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Abstract

We study two practical applications of linear and integer mathematical programming that are both
instances of general packing problems under balancing constraints. In the first part, we investigate
the causes for power loss in semiconductor circuits and develop a mathematical optimization model
encompassing all relevant parameters. We then characterize the optimal solutions and present an
efficient algorithm for the solution of the problem. In the second part, an application in airport
flight scheduling is considered, wich can also be modeled as a packing problem subject to balancing
constraints. We study the structure of optimal and non-optimal flight schedules and devise a
comprehensive optimization model, that is then successfully evaluated on a real-world instance.

Zusammenfassung

Ausgehend von zwei praktischen Problemstellungen werden in dieser Arbeit lineare und ganz-
zahlige mathematische Optimierungsmodelle entwickelt, analysiert und gelést, die sich allgemein
als Packungsprobleme unter Ausgleichs-Nebenbedingungen beschreiben lassen. Im ersten Teil
wird die Entstehung von Verlustleistung in modernen Halbleiter-Schaltkreisen untersucht; ein
mathematisches Optimierungsmodell, das alle relevanten Problemparameter enthélt, wird entwi-
ckelt. Eine Charakterisierung der optimalen Losungen erméglicht die Entwicklung eines effizienten
Algorithmus fiir die Losung des Problems. Im zweiten Teil wird ein Modell fiir die Erstellung von
Flugplénen vorgestellt, das ebenfalls auf Packungsproblemen mit Ausgleichs-Nebenbedingungen
beruht. Die Struktur optimaler und nicht-optimaler Losungen wird vergleichend untersucht und
ein umfassendes Optimierungsmodell entwickelt, das abschlieffend erfolgreich an Problemdaten
aus der Praxis getestet wird.
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Chapter 1

Introduction

1.1 Packing under Balancing Constraints

Among the most important and most widely applied problems in combinatorial optimization are
the many variants of packing problems. In its most simple form, a packing problem is specified by
a set of items and some sort of container (which may be defined by a set of abstract constraints),
and the task is to choose a maximum subset of the items that fits into the container. The Knapsack
problem is a prototypical incarnation of this simple packing problem: Given a set of items, each of
a specified weight and value, and a container of a certain maximum weight capacity, which items
should be packed into the container so as to maximize the sum of their values? A somehow “dual”
viewpoint is expressed by the Bin PACKING problem: Given a number of items, each of a specified
weight, and a container with a certain maximum capacity, how many containers of that same type
are needed in order to pack all the items?

In the Knapsack and the BiN PACKING problem neither the form nor the order of the items
in the container is of any interest. However, for practical applications these aspects are often
of considerable importance. A prominent example is the problem of loading a freight container
with heterogeneous goods: If only the weight or volume of the items that are to be loaded is
considered in a mathematical model, the optimal solutions produced by this model will virtually
never be realizable in practice. This leads to higher-dimensional and more complex variants of Bin
PAckiNG or KNAPsACK problems, where the geometry of both the items and the container(s) is
taken into account. Examples of such problems include PALLET LOADING, CONTAINER LOADING,
and MULTI-PROCESSOR SCHEDULING; for more information on these topics see, e. g., the articles
[GMM9q].. [CGJ97] and [LMV02].

In practical applications, there is also a variety of loading problems where the arrangement and
distribution of the load is restricted in some way. Constraints of this “balancing type” arise for
instance in aircraft loading, where it is important to balance the load such that the center of gravity
falls within a specified region around the geometrical center of the aircraft. Thus it is not only
the value and the weight and/or volume of the items loaded that need to be considered, but also
their arrangement within the container, which defines the load’s center of gravity. For an aircraft,
the question of finding an optimal distribution of the goods can be reduced to a one-dimensional
problem, namely along the longitudinal axis of the airplane, because there is only little movement
along the vertical and lateral axes while an aircraft is airborne. A more detailed treatment of that
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problem can be found in and in [[CY85]. Of course, similar problems exist in higher
dimensions. A two-dimensional version would be natural for a freight container, where it is
desirable to avoid tilt while lifting the container upon transshipping; a three-dimensional version
arises if the aim is to position the center of gravity not only close to the center of a container’s floor,
but also not too high above the floor for reasons of stability. More on such problems is reported in
the articles [[BR95]] and [DB99].

We would like to mention one more example, which will later exhibit a different (and somewhat
surprising) connection to one of the problems we are dealing with in this thesis, namely the
TURBINE RUNNER BALANCING problem. A hydraulic turbine runner consists of a cylindrical center
piece and a number of blades welded to the center piece at regular distances. Such a blade may
weigh up to 16 tons and due to manufacturing imperfections, not all the blades are identical with
respect to their mass distribution. As a consequence, when the blades are welded to the center
piece, the center of gravity might not coincide with the axis of the turbine runner, which leads
to unbalance. During operations, such unbalance causes increased mechanical load and may
ultimately lead to the destruction of the turbine runner. To minimize this unwanted effect, one
may change the arrangement of the blades on the center piece and thus try to move the center
of gravity as close as possible towards the axis; again a problem where the order of the items is
crucial to the solution. For details on the TURBINE RUNNER BALANCING problem see
and [Woe03].

All those problems have some characteristics in common: There is a collection of items (boxes,
turbine runners) that have to be positioned within a given container (in many applications, the
container is a cube or a parallelepiped, where the dimension is often between one and three,
sometimes higher). To evaluate the quality of a packing, there is an imbalance measure, i.e., a
function that assigns a real value to every packing. That function can be the distance of the center
of gravity of the items to some given point (e. g., the geometrical center of the container) or it can
be a little more abstract. The goal is then either to minimize the imbalance itself, or to optimize
some other objective subject to an upper bound on the imbalance.

For the classical problem of loading & items of masses my, ..., mg into a container, the imbal-
ance of a packing can be computed by a function like

k
1
imbalance(zy,...,x;) == c— < Z m;T;,
2li=1Mi =
where 1, ..., x) are the positions of the items and c is the geometrical center point of the

container. The objective here is to minimize ¢mbalance subject to constraints on the packing (e. g.,
space or weight constraints). Obviously, the imbalance function here decomposes into a sum of
univariate functions, so each item’s contribution to the total imbalance is determined by its own
position alone (and, of course, by its mass and the center point). Similar imbalance functions can
be given for the other problems we mentioned above.

In this thesis, we will study two practical applications of packing problems under more complex
balancing constraints. The first problem is formally a two-stage problem, where we ask not only
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for an optimal packing of the given items, but also for an arrangement that maximizes the potential
for optimization in the positioning step. The second problem is an example for a maximum packing
problem subject to complex local and global balancing constraints. In the rest of this chapter we
will briefly describe the applications leading to and motivating these problems and introduce their
most important aspects. In[Section 1.4 we will also collect some mathematical preliminaries and
clarify notations used throughout this thesis. Chapters [2H4 will then provide an in-depth treatment
of various aspects of the application problems.

1.2 Optimal Wire Ordering and Spacing

In today’s technological world, semiconductor circuits serve an abundance of different purposes.
Key issues in the area of semiconductor design include mobility of electronic devices and miniatur-
ization of the relevant technology. Not only notebook computers and increasingly popular mobile
multimedia devices need to combine high computational power with a slim form factor and long
battery lifetime; low energy consumption is also of major importance for medical applications or
electronic devices used in spacecraft technology. Besides the desire to maximize the operating time
before a battery recharge becomes necessary, there are other advantages that make a good case for
the use of low energy circuits also for non-mobile devices. High power consumption usually results
in an increased emission of heat, which can lead to erratic behavior of the circuit and even cause
permanent damage of the silicon substrate. To avoid this, costly cooling measures, often combined
with special housing material for the circuits, have to be implemented. Also, electronic circuits
account for a significant part of the COy emissions in industrialized societies, clearly exhibiting an
increasing trend. For these reasons, the design of low power circuits has become an important and
active area of research.

Power consumption in electric circuits depends heavily on the capacitances between adjacent
wires. Recent technology requires the typical on-chip wire’s thickness (see to become
larger than both its width and the wire distance, so one can think of on-chip wires as parallel metal
plates, see [Figure 1.1]for an illustration. Whenever an activity change occurs on one of the wires,
the electric field between this wire and its neighbors changes; thereby dissipating energy stored in
the field in the form of heat.

The amount of power loss depends mainly on two factors, namely the amount of signal tran-
sitions that occur on each particular wire (referred to as switching frequency) and the distance
between two neighboring wires. The higher the distance, the less energy is consumed when a
switch occurs on one of the wires. More precisely, the energy E stored in an electric field within a
capacitor is determined by the formula

E=C-U?

where U is the operating voltage of the circuit and C is the capacitance. For a parallel-plate
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thickness

—
width

Figure 1.1: Schematic drawing of a one-layered semiconductor circuit. The substrate (green) with the
transistors (yellow) contains the semiconductor elements, which are connected to one another
by wires (gray). The wires within one layer are all routed in the same direction and are
connected to the transistors (and possibly to other layers above and below) by so called vias.
Whenever an activity change on one of the wires occurs, the electric fields between neighboring
wires (symbolized by orange arrows) change, thereby causing energy loss in the form of heat.

capacitor, the capacitance C' is

C=c¢- 7
where A is the area of the plates, d is the distance between them and ¢ is the so called dielectric
coefficient, a constant that depends on the material between the two parallel plates. As all wires
have the same dimensions (at least on local patches of a complex circuit, see|Section 2.1|for a
thorough discussion of the model assumptions), and the operating voltage is considered fixed, the
power loss depends only on the distance of neighboring wires and on their switching frequencies
a(w). Thus (up to a constant term) the total power loss can be expressed as

a(w) a(w)
wgv (xleft(w) + %ght(w)) ’ (1.1)

where W is the set of all wires.
Naturally, space is limited in a semiconductor circuit, thus the natural question is “How should
one distribute the available space between the wires in order to minimize power loss?”, or, in other

words,

“How should one arrange the wires on the chip such as to comply with the packing
constraints (i. e., the available space) and such as to minimize power loss?”

This is clearly a packing problem with an imbalance objective, very similar to the ones we have
encountered in[Section 1.1} The goal is to position a collection of items (the wires) within a given

container (the space available on the semiconductor) such as to minimize the imbalance measure
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defined by (1.1). However, there is an important difference to the examples given above, namely
in the nature of the imbalance measure. Notice that jer(w) and @gn(w) do not depend on the
position of w alone, but also on the position of its left and right neighbor, and hence the objective
function does not decompose into univariate functions, but instead into functions of position
pairs. Further, not all possible pairs are considered, but only those of neighboring wires are relevant
for the imbalance measure, giving the objective function both an analytical (the distance terms)
and a combinatorial (the arrangement of the wires) aspect.

The fact that we have to consider pairs should make the problem more difficult at first sight.
On the positive side, there is not a large number of hard packing constraint here. Basically, we
just have to observe the space restriction, and we may not place wires too close together for
technological reasons. In[Chapter 2] we show how these constraints can be used to characterize the
optimal distances of the wires analytically.

What really makes the problem challenging is the fact that only neighboring wires are considered
in the objective. By this requirement, the order of the wires acquires an influence on the objective.
Indeed, as we will see in[Chapter 2|later, the quest for an optimal order will lead to a TRAVELING
SALESMAN problem (which is known to be N"P-hard, cf. [[GJ79])). Fortunately, by making use of the
analytical characterization of the optimal distances, we will be able to reduce the general problem
to an instance that will turn out to be easily solvable. Thus we will be able to derive an algorithm
that completely solves the OpTiMAL WIRE PLACEMENT problem in running time polynomial in the
number of wires.

1.3 Flight Scheduling for Airport Operations

Over the last decades, civil air traffic has seen a tremendous increase both in terms of air transport
movements and in passenger numbers. For an illustration see where the increase of both
passenger numbers and flight movements from 1987 to 2007 is depicted for Miinchen airport. In
the year 2007, Miinchen airport (cf. [MUC07]) has handled a total of 431 815 flight movements and
33 959 422 passengers (the numbers for Germany’s largest airport Frankfurt/Main were 492 569
flight movements and 54 167 817 passengers, respectively, cf. [FRA07]). For Miinchen, this is an
increase in flight movements by almost 145% over the last twenty years. To give an impression of
the recent rapid growth of air traffic: For the old Miinchen airport at Riem the mark of 30 million
passengers was reached in 1972, counting every passenger from the opening of the airport in 1949
(cf. [MUCOog])). Today, the same number of passengers is handled at Miinchen airport within less
than one year. The corresponding numbers for Frankfurt exhibit the same trend, but are a little
less impressive in their growth rates, because Miinchen had (and still has) some spare capacity,
while Frankfurt has been operating at its capacity limit for years.

With these developments, airports around the world are increasingly facing the problem of
insufficient capacity to serve all requests from airlines. Building new runways, parking positions
and terminal buildings is impossible in many cases due to space restrictions, and even if additional
capacities can be built, this is often a lengthy process. Additionally, the development of new
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Figure 1.2: Passenger numbers (above, red) and commercial flight traffic (below, blue) at Miinchen airport

for the years 1987 to 2007. (Numbers according to [[MUCO07].)

aircraft types that can accommodate a growing number of passengers requires complex handling
operations for the airports’ ground personnel and also gives rise to new air and ground safety
concerns. The location of cities as well as of flora/fauna habitats near an airport naturally poses
another problem: The noise emitted by the aircrafts requires a complex noise regulation policy in
order to protect the environment and residents of nearby cities. As a result, most major airports
around the world become congested at certain times because the demand exceeds one or more of

the factors limiting air side capacity.

To resolve this situation, the so called[slof system]has been developed as a means of appropriately
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allocating the available capacity to the airlines. The slot system addresses such questions as fairness
issues, property rights, customary law and ensuring competition by providing for sufficiently
low market entrance barriers. In air traffic, there is a summer schedule ranging from March to
October and a winter schedule ranging from October to March, and flight scheduling is applied
for allocating airport capacities in the creation of these schedules. In contrast to that long-term
planning problem is the short-term rescheduling process employed in daily airport operations,
which is necessary due to unforeseeable circumstances such as delays enforced by bad weather or
early arrival due to beneficial winds. In this thesis, we will solely be concerned with the long-term
scheduling task, although some of our methods can also be applied to short-term rescheduling.
However, there is often an on-line component involved with short-term decisions, which will not
be considered here.

Under the slot system, an airline wishing to offer an air connection to and from some airport
first needs to acquire the right to land and take off at that airport at a specified time. Such rights
are referred to as slots (more precisely, arrival or departure slots), hence the name slot system.
To avoid governments giving privileges to national carriers, the European Union has passed
authoritative legislation on the allocation of slots to airlines, thereby introducing the slot system
for all of its member states. The system which is in effect today was described in 1993 in the
council regulation 95/1993 () and has since been amended in 2002 (), 2003 ([[EU03]))
and 2004 ([EU04]]). These documents provide the legal basis for the allocation of airport capacity
to airlines at all European airports. Similar legislation or procedures are in effect for all major
airports, often regulated by scheduling guidelines [IATA07|] of the (International Air Traffic
Organization). Thus the slot system is used to regulate air traffic in all regions of the world, though
often with minor modifications in the side constraints.

Slot allocation is subject to a number of restrictions (which will be detailed in|[Chapter 4), but
the most important class of constraints is specified by giving a “time window” and an associated
bound on the number of flights within. More precisely, such a constraint consists of a class of
time intervals of the same length together with three bound values limiting the number of arrivals
and departures as well as the number of total flight movements within each of the intervals
(naturally, the latter value will usually be smaller than the sum of arrivals and departures bound).
For example, such a restriction could allow for a maximum of 25 arrivals, 25 departures and 40
total flight movements within each 60 minute interval, starting on the hour throughout the whole
planning horizon.

These “time window bounds” come in two slightly different flavors (see for an
illustration): In most cases, they are applied as so called shifting bounds, which means the bound
is applied for every time window of the respective length. Imagine taking the time window and
slowly shifting it over the entire time scale, counting the number of arrivals and departures that lie
within the time window as you move along. Then the three given bounds must not be exceeded
anywhere along the time scale. As small delays are practically unavoidable in air traffic, flight
schedules are not precise to the minute, but usually use ten minute time steps (for more details, see
[Section 4.1|and [time notiongin the glossary), thus it suffices to shift the time window in steps of
ten minutes (providing for a finite number of constraints). In contrast to the shifting bounds, the
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time windows may also be applied consecutively to one another, i. e., the respective intervals do
not overlap. We will refer to that variant as non-shifting bounds or consecutive bounds.

} > time

0:00 0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20 1:30

shifting

non—shifting{

Figure 1.3: Example of shifting bounds and non-shifting bounds. A time window of 30 minutes is moved
over the time scale in a shifting and non-shifting way.

The task encountered in flight scheduling is typical for a packing problem:

“Find a flight schedule subject to one or more time window bounds, shifting or
non-shifting, that consists of a maximum number of flights.”

While the non-shifting bounds are very similar to classical knapsack constraints, the shifting
variant is of a more complex type. Here, in addition to the local restrictions on the flights within
each time window, the overlap of the time windows provides for a “spread-out” of the effect of
allocating a specific slot to one flight, so the local constraints are to some extent “globalized”.
The imbalance measure of a flight schedule is thus determined by a number of time intervals,
where each flight influences not just one, but several of these intervals, so the imbalance function
is not easily decomposable anymore. In contrast to the WIRE PLACEMENT problem described in
the imbalance is not part of the objective function here, but is solely bounded above
resulting in a constraint on the distribution of the flights.

In[Chapter 3| we will present an abstract model of flight scheduling that allows us to investigate
complexity issues as well as the structure of an optimal distribution of flights subject to different
time window constraints. We will discuss properties of “good” and “bad” (we will make these
notions precise in[Chapter 3) slot allocations and present some ideas of how to avoid the latter.

Following the theoretical treatment, [Chapter 4 presents a concise mathematical model encom-
passing numerous constraints that are relevant for slot allocation in an application-specific context.
The model is then tested extensively on real-world and realistic simulated data. We will see
that the results of these tests exhibit many of the structural properties devised by the theoretical

reflections of Finally, alternative constraint structures motivated by are

considered and tested in a realistic setting.
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1.4 Notational Conventions

The purpose of this section is to introduce some of the notation that will be used frequently
throughout this thesis and to clarify the terminology. This section may be skipped without any
loss and used for reference in case the reader should encounter some unfamiliar notation later. A
short overview is also given in the list of symbols on page

1.4.1 Vectors, Matrices and Inequalities

For the vector space R", we denote the ¢-th unit vector by w;, the all-ones vector by 1 (or 1, if
the length n is not clear from the context), and for any subset / C {1,...,n} the vector ;. u;
by 1. Similarly, for a finite set G = {g1, ..., gm }, We write u,, = u; for the incidence vector of

{¢i}, and, more generally,
Ls:= Z Ug

ges

for any subset S C G.
For two vectors x,y € R" the inequality « < y is meant to hold component-wise, and x < y if
x < yandx; < y; for at least one i € {1,...,n}. The notations > y and = > y are analogous.
For a matrix A € R™*" the matrix entries will commonly be written as A = (a;;). The i-th
row of A is denoted by a;fp, while aU) means the j-th column.

1.4.2 Special Sets

For an arbitrary set S we denote by P(.S) the power set of S, i. e., the set of all subsets (including
the empty set), and by S’ C S we mean that S’ is a (not necessarily strict) subset of S. Furthermore,
(S)* denotes the set S amended by the element “co” (which will be used as a symbol to denote a
special situation in various contexts), i.e.,

(S)* := S U {oc} .

Fora,b € Z,a < b, the integer interval {a,a + 1,..., b} isdenoted by [a, b] := {a,a + 1,...,b}.
For an integer n € IN the intervals [1, n] and [0, n — 1] will be abbreviated by [n] and [n], (to
denote an interval of length n), respectively.

For a finite ground set G, a subset S C G and some function f : G — R we denote by f(S)
the sum

F(8) =) f(s).

seS

To simplify notation, we define f(s) := 0 for any s’ ¢ G, and consequently

f(8) = f('NG)
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for an arbitrary set S’. The same notation will be used for a vector ¢ € R" and a subset

Sc{l,....,n}
c(S) = ch,
seS

where we mean to imply ¢y = 0 for s’ ¢ {1,...,n}.

1.4.3 Numbers

For our models, we will frequently have to restrict numbers like indices to some specified discrete
interval. In more complex expressions, however, this often gives rise to somewhat clobbered
notation, because several special cases need to be handled separately. In order to avoid this
unnecessary complication, we introduce a special notation.

Definition 1.1
Let n € IN and m € Z be two integers. Then we use the following notation:

1. [m]y, is the unique integer k € {0,...,n — 1} such that k = m mod n.
2. [m]} is the unique integer &’ € {1,...,n} such that ¥ = m mod n.

Let S C [n] and let ¢ € [n], then the circular Minkowski sum with respect to [n] is defined as

[[t—i—S]][n] = {[[t—l—s]][n] HERS S}.

In|Chapter 4| we will sometimes measure the distance of two numbers with respect to a directed
circle of given length n (rather than along the line). Forn € N and a,d € IN let

disty, (a,d) := [d — a],,

be the circular distance of a and d with respect to n.

Example 1.2
Let us illustrate the above definitions by a small example. For n = 5, we have

[8]s =3 and [8]5 = 3;
[[10]]5 =0 and [[10]][5] = 5.

For S = {2,4}, we get [2 + S][5; = {4, 1}. The circular distance from 2 to 4 is dist5(2,4) =
[2]5 = 2. Notice that the circular distance depends on the order of the operands, dists(4, 2)

[2 — 4]5 = [—2]5 = 3; see[Figure 1.4 for an illustration. &
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dists(2,4) = 2

Figure 1.4: [llustration of the circular distances dists(2,4) and dists(4, 2), respectively.

1.4.4 Matroids

In [Chapter 3] matroid techniques will be used to provide some complexity results for flight
scheduling problems. We collect the necessary terminology and some important results from
matroid theory here as a reference. Details on matroid theory, including the proofs of the results

cited here, can be found in [Wel95} [Bix82} [NW?99].

Matroids were first defined by Whitney in 1935, who also gave a number of characterizations in

his paper [[Whi35]. We mainly follow [Bix82|] for our notation.

Definition 1.3
An independence system (M, M) consists of a finite ground set M and a nonempty collection
M C P(M) of subsets of M called independent sets such that the following conditions hold:

L0eM

2.Se Mand 8" C S=5"eM
For any subset S C M, aset B C S is called maximal independent set in S if B U {i} ¢ M for
all i € S\B. If for all S C M all maximal independent subsets of S have the same cardinality,

then (M, M) is called a matroid. For a matroid (M, M), the maximal independent subsets of M
are called the bases of the matroid.
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One prominent class of matroids is constituted by the partition matroids, which will naturally
arise from our applications in flight scheduling in To unify the statements there, we
now give a brief description of partition matroids.

Theorem 1.4
For a finite ground set M, let My, ..., My be a partition of M into disjoint subsets and let
mi,...,my € Ng. Then the definition

M:={NCM:INNM;|<m; forallic{l,...,k}}

yields a matroid (M, M) known as partition matroid.

Proof. Clearly, |0 N M;| = 0 < m, for all i € {1,...,k}, and for every subset N' C N
of a set N € M the inequalities [N N M;| < |[NNM;| < m; hold for all i € {1,...,k},
thus (M, M) is an independence system. For the matroid property, let B, B’ € M be two
maximal independent sets and suppose |B| > |B’|. Then there is at least one j € {1,...,k}
where | B N M;| > |B’' N M|, hence we can choose an element b € (B N M;) \ (B’ N M;). As
My, ..., My is a partition of M, we know b € B and b ¢ B’, thus B* := B’ U {b} is a strict
superset of B’. As |B* N M;| < |BNM;| < mj and |B* N M;| = |B'NM;| < m; for all
ie{l,...,k}\{j}, the set B* is an element of M, contradicting maximality of B’. O

We will later use an important characterization of matroids, which is also due to Whitney, cf.
[Whi35[. A proof formulated in the terminology used here can be found in [[Bix82].

Theorem 1.5 (Matroid Exchange Property, [Whi35]])
An independence system (M, M) over the ground set M is a matroid if and only if for any two

independent sets U,V € M with |U| = |V| + 1 there exists u € U\V such that V U {u} € M.

The primary interest in matroids in the field of combinatorial optimization stems mainly from
two algorithmic results.

Theorem 1.6 (Greedy Algorithm and Two Matroid Intersection)
1. Let (M, M) be a matroid and w : M — Q a weight function on the elements of M. Then
the problem of identifying a set M' € M of maximum weight w(M') can be solved by a
greedy algorithm (for details on the formulation of the algorithm see [Bix83]).

2. Let (M, M) and (M, M3) be two matroids on the same ground set M and letw : M — Q
be a weight function on the elements of M. Then a maximum-weight set M' € My N Ma
(WEIGHTED MATROID INTERSECTION problem) can be found in polynomial time, provided
membership in My and Mg can be tested in polynomial time.

The algorithm proving the latter result is generally referred to as two matroid intersection algorithm.
More details on the greedy property of matroids and a rigorous formulation of the greedy algorithm
can be found in [Bix82]. The matroid intersection algorithm uses results by Lawler and Edmonds
(see [Law75] and [Edm79], a textbook treatment can be found, e. g., in [NW99]]).
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Chapter 2

Optimal Wire Placement for Low Power
Semiconductor Circuit Design

In this chapter, we will analyze the main cause for power loss in recent semiconductor circuits,
namely capacitances emerging between adjacent circuit wires. As outlined in the
power consumption of a semiconductor circuit depends on the distances of adjacent wires and
the frequency of power switches on these wires. Determining an optimal spacing and possibly
reordering of parallel wires is a key issue in the design of low power semiconductor circuits. We
begin by presenting and analyzing a mathematical model that encompasses all major aspects of
the WIRE PLACEMENT problem (which combines an optimal spacing and ordering of the wires)
in integrated circuit design. As the first step towards a concise algorithm we then consider
the OpTiMAL WIRE SPACING (OWS) problem separately. As it turns out, the underlying convex
optimization problem can essentially be solved analytically. This can be utilized to reduce the
combined wire ordering and spacing problem to a specific kind of MiNiMmuM HAMILTON PATH
(MHP) problem (or TRAVELING SALESMAN problem, TSP). While the general MHP is notoriously
N'P-hard, our algorithm for the OpTiMAL WIRE PLACEMENT (OWP) problem on N parallel wires
relies on strong new structural results and will be shown to run in total worst-case O (NN log N)
time.

Both |wire ordering and |wire spacing| according to various objectives have a long history in
electronic|design automation) see [YK99[MMPO01}MPS03};|MMKO6]. Loosely related to wire spacing
is a technique called wire spreading that was presented in 1997 (cf. [SD97]]) and is implemented in
most commercial software packages for semiconductor circuit design. Here the spacing of the wires
is changed locally in order to decrease the probability of a short circuit caused by small material
defects on the silicon wafers used in chip production, so the main objective of wire spreading is an
increased chip yield, a decrease in power consumption is merely a byproduct. Wire spacing as a
means of decreasing power consumption was first investigated in [MMP02]], where a heuristic was
suggested to decrease power dissipation. Wire ordering first appears in the literature in [[Grog9],
although in a very different context. Around the year 2000, the idea of wire ordering as a means
of reducing power consumption is taken up by various authors. In a simulated annealing
approach for reordering chip wires is suggested and experimental results showing significant
power savings are reported. The authors of investigate a model of WIRE ORDERING as a
TRAVELING SALESMAN problem and use the TSP solver Concorde (cf. [ABCC03]) to provide an
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optimal wire ordering. However, their model and methodology differ significantly from the one
presented in this work; and no wire spacing component is employed. Besides power, different
objectives are used in the literature, e. g., timing, area, crosstalk avoidance, yield and combinations
of these. For a detailed overview of the literature concerning wire ordering and spacing we refer
the reader to Chapter 3].

In this Chapter, we will derive a model of WIRE PLACEMENT as a PACKING problem with power
loss as a measure of imbalance in the objective function and distance requirements as packing type
side constraints. Subsequently, an efficient rigorous algorithm for power optimal WIRE PLACEMENT
is presented. The following gives relevant background information on low power
semiconductor design to motivate and justify the mathematical model for the WIRE PLACEMENT
problem that will be presented afterwards, together with the main result of this chapter. As
mentioned earlier, we will first investigate the WIRE SPACING problem, solve the underlying
convex optimization problem and derive an efficient algorithm for OpTIMAL WIRE SPACING in
Based on these results, [Section 2.3 will then add the optimal wire ordering task and
reduce the combined placement problem to the solution of a certain class of MiNniMmuMm HAMILTON
PaTH problems. We will study the structure of this class of problems, relate it to a certain class of
TRAVELING SALESMAN problems and derive an efficient algorithm which will subsequently lead to
the asserted O (N log N) algorithm for the combined wire ordering and spacing problem presented

in[Section 2.4 Finally, [Section 2.5|contains some remarks regarding applicability, practical results

and directions for future research.

2.1 Low Power Semiconductor Design

We will now give some background information on power issues in semiconductor circuits and
introduce wire spacing and wire ordering as a means of decreasing power loss. A first mathematical
description of the optimal placement problem, still formulated from a natural application specific
perspective, will subsequently be refined and abstracted to allow us to take up a more mathematical
position for the problem statements.

Naturally, we do not aim at a comprehensive treatment of all relevant aspects from electrical
engineering here but will concentrate on those that motivate and justify our concise mathematical
model given in For further information and more technical background we refer the
reader to [[Vyg04; [CKP01} IMWKOG6||, the [[nternational Technology Roadmap for Semiconductors
[STA07]] and Paul Zuber’s doctoral thesis in electrical engineering as well as the articles
and references quoted therein.

2.1.1 Power Loss in Semiconductor Circuits

Typically, a semiconductor circuit is designed in several consecutive steps. After the circuit diagram
has been finalized, placement, routing and simulation are used to reach the final design for use in
production of the semiconductor. A manufactured semiconductor circuit is assembled in several
that are stacked on top of each other, see|[Figure 2.1and [Figure 1.1|for an illustration. The
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bottom layer (substrate) is made of silicon and contains the transistors and possibly other electronic
components. Above that layer, one or more stacked on top of each other follow. The
metal layers contain wires (called [inferconnects) that connect the transistors to each other and to
input/output pins of the circuit. Within a single metal layer all wires are of the same thickness
and the wires are all parallel (possibly with the exception of some very small wire segments);
the direction of the wires within one layer is called that layer’s|preferred routing direction, The
preferred routing directions alter perpendicularly between two adjacent metal layers. To connect
the wires within one layer to the bottom and to neighboring layers small contacts (called vias) exist
between the layers. To give the reader an idea of the dimensions, a modern microprocessor (as of
2008) has a die size of 100 mm? to 200 mm? and consists of about 400 to 800 million transistorsEI
ten to twenty metal layers and several kilometers of total wire length.

Metal Layer 4

Metal Layer 3 m m

Metal Layer 2

Metal Layer 1

Silicon Layer

Figure 2.1: Schematic illustration of a typical semiconductor circuit composed of a bottom silicon layer and
four metal layers. The wires in the metal layers are connected to the silicon and to each other
by contacts, so called vias. Wires within one metal layer are routed in the same direction.

In digital semiconductor circuits, there are only two possible states for a signal, zero or one. A
high voltage level (today in the order of magnitude of 1 V) represents a one, a low voltage level
(0'V) represents a zero. So whenever the state of a circuit changes, the voltage level on one or more
wires changes from 0 to 1 or vice versa; we will say that a signal transition occurs or simply a
switch occurs on a wire. When this happens, the electric fields between a switching wire and any

"For instance, an Intel Xeon quad core processor (“Harpertown”) comprises 820 million transistors on a die size of
214 mm®; thermal design power (which roughly means “heat emission”) currently rises up to 130 W. For more data on
current microprocessors, see the survey [[Ben0g]. By the end of the year 2008, processors with more than two billion
transistors could be launched (currently in development, see [Win0g]).
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adjacent metal surface change. To build up the field, energy is required, half of which is dissipated
as heat, and the other half is stored in the field. When the field diminishes, the energy stored in
the field is dissipated as heat as well.

To be precise, the power consumption of a semiconductor circuit is usually decomposed into
two parts, a(static componen{ attributed to leakage at transistor level and a|dynamic component|
caused by switching capacitances between adjacent wires and short circuit currentsﬂ As of today,
capacitances between adjacent wires account for the major part of total power consumption, and
although leakage has increased over the past years, simultaneously a relatively increasing fraction
of the capacitances has moved from transistors to wires as the following quote from
illustrates (for more details see [[SIA07]):

“Engineers today recognize interconnects as a major impediment to the performance
trajectory that microprocessors have been on for the past 35 years. It is the wires, not
the transistors themselves, that are sucking up power, threatening chip performance,
and dragging out design cycles. In today’s billion-plus transistor chips, which have
multiple layers of wires connecting transistors and many kilometers of interconnects
per square centimeter, the wires cost more than the transistors.”

This aspect is of special importance at low ambient temperature (where leakage is lower due to
physical reasons) or in low leakage circuits frequently found in mobile devices, where in non-idle
phases the dynamic component exceeds the static component by several orders of magnitude. Even
if circuit design is not focused on low leakage, static and dynamic power loss may be balanced
against each other: By changing the ratio of threshold voltage and operating voltage of a circuit,
the leakage may be decreased at the cost of higher dynamic power loss. For these reasons we
concentrate on the dynamic aspects of power loss here.

The amount of energy stored in an electric field between two adjacent metal surfaces is directly
proportional to the capacitance, which can be expressed as the quotient of the adjacent surface area
and the distance of the two wires, as outlined in[Section 1.2] Power loss caused by interconnects
in semiconductor circuits is mainly due to capacitances emerging between neighboring wires
whenever their relative voltage changes. Over the last years, the demand for ever higher integration
densities has substantially increased, and for technical reasons this requires the typical on-chip
wire’s thicknessﬂ to become larger than both its width and the wire distances. This technological
change results in a change of relevance of the different kinds of occurring capacitances. While
in the past the highest fraction of the sum of capacitances was caused by the coupling between
different layers and the bottom areas of the substrate, now the edge-to-edge capacitances within

one layer dominate; see [WZS02].

*These short circuit currents are due to transistor behavior: A transistor “opens” when a certain voltage is available
on one of its gates. On the other hand, the transistor “closes” when that voltage drops below a certain threshold, which
is usually lower than the “opening threshold”. As a consequence, whenever a signal transition occurs, some transistors
may be open at the same time as power rises or falls, which may lead to short-time short circuits.

3 . . . "

Note that by thickness we mean here the elevation of a wire above the ground level of a metal layer, see
for an illustration. While a bit unusual in geometry, this terminology is standard in electrical engineering.
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Figure 2.2: Capacitances in a 0.13 pm process. Not shown are two minor capacitances on the right hand
side, which are equal to those on the left.

Figure 2.2 shows the capacitances in a layout simulated with the software package QuickCap
(see [[CI92]], now distributed by Magma Design Automation). The test setup comprises a wire (red)
on the third metal layer of a typical 0.13 pm process embedded into a fully crowded proximity. The
capacitances between the wire and its immediate neighbors clearly dominate all other capacitance
components. The fraction may reach up to 40% on each side in case of less population in the
layers above and below.

In summary, the power loss caused by capacitances between adjacent wires depends on two
different factors. As the electric field between two wires remains constant as long as the voltages
of the wires do not change, electric power is lost only when a signal transition occurs on one of the
wires. The frequency of such a toggle is called the [switching frequencyjof a wire w and is modeled
as a positive number a(w). If the switches lead to changes between zero voltage and the operating
voltage (that is constant throughout the whole part of the chip), the (suitably normalized) number
a(w) can be interpreted as the probability of a signal transition on the wire w at any of the given
periods of time. For an existing layout, this value can be derived by a simulation; it then represents
the actual number of toggles of a wire.

We will assume that the physical dimensions of the wires are fixed. For the thickness and
width of the wires this is due to technological constraints, for the length of the wires we assume
that we are working on a local patch of the complete circuit which consists of parallel wires of
the same length (see below for comments on this assumption). Thus only the distances between
wires matter for the determination of the capacitances between a wire and its respective neighbors.
More specifically, the power loss for a wire w depends on the distances Zjcf; and Zyignt to the two
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neighboring wires on each side, and (up to a constant) can be expressed as

1 1
a(w) - + :
Lleft  Lright

where two neighbors at distances Xt and xgn are present. (Here we tacitly assume that
neighboring wires do not switch simultaneously, see below and also[Section 2.5|for comments on
that assumption.) Hence by optimizing the distances of the wires one can expect a decrease in
power loss. In addition to that, we will also see that reordering the wires can have an effect on the
total power loss of a circuit. We can specify a wire placement by the relative positions of the wires,
i.e., by associating with each wire a real number in a given interval [0, r|. We assume here that r
represents the actual available space, i. e., the given space reduced by the wire widths, so that we
can regard a wire as having zero width for the model. Naturally, wires must not be placed too
close together, so a minimum distance d must be enforced.

Before we formalize the model, let us comment on our assumptions. First, we only consider
parallel wires of equal length. As we already mentioned, wires within one layer generally run
in the same direction, so parallel wires are a very natural assumption. On the other hand, the
wires within one layer are certainly not all of equal length, but normally end in differently placed
vias connecting the wires’” ends to layers above and below. However, local patches where our
assumption holds may easily be identified and real-world circuits contain a considerable amount
of such areas. Application of WIRE SPACING to such patches may require the addition of small
“detours” (see for an illustration) to the wires, which is technologically feasible with
very little impact on power consumption and possible other objectives of the routing process.
More details on the identification and selection of suitable local patches can be found in
Chapters 4 and 5]. Application of wire ordering to local patches requires a little more effort, as
locally reordered wires have to be connected to their original positions so as not to influence the
routing outside of the selected patch. To this end, a so called [permutation networkjcan be used. A
permutation network is basically an extra layer containing the necessary connections between the
original wires and the reordered wires at both ends of the selected patch (of course, one such extra
layer may contain more than one permutation network). These connections are generally very
short and hence do not add considerable overhead in terms of extra power loss, timing and area.
The effects of permutation networks have been studied in detail in with the conclusion
that the overhead is more than compensated for by the benefit of wire ordering.

It should also be mentioned that both WirRe PLACEMENT and WIRE ORDERING can be applied
straightforward to bus connections on a chip, where often the connections at both ends of a
bus may be ordered arbitrarily in the routing process, thus enabling the use of wire ordering
without resorting to permutation networks. Such bus connections are fairly common for modern
microprocessor architectures, especially when many cores are integrated on a common chip,
connected to each other by bus wires. A third aspect exploits the fact that today’s circuit designs
are often IP-based (“Intellectual Property based”), meaning that a number of pre-developed modules
exist that are then combined to design new circuits. The connections of these modules to the rest
of the circuit (called pads) is usually fixed arbitrarily in the design process of the modules. As the
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modules are relatively small, reordering the wires within the modules may already be possible by
just reordering the pads (i. e., not using permutation networks), hence an optimal wire placement
can be applied in the design of such modules. This aspect is all the more important as the modules
are reused in many different designs thousands of times, so even small power savings within an IP
module add up to considerable amounts in practice.

e — 4

Figure 2.3: Local wire spacing using small detours. The circles mark the original connects of the wires, a
different spacing is applied within the gray area limited by two border wires.

In our model, we also assume a common minimum distance d between any two wires. While
this is true for most wires of a semiconductor circuit, there may be cases where a larger minimum
distance is required. This situation may occur for power supply wires, which are sometimes
wider than ordinary signal wires, thus requiring a larger minimum distance to be manufacturable.
Often these power supply wires build a ring around the entire core of the chip and are not subject
to optimization; in some larger circuits (and only on a fraction of the existing layers), power
meshes may even be drawn through the chip. In the latter case, the power wires can be regarded
as natural boundaries of the relevant problems, as these wires cannot be moved and no signal
transitions occur on a power supply wire (hence such a wire partitions the wires considered
into two completely independent parts). A second reason for larger minimum distances is signal
integrity. In order to avoid [crosstalK(i. e., signal transitions on one wire influencing the signal on
a neighboring wire) wires with high signal levels should be placed at a somewhat larger distance
to each other than to wires with low signal levels. Unfortunately, predicting crosstalk issues from
switching activities and other parameters of the wires still presents a technological challenge to
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engineers, so integrating these issues into the model does not seem a viable approach. Generally,
crosstalk issues are handled by a final “post polishing step” after the layout has been optimized,
using various simulations and then slightly moving wires where crosstalk issues may occur until
the problems are solved. For these reasons, it is common practice to largely ignore crosstalk in
the modeling step. However, as we will see later, our approach places larger distances between
wires with high switching activities, hence the solutions obtained from our model should be less
susceptible to crosstalk anyway. It should be noted at this point that wire spacing with different,
wire dependent minimal distances does not pose any problems to our wire spacing approach, this
aspect can be integrated in a straightforward manner.

One last important assumption that we will make is that signal transitions on neighboring wires
generally do not occur simultaneously. For a simultaneous switch the electric field between two
neighboring wires may not change at all (if the same transition occurs on the two wires) or it may
be reversed (if an opposite transition occurs). Hence the power loss is either zero (in the first case)
or twice the usual value (in the second case). However, integration of simultaneous switching into
the model would require knowledge about the correlated switching activities of all wires, which is
not only harder to obtain (much more simulations are needed), but would also bloat the model to a
large extent. In a complex semiconductor circuit, one can generally assume that the probabilities of
a signal transition on any two neighboring wires are independent to a large extent, so one should
expect that the effects of simultaneous transitions cancel out on average and this aspect may safely
be ignored.

2.1.2 A Model for Optimal Wire Placement

We consider a scenario involving IV parallel wires which are regarded as being enclosed between
two static wires with switching frequencies 0. On a chip these boundary wires could be power or
shield wires.

In the following let N € I, and let wy,...,wy denote different (proper) parallel wires.
Further, let wy and wy+1 be two additional and set W = {wy,...,wy} and
W=Wwu {wo, U)N+1}.

Let 7 € |0, oo be the given|spacing rangd and let d € ]0, r] be the[minimum accepted inter]
Both wire spacing and wire ordering can be determined by allocating to each wire
a real number in the interval [0, |, so we define ato be amap ¢ : W — [0, 7]
with the properties

o(wp) =0 and @(wnt1) > p(w) forw e W;

lo(w) — p(w')| >d forw,w’ € W withw # w'.
As it turns out, the underlying optimization problem can be described best in terms of the two
separate tasks of wire ordering and wire spacing. A is a bijection 7 : W —

{0,1,..., N, N + 1} such that m(wo) = 0 and 7(wn4+1) = N + 1. Let Py denote the set
of all wire orderings for a given number of wires N. An admissible is a function
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6:40,1,...,N,N + 1} — [0, r| with
5(0)=0 and 6(j)+d<6(k) foranyj ke {0,1,...,N+ 1} withj < k.

Let Dy (r, d) denote the set of all admissible wire spacings. Note that the above constraints are
already implied by the conditions on all pairs of adjacent positions.

Of course, any pair (7, 0) of a wire ordering and a wire spacing constitutes a wire placement ¢
via ¢ = & o w and vice versa. Hence we will not distinguish between those and, in particular, also
speak of (7, d) as a wire placement.

Finally, let o : W — [0, oo[ encode the [switching frequencies|of the proper wires. The set of
all such functions will be denoted by A .

Then, the power loss L(m, ) (being the imbalance measure) of a wire placement (7, d) is given
by

1 1
L(m,8) = ) a(w) (5(7T(w)) —o(r(w) = 1) 3(r(w) + 1) - 5<ﬂ<w>>) ’

weW

and the OPTIMAL WIRE PLACEMENT problem is the following task: Given N € IN, r, d € ]0, oo]
and o € Ay, find 7* € Py and 6* € Dy (r, d) such that

L(m*,0") = min{L(m,6) : m € Px A 6 € Dy(r,d)},

or decide that no such minimum exists.

2.1.3 The Optimal Wire Placement Problem

Note that in the preceding subsection, the specific set W does not play any role; all that matters
are the switching frequencies associated with the wires. Also the function 7 can be identified with
a permutation on {1,..., N'}. Using this abstraction, we can give a more concise mathematical
formulation of OpTIMAL WIRE PLACEMENT: We will describe the task in terms of the variables x;,
denoting the distance of the i-th wire from its left neighbor for i = 1,..., N + 1. These variables
are related to the functions 7 and § through

Tr(w) = 0(m(w)) — o(m(w) — 1)

Furthermore, the switching frequencies will be encoded by a vector (s1, ..., sy) where s; = a(w;)
fori =1,..., N, and Sy shall denote the symmetric group on N elements. Then OPTIMAL WIRE
PLACEMENT can be formalized as the following mathematical optimization problem:

Problem 2.1: OpTIMAL WIRE PLACEMENT (OWP)
Instance: N € IN; sq,...,sy € [0, oco[;d,r € ]0, oof.
Question: Decide whether there exists a solution (7, z) € S x RV *! of
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=1 T Li+1
N+1
s.t. Z T, <r
i=1
x; >d fortr=1,..., N+1
e SN
and, if so, give one.
In addition, an instance of OWP will be called all-distinct, if the values s1, ..., sy are distinct,
ie,if [{s1,...,sn}| = N. When the permutation 7 is fixed, we are confronted with an instance

of OpTIMAL WIRE SPACING (OWS); the input is the same but the objective is to just find optimal
wire distances z;; see While OpTIMAL WIRE SPACING is a nonlinear programming
problem under linear side constraints, the minimization over all permutations makes OPTIMAL
WIRE PLACEMENT a combinatorial optimization problem with nonlinear objective function.

As we will see, in order to compute the distances that solve OPTIMAL WIRE SPACING we need
to be able to compute the square roots of the switching frequencies, thus we formally have to
handle real numbers of arbitrary length in a single elementary operation. This is why we employ a
model of computation different from the Turing machine, namely the real Random Access Machine
(RAM) for most of our results. For a detailed introduction into this concept see [[PS85], or
for a more formal treatment; in context of our results it will be sufficient to think of a real RAM as
a computation device (similar to a Turing machine) that can handle arbitrarily long real numbers.

The main result of this chapter is to show that both OpTiMAL WIRE SpACING and OPTIMAL WIRE
PLACEMENT can be solved efficiently.

Theorem 2.2
Both problems, OPTIMAL WIRE SPACING and OPTIMAL WIRE PLACEMENT can be solved using at
most O (N log N) time in the real RAM model.

Similar results can be obtained for the binary Turing machine model when the input is restricted to
the rationals and the output is computed up to a precision given as part of the input; see Sections
and[2.3)for an analysis of the algorithms using the binary Turing machine model.

2.2 The Wire Spacing Problem

2.2.1 Characterization of Optimal Wire Distances

In this section, we will consider the OpTIMAL WIRE SPACING problem separately, so assume a
permutation 7 € Sy is given and is fixed throughout this section. Without loss of generality we
may assume that 7 is the identity for more convenient notation. In the following we use a slight
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reformulation which uses so = syy1 =0and ¢; = s;_1 + s; fort =1,..., N + 1, thus we are
confronted with the following convex optimization problem:

Problem 2.3: OpTiMAL WIRE SPACING (OWS)
Instance: N € IN; q1,...,qn+1 € [0, oof; d, 7 € ]0, oo].
Question: Decide whether there exists a solution z € RN T of

NAL
min F(z) = =
: Z;
=1
N+1
s. t. Z r; <r
i=1
x;>d fortr=1,..., N+1
and, if so, give one.
In a given instance of OWS the parameters qq, . . ., gv1 do not explicitly rely on s1, ..., Sny11
and can hence be ordered without loss of generality. Note, however, that a different order of the
switching frequencies leads to a different set of q1, ..., qn+1.

The feasible region P of an instance of OWS is compact, in fact a simplex. Since the objective
function F' is continuous on the feasible region (x; > d > 0 for all ), the minimum is indeed
attained unless P is empty. But P = () if and only if » < (INV + 1)d, otherwise x = d - 1 is always
a feasible point. In fact, for (N + 1)d = r, there exists only this trivial solution, hence we may
subsequently assume that > (/N 4 1)d. Also, we may require (and will do so for convenience)
that qq,...,qn41 > Oratherthan gy, ...,gn4+1 > 0, since for ¢ = - -+ = gny4+1 = 0 any feasible
x € P is optimal, and ¢;, = 0 for some 79 € {1,..., N + 1} implies x; = d for each optimal
solution x* of the given instance.

The following lemma characterizes optimal wire spacings.

Lemma 2.4
Let (N,qi,...,qn+1,7,d) be an instance of OWS withr > (N + 1)d and ¢1,...,qn+1 > 0.
Then the objective function F' is strictly convex on the feasible region P, and the minimum of F'
over P is uniquely determined.

Forz = (x1,...,2n41)" € RVT! define

D(z)={ie{l,...,N+1}:2;=d} and R(z)={1,...,N+1}\D(x).
Then a vector z* = (z7, ... ,x}“VH)T is the optimal solution, if and only if

— |D(z*)|d
d< gt = YO ZIDEID) _ a
>icR(z*) Vi Va4
holds for all j € D(x*) and allk € R(x*).

(2.1)
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The proof of this lemma employs the theorem of Karush, Kuhn and Tucker, which we reproduce

here in a form suitable for our purposes. A proof of this theorem can be found in [SW70]] or [Roc72]|.

Theorem 2.5 (Karush, Kuhn and Tucker)

Letg : R* — R, g1,...,9m : R" — R be convex functions, and define G : R" — R™,
G(z) == (91(2),...,9m(x)). Suppose the functions g, g1, ..., gm are differentiable in some
R"-neighborhood of the feasible region C' := {x € R"™ : G(x) < 0}, and there is some x € C
with G(z) < 0. Then x* € C' is a minimum of the function g on the feasible set C' if and only if
there exist non negative Lagrangian multipliersy = (m1,...,nm) > 0 such that the following
Karush-Kuhn-Tucker conditions hold:

V()T +yTVG(*) =0 and yTG(z*) =0.

Proof (of[Lemma 2.4). Let F' = F(x) denote the objective function of OWS. Of course, F' is
differentiable on the set of feasible points P and for¢,j = 1,..., N + 1 we have

and =

oOF g O*F | % fori=j,
ox; 5%2 O0x;0x;

0 else
Asx; > d > 0and g; > 0foreachi € {1,...,N + 1}, the Hessian of F' is a positive definite
(diagonal) matrix, thus F' is strictly convex on P, and its minimum over P is unique.

The constraints of OWS are all linear (thus differentiable) and by our assumptions the strict
interior of the feasible region is not empty. Hence we can employ the Karush-Kuhn-Tucker

conditions (see , stating that a feasible vector * = (z7, ... ,a:*N+1)T € RN*lis

optimal if and only if there exist non negative Lagrangian multipliers Ao, A1, ..., Ay+1 > 0 such
that
4 _ *\T' o . .
(m*2—_VF(3«")Uz’—)\0—)\¢ for i=1,...,N+1;
i

Ao (r—]lTx*) = 0;
Xi(x; —d)=0 for i=1,...,N+1.

Let «* be an optimal solution. Since all ¢;’s are positive, we have Ag > 0, and hence

*7
S ai=r
=1

As a consequence, r > (N + 1)d implies that R(z*) # ().
Now, let i, k € R(z*). Then «7, z} > d, hence \; = Ay = 0 and therefore

0=X\=X— b =Ng— 2 — ), thus (27)® =L (a})?,

@2 T @R S
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2.2 The WIRE SPACING Problem

which yields

N+1

r:fo: Z x; + Z xf = |D(z")|d+ it Z vV,
i=1

€D (z*) 1€ER(x*) \/qik 1€ER(z*)

proving the first part of (2.1).
On the other hand, for j € D(z*) and k € R(z*) we get A, = 0 and \; > 0, which yields

0=X =X — Qk2§)\j:)\0_7qj thus X — < dk

(=}) (z3)%" d> (27)? 7 (xp)*
completing the “only if” part of the proof.

Now, let 2* € RV satisfy . Then x* is feasible since 7 > d forall i € D(z*) U R(z")
and

N+1 -
Soa=|DENd+ Y ﬁj( > @) (r = D) d) =r.
i=1 jER(z*) 1€ER(z*)

Further, we have

forall j € D(z*) and k € R(z"),

and ” o
1 = forall j,k € R(z™).
(x7)?  (x})?

Denoting this latter constant by \g, and setting

di .
)\i::)\o—(x:)2 fori=1,...,N +1,
7
we see that Ag, ..., Ay+1 are non negative and satisfy the Karush-Kuhn-Tucker conditions for z*,
hence x* is optimal. O

Note that for sufficiently large r, more precisely for

d N+1
r > max{ — Z \/@:ke{l,...,N—i-l}},
{ vViak 5
the minimum distance constraint is not binding, i. e.,

q< LV

S va
forall k € {1,...,N + 1} and thus D(z*) = 0 for any optimal solution z*. In that case,
the problem is solved completely by In general, at least reduces the

given instance of OWS to the determination of the minimum distance set D or, equivalently, its
complement R.
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2.2.2 Optimal Wire Spacing in the Real RAM Model

For an algorithmic implementation of the results of [Lemma 2.4} we may of course assume that
g1 <...<gnt1thenay < .o <o)y 11 for the optimal solution z*; hence all that matters is the
cardinality of D. Therefore, to solve a given instance of OWS we may proceed in the following
way:

Order the ¢;’s so that g1 < - -+ < gn41.

« Compute 2 according to (2.1), starting with D = (.

o If 2} > d, compute the other components of the solution vector 2/, and permute back z’ to
obtain the optimal solution z*. Otherwise, replace x by d and augment D by {1}.

+ Use the same procedure to compute 25, . .., 2y | and permute back ' to obtain the optimal
solution x*.

presents a structured form of this sketch, formulated in real arithmetic.

Algorithm 2.1: Solving OpTIMAL WIRE SPACING on the real RAM.
Input: An instance (N, q1,...,qN+1,7,d) of OWS with r > (N + 1)d

and 0 < q1,...,qN+1.
Output: An optimal solution x*.

Sort (q1,...,qn+1) to obtain (g7, ..., ¢y ) withq < ... < @y,
2 Initialize: S «— Zf\gl \/q7 and A « 0.

sfori=1,...N+1do

4 Compute 7 « /¢, - S™L(r — A - d).

5 if 2/ < d then

6 Setx) «—d, S — S —/¢iand A — A+ 1.

7 end

-

8 end
9 Permute back the vector 2’ according to the permutation that obtained ¢’ from ¢ to get the
solution vector z*.

Theorem 2.6
Algorithm 2.1| correctly solves OPTIMAL WIRE SPACING and requires at most O (N log N) arith-
metic operations in the real RAM model of computation.

Proof. For ease of notation we assume that the ¢; are already sorted, i.e., ¢} = q1, ...,y 1=
qn+1 and 2 = 2’ in the algorithm. Let S and A(®) denote the values of S and A after the
i-th pass through the “for” loop. Denote by z* the solution produced by the algorithm and let
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S* = SN+ A* — ANV+1) be the final values of S and A, respectively. We show that condition
of[Lemma 2.4 holds for all j € D(z*) and all k € R(z*).

The first inequality of is clear. Let m = max {l:1 € D(z*)}, then S* = S(™ and
A* = A = m. Monotonicity of ¢1,...,qn41 implies that 7 < --- < Ty, thereby
establishing the equality part of for all k € R(x*). To prove the second inequality of ,
first note that

vk .
o (r—A*-d).

Hence the fact that $* = S(™=1) — /g "and A* = (m — 1) + 1 = A=Y 4 1 implies
; Vam(r — A - d
Vi

_ \/C.Tk: vV Qm(r — Alm=1). d) . d\/ dm
NG Y e

_\/‘174(\/@(7’—A(m_1)'d) st Vam )

* X
r; =d, z=

§(m—1) Stn=1 — /g - g(m-1) _ Vam

VG

Since

Vam(r = AT d)
S(m—l) <d

we conclude

k= \/@ S(m—l) _ /qm S(m—l) _ /qm \/@
Thus, by x* is the optimal solution to

For the stated running time, note that the sorting step requires at most O (N log N) arithmetic
operations. The “for” loop is executed N + 1 times and each passage requires a constant number
of operations. In total, the algorithm can be implemented to run using at most O (N log N)
arithmetic operations in the real RAM model. O

One might wonder if it is indeed necessary to compute the optimal values for x; one after the
other instead of using a “one-shot” (or rather “two-shot”) approach, where one would first compute
some vector & under the assumption of D = (), then set D := {i : &; < d} and compute 2* using
this set D. Unfortunately, this procedure might lead to wrong results, as £ does not necessarily
provide the correct set D. The following example illustrates this.

Example 2.7

Letg1 = 1,2 =--- =qy = 4and gn+1 = p2 for some p > 2. If we compute & under the

assumption of D = (), we obtain
- r - 2r N por
H=—> 9= =qN=——, I =
Y"oON—1+p NToN 14 M T AN 14,
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Suppose now that the value of d is strictly between Z; and Z9, i.e., 1 < d < ¥3, then
{Z‘l<d<i'2:"':i’]\[§j]v+1.
Hence Z is not a feasible solution, and we set 2/ = d and D = {1}. Recomputation of the values
for the remaining indices yields the vector 2’ with

2(r —d) p(r —d)
mEd =S IN S y y NMT AN 2y,

A straightforward calculation shows that the values of N, r and p may be chosen such that

2(r —d) - 2r
2N—-24+p 2N -1+4p

So, we may assume without loss of generality that d was chosen such that 71 < 2, < d < Zo,
thus 25, . .., 2’y < d, and the vector 2’ is still not feasible. Therefore the set D produced by this
approach cannot be correct for the optimal solution. This shows that one must indeed proceed
iteratively to obtain the correct values for the optimal solution. O

2.2.3 Wire Spacing in the Turing Machine Model

Let us conclude this section by briefly analyzing the adaptations that are needed for working on
rational input in the binary Turing machine model. Clearly, the optimum solution z* produced

by may be irrational (and so may the objective value), so we have to settle for an
approximation of * on a computer working on rational input data only.

Problem 2.8: OrTIMAL RATIONAL WIRE SPACING (Q-OWS)
Instance: N € IN; q1,...,qn+1 € Q>0:d, 7 € Rup, € € Q>o.
Question: Decide whether there exists a real solution 2* € RV*! of

N+1

. q;
F(zx) = =
min F(x) Z .
=1
N+1
s. t. Z x; <r
i=1
x; > d fori=1,..., N+1

and, if so, find a rational feasible point & € QN *1 such that

[F(2) — F(27)] <,

or report that no such point exists.
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Similar to the real OWS, the feasible region FPg is again a simplex and thus compact. If
(N 41)d > r, there is no feasible point (neither rational nor real), if (N +1)d = r,thenz = d-1
is the only feasible solution, and as d € Q, it is of course rational. For (N + 1)d < r, Pq contains
for every feasible point x* a rational point Z that is arbitrarily close to * and by continuity
of the objective function F' on Pgq, that point may be chosen such that |F(Z) — F(2*)| < e.
Again, if ¢ = -+ = gn4+1 = 0 any rational feasible point is optimal, and ¢;, = 0 for some
iop € {1,...,N + 1} implies that Z;, = d € Q for an optimal solution, so the search can be
restricted to the corresponding affine subspace.

While the existence of a rational feasible point with objective value arbitrarily close to the
optimal value is simply a matter of continuity of the objective function, it is much harder to
actually compute such an approximate rational solution Z, and to analyze how the error bound ¢
influences the runtime of the algorithm. On a binary Turing machine, we will have to compute
an approximation for the square roots appearing in [Algorithm 2.1} There are many ways to do
this, e. g., a general approach like bisection or Newton’s algorithm (details on these algorithms can
be found in standard textbooks on numerical mathematics, e. g., [DHO3]) or a specialized
algorithm relying on some standardized form of floating point arithmetic and binary representation
of numbers. What is important for our purposes is that there are algorithms to approximate the
square root of an arbitrary number ¢ € Q¢ up to any prescribed error bound &’ € Q- using at
most O (log, %) operations on a binary Turing machine, which means the algorithm is polynomial
in the size of the input dataﬂ This runtime bound can easily be proven for a bisection algorithm,
but other algorithms (with possibly better runtime bounds) are suitable here, too.

However, there is a severe problem with originating in a possible discontinuity
introduced by the approximation of the square roots. More specifically, the problem may be ill
posed in the sense that the error in the objective function is not necessarily continuously dependent
on the error allowed for the square root approximation. This phenomenon is due to the discrete
nature of the set D(x*). Suppose there are one or more distances  in an optimal distance vector
x* € RN*! that are very close to the minimal distance d. Then a slight error in the calculation of
the values for these x} can lead to slightly smaller values, which would result in the =] being set
to d; furthermore, the set D(z*) would be augmented by one or more of the corresponding indices.
Alas, the size of D does not depend on the approximation error of the square root computations in
a continuous way, so this could ultimately result in the wrong minimum distance set, while the
subsequent computations rely on a correct size of D. Errors in the calculation of other components
of * might occur, leading to a possibly grave error in the objective function. Even worse, the
“monotonicity property” used in the algorithm (meaning that when z} > d for some index i,
then z; > d for all i > 1) is put in jeopardy and thus the correctness proof for the algorithm is no
longer true for that rational computation. Therefore, we have to restrict our analysis to well posed
instances of Q-OWS.

“Notice that the numbers g and & can be represented using O (log, g + log, €’) bits on the binary Turing machine,
so the log, is essential for polynomial complexity.
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Definition 2.9
Let § > 0. An instance of OPTIMAL RATIONAL WIRE SPACING is called 6-well posed, if

Var(r — (t = 1)d)
NI >0
it Vi
forallt € {1,...,N+1}andallk € {t,..., N 4 1}. If there is a 6 > 0 such that the instance
is 6-well posed, then it is called well posed, otherwise we speak of an ill posed instance. For a

well posed instance, the wellness condition is the maximum & > 0 such that the instance is §-well
posed.

Essentially, well-posedness means that all possible distance values that may occur in the
computation of the optimal distances are sufficiently different from the minimum distance d
(namely at least §). Thus if we approximate the square roots in the computation close enough to
guarantee an error bound of at most 9, where § is the wellness condition of the given instance, the
resulting minimum distance set is guaranteed to be correct, thus avoiding the problems discussed
above. Thus is guaranteed to produce a feasible solution z* with the correct
minimum distance set D(z*) if we supply an approximation of the square root function that
guarantees an error bound of at most ¢ for the values of ] as they are computed in line 4 of

For the analysis of error propagation we thus have to analyze first how an approximation error
in the square root computations affects the errors in the resulting distance vector. To that end, let
S(m) A(m) denote the values of S and A computed inby the end of the m-th pass
through the “for” loop with S* and A* being the final values. Furthermore, for a given rational

number ¢ > 0 and for i € {1,..., N + 1} denote by sqrt(¢;) a rational approximation of ,/g;
with absolute error

lsqrt(q;) — Vai| < €',

and by S(™) the approximation of S™ computed by the algorithm as a result of substituting
sqrt(g;) for /- Also, let x; and Z; denote the values computed in line 4 of in
the i-th pass of the “for” loop, where z; is computed in real arithmetkﬂ and Z; is computed by
substituting sqrt(q;) for the respective values of | /g; in the algorithm. As noted before, sqrt(g;)
can be computed in polynomial time on a binary Turing machine.

>Note that z; and the optimum solution x; might differ, because x; < d is possible and would be corrected to
x; = d in the lines following line 4 of the algorithm.
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Let ¢min = min{q1,...,qn+1} and gmax = max{qi,...,qn+1}, then for any index j €
{1,..., N + 1} we have

sqert(e;) VO

SG-1) S(i-1)

‘iL‘j — fj| = ‘7“ — A(j_l)d‘ .

o AG-D | |sart(@)SYTY — g SUTY + g SUTY — (g ST Y
- a| 00 ¢
SG-1)§G-1)
G=1) t(qj) — /T -1 g(i-1) _ §(G-1)
< ’r - A(j—l)d‘ 5 ‘SCJT (45) \/q7‘ + \/@‘S S ‘

SG-1)83G-1)

SU=Ve' + /g; (N + 1)e’ SU=Ve' + /g (N + 1)e’

<|r— = < r—

= ‘T Nd‘ SGE-1)8G-1) o ‘T Nd‘ (N + 1>QQmin(Qmin - 5/)
’ /( 3qmax+1

§|T_Nd| 6(Qmax+®) <|T—Nd‘ 5( 2 )

(N + 1)Qmin(Qmin - 5/) o (N + 1)Qmin(Qmin - 5/) ’

Notice the last inequality is due to the inequality between geometric and arithmetic mean
(vVmax - 1T < %) and is used to avoid a square root term which would again have to
be approximated when using the inequality for computation on a Turing machine model. The
last right hand side term above is a function in &’ which tends to 0 for £ — 0 and is continuous
in ¢’ (at least for ¢’ < gmin). Therefore |#; — x;| can be made arbitrarily small by setting ¢’
appropriately, more precisely for any given value of £, > 0 we get

N+ 1)¢2,
lzj —&j| <ep if € <7 =V + iimin .
5(7‘ - Nd)(3Qmax + 1) + Ex(N + 1)Qmin

(2.2)

The value for &’ can certainly be computed in polynomial time on a binary Turing machine
(essentially, this means computing gmin and ¢max) for a feasible instance of OpTIMAL RATIONAL
WIRE SPACING. Notice that for indices j € {1,..., A*} it suffices to perform the computations
for €, being the wellness condition of the instance, because z; = d = :c;‘ for these indices
anyway, so the ex-post approximation error is 0. However, we need to make sure that the
set D(z*) is computed correctly (which need of course not succeed for an ill posed instance),
thus the approximation is still necessary. Once we have determined A* and thus D(x*) (in
course of the computation, we eventually arrive at the first index j where x; > d, hence
D(z*) ={1,...,j — 1}), we need to properly approximate the square roots to get a value for Z;
that is within the error bound €, from the true value.

Finally, let us see how the error in the distance vector propagates into the objective value.
Suppose for j € {1,..., N + 1} the values Z; are an approximation of the optimal distances T
with an error bound of 4, i.e.,

*

‘a:] xj’ < €g.
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N+1

This yields [F(") — F(3)|=| Y. £ _%
i=nry1 Vi i
N+1 * N+1
Z; T
< Y Wica Y g
i=Arqp1 it

thus the absolute error in the objective value can be bounded above by choosing €, > 0 small
enough. More specifically, if we allow for an absolute error of € > 0 in the objective value, then

|F(z*) — F(2)| <€

can be guaranteed for a well posed instance of OPTIMAL RATIONAL WIRE SPACING with wellness
condition § by choosing

€r <eming o, ———» . (2.3)
DIARRY

There is one minor issue we have not yet touched upon, and that is the constraint ZN o <.

In the real RAM algorithm, the optimal (real) solution x* satisfies this constraint at equality.
If, in the rational version of the algorithm, we compute an approximate solution Z, the values
for Z; may be slightly greater than z7; for some or all j € {1,..., N + 1}, thus violating this
constraint. However, the problem can easily be solved by computing approximations Z; that are
close enough to z7, but are guaranteed to be less or equal to the real solution values. As the square
root appr0x1mat10ns using the bisection algorithm (and many other algorithms) can easily be
modified to yield an approximation that is less or equal (or greater or equal) to the exact value, the
necessary modification is straightforward and just a matter of implementation; it does not change
our estimates. Let us remark here that a more “technological approach” to that problem might
be more appropriate in practice: If the approximations are accurate enough (which is possible
for a well posed instance, as we have just seen), one can certainly guarantee that the spacing
range r is never exceeded by more than a given parameter ¢, > 0. If, in turn, that parameter is
kept sufficiently small (e. g., below the size of the smallest structures that can be manufactured
in reality), a small violation of the spacing range constraint may be acceptable in applications, as
minor errors are introduced through the manufacturing process anyway.

For the complexity of the algorithm on a binary Turing machine, let SQ RT'(¢;, ") denote the
number of operations needed to compute a rational number sqrt(g;) such that |sqrt(g;) — /@] <
¢’. As we have argued above, this can be done, e.g., by bisection using at most O (logy %)
arithmetic operations. For a given maximum absolute error € > 0 in the objective function of
a well posed instance with wellness condition § > 0, we need to choose £’ according to
and (2.3), hence a value of

/
E =

€ min {5, d2 ’ (ZN+1 Q’L) } (N + 1)Qr2mn

5(r = Nd)(3¢max + 1) + e min {5, d?- (ZNH ql) } (N 4+ 1)gmin + 1
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suffices (notice the “+1” at the end of the denominator to guarantee that &’ is strictly smaller than
the original fraction). This results in the following corollary:

Corollary 2.10
A well posed instance (N; q1, . .., qn+1;d;7;€) of OPTIMAL RATIONAL WIRE SPACING with well-
ness condition § > 0 can be solved on a binary Turing machine using at most

O(NlogN + N - SQRTmax)

operations, where

d2
SQRTmax =1085(qmax) — 10y <5 min {5> ZNH} (N + 1)q12nin>

=1 7
1 , d?
+ 10g2 5(7" — Nd)(?)qmax + 1) + emin 57 T (N + 1)qmin + 1].
=1 7

(Here the second complexity term can be achieved using bisection for the approximation of the
square roots.)

2.3 The Wire Ordering Problem

As shows, an optimal wire spacing can be computed very efficiently. Furthermore, the
characterization of the optimal wire spacing shows that a reordering of the wires adds an additional
potential for optimization, but also mathematical difficulty. Let 7 € Sy be a permutation that
assigns the switching frequency s;) to the i-th position on the chip. Then by the optimum
of the objective function for the permutation 7 is

2
T sﬂ'i—l +S7Ti 1
F(r,a™) = 3 = ()+r—|D“\d<Z sw<il>+sw<i>>, (24)

1€DT 1ER™

where z™ is the optimal wire spacing and D™ = D(z™), and R™ = R(z™) according to[Lemma 2.4]
Here again, sp = sy4+1 = 0 and 7(0) = 0, 7(N + 1) = N + 1 for a uniform notation, and
we will identify Sy with the set of all permutations on {0, ..., N + 1} with fixed points 0 and
N+ 1.

Of course, we want to optimize over all such permutations 7 € Sy now. Suppose for a moment,
r was large enough to imply D™ = () for each 7 € Sy. Then, in effect, we are asking for a

permutation that minimizes
N+1

> Sn(i-1) F Sni)- (2.5)
i=1

This problem can be translated to a MiNiMmum HAMILTON PATH problem on the complete graph
G = (V,E) with vertex set V' = {0,1,..., N + 1} and edge weights d({j, k}) := \/5; + s
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by asking for a minimum Hamilton Path with endpoints 0 and N + 1. While the MHP problem
is notoriously difficult (cf. problem GT39]), here we are dealing with a special class of
efficiently solvable MHP (or equivalently TSP) problems. In this section, we will first show how
to transform the problem to an easily solvable one in mainly using a result due
to Supnick [[Sup57]. As an aside, we will also give an alternative derivation of the result which
is less general (although sufficient for the problems considered in the context of this work), but
uses only very elementary arguments in Subsequently, will provide
some structural results on the set D to make the theory applicable to the WiRe ORDERING problem
without the assumption of D = (). This will finally enable us to cast the results on the MHP
problem into an efficient algorithm for WiRE PLACEMENT in

2.3.1 Utilizing the Supnick Property for Minimum Hamilton Path

Let wo, w1, . . .,wn+1 denote the switching activities sorted in increasing order, i.e., wyp = sp = 0,
w1 = sy41 = 0and {wa,...,wn+1} = {s1,...,sn} withwy < w1 <wy < -+ < wWyy.
Then the problem of minimizing is equal to finding a Minimum Hamilton Path in the complete
graph on the vertices {0,1,..., N + 1} with endpoints 0 and 1 whose edges {i, j} carry the
weights \/w; + wj.

What makes this problem more tractable as opposed to the general MHP is the fact that the
distance matrix

(dz’j)i,j:O,...,N-i—l with dij = Wi + wj, (2.6)

has a structure known as Monge property in the context of TRAVELING SALESMAN problems.

Definition 2.11 (Hoffman [Hof63], see also [BDDVW98]))

A matrix (¢j;);,j=1,...n With nonnegative entries is called a Monge matrix (or said to have the
Monge property), if

Cij+Crs < Cis+cpy foralll<i<r<nandl <j<s<n.

A TSP with a Monge distance matrix can be solved to optimality in polynomial time using a
dynamic programming approach based on the fact that there is an optimal tour that is pyramidal,
i.e., it has the form (i1, 42,...,9p—1,7, ips1, ..., in—1,0p) With iy < iy <--- <y < nand
N> ipp1 > 0 > ip—1 > iy. Details on the algorithm and a proof can be found in , an
even more efficient refinement of that algorithm is presented in [[Par91]]. We will follow a similar

approach in[Section 2.3.2)and hence omit the details here.

A refinement of the Monge property was considered by Supnick.

Definition 2.12 (Supnick, [[Sup57|, see also [[Bur90|])

A matrix (c;j)i j=1,..,» With nonnegative entries is called a Supnick matrix (or said to have the
Supnick property), if it is symmetric and if

Cij + i < i + ¢jp < e+ Cig foralll <i<j<k<i<n.
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2.3 The WIRE ORDERING Problem

In his 1957 paper [[Sup57|]| Supnick proved the following theorem (rephrased a little here):
Theorem 2.13 (Supnick [Sup57], see also )

If the cost matrix of a TRAVELING SALESMAN problem has the Supnick property, then

(1,3,5,...,n,...,6,4,2)

is an optimal tour.

Clearly, the distance matrix (d;;) defined in (2.6) above is symmetric. The Monge property of
(d;j) is mainly due to the concavity of the square root function, we utilize a more general lemma
to derive the inequality.

Lemma 2.14
Let f : R — R be concave; x,y,d € R withx < yand§ > 0. Then

fle=08)+ fly) < f(z) + fy —9).

Furthermore, for strictly concave f, x < y and § > 0 the above inequality is strict.

Proof. The case § = 0 is clear, so we assume ¢ > 0. Since

YT . __yzr
x_y*x+6(x 5)+<1 ym+5>y

) )

concavity of f implies

f@) 2 20+ (1- ) 1)

y—x+0 y—x+90
0 1)
and f(y_(s)zy—a;—|—<5f(x_5)+<1_y—x—i—5>f(y)'

Addition of these two inequalities yields the asserted inequality. With strictly concave f and
2 < y, both above inequalities are strict, so their addition then yields the strict version of the
assertion. O

Setting © := w; + w;, ¥ = Wi + w; and § := w; — w; in[Lemma 2.14 immediately yields the
Monge property for (d;;).

It follows from a result of Burkard that (d;;) is also a Supnick matrix. (Actually, Burkard
not only proves that every symmetric Monge matrix has the Supnick property, which is essentially
done by plugging symmetry into the Monge inequality to yield the Supnick inequalities, but also
that every Supnick matrix can be transformed into a Monge matrix by possibly changing some
of its diagonal elements.) The only “missing link” is now that between TSP and MHP: All the
above results were stated for TRAVELING SALESMAN problems, while we are specifically interested
in a MINIMUM HAMILTON PATH problem with given start and end nodes. But that can easily be
resolved.
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Lemma 2.15
LetV =1{0,...,N + 1} be the node set of a complete undirected graph Ky with node weights

{wo,...,wn41}, such thatwy < w1 < wy - -+ < wny1 and edge lengths d({i, j}) = \/w; + wj.
Then each minimum Traveling Salesman tour through Ky contains the edge {0, 1}.

Proof. Suppose in the specified setting there was an optimal tour 7 : {0,..., N + 1} — V that
did not contain the edge {0, 1}. We may assume that 7(0) = 0 (the “start node” 7(0) of the tour
may be chosen arbitrarily). Let k := 7!(1) and define a new tour 7’ : {0,..., N + 1} — V as

illustrated by

T(k—1—14) for0<i<k-—2,

T(i +2) fork—1<i<N-1,
0=17(0) fori = N,

1=1(k) fori =N+ 1.

(i) ==

Obviously, 7/ is a tour containing the edge {0, 1} with cost \/wy + wy; the cost of 7/ is

C(T’) =C(r)— \/wl +Wr(k+1) — \/LU() + wr(1)

+ Vwo + w1+ /Wr1) T Wrkt1)-

T(k+1)

T(k—1)
Figure 2.4: Definition of 7/ (depicted in blue).

Application of with
Ti=w1 +Wrkt1), Y= W) T Wrkrn) and 0= wrrg) — wo
for the function f(z) := \/x (note z < yand § > O duetowy < wy < - -+ < wyy1) immediately

yields C'(7') < C(r), contradicting optimality of 7. Thus 7 must already contain the edge
{0’ 1} O
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2.3 The WIRE ORDERING Problem

This shows that TSP and MHP on graphs that are relevant for the WiRe ORDERING problem are
essentially the same: A minimum Hamilton Path can be found by simply solving a TSP and
deleting the edge {0, 1} that will always be contained, while on the other hand any minimum 0-1
Hamilton Path can be extended to an optimal TSP tour by adding {0, 1}.

A minimum Hamilton Path (and hence an optimal wire ordering) is therefore given by [The]
reformulated using the notation of the present chapter we get the final result of this
subsection.

Theorem 2.16
The WIRE ORDERING problem for D = () is solved to optimality by the permutation Tn defined by

(i) = 2 for0 <i < ML
"W lv—iy+3 ford41<i<N+1

and the corresponding distance vector x™V determined by|Algorithm 2.1

At this point, let us briefly come back to the introduction in where we shortly
discussed the TURBINE RUNNER BALANCING problem (place turbine blades on the runner such as to
minimize imbalance). It is a surprising fact that the very same permutation as in[Theorem 2.1
also arises in the context of balancing turbine runners. Unfortunately, this happens only when one
replaces the minimization of the imbalance by a maximization objective, where in contrast to that
the minimization version is an A/P-hard problem. More details on this can be found in the article

[Woed3).

2.3.2 An elementary approach to Concave Minimum Hamilton Path
problems

As a side note, we will also give a proof of that uses only elementary arguments.
This approach is less general than that in [Sup57], but as Supnick uses a number of involved
arguments, it may nevertheless be interesting on its own right. This subsection may be skipped
without any loss for the rest of the text.

To simplify notation and make our treatment a little more general, we will first take up a more
abstract position and define the problem of interest.

Problem 2.17: CoNcAVE MINIMUM HAMILTON PATH (CMHP)

Instance: An integer n € IN, nonnegative reals (wg, w1, ...,wnt1) € IR;LJ62 with wg < w; <
-+ < wp41, and edge weights ¢ : {0,1,...,n + 1}2 — R such that there exists
a concave function f : R>g — Rxo with ¢(7,5) = f(w; + wj) for all 4,5 €
{0,1,...,n+1}.

Question: Find a permutation 7 : {0,1,...,n+ 1} — {0,1,...,n+ 1} with 7(0) = 0 and
7(n + 1) = 1 that minimizes

n+1

C(r) = Z ¢(r(i — 1), 7(i)).
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The permutation 7 is called Hamilton Path from 0 to 1 or short tour, C(7) is referred to as the
cost of T and n will be called the size of the instance. Whenever it seems more appropriate we
will express 7 as the vector (vg,v1, ..., vy11) where v; = 7(i)[] Also, w may be expressed in
functional writing where convenient, i.e., w(7) := w; fori € V.

If there exists even a strictly concave function f : R>9 — R( that induces ¢, i.e., ¢;; :=
¢(1,7) = f(wi +wj) foralli,j € V,and ifwyg < wy < wy < -+ < wp41 (i e, the node weights
are all distinct, with the possible exception of the two endpoints), we will speak of a STRICTLY
ConNcAVE MINIMUM HAMILTON PATH problem or STRIcT-CMHP for short.

In the problem above, one may again associate a complete undirected graph, where the nodes
will be {0, ...,n 4+ 1} and the edges {7, j} carry the weights ¢;;. Let us remark that the crucial
requirement in CMHP is the existence of a concave function f that provides the edge weights. Of
course, for f(x) = /z this condition is fulfilled, so WirRe ORDERING for D = () is a particular
class of instances of CMHP.

We will now prove that 7,, defined as in[Theorem 2.16] is an optimal solution to CMHP.

Theorem 2.18
For a given instance of CMHP of sizen let 7, : {0,1,...,n+ 1} — V be defined by

(i) 24 forOSiS"TH,
(1) =
" 2n—i)+3 for24+1<i<n+1.

Then T, is optimal. Furthermore, if the given instance of CMHP is strict, T, is the unique optimal
tour.

Proof. We proceed by induction on n. For n = 1 the tour 7 is the only feasible tour, hence it
also is the unique optimal solution. So consider an instance on the node set V= {0,1,...,n + 1}
with n > 2 and let o;, be an optimal tour. Denote by 7,,_1 and 0,1 the corresponding tours on
{0,1,...,n} that are obtained by deleting the node n + 1 from 7,, and o,,, respectively. Then
Tn—1 is just the tour defined in the statement of the theorem for n — 1 instead of n, so it is optimal
by the induction hypothesis, i. e.,

C(Tnfl) < C(O‘nfl). (2.7)
Let 0,1 be the sequence (vg, vy, ..., V-1, vy,) withvg = 0and v, = landletk € {1,...,n —1}
be chosen such that o, is the sequence (vo, v1, ..., vk, n + 1, V41, ..., ,). By reversing oy, if

necessary (note that reversing does not change the cost of a tour), we may assume that

w(vg) < w(vpr1)- (2.8)

Note that vg = 0 and v,+1 = 1, i.e., we think of vg as the first and v,, 11 as the last node of the tour. Naturally,
a reversal of this orientation does not change the problem.
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2.3 The WIRE ORDERING Problem

Let f : R>0 — R>o be a concave function that induces the edge weights ¢, then we have

C(Tn) = C('rn—l) - f(wn—l + Wn) + f(wn + Wn+1) + f(wn—l + wn—i—l)
< C(on-1) — flwn—1 4+ wn) + flwn +wnt1) + fwn—1 + wnt1) (2.9)
= C(on) — flwn—1 +wn) + fwn +wng1) + flwn—1 +wni1)
— fw(vk) + wns1) = fwnt1 +w(vgr1)) + f(w(vk) + w(vp)).
Now, with

T =Wnt1 + w(vk—l-l)a Y = Wp + Wptt, 0= Wn41 — Wn—1, (2 10)
and T =w(vp) +wntl, ¥=wno1+wntl, 0=wns1 —w(Upt1),

we have
r<y, 062>0, <7y, 02>0,
where T < 7 is due to (2.8)), as w(vg) < w(vgy1) < wy, means w(vg) < wy—1. Thus application

of [Cemmima 2.1 yields

Jwrg1) + wn-1) + flwn + wnt1) < fwng1 +w(vrg1)) + flwn—1 + wn),
and
flw(og) +w(vrsr)) + flwn1 +wng1) < fw(vr) +wntr) + fwn-1 +w(vpy1)).

By adding these two inequalities we see that

C(Tn) S C(Un)7

which proves optimality of 7,,.

For an instance of STRicT-CMHP, first suppose 7,,—1 # 0 —1. Then inequality and hence
also inequality are strict, yielding C'(7,) < C(0y,), contradicting optimality of o,.

Thus 7,,—1 = 0p,—1, which means 7, and o, can only differ by the position of node (n+1). With
on = (vo,V1,...,V,n + 1,0k41,...,0,) as above, we may again assume w(vg) < w(vki1).

Now if w(vg4+1) # wp, then z < y in , so by strict concavity of f, application of
yields
F(W(rt1) + wn-1) + flwn + wnt1) < fwnt1 +w(vrs1)) + flwn—1 +wn),

leading to C'(7,,) < C(0y,) as in the first part of the proof, again a contradiction. Along the same
lines, if w(vg) # wp—1, then T < Fin , so

Flw(or) +w(0r11)) + fwn-1 +wni1) < fw(or) +wnt1) + f(wn-1 +w(vgs1)),
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yielding the same contradiction as above. But then w(viy1) = wy, and w(vy) = wy,—1 must hold.
As all node weights are distinct, this means v;+1 = n and vy = n — 1, hence ¢, = 7,,. So the
optimal solution is indeed unique for STrRicT-CMHP. O

Of course, this result can be transferred to CONCAVE TRAVELING SALESMAN problems (defined
analogously to the CMHP problems) in the same way as outlined in the preceding subsection.

2.3.3 Characterization of the Minimum Distance Set D

We have now seen how to solve the WiRE PLACEMENT problem provided that D = (). In practice,
however, the set D is generally not empty. To make things worse, it is not even known in advance,
and there are exponentially many possible candidates for D. In addition, recall that the general
objective for an arbitrary wire ordering 7 € Sy is

2

- Sr(i—1) T Sr(s) 1
F(r,a™) =Y y +r—|D”\d > Ssagi-1) + Sx0) | »

1€D™ 1ER™

cf. (2.4), which is not even a sum of edge weights and hence does not have the structure of an
MHP or TSP, let alone the Monge property. So the naive approach of checking all different subsets
of {1,..., N + 1} for the set D is pointless; not just due to complexity considerations, but also
due to the fact that we do not yet have a way of solving the subproblems arising for fixed D # ().
Actually, as the quadratic term indicates, the objective function value does not only depend on
edge weights, but also on the selected Hamilton Path as a whole.

In the present section we derive some structural results to be able to handle the general wire
ordering problem. We will show that there is always an optimal wire placement where 7 is evenly
separated; see For such permutations the set D™ is already determined by its
cardinality, which reduces the problem to the solution of IV instances of the underlying MHP. In
fact, as we will see later, we can even do better and determine the correct size of D in course of
the algorithm without trying different possibilities. The following proofs utilize certain exchange
techniques that will be introduced beforehand.

Definition 2.19
Let (m,7) € Sy X RN be a feasible wire placement, and let j,k € {1,..., N} with j < k.
Define S;x(7), Sjx(m) € Sy and Tjy(x), T (x) € RN by

. k+j—1i) forj<i<k,
s]-m)(z):{ )

k+j—1i) forj<i<k,

i) else;

(

(i) else;
(
(

= J®kgjmi forj <i <k,
T; else.
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2.3 The WIRE ORDERING Problem

Then the operators
%jk : SN X RN+1 — SN X RNJrl, %jk(ﬂ',x) = (Sjk(ﬂ'),T]k(x))
@jk : Sy X RN Sy X IRNJrl, @jk(ﬂ',x) = (gjk(ﬂ'),Tjk(ﬂf)>
are called the open and closed j-k reversal respectively. Note that Sj;, T}, and thus %), can
likewise be defined for k = N + 1.
Lemma 2.20

Let (m,x) be a feasible wire placement and let j,k € {1,...,N} with j < k. Then both,
Rji(m,x) and @jk(w, x), are feasible wire placements, and their objective values are

17 1 1
For the open j-k reversal, the result also holds fork = N + 1.

Proof. Feasibility of both open and closed j-k reversal is clear, as the distance vectors T'(z) =
T'(x) are just permuted versions of z, so the overall sum stays constant and no distance can fall
below d. The new objective values are

Sx(j) T Sx(j+1)  Sm(k—1) T Sr(k)
Tj+1 Tk
4 Sx(j) T Sm(k—1) i Sr(j+1) T Sn(k)
Tk Tj+1
1 1
= F(m,z)+ (Sﬁ(j) - Sw(k)) (gjk — mJﬂ)

and  F(Zy(m,x)) = F(r,a) — 9= T 8nG) _ Se) + Sr(et)

F(Zji(m,x)) = F(m,z) —

Lj Lk+1
L Sn=1) + Sn(k) iC) + Sr(k+1)
Ly Th+1

1 1
= F(mz)+ (Sfr(j) - Sﬂ(k)) (ﬂsk+1 B x]> 7

respectively, completing the proof. O

Definition 2.21
Let (7, x) be a feasible wire placement, and set

l(x) =min{i € {0,...,N}: 241 > d},
u(z) =max{i € {l,..., N+ 1} :x; > d}.
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Then [(x) and u(x) are called lower and upper separation point, respectively. For z = 2™ we use
the abbreviations ™ = [(x™) and u™ = u(z™) (or, when there is no risk of confusion, simply [
and u, respectively). An optimal wire placement (7, ) is called separated, if it has the following
properties:

1. Tpy1, X000, , Ty > d
2. max {S,T(O), e Sa(l=1) Sr(ud1)s - o SW(N+1)} < min {sﬂ(l), sﬂ(u)}
3. max {sﬂ(l), sﬂ(u)} < min {Sw(l+1)» ceey sﬂ(u_l)}

Lemma 2.22

For every feasible instance of OPTIMAL WIRE PLACEMENT there is an optimal solution (m,x™) that
is separated. Furthermore, for an all-distinct instance, each optimal solution is separated.

Proof. Suppose for some instance of OWP there is no optimal solution with Property |1} Let
(m,x™) be an optimal solution for which [ = [™ is maximal. Then there is some k € {1,..., N}
with [ +1 < k < u such that x], = d, and we choose the maximal such k,1i.e., z7 ,..., 27 > d.
Suppose first that s;(;) > s,z (note this implies s,y > 0 and thus { > 0). Then, bym

the closed I-k reversal %y, (7, ™) is feasible and has objective value

— 1 1
F(a@lk(ﬂ',x”)) = F(ﬂ’,x“) + (37r(l) — Sﬂ(k)) ( — = W) < F(T('?ajﬂ-),
—_——

>0
<0

a contradiction to the optimality of (, 2). If, on the other hand, s,;) < Sx(1), then

F(%]k(ﬂ,xﬂ)) = F(7T, .%'W) + (Sﬂ(l) - 37r(k:)) (xlﬂ, xi ) < F(?T,l‘w).
(R —— k I+1
=0 >0

If 57(;) < Sx(k)» We even get strict inequality here, which again contradicts optimality of (7, z7);
this proves Propertyholds at optimality for an all-distinct instance. For s;(;) = sz (1), the open
[-k reversal Zyy, (7, ™) is also an optimal solution, but its lower separation point is strictly greater
than [, contradicting maximality of I. This shows that there is an optimal solution with Property 1]
even for non-distinct instances.

In the following, let (m,2”) be an optimal wire placement with Property |1} and let [ and
u be its lower and upper separation points. We prove by contradiction that (7, 2™) also has
Properties and So, suppose there was some m € {1,...,l—1}U{u+1,..., N} such
that s, (,,) > min § S7(1), Sx(u) (- By reversing the wire placement if necessary, we may assume

that m € {1,...,0 — 1}. Let us first consider the case u = N + 1, then s;(;,) > Sz, = 0.
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Application of an open m-(N + 1) reversal yields

1 1

IN+1 Tm+1

F (v (") = F((m.a") + (sem) — srve) (

>0

> < F((m,a™))

<0
contradicting optimality of (7, x™).
For u < N + 1, we may assume that s (,,) > Sr(;), else applying a closed [-u-reversal yields

F(%#.(m,x™)) = F(m,z7™),
since x; = Ty+1 = d. Butthen, as 2], = d < xfﬂ, we have for the closed m-{ reversal

F@ () = F(m,a™) + ($0m) — $x0)) (j - 1ﬂ> < F(r,z"),
~———— Li1 T
>0 >

contradicting optimality of (7, x™).

For Property (3} suppose that there was some m € {l+1,...,u — 1} such that s.(,,) <

!}. Note that 7(N +1) = N + 1 and sy+; = 0, hence u < N.

We may again assume without loss of generality that s;(;) < Sr(4), using the same reasoning

as for Property[2Jabove. Since 27| = d < x7;, by Property[i] we have

MaX | Sx(1)s Sn(u

— 1 1
F(%mu(ﬂ, x“)) = F(W,x“) + (Sw(m) — Sw(u)) ( - = ﬂ) < F(ﬂ" xﬂ)’
—_—— Lu+1 T
<0
>0
contradicting optimality of (7, ™). This completes the proof. O

By [Lemma 2.22 we can restrict our search for an optimal wire placement to separated solutions.

Since the first part of the objective function F'(7, z™) (cf. ) is just

1

a Z (Sﬂ(iq) + Sﬂ(i)> )

1€DT
permuting the elements in positions 7 € {1,...,l — 1} U{u+1,..., N} will not change the
objective function value. Therefore, we can “normalize” the set D™ even further. We will do this in
a way that is not only natural, but also most suitable for the subsequent application of the results
obtained in the preceding subsections. For simplicity of exposition we will assume from now on
that the wires are indexed by increasing switching frequency (with the exception of sy = 0),
ie,
0=sn41 =80 <s1 <+ < sp.
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Definition 2.23
Let (7, x) be a separated wire placement with separation points [ and u, and let A = |D(z)].
Then (7, x) is called evenly separated, if the following conditions hold:

1. D(x):{l,...,t%J}U{N—i—Q— [%},...,NJA};
1= |5 |andn() =2]4];

5 u=N+1-[4|andn(u)=2[4] -1
{w(i):ie{O,...,l}}:{0,2,...,2{%”;

. {w(i):ie{u,...,NH}}:{1,3,...,2[%] —1}U{N+1}.

N

=

(8]

Note that these conditions, in particular the last two requirements, aim at “compatibility” of the

set D(z™) with the minimum Hamilton Path 75 introduced in|Theorem 2.1
Theorem 2.24
Each feasible instance of OWP admits an optimal solution that is evenly separated.

Proof. Let (m,x™) be an optimal wire placement and set A = |D”|. By [Lemma 2.22, we can
assume that (7, 2™) is separated. Hence by [Definition 2.21} Properties and we may further

assume that
{7(l), m(u)} = {2 BJ 2 {ﬂ - 1} —{(A—1,A}.

(Here we use that 0 = sy4+1 = sp < s1 < --- < sy.) By reversing the wire placement if
necessary we obtain (1) = 2 {%J . Similarly, we may assume

(r(i)ie{0,.. ,}U{u,..., N+1}} ={0,1,...,A U{N +1}.

The objective function then evaluates to
2

7 d = ' d r—d-A ) m(i—1) w() | - .

Let L :={0,...,0l—1}U{u+1,....N+1},thenw|p : L — {0,...,A =2} U{N +1}
is a bijection; and changing 7 to some permutation 7’ that differs from 7 only on the set
L (i.e, ml,. .N+1nL = T{0,.,N+1}\) does not alter the objective value, since 7'(L) =
{0,...,A =2} U{N + 1}. Doing so appropriately one can clearly alter 7 (thus reordering the
positions in L) to obtain an optimal solution (7', ') that is evenly separated. a

With the last theorem we can now restrict the search for an optimal wire placement to evenly
separated solutions. The next section will combine this result with those of[Section 2.3|to obtain a
unified algorithm for OpTIMAL WIRE PLACEMENT.
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2.4 An O (Nlog N) Algorithm for the Wire Placement Problem

We have now reached the following principle procedure for finding optimal wire placements: If
r < (d+ 1)N, the problem is infeasible; if r = (d + 1) N, then for 2* = d - 1 the complete set of
optimal solutions is {z*} x Sy. Otherwise, for each of the NV possible values for A (recall there
must be at least one non-minimal distance), we compute a set D(A) of cardinality A according to
Then, we are in effect confronted with the MiNiMuM HAMILTON PATH problem on
the node set V/(A) = {(A —1),..., N} with edge weights /s; + s; fori,j € V(A) and ¢ # j
and endpoints (A — 1) and A that is obtained by ignoring the square in the second component of
(2.4). We solve this MHP problem by utilizing the underlying Supnick property, cf.
In the context of OpTIMAL WIRE PLACEMENT, the optimal permutation 7 can be obtained by a
simple algorithmic procedure: Start by placing the right and left border wires, order the wires by
(weakly) increasing switching frequencies, and place them one after the other, always positioning
one wire in between its two already placed predecessors.

The two parts can, however, be closely interwoven. In fact, the procedure for computing an
optimal order for the wires between lower and upper separation point is in full accordance with
the property of a wire placement to be evenly separated, cf. Hence, when the wires
at minimum distance are added, the optimal tour 7 coincides with the tour produced by adding
to both sides of 7)y_a the remaining wires at minimum distance in a way that yields an evenly
separated wire placement. This means we obtain the same wire ordering for every value of A.
So, rather than actually going through all different values for A, we can just compute an optimal
wire ordering as if there was no minimum distance requirement and subsequently determine the
optimal distances (and the correct set of minimum distance wires) along the lines of
to obtain an optimal wire placement. The complete procedure is formalized in

Algorithm 2.2: Solving OpTIMAL WIRE PLACEMENT

Input: A feasible instance of OpTIMAL WIRE PLACEMENT, i.e.,
N eN;sq,...,sy €0, 00[ and d, 7 € ]0, oo with r > (N + 1)d.
Output: An optimal wire placement (7, ™).
1 Set sop = sy+1 = O and sort sy, ..., sy in increasing order, i. e., let p € Sy be a permutation
such that 0 = S5(0) = Sp(1) < 5p(2) <... < Sp(N+1)-
2 Define the permutation 7 € Sy by setting

(i) = 2p(i) for 0 < < M,
o l2(V=p(@) +3 for §+1<i< N1
3 Set q; := Sq(j—1) + Sz fori=1,...,N+1.
4 Compute optimal distances «™ for the permutation 7 and input parameters

(N,q1,...,qn+1,7, d) using[Algorithm 2.1]
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Theorem 2.25
In the real RAM model of computation, OpTIMAL WIRE PLACEMENT can be solved in time
O (NlogN). In the binary Turing machine model, given ¢ > 0 and an instance of OpTI-
MAL WIRE PLACEMENT such that the associated instance of OpTIMAL WIRE SPACING for the optimal
permutation is well posed with wellness condition 6 > 0, a feasible rational wire placement
(m,Z7) with

|F(m,2") — F(m,z2™)| <e

can be computed in time

O(NlogN + N - SQRTy,ax) , where

N+l o\ !
SQRTmax = 108 (qmax) — logy (5 min {& d? - (Z Qi> } (N + 1)‘]12]0111)
=1

-1
+ log2 (2(T - Nd)(?’Qmax + 1) + e min {57 d2 ’ (Z qi) } (N + 1)Qmin + 1) .
=1

Proof. The correctness and optimality of the solution (7, 2™) produced by [Algorithm 2.2|is a
direct consequence of Theorems and

The sorting step in the algorithm can be implemented using no more than O (N log V) arith-
metic operations, an optimal wire ordering 7 can subsequently be computed in O (N) steps. Using
to compute a corresponding optimal wire ordering requires at most O (N log V)
arithmetic operations in the real RAM model. For a well posed instance of WIRE SPACING, a
feasible rational wire spacing corresponding to the optimal permutation 7 of the wire placement
can be computed using at most the number of operations given in the theorem on a binary Turing

machine using [Corollary 2.10/and a bisection algorithm for computing rational approximations to
the square roots appearing in as described in the relevant parts of [Section 2.2| O

2.5 Concluding Remarks

2.5.1 Electro-technical Significance

When dealing with a mathematical abstraction of a real world problem, one certainly has to be
prepared to verify the results obtained for their significance to the problem that motivated the
mathematical study. In this final section of the chapter, let us briefly comment on the issues raised
in this context.

In comparison with measurements performed in experiments and simulations, the mathematical
model given and justified in[Section 2.1]turned out to be very realistic when dealing with parallel
wires. Naturally, in order to fully exploit the potential of WIRE PLACEMENT one would need to fully
integrate spacing and ordering into the complete logical and physical design and layout process.
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As was remarked in the derivation of the model in our model only encompasses
a layout made up of parallel wires. This setting is not uncommon in real world digital circuits,
though. Straightforward application of our method can be performed for bus wires (usually up
to 128 parallel wires connecting logical and/or memory units of a circuit) frequently found in
microprocessors, embedded systems and (most prominently) in multi-core architectures. Of course,
in a general-purpose semiconductor circuit, not all wires are bus wires. However, in a layered
layout, the wires in every layer run in one common direction, so they are all parallel. These wires
usually do not have the same length, so our results are not directly applicable to the layer as
a whole, but rather to separate groups of parallel wires within one layer. In his doctoral thesis
[Zub07]), Paul Zuber is concerned with the question of how to find such areas to apply wire spacing
(basically using a scan line algorithm).

One difficulty when dealing with wire placement is the integration of the results into the existing
design process. To date, wire spacing and ordering aiming at reduced power loss is not incorporated
in any of the major commercial software packages used for semiconductor circuit design. Applying
wire spacing in an already finished design poses relatively little problems: Groups of parallel wires
that admit wire spacing are easily identified, calculation of the optimal distances within these local
patches is also straightforward, utilizing our algorithm for wire spacing. The actual application of
these results may call for a displacement of some of the wires on the chip. Usually, these wires are
connected to wires in other layers by vias, so when moving the wires, a new connection between
wire ends and vias has to be introduced, cf. Luckily, these “detour connectors” are
very short compared to the wires themselves, so their effect is negligible. This process is easily
implemented as an ex-post optimization measure in commercial design tools, enabling a circuit
designer to exploit the potential of existing routing tools before our results are utilized for further
optimization. Experiments along these lines showed that optimal spacing within local patches of a
large real-world semiconductor design (identified by a simple search procedure) already leads to
an overall reduction in power consumption of 3 — 5%. The effect was even greater when optimal
wire spacing was applied to a broad range of benchmark circuits produced by state-of-the-art
commercial layout tools as a post layout optimization step. A comprehensive study can be found
in [Zubo7].

For the application of wire ordering in semiconductor design considerably higher effort is
needed. Changing the positions of wires in an otherwise finished circuit design would destroy
the connections to wires in neighboring layers, so new connectors are needed. However, these
cannot normally be placed on the layer where wire ordering is applied, because unlike with
pure wire spacing these connectors could cross each other leading to short circuits. Therefore,
an additional layer (called a |permutation network) has to be introduced that contains those so
called cross connectors, adding the need for more material and production time. The effect of
such permutation networks has been investigated in [MMPO1]}; it is concluded that in realistic
circuits the overhead in terms of area and power is much more than compensated by the benefit
of wire ordering (one should remark that the authors used a heuristic to determine a good wire
ordering). Also, for some local buses frequently found in microprocessors (e. g., address buses or
counters), the switching frequencies are known or can at least be accurately estimated before the
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design process is started. In that case, the connector pins of the units that are to be connected by
bus wires can often be reordered without affecting the rest of the design too much, so an optimal
(or at least a good) wire ordering can be implemented there. A similar approach exploits the
fact that today’s circuit designs are mostly IP-based (i. e., “Intellectual Property” based), hence
pre-developed modules are frequently re-used and combined for new designs. The ordering of
such a[module’d connectors (called pads) is generally fixed arbitrarily at the design of a module
and is not subject to optimization during the design process of the chip. Thus the designers of
the IP modules may apply optimal wire ordering as proposed in this thesis to the initial design
of the modules. This methodology is all the more important as switching activities are usually
module specific and one module might be reused in thousands of different designs, thereby multiply
compensating for the additional effort. However, in the long run the full potential of wire ordering
can only be exploited by completely integrating it into the design process, which calls for a joint
treatment in an extended unified model encompassing all relevant factors.

2.5.2 Directions for Future Research

Of course, a unified model as discussed above will require a major research effort, because
other than power issues, a lot of other factors have to be considered, e. g., timing issues or yield
maximization, to name just a few that are loosely related to wire spacing and wire ordering.

Of greater relevance for our field of research is the issue of correlated switching frequencies. In
the derivation of our model, we mentioned the assumption that no two adjacent wires switch at
the same time. While this is not an unrealistic assumption in real world circuits, there are also
many applications where the voltage levels on adjacent wires are related to some extent. Consider,
for instance, a counter, where the wires represent the bits of a binary number that is increased
in uniform intervals — every time a higher bit changes from 1 to 0 all the lower bits do the same,
while the next highest bit changes from 0 to 1; so the switching frequencies of a counter exhibit a
high correlation.

This behavior is problematic to the viability of our model, because we calculate the power loss
of a single wire as being proportional to /z).s, and 1/z,;.,. whenever a switch on that wire occurs.
However, in case one or both adjacent wire(s) switch at the same time, the effect changes: For two
adjacent wires doing the same signal transition (either from 0 to 1 or vice versa), the electric field
between these wires does not change at all, so no power loss is incurred. On the other hand, if
two adjacent wires switch in adverse directions (one from 0 to 1, the other from 1 to 0), the effect
doubles, so twice the energy is consumed by the electric field that builds up between the wires.

Mathematically speaking, we have to incorporate terms to measure the amount of synchronous
switching in both directions, thus introducing correlations in place of the switching frequencies.
Unfortunately, this leads to an objective function that is not so nicely decomposable, and hence
not amenable to many of our arguments, particularly the interchange arguments frequently used
in our proofs. In our above treatment, we assumed the switching probabilities of different wires
to be independent, thus avoiding the problem completely. Although this approach models reality
quite concisely in a rich variety of application, there are some cases occurring very frequently in
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common semiconductor circuits (e. g., the counter mentioned above) where the correlation between
switching frequencies of different wires cannot be ignored; so a refined model and a different
treatment will be needed to handle the additional complexity introduced into the model by paying
regard to these inter-wire correlations.

Another point for further research comes from the extra wiring introduced into a finished design
by displacing some of the wires in order to do wire spacing. Apart from the extra material needed
for these “detour wires” also new parallel wires are introduced into the layout. Although these
wires are usually very short (and experiments show they have little influence on power loss), at
least an approximation of the additional costs incurred in routing these wires could be taken into
the objective function. In [[Zub07]], a modification of our model is suggested that incorporates
additional displacement costs that are proportional to the length of the extra wiring. Unfortunately,
the model is non-differentiable and nonlinear, making it a little unpleasant to deal with from a
mathematical viewpoint. Also, the algorithm suggested for its solution can produce non-optimal
results (although it performs quite well in practice). Here, spending some thoughts on an adequate
model incorporating wire displacement may be an interesting future challenge.
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Chapter 3

Flight Scheduling Problems — Complexity,
Structure and Algorithms

In this chapter we study several variants of a combinatorial packing problem under balancing
constraints motivated by an applications in flight scheduling for airport operations. After a brief
description of the problem, we will present a mathematical formulation capturing the core part of
the problem in This will lead to three combinatorial optimization problems, namely
FLIGHT SCHEDULING (how to design an optimal flight schedule, given a set of flight requests),
Maximum SLOT PACKING (determine the maximum number of flights in a schedule) and MiNIMUM
SLot Cover (how to“block™ a schedule using a minimum number of flights), which will be
investigated in detail in Sections In we will focus on the gap between a
maximum slot packing and a minimum slot cover, and thus on the question of what separates
a “good” from a “bad” flight schedule, and discuss the question of how to possibly avoid this
gap. contains some concluding remarks. A more detailed description of the practical
background and all relevant constraints can be found in[Chapter 4} where we will develop a concise
mathematical model for the complete real-world problem, utilizing results from the present chapter.

3.1 Slot Allocation and Flight Scheduling

The scheduling of flights from an airport’s perspective has both a long-term and a short-term
aspect. Short-term planning is implemented as part of the normal operations of an airport, where
frequently flights have to be slightly rescheduled due to delay, weather, and other environmental
conditions. The rescheduling is, of course, based on a regular long-term schedule, which is devised
by a thorough planning process. In this long-term planning, a new schedule is created twice a year,
one for the summer season (roughly ranging from March to October, exact dates vary) and one for
the winter season (ranging from October to March). Airport capacity is naturally limited, so the
objective of long-term scheduling is to strike a balance between limited resources of an airport and
the demands of airlines wishing to offer an air connection to and from that airport.

As a means of controlling the allocation of airport capacity the so-called has
been established by the |[IATA (International Air Transport Association)and by national and
international legislation (see, e. g., [EU93; [EU02; [EU03} [EU04|| for the regulations in the European
Union). Under the slot system, an airport’s capacity is allocated in the form of which
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designate the right for an airline to operate a landing or a take-off at some specified time at a
specified airport. Any airline that wants to offer a service at an airport that implements the slot
system needs to acquire a pair of arrival and corresponding departure slots. Of course, capacity
is not a scarce resource everywhere, so not all airports implement the slot system. But at most
major airports worldwide, there are at least certain peak times when demand widely exceeds the
available capacity, thus calling for an allocation procedure. Airports where the slot system is
implemented are designated |fully coordinated airports, The allocation of slots to airlines (more
precisely to airlines’ flight requests) is implemented by an |airport coordinator| (often belonging
or affiliated to some national authority), who is independent of both airports and airlines. The
process of slot allocation will be explained in greater detail in[Chapter 4 in the present chapter
we will concentrate on the key aspects of the underlying planning problem to gain insight into
the structures of optimal and also of non-optimal flight schedules. A more in-depth analysis of all
practically relevant constraints and the development of a concise model leading to a solution of
the real-world problem will also be the topic of

We will look at the question of how to allocate the available slots to the airlines under two
slightly different aspects in this chapter. First, a formal definition of slots, airport capacity, flight
requests and flight schedule is in order. The problem of allocating slots to specific flight requests
will then be investigated in In Sections [3.3|and [3.4} we adopt a more abstract point
of view and ask how flights should be distributed over the planning horizon in order to obtain a
schedule with a maximum number of flight movements. Hence we do not rely on a set of flight
requests any more, but instead devise results on the structure of optimal flight schedules. Of course,
the counterpart to that question, namely how a “bad” flight schedule looks like (and how many
flights it can accommodate), will also be an important subject, we will consider that question in
[Section 3.5 In|Section 3.6l we will combine these two viewpoints and concern ourselves with the
gap between good and bad flight schedules and means to decrease or avoid that gap in the flight
scheduling process.

3.1.1 Flight Requests and Flight Schedules

An important class of constraints in flight scheduling is naturally imposed by the airlines’ demands.
In practice, these demands are communicated to the airport coordinator as flight requests or series
requests, the coordinator then tries to match these with the airport’s capacity restrictions to obtain
a feasible flight schedule. Formally, this part of the problem is a specific kind of assignment
problem. For the rest of this chapter let S = {1, ..., n} denote the slot set (by a slot set, we always
mean a set of the form {1, ..., n} for some n € IN), which may be thought of as a discretization
of the planning horizon. Usually, one slot marks a small time interval of ten (sometimes five)
minutes, hence allocating a slot to an airline amounts to granting it the right to land or take off
(depending on the type of slot allocated) within the respective time interval. The set S simply
is a labeling of these time intervals in chronological order. Of course, as a slot denotes a whole
time interval, one slot is not limited to one flight, but can accommodate several flight movements,
possibly of different type (arrivals and departures).
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In[Chapter 4 we will take up a very problem-oriented position, enabling us to solve real-world
instances of flight scheduling problems. In the present chapter, the foundation for this work will
be laid by providing a more abstract and general perspective. However, in some cases it will
be convenient (and intuitive) to use the same terminology in both chapters, often with a more
specific meaning in Where this might lead to confusion, we will prepend this chapter’s
definitions with the word abstract, as opposed to their meaning in [Chapter 4 In most cases where
the same term is used, the meaning in [Chapter 4| will just denote a different way of specifying the
same kind of data.

Airlines express their flight requests by specifying for each planned flight a number of alternative
slots or slot pairs.

Definition 3.1 (Abstract Slot Request, Abstract Flight Request, Abstract Series Request)
Let S ={1,...,n} be aslot set.

1. An abstract slot request is a nonempty subset G C S, specifying a number of alternative
slots that may be allocated for a single requested flight movement.

2. A nonempty set of tuples

FCS8xS suchthat a<d foreach(a,d) € F

specifies alternative arrival/departure pairs for a flight and is called (single) abstract flight
request. A tuple (a,d) € F of a flight request F is called corresponding arrival/departure
slot pair or just slot pair, its components will be referred to as requested arrival slot and
requested departure slot, respectively.

3. An abstract series request (F', T) consists of a single abstract flight request F' and a starting
point setZ C (S\ {n}) U {0} where 0 € Z. The sets

Sty ={la+t,d+t):teT Na+td+teS}, (ad)€F,

are called feasible slot series for the series request (F, 7).

An abstract slot or flight request expresses an airline’s desire to be granted one of the slots or
slot pairs contained in the request for a planned flight. The slot request is the simplest form of
request considered here and will not receive much attention in the following, as the theory for
slot requests is often the same as for flight requests. However, slot requests do frequently arise in
practice, namely in situations where an airline receives a major fraction of all slots available at an
airport. In that case, the airline often prefers to just request single slots and connect arrival and
departure slots on its own account after the slot allocation has been finalized. See for
more details.

While an abstract flight request is a set of feasible arrival/departure pairs for a flight, an abstract
series request models the fact that an airline will normally not request just one slot pair (for a
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single flight), but a number of slot pairs on several days for the same service during a longer time.
An initial slot pair allocated to such a series request implies that the flight is scheduled at the
same time of day for each day where it is requested. The first slots of these days (i. e., usually the
slot numbers corresponding to 0:00 at the respective days) are collected in the starting point set
7. This fact is reflected by the feasible slot series 5(2(17 d) that represent all arrival/departure pairs
allocated to a series request when the initial slot pair (a,d) € F is chosen. Of course, a single
flight request F' can be identified with the series request (F, {0}), and we will sometimes use this
fact to simplify notation.

Example 3.2
Let us illustrate the notion of a series request by means of an example. Assume an airline wants to
submit the following request:

“Arrival at 9:00 or 9:10, and a subsequent departure 40-50 minutes later for
every Monday, Wednesday and Thursday within the planning horizon of two weeks,
starting Monday.”

Suppose the slot set discretizes time in steps of ten minutes per slot. The planning horizon is
two weeks, starting on a Monday, 0:00 with slot number 1, corresponding to the time interval
0:00-0:09. Then one day is equivalent to 144 slots and S = {1, ..., 2020}.

The arrival times 9:00 and 9:10 on the first day of the planning horizon are equal to slot numbers
14+9-6=>55and1+9-6+ 1= 56, respectively, and the departure should take place either 4
or 5 slots after arrival. The single flight request for the first Monday thus translates to

F = {(55,59); (55,60); (56,60); (56,61)} .

Further, the time 0:00 for the two Mondays within the planning horizon corresponds to the
slot numbers 0 and 144 - 7 = 1008, for the two Wednesdays the starting slot numbers are
2-144 = 288 and 9 - 144 = 1296, for the two Thursdays we obtain 3 - 144 = 432 and
10 - 144 = 1440, respectively. This yields the starting point set

7 ={0,288,432,1008, 1296, 1440}

for the series request (F, 7).
Hence if we decided to allocate the initial slot pair (55, 60) for that series request, we would
end up with the slot series

5(155760) = {(55,60); (343, 348); (487,492); (1063, 1068); (1351, 1356); (1495, 1500) }
corresponding to an arrival at 9:00 and a departure at 9:50 for all of the requested days, effectively
allocating six arrival and six departure slots for that series request. &

Given a collection of abstract flight and series requests, the task of flight scheduling amounts
to choosing one slot pair from each flight request or to mark the request as not scheduled, thus a
flight schedule is basically a choice function.
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Definition 3.3 (Abstract Flight Schedule)
Let S be a slot set and F a finite collection of abstract flight and series requests. An abstract flight
schedule for F is a function

[ F—(Sx8)"

with f(F) € (F)” for all abstract flight requests F' € F and f((F,Z)) € (F)* for all abstract
series requests (F,Z) € F. The image of an abstract series request under f is called scheduled
(initial) slot pair in the abstract flight schedule f; an abstract flight or series request is termed
integrated, if its image is not co. To simplify notation, we will leave out the double braces for
abstract series requests and just write f(F,Z) for the scheduled slot pair of an abstract series
request (F,7).

The size or cardinality of a flight schedule f is defined as the number of flight movements that
f represents, more precisely

fl=HFeF:fF) £}l + 3 |5Frn|
(FT)eF
F(FT)#00

For both single flight requests and series requests, a flight schedule selects one of the feasible
arrival/departure pairs, where for a series request (F,Z) the interpretation is to schedule flights
for all slot pairs in S%( Py b€ for the whole series corresponding to the initial slot pair f(F,Z).
However, given that demand usually exceeds the available capacity of an airport, often not all
requested flights can be scheduled. Hence, for both single and series requests, the “allocated slot”
can also be oo, meaning that a request is not scheduled at all. A natural measure for the quality of
a flight schedule is the number of flight movements it corresponds to (because airports charge fees

for every flight movement), so the length of a scheduled series has to be taken into account in the
definition of | f|.

3.1.2 Time Window Bounds

The capacity of an airport is usually measured by the amount of flights that can be processed
within certain time intervals. In this sense, many of the constraints mentioned above are captured
by a construct known as time window bounds, providing upper bounds on the number of arrivals
and/or departures that can take place within specified time windows. A time window bound can
either be applied as a shifting bound or as a consecutive or non-shifting bound, and consequently
we will usually refer to time window bounds by one of these two notions.

Definition 3.4 (Time Window Bound, Consecutive Bound, Shifting Bound)
Let S be a slot set. A time window bound (L,b)(?) consists of a length L € S, a bound value
(more precisely a triple of bound values)

b= (b 6°,0M)" € N} with max {p*,00} <bM,
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and a shift specification o € {1, L}. The values b*, b and b™ are called arrival, departure
and movements bound, respectively. The interval [L], = [0, L — 1] will be referred to as the
associated time window. A time window bound is called consecutive bound or non-shifting bound

if o = L, and shifting bound if o = 1. For a shifting bound (L, b)(l), we will normally just write
(L,b) or ([L], ,b), using its associated time window in place of L.
Furthermore, a time window bound (L, b)(") is called symmetric, if

b;/[ < min {bA,bD} .

A time window bound (L, b)) constrains the number of flights to a maximum of b* arrivals,
bP departures and b™ total flight movements within certain time intervals along the slot set.
Specifically, for a shifting bound each time window of length L that is contained in S or at
least starts in S (in which case the time window has to be truncated to its intersection with &)
is considered. Think of placing the time window along the planning horizon, aligning its left
boundary with the first slot, and then shift the window along the whole time axis, moving one slot
at a time. For a non-shifting bound (L, b)(") only the time windows starting at slots 1, L + 1, . ..
are considered (again, possibly truncated to their intersection with &). So this time, the window
is not shifted slot by slot, but instead it is shifted by its own length L, resulting in consecutive
placement along the time axis (hence the notation o = L).

The requirement b*, b < bM is just a technicality and can be assumed for all time window
bounds without loss of generality. As the number of flight movements within a time window is
constrained by its movements bound value b™, it would certainly not make sense to allow for a
higher number of arrivals and/or departures than b™. The additional requirement b2, bP > 1/2.pM
for a symmetric bound reflects the fact that arrivals and departures are (at least in the long run)
equal in number, so it should be possible for both arrivals and departures to make up for at least
half of the flights within any time window. If this was not the case, arrivals could outweigh
departures or vice versa in the long run, or the distribution of arrivals and departures would be
forced to be non-symmetric by the shifting bounds alone — of course, local asymmetries are still
possible, but in reality these are caused by an unbalanced distribution of demand for arrivals and
departures (cf. [Chapter 4), and not by asymmetries in the constraint system. Notice this constraint
also implies b™ < b* +bP. In practical applications, the time window bounds involved are usually
symmetric, but there may also be situations where a non-symmetric bound is used. This could for
instance pertain to an airport where many aircrafts stay over night, thus limiting the number of
parking positions for arriving flights for the first few hours of the next day, until the overnight
flights have departed and cleared their positions. In that situation, a very low value of b* and a
rather high value of b” might be applicable during the first hours of traffic. As such situations do
generally only apply to very short time periods, we will mostly assume time window bounds to be
symmetric, but most of the results also hold for the non-symmetric situation.

58



3.1 Slot Allocation and Flight Scheduling

Example 3.5

Consider a time window bound of length 30 minutes. Then the time intervals to which the bound
values have to be applied are 0:00-0:29, 0:10-0:39, 0:20-0:49 and so on. Discretizing on a ten
minute scale the shifting bound (30 minutes, b) translates to (3,b) or (]3], , b), so the relevant
time intervals are (s + [3],) NS, s € S. For the non-shifting bound ([3], , b)), the time intervals
would be (s + [3],) NS, s e {1, L+1,...} nS. &

In airport operations, the distinction between average capacity and peak capacity of an airport
is important. While in the long run certain limits may not be exceeded, some variation is allowed
in the short run leading to short-termed peaks. For example, air traffic control may be able to
safely handle an average of 80 flight movements per hour, but no more than 15 flights at any
given time (where “any given time” usually means “one slot”, i.e., within ten minutes). So a
higher load is temporarily allowed, provided a certain average load is not exceeded in the long
run. Mathematically, this leads to multiple time window bounds (one for the peak capacity with
a short length, at least one for the average capacity with a long time window) that are applied
simultaneously. Such a system of time window bounds will be referred to as a reference value
system.

Definition 3.6 (Reference Value System)

A reference value system is a nonempty, finite set R of time window bounds such that no two
bounds in R have the same length. The reference value system R is called symmetric, if all
time window bounds in R are symmetric, and monotone, if it contains only shifting or only
non-shifting bounds and for any two time window bounds (L, b)(?), (L, ¥)(*") € R with L < L'
the inequalities

b<b and

The monotonicity of a reference value system states that longer time windows correspond to
relatively stricter bound values. This condition is very natural, because for a non-monotone
reference value system the bounds with longer time windows could simply be dropped if there
were short time windows producing stronger bounds (for a suitably large slot set). Of course, for
monotonicity one should only compare bounds of the same type. An example of a reference value
system applied to a flight schedule will be given in the context of slot configurations below.

3.1.3 Slot Configurations and Feasible Flight Schedules

With the two foregoing subsections, the notion of a feasible flight schedule could simply be defined
as a flight schedule observing all time window bounds of a given reference value system. However,
it will be convenient to introduce a separate notation here (especially as this will prove valuable
later).
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Definition 3.7 (Slot Configuration)
Let S be a slot set. A slot configuration is a function

C:8 =MW, s (CAs),CP(s),CM(s))

with CM(s) = C*(s) + CP(s) for every s € S. The components C*, CP,CM : § — N are
called arrival, departure and movements configuration, respectively; the number |C| := CM(S)
is called the size of the slot configuration C.

Furthermore, let F be a collection of abstract flight and series requests and f : F — (S x §)*
an abstract flight schedule. Then the associated slot configuration Cy : & — IN} is defined by

CPs) = |{F € F: f(F) € ({s} x S} + |[{(F.T) € F: Sfpry N ({5} x S) # 0}

CP(s) = |{F € F: f(F) € (S x {sW} +|{(F.T) € F: Sf(ppy N (S x {s}) # 0}
CP(s) == C{(s) + CP(s).

)

Y

Let us remark that technically a slot configuration C'is defined by C* and CP alone, CM is just a
convenient shorthand notation for the sum C* + CP.
For the following definition recall that

C(s+[L],) = > _C(t), seeRectioni42

te(s+[L],)NS

Definition 3.8 (Feasible Slot Configuration, Feasible Flight Schedule)
Let S be a slot set and R a reference value system. A slot configuration C' : S — IN3 is feasible
with respect to R, if

C(s+[L],) <b,
e, CMs+[L],) <b™,
CP(s + [L],) < b°,
and CM(s+[L],) <M

for all shifting bounds (L,b) € R and all s € S such that (s + [L],) NS # 0, and for all
non-shifting bounds (L, b)(*) € R and all s € {1, L + 1,...} such that (s + [L],) NS # 0. If
even

C([s + [Llc)s) <b

holds, then C'is called circular feasible with respect to R. Furthermore, let F be a collection of
abstract flight and series requests on S and let f : F — (S x 8)* be an abstract flight schedule.
Then f is (circular) feasible with respect to R, if its associated slot configuration C'y is (circular)
feasible.
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movements
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Figure 3.1: An example of a reference value system with shifting bounds “in action”. The reference value
system is R = {([1],,16), ([3], ,26), ([6],,42)}. The values for the corresponding time
windows (only movements values are shown) for the slot configuration C' = (C4, CP, CM)

are indicated on the axis of ordinates; the lengths of the time windows are visualized by suitably
colored rectangles. Infeasibilities are marked by “@”.
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Example 3.9

We illustrate the concept of a feasible slot configuration and a reference value system by means
of an example: Consider a time period of two hours, discretized in units of ten minutes, and
the reference value system R = {([1],,16), ([3], , 26), ([6], ,42)}. In[Figure 3.1 the numbers of
arrivals, departures and movements for every slot are indicated by the red, blue and green curves,
respectively. Above, the number of movements for each thirty-minute time window is indicated
by a point at the start of each of the time windows; the whole associated time window is sketched
as a small colored box, whose ordinate value represents the number of flight movements within
the respective time window. The same is done for sixty-minute intervals. Of course, similar graphs
could be drawn for arrival and departure values for thirty and sixty minute time windows, but we
chose to omit those for the sake of clarity. The respective bound values are drawn as dashed lines.
Note that the slot configuration shown here is not feasible for the given reference value system, as
both the last sixty-minute and the last thirty-minute time windows violate the respective bounds

(indicated by a “forbidden sign”). &

Although a slot configuration does not tell us everything about a flight schedule, it nevertheless
provides valuable information on the “pattern” generated by a flight schedule and thus allows
us to analyze how a good flight schedule should “look like”, i. e., what structural properties are
beneficial for obtaining a feasible flight schedule of maximum size. For a structural analysis of
optimal flight scheduling it may be desirable to eliminate boundary effects from the model, which
are due to the fact that slots at the beginning and at the end of the scheduling period are covered
by less reference value time windows than those in the middle of the scheduling period. This is
possible by considering the circular versions of the problems involved, where the shifting bounds
“wrap around” both ends of the scheduling horizon. Geometrically speaking, we can picture the
slots to be arranged along a circle rather than along a line, so the reference value time windows
simply reach over from the last to the first slot in the slot set S.

} } } } > time
:00 :15 :30 :45 :60

Figure 3.2: Normal view of the slot set S versus circular view for a planning horizon of one hour; some
shifting bounds with a length of 20 minutes are indicated. The blue shifting bound is only
present when considering circular shifting bounds.
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For a non-shifting bound, we will not consider circular problems. The reason for this is that for
a bound that does not naturally end at slot n, “wrapping around” the bound would completely
break symmetry. As an example, consider a non-shifting bound of length 4 and n = 9. If we want
to apply this bound in a circular way, we would have to consider the time windows {1, ..., 4},
{5,...,8}and {9, ..., 3}. But why stop here? In fact, for a shifting bound repetition would occur
at this point — not so for a non-shifting bound. If we continue (and there is no good reason not to
do so), we would have to add the time windows {4,...,7},{8,...,2},{3,...,6}, {7,...,1},
{2,...,5}and {6, ...,9}, in effect ending up with the same intervals as for a shifting bound of
length 4. This is certainly not always the case (depending on the least common divisor of the time
window’s length and n). However, the only case that is relevant for applications is the one where
n is a multiple of L for all non-shifting bounds (L, b)("), and we will consider such cases where
necessary.

3.1.4 Notation

In the following sections we will frequently use matrix-vector notation to provide for a concise
representation of our problems. Let us introduce the necessary terminology beforehand.

Letn € Nand let S = {1,...,n} be a slot set. For a slot configuration C' : S — IN3 we
identify the components C*, CP, CM : § — IN( with the vectors

Ch = (CH1),...,CR(m)) € N,
CP = (€P(1),...,CP(m)) € N,
M= (CM(),...,CM(n)) € Np.

For a shifting bound (L, b), define the incidence matrix Ry, and the bound vectors bé, b% and
v} by

]l{ L A A
]lgjr[L}o bL =b ]lm(L)
Ry = e e o and b= 0P 1
' =M. 1,,.,
L1+, ’ Y
where m(L) = n — (L — 1). For a non-shifting bound (L, b)(%), we analogously define
T
;llJr[L}o A A
/
L t1y4m, ()7 = b Ly(ry
R; = : e {0,135 and - (1)D = 60 - Dy
T
]1((m%(L)71)L+1)+[L]O O7 =M Loy,

]l[(m’(L)L+1),n}

where m/(L) = [/L].
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Chapter 3 Flight Scheduling Problems — Complexity, Structure and Algorithms

For a reference value system R = {(Ll, b1), .. (Lkybr), (Lgs1, bk+1)(L), ooy (Lgr, bk/)(L)},
we define the incidence matrix R of R by

Rr,
R
R=| " | {0, 1ym®Rxn
Lyt
,
L,
and
T
A (1AqT AqT A 4T AqT
bA = (b1 HPRISRIN i KNP s EAPS .,bk/]lm(Lk,)) :
T
D._ (;DqT DT D 4T DT
b- = (bl ]lm(Ll)a'--7bk]1m(Lk)7bk+l]lm’(Lk+1)7'-~7bk’]1m(Lk,)) )
T
M. (jMqT My T M T MqT
b+ = (bl Ly - bk ]lm(Lk)vbk+1ﬂm’(Lk+1)a'-'7bk’]lm’(Lk/)) ;

where m(R) = m(L1) + -+ +m(Lg) +m'(Lgy1) + - - - +m/(Lys). Thus, a slot configuration
(CA,CP,CM) € IN3" is feasible for R if and only if

RCA <b*, RCP <tP and RCM = R(C* 4 CP) <™.

Similarly, we define the circular incidence matrix Ry ofa shifting bound (L, b) as

17 .
]lnTH[L]oﬂs by =1,
[HEL]s | o {0,1}™™ and P :=0" -1,

Ry = :
=M. 1,.

T
Ui, 1s

Finally, for a reference value system R that consists of only shifting bounds we define the
incidence matrix R of R = {(L1,b1), ..., (Lk, bk)} by

. | R
B=|"1 €0, 11hmn,

Rp,
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3.2 Maximum Flight Scheduling

The bound vectors b, b°, DM INA™ are defined accordingly as

b= (b1, ,bf,jnf)T,
0> = (P17, 0017
M= (L. T

3.1.5 Graphics

In this chapter and the next we will frequently use graphics to visualize examples or test results.
Most of these graphics will visualize slot configurations like the ones displayed in [Figure 3.3]

shows a movements slot configuration (i. e., arrivals and departures are not distin-
guished, only flight movements are shown). The slots are depicted as stacks of blue rectangles,
flight movements that are scheduled for one of the slots are indicated by the corresponding number
of orange rectangles. If high numbers of movements are scheduled, this may also be indicated by
writing the number of movements in the corresponding slot rectangle. Below the slots some of the
time windows are shown as gray rectangles with the number of flight movements taking place
within the respective time window written inside them. If a time window is at its movements
limit, an orange frame is drawn around the rectangle. Here, nine slots are shown, where slots one
and six contain three flight movements each.

Plots like are used to display larger test results. The slots are plotted in the form of a
“time line” along the x-axis, the number of arrivals, departures and flight movements is shown
as a function plot. The values for all time window bounds are displayed in the same way, where
the y-coordinate refers to the number of movements within the time window that starts at the
respective x-coordinate. In this example, movements bounds for ten and thirty minutes are shown.

3.2 Maximum Flight Scheduling

We can now formally state the MAXiMUuM FLIGHT SCHEDULING problem.

Problem 3.10: MAXxIMUM FLIGHT SCHEDULING

Instance: The slot count n € IN, a collection F of abstract flight and series requests on S =
{1,...,n} and a reference value system R.

Question: Find an abstract flight schedule for F that is feasible with respect to R and has
maximum size (i. e., integrates a maximum number of flight movements).

This problem formalizes the main task of airport flight scheduling. Primarily, one is certainly
interested in finding a flight schedule that accommodates as many flights as possible so that the
airport and its facilities can be used to full capacity. Unfortunately, MAXiMuM FLIGHT SCHEDULING
will turn out to be an algorithmically hard problem. In the following, we will present a complexity
result supporting this claim. In contrast to this, we will analyze some exemplary special cases
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3 3

(a) a small slot configuration

mvmts.

45 Am A o

30

15

YA ‘ WMWMWW\NWM MR Doy
0:00 4:00 8:00 12:00 16:00 20:00 24:00 time

(b) visualization of test results

Figure 3.3: Graphics used in Chapters and

where the problem becomes algorithmically tractable. In addition, an integer programming model
for FLIGHT SCHEDULING will be devised that serves as the basis of our more complex model in
Chapter 4

3.2.1 Hardness of Maximum Flight Scheduling

Optimization problems are usually given in the form of a function problem (like
above), calling for an output that specifies an optimal solution. In contrast to this, complexity
results are generally stated for decision problems, which only demand “Yes” or “No” for an answer.
However, for most function problems a corresponding decision version can easily be formulated;
for FLIGHT SCHEDULING, the decision version is this:

Problem 3.11: FLIGHT SCHEDULING, DECISION VERSION

Instance: The slot count n € IN, a collection F of abstract flight and series requests on S =
{1,...,n}, areference value system R and a number N € IN.

Question: Decide whether there is an abstract flight schedule for F that is feasible with respect
to R and has size at least V.

For many optimization problems, the corresponding decision version is equivalent to the
optimization problem (which asks for the objective value of an optimal solution) in terms of
algorithmic tractability: If the optimization problem can be solved in polynomial time, one can
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3.2 Maximum Flight Scheduling

of course decide upon the existence of a solution with a certain objective value, provided the
value of the objective function can be computed in polynomial time. For the reverse direction, a
binary search technique can be employed to solve the optimization problem using repeated calls
to the decision problem. For details, we refer the reader to [[GLS93] or [[PS9g]. For this reason,
by referring to an optimization problem as N/P-hard, one usually means that the corresponding
decision problem is A/P-hard.

Theorem 3.12
Problem 3.11| (FLIGHT SCHEDULING, DECISION VERSION) is N'P-hard.

We prove the theorem by giving a reduction to FLIGHT SCHEDULING from 3D-MATCHING, which is
known to be an VP-hard optimization problem (cf. [[GJ79]).

Problem 3.13: 3D-MATCHING

Instance: Three finite, disjoint sets X,Y, Z of equal cardinality, i.e.,
M C X XY X Z and an integer N € IN.

Question: Decide whether there is a three dimensional matching of cardinality at least NV in M,
i.e., a subset M’ C M such no two triples in M’ agree in any coordinate and such
that [M'| > N.

Proof (of[Theorem 3.12). Let X, Y, Z, an integer N andaset M C X X Y x Z be an instance
of 3D-MATCHING; we assume that |X| = |Y| = |Z] = gand that X = {1,...,¢}, Y =
{g+1,...,2¢} and Z = {2¢ + 1,...,3q}. Taking S := {1,...,2q} as the slot set, define

X|=¥| =z

, aset

F,:={(a,d) c S§xS:(a,d,z) e M},
F = U {F.},

2€Z
R = {([1]0 ) (L 1a 1))} ’

the above sets can be computed in time polynomial in the size of the input to 3D-MATCHING. We
take F as the set of abstract flight requests and R as reference value system, i. e., we interpret a
triple (z,y, z) € M as part of a flight request for the slot pair (x, y), and we take different values
of z to denote different flight requests.

Now let f : F — (S x §)” be a feasible abstract flight schedule for R, then we can define a set

Mp= U {(FAE) PR). )}
2€Z:f(F;)#00

Due to the restrictions imposed by R, the set M } is a three dimensional matching in M of
cardinality | f|. On the other hand, if M’ C M is a three dimensional matching in M, we can
define a flight schedule fj; : F — (S x S)* that is feasible with respect to R by

Far (F) {(x,y), if there are x € X and y € Y such that (z,y, z) € M’;
M \Lz) =

o, else.
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Note that if there is some triple in M’ with last coordinate z, then it is uniquely defined by the
matching property of M’, thus fy is indeed well-defined. Also, |[M'| = | fr|.

This shows that there is a solution of any given size N € IN to an instance of 3D-MATCHING
if and only if the associated instance of FLIGHT SCHEDULING has a solution of size N. Hence
3D-MATCHING reduces to FLIGHT SCHEDULING, completing the proof of NP-hardness. O

3.2.2 Integer Programming Formulation

To gain some insight into the inherent problem structure of FLIGHT SCHEDULING, let us have a
look at the concise representation provided by an integer programming formulation. The integer
program consists of two “building blocks”: One set of constraints that captures the assignment
aspect, and a second set of constraints for the feasibility with respect to some reference value
system R. If R is given by its incidence matrix R on the slot set S = {1,...,n}, we get the
following integer program.

Problem 3.14: FLIGHT SCHEDULING, IP FORMULATION

Instance: The number of slots n € IN, a collection = {(F1,Z;), ..., (Fk,Z;)} of abstract
flight and series requests on S = {1, ..., n} and the incidence matrix R of a reference
value system.

Question: Find an optimal solution z € {0, 1}‘}-""'", CA,CP,CM ¢ INp for the following
integer linear program:

max llzCM (3.1)
st Y Tiaa < | for all (F},Z;) € F (3.2)
a,deS

Yo N wia=0C forallae S (3.3)
(FZ-,L-)e]-‘ des

Y > @iaa=Cy forallde S (3.4)
(F;,I;)€F a€S

Tiad = TiatA,d+A foral A eZ;s.t.a+ A,d+AeS (35)

RCA <pA (3.6)

RCP < pP (3.7)

RCM < pM (3.8)

cA+cP=cM (3.9)

Tigd =0 forall (F;,Z;) € F (3.10)

Z;
and all (a,d) € (§ x S)\ U Sin
(s,t)EFi

cA,cP,cM e N2
z € {0,1}7Imn
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Let us first remark that a feasible solution is always given by setting all variables to 0, so feasibility
is not an issue. The meaning of the decision variables x; 4 4 is

1, if series request Fj is allocated arrival slot a and departure slot d;
$ A1 7d =
v 0, else,

while C#, CP and CM represent the slot configuration associated to the flight schedule that is
determined by the values of x. The constraints and link the variables C&, CP, CM to z
(the sum simply counts the numbers of arrivals and departures for each slot, respectively),
conditions (CA, CP, CM) to be a slot configuration. In , we see a variation on the classical
assignment constraint ensuring that each series request (F;,Z;) gets allocated at most one initial
slot pair: Here, we need to allocate either at most |Z;| slot pairs to flight request F; (usually exactly
|Z;| or no slot pair at all, but if the slot set is “too short”, it may be impossible to operate all
flights). The series constraint (allocate slots for the same times relative to the starting points in Z;
is expressed by (3.5), the time window bounds can be found in (3.6)—(3.8). In constraint (3.10), x
is restricted to admissible arrival/departure pairs. Finally, the objective is to maximize the
number of flight movements.

We have only formulated the integer program for series requests, flight requests can simply be
modeled by using the starting point set Z = {0}. Single slot requests may also be integrated into
the model, for instance by introducing an additional binary variable y; , for every slot request G;
and every slot s € S, which is 1 if and only if request ¢ is allocated the slot s and inserting the
variable in the appropriate inequalities, depending upon whether the request is for an arrival or
for a departure slot.

Let us mention that, if R contains only shifting bounds, by replacing R by R we obtain an
integer programming formulation for flight scheduling subject to circular shifting bounds.

The value of the above integer program is apparently not due to a straightforward algorithmic
applicability, but rather to clarify the interdependencies between the various optimization problems
considered in this chapter. One can clearly see that flight scheduling can be considered as a
composition of two different problems, namely a standard assignment problem and the balancing
constraints imposed by the time window bounds. From this point of view, the connection to
packing subject to balancing constraints becomes evident: Assignment is simply a very basic form
of a standard packing problem, while the time window bounds constitute a balancing requirement.
The time window bounds locally (namely within their respective time windows) set limits on
the number of flights, thus requiring a certain distribution over the whole planning horizon.
On the other hand, the “shifting component” of the shifting bounds propagates the effect of a
flight assignment beyond a single slot. This way, a (albeit restricted) “globalization” of local
assignments is obtained, which one should expect to lead to a more uniform distribution of flights,
thus “balancing out” the flight schedule.
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3.2.3 Matroid Representations of Flight Scheduling Problems

The “decomposition aspect” of FLIGHT SCHEDULING into an assignment and a balancing part
(constituted by the time window bounds) evident in suggests an interpretation of the
problem in terms of independence systems and matroids. In this subsection, we give an outline of
these aspects to derive some complexity results for specialized instances of FLIGHT SCHEDULING
problems.

Lemma 3.15
Forn € N, letS :={1,...,n} beaslotset and G = {G1,...,Gn,} a collection of slot requests,

and let (L, b)\?) be a time window bound with b > 13. Furthermore, define the set Bg of possible

slot assignments by

i=1,....m
1. With G, .= {i} x G; fori € {1,...,m}, the set

Mg :={BCBg:|G,NB| <1 forallic{l,....m}}

is a matroid over the ground set Bg.

2. Let S C S be a nonempty subset of the slot set. The set of slot requests for the slott € S

is defined as Hy := \J{(i,t) : t € G;} and the sets H., := |J H; collect all slot requests
i=1..,m tes+[L],

within a time window of length L starting at slot s € S (where S can be chosen suitably to
accommodate for either a shifting or a non-shifting bound). Define

M?L,b) = {B C Bg:|H;nB| < b™ forall s € 5}7
M,y = {B C Bg: |H,NB| <P foralls e S},
Ml(vi,b) = {B C Bg:|H;NB| < WM forall s € S}.

If{H : s € S} is a collection of disjoint sets, then M‘&m, M]()L,b) and Ml(\%,b) are ma-
troids over the ground set Bg.

Proof. The sets G, ..., G}, obviously constitute a partition of Bg into disjoint subsets, thus

Mg is a partition matroid, cf.

If {H.:s e S} is a collection of disjoint sets, then it can be turned into a partition of the
ground set Bg by complementing the sets H, with H' := Bg\ U,cg H.. Hence M?L,b)’ M](DL,b)

and ./\/ll(vi p) are also partition matroids according to|Theorem 1.4 O

The consequences for FLIGHT SCHEDULING are now straightforward. While Mg models the fact
that each slot request G; may be assigned at most one slot in G;, the matroids M?L by’ M](DL b)
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and /\/ll(vi’b) model time window bounds for arrivals, departures and movements, respectively.
The condition for {H. : s € S} to be a collection of disjoint sets corresponds to the non-shifting
case, i.e, S = {1,L+1,...,|%| L+ 1} (for shifting bounds, we would have to take S =
{1,...,n — L + 1}, thus the sets H would overlap for L > 1).

Corollary 3.16
Let (n,G, R) be an instance of FLIGHT SCHEDULING with the following restrictions:

1. G consists exclusively of slot requests;

2. the reference value system R = {(L, b) (L)} consists of a single non-shifting bound, where

two out of{bA, o, bM} have values greater than or equal to |G| (i. e., only one of the three
bound values is actually relevant).

Then the instance is solvable in polynomial time.

Proof. The feasible set of the above instance of FLIGHT SCHEDULING can be represented as
the intersection of the matroid Mg with one of the independence systems M?L b M](DL p) OF

/\/ll(vi by’ namely the one corresponding to the smallest value among b*, b° and b™. As remarked

above, the non-shifting bound (L, b)(%) corresponds to setting S = {1, L +1,..., | 2] L+1},
so {H/ : s € S}isindeed a collection of disjoint sets, meaning that M?L’b), M](DL’b) and Ml(\]{,b)
are all matroids. The membership of an arbitrary subset of Bg in any of these matroids can be
tested in polynomial time, thus by the instance is solvable in polynomial time using
the two matroid intersection algorithm. O

The proof of NP-hardness for FLIGHT SCHEDULING in basically uses only one
non-shifting bound on the number of flight movements (technically, arrival and departure bounds
are also specified, but they have no effect). From the matroid representation, we conclude that this
setting is easily solvable as long as we use only slot requests consisting of just a set of movement
requests (instead of a set of slot pairs). Apparently, adding an arrival-departure coupling in the
form of flight requests (and thus slot pair requests) makes the problem AN'P-hard, even if only
non-shifting bounds on the number of movements are applied. This clearly reflects the situation for
matching problems: As is well known, classical MAxiMmuM MATCHING can be solved in polynomial
time (e. g., by modeling it as two matroid intersection), while 3D-MATCHING is an A/P-hard
problem.

3.3 Maximum Slot Packing

In [Section 3.2.2] we have seen that FLIGHT SCHEDULING can be regarded as a composition of an
assignment problem with a packing problem under balancing constraints. In this section, we will
focus on the “packing part” of the problem, more precisely on slot configurations that can arise
from a flight schedule of maximum size. On the one hand, considering only the slot configurations
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provides upper bounds on the number of flights that may be scheduled and allows to evaluate
an actual flight schedule by comparison. On the other hand, we will derive some results on
the structure of optimal slot configurations that can then serve as guidelines in the search for
optimal schedules. Additionally, by understanding how the structure and size of a maximum slot
configuration depend upon the reference value system, one can gain insight into the mechanisms
supporting or obstructing good flight schedules. These insights are of great advantage in practice
once a change in the time window bounds (their lengths, values and shifting behavior or adding or
deleting one or more time window bounds in the reference value system) must be evaluated.

Problem 3.17: MAximuM (CIRCULAR) SLOT PACKING

Instance: A slot count n € IN and a reference value system R.

Question: Find a slot configuration C'on § = {1, ..., n} that is (circular) feasible with respect
to R and has maximum size (i. e., maximizes the number of flight movements C™(S)).

Notice that the formal problem description does contain a somewhat malicious caveat: The
problem is formulated as a function problem asking for an output in the form of a vector (in contrast
to a decision problem, which only demands “Yes” or “No” as an answer, or an optimization problem,
which asks for the objective value of an optimal solution, but not necessarily for the solution itself).
This vector consists of 3n integers (where n of these — namely the movements values CM — could
be computed on the fly, reducing the size to 2n integers), thus 2(n) bits are needed to encode the
output on a binary Turing machine. In contrast to that, the input consists of the number n and
4 |R| numbers which encode the time window bounds (one length and three bound values for
each time window bound), plus |R| indicator bits (denoting shifting or non-shifting bound), hence
the input may be encoded in O (logn + |R]) bits. In order to classify complexity of a function
problem (which would usually be given in a form calling for some elaborated output beyond “Yes”
or “No”), one generally resorts to a “natural” decision version of the problem (as we have done in

Section 3.2.1)):

Problem 3.18: MAxIMUM SLOT PACKING, DECISION VERSION

Instance: A slot count n € IN, a reference value system R, and a number NV € INg.

Question: Decide whether there exists a slot configuration C'on S = {1,...,n} of size at least
N that is (circular) feasible with respect to R.

Of course, in practice one is not only interested in the objective value of an optimal solution, but
also in the solution itself, which would be the slot configuration C' in this case. The problem is
now obvious: If the formulation calls for a slot configuration as an output, the size of the output
is not polynomially bounded in the size of the input. Thus the natural decision version is not
polynomially equivalent to the function problem here, because the output of the latter cannot
possibly be computed in polynomial time (even writing it down requires exponential time); thus
the function problem cannot be solved in polynomial time, even if a polynomial time algorithm for
the decision version exists.
We propose two possible solutions to this dilemma.
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1. For certain instances a classification of the natural decision version of SLoT PACKING is
indeed possible, seeSection 3.4.2} in particular [Corollary 3.36] This is due to the fact that in
some cases it is possible to compute the optimal objective value without actually computing
a solution.

2. The fact that the wanted output is exponential in the size of the input certainly renders futile
all attempts at polynomial time algorithms for the function problem (that actually produces
a solution). The best we can hope for would then be an algorithm that is polynomial in the
size of the input and in n, and we will investigate such algorithms. Formally, one can cast
this into a more advanced decision problem.

Problem 3.19: MAXIMUM SLOT PACKING, VERIFICATION VERSION
Instance: A slot countn € IN, a reference value system R, and a feasible slot configuration

ConS ={1,...,n}

Question: Decide whether there is a slot configuration on § = {1, ..., n} that is feasible
with respect to R and that has size greater than |C| and, if so, find such a slot
configuration.

We call this the verification version of SLoT PACKING, because it can be used to verify
whether a given slot packing is maximum. The verification version of SLoT PACKING is
solvable in polynomial time if and only if the function problem is solvable in polynomial time
(using the same binary search techniques that are normally applied to establish polynomial
equivalence between an optimization problem and its natural decision version, see

for details).

3.3.1 Integer Programming Formulation

As we have already noted in[Section 3.2.2] one of two parts of the integer programming formulation
for FLIGHT SCHEDULING consists of the time window constraints. Basically, the integer program
for (CIRCULAR) SLOT PACKING can be thought of as the time window bounds part of the FLIGHT
SCHEDULING integer program:

Problem 3.20: MAxiMUM SLOT PACKING, IP FORMULATION
Instance: The number of slots n € IN and the incidence matrix R of a reference value system.
Question: Find slot configuration vectors C*, CP, CM ¢ IN? that are optimal for the following
integer linear program:
max 17cM

s.t. RCA <t
RCP <P
RCM <M
cA+cP=cM
ch,cP,cM e Ny
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For the circular version, simply replace all occurrences of R and bA, bP, pM by R and 5A, I;D, l;M,

respectively.

3.3.2 Complexity Considerations

Where the integer programming formulation for FLIGHT SCHEDULING exhibited information on
the internal composition of the problem, the integer program for SLOT PACKING is of even greater
value, as it enables us to derive a positive complexity result due to the special structure of the
constraint matrix.

Definition 3.21

A matrix A € {0,1}"? withrows af ,...,a] € {0,1}?is called consecutive ones matrix if for
every row al # 0 there are j, k € {1,...,q} with j < k such that a} = ]la,k}'

As the rows of an incidence matrix R corresponding to a reference value system R are actually
incidence vectors of time windows (i. e., intervals), such a matrix is a consecutive ones matrix.
The importance of this observation is due to the following result (a similar result can be found in
under the term “interval matrices”):

Lemma 3.22

A consecutive ones matrix is totally unimodular.

For the proof, we will use a characterization of total unimodularity due to Ghouila-Houri (see

[CH&2):
Lemma 3.23

Let A € {—1,0,4+1}"*7 and denote the columns of A by a\V),... al9. Then A is totally
unimodular if and only if for each J C {1,...,q} there is a partition J = J* U J~ such that

S aD = 3 aW e {~1,0,+1}". (3.11)
jeEJ* jeEJ~

Proof (of[Lemma 3.22). Let A € {0,1}””? be a consecutive ones matrix. Deleting rows and/or
columns from A does not destroy this property, thus each sub-matrix of A is also a consecutive

ones matrix. Let J = {j1,...,jk} C {1,..., ¢} be a collection of column indices of A and set
JT = {j1,J3,...} and J~ := {42, ja, . . . }. Then by the consecutive ones property the sum
isin {—1,0,+1} for every row of the resulting vector, therefore A is totally unimodular. O
Remark 3.24

A concept similar to consecutive ones matrices are circular ones matrices. In addition to zero rows
and rows of the form 1[7; K @ circular ones matrix may also contain rows of the form 17 — ]1[7; K]
) K

for some j < k. The matrix R defined in[Section 3.1.4/is such a circular ones matrix. Unfortunately,
a circular ones matrix is not totally unimodular in general, as is illustrated by the example

110
R=101 1],
101

74



3.3 Maximum Slot Packing

which corresponds to the slot set S = {1,2,3} and a reference value system {([2],,b)} for
arbitrary b € IN3. The determinant of R is then det(R) = 2.

As linear programming problems with a totally unimodular constraint matrix always have
integral optimal solutions (all vertices of the feasible polyhedron are integral, see for instance
[Schad])), this property is very valuable for integer programming problems. The “integer” part of
such problems need not be treated explicitly if one employs a linear programming algorithm that
is guaranteed to yield a vertex of the feasible polyhedron (provided the problem is feasible and
bounded). Such an algorithm can be implemented in polynomial time, e. g., using the ellipsoid
method, see [[GLS93]]), thus integer programming problems with a totally unimodular constraint
matrix are also polynomially solvable.

Alas, in the case of SLOT PACKING, the coupling of arrivals and departures produces a constraint
matrix that is not totally unimodular anymore, although it is composed of totally unimodular
matrices. This is due to the fact that we consider two different kinds of flights (arrivals and
departures), coupled via a common movements constraint. However, a closer look reveals that for
symmetric reference value systems we can completely disregard the distinction between arrivals
and departures, as the following lemma shows (the proof is inspired by a characterization of total

unimodularity by Baum and Trotter, see [[BT77]] or [Sch86])).
Lemma 3.25
Letn € N, S = {1,...,n} be a slot set and R a symmetric reference value system. Then any

function C : S — Iy with
C(s+[L],) <™  forall([L],,b) € Randalls € S,
and C(s+[L]) <™  forall([L],,b)") € Randalls c {1,L +1,..., {ZJ L+ 1}

can be extended to a feasible slot configuration, i.e., there is a slot configuration C' : § — N3
that is feasible for R and satisfies CM(s) = C(s) forall s € S.

Proof. Let R € {0,1}™"" be the incidence matrix of the reference value system R, let = € IN}

be the vector z = (é(l)T, ce C’(n)T)T. We need to establish existence of a vector € INj such
that z is a feasible arrivals slot configuration (i. e., represents the C* component) and (z — ) is
a feasible departures slot configuration (i. e., represents the C' component). Hence consider the

polytope
P:z{azE]R”:Oﬁxﬁz A Rz—bDSRfcgbA}.

Let ¢ := min {é’%, 2—3 ([L),, b)) € R} (notice 3 < g < 1 due to symmetry of R, and thus
1 —¢g < q)and define x :=q - 2.

Clearly, 0 < z < z by definition of . Also, for every row 7! of the matrix R we have

pA
riTx:q-ringbiMby:b?
i
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pD
and 1 (z —2) = (1-q)rfz < (1 - @by’ < b < 357" = b7,
i
Therefore 2 € P # (), and by total unimodularity of R, the polytope P has only integral vertices.
Define a slot configuration C' : S — IN} by letting C* be some (integral) vertex of P and
CP := z — C*, then clearly C is an extension of C' and is feasible by definition of P. O

<1 Arr.
< 1Dep.

_
=< 2 Mvmts.

Figure 3.4: Illustration of [Remark 3.26] The first two slots contain two movements each, which is feasible
with respect to the movements bounds. However, only one arrival and one departure are allowed
for these slots, yielding an implied movements bound of two.

Remark 3.26 y
Note that the symmetry condition b*, 5P > % for every time window bound (L, b)(?) € R
cannot be dropped for the proposition of To see this, consider the reference value

system

R:={ (2. (13.497): (B8, (4.1,5)7)}

on the slot set S = {1,2,3}. Obviously, the bM-values allow for a slot configuration with
cM = (2,2, O)T, cf. In contrast, the shifting bound of length 3 allows for at most one
departure within the first three slots, while the shifting bound of length 2 restricts the number of
arrivals within the first two slots to one, so at most two movements (one arrival and one departure)
can be scheduled in slots 1 and 2. This is clearly in conflict with the four movements prescribed by
CM = (2,2,0)T. Notice that each of the two time window bounds alone does not imply such a
contradictory behavior, this is only encountered when both are applied simultaneously.

allows us to consider movements slot configurations of the form CM : S — INg
interpreted as flight movements value of some extension of C. A (full) slot configuration C' :
S — IN3 can then be constructed from C™ as in the proof of the foregoing lemma. Due to total
unimodularity of the incidence matrix R, the construction is also algorithmically efficient. The
corresponding problem will be referred to as MAXIMUM MOVEMENTS SLOT PACKING (the same
term will be used for the circular case). As a consequence of this and total unimodularity of the
incidence matrix of a reference value system, we immediately obtain the following complexity
result.
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Theorem 3.27
For a symmetric reference value system,|Problem 3.19 (MAXIMUM SLOT PACKING, VERIFICATION
VERSION) can be solved in polynomial time. Equivalently,[Problem 3.17 (MAXiMUM SLOT PACKING)
can be solved in time polynomial in n.

Proof. The proof is a direct consequence of [Lemma 3.22| and [Lemma 3.25 Given a slot set
S ={1,...,n} and a reference value system R with incidence matrix R, a maximum movements
slot configuration CM € INZ can be found in polynomial time by solving the linear programming
problem

max 17CM
s.t. RCM < M
cM >0

and finding an optimal vertex of the feasible set, which is also integral. Then, CM can be extended
to a maximum slot packing by determination of a feasible vertex x of the polytope

P::{xemnzogxch ARCM—ngRxgbA}.

By total unimodularity, z is integral and C : s +— (x5, CM —2,, CM)T is a maximum slot packing
which is feasible with respect to R. ad

3.4 Algorithms for Maximum Slot Packing

In this section we will be looking into the SLoT PACKING problem from an algorithmic point of
view. Although in principle established a polynomial algorithm to solve the verification
version of MAxiMUM SLOT PACKING (and also the function problem, polynomial in the input and in
n), there are still good reasons to explore alternative algorithmic approaches. On the one hand, the
special structure of the constraints can be exploited to devise an easily implementable algorithm
for MaxiMuM SLOT PACKING and its circular version (note that the latter cannot be tackled by the
approach of [Section 3.3). On the other hand, albeit polynomial in theory, the practical solution
of linear programming problems is often carried out by the simplex method, which can have
exponential running time in the worst case (but is usually much faster than approaches based on
the ellipsoid algorithm in practice). Thus alternative polynomial algorithms may not only be faster
than a linear programming based technique, but also reveal some structural results about relevant
classes of solutions for the MaxiMuM SLOT PACKING problem. In this section, we will focus on
MAXIMUM MOVEMENTS SLOT PACKING problems (cf. in particular in
order to provide for a concise presentation of the algorithmic results. Of course, this implies that
for a time window bound (L, b)(®) only the movements bound value b™ is relevant. For this
reason, we will sometimes omit the values b* and bP and simply write (L, b)(@) instead of
(L, (b*,bP,bM)), especially in the examples and illustrations.
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Problem 3.28: MAXIMUM MOVEMENTS SLOT PACKING

Instance: A slot count n € IN and a reference value system R.

Question: Find a movements slot configuration CM : S — Ny on S = {1,...,n} that is
(circular) feasible with respect to R and has maximum size (i. e., maximizes the number

of flight movements CM(S)).

3.4.1 Algorithms for Maximum Movements Slot Packing

We will first present an approach to MAxiMmuMm MOVEMENTs SLOT PACKING that is based on a
reformulation for consecutive ones problems (cf. proposed by Veinott and Wagner
(cf. [VW62al [VW62E])). The idea closely resembles a treatment of staff scheduling problems
proposed in [BIOR80]. A more recent overview of related work on consecutive and circular ones
constraints (cf. can be found in [[HLOE], that work also contains an outline of shortest

path approaches to linear programming problems with consecutive and circular ones matrices.

A Shortest Path Formulation

In order to establish a connection between MAXIMUM MOVEMENTS SLOT PACKING and SHORT-
EST PATH, we will look at a reformulation based on a linear programming formulation of
MAXIMUM MOVEMENTS SLOT PACKING that is straightforwardly derived from the linear pro-

gram presented in For a slot set S = {1,...,n}, and a reference value system
R = {(Ll, b)), (L, bk)(a’f)} with incidence matrix R, find a vector (indicating the

number of flight movements per slot) CM ¢ ING (or RY in the LP relaxation) that solves the
following linear program:

max 17¢cM

s.t. RCM <M

cM >0
We start by defining decision variables wy, . . . , wy,, where w; counts the number of flight move-
ments up to slot 7, i.e.,
J
wo := 0, wj ::ZC%VI forj e {1,...,n}. (3.12)
t=1
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Thus, the SLoT PACKING linear program is transformed into

max wy, (3.13)
st Wepp, —ws < bi-v[ forall (L;,b;) € R

andall s € {0,...,n — L;} (3.14)

WetL, — Ws < bi-v[ for all (L;, bi)(L") eER
andall s € {0, L;, ..., (|?*/L:] — 1) L;} (3.15)

Wy — Wayy, 1, < O for all (L;, b)) € R,
where n is not an integer multiple of L; (3.16)
We_1 — Ws <0 forall s € {1,...,n} (3.17)
wo =0 (3.18)

The inequalities correspond to the shifting bounds, whereas and reflect the
non-shifting bounds of the original problem. The constraints model the non-negativity
conditions z > 0.

We will now show that (3.13)—(3.18) is in fact the dual of a SHORTEST PATH problem. To see this,
define a digraph G = (V, A) on the node set V := {0, ..., n} as illustrated in[Figure 3.5}

« For every shifting bound (L;,b;) € R and every time window [s+ 1, s+ L;] (s =
0,1,...,n — L;) define a forward arc (s, s + L;), yielding the arc sets

Ai={(s,s+L;):s=0,1,...,n—L;} forall (L;,b;) € R.

« For every non-shifting bound (L;, b;)(“*) € R and every time window [s + 1, s + L] (for
suitably chosen s € §) and, if necessary, for the “truncated” time windows ending in slot n,
define a forward arc (s, s + L;), yielding the arc sets

Ai={(s,s4+Li): s=0,L;,...,(|"/L;] —1)L;} forall (L, b)) e R,
A= {(L”/Llj Li,n) : (Li, b)) T € R A nis not an integer multiple of Li} ,

« For each pair of consecutive nodes v — 1, u define a backward arc (u, u — 1), yielding the
arc set
B:={(n,n—1),(n—1,n—2),...,(1,0)}.

Thus the graph G = (V, A) has the arc set

A= ( U Ai> uA U B,

i=1,....k
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M M M
bl bl bl

Figure 3.5: Slot Packing as SHORTEST PATH problem. Shown is an example for n = 5 slots and the reference

value system R = {([3],,b1), ([2], ,b2) @ }. containing one shifting and one non-shifting
bound.

containing one forward arc for every time window of a time window bound plus n backward arcs.
Furthermore, define an arc length function / : A — INp,

oM, if (u,v) € Ay

I((u,v)) = luy := S BN, if (u,v) = (/L] Li,n) € A
0, if(u,v)€ B.

In terms of the digraph G the linear program (3.13)—(3.18) now reads

max wp
st wy — wy < luw for every arc (u,v) € A
wo = 0.

With Kronecker’s delta function d,,, € {0,1}, defined as d,,, = 1 < u = n, the dual of that
linear program is

min - Y luw - fuw (3.19)
(u,w)€EA

s. t. Z Sfou — Z Sfuv = Oun foru=1,...,n (3.20)
veV:(v,u)€A veV:(u,w)eA

Z va - Z fOU =g (3.21)
veV:(v,0)€EA veV:(0,0)EA

=0 (3.22)

g € R. (3.23)

This linear program is easily recognized as a network flow problem with flow variables f,,,
(u,v) € A, where and constitute the flow conservation requirements. Notice that
is redundant and can be dropped together with the decision variable g (both originate from
considering wg as a variable and wg = 0 as a constraint in the primal). We then arrive at the
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problem of sending one unit of flow from the node 0 to the node n at minimum cost, where the
cost of sending one unit of flow across arc (u,v) € A is ly,. This special network flow problem
is, of course, equal to the problem of finding a shortest path from 0 to n in the graph G with arc
length function [. Notice that for a shortest path problem we are also guaranteed that an integral
solution w to the dual shortest path program (3.13)—(3.18) can be found efficiently.

Multiple algorithms exist for the solution of SHORTEST PATH problems. For the setting at hand
(featuring a digraph with nonnegative arc lengths) one can, e. g., employ Dijkstra’s algorithm
(cf. ) requiring at most O (n2) operations. Using clever data structures (like a Fibonacci
heap), the algorithm can also be implemented with running time O (|A| 4+ nlogn), see [AMO93].
Dijkstra’s algorithm has one particular advantage for the setting encountered in the context of SLoT
PACKING: It is fundamentally a primal-dual algorithnil] which means it does not only solve the
SHORTEST PATH problem, but also produces a solution to the original (dual shortest path problem)
along with the shortest path. Thus we arrive at[Algorithm 3.1] solving the verification version of
MAXIMUM MOVEMENTS SLOT PACKING in polynomial time.

Algorithm 3.1: Dijkstra’s algorithm for MAXIMUM MOVEMENTS SLOT PACKING

Input: A slot count n € IN and reference value system R = {(Ll, b)), (Ly, bk)gk}
on the slotset S = {1,...,n}.
Output: A movements slot configuration CM : & — Ny, which is feasible with respect to R
and has maximum size.

1 Construct a graph G = (V, A) with arc length function / : A — INj as in
Set U « {0}, wp < 0.

Set w,, « lg, for all v € V with (0,v) € A.
Set w,, «— oo for all v € V with (0,v) ¢ A.
while U # V do
Find u € V\U such that w,, = min {w, : v € U\V'}.
7 Set U « U U {u}.
8 Set wy, < min {wy, wy + Ly} for all v € V with (u,v) € A.
9 end
10 Set CM « w, —w, 1 forallu € S = {1,...,n}.

N

A s W

Theorem 3.29
An instance of MAXIMUM MOVEMENTS SLOT PACKING on n slots and with a reference value system
consisting of k time window bounds can be solved in running time O (kn + nlogn).

'A primal-dual algorithm basically considers a primal problem and its dual simultaneously. For a primal feasible
solution it tries to produce a corresponding dual solution such that the primal-dual pair fulfills the complementary
slackness conditions, thus providing for a certificate of optimality. If that is not possible (due to non-optimality of
the primal feasible solution), an improvement to the primal solution can be computed. Repeating this process yields
an optimal primal-dual pair after finitely many steps. A detailed exposition on primal-dual algorithms and Dijkstra’s
algorithm in particular can be found in [PS9g].
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Proof. Using the transformation described above, MAxiMuM MOVEMENTS SLOT PACKING can
be transformed into a SHORTEST PATH problem on a digraph with (n + 1) nodes and at most
(n 4+ nk) arcs (at most n arcs are required for each time window bound). A Fibonacci heap
implementation of Dijkstra’s algorithm (like the one described in detail in [[AMO93])) thus produces
an optimal solution of both the SHORTEST PATH problem and its dual (3.13)-(3.18) in running time
O ((k+1)n+nlogn) = O (kn + nlogn). By reversing the transformation (which can
be done using n elementary operations), we obtain an optimal solution within the running time
claimed in the statement of the theorem. O

A Greedy Algorithm

We will now show that close analysis of the SHORTEST PATH approach yields the insight that the
algorithm can even be implemented as a pure greedy strategy for MAXIMUM MOVEMENTS SLOT
PACKING. As stated above, Dijkstra’s algorithm can be used on a suitably defined graph to obtain a

solution of the slot packing problem, cf.
However, the particular graph G = (V, A) with arc length function / : A — Ny defined in

has a very special property: For every node u € V\ {0} = {1,...,n}, there is
exactly one backward arc (u,u — 1), all other arcs are forward arcs, meaning they have the form
(u, v) for some v > u. Moreover, the backward arcs all have length 0, while the forward arcs all
have positive length (assuming all time window bounds are strictly greater than 0). Dijkstra’s

algorithm basically works like this (cf. [Algorithm 3.1):

 Choose and “tag” (i. e., add to the set U) a node u with minimum label w,, among all nodes

in V\U.

« “Propagate” the node label w,, to all neighbors v € V\U of node u, setting w,, to w,, + lyy
if this decreases v’s label.

Hence whenever a node u gets tagged and (v — 1) has not yet been tagged, we can simply set
wy—1 to wy, (as there is an edge of length 0 from u to (u — 1)) and tag u — 1 as well. We can
therefore assume without loss of generality that the nodes are tagged in order of their node number.
After the algorithm has finished, the labels meet the condition

Wy—1 < Wy = Wy + lyy = w,  for some v < w such that (v,u) € A is a forward arcE|

thus at the optimal solution for every node v € V one of the following cases applies:

1. There is some node v < w such that (v,u) € A and w, + ly, = w,: This situation
corresponds to some time window bound (L;, b;)(?) € R, such that [v + 1, u] is one of its
corresponding time windows and w,, — w,, = b}1. (This means that the flight movements
added at slot « make that time window “active”.)

®These conditions are actually optimality conditions and are equal to complementary slackness for the shortest
path problem.
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2. Wy—1 = wy;: This situation corresponds to some time window bound (L;, bi)(“i) € R and
aslot s € S, such that

e (s+ 1)+ [Li], is a time window corresponding to the time window bound,
e (u—1),u € (s+1)+ L], and
o Wy_1 — Ws = b%v[.
(This means no more movements can be added to slot u, as it already contained in some

“active” time window.)

With this analysis in mind, we can interpret Dijkstra’s algorithm for the MaxiMum MOVEMENTS
SLoT PACKING problem as the following greedy algorithm:

« Start at slot 1 and set ¢} to the maximum number of movements that is possible without
violating a time window bound.

o After slots 1 to u have been processed, move on to the next slot « + 1 and set C’%l to the
maximum number that is possible without violating a time window bound.

For a concise presentation of that algorithm, let us define the following notation:

Definition 3.30

Let S = {1,...,n} be a slot set, s € S and (L, b)(®) a time window bound. The covering
time windows set W((L, b) (@), s) is then defined as the set of all time windows corresponding to
(L, b){?) on the slot set S that contain the slot s, precisely:

« For a shifting bound (o = 1)
WL, ) = {[t+1,t+L]:te{s—L,...,s =1} A [t+1,t+ L] CS};

o for a non-shifting bound (o = L)

s —1)L+1, |s/L|L if [s/t1 L < n:

WD), ) o= { [T =D LA L L] L], [fe] L <
(5] =1) L+ 1, n], if [s/L] L >n

The greedy formulation of the SHORTEST PATH approach is outlined in[Algorithm 3.2]

For the running time of |Algorithm 3.2} define L' := max {L1, ..., Ly} and note that computing
CM (W) for all time windows W of length L that contain a given slot s can take up to O (kL'?)

operations using a naive implementation. Of course, this runtime bound can be improved by
storing the values of CM (1) for all relevant time windows and simply updating those values
in each iteration of the “for” loop in As we move forward one slot at a time
(changing the slot configuration only at that one slot), the update is fairly straightforward and can
be performed in O (kL') steps, yielding an overall runtime bound of O (nkL’) operations for the
greedy implementation. As L’ and k are usually small constants compared to n, this algorithm
is of linear order in most applications, whereas the pure Dijkstra implementation has complexity
O (nlogn) for constant k.
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Algorithm 3.2: Greedy algorithm for MAXIMUM MOVEMENTS SLOT PACKING

Input: A slot count n € IN and reference value system R = {(Ll, b)), .. (L, bk)”} on

the slotset S = {1,...,n}.
Output: A movements slot configuration CM : & — Ny, which is feasible with respect to R
and has maximum size.

1 SetCZM%OforaHiGS.
2 fors=1,...,ndo

5 | Set CM e min {max {0, — CM(W)} - W € W((L,b)@),5) A (L)@ € R}.

4+ end

3.4.2 Algorithms for Circular Maximum Movements Slot Packing
A Shortest Path Formulation

For the algorithms of the consecutive ones property of the reference value system’s in-
cidence matrix is crucial, as it guarantees that the reformulation yields a linear programming
problem with exactly two variables per inequality, one with a positive and one with a negative
sign, which corresponds to a digraph’s arc-node incidence matrix. Alas, this property is lost when
we consider circular bounds, which correspond to a circular incidence matrix representing the
reference value system. In this subsection, we will therefore investigate a method to carry over the
idea of the SHORTEST PATH approach to circular shifting bounds, and afterwards present a greedy
algorithm that can be applied for both circular and non-circular bounds. Recall that for circular
constraints we only consider shifting bounds.

It has already been said that the SHORTEST PATH algorithm of can be generalized to
the circular setting, and the way to do this is by resorting to PARAMETRIC SHORTEST PATH problems.
A PARAMETRIC SHORTEST PATH problem is defined by a digraph G = (V, A) with a distinguished
node 0 € V and an arc length function I* : A — R dependent on a parameter A € [0, ool:

R = 1((u,v)) := Iy + Mo,

where I*,] : A — R are two unparameterized arc length functions. The task of PARAMETRIC
SHORTEST PATH is now to compute the shortest path distances w; from the node 0 to all nodes
u € V with respect to the arc length function [* for all values of A > 0.

We give an outline of how to solve this problem (details can be found in [AMO93] and [YTO91])):

« First, consider a shortest path tree T for any given value of \. A shortest path tree T* C A

is a tree in G such that the shortest 0-u paths with respect to I* are contained in 7 for all

nodes u € V. One can then show that w) = (w*)} 4+ X - ()7, where (w*); and (), are

the shortest path distances in the subgraph (V, T)‘) with respect to the arc length functions

I* and [, respectively.
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« Starting with A = 0, determine a “breakpoint parameter value” \’ greater than the current
value of A such that the shortest path tree stays unaltered for all parameter values between
the current A and \'. To this end, consider all non-tree arcs in the graph and determine the
minimum parameter value increase where at least one of these arcs must enter the shortest
path tree (leading to a new shortest path tree via an arc exchange).

o Successively determine all breakpoint parameter values, i. e., those values for the parameter
A where the shortest path tree changes, and compute the corresponding shortest path trees.

One can show that is algorithm produces only a finite number of different shortest path trees, thus
the PARAMETRIC SHORTEST PATH problem reduces to successively computing all (finitely many)
breakpoint parameter values and applying a shortest path algorithm with respect to [* and [ for all
the resulting shortest path trees. A refined version of this idea is presented in [YTO91]], yielding an
algorithm with running time O (|V| |A] +|V|*log ]V|) =0 (|V\3) that produces at most | V|
different shortest path trees for a digraph G = (V, A)

We will now apply the PARAMETRIC SHORTEST PATH algorithm to MAXIMUM MOVEMENTS SLOT
PACKING on the slot set S = {1, ..., n} with reference value system R and circular time window
bounds. Recall that we only consider shifting bounds for circular problems, so using again the
transformation (3.12), the problem is equal to (the integer programming version of) the linear
program

max Wy,
s.t. wepp, —ws < bi-VI forall (L;,b;) € Randalls € {0,...,n— L;}
Wy pir;, —ws <M —w, forall (L;,b;) € Randalls € {n—L; +1,...,n—1}
We1 —wWs <0 foralls € {1,...,n}
wo =10

We turn this into a parameterized linear program by replacing the variable w, on the right
hand side by the parameter A. Then, analogous to the above treatment, a corresponding graph

G = (V, A) can be defined (see on the node set V' = {0, ..., n} and the arc set

A= |J Au@d)]|us,
i=1,...k
where A;:={(s,s+L;):s=0,...,n— L;} forall (L;,b;) € R
(21); {(s,s—n+L)):s=n—Li+1,...,n—1} for all (L;, b;) € R
{( n,n )( _17n_2)a'--a(170)}'
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bM bM bM

Figure 3.6: Circular Slot Packing as SHORTEST PATH problem. Shown is an example for n = 5 slots and
the reference value system R = {( 3], ,b) } containing one shifting bound that is applied
circularly.

The arc length function I* : A — Ry is now defined as

bM, if (u,v) € Ay
P(u,v)) =1, = B — A, if (u,0) € (A);
0, if (u,v) € B.

The task at hand is then to solve the PARAMETRIC SHORTEST PATH problem on G starting at
A = 0, thus obtaining the breakpoint parameter values for A and the corresponding values for the
decision variables w; (which are equal to the shortest path distances from node 0 to the nodes )
for w € V. For a solution to the original problem, we impose the additional requirement that

wy = A, (3.24)

Having obtained a solution to PARAMETRIC SHORTEST PATH, it is then an easy task to determine a
value of \ with that property and the corresponding shortest path distance w;).

Note, however, that the graph G may contain arcs of negative length depending on the parameter
A. Thus we may no longer use Dijkstra’s algorithm for the shortest 0-n path computations needed
for the solution of vVPARAMETRIC SHORTEST PATH, but rather an algorithm that can handle negative
arc lengths, e. g., the algorithms of Bellman-Ford or Floyd-Warshall (see for details on these
algorithms). This fact also accounts (at least partly) for the runtime O (]V!S) of the algorithm
from mentioned above. For that algorithm, a certain procedure for producing the shortest
path trees is employed that guarantees that a maximum of |V'| such trees are needed for the
solution. Application of the proposed PARAMETRIC SHORTEST PATH algorithm on the graph G with
arc length function [* as defined above and afterwards computing the correct parameter value
now yields the desired algorithm for circular MAXIMUM MOVEMENTS SLOT PACKING.

Theorem 3.31
An instance of circular MAXIMUM MOVEMENTS SLOT PACKING on n slots and with a reference
value system consisting of k shifting bounds can be solved in running time O (kn? + n?logn).
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Proof. Transforming the instance into a PARAMETRIC SHORTEST PATH problem as outlined above
and applying the algorithm of [YTO91]| we get a complete set of shortest path trees in running time
at most O (|V| || + V| log |V ; = O (kn? + n2logn). By [YTO91], the algorithm yields at
most (n + 1)2 shortest path trees, hence using , the correct value for A can be computed in
running time O (n?). The optimal slot packing can then be devised by computing the dual value
to the shortest path distances obtained by the algorithm (which can certainly be done in course of
the algorithm as well), analogous to the case of non-circular time window bounds treated above.
Therefore, the overall running time is dominated by the parametric shortest path algorithm. As
|A| < (n+ 1) + k(n + 1), this yields the desired runtime bound. O

A Greedy Algorithm for (Circular) Maximum Movements Slot Packing

While the SHORTEST PATH approach of can somehow be carried over to the situation
of circular shifting bounds, the greedy interpretation of fails, because the arc set is
more complex for the graph G defined in the foregoing subsection. In this subsection, we will
investigate a different greedy-like approach to (circular) MaxiMmum MOVEMENTS SLOT PACKING,
which will also reveal some structural results about relevant classes of solutions for the problem.
More specifically, we will present an algorithm that produces a uniform optimal solution, thereby
also providing an alternative proof of polynomial solvability of the circular and non-circular
variant of MAXiMUM SLOT PACKING (more precisely, their respective verification versions) as well
as proving their equivalence in terms of objective value under minor restrictions. As this section is
only concerned with movements slot configurations, we will only denote the movements bound of
a time window bound, thus by writing (L, b)(®) we imply that b € R is the movements bound
value if not explicitly stated otherwise.

can be improved in one aspect: It does not necessarily yield a slot configura-
tion that is also feasible when the shifting bounds are applied as circular shifting bounds, as
shows. This immediately raises the question whether there is an easy algorithm for
MaxXIMUM MOVEMENTS SLOT PACKING that yields a circular feasible optimal solution.

Example 3.32

Consider the reference value system R = {([6], ,3); ([4], ,2)} (only movements bound values
are given) on the slot set S = {1,...,6}. Application of [Algorithm 3.2 yields the movements slot
configuration CM = (2,0,0,0,1,0) depicted in [Figure 3.7al This solution is certainly feasible
with respect to R, but CM([5 + [4]_],) = 3 > 2, thus CM is infeasible for the circular variant of
MAXIMUM MOVEMENTS SLOT PACKING, see

For circular shifting bounds, the flight movements have to be distributed in a more uniform
way. [Algorithm 3.3| presents an approach to do this. The algorithm works in two steps: First, a
number of | ¢ | movements, where ¢ = /L, for the longest shifting bound Ly, is allocated to each
slot. This is exactly the number of movements that can be allocated uniformly to each slot without
violating any of the shifting bounds. Then at most one movement is added to each slot, starting at
slot 1 and proceeding by increasing slot number. The movements are added in a way that keeps
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.

(a) Non-circular bounds

3

(b) Circular bounds

Figure 3.7: Greedy movements slot configuration of [Example 3.32

the ratio of movements per slot close to the quotient ¢, and hence a very uniform slot configuration

is obtained. See for an exemplary application of

Example 3.33
Let us illustrate

Algorithm 3.3

by a small example: We consider the slot set S = {1,...,15} and

the reference value system R = {([6], ,3); ([4], ,2)} (only movements bound values are given)
as in As 3/6 = 2/4 = 1/2, the system is clearly monotone and ¢ = 1/2. The algorithm
then computes a slot packing as follows:

1. |q] = 0, so start with z = 0 € IN§ and v = 0.

N

j=Lv/j=0<qg=2z < landv « 1.

3. j=2:v/j =1/2 £ g = no change.

4. j=8:v/j=1/3<qg= 23— landv « 2.

5. j =4:v/j =2/4 £ ¢ = no change.

6. j=5:v/j=2/5<q= 25— landv « 3.

~

. j=6:7v/j =3/6 £ ¢ = no change.

8. The output of the algorithm is the movements slot configuration z = (1,0, 1,0,1,0), as

shown in[Figure 3.8
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Algorithm 3.3: Greedy Algorithm for (Circular) MAXIMUM MOVEMENTS SLOT PACKING

Input: A monotone reference value system R = {(L1,b1),. .., (Lg, bx)} with
L1<L2<‘--<Lk.
Output: A circular maximum movements slot configuration z € INgj for n = Lj.
1 Setq «— 2—’;.
2 Setz «— |q] -1 € ING.
3 Setv « 0.
4« for j =1tondo
5 Set v «— v + zj.
6 if? < ¢ then

7 Set zj « zj + 1.
8 Setv «— v+ 1.
9 end

10 end

[Algorithm 3.3|produces a maximum movements slot configuration as long as the reference value
system is monotone. This requirement is not very surprising, as it is generally impossible to get a
uniform slot configuration for a non-monotone reference value system. What is more surprising is
the fact that the algorithm only relies on the values of Ly and b, completely ignoring the other
shifting bounds. Of course, this is a direct consequence of monotonicity, which fundamentally
states that the longest bound (Ly, by,) is also the relatively strictest, allowing for the least number
of movements per slot. As the algorithm takes this very ratio as a “target measure”, the solution
will automatically be feasible for each shifting bound in the reference value system.

N
e

Figure 3.8: Result of [Algorithm 3.3|for [Example 3.33]
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Lemma 3.34
Let R = {(L1,b1),...,(Lg,br)} be a monotone reference value system that consists of only
shifting bounds and assume Ly, > Ly_1 > --- > Ly. Then computes a circular

maximum movements slot configuration on the slot set {1, ..., Ly }.

Proof. Setn := L; and let v() and z() be the values of v and = at the end of the j-th pass of the
for loop in Furthermore, define g = Z—’; and ¢’ := |q]. Of course, if ¢ = ¢/, then the

algorithm never enters the “then”-block in lines 7 and 8, thus v\9) = j - ¢/ forall j € {1,...,n}
and 7 2 =n - ¢’ = by. The vector z is then clearly a slot configuration of maximum size and
it is feasible, thus a maximum slot packing as asserted.

In the following, let us assume that ¢’ < ¢, which in particular implies % < g. The idea of

is to compute a slot packing z whose “movements to slots ratio” stays “close to ¢”.
More precisely, in each iteration either ¢’ or ¢’ + 1 movements are added to the slot configuration z,

and we will first show, that the algorithm guarantees that for every j € {1, ..., n} the inequalities
) — 1 )
— <q< — (3.25)
J J

hold. We prove these by induction on j. For j = 1, notice that qT/ < ¢, hence z; = ¢/ + 1 and also
v = ¢/ + 1. We then get
oM 1 e

— <4</ © ¢ <qg<q+1,

which is obviously true by definition of ¢'.
For the inductive step, assume (3.25) is true up to j — 1, so our induction hypothesis reads

,U(]—l) — 1 /U(j_l)

j—1 i-1
We distinguish two cases:
Case vl = v~ 4 ¢': From the first inequality of the induction hypothesis, we get
W — 1< (G- 1)g
=00 g 1< (j-Dg+d <(—1g+q=jg
) —1

= ;
J

<gq.

For the second inequality, notice that v(¥) = v(7=1) 4+ ¢ implies zj = ¢’ and thereby

() -1 4 g
v _ vl

. — )

J J

so the statement is obvious.
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Case v = vU=1) 1 g’ 4 1: This case implies z; = ¢’ + 1 and thereby

(G-1) /

v +

vt
J

q.

Hence we get
- = - <gq,
J J
the first part of the claimed inequality. For the second part, suppose CRARES SR q

G J J
”jj_l > ¢, thus

By induction,

rl)(j_l) _|_ q, _|_ 1 fv(j_l)
- < =
J J—1
S (G-D)EYU D +¢ +1) < joli=b
Sild+1) <oV g +1=00

)
J

But this means ¢’ + 1 < ¢, clearly a contradiction (recall ¢ = |q]).

The inequalities provide a bound on the final solution v* = v(™):

¥ —1 v*
<g¢g< —,
n

yields (recall n = Ly and ¢ = bx/Ly,)
v* =1 << vt = 0t =y

Due to the shifting bound (L, by ), there can be no better solution, thus the algorithm produces a
slot packing of maximum size. Hence to prove optimality of the solution, we have to show that the
solution is indeed feasible with respect to all shifting bounds in R.

In order to prove feasibility of the solution z* produced by the algorithm, let (L., b,-) be some
shifting bound contained in R and let ¢ € {1,...,n} such that ¢t + (L, — 1) < n. Then

t+Lr—1

. — (t+Lr_1) (t_l)
d 25 = (v —v
= ( )
<(qt+L,—1)+1—¢q(t—1)) due to (3.25)

b
:qL,,+1:L—’ZL,,+1.
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Hence
t+Lp—1 by
> zi<qly+1=—L,+1<b+1,
j=t L

as b—’; < Z—T by monotonicity of R. As z € INj}, the sum above has to be integral, meaning

t+L,—1

Z Zj < bT‘a
j=t

thus z is feasible with respect to (L, b,) for all shifting bounds (L,,b,) € R. This proves z is a
maximum slot packing. u

The following important result is an immediate consequence of [Algorithm 3.3|and [Lemma 3.34

Theorem 3.35

Let R = {(L1,b1),...,(Lk,br)} be a monotone reference value system with Ly, > Ly >
-+ > Ly and letn = rLy, for somer € IN. Then a maximum movements slot configuration on
S ={1,...,n} with respect to R has size rby.

This result also provides us with a polynomial algorithm for a restricted class of instances of the
decision version of MAXIMUM MOVEMENTS SLOT PACKING. Recall that the decision problem only
asked for the value of an optimal solution (more precisely, whether there is a solution exceeding
some given objective value IV), not for the solution itself (and producing an actual solution would
necessarily result in an exponential algorithm).

Corollary 3.36
Let (n,R, N) be an instance of the decision version of MAXIMUM MOVEMENTS SLOT PACKING
with the following additional properties:

1. R=A{(L1,b1),...,(Lk,bx)} is a monotone reference value system consisting exclusively
of shifting bounds,

2. nis a multiple of max {L; : (L;,b;) € R}.

Then the instance can be solved in time polynomial in k (and thus in time polynomial in the size
of the input).

Proof. Let us first assume that L, = max {L; : (Lj,b;) € R}. As n is a multiple of Ly, there
is some r € IN such that n = rLy. Then application of yields the result that a
maximum slot packing on & = {1, ..., n} has size rbi. Thus we only need to find the maximum
among the L1, ..., L, which can be done in time O (klog k) by simply sorting these numbers.
Then computing r and rby, are two elementary operations, and so is the comparison of b and
N, which promptly yields the desired answer. Thus the algorithm has running time O (k log k),
which is polynomial in the size of the input. O
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3.5 Minimum Slot Cover

3.5.1 Covering Slot Configurations

In the context of FLIGHT SCHEDULING and MAXIMUM SLOT PACKING, a natural question to ask is:

“How does a bad flight schedule look like? Is it even possible to produce a non-
optimal flight schedule? How large can the gap between a bad and a good flight
schedule possibly be?”

This section will be devoted to investigations into “bad” slot configurations, so called slot covers,
while [Section 3.6 will deal with the question of how to avoid such covers in the flight scheduling
process. All of the above questions naturally call for an answer in the context of slot configurations,
i.e., with no actual flight requests considered. If we know how a bad slot configuration looks like,
producing an example with suitable flight requests that would actually result in such a schedule is
then an easy task.

First, let us make the notion of a “bad” flight schedule more precise. A flight schedule that is not
maximum, but that would allow for additional flights (hence non-optimality is simply due to lack
of suitable demand) would not necessarily be a bad thing, so the precise question is “Are there
non-maximum slot configurations such that no more flights can be added to them?”

Definition 3.37 (Slot Cover)
Let S = {1,...,n} be a slot set and R a reference value system on S. A movements slot
configuration CM : & — INj is said to cover a slot t € S with respect to R if there is a time

window bound (L, b)(") € R and W € W((L,b)(®), ¢) (cf. such that
cMw) =M.

A slot configuration is called a slot cover or covering slot configuration if it is feasible with respect
to R and covers each slot in S.

Notice that we require a slot to be covered by a movements time window bound, thus a slot that
does not allow for an additional departure, but could accommodate one more arrival or vice versa,
is not covered. In this section, our primary interest is in identifying structures that lead to bad
flight schedules, and for a symmetric reference value system, especially in a real-world context,
one would expect the movements bounds to be decisive for slot covering configurations. Hence we
concentrate solely on movements in this section, thereby avoiding some “exotic cases” that can be
introduced by considering also arrival and departure bounds. Also, we will generally assume that

all reference value systems are symmetric and denote time window bounds (L, (b, 0P, bM)) (@)
by just (L, ™) (@) for the rest of this section, as only the movements value is relevant for a slot
cover. Thus if not explicitly stated otherwise, a time window bound (L, b)(?) is to be read as
(L, (b, b,b)")(?) in this section and the next.

The question above can now be rephrased as the query for a slot cover that minimizes the
number of flight movements.
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Problem 3.38: MINIMUM SLOT COVER

Instance: A slot count n € IN and a reference value system R on the slot set S = {1,...,n}.

Question: Find a slot cover CM : S — INg with respect to R that minimizes the number of flight
movements CM(S).

See [Figure 3.9)for an illustration of a slot cover for the reference value system R = {([5],,3)}.
The figure shows a maximum slot packing with six flight movements in two different slots in
and a minimum slot cover with three flight movements in one slot in In
both cases, no more flights can be added without violating the shifting bound. Similar situations
are possible for more than one shifting bound.

3 3 3 3

(a) a maximum slot packing (b) a minimum slot cover

Figure 3.9: Example of a minimum slot cover with three movements versus a maximum slot packing with
six movements. The single shifting bound ([5], , 3) is applied in this example on the slot set

S=1{1,...,9}.

MinimuMm SLoT COVER is interesting under two different aspects: On the one hand, a solution to
MiniMuM SLoT COVER exhibits a lower bound on the number of flights that can be handled at an
airport for any given planning horizon and reference value system; so together with MaxiMum
SLoT PACKING we get an estimate of how much can be lost by implementing a non-optimal flight
schedule. This is also highly useful when one is interested in finding a reference value system that
does not permit grave errors in the sense of exhibiting not too large a gap between an optimal
flight schedule and any non-optimal solution. We will evaluate reference value systems that avoid
such a gap in a more realistic setting in[Chapter 4]

On the other hand, MiNniIMuM SLoT COVER is a problem regularly faced by large airlines at
their home airport. Every airline considers one airport (or several airports, for very large airlines)
their home airport, a notion that commonly correlates with a high number of in- and outgoing
flights for that particular airline (e. g., Lufthansa has their home airports at Frankfurt/Main and
Munich airport). Thus a large airline operates a major fraction of all flights taking place at their
home airport, which gives them the opportunity to control a major fraction of the available slots.
Naturally, an airline is not only interested in servicing as much profitable flights as possible, but
also in blocking its competitors from doing the same, if they get the opportunity. So the question
of MiNIMUM SLOT COVER arises in this “unfriendly” context: How many and which slots would
an airline need to acquire in order to block competitors from entering the market? Of course, for
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competition to function properly, government and airport authorities are interested in detecting
and preventing such “blocking behavior”. Knowledge about the structure of minimum slot covers
can help in this task and in creating reference value systems (or other additional constraints) that
avoid such situations.

3.5.2 Integer Programming Formulation

In a sense, MINIMUM SLOT COVER is dual to MAXIMUM SLOT PACKING — while the latter problem
aims at “blocking” a slot set with as many flights as possible, the former asks for a minimal set of
flights that do the same. However, this duality does not correspond to classical LP-duality (not
even when we ignore the integer variable requirements), although there is some relationship. To
clarify the relations between MaxiMum SLOT PACKING and MINIMUM SLOT COVER, we will briefly
look at an appropriate integer programming model here. For a more concise presentation, we
restrict ourselves to shifting bounds here; integration of non-shifting bounds into the model is
straightforward.

Recall the LP relaxation of the integer programming formulation for MAXIMUM MOVEMENTS

SLoT PACKING with respect to the reference value system R = {(L1,b1),..., (Lk, bg)} (with
only shifting bounds) on the slot set S = {1, ..., n} (cf. [Section 3.3.1):
max 17z
st x(s+[Li],) < b forall s € Sandall (L;,b;) € R
x>0

The LP-dual of this problem is

k n
min (biv[ . Z yis>
i=1 s=1
k t
s.t. Z Z Yis | =1 forallt=1,...,n
i=1 \s=t—L;
y =0,

where we used the fact that for a shifting bound (L;, b;)

t65+[Li]o = SEt—[LZ’]O.

If one interprets y;5 as indicator variable for the i-th shifting bound with time window starting
at slot s (which is not quite valid, because y;s is not necessarily a binary variable), the constraints
bear some similarity to MiNniMmum SLoT CovER. Alas, the objective function does not count flight
movements (which is impossible, because there are no variables corresponding to flight movements
in the dual), but rather “active” shifting bounds time windows weighted by their respective bound
value.
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In fact, a proper formulation of MiNiMUM SLOT COVER as integer programming problem needs to
incorporate aspects from both primal and dual MaxiMmum SLoT PACKING. We propose the following
formulation:

min 172 (3.26)
st a(s+[Li],) <M foralls=1,...,nandalli=1,...,k (3.27)
z(s + [Li],) > ysi - B foralls =1,...,nandalli=1,...,k (3.28)
k t
Z Z Yis | > 1 forallt=1,...,n (3.29)
i=1 \s=t—L;
x € Ny (3.30)
y e {01}

This program combines elements from primal (the packing constraint (3.27) and the objective (3.26),
changed to minimization) and dual (the covering constraint (3.29)) of MAXIMUM SLOT PACKING
and links them via (3.28).

3.5.3 Slot Cover with a Single Shifting Bound

Let us first investigate slot cover with only one shifting bound (L, b). Besides giving a general
idea about how minimum slot covers can look like, this situation fairly accurately represents the
case of multiple shifting bounds where only one bound has an actual influence on the number of
flight movements in a maximum slot packing or a minimum slot cover (a situation not uncommon

in practice, also see[Section 3.4.2). An illustration of the situation is displayed in [Figure 3.9b

Theorem 3.39

Let (L, b) be a shifting bound, letn = 2L — 1 and denote the slot set by S = {1,...,n}. Then
the size of a maximum slot packing on S with respect to R = {(L,b)} is 2b, and the size of a
minimum slot cover on S is b. Furthermore, forn’ > n, any slot cover of {1,...,n'} has size
strictly greater than b.

Proof. Consider the slot configurations P, C' : S — N defined by

b, forte{1,L+1 b, fort=1L

P(t):=<" ort €{L,L+1}, and C(t):=< " o ’

0, fort¢ {1,L+ 1}, 0, fort# L.
Clearly, P(s+ [L],) = bforevery s € {1,...,n — L + 1}, so P is a feasible slot configuration.
On the other hand, P is maximum, because the time windows 1 + [L], and (n — L 4+ 1) + [L],
can accommodate for a maximum of b movements each, and these two time windows contain

all slots in S, thus no slot configuration can have a size of more than 2b movements under the
shifting bound (L, b).
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For the slot configuration C, we get C(t + [L],) = bforallt € {1,...,n — L + 1}, thus C'is
a slot cover. On the other hand, a slot configuration C'< with less than b movements cannot be
a slot cover, because that would imply C<(¢ + [L],) < bforeacht € {1,...,n — L+ 1}, and
thus no slot in S could be covered by C'<, proving minimality of C'.

Finally, consider n’ > n and suppose there was some slot cover C’ : {1,...,n'} — INg of size
borless. Let tg € {1,...,n'} be aslot with C’(¢g) > 0, then

S i={1,...,n" }\([to — L+ 1, to] U [to, to + L — 1])

is not empty. Let s9 € S’ be a slot in .S, then s is only contained in time windows that do not
contain the slot ¢g, thus C’(¢t + [L],) < b — 1foreacht € {1,...,n} such that sg € t + [L],.
Hence s is not covered by C’, a contradiction. O

3.5.4 Slot Cover with two Shifting Bounds

The Mintmum SLoT CoVER problem with two shifting bounds is similar to the problem with one
bound. The general idea for defining a slot cover is the same: Produce a slot configuration with a
local peak of flight movements and make that peak as narrow as possible. The problem with this
approach is that the smaller shifting bound will generally not allow for an arbitrarily narrow peak,
so we have to take that aspect into account.

Theorem 3.40
Let R := {(L',V'); (L,b)} be a monotone, symmetric reference value system with L' < L and let
q € Ny, ¢ < L such that there exists a slot configuration P’ : {1,...,q} — INg of size bM that is
feasible with respect to (L', b'). Then there is a slot cover of size b™ with respect to R on the slot
setS ={1,...,2L — q}.

Furthermore, if P’ is circular feasible with respect to {(L',b')} orifq+ L' < L + 1 there is
also a feasible slot configuration of size Y™ + P'([1, min {q, L — ¢}]). In particular, if L > 2q
then there is a maximum slot packing of size 2b™.

Proof. Forgand P': {1,...,q} — INj as required by the theorem define the slot configuration
C : § — N (see[Figure 3.10|for an illustration) by

C(t) == P(t—(L-gq)), forte{L—q+1,...,L},
o, fort ¢ {L—q+1,...,L}.

The union of the two time windows 1+ [L], and (L — g+ 1) + [L], is the whole slot set S, and
C(1+[L],) = C((L —q+1) +[L],) = b,
thus C' covers every slot in S. Furthermore, C is feasible with respect to (L', b") by feasibility of

P’, and it is also feasible with respect to (L,b), as it has size bM. Hence C is a slot cover for the
slot set S as desired.
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P’
C

| L .

I L 1

(a) The slot cover C'

P’
P

| Lo i .

I L 1

(b) The slot packing P

Figure 3.10: Illustrations for the proof of [Theorem 3.40

Now consider the slot configuration P : S — INj defined by (see [Figure 3.10)

P'(1), fort € {1,...,q},
P(t):=¢P(t—-L), forte{L+1,...,min{L+q,n}},
0, fort ¢ {1,...,q}U{L+1,...,min{L+ q,n}}.

Clearly, P has size b™ + P'([1, min{q,L — q}]), asn — L = L — q. P is a feasible slot
configuration with respect to the shifting bound (L, b): Consider a time window s + [L], for
s€ 8. Ifs=1ors > q+ 1 then the time window intersects only one of the intervals [1, ¢] and
[L+ 1, min {L + ¢,n}], hence P(s + [L],) < b™. So suppose 2 < s < g, then by definition of
P’ we have

(s+[L],)N([1, qU[L+1, min{L+q,n}])=1[s, ¢ UL+ 1, min{L + s,n}|,

hence P(s + [L],) < P'([1, q]) = b™. Also, if P’ is circular feasible then P is feasible with
respect to the shifting bound (L', b'); and if ¢ + L' < L + 1 then there is no time window of
length L' that contains slots in both [1, ¢] and [L + 1, min {L + ¢, n}], also yielding feasibility
of P with respect to (L, 0’). Thus P is a slot packing of the desired size.

If, in particular, L > 2q thenmin{q, L — ¢} = qandq+ L' <2q < L,hence ¢+ L' < L+1.
That means P is feasible with respect to R and has size 2bM. Furthermore, the time windows
1+[L], and L — g+ 1+ [L], each bound the number of flights movements within their respective
domain by bM, and their union is S. Therefore there can be no slot packing of size larger than
20M in S, meaning that P is a maximum slot packing. O
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3.5 Minimum Slot Cover

Notice that in[Theorem 3.40| we did not claim that the slot cover C' : S — Ny of size b is a
minimum cover. While the results for one shifting bound would suggest such a conjecture, the
situation is more difficult for two shifting bounds.

q

L'=28

L'=28

Figure 3.11: The slot cover of [Theorem 3.40/need not be a minimum slot cover.

Example 3.41

Consider the example of R = {([10], , 18); ([8], , 16)} (only movement bounds values are given),
which is clearly monotone. A slot packing P’ : {1,...,q} — Ny is, e.g., given by P’ =
(16,0,0,0,0,0,0,0,2) for ¢ = 9. As eight slots can only accommodate up to 16 flight movements,
q = 9 is even the least possible value for g. This yields a slot cover of 2 - 10 — ¢ = 11 slots by 18
flight movements. However, C' = (0, 0,0, 0,0, 16,0, 0,0, 0, 0) is also a slot cover (this time, all

slots are covered by time windows of length 8) of the slot set {1, ..., 11} using only 16 movements
(and the same idea can be extended to a slot cover of {1,...,15} using 16 movements), thus
the slot cover constructed in the proof of is obviously not a minimum cover in this
situation. &

However, in some cases the slot cover of is actually a minimum slot cover. A class
of instances where this happens is somehow “in between” the cases of a single shifting bound and
two shifting bounds, namely the case where one of the two bounds has a length of just one slot.

Theorem 3.42

Let B € IN, (L,b) be a shifting bound with ®"'/1. < B and consider the (monotone) reference
value system R := {([1],, B); ([L], ,b)} on theslot setS = {1,...,2L — q}, whereq = [*"'/B].
Then the size of a minimum slot cover on S with respect to R is b™, and forn’ > 2L — q, any
slot cover of {1,...,n'} has size strictly greater than b™. Furthermore, if L > 2q, the size of a
maximum slot packing on S with respect to R is 2b™.

Proof. First notice that R is indeed monotone due to the requirement bM/ L < B, which also
implies L > ¢ = [0"/B], as L € IN. Define a slot configuration C' : S — Ny (similar to the
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illustrations in [Figure 3.10) by

B, forte [L—q+1, L—1],
Ct):={M —(¢q—1)B, fort=1L,
0, otherwise.

Then C has size b™ and is clearly feasible with respect to R. Furthermore, as

C(L+[L],) =C((L —q+1)+[L],) ="
and (14 [L],)) U((L —q+ 1) +[L],) =S,

the slot configuration C' is a slot cover. Suppose C' is not a minimum slot cover, then there exists a
slot cover G : S — INg of size b — 1 or less. This means that no slot is covered by a time window
bound of length L, thus G(t) = B for each slot ¢t € S. But then G(1 + [L],) = LB > b\,
contradicting our assumption about the size of G. Thus C is a minimum slot cover.

Now consider n’ > 2L — ¢ and suppose there was some slot cover C' : {1,...,n'} —
INg of size bM. Choose to,t; € S with ty < t; such that C’([to, t1]) = bM, and such that
C'([to + 1, t1]) < ™ and C’([tg, t1 — 1]) < bM; then |[to, t1]| > ¢. For a slot cover, every
slotin {1,...,n’} must be contained in some time window of length L that completely contains
[to, t1]. Consider a slot

So € {1,...,71/}\([151 —L+1, tl] U[to, to—i—L—l]),

which exists due to n’ — (2L — ¢) > 0. Then s is only contained in time windows that do not
contain [tg, 1] as a subset, and hence C’(sg + [L],) < b™ — 1, contradicting the assumption of C’
being a slot cover. Hence every slot cover on {1, ..., n'} must contain at least bM + 1 movements.

For the slot packing, let L > 2q and define a slot configuration P : & — INg by (for illustrations,

see the similar situation in[Figure 3.10))

B, forte[l,q—1U[L+1, L+q—1],
P(t):=¢M —(¢q—1)B, forte {q,L+q},
0, otherwise.

As L > 2q = 2L — q > L + ¢, all flight movements defined by P are indeed assigned to
slots in S, so P has size 2b™. Furthermore, for each s € {1} U {q+1,...,2L — ¢} we have
P(s+[L],) < bM, and for each s € {2,...,q} we have

P(s+[L]) =M~ (¢—1)B+(q¢—s)B+ (s —1)B =b",
hence P is feasible with respect to R (notice P(¢) < B for all ¢ € S). Furthermore, the union of
the time windows 1 + [L], and (L — g + 1) + [L], is the whole slot set S, and the shifting bound

(L, b) allows for a maximum of b movements within each of these time windows, thus P is a
maximum slot packing. O
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Remark 3.43
Theorem 3.42[can be slightly generalized to monotone reference value systems R = {(L’,V'); (L, b)},
where L is an integer multiple of L’. In such a case, by simply regarding an interval of length
L’ as one slot and scaling down L appropriately we get the reference value system R’ =
{(1,¥); (1/’,b)}, where [Theorem 3.42| can be applied to the slot set S’ := {1,...,2L/L' — ¢}
with ¢ = [0*/@)M]. To “scale up” the result to the original system afterwards, note that each
slot containing B = b’ movements can be replaced by a circular slot packing of size ()™ on L’
slots, see|[Lemma 3.34|and [Theorem 3.35} which retains feasibility of the scaled up versions of the
configurations C' and P in the above proof with respect to R. Thus the results of
are, appropriately scaled, also true for a setting with two shifting bounds where the larger bound’s
length is an integer multiple of the shorter one’s.

3.6 Avoiding the Gap between Slot Packing and Slot Cover

The MiniMum SLoT COVER problem is in some sense dual to MAxiMuM SLOT PACKING. The
difference between a slot packing and a slot covering configuration (if there is any difference)
provides for a measure of how much one can possibly gain by optimization under the given
circumstances, we will refer to that difference as the packing-covering gap in the following.
From a different point of view, one could also express this question as “How much can be lost
by employing some flight planning procedure that does not necessarily yield an optimum?” Of
course, this question will at once be followed by “How can one avoid ending up with non-optimal
solutions (or at least enforce solutions that are close to optimal)?” An answer to this question can be
particularly valuable in an online scheduling context, where not all requests are known in advance.
In such a situation, one can produce an optimal schedule for the known requests that might turn
out to be a rather bad choice when the complete request set is revealed afterwards. But if the
constraint set would not allow for non-optimal flight plans, such a problem could never emerge.
This setting does have some practical relevance, although the impact is limited, as sometimes an
airline decides to offer a new connection amidst a planning season, and then requests a suitable
slot pair.

So the focus of this section, in contrast to the rest of this chapter, is not finding an optimal
flight schedule subject to the given constraints, but to modify the constraints in such a way that
any feasible schedule will be optimal, or can at least be extended to an optimal schedule. This
might seem a little strange at first sight — if one knows how to get to an optimum, why not just
apply that knowledge and thus solve the problem? However, this is sometimes not the easiest
solution from a practical point of view. After all, implementing an optimal solution to the flight
planning problem would require major changes for all parties involved, new procedures would
have to be developed, new software would have to be implemented on the existing systems. In
contrast to that, minor adjustments of the constraints (in this case, the time window bounds) do
occur on a very regular basis (e. g., the flight movements bound values are adjusted at least once a
year). Hence all systems and all parties involved in the planning process are prepared for such
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small adjustments, meaning a small change of the reference value system could be implemented
without too many (potential) problems. Another motivation for changing the constraint system
could be the suppression of uncooperative behavior on the part of some airlines. As was outlined
in[Section 3.5] large airlines may have the potential of “blocking” a fair amount of slots by placing
their requests such as to form a configuration close to being a slot cover. This way, some of
the airline’s competitors can be barred from offering services at an airport, much to the airport’s
(and the customers’) disadvantage. Thus an airport will not only be interested in detecting such
“blocking behavior”, but also in constraints that inhibit it.

If one tries to sum up the results of the previous sections in one “rule of thumb”, this could be
“For a maximum slot packing, aim at a uniform distribution of the flight movements and try to
avoid narrow local peaks in the slot configuration.” Of course, this is not the whole truth, but as a
guideline, this rule will turn out to be quite effective, even in practical settings with many more
constraints for the scheduling process. So to avoid (or at least reduce) the gap between a maximum
slot packing and a minimum slot cover, a modification of the rules is in order that avoids narrow
local peaks or the negative effects (“spreading out”) of these peaks. In addition, such a modification
should not be too complicated, so that it may be integrated in more complex scenarios without too
much modifications to existing models and procedures.

With in mind, one might first think of resorting to non-shifting bounds only, i.e.,
replacing all shifting bounds with non-shifting bounds with the same bound values. However,
this approach does not work in general. One problem here is due to boundary effects. Consider
for an example, where a maximum slot packing and a minimum slot cover for two
non-shifting bounds are depicted. In this example, the fact that n is not the least common multiple
(or a multiple thereof) of the two bound lengths involved, is exploited in order to create an “open
boundary” that is in turn responsible for a positive packing-covering gap.

6 4

(a) a maximum slot packing of size 10

6 0

(b) a minimum slot cover of size 6

Figure 3.12: Example of boundary effects causing a positive packing-covering gap even for non-shifting
bounds with the reference value system R = {([10], ,6)9; ([7],,5)(V} and n = 14.

o

However, this is not the only issue. Even if we restrict ourselves to monotone reference value
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systems R and define 7 to be some common multiple of all bound lengths in R (thus avoiding
boundary effects as shown in [Figure 3.12), a positive packing-covering gap can occur.
shows an example of such a situation. Here, an effect similar to situations of shifting bounds occurs
(cf. [Section 3.5): Instead of two shifting bounds of the same length overlapping on a common “local
traffic peak”, the overlap is now provided by two non-shifting bounds of different length. Two time
windows, namely 1 + [6]_ and 5 + [4],, both contain slot number 5, and thus 8 flight movements.
Thus very few flights suffice to make both these windows active and cover a large amount of the
slot set. (The situation is similar to the “local peaks” used to construct slot covers in [Section 3.5])

10 10
8 8 4

(a) a maximum slot packing of size 20

10 8
2 8 8

(b) a slot cover of size 18

Figure 3.13: Example of a packing-covering gap when larger bound lengths are not a multiple of the next
one’s length down. The reference value system used here is R = {([6], ,10)(®); ([4],,8)®},
and the slot count n = 12 is the least common multiple of 6 and 4.

These observations motivate the following definition.

Definition 3.44

A reference value system R = {(Ll, b)), (L, bk)("k)} with L1 < Ly < --- < Ly is
said to have the inclusion property, if for each j € {1,...,k — 1} the number L, is an integer
multiple of L.

Reference value systems having the inclusion property are not uncommon in practical applications.
Often, a system with lengths 60 minutes, 30 minutes and 10 minutes or 60 minutes and 20 minutes
is usedﬂ these all have the inclusion property.

Theorem 3.45

LetR = {(Ll, b)) (L, bk)(Lk)} be a monotone reference value system that consists of
only non-shifting bounds and has the inclusion property, and letn € IN be an integer multiple
of max {Li (L, b)) e 7?,} Then the size of a maximum slot packing with respect to R on
S ={1,...,n} is equal to the size of a minimum slot cover.

*For parameters actually used in practice see|[Chapter 4andhttp://sws.fhkd.org/| the website of the German
airport coordinator.
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Proof. For easier notation, define for j € {1,...,k} the “start slots set” of the time window
bound (L;,b;)F) by S; == {1,L; +1,...,n— Lj + 1}.

We may assume L; < --- < Ly, and define r = n/r, € IN. According to
in particular a feasible slot configuration of size r - b}! exists on the slot set
S ={1,...,n}. Due to the non-shifting constraints, a maximum of b}! flight movements can be
contained in each of the time windows ¢ + [Lg], fort € {1, Ly + 1,...,(r — 1)L + 1}, hence
a slot configuration that contains rb% movements is a maximum slot packing

Now let C' : § — Ny be a minimum slot cover. For s € Sj choose j € {1,...,k— 1} and
s' € Sj such that (s’ + [L;],) N (s + [Lk],) # 0, then (s' + [L;].) C (s + [Lg],) due to the
non-shifting nature of the time window bounds in R and due to the inclusion property. Thus
the restriction of C' to each of the time windows s + [Lg],, s € S, also has to be a slot cover
with respect to R on the slot set s + [Ly],. Hence it suffices to proof the claim of the theorem for
n = Lk.

Let 8" ;= {1,..., Ly} and let C" : 8’ — Ny be a minimum slot cover with respect to R on
the slot set S’. Naturally, the size of C” is at most b}, and we have argued above that a slot
configuration of that size exists and is, in fact, a maximum slot packing. It remains to show that
C' cannot have a size less than bl,:d. To see this, we use induction on j = 1,..., k to show the
following statement: If a slot configuration C’ : 8" — INg covers all slots in {s +1,...,s + L;}
with respect to the reference value system R; := {(Ll, b)) (L, bj)(Lj)} for some
se€ S;NS  then C'(s+ [Lj],) = bg/[.

For j = 1, there is only one non-shifting bound in R, hence C’(s 4 [L1],) = b} for all s €
S1 NS’ Now consider some j € {2,...,k} and assume the assertion is true up to j — 1. Suppose
there is some s € S; NS’ with C'(s + [L;],) < bj, then the slots in s + [L;]_ must be covered
with respect to the reference value system R ;_; already. Application of the induction hypothesis
yields C'(s' 4 [Lj1],) = b}L, forall 8" € {s,s + Lj 1,...,5+ (Li/L; -1 — 1) Lj_1} by the
inclusion property, and thus

C'(s + [Lj],) = Lofrs - Ly > b}
by monotonicity of R (and thus R ;), a contradiction.

This asserts in particular that C’(1 + [Lg],) = bg, thereby proving the statement of the
theorem. )

Theorem 3.46
Consider a reference value system R = {(L1,b1),...,(Lg,br)} consisting of only shifting

bounds, and define
b.
b* = min{ \‘L]J : (Lj,bj) S R} .
J

“This also shows that the size of a maximum slot packing does not increase by going from shifting to non-shifting
constraints (which corresponds to removing many of the constraints). This is important in practical considerations,
because by changing the constraints one will usually not want to allow for more flights in total.
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3.6 Avoiding the Gap between Slot Packing and Slot Cover

Then with respect to the new reference value system R* := RU{([1], , b*) } the size of a MAXIMUM
SLOT PACKING is equal to the size of a MINIMUM SLOT COVER for every slot set S = {1,...,n}
wheren € IN.

Proof. For each slot configuration P : S — INj that is feasible with respect to {(1,b*)}, each
shifting bound (L;,b;) € R, and each s € S, the inequality

P(s+[L;],) <b*-L; < i

J_ijijj

holds, thus a slot configuration is feasible with respect to R* if and only if it is feasible with
respect to {(1,b*)}. Hence no slot configuration on S = {1, ..., n} that is feasible with respect
to R* can contain more than n(b*)™ movements.

Now consider an arbitrary slot cover C' : S — N on S with respect to R*, then C(s) = (b*)M
for every s € S: Suppose there was some slot s’ € S with C(s') < (b*)M and consider any
(Lj,bj) € Randaslott € Ssuch that s’ € t + [L;],. Then

C(t+[Lj],) < (L — DO +C(s) < L) < b,

thus s is not covered, contradicting our assumption of C' being a slot cover. Therefore, every slot
cover has size exactly n(b*)M, which is equal to the size of a maximum slot packing. a

The modification suggested in[Theorem 3.46|is basically to replace the complex interaction of
several shifting bounds by one very simple non-shifting bound that ensures feasibility of the result
with respect to the original reference value system while at the same time being as “loose” as
possible. Usually, the new reference value system R* will allow for less flight movements than the
original system R, but it will have the benefits of simplifying the optimization process and of not
allowing for any blocking behavior by airlines. In[Chapter 4} more precisely in [Section 4.4.2} we
will investigate the effects of this idea in a real-world setting and suggest a more realistic approach
based on this result.

Remark 3.47

As above, a slight generalization seems natural: Consider a reference value system R =
{(L1,b1),...,(Lg,bg)} consisting of only shifting bounds as above, let L* := ged {Ly, ..., Ly}
and b* := min {|%/L,; - L*|}. As outlined above, one can then “scale down” the problem by
contracting each of the sets {1,..., Ly} ,{Lx + 1,...,2Lg},... to oneslot and then modify the
time window bounds accordingly. By imposing an additional bound of ([1], ,b*) for each of these
“new slots”, we are exactly in the situation required by the theorem, thus planning on the new
system would result in no packing-covering gap. Of course, after the planning has been done, one
would “scale back up” by replacing every “new slot” by L* “old slots”, using a circular feasible slot
configuration of suitable size for each of the intervals {1, ..., Ly}, {Lx+1,...,2Lg},... (see
outline above).
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It is tempting to simplify that approach by defining L* and b* as above and then replace the
original reference value system R by R U {([L*}O , b*)(L*)} instead of scaling down. Unfortu-
nately, this approach will generally not work, as is illustrated by the example in [Figure 3.14] The
figures show a maximum slot packing and a minimum slot cover with respect to the reference
value system R = {([3]0 ,2)3) ([6],,4), ([9], 6)}, which would arise by applying the above
procedure to {([6],,4), ([9],,6)} (meaning contract the slots in groups of three, according to the
bound of smallest length ([3], , 2)). In the minimum slot cover shown in[Figure 3.14b| no flight
movements are placed in the middle group of three slots (fourth to sixth slot), while the first and
last group of three slots each contain two flight movements. This certainly covers slots one to
three and seven to eight using a time window of length three. But the slots four to six are also
covered, namely by the time window 3 + [6],, which contains all four flight movements in the
slot configuration displayed. On the contrary, the maximum slot packing shown in[Figure 3.144]
contains six flight movements, thus a positive packing-covering gap exists in this example.

2 4 6 8 2 4 6 8
2 2 2 2 0 2
(a) a maximum slot packing of size 6 4

(b) a minimum slot cover of size 4

Figure 3.14: Maximum slot packing and minimum slot cover for the reference value system R =

{(31,.2®. (6], ,4). ([9], . 6)}. see[Remark 3.47]

3.7 Concluding Remarks

In this chapter, we introduced the FLIGHT SCHEDULING problem and the related optimization
problems Maximum SLoT PACKING and MiNiMum SLoT COVER. The first two problems aim at
a flight schedule that integrates a maximum number of flight movements, while our studies of
MinimuM SLoT COVER gave some insight into the structure of bad flight schedules. In combination,
these considerations provide valuable information about the inherent mechanism governing FLIGHT
SCHEDULING problems.

Of course, the model we looked into in this chapter is still substantially simplified compared to
the constraints that govern flight scheduling in real-world applications. Hence, to test our result
for viability in practice, we will have to consider realistic instances and a much more complex
mathematical model. We will do so in the following chapter, building upon the foundation laid out
here.
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Although some insight into complexity issues was provided in this chapter, there are so many
variations of scheduling, packing and covering problems that we could not possibly investigate all
of them. To conclude this chapter, let us briefly comment on one such variant that is somehow “in
between” FLIGHT SCHEDULING and SLOT PACKING and demonstrates the limitations of the matroid
approach that can be used for certain subclasses of FLIGHT SCHEDULING problems. More precisely,
consider a situation where the “ground time”, i. e., the time between an arrival and the subsequent
departure for a flight, is a fixed amount of time g € S for all flights, where S = {1,...,n} isa
slot set.

Any choice of the ground time g induces a one to one mapping between a collection of slot re-
quests and a corresponding collection of flight requests by considering G; as an arrival slot request
and associating with each slot request G; the flight request F; := {(a, [a+gln) s ac€ Gi}. For
slot requests, we were able to obtain some complexity results via matroid theory, while for general
flight requests the FLIGHT SCHEDULING problem is known to be NP-hard. Here, we formally deal
with flight requests (i. e., slot pairs), but find them to be very similar to slot requests via a fixed
ground time coupling. The problem can then be stated as:

Problem 3.48: MAXxiIMUM SLOT PACKING WITH A/D COUPLING

Instance: The number of slots n € IN, a shifting bound (L, b) and a fixed “ground time” g € IN.

Question: Find a slot configuration C'on S = {1,...,n} that is feasible with respect to R and
maximizes the number of flight movements CM(S) subject to the constraints

CP(s) = CA(s —g) forall s € S where s — g € S,
CP(s)=CA(n+1—yg) foralls € S wheres —g ¢ S.
In this setting it is natural to assume a circular slot set, i.e., a slot set S = {1,...,n} where

n is a multiple of L (so we do not run into problems with circular non-shifting bounds, cf. the
discussion in and interpret a slot number ¢ > n as [t],,]. In reality, this could either
mean that the same flight pattern repeated itself over and over again, or we could think of a flight
request {(a, d)} with d > a, but [d],;; < a, as a flight that stays at the airport for the night and
leaves in the early morning. Now, only the bound b™ should be considered, because separate
arrival/departure bounds are of no value in this situation. The notation used here is similar to
that in We will now show that — in spite of the similarities to the slot request
considerations — the matroid approach used there (cf. does not carry through.

For the flight request set 7 = {F}, ..., F},, } associated to the slot requests G = {G1, ..., G},
define F} := {(i,a,d) : (a,d) € F;} and for t € S define the set of flight requests with arrival
(departure) at slot ¢ as

= J {Gtd:(td) e F}

i=1,....m
H)P = U {(i7a7t) : ((I,t) € FZ};
i=1,....m
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respectively. For a subset S C S of the slot set, we can define the set of flights arriving (departing)

within the time window s + [L], (cf. by

(HMY. = UHtA forse S

[tes+[L] ] [n
(HP), := UHP fors e S.
[tes+[L]]n
A natural ground set is then
B]—' = UF’L(’
i=1,....m
and the set
M?L,b);g = {B C Bg: ‘B N (HA)/S + ‘B N (HD); <M forall s € S}

is an independence system over Br.

Unfortunately, MG(DL big is not a matroid. To see this, we exhibit an example demonstrating
that the matroid exchange property (cf. b does not hold for ./\/l“(DLb);g. Consider a
non-shifting bound (L, b)) such that n = 2L, g < L and b™ = 2k is even and define a flight

request set F = {F,..., Fyr_1} by

Fii=-=F,={(1,149)},

Fip1 == Fy = {(L+1,L+1+g)},
Fory1 == F3,:={(L,L+g)},

Fypp1 == Fyq = {(2L, 9)}.

Then the sets

U:=|J{(i,a,d) : (a,d) € Fi}, V:=J{(i,a,d): (a,d) € F}}
i=1,...,.2k i=2k+1,...,4k—1

correspond to the flight requests Fi, ..., For and Fok41, ..., Fur—1, respectively, and their re-
spective cardinalities are |[U| = 2k = |[V| + 1, see for an illustration of U and V.
Furthermore, the requests in U and V' account for the following numbers of arrivals and departures
within the time windows 1 + [L], and (L + 1) + [L].:

o

1+[L], (L+1)+[L],
Arrivals Departures Arrivals Departures
U k k k k
\'% k k—1 k—1 k
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Hence, both U and V' are independent sets in M?L,b); g 38 they account for at most b™ = 2k flight
movements for each of the relevant time intervals. However, for every element (i, a,d) € U, the
set V' := V U {(i,a,d)} would represent at least b™ + 1 flight movements for at least one of
the two time windows 1 + [L]_ and (L + 1) + [L], (as for each element of U inserted in V, two
flight movements are added to one of those time window), thus V' ¢ MCZDL,b) g This asserts that
the matroid exchange property does not hold for M . . thus the independence system is not a
matroid.

Coupling arrival and departure of a flight request destroys the matroid structures of FLIGHT
SCHEDULING problems with only slot requests, even if the coupling is not flexible (if it was, we
could interpret the problem as an instance of 3D-MATCHING for a suitable shifting bound, cf.
[Section 3.2.1). Of course, similar variations on FLIGHT SCHEDULING and MAXIMUM SLOT PACKING
can be thought of, e.g. allowing for different ground times with an upper and a lower bound,
or using more than one shifting bound. Identifying a property (preferably one that bears some
relevance to applications) to classify the complexity of these problems is an interesting question
following up on the results of this thesis.

slot 1 slot 1
.\

s o

. ; !
= \. § g —

z I é I
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l ? l (k—1) dep. %
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-
\. \.
slot L +1 slot L + 1
(a) Arrivals and departures in the set U (b) Arrivals and departures in the set V'

Figure 3.15: lllustration of the flight request sets U and V. A set of n = 2L slots is shown in a circle,
together with the two time windows 1 + [L], and (L + 1) + [L], (gray). It is impossible to
move an arrival/departure pair from the larger set U to the smaller set V' without violating
one of the time window bounds for V.
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Chapter 4

Applications of Flight Scheduling at
Airports

In this chapter, we will expand the theoretical considerations of into a model suitable for
practical application. To this end, we will first describe the practice of flight scheduling, clarifying
and motivating various classes of constraints in detail in[Section 4.1| In[Section 4.2} the constraints
will be translated into a concise mathematical model of the flight scheduling problem, different
aspects of the model will be discussed and refined along the way. evaluates our model
on both real-world and realistic random data. The results obtained will be discussed under aspects
of both solution quality and solution structure, relating the practical results to our findings of
[Chapter 3| In|Section 4.4 we present some practical considerations on alternative reference value
structures that aim at avoiding bad flight schedules, again expanding on the work of
specifically the ideas and results on MiNimUM SLoT CovEr and the gap between MINIMUM SLOT
Cover and MAXIMUM SLOT PACKING, see Sections [3.5/and [3.6] Finally, contains some

concluding remarks.

4.1 Flight Scheduling in Practice

4.1.1 The Slot System and the Constraints for the Flight Scheduling
Process

As was already explained in[Section 1.3] the capacity at most airports is limited and often does not
bear up against the vastly growing demand for national and international air traffic. To resolve this
situation, the so called has been developed as a means of allocating the scarce resource
of airport capacity to the airlines wishing to offer a connection to and from an airport. In the rest of
this section we will describe the slot system and its constraints including some special regulations
for German airports in greater detail. Although some of that information was already given in
the descriptions here will be much mored detailed, aiming at a concise mathematical
model for flight scheduling that can be used for practical purposes.

Alslodis defined as “the scheduled time of arrival or departure [...] for an aircraft movement on a
specific date at a coordinated airport.” ([LATA07])) The procedure of slot allocation is applied only at
airports where demand exceeds capacity by a noticeable factor during certain periods, these airports

111



Chapter 4 Applications of Flight Scheduling at Airports

are referred to as|fully coordinated airports In Germany, by summer 2008 the following airports
are fully coordinated: Frankfurt, Berlin (Tegel, Schonefeld, Tempelhof), Diisseldorf, Miinchen and
Stuttgart. Thus, in order to provide air service to and from a coordinated airport, an airline first
needs to acquire a pair of corresponding arrival and departure slot at this airport for the desired
landing and take-off times.

The slot system is implemented according to the Worldwide Scheduling Guidelines (cf.
[LATA07])) by the [airport coordinator] who is appointed by the government of every EU member
state for the coordination of its national airports. The coordinator has to be independent from both
the airports and the airlines and acts “in a neutral, non-discriminatory and transparent way” as “the
sole person responsible for the allocation of slots” (JEU93||). At each coordinated airport, there is
also a coordination committee (composed of members of the managing body of the airport and the
air carriers operating at that airport) to advise the coordinator. The coordinator assigns available
slots according to the airlines’ requests “while taking account of all relevant technical, operational
and environmental constraints” ([EU93])). In Germany, the airport coordinator is Claus Ulrich
(as of 2008), head of the [FHKD (Flughafenkoordination Deutschland}| an authority that reports
to the German Federal Ministry of Transport and is financed by all major airlines in Germany.
Similar authorities exist in all EU member states (e. g. [Airport Coordination Limited|in the UK).

Flight scheduling as considered here is a long-term planning problem, thus a meticulous schedule
is not necessary — exact airport operations can only be planned on a daily or hourly basis, as
conditions such as winds and weather inadvertently introduce minor deviations from the schedule.
For this reason, slots are usually allocated on a time scale discretized in ten minute intervals,
with each interval possibly accommodating more than one flight. Each year is divided into two
scheduling periods, a summer and a winter season. The summer season usually lasts from the end
of March until the end of October, the winter season from October until March. (The summer
season normally coincides with the period of daylight savings time).

Historic Slots

About six months before the start of a scheduling period the planning process starts with the
coordinator passing to the airlines information about which slots are regarded [hisforid A series of
slots allocated to an airline will be declared historic when they have been operated for at least
80% of the time during the period for which they have been allocated. Under the so-called
[it or loose if provision, airlines fulfilling that usage criterion thereby acquire a[grandfather righd
for a series of slots, meaning they have the right to claim the same series of slots for the coming
planning period. That right is generally based on data from the preceding period of the same type,
i. e., the last winter period for the upcoming winter and the last summer period for the upcoming
summer. Having acknowledged the information about historic slots, the airlines then submit their
slot clearance requests to the coordinator. A slot clearance request usually contains the desired

'Up-to-date information can be found on the official website|http://www.fhkd.org
*For further information, see the official website Ihttp ://www.acl-uk.org|
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slots for arrival and departure, the type of aircraft that will be used and the intended days of
service.

In allocating the available slots to the airlines the coordinator will try to produce a “uniform”
schedule where possible, respecting series requests (i. e., a request for several slots on different days
that must be scheduled for the same time of day on every requested day). However, the coordinator
is free to break up a series request after consultation with the airline, e. g., a series request for a
slot pair on every day of the week might be broken up into one request for Monday—-Friday and
one for Saturday—Sunday with slightly different slots assigned to each of the requests to give the
coordinator more flexibility.

The coordinator starts by allocating the slots that are considered historic. These historic slots
are grouped into three categories:

Historic Slots (H): A request is made for a series of historic slots. Slots must necessarily be
allocated exactly as demanded for these requests.

Changed Historic Slots (CL/CR): A request is made to move a flight from a historic slot (or
series of slots) to a different slot (or series of slots). Such a request must either be fulfilled, or
the original historic slots must be allocated to the request. For a CL request, there is only the
alternative of allocating the desired slot(s) or the historic slot(s), whereas for a CR request
any slot(s) between the desired and the historic slot(s) may be allocated (as long as some
operational constraints are met), with precedence towards the desired slot(s).

Year Round Service (Cl): A request is made for a series of slots that has been operated in the
previous planning period. These requests are allocated immediately after the historic slots,
i. e., they must be allocated when capacity is left after the historic slots are allocated. Notice
that CI requests are not exactly requests for historic slots, as these claims are not based on
the preceding season of the same type. Nevertheless, they are regarded as “almost historic”
in practice.

New Entrants and Incumbents

After the slots with grandfather rights have been assigned, the remaining slots are entered into the
slot pool, which is simply standard terminology meaning all slots that are available at a certain
stage of the allocation process (keep in mind that slot allocation is implemented as a sequential
process in practical operations). The rule is described in the IATA Worldwide
Scheduling Guidelines (cf. [[ATA07]) as follows:

“Of the slots contained within the slot pool at the initial allocation, 50% must be
allocated to new entrants, unless requests by new entrants are less than 50%.”

The “slot pool” here refers to all slots that are available after the allocation of slots to all requests
with historic rights. A |new entrant (NE request) is an airline that does not yet operate at the
airport considered or operates no more than four slots on the requested date. This rule is designed
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to lower market entrance barriers and facilitate competition. For an exact definition, see [[EU93}
[EU0% [EU03} [EU04)] and [[ATA07].

However, a burden is attached to new entrant status: If an airline is allocated slots under new
entrant status, these come with the obligation to operate the new service for at least two scheduling
periods of the same type (i. e., two winter periods or two summer periods). Furthermore, slots
allocated under the new entrant rule may not be exchanged with other airlines. As a consequence,
most airlines are reluctant to claim new entrant status in practice even if they could legally do so,
because it severely reduces their ability to reschedule a flight or exchange slots and thus gives them
less flexibility. For new entrant requests a certain flexibility is granted to the airport coordinator;
the exact time allocated to a new entrant may vary from — 60 minutes to + 60 minutes around
the requested time.

There is, however, a problem with the new entrants rule we have to deal with in our optimization
model. As we know from [Chapter 3} the total number of available slots depends heavily on the
allocations already set up and is therefore subject to change under different allocations, see
Sections [3.5)and [3.6 for more details. Furthermore, it is unclear how many slots are to be considered
“available” (and thus part of the “slot pool”) after a partial allocation (e. g., of requests bearing
historic rights) has been performed. It is certainly not obvious how many slots are still “remaining”
after some of the flights have been integrated, because this number may vary depending upon
how the remaining flights are integrated, and also upon the exact slots that are allocated to the
historic flights (where there is a choice). Of course, if the number of available slots is not clear at
any stage of the scheduling process, the number of slots reserved for new entrants can not at all be
calculated.

There are two apparent approaches to deal with this situation. The “foolproof” way is to use
the 50% as an ex-post measure, meaning that in the final allocation the new entrants should
make up for at least 50% of all flights that have been integrated into the schedule and that are
not historic flights, provided there are new entrants’ requests that have not been integrated. A
different (but computationally much simpler) approach is to somehow estimate the number of free
slots and set up a constraint based on that estimation. This can be done, e. g., by simply taking
the maximum number of flights that could be integrated into a partial flight schedule, or (a little
more sophisticated) by first computing a preliminary flight schedule without the new entrants rule,
deduce from that the number of slots allocated to non-historic flights and demand that at least half
of that number is allocated to new entrants, if there are enough requests. The final flight schedule
is then computed in a second pass with the new entrants rule in effect. As a drawback, this method
not only requires two flight schedule computations, but also does not guarantee ex-post validity
of the final schedule with respect to the new entrants rule, because the numbers taken from the
preliminary schedule can naturally only be an approximation to the final results.

As a more pragmatic way of dealing with the new entrants rule, one could simply get rid of the
50% constraint and demand that all new entrants’ requests be integrated into the flight schedule.
As mentioned before, in practice most airlines are very reluctant to claim new entrant status,
because of the liabilities involved. Hence, in practice, one would expect that there are far less new
entrants’ requests than to make up for more than 50% of the available slots (however these would
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be determined), thus all of these request would have to be integrated anyway.

After the allocation of slots to new entrants or after the reserved 50% of the slot pool are used
up, all other requests (called [incumbents’ requests) are processed. As with new entrants, the slot
assigned to an incumbent request (if any) may vary up to 60 minutes around the requested time.

When the slot assignment has been communicated to the airlines, they may re-route their flights
in order to make the best possible use of their slots and they may also exchange slots one for one,
but without monetary compensation, as long as they obtain the consent of the coordinator for these
changes (however, neither is possible for new entrants’ slots). To facilitate these arrangements, the
IATA hosts a[Schedules Conferencdsome time after the coordinators have communicated their
preliminary slot allocation to the airlines, where the coordinators, airport representatives and the
airlines’ planners meet to finalize the schedules.

Reference Value Systems

At German airports the air and ground control as well as environmental and noise protection
restrictions are usually cast into so-called [reference value systems, cf. [Section 3.1.2] Recall that a
reference value system is a collection of [time window boundsthat constrain the number of arrivals,
departures and flight movements that can be allocated within a certain period of time. While
we considered both shifting and non-shifting bounds in [Chapter 3] in practical applications only
shifting bounds are used. For this reason, we will restrict our considerations in this chapter to
shifting bounds. However, this is mainly a simplification of notation, integration of non-shifting
bounds into our model is certainly possible and quite straightforward. Furthermore, we will only
consider symmetric and monotone reference value systems (cf. in this chapter, as
all practical data that we collected only used such systems.

Alshifting boundconsists of a period length (e. g., 60 minutes) and three bound values that define
upper bounds on the number of arrivals and departures as well as on the total flight movements for
every time window of the specified length within the planning horizon. These values are referred
to as arrival (A), departure (D) and movements (M) values. Normally, several shifting bounds
for different time periods interact to define implicit bounds on the number of slots that can be
allocated, see Sections [3.3] and [3.4] for a closer look into the nature of these interactions. For a
flight schedule to be feasible, it must conform to the complete set of shifting bounds contained in a
reference value system.

In Germany, there are usually shifting bounds for time periods of 10, 30 and 60 minutes, where
the bounds for the longer periods are relatively more restrictive than those for the shorter periods
(i. e., the reference value systems are monotone). There is, however, no “hard legislation” that
would allow only for 10, 30 and 60 minute time windows, so a different reference value system
might be put into practice if there is consensus among the participating parties (including the
airport coordinator, the airports, the airlines and the local authorities). Notice that a reference
value system with time window lengths 10, 30 and 60 minutes has the inclusion property, cf.
[Definition

It is important to note that, when talking about a flight schedule, one usually refers to
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times i. e., the time where the aircraft touches or takes off the runway. In contrast to this, the
flight schedule published to the passengers generally gives referring to the time when
the aircraft arrives at or departs from the terminal building. If not explicitly stated otherwise,
the shifting bounds and all other time-dependent constraints always refer to runway times. This
difference is important, because arrival and departure flights undergo a different time shift in the
conversion between runway and gate times. An arriving flight needs to taxi from the runway to a
parking position and possibly connect to the gate via a jetway. A departing flight, in addition to
disconnection from the jetway and taxi time, also needs to be pushed back and turned around by a
tow truck, because airplanes cannot taxi backwards on their own. As a standard procedure, for an
arriving flight the gate time is five minutes after its arrival at the runway, while a departing flight
has to leave the gate ten minutes before it is scheduled for take-off on the runway. Recall that time
is usually discretized in units of ten minutes, which leads to a five minute “pattern” in published
flight schedules — this is due to the different conversion factors between gate and runway times
for arrivals and departures, respectively, and the fact that flight scheduling is performed in runway
time notion, while the published flight schedule lists gate times.

In a reference value system, the shifting bounds are usually referred to by a suggestive ab-
breviation containing most of the necessary information. A shifting bound is denoted by the
leading letter R (for the German word “Regel”, “rule”), followed by the length of the respective time
window in minutes and one of the letters A, D or M to denote the arrival, departure or movements
bound value. For example, R30A = 25 describes a shifting bound of length 30 minutes allowing
for a maximum of 25 arrivals. We will frequently give all three values as a triple according to
the scheme R10 A/D/M = 9/9/16 or simply R10 = 9/9/16. The shifting bounds may also differ
by time of day, in which case the respective times of validity are given with the shifting bounds.
This can, for instance, be used to implement restrictions on night traffic, which is a very common
scenario at German airports. For an example of a reference value system, we refer the reader to
[Figure 3.1|in [Section 3.1.3}

Linking Arrival and Departure

A flight request as described above generally consists of a pair of arrival and subsequent departure.
When it is not possible to integrate a request at the exact time that was demanded, this arrival-
departure link has to be respected. More specifically, there has to be enough time scheduled
between arrival and departure so that the aircraft can be safely unloaded, necessary checks can
be performed, fuel can be replenished, the cabin can be cleaned and boarding can be completed
comfortably. The time that is needed for these processes naturally varies with the size of the
aircraft; while a small regional jet can be handled within maybe half an hour, a larger aircraft
servicing an intercontinental flight with several hundred passengers will naturally need a longer
ground time. The minimal ground time requirement can be deduced from the aircraft type reported
by the airline as part of the flight request. On the other hand, every airline wants their equipment
to be airborne for as long as possible, because long ground times reduce the airline’s profit.
Consequently, there is also an upper bound to the ground time that an airline will accept. Thus,
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when the airport coordinator schedules a flight, both minimal and maximal ground time constraints
have to be observed.

There is, however, one notable exception to that rule: At some airports, one airline serves so
many flights that it may prefer to request only single arrival and departure slots and link these
suitably on its own account later. This provides for greater flexibility for the airline, which is of
special importance if major maintenance works are carried out at the airport for that airline. Such
maintenance operations, which must be performed on a regular basis, take an aircraft out of the
regular circulation for hours or maybe days, so it must be replaced by a different model. The ability
to change the linking of arrivals and departures with some flexibility allows the airline to react
to maintenance needs as well as unscheduled delays quickly. This exception generally applies to
the home base airport of any major carrier; as an example, Lufthansa flights are considered as
single slot requests instead of as pairs by the airport coordinator for Frankfurt/Main. However,
for a flight schedule to be applicable, the difference between the number of arrival and departure
slots may certainly not become too large (some deviation is allowed, because aircraft may stay at
the airport for the night or stay at the airport for scheduled maintenance). While an experienced
coordinator will intuitively adhere to that rule, any automated solution must integrate an upper
bound to the deviation allowed between arrivals and departures on a daily basis and/or for the
whole planning season.

North America Rule

As the airways between Europe and Northern America are heavily used, there are restrictions
on the number of take-offs in the direction of North America at some German airports. As an
example, a valid flight schedule may only contain up to four flights headed for a destination in
Northern America within each fifteen minutes. These bounds may also be applied in a shifting
fashion, as described for the reference value systems above. Notice that a bound with a 15 minute
time window would require a five minute discretization instead of the usual ten minute steps. As
all other requirements can be expressed in a ten minute discretiza