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Kurzfassung
Metamaterialien sind Verbundwerkstoffe, die in der Natur nicht vorkommende
elektromagnetische Eigenschaften aufweisen. Darauf basierende neuartige Anten-
nen, Koppler, Abbildungssysteme undMethoden zur Minimierung des Radarrück-
streuquerschnitts wurden in der Literatur vorgeschlagen. In dieser Arbeit wird ein
systematischer Ansatz zur Synthese vonMetamaterialien vorgestellt. Dieser beruht
darauf, dass Metamaterialien aus Einheitszellen bestehen, die klein im Verhältnis
zurWellenlänge sind. Die Topologie der Netzwerkbeschreibung einer Einheitszelle
lässt sich aus Diskretisierungsschemata des ein-, zwei-, bzw. dreidimensionalen
Raums ableiten. Mit dieser Methodik werden zwei isotrope dreidimensionale Me-
tamaterialien entworfen, für die maximal-symmetrische und planare physikalische
Realisierungen vorgestellt und durch Vollwellensimulationen bzw. Experimente ve-
rifiziert werden.

Abstract
Metamaterials are compound materials exhibiting electromagnetic properties not
readily found in nature. Novel antennas, couplers, imaging systems and methods
for the reduction of the radar cross-section based on these properties have been
proposed in literature. In this thesis a systematic synthesis technique for metama-
terials is presented. The foundation of this approach is that metamaterials consist
of unit cells that are small compared to the wavelength. The topology of the unit
cell’s network representation can be derived from space-discretising schemes in 1d,
2d, and 3d. Using this technique two novel isotropic 3d metamaterials are syn-
thesised. Maximally-symmetric and planar physical realisations are proposed and
verified by full-wave simulation and experiment, respectively.
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1 Introduction

Many breakthroughs in technology are related to newly available materials; from
the Stone Age to Iron Age, from bronze and concrete to today’s composite materi-
als. Here, the discovery, understanding and synthesis of new materials with respect
to mechanical properties led to new eras.

Within this decade some well known phenomena, observed for wave prop-
agation in periodic structures and analysed since the early 1950s [Brillouin, 1953,
Felsen and Marcuvitz, 1994, Munk, 2000], were interpreted as a means to the syn-
thesis of electromagnetic properties like dispersion. These materials, at that time
termed ‘photonic bandgapmaterial’ and ‘photonic crystal’, are nowadays called elec-
tromagnetic bandgap structures.

Starting in the beginning of the 2000s, the idea of synthesising the electromag-
netic behaviour of materials was extended to metamaterials, seizing a hypothesis
published in [Mandelshtam, 1947] and [Veselago, 1968] about wave propagation in
media with negative relative permittivity єr and permeability μr : In this case the
electric field E, the magnetic field H, and the wave vector k form a left-handed
trihedron, as opposed to the right-handed trihedron for normal materials. Termi-
nology of this research branch is not settled yet, an overview of suggested terms
can be found in the next section 2.1.

Metamaterial structures synthesising arbitrary effective material properties
were invented, possible applications in the field of communication and sensing
system were proposed, and, some of them, already experimentally verified. The
great potential of these metamaterials is primarily due to the control of the ampli-
tudes, frequencies and wavenumbers of propagating and evanescent electromag-
netic modes, which is not possible with normal materials.

In this thesis a systematic approach to the synthesis of metamaterials is pre-
sented. Group theory cannot be used for the synthesis of metamaterials, as it solely
adresses the level of symmetry of a structure, but it does not determine the struc-
ture’s constituents. This information can be obtained from topological analysis:
A metamaterial is composed of cells that are small compared to the wavelength
which are usually periodically continued. In general, any structure of arbitrary
electrical size can be represented by a network, hence also a metamaterial unit cell.
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It will be shown that the topologies of network representations of metamaterials
can be derived from discretisations of one-, two-, and three-dimensional space.
While space-discretising numerical schemes approximate space by using discrete
cells that are small compared to the wavelength, metamaterials physically realise
space with special properties using cells that are small compared to the wavelength.
With the network topology thus being determined the network elements are cho-
sen such that the desired dispersion of the metamaterial is obtained. Physical real-
isations of the metamaterial network description can be designed by considering
symmetry of the sought unit cell and fabrication technology requirements.

By applying this systematic approach, on one hand metamaterials presented
in literature are compactly explained. On the other hand two novel three-dimen-
sional metamaterials are synthesised. Maximally-symmetric and planar physical
realisations are proposed, analysed and verified by full-wave simulation and exper-
iment, respectively. The organisation of this thesis is as follows:

Chapter 2 gives the fundamentals of the field of metamaterials. Terminology
is defined and wave propagation in the presence of media with unusual effective
material parameters, i. e., metamaterials, is discussed. Effects due to metamaterials
and applications based upon these effects are presented. A selection of publications
on this field of research concludes this chapter.

Chapter 3 presents the topological description of metamaterials, yielding a
framework for the systematic design of metamaterials. This framework is applied
to several structures presented in literature. This approach was first published in
[Zedler et al., 2008b].

Within this derivation several concepts common to the analysis of periodic
structures are extensively used. Appendix A contains an introduction to these the-
oretical prerequisites. This includes the formulation as an eigenvalue problem, the
concepts of the Brillouin zone, dispersion diagrams, structure functions, and alge-
braic analysis approaches.

Chapter 4 discusses two-dimensional metamaterial structures using the topo-
logical description presented in Chapter 3. Topologies are derived from symme-
try, effectively yielding structures well-known in computational electromagnetics,
namely the 2d transmission line matrix method (tlm).

Chapter 5 presents a three-dimensional metamaterial that supports one po-
larisation which is derived using the topological analysis of Chapter 3. It has a
highly symmetric physical realisation which therefore enables isotropic metamate-
rial behaviour. Full-wave simulations verify the topological considerations. This
metamaterial was first published in [Zedler et al., 2008a].

2

Chapter 6 discusses an isotropic three-dimensional metamaterial structure
that supports two polarisations. Like in the preceding chapters it is also derived
from a topological point of view. Essentially, the computational method ‘sym-
metric condensed node’ tlm (scn-tlm) and its variant, the rotated tlm method
(rtlm) are re-derived by using symmetry inspection. A metamaterial is deduced
from the rtlm discretisation of space and its electromagnetic behaviour studied us-
ing algebraic analysis, circuit simulation, full-wave simulation and measurements.
This rtlm metamaterial was first published in [Zedler and Russer, 2006].

Chapter 7 treats fabrication aspects of three-dimensional metamaterials. Max-
imally symmetric physical realisations of unit cell topologies can be decomposed
into polyhedra [Zedler and Russer, 2008] allowing for mass production with tech-
niques like, e. g., injection moulding. Alternatively, it is possible to physically re-
alise 3d unit cell topologies with planar fabrication techniques common in mi-
crowave engineering. Planarisations of the metamaterials presented in chapters 5
and 6 are discussed.

Chapter 8 summarises the present thesis and gives an outlook to future direc-
tions of research based on topological structure descriptions.

The nomenclature used in this thesis is as follows: Scalars and vectors are denoted
by italic letters. Both are either distinguishable from the context or otherwise de-
fined in the text. Matrices are written in bold upright letters. All quantities are
complex by default.

3
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2 Fundamentals of Metamaterials

2.1 Definition and Terminology
Both electromagnetic bandgap structures as well as metamaterials are compound
structures that aim for modifying electromagnetic wave propagation. The former
can be considered a standing wave phenomenon where attention is directed to
diffraction and to the question if a wave is able to propagate through the periodic
structure. This results in typical unit cell sizes of half a guided wavelength for the
synthesised material to exhibit the sought properties – the unit cell is electrically
large.

Metamaterials, on the other hand, do not require a periodic arrangement, pe-
riodicity merely simplifies synthesis and analysis. The unit cell of a metamaterial
is electrically small, hence electromagnetic waves probe a uniform, homogeneous
environment, a compound material, which can be described by effective material
properties. This difference was summarised in [Caloz and Itoh, 2006] as

[Diffraction/Scattering] properties of photonic crystals are essentially de-
termined by the lattice, while the (refractive) properties of metamateri-
als are determined by the nature of the unit cell.

The effective material properties of a metamaterial are the effective relative
permeability μeff(ω) and the effective relative permittivity єeff(ω). Depending on
the combination of signs of єeff(ω) and μeff(ω) at a certain angular frequency
ω, waves propagate or are evanescent as shown in Fig. 2.1: The first and third
quadrants allow for wave propagation, with the first quadrant being the common
case of positive permeabilities and positive permittivities, which results in the pos-
itive refractive index n = √μeff ⋅ єeff and positive characteristic wave impedance
ZF = ZF0

√
μeff/єeff. The second and fourth quadrant describe evanescent waves,

with both the refractive index and the characteristic wave impedance being imagi-
nary. The second quadrant is well known from wave propagation within plasmas,
including metal below the plasmon resonance.

The third quadrant is the combination of negative permeability and negative
permittivity, allowing for propagating waves. In this case E, H, and k form a

5



Re{єeff}

Re{μeff}

➀➁

➂ ➃

Figure 2.1: Description of propagation in metamaterials using positive and nega-
tive permittivity єeff and permeability μeff.

left-handed trihedron, group velocity and phase velocity are anti-parallel, the ef-
fective refractive index is negative, n = −√μeff ⋅ єeff, and the characteristic wave
impedance positive, ZF = ZF0

√
μeff/єeff [Ziolkowski and Heyman, 2001]. Termi-

nology for structures operating in this third quadrant is not settled yet, a selection
of terms is

Left-handed (LH) Due to the property that the electric field, the magnetic
field, and the phase velocity form a left-handed trihedron

Double negative (DNG) Due to the negative permittivity and permeability

Negative refractive index (NRI) Due to the resulting negative refractive index

Backward wave material Due to the anti-parallel phase velocity and group velocity

Veselago medium In honour of Victor Veselago whose article [Veselago,
1968] first considered what effects could be achieved with
such effective material properties

Artificial dielectric Due to the compound nature of metamaterials
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In this work the terminology left-handed will be used. A wealth of applications
have been proposed in literature, a selection is listed in Sect. 2.9. While a combi-
nation of effective material parameters described by the first and third quadrant
in Fig. 2.1 permits wave propagation, this picture solely gives information on the
sign of the negative refractive index. In addition to the sign, the magnitude of the
refractive index is of interest, too. Particularly values 0 ≤ n < 1 and ∣n∣ ≪ 1 are use-
ful both for antenna applications as well as for so-called geometry transformation
structures, see Sect. 2.8. These metamaterials are referred to in literature by several
authors as μ near zero, є near zero metamaterials.

2.2 Dispersion
The description of metamaterials using effective permeabilities and permittivities
requires dispersion in order for the structure to fulfill causality [Landau et al., 1984,
Caloz and Itoh, 2006, Eleftheriades and Balmain, 2005, Engheta and Ziolkowski,
2006]. This can be seen by examining the energy density function W̄

W̄ = 1
4
(d(ωє0єeff)

dω
Ē2 + d(ωє0єeff)

dω
H̄2) (2.1)

which needs to be greater than zero independently for the electric field E and mag-
netic field H. Therefore

d
dω

ωєeff > 0 d
dω

ωμeff > 0 (2.2)

both need to be fulfilled, implying that negative material properties require disper-
sion. Chapter 3 gives a systematic study of metamaterials and their dispersion prop-
erties. Using this approach physical behaviour is ensured, including the causality
aspect.

2.3 Boundary Conditions, Fermat’s Principle
Left-handed metamaterials reverse several laws in physics that are to be examined
in this section. Two effects that experience this reversal are the reversed Doppler
effect and reversed Vavilov-Čerencov radiation. These are not discussed here fur-
ther, instead the reader is referred to, e. g., [Caloz and Itoh, 2006, Engheta and
Ziolkowski, 2006, Eleftheriades and Balmain, 2005].

7



This section presents effects that can be considered being due to boundary
conditions toMaxwell’s equations. The tangential boundary conditions for the elec-
tric field E and the magnetic field H are

E(2)tan − E(1)tan = − jωMm ,A (2.3a)

H(2)tan −H(1)tan = JA = − jωMe ,A (2.3b)

with the superscript denoting the field in the respective medium and the subscript
denoting tangential components. JA is a surface current, Me ,A and Mm ,A are elec-
tric and magnetic surface polarisations, respectively. The normal boundary condi-
tions of the electric flux density D and the magnetic flux density B are

D(2)n − D(1)n = ρA (2.3c)

B(2)n − B(1)n = 0 (2.3d)

with the subscript n denoting the normal components, and ρA being a surface
charge density.

The occurrence of a negative refractive index in the light of Fermat’s principle
used to cause confusion among the metamaterial community in the beginning of
this field of research. Fermat’s principle [Born et al., 1999] in its original variational
formulation states that the path taken by rays of light minimises the integral

∫ n(s) ds (2.4)

This formulation obviously fails for n < 0. In [Schurig and Smith, 2004] an exten-
sion to Fermat’s principle valid for arbitrary n is derived: In the case of a system
containing materials with negative index of refraction the functional of (2.4) needs
to be extremal, i. e., either minimal or maximal. It thus becomes

δ ∫ n(s) ds = 0 with n =
⎧⎪⎪⎨⎪⎪⎩

+√μeff ⋅ єeff μeff , єeff ≥ 0
−√μeff ⋅ єeff μeff , єeff ≤ 0

(2.5)

It shall further be noted that also in the metamaterial case the variational formula-
tion of Fermat’s principle based on time still needs to find minimal values.

2.4 Reversed Snell’s Law
Using the tangential boundary conditions of (2.3) let us consider a plane wave
incident on an interface between two media, which is situated at z = 0. This
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Figure 2.2: Reflection and refraction of plane waves at the interface between two
media. (a) the refractive index of both media has the same sign,
i. e., n1/n2 > 0 (b) interface between a right-handed and left-handed
medium, i. e., n1/n2 < 0.

two-dimensional problem is shown in Fig. 2.2, with the angle of incidence θ i =
arctan k1x

k1z
. The boundary condition (2.3a) reads

E i ,tan e− j k ix x + Er ,tan e− j krx x = Et ,tan e− j k tx x (2.6)

with the subscript i denoting the incident wave, r the reflected wave, and t the
transmitted wave. This can be only fulfilled for all x if

k ix = krx = ktx (2.7)

This is known as the phase matching condition. Assuming isotropic materials this
results with

k1x = k1 sin θ i k2x = k2 sin θ t (2.8)

in

θ i = θr k1 sin θ i = k2 sin θ t (2.9)

9



Using k i = n ik0 this yields Snell’s law

n1 sin θ i = n2 sin θ t (2.10)

In the derivation of Snell’s law no assumptions on the signs of the refractive in-
dices of either medium was made. For this reason it describes apart from the well-
known case of ordinary refraction n1/n2 > 0 as depicted in Fig. 2.2(a) also the case
n1/n2 < 0. This yields the case of negative refraction as shown in Fig. 2.2(b).

As the sign of the ratio of the refractive indices determines if ordinary or neg-
ative refraction occurs, one can conclude that only the interface between a right-
handed and a left-handed material yields special behaviour.

In the case of anisotropic materials the phase matching condition still holds as
it is a direct consequence of the boundary conditions. What changes, though, is the
angle of the transmitted wave. Assuming medium 1 to be isotropic and medium 2
to be anisotropic it can be computed using

k1 sin θ i = k2x (2.11)

and, following the derivation in [Ishimaru, 1991], by setting the determinant of

⎛
⎜
⎝

k2x
0
k2z

⎞
⎟
⎠
⋅ (k2x 0 k2z) − (k2

2x + k2
2z) ⋅

⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎠
+ k2

0 μrєr (2.12)

to zero. Here μr and єr denote the permeability and permittivity tensors, respec-
tively. Eq. (2.11) determines k2x , (2.12) relates k2z to k2x . Then the angle of trans-
mission is given by

tan θ t =
k2x

k2z
(2.13)

2.5 Planar Lens
Two interfaces between right-handed and left-handed materials form a metamate-
rial slab and can be considered a lens [Veselago, 1968] as shown in Fig. 2.3. A point
source is focussed twice, with one focus point inside the metamaterial slab and one
outside. The two focal points are

f1 = s1
tan θR

tan ∣θL ∣
f2 = d − s1 (2.14)
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� �

medium 2
nL = −nR

medium 1
nR

medium 1
nR

f1

d

s1 f2

source image

θR θL = θR

Figure 2.3: Planar metamaterial lens focussing a point source inside and outside
the slab.

medium 1
nR

medium 2
nL = −nR

�

source

�

focal point
(a)

medium 1
nR

medium 2
nL ≠ −nR

�

source focal region
(b)

Figure 2.4: Aberrations due to unmatched phase velocities: (a) a pure focal point
for nL = −nR and (b) a focal region for nL ≠ −nR .
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LH

RH

(a)

LH

RH

(b)

Figure 2.5: Reversal of lens behaviour. Red line: left-handed material with n = −1,
black line: right-handed material with n = 1.8. Normal vectors to the
surface denoted by dashed lines.

This means that for rays incident from infinity the focus is also at infinity. For this
reason the structure is not a lens in the usual sense of the word, since it will not
focus a bundle of rays coming from infinity at a point.

One of the advantages of this type of lens is that it is planar and thus there
is no optical axis and no spherical aberration. On the other hand a new type of
aberrations exists in case the metamaterial slab phase velocity is not matched, i. e.,
nL ≠ −nR as shown in Fig. 2.4.

In order to focus rays incident from infinity one has to resort to a curved
surface [Engheta and Ziolkowski, 2006]. As shown in Fig. 2.5, a lens made of a
metamaterial the convex and concave lenses have ‘changed places’, since the con-
vex lens has a diverging effect and the concave lens a converging effect [Veselago,
1968]. Curved metamaterial lens behaviour for Gaussian beams are treated in de-
tail in [Eleftheriades and Balmain, 2005], including an analysis of magnification,
multiple surface behaviour, as well as with respect to aberrations: coma, spherical
aberrations, astigmatism, field curvature and distortion.
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(a) (b)

(c) (d)

Figure 2.6: Principle of super-resolution: (a) propagating waves are imaged by the
lens while (b) the evanescent wave vector spectrum is not, leading to
finite resolution. Imaging of a planar lens for the (c) propagating wave
vector spectrum and (d) evanescent wave vector spectrum. The latter
is the cause of the super-resolution phenomenon.

2.6 Super-Resolution of Planar Lenses
The resolution of common lenses is bound by the maximum transverse wave num-
ber kx ,max contributing to the image, and according to Fourier optics one obtains
for the minimum feature size

Δx ∝ 2π
kx ,max

= λmin (2.15)

In addition the resolution can be limited due to diffraction at the aperture, which
means that not all propagating wave numbers are captured by the lens. In this

13



case the optimum resolution is determined by the diameter of the first Airy disc
[Born et al., 1999]: the Fraunhofer diffraction pattern, i. e., the far-field of a circular
aperture with homogeneous field distribution of radius a is given by

E(θ) ∝ J1(ka sin θ)
ka sin θ

(2.16)

where J1(x) denotes the Bessel function of the first kind and order one. The first
minimum of ∣E∣2 yields the imaging resolution

sin θ = 3.832
ka

= 1.22 λ
2a

(2.17)

As stated above, the resolution is limited by both (2.15) and (2.17). For this reason
one can not obtain infinite resolution for a → ∞, the hard resolution limit for a
conventional lens is determined by (2.15).

While a planar lens was already proposed in [Veselago, 1968], it was shown
much later in [Pendry, 2000] that a planar metamaterial lens can overcome the
resolution limit of (2.15): An ideal metamaterial slab with nL = −nR amplifies the
evanescent wave vector spectrum within the slab in a resonant manner, so that also
the near-field of the source is reconstructed in the imaging plane. The reconstruc-
tion of both the near-field and the far-field of the source leads to an infinitesimal
focus region, that is, a focus point is obtained as the solution to the Helmholtz wave
equation, as shown in Fig. 2.6.

This perfect lens or super-resolution phenomenon has stirred very high inter-
est among physicists and engineers, both in light of possible imaging applications
as well as with respect to correctly interpreting the phenomenon of amplification
of the evanescent wave number spectrum and resolution limiting effects.

A concise interpretation of the super-resolution phenomenon was given in
[Tretyakov, 2003] and shall be repeated here:

It is interesting that for the amplification of evanescent modes it is not
critical that the medium inside the slab be a backward-wave medium in
the sense that the evanescent modes decay in this medium in exactly the
same way as in a usual material. What is critical is that the two inter-
faces are resonant and support surface waves with large wavenumbers.
If it would be possible to realize such surfaces by other means, at least
for one or several fixed wavenumbers, the system would amplify evanes-
cent waves with these propagation constants even if there would be free
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space between the two surfaces. Actually, the mechanism of this ampli-
fication is the same as the excitation of high-amplitude oscillations in a
high-quality resonator by a weak but resonant source.

This observation was then further analysed theoretically and experimentally in
[Maslovski et al., 2004, Alitalo et al., 2006b]: A super-resolution lens not based
on metamaterial was presented, which instead consists of two sheets supporting
surface waves with a large wave number spectrum.

While in the ideal case of a metamaterial slab with nL = −nR one obtains
infinite resolution, the following limits for the resolution exist:

◆ Deviation from the condition nL = −nR , also due to inevitable dispersion
[Smith et al., 2002b, Grbic and Eleftheriades, 2005b, Eleftheriades and Bal-
main, 2005, French et al., 2006]

◆ Losses [Grbic and Eleftheriades, 2005b, Tretyakov, 2003]

◆ Discrete translational symmetry, i. e., finite periodicity [Smith et al., 2002b]

◆ Finite slab size and hence finite lens aperture [Tretyakov, 2003, Culhaoglu
et al., 2008]

An overview over publications demonstrating super-resolution is given in Sect. 2.9.

2.7 Goos-Hänchen Effect
In Sect. 2.4 refraction at interfaces between normal media and metamaterials was
analysed. In this section reflection is considered. The Fresnel reflection coefficients
for te and tm polarised incident waves at a plane interface between two media are
[Born et al., 1999, Russer, 2006]

Rte =
n1 cos θ1 −

√
n2

2 − n2
1 sin θ2

1

n1 cos θ1 +
√
n2

2 − n2
1 sin θ2

1
= 1 − (є1/є2)(k1z/k2z)

1 + (є1/є2)(k1z/k2z)
(2.18a)

Rtm =−
n2

2 cos θ1 − n1
√
n2

2 − n2
1 sin θ2

1

n2
2 cos θ1 + n1

√
n2

2 − n2
1 sin θ2

1
=−1 − (μ1/μ2)(k1z/k2z)

1 + (μ1/μ2)(k1z/k2z)
(2.18b)

with

k1z =
√
n1k2

0 − k2
x ≙ p1 k2z = − j

√
k2

x − n2k2
0 ≙ − jq2 (2.19)
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incident beam reflected beam

d > 0
(a)

incident beam reflected beam

d < 0
(b)

Figure 2.7: Goos-Hänchen effect: An incident beam onto an interface between two
media experiences total reflection at an offset d. (a) Conventional case:
є1/є2 > 0 for the te case, μ1/μ2 > 0 for the tm case. (b) Reversed effect:
є1/є2 < 0 for the te case, μ1/μ2 < 0 for the tm case.

Let us consider the case of total reflection, i. e., ∣ sin θ i ∣ > ∣n2/n1∣ ≥ 1. In this case
the magnitudes of the reflection coefficients are equal to one, i. e., the energy is
completely reflected. The phases of the reflection coefficients are

arg{Rte} = 2 tan−1
√
n2

1 sin
2 θ1 − n2

2
n2 cos θ1

= −2 arctan(є2p1

є1q2
) (2.20a)

arg{Rtm} = 2 tan−1
√
n2

1 sin
2 θ1 − n2

2
n1 cos θ1

= π − 2 arctan( μ2p1

μ1q2
) (2.20b)

These phases of the reflection coefficients are called Goos-Hänchen phase shifts.
The Goos-Hänchen shift in (2.20a) depends on the sign of є1/є2 while the Goos-
Hänchen shift in (2.20b) depends on the sign of μ1/μ2. Therefore metamaterials
with negative effective material parameters reverse these Goos-Hänchen shifts.

These shifts can be shown to lead to offsets d between incident and reflected
beams [Caloz and Itoh, 2006]. This arrangement is depicted in Fig. 2.7. Like for the
Goos-Hänchen shifts, if the fraction of the effective material parameters is positive
one obtains d > 0, otherwise d < 0.

16

Figure 2.8: Principle of geometry transformation: (a) A field line in free space with
the background Cartesian coordinate grid shown. (b) The distorted
field line with the background coordinates distorted in the same fash-
ion. The field in question may be either E, H, or the Poynting vector S.
Figures taken from [Pendry et al., 2006] with permission.

2.8 Electromagnetic Cloak
Two metamaterial-based approaches have been published to decrease the radar
cross-section of objects, theoretically down to zero. Therefore these approaches
are referred to as electromagnetic cloaks by several authors. In [Alù and Engheta,
2005] a homogeneous metamaterial coating with negative refractive index was pro-
posed, where the electric and magnetic dipole of the object which is to be coated
is compensated by the negative dipole contributions of the metamaterial coating.
The cancelled dipole contribution of the coated object results in a drastic reduction
of the radar cross-section. The disadvantage of this approach is that the required
coating depends on the object which is to be hidden, i. e., modifying the object
requires changing the coating. This severely limits the versatility of this approach.

An advanced cloaking approach was theoretically proposed in [Pendry et al.,
2006] and first experimentally verified in [Schurig et al., 2006]. Here, the cloaked
object remains field-free, and therefore the cloak is independent of the object that
is to be hidden. The technique is referred to as geometry transformation approach
and leads to the requirement of non-homogeneous, anisotropic permeabilities and
permittivities that each vary between zero and one. This geometry transformation
approach is depicted in Fig. 2.8, illustrating the correspondence of anisotropic ma-
terial parameters and distorted wave propagation.
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(a) (b)

Figure 2.9: Power flow through a spherical electromagnetic cloak based on the ge-
ometry transformation approach. Figures taken from [Pendry et al.,
2006] with permission.

This technique has an analogon to mesh deformations in computational elec-
tromagnetics, e. g., parametric geometry variations in the finite element method
(fem) or conformal meshes in the finite difference time domain method (fdtd)
[Ward and Pendry, 1996, Ward and Pendry, 1998, Russer et al., 2007, Armenta and
Sarris, 2008]. Taking the fem example, a parametric sweep of geometry parame-
ters is to be calculated. Keeping the initial mesh one accounts for the modified
geometry by anisotropic material parameters. One can consider an electromag-
netic cloak based on geometry transformation as being the numerical approach
moulded into physical realisation. As will be shown in Chapter 3, further analo-
gies between computational techniques and metamaterials can be drawn.

The authors of [Pendry et al., 2006] give the example of a cloak for a sphere
of radius R1 and a spherical metamaterial shell radius R1 ≤ r ≤ R2 that acts as a
cloak with

єr
r(r) = μr

r(r) =
R2

R2 − R1

(r′ − R1)2

r′
r′ = R1 + r

R2 − R1

R2
(2.21a)

єθ
r = μθ

r = єϕ
r = μϕ

r = R2

R2 − R1
(2.21b)

where the superscript r, θ , ϕ denotes the respective component in a spherical coor-
dinate system. The subscript r denotes that the relative permeability and permittiv-
ity is referred to, respectively. The resulting flux of the Poynting vector is shown in
Fig. 2.9. The inner sphere remains field free, the flux is guided in a laminar manner.
Both the cases of illumination by a plane wave and by a point source are depicted.

Fig. 2.10 shows simulation and measurement results of this approach. (a) de-
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Figure 2.10: Simulation and experimental verification of an electromagnetic cloak
based on the geometry transformation approach, taken from [Schurig
et al., 2006] with permission. Snapshots of the time-dependent, steady-
state electric field pattern, black lines indicate the Poynting vector.
(a) simulation of the setup, (b) simulation of the setup with reduced
material properties, (c) experimental measurement of a conducting
cylinder without cloak, (d) experimental measurement of a cloaked
conducting cylinder.

picts the simulation of a conducting cylinder covered with cloaking shell; (b) shows
a tolerance analysis simulation with values of the permittivity and permeability
not exactly ranging from zero to one. The measurement of the electric field for
the coated and uncoated cases are shown in (c) and (d), respectively. The coated
case has strongly reduced both the back-scattering and the shadowing effect of the
conducting cylinder. This proves the general feasibility of this approach.

In the experimental verification presented in [Schurig et al., 2006] the authors
had to resort to a two-dimensional experiment using a cylindric object and a cylin-
dric coating. The three-dimensional, polarisation independent metamaterial pro-
posed in Chapter 6 may give a solution to three-dimensional cloaks.
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2.9 Selection of Publications
As an exhaustive overview of publications treating metamaterials would go
beyond the scope of this thesis, here only a selection of published results is
recapitulated. A more complete overview can be found in [Caloz and Itoh,
2006, Eleftheriades and Balmain, 2005, Engheta and Ziolkowski, 2006, Zedler
and Russer, 2008, Marqués et al., 2008]

1. seminal papers

◆ first speculation on negative refractive index materials [Veselago, 1968]
◆ proposal of the perfect lens [Pendry, 2000]
◆ experimental verification of the reversed Snell’s law [Shelby et al., 2001]
◆ proposal of transmission-line derived metamaterial structures [Caloz and

Itoh, 2002, Iyer and Eleftheriades, 2002, Oliner, 2002]
◆ proposal and first experimental verification of an electromagnetic cloak

[Pendry et al., 2006, Schurig et al., 2006]

2. approaches to three-dimensional metamaterials

◆ 3d extension of the wire/split-ring approach [Mercure et al., 2005, Koschny
et al., 2005]

◆ dielectric spheres in a face-centred-cubic configuration yielding left-handed
behaviour through Mie-resonances [Vendik and Gashinova, 2004]

◆ scalar three-dimensional metamaterials [Alitalo et al., 2006c, Alitalo et al.,
2006a, Zedler et al., 2008a]

◆ Kron cell derived structure [Grbic and Eleftheriades, 2005a], expanded
node tlm derived structure [Hoefer et al., 2005]

◆ rtlm derived structure [Zedler and Russer, 2006, Zedler et al.,
2007c, Zedler et al., 2007b, Zedler and Russer, 2008]

3. guided wave applications

◆ zeroth-order resonators [Sanada et al., 2003]
◆ directional coupler [Caloz et al., 2003]
◆ branchline coupler [Islam and Eleftheriades, 2004]
◆ phase compensation [Engheta and Ziolkowski, 2005]
◆ transmission line transformer for matching purposes [Damm et al., 2007]
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◆ anisotropic metamaterials, e. g., spatial spectrum analyser, diplexer
[Balmain et al., 2003, Eleftheriades and Siddiqui, 2005, Siddiqui and
Eleftheriades, 2006]

4. radiated wave applications

◆ reflectors [Sievenpiper et al., 2003]
◆ leaky-wave antenna [Lim et al., 2005]
◆ compact antennas [Schüßler et al., 2004]
◆ radar cross-section reduction [Cummer et al., 2006, Cai et al., 2007, Kildal

et al., 2007]
◆ acoustic cloaking [Cummer and Schurig, 2006, Chen and Chan, 2007]

5. imaging

◆ sub-diffraction imaging [Fang et al., 2005, Wang et al., 2007, Smith et al.,
2002b, Grbic and Eleftheriades, 2005b, Veselago et al., 2006]

◆ far-field sub-diffraction optical microscopy using metamaterial crystals
[Salandrino and Engheta, 2006, Smolyaninov et al., 2007]

6. further work on metamaterial synthesis

◆ one-dimensional split-ring resonators [Marqués et al., 2008], scaled to yield
a negative index of refraction at 780 nm [Dollinger et al., 2007]

◆ chiral route to metamaterials [Tretyakov et al., 2003, Pendry, 2004]
◆ two-dimensional metamaterials [Sievenpiper et al., 1999, Iyer and

Eleftheriades, 2006, Shelby et al., 2001]
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3 Topological Formulation of Discrete
Electrodynamics

In Sect. 2.1 metamaterials were defined as compound artificial materials tailored to
achieve a particular type of dispersion for their effective material parameters. This
chapter presents a systematic approach of how metamaterials can be synthesised.
Group theory allows for analysing the unit cell of metamaterial compounds, yield-
ing information about isotropy. But it cannot be used as a tool to synthesise unit
cells, as it only commands the level of symmetry within a unit cell, not its contents.

In the following we show that due to the properties of metamaterials of be-
ing compound materials implementing dispersion, a systematic synthesis can be
performed by dividing the synthesis task into four parts: First a suitable network
topology is derived using symmetry considerations [Zedler et al., 2008b], leading
in several cases to topologies used in computational electromagnetics. Next, the
desired type of dispersive behaviour is chosen, determining the network elements.
The network topology together with the network elements form a network, which
is then physically realised in order to yield a metamaterial. Finally the physical re-
alisation is characterised using group-theoretical considerations for determining
bi- or anisotropy [Padilla, 2007, Baena et al., 2007].

Using this approach known structures can be explained in a compact manner,
e. g., [Smith et al., 2000, Oliner, 2002, Sievenpiper et al., 1999, Iyer and Eleftheri-
ades, 2006]. In addition this approach can be used to synthesise new structures, as
will be shown in Chapters 5 and 6.

3.1 One-Dimensional Metamaterials
In order to deduce a topological analysis of metamaterials let us first examine
Maxwell’s equations describing wave propagation in a homogeneous medium

∂zEx(z) = − jωμ0μrHy(z) ∂zHy(z) = − jωє0єrEx(z) (3.1)
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Figure 3.1: Equivalent circuits modelling transmission lines (a) unit cell due to the
first order discretisation to the telegrapher’s equation, (b) symmetrised
unit cell in ‘T’-configuration, and (c) symmetrised unit cell in ‘Π’-
configuration.

The transmission-line analogon to (3.1) is

∂zV(z) = −Z′ ⋅ I(z) ∂z I(z) = −Y ′ ⋅ V(z) (3.2)

which is the step to a topological description and is considered a formal substitu-
tion within the scope of this chapter. A rigorous analysis of the relation between
the field description and the network description can be performed using structure
functions with their accompanying generalised voltages and currents1. Obviously
the network theory analogon does not reduce the manifold of solutions to the wave
equation. Both equations (3.1) and (3.2) have continuous translation symmetry
as they describe wave propagation in a homogeneous, uniform medium. Using
generalised voltages and currents then the impedance per unit length Z′ and the
admittance per unit length Y ′ are

Z′ = jωμ0μr Y ′ = jωє0єr (3.3)

Hence Z′ ,Y ′ directly relate to the – possibly dispersive – material parameters. A
first order space-discretising numerical scheme to (3.2) resulting in discrete trans-
lational symmetry is

V(z + Δz) − V(z) = −Z ⋅ I(z) I(z + Δz) − I(z) = −Y ⋅ V(z) (3.4)

with Z = Z′Δz and Y = Y ′Δz. The corresponding network to (3.4) is depicted in
Fig. 3.1(a). For structures with continuous translational symmetry (3.4) is an ap-
proximation. For metamaterials, however, these equations are exact because meta-
materials are composite artificial structures of finite size and hence with inherent
1 Appendix A.4 contains an introduction to structure functions.
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discrete translation symmetry. It shall be emphasised that Fig. 3.1(a) is an equiv-
alent circuit which will be used for modelling metamaterials. It does not enforce
the usage of lumped elements.

Using the chain matrix based algebraic analysis technique for periodic struc-
tures presented in Appendix A.5.1 one obtains the dispersion relation to (3.4)

sinh2(12γΔz) = 1
4ZY

Re{γ}=0= − sin2 12 χ (3.5)

with the complex propagation constant γ and the phase shift across a unit cell χ =
Im{γ}Δz = 2πΔz/λ. In the loss-less case, i. e., Re{Z} = Re{Y} = 0, one obtains a
pass-band for −1 ≤ 14ZY ≤ 0 and a stop-band otherwise. In the stop-band case the
attenuation per unit cell is 2 arsinh(12

√
ZY).

As stated in Sect. 2.1, a periodic structure operates like a metamaterial if the
unit cell size is small compared to the wavelength. In terminology of the reciprocal
lattice1 this corresponds to the vicinity of the Γ-point, which for the one-dimen-
sional case is χ = 2πΔz/λ ≪ 1. In this case the dispersion relation (3.5) reads

− 1
4ZY = sin2 12 χ ≈ 1

4 χ
2
Γ → χΓ =

√
−ZY (3.6)

with the subscript Γ denoting that (3.6) is only valid in the vicinity of the Γ-point.

Apart from the dispersion relation, the second quantity characterising a peri-
odic structure is the Bloch impedance. It is defined as the ratio of the transverse
electric and magnetic fields (or the related ratio of the voltage wave amplitude
and current wave amplitude) at a certain reference plane within the unit cell. It
is the analogon to the characteristic impedance, which is used for the description
of structures with continuous translational symmetry.

Because the Bloch impedance depends on the choice of the reference plane, it
has different values for the unit cells with asymmetric, ‘T’-, and ‘Π’-configuration
shown in Fig. 3.1. Using the chain matrix based analysis approach presented in
Appendix A.5.1 one obtains for the symmetric unit cells

ZBloch,T =
√
Z/Y ⋅

√
1 + 14ZY =

√
Z/Y ⋅ cosh(12γΔz) (3.7a)

ZBloch,Π =
√
Z/Y /

√
1 + 14ZY =

√
Z/Y / cosh(12γΔz) (3.7b)

The Bloch impedance for the asymmetric unit cell is different for waves travelling

1 Appendix A.2 contains an introduction to the concept of the reciprocal lattice.
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Figure 3.2: Unit cell elements for Fig. 3.1. (a) unit cell elements modelling Drude
dispersion for both μr and єr , (b) unit cell elements modelling μr fol-
lowing Lorentz dispersion, and єr following Drude dispersion.

in the +z and −z-direction:

Z(+)Bloch = 2Z√
ZY(4 + ZY) − ZY

= ZBloch,T + 12Z (3.7c)

Z(−)Bloch = 2Z√
ZY(4 + ZY) + ZY

= (Z−1
Bloch,Π + 12Y)

−1 (3.7d)

where the superscript denotes the direction of propagation. As stated above, the
Bloch impedance is the analogon to the characteristic impedance and thus it deter-
mines the level of matching between the metamaterial and a surrounding medium
or structure. Inspecting (3.7), in addition to the design of the elements of the unit
cell (Z, Y), also the choice of the unit cell reference plane interfacing the other
medium can be used as a means to control matching.

3.1.1 Implementation of Dispersion
The choice of the series element Z and shunt element Y determines the type of
dispersion, Drude dispersion or Lorentz dispersion being the two most common
types. This is shown in Fig. 3.2: Using series resonators for Z and parallel res-
onators for Y results in the composite right/left-handed (crlh) approach [Oliner,
2002, Eleftheriades and Balmain, 2005, Caloz and Itoh, 2006] yielding Drude dis-
persion for both the effective permeability and permittivity [Zedler et al., 2007a]

26

LR

LLCR

� �

� �

(a) (b)

Figure 3.3: (a) Equivalent circuit of a waveguide segment of length Δz operating in
te mode with cut-off frequency ωc having LR = μΔz, CR = єΔz, and
ω2

cLLCR = 1. (b) Stacked periodically perforated thick metallic screens.
© 2007 ieee, taken from [Beruete et al., 2007].

Z = jωμ0μeffΔz = jωμ0μ∞Δz(1 − ω2
0,μ/ω2) (3.8a)

Y = jωє0єeffΔz = jωє0є∞Δz (1 − ω2
0,є/ω2) (3.8b)

where μ∞, є∞ are the relative permeability and permittivity for ω → ∞, respec-
tively. ω0,μ and ω0,є denote the magnetic and electric plasmon resonance frequen-
cies, respectively. The correspondence between (3.8) and Fig. 3.2(a) is

μ0μ∞Δz = LR є0є∞Δz = CR ω2
0,μLRCL = 1 ω2

0,єLLCR = 1 (3.9)

The motivation to use the terminology of (3.8) is that dispersion of effective mate-
rial parameters is treated within this chapter.

For the synthesis of physical structures it is possible and common to directly
incorporate the network as of Fig. 3.1 and Fig. 3.2(a) using lumped elements, i. e.,
series capacitors connected to shunt inductors. These elements together with their
unavoidable parasitics then physically realise double Drude dispersion. It shall be
emphasised that incident free space waves can interact also with this type of struc-
ture. In the case of a free space wave setup it needs to be ensured that at the op-
erational frequency the metamaterial structure is mono-modal [Iyer and Eleftheri-
ades, 2008], see also Sect. 6.7.
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Figure 3.4: Mushroom structure. Taken from [Russer, 2006] with permission.

Apart from these lumped elements physical realisations, structures that are
based solely on distributed elements have been proposed. An example of a one-
dimensional structure is a setup of periodically perforated thick metallic screens
stacked at a small distance as shown in Fig. 3.3 [Beruete et al., 2007]. The per-
forated thick screen can be regarded as periodically arranged hollow waveguides.
As derived in Appendix A.4 the equivalent circuit of a hollow waveguide segment
in te modes is a series inductance connected to a parallel resonator. Inspecting
Fig. 3.2(a) one notes that the perforated thick screen therefore realises Drude dis-
persion for the permittivity. In order to obtain Drude dispersion also for the
permeability, according to Fig. 3.2(a) an additional series capacitance is needed.
Within the stacked screens setup the physical realisation is achieved via capaci-
tive coupling of adjacent screens. Further approaches based on te mode propa-
gation and series capacitances have been proposed in, e. g., substrate integrated
waveguide technology [Weitsch and Eibert, 2007].

An example of a two-dimensional distributed double Drude metamaterial is
the mushroom structure [Sievenpiper et al., 1999] depicted in Fig. 3.4. Inductive
posts implement a shunt inductance while the gap between the top plates of the
mushrooms provides a series capacitance. The distance between the gap and the
post is a short piece of transmission line yielding a series inductance and a shunt
capacitance. In total one obtains a series resonator and a shunt resonator, i. e., dou-
ble Drude dispersion. Details of wave propagation in double Drude metamaterials
are given in the next Sect. 3.1.2.

Lorentz dispersion for the permeability and Drude dispersion for the permit-
tivity result in

Z = jωμ0μeffΔz = jωμ0μ∞Δz (1 −
ω2

0,μ

ω2 − ω2
∞,μ

) (3.10a)

28

Y = jωє0єeffΔz = jωє0є∞Δz (1 − ω2
0,є/ω2) (3.10b)

The network elements to Fig. 3.1 modelling this type of dispersion are shown in
Fig. 3.2(b). Their relation to (3.10a) is

μ0μ∞Δz = LR ω2
0,μLRCL = 1 ω2

∞,μLPCL = 1 (3.11)

As expected, Lorentz dispersion passes into Drude dispersion for ω∞,μ → 0 and
hence in the equivalent circuit of Fig. 3.2(b) for LP →∞.

Physical realisations of Lorentz/Drude dispersion are for example the split-
ring resonator (srr)/wire grid configuration shown in Fig. 3.5 as well as Mie reso-
nant dielectric resonators [Vendik and Gashinova, 2004, Ueda et al., 2007, Gaillot
et al., 2008].

An illustration showing the correspondences between the contents of the srr/
wire grid unit cell and the related equivalent circuit is shown in Fig. 3.5(d–e). It
shall be emphasised that this equivalent circuit is only valid in the quasi-static ap-
proximation, i. e., the unit cell is small compared to the wavelength. The electric
field of an incident wave is parallel to the wire grid, which loads the effective per-
mittivity inductively with LL . The srr is modelled by C′L , L′P . This resonator is
probed by the magnetic field which is parallel to the srr plane normal vector. Due
to the coupling of the magnetic field with the resonator the effective permeability is
modified. Last, the free space between split rings is modelled by a ladder network
with the elements LR , CR . The equivalent circuit of Fig. 3.5(e) shows the direct
correspondence to Fig. 3.5(d). The coupling of the magnetic field to the resonator
is modelled by an ideal transformer. Simplifying and re-arranging the network in
Fig. 3.5(e) yields Fig. 3.5(f). Here the elements C′L , L′P are transformed into the el-
ements CL , LP by virtue of the transformer ratio. The resulting network is of the
type shown in Fig. 3.2, which describes mixed Lorentz/Drude dispersion.

Re-examining (3.10a) it is desirable to reduce ω∞,μ while keeping ω0,μ and
the unit cell size constant in order to improve the bandwidth of left-handed oper-
ation. This translates into the requirement to solely enlarge LP , which can unfor-
tunately only be achieved to a small degree with the srr approach. Further, the
resonance within the srr is particularly prone to losses.

If srr are combined with cut-wires this yields Lorentz dispersion for the per-
mittivity and the permeability. This can be seen from Fig. 3.5(d) by substituting the
inductance LL with a series resonator, where the series capacitance is modelling
the capacitive gap between the cut wires. The corresponding equivalent circuit is
shown in Fig. 3.6.
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Figure 3.5: (a) Two-dimensional srr/wire grid arrangement, taken from [Shelby
et al., 2001], (b) visualisation of single srr/wire grid unit cell, taken
from [Casse et al., 2006], (c) planar srr/wire grid arrangement,
(d) wave travelling through a srr/wire grid metamaterial. (e) corre-
spondence of unit cell contents with network elements. (f) simplified
equivalent circuit.
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Figure 3.6: Equivalent circuit of a metamaterial where the dispersion of both the
permittivity and the permeability are of Lorentz-type.

Similar to the above discussion, one obtains Drude dispersion for the perme-
ability and Lorentz dispersion for the permittivity with the complementary srr
configuration [Baena et al., 2005]. In this configuration the srr geometry is etched
periodically into a ground plane and forms together with a microstrip line with pe-
riodic series gap capacitors the metamaterial.

A further topology-derived metamaterial was presented in [Shamonina et al.,
2002]. This magneto-inductive unit cell consists of resonant loops inter-coupled
by their mutual inductance, leading to dispersion different from the Drude and
Lorentz type.

Arbitrary types of dispersion can be obtained by performing the canonical
fractional expansion representation of the one-ports Z ,Y . These Foster representa-
tions of Z and Y are given by [Cauer, 1954, Belevitch, 1968, Russer, 2006]

Z(ω) = 1
jωCp0

+
∞
∑
n=1

1
j (ωCpn − 1

ωLpn
)
+ jωLp∞ (3.12a)

Y(ω) = 1
jωLs0

+
∞
∑
n=1

1
j (ωLsn − 1

ωCsn
)
+ jωCs∞ , (3.12b)

The lumped element equivalent circuits of Foster impedance and admittance repre-
sentations are shown in Fig. 3.7. The advantages of this topology based dispersion
engineering approach presented in this section are that this abstract point of view
simplifies the synthesis and analysis of structures while at the same time causality
is unconditionally preserved. The latter may pose a problem in other formulations
[Engheta and Ziolkowski, 2006, Caloz and Itoh, 2006, Zedler and Russer, 2007],
see also Sect. 2.1.

Because the emphasis of this chapter lies in a topological synthesis approach
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Figure 3.7: Canonical Foster equivalent circuits of one-ports: (a) Foster impedance
representation, (b) Foster admittance representation.

to metamaterials, losses are not specifically treated. Losses can be added to the
models by taking the left-handed elements CL , LL as being lossy. As examples
referring to Fig. 3.2, a lossy Drude dispersive permittivity єeff ∝ 1 − ω2

0,є
ω2− jγω can

be modelled by a lossy inductance LL . A Lorentz dispersive permeability μeff ∝
1 − ω2

0,μ
ω2− jγω−ω∞,μ

can be modelled by a lossy capacitance CL .

3.1.2 Double Drude Metamaterials
If both the permittivity and permeability follow Drude dispersion, the equivalent
one-port elements of the network are given by (3.8). As mentioned in the previ-
ous section, this case is often referred to in literature as composite right/left handed
(crlh) or transmission-line metamaterial.

The proposal of double Drude metamaterials in 2002 [Oliner, 2002,
Eleftheriades et al., 2002, Caloz and Itoh, 2002] led to the discussion about the re-
lation of this type of metamaterial to filter theory, because in the one-dimensional
case the double Drude metamaterial equals the band-pass elementary cell proto-
type. Several reasons were given why it makes sense also in the one-dimensional
case to use the terminology of metamaterials: New applications were invented
which are more easily described using this terminology, e. g., new types of leaky
wave antennas, new types of couplers. Further, a one-dimensional metamaterial
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can be considered being a special case of an isotropic multi-dimensional metama-
terial.

The purpose of the previous Sect. 3.1 was indeed to relate dispersion of ar-
bitrary (not only crlh) metamaterials to filter theory. While filter theory is one
part of the framework for the analysis and synthesis of metamaterials, the other
part is network topology. Chapters 4, 5, and 6 discuss extensions of the topology
to the multi-dimensional isotropic case. Considering a certain direction of prop-
agation in an isotropic multi-dimensional metamaterial yields the special case of
one-dimensional propagation. The present section’s aim is to give an overview of
the properties of double Drude metamaterials for this case.

For a double Drude metamaterial the equivalent circuit elements were given
in (3.8). Using these elements the frequency dependent term of the dispersion
relation (3.5) is

Z ⋅ Y = −ω2μ0μ∞є0є∞Δz2 (1 − ω2
0,μ/ω2) (1 − ω2

0,є/ω2)
= −Ω2⋅ (1 −Ω2

0,μ/Ω2) (1 −Ω2
0,є/Ω2) (3.13)

with the normalised frequencies

Ω2 = ω2 ⋅ μ0μ∞є0є∞Δz2 (3.14a)
Ω2

0,μ = ω2
0,μ ⋅ μ0μ∞є0є∞Δz2 (3.14b)

Ω2
0,є = ω2

0,є ⋅ μ0μ∞є0є∞Δz2 (3.14c)

Using (3.13) the dispersion relation (3.5) reads

sin2 12 χ = 1
4 Ω

2 (1 −Ω2
0,μ/Ω2) (1 −Ω2

0,є/Ω2) (3.15)

Solving (3.15) for Ω yields the two frequency bands

Ω2 = 2 sin2 12 χ + 1
2 (Ω

2
0,є +Ω2

0,μ) ±
√

(2 sin2 12 χ + 1
2 (Ω2

0,є +Ω2
0,μ))

2
−Ω2

0,єΩ2
0,μ

(3.16)
Two cases need to be considered: If the plasmon resonance frequencies of the
permeability and permittivity match, Ω0,μ = Ω0,є ≙ Ω0, the structure is called
resonance-balanced, otherwise resonance-unbalanced. These two cases are shown
in the dispersion diagram1 of Fig. 3.8: In the unbalanced case one obtains a stop-
band between the lower band and the upper band at the Γ-point. Re-inspecting
(3.8), this stop-band can be interpreted as being due to opposite signs of the perme-
ability and permittivity. This stop-band vanishes in the case of matching plasmon
resonance frequencies.
1 Appendix A.3 contains an introduction to the concept of dispersion diagrams.
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Figure 3.8: Dispersion diagram of a double Drude metamaterial.

The lower cut-off frequency ΩL and the upper cut-off frequency ΩR are de-
termined by setting sin 12 χ = 1 in (3.16). The resulting cut-off frequencies are

Ω2
L , Ω

2
R = 2 + 1

2 (Ω
2
0,є +Ω2

0,μ) ∓
√

(2 + 1
2 (Ω2

0,є +Ω2
0,μ))

2
−Ω2

0,єΩ2
0,μ (3.17)

which simplifies in the resonance-balanced case to

ΩL , ΩR = ∓1 +
√

Ω2
0 + 1 (3.18)

The phase velocity cphase and group velocity cgroup are obtained from the dis-
persion relation (3.5) yielding

cphase ∝
Ω
χ
= Ω

2arcsin(12
√
−ZY)

(3.19a)

cgroup ∝ 1
∂Ω χ

= 1
2 ∂Ω arcsin(12

√
−ZY)

(3.19b)

The effective refractive index neff is related to the phase velocity by

neff ∝ c−1
phase for χ ≪ 1 (3.20)

The restriction χ ≪ 1 in (3.20) is due to the fact that the effective refractive in-
dex is only defined if the metamaterial unit cell is small compared to the wave-
length. Eqs. (3.19a), (3.19b), and (3.20) are plotted for the resonance-balanced and
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Figure 3.9: Phase velocity cphase (solid line), group velocity cgroup (dashed line),
and effective refractive index neff (dash dotted line) of a double Drude
metamaterial. neff is only defined if the unit cell is small compared to
the wavelength, here χ ≤ 14π is used.
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resonance-unbalanced case in Fig 3.9. For low frequencies Ω < min(Ω0,μ , Ω0,є)
left-handed behaviour with neff < 0 is obtained. On the other hand for high fre-
quencies Ω > max(Ω0,μ , Ω0,є) one gets right-handed behaviour with neff > 0.

Of particular interest in the resonance-balanced case is operation in the vicin-
ity of the Γ-point, i. e., close to the resonance frequency Ω0. Here, the phase ve-
locity diverges, and the effective refractive index, the effective permeability and
effective permittivity are zero. At the same time the group velocity is finite, allow-
ing energy transfer. This interesting property can be used in various applications,
Sect. 2.9 lists a selection of publications.

Another property of the resonance-balanced condition is that for operation
in the vicinity of the Γ-point, i. e., χ ≪ 1, the dispersion relation (3.6) decouples
into two summands:

χΓ =
√
−ZY = Ω − Ω2

0
Ω

≙ χΓ,R + χΓ,L (3.21)

χΓ,R is a purely right-handed contribution, whereas χΓ,L is purely left-handed. This
property can be useful, e. g., for soliton propagation in structures enriched by non-
linearities [Gupta and Caloz, 2007].

The frequency dependence of the Bloch impedances in ‘T’-configuration
(3.7a) and ‘Π’-configuration (3.7b) are

ZBloch,T =
√

μ0μ∞
є0є∞

%
&&'1 −Ω2

0,μ/Ω2

1 −Ω2
0,є/Ω2 ⋅ cos 12 χ (3.22a)

ZBloch,Π =
√

μ0μ∞
є0є∞

%
&&'1 −Ω2

0,μ/Ω2

1 −Ω2
0,є/Ω2 / cos 12 χ (3.22b)

In the resonant-balanced case the second square root cancels, leading to

ZBloch,bal,T =
√

μ0μ∞
є0є∞

⋅ cos 12 χ (3.23a)

ZBloch,bal,Π =
√

μ0μ∞
є0є∞

/ cos 12 χ (3.23b)

As the term cos 12 χ is constant to first order for small arguments, the Bloch
impedance is constant in the vicinity of the Γ-point for the resonance-balanced
case.

The frequency dependence of the Bloch impedance for the resonance-unbal-
anced case (3.22) and resonance-balanced case (3.23) is shown in Fig. 3.10(a) for
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Figure 3.10: Frequency dependence of the Bloch impedance of a double Drude
metamaterial. Solid line: resonance-unbalanced case with Ω0,μ < Ω0,є .
Dashed line: resonance-balanced case. (a) ‘T’-configuration, (b) ‘Π’-
configuration.

the ‘T’-configuration and in Fig. 3.10(b) for the ‘Π’-configuration. As mentioned,
for the resonance-balanced case the Bloch impedance is flat in the vicinity of the Γ-
point. This allows broadband matching and was exploited in several applications.

In summary, the advantages of the resonance-balanced condition are a) broad-
band matching, b) zero refractive index, and c) finite group velocity. For these rea-
sons the majority of publications treating double Drude metamaterials usually aim
for this condition, see Sect. 2.9 for details. For imaging applications, where an ef-
fective refractive index neff ≈ −1 is sought, the resonance-balance condition is of
less interest, because one needs to operate further away from the Γ-point.
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3.1.3 Lorentz/Drude Metamaterials
For a Lorentz/Drude metamaterial the equivalent circuit elements were given in
(3.10). Using these elements the frequency dependent term of the dispersion rela-
tion (3.5) is

Z ⋅ Y = −ω2μ0μ∞є0є∞Δz2 (1 −
ω2

0,μ

ω2 − ω2
∞,μ

) (1 −
ω2

0,є

ω2 )

= −Ω2⋅ (1 −
Ω2

0,μ

Ω2 −Ω2
∞,μ

)(1 −
Ω2

0,є

Ω2 ) (3.24)

with

Ω2 = ω2 ⋅ μ0μ∞є0є∞Δz2 (3.25a)
Ω2

0,μ = ω2
0,μ ⋅ μ0μ∞є0є∞Δz2 (3.25b)

Ω2
∞,μ = ω2

∞,μ ⋅ μ0μ∞є0є∞Δz2 (3.25c)

Ω2
0,є = ω2

0,є ⋅ μ0μ∞є0є∞Δz2 (3.25d)

In physical realisations of Lorentz/Drude metamaterials the pole Ω∞,μ is affected
by the mutual coupling of adjacent resonators [Eleftheriades and Balmain, 2005]
and in the limit for infinitely strong coupling degenerates into double Drude disper-
sion. This behaviour can be observed as (3.24) equals (3.13) in the limit Ω∞,μ → 0.

Inserting (3.24) into the dispersion relation (3.5) one obtains for Ω∞,μ > Ω0,є
solely one right-handed band, for Ω∞,μ < Ω0,є one obtains in addition to a right-
handed band also a left-handed band. In the latter case the frequencies at the Γ-
point are obtained by setting sin2 12 χ = 0 = −14ZY and solving for the frequen-
cies, yielding ΩΓ = {Ω0,є ,

√
Ω2
∞,μ +Ω2

0,μ}. Setting these two frequencies equal
one obtains a transition from the left-handed band to the right-handed band with-
out an intermediate stop-band, resulting in the resonance-balance condition for a
Lorentz/Drude metamaterial

Ω2
0,є = Ω2

∞,μ +Ω2
0,μ

!= Ω2
0 (3.26)

which can be expressed by CLC−1
R = LL(L−1

R +L−1
P ) using (3.9) and (3.11) and thus

the equivalent circuit elements shown in Fig. 3.2. In the resonance-balanced case
(3.24) simplifies to

Z ⋅ Y = −Ω2 (1 −
Ω2

0 −Ω2
∞,μ

Ω2 −Ω2
∞,μ

)(1 − Ω2
0

Ω2 ) = −
(Ω2 −Ω2

0)
2

Ω2 −Ω2
∞,μ

(3.27)

38

Ω/Ω0

χ
π

0

1

2

Figure 3.11: Dispersion diagram of a resonance-balanced Lorentz/Drude metama-
terial. Solid line: α = 0, i. e., the limiting case of the double Drude
dispersion case, dashed line: limiting case α = 1. Intermediate values
0 < α < 1 shown shaded grey.

The dispersion relation (3.5) for (3.27) is shown in Fig. 3.11 for different values of
α = Ω2

∞,μ/Ω2
0. Double Drude dispersion is the limiting case α = 0 with Ω∞,μ = 0,

and due to (3.26) the case α = 1 describes the other limiting case Ω0,μ = 0.
In the vicinity of the Γ-point the Bloch impedance of a ‘T’-configuration is

given by

ZBloch,bal,Γ =
√
Z/Y ⋅ cos 12 χ =

√
μ0μ∞
є0є∞

Ω√
Ω2 −Ω2

∞,μ

⋅ cos 12 χ (3.28)

which is not constant to first order around Ω = Ω0. As impedance matching is
determined by the Bloch impedance, the pole Ω∞,μ determines the bandwidth
over which matching can be obtained.

In summary, also with Lorentz/Drude metamaterials resonance-balanced de-
signs can be obtained. The position of the pole of the Lorentz dispersive element
determines the bandwidth of operation as well as the bandwidth of matching. The
limiting case of Drude dispersion is both favourable with respect to bandwidth
of eigenmodes as well as with respect to impedance matching. This limit is ap-
proached for tight coupling of adjacent resonant elements of the metamaterial.
In comparison with a double Drude metamaterial physical implementations, the

39



mixed Lorentz/Drude metamaterial case is more challenging to design, because
the impedance matching condition and the resonance-balance condition require
the tuning of an additional resonance.

3.2 Scattering Matrix Representation of Metamaterial Cells
While in Sect. 3.1 the discretisation by means of a finite-difference scheme to the
wave equation was performed in order to derive the foundation of metamaterials,
now a scattering matrix based approach is presented. This approach will prove use-
ful for the extension to multi-dimensional metamaterials in Chapters 4, 5, and 6.

The scattering matrix of a transmission line segment of length Δz normalised
to its characteristic impedance Z0 is

S = exp(− jϕ) (0 1
1 0) = exp(− jϕ) (1 − I) (3.29)

where ϕ is the phase shift across a segment, I denotes the identity matrix, and 1
is a matrix with all elements equal to 1, all matrices having dimension ⟨2 × 2⟩.
Converting S into impedance matrix representation yields

Z = − jZ0
⎛
⎝

1
tan ϕ

1
sin ϕ

1
sin ϕ

1
tan ϕ

⎞
⎠

(3.30)

The aim is to find network circuits realising (3.30). The circuits depicted in Fig. 3.1
model a segment of a one-dimensional material. We note that such a one-dimen-
sional material is equivalent to a transmission line. The symmetrised unit cells in
‘T’- and ‘Π’-configuration shown in Fig. 3.1(b,c) have the impedance matrix repre-
sentation and admittance matrix representation, respectively

Z = 1
2Z ⋅ I + 1

Y
⋅ 1 (3.31a)

Y = 1
2Y ⋅ I + 1

Z
⋅ 1 (3.31b)

Equating (3.31a) and (3.30) yields

Z/Z0 = j2 tan 12ϕ Y ⋅ Z0 = j sin ϕ (3.32)

Equating (3.31b) with the inverse of (3.30) yields the same result as (3.32). The
reason for this is that periodic continuations of Fig. 3.1(b) and (c) match. In the
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Figure 3.12: (a) All-pass equivalent circuit for a loss-less tem transmission line of
length Δz. (b) Unit cell with exchanged elements 12Z and 12Y .

following Chapters 4 and 5 it will be seen that in the multi-dimensional cases the
impedance and admittance representations yield independent network topologies.

A first order Taylor expansion in ϕ ∝ ω of (3.32) yields the expected result
of a series inductance and a shunt capacitance. This is the well-known ladder-
network approximation of a short piece of transmission line. Certain types of
dispersion, which for example yield metamaterial behaviour, can then be imple-
mented as discussed in Sect. 3.1.1. In summary, a scattering matrix based approach
enables an abstract view on network topologies for metamaterial cells.

3.2.1 Higher Order Discretisation
In the last section it was shown that using a scattering matrix based approach the
ladder network approximation to transmission lines can be explained. In this sec-
tion the scattering matrix based approach is used to analyse further discretisation
schemes.

The right hand side of the discretisation scheme in (3.4) is asymmetric be-
cause it only depends on the position z, but not the position z+Δz. Symmetrising
this scheme yields

V(z + 12Δz) − V(z − 12Δz) = −Z ⋅ 1
2 [I(z + 12Δz) + I(z − 12Δz)] (3.33a)

I(z + 12Δz) − I(z − 12Δz) = −Y ⋅ 1
2 [V(z + 12Δz) + V(z − 12Δz)] (3.33b)

The network circuit describing this discretisation scheme is shown in Fig. 3.12(a),
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and the impedance matrix representation is

Z = 1
Y

(1 1
1 1) + 1

4Z ( 1 −1
−1 1) (3.34)

Comparing (3.34) and (3.30) yields

Z ⋅ Z−1
0 = Y ⋅ Z0 = j2 tan 12ϕ (3.35)

A continuous fraction expansion of the tangent in (3.35) yields that – different
from (3.32) – higher order approximations to a transmission line can be imple-
mented using physical lumped elements.

Let us discuss the suitability of this topology for metamaterials. The disper-
sion relation and Bloch impedance are obtained by applying the chain matrix ap-
proach of Appendix A.5.1. One obtains

cos χ = 4 + ZY
4 − ZY → tan2 12 χ = − 1

4ZY (3.36a)

ZBloch =
√
Z/Y (3.36b)

A pass-band exists for
arg{Z} = arg{Y} = ±12π (3.37)

yielding a positive, real Bloch impedance and a real phase shift χ. Thus Z and Y are
purely imaginary and have the same sign, i. e., if one element behaves inductively,
the other needs to behave capacitively. All-pass behaviour is achieved if in addition
the Bloch impedance is frequency independent, hence if

∂ω(Z/Y) = 0 (3.38)

is fulfilled. Contrary to (3.7) this is possible because the Bloch impedance in
(3.36b) is independent of χ. As an example, take Z as being an inductor and Y a
capacitor, or, more generally, for a loss-less element and its dual [Russer, 2006]. In-
serting Z = jωL and Y = jωC into (3.36a) and defining the normalised frequency
Ω2 = ω2LC we obtain

χ = 2 arctan(12Ω) (3.39)

A low-pass to high-pass transformation jΩ → ( jΩ)−1 yields

χ = −2 arctan (2Ω−1) = 2 arctan (12Ω) ± π (3.40)
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Comparing (3.39) and the right-hand side of (3.40) one notes that the phases only
differ by the frequency independent constant π. This is due to the topology of the
circuit shown in Fig. 3.12, upon low-pass to high-pass transformation it transforms
into the same circuit with the port terminals on one side flipped, see node ➂ and
➃ in Fig. 3.12(b). This flip does not impact the dispersion behaviour, from network
theory point of view it is just a transformer with 1 ∶ −1 ratio. However, a trans-
former connected to a right-handed transmission line cannot be expected to yield
a left-handed line.

Let us focus now on the general properties of all-pass circuits without port
flips and their suitability for the synthesis of left-handed metamaterials. The phase
of an all-pass with zeros at (σμ + jωμ) is given by [Schüßler, 1990] as

χ = ±π + 2∑
μ
arctan(

ω − ωμ

σμ
) + π∑

μ
sign(ω − ωμ) (3.41)

which is a monotonically increasing function of ω with ϕ(ω = 0) = 0. This enforces
all-pass circuits to behave in a right-handed way and rules out all-pass circuits as
the basis to left-handed metamaterials.
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4 Two-Dimensional Metamaterials

In Sect. 3.2 we showed that a scattering matrix based representation of a metama-
terial cell can be used to describe metamaterial structures. In this chapter the two-
dimensional case is considered. A scattering matrix S is sought which describes a
fully symmetric, reciprocal and loss-less four-port, a pair of ports for each direc-
tion of space. The non-trivial solution is

S = 1
2 exp(− jϕ) (1 − 2 ⋅ I) (4.1)

using the definition of ϕ, I, and 1 given in Sect. 3.2, all matrices having dimension
⟨4 × 4⟩. In fact, (4.1) is the foundation of the two-dimensional space-discretising
numerical scheme tlm [Itoh, 1989]. Like in Sect. 3.2, a lumped element represen-
tation can be obtained by converting to impedance or admittance matrix represen-
tation and doing a first-order expansion of ϕ. This yields

Zshunt = 1
2Z ⋅ I + 1

Y
⋅ 1 (4.2a)

Yseries = 1
2Y ⋅ I + 1

Z
⋅ 1 (4.2b)

The network topologies described by (4.2a) and (4.2b) are shown in Fig. 4.1: The
shunt node configuration describes the tm polarisation in 2d space, the series node
configuration describes the te polarisation [Itoh, 1989].

Performing a dispersion analysis by applying Floquet boundary conditions as
outlined in Appendix A.5.3, one obtains for both types of configurations

sin2 12 χ + sin2 12η = − 1
4ZY (4.3)

with χ and η being the phase shifts observed by a wave traversing the cell along the
x- and y-axis, respectively. The dispersion diagram1 to (4.3) is shown in Fig. 4.2
for the resonance-balanced case and resonance-unbalanced case. In particular in
the vicinity of the Γ-point the difference between both cases is apparent. There, the

1 Appendix A.2 contains an introduction to the concept of the Brillouin zone, appendix A.3 an
introduction on dispersion diagrams describing multi-dimensional structures.
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Figure 4.1: Lumped element implementations of the 2d tlm scattering matrix.
(a) shunt node configuration, (b) series node configuration.

Γ X M Γ

Ω

min(Ω0,μ , Ω0,є)

max(Ω0,μ , Ω0,є)

Ω0

Figure 4.2: Dispersion diagram to Eq. (4.3) for double Drude elements. Solid line:
resonance-balanced case, dashed line: resonance-unbalanced case. The
vicinity of the Γ-point, i. e., the metamaterial range shaded grey.
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unit cell behaviour matches the one-dimensional double Drude one-dimensional
metamaterial discussed in Sect. 3.1.2. If the unit cell is small compared to the wave-
length, a Taylor expansion of the dispersion relation in χ, η can be performed, in
analogy to the one-dimensional case discussed in (3.6):

χ2 + η2 = −ZY (4.4)

The symmetry of (4.4) in χ, η shows that the network permits physical realisa-
tions with isotropic effective material parameters. Physical realisations of the
shunt-node structure yielding Drude dispersion are, e. g., mushroom structures
[Sievenpiper et al., 1999, Stickel et al., 2007] and their derivatives, including
anisotropic variations [Balmain et al., 2003]. The series-node structure was anal-
ysed in [Iyer and Eleftheriades, 2006]. Both types of structures can be stacked
to yield so-called ‘volumetric’ metamaterials [Iyer and Eleftheriades, 2008, Stickel
et al., 2007]. Two-dimensional arrangements of split-ring/wire grid setups [Shelby
et al., 2001] are physical realisations of Lorentz dispersion for the permeability
within the shunt node configuration.

In summary, the two-dimensional materials proposed in literature can be con-
sidered physical realisations of a scattering matrix based discretisation scheme.
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5 Three-Dimensional Scalar Metamaterials

In analogy to the derivations in the two-dimensional case presented in chapter 4,
now three-dimensional scalar (i. e., supporting one polarisation) metamaterials are
analysed: A scattering matrix S is sought that represents a symmetric, reciprocal
and loss-less six-port, a pair of ports for each direction of space. Due to the fact
that for each direction of space only a pair of ports exists, this structure is of scalar
nature, i. e., only one polarisation experiences metamaterial behaviour. The non-
trivial solution for S is

S = 1
3 exp(− jϕ) (1 − 3 ⋅ I) (5.1)

Conversion to impedance and admittance matrices yields

Zshunt = 1
2Z ⋅ I + 1

Y
⋅ 1 (5.2a)

Yseries = 1
2Y ⋅ I + 1

Z
⋅ 1 (5.2b)

Performing a dispersion analysis by applying Floquet boundary conditions as out-
lined in Appendix A.5.3, one obtains for both (5.2a) and (5.2b)

sin2 12 χ + sin2 12η + sin2 12 ξ = − 1
4ZY (5.3)

with χ, η, and ξ being the phase shifts observed by a wave traversing the cell along
the x-, y-, and z-axis, respectively. The dispersion diagram1 to (5.3) is shown in
Fig. 5.1 for the resonance-balanced case and the resonance-unbalanced case. For
in-plane propagation, i. e., ξ = 0 the behaviour equals that of the two-dimensional
structure in chapter 4. The vicinity of the R-point shows no modes that interfere
with the two modes in the vicinity of the Γ-point. In analogy to (3.6) and (4.4),
performing a second order Taylor expansion of χ, η, and ξ in (5.3) yields

χ2 + η2 + ξ2 = −ZY (5.4)

The symmetry of (4.4) in χ, η, and ξ shows that the network permits physical real-
isations with isotropic effective material parameters.
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Figure 5.1: Dispersion diagram to Eq. (5.3) for double Drude elements. Solid line:
resonance-balanced case, dashed line: resonance-unbalanced case. The
vicinity of the Γ-point, i. e., the metamaterial range shaded grey.

➀ ➁

➂

➃

➄

➅

x

yz

Figure 5.2: Shunt node configuration of the scalar three-dimensional metamaterial.
Shunt element Y shown filled in gray, series elements 12Z shown un-
filled.
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Figure 5.3: Series node configuration of the scalar three-dimensional metamate-
rial implementing (5.2b). Shunt elements 12Y shaded in grey, series el-
ements 16Z interconnecting shunt elements unfilled. Two adjacent cells
are connected at the ports spanning over the shunt elements, denoted
by circled figures.

A metamaterial based on the topology described by (5.2a) is shown in Fig. 5.2
and was first proposed in [Alitalo et al., 2006c], yielding the three-dimensional
shunt configuration. A physical realisation yielding Drude dispersion for єr,eff and
μr,eff was experimentally verified in [Alitalo et al., 2006a]. Yet, physical realisations
of this configuration cannot fulfill cubic or tetrahedral point group symmetries,
making isotropic designs challenging.

A network representation of (5.2b) is depicted in Fig. 5.3 and in a graphically
flattened representation in Fig. 5.4. It is a series configuration of shunt elements
12Y and series elements 16Z along a closed loop. Ports ➀ to ➅ span across shunt
elements. This loop of elements is wrapped around a cube symmetrically, exposing
the ports at the faces of the unit cell. Coupling to adjacent cells is accomplished
through these ports.

1 Appendix A.2 contains an introduction to the concept of the Brillouin zone, Appendix A.3 an
introduction on dispersion diagrams describing multi-dimensional structures.
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Figure 5.4: Graphically flattened representation of Fig. 5.3.

5.1 Physical Realisation of the Series Configuration
A physical realisation using solely distributed elements and yielding Drude dis-
persion for єr,eff and μr,eff is shown in Fig. 5.5. The cube is decomposed into six
partially metallised pyramids, each having a thin strip running diagonally along
a pyramid’s base (realising 12Y), and two plates separated by a gap. Each plate
forms with the neighbouring pyramid’s plate a parallel plate capacitor, realising
16Z. Neighbouring cells are directly connected so that inductive strips are shared
between cells. The structure’s geometry fulfills the symmetry of the point group
Th [Ashcroft, 1988], following Schönflies notation. This point group is defined as
having inversion symmetry and 4x ⋅ 4y symmetry, where np is the n-fold rotation
around the p-axis, describing rotations along diagonals of the cube. The Th sym-
metry ensures isotropic behaviour of the cell in the vicinity of the Γ-point [Padilla,
2007, Baena et al., 2007].
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Figure 5.5: Realisation of a scalar three-dimensional metamaterial in series config-
uration, three of six partially surface-metallised pyramids shown, the
remaining three pyramids are determined by inversion symmetry. Port
labels and axis definitions correspond to Fig. 5.3. For better visibility,
two pyramid’s metallisations shown in red, one pyramid’s metallisation
in green.

5.2 Full-Wave Simulation
Full-wave simulations were carried out using the commercial fem package Ansoft
hfss. The geometry parameters used in the simulation are: unit cell size 20mm,
plate capacitor distance 280 μm, separation gap between capacitor plates 2mm, in-
ductor strip width 270 μm. No dielectric was included in the simulation, conduc-
tors had copper conductivity 5.8 ⋅ 107 (Ωm)−1.

The complete irreducible Brillouin zone of a structure fulfilling the Th point
group is shown in Fig. 5.61. Full-wave eigenmode results for the Γ–X part of
the Brillouin zone are shown in Fig. 5.7. The lowest two eigenmodes correspond
to perturbed plane wave modes [Tsukerman, 2008], which have their origin at

1 Appendix A.2 contains an introduction to the concept of the Brillouin zone.
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Figure 5.6: Irreducible Brillouin zone of a lattice with tetrahedral symmetry (Th
point group in Schönflies notation).
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Figure 5.7: Dispersion diagram obtained by full-wave eigenmode simulation using
the commercial fem package Ansoft hfss. Each dot represents a numer-
ical solution.
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(k = 0, f = 0). A left-handed band extends from 570MHz up to the electric
plasmon resonance frequency 767MHz, yielding a 30% relative bandwidth of left-
handed operation. At the magnetic plasmon resonance frequency 872MHz a right-
handed band starts, extending up to 1301MHz. An additional mode not predicted
by network theory spans the right-handed mode, but the frequency range of left-
handed operation is mono-modal. Quality factors of the left-handed eigenmodes
are ≈ 80. For the frequency range of left-handed operation the unit cell size is
smaller than λ/20, fulfilling the common metamaterial definitions [Eleftheriades
and Balmain, 2005, Engheta and Ziolkowski, 2006, Caloz and Itoh, 2006].

It is important to note that this three-dimensional isotropic metamaterial only
supports one polarisation, as can be seen both from the derivation as well as the
full-wave simulations, in which the left-handed and right-handed modes are not
degenerated. Anisotropy of the structure can easily be achieved by varying the
strips and plates of each of the six pyramids making up a unit cell, or by compress-
ing the unit cell unevenly along different principal axes.

A discussion of fabrication techniques suitable for this type of unit cell can be
found in Sect. 7.1.3.

Concluding this chapter, an attempt to possible further investigations shall be
made. Comparing (3.29), (4.1), and (5.1), all scattering matrices follow

S = exp(− jϕ) (n−1 1⟨2n×2n⟩ − I⟨2n×2n⟩) (5.5)

with n being the dimension of space. Eq. (5.5) is symmetric, reciprocal and unitary
for arbitrary n, possibly allowing for further metamaterial structure synthesis.
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6 Three-Dimensional Vectorial Metamaterial
based on the rtlm Method

While in the previous Chapter 5 scalar three-dimensional metamaterial structures
were discussed, this section treats a vectorial structure, i. e., a structure that sup-
ports propagation of two polarisations. Foundation to this structure is the symmet-
ric condensed node (scn) tlm representation of discrete electrodynamics, which
contains all the information of the discretised Maxwell’s equations [Hoefer, 1989,
Russer, 2006, Kron, 1943, Krumpholz and Russer, 1994].

6.1 Derivation of the rtlm Computational Method by
Symmetry Analysis

In the scn-tlm computational method space is discretised into cubes. At the cen-
tre of each cube face the tangential electromagnetic field is sampled, as shown in
Fig. 6.1(a). This yields 12 electric and 12 magnetic field components which may
be represented by 12 incident waves with amplitudes a1 , . . . , a12 and 12 scattered
waves with amplitudes b1 , . . . , b12 [Krumpholz and Russer, 1994, Russer, 1996], de-
picted in Fig. 6.1(b). The circuit representation of the tlm cell may be depicted by
a 12-port as shown in Fig. 6.1(c). It is represented by a scattering matrix S which
was first proposed in [Johns, 1987]. A method-of-moments based derivation of the
scn-tlm cell from Maxwell’s equation was presented in [Krumpholz and Russer,
1994]. Here a derivation solely based on symmetry considerations is performed,
in analogy to the discussion in Chapters 4 and 5.

A scattering matrix S ∈ C⟨12×12⟩ describing a general 12-port has 144 coeffi-
cients s i j . The particular 12-port shown in Fig. 6.1(c) fulfills rotation and mirror
symmetries with respect to the x-, y-, and z-axes, which inter-relates the coeffi-
cients s i j . The matrix fulfilling these symmetries has the form

S = exp(− jϕ)
⎛
⎜
⎝

SA SB ST
B

ST
B SA SB

SB ST
B SA

⎞
⎟
⎠

(6.1a)
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Figure 6.1: (a) tlm cell, tangential electromagnetic fields are sampled at the centre
of each cube face, (b) corresponding wave amplitudes, and (c) symmet-
ric condensed node.

with

SA =
⎛
⎜⎜⎜⎜
⎝

ρ τ1 0 0
τ1 ρ 0 0
0 0 ρ τ1
0 0 τ1 ρ

⎞
⎟⎟⎟⎟
⎠

SB =
⎛
⎜⎜⎜⎜
⎝

0 0 τ2 −τ2
0 0 −τ2 τ2
τ3 τ3 0 0
τ3 τ3 0 0

⎞
⎟⎟⎟⎟
⎠

(6.1b)

Assuming matched ports (ρ = 0), a loss-less node (S† = S−1), and equal phase
delay in all branches (arg τ1 = arg τ2 = arg τ3 , SA, SB ∈ R⟨4×4⟩) one obtains the two
solutions

τ1 = 0 τ2 = τ3 = 12 (6.2a)
τ1 = 1 τ2 = τ3 = 0 (6.2b)

Eq. (6.2b) describes a trivial node not connected to off-axis adjacent nodes and is
thus not of further interest. Eq. (6.2a) describes a general space-discretising cell,
the scn-tlm node. Inspecting (6.1) and (6.2b) one notes that ports on opposite
faces of Fig. 6.1 are uncoupled. The expression exp(− jϕ) in (6.1) can be interpreted
as being the phase delay across the unit cell.

In order to be able to synthesise a metamaterial, i. e., a physical realisation of
the computing scheme, a transformation of the symmetric condensed node tlm
scheme needs to be applied. The 12-port cell can be decomposed into two indepen-
dent six-ports S̃ and −S̃ by the following coordinate transformation [Wlodarczyk,
1992, Russer, 1996]

QT ⋅ S ⋅ Q = (S̃ 0
0 −S̃) (6.3a)

58

‘A’-cell

➀ ➁

➂

➃

➄

➅

z x

y
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Figure 6.2: rtlm half unit cells ‘A’ and ‘Ā’ implementing S̃. The complete unit cell
is constituted by both half cells merged together.

with the matrix Q describing the change of bases

Q = 1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1 0 +1 0 0 0 0 0 0 0 0 0
0 +1 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 +1 0 +1 0 0 0 0 0
0 0 0 0 0 +1 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 +1 0 +1 0
0 0 0 0 0 0 0 0 0 +1 0 −1
+1 0 −1 0 0 0 0 0 0 0 0 0

0 +1 0 +1 0 0 0 0 0 0 0 0
0 0 0 0 +1 0 −1 0 0 0 0 0
0 0 0 0 0 +1 0 +1 0 0 0 0
0 0 0 0 0 0 0 0 +1 0 −1 0
0 0 0 0 0 0 0 0 0 +1 0 +1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.3b)

This corresponds to a rotation of the polarisations by 45° at each face of the dis-
cretisation cube, as shown in Fig. 6.2. The transformed scattering matrix S̃ is

S̃ = exp(− jϕ)
⎛
⎜
⎝

0 S̃0 S̃T
0

S̃T
0 0 S̃0

S̃0 S̃T
0 0

⎞
⎟
⎠

S̃0 = 1
2 (

−1 −1
1 1) (6.4)

The space discretisation expressed in (6.3) and (6.4) is called rotated tlm method
(rtlm) in literature [Russer, 1996]. In this contribution the two independent half
cell six-ports described by S̃ and −S̃ are called ‘A’ and ‘Ā’ cells, respectively. A cell
that represents both polarisations at each surface can be established by either nest-
ing the six-port structures of the ‘A’ and ‘Ā’ half cells or by a cluster of eight half
cells with alternating ‘A’ and ‘Ā’ cells.
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Figure 6.3: Lumped element model of a rtlm half unit cell implementing the struc-
ture shown in Fig. 6.2. Shunt elements Y shown in red, series elements
denoted by Z.

6.2 The rtlm Metamaterial Unit Cell
An elementary metamaterial cell can be perceived based on rtlm cells, by insert-
ing reactances Z in series to the six cell ports and four admittances Y connecting
the series reactances at a central node which forms a virtual ground. The result-
ing network is shown in Fig. 6.3 as well as in Fig. 6.5(a) in a graphically flattened
representation. The equivalence between the network of Fig. 6.3 and the six-port
scattering matrix of (6.4) can be proved by calculating the impedance matrix rep-
resentation of each. Indeed, both impedance matrix representations match,

Z̃⟨6×6⟩ = (2Z + 2
Y
) ⋅ I + 2

Y
⋅ P (6.5)

with the identity matrix I and

P =
⎛
⎜
⎝

0 P0 PT
0

PT
0 0 P0

P0 PT
0 0

⎞
⎟
⎠

P0 = − 1
2 (−1 −1

1 1) (6.6)

Comparing (6.4) with (6.5), (6.6) one notes that the high level of symmetry of the
scattering matrix representation of the rtlm metamaterial unit cell is preserved in
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Figure 6.4: Representation of a 45° rotation of polarisation by a transformer net-
work.

the impedance matrix representation.
As an aside it shall be noted that the rotation of polarisation by 45° at each

face of the space discretising cube performed in Eq. (6.3a) can be explained us-
ing a network point of view, i. e., by means of ideal transformers, as shown in
Fig. 6.4: Two unrotated ports with polarisations/port voltages V ′ ,V ′′ are trans-
formed into the superposition (V ′ ± V ′′)/

√
2 which describes the rotated port

polarisations/voltages. Thus from a circuit theoretical point of view the scn-tlm
node can be transformed into the rtlm node by means of transformer networks.

A complete rtlm unit cell consists of two half cells which may be connected
at their virtual grounds. The ‘A’-cell scattering is described by S̃ whereas the ‘Ā’-
cell is scattered by −S̃, as denoted by (6.3a). This sign inversion may be interpreted
as a frequency-independent phase shifter of 90° attached to each port, which is
impractical for any physical realisation. For this reason we consider a metamaterial
structure containing solely ‘A’-cells. In this case, referring to Fig. 6.1(c), a wave
incident at port 1 is scattered into ports 5, 6, 9, and 10 instead of 7, 8, 11, and 12.
This means the polarisation is changed from vertical to horizontal after traversing
the cell. If ‘A’ together with ‘Ā’ cells are used, then ports 2, 3, and 4 are uncoupled
from port 1, as expressed by (6.1) and (6.2b). This behaviour is maintained also for
the simplified cell containing solely ‘A’ cells.
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6.3 Dispersion Behaviour
The dispersion relation of a rtlm metamaterial consisting solely of ‘A’-cells is ob-
tained by the algebraic procedure described in Appendix A.5.3 which yields

(1 + ZY)2 = 1
4(3 − cos χ cos η − cos χ cos ξ − cos η cos ξ)

= 1
4 [ sin2(12 χ + 12η) + sin2(12 χ + 12 ξ) + sin2(12η + 12 ξ) (6.7)
+ sin2(12 χ − 12η) + sin2(12 χ − 12 ξ) + sin2(12η − 12 ξ)]

with χ, η, and ξ being the phase shifts observed by a wave traversing the cell along
the x-, y-, and z-axis, respectively. Eq. (6.7) simplifies in the case of propagation
along a principal axis, i. e., η = ξ = 0, to

(1 + ZY)2 = sin2 12 χ (6.8)

In analogy to (3.6), (4.4), and (5.4), performing a second order Taylor expansion
of (6.7) in χ, η, and ξ yields

(12 χ)2 + (12η)2 + (12 ξ)
2 = (1 + ZY)2 (6.9)

The symmetry of (6.9) in χ, η, and ξ shows that this network permits physical
realisations with isotropic effective material parameters.

Comparing the dispersion relation of (6.7) with that of the one-, two-, and
three-dimensional scalar cases (3.5), (4.3), and (5.3), respectively, one notes that
the frequency-dependent term of the rtlm metamaterial case is quadratic in ZY .
This square is the cause for twice the number of frequency bands compared to (3.5),
(4.3), and (5.3).

The Bloch impedance of the rtlm cell has the same structure as the Bloch
impedance of the one-dimensional case in ‘T’-configuration (3.7a) and reads

ZBloch = 2
√
Z/Y

√
2 + ZY (6.10)

This indicates that there is no angular dispersion, since (6.10) is independent of χ,
η, and ξ.

6.4 Propagation along Principal Axes
In order to gain better insight into wave propagation through the rtlm cell, the
specific case of wave propagation along a principal axis is analysed in this section.
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Figure 6.5: Equivalent circuits for the rtlm metamaterial half unit cell. (a) imple-
mentation of ‘A’-cell. (b) particularised circuit for the case of x-axis
propagation following (6.12). (c) simplified equivalent circuit of (b).
Note that in figure (c) port ➁ is flipped.
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Figure 6.6: Equivalent circuits for the rtlm metamaterial half unit cell for propa-
gation along a principal axis, simplified further from Fig. 6.5(c). Note
that port ➁ is flipped.

In this case the equivalent circuit of Fig 6.5(a) can be simplified as follows: Propa-
gation along the x-direction is assumed, periodic boundary conditions along the
y- and z-axis are described by

(b➂

b➃
) = (0 1

1 0)(
a➂

a➃
) (b➄

b➅
) = (0 1

1 0)(
a➄

a➅
) (6.11)

with a i and b i being the incident and reflected wave amplitudes at port i. The
scattering matrices used in (6.11) equal ideal transformers with 1 ∶ 1 transformer
ratio. If in the network shown in Fig. 6.5(a) ports ➂ and ➃ as well as ➄ and ➅ are
connected by ideal transformers, solving Kirchhoff ’s equations yields

i➂ = −i➃ = 0 (6.12a)
v➄ = v➅ = 0 (6.12b)
i13 + i16 = 0 i14 + i15 = 0 (6.12c)

where i13 . . . i16 denote the currents through the shunt elements Y , the current
flow in each is directed towards the symmetry centre which is a virtual ground.
Hence ports ➂ and ➃ are open-circuited, ports ➄ and ➅ are short-circuited, and
the shunt elements Y decouple. Following (6.12) the equivalent circuit can be par-
ticularised to Fig. 6.5(b) that can then be simplified into Fig. 6.5(c). Noting that
the impedance matrix of a T-circuit and a flipped T-circuit are equal, a further
simplification leads to Fig. 6.5(d). Interestingly, for one-dimensional propagation
the circuit resembles that of the ladder circuit shown in Fig. 3.1(b), except that for
the rtlm case there are two T-circuits per unit cell and a flip of sign at port ➁.

The dispersion relation and Bloch impedance for the structure depicted in
Fig. 6.6 may be shown to agree with (6.8) and (6.10), as expected.
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Figure 6.7: rtlm metamaterial half unit cell with Drude dispersion elements.

6.5 Implementation of Dispersion
Due to the fact that the dispersion relation (6.7) is quadratic in ZY one obtains for
the rtlm metamaterial a different type of dispersion compared to Sect. 3.1.1. Any-
way, in the following the termDrude elementswill be used in analogy to Chapters 3,
4, and 5, denoting series resonators for Z and parallel resonators for Y . The disper-
sion diagram for double Drude elements is depicted in Fig. 6.8 for the resonance-
balanced and resonance-unbalanced cases, yielding two left-handed and two right-
handed bands.

The four bands, obtained by inserting the Drude elements defined in (3.8)
and (3.13) into (6.7), are given by

Ω2 = 1
2 (1 +Ω2

0,є +Ω2
0,μ ± d) ±

√
1
4 (1 +Ω2

0,є +Ω2
0,μ ± d)

2
−Ω2

0,єΩ2
0,μ (6.13)

with d2 = 14(3 − cos χ cos η − cos χ cos ξ − cos η cos ξ). The dispersion diagram1 to
(6.13) is shown in Fig. 6.8 for both the balanced- and unbalanced-resonance cases.

1 Appendix A.2 contains an introduction to the concept of the Brillouin zone, Appendix A.3 an
introduction on dispersion diagrams describing multi-dimensional structures.
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Ω
→

Γ X M Γ R M

Figure 6.8: Dispersion diagram to (6.13) of the rtlm metamaterial using dou-
ble Drude elements for the balanced-resonance case (solid line) and
unbalanced-resonance (dashed line) case. Areas denoting operation
where the unit cell is small compared to the wavelength are shaded grey.
Dispersion diagram parts with left-handed behaviour are shown by red
lines.

The consequence of the suppressed negative sign in the scattering matrix of
the ‘Ā’-cell (see Sect. 6.2) are as follows:

◆ the unbalanced-resonance gap of the dispersion diagram appears between
the X and M points and not at the Γ-point like in the one-, two-, and three-
dimensional scalar cases with double Drude dispersion implementation

◆ similarly, the frequency-independence of the Bloch impedance may be
shown to exist near the X/M region, but not near the Γ-point.

This second consequence means that the Bloch impedance is not constant to
first order in the metamaterial frequency range (i. e., around the Γ-point) and that
therefore the bandwidth of the rtlm metamaterial is restricted. This is the conse-
quence for the simplification of the structure avoiding phase shifters in the ‘Ā’ cell.
This behaviour of the Bloch impedance is shown in Fig. 6.9: While for a balanced-
resonance one-dimensional double Drude structure the Γ-point corresponds to
Ω = Ω0 and the Bloch impedance is flat, for the rtlm metamaterial this is not
the case.
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Figure 6.9: Bloch impedance of the rtlm metamaterial cell. Solid line: balanced-
resonance case, dashed line: unbalanced-resonance case. Crosses de-
note Γ-point operation for a one-dimensional double Drude structure,
dots denote Γ-point operation of the rtlm metamaterial.

6.6 Physical Realisation
A maximally symmetric physical realisation of the rtlm metamaterial with Drude
elements, corresponding to the lumped element network of Fig. 6.3 and Fig. 6.7, is
depicted in Fig. 6.10. The series elements Z are implemented by parallel plate ca-
pacitors. Together with their parasitics they form a series resonator as required for
a series Drude element. In Fig. 6.10(a) these capacitor plates are labelled by ‘C’. The
capacitor is formed with the plate of the adjacent cell. Shunt elements Y are imple-
mented by wires. The inductance of each wire together with its parasitics yields
a parallel resonator, as required for a shunt Drude element. In Fig. 6.10(a) wires
are labelled by ‘L’. Wires join at the centre point labelled ‘G’, which forms a virtual
ground due to symmetry. Both half cells may be nested with both half unit cells
being galvanically connected at their virtual ground. Two complete unit cells are
shown in Fig. 6.10(b), visualising the capacitive between the plates of adjacent unit
cells. Ports lie in the middle within each parallel plate capacitor and are arranged
diagonally, corresponding to diagonally polarised waves. This can be understood
by inspecting Fig. 6.3. Two series elements Z connect directly, and in this physical
realisation, are implemented as one joint capacitor. The ports in Fig. 6.3 lie between
the two series elements Z. Therefore in the physical realisation the port position
is at the plane within the capacitor, cutting it virtually in half. Fig. 6.10(c) shows a
three-dimensional rendering of a cluster of 2 × 2 × 2 unit cells.
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Figure 6.10: Maximally symmetric physical realisation of the rtlm metamaterial
containing Drude elements. (a) ‘A’-type half unit cells, (b) two nested
half unit cells form a complete rtlm unit cell. Two unit cells put next
to each other, visualising capacitive coupling between unit cells (c) a
complete 2 × 2 × 2 structure.

6.7 Parasitic Modes
Unconnected metamaterial structures may allow wave propagation of an addi-
tional mode within the structure, called ‘perturbed plane wave mode’ [Collin,
1990] or sometimes ‘acoustic branch’ because of analogy with solid state physics. In
order to avoid mode splitting and coupling to this parasitic mode, the unit cell can
be scaled appropriately to have the metamaterial mode and the parasitic mode re-
side at different frequencies [Tsukerman, 2008, Iyer and Eleftheriades, 2008]. This
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Figure 6.11: Topology of the rtlm metamaterial half unit cell for the common
mode. The Node labels 1 . . . 16 correspond to the scheme in Fig. 6.5(a).

perturbed plane wave mode is found both in the scalar three-dimensional case as
well as the rtlm case, but exists in frequency bands different from the left-handed
ones, as can be seen both in Fig. 5.7 and Fig. 7.18. While the existence of this para-
sitic mode in a different frequency band is sufficient to maintain proper operation
of the metamaterial, it would be advantageous to modify the physical realisation
to inhibit the parasitic mode. The appropriate modification is so-far unknown for
the rtlmmetamaterial and the scalar three-dimensional structure, but recently for
the two-dimensional metamaterials appropriate modifications have been proposed
[Iyer and Eleftheriades, 2008, Stickel et al., 2007].

In addition to the perturbed plane waves another parasitic common mode
could possibly exist for the rtlm metamaterial, because the ports in the network
topology of Fig. 6.5 are fundamentally differential.

For the common mode the potentials at node n and (n+6) with 1 ≤ n ≤ 6 are
equal, and all voltages are defined with respect to the potential at infinity. The cir-
cuit then simplifies as follows: All shunt elements Y are shorted and the structure
is equal to Fig. 6.11. This network only contains one type of element, denoted with
12Z. A network with only one type of element does not support wave propagation:
Assuming that Z consists of only inductors, the lack of capacitors forbids propagat-
ing waves at all frequencies. Using frequency transformation it can be shown that
no common mode exists for other network elements representing Z.
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Figure 6.12: Signal propagation through the rtlm cell.

6.8 Signal Propagation through the Cell
The rtlm unit cell is a balanced structure: It has a virtual ground, i. e., a zero volt-
age point due to the symmetry of the structure instead of connection to a physical
ground. It consists of two nested cells, as shown in Fig. 6.10(a). These two cells
are electromagnetically decoupled in the sense that they support electromagnetic
waves of independent orthogonal polarisations in each direction of space.

To explain wave propagation through the structure, let us consider the exam-
ple of a −xz-polarised (electric field oriented diagonally along the z = −x direc-
tion) plane (transverse) wave propagating along the y-direction and incident on
the structure at the level of a unit cell.

Take the first ‘A’ half cell (left-hand side of Fig. 6.10(a)), displayed in Fig. 6.12.
In this cell, the incident plane wave produces a symmetric voltage difference (+V
and −V ) between the two patches at the input face of the half cell. These two
patches form capacitors with the patches printed on the opposite faces of the thin
substrate slabs, which store electric energy and provide the required series capaci-
tance CL corresponding to negative permeability. Due to these capacitors, the inci-
dent transverse electric field becomes locally longitudinal between the two plates
of the capacitors. The voltages at the plates inside the structure are V ′ = V − Z ⋅ I,
where I is the current flowing into the incident port. From this point, the wave
‘sees’ the wire environment. Due to the symmetry of the structure and due to the
symmetrical incident voltages, propagation is prohibited along the straight (y) di-
rection since the field is short-circuited at the centre node (virtual ground), consis-
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tently with the fact that the scattering parameter s̃21 is zero in (6.4).
While propagation in axial direction is not allowed, off-axis propagation oc-

curs through the four lateral faces of the unit cell, along the positive and negative
x- and z-directions. Fig. 6.12 shows how this is realised in the three-dimensional
cell as a result of the symmetry of the structure and the differential voltages leading
to the voltage difference ±V ′ at the off-axis ports. Since the wave is deflected to-
wards the four lateral faces in the unit cell, the magnetic flux circulates around the
two wire branches extending from the corner voltage points to the virtual ground
point. This corresponds to magnetic energy storage and generates the required
shunt inductance LL corresponding to negative permittivity. Note that the direc-
tions of the fields indicated in Fig. 6.12 correspond to the other four independent
scattering parameters of (6.4).

Consider next the second ‘A’ half cell (right-hand side of Fig. 6.10(a)). In this
cell, the incident −xz-polarised electric field does not encounter any metallisation
at the input plane of the cell, which is therefore transparent to it. The plates with
the same polarisation at the output plane belong to the next ‘A’ half cell.

When many cells are nested, ‘A-A’ are cascaded along the three directions of
space. Plane wave propagation is obtained by meander-like scattering between unit
cells, which is in agreement with the scattering-type propagation in the numerical
technique tlm.

6.9 Excitation by Gaussian Beams
While Sect. 6.4 treated wave propagation along a principal axis, this section exam-
ines a circuit model of waves incident at oblique angles onto a metamaterial slab,
specifically illumination by a Gaussian beam.

The circuit simulation setup is shown schematically in Fig 6.13: A super-cell
consists of (2k+1)×1×1 rtlm cells. Along the first direction the top and bottom
cells are connected by phase shifters with a value of ϕ. This models periodic con-
tinuation of the super-cell. This phase shift can model the oblique incident case
as explained below. Along the second direction ideal transformers account for pe-
riodic continuation not being capable of oblique incidence. Along the third direc-
tion ports are assigned. On one side ‘transmission’ ports labelled t−k . . . t0 . . . tk ,
on the opposite side ‘receiver’ ports r−k . . . r0 . . . rk . With this setup a Gaussian
beam incident at angle θ i onto the super-cell is modelled. Due to the periodic con-
tinuation of the super-cell the excitation is also periodically continued. Therefore
the beam width must decay sufficiently towards the boundaries of the super-cell.
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Figure 6.13: Circuit simulation setup for an incident Gaussian beam. Left side:
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oblique incidence of the Gaussian beam. Dashed line: Amplitude of
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This setup can be modelled using a scattering parameter simulation: The
power at the receiver ports depending on the transmission ports is given by the
coefficients of a scattering matrix. Weighting these coefficients with the aperture
distribution due to the simulated incident Gaussian beam yields a measure of the
power at each receiver port r i

k
∑

n=−k
sr i ,tn exp(−n2) exp( jnϕ) (6.14)

The result is shown for a setup with a rtlm metamaterial slab of 9 transmis-
sion and 9 receiver ports in Fig. 6.14. The lumped elements were set to LL = LR =
6nH, CR = CL = 6pF giving Γ-point frequencies 516MHz and 1351MHz. Below
this frequency left-handed operation is expected, above right-handed operation. A
phase shift ϕ > 0 corresponds to a wave incoming from the top left, hence for left-
handed operation the maximum of the output power is expected to be observed at
one of the ports r1 . . . rk , for right-handed operation the maximum of the output
power is expected at one of the ports r−k . . . r−1. Indeed this result can be observed
in a simulation: Fig. 6.14 shows for 833MHz ≤ f ≤ 1351MHz the solid line above
the dashed line, for f > 1351MHz the solid line below the dashed line. Hence the
expected refractive behaviour of the rtlm metamaterial cell is observed.

6.10 Experimental Verification
Fig. 6.15 shows the unit cell prototype of the rtlm metamaterial. The plate capaci-
tors are realised using printed circuit boards with patches on both sides of the sub-
strate which ensures accurate series capacitor values. The inductors are realised
by rigid wires. The unit cell length is 2 cm, the substrate is Rogers 4350b with a
thickness of 254 μm. The resulting values for the equivalent circuit of Fig. 6.7 are
LL ≈ 17.3 nH, and CL ≈ 5.4 pF.

This prototype was measured using a two-port vector network analyser
through baluns (microstrip to parallel-strip transitions) connected at two arbi-
trary non-aligned ports, while the remaining ports are terminated with ZL = 50Ω
resistors. Note that this excitation appropriately models wave propagation through
the structure because the rtlm structure is a network with well-defined ports. For
the rtlm metamaterial it suffices to verify experimentally that the metamaterial
cell indeed acts like the lumped circuit of Fig. 6.5(a). In this case the behaviour of
the entire structure can be inferred from the response of the single unit cell.
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(a) (b)

Figure 6.15: rtlm metamaterial unit cell with its input and output baluns required
for the differential excitation of the measurement setup.

The extraction procedure of the lumped elements Z and Y is derived as fol-
lows: Taking the six-port impedance matrix (6.5) of the ideal rtlm cell and termi-
nating the four unconnected ports with a load ZL

Vi = −ZL ⋅ I i i ∈ {2, 3, 5, 6} (6.15)

yields a symmetric two-port impedance matrix. This can be converted into a scat-
tering matrix Ŝ normalised to ZL with the elements

ŝ⟨2×2⟩
11 = 4Z2Y + 8Z − Z2

LY
(2Z + ZL)(2ZY + ZLY + 4) (6.16a)

ŝ⟨2×2⟩
21 = −2ZL

(2Z + ZL)(2ZY + ZLY + 4) (6.16b)

Solving for Z and Y yields

Z = ZL

2
⋅ 1 + ŝ11 + 2ŝ21

1 − ŝ11 − 2ŝ21
(6.17a)

Y = −(ŝ11 + 2ŝ12 − 1)(ŝ11 − 2ŝ21 − 1)
2ZL ŝ21

(6.17b)

1 + ZY = ŝ2
11 − 4ŝ2

21 − 1
4ŝ21

(6.17c)

The scattering parameters Ŝ are those obtained in the experiment.
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Figure 6.16: Lumped element frequency dependency extracted from a measure-
ment of the setup shown in Fig. 6.15. Solid line: measurements, dashed
line: circuit simulator results using lumped elements only. (a) extrac-
tion of Z, (b) extraction of Y .

The dispersion relation for propagation along a principal axis is obtained by
combining (6.17c) with (6.8), yielding

sin2 12 χ = (1 + ZY)2 = ( ŝ
2
11 − 4ŝ2

21 − 1
4ŝ21

)
2

(6.18)

The extracted frequency dependency of Z ,Y is depicted in Fig. 6.16, showing fairly
good agreement with lumped element simulations and thus verifying the assump-
tion that the metamaterial cell acts like the intended lumped element circuit. A
comparison of simulation and experimental data for the term (1+ZY) is shown in
Fig. 6.17 showing excellent agreement and further validating the lumped element
assumption for frequencies up to 2.2GHz. The reason for the better agreement of
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Figure 6.17: Comparison of measured (solid line) and simulated (dashed line) val-
ues for (1 + ZY). This term is the frequency determining part of the
dispersion relation of the rtlm metamaterial.
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Figure 6.18: Dispersion diagram for propagation along a principal axis extracted
from a measurement of the setup shown in Fig. 6.15. Solid line: mea-
surements, dashed line: circuit simulator results using lumped ele-
ments only.

Fig. 6.17 compared to Fig. 6.16 is that (6.17c) is more robust compared to (6.17a)
and (6.17b). As the term (1 + ZY) is the frequency determining part of the rtlm
metamaterial (see Eq. (6.7)), the dispersion diagram depicted in Fig. 6.18 shows
also good agreement with circuit simulation results up to 2.2GHz. The expected
two left-handed and two right-handed frequency bands are clearly visible, there-
fore verifying the behaviour of the rtlm metamaterial.
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Figure 6.19: Full-wave simulation setup: 24×24×6 cells illuminated by a Hertzian
dipole, the near field is sampled in the imaging plane.

6.11 Full-Wave Simulation
A full-wave simulation of an arrangement of rtlm metamaterial cells needs to
discretise both the narrow gap of the series parallel plate capacitors as well as
the diagonally arranged wires implementing shunt inductors. This renders three-
dimensional Method-of-Moments (mom) simulation the preferable computational
technique for full-wave simulations of such arrangements. A mesh convergence
analysis of the 12-port scattering parameters of a single cell was performed, with
the result that a coarse discretisation is applicable: Only one wire segment per wire
and 48 surface triangles for the capacitor plates are needed, giving a total of 64
mom unknowns per cell. This low discretisation requirement can be understood
to be due to the operation of the unit cell in the quasi-static limit and the usage
of parallel plate capacitors. The cell geometry was tuned for a refractive index of
n = −1 at f0 = 2.178GHz, a periodicity of a = 20mm and thus a/λ ≈ 1/7, satisfy-
ing the metamaterial condition that the unit cell size needs to be small compared
to the wavelength.

So far no 3d mom simulator supporting periodic boundary conditions is com-
mercially available, thus a finite setup of 24 × 24 × 6 cells (giving a total size of
3.5 × 3.5 × 0.9 wavelengths) was computed on a 48 node cluster with the commer-
cial Feko mom code. The simulation setup is shown in Fig. 6.19: A Hertzian dipole
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Figure 6.20: Simulation result to the setup of Fig. 6.19, showing the dominant trans-
verse electric field magnitude in linear scale.

excites the finite structure and the near-field is sampled in the imaging plane of the
setup. The simulation has 56,000 mom unknowns taking up 98.7GB of memory
and 13.4 hours runtime on the cluster.

Simulation results are displayed in Fig. 6.20, 6.21, 6.22, grey shades are in lin-
ear scale. The excitation and expected focus points reside where the dotted lines
intersect. The magnitude of the dominant electric field is shown in Fig. 6.20, show-
ing a surface wave propagating outwards, the voltage standing wave ratio being 2.3.
Fig. 6.21 and 6.22 show the phase and instantaneous value of the dominant electric
field, respectively, verifying that a spherical wave is originating from where the ex-
pected focus point resides. In Fig. 6.22 both the spherical wave front as well as the
surface wave can be identified. This behaviour is yet better to see in the video ani-
mation of Fig. 6.23. Both the surface wave and the focussing indicate that the cells
have a negative refractive index, as expected.
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Figure 6.21: Simulation result to the setup of Fig. 6.19, showing the dominant trans-
verse electric field phase.
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Figure 6.22: Simulation result to the setup of Fig. 6.19, showing the dominant trans-
verse electric instantaneous field in linear scale.
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Figure 6.23: Video animation of the full-wave results of Fig. 6.22.

6.12 Efficient Computation of Large Arrangements
The previous section 6.11 showed that full-wave simulations of finite three-dimen-
sional metamaterial structures requires an enormous computational power. In the
future numerical codes will certainly become freely or commercially available that
are able to efficiently solve arrangements incorporating rtlm metamaterial cells,
e. g., based on the low-frequency multi-level fast multi-pole method lf-mlfmm,
mode matching, or the domain decomposition/diacoptic approach. In this section
a dispersion-model based approach is presented for inclusion into the numerical
method scn-tlm.

The approach can be derived as follows: The impedance matrix of the rtlm
half unit cell was given in (6.5). The corresponding scattering matrix, normalised
to the free space wave impedance Z0 = 376.7Ω, is

S̃⟨6×6⟩ = ρ ⋅ I + τ ⋅ P (6.19)
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with

ρ = 8Z + 4Z2Y − Z2
0Y

8Z + 4Z0 + 4Z2Y + 4ZZ0Y + Z2
0Y

(6.20a)

τ = 2Z0

8Z + 4Z0 + 4Z2Y + 4ZZ0Y + Z2
0Y

, (6.20b)

where ρ and τ are identified as reflection and transmission coefficients, respectively,
from their association with the identity matrix I and the zero-diagonal matrix P
defined in (6.6).

The scattering matrix of the conventional (not rotated) scn 12-port network
and the two scattering matrixes of the two rtlm 6-port half unit cell networks are
related by (6.3a),

S⟨12×12⟩ = QT ⋅ (S̃⟨6×6⟩ 0
0 S̃⟨6×6⟩) ⋅ Q = ρ ⋅ I + τ ⋅ S0 (6.21)

with Q defined in (6.3b) and S0 being

S0 =
⎛
⎜
⎝

0 SA ST
A

ST
A 0 SA

SA ST
A 0

⎞
⎟
⎠

SA =
⎛
⎜⎜⎜⎜
⎝

+1 +1 0 0
−1 −1 0 0
0 0 +1 −1
0 0 +1 −1

⎞
⎟⎟⎟⎟
⎠

(6.22)

This expression for the conventional scattering matrix is slightly different
from the original Johns’ matrix [Johns, 1987] in (6.1a), (6.2a): In the latter case
ρ equals zero, while here reflection occurs and S0 has a different structure. This is
due to the simplification convenient for the construction of rtlm metamaterials
explained in Sect. 6.2.

6.12.1 Bilinear Time-Discretisation
The rtlm scheme of the previous section (already discretised in space) will now
be discretised in the time domain also. For this purpose, we first substitute the
Laplace complex frequency variable s = σ + jω into the functions Z(ω) and Y(ω)
appearing in (6.20), which leads to expressions ρ(s) and τ(s). Next, we introduce
the bilinear transform substitution [Oppenheim and Schäfer, 1999]

s → K z − 1
z + 1

(6.23)
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where the parameter K may be set for exact match between the analog and digital
responses at the frequency ω1 as

K = ω1

tan(ω1ΔT/2)
= 2

ΔT
(1 − ΔT2ω2

1/12) +O(ω1T)4 (6.24)

where 1/ΔT is the digital sampling rate. For typical metamaterial space discretisa-
tions, ω1ΔT/2 ≪ 1, and therefore the zeroth order approximation in this relation
can safely be used over the entire frequency range of interest.

In the specific case of double Drude elements as given in (3.8) we have

Z(s) = sLR + 1
sCL

, Y(s) = sCR + 1
sLL

. (6.25)

The corresponding scattering matrix S⟨12×12⟩ is then obtained as follows:

◆ substitute (6.23) into (6.25) with (6.24)

◆ substitute the resulting expressions Z(z) and Y(z) into (6.20)

◆ insert the resulting expressions ρ(z) and τ(z) into (6.21), which yields
S⟨12×12⟩(z)

6.12.2 iir Digital Formulation
In digital signal processing terms, the bilinear transform (6.23) has converted the
continuous-time transfer function S⟨12×12⟩

analog (s) of (6.21) into a discrete-time trans-
fer function S⟨12×12⟩

digital (z), mapping positions on the jω axis in the Laplace plane into
the unit circle in the z-plane. Each coefficient of the matrix S⟨12×12⟩

digital (z) may then
be efficiently computed as an infinite impulse response (iir) filter transfer function
[Oppenheim and Schäfer, 1999]

sdigital, i j(z) =
∑N

n=1 b iz−i

∑N
n=1 a iz−i

, (6.26)

by using the classical difference equation

y(n) = a−1
1 [b1x(n) + b2x(n − 1) +⋯+
+⋯+ bNx(n − N + 1) − a2 y(n − 1) −⋯ − aN y(n − N + 1)], (6.27)
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where n is the discrete-time index, x and y are the input and output signals, respec-
tively, and a and b are the feedback and feed-forward filter coefficients, respectively,
which only depend on the constants LL , LR ,CL ,CR , and K. Due to the derivation
from an analog filter these digital iir filters are unconditionally stable, i. e., all of
their poles lie within the unit circle of the z-plane.

More specifically, by noting the scattering relation corresponding to the scat-
tering matrix (6.21) as

[V(n)] = ρ ⋆ I [V(n − 1)] + τ ⋆ S0 ⋅ [V(n − 1)]
= [Vρ(n − 1)] + S0 [Vτ(n − 1)]

(6.28)

with the star ⋆ denoting convolution. We find out that each scattering function
term (corresponding to every unit cell face-to-face transfer function) may be repre-
sented by two separate iir filter outputs, [Vρ(n − 1)] for reflection and [Vτ(n − 1)]
for transmission. Each component Vρ , i and Vτ , i denotes the output of the reflec-
tion and transmission iir filters at port i, respectively, while Vi denotes the scat-
tered wave at port i of the scn-tlm node shown in Fig. 6.1(c).

The scattering scheme of (6.28) can then be incorporated into a conventional
time-domain tlm simulator [Hoefer and So, 2003] on a per-cell basis, enabling
simulation setups with both conventional cells and 3d rtlm cells.

6.12.3 Computational Efficiency
The iir update equation (6.27) for (6.28) may be computed efficiently by the algo-
rithm [Oppenheim and Schäfer, 1999]

y(n) = b1/a1x(n) + z1(n − 1) (6.29a)
z1(n) = b2/a1x(n) + z2(n − 1) − a2/a1 y(n) (6.29b)

⋮
z5(n) = b6/a1x(n) + z6(n − 1) − a6/a1 y(n) (6.29c)
z6(n) = b7/a1x(n) − a7/a1 y(n) (6.29d)

Then, each filter consumes in an update cycle 13 multiply-accumulate (mac) in-
structions and 6 additions which for the given algorithm can be calculated by 8
single instruction multiple data (simd) instructions on a modern pc. These addi-
tional calculations need to be performed for each of the 24 filters compared to the
standard scn tlm scheme.
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Assuming that the iir filters are implemented as canonical direct form 2 trans-
posed type filters [Oppenheim and Schäfer, 1999], which consume a minimum
amount of memory, the permanent memory storage requirement per metamate-
rial cell is

sizeof(variable) × 12@
# of ports

× 2@
# of iir filters

× 6@
# of storage elements

per iir filter, see Eq. (6.29a)

(6.30)

which represents 1152 bytes per metamaterial cell using double-precision arith-
metic. Double precision is required due to close proximity of the poles of the
transfer functions to the unit circle in the z-domain. Compared to 48 bytes for a
non-metamaterial cell using single-precision arithmetic, this results in a memory
storage increase by a factor of 24. The iir feedback and feed-forward coefficients
corresponding to this algorithm are given in Appendix B.

6.13 Summary
Within this chapter an isotropic three-dimensional metamaterial structure that
supports two polarisations was presented. First the scn-tlm scheme and its vari-
ant, the rtlm method were derived using solely symmetry considerations of a
general space-discretising cell. In the tlm computational scheme propagation of
waves is described according to Huygen’s priciple by a continuous scattering of
waves. The polarisation of incident and scattered waves are taken as horizontal
and vertical within the scn-tlm scheme, leading to a scattering matrix represen-
tation of a fully-coupled 12-port. In the rtlm method instead of horizontal and
vertical polarisations one considers diagonal polarisations, leading to a scattering
matrix representation of two uncoupled six-ports. These six-ports form the basis
of an elementary metamaterial cell. A physical realisation of this metamaterial cell
was proposed which fulfills the symmetry group of the simple cubic lattice. Wave
propagation through the structure was studied using algebraic analysis, circuit sim-
ulation, full-wave simulation and measurements. For the efficient simulation of
non-periodic setups containing rtlm metamaterial cells a dispersion-model was
derived that can be incorporated into the computational method scn-tlm.
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7 Fabrication of 3d Metamaterials

Three-dimensional metamaterials are challenging to fabricate, on one hand the
unit cells are more complex compared to the one- and two-dimensional case, on
the other hand the number of cells required for for a setup increases: Assuming
ten metamaterial cells per wavelength and a structure size of five wavelength, this
yields 503 = 125, 000 cells. In order to overcome these problems we present two
approaches: decomposition of the unit cell into polyhedra, and topology-invariant
planarisation.

7.1 Decomposition into Polyhedra
Three-dimensional metamaterials proposed so far in literature all use cubic cells to
discretise space [Mercure et al., 2005, Koschny et al., 2005, Vendik and Gashinova,
2004, Alitalo et al., 2006a, Zedler and Russer, 2006, Zedler et al., 2008a, Grbic
and Eleftheriades, 2005a]. These unit cells can be decomposed into polyhedra
[Hofmann et al., 2008, Zedler and Russer, 2008] so that all metal parts lie on
polyhedron surfaces. These structures can be fabricated with technologies like (2
component)-injection moulding [Murphy, 2002], 3d molded interconnect device
technology (3d-mid) [Eberhardt et al., 2006], hot embossing [Pein et al., 2004],
plasma activation and printing [Möbius et al., 2008], physical vapour deposition
[Forschungsvgg. Räumliche Elektronische Baugruppen 3-D MID e.V., 2004], and
laser direct structuring [LPKF Laser & Electronics AG, 2008]. For prototyping 3d
printers can be used. As will be shown subsequently, the polyhedra are primar-
ily mechanical supporting structure. Electric field penetration into the polyhedra
is low, making the metamaterial behaviour insensitive to substrate losses within
the polyhedra. The above mentioned fabricational approaches limit the achievable
unit cell size to the order of millimetres, but one may also envision polyhedron
decomposition for micro/nanostructuring as well.

In the following we present decomposition into polyhedra for the rtlm
structure [Zedler and Russer, 2006], the Kron structure [Grbic and Eleftheriades,
2005a] and the scalar 3d structure in series configuration (see Sect. 5).
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(a) (b)

Figure 7.1: Decomposition of a rtlm unit cell into pyramids. Turquoise denotes
dielectric, grey metallisation. Spacing between cells is achieved through,
e. g., thin dielectric sheets and a mechanical press fit. (a) single pyramid
element, (b) six pyramid elements forming a unit cell.

7.1.1 rtlm Metamaterial Unit Cell
The unit cell depicted in Fig. 6.10 can be decomposed into pyramids (see Fig. 7.1)
and compounds of pyramids (see Fig. 7.2–7.5). Each of these offer specific advan-
tages and disadvantages,

◆ a single pyramid offers the simplest casting mould, see Fig. 7.1.

◆ two compound pyramids offer a simple casting mould. Metallisation can be
performed using planar metallisation techniques, see Fig. 7.2.

◆ three compound pyramids forming a half-cell, offering a self aligning struc-
ture when two half-cells are set into each other, see Fig. 7.3.

◆ merging half-cells to form a half-cell line (see Fig. 7.4), with inter-cell capaci-
tive coupling realised using capacitive coupling patches. The latter approach
is described in detail in Sect. 7.2.

◆ merging half-cell lines to half-cell planes, as shown in Fig. 7.5. In this figure
the additional dielectric elements compared to Fig. 7.4 are shown in red for
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(a) (b)

Figure 7.2: Compound polyhedron consisting of two pyramids. (a) single com-
pound polyhedron. Metallisation can be applied using solely planar
technology, (b) Three polyhedra forming a unit cell.

clarity. These extra elements only serve mechanical connection purposes.

◆ inductive connections may be lay out as a meander in order to decrease the
magnetic plasmon frequency, see Fig. 7.6.
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(a) (b)

Figure 7.3: (a) Compound polyhedron consisting of three pyramids, (b) Two poly-
hedra yield a mechanically self-aligning structure forming the unit cell.

Figure 7.4: Merged half-cells as of Fig. 7.3 yielding a half-cell line.
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Figure 7.5: Half-cell lines mechanically connected by dielectric (shown in red for
clarity) forming a half-cell plane.

(a) (b)

Figure 7.6: Variations of inductive connections.
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Figure 7.7: Separated half-cells configuration: schematic view.

7.1.2 rtlm Metamaterial in Half-Cell Configuration
In Fig. 7.8 a structure implementing the alternating, i. e., non-nested configuration
of the rtlm metamaterial cell is shown. Ports run along diagonals and are denoted
by 1..6 and 1′ ..6′. Wires L i implement a shunt inductance while metallic plates,
together with the plates of the adjacent cell, series capacitors, denoted by C i . As
explained in Sect. 6, a 2 × 2 × 2 cluster of such half-cells implements a complete
metamaterial cell. This structure has the advantage of reduced parasitic capacitive
coupling between two half-cells and that imperfections in fabrication cannot lead
to galvanic coupling at the centre point. The main disadvantage of this structure
is that it is more difficult to achieve a unit cell size that is small compared to the
wavelength, as a unit cell consists of 2 × 2 × 2 half-cells.

In Fig. 7.8(a) the polyhedron decomposition of a half-cell is shown. This poly-
hedron corresponds to the Fig. 7.7(b), specifically the rear bottom right part. The
polyhedron is a hexahedrons fulfilling the condition that the complete metallisa-
tion is on the surface of the hexahedron. With four hexahedrons making up a half-
cell and a complete unit cell consisting of 8 half-cells, a complete unit cell needs 32
hexahedrons. An arrangement of unit cells in half-cell configuration is shown in
Fig. 7.8(b).
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(a) (b)

Figure 7.8: (a) Hexahedron decomposition of a half-cell. The shown hexahedrons
corresponds to the rear bottom right part of Fig. 7.7(b). (b) Arrange-
ment of unit cells made up of half-cells.

inductor
pyramid

gap

capacitor plate

Figure 7.9: Decomposition of the scalar 3dmetamaterial cell in series configuration
into pyramids.
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7.1.3 Scalar 3d Metamaterial Cell in Series Configuration
In Chapter 5 the scalar three-dimensional metamaterial in series configuration was
presented. This geometry can be decomposed into pyramids as shown in Fig. 7.9.
In contrast to the rtlm structure, six pyramids forming a unit cell need to be as-
sembled with a thin spacer to avoid a short-circuit of the capacitive coupling.

7.1.4 Kron’s Unit Cell
Another vectorial metamaterial was proposed in [Grbic and Eleftheriades, 2005a],
which is based on Kron’s equivalent circuit representation of free space [Kron,
1943]. The inverted configuration yielding left-handed behaviour is shown in
Fig. 7.10(a), its physical realisation in Fig. 7.10(b). Wires along the edges of the
unit cell implement inductors, which are interconnected by diagonal plate capac-
itors. While this unit cell is seemingly highly complicated, in fact a shift of the
unit cell boundaries by half a cell along all directions yields the simpler appearing
structure shown in Fig. 7.10(c). This structure can be decomposed into polyhedra
as shown in Fig. 7.10(d), which is a symmetrically cut octahedron. The top and bot-
tom half pyramid faces are metallised but separated by a gap. On the cut face rests
an inductive strip, connecting the tips of the half pyramids. Another approach is a
surface-metallised octahedron with a drilled metallised hole connecting the tips.

7.2 Topology-Invariant Planarisation
While full three-dimensional fabrication as proposed in Sect. 7.1 offers the high-
est level of isotropy and design flexibility, planar fabrication techniques are much
more common in microwave and photonics engineering. In [Zedler et al., 2007b]
topology-invariant planarised geometries of the rtlm metamaterial were pro-
posed, and analysed numerically as well as algebraically, yielding design guide-
lines for this geometry. These will be presented here and extended to also cover
the novel scalar three-dimensional structure described in Sect. 5.

7.2.1 rtlm Metamaterial Unit Cell
Fig. 7.11 shows the cross-sectional view of the planarised rtlm metamaterial cell.
Fig. 7.12(a) shows the corresponding metal layers. The layers m1 and m5 at the
bottom and top correspond to the patches in the cell corners in Fig. 6.10. Layer
m5 is identical with layer m1 of the overlying cell. Each of the four patches of the
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(a) (b)

(c)

top half
pyramid

bottom
half
pyramid

inductive
strip

gap

(d)

Figure 7.10: Decomposition of Kron’s cell into polyhedra. (a) Kron’s cell based
metamaterial, taken from [Grbic and Eleftheriades, 2005a] with per-
mission, (b) physical implementation of Kron’s cell. Inductors along
the edges implemented by wires, capacitive coupling between induc-
tors by diagonally oriented plate capacitors, (c) identical structure to
Fig. 7.10(b), but unit cell boundaries shifted along all directions by half
a cell, (d) decomposition of Kron’s unit cell elementary polyhedron
consisting of two half pyramids. Red parts denote metallised parts,
green side signifies not metallised surface. The inductive strip resem-
bles the wire in Fig. 7.10(c).
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m1

m2

m3

m4

m5

d1 : є2 , h2

d2 : є1 , h1

d3 : є1 , h1

d4 : є2 , h2

dvia

Figure 7.11: Cross-sectional view of the planarised rtlm metamaterial cell. є1: low
permittivity; є2: high permittivity; h2 as thin as possible. Vertical thick
lines: buried via. Via distance dvia as small as possible. m i denote the
metallisation layers in the unit cell. If multiple cells are stacked then
the adjacent top and bottom layers m1 and m5 can be merged into one
layer.

layers m1 and m5, is continued into the four neighbouring cells at every corner.
These patches ensure the capacitive coupling with the neighbouring cells via the
patches of layers m1 and m4. In the layers m2 and m4 the strips are connected to
the patches with insets, which increase the inductance. Together with the through-
connections through layers d2 and d3 these strips form the required inductive cou-
pling. The vertical capacitive coupling is achieved through two series capacitances
m4 → m5 → m′2 (where the prime denotes the next unit cell). In-plane capacitive
coupling is achieved through two series capacitances m4 → m5 → m′4.

An alternative configuration requiring no metal-insulator-metal patches is de-
picted in Fig. 7.12(b): Here the vertical capacitive coupling is m4 → m′2. The in-
plane capacitive coupling is achieved by inter-digital capacitors (idc)m4 → m′4. In
addition to the advantage of requiring less layers per unit cell, this configuration
also alleviates fabrication tolerances with respect to dielectric layer thicknesses, as
the two layers d1/d4 are merged into one layer. This advantage comes at a cost;
both CL and LR of the vertical plate capacitors and the in-plane inter-digital capac-
itors need to be carefully matched.

7.2.1.1 Parasitic Coupling due to Planarisation

While ideally the network topology of Fig. 7.11–7.15 should equal that of Fig. 6.3 and
6.5(a), unwanted capacitive coupling m2 → m4 needs to be considered. Such para-
sitic effects couple the otherwise independent two half cells, as shown in Fig. 7.16.
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(b)(a)

Figure 7.12: Exploded top view on the different metal layers for the structure of
Fig. 7.11. (a) parallel plate capacitor implementation, (b) inter-digital
capacitor implementation.
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Figure 7.13: Top view of layer m2/m4 of 2 × 2 cells of the structure depicted in
Fig. 7.12(a).

Figure 7.14: Top view of layer m1/m5 of 2 × 2 cells of the structure depicted in
Fig. 7.12(a). The coupling patches provide the series capacitive coupling
between in-plane adjacent cells.

Figure 7.15: Top view of layer m2/m4 of 2 × 2 cells of the structure depicted in
Fig. 7.12(b).
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Figure 7.16: Planarised unit cell consisting of two nested ‘A’ cells with parasitic cou-
pling modelled by Yc .

In order to obtain the dispersion relation we first calculate the impedance
matrix of the 12-port by setting up Kirchhoff ’s equations. One obtains

Z = (ZA ZB
ZB ZA

) (7.1)

with

(Y + 2Yc) ⋅ ZA = 2(1 + Z(Y + 2Yc) + Yc/Y) ⋅ I − 2(1 + Yc

Y
) ⋅ P (7.2)

(Y + 2Yc) ⋅ ZB = 2Yc

Y
(P − I) (7.3)

97



0.5

1.0

1.5

2.0

Ω

Γ XM
0

0.5

1.0

1.5

2.0

Ω

Γ R

Figure 7.17: Dispersion diagram to (7.4) for a resonance-balanced unit cell with
LL/LR = 1 and YcZ = 15 . For Γ → X, black represents propagation
along χ, red represents propagation along η, green represents propaga-
tion along ξ. For Γ → M, black represents propagation along χ = η,
red represents propagation along χ = ξ, green represents propagation
along η = ξ.

using the matrix P defined in (6.6).
The dispersion relation is calculated from the impedance matrix (7.1) using

the algebraic approach presented in Appendix A.5.3. One obtains

1
4 (3 − cos χ cos η − cos χ cos ξ − cos η cos ξ) − (1 + ZY)2 =

− YcZ
1 + ZY [cos η cos ξ + (1 + Z(Y + 2Yc))(cos η − cos ξ)]

− YcZ
1 + ZY [4Y 2Z2 + 8ZY + 3 + 4YcZ(1 + ZY)] (7.4)

In the limiting case Yc → 0 the dispersion relation of the planarised rtlm metama-
terial reduces to that of (6.7) because then the right hand side of (7.4) vanishes.

The dispersion diagram corresponding to (7.4) for a resonance-balanced unit
with LL/LR = Ω0 = 1 and ZYc = 15 is plotted in Fig. 7.17. The isotropic behaviour
around the Γ-point is approximately maintained. As both Yc and Z are realised by
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plate capacitors (Fig. 7.11), a reasonable corresponding design guideline is

h1 ≥ 5є1

є2
h2 (7.5)

with respect to Fig. 7.11. In order to satisfy (7.5) several interdependent conditions
need to be met:

1. The unit cell size needs to be small compared to the wavelength.

2. The via distance dvia plus via diameter need to be small compared to the unit
cell size.

3. The via diameter is related to h1 through the achievable aspect ratio, but
(7.5) needs to be fulfilled.

4. The thickness of the thin dielectric layers d1 and d4 needs to have very small
tolerances in order to assure good control over CL .

While item 4 can be overcome by using inter-digital capacitors as shown in Fig.
7.12(b) instead of coupling plates, the design of such a double Drude resonance-
balanced unit cell is more challenging: Both CL and LR of the vertical plate capac-
itors and the in-plane inter-digital capacitors need to be matched.

7.2.1.2 Numerical Calculation of the Dispersion Relation

Numerical results of the planarised 3d rtlm structure were calculated for a sam-
ple with coupling patches in m1/m5 using cst mws and Ansoft hfss. The unit cell
edge length a is 20mm, and the dielectrics are h1 = 5mm, h2 = 1mm, є1 = 1, and
є2 = 10. The structure’s dimensions are summarised in Tab. 7.1. The dispersion dia-
gram for Γ → X along the z-axis is shown in Fig. 7.18, displaying good agreement
between cst mws and Ansoft hfss. The lower right-handed mode is a perturbed
plane-wave mode not described by the network model. It corresponds to artificial
dielectrics as described in [Collin, 1990]. The left-handed mode, corresponding to
the lower left-handed mode of Fig. 6.8, is clearly visible. The electric field distribu-
tion of the left-handed mode for χ = η = 0, ξ = 16π is shown in Fig. 7.19. The high
confinement of the electric field in the plate capacitors proves the assumption of
lumped element behaviour and accordingly the homogeneity requirement of meta-
materials as well as the low impact of the parasitic capacitance Yc for the simulated
configuration.
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Table 7.1: Geometry parameters for the simulation of the planarised rtlm metama-
terial cell.

parameter value in units of a/64

via distance 4
√

2
via diameter 1
m2/m4 strip inset width 6
m2/m4 strip width 1
m2/m4 strip length 28
m2/m4 patch to cell boundary distance 4
m2/m4 patch edge length 20
m1/m5 patch edge length 24
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Figure 7.18: Numerical calculation of the dispersion diagram of the planarised unit
cell for Γ →X along the z-axis. Solid lines: cst mws Jacobi-Davidson
Eigenmode solver, dashed lines: hfss eigenmode solver. Left-handed
band emphasised by red lines. Sampled every 10°.
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Figure 7.19: Electric Field distribution for χ = η = 0, ξ = 16π for the left-handed
mode (see Fig. 7.18).

7.2.2 Scalar 3d Metamaterial Cell in Series Configuration
The network topology of the scalar 3d metamaterial in series configuration has
been shown in Fig. 5.3. A planarised physical realisation of this topology yield-
ing Drude dispersion for the permeability and permittivity is depicted in Fig. 7.20:
Layer m1 provides the in-plane elements of the 2d scalar series configuration (see
also Fig. 4.1b). Black parts denote metallisation, hatches represent inter digital ca-
pacitors, and red circles are connection points of vias. The stubs connecting to the
edge of the unit cell form half of the shunt inductance, inter-digital capacitors the
series capacitance. Two vias located in the bottom left connect to layerm2, the two
vias in the top-right connect to the above’s cell layer m4. In layer m2 vias connect
to metal plates. Together with plates in layer m3, these form two series plate capac-
itors. In layer m3 inductive coupling is implemented by a thin strip, shown in red
for clarity. Metallic plates in layer m4 form a series capacitance with those in layer
m3 towards the cell below. There two vias connect to the next cell’s layer m1 in the
top right.

The shape of the metallic layers m2, m3, and m4 can be varied in order to
tune the shunt inductance of layer m3 and the vertical series capacitance. Thus
together with the choice of layer dielectrics and layer thicknesses anisotropy of the
planarised structure can be well controlled.
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Figure 7.20: Planarised realisation of the scalar 3d metamaterial in series configu-
ration.
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8 Conclusion and Outlook

Metamaterials are compoundmaterials exhibiting electromagnetic material param-
eters not readily found in nature. Several applications relying on these material pa-
rameters have been proposed in literature, e. g., novel antenna concepts, improved
imaging systems, and also methods for minimising radar cross-sections.

Due to the proposed applications the synthesis of metamaterials has attracted
high attention both among physicists as well as electrical engineers over the last ten
years. Three main directions of research within the metamaterial synthesis field
can be identified: broadband metamaterials, metamaterials operating at very high
frequencies aiming for the optical spectral range, and multi-dimensional metama-
terials.

In this thesis a systematic approach to the synthesis of metamaterials is pre-
sented. Group theory cannot be used for the synthesis of metamaterials, as it solely
addresses the level of symmetry of a structure, but it does not determine the struc-
ture’s constituents. This information can be obtained from topological analysis: A
metamaterial is composed of cells that are small compared to the wavelength and
are usually periodically continued. In general, any structure of arbitrary electrical
size can be represented by a network, hence also a metamaterial unit cell. It is
shown that the topologies of network representations of metamaterial cells can be
derived from discretisation schemes of one-, two-, and three-dimensional space.
Such schemes are commonly employed in full-wave simulators in order to approx-
imate space with cells that are small compared to the wavelength, i. e., a mesh. In
analogy, a metamaterial physically realises space that has special properties using
electrically small cells. Once the network topology is determined by a space-dis-
cretising scheme, the network elements are chosen such that the desired dispersion
behaviour of the metamaterial is obtained. Having a complete network description
of a unit cell, physical realisations can then be designed. These can be based on
lumped or distributed elements, or a combination of both. A maximally symmet-
ric physical realisation yields isotropic behaviour, otherwise the effective material
parameters are anisotropic.

Several structures presented in literature are compactly and comprehensively
explained using this approach, including split-ring/wire grid setups and so-called
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transmission-line metamaterial setups, both in the one-dimensional and multi-
dimensional cases.

In addition, this method is used as a means of synthesis to two new types
of three-dimensional metamaterials: One structure is based on the three-dimen-
sional extension of the two-dimensional space-discretising transmission line ma-
trix (tlm) method. This structure is of scalar nature, i. e., it yields metamaterial
behaviour for one polarisation only. The second structure is based on a variation
of the three-dimensional space-discretising scheme symmetrical condensed node
tlm, denoted as rotated tlm (rtlm) method in literature. This rtlm metamaterial
is vectorial, i. e., it achieves metamaterial behaviour for two polarisations.

A maximally symmetric physical realisation and a planar physical realisation
are proposed for both the scalar and the vectorial three-dimensional metamaterial.
The maximally symmetric realisations offer isotropic behaviour. They can be fabri-
cated by standard three-dimensional techniques like injection moulding or rapid
prototyping by decomposing the unit cells into polyhedra such that all metallisa-
tions lie on the polyhedra’s surfaces. The planar physical realisation can be fabri-
cated using processes common in microwave and optical engineering, but the ef-
fective material parameters are anisotropic. The proposed structures are analysed
algebraically and by circuit-simulations. Full-wave simulations and experiments
show that both structures have relative bandwidths of left-handed operation ex-
ceeding 20%.

In addition to the close relation between numerical space-discretising tech-
niques and metamaterial synthesis also an application proposed in literature for
metamaterials has a link to numerical techniques. The geometry transformation
approach which is a method suggested for the reduction of radar cross-sections is
used within the fem and fdtd methods for mesh deformations. Like in metamate-
rial synthesis, a numerical technique is moulded into physical realisations within
this application. These two links to computational techniques suggest that further
analogies could be investigated, physical realisations of perfectly matched layers be-
ing one of the possibilities.
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A Analysis of Periodic Structures

In this appendix an introduction to the analysis of periodic structures is given.
Starting from the eigenvalue problem in the case of continuous translation sym-
metry an analogy to periodic structures is drawn. The common framework for the
analysis of multi-dimensional structures is presented, including a description of
reciprocal space and an explanation of dispersion diagrams. The concept of struc-
ture functions is introduced which relates the field description (i. e., modes) to a
network description. Algebraic approaches to the analysis of periodic structures
based on this network description are also presented.

A.1 Formulation as an Eigenvalue Problem
This section gives a short introduction to periodic structures, emphasising the anal-
ogy between the eigenvalue problem in the continuous case and the periodic case.
First, let us re-capture the essential steps to calculate wave propagation in well-
known structures, specifically free space and the hollow waveguide. The steps
for the analysis of a structure with continuous translation symmetry are, using the
nabla operator ∇ = (∂x , ∂y , ∂z),

Step 1: Take the homogeneous Helmholtz equation (∇2 + k2)Ψ = 0 or the teleg-
rapher’s equation (∂2

zz + k2)Ψ = 0. The quantity Ψ is either a field, a scalar
potential, or a vector potential. ‘Homogeneous’ refers to the fact that no exci-
tation terms are considered and hence an eigenvalue problem is to be solved.

Step 2: Use the ansatz that the field/potential is proportional to exp(−γz) for wave
propagation along z. This implies continuous translational symmetry of the
problem: If the solution Ψ0 is known at a certain plane z0 = 0 then the solu-
tion at any other plane z is exp(−γz)Ψ0.

Step 3: Solve the eigenvalue problem including any boundary conditions, e. g., by
separation of variables and exploit symmetry where possible.
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Step 4: Derive the dispersion relation γ(ω) from the eigenvalues and the charac-
teristic impedance Z0(ω) as the ratio of the transverse electric and magnetic
field from the eigenmodes.

We will now apply these steps to a couple of example problems.

Plane wave in free space: Let us consider the trivial case of free space first.

Step 1: The Helmholtz equation for the electric field is (∇2 + k2
0)E = 0.

Step 2: The wave propagation ansatz yields ∂2
zzE0 exp(−γz) = −k2E0 exp(−γz).

There are no additional boundary conditions.

Step 3: For an x-polarised wave the solution is Ex = Ex ,0 exp(−kz). The related
magnetic field is Hy = Hy ,0 exp(−kz) = Ex ,0Z−1

F0 exp(−kz) with Z2
F = Z2

F0 =
μ0/є0.

Step 4: The dispersion relation is γ(ω) = jω/c0. The characteristic impedance is
ZF = ZF0.

Hollow waveguide: After the trivial example of a plane wave in free space let us
consider te modes in a hollow waveguide. Perfect electric walls are at x = ±12a and
y = ±12b. The transverse nabla operator is given by ∇t = (∂x , ∂y , 0).

Step 1: The Helmholtz equation for the magnetic field is (∇2 + k2
0)H = 0.

Step 2: The wave propagation ansatz together with the assumption of a te mode
yields the eigenvalue equation ∇2

tHz = (−γ2 − k2
0)Hz in the longitudinal

component of the magnetic field Hz . This example has boundary conditions
for the electric and magnetic field at the hollow waveguide walls.

Step 3: The fundamental solution is Hz = H0 sin(πxa−1) ⋅ exp(−γz). The trans-
verse magnetic field components are obtained by γk−2

0 ∇tHz , the electric
field is E = ( jωє)−1∇×H.

Step 4: The dispersion relation is γ2(ω) = (2a)−2 − ω2c−2
0 . The characteristic

impedance is Z0(ω)2 = Z2
F0/(1 − (2aω/c0)−2).
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Figure A.1: Bragg lattice consisting of two materials.

Bragg lattice: Following the examples for structures with continuous transla-
tional symmetry, let us now consider periodic structures with discrete translational
symmetry. For these, step 2 needs to be modified. In a one-dimensional periodic
structure of unit cell size a the Floquet ansatz is used:

Ψ(z + a) = Ψ(a) exp(−γz) (A.1)

Depending on the boundary conditions, also the derivatives of Ψ must satisfy
(A.1).

We will now use a Bragg structure as an example. Here, the one-dimensional
unit cell shown in Fig. A.1 consists of two materials, material i having the material
parameters є i , μ i and length d i . The unit cell size is a = d1 + d2. Let us assume for
simplicity ω√μ1є1d1/c0 = ω

√μ2є2d2/c0 = ϕ and let us denote Z2
i = μ i/є i .

Step 1: The Helmholtz equation is (∇2 + k2
0)E = 0.

Step 2: The Floquet ansatz is E(z + a) = E(z) ⋅ exp(−γz). Assuming in each
medium i the field E = u i(z) ⋅ exp(−γz) this yields the eigenvalue equations
u′′i − 2γu′i + (ω2c−2

0 є iμ i + γ2)u i = 0.

Step 3: u i are solved for the boundary conditions u1(±12d1) = u2(±12d1) and
accordingly for the derivatives u′i denoting the transverse magnetic field
u′1(±12d1) = u′2(±12d1).

Step 4: The non-trivial solution to the system of equations yields the dispersion
relation ∣sin 12 χ ∣ = 1

2
Z1+Z2√

Z1 Z2
∣sin ϕ∣. The ratio of the components of the asso-

ciated eigenvector yields the Bloch impedance Z2
Bloch = Z2

1
cos ϕ− Z1−Z2

Z1+Z2

cos ϕ+ Z1−Z2
Z1+Z2

.

107



As can be seen from the above example, the essential steps for calculating wave
propagation behaviour remain unchanged for the periodic case1.

In this section we assumed periodicity along the direction of propagation.
The next section extends the analysis to multi-dimensional periodic structures.

A.2 Bravais Lattices and the Brillouin Zone
The geometry of a periodic structure can be described by an elementary unit cell
(Wigner-Seitz cell), which can be used to reconstruct the periodic structure by
translation.

These translations can be described as operations on a periodic arrangement
of points in space, the so-called Bravais lattice. In the three-dimensional case a
Bravais lattice is defined by the vector2 R

R = la1 +ma2 + na3 l ,m, n ∈ Z (A.2)

where a1, a2, a3 are vectors with ∣a1 , a2 , a3∣ ≠ 0, i. e., these vectors span a volume.
For the propagation of a plane wave through the lattice the reciprocal lattice vector
G is of interest, defined by

e j ⟨G ,R⟩ = 1 (A.3)

where angle brackets denote the scalar product. Eq. (A.3) is fulfilled for

⟨G , R⟩ = 2πN N ∈ Z (A.4)

yielding
G = l ′b1 +m′b2 + n′b3 l ′ ,m′ , n′ ∈ Z (A.5)

with the basis vectors of reciprocal space

b1 = 2π a2 × a3

⟨a1 , a2 × a3⟩
b2 = 2π a3 × a1

⟨a1 , a2 × a3⟩
b3 = 2π a1 × a2

⟨a1 , a2 × a3⟩
(A.6)

The Wigner-Seitz cell of reciprocal space is called Brillouin zone. Considering mir-
ror symmetries, rotation symmetries, and inversion symmetry the volume of the
Brillouin zone can be reduced to a minimum volume, the irreducible Brillouin zone.
1 A Bragg grating having sinusoidal variation of the material parameters instead of discontinuities

leads to solutions in terms of complex Mathieu functions, see, e. g., [Affolter and Kneubühl, 1976,
Russer, 2006].

2 In this subsection only, vectors are denoted by bold italics.
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Figure A.2: Brillouin zone and irreducible Brillouin zone of a unit cell having sim-
ple cubic symmetry (Oh point group in Schönflies notation).

For the complete description of wave propagation in a unit cell the solutions of the
wave equation for each point of the irreducible Brillouin zone is needed, i. e., a com-
plete volume of reciprocal space needs to be sampled. In contrast, only the solu-
tions on the edges between the vertices of the irreducible Brillouin zone are needed
to describe the essential features of the structure [Ashcroft, 1988, Joannopoulos
et al., 1995].

Let us consider the simple cubic lattice of edge length a. In this case the space
vector R is given by (A.2)

R = a ⋅ [l (1, 0, 0) +m (0, 1, 0) + n (0, 0, 1)] l ,m, n ∈ Z (A.7)

The reciprocal lattice is

G = 2π
a

⋅ [l ′(1, 0, 0) +m′(0, 1, 0) + n′(0, 0, 1)] l ′ ,m′ , n′ ∈ Z (A.8)

The Brillouin zone and the irreducible Brillouin zone are depicted in Fig. A.2. The
former is a cube of edge length 2π placed symmetrically about the Γ-point, defined
by

Γ ≙ (0, 0, 0) X ≙ (π, 0, 0) M ≙ (π, π, 0) R ≙ (π, π, π) (A.9)
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Γ X M Γ R M

Ω
→

(a)

section χ η ξ

Γ→ X 0→ π 0 0
X→M π 0→ π 0
M→ Γ π → 0 π → 0 0
Γ→ R 0→ π 0→ π 0→ π
R→M π π π → 0

(b)

Figure A.3: (a) Showcase dispersion diagram for a simple cubic lattice (Oh point
group in Schönflies notation). Solid line: dispersion relation. Dashed
line: light line ω = ∣k∣c0. (b) Edges of the irreducible Brillouin zone in a
simple cubic lattice denoted by points of symmetry and the respective
point in reciprocal space.

The irreducible Brillouin zone is a tetrahedron with the vertices given by (A.9). Its
edges are highlighted in red in Fig. A.2.

Since each point in the Brillouin zone corresponds to a specific phase shift
between opposite faces of the unit cell, a sweep of the phase shifts will sample the
edges of the Brillouin zone.

A.3 Graphical Representation of the Dispersion Relation
In Sect. A.1 it was derived that the solution to the homogeneous Helmholtz equa-
tion under boundary conditions yields the dispersion relation which relates the
wave vector k to frequency. In the one-dimensional case k is a scalar and therefore
a graphical representation shows the scalar k versus the scalar ω. In the multi-
dimensional case k is a vector. While for the two-dimensional case one can graph-
ically visualise the full dispersion relation using a 3d plot, the full graphical visu-
alisation of the dispersion relation of a three-dimensional structure would require
a four-dimensional plot. The derivations made in Sect. A.2 give a solution to this
visualisation problem. As it suffices to analyse only the edges between points of
high symmetry in the irreducible Brillouin zone, a graphical representation of the
dispersion relation can be made, called dispersion diagram.
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As an example Fig. A.3(a) shows the dispersion diagram to the dispersion re-
lation

cos χ + cos η + cos ξ = 3 + 1
2 Ω

2 (A.10)

with χ, η, and ξ denoting the phase shifts of a wave travelling in a unit cell along the
x-, y-, and z-direction, respectively, i. e., in a simple cubic lattice. In terminology
of the reciprocal lattice each point (χ, η, ξ) is element of the Brillouin zone and
has an associated eigenspectrum. Solving (A.10) for Ω gives:

Ω =
√
2
√

3 − cos χ − cos η − cos ξ (A.11)

Calculating the eigenfrequencies for all edges (see table A.3(b)) between points of
symmetry for the Brillouin zone gives the dispersion diagram shown in Fig A.3(a).

In addition to the eigenfrequencies the light line is denoted by a dashed line
in Fig A.3(a). It is defined by ω = ∣k∣c0 with the free-space speed of light c0. In
Fig. A.3(a) all modes are below the light line, i. e, their phase velocity is smaller
than c0. Such modes are called guided modes. Modes above the light line, i. e.,
with a phase velocity larger than c0, radiate if the structure is open to free space.
Such modes are called leaky waves, or, because this requires a complex propagation
coefficient, complex waves [Ishimaru, 1991].

In order to illustrate the behaviour of guided modes and leaky modes let us
consider the case of slits in a hollow waveguide and in a coaxial cable. In the for-
mer arrangement the slits lead to radiation because the phase velocity of the fun-
damental mode is larger than the free-space velocity. In the coaxial cable case the
radiation due to the slit is smaller by orders of magnitude because the phase veloc-
ity of the fundamental mode is smaller or equal to c0.

In closed structures no leaky modes exist. For two-dimensional arrangements
a closed structure was proposed in [Stickel et al., 2007]. Three-dimensional in-
finitely periodic arrangements are by definition always closed.

A.4 Structure Functions
This section provides an introduction to structure functions which allow to rigor-
ously relate the field description of the Helmholtz eigensolutions to a network de-
scription. Such network descriptions will prove useful for the analysis of periodic
structures as can be seen in the following Sect. A.5. See [Brand, 1970, Felsen and
Marcuvitz, 1994, Russer, 2006] for more information.

111



This approach considers each eigenmode separately. For each mode the trans-
verse field distribution is formally factored into a structure function denoted by e,
h, which depend on the transverse coordinates and a generalised voltage V and
generalised current I which depend on the longitudinal direction. Assuming prop-
agation in the +z-direction this formal separation is

Et = V(z) ⋅ e(x , y) Ht = I(z) ⋅ h(x , y) (A.12)

with the structure functions e(x , y) and h(x , y) being vector functions having an
x- and a y-component and the subscript t denoting the transverse components.
The structure functions are normalised such that

1
2 ∫∫ E ×H∗ dA = 1

2Z
−1
F ∫∫ ∣Et ∣2 dA = 1

2ZF ∫∫ ∣Ht ∣2 dA

= 1
2V ⋅ I∗ = 1

2Z
−1
F ∣V ∣2 = 1

2ZF ∣I∣2 (A.13)

is satisfied with ZF being the characteristic wave impedance of the mode and A be-
ing the transverse area of the structure under investigation. This normalisation im-
plies that the power flows in the field description and network description match.
The ratio of the generalised voltages and currents ZF = V(z)/I(z) is the wave
impedance of the mode. In the case of a tem mode one can compute the charac-
teristic impedance Z0 =

√
L′/C′ from the structure functions by

L′ = μ ∫C1
hx dy − hy dx C′ = є ∫∮C2

ex dy − ey dx (A.14)

with C1 being an integration path connecting two conductors, and C2 being an
integration path encircling one conductor.

Eigenmodes to the Helmholtz equation are orthogonal1 and therefore so are
the structure functions. Together with the normalisation of structure functions
expressed in (A.13) one obtains that the set of structure functions for all modes
forms a bi-orthogonal basis.

In order to obtain a network description the longitudinal fields are expressed
in terms of the transverse fields, i. e., generalised voltages and currents. Then
Maxwell’s equations transform into the transmission line equations

∂zV(z) = −Z′ ⋅ I(z) ∂z I(z) = −Y ′ ⋅ V(z) (A.15)

1 Eigenmodes are orthogonal if the operator in the eigenvalue problem is hermitian. For the
Helmholtz equation this is solely possible in the loss-less case. As losses are commonly treated
using a perturbation approach then eigenmodes remain orthogonal within the bounds of the
approximation.
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exhibiting an effective impedance per length Z′ and an effective admittance per
length Y ′. These effective parameters fulfill for the characteristic impedance Z2

0 =
Z′/Y ′ and for the propagation coefficient γ2 = Z′Y ′. In other words, if the expres-
sions for the wave impedance and the propagation coefficient of a mode are known,
then the network elements Z′, Y ′ obey and thus can be alternatively computed by

Z′ = γ ⋅ ZF Y ′ = γ/ZF (A.16)

In case of an x-polarised plane wave propagating in free space the structure
functions reduce to ex(x , y) = hy(x , y) = 1, the area of integration is the unit area
and one obtains Z′ = jωμ and Y ′ = jωє.

In order to illustrate this transformation of the field description to a network
description let us consider as an example the fields of the te10 mode in a hollow
rectangular waveguide of transverse direction a×b with the longer length a aligned
with the y-axis. The fields for a wave propagating in the +z-direction are

Hx = 0 Hy = A sin πx
a

e− j kz Hz = − j π
ka

A cos πx
a

e− j kz (A.17a)

Ex = Zte Hy Ey = 0 Ez = 0 (A.17b)

After defining the structure functions

ex(x , y) = hy(x , y) =
√

2
ab

sin πy
a

(A.18)

the transverse fields can be expressed by the generalised voltage V(z) and the gen-
eralised current I(z) by

Ex = V(z) ⋅ ey(x , y) Hy = I(z) ⋅ hx(x , y) (A.19)

Due to the structure function definition in (A.18) the characteristic impedance
relates generalised voltage to generalised current by

V(z) = Zte ⋅ I(z) (A.20)

Power transmission in the field description and the generalised voltage/current for-
mulations are equal, i. e.,

P(z) = 1
2Z0 ∫∫ ∣Hy ∣2 dA = 1

4Zteab∣A∣2 = 1
2Zte∣I(z)∣2 (A.21)

Next the longitudinal fields need to be expressed by the generalised voltage/current.
With all fields expressed by generalised voltages and currents Maxwell’s equations
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transform into the transmission line equations. Maxwell’s equations are, in a per-
component representation in Cartesian coordinates

Faraday’s law:

(∇ × E)x = ∂yEz − ∂zEy = − jωμHx (A.22a)
(∇ × E)y = ∂zEx − ∂xEz = − jωμHy (A.22b)
(∇ × E)z = ∂xEy − ∂yEx = − jωμHz (A.22c)

Ampère’s law:

(∇ ×H)x = ∂yHz − ∂zHy = jωєEx (A.22d)
(∇ ×H)y = ∂zHx − ∂xHz = jωєEy (A.22e)
(∇ ×H)z = ∂xHy − ∂yHx = jωєEz (A.22f)

The longitudinal magnetic field Hz is related to the generalised voltage by consid-
ering the z-component of Faraday’s law (A.22c), yielding

− ∂yEx = − jωμHz → Hz = V(z) jπ
ωμa

√
2
ab

cos πy
a

(A.23)

The y-component of Faraday’s law (A.22b) and the x-component of Ampère’s law
(A.22d) yield equations of the transmission line type

∂zEx = − jωμHy → ∂zV(z) = − jωμI(z) (A.24a)

∂yHz − ∂zHy = jωєEx → ∂z I(z) = −( jωє + 1
jωμ(a/π)2 ) V(z)

(A.24b)

Note that in (A.24b) the Hz field is expressed in terms of the generalised voltage
as determined in (A.23). By equating (A.24) and (A.15) one obtains

Z′ = jωμ Y ′ = jωє + 1
jωμ(a/π)2 (A.25)

A finite segment of the rectangular hollow waveguide of length Δz can therefore be
modelled by the equivalent circuit shown in Fig. A.4. Alternatively the network el-
ements can be obtained by taking the propagation coefficient and wave impedance
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Figure A.4: Equivalent circuit of a hollow waveguide segment of length Δz in te10
mode with transverse dimensions a × b, a > b. LR = μΔz, CR = єΔz,
LL = μ(a/π)2/Δz. Note that the resonance frequency of the parallel
resonator matches the cut-off frequency of the mode.

of the te10 mode

γ = ω
c

√
1 − ω2

c
ω2 ZF = ZF0/

√
1 − ω2

c
ω2 (A.26)

with ωc = π
a√μє and using (A.16) in order to obtain the same network elements

like in (A.25)

Z′ = γ ⋅ ZF = jωμ Y ′ = γ/ZF = jωє + 1
jωμ(a/π)2 (A.27)

A.5 Algebraic Analysis
In this section algebraic approaches to the analysis of the dispersion relation and
the Bloch impedance are presented. We assume the network description of the be-
haviour of a single unit cell is known. While for the structures discussed within
this thesis a network description is easily obtained, the situation may be more chal-
lenging in multidimensional structures including both lumped elements and dis-
tributed elements. See [Russer, 1994] for a systematic calculation approach to this
general case.

In network description, one-dimensional periodic structures can be viewed
as a two-port. Its chain matrix representation allows for general expressions of
both the dispersion relation and the Bloch impedance. Other network representa-
tions of the unit cell can be converted into chain matrix representation. For multi-
dimensional structures an approach based on impedance or admittance matrix
based representations is suitable. Dispersion calculation in connection networks
is convenient to analyse using scattering matrix representation.
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AV1 V2

I2I1

Figure A.5: Chain matrix representation of a two-port.

A.5.1 Chain Matrix based Analysis of Unit Cell Two-Ports
For the calculation of the dispersion relation of a two-port the representation of a
chain matrix1 [Matthaei et al., 1980, Russer, 2006, Pozar, 2005] is convenient. A
chain matrix A relates voltages and currents of a two-port by

(V1
I1
) = A ⋅ (V2

I2
) (A.28)

This two-port is depicted in Fig. A.5 with the definition of the orientation of the
voltages and currents. It shall be emphasised that the current I1 is assumed to flow
into the circuit while the current I2 is assumed to flow out of the circuit. Due
to the definition of the chain matrix a concatenation of different elements can be
accounted for by multiplication of their respective chain matrices. The chain ma-
trices for a series element Z, a shunt element Y , and a piece of transmission line
with characteristic impedance Z0 and electrical length ϕ are, respectively,

Aseries = (1 Z
0 1) Ashunt = (1 0

Y 1) Atrans = ( cos ϕ jZ0 sin ϕ
jZ−1

0 sin ϕ cos ϕ ) (A.29)

While reciprocal two-ports result in symmetric impedance, admittance, and scat-
tering matrices, in chain matrix representation the condition for reciprocity is

∣A∣ = A11A22 − A12A21 = 1 (A.30)

1 Depending on the field of study other names for the chain matrix representation are ‘ABCD
matrix’ or ‘transfer matrix’, sometimes even ‘transmission matrix’. In particular terminology
between ‘transfer matrix’ and ‘transmission matrix’ is varying among authors. Let us use the
definition of the transmission matrix T relating wave amplitudes ai , bi by ( b1

a1 ) = T ⋅ ( a2
b2 ).

Then the dispersion relation can be inferred from the eigenvalues of T. This is in analogy to the
eigenvalues to the chain matrix, as will be shown within this section.
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The chain matrix representation can be computed from impedance and admittance
representations by

A = (−1 Z11
0 Z21

)
−1

(0 Z12
1 Z22

) = ( Y11 −1
−Y21 0)

−1

( Y12 0
−Y22 −1) (A.31)

If a two-port described by a chain matrix A is periodically continued then A
describes a unit cell. Assuming wave propagation in this structure with a complex
propagation constant γ and the unit cell size having the physical thickness a, then
the Floquet ansatz is

(V1
I1
) = e γa (V2

I2
) = A (V2

I2
) (A.32)

Eq. (A.32) is an eigenvalue problem with the eigenvalue λ = exp(γa). The charac-
teristic polynomial of A is

λ2 − λ (A11 + A22) + A11A22 − A12A21 = 0 (A.33)

Due to (A.30) it reads for the reciprocal case

λ2 − λ (A11 + A22) + 1 = 0 (A.34)

The roots of the characteristic polynomial are the eigenvalues λ(±). These consti-
tute the dispersion relation

λ(±) = exp(γ(±)a) = 1
2 (A11 + A22) ±

√
1
4 (A11 + A22)2 − 1 (A.35)

Considering the definition of hyperbolic functions one obtains for both eigensolu-
tions

cosh γa = 1
2 (A11 + A22) (A.36a)

or, equivalently

sinh2(12γa) = 1
4 (A11 + A22) − 1

2 (A.36b)

The latter expression for the dispersion relation may in some cases be more useful
and is used in chapters 3, 4, and 5. The corresponding two eigenvectors to λ(±) are
(Vλ(±) , Iλ(±)). The ratio Vλ(±)/Iλ(±) is called the Bloch impedance. Its values are

Z(+)Bloch = Vλ(+)

Iλ(+)
= A12

1
2 (A22 − A11) +

√
1
4 (A11 + A22)2 − 1

(A.37a)

Z(−)Bloch = Vλ(−)

−Iλ(−)
= −A12

1
2 (A22 − A11) −

√
1
4 (A11 + A22)2 − 1

(A.37b)
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The definition of the Bloch impedance for the λ(−) eigensolution takes a negative
current due to the definition of currents in Fig. A.5.

In case of a symmetric unit cell the chain matrix satisfies A11 = A22. The
dispersion relation (A.35) and Bloch impedance (A.37) then simplify to

exp(γ(±)a) = A11 ±
√
A2

11 − 1 → cosh γa = A11 (A.38a)

Z(±)Bloch = A12√
A2

11 − 1
=
√

A12

A21
(A.38b)

The physical interpretation of the above derivations is as follows: The Flo-
quet ansatz transforms the problem into an eigenvalue problem. The eigenvalue
yields the propagation coefficient γ and thus the dispersion relation, the corre-
sponding eigenvector denotes the associated voltage and current waves. Their ratio,
the Bloch impedance, is the analogon to the characteristic impedance for a contin-
uous transmission line. In fact, describing a piece of transmission line by Atrans
as denoted in (A.29), the Bloch impedance equals the characteristic impedance,
ZBloch =

√
A12/A21 = Z0. Thus one can consider the Bloch impedance not only

an analogon to the characteristic impedance, but a generalisation for the case of
arbitrary translational symmetry.

In the loss-less case the propagation constant is either purely real or purely
imaginary. While the former case describes a stop-band, i. e., evanescent waves,
the latter describes a pass-band, i. e., propagating waves. For the pass-band case
one obtains

cosh γa = cosh jχ = cos χ = 1
2 (A11 + A22) (A.39a)

sinh2(12γa) = sinh2( j 12 χ) = − sin2 12 χ = 1
4 (A11 + A22) − 1

2 (A.39b)

The edges of the pass-band are determined by ∣ cos χ ∣ = 1, within the pass-band
one has ∣ cos χ ∣ = 12 ∣A11 + A22∣ < 1.

It has to be noted that the Bloch impedance is different for the two eigenso-
lutions for the general case of an asymmetric cell, i. e., one observes a different
voltage to current ratio for waves propagating in opposite directions. On the other
hand, in case of a symmetric cell the Bloch impedance is independent on the di-
rection of wave propagation. If such a unit cell is terminated on one side with the
Bloch impedance, then the resulting input impedance is also the Bloch impedance.
This effect is called image impedance in filter theory and shown in Fig. A.6.

V1/I1 = ZBloch
!= A11ZBloch + A12

A21ZBloch + A11
→ ZBloch =

√
A12

A21
(A.40)

118

AV1 V2 ZL

I2I1

Z

Figure A.6: Image impedance principle: Termination of a symmetric two-port A
by the impedance ZL . For termination with the Bloch impedance, ZL =
ZBloch the input impedance equals the terminating Bloch impedance,
Z = ZBloch.

1 A 2 2 A′ 1 Z01Z01

(a)

2 A′ 1 1 A 2 Z02Z02

(b)

Figure A.7: Concatenation of an asymmetric unit cell with its mirrored unit cell
yielding a symmetric cell. (a) Concatenation at port 2, and (b) concate-
nation at port 1.

The expressions for the Bloch impedance in (A.40) and (A.38b) match. For wave
propagation along a structure with continuous translational symmetry the situ-
ation is equivalent: If a transmission line is terminated with its characteristic
impedance then the input impedance again matches the characteristic impedance.

While the equation for the Bloch impedance in the asymmetric case of (A.37)
equals the result presented in [Pozar, 2005] – albeit derived using another ap-
proach – in some publications the case of asymmetric cells is treated differently,
e. g., in [Matthaei et al., 1980, Schüßler, 1990, Russer, 2006]. There the asymmetric
unit cell is symmetrised: A new unit cell – which describes a different topology –
is considered which consists of the asymmetric unit cell and its mirrored unit cell
A′ (i. e., the two-port we obtain by exchanging the two ports). The two possibilities
for the resulting symmetrised unit cells are shown in Fig. A.7. Periodically contin-
uing both types of symmetrised unit cells shows that the resulting topologies are
the same but the port terminals are situated at different reference planes. As the
Bloch impedance depends on the reference plane one yields the Bloch impedances
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Figure A.8: Example of an asymmetric unit cell that cannot be symmetrised.

for each case

Z01 =
√

A11A12

A21A22
Z02 =

√
A22A12

A21A11
(A.41a)

It shall be noted that the impedances in (A.41) differ from (A.37) because essen-
tially different unit cells are considered. An example of a topology where this sym-
metrisation not only yields a shift of reference planes but also a different topology
is shown in Fig. A.8.

A.5.2 Scattering Matrix based Analysis of Unit Cell Two-Ports
In microwave engineering a port-based description of device behaviour is often
based on scattering parameters, both in simulations and measurements. In this
section it is assumed that the scattering parameters of a single unit cell are known
and periodic continuation can be described by coupling of adjacent cells through
ports. In this case the dispersion relation and the Bloch impedance can be inferred
from the scattering parameters of a single unit cell. As was shown in Sect. A.5.1,
these two quantities can be expressed in terms of chain matrix parameters of a
single unit cell. Therefore here conversion of scattering parameters to chain matrix
parameters is proposed. The chain matrix representation can be obtained from the
scattering matrix by

A = −((1 − s11)g−1
1 −(1 + s11)g1

−s21g−1
1 −s21g1

)
−1

⋅ ( −s12g−1
2 s12g2

(1 − s22)g−1
2 (1 + s22)g2

) (A.42)

with g i describing the square root of the normalisation impedance at port i. As-
suming equal port normalisation impedances g2

1 = g2
2 as well as reciprocity, i. e.,

s12 = s21, then the expressions for the dispersion relation and Bloch impedance
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are

cos χ = 1
2 (A11 + A22) =

1 + s2
21 − s11s22

2s21
(A.43a)

sin2 12 χ = 1
2 − 1

4 (A11 + A22) =
s11s22 − (1 − s21)2

4s21
(A.43b)

Z(±)Bloch/Z0 =
±A12

1
2 (A22 − A11) ±

√
1
4 (A11 + A22)2 − 1

= 1 − s2
21 + s11 + s22 + s11s22

s22 − s11 ±
√
(1 + s21)2 − s11s22

√
(1 − s21)2 − s11s22

(A.43c)

with Z0 = g2
i being the normalisation impedance of the scattering parameters. For

the symmetric case, i. e., s11 = s22, one obtains

cos χ = A11 =
1 + s2

21 − s2
11

2s21
(A.44a)

sin2 12 χ = 1
2 (1 − A11) =

s2
11 − (1 − s21)2

4s21
(A.44b)

ZBloch/Z0 =
√

A12

A21
=
√
(s11 + 1)2 − s2

21√
(s11 − 1)2 − s2

21
(A.44c)

The scattering parameters s i j in (A.43) and (A.44) are those obtained from mea-
surement or simulation, so the normalisation impedance Z0 is usually 50Ω.

Relating scattering parameters to the dispersion relation and to the Bloch
impedance has been frequently proposed in literature, e. g., in [Smith et al., 2002a,
Chen et al., 2004]. These derivations directly tackle the transmission line equa-
tions. This slightly less abstract point of view leads to lengthy derivations that are
usually restricted to the symmetric case in order to keep a compact representa-
tion of intermediate expressions. The ambiguity of the complex exponential due to
exp( j2π) = 1 further complicates this derivation. On the other hand, the chain ma-
trix derivation and its subsequent transformation to scattering parameters avoids
these ambiguities while keeping a compact representation.

A.5.3 Impedance/Admittance Matrix based Analysis of Unit Cell
Multi-Ports

In the Secs. A.5.1 and A.5.2 eigenvalue problems for one-dimensional structures
were treated. Eigenvalue problems for a multi-dimensional periodic structure with
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lumped elements are most easily solved with an impedance matrix Z or admittance
matrix Y. Here, only the former will be used.

The impedance matrix relates currents to voltages at the ports of the unit cell
by

V = Z ⋅ I (A.45)

Assuming that two ports representing negative and positive directions of space
have port numbers i and i + n, the Floquet ansatz is

Vi =
⎧⎪⎪⎨⎪⎪⎩

v i exp(+12k ia i) for 1 ≤ i ≤ n
v i−n exp(−12k i−na i−n) for n + 1 ≤ i ≤ 2n

(A.46a)

I i =
⎧⎪⎪⎨⎪⎪⎩

i i exp(+12k ia i) for 1 ≤ i ≤ n
−i i−n exp(−12k i−na i−n) for n + 1 ≤ i ≤ 2n

(A.46b)

The unit cell size in direction i is denoted by a i . Inserting (A.46) into (A.45) yields
a homogeneous system of equations in v i and i i of dimension 2n. Solving for the
non-trivial solution of this system one obtains the dispersion relation. The non-
trivial solution can be obtained by re-writing the system of equations into a system
in v i , i i . Setting the determinant to this system equal to zero yields the non-trivial
solution. Within the scope of this thesis the following abbreviations are used

k1a1 = χ k2a2 = η k3a3 = ξ (A.47)

The physical meaning of χ, η, ξ are the phase shifts of a wave travelling through
the structure.

The above derivations can be performed for the admittance based description
of a unit cell by inserting the Floquet ansatz (A.46) into I = Y ⋅U and then solving
likewise for the non-trivial solution in v i , i i .

As an example let us consider the one-dimensional case of the symmetric one-
port depicted in Fig. 3.1(b). Its impedance matrix is

Z = 1
2Z ⋅ I + 1

Y
⋅ 1 (A.48)

as denoted in (3.31a). The Floquet ansatz (A.46) in this one-dimensional case is

V1 = v1 exp(12 χ) V2 = v1 exp(−12 χ) (A.49a)
I1 = i1 exp(12 χ) I2 = −i1 exp(−12 χ) (A.49b)

122

The system of equations in v1, i1 resulting from V = Z ⋅ I is

(exp(−
12 χ) +12Z exp(−12 χ) − Y−1[exp(+12 χ) − exp(−12 χ)]

exp(+12 χ) −12Z exp(+12 χ) − Y−1[exp(+12 χ) − exp(−12 χ)]
) ⋅ (v1

i1
) = 0 (A.50)

The determinant to (A.50) is

− Z − Y−1[2 − exp(+χ) − exp(−χ)] = −Z − 2Y−1(1 − cos χ) (A.51)

Setting this determinant to zero solves for the non-trivial solution and yields

cos χ = 1 + 1
2ZY sin2 12 χ = − 1

4ZY (A.52)

This is the same result as (3.5) which was obtained by chain matrix analysis.
As the determinant of a system of equations is equal to the product of

its eigenvalues, the dispersion relation forces the eigenvalues to zero. Like in
Sect. A.5.1 the corresponding eigenvectors yield the associated voltage and current
with their ratio being equal to the Bloch impedance.

A.5.4 Scattering Matrix based Analysis of Unit Cell Multi-Ports
In pure connection networks no impedance/admittance matrix is available: Their
scattering matrix representation S has eigenvalues ±1, and hence the term (S±1)−1

which is needed for conversion to impedance or admittance matrix representation
is singular, see [Russer, 2006].

In order to calculate the dispersion relation from the scattering matrix the
connection matrix Γ needs to be set up, which accounts for the periodic boundary
conditions. As the name suggests, the connection matrix determines which ports
connect to adjacent cells upon periodic continuation. For a rectilinear unit cell
with port m being connected to port n we have

Γmn = exp(+ jk ia i) Γnm = exp(− jk ia i) (A.53)

Other elements of the connection matrix are zero. The eigenvalues of the product
SΓ determine the dispersion relation, similar to the chain matrix based analysis
presented in Sect. A.5.1.

As an example let us consider the dispersion of the two-dimensional tlm
node [Krumpholz and Russer, 1994] described by (4.1) and repeated here for con-
venience

S = 1
2 exp(− jϕ) (1 − 2 ⋅ I) (A.54)
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The connection matrix

Γ =
⎛
⎜⎜⎜⎜
⎝

0 exp(+ jχ) 0 0
exp(− jχ) 0 0 0

0 0 exp(+ jη) 0
0 0 0 exp(− jη)

⎞
⎟⎟⎟⎟
⎠

(A.55)

states that port 1 is connected to port 2, and port 3 to port 4. The eigenvalues λ of
SΓ are

λ1 = +1 λ2 = −1 (A.56a)
λ3 = exp(+ jϕ) λ4 = exp(− jϕ) (A.56b)

with
cos ϕ = 1

2 cos χ + 1
2 cos η = cos 12(x + y) cos 12(x − y) (A.57)

The solutions λ1 in (A.56a) represent the magneto-static case, while λ2 is a spuri-
ous and oscillating solution. The solutions in (A.56b) and therefore (A.57) describe
the sought dispersion relation with the phase shift being a function of frequency.

Assuming right-handed behaviour, we obtain ϕ ∝ ω. A Taylor series of the
cosine terms in (A.57) yields

ω2

c2 = k2
x + k2

y (A.58)

which is the two-dimensional wave equation with phase velocity c.
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B iir Filter Coefficients

The feedback and feed-forward iir coefficients in (6.26) are found by identifica-
tion of the coefficients of z−i in the numerator and denominator of the expressions
Vρ , i(z) and Vτ , i(z). The required calculations are tedious, but are straightforward
algebraic manipulations. One obtains for the backward coefficients of both the re-
flection and transmission filters

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1
a2
a3
a4
a5
a6
a7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

4 4 1 4 1 4 4
24 16 2 0 −2 −16 −24
60 20 −1 −12 −1 20 60
80 0 −4 0 4 0 −80
60 −20 −1 12 −1 −20 60
24 −16 2 0 −2 16 −24
4 −4 1 −4 1 −4 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
f1k
f2k2

f3k3

f4k4

f5k5

f6k6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (B.1)

with the abbreviations

f1 = Z0CL (B.2a)
f2 = 8CLLL + 8LRCL + Z2

0C2
L + 4CRLL (B.2b)

f3 = Z0C2
LLR + Z0CLCRLL + Z0C2

LLL (B.2c)
f4 = CL(8LLLR(CR + CL) + 4L2

RCL + Z2
0LLCLCR) (B.2d)

f5 = Z0C2
LLRCRLL (B.2e)

f6 = L2
RC2

LCRLL (B.2f)

The forward reflection coefficients are found as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

br ,1
br ,2
br ,3
br ,4
br ,5
br ,6
br ,7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

4 1 1 4
24 2 −2 −24
60 −1 −1 60
80 −4 4 −80
60 −1 −1 60
24 2 −2 −24
4 1 1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⋅
⎛
⎜⎜⎜⎜
⎝

1
g2k2

g4k4

g6k6

⎞
⎟⎟⎟⎟
⎠
, (B.3)
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with the abbreviations

g2 = 8LRCL − Z2
0C2

L + 8CLLL + 4CRLL (B.4a)
g4 = −Z2

0C2
LCRLL + 4L2

RC2
L + 8LLLRCL(CR + CL) (B.4b)

g6 = L2
RLLC2

LCR (B.4c)

The forward transmission coefficients bt , i are found as

bt ,1 = − 1
3bt ,3 = 1

3bt ,5 = −bt ,7 = 2Z0k3C2
LLL (B.5a)

bt ,2 = bt ,4 = bt ,6 = 0. (B.5b)
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List of Symbols

Symbol Description

a incident wave amplitude vector
b scattered wave amplitude vector
B magnetic flux density vector
C capacitance
c0 Free space speed of light
cphase phase velocity
cgroup group velocity
D electric flux density vector
E electric field vector
e electric structure function
f frequency
H magnetic field vector
h magnetic structure function
I current
J current density vector
JA surface current density vector
g characteristic impedance square root
k wave vector
L inductance
Me ,A electric surface polarisation
Mm ,A magnetic surface polarisation
n refractive index
P power
S Poynting vector
V voltage
W energy
Y admittance
Z0 characteristic impedance
ZBloch Bloch impedance
ZF wave impdeance
ZF0 free-space wave impdeance
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є permittivity
єr relative permittivity
єeff effective relative permittivity
є∞ relative permittivity for ω →∞
γ complex propagation coefficient
λ wavelength
μ permeability
μr relative permeability
μeff effective relative permeability
μ∞ relative permeability for ω →∞
ω angular frequency
ω0,є angular electric plasmon frequency
ω0,μ angular magnetic plasmon frequency
Ω normalised angular frequency
Ω0 normalised angular plasmon frequency in the resonance-balanced case
Ω0,є normalised angular electric plasmon frequency
Ω0,μ normalised angular magnetic plasmon frequency
ΩL normalised angular lower cut-off frequency in a double Drude medium
ΩR normalised angular upper cut-off frequency in a double Drude medium
ϕ phase angle
ρA electric area charge density
θ angle
χ, η, ξ phase shifts of a plane wave across a unit cell
χΓ phase shift along a principal direction for the vicinity of the Γ-point
P off-diagonal impedance matrix elements of the rtlm cell
Q basis change matrix
S scattering matrix
Y admittance matrix
Z impedance matrix
0 null matrix
1 matrix with all elements equal to one
I identitymatrix
∂v derivation with respect to v
∇ nabla operator
∇t transverse nabla operator
⟨a, b⟩ scalar product of a and b
× vector product
⋆ convolution operator
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