(︀
𝑟 − |𝐷(𝑥*)| 𝑑

)︀∑︀
𝑖∈𝑅(𝑥*)

√
𝑞𝑖

≤
√
𝑞𝑘√
𝑞𝑗
𝑑 (2.1)

holds for all 𝑗 ∈ 𝐷(𝑥*) and all 𝑘 ∈ 𝑅(𝑥*).
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The proof of this lemma employs the theorem of Karush, Kuhn and Tucker, which we reproduce
here in a form suitable for our purposes. A proof of this theorem can be found in [SW70] or [Roc72].

Theorem 2.5 (Karush, Kuhn and Tucker)
Let 𝑔 : R𝑛 → R, 𝑔1, . . . , 𝑔𝑚 : R𝑛 → R be convex functions, and deVne 𝐺 : R𝑛 → R𝑚,
𝐺(𝑥) :=

(︀
𝑔1(𝑥), . . . , 𝑔𝑚(𝑥)

)︀
. Suppose the functions 𝑔, 𝑔1, . . . , 𝑔𝑚 are diUerentiable in some

R𝑛-neighborhood of the feasible region 𝐶 := {𝑥 ∈ R𝑛 : 𝐺(𝑥) ≤ 0}, and there is some 𝑥 ∈ 𝐶
with 𝐺(𝑥) < 0. Then 𝑥* ∈ 𝐶 is a minimum of the function 𝑔 on the feasible set 𝐶 if and only if
there exist non negative Lagrangian multipliers 𝑦 =

(︀
𝜂1, . . . , 𝜂𝑚

)︀
≥ 0 such that the following

Karush-Kuhn-Tucker conditions hold:

∇𝑔(𝑥*)𝑇 + 𝑦𝑇∇𝐺(𝑥*) = 0 and 𝑦𝑇𝐺(𝑥*) = 0.

Proof (of Lemma 2.4). Let 𝐹 = 𝐹 (𝑥) denote the objective function of OWS. Of course, 𝐹 is
diUerentiable on the set of feasible points 𝑃 and for 𝑖, 𝑗 = 1, . . . , 𝑁 + 1 we have

𝜕𝐹

𝜕𝑥𝑖
= − 𝑞𝑖
𝑥2
𝑖

and
𝜕2𝐹

𝜕𝑥𝑖𝜕𝑥𝑗
=

⎧⎨⎩
2𝑞𝑖
𝑥3
𝑖

for 𝑖 = 𝑗,
0 else.

As 𝑥𝑖 ≥ 𝑑 > 0 and 𝑞𝑖 > 0 for each 𝑖 ∈ {1, . . . , 𝑁 + 1}, the Hessian of 𝐹 is a positive deVnite
(diagonal) matrix, thus 𝐹 is strictly convex on 𝑃 , and its minimum over 𝑃 is unique.

The constraints of OWS are all linear (thus diUerentiable) and by our assumptions the strict
interior of the feasible region is not empty. Hence we can employ the Karush-Kuhn-Tucker
conditions (see Theorem 2.5), stating that a feasible vector 𝑥* = (𝑥*1, . . . , 𝑥*𝑁+1)𝑇 ∈ R𝑁+1 is
optimal if and only if there exist non negative Lagrangian multipliers 𝜆0, 𝜆1, . . . , 𝜆𝑁+1 ≥ 0 such
that

𝑞𝑖

(𝑥*𝑖 )
2 = −∇𝐹 (𝑥*)𝑇𝑢𝑖 = 𝜆0 − 𝜆𝑖 for 𝑖 = 1, . . . , 𝑁 + 1;

𝜆0
(︁
𝑟 − 1𝑇𝑥*

)︁
= 0;

𝜆𝑖 (𝑥*𝑖 − 𝑑) = 0 for 𝑖 = 1, . . . , 𝑁 + 1.

Let 𝑥* be an optimal solution. Since all 𝑞𝑖’s are positive, we have 𝜆0 > 0, and hence

𝑁+1∑︁
𝑖=1
𝑥*𝑖 = 𝑟.

As a consequence, 𝑟 > (𝑁 + 1)𝑑 implies that 𝑅(𝑥*) ̸= ∅.
Now, let 𝑖, 𝑘 ∈ 𝑅(𝑥*). Then 𝑥*𝑖 , 𝑥*𝑘 > 𝑑, hence 𝜆𝑖 = 𝜆𝑘 = 0 and therefore

0 = 𝜆𝑖 = 𝜆0 −
𝑞𝑖

(𝑥*𝑖 )2 = 𝜆0 −
𝑞𝑘

(𝑥*𝑘)2 = 𝜆𝑘, thus (𝑥*𝑖 )2 = 𝑞𝑖
𝑞𝑘

(𝑥*𝑘)
2 ,
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which yields

𝑟 =
𝑁+1∑︁
𝑖=1
𝑥*𝑖 =

∑︁
𝑖∈𝐷(𝑥*)

𝑥*𝑖 +
∑︁
𝑖∈𝑅(𝑥*)

𝑥*𝑖 = |𝐷(𝑥*)| 𝑑+ 𝑥
*
𝑘√
𝑞𝑘

∑︁
𝑖∈𝑅(𝑥*)

√
𝑞𝑖 ,

proving the Vrst part of (2.1).
On the other hand, for 𝑗 ∈ 𝐷(𝑥*) and 𝑘 ∈ 𝑅(𝑥*) we get 𝜆𝑘 = 0 and 𝜆𝑗 ≥ 0, which yields

0 = 𝜆𝑘 = 𝜆0 −
𝑞𝑘

(𝑥*𝑘)2 ≤ 𝜆𝑗 = 𝜆0 −
𝑞𝑗

(𝑥*𝑗 )2 , thus
𝑞𝑗
𝑑2

= 𝑞𝑗
(𝑥*𝑗 )2 ≤

𝑞𝑘
(𝑥*𝑘)2 ,

completing the “only if” part of the proof.
Now, let 𝑥* ∈ R𝑁+1 satisfy (2.1). Then 𝑥* is feasible since 𝑥*𝑖 ≥ 𝑑 for all 𝑖 ∈ 𝐷(𝑥*) ∪𝑅(𝑥*)

and
𝑁+1∑︁
𝑖=1
𝑥*𝑖 = |𝐷(𝑥*)| 𝑑+

∑︁
𝑗∈𝑅(𝑥*)

√
𝑞𝑗

⎛⎝ ∑︁
𝑖∈𝑅(𝑥*)

√
𝑞𝑖

⎞⎠−1

(𝑟 − |𝐷(𝑥*)| 𝑑) = 𝑟.

Further, we have
𝑞𝑗

(𝑥*𝑗 )2 = 𝑞𝑗
𝑑2
≤ 𝑞𝑘

(𝑥*𝑘)2 for all 𝑗 ∈ 𝐷(𝑥*) and 𝑘 ∈ 𝑅(𝑥*),

and
𝑞𝑗

(𝑥*𝑗 )2 = 𝑞𝑘
(𝑥*𝑘)2 for all 𝑗, 𝑘 ∈ 𝑅(𝑥*).

Denoting this latter constant by 𝜆0, and setting

𝜆𝑖 := 𝜆0 −
𝑞𝑖

(𝑥*𝑖 )2 for 𝑖 = 1, . . . , 𝑁 + 1,

we see that 𝜆0, . . . , 𝜆𝑁+1 are non negative and satisfy the Karush-Kuhn-Tucker conditions for 𝑥*,
hence 𝑥* is optimal. 2

Note that for suXciently large 𝑟, more precisely for

𝑟 > max
{︃
𝑑
√
𝑞𝑘

𝑁+1∑︁
𝑖=1

√
𝑞𝑖 : 𝑘 ∈ {1, . . . , 𝑁 + 1}

}︃
,

the minimum distance constraint is not binding, i. e.,

𝑑 <
𝑟 · √𝑞𝑘∑︀𝑁+1
𝑖=1
√
𝑞𝑖

for all 𝑘 ∈ {1, . . . , 𝑁 + 1} and thus 𝐷(𝑥*) = ∅ for any optimal solution 𝑥*. In that case,
the problem is solved completely by Lemma 2.4. In general, Lemma 2.4 at least reduces the
given instance of OWS to the determination of the minimum distance set 𝐷 or, equivalently, its
complement 𝑅.
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2.2.2 Optimal Wire Spacing in the Real RAM Model
For an algorithmic implementation of the results of Lemma 2.4, we may of course assume that
𝑞1 ≤ . . . ≤ 𝑞𝑁+1, then 𝑥*1 ≤ . . . ≤ 𝑥*𝑁+1 for the optimal solution 𝑥*; hence all that matters is the
cardinality of𝐷. Therefore, to solve a given instance of OWS we may proceed in the following
way:

• Order the 𝑞𝑖’s so that 𝑞1 ≤ · · · ≤ 𝑞𝑁+1.

• Compute 𝑥′1 according to (2.1), starting with 𝐷 = ∅.

• If 𝑥′1 > 𝑑, compute the other components of the solution vector 𝑥′, and permute back 𝑥′ to
obtain the optimal solution 𝑥*. Otherwise, replace 𝑥′1 by 𝑑 and augment 𝐷 by {1}.

• Use the same procedure to compute 𝑥′2, . . . , 𝑥
′
𝑁+1 and permute back 𝑥′ to obtain the optimal

solution 𝑥*.

Algorithm 2.1 presents a structured form of this sketch, formulated in real arithmetic.

Algorithm 2.1: Solving Optimal Wire Spacing on the real RAM.
Input: An instance (𝑁, 𝑞1, . . . , 𝑞𝑁+1, 𝑟, 𝑑) of OWS with 𝑟 > (𝑁 + 1)𝑑
and 0 < 𝑞1, . . . , 𝑞𝑁+1.
Output: An optimal solution 𝑥*.

Sort (𝑞1, . . . , 𝑞𝑁+1) to obtain (𝑞′1, . . . , 𝑞′𝑁+1) with 𝑞′1 ≤ . . . ≤ 𝑞′𝑁+1.1

Initialize: 𝑆 ←
∑︀𝑁+1
𝑖=1

√︁
𝑞′𝑖 and Δ← 0.2

for 𝑖 = 1, . . . 𝑁 + 1 do3

Compute 𝑥′𝑖 ←
√︁
𝑞′𝑖 · 𝑆−1 (𝑟 −Δ · 𝑑).4

if 𝑥′𝑖 ≤ 𝑑 then5

Set 𝑥′𝑖 ← 𝑑, 𝑆 ← 𝑆 −
√︁
𝑞′𝑖 and Δ← Δ + 1.6

end7

end8

Permute back the vector 𝑥′ according to the permutation that obtained 𝑞′ from 𝑞 to get the9

solution vector 𝑥*.

Theorem 2.6
Algorithm 2.1 correctly solves Optimal Wire Spacing and requires at most 𝒪 (𝑁 log𝑁) arith-
metic operations in the real RAM model of computation.

Proof. For ease of notation we assume that the 𝑞𝑖 are already sorted, i. e., 𝑞′1 = 𝑞1, . . . , 𝑞′𝑁+1 =
𝑞𝑁+1 and 𝑥* = 𝑥′ in the algorithm. Let 𝑆(𝑖) and Δ(𝑖) denote the values of 𝑆 and Δ after the
𝑖-th pass through the “for” loop. Denote by 𝑥* the solution produced by the algorithm and let
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𝑆* = 𝑆(𝑁+1), Δ* = Δ(𝑁+1) be the Vnal values of 𝑆 and Δ, respectively. We show that condition
(2.1) of Lemma 2.4 holds for all 𝑗 ∈ 𝐷(𝑥*) and all 𝑘 ∈ 𝑅(𝑥*).

The Vrst inequality of (2.1) is clear. Let 𝑚 = max {𝑙 : 𝑙 ∈ 𝐷(𝑥*)}, then 𝑆* = 𝑆(𝑚) and
Δ* = Δ(𝑚) = 𝑚. Monotonicity of 𝑞1, . . . , 𝑞𝑁+1 implies that 𝑥*1 ≤ · · · ≤ 𝑥*𝑁+1, thereby
establishing the equality part of (2.1) for all 𝑘 ∈ 𝑅(𝑥*). To prove the second inequality of (2.1),
Vrst note that

𝑥*𝑗 = 𝑑, 𝑥*𝑘 =
√
𝑞𝑘
𝑆*

(𝑟 −Δ* · 𝑑) .

Hence the fact that 𝑆* = 𝑆(𝑚−1) −√𝑞𝑚 and Δ* = (𝑚− 1) + 1 = Δ(𝑚−1) + 1 implies

𝑥*𝑘 =
√
𝑞𝑘√
𝑞𝑗

√
𝑞𝑗

𝑆*
(𝑟 −Δ* · 𝑑) ≤

√
𝑞𝑘√
𝑞𝑗

√
𝑞𝑚(𝑟 −Δ* · 𝑑)
𝑆*

=
√
𝑞𝑘√
𝑞𝑗

(︃√
𝑞𝑚(𝑟 −Δ(𝑚−1) · 𝑑)
𝑆(𝑚−1) −√𝑞𝑚

−
𝑑
√
𝑞𝑚

𝑆(𝑚−1) −√𝑞𝑚

)︃

=
√
𝑞𝑘√
𝑞𝑗

(︃√
𝑞𝑚(𝑟 −Δ(𝑚−1) · 𝑑)
𝑆(𝑚−1) · 𝑆(𝑚−1)

𝑆(𝑚−1) −√𝑞𝑚
−

𝑑
√
𝑞𝑚

𝑆(𝑚−1) −√𝑞𝑚

)︃
.

Since √
𝑞𝑚(𝑟 −Δ(𝑚−1) · 𝑑)
𝑆(𝑚−1) ≤ 𝑑

we conclude

𝑥*𝑘 ≤
√
𝑞𝑘√
𝑞𝑗
𝑑

(︃
𝑆(𝑚−1)

𝑆(𝑚−1) −√𝑞𝑚
−

√
𝑞𝑚

𝑆(𝑚−1) −√𝑞𝑚

)︃
=
√
𝑞𝑘√
𝑞𝑗
𝑑.

Thus, by Lemma 2.4, 𝑥* is the optimal solution to Problem 2.3.
For the stated running time, note that the sorting step requires at most 𝒪 (𝑁 log𝑁) arithmetic

operations. The “for” loop is executed 𝑁 + 1 times and each passage requires a constant number
of operations. In total, the algorithm can be implemented to run using at most 𝒪 (𝑁 log𝑁)
arithmetic operations in the real RAM model. 2

One might wonder if it is indeed necessary to compute the optimal values for 𝑥𝑖 one after the
other instead of using a “one-shot” (or rather “two-shot”) approach, where one would Vrst compute
some vector 𝑥̃ under the assumption of 𝐷 = ∅, then set 𝐷 := {𝑖 : 𝑥̃𝑖 ≤ 𝑑} and compute 𝑥* using
this set 𝐷. Unfortunately, this procedure might lead to wrong results, as 𝑥̃ does not necessarily
provide the correct set 𝐷. The following example illustrates this.

Example 2.7
Let 𝑞1 = 1, 𝑞2 = · · · = 𝑞𝑁 = 4 and 𝑞𝑁+1 = 𝜌2 for some 𝜌 ≥ 2. If we compute 𝑥̃ under the
assumption of 𝐷 = ∅, we obtain

𝑥̃1 = 𝑟

2𝑁 − 1 + 𝜌, 𝑥̃2 = · · · = 𝑥𝑁 = 2𝑟
2𝑁 − 1 + 𝜌, 𝑥̃𝑁+1 = 𝜌𝑟

2𝑁 − 1 + 𝜌.
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Suppose now that the value of 𝑑 is strictly between 𝑥̃1 and 𝑥̃2, i. e., 𝑥̃1 < 𝑑 < 𝑥̃2, then

𝑥̃1 < 𝑑 < 𝑥̃2 = · · · = 𝑥̃𝑁 ≤ 𝑥̃𝑁+1.

Hence 𝑥̃ is not a feasible solution, and we set 𝑥′1 = 𝑑 and 𝐷 = {1}. Recomputation of the values
for the remaining indices yields the vector 𝑥′ with

𝑥′1 = 𝑑, 𝑥′2 = · · · = 𝑥′𝑁 = 2(𝑟 − 𝑑)
2𝑁 − 2 + 𝜌, 𝑥

′
𝑁+1 = 𝜌(𝑟 − 𝑑)

2𝑁 − 2 + 𝜌.

A straightforward calculation shows that the values of 𝑁 , 𝑟 and 𝜌 may be chosen such that

𝑥̃1 < 𝑥
′
2 = 2(𝑟 − 𝑑)

2𝑁 − 2 + 𝜌 <
2𝑟

2𝑁 − 1 + 𝜌 = 𝑥̃2.

So, we may assume without loss of generality that 𝑑 was chosen such that 𝑥̃1 < 𝑥
′
2 < 𝑑 < 𝑥̃2,

thus 𝑥′2, . . . , 𝑥
′
𝑁 < 𝑑, and the vector 𝑥

′ is still not feasible. Therefore the set 𝐷 produced by this
approach cannot be correct for the optimal solution. This shows that one must indeed proceed
iteratively to obtain the correct values for the optimal solution. ♢

2.2.3 Wire Spacing in the Turing Machine Model
Let us conclude this section by brieWy analyzing the adaptations that are needed for working on
rational input in the binary Turing machine model. Clearly, the optimum solution 𝑥* produced
by Algorithm 2.1 may be irrational (and so may the objective value), so we have to settle for an
approximation of 𝑥* on a computer working on rational input data only.

Problem 2.8: Optimal Rational Wire Spacing (Q-OWS)
Instance: 𝑁 ∈ N; 𝑞1, . . . , 𝑞𝑁+1 ∈ Q≥0; 𝑑, 𝑟 ∈ R>0, 𝜀 ∈ Q>0.
Question: Decide whether there exists a real solution 𝑥* ∈ R𝑁+1 of

min 𝐹 (𝑥) =
𝑁+1∑︁
𝑖=1

𝑞𝑖
𝑥𝑖

s. t.
𝑁+1∑︁
𝑖=1
𝑥𝑖 ≤ 𝑟

𝑥𝑖 ≥ 𝑑 for 𝑖 = 1, . . . , 𝑁 + 1

and, if so, Vnd a rational feasible point 𝑥̃ ∈ Q𝑁+1 such that

|𝐹 (𝑥̃)− 𝐹 (𝑥*)| < 𝜀,

or report that no such point exists.
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Similar to the real OWS, the feasible region 𝑃Q is again a simplex and thus compact. If
(𝑁 + 1)𝑑 > 𝑟, there is no feasible point (neither rational nor real), if (𝑁 + 1)𝑑 = 𝑟, then 𝑥̃ = 𝑑 ·1
is the only feasible solution, and as 𝑑 ∈ Q, it is of course rational. For (𝑁 + 1)𝑑 < 𝑟, 𝑃Q contains
for every feasible point 𝑥* a rational point 𝑥̃ that is arbitrarily close to 𝑥* and by continuity
of the objective function 𝐹 on 𝑃Q, that point may be chosen such that |𝐹 (𝑥̃) − 𝐹 (𝑥*)| < 𝜀.
Again, if 𝑞1 = · · · = 𝑞𝑁+1 = 0 any rational feasible point is optimal, and 𝑞𝑖0 = 0 for some
𝑖0 ∈ {1, . . . , 𝑁 + 1} implies that 𝑥̃𝑖0 = 𝑑 ∈ Q for an optimal solution, so the search can be
restricted to the corresponding aXne subspace.
While the existence of a rational feasible point with objective value arbitrarily close to the

optimal value is simply a matter of continuity of the objective function, it is much harder to
actually compute such an approximate rational solution 𝑥̃, and to analyze how the error bound 𝜀
inWuences the runtime of the algorithm. On a binary Turing machine, we will have to compute
an approximation for the square roots appearing in Algorithm 2.1. There are many ways to do
this, e. g., a general approach like bisection or Newton’s algorithm (details on these algorithms can
be found in standard textbooks on numerical mathematics, e. g., [HH94; DH93]) or a specialized
algorithm relying on some standardized form of Woating point arithmetic and binary representation
of numbers. What is important for our purposes is that there are algorithms to approximate the
square root of an arbitrary number 𝑞 ∈ Q>0 up to any prescribed error bound 𝜀′ ∈ Q>0 using at
most𝒪

(︀
log2

𝑞
𝜀′
)︀
operations on a binary Turing machine, which means the algorithm is polynomial

in the size of the input data.4 This runtime bound can easily be proven for a bisection algorithm,
but other algorithms (with possibly better runtime bounds) are suitable here, too.
However, there is a severe problem with Algorithm 2.1 originating in a possible discontinuity

introduced by the approximation of the square roots. More speciVcally, the problem may be ill
posed in the sense that the error in the objective function is not necessarily continuously dependent
on the error allowed for the square root approximation. This phenomenon is due to the discrete
nature of the set 𝐷(𝑥*). Suppose there are one or more distances 𝑥*𝑖 in an optimal distance vector
𝑥* ∈ R𝑁+1 that are very close to the minimal distance 𝑑. Then a slight error in the calculation of
the values for these 𝑥*𝑖 can lead to slightly smaller values, which would result in the 𝑥*𝑖 being set
to 𝑑; furthermore, the set𝐷(𝑥*) would be augmented by one or more of the corresponding indices.
Alas, the size of 𝐷 does not depend on the approximation error of the square root computations in
a continuous way, so this could ultimately result in the wrong minimum distance set, while the
subsequent computations rely on a correct size of𝐷. Errors in the calculation of other components
of 𝑥* might occur, leading to a possibly grave error in the objective function. Even worse, the
“monotonicity property” used in the algorithm (meaning that when 𝑥*𝑖0 > 𝑑 for some index 𝑖0,
then 𝑥*𝑖 > 𝑑 for all 𝑖 ≥ 𝑖0) is put in jeopardy and thus the correctness proof for the algorithm is no
longer true for that rational computation. Therefore, we have to restrict our analysis to well posed
instances of Q-OWS.

4Notice that the numbers 𝑞 and 𝜀′ can be represented using𝒪 (log2 𝑞 + log2 𝜀
′) bits on the binary Turing machine,

so the log2 is essential for polynomial complexity.
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DeVnition 2.9
Let 𝛿 > 0. An instance of Optimal Rational Wire Spacing is called 𝛿-well posed, if⃒⃒⃒⃒

⃒𝑑−
√
𝑞𝑘(𝑟 − (𝑡− 1)𝑑)∑︀𝑁+1

𝑖=𝑡
√
𝑞𝑖

⃒⃒⃒⃒
⃒ > 𝛿

for all 𝑡 ∈ {1, . . . , 𝑁 + 1} and all 𝑘 ∈ {𝑡, . . . , 𝑁 + 1}. If there is a 𝛿 > 0 such that the instance
is 𝛿-well posed, then it is called well posed, otherwise we speak of an ill posed instance. For a
well posed instance, the wellness condition is the maximum 𝛿 > 0 such that the instance is 𝛿-well
posed.

Essentially, well-posedness means that all possible distance values that may occur in the
computation of the optimal distances are suXciently diUerent from the minimum distance 𝑑
(namely at least 𝛿). Thus if we approximate the square roots in the computation close enough to
guarantee an error bound of at most 𝛿, where 𝛿 is the wellness condition of the given instance, the
resulting minimum distance set is guaranteed to be correct, thus avoiding the problems discussed
above. Thus Algorithm 2.1 is guaranteed to produce a feasible solution 𝑥* with the correct
minimum distance set 𝐷(𝑥*) if we supply an approximation of the square root function that
guarantees an error bound of at most 𝛿 for the values of 𝑥*𝑖 as they are computed in line 4 of
Algorithm 2.1.

For the analysis of error propagation we thus have to analyze Vrst how an approximation error
in the square root computations aUects the errors in the resulting distance vector. To that end, let
𝑆(𝑚), Δ(𝑚) denote the values of 𝑆 and Δ computed in Algorithm 2.1 by the end of the𝑚-th pass
through the “for” loop with 𝑆* and Δ* being the Vnal values. Furthermore, for a given rational
number 𝜀′ > 0 and for 𝑖 ∈ {1, . . . , 𝑁 + 1} denote by 𝑠𝑞𝑟𝑡(𝑞𝑖) a rational approximation of

√
𝑞𝑖

with absolute error
|𝑠𝑞𝑟𝑡(𝑞𝑖)−

√
𝑞𝑖| < 𝜀′,

and by 𝑆(𝑚) the approximation of 𝑆(𝑚) computed by the algorithm as a result of substituting
𝑠𝑞𝑟𝑡(𝑞𝑖) for

√
𝑞𝑖. Also, let 𝑥𝑖 and 𝑥̃𝑖 denote the values computed in line 4 of Algorithm 2.1 in

the 𝑖-th pass of the “for” loop, where 𝑥𝑖 is computed in real arithmetic5 and 𝑥̃𝑖 is computed by
substituting 𝑠𝑞𝑟𝑡(𝑞𝑗) for the respective values of

√
𝑞𝑗 in the algorithm. As noted before, 𝑠𝑞𝑟𝑡(𝑞𝑖)

can be computed in polynomial time on a binary Turing machine.

5Note that 𝑥𝑖 and the optimum solution 𝑥*𝑖 might diUer, because 𝑥𝑖 < 𝑑 is possible and would be corrected to
𝑥*𝑖 = 𝑑 in the lines following line 4 of the algorithm.
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Let 𝑞min = min {𝑞1, . . . , 𝑞𝑁+1} and 𝑞max = max {𝑞1, . . . , 𝑞𝑁+1}, then for any index 𝑗 ∈
{1, . . . , 𝑁 + 1} we have

|𝑥𝑗 − 𝑥̃𝑗 | =
⃒⃒⃒
𝑟 −Δ(𝑗−1)𝑑

⃒⃒⃒
·
⃒⃒⃒⃒
𝑠𝑞𝑟𝑡(𝑞𝑗)
𝑆(𝑗−1) −

√
𝑞𝑗

𝑆(𝑗−1)

⃒⃒⃒⃒
=
⃒⃒⃒
𝑟 −Δ(𝑗−1)𝑑

⃒⃒⃒
·
⃒⃒⃒⃒
⃒𝑠𝑞𝑟𝑡(𝑞𝑗)𝑆(𝑗−1) −√𝑞𝑗𝑆(𝑗−1) +√𝑞𝑗𝑆(𝑗−1) −√𝑞𝑗𝑆(𝑗−1)

𝑆(𝑗−1)𝑆(𝑗−1)

⃒⃒⃒⃒
⃒

≤
⃒⃒⃒
𝑟 −Δ(𝑗−1)𝑑

⃒⃒⃒
·
𝑆(𝑗−1)

⃒⃒⃒
𝑠𝑞𝑟𝑡(𝑞𝑗)−

√
𝑞𝑗
⃒⃒⃒
+√𝑞𝑗

⃒⃒⃒
𝑆(𝑗−1) − 𝑆(𝑗−1)

⃒⃒⃒
𝑆(𝑗−1)𝑆(𝑗−1)

≤ |𝑟 −𝑁𝑑|
𝑆(𝑗−1)𝜀′ +√𝑞𝑗(𝑁 + 1)𝜀′

𝑆(𝑗−1)𝑆(𝑗−1) ≤ |𝑟 −𝑁𝑑|
𝑆(𝑗−1)𝜀′ +√𝑞𝑗(𝑁 + 1)𝜀′

(𝑁 + 1)2𝑞min(𝑞min − 𝜀′)

≤ |𝑟 −𝑁𝑑|
𝜀′(𝑞max +√𝑞max)

(𝑁 + 1)𝑞min(𝑞min − 𝜀′)
≤ |𝑟 −𝑁𝑑|

𝜀′(3𝑞max+1
2 )

(𝑁 + 1)𝑞min(𝑞min − 𝜀′)
.

Notice the last inequality is due to the inequality between geometric and arithmetic mean
(
√
𝑞max · 1 ≤ 𝑞max+1

2 ) and is used to avoid a square root term which would again have to
be approximated when using the inequality for computation on a Turing machine model. The
last right hand side term above is a function in 𝜀′ which tends to 0 for 𝜀′ → 0 and is continuous
in 𝜀′ (at least for 𝜀′ < 𝑞min). Therefore |𝑥𝑗 − 𝑥𝑗 | can be made arbitrarily small by setting 𝜀′

appropriately, more precisely for any given value of 𝜀𝑥 > 0 we get

|𝑥𝑗 − 𝑥̃𝑗 | < 𝜀𝑥 if 𝜀′ <
𝜀𝑥(𝑁 + 1)𝑞2min

1
2(𝑟 −𝑁𝑑)(3𝑞max + 1) + 𝜀𝑥(𝑁 + 1)𝑞min

. (2.2)

The value for 𝜀′ can certainly be computed in polynomial time on a binary Turing machine
(essentially, this means computing 𝑞min and 𝑞max) for a feasible instance of Optimal Rational
Wire Spacing. Notice that for indices 𝑗 ∈ {1, . . . ,Δ*} it suXces to perform the computations
for 𝜀𝑥 being the wellness condition of the instance, because 𝑥𝑗 = 𝑑 = 𝑥*𝑗 for these indices
anyway, so the ex-post approximation error is 0. However, we need to make sure that the
set 𝐷(𝑥*) is computed correctly (which need of course not succeed for an ill posed instance),
thus the approximation is still necessary. Once we have determined Δ* and thus 𝐷(𝑥*) (in
course of the computation, we eventually arrive at the Vrst index 𝑗 where 𝑥𝑗 > 𝑑, hence
𝐷(𝑥*) = {1, . . . , 𝑗 − 1}), we need to properly approximate the square roots to get a value for 𝑥̃𝑗
that is within the error bound 𝜀𝑥 from the true value.
Finally, let us see how the error in the distance vector propagates into the objective value.

Suppose for 𝑗 ∈ {1, . . . , 𝑁 + 1} the values 𝑥̃𝑗 are an approximation of the optimal distances 𝑥*𝑗
with an error bound of 𝜀𝑥, i. e., ⃒⃒⃒

𝑥*𝑗 − 𝑥𝑗
⃒⃒⃒
< 𝜀𝑥.
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This yields |𝐹 (𝑥*)− 𝐹 (𝑥̃)| =

⃒⃒⃒⃒
⃒⃒ 𝑁+1∑︁
𝑖=Δ*+1

𝑞𝑖
𝑥*𝑖
− 𝑞𝑖
𝑥̃𝑖

⃒⃒⃒⃒
⃒⃒

≤
𝑁+1∑︁
𝑖=Δ*+1

𝑞𝑖
|𝑥*𝑖 − 𝑥̃𝑖|
𝑥*𝑖 𝑥̃𝑖

≤ 𝜀𝑥
𝑁+1∑︁
𝑖=1
𝑞𝑖

1
𝑑2
,

thus the absolute error in the objective value can be bounded above by choosing 𝜀𝑥 > 0 small
enough. More speciVcally, if we allow for an absolute error of 𝜀 > 0 in the objective value, then

|𝐹 (𝑥*)− 𝐹 (𝑥̃)| < 𝜀

can be guaranteed for a well posed instance of Optimal Rational Wire Spacing with wellness
condition 𝛿 by choosing

𝜀𝑥 < 𝜀min
{︃
𝛿,

𝑑2∑︀𝑁+1
𝑖=1 𝑞𝑖

}︃
. (2.3)

There is one minor issue we have not yet touched upon, and that is the constraint
∑︀𝑁+1
𝑖=1 𝑥𝑖 ≤ 𝑟.

In the real RAM algorithm, the optimal (real) solution 𝑥* satisVes this constraint at equality.
If, in the rational version of the algorithm, we compute an approximate solution 𝑥̃, the values
for 𝑥̃𝑗 may be slightly greater than 𝑥*𝑗 for some or all 𝑗 ∈ {1, . . . , 𝑁 + 1}, thus violating this
constraint. However, the problem can easily be solved by computing approximations 𝑥̃𝑗 that are
close enough to 𝑥*𝑗 , but are guaranteed to be less or equal to the real solution values. As the square
root approximations using the bisection algorithm (and many other algorithms) can easily be
modiVed to yield an approximation that is less or equal (or greater or equal) to the exact value, the
necessary modiVcation is straightforward and just a matter of implementation; it does not change
our estimates. Let us remark here that a more “technological approach” to that problem might
be more appropriate in practice: If the approximations are accurate enough (which is possible
for a well posed instance, as we have just seen), one can certainly guarantee that the spacing
range 𝑟 is never exceeded by more than a given parameter 𝜀𝑟 > 0. If, in turn, that parameter is
kept suXciently small (e. g., below the size of the smallest structures that can be manufactured
in reality), a small violation of the spacing range constraint may be acceptable in applications, as
minor errors are introduced through the manufacturing process anyway.
For the complexity of the algorithm on a binary Turing machine, let 𝑆𝑄𝑅𝑇 (𝑞𝑖, 𝜀′) denote the

number of operations needed to compute a rational number 𝑠𝑞𝑟𝑡(𝑞𝑖) such that
⃒⃒
𝑠𝑞𝑟𝑡(𝑞𝑖)−

√
𝑞𝑖
⃒⃒
<

𝜀′. As we have argued above, this can be done, e. g., by bisection using at most 𝒪
(︀
log2

𝑞𝑖
𝜀′
)︀

arithmetic operations. For a given maximum absolute error 𝜀 > 0 in the objective function of
a well posed instance with wellness condition 𝛿 > 0, we need to choose 𝜀′ according to (2.2)
and (2.3), hence a value of

𝜀′ =
𝜀min

{︂
𝛿, 𝑑2 ·

(︁∑︀𝑁+1
𝑖=1 𝑞𝑖

)︁−1
}︂

(𝑁 + 1)𝑞2min

1
2(𝑟 −𝑁𝑑)(3𝑞max + 1) + 𝜀min

{︂
𝛿, 𝑑2 ·

(︁∑︀𝑁+1
𝑖=1 𝑞𝑖

)︁−1
}︂

(𝑁 + 1)𝑞min + 1
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suXces (notice the “+1” at the end of the denominator to guarantee that 𝜀′ is strictly smaller than
the original fraction). This results in the following corollary:

Corollary 2.10
A well posed instance (𝑁 ; 𝑞1, . . . , 𝑞𝑁+1; 𝑑; 𝑟; 𝜀) of Optimal Rational Wire Spacing with well-
ness condition 𝛿 > 0 can be solved on a binary Turing machine using at most

𝒪 (𝑁 log𝑁 +𝑁 · 𝑆𝑄𝑅𝑇max)

operations, where

𝑆𝑄𝑅𝑇max = log2(𝑞max)− log2

(︃
𝜀min

{︃
𝛿,

𝑑2∑︀𝑁+1
𝑖=1 𝑞𝑖

}︃
(𝑁 + 1)𝑞2min

)︃

+ log2

(︃
1
2(𝑟 −𝑁𝑑)(3𝑞max + 1) + 𝜀min

{︃
𝛿,

𝑑2∑︀𝑁+1
𝑖=1 𝑞𝑖

}︃
(𝑁 + 1)𝑞min + 1

)︃
.

(Here the second complexity term can be achieved using bisection for the approximation of the
square roots.)

2.3 The Wire Ordering Problem
As Theorem 2.6 shows, an optimal wire spacing can be computed very eXciently. Furthermore, the
characterization of the optimal wire spacing shows that a reordering of the wires adds an additional
potential for optimization, but also mathematical diXculty. Let 𝜋 ∈ 𝒮𝑁 be a permutation that
assigns the switching frequency 𝑠𝜋(𝑖) to the 𝑖-th position on the chip. Then by (2.1) the optimum
of the objective function for the permutation 𝜋 is

𝐹 (𝜋, 𝑥𝜋) =
∑︁
𝑖∈𝐷𝜋

𝑠𝜋(𝑖−1) + 𝑠𝜋(𝑖)
𝑑

+ 1
𝑟 − |𝐷𝜋| 𝑑

(︃∑︁
𝑖∈𝑅𝜋

√︁
𝑠𝜋(𝑖−1) + 𝑠𝜋(𝑖)

)︃2

, (2.4)

where 𝑥𝜋 is the optimal wire spacing and𝐷𝜋 = 𝐷(𝑥𝜋), and𝑅𝜋 = 𝑅(𝑥𝜋) according to Lemma 2.4.
Here again, 𝑠0 = 𝑠𝑁+1 = 0 and 𝜋(0) = 0, 𝜋(𝑁 + 1) = 𝑁 + 1 for a uniform notation, and
we will identify 𝒮𝑁 with the set of all permutations on {0, . . . , 𝑁 + 1} with Vxed points 0 and
𝑁 + 1.

Of course, we want to optimize over all such permutations 𝜋 ∈ 𝒮𝑁 now. Suppose for a moment,
𝑟 was large enough to imply 𝐷𝜋 = ∅ for each 𝜋 ∈ 𝒮𝑁 . Then, in eUect, we are asking for a
permutation that minimizes

𝑁+1∑︁
𝑖=1

√︁
𝑠𝜋(𝑖−1) + 𝑠𝜋(𝑖). (2.5)

This problem can be translated to a Minimum Hamilton Path problem on the complete graph
𝐺 = (𝑉,𝐸) with vertex set 𝑉 = {0, 1, . . . , 𝑁 + 1} and edge weights 𝑑({𝑗, 𝑘}) := √𝑠𝑗 + 𝑠𝑘
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by asking for a minimum Hamilton Path with endpoints 0 and 𝑁 + 1. While the MHP problem
is notoriously diXcult (cf. [GJ79, problem GT39]), here we are dealing with a special class of
eXciently solvable MHP (or equivalently TSP) problems. In this section, we will Vrst show how
to transform the problem to an easily solvable one in Section 2.3.1, mainly using a result due
to Supnick [Sup57]. As an aside, we will also give an alternative derivation of the result which
is less general (although suXcient for the problems considered in the context of this work), but
uses only very elementary arguments in Section 2.3.2. Subsequently, Section 2.3.3 will provide
some structural results on the set 𝐷 to make the theory applicable to the Wire Ordering problem
without the assumption of 𝐷 = ∅. This will Vnally enable us to cast the results on the MHP
problem into an eXcient algorithm for Wire Placement in Section 2.4.

2.3.1 Utilizing the Supnick Property for Minimum Hamilton Path
Let 𝜔0, 𝜔1, . . . , 𝜔𝑁+1 denote the switching activities sorted in increasing order, i. e., 𝜔0 = 𝑠0 = 0,
𝜔1 = 𝑠𝑁+1 = 0 and {𝜔2, . . . , 𝜔𝑁+1} = {𝑠1, . . . , 𝑠𝑁} with 𝜔0 ≤ 𝜔1 ≤ 𝜔2 ≤ · · · ≤ 𝜔𝑁+1.
Then the problem of minimizing (2.5) is equal to Vnding a Minimum Hamilton Path in the complete
graph on the vertices {0, 1, . . . , 𝑁 + 1} with endpoints 0 and 1 whose edges {𝑖, 𝑗} carry the
weights

√
𝜔𝑖 + 𝜔𝑗 .

What makes this problem more tractable as opposed to the general MHP is the fact that the
distance matrix

(𝑑𝑖𝑗)𝑖,𝑗=0,...,𝑁+1 with 𝑑𝑖𝑗 =
√︀
𝜔𝑖 + 𝜔𝑗 , (2.6)

has a structure known asMonge property in the context of Traveling Salesman problems.

DeVnition 2.11 (HoUman [Hof63], see also [BDDVW98])
A matrix (𝑐𝑖𝑗)𝑖,𝑗=1,...,𝑛 with nonnegative entries is called a Monge matrix (or said to have the
Monge property), if

𝑐𝑖𝑗 + 𝑐𝑟𝑠 ≤ 𝑐𝑖𝑠 + 𝑐𝑟𝑗 for all 1 ≤ 𝑖 < 𝑟 ≤ 𝑛 and 1 ≤ 𝑗 < 𝑠 ≤ 𝑛.

A TSP with a Monge distance matrix can be solved to optimality in polynomial time using a
dynamic programming approach based on the fact that there is an optimal tour that is pyramidal,
i. e., it has the form (𝑖1, 𝑖2, . . . , 𝑖𝑝−1, 𝑛, 𝑖𝑝+1, . . . , 𝑖𝑛−1, 𝑖𝑛) with 𝑖1 ≤ 𝑖2 ≤ · · · ≤ 𝑖𝑝−1 ≤ 𝑛 and
𝑛 ≥ 𝑖𝑝+1 ≥ · · · ≥ 𝑖𝑛−1 ≥ 𝑖𝑛. Details on the algorithm and a proof can be found in [GLS85], an
even more eXcient reVnement of that algorithm is presented in [Par91]. We will follow a similar
approach in Section 2.3.2 and hence omit the details here.
A reVnement of the Monge property was considered by Supnick.

DeVnition 2.12 (Supnick, [Sup57], see also [Bur90])
A matrix (𝑐𝑖𝑗)𝑖,𝑗=1,...,𝑛 with nonnegative entries is called a Supnick matrix (or said to have the
Supnick property), if it is symmetric and if

𝑐𝑖𝑗 + 𝑐𝑘𝑙 ≤ 𝑐𝑖𝑘 + 𝑐𝑗𝑙 ≤ 𝑐𝑖𝑙 + 𝑐𝑗𝑘 for all 1 ≤ 𝑖 < 𝑗 < 𝑘 < 𝑙 ≤ 𝑛.
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In his 1957 paper [Sup57] Supnick proved the following theorem (rephrased a little here):

Theorem 2.13 (Supnick [Sup57], see also [Bur90])
If the cost matrix of a Traveling Salesman problem has the Supnick property, then

(1, 3, 5, . . . , 𝑛, . . . , 6, 4, 2)

is an optimal tour.

Clearly, the distance matrix (𝑑𝑖𝑗) deVned in (2.6) above is symmetric. The Monge property of
(𝑑𝑖𝑗) is mainly due to the concavity of the square root function, we utilize a more general lemma
to derive the inequality.
Lemma 2.14
Let 𝑓 : R→ R be concave; 𝑥, 𝑦, 𝛿 ∈ R with 𝑥 ≤ 𝑦 and 𝛿 ≥ 0. Then

𝑓(𝑥− 𝛿) + 𝑓(𝑦) ≤ 𝑓(𝑥) + 𝑓(𝑦 − 𝛿).

Furthermore, for strictly concave 𝑓 , 𝑥 < 𝑦 and 𝛿 > 0 the above inequality is strict.

Proof. The case 𝛿 = 0 is clear, so we assume 𝛿 > 0. Since

𝑥 = 𝑦 − 𝑥
𝑦 − 𝑥+ 𝛿 (𝑥− 𝛿) +

(︂
1− 𝑦 − 𝑥
𝑦 − 𝑥+ 𝛿

)︂
𝑦

and 𝑦 − 𝛿 = 𝛿

𝑦 − 𝑥+ 𝛿 (𝑥− 𝛿) +
(︂

1− 𝛿

𝑦 − 𝑥+ 𝛿

)︂
𝑦,

concavity of 𝑓 implies

𝑓(𝑥) ≥ 𝑦 − 𝑥
𝑦 − 𝑥+ 𝛿 𝑓(𝑥− 𝛿) +

(︂
1− 𝑦 − 𝑥
𝑦 − 𝑥+ 𝛿

)︂
𝑓(𝑦)

and 𝑓(𝑦 − 𝛿) ≥ 𝛿

𝑦 − 𝑥+ 𝛿 𝑓(𝑥− 𝛿) +
(︂

1− 𝛿

𝑦 − 𝑥+ 𝛿

)︂
𝑓(𝑦).

Addition of these two inequalities yields the asserted inequality. With strictly concave 𝑓 and
𝑥 < 𝑦, both above inequalities are strict, so their addition then yields the strict version of the
assertion. 2

Setting 𝑥 := 𝜔𝑖 + 𝜔𝑙, 𝑦 := 𝜔𝑘 + 𝜔𝑙 and 𝛿 := 𝜔𝑙 − 𝜔𝑗 in Lemma 2.14 immediately yields the
Monge property for (𝑑𝑖𝑗).

It follows from a result of Burkard [Bur90] that (𝑑𝑖𝑗) is also a Supnick matrix. (Actually, Burkard
not only proves that every symmetric Monge matrix has the Supnick property, which is essentially
done by plugging symmetry into the Monge inequality to yield the Supnick inequalities, but also
that every Supnick matrix can be transformed into a Monge matrix by possibly changing some
of its diagonal elements.) The only “missing link” is now that between TSP and MHP: All the
above results were stated for Traveling Salesman problems, while we are speciVcally interested
in a Minimum Hamilton Path problem with given start and end nodes. But that can easily be
resolved.
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Lemma 2.15
Let 𝑉 = {0, . . . , 𝑁 + 1} be the node set of a complete undirected graph𝐾𝑉 with node weights
{𝜔0, . . . , 𝜔𝑁+1}, such that 𝜔0 ≤ 𝜔1 < 𝜔2 · · · ≤ 𝜔𝑁+1 and edge lengths 𝑑({𝑖, 𝑗}) = √𝜔𝑖 + 𝜔𝑗 .
Then each minimum Traveling Salesman tour through𝐾𝑉 contains the edge {0, 1}.

Proof. Suppose in the speciVed setting there was an optimal tour 𝜏 : {0, . . . , 𝑁 + 1} → 𝑉 that
did not contain the edge {0, 1}. We may assume that 𝜏(0) = 0 (the “start node” 𝜏(0) of the tour
may be chosen arbitrarily). Let 𝑘 := 𝜏−1(1) and deVne a new tour 𝜏 ′ : {0, . . . , 𝑁 + 1} → 𝑉 as
illustrated by Figure 2.4:

𝜏 ′(𝑖) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜏(𝑘 − 1− 𝑖) for 0 ≤ 𝑖 ≤ 𝑘 − 2,
𝜏(𝑖+ 2) for 𝑘 − 1 ≤ 𝑖 ≤ 𝑁 − 1,
0 = 𝜏(0) for 𝑖 = 𝑁 ,

1 = 𝜏(𝑘) for 𝑖 = 𝑁 + 1.

Obviously, 𝜏 ′ is a tour containing the edge {0, 1} with cost
√
𝜔0 + 𝜔1; the cost of 𝜏 ′ is

𝐶(𝜏 ′) = 𝐶(𝜏)−
√︁
𝜔1 + 𝜔𝜏(𝑘+1) −

√︁
𝜔0 + 𝜔𝜏(1)

+
√
𝜔0 + 𝜔1 +

√︁
𝜔𝜏(1) + 𝜔𝜏(𝑘+1).

𝜏(𝑁 + 1) 𝜏(𝑘 + 1)

0 = 𝜏(0) 1 = 𝜏(𝑘)

𝜏(1) 𝜏(𝑘 − 1)

Figure 2.4: DeVnition of 𝜏 ′ (depicted in blue).

Application of Lemma 2.14 with

𝑥 := 𝜔1 + 𝜔𝜏(𝑘+1), 𝑦 := 𝜔𝜏(1) + 𝜔𝜏(𝑘+1) and 𝛿 := 𝜔𝜏(𝑘+1) − 𝜔0

for the function 𝑓(𝑥) :=
√
𝑥 (note 𝑥 < 𝑦 and 𝛿 > 0 due to 𝜔0 ≤ 𝜔1 < · · · ≤ 𝜔𝑁+1) immediately

yields 𝐶(𝜏 ′) < 𝐶(𝜏), contradicting optimality of 𝜏 . Thus 𝜏 must already contain the edge
{0, 1}. 2
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This shows that TSP and MHP on graphs that are relevant for the Wire Ordering problem are
essentially the same: A minimum Hamilton Path can be found by simply solving a TSP and
deleting the edge {0, 1} that will always be contained, while on the other hand any minimum 0-1
Hamilton Path can be extended to an optimal TSP tour by adding {0, 1}.
A minimum Hamilton Path (and hence an optimal wire ordering) is therefore given by The-

orem 2.13; reformulated using the notation of the present chapter we get the Vnal result of this
subsection.
Theorem 2.16
The Wire Ordering problem for 𝐷 = ∅ is solved to optimality by the permutation 𝜏𝑁 deVned by

𝜏𝑁 (𝑖) =
{︃

2𝑖 for 0 ≤ 𝑖 ≤ 𝑁+1
2 ,

2(𝑁 − 𝑖) + 3 for 𝑁2 + 1 ≤ 𝑖 ≤ 𝑁 + 1
and the corresponding distance vector 𝑥𝜏𝑁 determined by Algorithm 2.1.

At this point, let us brieWy come back to the introduction in Section 1.2, where we shortly
discussed the Turbine Runner Balancing problem (place turbine blades on the runner such as to
minimize imbalance). It is a surprising fact that the very same permutation as in Theorem 2.16
also arises in the context of balancing turbine runners. Unfortunately, this happens only when one
replaces the minimization of the imbalance by a maximization objective, where in contrast to that
the minimization version is an 𝒩𝒫-hard problem. More details on this can be found in the article
[Woe03].

2.3.2 An elementary approach to Concave Minimum Hamilton Path
problems

As a side note, we will also give a proof of Theorem 2.16 that uses only elementary arguments.
This approach is less general than that in [Sup57], but as Supnick uses a number of involved
arguments, it may nevertheless be interesting on its own right. This subsection may be skipped
without any loss for the rest of the text.

To simplify notation and make our treatment a little more general, we will Vrst take up a more
abstract position and deVne the problem of interest.

Problem 2.17: Concave Minimum Hamilton Path (CMHP)
Instance: An integer 𝑛 ∈ N, nonnegative reals (𝜔0, 𝜔1, . . . , 𝜔𝑛+1) ∈ R𝑛+2

≥0 with 𝜔0 ≤ 𝜔1 ≤
· · · ≤ 𝜔𝑛+1, and edge weights 𝜑 : {0, 1, . . . , 𝑛+ 1}2 → R≥0 such that there exists
a concave function 𝑓 : R≥0 → R≥0 with 𝜑(𝑖, 𝑗) = 𝑓(𝜔𝑖 + 𝜔𝑗) for all 𝑖, 𝑗 ∈
{0, 1, . . . , 𝑛+ 1}.

Question: Find a permutation 𝜏 : {0, 1, . . . , 𝑛+ 1} → {0, 1, . . . , 𝑛+ 1} with 𝜏(0) = 0 and
𝜏(𝑛+ 1) = 1 that minimizes

𝐶(𝜏) =
𝑛+1∑︁
𝑖=1
𝜑
(︀
𝜏(𝑖− 1), 𝜏(𝑖)

)︀
.
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The permutation 𝜏 is called Hamilton Path from 0 to 1 or short tour, 𝐶(𝜏) is referred to as the
cost of 𝜏 and 𝑛 will be called the size of the instance. Whenever it seems more appropriate we
will express 𝜏 as the vector (𝑣0, 𝑣1, . . . , 𝑣𝑛+1) where 𝑣𝑖 = 𝜏(𝑖).6 Also, 𝜔 may be expressed in
functional writing where convenient, i. e., 𝜔(𝑖) := 𝜔𝑖 for 𝑖 ∈ 𝑉 .
If there exists even a strictly concave function 𝑓 : R≥0 → R≥0 that induces 𝜑, i. e., 𝜑𝑖𝑗 :=
𝜑(𝑖, 𝑗) = 𝑓(𝜔𝑖 + 𝜔𝑗) for all 𝑖, 𝑗 ∈ 𝑉 , and if 𝜔0 ≤ 𝜔1 < 𝜔2 < · · · < 𝜔𝑛+1 (i. e., the node weights
are all distinct, with the possible exception of the two endpoints), we will speak of a Strictly
Concave Minimum Hamilton Path problem or Strict-CMHP for short.

In the problem above, one may again associate a complete undirected graph, where the nodes
will be {0, . . . , 𝑛+ 1} and the edges {𝑖, 𝑗} carry the weights 𝜑𝑖𝑗 . Let us remark that the crucial
requirement in CMHP is the existence of a concave function 𝑓 that provides the edge weights. Of
course, for 𝑓(𝑥) =

√
𝑥 this condition is fulVlled, so Wire Ordering for 𝐷 = ∅ is a particular

class of instances of CMHP.
We will now prove that 𝜏𝑛, deVned as in Theorem 2.16, is an optimal solution to CMHP.

Theorem 2.18
For a given instance of CMHP of size 𝑛 let 𝜏𝑛 : {0, 1, . . . , 𝑛+ 1} → 𝑉 be deVned by

𝜏𝑛(𝑖) =
{︃

2𝑖 for 0 ≤ 𝑖 ≤ 𝑛+1
2 ,

2(𝑛− 𝑖) + 3 for 𝑛2 + 1 ≤ 𝑖 ≤ 𝑛+ 1.
Then 𝜏𝑛 is optimal. Furthermore, if the given instance of CMHP is strict, 𝜏𝑛 is the unique optimal
tour.

Proof. We proceed by induction on 𝑛. For 𝑛 = 1 the tour 𝜏1 is the only feasible tour, hence it
also is the unique optimal solution. So consider an instance on the node set 𝑉 = {0, 1, . . . , 𝑛+ 1}
with 𝑛 ≥ 2 and let 𝜎𝑛 be an optimal tour. Denote by 𝜏𝑛−1 and 𝜎𝑛−1 the corresponding tours on
{0, 1, . . . , 𝑛} that are obtained by deleting the node 𝑛 + 1 from 𝜏𝑛 and 𝜎𝑛, respectively. Then
𝜏𝑛−1 is just the tour deVned in the statement of the theorem for 𝑛− 1 instead of 𝑛, so it is optimal
by the induction hypothesis, i. e.,

𝐶(𝜏𝑛−1) ≤ 𝐶(𝜎𝑛−1). (2.7)

Let 𝜎𝑛−1 be the sequence (𝑣0, 𝑣1, . . . , 𝑣𝑛−1, 𝑣𝑛)with 𝑣0 = 0 and 𝑣𝑛 = 1 and let 𝑘 ∈ {1, . . . , 𝑛− 1}
be chosen such that 𝜎𝑛 is the sequence (𝑣0, 𝑣1, . . . , 𝑣𝑘, 𝑛+ 1, 𝑣𝑘+1, . . . , 𝑣𝑛). By reversing 𝜎𝑛 if
necessary (note that reversing does not change the cost of a tour), we may assume that

𝜔(𝑣𝑘) ≤ 𝜔(𝑣𝑘+1). (2.8)

6Note that 𝑣0 = 0 and 𝑣𝑛+1 = 1, i. e., we think of 𝑣0 as the Vrst and 𝑣𝑛+1 as the last node of the tour. Naturally,
a reversal of this orientation does not change the problem.
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Let 𝑓 : R≥0 → R≥0 be a concave function that induces the edge weights 𝜑, then we have

𝐶(𝜏𝑛) = 𝐶(𝜏𝑛−1)− 𝑓(𝜔𝑛−1 + 𝜔𝑛) + 𝑓(𝜔𝑛 + 𝜔𝑛+1) + 𝑓(𝜔𝑛−1 + 𝜔𝑛+1)
≤ 𝐶(𝜎𝑛−1)− 𝑓(𝜔𝑛−1 + 𝜔𝑛) + 𝑓(𝜔𝑛 + 𝜔𝑛+1) + 𝑓(𝜔𝑛−1 + 𝜔𝑛+1) (2.9)

= 𝐶(𝜎𝑛)− 𝑓(𝜔𝑛−1 + 𝜔𝑛) + 𝑓(𝜔𝑛 + 𝜔𝑛+1) + 𝑓(𝜔𝑛−1 + 𝜔𝑛+1)
− 𝑓

(︀
𝜔(𝑣𝑘) + 𝜔𝑛+1

)︀
− 𝑓

(︀
𝜔𝑛+1 + 𝜔(𝑣𝑘+1)

)︀
+ 𝑓

(︀
𝜔(𝑣𝑘) + 𝜔(𝑣𝑘+1)

)︀
.

Now, with

𝑥 = 𝜔𝑛+1 + 𝜔(𝑣𝑘+1), 𝑦 = 𝜔𝑛 + 𝜔𝑛+1, 𝛿 = 𝜔𝑛+1 − 𝜔𝑛−1,

and 𝑥 = 𝜔(𝑣𝑘) + 𝜔𝑛+1, 𝑦 = 𝜔𝑛−1 + 𝜔𝑛+1, 𝛿 = 𝜔𝑛+1 − 𝜔(𝑣𝑘+1),
(2.10)

we have
𝑥 ≤ 𝑦, 𝛿 ≥ 0, 𝑥 ≤ 𝑦, 𝛿 ≥ 0,

where 𝑥 ≤ 𝑦 is due to (2.8), as 𝜔(𝑣𝑘) ≤ 𝜔(𝑣𝑘+1) ≤ 𝜔𝑛 means 𝜔(𝑣𝑘) ≤ 𝜔𝑛−1. Thus application
of Lemma 2.14 yields

𝑓
(︀
𝜔(𝑣𝑘+1) + 𝜔𝑛−1

)︀
+ 𝑓(𝜔𝑛 + 𝜔𝑛+1) ≤ 𝑓

(︀
𝜔𝑛+1 + 𝜔(𝑣𝑘+1)

)︀
+ 𝑓(𝜔𝑛−1 + 𝜔𝑛),

and

𝑓
(︀
𝜔(𝑣𝑘) + 𝜔(𝑣𝑘+1)

)︀
+ 𝑓(𝜔𝑛−1 + 𝜔𝑛+1) ≤ 𝑓

(︀
𝜔(𝑣𝑘) + 𝜔𝑛+1

)︀
+ 𝑓

(︀
𝜔𝑛−1 + 𝜔(𝑣𝑘+1)

)︀
.

By adding these two inequalities we see that

𝐶(𝜏𝑛) ≤ 𝐶(𝜎𝑛),

which proves optimality of 𝜏𝑛.
For an instance of Strict-CMHP, Vrst suppose 𝜏𝑛−1 ̸= 𝜎𝑛−1. Then inequality (2.7) and hence

also inequality (2.9) are strict, yielding 𝐶(𝜏𝑛) < 𝐶(𝜎𝑛), contradicting optimality of 𝜎𝑛.
Thus 𝜏𝑛−1 = 𝜎𝑛−1, which means 𝜏𝑛 and 𝜎𝑛 can only diUer by the position of node (𝑛+1). With
𝜎𝑛 = (𝑣0, 𝑣1, . . . , 𝑣𝑘, 𝑛 + 1, 𝑣𝑘+1, . . . , 𝑣𝑛) as above, we may again assume 𝜔(𝑣𝑘) ≤ 𝜔(𝑣𝑘+1).
Now if 𝜔(𝑣𝑘+1) ̸= 𝜔𝑛, then 𝑥 < 𝑦 in (2.10), so by strict concavity of 𝑓 , application of Lemma 2.14
yields

𝑓
(︀
𝜔(𝑣𝑘+1) + 𝜔𝑛−1

)︀
+ 𝑓(𝜔𝑛 + 𝜔𝑛+1) < 𝑓

(︀
𝜔𝑛+1 + 𝜔(𝑣𝑘+1)

)︀
+ 𝑓(𝜔𝑛−1 + 𝜔𝑛),

leading to 𝐶(𝜏𝑛) < 𝐶(𝜎𝑛) as in the Vrst part of the proof, again a contradiction. Along the same
lines, if 𝜔(𝑣𝑘) ̸= 𝜔𝑛−1, then 𝑥 < 𝑦 in (2.10), so

𝑓
(︀
𝜔(𝑣𝑘) + 𝜔(𝑣𝑘+1)

)︀
+ 𝑓(𝜔𝑛−1 + 𝜔𝑛+1) < 𝑓

(︀
𝜔(𝑣𝑘) + 𝜔𝑛+1

)︀
+ 𝑓

(︀
𝜔𝑛−1 + 𝜔(𝑣𝑘+1)

)︀
,
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yielding the same contradiction as above. But then 𝜔(𝑣𝑘+1) = 𝜔𝑛 and 𝜔(𝑣𝑘) = 𝜔𝑛−1 must hold.
As all node weights are distinct, this means 𝑣𝑘+1 = 𝑛 and 𝑣𝑘 = 𝑛 − 1, hence 𝜎𝑛 = 𝜏𝑛. So the
optimal solution is indeed unique for Strict-CMHP. 2

Of course, this result can be transferred to Concave Traveling Salesman problems (deVned
analogously to the CMHP problems) in the same way as outlined in the preceding subsection.

2.3.3 Characterization of the Minimum Distance Set 𝐷
We have now seen how to solve the Wire Placement problem provided that 𝐷 = ∅. In practice,
however, the set𝐷 is generally not empty. To make things worse, it is not even known in advance,
and there are exponentially many possible candidates for𝐷. In addition, recall that the general
objective for an arbitrary wire ordering 𝜋 ∈ 𝒮𝑁 is

𝐹 (𝜋, 𝑥𝜋) =
∑︁
𝑖∈𝐷𝜋

𝑠𝜋(𝑖−1) + 𝑠𝜋(𝑖)
𝑑

+ 1
𝑟 − |𝐷𝜋| 𝑑

(︃∑︁
𝑖∈𝑅𝜋

√︁
𝑠𝜋(𝑖−1) + 𝑠𝜋(𝑖)

)︃2

,

cf. (2.4), which is not even a sum of edge weights and hence does not have the structure of an
MHP or TSP, let alone the Monge property. So the naive approach of checking all diUerent subsets
of {1, . . . , 𝑁 + 1} for the set𝐷 is pointless; not just due to complexity considerations, but also
due to the fact that we do not yet have a way of solving the subproblems arising for Vxed 𝐷 ̸= ∅.
Actually, as the quadratic term indicates, the objective function value does not only depend on
edge weights, but also on the selected Hamilton Path as a whole.
In the present section we derive some structural results to be able to handle the general wire

ordering problem. We will show that there is always an optimal wire placement where 𝜋 is evenly
separated; see DeVnition 2.23. For such permutations the set 𝐷𝜋 is already determined by its
cardinality, which reduces the problem to the solution of 𝑁 instances of the underlying MHP. In
fact, as we will see later, we can even do better and determine the correct size of 𝐷 in course of
the algorithm without trying diUerent possibilities. The following proofs utilize certain exchange
techniques that will be introduced beforehand.

DeVnition 2.19
Let (𝜋, 𝑥) ∈ 𝒮𝑁 × R𝑁+1 be a feasible wire placement, and let 𝑗, 𝑘 ∈ {1, . . . , 𝑁} with 𝑗 < 𝑘.
DeVne 𝑆𝑗𝑘(𝜋), 𝑆𝑗𝑘(𝜋) ∈ 𝒮𝑁 and 𝑇𝑗𝑘(𝑥), 𝑇 𝑗𝑘(𝑥) ∈ R𝑁+1 by

𝑆𝑗𝑘(𝜋)(𝑖) =
{︃
𝜋(𝑘 + 𝑗 − 𝑖) for 𝑗 < 𝑖 < 𝑘,

𝜋(𝑖) else;

𝑆𝑗𝑘(𝜋)(𝑖) =
{︃
𝜋(𝑘 + 𝑗 − 𝑖) for 𝑗 ≤ 𝑖 ≤ 𝑘,
𝜋(𝑖) else;

(𝑇𝑗𝑘(𝑥))𝑖 = (𝑇 𝑗𝑘(𝑥))𝑖 =
{︃
𝑥𝑘+𝑗−𝑖+1 for 𝑗 < 𝑖 ≤ 𝑘,
𝑥𝑖 else.
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Then the operators

R𝑗𝑘 : 𝒮𝑁 ×R𝑁+1 → 𝒮𝑁 ×R𝑁+1, R𝑗𝑘(𝜋, 𝑥) := (𝑆𝑗𝑘(𝜋), 𝑇𝑗𝑘(𝑥))

R𝑗𝑘 : 𝒮𝑁 ×R𝑁+1 → 𝒮𝑁 ×R𝑁+1, R𝑗𝑘(𝜋, 𝑥) :=
(︁
𝑆𝑗𝑘(𝜋), 𝑇 𝑗𝑘(𝑥)

)︁
are called the open and closed 𝑗-𝑘 reversal respectively. Note that 𝑆𝑗𝑘, 𝑇𝑗𝑘 and thus R𝑗𝑘 can
likewise be deVned for 𝑘 = 𝑁 + 1.
Lemma 2.20
Let (𝜋, 𝑥) be a feasible wire placement and let 𝑗, 𝑘 ∈ {1, . . . , 𝑁} with 𝑗 < 𝑘. Then both,
R𝑗𝑘(𝜋, 𝑥) and R𝑗𝑘(𝜋, 𝑥), are feasible wire placements, and their objective values are

𝐹
(︀
R𝑗𝑘(𝜋, 𝑥)

)︀
= 𝐹 (𝜋, 𝑥) +

(︁
𝑠𝜋(𝑗) − 𝑠𝜋(𝑘)

)︁(︃ 1
𝑥𝑘
− 1
𝑥𝑗+1

)︃
,

𝐹
(︀
R𝑗𝑘(𝜋, 𝑥)

)︀
= 𝐹 (𝜋, 𝑥) +

(︁
𝑠𝜋(𝑗) − 𝑠𝜋(𝑘)

)︁(︃ 1
𝑥𝑘+1

− 1
𝑥𝑗

)︃
.

For the open 𝑗-𝑘 reversal, the result also holds for 𝑘 = 𝑁 + 1.

Proof. Feasibility of both open and closed 𝑗-𝑘 reversal is clear, as the distance vectors 𝑇 (𝑥) =
𝑇 (𝑥) are just permuted versions of 𝑥, so the overall sum stays constant and no distance can fall
below 𝑑. The new objective values are

𝐹
(︀
R𝑗𝑘(𝜋, 𝑥)

)︀
= 𝐹 (𝜋, 𝑥)−

𝑠𝜋(𝑗) + 𝑠𝜋(𝑗+1)
𝑥𝑗+1

−
𝑠𝜋(𝑘−1) + 𝑠𝜋(𝑘)

𝑥𝑘

+
𝑠𝜋(𝑗) + 𝑠𝜋(𝑘−1)

𝑥𝑘
+
𝑠𝜋(𝑗+1) + 𝑠𝜋(𝑘)
𝑥𝑗+1

= 𝐹 (𝜋, 𝑥) +
(︁
𝑠𝜋(𝑗) − 𝑠𝜋(𝑘)

)︁(︃ 1
𝑥𝑘
− 1
𝑥𝑗+1

)︃

and 𝐹
(︀
R𝑗𝑘(𝜋, 𝑥)

)︀
= 𝐹 (𝜋, 𝑥)−

𝑠𝜋(𝑗−1) + 𝑠𝜋(𝑗)
𝑥𝑗

−
𝑠𝜋(𝑘) + 𝑠𝜋(𝑘+1)
𝑥𝑘+1

+
𝑠𝜋(𝑗−1) + 𝑠𝜋(𝑘)

𝑥𝑗
+
𝑠𝜋(𝑗) + 𝑠𝜋(𝑘+1)
𝑥𝑘+1

= 𝐹 (𝜋, 𝑥) +
(︁
𝑠𝜋(𝑗) − 𝑠𝜋(𝑘)

)︁(︃ 1
𝑥𝑘+1

− 1
𝑥𝑗

)︃
,

respectively, completing the proof. 2

DeVnition 2.21
Let (𝜋, 𝑥) be a feasible wire placement, and set

𝑙(𝑥) = min {𝑖 ∈ {0, . . . , 𝑁} : 𝑥𝑖+1 > 𝑑} ,
𝑢(𝑥) = max {𝑖 ∈ {1, . . . , 𝑁 + 1} : 𝑥𝑖 > 𝑑} .
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Then 𝑙(𝑥) and 𝑢(𝑥) are called lower and upper separation point, respectively. For 𝑥 = 𝑥𝜋 we use
the abbreviations 𝑙𝜋 = 𝑙(𝑥𝜋) and 𝑢𝜋 = 𝑢(𝑥𝜋) (or, when there is no risk of confusion, simply 𝑙
and 𝑢, respectively). An optimal wire placement (𝜋, 𝑥) is called separated, if it has the following
properties:

1. 𝑥𝑙+1, 𝑥𝑙+2, . . . , 𝑥𝑢 > 𝑑

2. max
{︁
𝑠𝜋(0), . . . , 𝑠𝜋(𝑙−1), 𝑠𝜋(𝑢+1), . . . , 𝑠𝜋(𝑁+1)

}︁
≤ min

{︁
𝑠𝜋(𝑙), 𝑠𝜋(𝑢)

}︁
3. max

{︁
𝑠𝜋(𝑙), 𝑠𝜋(𝑢)

}︁
≤ min

{︁
𝑠𝜋(𝑙+1), . . . , 𝑠𝜋(𝑢−1)

}︁
Lemma 2.22
For every feasible instance of Optimal Wire Placement there is an optimal solution (𝜋, 𝑥𝜋) that
is separated. Furthermore, for an all-distinct instance, each optimal solution is separated.

Proof. Suppose for some instance of OWP there is no optimal solution with Property 1. Let
(𝜋, 𝑥𝜋) be an optimal solution for which 𝑙 = 𝑙𝜋 is maximal. Then there is some 𝑘 ∈ {1, . . . , 𝑁}
with 𝑙+ 1 < 𝑘 < 𝑢 such that 𝑥𝜋𝑘 = 𝑑, and we choose the maximal such 𝑘, i. e., 𝑥𝜋𝑘+1, . . . , 𝑥

𝜋
𝑢 > 𝑑.

Suppose Vrst that 𝑠𝜋(𝑙) > 𝑠𝜋(𝑘) (note this implies 𝑠𝜋(𝑙) > 0 and thus 𝑙 > 0). Then, by Lemma 2.20,
the closed 𝑙-𝑘 reversal R𝑙𝑘(𝜋, 𝑥𝜋) is feasible and has objective value

𝐹
(︀
R𝑙𝑘(𝜋, 𝑥𝜋)

)︀
= 𝐹 (𝜋, 𝑥𝜋) +

(︁
𝑠𝜋(𝑙) − 𝑠𝜋(𝑘)

)︁
⏟  ⏞  

>0

(︃
1
𝑥𝜋𝑘+1

− 1
𝑥𝜋𝑙

)︃
⏟  ⏞  

<0

< 𝐹 (𝜋, 𝑥𝜋),

a contradiction to the optimality of (𝜋, 𝑥𝜋). If, on the other hand, 𝑠𝜋(𝑙) ≤ 𝑠𝜋(𝑘), then

𝐹
(︀
R𝑙𝑘(𝜋, 𝑥𝜋)

)︀
= 𝐹 (𝜋, 𝑥𝜋) +

(︁
𝑠𝜋(𝑙) − 𝑠𝜋(𝑘)

)︁
⏟  ⏞  

≤0

(︃
1
𝑥𝜋𝑘
− 1
𝑥𝜋𝑙+1

)︃
⏟  ⏞  

>0

≤ 𝐹 (𝜋, 𝑥𝜋).

If 𝑠𝜋(𝑙) < 𝑠𝜋(𝑘), we even get strict inequality here, which again contradicts optimality of (𝜋, 𝑥𝜋);
this proves Property 1 holds at optimality for an all-distinct instance. For 𝑠𝜋(𝑙) = 𝑠𝜋(𝑘), the open
𝑙-𝑘 reversal R𝑙𝑘(𝜋, 𝑥𝜋) is also an optimal solution, but its lower separation point is strictly greater
than 𝑙, contradicting maximality of 𝑙. This shows that there is an optimal solution with Property 1
even for non-distinct instances.
In the following, let (𝜋, 𝑥𝜋) be an optimal wire placement with Property 1, and let 𝑙 and
𝑢 be its lower and upper separation points. We prove by contradiction that (𝜋, 𝑥𝜋) also has
Properties 2 and 3. So, suppose there was some 𝑚 ∈ {1, . . . , 𝑙 − 1} ∪ {𝑢+ 1, . . . , 𝑁} such
that 𝑠𝜋(𝑚) > min

{︁
𝑠𝜋(𝑙), 𝑠𝜋(𝑢)

}︁
. By reversing the wire placement if necessary, we may assume

that 𝑚 ∈ {1, . . . , 𝑙 − 1}. Let us Vrst consider the case 𝑢 = 𝑁 + 1, then 𝑠𝜋(𝑚) > 𝑠𝜋(𝑢) = 0.
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Application of an open𝑚-(𝑁 + 1) reversal yields

𝐹
(︀
R𝑚,𝑁+1(𝜋, 𝑥𝜋)

)︀
= 𝐹

(︀
(𝜋, 𝑥𝜋)

)︀
+
(︁
𝑠𝜋(𝑚) − 𝑠𝜋(𝑁+1)

)︁
⏟  ⏞  

>0

(︂ 1
𝑥𝑁+1

− 1
𝑥𝑚+1

)︂
⏟  ⏞  

<0

< 𝐹
(︀
(𝜋, 𝑥𝜋)

)︀

contradicting optimality of (𝜋, 𝑥𝜋).
For 𝑢 < 𝑁 + 1, we may assume that 𝑠𝜋(𝑚) > 𝑠𝜋(𝑙), else applying a closed 𝑙-𝑢-reversal yields

𝐹 (R𝑙𝑢(𝜋, 𝑥𝜋)) = 𝐹 (𝜋, 𝑥𝜋),

since 𝑥𝑙 = 𝑥𝑢+1 = 𝑑. But then, as 𝑥𝜋𝑚 = 𝑑 < 𝑥𝜋𝑙+1, we have for the closed𝑚-𝑙 reversal

𝐹 (R𝑚𝑙(𝜋, 𝑥𝜋)) = 𝐹 (𝜋, 𝑥𝜋) +
(︁
𝑠𝜋(𝑚) − 𝑠𝜋(𝑙)

)︁
⏟  ⏞  

>0

(︃
1
𝑥𝜋𝑙+1

− 1
𝑥𝜋𝑚

)︃
⏟  ⏞  

<0

< 𝐹 (𝜋, 𝑥𝜋),

contradicting optimality of (𝜋, 𝑥𝜋).
For Property 3, suppose that there was some 𝑚 ∈ {𝑙 + 1, . . . , 𝑢− 1} such that 𝑠𝜋(𝑚) <

max
{︁
𝑠𝜋(𝑙), 𝑠𝜋(𝑢)

}︁
. Note that 𝜋(𝑁 + 1) = 𝑁 + 1 and 𝑠𝑁+1 = 0, hence 𝑢 ≤ 𝑁 .

We may again assume without loss of generality that 𝑠𝜋(𝑙) ≤ 𝑠𝜋(𝑢), using the same reasoning
as for Property 2 above. Since 𝑥𝜋𝑢+1 = 𝑑 < 𝑥𝜋𝑚 by Property 1, we have

𝐹
(︀
R𝑚𝑢(𝜋, 𝑥𝜋)

)︀
= 𝐹 (𝜋, 𝑥𝜋) +

(︁
𝑠𝜋(𝑚) − 𝑠𝜋(𝑢)

)︁
⏟  ⏞  

<0

(︃
1
𝑥𝜋𝑢+1

− 1
𝑥𝜋𝑚

)︃
⏟  ⏞  

>0

< 𝐹 (𝜋, 𝑥𝜋),

contradicting optimality of (𝜋, 𝑥𝜋). This completes the proof. 2

By Lemma 2.22 we can restrict our search for an optimal wire placement to separated solutions.
Since the Vrst part of the objective function 𝐹 (𝜋, 𝑥𝜋) (cf. (2.4)) is just

1
𝑑
·
∑︁
𝑖∈𝐷𝜋

(︁
𝑠𝜋(𝑖−1) + 𝑠𝜋(𝑖)

)︁
,

permuting the elements in positions 𝑖 ∈ {1, . . . , 𝑙 − 1} ∪ {𝑢+ 1, . . . , 𝑁} will not change the
objective function value. Therefore, we can “normalize” the set𝐷𝜋 even further. We will do this in
a way that is not only natural, but also most suitable for the subsequent application of the results
obtained in the preceding subsections. For simplicity of exposition we will assume from now on
that the wires are indexed by increasing switching frequency (with the exception of 𝑠𝑁+1 = 0),
i. e.,

0 = 𝑠𝑁+1 = 𝑠0 ≤ 𝑠1 ≤ · · · ≤ 𝑠𝑁 .
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DeVnition 2.23
Let (𝜋, 𝑥) be a separated wire placement with separation points 𝑙 and 𝑢, and let Δ = |𝐷(𝑥)|.
Then (𝜋, 𝑥) is called evenly separated, if the following conditions hold:

1. 𝐷(𝑥) =
{︁

1, . . . ,
⌊︁

Δ
2

⌋︁}︁
∪
{︁
𝑁 + 2−

⌈︁
Δ
2

⌉︁
, . . . , 𝑁 + 1

}︁
;

2. 𝑙 =
⌊︁

Δ
2

⌋︁
and 𝜋(𝑙) = 2

⌊︁
Δ
2

⌋︁
;

3. 𝑢 = 𝑁 + 1−
⌈︁

Δ
2

⌉︁
and 𝜋(𝑢) = 2

⌈︁
Δ
2

⌉︁
− 1;

4.
{︀
𝜋(𝑖) : 𝑖 ∈ {0, . . . , 𝑙}

}︀
=
{︁

0, 2, . . . , 2
⌊︁

Δ
2

⌋︁}︁
;

5.
{︀
𝜋(𝑖) : 𝑖 ∈ {𝑢, . . . , 𝑁 + 1}

}︀
=
{︁

1, 3, . . . , 2
⌈︁

Δ
2

⌉︁
− 1

}︁
∪ {𝑁 + 1}.

Note that these conditions, in particular the last two requirements, aim at “compatibility” of the
set 𝐷(𝑥𝜋) with the minimum Hamilton Path 𝜏𝑁 introduced in Theorem 2.16.

Theorem 2.24
Each feasible instance of OWP admits an optimal solution that is evenly separated.

Proof. Let (𝜋, 𝑥𝜋) be an optimal wire placement and set Δ = |𝐷𝜋|. By Lemma 2.22, we can
assume that (𝜋, 𝑥𝜋) is separated. Hence by DeVnition 2.21, Properties 2 and 3, we may further
assume that {︀

𝜋(𝑙), 𝜋(𝑢)
}︀

=
{︂

2
⌊︂Δ

2

⌋︂
, 2
⌈︂Δ

2

⌉︂
− 1

}︂
= {Δ− 1,Δ} .

(Here we use that 0 = 𝑠𝑁+1 = 𝑠0 ≤ 𝑠1 ≤ · · · ≤ 𝑠𝑁 .) By reversing the wire placement if
necessary we obtain 𝜋(𝑙) = 2

⌊︁
Δ
2

⌋︁
. Similarly, we may assume{︀

𝜋(𝑖) : 𝑖 ∈ {0, . . . , 𝑙} ∪ {𝑢, . . . , 𝑁 + 1}
}︀

= {0, 1, . . . ,Δ} ∪ {𝑁 + 1} .

The objective function then evaluates to

𝐹 (𝜋, 𝑥𝜋) = 2
𝑑

Δ−2∑︁
𝑖=1
𝑠𝑖 +
𝑠Δ−1 + 𝑠Δ
𝑑

+ 1
𝑟 − 𝑑 ·Δ

⎛⎝ 𝑢∑︁
𝑖=𝑙+1

√︁
𝑠𝜋(𝑖−1) + 𝑠𝜋(𝑖)

⎞⎠2

. (2.11)

Let 𝐿 := {0, . . . , 𝑙 − 1} ∪ {𝑢+ 1, . . . , 𝑁 + 1}, then 𝜋|𝐿 : 𝐿 → {0, . . . ,Δ− 2} ∪ {𝑁 + 1}
is a bijection; and changing 𝜋 to some permutation 𝜋′ that diUers from 𝜋 only on the set
𝐿 (i. e., 𝜋|{0,...,𝑁+1}∖𝐿 = 𝜋′|{0,...,𝑁+1}∖𝐿) does not alter the objective value, since 𝜋′(𝐿) =
{0, . . . ,Δ− 2} ∪ {𝑁 + 1}. Doing so appropriately one can clearly alter 𝜋 (thus reordering the
positions in 𝐿) to obtain an optimal solution (𝜋′, 𝑥) that is evenly separated. 2

With the last theorem we can now restrict the search for an optimal wire placement to evenly
separated solutions. The next section will combine this result with those of Section 2.3 to obtain a
uniVed algorithm for Optimal Wire Placement.
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2.4 An 𝒪 (𝑁 log𝑁) Algorithm for the Wire Placement Problem
We have now reached the following principle procedure for Vnding optimal wire placements: If
𝑟 < (𝑑+ 1)𝑁 , the problem is infeasible; if 𝑟 = (𝑑+ 1)𝑁 , then for 𝑥* = 𝑑 · 1 the complete set of
optimal solutions is {𝑥*} × 𝒮𝑁 . Otherwise, for each of the 𝑁 possible values for Δ (recall there
must be at least one non-minimal distance), we compute a set 𝐷(Δ) of cardinality Δ according to
Theorem 2.24. Then, we are in eUect confronted with the Minimum Hamilton Path problem on
the node set 𝑉 (Δ) = {(Δ− 1), . . . , 𝑁} with edge weights

√
𝑠𝑖 + 𝑠𝑗 for 𝑖, 𝑗 ∈ 𝑉 (Δ) and 𝑖 ̸= 𝑗

and endpoints (Δ− 1) and Δ that is obtained by ignoring the square in the second component of
(2.4). We solve this MHP problem by utilizing the underlying Supnick property, cf. Theorem 2.16.
In the context of Optimal Wire Placement, the optimal permutation 𝜏𝑁 can be obtained by a
simple algorithmic procedure: Start by placing the right and left border wires, order the wires by
(weakly) increasing switching frequencies, and place them one after the other, always positioning
one wire in between its two already placed predecessors.
The two parts can, however, be closely interwoven. In fact, the procedure for computing an

optimal order for the wires between lower and upper separation point is in full accordance with
the property of a wire placement to be evenly separated, cf. DeVnition 2.23. Hence, when the wires
at minimum distance are added, the optimal tour 𝜏𝑁 coincides with the tour produced by adding
to both sides of 𝜏𝑁−Δ the remaining wires at minimum distance in a way that yields an evenly
separated wire placement. This means we obtain the same wire ordering for every value of Δ.
So, rather than actually going through all diUerent values for Δ, we can just compute an optimal
wire ordering as if there was no minimum distance requirement and subsequently determine the
optimal distances (and the correct set of minimum distance wires) along the lines of Algorithm 2.1
to obtain an optimal wire placement. The complete procedure is formalized in Algorithm 2.2

Algorithm 2.2: Solving Optimal Wire Placement
Input: A feasible instance of Optimal Wire Placement, i. e.,

𝑁 ∈ N; 𝑠1, . . . , 𝑠𝑁 ∈ [0, ∞[ and 𝑑, 𝑟 ∈ ]0, ∞[ with 𝑟 > (𝑁 + 1)𝑑.
Output: An optimal wire placement (𝜋, 𝑥𝜋).
Set 𝑠0 = 𝑠𝑁+1 = 0 and sort 𝑠1, . . . , 𝑠𝑁 in increasing order, i. e., let 𝜌 ∈ 𝒮𝑁 be a permutation1

such that 0 = 𝑠𝜌(0) = 𝑠𝜌(1) ≤ 𝑠𝜌(2) ≤ · · · ≤ 𝑠𝜌(𝑁+1).
DeVne the permutation 𝜋 ∈ 𝒮𝑁 by setting2

𝜋(𝑖) :=
{︃

2𝜌(𝑖) for 0 ≤ 𝑖 ≤ 𝑁+1
2 ,

2
(︀
𝑁 − 𝜌(𝑖)

)︀
+ 3 for 𝑁2 + 1 ≤ 𝑖 ≤ 𝑁 + 1.

Set 𝑞𝑖 := 𝑠𝜋(𝑖−1) + 𝑠𝜋(𝑖) for 𝑖 = 1, . . . , 𝑁 + 1.3

Compute optimal distances 𝑥𝜋 for the permutation 𝜋 and input parameters4

(𝑁, 𝑞1, . . . , 𝑞𝑁+1, 𝑟, 𝑑) using Algorithm 2.1.
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Theorem 2.25
In the real RAM model of computation, Optimal Wire Placement can be solved in time
𝒪 (𝑁 log𝑁). In the binary Turing machine model, given 𝜀 > 0 and an instance of Opti-
mal Wire Placement such that the associated instance of Optimal Wire Spacing for the optimal
permutation is well posed with wellness condition 𝛿 > 0, a feasible rational wire placement
(𝜋, 𝑥̃𝜋) with

|𝐹 (𝜋, 𝑥̃𝜋)− 𝐹 (𝜋, 𝑥𝜋)| < 𝜀

can be computed in time

𝒪 (𝑁 log𝑁 +𝑁 · 𝑆𝑄𝑅𝑇max) , where

𝑆𝑄𝑅𝑇max = log2(𝑞max)− log2

⎛⎝𝜀min

⎧⎨⎩𝛿, 𝑑2 ·
(︃
𝑁+1∑︁
𝑖=1
𝑞𝑖

)︃−1⎫⎬⎭ (𝑁 + 1)𝑞2min

⎞⎠
+ log2

⎛⎝1
2(𝑟 −𝑁𝑑)(3𝑞max + 1) + 𝜀min

⎧⎨⎩𝛿, 𝑑2 ·
(︃
𝑁+1∑︁
𝑖=1
𝑞𝑖

)︃−1⎫⎬⎭ (𝑁 + 1)𝑞min + 1

⎞⎠ .
Proof. The correctness and optimality of the solution (𝜋, 𝑥𝜋) produced by Algorithm 2.2 is a
direct consequence of Theorems 2.6, 2.24 and 2.16.
The sorting step in the algorithm can be implemented using no more than 𝒪 (𝑁 log𝑁) arith-

metic operations, an optimal wire ordering 𝜋 can subsequently be computed in𝒪 (𝑁) steps. Using
Algorithm 2.1 to compute a corresponding optimal wire ordering requires at most 𝒪 (𝑁 log𝑁)
arithmetic operations in the real RAM model. For a well posed instance of Wire Spacing, a
feasible rational wire spacing corresponding to the optimal permutation 𝜋 of the wire placement
can be computed using at most the number of operations given in the theorem on a binary Turing
machine using Corollary 2.10 and a bisection algorithm for computing rational approximations to
the square roots appearing in Algorithm 2.1 as described in the relevant parts of Section 2.2. 2

2.5 Concluding Remarks
2.5.1 Electro-technical Significance
When dealing with a mathematical abstraction of a real world problem, one certainly has to be
prepared to verify the results obtained for their signiVcance to the problem that motivated the
mathematical study. In this Vnal section of the chapter, let us brieWy comment on the issues raised
in this context.

In comparison with measurements performed in experiments and simulations, the mathematical
model given and justiVed in Section 2.1 turned out to be very realistic when dealing with parallel
wires. Naturally, in order to fully exploit the potential of Wire Placement one would need to fully
integrate spacing and ordering into the complete logical and physical design and layout process.
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As was remarked in the derivation of the model in Section 2.1, our model only encompasses
a layout made up of parallel wires. This setting is not uncommon in real world digital circuits,
though. Straightforward application of our method can be performed for bus wires (usually up
to 128 parallel wires connecting logical and/or memory units of a circuit) frequently found in
microprocessors, embedded systems and (most prominently) in multi-core architectures. Of course,
in a general-purpose semiconductor circuit, not all wires are bus wires. However, in a layered
layout, the wires in every layer run in one common direction, so they are all parallel. These wires
usually do not have the same length, so our results are not directly applicable to the layer as
a whole, but rather to separate groups of parallel wires within one layer. In his doctoral thesis
[Zub07], Paul Zuber is concerned with the question of how to Vnd such areas to apply wire spacing
(basically using a scan line algorithm).

One diXculty when dealing with wire placement is the integration of the results into the existing
design process. To date, wire spacing and ordering aiming at reduced power loss is not incorporated
in any of the major commercial software packages used for semiconductor circuit design. Applying
wire spacing in an already Vnished design poses relatively little problems: Groups of parallel wires
that admit wire spacing are easily identiVed, calculation of the optimal distances within these local
patches is also straightforward, utilizing our algorithm for wire spacing. The actual application of
these results may call for a displacement of some of the wires on the chip. Usually, these wires are
connected to wires in other layers by vias, so when moving the wires, a new connection between
wire ends and vias has to be introduced, cf. Figure 2.3. Luckily, these “detour connectors” are
very short compared to the wires themselves, so their eUect is negligible. This process is easily
implemented as an ex-post optimization measure in commercial design tools, enabling a circuit
designer to exploit the potential of existing routing tools before our results are utilized for further
optimization. Experiments along these lines showed that optimal spacing within local patches of a
large real-world semiconductor design (identiVed by a simple search procedure) already leads to
an overall reduction in power consumption of 3 – 5%. The eUect was even greater when optimal
wire spacing was applied to a broad range of benchmark circuits produced by state-of-the-art
commercial layout tools as a post layout optimization step. A comprehensive study can be found
in [Zub07].
For the application of wire ordering in semiconductor design considerably higher eUort is

needed. Changing the positions of wires in an otherwise Vnished circuit design would destroy
the connections to wires in neighboring layers, so new connectors are needed. However, these
cannot normally be placed on the layer where wire ordering is applied, because unlike with
pure wire spacing these connectors could cross each other leading to short circuits. Therefore,
an additional layer (called a permutation network) has to be introduced that contains those so
called cross connectors, adding the need for more material and production time. The eUect of
such permutation networks has been investigated in [MMP01]; it is concluded that in realistic
circuits the overhead in terms of area and power is much more than compensated by the beneVt
of wire ordering (one should remark that the authors used a heuristic to determine a good wire
ordering). Also, for some local buses frequently found in microprocessors (e. g., address buses or
counters), the switching frequencies are known or can at least be accurately estimated before the
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design process is started. In that case, the connector pins of the units that are to be connected by
bus wires can often be reordered without aUecting the rest of the design too much, so an optimal
(or at least a good) wire ordering can be implemented there. A similar approach exploits the
fact that today’s circuit designs are mostly IP-based (i. e., “Intellectual Property” based), hence
pre-developed modules are frequently re-used and combined for new designs. The ordering of
such a module’s connectors (called pads) is generally Vxed arbitrarily at the design of a module
and is not subject to optimization during the design process of the chip. Thus the designers of
the IP modules may apply optimal wire ordering as proposed in this thesis to the initial design
of the modules. This methodology is all the more important as switching activities are usually
module speciVc and one module might be reused in thousands of diUerent designs, thereby multiply
compensating for the additional eUort. However, in the long run the full potential of wire ordering
can only be exploited by completely integrating it into the design process, which calls for a joint
treatment in an extended uniVed model encompassing all relevant factors.

2.5.2 Directions for Future Research

Of course, a uniVed model as discussed above will require a major research eUort, because
other than power issues, a lot of other factors have to be considered, e. g., timing issues or yield
maximization, to name just a few that are loosely related to wire spacing and wire ordering.

Of greater relevance for our Veld of research is the issue of correlated switching frequencies. In
the derivation of our model, we mentioned the assumption that no two adjacent wires switch at
the same time. While this is not an unrealistic assumption in real world circuits, there are also
many applications where the voltage levels on adjacent wires are related to some extent. Consider,
for instance, a counter, where the wires represent the bits of a binary number that is increased
in uniform intervals – every time a higher bit changes from 1 to 0 all the lower bits do the same,
while the next highest bit changes from 0 to 1; so the switching frequencies of a counter exhibit a
high correlation.
This behavior is problematic to the viability of our model, because we calculate the power loss

of a single wire as being proportional to 1/𝑥left and 1/𝑥right whenever a switch on that wire occurs.
However, in case one or both adjacent wire(s) switch at the same time, the eUect changes: For two
adjacent wires doing the same signal transition (either from 0 to 1 or vice versa), the electric Veld
between these wires does not change at all, so no power loss is incurred. On the other hand, if
two adjacent wires switch in adverse directions (one from 0 to 1, the other from 1 to 0), the eUect
doubles, so twice the energy is consumed by the electric Veld that builds up between the wires.

Mathematically speaking, we have to incorporate terms to measure the amount of synchronous
switching in both directions, thus introducing correlations in place of the switching frequencies.
Unfortunately, this leads to an objective function that is not so nicely decomposable, and hence
not amenable to many of our arguments, particularly the interchange arguments frequently used
in our proofs. In our above treatment, we assumed the switching probabilities of diUerent wires
to be independent, thus avoiding the problem completely. Although this approach models reality
quite concisely in a rich variety of application, there are some cases occurring very frequently in
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common semiconductor circuits (e. g., the counter mentioned above) where the correlation between
switching frequencies of diUerent wires cannot be ignored; so a reVned model and a diUerent
treatment will be needed to handle the additional complexity introduced into the model by paying
regard to these inter-wire correlations.

Another point for further research comes from the extra wiring introduced into a Vnished design
by displacing some of the wires in order to do wire spacing. Apart from the extra material needed
for these “detour wires” also new parallel wires are introduced into the layout. Although these
wires are usually very short (and experiments show they have little inWuence on power loss), at
least an approximation of the additional costs incurred in routing these wires could be taken into
the objective function. In [Zub07], a modiVcation of our model is suggested that incorporates
additional displacement costs that are proportional to the length of the extra wiring. Unfortunately,
the model is non-diUerentiable and nonlinear, making it a little unpleasant to deal with from a
mathematical viewpoint. Also, the algorithm suggested for its solution can produce non-optimal
results (although it performs quite well in practice). Here, spending some thoughts on an adequate
model incorporating wire displacement may be an interesting future challenge.
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Chapter 3

Flight Scheduling Problems — Complexity,
Structure and Algorithms

In this chapter we study several variants of a combinatorial packing problem under balancing
constraints motivated by an applications in Wight scheduling for airport operations. After a brief
description of the problem, we will present a mathematical formulation capturing the core part of
the problem in Section 3.1. This will lead to three combinatorial optimization problems, namely
Flight Scheduling (how to design an optimal Wight schedule, given a set of Wight requests),
Maximum Slot Packing (determine the maximum number of Wights in a schedule) and Minimum
Slot Cover (how to“block” a schedule using a minimum number of Wights), which will be
investigated in detail in Sections 3.2–3.5. In Section 3.6, we will focus on the gap between a
maximum slot packing and a minimum slot cover, and thus on the question of what separates
a “good” from a “bad” Wight schedule, and discuss the question of how to possibly avoid this
gap. Section 3.7 contains some concluding remarks. A more detailed description of the practical
background and all relevant constraints can be found in Chapter 4, where we will develop a concise
mathematical model for the complete real-world problem, utilizing results from the present chapter.

3.1 Slot Allocation and Flight Scheduling
The scheduling of Wights from an airport’s perspective has both a long-term and a short-term
aspect. Short-term planning is implemented as part of the normal operations of an airport, where
frequently Wights have to be slightly rescheduled due to delay, weather, and other environmental
conditions. The rescheduling is, of course, based on a regular long-term schedule, which is devised
by a thorough planning process. In this long-term planning, a new schedule is created twice a year,
one for the summer season (roughly ranging from March to October, exact dates vary) and one for
the winter season (ranging from October to March). Airport capacity is naturally limited, so the
objective of long-term scheduling is to strike a balance between limited resources of an airport and
the demands of airlines wishing to oUer an air connection to and from that airport.
As a means of controlling the allocation of airport capacity the so-called slot system has

been established by the IATA (International Air Transport Association) and by national and
international legislation (see, e. g., [EU93; EU02; EU03; EU04] for the regulations in the European
Union). Under the slot system, an airport’s capacity is allocated in the form of slots, which

53



Chapter 3 Flight Scheduling Problems — Complexity, Structure and Algorithms

designate the right for an airline to operate a landing or a take-oU at some speciVed time at a
speciVed airport. Any airline that wants to oUer a service at an airport that implements the slot
system needs to acquire a pair of arrival and corresponding departure slots. Of course, capacity
is not a scarce resource everywhere, so not all airports implement the slot system. But at most
major airports worldwide, there are at least certain peak times when demand widely exceeds the
available capacity, thus calling for an allocation procedure. Airports where the slot system is
implemented are designated fully coordinated airports. The allocation of slots to airlines (more
precisely to airlines’ Wight requests) is implemented by an airport coordinator (often belonging
or aXliated to some national authority), who is independent of both airports and airlines. The
process of slot allocation will be explained in greater detail in Chapter 4; in the present chapter
we will concentrate on the key aspects of the underlying planning problem to gain insight into
the structures of optimal and also of non-optimal Wight schedules. A more in-depth analysis of all
practically relevant constraints and the development of a concise model leading to a solution of
the real-world problem will also be the topic of Chapter 4.
We will look at the question of how to allocate the available slots to the airlines under two

slightly diUerent aspects in this chapter. First, a formal deVnition of slots, airport capacity, Wight
requests and Wight schedule is in order. The problem of allocating slots to speciVc Wight requests
will then be investigated in Section 3.2. In Sections 3.3 and 3.4, we adopt a more abstract point
of view and ask how Wights should be distributed over the planning horizon in order to obtain a
schedule with a maximum number of Wight movements. Hence we do not rely on a set of Wight
requests any more, but instead devise results on the structure of optimal Wight schedules. Of course,
the counterpart to that question, namely how a “bad” Wight schedule looks like (and how many
Wights it can accommodate), will also be an important subject, we will consider that question in
Section 3.5. In Section 3.6 we will combine these two viewpoints and concern ourselves with the
gap between good and bad Wight schedules and means to decrease or avoid that gap in the Wight
scheduling process.

3.1.1 Flight Requests and Flight Schedules

An important class of constraints in Wight scheduling is naturally imposed by the airlines’ demands.
In practice, these demands are communicated to the airport coordinator as Wight requests or series
requests, the coordinator then tries to match these with the airport’s capacity restrictions to obtain
a feasible Wight schedule. Formally, this part of the problem is a speciVc kind of assignment
problem. For the rest of this chapter let 𝒮 = {1, . . . , 𝑛} denote the slot set (by a slot set, we always
mean a set of the form {1, . . . , 𝑛} for some 𝑛 ∈ N), which may be thought of as a discretization
of the planning horizon. Usually, one slot marks a small time interval of ten (sometimes Vve)
minutes, hence allocating a slot to an airline amounts to granting it the right to land or take oU
(depending on the type of slot allocated) within the respective time interval. The set 𝒮 simply
is a labeling of these time intervals in chronological order. Of course, as a slot denotes a whole
time interval, one slot is not limited to one Wight, but can accommodate several Wight movements,
possibly of diUerent type (arrivals and departures).
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In Chapter 4 we will take up a very problem-oriented position, enabling us to solve real-world
instances of Wight scheduling problems. In the present chapter, the foundation for this work will
be laid by providing a more abstract and general perspective. However, in some cases it will
be convenient (and intuitive) to use the same terminology in both chapters, often with a more
speciVc meaning in Chapter 4. Where this might lead to confusion, we will prepend this chapter’s
deVnitions with the word abstract, as opposed to their meaning in Chapter 4. In most cases where
the same term is used, the meaning in Chapter 4 will just denote a diUerent way of specifying the
same kind of data.

Airlines express their Wight requests by specifying for each planned Wight a number of alternative
slots or slot pairs.

DeVnition 3.1 (Abstract Slot Request, Abstract Flight Request, Abstract Series Request)
Let 𝒮 = {1, . . . , 𝑛} be a slot set.

1. An abstract slot request is a nonempty subset 𝐺 ⊂ 𝒮 , specifying a number of alternative
slots that may be allocated for a single requested Wight movement.

2. A nonempty set of tuples

𝐹 ⊂ 𝒮 × 𝒮 such that 𝑎 < 𝑑 for each (𝑎, 𝑑) ∈ 𝐹

speciVes alternative arrival/departure pairs for a Wight and is called (single) abstract Wight
request. A tuple (𝑎, 𝑑) ∈ 𝐹 of a Wight request 𝐹 is called corresponding arrival/departure
slot pair or just slot pair, its components will be referred to as requested arrival slot and
requested departure slot, respectively.

3. An abstract series request (𝐹, ℐ) consists of a single abstract Wight request 𝐹 and a starting
point set ℐ ⊂ (𝒮∖ {𝑛}) ∪ {0} where 0 ∈ ℐ . The sets

𝑆ℐ(𝑎,𝑑) := {(𝑎+ 𝑡, 𝑑+ 𝑡) : 𝑡 ∈ ℐ ∧ 𝑎+ 𝑡, 𝑑+ 𝑡 ∈ 𝒮} , (𝑎, 𝑑) ∈ 𝐹,

are called feasible slot series for the series request (𝐹, ℐ).

An abstract slot or Wight request expresses an airline’s desire to be granted one of the slots or
slot pairs contained in the request for a planned Wight. The slot request is the simplest form of
request considered here and will not receive much attention in the following, as the theory for
slot requests is often the same as for Wight requests. However, slot requests do frequently arise in
practice, namely in situations where an airline receives a major fraction of all slots available at an
airport. In that case, the airline often prefers to just request single slots and connect arrival and
departure slots on its own account after the slot allocation has been Vnalized. See Chapter 4 for
more details.

While an abstract Wight request is a set of feasible arrival/departure pairs for a Wight, an abstract
series request models the fact that an airline will normally not request just one slot pair (for a
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single Wight), but a number of slot pairs on several days for the same service during a longer time.
An initial slot pair allocated to such a series request implies that the Wight is scheduled at the
same time of day for each day where it is requested. The Vrst slots of these days (i. e., usually the
slot numbers corresponding to 0:00 at the respective days) are collected in the starting point set
ℐ . This fact is reWected by the feasible slot series 𝑆ℐ(𝑎,𝑑), that represent all arrival/departure pairs
allocated to a series request when the initial slot pair (𝑎, 𝑑) ∈ 𝐹 is chosen. Of course, a single
Wight request 𝐹 can be identiVed with the series request

(︀
𝐹, {0}

)︀
, and we will sometimes use this

fact to simplify notation.

Example 3.2
Let us illustrate the notion of a series request by means of an example. Assume an airline wants to
submit the following request:

“Arrival at 9:00 or 9:10, and a subsequent departure 40–50 minutes later for
every Monday, Wednesday and Thursday within the planning horizon of two weeks,
starting Monday.”

Suppose the slot set discretizes time in steps of ten minutes per slot. The planning horizon is
two weeks, starting on a Monday, 0:00 with slot number 1, corresponding to the time interval
0:00–0:09. Then one day is equivalent to 144 slots and 𝒮 = {1, . . . , 2020}.

The arrival times 9:00 and 9:10 on the Vrst day of the planning horizon are equal to slot numbers
1 + 9 · 6 = 55 and 1 + 9 · 6 + 1 = 56, respectively, and the departure should take place either 4
or 5 slots after arrival. The single Wight request for the Vrst Monday thus translates to

𝐹 = {(55, 59); (55, 60); (56, 60); (56, 61)} .

Further, the time 0:00 for the two Mondays within the planning horizon corresponds to the
slot numbers 0 and 144 · 7 = 1008, for the two Wednesdays the starting slot numbers are
2 · 144 = 288 and 9 · 144 = 1296, for the two Thursdays we obtain 3 · 144 = 432 and
10 · 144 = 1440, respectively. This yields the starting point set

ℐ = {0, 288, 432, 1008, 1296, 1440}

for the series request (𝐹, ℐ).
Hence if we decided to allocate the initial slot pair (55, 60) for that series request, we would

end up with the slot series

𝑆ℐ(55,60) = {(55, 60); (343, 348); (487, 492); (1063, 1068); (1351, 1356); (1495, 1500)}

corresponding to an arrival at 9:00 and a departure at 9:50 for all of the requested days, eUectively
allocating six arrival and six departure slots for that series request. ♢

Given a collection of abstract Wight and series requests, the task of Wight scheduling amounts
to choosing one slot pair from each Wight request or to mark the request as not scheduled, thus a
Wight schedule is basically a choice function.
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DeVnition 3.3 (Abstract Flight Schedule)
Let 𝒮 be a slot set and ℱ a Vnite collection of abstract Wight and series requests. An abstract Wight
schedule for ℱ is a function

𝑓 : ℱ → (𝒮 × 𝒮)⋆

with 𝑓(𝐹 ) ∈ (𝐹 )⋆ for all abstract Wight requests 𝐹 ∈ ℱ and 𝑓((𝐹, ℐ)) ∈ (𝐹 )⋆ for all abstract
series requests (𝐹, ℐ) ∈ ℱ . The image of an abstract series request under 𝑓 is called scheduled
(initial) slot pair in the abstract Wight schedule 𝑓 ; an abstract Wight or series request is termed
integrated, if its image is not∞. To simplify notation, we will leave out the double braces for
abstract series requests and just write 𝑓(𝐹, ℐ) for the scheduled slot pair of an abstract series
request (𝐹, ℐ).

The size or cardinality of a Wight schedule 𝑓 is deVned as the number of Wight movements that
𝑓 represents, more precisely

|𝑓 | := |{𝐹 ∈ ℱ : 𝑓(𝐹 ) ̸=∞}| +
∑︁(︀
𝐹,ℐ
)︀
∈ℱ

𝑓(𝐹,ℐ )̸=∞

⃒⃒⃒
𝑆ℐ𝑓(𝐹,ℐ)

⃒⃒⃒
.

For both single Wight requests and series requests, a Wight schedule selects one of the feasible
arrival/departure pairs, where for a series request (𝐹, ℐ) the interpretation is to schedule Wights
for all slot pairs in 𝑆ℐ𝑓(𝐹,ℐ), i. e., for the whole series corresponding to the initial slot pair 𝑓(𝐹, ℐ).
However, given that demand usually exceeds the available capacity of an airport, often not all
requested Wights can be scheduled. Hence, for both single and series requests, the “allocated slot”
can also be∞, meaning that a request is not scheduled at all. A natural measure for the quality of
a Wight schedule is the number of Wight movements it corresponds to (because airports charge fees
for every Wight movement), so the length of a scheduled series has to be taken into account in the
deVnition of |𝑓 |.

3.1.2 Time Window Bounds
The capacity of an airport is usually measured by the amount of Wights that can be processed
within certain time intervals. In this sense, many of the constraints mentioned above are captured
by a construct known as time window bounds, providing upper bounds on the number of arrivals
and/or departures that can take place within speciVed time windows. A time window bound can
either be applied as a shifting bound or as a consecutive or non-shifting bound, and consequently
we will usually refer to time window bounds by one of these two notions.

DeVnition 3.4 (Time Window Bound, Consecutive Bound, Shifting Bound)
Let 𝒮 be a slot set. A time window bound (𝐿, 𝑏)(𝜎) consists of a length 𝐿 ∈ 𝒮 , a bound value
(more precisely a triple of bound values)

𝑏 =
(︀
𝑏A, 𝑏D, 𝑏M

)︀𝑇 ∈ N3
0 with max

{︁
𝑏A, 𝑏D

}︁
≤ 𝑏M,

57



Chapter 3 Flight Scheduling Problems — Complexity, Structure and Algorithms

and a shift speciVcation 𝜎 ∈ {1, 𝐿}. The values 𝑏A, 𝑏D and 𝑏M are called arrival, departure
and movements bound, respectively. The interval [𝐿]∘ = [0, 𝐿− 1] will be referred to as the
associated time window. A time window bound is called consecutive bound or non-shifting bound
if 𝜎 = 𝐿, and shifting bound if 𝜎 = 1. For a shifting bound

(︀
𝐿, 𝑏

)︀(1), we will normally just write
(𝐿, 𝑏) or ([𝐿]∘ , 𝑏), using its associated time window in place of 𝐿.

Furthermore, a time window bound (𝐿, 𝑏)(𝜎) is called symmetric, if

𝑏M

2 ≤ min
{︁
𝑏A, 𝑏D

}︁
.

A time window bound (𝐿, 𝑏)(𝜎) constrains the number of Wights to a maximum of 𝑏A arrivals,
𝑏D departures and 𝑏M total Wight movements within certain time intervals along the slot set.
SpeciVcally, for a shifting bound each time window of length 𝐿 that is contained in 𝒮 or at
least starts in 𝒮 (in which case the time window has to be truncated to its intersection with 𝒮)
is considered. Think of placing the time window along the planning horizon, aligning its left
boundary with the Vrst slot, and then shift the window along the whole time axis, moving one slot
at a time. For a non-shifting bound (𝐿, 𝑏)(𝐿) only the time windows starting at slots 1, 𝐿+ 1, . . .
are considered (again, possibly truncated to their intersection with 𝒮). So this time, the window
is not shifted slot by slot, but instead it is shifted by its own length 𝐿, resulting in consecutive
placement along the time axis (hence the notation 𝜎 = 𝐿).
The requirement 𝑏A, 𝑏D ≤ 𝑏M is just a technicality and can be assumed for all time window

bounds without loss of generality. As the number of Wight movements within a time window is
constrained by its movements bound value 𝑏M, it would certainly not make sense to allow for a
higher number of arrivals and/or departures than 𝑏M. The additional requirement 𝑏A, 𝑏D ≥ 1/2 ·𝑏M
for a symmetric bound reWects the fact that arrivals and departures are (at least in the long run)
equal in number, so it should be possible for both arrivals and departures to make up for at least
half of the Wights within any time window. If this was not the case, arrivals could outweigh
departures or vice versa in the long run, or the distribution of arrivals and departures would be
forced to be non-symmetric by the shifting bounds alone — of course, local asymmetries are still
possible, but in reality these are caused by an unbalanced distribution of demand for arrivals and
departures (cf. Chapter 4), and not by asymmetries in the constraint system. Notice this constraint
also implies 𝑏M ≤ 𝑏A + 𝑏D. In practical applications, the time window bounds involved are usually
symmetric, but there may also be situations where a non-symmetric bound is used. This could for
instance pertain to an airport where many aircrafts stay over night, thus limiting the number of
parking positions for arriving Wights for the Vrst few hours of the next day, until the overnight
Wights have departed and cleared their positions. In that situation, a very low value of 𝑏A and a
rather high value of 𝑏D might be applicable during the Vrst hours of traXc. As such situations do
generally only apply to very short time periods, we will mostly assume time window bounds to be
symmetric, but most of the results also hold for the non-symmetric situation.
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Example 3.5
Consider a time window bound of length 30 minutes. Then the time intervals to which the bound
values have to be applied are 0:00–0:29, 0:10–0:39, 0:20–0:49 and so on. Discretizing on a ten
minute scale the shifting bound (30 minutes, 𝑏) translates to (3, 𝑏) or ([3]∘ , 𝑏), so the relevant
time intervals are (𝑠+ [3]∘)∩𝒮 , 𝑠 ∈ 𝒮 . For the non-shifting bound ([3]∘ , 𝑏)(3), the time intervals
would be (𝑠+ [3]∘) ∩ 𝒮 , 𝑠 ∈ {1, 𝐿+ 1, . . .} ∩ 𝒮 . ♢

In airport operations, the distinction between average capacity and peak capacity of an airport
is important. While in the long run certain limits may not be exceeded, some variation is allowed
in the short run leading to short-termed peaks. For example, air traXc control may be able to
safely handle an average of 80 Wight movements per hour, but no more than 15 Wights at any
given time (where “any given time” usually means “one slot”, i. e., within ten minutes). So a
higher load is temporarily allowed, provided a certain average load is not exceeded in the long
run. Mathematically, this leads to multiple time window bounds (one for the peak capacity with
a short length, at least one for the average capacity with a long time window) that are applied
simultaneously. Such a system of time window bounds will be referred to as a reference value
system.

DeVnition 3.6 (Reference Value System)
A reference value system is a nonempty, Vnite set ℛ of time window bounds such that no two
bounds in ℛ have the same length. The reference value system ℛ is called symmetric, if all
time window bounds in ℛ are symmetric, and monotone, if it contains only shifting or only
non-shifting bounds and for any two time window bounds (𝐿, 𝑏)(𝜎), (𝐿′, 𝑏′)(𝜎′) ∈ ℛ with 𝐿 < 𝐿′

the inequalities

𝑏 < 𝑏′ and
𝑏′

𝐿′
≤ 𝑏
𝐿

hold.

The monotonicity of a reference value system states that longer time windows correspond to
relatively stricter bound values. This condition is very natural, because for a non-monotone
reference value system the bounds with longer time windows could simply be dropped if there
were short time windows producing stronger bounds (for a suitably large slot set). Of course, for
monotonicity one should only compare bounds of the same type. An example of a reference value
system applied to a Wight schedule will be given in the context of slot conVgurations below.

3.1.3 Slot Configurations and Feasible Flight Schedules

With the two foregoing subsections, the notion of a feasible Wight schedule could simply be deVned
as a Wight schedule observing all time window bounds of a given reference value system. However,
it will be convenient to introduce a separate notation here (especially as this will prove valuable
later).
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DeVnition 3.7 (Slot ConVguration)
Let 𝒮 be a slot set. A slot conVguration is a function

𝐶 : 𝒮 → N3
0, 𝑠 ↦→

(︁
𝐶A(𝑠), 𝐶D(𝑠), 𝐶M(𝑠)

)︁
with 𝐶M(𝑠) = 𝐶A(𝑠) + 𝐶D(𝑠) for every 𝑠 ∈ 𝒮 . The components 𝐶A, 𝐶D, 𝐶M : 𝒮 → N0 are
called arrival, departure and movements conVguration, respectively; the number |𝐶| := 𝐶M(𝒮)
is called the size of the slot conVguration 𝐶 .

Furthermore, let ℱ be a collection of abstract Wight and series requests and 𝑓 : ℱ → (𝒮 × 𝒮)⋆
an abstract Wight schedule. Then the associated slot conVguration 𝐶𝑓 : 𝒮 → N3

0 is deVned by

𝐶A
𝑓 (𝑠) := |{𝐹 ∈ ℱ : 𝑓(𝐹 ) ∈ ({𝑠} × 𝒮)}|+

⃒⃒⃒{︁
(𝐹, ℐ) ∈ ℱ : 𝑆ℐ𝑓(𝐹,ℐ) ∩ ({𝑠} × 𝒮) ̸= ∅

}︁⃒⃒⃒
,

𝐶D
𝑓 (𝑠) := |{𝐹 ∈ ℱ : 𝑓(𝐹 ) ∈ (𝒮 × {𝑠})}|+

⃒⃒⃒{︁
(𝐹, ℐ) ∈ ℱ : 𝑆ℐ𝑓(𝐹,ℐ) ∩ (𝒮 × {𝑠}) ̸= ∅

}︁⃒⃒⃒
,

𝐶D
𝑓 (𝑠) := 𝐶A

𝑓 (𝑠) + 𝐶D
𝑓 (𝑠).

Let us remark that technically a slot conVguration 𝐶 is deVned by 𝐶A and 𝐶D alone, 𝐶M is just a
convenient shorthand notation for the sum 𝐶A + 𝐶D.
For the following deVnition recall that

𝐶(𝑠+ [𝐿]∘) =
∑︁

𝑡∈(𝑠+[𝐿]∘)∩𝒮
𝐶(𝑡), see Section 1.4.2.

DeVnition 3.8 (Feasible Slot ConVguration, Feasible Flight Schedule)
Let 𝒮 be a slot set andℛ a reference value system. A slot conVguration 𝐶 : 𝒮 → N3

0 is feasible
with respect toℛ, if

𝐶(𝑠+ [𝐿]∘) ≤ 𝑏,
i. e., 𝐶A(𝑠+ [𝐿]∘) ≤ 𝑏

A,

𝐶D(𝑠+ [𝐿]∘) ≤ 𝑏
D,

and 𝐶M(𝑠+ [𝐿]∘) ≤ 𝑏
M

for all shifting bounds (𝐿, 𝑏) ∈ ℛ and all 𝑠 ∈ 𝒮 such that (𝑠 + [𝐿]∘) ∩ 𝒮 ̸= ∅, and for all
non-shifting bounds (𝐿, 𝑏)(𝐿) ∈ ℛ and all 𝑠 ∈ {1, 𝐿+ 1, . . .} such that (𝑠+ [𝐿]∘) ∩ 𝒮 ̸= ∅. If
even

𝐶(J𝑠+ [𝐿]∘K𝒮) ≤ 𝑏

holds, then 𝐶 is called circular feasible with respect to ℛ. Furthermore, let ℱ be a collection of
abstract Wight and series requests on 𝒮 and let 𝑓 : ℱ → (𝒮 × 𝒮)⋆ be an abstract Wight schedule.
Then 𝑓 is (circular) feasible with respect toℛ, if its associated slot conVguration 𝐶𝑓 is (circular)
feasible.
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Figure 3.1: An example of a reference value system with shifting bounds “in action”. The reference value
system is ℛ = {([1]∘ , 16), ([3]∘ , 26), ([6]∘ , 42)}. The values for the corresponding time
windows (only movements values are shown) for the slot conVguration 𝐶 = (𝐶A, 𝐶D, 𝐶M)
are indicated on the axis of ordinates; the lengths of the time windows are visualized by suitably
colored rectangles. Infeasibilities are marked by “�”.
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Example 3.9
We illustrate the concept of a feasible slot conVguration and a reference value system by means
of an example: Consider a time period of two hours, discretized in units of ten minutes, and
the reference value systemℛ = {([1]∘ , 16), ([3]∘ , 26), ([6]∘ , 42)}. In Figure 3.1 the numbers of
arrivals, departures and movements for every slot are indicated by the red, blue and green curves,
respectively. Above, the number of movements for each thirty-minute time window is indicated
by a point at the start of each of the time windows; the whole associated time window is sketched
as a small colored box, whose ordinate value represents the number of Wight movements within
the respective time window. The same is done for sixty-minute intervals. Of course, similar graphs
could be drawn for arrival and departure values for thirty and sixty minute time windows, but we
chose to omit those for the sake of clarity. The respective bound values are drawn as dashed lines.
Note that the slot conVguration shown here is not feasible for the given reference value system, as
both the last sixty-minute and the last thirty-minute time windows violate the respective bounds
(indicated by a “forbidden sign”). ♢

Although a slot conVguration does not tell us everything about a Wight schedule, it nevertheless
provides valuable information on the “pattern” generated by a Wight schedule and thus allows
us to analyze how a good Wight schedule should “look like”, i. e., what structural properties are
beneVcial for obtaining a feasible Wight schedule of maximum size. For a structural analysis of
optimal Wight scheduling it may be desirable to eliminate boundary eUects from the model, which
are due to the fact that slots at the beginning and at the end of the scheduling period are covered
by less reference value time windows than those in the middle of the scheduling period. This is
possible by considering the circular versions of the problems involved, where the shifting bounds
“wrap around” both ends of the scheduling horizon. Geometrically speaking, we can picture the
slots to be arranged along a circle rather than along a line, so the reference value time windows
simply reach over from the last to the Vrst slot in the slot set 𝒮 .

time
:00 :15 :30 :45 :60

:00

:15

:30

:45

Figure 3.2: Normal view of the slot set 𝒮 versus circular view for a planning horizon of one hour; some
shifting bounds with a length of 20 minutes are indicated. The blue shifting bound is only
present when considering circular shifting bounds.
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For a non-shifting bound, we will not consider circular problems. The reason for this is that for
a bound that does not naturally end at slot 𝑛, “wrapping around” the bound would completely
break symmetry. As an example, consider a non-shifting bound of length 4 and 𝑛 = 9. If we want
to apply this bound in a circular way, we would have to consider the time windows {1, . . . , 4},
{5, . . . , 8} and {9, . . . , 3}. But why stop here? In fact, for a shifting bound repetition would occur
at this point — not so for a non-shifting bound. If we continue (and there is no good reason not to
do so), we would have to add the time windows {4, . . . , 7}, {8, . . . , 2}, {3, . . . , 6}, {7, . . . , 1},
{2, . . . , 5} and {6, . . . , 9}, in eUect ending up with the same intervals as for a shifting bound of
length 4. This is certainly not always the case (depending on the least common divisor of the time
window’s length and 𝑛). However, the only case that is relevant for applications is the one where
𝑛 is a multiple of 𝐿 for all non-shifting bounds (𝐿, 𝑏)(𝐿), and we will consider such cases where
necessary.

3.1.4 Notation
In the following sections we will frequently use matrix-vector notation to provide for a concise
representation of our problems. Let us introduce the necessary terminology beforehand.
Let 𝑛 ∈ N and let 𝒮 = {1, . . . , 𝑛} be a slot set. For a slot conVguration 𝐶 : 𝒮 → N3

0 we
identify the components 𝐶A, 𝐶D, 𝐶M : 𝒮 → N0 with the vectors

𝐶A =
(︁
𝐶A(1), . . . , 𝐶A(𝑛)

)︁
∈ N𝑛0 ,

𝐶D =
(︁
𝐶D(1), . . . , 𝐶D(𝑛)

)︁
∈ N𝑛0 ,

𝐶M =
(︁
𝐶M(1), . . . , 𝐶M(𝑛)

)︁
∈ N𝑛0 .

For a shifting bound (𝐿, 𝑏), deVne the incidence matrix 𝑅𝐿 and the bound vectors 𝑏A𝐿 , 𝑏
D
𝐿 and

𝑏M𝐿 by

𝑅𝐿 :=

⎛⎜⎜⎜⎜⎜⎝
1𝑇1+[𝐿]∘
1𝑇2+[𝐿]∘

...
1𝑇𝑛−(𝐿−1)+[𝐿]∘

⎞⎟⎟⎟⎟⎟⎠ ∈ {0, 1}𝑚(𝐿)×𝑛 and

𝑏A𝐿 := 𝑏A · 1𝑚(𝐿)

𝑏D𝐿 := 𝑏D · 1𝑚(𝐿)

𝑏M𝐿 := 𝑏M · 1𝑚(𝐿),

where𝑚(𝐿) = 𝑛− (𝐿− 1). For a non-shifting bound (𝐿, 𝑏)(𝐿), we analogously deVne

𝑅′𝐿 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1𝑇1+[𝐿]∘
1𝑇(𝐿+1)+[𝐿]∘

...
1𝑇((𝑚′(𝐿)−1)𝐿+1)+[𝐿]∘
1𝑇[(𝑚′(𝐿)𝐿+1), 𝑛]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈ {0, 1}𝑚

′(𝐿)×𝑛 and

(𝑏′)A
𝐿 := 𝑏A · 1𝑚′(𝐿)

(𝑏′)D
𝐿 := 𝑏D · 1𝑚′(𝐿)

(𝑏′)M
𝐿 := 𝑏M · 1𝑚′(𝐿),

where𝑚′(𝐿) = ⌊𝑛/𝐿⌋.
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For a reference value systemℛ =
{︁

(𝐿1, 𝑏1), . . . , (𝐿𝑘, 𝑏𝑘), (𝐿𝑘+1, 𝑏𝑘+1)(𝐿), . . . , (𝐿𝑘′ , 𝑏𝑘′)(𝐿)
}︁
,

we deVne the incidence matrix 𝑅 ofℛ by

𝑅 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑅𝐿1
...
𝑅𝐿𝑘
𝑅′𝐿𝑘+1

...
𝑅′𝐿′

𝑘

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ {0, 1}𝑚(ℛ)×𝑛

and

𝑏A :=
(︁
𝑏A1 1

𝑇
𝑚(𝐿1), . . . , 𝑏

A
𝑘 1
𝑇
𝑚(𝐿𝑘), 𝑏

A
𝑘+11

𝑇
𝑚′(𝐿𝑘+1), . . . , 𝑏

A
𝑘′1
𝑇
𝑚(𝐿𝑘′ )

)︁𝑇
,

𝑏D :=
(︁
𝑏D1 1

𝑇
𝑚(𝐿1), . . . , 𝑏

D
𝑘 1
𝑇
𝑚(𝐿𝑘), 𝑏

D
𝑘+11

𝑇
𝑚′(𝐿𝑘+1), . . . , 𝑏

D
𝑘′1
𝑇
𝑚(𝐿𝑘′ )

)︁𝑇
,

𝑏M :=
(︁
𝑏M1 1

𝑇
𝑚(𝐿1), . . . , 𝑏

M
𝑘 1
𝑇
𝑚(𝐿𝑘), 𝑏

M
𝑘+11

𝑇
𝑚′(𝐿𝑘+1), . . . , 𝑏

M
𝑘′1
𝑇
𝑚′(𝐿𝑘′ )

)︁𝑇
,

where𝑚(ℛ) = 𝑚(𝐿1) + · · ·+𝑚(𝐿𝑘) +𝑚′(𝐿𝑘+1) + · · ·+𝑚′(𝐿𝑘′). Thus, a slot conVguration(︀
𝐶A, 𝐶D, 𝐶M)︀ ∈ N3𝑛

0 is feasible forℛ if and only if

𝑅𝐶A ≤ 𝑏A, 𝑅𝐶D ≤ 𝑏D and 𝑅𝐶M = 𝑅(𝐶A + 𝐶D) ≤ 𝑏M.

Similarly, we deVne the circular incidence matrix 𝑅𝐿 of a shifting bound (𝐿, 𝑏) as

𝑅𝐿 :=

⎛⎜⎜⎜⎜⎜⎝
1𝑇J1+[𝐿]∘K𝒮
1𝑇J2+[𝐿]∘K𝒮

...
1𝑇J𝑛+[𝐿]∘K𝒮

⎞⎟⎟⎟⎟⎟⎠ ∈ {0, 1}𝑛×𝑛 and

𝑏̊A𝐿 := 𝑏A · 1𝑛
𝑏̊D𝐿 := 𝑏D · 1𝑛
𝑏̊M𝐿 := 𝑏M · 1𝑛.

Finally, for a reference value system ℛ that consists of only shifting bounds we deVne the
incidence matrix 𝑅 ofℛ = {(𝐿1, 𝑏1), . . . , (𝐿𝑘, 𝑏𝑘)} by

𝑅 =

⎛⎜⎜⎜⎜⎝
𝑅𝐿1

𝑅𝐿2
...
𝑅𝐿𝑘

⎞⎟⎟⎟⎟⎠ ∈ {0, 1}𝑘𝑛×𝑛 .
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The bound vectors 𝑏̊A, 𝑏̊D, 𝑏̊M ∈ N𝑘𝑛0 are deVned accordingly as

𝑏̊A =
(︁
𝑏A1 1

𝑇
𝑛 , . . . , 𝑏

A
𝑘 1
𝑇
𝑛

)︁𝑇
,

𝑏̊D =
(︁
𝑏D1 1

𝑇
𝑛 , . . . , 𝑏

D
𝑘 1
𝑇
𝑛

)︁𝑇
,

𝑏̊M =
(︁
𝑏M1 1

𝑇
𝑛 , . . . , 𝑏

M
𝑘 1
𝑇
𝑛

)︁𝑇
.

3.1.5 Graphics
In this chapter and the next we will frequently use graphics to visualize examples or test results.
Most of these graphics will visualize slot conVgurations like the ones displayed in Figure 3.3.
Figure 3.3a shows a movements slot conVguration (i. e., arrivals and departures are not distin-

guished, only Wight movements are shown). The slots are depicted as stacks of blue rectangles,
Wight movements that are scheduled for one of the slots are indicated by the corresponding number
of orange rectangles. If high numbers of movements are scheduled, this may also be indicated by
writing the number of movements in the corresponding slot rectangle. Below the slots some of the
time windows are shown as gray rectangles with the number of Wight movements taking place
within the respective time window written inside them. If a time window is at its movements
limit, an orange frame is drawn around the rectangle. Here, nine slots are shown, where slots one
and six contain three Wight movements each.

Plots like Figure 3.3b are used to display larger test results. The slots are plotted in the form of a
“time line” along the 𝑥-axis, the number of arrivals, departures and Wight movements is shown
as a function plot. The values for all time window bounds are displayed in the same way, where
the 𝑦-coordinate refers to the number of movements within the time window that starts at the
respective 𝑥-coordinate. In this example, movements bounds for ten and thirty minutes are shown.

3.2 Maximum Flight Scheduling
We can now formally state the Maximum Flight Scheduling problem.

Problem 3.10: Maximum Flight Scheduling
Instance: The slot count 𝑛 ∈ N, a collection ℱ of abstract Wight and series requests on 𝒮 =

{1, . . . , 𝑛} and a reference value systemℛ.
Question: Find an abstract Wight schedule for ℱ that is feasible with respect to ℛ and has

maximum size (i. e., integrates a maximum number of Wight movements).

This problem formalizes the main task of airport Wight scheduling. Primarily, one is certainly
interested in Vnding a Wight schedule that accommodates as many Wights as possible so that the
airport and its facilities can be used to full capacity. Unfortunately, Maximum Flight Scheduling
will turn out to be an algorithmically hard problem. In the following, we will present a complexity
result supporting this claim. In contrast to this, we will analyze some exemplary special cases
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Figure 3.3: Graphics used in Chapters 3 and 4.

where the problem becomes algorithmically tractable. In addition, an integer programming model
for Flight Scheduling will be devised that serves as the basis of our more complex model in
Chapter 4.

3.2.1 Hardness of Maximum Flight Scheduling

Optimization problems are usually given in the form of a function problem (like Problem 3.10
above), calling for an output that speciVes an optimal solution. In contrast to this, complexity
results are generally stated for decision problems, which only demand “Yes” or “No” for an answer.
However, for most function problems a corresponding decision version can easily be formulated;
for Flight Scheduling, the decision version is this:

Problem 3.11: Flight Scheduling, Decision Version
Instance: The slot count 𝑛 ∈ N, a collection ℱ of abstract Wight and series requests on 𝒮 =

{1, . . . , 𝑛}, a reference value systemℛ and a number 𝑁 ∈ N.
Question: Decide whether there is an abstract Wight schedule for ℱ that is feasible with respect

toℛ and has size at least 𝑁 .

For many optimization problems, the corresponding decision version is equivalent to the
optimization problem (which asks for the objective value of an optimal solution) in terms of
algorithmic tractability: If the optimization problem can be solved in polynomial time, one can
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of course decide upon the existence of a solution with a certain objective value, provided the
value of the objective function can be computed in polynomial time. For the reverse direction, a
binary search technique can be employed to solve the optimization problem using repeated calls
to the decision problem. For details, we refer the reader to [GLS93] or [PS98]. For this reason,
by referring to an optimization problem as𝒩𝒫-hard, one usually means that the corresponding
decision problem is 𝒩𝒫-hard.
Theorem 3.12
Problem 3.11 (Flight Scheduling, Decision Version) is 𝒩𝒫-hard.

We prove the theorem by giving a reduction to Flight Scheduling from 3D-Matching, which is
known to be an 𝒩𝒫-hard optimization problem (cf. [GJ79]).

Problem 3.13: 3D-Matching
Instance: Three Vnite, disjoint sets 𝑋,𝑌, 𝑍 of equal cardinality, i. e., |𝑋| = |𝑌 | = |𝑍|, a set

𝑀 ⊂ 𝑋 × 𝑌 × 𝑍 and an integer 𝑁 ∈ N.
Question: Decide whether there is a three dimensional matching of cardinality at least 𝑁 in𝑀 ,

i. e., a subset𝑀 ′ ⊂ 𝑀 such no two triples in𝑀 ′ agree in any coordinate and such
that |𝑀 ′| ≥ 𝑁 .

Proof (of Theorem 3.12). Let 𝑋,𝑌, 𝑍 , an integer 𝑁 and a set𝑀 ⊂ 𝑋 × 𝑌 × 𝑍 be an instance
of 3D-Matching; we assume that |𝑋| = |𝑌 | = |𝑍| = 𝑞 and that 𝑋 = {1, . . . , 𝑞}, 𝑌 =
{𝑞 + 1, . . . , 2𝑞} and 𝑍 = {2𝑞 + 1, . . . , 3𝑞}. Taking 𝒮 := {1, . . . , 2𝑞} as the slot set, deVne

𝐹𝑧 := {(𝑎, 𝑑) ⊂ 𝒮 × 𝒮 : (𝑎, 𝑑, 𝑧) ∈𝑀} ,
ℱ :=

⋃︁
𝑧∈𝑍
{𝐹𝑧} ,

ℛ :=
{︀(︀

[1]∘ ; (1, 1, 1)
)︀}︀

;

the above sets can be computed in time polynomial in the size of the input to 3D-Matching. We
take ℱ as the set of abstract Wight requests andℛ as reference value system, i. e., we interpret a
triple (𝑥, 𝑦, 𝑧) ∈𝑀 as part of a Wight request for the slot pair (𝑥, 𝑦), and we take diUerent values
of 𝑧 to denote diUerent Wight requests.

Now let 𝑓 : ℱ → (𝒮 × 𝒮)⋆ be a feasible abstract Wight schedule forℛ, then we can deVne a set

𝑀 ′𝑓 :=
⋃︁

𝑧∈𝑍:𝑓(𝐹𝑧 )̸=∞

{︁(︀
𝑓A(𝐹𝑧), 𝑓D(𝐹𝑧), 𝑧

)︀}︁
.

Due to the restrictions imposed by ℛ, the set 𝑀 ′𝑓 is a three dimensional matching in 𝑀 of
cardinality |𝑓 |. On the other hand, if𝑀 ′ ⊂ 𝑀 is a three dimensional matching in𝑀 , we can
deVne a Wight schedule 𝑓𝑀 ′ : ℱ → (𝒮 × 𝒮)⋆ that is feasible with respect toℛ by

𝑓𝑀 ′(𝐹𝑧) =
{︃

(𝑥, 𝑦) , if there are 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 such that (𝑥, 𝑦, 𝑧) ∈𝑀 ′;
∞, else.
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Note that if there is some triple in𝑀 ′ with last coordinate 𝑧, then it is uniquely deVned by the
matching property of𝑀 ′, thus 𝑓𝑀 ′ is indeed well-deVned. Also, |𝑀 ′| = |𝑓𝑀 ′ |.
This shows that there is a solution of any given size 𝑁 ∈ N to an instance of 3D-Matching

if and only if the associated instance of Flight Scheduling has a solution of size 𝑁 . Hence
3D-Matching reduces to Flight Scheduling, completing the proof of 𝒩𝒫-hardness. 2

3.2.2 Integer Programming Formulation
To gain some insight into the inherent problem structure of Flight Scheduling, let us have a
look at the concise representation provided by an integer programming formulation. The integer
program consists of two “building blocks”: One set of constraints that captures the assignment
aspect, and a second set of constraints for the feasibility with respect to some reference value
system ℛ. If ℛ is given by its incidence matrix 𝑅 on the slot set 𝒮 = {1, . . . , 𝑛}, we get the
following integer program.

Problem 3.14: Flight Scheduling, IP Formulation
Instance: The number of slots 𝑛 ∈ N, a collection ℱ = {(𝐹1, ℐ1), . . . , (𝐹𝑘, ℐ𝑘)} of abstract

Wight and series requests on 𝒮 = {1, . . . , 𝑛} and the incidence matrix 𝑅 of a reference
value system.

Question: Find an optimal solution 𝑥 ∈ {0, 1}|ℱ|·𝑛·𝑛, 𝐶A, 𝐶D, 𝐶M ∈ N𝑛0 for the following
integer linear program:

max 1𝑇𝑛𝐶
M (3.1)

s. t.
∑︁
𝑎,𝑑∈𝒮
𝑥𝑖,𝑎,𝑑 ≤ |ℐ𝑖| for all (𝐹𝑖, ℐ𝑖) ∈ ℱ (3.2)

∑︁
(𝐹𝑖,ℐ𝑖)∈ℱ

∑︁
𝑑∈𝒮
𝑥𝑖,𝑎,𝑑 = 𝐶A

𝑎 for all 𝑎 ∈ 𝒮 (3.3)

∑︁
(𝐹𝑖,ℐ𝑖)∈ℱ

∑︁
𝑎∈𝒮
𝑥𝑖,𝑎,𝑑 = 𝐶D

𝑑 for all 𝑑 ∈ 𝒮 (3.4)

𝑥𝑖,𝑎,𝑑 = 𝑥𝑖,𝑎+Δ,𝑑+Δ for all Δ ∈ ℐ𝑖 s. t. 𝑎+ Δ, 𝑑+ Δ ∈ 𝒮 (3.5)

𝑅𝐶A ≤ 𝑏A (3.6)

𝑅𝐶D ≤ 𝑏D (3.7)

𝑅𝐶M ≤ 𝑏M (3.8)

𝐶A + 𝐶D = 𝐶M (3.9)

𝑥𝑖,𝑎,𝑑 = 0 for all (𝐹𝑖, ℐ𝑖) ∈ ℱ (3.10)

and all (𝑎, 𝑑) ∈ (𝒮 × 𝒮) ∖
⋃︁

(𝑠,𝑡)∈𝐹𝑖

𝑆ℐ𝑖(𝑠,𝑡)

𝐶A, 𝐶D, 𝐶M ∈ N𝑛0
𝑥 ∈ {0, 1}|ℱ|·𝑛·𝑛
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Let us Vrst remark that a feasible solution is always given by setting all variables to 0, so feasibility
is not an issue. The meaning of the decision variables 𝑥𝑖,𝑎,𝑑 is

𝑥𝑖,𝑎,𝑑 =
{︃

1, if series request 𝐹𝑖 is allocated arrival slot 𝑎 and departure slot 𝑑;
0, else,

while 𝐶A, 𝐶D and 𝐶M represent the slot conVguration associated to the Wight schedule that is
determined by the values of 𝑥. The constraints (3.3) and (3.4) link the variables 𝐶A, 𝐶D, 𝐶M to 𝑥
(the sum simply counts the numbers of arrivals and departures for each slot, respectively), (3.9)
conditions

(︀
𝐶A, 𝐶D, 𝐶M)︀ to be a slot conVguration. In (3.2), we see a variation on the classical

assignment constraint ensuring that each series request (𝐹𝑖, ℐ𝑖) gets allocated at most one initial
slot pair: Here, we need to allocate either at most |ℐ𝑖| slot pairs to Wight request 𝐹𝑖 (usually exactly
|ℐ𝑖| or no slot pair at all, but if the slot set is “too short”, it may be impossible to operate all
Wights). The series constraint (allocate slots for the same times relative to the starting points in ℐ𝑖
is expressed by (3.5), the time window bounds can be found in (3.6)–(3.8). In constraint (3.10), 𝑥
is restricted to admissible arrival/departure pairs. Finally, the objective (3.1) is to maximize the
number of Wight movements.

We have only formulated the integer program for series requests, Wight requests can simply be
modeled by using the starting point set ℐ = {0}. Single slot requests may also be integrated into
the model, for instance by introducing an additional binary variable 𝑦𝑖,𝑠 for every slot request 𝐺𝑖
and every slot 𝑠 ∈ 𝒮 , which is 1 if and only if request 𝑖 is allocated the slot 𝑠 and inserting the
variable in the appropriate inequalities, depending upon whether the request is for an arrival or
for a departure slot.

Let us mention that, if ℛ contains only shifting bounds, by replacing 𝑅 by 𝑅 we obtain an
integer programming formulation for Wight scheduling subject to circular shifting bounds.

The value of the above integer program is apparently not due to a straightforward algorithmic
applicability, but rather to clarify the interdependencies between the various optimization problems
considered in this chapter. One can clearly see that Wight scheduling can be considered as a
composition of two diUerent problems, namely a standard assignment problem and the balancing
constraints imposed by the time window bounds. From this point of view, the connection to
packing subject to balancing constraints becomes evident: Assignment is simply a very basic form
of a standard packing problem, while the time window bounds constitute a balancing requirement.
The time window bounds locally (namely within their respective time windows) set limits on
the number of Wights, thus requiring a certain distribution over the whole planning horizon.
On the other hand, the “shifting component” of the shifting bounds propagates the eUect of a
Wight assignment beyond a single slot. This way, a (albeit restricted) “globalization” of local
assignments is obtained, which one should expect to lead to a more uniform distribution of Wights,
thus “balancing out” the Wight schedule.
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3.2.3 Matroid Representations of Flight Scheduling Problems
The “decomposition aspect” of Flight Scheduling into an assignment and a balancing part
(constituted by the time window bounds) evident in Section 3.2.2 suggests an interpretation of the
problem in terms of independence systems and matroids. In this subsection, we give an outline of
these aspects to derive some complexity results for specialized instances of Flight Scheduling
problems.

Lemma 3.15
For 𝑛 ∈ N, let 𝒮 := {1, . . . , 𝑛} be a slot set and 𝒢 = {𝐺1, . . . , 𝐺𝑚} a collection of slot requests,
and let (𝐿, 𝑏)(𝜎) be a time window bound with 𝑏 ≥ 13. Furthermore, deVne the set ℬ𝒢 of possible
slot assignments by

ℬ𝒢 :=
⋃︁

𝑖=1,...,𝑚
({𝑖} ×𝐺𝑖) .

1. With 𝐺′𝑖 := {𝑖} ×𝐺𝑖 for 𝑖 ∈ {1, . . . ,𝑚}, the set

ℳ𝒢 :=
{︀
𝐵 ⊂ ℬ𝒢 :

⃒⃒
𝐺′𝑖 ∩𝐵

⃒⃒
≤ 1 for all 𝑖 ∈ {1, . . . ,𝑚}

}︀
is a matroid over the ground set 𝐵𝒢 .

2. Let 𝑆 ⊂ 𝒮 be a nonempty subset of the slot set. The set of slot requests for the slot 𝑡 ∈ 𝒮
is deVned as 𝐻𝑡 :=

⋃︀
𝑖=1 ...,𝑚

{(𝑖, 𝑡) : 𝑡 ∈ 𝐺𝑖} and the sets 𝐻 ′𝑠 :=
⋃︀

𝑡∈𝑠+[𝐿]∘
𝐻𝑡 collect all slot requests

within a time window of length 𝐿 starting at slot 𝑠 ∈ 𝑆 (where 𝑆 can be chosen suitably to
accommodate for either a shifting or a non-shifting bound). DeVne

ℳA
(𝐿,𝑏) :=

{︁
𝐵 ⊂ ℬ𝒢 :

⃒⃒
𝐻 ′𝑠 ∩𝐵

⃒⃒
≤ 𝑏A for all 𝑠 ∈ 𝑆

}︁
,

ℳD
(𝐿,𝑏) :=

{︁
𝐵 ⊂ ℬ𝒢 :

⃒⃒
𝐻 ′𝑠 ∩𝐵

⃒⃒
≤ 𝑏D for all 𝑠 ∈ 𝑆

}︁
,

ℳM
(𝐿,𝑏) :=

{︁
𝐵 ⊂ ℬ𝒢 :

⃒⃒
𝐻 ′𝑠 ∩𝐵

⃒⃒
≤ 𝑏M for all 𝑠 ∈ 𝑆

}︁
.

If {𝐻 ′𝑠 : 𝑠 ∈ 𝑆} is a collection of disjoint sets, thenℳA
(𝐿,𝑏),ℳ

D
(𝐿,𝑏) andℳ

M
(𝐿,𝑏) are ma-

troids over the ground set ℬ𝒢 .

Proof. The sets 𝐺′1, . . . , 𝐺
′
𝑚 obviously constitute a partition of ℬ𝒢 into disjoint subsets, thus

ℳ𝒢 is a partition matroid, cf. Theorem 1.4.
If {𝐻 ′𝑠 : 𝑠 ∈ 𝑆} is a collection of disjoint sets, then it can be turned into a partition of the

ground set ℬ𝒢 by complementing the sets𝐻 ′𝑠 with𝐻
′ := ℬ𝒢∖

⋃︀
𝑠∈𝑆 𝐻

′
𝑠. HenceℳA

(𝐿,𝑏),ℳ
D
(𝐿,𝑏)

andℳM
(𝐿,𝑏) are also partition matroids according to Theorem 1.4. 2

The consequences for Flight Scheduling are now straightforward. Whileℳ𝒢 models the fact
that each slot request 𝐺𝑖 may be assigned at most one slot in 𝐺𝑖, the matroidsℳA

(𝐿,𝑏),ℳ
D
(𝐿,𝑏)
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andℳM
(𝐿,𝑏) model time window bounds for arrivals, departures and movements, respectively.

The condition for {𝐻 ′𝑠 : 𝑠 ∈ 𝑆} to be a collection of disjoint sets corresponds to the non-shifting
case, i. e., 𝑆 =

{︀
1, 𝐿+ 1, . . . ,

⌊︀
𝑛
𝐿

⌋︀
𝐿+ 1

}︀
(for shifting bounds, we would have to take 𝑆 =

{1, . . . , 𝑛− 𝐿+ 1}, thus the sets 𝐻 ′𝑠 would overlap for 𝐿 > 1).

Corollary 3.16
Let (𝑛,𝒢,ℛ) be an instance of Flight Scheduling with the following restrictions:

1. 𝒢 consists exclusively of slot requests;

2. the reference value systemℛ =
{︁

(𝐿, 𝑏)(𝐿)
}︁
consists of a single non-shifting bound, where

two out of
{︁
𝑏A, 𝑏D, 𝑏M

}︁
have values greater than or equal to |𝒢| (i. e., only one of the three

bound values is actually relevant).

Then the instance is solvable in polynomial time.

Proof. The feasible set of the above instance of Flight Scheduling can be represented as
the intersection of the matroidℳ𝒢 with one of the independence systemsℳA

(𝐿,𝑏),ℳ
D
(𝐿,𝑏) or

ℳM
(𝐿,𝑏), namely the one corresponding to the smallest value among 𝑏A, 𝑏D and 𝑏M. As remarked

above, the non-shifting bound (𝐿, 𝑏)(𝐿) corresponds to setting 𝑆 =
{︀
1, 𝐿+ 1, . . . ,

⌊︀
𝑛
𝐿

⌋︀
𝐿+ 1

}︀
,

so {𝐻 ′𝑠 : 𝑠 ∈ 𝑆} is indeed a collection of disjoint sets, meaning thatℳA
(𝐿,𝑏),ℳ

D
(𝐿,𝑏) andℳ

M
(𝐿,𝑏)

are all matroids. The membership of an arbitrary subset of ℬ𝒢 in any of these matroids can be
tested in polynomial time, thus by Theorem 1.6 the instance is solvable in polynomial time using
the two matroid intersection algorithm. 2

The proof of 𝒩𝒫-hardness for Flight Scheduling in Section 3.2.1 basically uses only one
non-shifting bound on the number of Wight movements (technically, arrival and departure bounds
are also speciVed, but they have no eUect). From the matroid representation, we conclude that this
setting is easily solvable as long as we use only slot requests consisting of just a set of movement
requests (instead of a set of slot pairs). Apparently, adding an arrival-departure coupling in the
form of Wight requests (and thus slot pair requests) makes the problem 𝒩𝒫-hard, even if only
non-shifting bounds on the number of movements are applied. This clearly reWects the situation for
matching problems: As is well known, classical Maximum Matching can be solved in polynomial
time (e. g., by modeling it as two matroid intersection), while 3D-Matching is an 𝒩𝒫-hard
problem.

3.3 Maximum Slot Packing
In Section 3.2.2 we have seen that Flight Scheduling can be regarded as a composition of an
assignment problem with a packing problem under balancing constraints. In this section, we will
focus on the “packing part” of the problem, more precisely on slot conVgurations that can arise
from a Wight schedule of maximum size. On the one hand, considering only the slot conVgurations
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provides upper bounds on the number of Wights that may be scheduled and allows to evaluate
an actual Wight schedule by comparison. On the other hand, we will derive some results on
the structure of optimal slot conVgurations that can then serve as guidelines in the search for
optimal schedules. Additionally, by understanding how the structure and size of a maximum slot
conVguration depend upon the reference value system, one can gain insight into the mechanisms
supporting or obstructing good Wight schedules. These insights are of great advantage in practice
once a change in the time window bounds (their lengths, values and shifting behavior or adding or
deleting one or more time window bounds in the reference value system) must be evaluated.

Problem 3.17: Maximum (Circular) Slot Packing
Instance: A slot count 𝑛 ∈ N and a reference value systemℛ.
Question: Find a slot conVguration 𝐶 on 𝒮 = {1, . . . , 𝑛} that is (circular) feasible with respect

toℛ and has maximum size (i. e., maximizes the number of Wight movements 𝐶M(𝒮)).

Notice that the formal problem description does contain a somewhat malicious caveat: The
problem is formulated as a function problem asking for an output in the form of a vector (in contrast
to a decision problem, which only demands “Yes” or “No” as an answer, or an optimization problem,
which asks for the objective value of an optimal solution, but not necessarily for the solution itself).
This vector consists of 3𝑛 integers (where 𝑛 of these — namely the movements values 𝐶M — could
be computed on the Wy, reducing the size to 2𝑛 integers), thus Ω(𝑛) bits are needed to encode the
output on a binary Turing machine. In contrast to that, the input consists of the number 𝑛 and
4 |ℛ| numbers which encode the time window bounds (one length and three bound values for
each time window bound), plus |ℛ| indicator bits (denoting shifting or non-shifting bound), hence
the input may be encoded in 𝒪 (log𝑛+ |ℛ|) bits. In order to classify complexity of a function
problem (which would usually be given in a form calling for some elaborated output beyond “Yes”
or “No”), one generally resorts to a “natural” decision version of the problem (as we have done in
Section 3.2.1):

Problem 3.18: Maximum Slot Packing, Decision Version
Instance: A slot count 𝑛 ∈ N, a reference value systemℛ, and a number 𝑁 ∈ N0.
Question: Decide whether there exists a slot conVguration 𝐶 on 𝒮 = {1, . . . , 𝑛} of size at least

𝑁 that is (circular) feasible with respect toℛ.

Of course, in practice one is not only interested in the objective value of an optimal solution, but
also in the solution itself, which would be the slot conVguration 𝐶 in this case. The problem is
now obvious: If the formulation calls for a slot conVguration as an output, the size of the output
is not polynomially bounded in the size of the input. Thus the natural decision version is not
polynomially equivalent to the function problem here, because the output of the latter cannot
possibly be computed in polynomial time (even writing it down requires exponential time); thus
the function problem cannot be solved in polynomial time, even if a polynomial time algorithm for
the decision version exists.
We propose two possible solutions to this dilemma.
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1. For certain instances a classiVcation of the natural decision version of Slot Packing is
indeed possible, see Section 3.4.2, in particular Corollary 3.36. This is due to the fact that in
some cases it is possible to compute the optimal objective value without actually computing
a solution.

2. The fact that the wanted output is exponential in the size of the input certainly renders futile
all attempts at polynomial time algorithms for the function problem (that actually produces
a solution). The best we can hope for would then be an algorithm that is polynomial in the
size of the input and in 𝑛, and we will investigate such algorithms. Formally, one can cast
this into a more advanced decision problem.
Problem 3.19: Maximum Slot Packing, Verification Version
Instance: A slot count 𝑛 ∈ N, a reference value systemℛ, and a feasible slot conVguration

𝐶 on 𝒮 = {1, . . . , 𝑛}.
Question: Decide whether there is a slot conVguration on 𝒮 = {1, . . . , 𝑛} that is feasible

with respect toℛ and that has size greater than |𝐶| and, if so, Vnd such a slot
conVguration.

We call this the veriVcation version of Slot Packing, because it can be used to verify
whether a given slot packing is maximum. The veriVcation version of Slot Packing is
solvable in polynomial time if and only if the function problem is solvable in polynomial time
(using the same binary search techniques that are normally applied to establish polynomial
equivalence between an optimization problem and its natural decision version, see [PS98;
Pap95] for details).

3.3.1 Integer Programming Formulation
As we have already noted in Section 3.2.2, one of two parts of the integer programming formulation
for Flight Scheduling consists of the time window constraints. Basically, the integer program
for (Circular) Slot Packing can be thought of as the time window bounds part of the Flight
Scheduling integer program:
Problem 3.20: Maximum Slot Packing, IP Formulation
Instance: The number of slots 𝑛 ∈ N and the incidence matrix 𝑅 of a reference value system.
Question: Find slot conVguration vectors 𝐶A, 𝐶D, 𝐶M ∈ N𝑛0 that are optimal for the following

integer linear program:
max 1𝑇𝑛𝐶

M

s. t. 𝑅𝐶A ≤ 𝑏A

𝑅𝐶D ≤ 𝑏D

𝑅𝐶M ≤ 𝑏M

𝐶A + 𝐶D = 𝐶M

𝐶A, 𝐶D, 𝐶M ∈ N𝑛0
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For the circular version, simply replace all occurrences of 𝑅 and 𝑏A, 𝑏D, 𝑏M by 𝑅 and 𝑏̊A, 𝑏̊D, 𝑏̊M,
respectively.

3.3.2 Complexity Considerations
Where the integer programming formulation for Flight Scheduling exhibited information on
the internal composition of the problem, the integer program for Slot Packing is of even greater
value, as it enables us to derive a positive complexity result due to the special structure of the
constraint matrix.
DeVnition 3.21
A matrix 𝐴 ∈ {0, 1}𝑝×𝑞 with rows 𝑎𝑇1 , . . . , 𝑎

𝑇
𝑝 ∈ {0, 1}

𝑞 is called consecutive ones matrix if for
every row 𝑎𝑇𝑖 ̸= 0 there are 𝑗, 𝑘 ∈ {1, . . . , 𝑞} with 𝑗 ≤ 𝑘 such that 𝑎𝑇𝑖 = 1𝑇[𝑗, 𝑘] .

As the rows of an incidence matrix 𝑅 corresponding to a reference value systemℛ are actually
incidence vectors of time windows (i. e., intervals), such a matrix is a consecutive ones matrix.
The importance of this observation is due to the following result (a similar result can be found in
[Sch86] under the term “interval matrices”):
Lemma 3.22
A consecutive ones matrix is totally unimodular.

For the proof, we will use a characterization of total unimodularity due to Ghouila-Houri (see
[GH62]):
Lemma 3.23
Let 𝐴 ∈ {−1, 0,+1}𝑝×𝑞 and denote the columns of 𝐴 by 𝑎(1), . . . , 𝑎(𝑞). Then 𝐴 is totally
unimodular if and only if for each 𝐽 ⊂ {1, . . . , 𝑞} there is a partition 𝐽 = 𝐽+ ∪ 𝐽− such that∑︁

𝑗∈𝐽+

𝑎(𝑗) −
∑︁
𝑗∈𝐽−
𝑎(𝑗) ∈ {−1, 0,+1}𝑝 . (3.11)

Proof (of Lemma 3.22). Let 𝐴 ∈ {0, 1}𝑝×𝑞 be a consecutive ones matrix. Deleting rows and/or
columns from 𝐴 does not destroy this property, thus each sub-matrix of 𝐴 is also a consecutive
ones matrix. Let 𝐽 = {𝑗1, . . . , 𝑗𝑘} ⊂ {1, . . . , 𝑞} be a collection of column indices of 𝐴 and set
𝐽+ := {𝑗1, 𝑗3, . . .} and 𝐽− := {𝑗2, 𝑗4, . . .}. Then by the consecutive ones property the sum (3.11)
is in {−1, 0,+1} for every row of the resulting vector, therefore 𝐴 is totally unimodular. 2

Remark 3.24
A concept similar to consecutive ones matrices are circular ones matrices. In addition to zero rows
and rows of the form 1𝑇[𝑗, 𝑘] , a circular ones matrix may also contain rows of the form 1𝑇 − 1𝑇[𝑗, 𝑘]
for some 𝑗 ≤ 𝑘. The matrix𝑅 deVned in Section 3.1.4 is such a circular ones matrix. Unfortunately,
a circular ones matrix is not totally unimodular in general, as is illustrated by the example

𝑅 :=

⎛⎜⎝1 1 0
0 1 1
1 0 1

⎞⎟⎠ ,
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which corresponds to the slot set 𝒮 = {1, 2, 3} and a reference value system {([2]∘ , 𝑏)} for
arbitrary 𝑏 ∈ N3

0. The determinant of 𝑅 is then det(𝑅) = 2.

As linear programming problems with a totally unimodular constraint matrix always have
integral optimal solutions (all vertices of the feasible polyhedron are integral, see for instance
[Sch86]), this property is very valuable for integer programming problems. The “integer” part of
such problems need not be treated explicitly if one employs a linear programming algorithm that
is guaranteed to yield a vertex of the feasible polyhedron (provided the problem is feasible and
bounded). Such an algorithm can be implemented in polynomial time, e. g., using the ellipsoid
method, see [GLS93]), thus integer programming problems with a totally unimodular constraint
matrix are also polynomially solvable.

Alas, in the case of Slot Packing, the coupling of arrivals and departures produces a constraint
matrix that is not totally unimodular anymore, although it is composed of totally unimodular
matrices. This is due to the fact that we consider two diUerent kinds of Wights (arrivals and
departures), coupled via a common movements constraint. However, a closer look reveals that for
symmetric reference value systems we can completely disregard the distinction between arrivals
and departures, as the following lemma shows (the proof is inspired by a characterization of total
unimodularity by Baum and Trotter, see [BT77] or [Sch86]).

Lemma 3.25
Let 𝑛 ∈ N, 𝒮 = {1, . . . , 𝑛} be a slot set and ℛ a symmetric reference value system. Then any
function 𝐶 : 𝒮 → N0 with

𝐶(𝑠+ [𝐿]∘) ≤ 𝑏
M for all ([𝐿]∘ , 𝑏) ∈ ℛ and all 𝑠 ∈ 𝒮,

and 𝐶(𝑠+ [𝐿]∘) ≤ 𝑏
M for all ([𝐿]∘ , 𝑏)

(𝐿) ∈ ℛ and all 𝑠 ∈
{︂

1, 𝐿+ 1, . . . ,
⌊︂
𝑛

𝐿

⌋︂
𝐿+ 1

}︂
can be extended to a feasible slot conVguration, i. e., there is a slot conVguration 𝐶 : 𝒮 → N3

0
that is feasible forℛ and satisVes 𝐶M(𝑠) = 𝐶(𝑠) for all 𝑠 ∈ 𝒮 .

Proof. Let 𝑅 ∈ {0, 1}𝑚×𝑛 be the incidence matrix of the reference value systemℛ, let 𝑧 ∈ N𝑛0
be the vector 𝑧 =

(︀
𝐶(1)𝑇 , . . . , 𝐶(𝑛)𝑇

)︀𝑇 . We need to establish existence of a vector 𝑥 ∈ N𝑛0 such
that 𝑥 is a feasible arrivals slot conVguration (i. e., represents the 𝐶A component) and (𝑧 − 𝑥) is
a feasible departures slot conVguration (i. e., represents the 𝐶D component). Hence consider the
polytope

𝑃 :=
{︁
𝑥 ∈ R𝑛 : 0 ≤ 𝑥 ≤ 𝑧 ∧ 𝑅𝑧 − 𝑏D ≤ 𝑅𝑥 ≤ 𝑏A

}︁
.

Let 𝑞 := min
{︁
𝑏A

𝑏M
, 𝑏

D

𝑏M
: ([𝐿]∘ , 𝑏)(𝜎) ∈ ℛ

}︁
(notice 1

2 ≤ 𝑞 ≤ 1 due to symmetry of ℛ, and thus
1− 𝑞 ≤ 𝑞) and deVne 𝑥 := 𝑞 · 𝑧.

Clearly, 0 ≤ 𝑥 ≤ 𝑧 by deVnition of 𝑥. Also, for every row 𝑟𝑇𝑖 of the matrix 𝑅 we have

𝑟𝑇𝑖 𝑥 = 𝑞 · 𝑟𝑇𝑖 𝑧 ≤
𝑏A𝑖
𝑏M𝑖
𝑏M𝑖 = 𝑏A𝑖
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and 𝑟𝑇𝑖 (𝑧 − 𝑥) = (1− 𝑞)𝑟𝑇𝑖 𝑧 ≤ (1− 𝑞)𝑏M𝑖 ≤ 𝑞𝑏M𝑖 ≤
𝑏D𝑖
𝑏M𝑖
𝑏M𝑖 = 𝑏D𝑖 .

Therefore 𝑥 ∈ 𝑃 ̸= ∅, and by total unimodularity of 𝑅, the polytope 𝑃 has only integral vertices.
DeVne a slot conVguration 𝐶 : 𝒮 → N3

0 by letting 𝐶A be some (integral) vertex of 𝑃 and
𝐶D := 𝑧 − 𝐶A, then clearly 𝐶 is an extension of 𝐶 and is feasible by deVnition of 𝑃 . 2

1 2 3

≤ 1 Arr.

≤ 1Dep.

⇒≤ 2 Mvmts.

Figure 3.4: Illustration of Remark 3.26. The Vrst two slots contain two movements each, which is feasible
with respect to the movements bounds. However, only one arrival and one departure are allowed
for these slots, yielding an implied movements bound of two.

Remark 3.26
Note that the symmetry condition 𝑏A, 𝑏D ≥ 𝑏M2 for every time window bound (𝐿, 𝑏)(𝜎) ∈ ℛ
cannot be dropped for the proposition of Lemma 3.25. To see this, consider the reference value
system

ℛ :=
{︁(︀

[2]∘ , (1, 3, 4)𝑇
)︀
;
(︀
[3]∘ , (4, 1, 5)𝑇

)︀}︁
on the slot set 𝒮 = {1, 2, 3}. Obviously, the 𝑏M-values allow for a slot conVguration with
𝐶M = (2, 2, 0)𝑇 , cf. Figure 3.4. In contrast, the shifting bound of length 3 allows for at most one
departure within the Vrst three slots, while the shifting bound of length 2 restricts the number of
arrivals within the Vrst two slots to one, so at most two movements (one arrival and one departure)
can be scheduled in slots 1 and 2. This is clearly in conWict with the four movements prescribed by
𝐶M = (2, 2, 0)𝑇 . Notice that each of the two time window bounds alone does not imply such a
contradictory behavior, this is only encountered when both are applied simultaneously.

Lemma 3.25 allows us to consider movements slot conVgurations of the form 𝐶M : 𝒮 → N0
interpreted as Wight movements value of some extension of 𝐶 . A (full) slot conVguration 𝐶 :
𝒮 → N3

0 can then be constructed from 𝐶M as in the proof of the foregoing lemma. Due to total
unimodularity of the incidence matrix 𝑅, the construction is also algorithmically eXcient. The
corresponding problem will be referred to as Maximum Movements Slot Packing (the same
term will be used for the circular case). As a consequence of this and total unimodularity of the
incidence matrix of a reference value system, we immediately obtain the following complexity
result.

76



3.4 Algorithms for Maximum Slot Packing

Theorem 3.27
For a symmetric reference value system, Problem 3.19 (Maximum Slot Packing, verification
version) can be solved in polynomial time. Equivalently, Problem 3.17 (Maximum Slot Packing)
can be solved in time polynomial in 𝑛.

Proof. The proof is a direct consequence of Lemma 3.22 and Lemma 3.25: Given a slot set
𝒮 = {1, . . . , 𝑛} and a reference value systemℛ with incidence matrix 𝑅, a maximum movements
slot conVguration 𝐶M ∈ N𝑛0 can be found in polynomial time by solving the linear programming
problem

max 1𝑇𝑛𝐶
M

s. t. 𝑅𝐶M ≤ 𝑏M

𝐶M ≥ 0
and Vnding an optimal vertex of the feasible set, which is also integral. Then, 𝐶M can be extended
to a maximum slot packing by determination of a feasible vertex 𝑥 of the polytope

𝑃 :=
{︁
𝑥 ∈ R𝑛 : 0 ≤ 𝑥 ≤ 𝐶M ∧ 𝑅𝐶M − 𝑏D ≤ 𝑅𝑥 ≤ 𝑏A

}︁
.

By total unimodularity, 𝑥 is integral and 𝐶 : 𝑠 ↦→ (𝑥𝑠, 𝐶M
𝑠 −𝑥𝑠, 𝐶M

𝑠 )𝑇 is a maximum slot packing
which is feasible with respect toℛ. 2

3.4 Algorithms for Maximum Slot Packing
In this section we will be looking into the Slot Packing problem from an algorithmic point of
view. Although Section 3.3 in principle established a polynomial algorithm to solve the veriVcation
version of Maximum Slot Packing (and also the function problem, polynomial in the input and in
𝑛), there are still good reasons to explore alternative algorithmic approaches. On the one hand, the
special structure of the constraints can be exploited to devise an easily implementable algorithm
for Maximum Slot Packing and its circular version (note that the latter cannot be tackled by the
approach of Section 3.3). On the other hand, albeit polynomial in theory, the practical solution
of linear programming problems is often carried out by the simplex method, which can have
exponential running time in the worst case (but is usually much faster than approaches based on
the ellipsoid algorithm in practice). Thus alternative polynomial algorithms may not only be faster
than a linear programming based technique, but also reveal some structural results about relevant
classes of solutions for the Maximum Slot Packing problem. In this section, we will focus on
Maximum Movements Slot Packing problems (cf. Section 3.3.2, in particular Lemma 3.25) in
order to provide for a concise presentation of the algorithmic results. Of course, this implies that
for a time window bound (𝐿, 𝑏)(𝜎) only the movements bound value 𝑏M is relevant. For this
reason, we will sometimes omit the values 𝑏A and 𝑏D and simply write (𝐿, 𝑏M)(𝜎) instead of(︀
𝐿, (𝑏A, 𝑏D, 𝑏M)

)︀
, especially in the examples and illustrations.
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Problem 3.28: Maximum Movements Slot Packing
Instance: A slot count 𝑛 ∈ N and a reference value systemℛ.
Question: Find a movements slot conVguration 𝐶M : 𝒮 → N0 on 𝒮 = {1, . . . , 𝑛} that is

(circular) feasible with respect toℛ and has maximum size (i. e., maximizes the number
of Wight movements 𝐶M(𝒮)).

3.4.1 Algorithms for Maximum Movements Slot Packing

We will Vrst present an approach to Maximum Movements Slot Packing that is based on a
reformulation for consecutive ones problems (cf. DeVnition 3.21) proposed by Veinott and Wagner
(cf. [VW62a; VW62b]). The idea closely resembles a treatment of staU scheduling problems
proposed in [BIOR80]. A more recent overview of related work on consecutive and circular ones
constraints (cf. Remark 3.24) can be found in [HL06], that work also contains an outline of shortest
path approaches to linear programming problems with consecutive and circular ones matrices.

A Shortest Path Formulation

In order to establish a connection between Maximum Movements Slot Packing and Short-
est Path, we will look at a reformulation based on a linear programming formulation of
Maximum Movements Slot Packing that is straightforwardly derived from the linear pro-
gram presented in Section 3.3.1. For a slot set 𝒮 = {1, . . . , 𝑛}, and a reference value system
ℛ =

{︁
(𝐿1, 𝑏1)(𝜎1), . . . , (𝐿𝑘, 𝑏𝑘)(𝜎𝑘)

}︁
with incidence matrix 𝑅, Vnd a vector (indicating the

number of Wight movements per slot) 𝐶M ∈ N𝑛0 (or R𝑛≥0 in the LP relaxation) that solves the
following linear program:

max 1𝑇𝐶M

s. t. 𝑅𝐶M ≤ 𝑏M

𝐶M ≥ 0
We start by deVning decision variables 𝑤0, . . . , 𝑤𝑛, where 𝑤𝑗 counts the number of Wight move-
ments up to slot 𝑗, i. e.,

𝑤0 := 0, 𝑤𝑗 :=
𝑗∑︁
𝑡=1
𝐶M
𝑡 for 𝑗 ∈ {1, . . . , 𝑛}. (3.12)
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Thus, the Slot Packing linear program is transformed into

max 𝑤𝑛 (3.13)

s. t. 𝑤𝑠+𝐿𝑖 − 𝑤𝑠 ≤ 𝑏M𝑖 for all (𝐿𝑖, 𝑏𝑖) ∈ ℛ
and all 𝑠 ∈ {0, . . . , 𝑛− 𝐿𝑖} (3.14)

𝑤𝑠+𝐿𝑖 − 𝑤𝑠 ≤ 𝑏M𝑖 for all (𝐿𝑖, 𝑏𝑖)(𝐿𝑖) ∈ ℛ
and all 𝑠 ∈ {0, 𝐿𝑖, . . . , (⌊𝑛/𝐿𝑖⌋ − 1)𝐿𝑖} (3.15)

𝑤𝑛 − 𝑤⌊𝑛/𝐿𝑖⌋𝐿𝑖 ≤ 𝑏
M
𝑖 for all (𝐿𝑖, 𝑏𝑖)(𝐿𝑖) ∈ ℛ,

where 𝑛 is not an integer multiple of 𝐿𝑖 (3.16)

𝑤𝑠−1 − 𝑤𝑠 ≤ 0 for all 𝑠 ∈ {1, . . . , 𝑛} (3.17)

𝑤0 = 0 (3.18)

The inequalities (3.14) correspond to the shifting bounds, whereas (3.15) and (3.16) reWect the
non-shifting bounds of the original problem. The constraints (3.17) model the non-negativity
conditions 𝑧 ≥ 0.

We will now show that (3.13)–(3.18) is in fact the dual of a Shortest Path problem. To see this,
deVne a digraph 𝐺 = (𝑉,𝐴) on the node set 𝑉 := {0, . . . , 𝑛} as illustrated in Figure 3.5:

• For every shifting bound (𝐿𝑖, 𝑏𝑖) ∈ ℛ and every time window [𝑠+ 1, 𝑠+ 𝐿𝑖] (𝑠 =
0, 1, . . . , 𝑛− 𝐿𝑖) deVne a forward arc (𝑠, 𝑠+ 𝐿𝑖), yielding the arc sets

𝐴𝑖 := {(𝑠, 𝑠+ 𝐿𝑖) : 𝑠 = 0, 1, . . . , 𝑛− 𝐿𝑖} for all (𝐿𝑖, 𝑏𝑖) ∈ ℛ.

• For every non-shifting bound (𝐿𝑖, 𝑏𝑖)(𝐿𝑖) ∈ ℛ and every time window [𝑠+ 1, 𝑠+ 𝐿𝑖] (for
suitably chosen 𝑠 ∈ 𝒮) and, if necessary, for the “truncated” time windows ending in slot 𝑛,
deVne a forward arc (𝑠, 𝑠+ 𝐿𝑖), yielding the arc sets

𝐴𝑖 := {(𝑠, 𝑠+ 𝐿𝑖) : 𝑠 = 0, 𝐿𝑖, . . . , (⌊𝑛/𝐿𝑖⌋ − 1)𝐿𝑖} for all (𝐿𝑖, 𝑏𝑖)(𝐿𝑖) ∈ ℛ,

𝐴′ :=
{︁(︀
⌊𝑛/𝐿𝑖⌋𝐿𝑖, 𝑛

)︀
: (𝐿𝑖, 𝑏𝑖)(𝐿𝑖) ∈ ℛ ∧ 𝑛 is not an integer multiple of 𝐿𝑖

}︁
,

• For each pair of consecutive nodes 𝑢− 1, 𝑢 deVne a backward arc (𝑢, 𝑢− 1), yielding the
arc set

𝐵 := {(𝑛, 𝑛− 1), (𝑛− 1, 𝑛− 2), . . . , (1, 0)} .

Thus the graph 𝐺 = (𝑉,𝐴) has the arc set

𝐴 :=

⎛⎝ ⋃︁
𝑖=1,...,𝑘

𝐴𝑖

⎞⎠ ∪𝐴′ ∪𝐵,
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0 1 2 3 4 500000

𝑏M1 𝑏M1 𝑏M1

𝑏M2 𝑏M2
𝑏M2

Figure 3.5: Slot Packing as Shortest Path problem. Shown is an example for 𝑛 = 5 slots and the reference

value system ℛ =
{︀(︀

[3]∘ , 𝑏1
)︀
,
(︀
[2]∘ , 𝑏2

)︀(2)}︀
, containing one shifting and one non-shifting

bound.

containing one forward arc for every time window of a time window bound plus 𝑛 backward arcs.
Furthermore, deVne an arc length function 𝑙 : 𝐴→ N0,

𝑙
(︀
(𝑢, 𝑣)

)︀
:= 𝑙𝑢𝑣 :=

⎧⎪⎪⎨⎪⎪⎩
𝑏M𝑖 , if (𝑢, 𝑣) ∈ 𝐴𝑖;
𝑏M𝑖 , if (𝑢, 𝑣) =

(︀
⌊𝑛/𝐿𝑖⌋𝐿𝑖, 𝑛

)︀
∈ 𝐴′

0, if (𝑢, 𝑣) ∈ 𝐵.

In terms of the digraph 𝐺 the linear program (3.13)–(3.18) now reads

max 𝑤𝑛

s. t. 𝑤𝑣 − 𝑤𝑢 ≤ 𝑙𝑢𝑣 for every arc (𝑢, 𝑣) ∈ 𝐴
𝑤0 = 0.

With Kronecker’s delta function 𝛿𝑢𝑛 ∈ {0, 1}, deVned as 𝛿𝑢𝑛 = 1 ⇔ 𝑢 = 𝑛, the dual of that
linear program is

min
∑︁

(𝑢,𝑣)∈𝐴
𝑙𝑢𝑣 · 𝑓𝑢𝑣 (3.19)

s. t.
∑︁

𝑣∈𝑉 :(𝑣,𝑢)∈𝐴
𝑓𝑣𝑢 −

∑︁
𝑣∈𝑉 :(𝑢,𝑣)∈𝐴

𝑓𝑢𝑣 = 𝛿𝑢𝑛 for 𝑢 = 1, . . . , 𝑛 (3.20)

∑︁
𝑣∈𝑉 :(𝑣,0)∈𝐴

𝑓𝑣0 −
∑︁

𝑣∈𝑉 :(0,𝑣)∈𝐴
𝑓0𝑣 = 𝑔 (3.21)

𝑓 ≥ 0 (3.22)

𝑔 ∈ R. (3.23)

This linear program is easily recognized as a network Wow problem with Wow variables 𝑓𝑢𝑣 ,
(𝑢, 𝑣) ∈ 𝐴, where (3.20) and (3.21) constitute the Wow conservation requirements. Notice that
(3.21) is redundant and can be dropped together with the decision variable 𝑔 (both originate from
considering 𝑤0 as a variable and 𝑤0 = 0 as a constraint in the primal). We then arrive at the
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problem of sending one unit of Wow from the node 0 to the node 𝑛 at minimum cost, where the
cost of sending one unit of Wow across arc (𝑢, 𝑣) ∈ 𝐴 is 𝑙𝑢𝑣 . This special network Wow problem
is, of course, equal to the problem of Vnding a shortest path from 0 to 𝑛 in the graph 𝐺 with arc
length function 𝑙. Notice that for a shortest path problem we are also guaranteed that an integral
solution 𝑤 to the dual shortest path program (3.13)–(3.18) can be found eXciently.
Multiple algorithms exist for the solution of Shortest Path problems. For the setting at hand

(featuring a digraph with nonnegative arc lengths) one can, e. g., employ Dijkstra’s algorithm
(cf. [Dij59]) requiring at most 𝒪

(︀
𝑛2)︀ operations. Using clever data structures (like a Fibonacci

heap), the algorithm can also be implemented with running time 𝒪 (|𝐴|+ 𝑛 log𝑛), see [AMO93].
Dijkstra’s algorithm has one particular advantage for the setting encountered in the context of Slot
Packing: It is fundamentally a primal-dual algorithm1, which means it does not only solve the
Shortest Path problem, but also produces a solution to the original (dual shortest path problem)
along with the shortest path. Thus we arrive at Algorithm 3.1, solving the veriVcation version of
Maximum Movements Slot Packing in polynomial time.

Algorithm 3.1: Dijkstra’s algorithm for Maximum Movements Slot Packing

Input: A slot count 𝑛 ∈ N and reference value systemℛ =
{︁

(𝐿1, 𝑏1)(𝜎1), . . . , (𝐿𝑘, 𝑏𝑘)𝜎𝑘
}︁

on the slot set 𝒮 = {1, . . . , 𝑛}.
Output: A movements slot conVguration 𝐶M : 𝒮 → N0, which is feasible with respect toℛ

and has maximum size.

Construct a graph 𝐺 = (𝑉,𝐴) with arc length function 𝑙 : 𝐴→ N0 as in Section 3.4.1.1

Set 𝑈 ← {0}, 𝑤0 ← 0.2

Set 𝑤𝑣 ← 𝑙0𝑣 for all 𝑣 ∈ 𝑉 with (0, 𝑣) ∈ 𝐴.3

Set 𝑤𝑣 ←∞ for all 𝑣 ∈ 𝑉 with (0, 𝑣) /∈ 𝐴.4

while 𝑈 ̸= 𝑉 do5

Find 𝑢 ∈ 𝑉 ∖𝑈 such that 𝑤𝑢 = min {𝑤𝑣 : 𝑣 ∈ 𝑈∖𝑉 }.6

Set 𝑈 ← 𝑈 ∪ {𝑢}.7

Set 𝑤𝑣 ← min {𝑤𝑣, 𝑤𝑢 + 𝑙𝑢𝑣} for all 𝑣 ∈ 𝑉 with (𝑢, 𝑣) ∈ 𝐴.8

end9

Set 𝐶M
𝑢 ← 𝑤𝑢 − 𝑤𝑢−1 for all 𝑢 ∈ 𝒮 = {1, . . . , 𝑛}.10

Theorem 3.29
An instance ofMaximum Movements Slot Packing on 𝑛 slots and with a reference value system
consisting of 𝑘 time window bounds can be solved in running time 𝒪 (𝑘𝑛+ 𝑛 log𝑛).

1A primal-dual algorithm basically considers a primal problem and its dual simultaneously. For a primal feasible
solution it tries to produce a corresponding dual solution such that the primal-dual pair fulVlls the complementary
slackness conditions, thus providing for a certiVcate of optimality. If that is not possible (due to non-optimality of
the primal feasible solution), an improvement to the primal solution can be computed. Repeating this process yields
an optimal primal-dual pair after Vnitely many steps. A detailed exposition on primal-dual algorithms and Dijkstra’s
algorithm in particular can be found in [PS98].
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Proof. Using the transformation described above, Maximum Movements Slot Packing can
be transformed into a Shortest Path problem on a digraph with (𝑛 + 1) nodes and at most
(𝑛 + 𝑛𝑘) arcs (at most 𝑛 arcs are required for each time window bound). A Fibonacci heap
implementation of Dijkstra’s algorithm (like the one described in detail in [AMO93]) thus produces
an optimal solution of both the Shortest Path problem and its dual (3.13)–(3.18) in running time
𝒪 ((𝑘 + 1)𝑛+ 𝑛 log𝑛) = 𝒪 (𝑘𝑛+ 𝑛 log𝑛). By reversing the transformation (3.12) (which can
be done using 𝑛 elementary operations), we obtain an optimal solution within the running time
claimed in the statement of the theorem. 2

A Greedy Algorithm

We will now show that close analysis of the Shortest Path approach yields the insight that the
algorithm can even be implemented as a pure greedy strategy for Maximum Movements Slot
Packing. As stated above, Dijkstra’s algorithm can be used on a suitably deVned graph to obtain a
solution of the slot packing problem, cf. Algorithm 3.1.
However, the particular graph 𝐺 = (𝑉,𝐴) with arc length function 𝑙 : 𝐴 → N0 deVned in

Section 3.4.1 has a very special property: For every node 𝑢 ∈ 𝑉 ∖ {0} = {1, . . . , 𝑛}, there is
exactly one backward arc (𝑢, 𝑢− 1), all other arcs are forward arcs, meaning they have the form
(𝑢, 𝑣) for some 𝑣 > 𝑢. Moreover, the backward arcs all have length 0, while the forward arcs all
have positive length (assuming all time window bounds are strictly greater than 0). Dijkstra’s
algorithm basically works like this (cf. Algorithm 3.1):

• Choose and “tag” (i. e., add to the set 𝑈 ) a node 𝑢 with minimum label 𝑤𝑢 among all nodes
in 𝑉 ∖𝑈 .

• “Propagate” the node label 𝑤𝑢 to all neighbors 𝑣 ∈ 𝑉 ∖𝑈 of node 𝑢, setting 𝑤𝑣 to 𝑤𝑢 + 𝑙𝑢𝑣
if this decreases 𝑣’s label.

Hence whenever a node 𝑢 gets tagged and (𝑢 − 1) has not yet been tagged, we can simply set
𝑤𝑢−1 to 𝑤𝑢 (as there is an edge of length 0 from 𝑢 to (𝑢 − 1)) and tag 𝑢 − 1 as well. We can
therefore assume without loss of generality that the nodes are tagged in order of their node number.
After the algorithm has Vnished, the labels meet the condition

𝑤𝑢−1 < 𝑤𝑢 ⇒ 𝑤𝑣 + 𝑙𝑣𝑢 = 𝑤𝑢 for some 𝑣 < 𝑢 such that (𝑣, 𝑢) ∈ 𝐴 is a forward arc, 2

thus at the optimal solution for every node 𝑢 ∈ 𝑉 one of the following cases applies:

1. There is some node 𝑣 < 𝑢 such that (𝑣, 𝑢) ∈ 𝐴 and 𝑤𝑣 + 𝑙𝑣𝑢 = 𝑤𝑢: This situation
corresponds to some time window bound (𝐿𝑖, 𝑏𝑖)(𝜎𝑖) ∈ ℛ, such that [𝑣 + 1, 𝑢] is one of its
corresponding time windows and 𝑤𝑢 − 𝑤𝑣 = 𝑏M𝑖 . (This means that the Wight movements
added at slot 𝑢 make that time window “active”.)

2These conditions are actually optimality conditions and are equal to complementary slackness for the shortest
path problem.
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2. 𝑤𝑢−1 = 𝑤𝑢: This situation corresponds to some time window bound (𝐿𝑖, 𝑏𝑖)(𝜎𝑖) ∈ ℛ and
a slot 𝑠 ∈ 𝒮 , such that

• (𝑠+ 1) + [𝐿𝑖]∘ is a time window corresponding to the time window bound,

• (𝑢− 1), 𝑢 ∈ (𝑠+ 1) + [𝐿𝑖]∘ and
• 𝑤𝑢−1 − 𝑤𝑠 = 𝑏M𝑖 .

(This means no more movements can be added to slot 𝑢, as it already contained in some
“active” time window.)

With this analysis in mind, we can interpret Dijkstra’s algorithm for the Maximum Movements
Slot Packing problem as the following greedy algorithm:

• Start at slot 1 and set 𝑐M1 to the maximum number of movements that is possible without
violating a time window bound.

• After slots 1 to 𝑢 have been processed, move on to the next slot 𝑢+ 1 and set 𝐶M
𝑢+1 to the

maximum number that is possible without violating a time window bound.

For a concise presentation of that algorithm, let us deVne the following notation:

DeVnition 3.30
Let 𝒮 = {1, . . . , 𝑛} be a slot set, 𝑠 ∈ 𝒮 and (𝐿, 𝑏)(𝜎) a time window bound. The covering
time windows set𝒲

(︀
(𝐿, 𝑏)(𝜎), 𝑠

)︀
is then deVned as the set of all time windows corresponding to

(𝐿, 𝑏)(𝜎) on the slot set 𝒮 that contain the slot 𝑠, precisely:

• For a shifting bound (𝜎 = 1)

𝒲
(︀
(𝐿, 𝑏)(𝜎), 𝑠

)︀
:= {[𝑡+ 1, 𝑡+ 𝐿] : 𝑡 ∈ {𝑠− 𝐿, . . . , 𝑠− 1} ∧ [𝑡+ 1, 𝑡+ 𝐿] ⊂ 𝒮} ;

• for a non-shifting bound (𝜎 = 𝐿)

𝒲
(︀
(𝐿, 𝑏)(𝜎), 𝑠

)︀
:=
{︃

[(⌈𝑠/𝐿⌉ − 1)𝐿+ 1, ⌈𝑠/𝐿⌉𝐿] , if ⌈𝑠/𝐿⌉𝐿 ≤ 𝑛;
[(⌈𝑠/𝐿⌉ − 1)𝐿+ 1, 𝑛] , if ⌈𝑠/𝐿⌉𝐿 > 𝑛.

The greedy formulation of the Shortest Path approach is outlined in Algorithm 3.2.
For the running time of Algorithm 3.2, deVne 𝐿′ := max {𝐿1, . . . , 𝐿𝑘} and note that computing
𝐶M(𝑊 ) for all time windows𝑊 of length 𝐿 that contain a given slot 𝑠 can take up to 𝒪

(︀
𝑘𝐿′2

)︀
operations using a naive implementation. Of course, this runtime bound can be improved by
storing the values of 𝐶M(𝑊 ) for all relevant time windows and simply updating those values
in each iteration of the “for” loop in Algorithm 3.2. As we move forward one slot at a time
(changing the slot conVguration only at that one slot), the update is fairly straightforward and can
be performed in 𝒪 (𝑘𝐿′) steps, yielding an overall runtime bound of 𝒪 (𝑛𝑘𝐿′) operations for the
greedy implementation. As 𝐿′ and 𝑘 are usually small constants compared to 𝑛, this algorithm
is of linear order in most applications, whereas the pure Dijkstra implementation has complexity
𝒪 (𝑛 log𝑛) for constant 𝑘.
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Algorithm 3.2: Greedy algorithm for Maximum Movements Slot Packing

Input: A slot count 𝑛 ∈ N and reference value systemℛ =
{︁

(𝐿1, 𝑏1)(𝜎), . . . , (𝐿𝑘, 𝑏𝑘)𝜎
}︁
on

the slot set 𝒮 = {1, . . . , 𝑛}.
Output: A movements slot conVguration 𝐶M : 𝒮 → N0, which is feasible with respect toℛ

and has maximum size.

Set 𝐶M
𝑖 ← 0 for all 𝑖 ∈ 𝒮 .1

for s=1, . . . , 𝑛 do2

Set 𝐶M
𝑠 ← min

{︁
max

{︁
0, 𝑏M − 𝐶M(𝑊 )

}︁
:𝑊 ∈ 𝒲

(︀
(𝐿, 𝑏)(𝜎), 𝑠

)︀
∧ (𝐿, 𝑏)(𝜎) ∈ ℛ

}︁
.3

end4

3.4.2 Algorithms for Circular Maximum Movements Slot Packing
A Shortest Path Formulation

For the algorithms of Section 3.4.1 the consecutive ones property of the reference value system’s in-
cidence matrix is crucial, as it guarantees that the reformulation (3.12) yields a linear programming
problem with exactly two variables per inequality, one with a positive and one with a negative
sign, which corresponds to a digraph’s arc-node incidence matrix. Alas, this property is lost when
we consider circular bounds, which correspond to a circular incidence matrix representing the
reference value system. In this subsection, we will therefore investigate a method to carry over the
idea of the Shortest Path approach to circular shifting bounds, and afterwards present a greedy
algorithm that can be applied for both circular and non-circular bounds. Recall that for circular
constraints we only consider shifting bounds.

It has already been said that the Shortest Path algorithm of Section 3.4.1 can be generalized to
the circular setting, and the way to do this is by resorting to Parametric Shortest Path problems.
A Parametric Shortest Path problem is deVned by a digraph 𝐺 = (𝑉,𝐴) with a distinguished
node 0 ∈ 𝑉 and an arc length function 𝑙𝜆 : 𝐴→ R dependent on a parameter 𝜆 ∈ [0, ∞[:

𝑙𝜆𝑢𝑣 := 𝑙
(︀
(𝑢, 𝑣)

)︀
:= 𝑙*𝑢𝑣 + 𝜆𝑙̃𝑢𝑣,

where 𝑙*, 𝑙̃ : 𝐴 → R are two unparameterized arc length functions. The task of Parametric
Shortest Path is now to compute the shortest path distances 𝑤𝜆𝑢 from the node 0 to all nodes
𝑢 ∈ 𝑉 with respect to the arc length function 𝑙𝜆 for all values of 𝜆 ≥ 0.

We give an outline of how to solve this problem (details can be found in [AMO93] and [YTO91]):

• First, consider a shortest path tree 𝑇 𝜆 for any given value of 𝜆. A shortest path tree 𝑇 𝜆 ⊂ 𝐴
is a tree in 𝐺 such that the shortest 0-𝑢 paths with respect to 𝑙𝜆 are contained in 𝑇 𝜆 for all
nodes 𝑢 ∈ 𝑉 . One can then show that 𝑤𝜆𝑢 = (𝑤*)𝜆𝑢 + 𝜆 · (𝑤̃)𝜆𝑢, where (𝑤*)𝜆𝑢 and (𝑤̃)𝜆𝑢 are
the shortest path distances in the subgraph

(︁
𝑉, 𝑇 𝜆

)︁
with respect to the arc length functions

𝑙* and 𝑙̃, respectively.
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• Starting with 𝜆 = 0, determine a “breakpoint parameter value” 𝜆′ greater than the current
value of 𝜆 such that the shortest path tree stays unaltered for all parameter values between
the current 𝜆 and 𝜆′. To this end, consider all non-tree arcs in the graph and determine the
minimum parameter value increase where at least one of these arcs must enter the shortest
path tree (leading to a new shortest path tree via an arc exchange).

• Successively determine all breakpoint parameter values, i. e., those values for the parameter
𝜆 where the shortest path tree changes, and compute the corresponding shortest path trees.

One can show that is algorithm produces only a Vnite number of diUerent shortest path trees, thus
the Parametric Shortest Path problem reduces to successively computing all (Vnitely many)
breakpoint parameter values and applying a shortest path algorithm with respect to 𝑙* and 𝑙̃ for all
the resulting shortest path trees. A reVned version of this idea is presented in [YTO91], yielding an
algorithm with running time 𝒪

(︁
|𝑉 | |𝐴|+ |𝑉 |2 log |𝑉 |

)︁
= 𝒪

(︁
|𝑉 |3

)︁
that produces at most |𝑉 |

diUerent shortest path trees for a digraph 𝐺 = (𝑉,𝐴)
We will now apply the Parametric Shortest Path algorithm to Maximum Movements Slot

Packing on the slot set 𝒮 = {1, . . . , 𝑛} with reference value systemℛ and circular time window
bounds. Recall that we only consider shifting bounds for circular problems, so using again the
transformation (3.12), the problem is equal to (the integer programming version of) the linear
program

max 𝑤𝑛

s. t. 𝑤𝑠+𝐿𝑖 − 𝑤𝑠 ≤ 𝑏M𝑖 for all (𝐿𝑖, 𝑏𝑖) ∈ ℛ and all 𝑠 ∈ {0, . . . , 𝑛− 𝐿𝑖}
𝑤𝑠−𝑛+𝐿𝑖 − 𝑤𝑠 ≤ 𝑏M𝑖 − 𝑤𝑛 for all (𝐿𝑖, 𝑏𝑖) ∈ ℛ and all 𝑠 ∈ {𝑛− 𝐿𝑖 + 1, . . . , 𝑛− 1}
𝑤𝑠−1 − 𝑤𝑠 ≤ 0 for all 𝑠 ∈ {1, . . . , 𝑛}
𝑤0 = 0

We turn this into a parameterized linear program by replacing the variable 𝑤𝑛 on the right
hand side by the parameter 𝜆. Then, analogous to the above treatment, a corresponding graph
𝐺 = (𝑉,𝐴) can be deVned (see Figure 3.6) on the node set 𝑉 = {0, . . . , 𝑛} and the arc set

𝐴 :=

⎛⎝ ⋃︁
𝑖=1,...,𝑘

(𝐴𝑖 ∪ (𝐴)′𝑖

⎞⎠ ∪𝐵,
where 𝐴𝑖 := {(𝑠, 𝑠+ 𝐿𝑖) : 𝑠 = 0, . . . , 𝑛− 𝐿𝑖} for all (𝐿𝑖, 𝑏𝑖) ∈ ℛ

(𝐴)′𝑖 := {(𝑠, 𝑠− 𝑛+ 𝐿𝑖) : 𝑠 = 𝑛− 𝐿𝑖 + 1, . . . , 𝑛− 1} for all (𝐿𝑖, 𝑏𝑖) ∈ ℛ
𝐵 := {(𝑛, 𝑛− 1), (𝑛− 1, 𝑛− 2), . . . , (1, 0)} .

85



Chapter 3 Flight Scheduling Problems — Complexity, Structure and Algorithms

0 1 2 3 4 500000

𝑏M 𝑏M 𝑏M

𝑏M − 𝜆 𝑏M − 𝜆

Figure 3.6: Circular Slot Packing as Shortest Path problem. Shown is an example for 𝑛 = 5 slots and
the reference value system ℛ =

{︀(︀
[3]∘ , 𝑏

)︀}︀
, containing one shifting bound that is applied

circularly.

The arc length function 𝑙𝜆 : 𝐴→ R0 is now deVned as

𝑙𝜆
(︀
(𝑢, 𝑣)

)︀
:= 𝑙𝜆𝑢𝑣 :=

⎧⎪⎪⎨⎪⎪⎩
𝑏M𝑖 , if (𝑢, 𝑣) ∈ 𝐴𝑖;
𝑏M𝑖 − 𝜆, if (𝑢, 𝑣) ∈ (𝐴)′𝑖;
0, if (𝑢, 𝑣) ∈ 𝐵.

The task at hand is then to solve the Parametric Shortest Path problem on 𝐺 starting at
𝜆 = 0, thus obtaining the breakpoint parameter values for 𝜆 and the corresponding values for the
decision variables 𝑤𝜆𝑢 (which are equal to the shortest path distances from node 0 to the nodes 𝑢)
for 𝑢 ∈ 𝑉 . For a solution to the original problem, we impose the additional requirement that

𝑤𝜆𝑛 = 𝜆. (3.24)

Having obtained a solution to Parametric Shortest Path, it is then an easy task to determine a
value of 𝜆 with that property and the corresponding shortest path distance 𝑤𝜆𝑛.

Note, however, that the graph𝐺may contain arcs of negative length depending on the parameter
𝜆. Thus we may no longer use Dijkstra’s algorithm for the shortest 0-𝑛 path computations needed
for the solution of vParametric Shortest Path, but rather an algorithm that can handle negative
arc lengths, e. g., the algorithms of Bellman-Ford or Floyd-Warshall (see [PS98] for details on these
algorithms). This fact also accounts (at least partly) for the runtime 𝒪

(︁
|𝑉 |3

)︁
of the algorithm

from [YTO91] mentioned above. For that algorithm, a certain procedure for producing the shortest
path trees is employed that guarantees that a maximum of |𝑉 | such trees are needed for the
solution. Application of the proposed Parametric Shortest Path algorithm on the graph 𝐺 with
arc length function 𝑙𝜆 as deVned above and afterwards computing the correct parameter value
now yields the desired algorithm for circular Maximum Movements Slot Packing.

Theorem 3.31
An instance of circular Maximum Movements Slot Packing on 𝑛 slots and with a reference
value system consisting of 𝑘 shifting bounds can be solved in running time 𝒪

(︀
𝑘𝑛2 + 𝑛2 log𝑛

)︀
.
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Proof. Transforming the instance into a Parametric Shortest Path problem as outlined above
and applying the algorithm of [YTO91] we get a complete set of shortest path trees in running time
at most 𝒪

(︁
|𝑉 | |𝐴|+ |𝑉 |2 log |𝑉 |

)︁
= 𝒪

(︀
𝑘𝑛2 + 𝑛2 log𝑛

)︀
. By [YTO91], the algorithm yields at

most (𝑛+ 1)2 shortest path trees, hence using (3.24), the correct value for 𝜆 can be computed in
running time 𝒪

(︀
𝑛2)︀. The optimal slot packing can then be devised by computing the dual value

to the shortest path distances obtained by the algorithm (which can certainly be done in course of
the algorithm as well), analogous to the case of non-circular time window bounds treated above.
Therefore, the overall running time is dominated by the parametric shortest path algorithm. As
|𝐴| ≤ (𝑛+ 1) + 𝑘(𝑛+ 1), this yields the desired runtime bound. 2

A Greedy Algorithm for (Circular) Maximum Movements Slot Packing

While the Shortest Path approach of Section 3.4.1 can somehow be carried over to the situation
of circular shifting bounds, the greedy interpretation of Section 3.4.1 fails, because the arc set is
more complex for the graph 𝐺 deVned in the foregoing subsection. In this subsection, we will
investigate a diUerent greedy-like approach to (circular) Maximum Movements Slot Packing,
which will also reveal some structural results about relevant classes of solutions for the problem.
More speciVcally, we will present an algorithm that produces a uniform optimal solution, thereby
also providing an alternative proof of polynomial solvability of the circular and non-circular
variant of Maximum Slot Packing (more precisely, their respective veriVcation versions) as well
as proving their equivalence in terms of objective value under minor restrictions. As this section is
only concerned with movements slot conVgurations, we will only denote the movements bound of
a time window bound, thus by writing (𝐿, 𝑏)(𝜎) we imply that 𝑏 ∈ R≥0 is the movements bound
value if not explicitly stated otherwise.
Algorithm 3.2 can be improved in one aspect: It does not necessarily yield a slot conVgura-

tion that is also feasible when the shifting bounds are applied as circular shifting bounds, as
Example 3.32 shows. This immediately raises the question whether there is an easy algorithm for
Maximum Movements Slot Packing that yields a circular feasible optimal solution.

Example 3.32
Consider the reference value systemℛ = {

(︀
[6]∘ , 3

)︀
;
(︀
[4]∘ , 2

)︀
} (only movements bound values

are given) on the slot set 𝒮 = {1, . . . , 6}. Application of Algorithm 3.2 yields the movements slot
conVguration 𝐶M =

(︀
2, 0, 0, 0, 1, 0

)︀
depicted in Figure 3.7a. This solution is certainly feasible

with respect toℛ, but 𝐶M(J5 + [4]∘K𝑛) = 3 > 2, thus 𝐶M is infeasible for the circular variant of
Maximum Movements Slot Packing, see Figure 3.7b.

For circular shifting bounds, the Wight movements have to be distributed in a more uniform
way. Algorithm 3.3 presents an approach to do this. The algorithm works in two steps: First, a
number of ⌊𝑞⌋ movements, where 𝑞 = 𝑏𝑘/𝐿𝑘 for the longest shifting bound 𝐿𝑘 , is allocated to each
slot. This is exactly the number of movements that can be allocated uniformly to each slot without
violating any of the shifting bounds. Then at most one movement is added to each slot, starting at
slot 1 and proceeding by increasing slot number. The movements are added in a way that keeps
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(a) Non-circular bounds
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(b) Circular bounds

Figure 3.7: Greedy movements slot conVguration of Example 3.32

the ratio of movements per slot close to the quotient 𝑞, and hence a very uniform slot conVguration
is obtained. See Example 3.33 for an exemplary application of Algorithm 3.3.

Example 3.33
Let us illustrate Algorithm 3.3 by a small example: We consider the slot set 𝒮 = {1, . . . , 15} and
the reference value systemℛ = {([6]∘ , 3); ([4]∘ , 2)} (only movements bound values are given)
as in Example 3.32. As 3/6 = 2/4 = 1/2, the system is clearly monotone and 𝑞 = 1/2. The algorithm
then computes a slot packing as follows:

1. ⌊𝑞⌋ = 0, so start with 𝑧 = 0 ∈ N6
0 and 𝑣 = 0.

2. j = 1: 𝑣/𝑗 = 0 < 𝑞⇒ 𝑧1 ← 1 and 𝑣 ← 1.

3. j = 2: 𝑣/𝑗 = 1/2 ̸< 𝑞⇒ no change.

4. j = 3: 𝑣/𝑗 = 1/3 < 𝑞⇒ 𝑧3 ← 1 and 𝑣 ← 2.

5. j = 4: 𝑣/𝑗 = 2/4 ̸< 𝑞⇒ no change.

6. j = 5: 𝑣/𝑗 = 2/5 < 𝑞⇒ 𝑧5 ← 1 and 𝑣 ← 3.

7. j = 6: 𝑣/𝑗 = 3/6 ̸< 𝑞⇒ no change.

8. The output of the algorithm is the movements slot conVguration 𝑧 =
(︀
1, 0, 1, 0, 1, 0

)︀
, as

shown in Figure 3.8. ♢
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Algorithm 3.3: Greedy Algorithm for (Circular) Maximum Movements Slot Packing
Input: A monotone reference value systemℛ = {(𝐿1, 𝑏1), . . . , (𝐿𝑘, 𝑏𝑘)} with

𝐿1 < 𝐿2 < · · · < 𝐿𝑘.
Output: A circular maximum movements slot conVguration 𝑧 ∈ N𝑛0 for 𝑛 = 𝐿𝑘.
Set 𝑞 ← 𝑏𝑘

𝐿𝑘
.1

Set 𝑧 ← ⌊𝑞⌋ · 1 ∈ N𝑛0 .2

Set 𝑣 ← 0.3

for 𝑗 = 1 to 𝑛 do4

Set 𝑣 ← 𝑣 + 𝑧𝑗 .5

if 𝑣𝑗 < 𝑞 then6

Set 𝑧𝑗 ← 𝑧𝑗 + 1.7

Set 𝑣 ← 𝑣 + 1.8

end9

end10

Algorithm 3.3 produces a maximum movements slot conVguration as long as the reference value
system is monotone. This requirement is not very surprising, as it is generally impossible to get a
uniform slot conVguration for a non-monotone reference value system. What is more surprising is
the fact that the algorithm only relies on the values of 𝐿𝑘 and 𝑏𝑘, completely ignoring the other
shifting bounds. Of course, this is a direct consequence of monotonicity, which fundamentally
states that the longest bound (𝐿𝑘, 𝑏𝑘) is also the relatively strictest, allowing for the least number
of movements per slot. As the algorithm takes this very ratio as a “target measure”, the solution
will automatically be feasible for each shifting bound in the reference value system.

1

2

34

5

6

Figure 3.8: Result of Algorithm 3.3 for Example 3.33.
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Lemma 3.34
Let ℛ = {(𝐿1, 𝑏1), . . . , (𝐿𝑘, 𝑏𝑘)} be a monotone reference value system that consists of only
shifting bounds and assume 𝐿𝑘 ≥ 𝐿𝑘−1 ≥ · · · ≥ 𝐿1. Then Algorithm 3.3 computes a circular
maximum movements slot conVguration on the slot set {1, . . . , 𝐿𝑘}.

Proof. Set 𝑛 := 𝐿𝑘 and let 𝑣(𝑗) and 𝑧(𝑗) be the values of 𝑣 and 𝑧 at the end of the 𝑗-th pass of the
for loop in Algorithm 3.3. Furthermore, deVne 𝑞 = 𝑏𝑘

𝐿𝑘
and 𝑞′ := ⌊𝑞⌋. Of course, if 𝑞 = 𝑞′, then the

algorithm never enters the “then”-block in lines 7 and 8, thus 𝑣(𝑗) = 𝑗 · 𝑞′ for all 𝑗 ∈ {1, . . . , 𝑛}
and

∑︀𝑛
𝑗=1 𝑧𝑗 = 𝑛 · 𝑞′ = 𝑏𝑘 . The vector 𝑧 is then clearly a slot conVguration of maximum size and

it is feasible, thus a maximum slot packing as asserted.
In the following, let us assume that 𝑞′ < 𝑞, which in particular implies 𝑣

(0)+𝑞′
1 < 𝑞. The idea of

Algorithm 3.3 is to compute a slot packing 𝑧 whose “movements to slots ratio” stays “close to 𝑞”.
More precisely, in each iteration either 𝑞′ or 𝑞′+1 movements are added to the slot conVguration 𝑧,
and we will Vrst show, that the algorithm guarantees that for every 𝑗 ∈ {1, . . . , 𝑛} the inequalities

𝑣(𝑗) − 1
𝑗
< 𝑞 ≤ 𝑣

(𝑗)

𝑗
(3.25)

hold. We prove these by induction on 𝑗. For 𝑗 = 1, notice that 𝑞
′

1 < 𝑞, hence 𝑧1 = 𝑞′ + 1 and also
𝑣(1) = 𝑞′ + 1. We then get

𝑣(1) − 1
1 < 𝑞 ≤ 𝑣

(1)

1 ⇔ 𝑞′ < 𝑞 ≤ 𝑞′ + 1,

which is obviously true by deVnition of 𝑞′.
For the inductive step, assume (3.25) is true up to 𝑗 − 1, so our induction hypothesis reads

𝑣(𝑗−1) − 1
𝑗 − 1 < 𝑞 ≤ 𝑣

(𝑗−1)

𝑗 − 1 .

We distinguish two cases:

Case v(j) = v(j−1) + q′: From the Vrst inequality of the induction hypothesis, we get

𝑣(𝑗−1) − 1 < (𝑗 − 1)𝑞
⇒ 𝑣(𝑗−1) + 𝑞′ − 1 < (𝑗 − 1)𝑞 + 𝑞′ ≤ (𝑗 − 1)𝑞 + 𝑞 = 𝑗𝑞

⇒ 𝑣
(𝑗) − 1
𝑗
< 𝑞.

For the second inequality, notice that 𝑣(𝑗) = 𝑣(𝑗−1) + 𝑞′ implies 𝑧𝑗 = 𝑞′ and thereby

𝑣(𝑗)

𝑗
= 𝑣

(𝑗−1) + 𝑞′

𝑗
≥ 𝑞,

so the statement is obvious.
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Case v(j) = v(j−1) + q′ + 1: This case implies 𝑧𝑗 = 𝑞′ + 1 and thereby

𝑣(𝑗−1) + 𝑞′

𝑗
< 𝑞.

Hence we get
𝑣(𝑗) − 1
𝑗

= 𝑣
(𝑗−1) + 𝑞′

𝑗
< 𝑞,

the Vrst part of the claimed inequality. For the second part, suppose 𝑣
(𝑗−1)+𝑞′+1
𝑗 = 𝑣(𝑗)

𝑗 < 𝑞.

By induction, 𝑣
(𝑗−1)

𝑗−1 ≥ 𝑞, thus

𝑣(𝑗−1) + 𝑞′ + 1
𝑗

<
𝑣(𝑗−1)

𝑗 − 1
⇔ (𝑗 − 1)(𝑣(𝑗−1) + 𝑞′ + 1) < 𝑗𝑣(𝑗−1)

⇔ 𝑗(𝑞′ + 1) < 𝑣(𝑗−1) + 𝑞′ + 1 = 𝑣(𝑗)

⇔ 𝑞′ + 1 < 𝑣
(𝑗)

𝑗
.

But this means 𝑞′ + 1 < 𝑞, clearly a contradiction (recall 𝑞′ = ⌊𝑞⌋).

The inequalities (3.25) provide a bound on the Vnal solution 𝑣* = 𝑣(𝑛):

𝑣* − 1
𝑛
< 𝑞 ≤ 𝑣

*

𝑛
,

yields (recall 𝑛 = 𝐿𝑘 and 𝑞 = 𝑏𝑘/𝐿𝑘)

𝑣* − 1 <𝑏𝑘≤ 𝑣* ⇒ 𝑣* = 𝑏𝑘.

Due to the shifting bound (𝐿𝑘, 𝑏𝑘), there can be no better solution, thus the algorithm produces a
slot packing of maximum size. Hence to prove optimality of the solution, we have to show that the
solution is indeed feasible with respect to all shifting bounds inℛ.
In order to prove feasibility of the solution 𝑧* produced by the algorithm, let (𝐿𝑟, 𝑏𝑟) be some

shifting bound contained inℛ and let 𝑡 ∈ {1, . . . , 𝑛} such that 𝑡+ (𝐿𝑟 − 1) ≤ 𝑛. Then

𝑡+𝐿𝑟−1∑︁
𝑗=𝑡
𝑧𝑗 =

(︁
𝑣(𝑡+𝐿𝑟−1) − 𝑣(𝑡−1)

)︁
< (𝑞(𝑡+ 𝐿𝑟 − 1) + 1− 𝑞(𝑡− 1)) due to (3.25)

= 𝑞𝐿𝑟 + 1 = 𝑏𝑘
𝐿𝑘
𝐿𝑟 + 1.
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Hence
𝑡+𝐿𝑟−1∑︁
𝑗=𝑡
𝑧𝑗 < 𝑞𝐿𝑟 + 1 = 𝑏𝑘

𝐿𝑘
𝐿𝑟 + 1 ≤ 𝑏𝑟 + 1,

as 𝑏𝑘𝐿𝑘 ≤
𝑏𝑟
𝐿𝑟

by monotonicity ofℛ. As 𝑧 ∈ N𝑛0 , the sum above has to be integral, meaning

𝑡+𝐿𝑟−1∑︁
𝑗=𝑡
𝑧𝑗 ≤ 𝑏𝑟,

thus 𝑧 is feasible with respect to (𝐿𝑟, 𝑏𝑟) for all shifting bounds (𝐿𝑟, 𝑏𝑟) ∈ ℛ. This proves 𝑧 is a
maximum slot packing. 2

The following important result is an immediate consequence of Algorithm 3.3 and Lemma 3.34.

Theorem 3.35
Let ℛ = {(𝐿1, 𝑏1), . . . , (𝐿𝑘, 𝑏𝑘)} be a monotone reference value system with 𝐿𝑘 ≥ 𝐿𝑘−1 ≥
· · · ≥ 𝐿1 and let 𝑛 = 𝑟𝐿𝑘 for some 𝑟 ∈ N. Then a maximum movements slot conVguration on
𝒮 = {1, . . . , 𝑛} with respect toℛ has size 𝑟𝑏𝑘.

This result also provides us with a polynomial algorithm for a restricted class of instances of the
decision version of Maximum Movements Slot Packing. Recall that the decision problem only
asked for the value of an optimal solution (more precisely, whether there is a solution exceeding
some given objective value 𝑁 ), not for the solution itself (and producing an actual solution would
necessarily result in an exponential algorithm).

Corollary 3.36
Let (𝑛,ℛ, 𝑁) be an instance of the decision version of Maximum Movements Slot Packing
with the following additional properties:

1. ℛ = {(𝐿1, 𝑏1), . . . , (𝐿𝑘, 𝑏𝑘)} is a monotone reference value system consisting exclusively
of shifting bounds,

2. 𝑛 is a multiple of max {𝐿𝑗 : (𝐿𝑗 , 𝑏𝑗) ∈ ℛ}.

Then the instance can be solved in time polynomial in 𝑘 (and thus in time polynomial in the size
of the input).

Proof. Let us Vrst assume that 𝐿𝑘 = max {𝐿𝑗 : (𝐿𝑗 , 𝑏𝑗) ∈ ℛ}. As 𝑛 is a multiple of 𝐿𝑘, there
is some 𝑟 ∈ N such that 𝑛 = 𝑟𝐿𝑘. Then application of Theorem 3.35 yields the result that a
maximum slot packing on 𝒮 = {1, . . . , 𝑛} has size 𝑟𝑏𝑘 . Thus we only need to Vnd the maximum
among the 𝐿1, . . . , 𝐿𝑘, which can be done in time 𝒪 (𝑘 log 𝑘) by simply sorting these numbers.
Then computing 𝑟 and 𝑟𝑏𝑘 are two elementary operations, and so is the comparison of 𝑟𝑏𝑘 and
𝑁 , which promptly yields the desired answer. Thus the algorithm has running time 𝒪 (𝑘 log 𝑘),
which is polynomial in the size of the input. 2
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3.5 Minimum Slot Cover
3.5.1 Covering Slot Configurations
In the context of Flight Scheduling and Maximum Slot Packing, a natural question to ask is:

“How does a bad Wight schedule look like? Is it even possible to produce a non-
optimal Wight schedule? How large can the gap between a bad and a good Wight
schedule possibly be?”

This section will be devoted to investigations into “bad” slot conVgurations, so called slot covers,
while Section 3.6 will deal with the question of how to avoid such covers in the Wight scheduling
process. All of the above questions naturally call for an answer in the context of slot conVgurations,
i. e., with no actual Wight requests considered. If we know how a bad slot conVguration looks like,
producing an example with suitable Wight requests that would actually result in such a schedule is
then an easy task.

First, let us make the notion of a “bad” Wight schedule more precise. A Wight schedule that is not
maximum, but that would allow for additional Wights (hence non-optimality is simply due to lack
of suitable demand) would not necessarily be a bad thing, so the precise question is “Are there
non-maximum slot conVgurations such that no more Wights can be added to them?”

DeVnition 3.37 (Slot Cover)
Let 𝒮 = {1, . . . , 𝑛} be a slot set and ℛ a reference value system on 𝒮 . A movements slot
conVguration 𝐶M : 𝒮 → N0 is said to cover a slot 𝑡 ∈ 𝒮 with respect to ℛ if there is a time
window bound (𝐿, 𝑏)(𝜎) ∈ ℛ and𝑊 ∈ 𝒲

(︀
(𝐿, 𝑏)(𝜎), 𝑡

)︀
(cf. DeVnition 3.30) such that

𝐶M(𝑊 ) = 𝑏M.

A slot conVguration is called a slot cover or covering slot conVguration if it is feasible with respect
toℛ and covers each slot in 𝒮 .

Notice that we require a slot to be covered by a movements time window bound, thus a slot that
does not allow for an additional departure, but could accommodate one more arrival or vice versa,
is not covered. In this section, our primary interest is in identifying structures that lead to bad
Wight schedules, and for a symmetric reference value system, especially in a real-world context,
one would expect the movements bounds to be decisive for slot covering conVgurations. Hence we
concentrate solely on movements in this section, thereby avoiding some “exotic cases” that can be
introduced by considering also arrival and departure bounds. Also, we will generally assume that
all reference value systems are symmetric and denote time window bounds

(︀
𝐿, (𝑏A, 𝑏D, 𝑏M)

)︀(𝜎)

by just
(︀
𝐿, 𝑏M

)︀(𝜎) for the rest of this section, as only the movements value is relevant for a slot
cover. Thus if not explicitly stated otherwise, a time window bound (𝐿, 𝑏)(𝜎) is to be read as
(𝐿, (𝑏, 𝑏, 𝑏)𝑇 )(𝜎) in this section and the next.

The question above can now be rephrased as the query for a slot cover that minimizes the
number of Wight movements.
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Problem 3.38: Minimum Slot Cover
Instance: A slot count 𝑛 ∈ N and a reference value systemℛ on the slot set 𝒮 = {1, . . . , 𝑛}.
Question: Find a slot cover 𝐶M : 𝒮 → N0 with respect toℛ that minimizes the number of Wight

movements 𝐶M(𝒮).

See Figure 3.9 for an illustration of a slot cover for the reference value systemℛ = {([5]∘ , 3)}.
The Vgure shows a maximum slot packing with six Wight movements in two diUerent slots in
Figure 3.9a, and a minimum slot cover with three Wight movements in one slot in Figure 3.9b. In
both cases, no more Wights can be added without violating the shifting bound. Similar situations
are possible for more than one shifting bound.

2 4 6 8

3 3
(a) a maximum slot packing

2 4 6 8

3 3
(b) a minimum slot cover

Figure 3.9: Example of a minimum slot cover with three movements versus a maximum slot packing with
six movements. The single shifting bound ([5]∘ , 3) is applied in this example on the slot set
𝒮 = {1, . . . , 9}.

Minimum Slot Cover is interesting under two diUerent aspects: On the one hand, a solution to
Minimum Slot Cover exhibits a lower bound on the number of Wights that can be handled at an
airport for any given planning horizon and reference value system; so together with Maximum
Slot Packing we get an estimate of how much can be lost by implementing a non-optimal Wight
schedule. This is also highly useful when one is interested in Vnding a reference value system that
does not permit grave errors in the sense of exhibiting not too large a gap between an optimal
Wight schedule and any non-optimal solution. We will evaluate reference value systems that avoid
such a gap in a more realistic setting in Chapter 4.
On the other hand, Minimum Slot Cover is a problem regularly faced by large airlines at

their home airport. Every airline considers one airport (or several airports, for very large airlines)
their home airport, a notion that commonly correlates with a high number of in- and outgoing
Wights for that particular airline (e. g., Lufthansa has their home airports at Frankfurt/Main and
Munich airport). Thus a large airline operates a major fraction of all Wights taking place at their
home airport, which gives them the opportunity to control a major fraction of the available slots.
Naturally, an airline is not only interested in servicing as much proVtable Wights as possible, but
also in blocking its competitors from doing the same, if they get the opportunity. So the question
of Minimum Slot Cover arises in this “unfriendly” context: How many and which slots would
an airline need to acquire in order to block competitors from entering the market? Of course, for
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competition to function properly, government and airport authorities are interested in detecting
and preventing such “blocking behavior”. Knowledge about the structure of minimum slot covers
can help in this task and in creating reference value systems (or other additional constraints) that
avoid such situations.

3.5.2 Integer Programming Formulation
In a sense, Minimum Slot Cover is dual to Maximum Slot Packing — while the latter problem
aims at “blocking” a slot set with as many Wights as possible, the former asks for a minimal set of
Wights that do the same. However, this duality does not correspond to classical LP-duality (not
even when we ignore the integer variable requirements), although there is some relationship. To
clarify the relations between Maximum Slot Packing and Minimum Slot Cover, we will brieWy
look at an appropriate integer programming model here. For a more concise presentation, we
restrict ourselves to shifting bounds here; integration of non-shifting bounds into the model is
straightforward.
Recall the LP relaxation of the integer programming formulation for Maximum Movements

Slot Packing with respect to the reference value system ℛ = {(𝐿1, 𝑏1), . . . , (𝐿𝑘, 𝑏𝑘)} (with
only shifting bounds) on the slot set 𝒮 = {1, . . . , 𝑛} (cf. Section 3.3.1):

max 1𝑇𝑥

s. t. 𝑥(𝑠+ [𝐿𝑖]∘) ≤ 𝑏
M
𝑖 for all 𝑠 ∈ 𝒮 and all (𝐿𝑖, 𝑏𝑖) ∈ ℛ

𝑥 ≥ 0

The LP-dual of this problem is

min
𝑘∑︁
𝑖=1

(︃
𝑏M𝑖 ·

𝑛∑︁
𝑠=1
𝑦𝑖𝑠

)︃

s. t.
𝑘∑︁
𝑖=1

⎛⎝ 𝑡∑︁
𝑠=𝑡−𝐿𝑖

𝑦𝑖𝑠

⎞⎠ ≥ 1 for all 𝑡 = 1, . . . , 𝑛

𝑦 ≥ 0,

where we used the fact that for a shifting bound (𝐿𝑖, 𝑏𝑖)

𝑡 ∈ 𝑠+ [𝐿𝑖]∘ ⇔ 𝑠 ∈ 𝑡− [𝐿𝑖]∘ .

If one interprets 𝑦𝑖𝑠 as indicator variable for the 𝑖-th shifting bound with time window starting
at slot 𝑠 (which is not quite valid, because 𝑦𝑖𝑠 is not necessarily a binary variable), the constraints
bear some similarity to Minimum Slot Cover. Alas, the objective function does not count Wight
movements (which is impossible, because there are no variables corresponding to Wight movements
in the dual), but rather “active” shifting bounds time windows weighted by their respective bound
value.
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In fact, a proper formulation of Minimum Slot Cover as integer programming problem needs to
incorporate aspects from both primal and dual Maximum Slot Packing. We propose the following
formulation:

min 1𝑇𝑥 (3.26)

s. t. 𝑥(𝑠+ [𝐿𝑖]∘) ≤ 𝑏
M
𝑖 for all 𝑠 = 1, . . . , 𝑛 and all 𝑖 = 1, . . . , 𝑘 (3.27)

𝑥(𝑠+ [𝐿𝑖]∘) ≥ 𝑦𝑠𝑖 · 𝑏
M
𝑖 for all 𝑠 = 1, . . . , 𝑛 and all 𝑖 = 1, . . . , 𝑘 (3.28)

𝑘∑︁
𝑖=1

⎛⎝ 𝑡∑︁
𝑠=𝑡−𝐿𝑖

𝑦𝑖𝑠

⎞⎠ ≥ 1 for all 𝑡 = 1, . . . , 𝑛 (3.29)

𝑥 ∈ N𝑛0 (3.30)

𝑦 ∈ {0, 1}𝑛𝑘

This program combines elements from primal (the packing constraint (3.27) and the objective (3.26),
changed to minimization) and dual (the covering constraint (3.29)) of Maximum Slot Packing
and links them via (3.28).

3.5.3 Slot Cover with a Single Shifting Bound

Let us Vrst investigate slot cover with only one shifting bound (𝐿, 𝑏). Besides giving a general
idea about how minimum slot covers can look like, this situation fairly accurately represents the
case of multiple shifting bounds where only one bound has an actual inWuence on the number of
Wight movements in a maximum slot packing or a minimum slot cover (a situation not uncommon
in practice, also see Section 3.4.2). An illustration of the situation is displayed in Figure 3.9b.

Theorem 3.39
Let (𝐿, 𝑏) be a shifting bound, let 𝑛 = 2𝐿− 1 and denote the slot set by 𝒮 = {1, . . . , 𝑛}. Then
the size of a maximum slot packing on 𝒮 with respect to ℛ = {(𝐿, 𝑏)} is 2𝑏, and the size of a
minimum slot cover on 𝒮 is 𝑏. Furthermore, for 𝑛′ > 𝑛, any slot cover of {1, . . . , 𝑛′} has size
strictly greater than 𝑏.

Proof. Consider the slot conVgurations 𝑃,𝐶 : 𝒮 → N0 deVned by

𝑃 (𝑡) :=
{︃
𝑏, for 𝑡 ∈ {1, 𝐿+ 1},
0, for 𝑡 /∈ {1, 𝐿+ 1},

and 𝐶(𝑡) :=
{︃
𝑏, for 𝑡 = 𝐿,
0, for 𝑡 ̸= 𝐿.

Clearly, 𝑃 (𝑠+ [𝐿]∘) = 𝑏 for every 𝑠 ∈ {1, . . . , 𝑛− 𝐿+ 1}, so 𝑃 is a feasible slot conVguration.
On the other hand, 𝑃 is maximum, because the time windows 1 + [𝐿]∘ and (𝑛− 𝐿+ 1) + [𝐿]∘
can accommodate for a maximum of 𝑏 movements each, and these two time windows contain
all slots in 𝒮 , thus no slot conVguration can have a size of more than 2𝑏 movements under the
shifting bound (𝐿, 𝑏).
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For the slot conVguration 𝐶 , we get 𝐶(𝑡+ [𝐿]∘) = 𝑏 for all 𝑡 ∈ {1, . . . , 𝑛− 𝐿+ 1}, thus 𝐶 is
a slot cover. On the other hand, a slot conVguration 𝐶< with less than 𝑏 movements cannot be
a slot cover, because that would imply 𝐶<(𝑡+ [𝐿]∘) < 𝑏 for each 𝑡 ∈ {1, . . . , 𝑛− 𝐿+ 1}, and
thus no slot in 𝒮 could be covered by 𝐶<, proving minimality of 𝐶 .

Finally, consider 𝑛′ > 𝑛 and suppose there was some slot cover 𝐶 ′ : {1, . . . , 𝑛′} → N0 of size
𝑏 or less. Let 𝑡0 ∈ {1, . . . , 𝑛′} be a slot with 𝐶 ′(𝑡0) > 0, then

𝑆′ :=
{︀
1, . . . , 𝑛′

}︀
∖
(︀
[𝑡0 − 𝐿+ 1, 𝑡0] ∪ [𝑡0, 𝑡0 + 𝐿− 1]

)︀
is not empty. Let 𝑠0 ∈ 𝑆′ be a slot in 𝑆′, then 𝑠0 is only contained in time windows that do not
contain the slot 𝑡0, thus 𝐶 ′(𝑡+ [𝐿]∘) ≤ 𝑏− 1 for each 𝑡 ∈ {1, . . . , 𝑛′} such that 𝑠0 ∈ 𝑡+ [𝐿]∘.
Hence 𝑠0 is not covered by 𝐶 ′, a contradiction. 2

3.5.4 Slot Cover with two Shifting Bounds
The Minimum Slot Cover problem with two shifting bounds is similar to the problem with one
bound. The general idea for deVning a slot cover is the same: Produce a slot conVguration with a
local peak of Wight movements and make that peak as narrow as possible. The problem with this
approach is that the smaller shifting bound will generally not allow for an arbitrarily narrow peak,
so we have to take that aspect into account.

Theorem 3.40
Letℛ := {(𝐿′, 𝑏′); (𝐿, 𝑏)} be a monotone, symmetric reference value system with 𝐿′ < 𝐿 and let
𝑞 ∈ N0, 𝑞 ≤ 𝐿 such that there exists a slot conVguration 𝑃 ′ : {1, . . . , 𝑞} → N0 of size 𝑏M that is
feasible with respect to (𝐿′, 𝑏′). Then there is a slot cover of size 𝑏M with respect toℛ on the slot
set 𝒮 = {1, . . . , 2𝐿− 𝑞}.
Furthermore, if 𝑃 ′ is circular feasible with respect to {(𝐿′, 𝑏′)} or if 𝑞 + 𝐿′ ≤ 𝐿+ 1 there is

also a feasible slot conVguration of size 𝑏M + 𝑃 ′([1, min {𝑞, 𝐿− 𝑞}]). In particular, if 𝐿 ≥ 2𝑞
then there is a maximum slot packing of size 2𝑏M.

Proof. For 𝑞 and 𝑃 ′ : {1, . . . , 𝑞} → N0 as required by the theorem deVne the slot conVguration
𝐶 : 𝒮 → N0 (see Figure 3.10 for an illustration) by

𝐶(𝑡) :=
{︃
𝑃 ′(𝑡− (𝐿− 𝑞)), for 𝑡 ∈ {𝐿− 𝑞 + 1, . . . , 𝐿},
0, for 𝑡 /∈ {𝐿− 𝑞 + 1, . . . , 𝐿}.

The union of the two time windows 1 + [𝐿]∘ and (𝐿− 𝑞+ 1) + [𝐿]∘ is the whole slot set 𝒮 , and

𝐶
(︀
1 + [𝐿]∘

)︀
= 𝐶

(︀
(𝐿− 𝑞 + 1) + [𝐿]∘

)︀
= 𝑏M,

thus 𝐶 covers every slot in 𝒮 . Furthermore, 𝐶 is feasible with respect to (𝐿′, 𝑏′) by feasibility of
𝑃 ′, and it is also feasible with respect to (𝐿, 𝑏), as it has size 𝑏M. Hence 𝐶 is a slot cover for the
slot set 𝒮 as desired.
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P′

C

𝐿

𝐿

𝑞

(a) The slot cover 𝐶

P′

P

𝐿

𝐿

𝑞

(b) The slot packing 𝑃

Figure 3.10: Illustrations for the proof of Theorem 3.40.

Now consider the slot conVguration 𝑃 : 𝒮 → N0 deVned by (see Figure 3.10)

𝑃 (𝑡) :=

⎧⎪⎪⎨⎪⎪⎩
𝑃 ′(𝑡), for 𝑡 ∈ {1, . . . , 𝑞},
𝑃 ′(𝑡− 𝐿), for 𝑡 ∈ {𝐿+ 1, . . . ,min {𝐿+ 𝑞, 𝑛}},
0, for 𝑡 /∈ {1, . . . , 𝑞} ∪ {𝐿+ 1, . . . ,min {𝐿+ 𝑞, 𝑛}}.

Clearly, 𝑃 has size 𝑏M + 𝑃 ′
(︀
[1, min {𝑞, 𝐿− 𝑞}]

)︀
, as 𝑛 − 𝐿 = 𝐿 − 𝑞. 𝑃 is a feasible slot

conVguration with respect to the shifting bound (𝐿, 𝑏): Consider a time window 𝑠 + [𝐿]∘ for
𝑠 ∈ 𝒮 . If 𝑠 = 1 or 𝑠 ≥ 𝑞 + 1 then the time window intersects only one of the intervals [1, 𝑞] and
[𝐿+ 1, min {𝐿+ 𝑞, 𝑛}], hence 𝑃 (𝑠+ [𝐿]∘) ≤ 𝑏M. So suppose 2 ≤ 𝑠 ≤ 𝑞, then by deVnition of
𝑃 ′ we have

(𝑠+ [𝐿]∘) ∩ ([1, 𝑞] ∪ [𝐿+ 1, min {𝐿+ 𝑞, 𝑛}]) = [𝑠, 𝑞] ∪ [𝐿+ 1, min {𝐿+ 𝑠, 𝑛}] ,

hence 𝑃 (𝑠 + [𝐿]∘) ≤ 𝑃 ′([1, 𝑞]) = 𝑏M. Also, if 𝑃 ′ is circular feasible then 𝑃 is feasible with
respect to the shifting bound (𝐿′, 𝑏′); and if 𝑞 + 𝐿′ ≤ 𝐿 + 1 then there is no time window of
length 𝐿′ that contains slots in both [1, 𝑞] and [𝐿+ 1, min {𝐿+ 𝑞, 𝑛}], also yielding feasibility
of 𝑃 with respect to (𝐿′, 𝑏′). Thus 𝑃 is a slot packing of the desired size.

If, in particular, 𝐿 ≥ 2𝑞 then min {𝑞, 𝐿− 𝑞} = 𝑞 and 𝑞+𝐿′ < 2𝑞 ≤ 𝐿, hence 𝑞+𝐿′ ≤ 𝐿+ 1.
That means 𝑃 is feasible with respect to ℛ and has size 2𝑏M. Furthermore, the time windows
1 + [𝐿]∘ and 𝐿− 𝑞+ 1 + [𝐿]∘ each bound the number of Wights movements within their respective
domain by 𝑏M, and their union is 𝒮 . Therefore there can be no slot packing of size larger than
2𝑏M in 𝒮 , meaning that 𝑃 is a maximum slot packing. 2
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Notice that in Theorem 3.40 we did not claim that the slot cover 𝐶 : 𝒮 → N0 of size 𝑏M is a
minimum cover. While the results for one shifting bound would suggest such a conjecture, the
situation is more diXcult for two shifting bounds.

𝐿 = 10
𝐿 = 10

bM = 18

𝑞

𝐿′ = 8
𝐿′ = 8

(b′)M = 16

𝑞

Figure 3.11: The slot cover of Theorem 3.40 need not be a minimum slot cover.

Example 3.41
Consider the example ofℛ = {([10]∘ , 18); ([8]∘ , 16)} (only movement bounds values are given),
which is clearly monotone. A slot packing 𝑃 ′ : {1, . . . , 𝑞} → N0 is, e. g., given by 𝑃 ′ =
(16, 0, 0, 0, 0, 0, 0, 0, 2) for 𝑞 = 9. As eight slots can only accommodate up to 16 Wight movements,
𝑞 = 9 is even the least possible value for 𝑞. This yields a slot cover of 2 · 10− 𝑞 = 11 slots by 18
Wight movements. However, 𝐶 ′ = (0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0) is also a slot cover (this time, all
slots are covered by time windows of length 8) of the slot set {1, . . . , 11} using only 16 movements
(and the same idea can be extended to a slot cover of {1, . . . , 15} using 16 movements), thus
the slot cover constructed in the proof of Theorem 3.40 is obviously not a minimum cover in this
situation. ♢

However, in some cases the slot cover of Theorem 3.40 is actually a minimum slot cover. A class
of instances where this happens is somehow “in between” the cases of a single shifting bound and
two shifting bounds, namely the case where one of the two bounds has a length of just one slot.

Theorem 3.42
Let 𝐵 ∈ N, (𝐿, 𝑏) be a shifting bound with 𝑏M/𝐿 ≤ 𝐵 and consider the (monotone) reference
value systemℛ := {([1]∘ , 𝐵); ([𝐿]∘ , 𝑏)} on the slot set 𝒮 = {1, . . . , 2𝐿− 𝑞}, where 𝑞 =

⌈︀
𝑏M/𝐵

⌉︀
.

Then the size of a minimum slot cover on 𝒮 with respect to ℛ is 𝑏M, and for 𝑛′ > 2𝐿− 𝑞, any
slot cover of {1, . . . , 𝑛′} has size strictly greater than 𝑏M. Furthermore, if 𝐿 ≥ 2𝑞, the size of a
maximum slot packing on 𝒮 with respect toℛ is 2𝑏M.

Proof. First notice that ℛ is indeed monotone due to the requirement 𝑏M/𝐿 ≤ 𝐵, which also
implies 𝐿 ≥ 𝑞 =

⌈︀
𝑏M/𝐵

⌉︀
, as 𝐿 ∈ N. DeVne a slot conVguration 𝐶 : 𝒮 → N0 (similar to the
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illustrations in Figure 3.10) by

𝐶(𝑡) :=

⎧⎪⎪⎨⎪⎪⎩
𝐵, for 𝑡 ∈ [𝐿− 𝑞 + 1, 𝐿− 1],
𝑏M − (𝑞 − 1)𝐵, for 𝑡 = 𝐿,
0, otherwise.

Then 𝐶 has size 𝑏M and is clearly feasible with respect toℛ. Furthermore, as

𝐶(1 + [𝐿]∘) = 𝐶((𝐿− 𝑞 + 1) + [𝐿]∘) = 𝑏M

and (1 + [𝐿]∘) ∪ ((𝐿− 𝑞 + 1) + [𝐿]∘) = 𝒮,

the slot conVguration 𝐶 is a slot cover. Suppose 𝐶 is not a minimum slot cover, then there exists a
slot cover𝐺 : 𝒮 → N0 of size 𝑏M− 1 or less. This means that no slot is covered by a time window
bound of length 𝐿, thus 𝐺(𝑡) = 𝐵 for each slot 𝑡 ∈ 𝒮 . But then 𝐺(1 + [𝐿]∘) = 𝐿𝐵 ≥ 𝑏M,
contradicting our assumption about the size of 𝐺. Thus 𝐶 is a minimum slot cover.
Now consider 𝑛′ > 2𝐿 − 𝑞 and suppose there was some slot cover 𝐶 ′ : {1, . . . , 𝑛′} →

N0 of size 𝑏M. Choose 𝑡0, 𝑡1 ∈ 𝒮 with 𝑡0 ≤ 𝑡1 such that 𝐶 ′([𝑡0, 𝑡1]) = 𝑏M, and such that
𝐶 ′([𝑡0 + 1, 𝑡1]) < 𝑏M and 𝐶 ′([𝑡0, 𝑡1 − 1]) < 𝑏M; then |[𝑡0, 𝑡1]| ≥ 𝑞. For a slot cover, every
slot in {1, . . . , 𝑛′} must be contained in some time window of length 𝐿 that completely contains
[𝑡0, 𝑡1]. Consider a slot

𝑠0 ∈
{︀
1, . . . , 𝑛′

}︀
∖
(︀
[𝑡1 − 𝐿+ 1, 𝑡1] ∪ [𝑡0, 𝑡0 + 𝐿− 1]

)︀
,

which exists due to 𝑛′ − (2𝐿− 𝑞) > 0. Then 𝑠0 is only contained in time windows that do not
contain [𝑡0, 𝑡1] as a subset, and hence 𝐶 ′(𝑠0 +[𝐿]∘) ≤ 𝑏M−1, contradicting the assumption of 𝐶 ′

being a slot cover. Hence every slot cover on {1, . . . , 𝑛′} must contain at least 𝑏M + 1 movements.
For the slot packing, let 𝐿 ≥ 2𝑞 and deVne a slot conVguration 𝑃 : 𝒮 → N0 by (for illustrations,

see the similar situation in Figure 3.10)

𝑃 (𝑡) :=

⎧⎪⎪⎨⎪⎪⎩
𝐵, for 𝑡 ∈ [1, 𝑞 − 1] ∪ [𝐿+ 1, 𝐿+ 𝑞 − 1],
𝑏M − (𝑞 − 1)𝐵, for 𝑡 ∈ {𝑞, 𝐿+ 𝑞},
0, otherwise.

As 𝐿 ≥ 2𝑞 ⇒ 2𝐿 − 𝑞 ≥ 𝐿 + 𝑞, all Wight movements deVned by 𝑃 are indeed assigned to
slots in 𝒮 , so 𝑃 has size 2𝑏M. Furthermore, for each 𝑠 ∈ {1} ∪ {𝑞 + 1, . . . , 2𝐿− 𝑞} we have
𝑃 (𝑠+ [𝐿]∘) ≤ 𝑏M, and for each 𝑠 ∈ {2, . . . , 𝑞} we have

𝑃 (𝑠+ [𝐿]∘) = 𝑏M − (𝑞 − 1)𝐵 + (𝑞 − 𝑠)𝐵 + (𝑠− 1)𝐵 = 𝑏M,

hence 𝑃 is feasible with respect toℛ (notice 𝑃 (𝑡) ≤ 𝐵 for all 𝑡 ∈ 𝒮). Furthermore, the union of
the time windows 1 + [𝐿]∘ and (𝐿− 𝑞+ 1) + [𝐿]∘ is the whole slot set 𝒮 , and the shifting bound
(𝐿, 𝑏) allows for a maximum of 𝑏M movements within each of these time windows, thus 𝑃 is a
maximum slot packing. 2
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Remark 3.43
Theorem 3.42 can be slightly generalized to monotone reference value systemsℛ = {(𝐿′, 𝑏′); (𝐿, 𝑏)},
where 𝐿 is an integer multiple of 𝐿′. In such a case, by simply regarding an interval of length
𝐿′ as one slot and scaling down 𝐿 appropriately we get the reference value system ℛ′ =
{(1, 𝑏′); (𝐿/𝐿′, 𝑏)}, where Theorem 3.42 can be applied to the slot set 𝒮 ′ := {1, . . . , 2𝐿/𝐿′ − 𝑞}
with 𝑞 =

⌈︀
𝑏M/(𝑏′)M

⌉︀
. To “scale up” the result to the original system afterwards, note that each

slot containing 𝐵 = 𝑏′ movements can be replaced by a circular slot packing of size (𝑏′)M on 𝐿′

slots, see Lemma 3.34 and Theorem 3.35, which retains feasibility of the scaled up versions of the
conVgurations 𝐶 and 𝑃 in the above proof with respect toℛ. Thus the results of Theorem 3.42
are, appropriately scaled, also true for a setting with two shifting bounds where the larger bound’s
length is an integer multiple of the shorter one’s.

3.6 Avoiding the Gap between Slot Packing and Slot Cover

The Minimum Slot Cover problem is in some sense dual to Maximum Slot Packing. The
diUerence between a slot packing and a slot covering conVguration (if there is any diUerence)
provides for a measure of how much one can possibly gain by optimization under the given
circumstances, we will refer to that diUerence as the packing-covering gap in the following.
From a diUerent point of view, one could also express this question as “How much can be lost
by employing some Wight planning procedure that does not necessarily yield an optimum?” Of
course, this question will at once be followed by “How can one avoid ending up with non-optimal
solutions (or at least enforce solutions that are close to optimal)?” An answer to this question can be
particularly valuable in an online scheduling context, where not all requests are known in advance.
In such a situation, one can produce an optimal schedule for the known requests that might turn
out to be a rather bad choice when the complete request set is revealed afterwards. But if the
constraint set would not allow for non-optimal Wight plans, such a problem could never emerge.
This setting does have some practical relevance, although the impact is limited, as sometimes an
airline decides to oUer a new connection amidst a planning season, and then requests a suitable
slot pair.
So the focus of this section, in contrast to the rest of this chapter, is not Vnding an optimal

Wight schedule subject to the given constraints, but to modify the constraints in such a way that
any feasible schedule will be optimal, or can at least be extended to an optimal schedule. This
might seem a little strange at Vrst sight — if one knows how to get to an optimum, why not just
apply that knowledge and thus solve the problem? However, this is sometimes not the easiest
solution from a practical point of view. After all, implementing an optimal solution to the Wight
planning problem would require major changes for all parties involved, new procedures would
have to be developed, new software would have to be implemented on the existing systems. In
contrast to that, minor adjustments of the constraints (in this case, the time window bounds) do
occur on a very regular basis (e. g., the Wight movements bound values are adjusted at least once a
year). Hence all systems and all parties involved in the planning process are prepared for such
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small adjustments, meaning a small change of the reference value system could be implemented
without too many (potential) problems. Another motivation for changing the constraint system
could be the suppression of uncooperative behavior on the part of some airlines. As was outlined
in Section 3.5, large airlines may have the potential of “blocking” a fair amount of slots by placing
their requests such as to form a conVguration close to being a slot cover. This way, some of
the airline’s competitors can be barred from oUering services at an airport, much to the airport’s
(and the customers’) disadvantage. Thus an airport will not only be interested in detecting such
“blocking behavior”, but also in constraints that inhibit it.

If one tries to sum up the results of the previous sections in one “rule of thumb”, this could be
“For a maximum slot packing, aim at a uniform distribution of the Wight movements and try to
avoid narrow local peaks in the slot conVguration.” Of course, this is not the whole truth, but as a
guideline, this rule will turn out to be quite eUective, even in practical settings with many more
constraints for the scheduling process. So to avoid (or at least reduce) the gap between a maximum
slot packing and a minimum slot cover, a modiVcation of the rules is in order that avoids narrow
local peaks or the negative eUects (“spreading out”) of these peaks. In addition, such a modiVcation
should not be too complicated, so that it may be integrated in more complex scenarios without too
much modiVcations to existing models and procedures.
With Section 3.5 in mind, one might Vrst think of resorting to non-shifting bounds only, i. e.,

replacing all shifting bounds with non-shifting bounds with the same bound values. However,
this approach does not work in general. One problem here is due to boundary eUects. Consider
Figure 3.12 for an example, where a maximum slot packing and a minimum slot cover for two
non-shifting bounds are depicted. In this example, the fact that 𝑛 is not the least common multiple
(or a multiple thereof) of the two bound lengths involved, is exploited in order to create an “open
boundary” that is in turn responsible for a positive packing-covering gap.

5 1 4

5 5

6 4
(a) a maximum slot packing of size 10

1 5

1 5

6 0
(b) a minimum slot cover of size 6

Figure 3.12: Example of boundary eUects causing a positive packing-covering gap even for non-shifting
bounds with the reference value systemℛ =

{︀
([10]∘ , 6)(10); ([7]∘ , 5)(7)}︀ and 𝑛 = 14.

However, this is not the only issue. Even if we restrict ourselves to monotone reference value
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systems ℛ and deVne 𝑛 to be some common multiple of all bound lengths in ℛ (thus avoiding
boundary eUects as shown in Figure 3.12), a positive packing-covering gap can occur. Figure 3.13
shows an example of such a situation. Here, an eUect similar to situations of shifting bounds occurs
(cf. Section 3.5): Instead of two shifting bounds of the same length overlapping on a common “local
traXc peak”, the overlap is now provided by two non-shifting bounds of diUerent length. Two time
windows, namely 1 + [6]∘ and 5 + [4]∘, both contain slot number 5, and thus 8 Wight movements.
Thus very few Wights suXce to make both these windows active and cover a large amount of the
slot set. (The situation is similar to the “local peaks” used to construct slot covers in Section 3.5.)

8 2 6 4

10 10

8 8 4
(a) a maximum slot packing of size 20

2 8 8

10 8

2 8 8
(b) a slot cover of size 18

Figure 3.13: Example of a packing-covering gap when larger bound lengths are not a multiple of the next
one’s length down. The reference value system used here isℛ =

{︀
([6]∘ , 10)(6); ([4]∘ , 8)(4)}︀,

and the slot count 𝑛 = 12 is the least common multiple of 6 and 4.

These observations motivate the following deVnition.

DeVnition 3.44
A reference value system ℛ =

{︁
(𝐿1, 𝑏1)(𝜎1), . . . , (𝐿𝑘, 𝑏𝑘)(𝜎𝑘)

}︁
with 𝐿1 ≤ 𝐿2 ≤ · · · ≤ 𝐿𝑘 is

said to have the inclusion property, if for each 𝑗 ∈ {1, . . . , 𝑘 − 1} the number 𝐿𝑗+1 is an integer
multiple of 𝐿𝑗 .

Reference value systems having the inclusion property are not uncommon in practical applications.
Often, a system with lengths 60 minutes, 30 minutes and 10 minutes or 60 minutes and 20 minutes
is used,3 these all have the inclusion property.

Theorem 3.45
Letℛ =

{︁
(𝐿1, 𝑏1)(𝐿1), . . . , (𝐿𝑘, 𝑏𝑘)(𝐿𝑘)

}︁
be a monotone reference value system that consists of

only non-shifting bounds and has the inclusion property, and let 𝑛 ∈ N be an integer multiple
of max

{︁
𝐿𝑖 : (𝐿𝑖, 𝑏𝑖)(𝐿𝑖) ∈ ℛ

}︁
. Then the size of a maximum slot packing with respect toℛ on

𝒮 = {1, . . . , 𝑛} is equal to the size of a minimum slot cover.
3For parameters actually used in practice see Chapter 4 and http://sws.fhkd.org/, the website of the German

airport coordinator.
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Proof. For easier notation, deVne for 𝑗 ∈ {1, . . . , 𝑘} the “start slots set” of the time window
bound (𝐿𝑗 , 𝑏𝑗)(𝐿𝑗) by 𝑆𝑗 := {1, 𝐿𝑗 + 1, . . . , 𝑛− 𝐿𝑗 + 1}.
We may assume 𝐿1 ≤ · · · ≤ 𝐿𝑘, and deVne 𝑟 = 𝑛/𝐿𝑘 ∈ N. According to Section 3.4,

in particular Theorem 3.35, a feasible slot conVguration of size 𝑟 · 𝑏M𝑘 exists on the slot set
𝒮 = {1, . . . , 𝑛}. Due to the non-shifting constraints, a maximum of 𝑏M𝑘 Wight movements can be
contained in each of the time windows 𝑡+ [𝐿𝑘]∘ for 𝑡 ∈ {1, 𝐿𝑘 + 1, . . . , (𝑟 − 1)𝐿𝑘 + 1}, hence
a slot conVguration that contains 𝑟𝑏M𝑘 movements is a maximum slot packing.4

Now let 𝐶 : 𝒮 → N0 be a minimum slot cover. For 𝑠 ∈ 𝑆𝑘 choose 𝑗 ∈ {1, . . . , 𝑘 − 1} and
𝑠′ ∈ 𝑆𝑗 such that (𝑠′ + [𝐿𝑗 ]∘) ∩ (𝑠 + [𝐿𝑘]∘) ̸= ∅, then (𝑠′ + [𝐿𝑗 ]∘) ⊂ (𝑠 + [𝐿𝑘]∘) due to the
non-shifting nature of the time window bounds in ℛ and due to the inclusion property. Thus
the restriction of 𝐶 to each of the time windows 𝑠 + [𝐿𝑘]∘, 𝑠 ∈ 𝑆𝑘, also has to be a slot cover
with respect toℛ on the slot set 𝑠+ [𝐿𝑘]∘. Hence it suXces to proof the claim of the theorem for
𝑛 = 𝐿𝑘.
Let 𝒮 ′ := {1, . . . , 𝐿𝑘} and let 𝐶 ′ : 𝒮 ′ → N0 be a minimum slot cover with respect to ℛ on

the slot set 𝒮 ′. Naturally, the size of 𝐶 ′ is at most 𝑏M𝑘 , and we have argued above that a slot
conVguration of that size exists and is, in fact, a maximum slot packing. It remains to show that
𝐶 ′ cannot have a size less than 𝑏M𝑘 . To see this, we use induction on 𝑗 = 1, . . . , 𝑘 to show the
following statement: If a slot conVguration 𝐶 ′ : 𝒮 ′ → N0 covers all slots in {𝑠+ 1, . . . , 𝑠+ 𝐿𝑗}
with respect to the reference value system ℛ𝑗 :=

{︁
(𝐿1, 𝑏1)(𝐿1), . . . , (𝐿𝑗 , 𝑏𝑗)(𝐿𝑗)

}︁
for some

𝑠 ∈ 𝑆𝑗 ∩ 𝒮 ′, then 𝐶 ′(𝑠+ [𝐿𝑗 ]∘) = 𝑏M𝑗 .
For 𝑗 = 1, there is only one non-shifting bound inℛ1, hence 𝐶 ′(𝑠+ [𝐿1]∘) = 𝑏M1 for all 𝑠 ∈
𝑆1 ∩𝒮 ′. Now consider some 𝑗 ∈ {2, . . . , 𝑘} and assume the assertion is true up to 𝑗 − 1. Suppose
there is some 𝑠 ∈ 𝑆𝑗 ∩ 𝒮 ′ with 𝐶 ′(𝑠+ [𝐿𝑗 ]∘) < 𝑏𝑗 , then the slots in 𝑠+ [𝐿𝑗 ]∘ must be covered
with respect to the reference value systemℛ𝑗−1 already. Application of the induction hypothesis
yields 𝐶 ′(𝑠′ + [𝐿𝑗−1]∘) = 𝑏M𝑗−1 for all 𝑠′ ∈ {𝑠, 𝑠+ 𝐿𝑗−1, . . . , 𝑠+ (𝐿𝑗/𝐿𝑗−1 − 1)𝐿𝑗−1} by the
inclusion property, and thus

𝐶 ′(𝑠+ [𝐿𝑗 ]∘) = 𝐿𝑗/𝐿𝑗−1 · 𝑏M𝑗−1 ≥ 𝑏M𝑗

by monotonicity ofℛ (and thusℛ𝑗), a contradiction.
This asserts in particular that 𝐶 ′(1 + [𝐿𝑘]∘) = 𝑏𝑘, thereby proving the statement of the

theorem. 2

Theorem 3.46
Consider a reference value system ℛ = {(𝐿1, 𝑏1), . . . , (𝐿𝑘, 𝑏𝑘)} consisting of only shifting
bounds, and deVne

𝑏* := min
{︃⌊︃
𝑏𝑗
𝐿𝑗

⌋︃
: (𝐿𝑗 , 𝑏𝑗) ∈ ℛ

}︃
.

4This also shows that the size of a maximum slot packing does not increase by going from shifting to non-shifting
constraints (which corresponds to removing many of the constraints). This is important in practical considerations,
because by changing the constraints one will usually not want to allow for more Wights in total.
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Then with respect to the new reference value systemℛ* := ℛ∪{([1]∘ , 𝑏*)}, the size of aMaximum
Slot Packing is equal to the size of a Minimum Slot Cover for every slot set 𝒮 = {1, . . . , 𝑛}
where 𝑛 ∈ N.

Proof. For each slot conVguration 𝑃 : 𝒮 → N0 that is feasible with respect to {(1, 𝑏*)}, each
shifting bound (𝐿𝑗 , 𝑏𝑗) ∈ ℛ, and each 𝑠 ∈ 𝒮 , the inequality

𝑃 (𝑠+ [𝐿𝑗 ]∘) ≤ 𝑏
* · 𝐿𝑗 ≤

𝑏𝑗
𝐿𝑗
𝐿𝑗 = 𝑏𝑗

holds, thus a slot conVguration is feasible with respect to ℛ* if and only if it is feasible with
respect to {(1, 𝑏*)}. Hence no slot conVguration on 𝒮 = {1, . . . , 𝑛} that is feasible with respect
toℛ* can contain more than 𝑛(𝑏*)M movements.

Now consider an arbitrary slot cover 𝐶 : 𝒮 → N0 on 𝒮 with respect toℛ*, then 𝐶(𝑠) = (𝑏*)M

for every 𝑠 ∈ 𝒮 : Suppose there was some slot 𝑠′ ∈ 𝒮 with 𝐶(𝑠′) < (𝑏*)M and consider any
(𝐿𝑗 , 𝑏𝑗) ∈ ℛ and a slot 𝑡 ∈ 𝒮 such that 𝑠′ ∈ 𝑡+ [𝐿𝑗 ]∘. Then

𝐶(𝑡+ [𝐿𝑗 ]∘) ≤ (𝐿𝑗 − 1)(𝑏*)M + 𝐶(𝑠′) < 𝐿𝑗(𝑏*)M ≤ 𝑏M𝑗 ,

thus 𝑠′ is not covered, contradicting our assumption of 𝐶 being a slot cover. Therefore, every slot
cover has size exactly 𝑛(𝑏*)M, which is equal to the size of a maximum slot packing. 2

The modiVcation suggested in Theorem 3.46 is basically to replace the complex interaction of
several shifting bounds by one very simple non-shifting bound that ensures feasibility of the result
with respect to the original reference value system while at the same time being as “loose” as
possible. Usually, the new reference value systemℛ* will allow for less Wight movements than the
original system ℛ, but it will have the beneVts of simplifying the optimization process and of not
allowing for any blocking behavior by airlines. In Chapter 4, more precisely in Section 4.4.2, we
will investigate the eUects of this idea in a real-world setting and suggest a more realistic approach
based on this result.

Remark 3.47
As above, a slight generalization seems natural: Consider a reference value system ℛ =
{(𝐿1, 𝑏1), . . . , (𝐿𝑘, 𝑏𝑘)} consisting of only shifting bounds as above, let 𝐿* := gcd {𝐿1, . . . , 𝐿𝑘}
and 𝑏* := min {⌊𝑏𝑗/𝐿𝑗 · 𝐿*⌋}. As outlined above, one can then “scale down” the problem by
contracting each of the sets {1, . . . , 𝐿𝑘} , {𝐿𝑘 + 1, . . . , 2𝐿𝑘} , . . . to one slot and then modify the
time window bounds accordingly. By imposing an additional bound of ([1]∘ , 𝑏*) for each of these
“new slots”, we are exactly in the situation required by the theorem, thus planning on the new
system would result in no packing-covering gap. Of course, after the planning has been done, one
would “scale back up” by replacing every “new slot” by 𝐿* “old slots”, using a circular feasible slot
conVguration of suitable size for each of the intervals {1, . . . , 𝐿𝑘} , {𝐿𝑘 + 1, . . . , 2𝐿𝑘} , . . . (see
outline above).
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It is tempting to simplify that approach by deVning 𝐿* and 𝑏* as above and then replace the
original reference value system ℛ by ℛ ∪

{︁
([𝐿*]∘ , 𝑏*)(𝐿*)

}︁
instead of scaling down. Unfortu-

nately, this approach will generally not work, as is illustrated by the example in Figure 3.14. The
Vgures show a maximum slot packing and a minimum slot cover with respect to the reference
value system ℛ =

{︁
([3]∘ , 2)(3), ([6]∘ , 4), ([9]∘ , 6)

}︁
, which would arise by applying the above

procedure to {([6]∘ , 4), ([9]∘ , 6)} (meaning contract the slots in groups of three, according to the
bound of smallest length ([3]∘ , 2)). In the minimum slot cover shown in Figure 3.14b, no Wight
movements are placed in the middle group of three slots (fourth to sixth slot), while the Vrst and
last group of three slots each contain two Wight movements. This certainly covers slots one to
three and seven to eight using a time window of length three. But the slots four to six are also
covered, namely by the time window 3 + [6]∘, which contains all four Wight movements in the
slot conVguration displayed. On the contrary, the maximum slot packing shown in Figure 3.14a
contains six Wight movements, thus a positive packing-covering gap exists in this example.

2 4 6 8

2 2 2
(a) a maximum slot packing of size 6

2 4 6 8

2 20

4
(b) a minimum slot cover of size 4

Figure 3.14:Maximum slot packing and minimum slot cover for the reference value system ℛ ={︀
([3]∘ , 2)(3), ([6]∘ , 4), ([9]∘ , 6)

}︀
, see Remark 3.47.

3.7 Concluding Remarks

In this chapter, we introduced the Flight Scheduling problem and the related optimization
problems Maximum Slot Packing and Minimum Slot Cover. The Vrst two problems aim at
a Wight schedule that integrates a maximum number of Wight movements, while our studies of
Minimum Slot Cover gave some insight into the structure of bad Wight schedules. In combination,
these considerations provide valuable information about the inherent mechanism governing Flight
Scheduling problems.
Of course, the model we looked into in this chapter is still substantially simpliVed compared to

the constraints that govern Wight scheduling in real-world applications. Hence, to test our result
for viability in practice, we will have to consider realistic instances and a much more complex
mathematical model. We will do so in the following chapter, building upon the foundation laid out
here.
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Although some insight into complexity issues was provided in this chapter, there are so many
variations of scheduling, packing and covering problems that we could not possibly investigate all
of them. To conclude this chapter, let us brieWy comment on one such variant that is somehow “in
between” Flight Scheduling and Slot Packing and demonstrates the limitations of the matroid
approach that can be used for certain subclasses of Flight Scheduling problems. More precisely,
consider a situation where the “ground time”, i. e., the time between an arrival and the subsequent
departure for a Wight, is a Vxed amount of time 𝑔 ∈ 𝒮 for all Wights, where 𝒮 = {1, . . . , 𝑛} is a
slot set.
Any choice of the ground time 𝑔 induces a one to one mapping between a collection of slot re-

quests and a corresponding collection of Wight requests by considering 𝐺𝑖 as an arrival slot request
and associating with each slot request 𝐺𝑖 the Wight request 𝐹𝑖 :=

{︁
(𝑎, J𝑎+ 𝑔K[𝑛]) : 𝑎 ∈ 𝐺𝑖

}︁
. For

slot requests, we were able to obtain some complexity results via matroid theory, while for general
Wight requests the Flight Scheduling problem is known to be 𝒩𝒫-hard. Here, we formally deal
with Wight requests (i. e., slot pairs), but Vnd them to be very similar to slot requests via a Vxed
ground time coupling. The problem can then be stated as:

Problem 3.48: Maximum Slot Packing with A/D Coupling
Instance: The number of slots 𝑛 ∈ N, a shifting bound (𝐿, 𝑏) and a Vxed “ground time” 𝑔 ∈ N.
Question: Find a slot conVguration 𝐶 on 𝒮 = {1, . . . , 𝑛} that is feasible with respect toℛ and

maximizes the number of Wight movements 𝐶M(𝒮) subject to the constraints

𝐶D(𝑠) = 𝐶A(𝑠− 𝑔) for all 𝑠 ∈ 𝒮 where 𝑠− 𝑔 ∈ 𝒮 ,
𝐶D(𝑠) = 𝐶A(𝑛+ 1− 𝑔) for all 𝑠 ∈ 𝒮 where 𝑠− 𝑔 /∈ 𝒮 .

In this setting it is natural to assume a circular slot set, i. e., a slot set 𝒮 = {1, . . . , 𝑛} where
𝑛 is a multiple of 𝐿 (so we do not run into problems with circular non-shifting bounds, cf. the
discussion in Section 3.1.2) and interpret a slot number 𝑡 > 𝑛 as J𝑡K[𝑛]. In reality, this could either
mean that the same Wight pattern repeated itself over and over again, or we could think of a Wight
request {(𝑎, 𝑑)} with 𝑑 > 𝑎, but J𝑑K[𝑛] ≤ 𝑎, as a Wight that stays at the airport for the night and
leaves in the early morning. Now, only the bound 𝑏M should be considered, because separate
arrival/departure bounds are of no value in this situation. The notation used here is similar to
that in Section 3.2.3. We will now show that — in spite of the similarities to the slot request
considerations — the matroid approach used there (cf. Section 3.2.3) does not carry through.

For the Wight request setℱ = {𝐹1, . . . , 𝐹𝑚} associated to the slot requests 𝒢 = {𝐺1, . . . , 𝐺𝑚},
deVne 𝐹 ′𝑖 := {(𝑖, 𝑎, 𝑑) : (𝑎, 𝑑) ∈ 𝐹𝑖} and for 𝑡 ∈ 𝒮 deVne the set of Wight requests with arrival
(departure) at slot 𝑡 as

𝐻A
𝑡 :=

⋃︁
𝑖=1,...,𝑚

{(𝑖, 𝑡, 𝑑) : (𝑡, 𝑑) ∈ 𝐹𝑖}

𝐻D
𝑡 :=

⋃︁
𝑖=1,...,𝑚

{(𝑖, 𝑎, 𝑡) : (𝑎, 𝑡) ∈ 𝐹𝑖} ,
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respectively. For a subset 𝑆 ⊂ 𝒮 of the slot set, we can deVne the set of Wights arriving (departing)
within the time window 𝑠+ [𝐿]∘ (cf. Section 3.2.3) by

(𝐻A)′𝑠 :=
⋃︁

J𝑡∈𝑠+[𝐿]∘K[𝑛]

𝐻A
𝑡 for 𝑠 ∈ 𝑆

(𝐻D)′𝑠 :=
⋃︁

J𝑡∈𝑠+[𝐿]∘K[𝑛]

𝐻D
𝑡 for 𝑠 ∈ 𝑆.

A natural ground set is then
ℬℱ :=

⋃︁
𝑖=1,...,𝑚
𝐹 ′𝑖 ,

and the set

ℳm
(𝐿,𝑏);𝑔 :=

{︁
𝐵 ⊂ ℬ𝒢 :

⃒⃒⃒
𝐵 ∩ (𝐻A)′𝑠

⃒⃒⃒
+
⃒⃒⃒
𝐵 ∩ (𝐻D)′𝑠

⃒⃒⃒
≤ 𝑏M for all 𝑠 ∈ 𝑆

}︁
is an independence system over ℬℱ .
Unfortunately,ℳm

(𝐿,𝑏);𝑔 is not a matroid. To see this, we exhibit an example demonstrating
that the matroid exchange property (cf. Theorem 1.5) does not hold forℳm

(𝐿,𝑏);𝑔 . Consider a

non-shifting bound (𝐿, 𝑏)(𝐿) such that 𝑛 = 2𝐿, 𝑔 < 𝐿 and 𝑏M = 2𝑘 is even and deVne a Wight
request set ℱ = {𝐹1, . . . , 𝐹4𝑘−1} by

𝐹1 := · · · := 𝐹𝑘 := {(1, 1 + 𝑔)} ,
𝐹𝑘+1 := · · · := 𝐹2𝑘 := {(𝐿+ 1, 𝐿+ 1 + 𝑔)} ,
𝐹2𝑘+1 := · · · := 𝐹3𝑘 := {(𝐿,𝐿+ 𝑔)} ,
𝐹3𝑘+1 := · · · := 𝐹4𝑘−1 := {(2𝐿, 𝑔)} .

Then the sets

𝑈 :=
⋃︁

𝑖=1,...,2𝑘
{(𝑖, 𝑎, 𝑑) : (𝑎, 𝑑) ∈ 𝐹𝑖} , 𝑉 :=

⋃︁
𝑖=2𝑘+1,...,4𝑘−1

{(𝑖, 𝑎, 𝑑) : (𝑎, 𝑑) ∈ 𝐹𝑖}

correspond to the Wight requests 𝐹1, . . . , 𝐹2𝑘 and 𝐹2𝑘+1, . . . , 𝐹4𝑘−1, respectively, and their re-
spective cardinalities are |𝑈 | = 2𝑘 = |𝑉 | + 1, see Figure 3.15 for an illustration of 𝑈 and 𝑉 .
Furthermore, the requests in 𝑈 and 𝑉 account for the following numbers of arrivals and departures
within the time windows 1 + [𝐿]∘ and (𝐿+ 1) + [𝐿]∘:

1 + [L]∘ (L + 1) + [L]∘
Arrivals Departures Arrivals Departures

U 𝑘 𝑘 𝑘 𝑘
V 𝑘 𝑘 − 1 𝑘 − 1 𝑘
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Hence, both 𝑈 and 𝑉 are independent sets inℳm
(𝐿,𝑏);𝑔 , as they account for at most 𝑏M = 2𝑘 Wight

movements for each of the relevant time intervals. However, for every element (𝑖, 𝑎, 𝑑) ∈ 𝑈 , the
set 𝑉 ′ := 𝑉 ∪ {(𝑖, 𝑎, 𝑑)} would represent at least 𝑏M + 1 Wight movements for at least one of
the two time windows 1 + [𝐿]∘ and (𝐿+ 1) + [𝐿]∘ (as for each element of 𝑈 inserted in 𝑉 , two
Wight movements are added to one of those time window), thus 𝑉 ′ /∈ℳm

(𝐿,𝑏);𝑔 . This asserts that
the matroid exchange property does not hold forℳm

(𝐿,𝑏);𝑔 , thus the independence system is not a
matroid.
Coupling arrival and departure of a Wight request destroys the matroid structures of Flight

Scheduling problems with only slot requests, even if the coupling is not Wexible (if it was, we
could interpret the problem as an instance of 3D-Matching for a suitable shifting bound, cf.
Section 3.2.1). Of course, similar variations on Flight Scheduling and Maximum Slot Packing
can be thought of, e. g. allowing for diUerent ground times with an upper and a lower bound,
or using more than one shifting bound. Identifying a property (preferably one that bears some
relevance to applications) to classify the complexity of these problems is an interesting question
following up on the results of this thesis.
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(a) Arrivals and departures in the set 𝑈
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(b) Arrivals and departures in the set 𝑉

Figure 3.15: Illustration of the Wight request sets 𝑈 and 𝑉 . A set of 𝑛 = 2𝐿 slots is shown in a circle,
together with the two time windows 1 + [𝐿]∘ and (𝐿+ 1) + [𝐿]∘ (gray). It is impossible to
move an arrival/departure pair from the larger set 𝑈 to the smaller set 𝑉 without violating
one of the time window bounds for 𝑉 .
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Chapter 4

Applications of Flight Scheduling at
Airports

In this chapter, we will expand the theoretical considerations of Chapter 3 into a model suitable for
practical application. To this end, we will Vrst describe the practice of Wight scheduling, clarifying
and motivating various classes of constraints in detail in Section 4.1. In Section 4.2, the constraints
will be translated into a concise mathematical model of the Wight scheduling problem, diUerent
aspects of the model will be discussed and reVned along the way. Section 4.3 evaluates our model
on both real-world and realistic random data. The results obtained will be discussed under aspects
of both solution quality and solution structure, relating the practical results to our Vndings of
Chapter 3. In Section 4.4, we present some practical considerations on alternative reference value
structures that aim at avoiding bad Wight schedules, again expanding on the work of Chapter 3,
speciVcally the ideas and results on Minimum Slot Cover and the gap between Minimum Slot
Cover and Maximum Slot Packing, see Sections 3.5 and 3.6. Finally, Section 4.5 contains some
concluding remarks.

4.1 Flight Scheduling in Practice

4.1.1 The Slot System and the Constraints for the Flight Scheduling
Process

As was already explained in Section 1.3, the capacity at most airports is limited and often does not
bear up against the vastly growing demand for national and international air traXc. To resolve this
situation, the so called slot system has been developed as a means of allocating the scarce resource
of airport capacity to the airlines wishing to oUer a connection to and from an airport. In the rest of
this section we will describe the slot system and its constraints including some special regulations
for German airports in greater detail. Although some of that information was already given in
Chapter 3, the descriptions here will be much mored detailed, aiming at a concise mathematical
model for Wight scheduling that can be used for practical purposes.

A slot is deVned as “the scheduled time of arrival or departure [...] for an aircraft movement on a
speciVc date at a coordinated airport.” ([IATA07]) The procedure of slot allocation is applied only at
airports where demand exceeds capacity by a noticeable factor during certain periods, these airports
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are referred to as fully coordinated airports. In Germany, by summer 2008 the following airports
are fully coordinated: Frankfurt, Berlin (Tegel, Schönefeld, Tempelhof), Düsseldorf, München and
Stuttgart. Thus, in order to provide air service to and from a coordinated airport, an airline Vrst
needs to acquire a pair of corresponding arrival and departure slot at this airport for the desired
landing and take-oU times.
The slot system is implemented according to the IATAWorldwide Scheduling Guidelines (cf.

[IATA07]) by the airport coordinator, who is appointed by the government of every EU member
state for the coordination of its national airports. The coordinator has to be independent from both
the airports and the airlines and acts “in a neutral, non-discriminatory and transparent way” as “the
sole person responsible for the allocation of slots” ([EU93]). At each coordinated airport, there is
also a coordination committee (composed of members of the managing body of the airport and the
air carriers operating at that airport) to advise the coordinator. The coordinator assigns available
slots according to the airlines’ requests “while taking account of all relevant technical, operational
and environmental constraints” ([EU93]). In Germany, the airport coordinator is Claus Ulrich
(as of 2008), head of the FHKD (Flughafenkoordination Deutschland)1, an authority that reports
to the German Federal Ministry of Transport and is Vnanced by all major airlines in Germany.
Similar authorities exist in all EU member states (e. g. Airport Coordination Limited2 in the UK).

Flight scheduling as considered here is a long-term planning problem, thus a meticulous schedule
is not necessary — exact airport operations can only be planned on a daily or hourly basis, as
conditions such as winds and weather inadvertently introduce minor deviations from the schedule.
For this reason, slots are usually allocated on a time scale discretized in ten minute intervals,
with each interval possibly accommodating more than one Wight. Each year is divided into two
scheduling periods, a summer and a winter season. The summer season usually lasts from the end
of March until the end of October, the winter season from October until March. (The summer
season normally coincides with the period of daylight savings time).

Historic Slots

About six months before the start of a scheduling period the planning process starts with the
coordinator passing to the airlines information about which slots are regarded historic. A series of
slots allocated to an airline will be declared historic when they have been operated for at least
80% of the time during the period for which they have been allocated. Under the so-called use
it or loose it provision, airlines fulVlling that usage criterion thereby acquire a grandfather right
for a series of slots, meaning they have the right to claim the same series of slots for the coming
planning period. That right is generally based on data from the preceding period of the same type,
i. e., the last winter period for the upcoming winter and the last summer period for the upcoming
summer. Having acknowledged the information about historic slots, the airlines then submit their
slot clearance requests to the coordinator. A slot clearance request usually contains the desired

1Up-to-date information can be found on the oXcial website http://www.fhkd.org.
2For further information, see the oXcial website http://www.acl-uk.org.
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slots for arrival and departure, the type of aircraft that will be used and the intended days of
service.
In allocating the available slots to the airlines the coordinator will try to produce a “uniform”

schedule where possible, respecting series requests (i. e., a request for several slots on diUerent days
that must be scheduled for the same time of day on every requested day). However, the coordinator
is free to break up a series request after consultation with the airline, e. g., a series request for a
slot pair on every day of the week might be broken up into one request for Monday–Friday and
one for Saturday–Sunday with slightly diUerent slots assigned to each of the requests to give the
coordinator more Wexibility.
The coordinator starts by allocating the slots that are considered historic. These historic slots

are grouped into three categories:

Historic Slots (H): A request is made for a series of historic slots. Slots must necessarily be
allocated exactly as demanded for these requests.

Changed Historic Slots (CL/CR): A request is made to move a Wight from a historic slot (or
series of slots) to a diUerent slot (or series of slots). Such a request must either be fulVlled, or
the original historic slots must be allocated to the request. For a CL request, there is only the
alternative of allocating the desired slot(s) or the historic slot(s), whereas for a CR request
any slot(s) between the desired and the historic slot(s) may be allocated (as long as some
operational constraints are met), with precedence towards the desired slot(s).

Year Round Service (CI): A request is made for a series of slots that has been operated in the
previous planning period. These requests are allocated immediately after the historic slots,
i. e., they must be allocated when capacity is left after the historic slots are allocated. Notice
that CI requests are not exactly requests for historic slots, as these claims are not based on
the preceding season of the same type. Nevertheless, they are regarded as “almost historic”
in practice.

New Entrants and Incumbents

After the slots with grandfather rights have been assigned, the remaining slots are entered into the
slot pool, which is simply standard terminology meaning all slots that are available at a certain
stage of the allocation process (keep in mind that slot allocation is implemented as a sequential
process in practical operations). The new entrants rule is described in the IATA Worldwide
Scheduling Guidelines (cf. [IATA07]) as follows:

“Of the slots contained within the slot pool at the initial allocation, 50% must be
allocated to new entrants, unless requests by new entrants are less than 50%.”

The “slot pool” here refers to all slots that are available after the allocation of slots to all requests
with historic rights. A new entrant (NE request) is an airline that does not yet operate at the
airport considered or operates no more than four slots on the requested date. This rule is designed
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to lower market entrance barriers and facilitate competition. For an exact deVnition, see [EU93;
EU02; EU03; EU04] and [IATA07].
However, a burden is attached to new entrant status: If an airline is allocated slots under new

entrant status, these come with the obligation to operate the new service for at least two scheduling
periods of the same type (i. e., two winter periods or two summer periods). Furthermore, slots
allocated under the new entrant rule may not be exchanged with other airlines. As a consequence,
most airlines are reluctant to claim new entrant status in practice even if they could legally do so,
because it severely reduces their ability to reschedule a Wight or exchange slots and thus gives them
less Wexibility. For new entrant requests a certain Wexibility is granted to the airport coordinator;
the exact time allocated to a new entrant may vary from − 60 minutes to + 60 minutes around
the requested time.

There is, however, a problem with the new entrants rule we have to deal with in our optimization
model. As we know from Chapter 3, the total number of available slots depends heavily on the
allocations already set up and is therefore subject to change under diUerent allocations, see
Sections 3.5 and 3.6 for more details. Furthermore, it is unclear how many slots are to be considered
“available” (and thus part of the “slot pool”) after a partial allocation (e. g., of requests bearing
historic rights) has been performed. It is certainly not obvious how many slots are still “remaining”
after some of the Wights have been integrated, because this number may vary depending upon
how the remaining Wights are integrated, and also upon the exact slots that are allocated to the
historic Wights (where there is a choice). Of course, if the number of available slots is not clear at
any stage of the scheduling process, the number of slots reserved for new entrants can not at all be
calculated.
There are two apparent approaches to deal with this situation. The “foolproof” way is to use

the 50% as an ex-post measure, meaning that in the Vnal allocation the new entrants should
make up for at least 50% of all Wights that have been integrated into the schedule and that are
not historic Wights, provided there are new entrants’ requests that have not been integrated. A
diUerent (but computationally much simpler) approach is to somehow estimate the number of free
slots and set up a constraint based on that estimation. This can be done, e. g., by simply taking
the maximum number of Wights that could be integrated into a partial Wight schedule, or (a little
more sophisticated) by Vrst computing a preliminary Wight schedule without the new entrants rule,
deduce from that the number of slots allocated to non-historic Wights and demand that at least half
of that number is allocated to new entrants, if there are enough requests. The Vnal Wight schedule
is then computed in a second pass with the new entrants rule in eUect. As a drawback, this method
not only requires two Wight schedule computations, but also does not guarantee ex-post validity
of the Vnal schedule with respect to the new entrants rule, because the numbers taken from the
preliminary schedule can naturally only be an approximation to the Vnal results.

As a more pragmatic way of dealing with the new entrants rule, one could simply get rid of the
50% constraint and demand that all new entrants’ requests be integrated into the Wight schedule.
As mentioned before, in practice most airlines are very reluctant to claim new entrant status,
because of the liabilities involved. Hence, in practice, one would expect that there are far less new
entrants’ requests than to make up for more than 50% of the available slots (however these would
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be determined), thus all of these request would have to be integrated anyway.
After the allocation of slots to new entrants or after the reserved 50% of the slot pool are used

up, all other requests (called incumbents’ requests) are processed. As with new entrants, the slot
assigned to an incumbent request (if any) may vary up to 60 minutes around the requested time.

When the slot assignment has been communicated to the airlines, they may re-route their Wights
in order to make the best possible use of their slots and they may also exchange slots one for one,
but without monetary compensation, as long as they obtain the consent of the coordinator for these
changes (however, neither is possible for new entrants’ slots). To facilitate these arrangements, the
IATA hosts a Schedules Conference some time after the coordinators have communicated their
preliminary slot allocation to the airlines, where the coordinators, airport representatives and the
airlines’ planners meet to Vnalize the schedules.

Reference Value Systems

At German airports the air and ground control as well as environmental and noise protection
restrictions are usually cast into so-called reference value systems, cf. Section 3.1.2. Recall that a
reference value system is a collection of time window bounds that constrain the number of arrivals,
departures and Wight movements that can be allocated within a certain period of time. While
we considered both shifting and non-shifting bounds in Chapter 3, in practical applications only
shifting bounds are used. For this reason, we will restrict our considerations in this chapter to
shifting bounds. However, this is mainly a simpliVcation of notation, integration of non-shifting
bounds into our model is certainly possible and quite straightforward. Furthermore, we will only
consider symmetric and monotone reference value systems (cf. DeVnition 3.6) in this chapter, as
all practical data that we collected only used such systems.

A shifting bound consists of a period length (e. g., 60 minutes) and three bound values that deVne
upper bounds on the number of arrivals and departures as well as on the total Wight movements for
every time window of the speciVed length within the planning horizon. These values are referred
to as arrival (A), departure (D) and movements (M) values. Normally, several shifting bounds
for diUerent time periods interact to deVne implicit bounds on the number of slots that can be
allocated, see Sections 3.3 and 3.4 for a closer look into the nature of these interactions. For a
Wight schedule to be feasible, it must conform to the complete set of shifting bounds contained in a
reference value system.

In Germany, there are usually shifting bounds for time periods of 10, 30 and 60 minutes, where
the bounds for the longer periods are relatively more restrictive than those for the shorter periods
(i. e., the reference value systems are monotone). There is, however, no “hard legislation” that
would allow only for 10, 30 and 60 minute time windows, so a diUerent reference value system
might be put into practice if there is consensus among the participating parties (including the
airport coordinator, the airports, the airlines and the local authorities). Notice that a reference
value system with time window lengths 10, 30 and 60 minutes has the inclusion property, cf.
DeVnition 3.44.
It is important to note that, when talking about a Wight schedule, one usually refers to runway
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times, i. e., the time where the aircraft touches or takes oU the runway. In contrast to this, the
Wight schedule published to the passengers generally gives gate times, referring to the time when
the aircraft arrives at or departs from the terminal building. If not explicitly stated otherwise,
the shifting bounds and all other time-dependent constraints always refer to runway times. This
diUerence is important, because arrival and departure Wights undergo a diUerent time shift in the
conversion between runway and gate times. An arriving Wight needs to taxi from the runway to a
parking position and possibly connect to the gate via a jetway. A departing Wight, in addition to
disconnection from the jetway and taxi time, also needs to be pushed back and turned around by a
tow truck, because airplanes cannot taxi backwards on their own. As a standard procedure, for an
arriving Wight the gate time is Vve minutes after its arrival at the runway, while a departing Wight
has to leave the gate ten minutes before it is scheduled for take-oU on the runway. Recall that time
is usually discretized in units of ten minutes, which leads to a Vve minute “pattern” in published
Wight schedules — this is due to the diUerent conversion factors between gate and runway times
for arrivals and departures, respectively, and the fact that Wight scheduling is performed in runway
time notion, while the published Wight schedule lists gate times.
In a reference value system, the shifting bounds are usually referred to by a suggestive ab-

breviation containing most of the necessary information. A shifting bound is denoted by the
leading letter R (for the German word “Regel”, “rule”), followed by the length of the respective time
window in minutes and one of the letters A, D or M to denote the arrival, departure or movements
bound value. For example, R30A = 25 describes a shifting bound of length 30 minutes allowing
for a maximum of 25 arrivals. We will frequently give all three values as a triple according to
the scheme R10 A/D/M = 9/9/16 or simply R10 = 9/9/16. The shifting bounds may also diUer
by time of day, in which case the respective times of validity are given with the shifting bounds.
This can, for instance, be used to implement restrictions on night traXc, which is a very common
scenario at German airports. For an example of a reference value system, we refer the reader to
Figure 3.1 in Section 3.1.3.

Linking Arrival and Departure

A Wight request as described above generally consists of a pair of arrival and subsequent departure.
When it is not possible to integrate a request at the exact time that was demanded, this arrival-
departure link has to be respected. More speciVcally, there has to be enough time scheduled
between arrival and departure so that the aircraft can be safely unloaded, necessary checks can
be performed, fuel can be replenished, the cabin can be cleaned and boarding can be completed
comfortably. The time that is needed for these processes naturally varies with the size of the
aircraft; while a small regional jet can be handled within maybe half an hour, a larger aircraft
servicing an intercontinental Wight with several hundred passengers will naturally need a longer
ground time. The minimal ground time requirement can be deduced from the aircraft type reported
by the airline as part of the Wight request. On the other hand, every airline wants their equipment
to be airborne for as long as possible, because long ground times reduce the airline’s proVt.
Consequently, there is also an upper bound to the ground time that an airline will accept. Thus,
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when the airport coordinator schedules a Wight, both minimal and maximal ground time constraints
have to be observed.
There is, however, one notable exception to that rule: At some airports, one airline serves so

many Wights that it may prefer to request only single arrival and departure slots and link these
suitably on its own account later. This provides for greater Wexibility for the airline, which is of
special importance if major maintenance works are carried out at the airport for that airline. Such
maintenance operations, which must be performed on a regular basis, take an aircraft out of the
regular circulation for hours or maybe days, so it must be replaced by a diUerent model. The ability
to change the linking of arrivals and departures with some Wexibility allows the airline to react
to maintenance needs as well as unscheduled delays quickly. This exception generally applies to
the home base airport of any major carrier; as an example, Lufthansa Wights are considered as
single slot requests instead of as pairs by the airport coordinator for Frankfurt/Main. However,
for a Wight schedule to be applicable, the diUerence between the number of arrival and departure
slots may certainly not become too large (some deviation is allowed, because aircraft may stay at
the airport for the night or stay at the airport for scheduled maintenance). While an experienced
coordinator will intuitively adhere to that rule, any automated solution must integrate an upper
bound to the deviation allowed between arrivals and departures on a daily basis and/or for the
whole planning season.

North America Rule

As the airways between Europe and Northern America are heavily used, there are restrictions
on the number of take-oUs in the direction of North America at some German airports. As an
example, a valid Wight schedule may only contain up to four Wights headed for a destination in
Northern America within each Vfteen minutes. These bounds may also be applied in a shifting
fashion, as described for the reference value systems above. Notice that a bound with a 15 minute
time window would require a Vve minute discretization instead of the usual ten minute steps. As
all other requirements can be expressed in a ten minute discretization, the North America rule rule
is frequently modiVed to allow for a maximum of eight North America bound departures within
each thirty minutes (usually non-shifting) for compatibility.

Coupling of Flight Requests

Under certain circumstances, it may be desirable to couple selected Wight requests to each other in
various ways. One such case is the coupling of hub and spoke Wights. In such a setting, an airline
combines several regional Wights with one intercontinental Wight in the following way: A number
of regional Wights with roughly the same arrival time (the spokes or feeder Wights) transport
passengers from smaller airports to a large airport (the “hub”). The passengers then change into
one larger aircraft for their international destination. Using this system helps the airline to increase
capacity utilization of its large (and expensive) aircrafts while oUering passengers a convenient
means of traveling from an airport located in their home region. Of course, the same system
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is also used “backwards”, i. e., passengers arriving at a hub from some destination overseas are
forwarded to their home airport via a series of regional spoke Wights. To implement such a setting,
it is necessary to have at least a certain number of feeder Wights integrated into the Wight schedule
if the intercontinental Wight is to take place.

Additional Local Rules

In addition to the “global process” outlined above the coordinator has to conform to a number
of local rules that may diUer from airport to airport to reWect particular technical, operational
and environmental constraints. Among these are air and ground traXc capacity restrictions due
to safety considerations or airport handling capacity, restrictions on the types of aircraft being
used, restrictions on night Wight operations, noise protection legislation, restrictions due to special
handling requirements (e. g., for Wights to Israel) or air corridor limitations (e. g., the North America
rule mentioned above). Of course, the interests of the airport also have to be taken into account
for the scheduling process. For example, an airportairport usually prefers periodic and “uniform”
Wight schedules to facilitate organization and short-time rescheduling. In this context, the results
of Sections 3.3–3.5 are important, because we can be sure that an optimal outcome is still possible
with a “uniformity constraint” in place. (Of course, the results mentioned were obtained for a
much more restricted setting, so in practice we could indeed forfeit a possible optimum when
enforcing uniformity. However, as test runs will show, this is not very likely for realistic data.)
Other aspects include reliability of carriers (carriers that have proven to be reliable in the past may
get priority over others) and special events like the Olympic Games or the Soccer World Cup.

Objective Functions

Although the objective of Wight scheduling might seem obvious (namely to schedule as many Wights
as possible, given the above constraints), there are a number of alternatives that one frequently
considers in practice. First, notice that there is generally a diUerence between the number of
series requests that are scheduled and the number of Wight movements, as the latter also includes
information about the days of service and the length of the planning horizon. Revenue for an
airport is mainly generated by starting, landing and service fees, so the number of movements is
naturally the most important objective from an airport’s point of view.
On the other hand, other sources of revenue are becoming increasingly important, for instance

income from the lease of shopping areas and passenger service facilities such as restaurants. These
revenues correlate to the number and type of passengers, so an airport might prefer to take the
expected total number of passengers (normally estimated by the total number of seats) as an
objective. Of similar nature is the sum of theMaximum Take-OU Weights (MTOW).
As outlined before, other important objectives include average punctuality and customer satis-

faction (where “customer” can refer to both the airlines and the passengers from an airport’s point
of view). As a general approach to these objectives and variants thereof we will use an alternative
cost minimization objective. This will take into account the satisfaction level of the airlines with
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the Wight schedule, which is likely to be higher for a schedule that grants the airlines their favorite
slots whenever possible, while at the same time integrating a maximum number of Wights. Also,
getting a slot closer to the requested one should increase overall punctuality, because the airline
naturally needs a corresponding slot at the destination preceding or succeeding the airport we are
considering for optimization, and the airline’s request for a speciVc slot should be backed by a slot
request at other airports taking into account the average Wight time. However, if the integration
of some Wight into the schedule came at a disproportionate cost in terms of large deviations from
the requested slots for lots of other Wights, it might ultimately be a better choice not to integrate
that Wight and increase overall satisfaction for all the other airlines. By using a cost function that
assigns every arrival and departure request a separate costcost for deviating from the desired slot
as well as a cost for non-integration of a Wight request, a very Vne-grained control is possible that
can take into account punctuality levels, steadiness, the number of seats or the MTOW as well as
the potential income generated by a Wight for the airport.

4.1.2 Flight Scheduling in Practice

We conclude this section with a short note on the implementation of the Wight scheduling process
in practice. As noted above, the coordinator needs to start by scheduling all historic Wights, these
make up for about 60% of all Wight requests. Generally, H-requests are scheduled Vrst, then those
with CL- and CR-classiVcation (the latter at the requested slots or the nearest possible slot). After
that, year-round requests are integrated into the Wight plan. When all historic Wights have been
processed, the number of available slots is calculated (which can only be done approximately,
because that number depends upon the Wight schedule) and a number of 50% of the remaining
slots are reserved for new entrants’ Wight requests (classiVcation NE).
The new entrant requests are drawn at random, using a computer software (this is to ensure

neutrality of the coordination process) and integrated into the schedule if possible, at a free
slot closest to the requested time (some manual adjustments to the CR and CL Wights might be
necessary at this stage). When 50% of the non-historic slots have been used or when all NE Wights
have been integrated into the schedule (in practice, the latter is much more common, because
airlines are quite reluctant to have their requests classiVed as new entrants’), the incumbents’ Wight
requests are also considered. One request after the other is drawn at random and integrated as
close to the requested slot as possible (or discarded if it cannot be integrated within the admissible
time intervals).

All these steps are performed by a computer software with minimal manual intervention. When
all Wights have been considered, a draft schedule is presented together with the values of all shifting
bounds’ time windows. The coordinator and his/her coworkers then start to review the schedule,
possibly integrating more Wights by manual adjustments. After the coordinator completes this step,
the (still preliminary) schedule is sent to the airlines and to the airport, who both get a chance to
comment. The scheduling process up to here takes about six to eight weeks in total. The schedule
is then Vnalized at an international Schedules Conference.
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4.2 An Integer Programming Model for Flight Scheduling
4.2.1 Notation
In this section we will develop an integer programming formulation for Wight scheduling and
translate the various constraints described in Section 4.1 into integer linear equations or inequalities.
In addition, we propose diUerent objective functions for our model.

To formally model Wight scheduling as an integer program we need to adapt some of the notation
introduced in Chapter 3 to accommodate for the additional level of detail we need in this chapter.3

We will generally use one day as the minimal time horizon we consider for scheduling, and every
other time horizon will consist of whole days only. Throughout this chapter, we denote by 𝑛 ∈ N
the number of slots in one day (usually, 𝑛 = 24 · 6 = 144), 𝑑 ∈ N will be the number of days we
consider, and 𝑁 := 𝑛 · 𝑑 is the total number of slots.

DeVnition 4.1 (Series Request)
Let 𝑛, 𝑑 ∈ N and𝑁 := 𝑛𝑑. A series request or Wight series request is a tuple

(︀
𝑇, 𝑆, 𝑔,𝒟, 𝑐

)︀
where

• 𝑇 =
(︀
𝑇A, 𝑇D)︀𝑇 ∈ ([𝑛])⋆× ([𝑛])⋆, where at least one of 𝑇A, 𝑇D has a value diUerent from

∞, is the requested arrival/departure slot pair for every day of service;

• 𝑆 =
(︀
𝑆A, 𝑆D)︀𝑇 ∈ [𝑛]2 is the maximum allowable shift in slots, allowing for a shift of 𝑆A

around 𝑇A for the arrival slot and of 𝑆D around 𝑇D for the departure slot, respectively;

• 𝑔 =
(︀
𝑔min, 𝑔max)︀𝑇 ∈ [𝑛]2 are the minimum and maximum allowable ground times in slots,

respectively;

• 𝒟 ⊂ {1, . . . , 𝑑} is the set of requested days of service (if 𝑇A and 𝑇D are both unequal to
∞, then 𝒟 lists the days for the arrival slot);4

• 𝑐 =
(︀
𝑐A, 𝑐D, 𝑐M

)︀𝑇 ∈ R3
≥0 is a cost vector denoting the costs 𝑐

A and 𝑐D for a deviation of
one slot from 𝑇A and 𝑇D, respectively, and the cost 𝑐M for not allocating a slot pair to the
series request.

A series request (𝑇, 𝑆, 𝑔,𝒟, 𝑐) is called arrival request if 𝑇D = ∞, and departure request if
𝑇A =∞. A series request with 𝑇A, 𝑇D ̸=∞ will sometimes be termed a mixed series request.
For a series request 𝐹 = (𝑇, 𝑆, 𝑔,𝒟, 𝑐) we will sometimes write 𝑇𝐹 , 𝑆𝐹 , 𝑔𝐹 , 𝒟𝐹 and 𝑐𝐹 to
denote its components.

3For that reason, we will use the additional qualiVer “abstract” to refer to the deVnitions of Chapter 3, when the
deVnition we refer to is not clear from the context.

4As noted earlier, we will also consider requests for single arrival or departure slots. In these cases, 𝒟 simply
contains the requested days of service. In case of a slot pair, however, the departure might take place on the day
following arrival (a so called “overnight request”, because the aircraft stays at the airport overnight), thus we need a
convention of how to interpret 𝒟 in these cases.
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A series request is a “realization” of an abstract Wight request as it is stated in practice, with a
desired arrival/departure slot, an acceptable maximum deviation from those slots, minimum and
maximum ground times and the intended days of service. A series request corresponds to an
abstract series request (𝐹, ℐ) (cf. DeVnition 3.1) deVned by

𝐹 =
{︁

(𝑎, 𝑑) ∈ {1, . . . , 𝑛}2 : |𝑇A − 𝑎| ≤ 𝑆A ∧ |𝑇D − 𝑑| ≤ 𝑆D

∧ 𝑔min ≤ dist𝑛(𝑎, 𝑑) ≤ 𝑔max
}︁

and
ℐ := {(𝑡− 1)𝑛 : 𝑡 ∈ 𝒟} .

For a series request we employ the convention that arrival and/or departure must (if at all)
always take place on the day that was requested. As a consequence, if an airline desires a very
late arrival slot for a request with positive shift 𝑆A, the arrival cannot be shifted into the very
early hours of the following day. (and, of course, similar situations arise for any early or late
slot requested). This restriction is made primarily for the beneVt of a more concise notation. It
is indeed possible to allow for such situations in our model, but it would often require technical
and tedious notation for the diUerent cases involved, and we thus opted in favour of a clearer
notation. Let us mention that for practical purposes no loss is incurred by this decision, as night
Wight traXc is very low at German airports, often due to severe night Wight restrictions, so the
number of relevant very late and very early Wight movements is virtually zero. There are, however,
Wights that are scheduled to stay at the airport for the night, often for maintenance work, and
we will certainly respect those in our model. These overnight series requests are recognizable by
the fact that 𝑇D < 𝑇A, hence the departure has to take place on the day following arrival. Let
us remark once again that for such requests 𝒟 contains the days of the desired arrival slot, the
departure is then one day later.

The cost vector contained in a series request can be used to represent a Wight’s weight relative to
others, e. g., because an airline that has proven to be unreliable in the past may get lower preference
(and thus lower cost coeXcients) than a reliable carrier for the creation of a Wight schedule. These
preferences can be expressed using an alternative cost objective that works with the parameters
𝑐A, 𝑐D, and 𝑐M of a series request, see below.
One important aspect not expressed in a series request is the classiVcation of the request. This

will instead be encoded using a partition of all series requests.

Convention 4.2
For the rest of this chapter, we denote the collection of all series requests that are to be considered
for the optimization by ℱ and refer to that collection as the Wight request set. Furthermore, we
denote by

ℱ = ℱH ∪ ℱCR ∪ ℱCI ∪ ℱCL ∪ ℱNE ∪ ℱ I

a partition of ℱ into disjoint sets meaning by
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• ℱH, ℱCR, ℱCI, ℱCL: historic Wights of H-classiVcation and rescheduled historic Wights of
CR-, CI- or CL-classiVcation, respectively;

• ℱNE: Wights with new entrant status;

• ℱ I: all other Wights, i. e., those Wight bearing incumbent status.

For convenient notation, we will also use the abbreviation

ℱH/C := ℱH ∪ ℱCR ∪ ℱCI ∪ ℱCL

for the set of all historic and re-timed historic Wight requests.

It will also be convenient to be able to easily distinguish between arrivals and departures later.
Notice that a series request (𝑇, 𝑆, 𝑔,𝒟, 𝑐) corresponds to a tuple of an arrival and a departure
series request

(︀
(𝑇 ′, 𝑆′, 𝑔′,𝒟′, 𝑐′); (𝑇 ′′, 𝑆′′, 𝑔′′,𝒟′′, 𝑐′′)

)︀
where

𝑇 ′ = (𝑇A,∞), 𝑆′ = (𝑆A, 0), 𝑇 ′′ = (∞, 𝑇D), 𝑆′′ = (0, 𝑆D)

and
𝑔′ = 𝑔′′ = 𝑔, 𝒟′ = 𝒟′′ = 𝒟, 𝑐′ = 𝑐′′ = 𝑐,

thus a series request can also be viewed as a pair of arrival and departure series request.

Convention 4.3
Let ℱ denote the Wight request set. By

ℱ = ℱA ∪ ℱD ∪ ℱM

we will denote a partition of ℱ into disjoint sets, where ℱA contains all arrival series requests,
ℱD contains all departure series requests and ℱM contains all mixed series requests. We shall also
use the abbreviations

ℱA/M := ℱA ∪ ℱM and ℱD/M := ℱD ∪ ℱM.

Furthermore, by ℱ$ ⊂ ℱM we will denote the set of overnight series requests, i. e.,

ℱ$ :=
{︁
𝐹 = (𝑇, 𝑆, 𝑔,𝒟, 𝑐) ∈ ℱM : 𝑇A > 𝑇D

}︁
.

As in DeVnition 3.3, we deVne a Wight schedule to be a mapping from the Wight request set into
the set of (or “∞” to denote that a series request could not be allocated a slot pair) within the
constraints deVned by the series request.
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DeVnition 4.4 (Flight Schedule)
Let ℱ be a Wight request set. A Wight schedule for ℱ is a function

𝑓 : ℱ → (([𝑛])⋆ × ([𝑛])⋆)⋆ ,
𝐹 ↦→

(︀
𝑓A(𝐹 ), 𝑓D(𝐹 )

)︀
such that the following properties hold for all 𝐹 = (𝑇, 𝑆, 𝑔,𝒟, 𝑐) ∈ ℱ (notice that we identify
𝑓(𝐹 ) =∞ with 𝑓A(𝐹 ) = 𝑓D(𝐹 ) =∞ here and in the following):

• Historic Wights: 𝑓A(𝐹 ) ∈ {1, . . . , 𝑛} for all 𝐹 ∈ ℱH/C∩ℱA/M and 𝑓D(𝐹 ) ∈ {1, . . . , 𝑛}
for all 𝐹 ∈ ℱH/C ∩ ℱD/M.

• Shift limits: |𝑓A(𝐹 ) − 𝑇A| ≤ 𝑆A for all 𝐹 ∈ ℱA/M and |𝑓D(𝐹 ) − 𝑇D| ≤ 𝑆D for all
𝐹 ∈ ℱD/M.

• Single slots: If 𝑇A
𝐹 =∞, then 𝑓A(𝐹 ) =∞, and if 𝑇D

𝐹 =∞, then 𝑓D(𝐹 ) =∞.

• Slot pairs: 𝑓A(𝐹 ) ̸=∞⇔ 𝑓D(𝐹 ) ̸=∞ for all 𝐹 ∈ ℱM with 𝑓(𝐹 ) ̸=∞.

• Ground times: 𝑔min ≤ dist𝑛(𝑓A(𝐹 ), 𝑓D(𝐹 )) ≤ 𝑔max for all 𝐹 ∈ ℱM with 𝑓(𝐹 ) ̸=∞.

A series request 𝐹 is said to integrated or scheduled in the Wight schedule 𝑓 , if 𝑓(𝐹 ) ̸=∞.

For the objective functions we shall consider for our integer programming model, some notions
measuring the “quality” of a Wight schedule in various ways will be helpful.

DeVnition 4.5 (Size and Cost of a Flight Schedule)
Let ℱ be a Wight request set and 𝑓 : ℱ → (([𝑛])⋆ × ([𝑛])⋆)⋆ a Wight schedule. Then the size of
the Wight schedule 𝑓 is the number |𝑓 | of scheduled Wight movements, i. e.,

|𝑓 | :=
∑︁

𝐹∈ℱA/M

𝑓A(𝐹 )̸=∞

|𝒟𝐹 |+
∑︁

𝐹∈ℱD/M

𝑓D(𝐹 ) ̸=∞

|𝒟𝐹 | .

The cost of the Wight schedule 𝑓 is

𝑐(𝑓) :=
∑︁

𝐹∈ℱA/M

𝑓A(𝐹 )̸=∞

|𝑓A(𝐹 )− 𝑇A
𝐹 | · 𝑐A𝐹 +

∑︁
𝐹∈ℱD/M

𝑓D(𝐹 )̸=∞

|𝑓D(𝐹 )− 𝑇D
𝐹 | · 𝑐D𝐹 +

∑︁
𝐹∈ℱ
𝑓(𝐹 )=∞

𝑐M𝐹 .

The two measures size and cost stress very diUerent aspects of a Wight schedule. Notice that
the size does not simply count the number of Wight series integrated into the Wight plan, but
weighs each integrated series with the number of Wight movements it accounts for. In practice,
this is the commonly used measure. In contrast to this, the cost of a Wight schedule measures the
degree of deviation from the originally requested slots that is incurred by a Wight scheduleWight
schedule. The cost function may also incorporate a Wight-dependent weight on shifted arrivals and
departures and takes into account a (virtual) cost for not integrating a Wight into the schedule.
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As discussed in Chapter 3, the most prominent constraints for Wight scheduling are the shifting
bounds contained in some reference value system. To see if a Wight schedule is feasible with respect
to a reference value system, we take the very same approach as in Chapter 3 and associate to that
Wight schedule 𝑓 a slot conVguration 𝐶𝑓 : {1, . . . , 𝑁} → N3

0 counting the arrivals, departures
and total movements induced by 𝑓 for the whole planning horizon. Feasibility of a Wight schedule
is also deVned in terms of 𝐶𝑓 , exactly as in Section 3.1.3. As these notions should be obvious, we
do not reproduce them here.

4.2.2 Problem Statement

With the above notation, we can now formally state the Wight scheduling problem on real-world
data.

Problem 4.6: Maximum Flight Schedule
Instance: A number 𝑛 ∈ N of slots per day, a number 𝑑 ∈ N of days, a Wight request set ℱ and

a reference value systemℛ.
Question: Find a Wight schedule for ℱ that is feasible with respect toℛ and has maximum size.

Problem 4.7: Minimum Cost Flight Schedule
Instance: A number 𝑛 ∈ N of slots per day, a number 𝑑 ∈ N of days, a Wight request set ℱ and

a reference value systemℛ.
Question: Find a Wight schedule for ℱ that is feasible with respect toℛ and has minimum cost.

4.2.3 Modeling Flight Scheduling as Integer Linear Program

We are now ready to transform the formal description of Sections 4.2.1 and 4.2.2 into an integer
linear program. We will Vrst introduce the variables of the integer programming formulation
and then discuss the various constraints and possible objective functions. As in the foregoing
subsection, let 𝑛 ∈ N be the number of slots per day, 𝑑 ∈ N the number of days in the planning
horizon and 𝑁 := 𝑛𝑑 the total number of slots. Furthermore, let ℱ = {𝐹1, . . . , 𝐹𝑚} denote the
Wight request set with partitions as deVned in Section 4.2.1, and letℛ = {(𝐿1, 𝑏1), . . . , (𝐿𝑘, 𝑏𝑘)}
be a reference value system consisting of only shifting bounds. For a series request 𝐹𝑖 we will
without further notion denote its components by (𝑇𝑖, 𝑆𝑖, 𝑔𝑖,𝒟𝑖, 𝑐𝑖).

Decision Variables

For every series request in 𝐹 ∈ ℱ , we introduce a number of binary decision variables, one for
each slot that can be allocated to a particular request. In order to reduce the number of variables,
we follow a “template” approach here: We only use variables for slots 𝑡 ∈ [𝑛] (i. e., one day of the
planning horizon) and “extrapolate” the values of these variables to the whole planning horizon
using the set 𝒟𝐹 . Thus, the number of variables can be reduced by a factor of 𝑑 (recall 𝑑 ≈ 180
for the complete problem!) compared to the naive approach of using a full set of variables for every
slot in {1, . . . , 𝑁}.
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As remarked before, we will assume that arrivals and departures must be scheduled for the day
of the desired slot, i. e., a Wight series is scheduled as overnight series if and only if it is requested
as such. For the data that we will use for our practical explorations later, no problems arise from
that restriction for two reasons: First, there is a (more or less strict) night Wying restriction on
German airports, meaning that very late and very early Wight movements may not be scheduled
anyway. Second, many airlines arrange for necessary maintenance work to be performed during
the night at the airport. Thus a Wight can either be processed within a single day, or it can stay at
the airport over night. In either case, what happens for a particular Wight is known in advance
and cannot change in the course of optimization, so we need not take into account this possibility.
Yet, as mentioned before, a modiVed model would pose no added diXculties to our approach (but
would require some technical case diUerentiations).

We denote by 𝑥𝑖𝑡 decision variables for arrival requests and by 𝑦𝑖𝑡 decision variables for
departure requests, with 𝑖 ∈ [𝑚], 𝑡 ∈ [𝑛], and with the understanding that

𝑥𝑖𝑡 =

⎧⎪⎪⎨⎪⎪⎩
1, if slot 𝑡 ∈ [𝑛] is allocated for arrival to series request 𝐹𝑖 ∈ ℱ

for every day of service in 𝒟𝑖,
0, otherwise;

𝑦𝑖𝑡 =

⎧⎪⎪⎨⎪⎪⎩
1, if slot 𝑡 ∈ [𝑛] is allocated for departure to series request 𝐹𝑖 ∈ ℱ

for every day of service in 𝒟𝑖,
0, otherwise.

Of course, most of these variables will usually be 0, more precisely:

for all 𝐹𝑖 ∈ ℱA/M: 𝑥𝑖𝑡 = 0 for all 𝑡 ∈ [𝑛] with |𝑡− 𝑇A| > 𝑆A

for all 𝐹𝑖 ∈ ℱD/M: 𝑦𝑖𝑡 = 0 for all 𝑡 ∈ [𝑛] with |𝑡− 𝑇D| > 𝑆D

For performance and storage space reasons, our implementation of the integer programming model
will only allocate space for those decision variables that are not Vxed to zero anyway. However,
for the formulation of the model it is more convenient to work with the full set of variables and
add the “non-zero constraints” above.
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Allocation Constraints

In order to guarantee a valid allocation of slots to series requests, we need to integrate the usual
allocation constraints into our model.∑︁

𝑡∈[𝑛]
𝑥𝑖𝑡 ≤ 1 for all 𝐹𝑖 ∈ ℱA/M∖ℱH/C ∑︁

𝑡∈[𝑛]
𝑦𝑖𝑡 ≤ 1 for all 𝐹𝑖 ∈ ℱD/M∖ℱH/C

∑︁
𝑡∈[𝑛]
𝑥𝑖𝑡 = 1 for all 𝐹𝑖 ∈ ℱA/M ∩ ℱH/C ∑︁

𝑡∈[𝑛]
𝑦𝑖𝑡 = 1 for all 𝐹𝑖 ∈ ℱD/M ∩ ℱH/C

𝑥𝑖𝑡 = 0 for all 𝐹𝑖 ∈ ℱD 𝑦𝑖𝑡 = 0 for all 𝐹𝑖 ∈ ℱA

In addition, for mixed series requests that involve both arrival and departure either both or none
of these must be allocated a slot:∑︁

𝑡∈[𝑛]
(𝑥𝑖𝑡 − 𝑦𝑖𝑡) = 0 for all 𝐹𝑖 ∈ ℱM

Ground Time Constraints

Ground time constraints are only relevant for Wight that do not stay over night (we assume that
overnight Wights stay on the ground long enough anyway, due to the night Wying restrictions), but
as remarked before, ground time constraints for overnight Wights could be integrated into the model
with some notational eUort. For modeling time dependent restrictions like the minimum/maximum
ground time constraints notice that∑︁

𝑡∈[𝑛]
𝑡 · 𝑥𝑖𝑡 and

∑︁
𝑡∈[𝑛]
𝑡 · 𝑦𝑖𝑡

can be used to express the arrival and departure slot, respectively, allocated to a Wight 𝐹𝑖. With
this observation we can model the ground time constraints for a series request 𝐹𝑖 ∈ ℱM∖ℱ$ as∑︁

𝑡∈[𝑛]

(︀
(𝑡+ 𝑔min

𝑖 ) · 𝑥𝑖𝑡 − 𝑡 · 𝑦𝑖𝑡
)︀
≤ 0

−
∑︁
𝑡∈[𝑛]

(︀
(𝑡+ 𝑔max

𝑖 ) · 𝑥𝑖𝑡 + 𝑡 · 𝑦𝑖𝑡
)︀
≤ 0

(4.1)

Notice that a formulation like
∑︀
𝑖∈[𝑛](𝑡 · 𝑥𝑖𝑡 + 𝑔min

𝑖 − 𝑡 · 𝑦𝑖𝑡) ≤ 0 does not yield the desired result,
because it would constitute an infeasibility for every series request that is not allocated a slot pair
(and at a congested airport there will naturally be such Wight requests). On the other hand, for a
series request that is guaranteed to receive a slot (because it has historic rights), this formulation
is possible and it is stronger in an LP sense than (4.1), i. e., the inequality is stronger for the LP
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relaxation. So it is indeed advisable to use (4.1) for all 𝐹𝑖 ∈ ℱM∖ℱH/C and∑︁
𝑡∈[𝑛]

(︀
𝑡 · 𝑥𝑖𝑡 + 𝑔min

𝑖 − 𝑡 · 𝑦𝑖𝑡
)︀
≤ 0

−
∑︁
𝑡∈[𝑛]

(︀
𝑡 · 𝑥𝑖𝑡 + 𝑔max

𝑖 + 𝑡 · 𝑦𝑖𝑡
)︀
≤ 0

(4.2)

instead for all historic Wights 𝐹𝑖 ∈ ℱM ∩ ℱH/C.

Reference Value System

Modeling shifting bounds for a Wight schedule is quite straightforward, because one can almost
literally translate the abstract deVnition of a feasible slot allocation into integer programming
terminology. The only caveat here is that we have to transform the “template representation” into
a real Wight schedule on the complete slot set [𝑁 ] using the “days of service”-set 𝒟𝑖 for every
request 𝐹𝑖 ∈ ℱ . Hence for all shifting bounds

(︀
𝐿, 𝑏

)︀
=
(︀
𝐿, (𝑏A, 𝑏D, 𝑏M)𝑇

)︀
∈ ℛ we have the

following inequalities:

For all (𝐿, 𝑏) ∈ ℛ, all 𝑠 ∈ {1, . . . , 𝑛− 𝐿} and all 𝑣 ∈ {1, . . . , 𝑑}:

∑︁
𝑡∈𝑠+[𝐿]∘

⎛⎜⎜⎜⎝∑︁
𝐹𝑖∈ℱA
𝑣∈𝒟𝑖

𝑥𝑖𝑡 +
∑︁
𝐹𝑖∈ℱM

𝑣∈𝒟𝑖

𝑥𝑖𝑡

⎞⎟⎟⎟⎠ ≤ 𝑏A

∑︁
𝑡∈𝑠+[𝐿]∘

⎛⎜⎜⎜⎝ ∑︁
𝐹𝑖∈ℱD

𝑣∈𝒟𝑖

𝑦𝑖𝑡 +
∑︁

𝐹𝑖∈ℱM∖ℱ$
𝑣∈𝒟𝑖

𝑦𝑖𝑡 +
∑︁

𝐹𝑖∈ℱM∩ℱ$
(𝑣−1)∈𝒟𝑖

𝑦𝑖𝑡

⎞⎟⎟⎟⎠ ≤ 𝑏D

∑︁
𝑡∈𝑠+[𝐿]∘

⎛⎜⎜⎜⎝ ∑︁
𝐹𝑖∈ℱA
𝑣∈𝒟𝑖

𝑥𝑖𝑡 +
∑︁
𝐹𝑖∈ℱD

𝑣∈𝒟𝑖

𝑦𝑖𝑡 +
∑︁

𝐹𝑖∈ℱM∖ℱ$
𝑣∈𝒟𝑖

(𝑥𝑖𝑡 + 𝑦𝑖𝑡) +
∑︁

𝐹𝑖∈ℱM∩ℱ$
𝑣∈𝒟𝑖

𝑥𝑖𝑡 +
∑︁

𝐹𝑖∈ℱM∩ℱ$
(𝑣−1)∈𝒟𝑖

𝑦𝑖𝑡

⎞⎟⎟⎟⎠ ≤ 𝑏M

We use the convention that 𝑥𝑖𝑡 = 𝑦𝑖𝑡 = 0 for all 𝑡 /∈ [𝑛] here. Notwithstanding the deVnition
of reference value systems used in practice (cf. Section 4.1.1), one might also want to consider
circular shifting bounds. Here, the same inequalities apply, but we now consider the index 𝑡 to
be taken modulo 𝑛 and we apply the bounds for all 𝑠 ∈ [𝑛], thus “wrapping” the time windows
around the left and right border of the slot set. In practice, the set of slots usually starts at 0:00 and
ends at 23:59, and during the early hours of the night there is only little air traXc at German (and
generally European) airports, due to night Wight restrictions and low passenger volume during this
time. So there being no congestion at the “wraparound times”, circular shifting bounds are usually
not an issue in applications.
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North America Rule

The North America rule introduced in Section 4.1.1 is usually applied as a non-shifting bound.
Let (𝐿, 𝑏D) be a tuple with 𝐿 ∈ N denoting the length of the North America rule in slots and a
bound 𝑏D ∈ N on the number of departures with destination in North America. Furthermore, let
ℱUSA ⊂ ℱD/M be the set of series requests with destination in North America. Then the North
America rule rule can be modeled as

∑︁
𝑡∈𝑠+[𝐿]∘

⎛⎜⎜⎜⎝ ∑︁
𝐹𝑖∈ℱUSA∖ℱ$
𝑣∈𝒟𝑖

𝑦𝑖𝑡 +
∑︁

𝐹𝑖∈ℱUSA∩ℱ$
(𝑣−1)∈𝒟𝑖

𝑦𝑖𝑡

⎞⎟⎟⎟⎠ ≤ 𝑏D
for all 𝑠 ∈ {1, 𝐿+ 1, 2𝐿+ 1, . . .} ∩ [𝑁 ] (or 𝑠 ∈ [𝑁 ], if applied as shifting bound) and all
𝑣 ∈ {1, . . . , 𝑑}.
Notice that for the usual implementation of a “not more than four departures per 15 minutes”

North America rule we have to use a discretization of Vve minutes per slot instead of the usual ten
minutes. Alternatively, the rule can be adapted to the ten minute pattern by, e. g., reformulating it
as “not more than eight departures per 30 minutes”. Our formulation above is Wexible enough to
support both approaches, and consequently the implementation of the model will support both
a Vve minute and ten minute discretization. However, as the Vve minute discretization would
roughly double the model size without any beneVt besides the ability to implement a 15 minutes
version of the North America rule, we will normally use the 30 minutes version and stick to a ten
minute discretization. We conducted a number of test runs employing a Vve minute discretization
that have shown only marginal diUerences in the results. Therefore, we cannot deem worthwhile
the additional computational eUorts required for a Vve minute discretization for the beneVt of
a stricter version of the North America rule alone, and will generally resort to the 30 minutes
version in our test runs in Section 4.3.
As a side note, notice that a Vve minute discretization can also have consequences for the

shifting bounds inℛ: Either the bounds can still be applied with time windows starting at each
slot, giving a somewhat stricter system than with the ten minute discretization. Alternatively, to
keep the bounds independent of the discretization, we can deVne suitable starting slot sets for
every time window bound, e. g., one could use only time windows starting at odd slots. To get
comparable results, our implementation generally uses that second approach when employing a
Vve minute discretization.

New Entrants Rule

As was argued in Section 4.1.1, neither legal speciVcations nor the IATA scheduling guidelines are
very speciVc about how to implement the new entrants rule. We therefore proposed two diUerent
approaches to the problem, namely taking the “50% of the remaining slots” as an ex-post measure
or alternatively estimating the number of slots still available after allocation of those requests that
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are backed by historic rights. The latter approach is straightforward in the integer programming
model, with the constraint

∑︁
𝑡∈[𝑛]

⎛⎝ ∑︁
𝐹𝑖∈ℱNE

|𝒟𝑖| (𝑥𝑖𝑡 + 𝑦𝑖𝑡)

⎞⎠ ≥ 𝐾, (4.3)

where𝐾 is deVned by

𝐾 := min

⎧⎨⎩50% of the slots remaining after allocation of historic requests,

∑︁
𝐹𝑖∈ℱNE∩ℱA/M

|𝒟𝑖| +
∑︁

𝐹𝑖∈ℱNE∩ℱD/M

|𝒟𝑖|

⎫⎬⎭ (4.4)

For the determination of 𝐾 , one can, e. g., compute a preliminary Wight schedule or take the
maximum number of slots that is potentially available in a Wight schedule with the historic Wights
already integrated, see Section 4.1.1 for a discussion. This method is quite simple from an integer
programming viewpoint, as it does not introduce any new variables; as a drawback, it not only
requires two Wight schedule computations for a thorough estimation of 𝐾 , but also does not
guarantee ex-post validity of the Vnal schedule with respect to the new entrants rule, because the
numbers taken from the preliminary schedule or any other estimation method can naturally only
be an approximation of the Vnal results.
For the alternative formulation, requiring ex-post validity of the new entrants rule, we can use

a formulation like∑︁
𝑡∈[𝑛]

⎛⎝ ∑︁
𝐹𝑖∈ℱNE

|𝒟𝑖| (𝑥𝑖𝑡 + 𝑦𝑖𝑡)

⎞⎠
≥min

⎧⎨⎩1
2
∑︁
𝑡∈[𝑛]

⎛⎝ ∑︁
𝐹𝑖∈ℱ∖ℱH/C

|𝒟𝑖| (𝑥𝑖𝑡 + 𝑦𝑖𝑡)

⎞⎠ , ∑︁
𝐹𝑖∈ℱNE∩ℱA/M

|𝒟𝑖| +
∑︁

𝐹𝑖∈ℱNE∩ℱD/M

|𝒟𝑖|

⎫⎬⎭ .
Unfortunately, the min-operator induces a nonlinearity into the model, so we will need an
additional binary decision variable 𝑧NE to model the new entrants rule. A value of 𝑧NE = 1
indicates that all new entrants’ requests are integrated into the Wight schedule (thus obliterating
the 50% condition), while a value of 𝑧NE = 0 “activates” the new entrants rule. This can be
achieved by the following formulation:

∑︁
𝑡∈[𝑛]

⎛⎝ ∑︁
𝐹𝑖∈ℱNE

|𝒟𝑖| (𝑥𝑖𝑡 + 𝑦𝑖𝑡)

⎞⎠ ≥ 𝑧NE ·
⎛⎝ ∑︁
𝐹𝑖∈ℱNE∩ℱA/M

|𝒟𝑖| +
∑︁

𝐹𝑖∈ℱNE∩ℱD/M

|𝒟𝑖|

⎞⎠
∑︁
𝑡∈[𝑛]

⎛⎝ ∑︁
𝐹𝑖∈ℱNE

|𝒟𝑖| (𝑥𝑖𝑡 + 𝑦𝑖𝑡)

⎞⎠ ≥ 1
2(1− 𝑧NE)

∑︁
𝑡∈[𝑛]

⎛⎜⎝ ∑︁
𝐹𝑖∈ℱ∖ℱH/C

|𝒟𝑖| (𝑥𝑖𝑡 + 𝑦𝑖𝑡)

⎞⎟⎠
(4.5)
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In practice, “constraint switching” variables like 𝑧NE are generally undesirable, because they can
have rather negative eUects on the strength of the linear programming relaxation. Hence one often
uses alternative formulations that, while not capturing the real constraint in the same concise way
as the original formulation, may lead to much better LP relaxations without giving away too much
in the applications. An example in this context would be to use the “estimation approach” as in
(4.3) and (4.4). Also, when the number of new entrants requests is low (as is frequently the case in
practice), one would just perform the computations without using any kind of new entrants rule
and instead treat new entrants like historic Wights (more precisely, CR class Wights with a ± 60
minutes scheduling interval around the requested slots), which should be a very accurate and fast
approach in practice. Technically speaking, this corresponds to the case of 𝑧NE = 1 in (4.5).

Coupling of Flight Requests, Hub and Spoke Flights

For hub and spoke Wights comprising of one hub Wight (intercontinental Wight) and several (regional)
feeder Wights, two additional constraints must be modeled:

• Only schedule the hub Wight, if a minimum number of feeder Wights are integrated.

• If the hub Wight is not integrated, none of the feeder Wights should be integrated.

For a hub Wight 𝐹𝑖0 ∈ ℱ , denote the corresponding feeder Wights by 𝐹𝑖1 , . . . , 𝐹𝑖𝑝 and let 𝑞 ∈ N,
𝑞 ≤ 𝑝 be the minimum number of feeder Wights required to schedule the hub Wight. Then the
following constraints are added to the model:

∑︁
𝑡∈[𝑛]
𝑦𝑖0𝑡 ≤

1
𝑞
·

∑︁
𝑖∈{𝑖1,...,𝑖𝑝}

⎛⎝∑︁
𝑡∈[𝑛]
𝑥𝑖𝑡

⎞⎠
∑︁

𝑖∈{𝑖1,...,𝑖𝑝}

∑︁
𝑡∈[𝑛]
𝑝𝑖𝑡 ≤ 𝑘 ·

∑︁
𝑡∈[𝑛]
𝑦𝑖0𝑡

Objective Functions

As outlined before in Section 4.1, there are basically two diUerent objective functions that are
relevant in practice. As a Vrst goal, an airport is interested in maximizing the number of Wight
movements that take place, because every movement generates direct income in the form of landing
and starting fees as well as indirect income via the use of ground handling services, fuel sales and
the use of airport infrastructure such as shops or restaurants by passengers. The corresponding
objective function is

max
∑︁
𝑡∈[𝑛]

⎛⎝∑︁
𝐹𝑖∈ℱ

(𝑥𝑖𝑡 + 𝑦𝑖𝑡)

⎞⎠ or max
∑︁
𝑡∈[𝑛]

⎛⎝∑︁
𝐹𝑖∈ℱ
𝑤(𝐹𝑖) · (𝑥𝑖𝑡 + 𝑦𝑖𝑡)

⎞⎠ ,
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respectively, where 𝑤 : ℱ → R≥0 is an arbitrary weight function. The most important example is
the case where

𝑤(𝐹𝑖) := |𝒟𝑖| ,

measuring the total number of Wight movements. As an alternative, one can also multiply 𝑤(𝐹𝑖)
with the number of passengers expected for each Wight 𝐹𝑖 or with the MTOW.

The alternative approach described in Section 4.1 is a minimization of cost terms. To this end
every series request is “equipped” with a cost vector 𝑐 =

(︀
𝑐A, 𝑐D, 𝑐M

)︀
allowing for Vne-grained

control of the costs on a per-Wight basis. The corresponding objective function is

min
∑︁

𝐹𝑖∈ℱA/M

𝑐A𝑖 ·

⎛⎜⎝ ∑︁
𝑡∈[𝑇A

𝑖 , 𝑇
A
𝑖 +𝑆A

𝑖 ]
𝑥𝑖𝑡(𝑡− 𝑇A

𝑖 ) +
∑︁

𝑡∈[𝑇A
𝑖 −𝑆

A
𝑖 , 𝑇

A
𝑖 ]
𝑥𝑖𝑡(𝑇A

𝑖 − 𝑡)

⎞⎟⎠
+

∑︁
𝐹𝑖∈ℱD/M

𝑐D𝑖 ·

⎛⎜⎝ ∑︁
𝑡∈[𝑇D

𝑖 , 𝑇
D
𝑖 +𝑆D

𝑖 ]
𝑦𝑖𝑡(𝑡− 𝑇D

𝑖 ) +
∑︁

𝑡∈[𝑇D
𝑖 −𝑆

D
𝑖 , 𝑇

D
𝑖 ]
𝑦𝑖𝑡(𝑇D

𝑖 − 𝑡)

⎞⎟⎠
+

∑︁
𝐹𝑖∈ℱA

𝑐M𝑖 ·

⎛⎝1−
∑︁
𝑡∈[𝑛]
𝑥𝑖𝑡

⎞⎠+
∑︁
𝐹𝑖∈ℱD

𝑐M𝑖 ·

⎛⎝1−
∑︁
𝑡∈[𝑛]
𝑦𝑖𝑡

⎞⎠
+

∑︁
𝐹𝑖∈ℱM

𝑐M𝑖 ·

⎛⎝1−
∑︁
𝑡∈[𝑛]
𝑥𝑖𝑡

⎞⎠ .
Notice that the Vrst two lines describe the cost of deviation from the desired arrival and departure
slot respectively, the third line represents the cost of not integrating an arrival or departure series
request and the fourth line adds the non-integration cost for a mixed series request. Here, it suXces
to consider the 𝑥𝑖𝑡 variables for ever series request 𝐹𝑖 ∈ ℱM, because these sum up to one if and
only if the same holds for the 𝑦𝑖𝑡 variables. For a series request that cannot be integrated, the Vrst
two lines have a value of zero, while for an integrated Wight the last two lines become zero.

4.2.4 Size of the Integer Programming Formulation

To give an impression of the enormous number of variables and constraints we are dealing with,
we will now roughly analyze the problem size and give some numbers from real world data that
will later be used for computational evaluations of our model.

The number of variables is of course bounded by 2 |ℱ| · |[𝑛]|+ 1 = 2𝑛𝑚+ 1 (the “+1” is for
the 𝑧𝑁𝐸 variable used in the ex-post formulation of the new entrants rule), but usually there are
much less nonzero variables, namely

2
∑︁
𝐹𝑖∈ℱ

(︁⃒⃒⃒
𝑆A
⃒⃒⃒
+
⃒⃒⃒
𝑆D
⃒⃒⃒)︁

+ 1.
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For the constraints, there is one allocation constraint per arrival or departure series request and
two allocation constraints per mixed series request, totaling to |ℱA|+ |ℱD|+ 2|ℱM| constraints.
For the mixed series requests, we also need a constraint coupling arrival and departure, so we get an
additional |ℱM| constraints. Strictly spoken, these constraints are only necessary for non-historic
Wight requests, hence the correct number is |ℱM ∩ (ℱNE ∪ ℱ I)|. For each mixed series request,
there are also minimum and maximum ground time constraints, making up for 2|ℱM| constraints
of this type. The new entrants rule can be formulated using just two constraints, the hub and spoke
constraints also need two constraints for each hub and spoke combination. A major fraction of the
constraints is contributed by the reference value system constraints. For every bound (𝐿, 𝑏) ∈ ℛ
there are 3 constraints for every slot in [1, 𝑁 − 𝐿], so each shifting bound contributes a total of
3(𝑁 − 𝐿) constraints, approximately summing up to 3𝑁 |ℛ| constraints. Of similar size are the
North America rule constraints, contributing ⌊𝑁/𝐿USA⌋ inequalities for the (usual) non-shifting
case (where the respective bound is denoted by (𝐿USA, 𝑏𝑈𝑆𝐴)). Table 4.1 summarizes the above
numbers.

constraint type number of constraints

allocation constraints
⃒⃒⃒
ℱA

⃒⃒⃒
+
⃒⃒⃒
ℱD

⃒⃒⃒
+ 2

⃒⃒⃒
ℱM

⃒⃒⃒
arrival/departure coupling

⃒⃒⃒
ℱM ∩

(︁
ℱNE ∪ ℱ I

)︁⃒⃒⃒
ground time 2

⃒⃒⃒
ℱM

⃒⃒⃒
new entrants rule 2

ℎ hub and spoke connections 2ℎ

shifting boundary system 3
∑︀

(𝐿,𝑏)∈ℛ(𝑁 − 𝐿)

North America rule
(︁
𝐿USA, 𝑏𝑈𝑆𝐴

)︁ ⌊︁
𝑁
𝐿USA

⌋︁
Table 4.1: The number of constraints for the Wight scheduling problem for 𝑑 days, with 𝑛 slots per day and

𝑁 = 𝑛𝑑 total slots.

Altogether, the problem consists of a total of(︁⃒⃒⃒
ℱA

⃒⃒⃒
+
⃒⃒⃒
ℱD

⃒⃒⃒
+ 2

⃒⃒⃒
ℱM

⃒⃒⃒)︁
+
⃒⃒⃒
ℱM ∩

(︁
ℱNE ∪ ℱ I

)︁⃒⃒⃒
+ 2

⃒⃒⃒
ℱM

⃒⃒⃒
+ 2 + 2ℎ+ 3

∑︁
(𝐿,𝑏)∈ℛ

(𝑁 − 𝐿) +
⌊︂
𝑁

𝐿USA

⌋︂
= 𝒪 (|ℱ|+𝑁 |ℛ|)

constraints, assuming a non-shifting North America rule and ℎ ≤ |ℱ|.
To get an idea of the size of a real world instance, we state some approximate numbers for one

of the major German airports for the planning season of winter 2004, which consisted of about
180 days. We will describe this data set in more detail later. For that airport, the coordinator
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received about 5 330 series requests consisting of roughly 190 000 movements). Roughly 60%
of those requests are based on historic claims of diUerent classiVcation. The data we received
contained neither new entrants status information nor hub and spoke connections, so these cannot
be considered. The reference value system applied for that winter season of 2004 consisted of
three shifting bounds of lengths 10, 30 and 60 minutes. Using a ten minute discretization we get
𝑛 = 6 · 24 = 144 slots per day, hence 144 · 180 = 25 920 slots for the complete season. As a
rough estimate, this data set generates in the order of magnitude of 150 000 binary variables and
about 300 000 constraints for a typical real-world instance.

4.3 Computational Results for Flight Scheduling

In this section we will apply our model to several real-world instances to evaluate its performance
in practice. A discussion of the outcomes of our test cases will show that the results obtained in
Chapter 3 are to some extent still applicable even for the much more complex model.

4.3.1 Notes on the Test Environment

Before we present the results of practical tests on various instances, a few words on the im-
plementation and the test environment are in order. The model was implemented using Dash
Xpress-MP Release 2007A (64 Bit Version) and the Mosel modeling language (see [Dash07a;
Dash06c; Dash06b; Dash07b; Dash06d; Dash06a] for details on both). A user interface and data
processing (called SOFIE, see Section 4.5) was implemented in Java Standard Edition 6 (cf. [Sun06]),
the data was stored in a PostgreSQL database (cf. [PSQL05]) running on a Sun Blade 1000 work-
station on Solaris 10. The user interface and data processing was mainly performed on an IBM
ThinkPad T42p equipped with a 2.0GHz Pentium M processor and 2GB RAM. The model runs on
Xpress-MP Optimizer were performed using either the same ThinkPad computer or a Sun SPARC
Fire V440 equipped with 4 UltraSPARC-IIIi processors at 1.3GHz and 16GB of RAM running
Solaris 10. The reason for using the Sun was mainly the enormous size of some of the instances
which required memory beyond 4GB, hence a 64Bit capable machine and operating system had
to be employed.
We will generally optimize with the size of the resulting Wight schedule as the objective. The

results for the cost objective are very similar, we will discuss that for a speciVc example in
Section 4.3.3, where we explicitly compare size and cost objective.

4.3.2 Test Instances for the Airport Flight Scheduling Problem

First, let us brieWy comment on the instances that we use to test our integer programming model
described in the preceding section. We have mainly worked with two large test instances diUering
in various aspects and we will report on the results for both of them (and also for some subsets to
illustrate various eUects).
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Instance W04

The instance “Winter 2004” orW04 for short was prepared in cooperation with Frankfurt/Main
airport and Fraport AG, the airport’s operating company. The data is based on real series requests
for the winter season of 2004. Using Wight data from the preceding winter and summer season,
we identiVed historic rights and classiVed them as class H or class CR historic requests. We also
tried to match arrivals and departures in order to create mixed series requests. This resulted in a
data set with the characteristics summarized in Table 4.2. Of course, for the publication of this
thesis the data has been anonymized, but without destroying its structural properties, so this data
set is a very realistic example of possible input data for the Flight Scheduling problem.
Figure 4.1a shows the average distribution of the Wight requests within one day. Obviously,

Wight activity starts at about 4:00 in the morning and rises almost linearly in the moving average
before reaching a steady level at 8:00. It then stays more or less constant up to 21:00, when it
starts to decrease, again roughly linearly in the moving average. Unfortunately, the data does
not include information about new entrant status nor about hub and spoke connections. We can,
however, incorporate the correct reference value system for our test runs, namely the system that
was in eUect for the winter 2004 season at Frankfurt/Main airport. The reference value system is
summarized in Table 4.4.

Instance S08

The second data set “Summer 2008” or S08 for short is a test set with randomized data designed to
evaluate typical structural properties of optimal solutions without reference to a speciVc airport, its
infrastructure and demand structure.5 The generated data is based on the timetable of Düsseldorf
airport, one of Germany’s major airports, yet not among Europe’s leading international hubs, so
a fairly “average structure” (in a very informal sense) should be expected from that timetable.
We anonymized the data by deleting the destination or departure airports and the speciVc date,
only keeping the day of week and the time of arrival/departure. We then generated arrival and
departure series requests for all times and weekdays in the data and mapped all requests to one
single week6 to obtain the instance S08. Thus, S08 provides for an instance reWecting the typical
demand curve within a week fairly accurately.
However, as only arrival/departure time and weekdays are available to the public, all requests

in S08 are arrival or departure series requests, there are no mixed series requests. For the same
reason, no historic rights, no new entrant status information and no hub-and-spoke connection
information is available in this instance. The characteristics of S08 are summarized in Table 4.3,
while Figure 4.2b shows the distribution of arrivals and departures for the diUerent weekdays. It
can be seen that Saturday is a very low traXc day, closely followed by Sunday. In contrast, Friday
is clearly the day with most requests, although the diUerence to other weekdays is not too large.

5As an example, both Frankfurt/Main and München airport are large hubs providing for many international
connections. One should expect this fact to have an inWuence on the demand structure at these airports.

6To be precise, we chose the week from Monday, Apr 14, 2008, to Sunday, Apr 20, 2008. This choice was made for
no particular reason, though.
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Figure 4.1: Statistics for the instance W04.
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duration of planning period
absolute dates from Nov 1, 2004, to Mar 26, 2005
in days 146
in slots 21 024

total number of series requests 5 331
mixed 1 458
arrival 1 967
departure 1 906
North America departure 93
average series length 31.1 movements
average mixed series length 122.2 movements

total number of movements requested 198 003
arrival movements 98 892
departure movements 99 111
average movements per day 1 356.2
average movements per slot 9.4

requests with historic rights 3 468
historic classiVcation H 1 655
historic classiVcation CR 1 813

Maximum diUerence between “only
arrivals” and “only departures”
for the complete season 10
for each day 10

Table 4.2: Characteristics of the W04 instance.

In addition, Figure 4.2a displays the average Wight request distribution throughout the day. There
is virtually no activity before 4:00 in the morning, then the moving average quickly rises on an
approximately linear path until 7:00. Activity stays at about the same level on average between
7:00 and 22:00, after that a decline begins, again roughly linear in the moving average.

Reference Value Systems

Tables 4.4 and 4.5 summarize the reference value systems that will be used for our computational
tests. The Vrst system (RW04) is especially suited for use with the instance W04, as it reWects the
true shifting bounds as they were in eUect at Frankfurt/Main airport during the winter season 2004.
Thus the results obtained with W04/RW04 may be compared to the initial schedule proposed by the
airport coordinator for Frankfurt/Main airport. Assuming an arbitrary number of single arrival and
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Figure 4.2: Statistics for the instance S08.
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duration of planning period
absolute dates from Apr 14, 2008, to Apr 20, 2008
in days 7
in slots 1 008

total number of series requests 127 723
mixed none
arrival 63 937
departure 63 786
North America departure none
average movements per day 18 246.1
average movements per slot 126.7

requests with historic rights none

Maximum diUerence between “only
arrivals” and “only departures”
for the complete season 10
for each day 10

Table 4.3: Characteristics of the S08 instance.

departure requests for every slot of the day we could, without any additional constraints besides
the reference value system, achieve a maximum of 6 · 78 + 8 · 80 + 7 · 81 + 1 · 82 + 2 · 78 = 1 913
Wight movements per day. Taking into account the demand structure, the restrictions on night
Wight and other relevant constraints as outlined in Section 4.1.1, an optimal Wight schedule will
naturally contain less Wights.

time of day R10A R10D R10M R30A R30D R30M R60A R60D R60M

0 : 00 – 5 : 59 9 9 16 23 25 43 43 48 78
6 : 00 – 13 : 59 41 43 80

14 : 00 – 20 : 59 42 44 81
21 : 00 – 21 : 59 43 50 82
22 : 00 – 23 : 59 43 48 78

North America rule: At most four departures per 15 minutes, non-shifting.

Table 4.4: Reference value system RW04, empty cells mean the value does not change.

The reference value system RS08 (cf. Table 4.5), on the other hand, is not tight enough to be
used with the W04 instance (that instance does not contain enough series requests to make the
optimization with S08 a challenge), but it is very well suited for computations with the instance
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S08 as the test set. Also, we will come back to RS08 in the context of Section 4.4, where we discuss
alternative reference value systems. The reference value system RS08 allows for a maximum
of 24 · 90 = 2 160 Wight movements per day. Given a typical demand curve with high demand
roughly from 6:00 to 22:00, we should expect at least 16 · 90 = 1 440 Wight movements per day
in an optimal solution.

time of day R10A R10D R10M R30A R30D R30M R60A R60D R60M

0 : 00 – 23 : 59 12 12 15 — — — 58 58 90

Table 4.5: Reference value system RS08, “—” means no bound applies.

4.3.3 Optimizing the Instance W04 with Reference Value System RW04

Complete Season

The instance W04 with the corresponding reference value system RW04 is of particular interest,
because it is not only a real-world data set, but even one where we have a benchmark value:
We can compare our results with the total number of movements in the airport coordinator’s
initial proposal, which contained 193 430 Wight movements for the whole planning horizon. Note,
however, that no details on this proposal are known and that it does not represent the Vnal
schedule as it was implemented, because every initial proposal is afterwards changed by a series
of negotiations between the aUected parties. Table 4.6 summarizes the results of the test run
for our model, the approach outperforms the coordinator’s initial proposal by 2.1%. While this
might not seem a large improvement at Vrst, the absolute increase of 4 024 Wight movements
highlights the value of our approach. Taking into account that an airport charges a considerable
fee for every landing and take-oU, an increase by more than 4 000 Wight movements means a
directly proportional increase in fee income (plus added revenue due to other eUects such as ground
handling services, passenger handling, etc.). The computation of the complete season needed about
Vve hours of CPU time on a single Sun SPARC CPU, as opposed to about six weeks of mainly
manual work for the coordinator.

In order to get some insight into the structural properties of the optimal solution, a visualization
of some particular aspects will be helpful. Figure 4.3 shows the number of arrivals, departures
and total movements per day for the complete season. The number of arrivals and departures
varies roughly between 600 and 700 Wights, with — up to small variations — equal numbers of
arrivals and departures. One can clearly identify a weekly pattern with a small peak on Fridays
and signiVcantly less traXc on Saturdays. This pattern can be seen in detail in Figure 4.4b, which
shows the number of arrivals, departures and total Wight movements for a typical (i. e., outside of
the holiday season) week within the winter 2004 season.

A more detailed view is provided by Figure 4.4a, which shows arrivals and departures together
with the values of R10M, R30M and R60M shifting bounds for the same week. The values shown for
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duration of planning period Nov 1, 2004, to Mar 26, 2005
duration in days/slots 146 / 21 024

series scheduled 5 271 of 5 331
movements scheduled 197 454 of 198 003
arrival movements 98 725 of 98 892 (65 013 paired)
departure movements 98 729 of 99 111 (65 013 paired)
average movements per day 1 352.4
average movements per slot 9.4

percentage of request series scheduled 98.9%
percentage of requested movements scheduled 99.7%

improvement with respect to total movements 4 024 movements or 2.1%

Table 4.6: Solution summary: Instance W04 with reference value system RW04.
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Figure 4.3: Optimization results for the complete season of instance W04 with reference value system
RW04.
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the shifting bounds represent the number of Wight movements within the time window starting at
the respective time. The varying value of R60M is clearly visible, and again Friday can be identiVed
as peak traXc day, whereas traXc is considerably lower on Saturday and also a little lower on
Monday.
Finally, let us take a closer look at three days of the above week, namely Tuesday (as a

prototypical day for the complete season), Friday (the peak day) and Saturday (a low-traXc day).
The chart for Tuesday (Figure 4.5) shows that both arrivals, departures and total movements

stay within a corridor of about Vve movements width for the majority of the day, i. e., roughly
from 7:00 to 22:00. While the fact that many Wights take place during these hours is not at all
surprising,7 the relatively narrow corridor reWects a uniformity that one might not have anticipated.
This uniformity is even more apparent in the R30M values that also move within a corridor of about
7 Wights width, a mere 16% with respect to the bound value of 43. Finally, the R60M curve shows
the same tendency, with a maximum Wuctuation of about 8% with respect to the bound value
during daytime. This behavior is very much in accordance with our theoretical considerations in
Chapter 3, where we saw that maximum slot packings correlate to uniform slot conVgurations,
whereas minimum slot covers (and thus bad Wight schedules in the present context) exhibit a
“peaks and valleys” structure. Hence, although the model and data considered here are much more
complex than the Maximum Slot Packing problem we considered in Chapter 3, the principal
Vndings still seem to hold within reasonable limits.
A look at Figures 4.6 and 4.7 for Friday and Saturday, respectively, reveals generally the same

structural behavior as discussed for Tuesday. The structure is even more pronounced on Friday,
because the very high demand on that day does not leave much room for allocations leading
to a suboptimal slot conVguration. The Wuctuation of the R10M curve is considerably lower, the
R60M is almost constantly at maximum level during daytime. This trend is not so apparent for
the R30M curve, which exhibits roughly the same amount of Wuctuation as for Tuesday. This can
be explained by the fact that R30M is a relatively “loose” bound compared to R60M and thus does
not have too much inWuence on the outcome. Basically, the global bound is apparently governed
by R60M, while the local structure is mainly due to R10M, leaving little impact for the R30M rule.
Notice that these Vndings are again in accordance with Chapter 3, where we also found that for a
monotone reference value system (which RW04 is) the relatively strictest (and for that matter also
longest) shifting bound alone governs the optimal objective value.
With all this said, it remains to say that Saturday (cf. Figure 4.7) also displays the uniform

behavior of the other days for the Vrst half of the day, while showing a steep descent for the second
half, starting at around 13:00. This is simply due to the fact that there are far less Wight requests
for Saturday afternoon than for any other day — business travel is very low during that time of
week (very much in contrast to the Friday afternoon peaks), and most private Wight travel also
occurs on days other than Saturday, cf. Figure 4.1b for an illustration of the number of requested

7In addition to usual business hours, recall that strict night Wying restrictions are in place at Frankfurt/Main airport.
While we have not integrated these into our model (which would just be a matter of imposing a suitable shifting bound
for the respective time of day), the airlines certainly anticipate the restrictions in their requests.
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(a) Flight distribution and shifting bound values for R10M, R30M and R60M.

day of week

mvmts.

Mon Tue Wed Thu Fri Sat Sun

250

500

750

1000

1250

1500

(b) Flight distribution.

Arrivals Departures Total Movements

Figure 4.4: Optimization results for the complete season of instance W04 with reference value system
RW04. Displayed are the results of the week from Mon, Dec 6, 2004, to Sun, Dec 12, 2004.
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Figure 4.5: Flight distribution and shifting bound values for R10M, R30M and R60M for Tue, Dec 7, 2004, as
prototypical “average traXc day” for the instance W04 with reference value system RW04.
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Figure 4.6: Flight distribution and shifting bound values for R10M, R30M and R60M for Fri, Dec 10, 2004, as
prototypical “high traXc day” for the instance W04 with reference value system RW04.
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Figure 4.7: Flight distribution and shifting bound values for R10M, R30M and R60M for Sat, Dec 11, 2004, as
prototypical “low traXc day” for the instance W04 with reference value system RW04.

Wights by weekdays.

Single Day

In order to systematically investigate the intra-day structure of optimal Wight schedules and the
eUect of long series requests, we will now concentrate optimization on a single day instead of
computing a complete season. Thus constraints on days other than the one considered can have
no eUects on the optimum. With an average series length of 122 days, one might indeed wonder
whether long Wight series have a negative eUect on the objective value. For our test, we will
consider two speciVc dates, namely Friday, Dec 10, 2004, and Saturday, Dec 11, 2004, of the instance
W04, using the corresponding reference value system RW04. Thereby we will not only have both
an example for a high-traXc and for a low-traXc day, but we are also able to compare the results
to the above computations for the complete season and hence estimate to which extent Wight series
inWuence the objective value as well as the structure of optimal solutions. All computations in this
subsection were performed on the IBM ThinkPad and needed about 30 to 60 seconds of CPU time
for each test run.
Tables 4.7 and 4.8 summarize the results. We again allowed for a total diUerence of ten move-

ments between arrival and departure movements for comparison with our earlier results. The
diUerence to the optimal Wight schedule for the complete season is a mere two Wights for Friday,
Dec 10, 2004. This suggests that the eUects of Wight series are almost insigniVcant for the objective
value. However, comparing Figure 4.6 and Figure 4.8a (for easier reference, the R10M, R30M and
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(a) Fri, Dec 10, 2004
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(b) Sat, Dec 11, 2004

Figure 4.8: Flight distribution and shifting bound values for R10M, R30M and R60M for single day optimiza-
tion of instance W04 with reference value system RW04.
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duration of planning period Fri, Dec 10, 2004
duration in slots 144

series scheduled 1 409 of 1 419
movements scheduled 1 409 of 1 419

arrival movements 702 of 706
departure movements 707 of 713
average movements per slot 9.8

percentage of requests scheduled 99.3%
improvement with respect to complete season 2 movements or 0.1%

Table 4.7: Solution summary: Fri, Dec 10, 2004, of instance W04 with RW04.

R60M values from Figure 4.6 are displayed in gray in Figure 4.8a) reveals a subtle diUerence
especially in the R10M, R30M and R60M lines: The decrease at the end of the day is faster in the
single day optimum and the schedule seems to be a little “more tight”, i. e., the (almost) same
number of Wights is concentrated on a smaller time interval. This eUect is due to the tendency
towards a uniform Wight schedule. With no “external eUects” (in the form of Wight series, which
also have to conform to constraints outside of a single day) corrupting the optimum, an even more
uniform distribution is possible during the relevant time of day. On the other hand, this relevant
time is narrower than before.
The optimization for Saturday, Dec 11, 2004, (cf. Table 4.8 and Figure 4.8b) shows that the low

number of Wights scheduled for that day in the season optimum is not due to any kind of series
side eUects, but can simply be attributed to the fact that there is a low number of requests for that
particular day (and for Saturday in general). Optimizing that day alone shows little diUerence to
the results for the complete season presented above. Again, a slight tendency towards a uniform
schedule can be observed, but there are simply not enough requests to produce a schedule as

duration of planning period Sat, Dec 11, 2004
duration in slots 144

series scheduled 1 252 of 1 252
movements scheduled 1 252 of 1 252

arrival movements 626 of 626
departure movements 626 of 626
average movements per slot 8.7

percentage of requests scheduled 100%
improvement with respect to complete season none

Table 4.8: Solution summary: Sat, Dec 11, 2004, of instance W04 with RW04.
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uniform as, e. g., on Fridays (notice that every request is integrated in the schedule, and this is also
true for that particular day in the “complete season” optimization run.)

Effects of the Cost Objective Function

The cost objective function presented in Section 4.2.3 can be used in two diUerent ways. First, one
can assign diUerent weights to Wights, according, e. g., to their MTOW, the number of passengers
or some quality benchmark. Second, as the cost objective penalizes deviation of the assigned time
from the requested time, using the cost objective instead of just the size of a Wight schedule should
result in a schedule that integrates as many Wights as possible, as close to their requested times
as possible. By setting the “cancellation cost” suXciently low, one can even model a trade-oU
between the number of Wights integrated and the deviation incurred.

We will brieWy demonstrate that second eUect on a small example here. To that end, we optimize
the days Fri, Dec 10, 2004, and Sat, Dec 11, 2004 from instance W04 with RW04, according to
the cost objective. We subsequently compare the results to those obtained for the size objective
earlier, in particular with respect to deviation. As our main objective still is the integration of a
large number of Wights, we set the cancellation cost to 1000 and the deviation cost for arrivals and
departures to 1, respectively.

planning period Fri, Dec 10, 2004 Fri, Dec 10, 2004
objective maximum size minimum cost

movements scheduled 1 409 of 1 419 1 409 of 1 419
total deviation 26 800 minutes 13 685 minutes
average deviation per movement 19.0 minutes 9.7 minutes

change in movements no change
change in deviation decrease by 48.9%

Table 4.9: Solution summary: Cost objective for Fri, Dec 10, 2004 from W04 with RW04.

planning period Sat, Dec 11, 2004 Sat, Dec 11, 2004
objective maximum size minimum cost

movements scheduled 1 252 of 1 252 1 252 of 1 252
total deviation 25 765 minutes 6 955 minutes
average deviation per movement 20.6 minutes 5.6 minutes

change in movements no change
change in deviation decrease by 72.8%

Table 4.10: Solution summary: Cost objective for Sat, Dec 11, 2004 from W04 with RW04.
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The results of the optimization are shown in Tables 4.9 and 4.10. For Friday, we get the same
number of Wights as with optimizing for maximum size, while the average deviation decreases by
almost 50% to 9.7 minutes. For Saturday, the result is even better. Again, each Wight is integrated,
and the average deviation per movement decreases to 5.6 minutes. This is, of course, due to the
low number of Wight requests for Saturday leaving a considerable margin for optimization with
respect to deviation.
Let us remark that tests of the cost objective for the complete season yielded similar results.

However, for lower settings of the cancellation cost, a trade oU between low deviation and large
schedule size can be observed: Obviously, it sometimes pays oU to not integrate a Wight and in
return gain a much better slot allocation in terms of deviation from the requested slots.

4.3.4 Optimizing the Instance S08 with Reference Value System RS08

Naturally, a reference value system for the summer 2008 season should be most suitable for a
Wight request set loosely based on a summer 2008 Wight schedule. This is one of the reasons why
we examine the results of the instance S08, optimized with the reference value system RS08. A
second reason is the fact that RS08 is diUerent from RW04 in a major aspect: It does not include
any R30 shifting bound. The computations were done on the Sun SPARC system and consumed
about one hour of CPU time on a single CPU. The results are summarized in Table 4.11; Figure 4.9b
shows the number of arrivals and departures for every day of the planning horizon. This clearly
shows that Saturday and Sunday are now as strong traXc-wise as Monday to Thursday. This is
due to the fact that, while there are still much less requests for the weekend than for workdays,
the absolute number of requests in this instance is much higher than what can theoretically be
integrated into a Wight schedule with respect to the reference value system RS08, even for Saturday
and Sunday. On the other hand, Friday still is the one day where air traXc reaches its weekly
maximum. The reasons for this phenomenon remain unclear momentarily — just like for Saturday
and Sunday, every weekday of the instance S08 has much more Wight requests than could possibly
be handled, so the “dominance” of Friday is not so natural anymore. However, a look into the local
traXc structure below will clarify this point.

duration of planning period Mon, Apr 14, 2008, to Sun, Apr 20, 2008
duration in days/slots 7 / 1 008

movements scheduled 11 752 of 127 723
arrival movements 5 881 of 63 937
departure movements 5 871 of 63 786
average movements per day 1 678.9
average movements per slot 11.7

Table 4.11: Solution summary: Instance S08 with RS08.
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(a) Flight distribution and shifting bound values for R10M and R60M.
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Figure 4.9: Optimization results for the complete season of instance S08 with RS08.
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For an impression of the local solution structure, Figures 4.10a and 4.10b show the arrivals,
departures and R10M and R60M values for Friday (the peak traXc day) and Monday (a “prototypical”
day). One can clearly see that both days are very similar with respect to the Wight schedule, but
the Friday schedule stretches a little longer into the night. The reason for this is simply the fact
that there are more Wight requests for later hours on Fridays than on all other days of the week.
This explains why the optimal Wight schedule still contains more Wights for Fridays than for any
other day.

4.4 Computational Results for Alternative Reference Value
Systems

In the last section of this chapter on practical airport slot scheduling, we will present some
computational results on alternative reference value systems. The motivation for considering
variations of the original constraints were already discussed in Section 3.6, were we also presented
some ideas for modiVcations to the reference value systems that close the gap between a Maximum
Slot Packing and a Minimum Slot Cover. Of course, these results are only valid for the
simpliVed setting of Chapter 3, but as we have seen before, many of the results obtained there
carry over to the complex real-world situation to some extent. Our results in Chapter 3 and also
our Vndings in Section 4.3 give rise to some “rules of thumb” for practical airport slot scheduling:

• Optimal Wight schedules are favored by uniform slot conVgurations.

• Non-uniform slot conVgurations generally lead to Wight schedules that cannot accommodate
additional Wights, but on the other hand integrate considerably less Wights than an optimal
schedule.

• A slot conVguration that avoids “local peaks” thereby avoids worst-case scenarios and
should thus produce close-to-optimal Wight schedules.

• The maximum number of movements of a Wight schedule depends primarily on the longest
and relatively strictest shifting bound in a monotone and symmetric reference value system.

Thus in order to enforce a uniform Wight schedule with (almost) the same number of Wights that
can be obtained with some given reference value system, several approaches seem plausible in
the light of Theorems 3.45 and 3.46. In the following, we will implement two of these, apply them
to our test cases and discuss the results. All computations in this sections were performed on the
IBM ThinkPad and needed roughly 30 to 60 seconds of CPU time.

4.4.1 Reduced Shifting

The eUect of local traXc peaks is “spread out” through the shifting time windows which overlap
precisely at such a peak. If the time windows were non-shifting, any peak would inWuence just the
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(a) Mon, Apr 14, 2008.
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(b) Fri, Apr 18, 2008. For comparison, R10M and R60M values for Mon, Apr 14, 2008, are drawn in gray.

Figure 4.10: Flight distribution and shifting bound values for R10M and R60M for instance S08 with reference
value system RS08.
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Chapter 4 Applications of Flight Scheduling at Airports

slots contained in one time window, thereby avoiding the negative eUects of local traXc peaks as
far as optimality of the Wight schedule is concerned. So while non-shifting bounds may be a better
choice for the sake of “robustness of optimal solutions” (i. e., optimal or at least good solutions are
obtained regardless of the planing procedures), the non-shifting bounds do not inhibit local peaks,
but just reduce their “spreading eUects”. In addition, even non-shifting bounds can cause such
eUects, although to a limited extent, cf. Figure 3.13 and the discussions in Section 3.6. Fortunately,
most reference value systems used in practice have the inclusion property (cf. DeVnition 3.44)
which inhibits such eUects.

TraXc peaks are undesirable in practice not only because of their negative eUects on optimality
of a Wight schedule, but also because they negatively aUect airport operations on various levels. For
instance, handling of air and ground traXc becomes a lot more diXcult during such traXc peaks,
passenger Wow is less continuous and hence congestion at security check lines and baggage check
are more likely to occur. Furthermore, baggage needs to be processed more quickly, increasing
the risk of misdirection. One of the aims of shifting bounds is to reduce the probability of local
traXc peaks (as we have seen in the results obtained so far), and this goal cannot be achieved by
non-shifting bounds. Consider, e. g., the situation depicted in Figure 4.11b, where a “double peak”
occurs that could have been avoided by using shifting bounds.
The idea of reduced shifting is to mitigate the “spreading-out” problem of local peaks by

changing the shifting behavior to combine the eUects of shifting and non-shifting bounds: Instead
of one time window starting at every slot in the planning horizon, one only considers time windows
starting at every 𝑘-th slot, for some suitably chosen number 𝑘 ∈ N. Let us make this more precise.

DeVnition 4.8
A 𝑘-shifting bound or shifting bound with step 𝑘 is a time window bound (𝐿, 𝑏)(𝜎) together with
an integer 𝑘 ∈ N and is denoted by (𝐿, 𝑏)(𝑘) or ([𝐿]∘ , 𝑏)(𝑘). A slot conVguration 𝐶 : 𝒮 → N3

0
on the slot set 𝒮 = {1, . . . , 𝑛} (and also a Wight schedule that induces it) is called feasible with
respect to a 𝑘-shifting time window bound (𝐿, 𝑏)(𝑘), if

𝐶(𝑠+ [𝐿]∘) ≤ 𝑏

for all 𝑠 ∈
{︀
1, 1 + 𝑘, . . . , 1 + (

⌊︀
𝑛
𝑘

⌋︀
− 1)𝑘, 1 +

⌊︀
𝑛
𝑘

⌋︀
𝑘
}︀
∩ 𝒮 . Any 𝑘-shifting bound ([𝐿]∘ , 𝑏)(𝑘)

with 1 < 𝑘 < 𝐿 is referred to as reduced shifting bound.

Figure 4.11 shows the eUect of 𝑘-shifting for a simple example. While ordinary shifting bounds
allow for a local peak of three Wight movements at slot Vve to block a total of nine slots, non-
shifting bounds result in a Wight schedule with six movements within the Vrst ten slots. However,
a large peak appears at slots Vve and six. With reduced shifting (in the Vgure, the parameter 𝑘
is set to three), the negative eUect of the local peak on the Wight schedule cannot be completely
avoided; three Wight movements can now be placed such that they block only eight slots instead
of nine. Yet, the situation is a little better than the one encountered when completely relying on
non-shifting bounds.
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(a) Shifting bounds
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(b) Non-shifting bounds
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(c) Reduced Shifting (3-shifting bounds)

Figure 4.11: Comparison of ordinary shifting, non-shifting and reduced shifting approach with one shifting
bound

(︀
5, 3) and shifting step 𝑘 = 3.

For the purpose of evaluating the eUects of the reduced shifting approach on real-world data,
we optimized one day of the instance W04, taking the reference value system RW04 as the basis
for our new shifting bounds. The R60 bounds were chosen for the reduced shifting — the other
bounds are R10, which entails just one slot and thus is non-shifting anyway, and R30, which is
too short (just three slots) to properly evaluate the eUects of reduced shifting. As a Vrst step, we
removed the R30 shifting bounds for proper assessment of the eUects of reduced shifting bounds.
We then computed an optimal schedule for one day in the winter season 2004, namely Friday,
Dec 10, 2004, for comparison with our earlier experiments. We Vrst used 1-shifting R60 bounds,
then a shifting step of three for the R60 bounds. The results are summarized in Table 4.12 and
Figures 4.12a and 4.12b.

Obviously, the reduced shifting approach has one disadvantage: If one replaces a shifting bound
(𝐿, 𝑏) by a reduced shifting bound (𝐿, 𝑏)(𝑘) for some suitably chosen 𝑘 > 1, the solution obtained
is not necessarily feasible with respect to the original shifting bound any more. Instead, as some of
the bounds are now missing, more Wights might be integrated into the Wight schedule. This eUect
gets worse with increased shifting step, while on the other hand the packing-covering-gap tends to
decrease the larger the shifting step gets. Finding the balance between these two eUects usually
requires a thorough understanding of the local situation and is dependent on a lot of factors beyond
the scope of our modeling approach. If a suitable balance between rigidity and robustness (in terms
of packing-covering-gap) of the reference value system can be found for a speciVc situation, the
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(a) With (ordinary) 1-shifting.
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(b) With reduced 3-shifting for R60M. For comparison, the R60M values for 1-shifting are depicted in gray.

Figure 4.12: Flight distribution and shifting bound values for R10M and R60M for Fri, Dec 10, 2004, of
instance W04 with R10 and R60 from the reference value system RW04.
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duration of planning period Fri, Dec 10, 2004
duration in slots 144

1-shifting 3-shifting

movements scheduled 1 409 of 1 419 1 411 of 1 419
arrival movements 703 of 706 701 of 706
departure movements 706 of 713 710 of 706
average movements per slot 9.8 9.8

percentage of requests scheduled 99.3% 99.4%

Table 4.12: Solution summary for the reduced shifting approach: Fri Dec 10, 2004, of instance W04 with
R10 and R60 from reference value system RW04. Comparison between 1-shifting and reduced
3-shifting.

reduced shifting approach provides a worthwhile candidate for changing an established reference
value system. Furthermore, the approach has a major psychological advantage: The changes are
relatively subtle, thus the institutions involved in the scheduling process do not need to change
their workWow or computational tools too much, and their experiences will still be valid, at least
to some extent. Therefore such a system will have a higher acceptance factor than a more radical
change.

4.4.2 Strict Slot Bound

A diUerent approach, called strict slot bound, is outlined in Section 3.6, more precisely in Theo-
rem 3.46. The idea is to add a bound on the number of Wight movements for each single slot that is
strict enough to imply all other bounds. Of course, it suXces to do this for the movements bound,
as the movements value is less or equal to the sum of arrivals and departures bound values. Thus
for a reference value systemℛ = {(𝐿1, 𝑏1), . . . , (𝐿𝑘, 𝑏𝑘)} deVne

𝑏* := min
{︃⌊︃
𝑏𝑀𝑗
𝐿𝑗

⌋︃
: (𝐿𝑗 , 𝑏𝑗) ∈ ℛ

}︃
· 13;

we will refer to this deVnition of 𝑏* as rounding down or strict slot bound rounded down.
Optimizing with respect to the reference value systemℛ* := ℛ∪ {([1]∘ , 𝑏*)} is then guaranteed
to yield a solution that is feasible with respect toℛ. In addition, the packing-covering gap is zero,
i. e., the new reference value system will never allow for a bad Wight schedule.
Table 4.13 and Figure 4.13a show the results of a test run with one day (Fri, Dec 10, 2004)

of instance W04, based on the reference value system RW04 with strict slot bound rounded
down. Due to the rounding, the R60M value is eUectively 78 for the whole day, so considerable
optimization potential is lost.
If the focus is not so much on strict compliance with the reference value systemℛ and small
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(a) Rounding down R10M
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(b) Rounding up R10M

Figure 4.13: Flight distribution and shifting bound values for R10M and R60M for Fri, Dec 10, 2004, of
instance W04 with strict slot bound. The values of R60M are added for reference and were not
used in the computation.
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4.4 Computational Results for Alternative Reference Value Systems

duration of planning period Fri, Dec 10, 2004
duration in slots 144

rounding down rounding up

movements scheduled (of 1 419) 1 383 1 419
arrival movements (of 706) 690 706
departure movements (of 713) 693 713
average movements per slot 9.6 9.9

percentage of requests scheduled 97.5% 100.0%

Table 4.13: Solution summary for the strict slot bound approach with rounding down and rounding up.

deviations may be acceptable, one could also opt to round up instead of down to avoid giving
away too much optimization potential, thus using

𝑏′ := min
{︃⌈︃
𝑏𝑀𝑗
𝐿𝑗

⌉︃
: (𝐿𝑗 , 𝑏𝑗) ∈ ℛ

}︃
· 13

in place of 𝑏* (strict slot bound rounded up). On the downside, while with rounding down we
could just use {([1]∘ , 𝑏*)} as the reference value system, using only {([1]∘ , 𝑏′)} will loosen the
reference values to some extent, so this approach might produce a Wight schedule that is not
feasible with respect to the original reference value systemℛ. Results for this approach are shown
in Table 4.13 and Figure 4.13b. While all Wight request can now be scheduled, the old R60M bounds
(which have been disabled for these test runs) are violated by a considerable amount.

To remedy that situation, the approach can be extended by using the reference value system
ℛ′ := {([1]∘ , 𝑏′)} ∪ ℛ instead of just {([1]∘ , 𝑏′)}. This keeps the original shifting bounds in
eUect, while at the same time adding a requirement for uniformity, as ℛ′ does not allow for
considerable local peaks and thus provides for a very small packing-covering gap. In other words,
this new reference value system will produce an optimal Wight schedule “by design”, meaning any
Wight schedule which is feasible with respect toℛ′ is nearly optimal (or can at least be extended
to a nearly optimal Wight schedule by Vlling the remaining free slots). Still,ℛ′ is stricter thanℛ,
so some Wight schedules that are optimal with respect to ℛ might no longer be feasible and the
objective value might decrease when switching toℛ′ due to the loss in Wexibility. The test results
for this approach can be seen in Table 4.14 and Figure 4.14b.
Finally, to strike a balance between {([1]∘ , 𝑏′)}, i. e., rounding up alone, andℛ′, one can also

employ the time window bounds of ℛ′ as non-shifting bounds. This approach leads to much less
constraints than using ℛ′, while still providing for some correction for the rounding-up approach
on a larger scale (i. e., rounding up locally, for instance on a ten minute scale, but keeping the
original values on a larger scale, e. g., on intervals of 60 minutes).
To evaluate the potential of rounding up combined with the original bounds, we tested both

approaches on a single day of instance W04 with bounds based on RW04 again. The results are

157



Chapter 4 Applications of Flight Scheduling at Airports

duration of planning period Fri, Dec 10, 2004
duration in slots 144

slot bound excl. non-shifting R60 shifting R60

movements scheduled (of 1 419) 1 419 1 405 1 405
arrival movements (of 706) 706 699 699
departure movements (of 713) 713 706 706
average movements per slot 9.9 9.8 9.8

percentage of requests scheduled 100.0% 99.0% 99.0%

Table 4.14: Solution summary for the strict slot bound approach with rounding up: Fri, Dec 10, 2004, of
instance W04 with R10 and R60 from reference value system RW04. Comparison between
using strict bounds exclusively and combining them with non-shifting and shifting R60 bounds.

summarized in Table 4.14. We compare the schedule for using solely a slot bound obtained from
R60M by rounding up as described above, with the results for combining that slot bound with
shifting and non-shifting R60 bounds, respectively. Figure 4.13b shows the schedule for just the
slot bounds. As stated before, the rounding up leads to considerable violations of the R60 bounds
(which have not been used in the computation and are added to the Vgure for illustration only).
In contrast to that, adding non-shifting R60 bounds (cf. Figure 4.14a), we observe a much more
uniform schedule. Still, some bounds are violated, but the R60 amplitude is considerably lower.
Finally, Figure 4.14b shows the schedule for adding the complete shifting R60 bounds, yielding a
Wight schedule that is feasible for the original bounds, but still uses a reference value system that
does not allow for a signiVcant packing-covering gap.
We know from the tests in Section 4.3.3 that the optimum under the original reference value

system is 1 409 movements, compared to 1 405 movements with the last strict slot bound approach.
However, the new reference value system has a striking advantage: It is “fool-proof”, meaning it
does not support a very bad Wight schedule as the old system would. As was to be expected, there
is a price to pay for this beneVt, and the decision whether the gain is worth this price can only be
taken based on the individual situation at an airport. Finally, observe that there is no diUerence in
the objective value between using shifting and non-shifting bounds. This suggests to generally
use the shifting bounds variant, because it produces even more uniform Wight schedules while not
incurring a considerably higher cost in the form of less Wight movements. However, a possible
reason for using the non-shifting variant might be the lower number of constraints compared to
the shifting variant.

4.5 Concluding Remarks
In this chapter, we gave a detailed description of the real-world Wight scheduling process, and all
relevant legal, technological and environmental constraints. We then modeled Wight scheduling
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(a) Non-shifting R60 bounds.
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(b) Shifting R60 bounds.

Figure 4.14: Flight distribution and shifting bound values for R10M and R60M for Fri, Dec 10, 2004, of
instance W04 with strict slot bound rounded up.
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as an integer linear program, implemented it and conducted a series of computational tests. We
discussed the results, connecting them with the Vndings of Chapter 3. Finally, we investigated
the possibility of alternative reference value systems, discussed the relevant aspects in the light
of Chapter 3 and our foregoing computational experience, and suggested several improvement
approaches that were subsequently tested on real-world data.

As the results in this chapter demonstrate, our considerations on Maximum Slot Packing and
Minimum Slot Cover in Chapter 3 are not only of theoretical value, but provide the backbone
for automating the process of allocating slots to Wight requests. For this chapter, we not only
demonstrated that such an automated allocation is possible, but we also implemented our model
in a software (which is called SOFIE — “Slot-Optimierung für die Flugplanung und integrierte
Eckwertstrukturanalyse”) to perform this task. This software was successfully employed for a
series of test cases. It is thus possible to fully automate the Wight scheduling process and to come
up with an initial proposed schedule for a complete season within less than 6 hours, whereas the
same task means more than 6 weeks of work for the airport coordinator and his or her coworkers
now. Of course, through negotiations with airports, airlines and authorities, the initial proposal is
changed to some extent before the Wight schedule is Vnalized. In the course of these events, the
coordinator may even opt to violate some of the constraints to a minor extent. These procedures
will certainly not become superWuous due to our optimization approach, manual intervention is
considered desirable by the participants of the process after the initial stage. On the other hand,
the computation of a very good initial Wight schedule can be greatly simpliVed by using SOFIE.
Although our computations proved that the results produced by the airport coordinator are

already very good, given that no mathematical optimization is involved in those procedures as
of today, these results are mainly due to long experience in the Veld of manual Wight scheduling.
Naturally, the coordinator will cope with small alterations of the constraints (such as a small
change to some of the shifting bound values) without much problems. But problems are to be
expected once a more fundamental change of the constraints occurs (e. g., structurally diUerent
reference value systems), as it will take some time of “trial and error” to gain experience with a
new system. In contrast to this, mathematical optimization does not need to adapt slowly to a
new situation — a change in the model parameters is suXcient to provide the coordinator with
optimal Wight schedules and thereby with structural information about a new constraint system,
thus giving valuable information for the evaluation of alternative reference value systems.

Furthermore, the implementation of our model can also be worthwhile for diUerent, but related
tasks. For instance, it may be used to quickly evaluate the consequences of manual intervention
and to re-optimize the Wight schedule afterwards for a choice of diUerent objective functions. This
can provide valuable information to support the negotiations leading to the Vnal Wight schedule.
As we showed in Section 4.4, SOFIE can also be used to benchmark diUerent reference value
systems or estimate the eUects of other changes to the constraint system quickly and in a very
cost-eXcient way.
The mathematical model for Wight scheduling that we presented, analyzed and solved in

Chapters 3 and 4 encompasses all practically relevant constraints for the scheduling process and
can easily be extended and modiVed, should new constraints be incorporated in the future. It solves
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our test instances in a fraction of the time the airport coordinator needs to produce a schedule,
and it generally gives better results than can be achieved by manual “trial and error”, given the
complexity of the problem. To put our methods to use in practical slot scheduling, there is of course
still work to be done. Apart from exact speciVcations of some of the constraints (see for instance
the discussion on the new entrants rule in Section 4.1.1), accurate data and software interfaces to
established visualization and planning tools in airport operations will be necessary. Additionally,
a fast heuristic solver based on the algorithms of Chapter 3 might provide useful information to
assess the eUects of certain changes to the Wight schedule on the spot, hence such a tool could be a
valuable aid for the negotiations at the IATA schedules conferences. But even now, our structural
results and insights can help to produce better Wight schedules by incorporating some rather simple
rules into the scheduling process and to evaluate the eUects of changes in the constraint system
without the need for extensive and costly simulations or real-world trials.
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Wire Placement Glossary
Crosstalk Signal transitions on one wire may interfere with the signal on a neighboring wire by

means of capacitive coupling if the wires are very close and/or the signal level is very high.
This interference is called crosstalk. Crosstalk may cause a loss of signal integrity and thus
lead to malfunction or failure of the circuit.

Design Automation, Routing Routing or chip design refers to the process of constructing a
layout of the wires on a chip such that the semiconductor gates on the silicon layer are
connected to each other as provided for by the circuit diagram. This process involves a large
number of wires and constraints on the possible placement of these wires as well as one
or several objectives (e. g. area consumption) and is usually automated by using suitable
computer software. The process is then referred to as electronic design automation.

Dummy Wires Wires with switching activity 0, used in the model to avoid border eUects. In
reality, power or shield wires on a chip have switching activity 0.

Dynamic Power Loss The component of overall power loss that is attributed to dynamic
eUects, i. e., eUects that stem from the change of signal levels on a semiconductor chip.
Dynamic power loss can be traced back to switching capacitances between circuit wires and
short-timed short circuit currents.

Interconnects The wires connecting the gates on the silicon layer of a semiconductor chip to
each other.

International Technology Roadmap for Semiconductors, ITRS A biannual report com-
piled by the SIA, together with experts from the leading nations in the semiconductor
industry. The ITRS describes current developments, trends, projections and important future
challenges in the semiconductor industry. It is available online at http://www.itrs.net.

IP (“Intellectual Property”) Module A small semiconductor circuit designed for integration
into larger semiconductor chips. An IP module is dedicated to very speciVc tasks and is
connected to the rest of the design and other modules via a well-speciVed interface.

Layers A semiconductor chip is composed of several layers stacked on top of each other. At the
base level there is a silicon layer containing the transistors that are combined into logic
gates. To interconnect these logic gates one or more layers containing metal wiring (metal
layers) are arranged above the silicon layer.
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Minimum Inter Wire Distance Minimum Distance that is admissible between any two wires
on a chip.

Permutation Network An extra layer added to a semiconductor circuit to connect locally
reordered wires to their original connections in the circuit. The use of permutation networks
enables local application of wire ordering within complex semiconductor circuits.

Preferred Routing Direction Within a single metal layer, (almost) all of the wires are routed
in parallel direction, called the preferred routing direction. For two metal layers immediately
on top of each other, the preferred routing directions are perpendicular.

Semiconductor Industry Association, SIA The Semiconductor Industry Association is a
trade association representing the U.S. semiconductor industry. It currently (2008) has 95
member companies (including Advanced Micro Devices, IBM, Intel and Texas Instruments),
representing more than 85% of semiconductor production in the United States. Jointly with
experts from the leading nations in the semiconductor industry, the SIA regularly publishes
the International Technology Roadmap for Semiconductors (ITRS). Further information can
be found on the oXcial website http://www.sia-online.org.

Spacing Range For a given set of wires, the distance available on the chip between the two
border wires.

Static Power Loss The component of overall power loss that is attributed to static eUects, i. e.,
eUects that occur independently of signal switches. This mainly refers to leakage currents at
transistor level.

Switching Frequency The frequency of a signal change on a circuit wire. The switching
frequency is usually approximated by simulations of typical applications of a semiconductor
circuit or by deducing a probability distribution for specialized wires such as data bus or
counting bus wires.

Wire Ordering The process or the mathematical problem of Vnding an order of the wires
on a chip such that a subsequent wire spacing yields the best possible result among all
permutations of the wires.

Wire Placement The combination of wire ordering and subsequent wire spacing to Vnd a
power optimal permutation and corresponding distances between the wires on a chip.

Wire Spacing The process or the mathematical problem of Vnding distances between wires on
a chip (for Vxed ordering) such that the total power loss is minimized.
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Airport Coordination Limited, ACL The ACL is responsible for airport coordination in the

United Kingdom. Its German counterpart is the FHKD.

Airport Coordinator Head of a national airport coordination authority. The airport coordinator
is responsible for implementing the slot system at national airports where possible overload
cannot be avoided by voluntary cooperation (coordinated airports). To this end, the coordi-
nator closely cooperates with airports, airlines and international organizations such as the
IATA and exercises the authority of allocating slots to airlines based upon their requests
and upon the relevant capacity restrictions at an airport.

Coordinated Airport An airport where the slot system is implemented. In Germany, these are
the airports Frankfurt/Main, Berlin (Tegel, Schönefeld, Tempelhof), Düsseldorf, München
and Stuttgart.

Flughafenkoordination Deutschland, FHKD The FHKD is the German airport coordina-
tion authority. As such, it is responsible for issuing Wight schedules for the coordinated
German airports, monitoring the proper use of slots and granting historic rights where
applicable.

Grandfather Rights, Historic Rights When an airline has been allocated a slot and makes
proper use of that slot during the scheduling period (i. e., the slot is used for at least 80% of
the time), it acquires the right to receive the same slot in the following scheduling period of
the same type (i. e., from winter season to winter season or from summer season to summer
season). This rule is also known as historic slots or “use it or loose it” rule.

Hub and Spoke System For a long distance Wight using a large aircraft it is often necessary
to Vrst transport passengers from many local airports to a larger airport (called hub) in order
to oUer them a connected service from an airport near their home, but on the other hand
make eXcient use of large aircrafts and slots for long distance destinations. The regional
feeder Wights are sometimes referred to as spoke Wights, because they emanate from the hub
like the spokes of a wheel.

Incumbent An airline that has been active at a certain airport in the past and does not classify
as new entrant. The term is also used for speciVc requests by airlines that can neither claim
historic status nor classify as new entrants’ requests.
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International Air Transport Association, IATA The International Air Transport Associa-
tion is an organization of the commercial airline industry with about 94% of all airlines
worldwide being members of the IATA. Among its aims are standardizing and facilitating
common procedures in international air traXc, such as ticket handling, security measures,
airline cooperation or implementation of the slot system.

Maximum Take-Off Weight, MTOW The maximum take-oU weight is the maximumweight
of an aircraft (including payload) at which the aircraft is allowed to attempt take-oU. This
number can be interpreted as a measure of loading capacity for an aircraft.

New Entrant An airline that is not presently active at an airport or to which at most four slots
(including its current requests) are allocated at an airport on a speciVc date. According to EU
regulations, 50% of the slots available after historic slots have been allocated are reserved
for new entrants’ Wight requests, provided there is a suXcient number of such requests. A
slot allocated under the new entrants rule must be used for the requested service for at least
two years.

Reference Value System A collection of time window bounds that are all applied simultane-
ously.

Schedules Conference An international meeting of airport and airline representatives together
with national airport coordinators hosted by the IATA after preliminary schedules have been
Vxed. The purpose of a schedules conference is to facilitate slot exchange and re-routing of
Wights so that airlines can make the best possible use of the slots they are allocated.

Scheduling Period The period during which a Wight schedule is in eUect. One distinguishes
between winter season (from the end of October until the end of March of the following
year) and summer season (from the end of March until the end of October).

Slot The scheduled time of arrival or departure for an aircraft movement on a speciVc date and
time, distinguished between arrival slot (for landing) and departure slot (for take-oU). One
slot can usually be allocated to more than one aircraft movement and represents a time
window of Vve or ten minutes in most real world situations.

Slot System A system for allocating the resources at an airport where there is not enough
capacity to facilitate all airlines wishing to oUer Wight services to and/or from that airport.
Under the slot system, every airline that wants to oUer a service Vrst needs to obtain a slot,
i. e., the right to land and take oU at a speciVed time.

Time Notions In airport operations, two diUerent time notions are distinguished, namely gate
time and runway time. By gate time we mean the time when an aircraft arrives at or departs
from the airport’s gate or parking position, this time notion is relevant for the passengers.
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By runway time we mean the time when the aircraft occupies the runway of the airport,
this time notion is relevant for all Wight movement bounds, most notably for those imposed
by some reference value system. If not stated otherwise, we always refer to runway time in
the context of this work.

Time Window Bound, Shifting Bound, Non-Shifting Bound A bound on the number of
arrivals, departures and/or total Wight movements (“movements” or “mixed” value) that is
applied to all Wights within a certain time windows of a given length. Time window bounds
can be applied in a non-shifting manner, which means that the Vrst time window starts at
slot 1, the next time window starts immediately after the end of the Vrst one, and so on.
More common is the shifting variant, where a new time window starts at every slot.
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Special Sets and Set Systems

N,N0 the set of natural numbers (excluding and including 0, respectively)
Z, Q, R the set of integers, rationals and real numbers, respectively
𝒫(𝑆) the power set of 𝑆

(𝑀,ℳ) an independence system or a matroid over the ground set𝑀
[𝑎, 𝑏], ]𝑎, 𝑏], [𝑎, 𝑏[, ]𝑎, 𝑏[ the sets {𝑥 ∈𝑀 : 𝑎 ≤ 𝑥 ≤ 𝑏}, {𝑥 ∈𝑀 : 𝑎 < 𝑥 ≤ 𝑏},

{𝑥 ∈𝑀 : 𝑎 ≤ 𝑥 < 𝑏} and {𝑥 ∈𝑀 : 𝑎 < 𝑥 < 𝑏}, respec-
tively, where 𝑀 is either Z (mostly) or R, depending on the
context. If the choice of 𝑀 is not obvious from the context, we
denote𝑀 by a subscript like [𝑎, 𝑏]Z.

[𝑛] the set {𝑥 ∈ Z : 1 ≤ 𝑥 ≤ 𝑛}
[𝑛]∘ the set {𝑥 ∈ Z : 0 ≤ 𝑥 ≤ 𝑛− 1}

𝐴 ⊂ 𝐵 𝐴 is a subset of 𝐵, where 𝐴 = 𝐵 is allowed
(𝑆)⋆ the set 𝑆 ∪ {∞}

J𝑡+ 𝑆K𝐺 the circular Minkowski sum of {𝑡} and 𝑆 ⊂ 𝐺 with respect to 𝐺.

Vectors, Matrices, Numbers and Miscellaneous

𝑢𝑖 the 𝑖-th unit vector
1, 1𝑛 the all ones vector, the all ones vector of length 𝑛

𝐴 =
(︀
𝑎𝑖𝑗
)︀

the matrix 𝐴 with entries 𝑎𝑖𝑗
𝑎𝑇𝑖 , 𝑎

(𝑗) the 𝑖-th row and the 𝑗-th column of a matrix 𝐴 =
(︀
𝑎𝑖𝑗
)︀
, respec-

tively
J𝑚K𝑛 the unique integer 𝑘 ∈ {0, . . . , 𝑛− 1} such that 𝑘 ≡ 𝑚 mod 𝑛
J𝑚K[𝑛] the unique integer 𝑘 ∈ {1, . . . , 𝑛} such that 𝑘 ≡ 𝑚 mod 𝑛

dist𝑛(𝑎, 𝑑) the circular distance from 𝑎 to 𝑑 on a circle of length 𝑛
𝑓(𝑆′) the sum

∑︀
𝑠∈𝑆′ 𝑓(𝑠) for a function 𝑓 : 𝑆 → R and 𝑆′ ⊂ 𝑆

𝒪 (·), Ω(·) Landau symbol and Omega symbol, respectively

169



List of Symbols

Symbols used in Chapter 2

𝑁 number of wires
𝑤, 𝑤𝑖 wires
𝑑 minimum inter-wire distance
𝑟 spacing rangê︁𝑊 ,𝑊 set of wires with or without dummy wires
𝜙 a wire placement
𝜋 a wire ordering
𝛿 a wire spacing
𝛼 switching frequency
𝒫𝑁 the set of all wire orderings on 𝑁 wires

𝒟𝑁 (𝑟, 𝑑) the set of admissible wire spacings
𝒜𝑁 the set of switching frequency functions
𝒮𝑁 the symmetric group on {1, . . . , 𝑁} or the symmetric group on

{0, . . . , 𝑁 + 1} with the additional property that 0 and𝑁 + 1 are
Vxed points.

𝑥𝑖 the distance between the (𝑖− 1)-th and the 𝑖-th wire.
𝑠𝑖 switching frequency of the 𝑖-th wire
𝑞𝑖 equal to 𝑠𝑖−1 + 𝑠𝑖
𝑃 feasible set of Optimal Wire Spacing

𝐹 (𝑥) the objective function for Optimal Wire Spacing
𝐷, 𝐷(𝑥) the minimum distance set for the wire spacing 𝑥
𝑅, 𝑅(𝑥) the complement of 𝐷(𝑥)
𝑃Q feasible set of Optimal Rational Wire Spacing

𝑠𝑞𝑟𝑡(𝑞𝑖) rational approximation of
√
𝑞𝑖

𝑆𝑄𝑅𝑇 (𝑞𝑖, 𝜀′) number of operations to compute 𝑠𝑞𝑟𝑡(𝑞𝑖) within error bound 𝜀′

with respect to
√
𝑞𝑖 on a binary Turing machine

𝛿 wellness condition of a 𝛿-well posed instance
𝑥𝜋 optimal wire spacing for the wire ordering 𝜋

𝐹 (𝜋, 𝑥𝜋) the objective function for Optimal Wire Placement
𝐷𝜋 , 𝑅𝜋 equal to 𝐷(𝑥𝜋) and 𝑅(𝑥𝜋), respectively
𝜔𝑖 switching frequencies, sorted in increasing order
𝜏 a TSP tour or a Hamilton Path

𝐶(𝜏) the cost (length) of a tour 𝜏
R𝑗𝑘, R𝑗𝑘 open and closed 𝑗-𝑘 reversal, respectively

𝑙, 𝑙(𝑥), 𝑙𝜋 , 𝑢, 𝑢(𝑥), 𝑢𝜋 lower and upper separation point, respectively
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Symbols used in Chapter 3

𝒮 a slot set, i. e., 𝒮 = {1, . . . , 𝑛} for some 𝑛 ∈ N
𝐺, 𝐹 , (𝐹, ℐ) a slot request, a Wight request and a series request, respectively

ℐ starting point set of a series request
𝑆ℐ(𝑎,𝑑) feasible slot series
𝒢, ℱ a collection of slot requests and Wight requests, respectively
𝑓 a Wight schedule
|𝑓 | size of a Wight schedule

(𝐿, 𝑏)(𝜎) or ([𝐿]∘ , 𝑏)(𝜎) a time window bound bound of length 𝐿 with bound value 𝑏 and
shift speciVcation 𝜎

(𝐿, 𝑏) = (𝐿, 𝑏)(1), (𝐿, 𝑏)(𝐿), (𝐿, 𝑏)(𝑘) a shifting bound, a non-shifting bound and a 𝑘-shifting bound,
respectively

𝑏A, 𝑏D, 𝑏M arrival, departure and movements bound value
𝑠+ [𝐿]∘ the Minkowski-sum {𝑠}+ [𝐿]∘ = {𝑠, 𝑠+ 1, . . . , 𝑠+ (𝐿− 1)}

ℛ a reference value system
𝑅 incidence matrix of a reference value system
𝑅 circular incidence matrix of a reference value system
𝐶 a slot conVguration

𝐶A, 𝐶D, 𝐶M arrivals, departures and movements value of a slot conVguration
𝐶𝑓 the slot conVguration associated to a Wight schedule 𝑓
ℬ𝒢 a ground set
ℳ𝒢 Wight scheduling indendence system

ℳA
(𝐿,𝑏),ℳ

D
(𝐿,𝑏),ℳ

M
(𝐿,𝑏) shifting bounds independence systems
𝐻𝑡 set of slot requests for the slot 𝑡
𝐻 ′𝑠 set of slot request within a time window starting at 𝑠
𝑤𝑢 node label (length of a shortest 0-𝑢 path)
𝑙𝑢𝑣 length of the arc (𝑢, 𝑣)
𝑙𝜆𝑢𝑣 parameterized length of the arc (𝑢, 𝑣)

𝒲
(︀
(𝐿, 𝑏)(𝜎), 𝑠

)︀
the set of all time windows for the time window bound (𝐿, 𝑏)(𝜎)

that contain 𝑠

Symbols used in Chapter 4

𝑛 the number of slots per day, usually 144
𝑑 the number of days in the planning horizon
𝑁 the number of slots in the planning horizon, i. e., 𝑁 = 𝑛𝑑(︀

𝑇, 𝑆, 𝑔,𝒟, 𝑐
)︀

a Wight series request
𝑇 =

(︀
𝑇A, 𝑇D)︀𝑇 the requested arrival/departure slot pair
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𝑆 =
(︀
𝑆A, 𝑆D)︀𝑇 the maximum allowable shift for a Wigth request

𝑔 =
(︀
𝑔min, 𝑔max)︀𝑇 minimum and maximum ground time, respectively

𝒟 requested days of service
𝑐 =

(︀
𝑐A, 𝑐D, 𝑐M

)︀𝑇 cost of deviation from requested slots for arrivals and departures,
and cost of not integrating the Wigth request at all, respectively

ℱ a Wight request set
ℱH the set of H-classiVed historic requests
ℱCL the set of CL-classiVed historic requests
ℱCR the set of CR-classiVed historic requests
ℱCI the set of CI-classiVed historic requests
ℱNE the set of new entrants’ requests
ℱ I the set of incumbents’ requests

ℱH/C the set of Wight request with any historic classiVcation
ℱA the set of arrival requests
ℱD the set of departure requests
ℱM the set of mixed requests
ℱA/M the set of arrival and mixed requests
ℱD/M the set of departure and mixed requests
ℱ$ the set of overnight series requests
ℱUSA the set of Wight request which depart for a North American airport

𝑓 =
(︀
𝑓A, 𝑓D)︀ a Wight schedule

|𝑓 | size of a Wight schedule 𝑓 , i. e., number of scheduled movements
𝑐(𝑓) total cost of a Wight schedule

R10A, R30D, R60M shifting bound of length 10, 30 and 60 minutes, for arrivals, depar-
tures and movements, respectively

𝑥𝑖𝑡, 𝑦𝑖𝑡 decision variables
W04, RW04 the instance “Winter 2004” and the corresponding reference value

system, respectively
S08, RS08 the instance “Summer 2008” and the corresponding reference value

system, respectively
(1, 𝑏*), (1, 𝑏′) a bound for the “strict slot bound” approach, obtained through

either rounding down or rounding up
ℛ*,ℛ′ reference value system with added bound (1, 𝑏*) or (1, 𝑏′)
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Index

This index lists all important occurrences of the terms collected here. Bold numbers indicate the
page where an item is properly deVned or explained. For mathematical symbols and notation,
only the place of their deVnition or Vrst use appears here; a short description of the mathematical
symbols can also be found in the list of symbols.
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1, 9
1𝐼 , 9
1𝑆 , 9
1𝑛, 9
(𝑆)⋆, 9
[𝑎, 𝑏], 9
[𝑛], 9
[𝑛]∘, 9
J𝑚K[𝑛], 10
J𝑚K𝑛, 10
J𝑡+ 𝑆K[𝑛], 10

A
𝒜𝑁 , 23
𝛼, 23
𝛼(𝑤), 19
𝑎(𝑗), 9
𝑎𝑇𝑖 , 9
activity change, 3
air traXc, 5
airport, 5–7, 53, 54, 57, 59, 65, 94, 95, 111–113,

115–120, 125, 127, 130, 134, 136, 139,
150, 152, 158, 160

coordinated, 54, 111, 112
coordinator, 54, 112, 114, 115, 117, 119,

136, 139, 160
all-distinct, 24, 44
arrival, see Wight
arrival conVguration, 60

arrival request, 120

B
ℬ𝒢 , 70
𝑏, 57
𝑏A, 57
𝑏D, 57
𝑏M, 57
balancing constraints, 1, 71
bin packing, 1
bisection, 31, 34, 35, 48
bound value, 57
breakpoint parameter value, 85
bus, see wires

C
𝐶 , 60
𝐶A, 60
𝐶D, 60
𝐶M, 60
𝐶𝑓 , 60
𝐶A
𝑓 , 60
𝑐, 120
𝑐(𝑆), 10
𝑐(𝑓), 123
𝑐A, 120
𝑐D, 120
𝑐M, 120
capacitance, 3, 15, 18, 19
capacity, 5–7, 53, 54, 57, 59, 65, 111, 113, 117,

118
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𝐶D
𝑓 , 60

circular distance, 10
circular Minkowski sum, 10
circular ones, see matrix
CL, see slot, historic
clearance request, see slot
concave, 40
consecutive bound, see non-shifting bound
container loading, 1
cost, 118–121, 131
cover, see slot cover
covering time windows set, 83
CR, see slot, historic
cross connectors, 49
crosstalk, 16, 21, 21, 22

D
𝐷(𝑥), 25
𝐷𝜋 , 35
𝒟, 120
𝒟𝑁 (𝑟, 𝑑), 23
Δ, 46
Δ*, 29
Δ(𝑖), 28
𝛿, 23
𝛿-well posed, 32
𝑑, 20, 21, 22, 120
dist𝑛(𝑎, 𝑑), 10
decision problem, 66, 72, 73
departure, see Wight
departure conVguration, 60
departure request, 120
Dijkstra’s algorithm, 81, 81, 82, 83

E
electric Veld, 3, 3, 17–19, 22, 50

F
(𝐹, ℐ), 55
𝐹 , 25, 55
𝐹 (𝜋, 𝑥𝜋), 35
ℱ , 57, 121

ℱ$, 122
ℱA/M, 122
ℱA, 122
ℱCI, 121
ℱCL, 121
ℱCR, 121
ℱD/M, 122
ℱD, 122
ℱH/C, 122
ℱH, 121
ℱ I, 121
ℱM, 122
ℱNE, 121
ℱUSA, 128
|𝑓 |, 123
𝑓 , 57, 123
𝑓(𝑆), 9
𝑓A(𝐹 ), 123
𝑓D(𝐹 ), 123
feeder Wight, see Wight
Fibonacci heap, 81, 82
Wight

arrival, 54, 55, 55, 57, 58, 76, 111–113,
115–117, 119, 120, 122, 125, 126, 131,
132, 134–142, 144, 146, 148–150, 155,
157, 158

departure, 54, 55, 55, 57, 58, 76, 111–113,
115–117, 119, 120, 122, 125, 126, 128,
131, 132, 134–142, 144, 146, 148–150,
155, 157, 158

feeder Wight, 117, 118, 130
movement, 5, 7, 58, 61, 66, 111, 118, 130,

131, 135–152, 154–159
Wight request, 54, 55, 55, 56, 65, 66, 71, 116,

119, 136, 148
Wight request set, 121, 122–124
Wight schedule, 7, 8, 54, 56, 57, 57, 59, 60, 62,

65–67, 69–72, 93, 101, 114–119,
121–123, 123, 124, 127, 129, 132, 133,
138, 144, 146, 148, 150, 152, 157, 158,
160
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INDEX

cost, 123, 123, 124, 133
feasible, 60
size, 123, 123, 124, 133

Wight scheduling, 7, 8, 13, 53, 54, 65, 65,
66–71, 73, 74, 93, 106, 111, 112,
118–120, 124, 124, 134

Wight series, 144
Wow conservation, 80
function problem, 66, 72, 73, 77

G
𝒢, 70
𝑔, 120
𝑔max, 120
𝑔min, 120
gate time, 116, 116
grandfather right, 112
greedy algorithm, 12, 83
ground safety, 6
ground time, 116, 117, 126, 132, 172

H
H, see slot, historic
𝐻 ′𝑠, 70
𝐻𝑡, 70
Hamilton Path, 15, 16, 35–37, 39, 40, 42, 46, 47

concave, 39, 40
hub and spoke, 117, 130, 132

I
ℐ , 55
ill posed, 31, 32, 33
imbalance, 2, 8, 23
incidence matrix, 63, 64, 64, 68, 73, 75–78
inclusion property, 103, 103, 104
incumbent, 115, 115, 119, 122
independence system, 11, 12
independent set, 11

maximal, 11
integer interval, 9
integer programming, 66, 68, 69, 73–75, 85,

95, 96, 120, 123, 124, 129, 133, 160

integrated, 57
interconnects, 17
IP module, 20, 21, 50

K
𝑘-shifting bound, 152
Karush-Kuhn-Tucker (KKT), 26, 26, 27
knapsack, 1

L
(𝐿, 𝑏)(𝜎), 57
𝐿, 57
𝐿(𝜋, 𝛿), 23
[𝐿]∘, 58
𝑙(𝑥), 43
𝑙𝜋 , 44
Lagrangian multipliers, 26
layer, 16, 17, 17, 18, 20, 21, 49

metal layer, 17, 17, 18, 19
substrate, 3, 17, 18

leakage, 18
length, 57
low power, 3, 15, 16

M
ℳm

(𝐿,𝑏);𝑔 , 108
(𝑀,ℳ), 11
ℳA

(𝐿,𝑏), 70

ℳD
(𝐿,𝑏), 70

ℳM
(𝐿,𝑏), 70

ℳ𝒢 , 70
3D-Matching, 67, 67, 71
matrix

circular ones, 74, 78, 84
consecutive ones, 74, 74, 78, 84

matroid, 11, 12, 70, 71
bases, 11
exchange property, 12
intersection, 12, 12
partition matroid, 12, 70

metal layer, see layer
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minimum distance, 21, 22
minimum distance set, 27, 31, 32, 47
Monge, 36, 36, 37, 42
movement, see Wight
movements conVguration, 60, 76, 78, 81, 84,

87, 88

N
𝑁 , 22, 120
𝑛, 120
network Wow, 80, 81
new entrant, 113, 114, 115, 119, 122, 128, 129,

132, 134
Newton’s algorithm, 31
noise protection, 115, 118
non-shifting bound, 8, 57, 58, 58, 59, 71, 79,

104, 105, 115
North America rule, 117, 117, 118, 128, 132,

138

O
overnight series request, 122
OWP, see wire placement
OWS, see wire spacing

P
𝑃 , 25
𝑃Q, 31
𝒫𝑁 , 22
𝒫(𝑆), 9
𝜋, 22
𝜙, 22
packing, 8, 16, 71
packing-covering gap, 101, 102, 103, 157
permutation network, 20, 20, 21, 49
power consumption

dynamic, 18, 18
static, 18, 18

power loss, 3, 4, 18, 19, 22, 23, 51
power set, 9
power supply, see wires
pyramidal, 36

Q
𝑞𝑖, 25

R
𝑅, 64
𝑅(𝑥), 25
𝑅𝜋 , 35
𝑅𝐿, 63
𝑅𝐿, 63
ℛ, 59
𝑅, 64
𝑅𝐿, 64
R𝑗𝑘, 43
R𝑗𝑘, 43
𝑟, 20, 22
RAM, 24, 24, 28, 29, 48
reduced shifting, 152, 152, 153, 155
reference value system, 59, 59, 60–62, 64–68,

72, 73, 75–78, 81, 84, 88–90, 93–95,
97, 99, 101–105, 115, 116, 124,
132–134, 138–141, 144, 146–150, 153,
155, 157, 158

monotone, 59, 89, 92, 97, 99, 101–104,
141

symmetric, 59, 75
request, see series request
reversal, 43, 43, 44
rounding down, 155
routing, 16
routing direction, 17
runway time, 115

S
𝑆, 120
𝑆*, 29
𝑆(𝑖), 28
𝑆ℐ(𝑎,𝑑), 55

𝑆A, 120
𝑆D, 120
𝑆𝑗𝑘(𝜋), 42
𝑆𝑗𝑘(𝜋), 42
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𝒮 , 54
𝒮𝑁 , 23
𝜎, 58
𝑠𝑖, 23
schedule, see Wight schedule
scheduling, see Wight scheduling
semiconductor, 3, 15, 16, 16, 17, 18, 21, 22, 49,

51
design, 3, 15, 16, 48, 49

separated, 44, 44, 45, 46
evenly, 46, 46, 47
evenly separated, 42

separation point, 44, 46, 47
series request, 54, 55, 55, 56, 57, 65, 66, 113,

120, 120, 121, 122, 124–126, 128, 131,
132

shift speciVcation, 58
shifting bound, 7, 57, 58, 58, 59, 76, 79, 91,

94–97, 99, 105, 115, 116, 132, 136,
141, 148, 150, 159

shortest path, 78, 79, 81–84
parametric, 84

signal
signal transition, 17, 18, 19, 21, 22, 50
signal wire, see wires

simulated annealing, 15
size, 57
slot, 7, 7, 54, 56, 62, 65, 69, 72, 73, 76, 78, 95,

96, 111, 112–115, 117, 119, 120, 124,
126, 129, 132, 136, 138, 140, 146, 148,
150, 152, 153, 155, 157, 158

arrival, see Wight
clearance request, 112
departure, see Wight
historic, 112, 113, 114, 119, 122, 123, 126,

127, 129, 130, 132, 134, 136, 138
movement, see Wight
pair, 55, 55, 56, 57, 71, 113, 120, 122
pool, 113, 113, 114, 115
series, 55, 56
system, 6, 7, 53, 54, 111, 112

slot conVguration, 60, 60, 62, 63, 71–73,
75–77, 89, 90, 92, 93, 96, 97, 99, 100,
102, 104, 105, 124, 141

associated, 60
circular feasible, 60
covering, 93
feasible, 60
size, 60

slot cover, 53, 93, 93, 94–97, 99–106, 111
slot packing, 53, 72, 72, 73–78, 81–83, 87, 90,

92–97, 100–106, 111, 141
slot request, 55, 55, 71, 117, 119
slot set, 54, 55–58, 60, 63, 67, 68, 70, 75–77, 88,

93–96, 127
SOFIE, 133, 160
spacing range, 22
𝑆𝑄𝑅𝑇 (𝑞𝑖, 𝜀′), 34
𝑆𝑄𝑅𝑇max, 35
𝑠𝑞𝑟𝑡(𝑞𝑖), 32
starting point set, 55, 56, 69
strict slot bound, 155, 156–159
substrate, see layer
Supnick, 36, 36, 37, 47
switching frequency, 3, 19, 22, 23, 25, 35, 45,

47, 49, 50

T
𝑇 , 120
𝑇A, 120
𝑇D, 120
𝑇𝑗𝑘(𝑥), 42
𝑇 𝑗𝑘(𝑥), 42
𝜏𝑛, 40
time window, 7, 8, 58, 95, 115, 116, 152
time window bound, 7, 57, 57, 58, 59, 71–73,

83, 115
symmetric, 58

totally unimodular, 74–76
Traveling Salesman, 15, 16, 36–38

concave, 42
turbine runner balancing, 2
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Turing machine, 24, 30–35, 48

U
𝑢(𝑥), 43
𝑢𝜋 , 44
𝑢𝑖, 9
𝑢𝑔𝑖 , 9

V
veriVcation problem, 73, 73, 77, 87
via, 17, 17, 20, 49

W
𝑊 , 22
𝒲
(︀
(𝐿, 𝑏)(𝜎), 𝑠

)︀
, 83̂︁𝑊 , 22

𝜔𝑖, 36
𝑤, 19
𝑤𝑖, 22
well posed, 31, 32, 34, 35, 48
wellness condition, 32, 48
wire ordering, 13, 15, 16, 20, 22, 22, 23, 36, 39,

40, 49, 50
wire placement, 15, 16, 20, 21, 22, 23, 23, 24,

36, 42–49
wire spacing, 13, 15, 16, 20–22, 22, 23–28, 35,

48–51
rational, 30–35

wire spreading, 15, 15
wires, 3, 15, 17, 17, 18–23, 35, 47–51

bus wires, 20, 49, 50
dummy wires, 22
power supply wires, 21
signal wires, 21

X
𝑥𝜋 , 35
𝑥𝑖, 23
𝑥𝑖𝑡, 125
Xpress-MP, 13

Y
𝑦𝑖𝑡, 125

Z
𝑧NE, 129
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