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ABSTRACT

Recently, it has been shown that dirty paper coding (DPC)

achieves the sum rate capacity of the Gaussian multi-user

multiple-input single-output (MU-MISO) broadcast channel

of a single isolated cell. However, when considering a multi-

cell scenario, i.e., a cellular network, the optimal strategy to

maximize the sum rate capacity in each of the cells is still un-

known. Nevertheless, based on a game-theoretic framework,

DPC can be applied at each cell as a decentralized strategy in

a cellular network, in order to maximize the sum broadcast

capacity of the network. By treating the cells in the network

as players in a strategic cooperative game, simultaneous iter-

ative waterfilling can be performed, i.e., every cell computes

its optimal beamforming vectors according to DPC and by

considering the intercell interference generated in the previ-

ous iteration. At each iteration the beamforming vectors for

each user in each cell are updated with the gradient projection

algorithm in order to maximize the sum network broadcast

capacity. The algorithm is repeated until it converges, i.e., a

local maximum is achieved. This theoretic result approaches

the maximum rate that can be transmitted in the downlink of

a network. Additionally, in order to introduce some fairness

into the network, we consider in a similar way as the previous

problem, the task of minimizing the sum of the mean square

errors of all the users in the network.

1. INTRODUCTION

Consider a Gaussian multi-user multiple-input single-output

(MU-MISO) broadcast channel of a single isolated cell with

M transmit antennas with K users. Lately, it has been shown

that dirty paper coding (DPC) achieves the sum rate capacity

of this broadcast channel [1] and moreover, also its capac-

ity region [2]. Now let us consider a cellular network com-

posed of C cells sharing the same physical resources, i.e.,

time and bandwidth. The main difference between such a cel-

lular system and a non-cellular system is the intercell inter-

ference [3, 4]. Thus, in a cellular downlink scenario the per-

formance of a cell does not depend solely on its own transmit

strategy but also on the transmit strategies of the other cells

in the network. The sum cell capacity achieved by a given

cell depends on its own decision, i.e., its set of selected beam-

forming vectors, and on the decisions of the other cells in the

network, i.e., the set of selected beamforming vectors in the

other cells, which produce the intercell interference.

However, based on a game-theoretic framework and al-

lowing no cooperation between the cells, DPC can be ap-

plied at each cell of the network, such that each cell tries to

maximizes its sum cell capacity with a transmit power con-

straint and based on the previous intercell interference. This

multi-objective optimization problem (MOP) can be seen as

a competitive maximization, since the performance and the

decisions of the cells are mutually coupled. Due to this com-

petitive nature of the multicell context we need to adopt an

iterative algorithm [5]. By treating the C cells as players in a

non-cooperative game, simultaneous iterative waterfilling can

be performed, i.e., every cell computes its optimal beamform-

ing vectors according to DPC and by considering the intercell

interference generated in the previous iteration [3]. The al-

gorithm is repeated until it converges, i.e., a Nash equlibrium

is found. Nevertheless, the competitive nature of the cellular

system does not guarantee in general the convergence of such

an iterative scheme [5]. In this non-cooperative game, the

players, i.e., the base stations, must know the channels from

the base station to the users in its own cell and the intercell

interference experienced in the previous iteration at each of

the users in its own cell.

In this work, we take a different and rather theoretical ap-

proach by not focusing on the multi-objective problem dis-

cussed above but actually on a single objective problem: the

maximization of the sum broadcast capacity of the network

with a power constraint per base station. To this end, we al-

low a partial cooperation between the cells. We consider the

cells in the network as players in a strategic cooperative game

instead of the non-cooperative game described above. In the

proposed approach, the beamforming vectors in each cell are

first computed with DPC and based on the intercell interfer-

ence generated with the beamforming vectors from the other

cells in the previous iteration. Contrary to the approach de-

scribed above, the beamforming vectors are afterwards up-



dated such that we maximize the sum network broadcast ca-

pacity. We still need to adopt an iterative algorithm, for which

we employ the gradient projection algorithm. The algorithm

is repeated until a local optimum is achieved. In this coop-

erative game, we assume that each player (base station) must

know the channel from its base station to the users in its own

cell and to the users in the other cells. Additionally, we as-

sume that the base station knows the intercell interference ex-

perienced in the previous iteration at each of the users in its

own cell. This can be achieved by having a remote central

processor (RCP) [6], which knows all the channels from ev-

ery base station to all the users in the network. In the RCP,

the beamforming vectors of all the cells in the network are

computed and then distributed to the base stations, instead of

performing the algorithm iteratively over the whole network.

We do not assume that the symbols, to be transmitted to the

users, are known by the RCP and therefore, in this sense we

refer that the proposed scheme has partial cooperation be-

tween the players.

With this approach and cost function we are interested in

computing the maximum rate that can be transmitted in the

downlink of all the cells of a cellular network. As an upper

bound of the sum network broadcast capacity, we take the

sum of the maximum sum capacity of each cell in the net-

work achieved without intercell interference, i.e. as if each

cell were isolated. As a lower bound, we have the strate-

gic cooperative game described above, where the sum net-

work broadcast capacity is maximized. The proposed scheme

serves as a lower bound since it has not been proved that DPC

is the optimum strategy in this context. However, we show

that the lower bound comes close to the unachievable upper

bound described above, and hence, comes also close to the

maximum sum network capacity that can be achieved in the

downlink of the network.

Additionally, in order to introduce some fairness into the

system we also consider a scheme which minimizes the sum

mean square error (MSE) of all the users in the network, i.e.,

the sum network MSE in the downlink of the network.

To this end, this paper is organized as follows. In sec-

tion 2, the cellular network model is discussed. In Section 3

we discuss the problem of optimizing a cellular network. We

treat the maximization of the sum network broadcast capac-

ity in Section 4, while in Section 5 we undertake the task of

minimizing the sum MSE of all the users in the network. Af-

terwards, we present simulation results and a comparison in

Section 6. We conclude the paper with a summary and com-

ments about the discussed topic in Section 7.

2. CELLULAR NETWORK MODEL

We consider a Gaussian flat-fading broadcast channel of a cel-

luar network consisting of C cells (and base stations). For

convenience, we model the shape of each cell as an hexagon

[7]. We assume sectorization throughout the network, such

that three base stations are co-located at the one position in

order to form a site as shown in Fig. 1, where each dot rep-

resents three co-located base stations. The distance between

adjacent sites is denoted by intersite distance (ISD).
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Fig. 1. Cellular Network

The base station at each cell has Mc transmit antennas

and there are Kc single-antenna users per cell. The received

signal at a given time t1 of user k ∈ {1, 2, · · · , Kc} = Kc in

cell c ∈ {1, 2, · · · , C} = C is given by

yc,k = hT
c,c,kpc,kxc,k +

∑

(c′,k′) 6=(c,k)

hT
c′,c,kpc′,k′xc′,k′ + nc,k, (1)

where hc′,c,k ∈ C
Mc′ is the channel vector from the base sta-

tion at cell c′ to the user k at cell c, pc′,k′ ∈ CMc′ is the

beamforming vector for user k′ in cell c′, xc′,k′ is the trans-

mitted signal for user k′ in cell c′, and nc,k is the additive

white Gaussian noise at the receiver of user k in cell c. Ad-

ditionally, we have that nc,k are zero-mean complex Gaus-

sian random variables with variance E[|nc,k|2] = σ2
n and that

E[|xc,k|2] = 1 ∀c, k.

The channel vector hc′,c,k is given by

hc′,c,k =
√

ρc′,c,k · gc′,c,k, (2)

where gc′,c,k ∈ CMc′ ∀ k, c are zero-mean unit-variance com-

plex Gaussian random variables and ρc′,c,k represents the av-

erage gain of the channel from base station c′ to user k in

cell c, due to the antenna gain, path-gain and the log-normal

shadowing. In detail ρc′,c,k is expressed as

ρc′,c,k = Gc′,c,k ·
(

λ/1m

4π

)2

·
(

dc′,c,k

1m

)−κ

· 10
ξ

c′,c,k
10 , (3)

1For ease of notation, we have omitted the time index t in the following.



where κ is the pathloss exponent [7] and Gc′,c,k is the an-

tenna gain which is a function of the angle of departure of the

signal from base station c′ to user k in cell c [4]. Let us re-

call that we assume sectorization throughout the network and

hence, we need to have a correctly shaped beam pattern in or-

der to enable approximately the same average receiver power

on the whole cell edge. Therefore, the antenna gain depends

on the position (angle) of the user k at cell c with respect to

the boresight of the antenna array of the base station c′ [4].

Additionally, dc′,c,k is the distance between the base station

c′ and user k in cell c and, the ξc′,c,k models the effects of

shadowing and we assume it is a zero-mean Gaussian random

variable with variance σ2
s . Moreover, we have that λ repre-

sents the wavelength of the carrier, and here we will consider

λ = 0.15 m. Note that when c′ = c, we are considering the

channel from the base station c which is serving user k in the

cell c.

To simulate one network realization we randomly place

Kc users, c ∈ C, in each of the C cells of the network. The

users in each cell are assumed to uniformly distributed over

the hexagonal cell [4].

3. OPTIMIZING THE CELLULAR NETWORK

In this section we consider as figure of merit the sum net-

work broadcast capacity. Although it might seem as an un-

conventional performance measure, we consider this metric in

order to gain insight into the maximum capacity that can be

achieved in the downlink of all the cells in a given network.

The sum network broadcast capacity CN is given by

CN =
∑

c∈C

∑

k∈Kc

I(xc,k, yc,k), (4)

where I(xc,k, yc,k) is the mutual information between xc,k

and yc,k.

If the channels and the intercell interference power expe-

rienced by the all the users in a cell are known at their respec-

tive base station, we can perform DPC as a transmit strategy

to the users. With DPC, the mutual information I(xc,k, yc,k)
between xc,k and yc,k is given by (5)-(6) at the bottom of this

page. Note that Ac,k = Bc,k + |hT
c,c,k · pc,k|2.

3.1. Precoding Order of the Users

Note that in (5), the intracell interference for user k in cell c
is

∑

k′>k

∣

∣hT
c,c,k · pc,k′

∣

∣

2
, (7)

while the intercell interference experienced by user k in cell

c is

∑

c′ 6=c,k′∈Kc

∣

∣hT
c′,c,kpc′,k′

∣

∣

2
=
∑

c′∈{C\c}

hT
c′,c,k





∑

k′∈K′

c

pc′,k′pH
c′,k′



h∗
c′,c,k

=
∑

c′∈{C\c}

hT
c′,c,k ·Qc′ · h∗

c′,c,k, (8)

where Qc′ is the sum of the transmit covariance matrices of

the users k′ ∈ K′
c in cell c′, i.e.,

Qc′ =
∑

k′∈K′

c

pc′,k′pH
c′,k′ . (9)

From (8), we can see that for the users in cell c, the precod-

ing order of the users employed by the DPC in the interfer-

ing cells c′ ∈ {C\c}, is irrelevant in terms of sum capacity.

Furthermore, for the intercell interference the specific beam-

forming vectors of the users in the interfering cells are also

irrelevant. Given a set of selected beamforming vectors pc′,k′

for k′ ∈ Kc′ decided upon by cell c′, the intercell interference

generated by base station c′ on a user k in cell c is indepen-

dent of the precoding order employed by the interfering cell

c′, since given the channel vector hc′,c,k what determines the

intercell interference is actually Qc′ . Additionally, it is also

known that for achieving the sum cell capacity of a given cell

of interest c, the precoding order of the users k ∈ Kc of the

cell of interest is also irrelevant. The precoding order does not

matter, since the sum capacity can be achieved with any arbi-

trary ordering, which can be shown by means of the uplink-

downlink duality [8]. Thus, when performing DPC in each

cell of the network, the precoding order of the users in each

cell is irrelevant for maximing either the sum cell capacity in

each cell or the sum network broadcast capacity.

I(xc,k, yc,k) = log











1 +

∣

∣

∣hT
c,c,k · pc,k

∣

∣

∣

2

σ2
n +

∑

k′>k

∣

∣hT
c,c,k · pc,k′

∣

∣

2
+

∑

c′ 6=c,k′∈Kc

∣

∣hT
c′,c,k · pc′,k′

∣

∣

2











(5)

= log











σ2
n +

∑

k′≥k

∣

∣hT
c,c,k · pc,k′

∣

∣

2
+

∑

c′ 6=c,k′∈Kc

∣

∣hT
c′,c,k · pc′,k′

∣

∣

2

σ2
n +

∑

k′>k

∣

∣hT
c,c,k · pc,k′

∣

∣

2
+

∑

c′ 6=c,k′∈K′

c

∣

∣hT
c′,c,k · pc′,k′

∣

∣

2











= log

(

Ac,k

Bc,k

)

. (6)



3.2. Non-cooperative Game

Before we discuss the proposed approaches, let us briefly re-

view the non-cooperative game commented in the introduc-

tion. Given a power constraint per base station, we consider

the multi-objective problem of maximizing the sum cell ca-

pacity of each cell in the network without any cooperation

between the cells, i.e., we have the following non-cooperative

game:

(G0) :

maximize
pc

∑

k∈Kc

I(xc,k, yc,k)

subject to
∑

k∈Kc

‖pc,k‖22 = tr Qc ≤ PT
∀c ∈ C,

(10)

where pc
4
= (pc,k)

k∈Kc
, i.e., the beamforming vectors of all

the users in cell c. For this game, we assume that we perform

DPC at each cell as the transmit strategy. Due to the com-

petitive nature of the multicell scenario an iterative algorithm

must be employed in order to solve the problem. To this end

we employ the gradient projection algorithm. At each itera-

tion the beamforming vectors are computed based on the in-

tercell interference generated with the beamforming vectors

from the interfering cells in the previous iteration. After-

wards, the beamforming vectors in each cell are updated such

that the sum cell capacity of each cell is maximized. The al-

gorithm is repeated until a Nash equilibrium is obtained. Note

then that every cell makes the best decision for selecting its

set of beamforming vectors based on the decision of the inter-

fering cells.

3.3. Cooperative Games

The existence of several users, each with its own channel

quality in a cell, makes the definition of a global measure of

the system quality very difficult. Furthermore, in a cellular

network, not only do we have the multi-user scenario in each

cell but also a multi-cell scenario, making it then, even more

difficult to define a global performance metric of the network

quality. As a consequence, a variety of design criteria have to

be discussed. In this work we consider two cooperative games

with different performance measures for optimizing a cellular

network:

Game 1: Maximization of the sum network broadcast capac-

ity with a power constraint per base station, i.e.,

(G1) :

maximize
p

CN =
∑

c∈C

∑

k∈Kc

I(xc,k, yc,k)

subject to
∑

k∈Kc

‖pc,k‖22 = tr Qc ≤ PT
∀c ∈ C,

(11)

where p
4
= (pc,k)(c,k)∈C×Kc

, i.e., the beamforming vectors

of all the users in the network. For this game we will assume

that we will also perform DPC in each cell but with partial co-

operation among the cells. As discussed in Section 3.1, when

maximizing the sum network broadcast capacity, the precod-

ing of the users of the DPC is irrelevant.

Game 2: Minimization of the sum of the mean square er-

rors of the users in the network with a power constraint per

base station.

(G2) :

minimize
p

εN =
∑

(c,k)∈C×Kc

εc,k

subject to
∑

k∈Kc

‖pc,k‖22 = tr Qc ≤ PT
∀c ∈ C,

(12)

where εc,k is the MSE of user k in cell c and εN denotes the

sum of the MSE of all the users in the network. Here we

assume that we employ as before DPC as the transmit strat-

egy, which can be implemented in practice with Tomlison-

Harashima Precoding (THP). Contrary to game G1, the order

of the users does play a role for minimizing the sum MSE. In

this case, we assume a heuristic order of the users, where the

user with the weakest channel would be precoded first and the

strongest user in the cell last. This is to avoid the high intracell

interference that would be caused by the weakest users who

require more power. By precoding the weakest user first, we

are able to remove its interference on the other users precoded

afterwards through DPC.

Since the capactiy region or the MSE region are not con-

vex, we aim to finding local maximums and local minimas for

the cooperative games G1 and G2, respectively. Due to com-

petitive nature of the multicell context we still need to adopt

an iterative algorithm, for which we will use the gradient pro-

jection algorithm.

4. MAXIMIZING THE SUM NETWORK

BROADCAST CAPACITY

As stated before, we assume the existence of a remote central

processor (RCP) which knows all the channel vectors hc′,c,k

∀ c′, c, k but the symbols to be transmitted to the users of a

given base station are only known at each respective base sta-

tion. If the symbols were known at the RCP, then we would

have a macrocell, where a centralized DPC achieves the max-

imum sum network capacity [8, 9].

We are interested in computing the beamforming vectors

in order to maximize the sum network broadcast capacity with

PT available power per base station. We iteratively solve G1

with the projection gradient algorithm. Let us now compute

the gradient of CN with respect to each beamforming vector

pc,k, i.e.,

∇pc,k
CN =

∑

(c′,k′)∈C×Kc

∇pc,k
I(xc′,k′ , yc′,k′), (13)

To this end we need the following gradients:



1. ∇pc,k
I(xc,k, yc,k), where I(xc,k, yc,k) corresponds to

its own tranmission of user k at cell c, i.e.,

∇pc,k
I(xc,k, yc,k) = h∗

c,c,k · hT
c,c,k · pc,k ·

(

1

Ac,k

)

.

2. ∇pc,k
I(xc,k′ , yc,k′) with k′ 6= k, where I(xc,k′ , yc,k′)

corresponds to the transmissions of the other users in

the same cell c where user k lies,

i.e.,∇pc,k
I(xc,k′ , yc,k′) =







h∗
c,c,k′h

T
c,c,k′pc,k ·

(

1

Ac,k′

− 1

Bc,k′

)

for k > k′,

0 for k < k′.

3. ∇pc,k
I(xc′,k′ , yc′,k′), with c′ 6= c, where I(xc′,k′ , yc′,k′)

corresponds to the transmissions of the other users in

the other cells, i.e.,∇pc,k
I(xc′,k′ , yc′,k′) =

h∗
c,c′,k′ · hT

c,c′,k′ · pc,k ·
(

1

Ac′,k′

− 1

Bc′,k′

)

.

With an initial set of beamforming vectors, we iteratively per-

form a gradient update at step l + 1 as

p̃
(l+1)
c,k = p

(l)
c,k + γ · ∇pc,k

CN ∀ k, c. (14)

The employed step size γ is

γ =

√

√

√

√

√

C · PT
∑

(c,k)∈C×Kc

‖∇pc,k
CN‖22

· 1

d + 1
, (15)

where d may be increased, in order to reduce the step size

adaptively and force convergence. Now, the new updates for

the beamforming vectors p
(l+1)
c,k are calculated by projecting

p̃
(l+1)
c,k on the feasible set P given by the constraints

∑

k∈Kc

‖pc,k‖22 ≤ PT ∀c, (16)

i.e.,

p
(l+1)
c,k =

[

p̃
(l+1)
c,k

]

P
. (17)

To this end we need to solve the following optimization prob-

lem

p
(l+1)
c,k = argmin

p
′

c,k

‖p′
c,k − p̃

(l+1)
c,k ‖22

s.t.
∑

k∈Kc

‖p′
c,k‖22 ≤ PT ∀c. (18)

The solution of this problem is obvious: if
∑ ‖p̃(l+1)

c,k ‖22 > PT

for a given c, then we normalize the p̃
(l+1)
c,k for k ∈ Kc in cell

c, to satisfy the power constraint:

p
(l+1)
c,k ←−

√

PT
∑

k∈Kc
‖p̃c,k‖22

· p̃(l+1)
c,k , (19)

otherwise,

p
(l+1)
c,k ←− p̃

(l+1)
c,k . (20)

5. MINIMIZING THE SUM NETWORK MSE

In the literature, many researchers considered the maximiza-

tion of the sum capacity as metric of the overall efficiency of

the system. However, due to the very different SINR’s of the

substreams transmitted from a given base station, this trans-

mission policy requires careful bit allocation to match each

subchannel’s capacity and achieve a prescribed bit error rate

(BER). Bit allocation not only increases the coding/decoding

complexity but it is also inherently capacity reducing because

of the finite constellation granularity and the shaping loss.

Alternative design criteria like the minimization of the sum

mean square error (MSE) or the minimization of the max-

imum MSE, seem to be more efficient in practical systems,

since they allocate more power to the channel for high SNR,

and additionally are independent of the constellation size.

Hence, in this section we focus on the minimization of the

sum of the MSE of all the users in the networks, i.e., game G2

given in (12). With such a performance metric we take into

account fairness, which is in contrast to game G1 which does

not consider at all any fairness. Note that (6) can also be

written as

I(xc,k, yc,k) = − log
(

εc,k

)

, (21)

where

εc,k =
Bc,k

Ac,k

, (22)

is the mean square error (MSE) of the transmission of user k
in cell c. Thus, the problem of maximizing the network capac-

ity is equivalent to the minimization of the geometric mean of

the MSE’s, i.e. game G1 minimizes
∏C×Kc

(c,k) εc,k. This strategy

clearly could lead to unfair rate allocations, since the users

with the strongest channels will be favorized. The MSE crite-

ria can be therofore considered as a kind of compromise be-

tween overall efficiency and total fairness between users, as

we will observe in the simulations. So now let us consider G2,

the minimization of the sum MSE of the users in the network:

min εN s.t.
∑

k∈Kc

‖pc,k‖22 ≤ PT ∀c, (23)

with εN =
∑

(c,k)∈C×Kc

εc,k as the sum network MSE.

To this end, the beamforming vectors pc,k ∀c, k will now

be computed with the gradient projection algorithm, but the

updates of the beamforming vectors at each iteration are com-

puted such that the sum network MSE is minimized. We iter-

atively perform a gradient update at step l + 1 as

p̃
(l+1)
c,k = p

(l)
c,k − γ · ∇pc,k

εN ∀ k, c. (24)

Similarly as it was done for game G1 in Section 4, to compute

the gradient∇pc,k
εN we need the following gradients:



1. ∇pc,k
εc,k, where εc,k corresponds to the MSE of user

k’s tranmission at its own cell c, i.e.,

∇pc,k
εc,k = h∗

c,c,k · hT
c,c,k · pc,k

(

−Bc,k

A2
c,k

)

.

2. ∇pc,k
εc,k′ with k′ 6= k, where εc,k′ corresponds to the

MSE’s of the transmissions of the other users in the

same cell c where user k lies, i.e.,∇pc,k
εc,k′ =







h∗
c,c,k′hT

c,c,k′pc,k ·
(

1−Bc,k′

A2

c,k′

)

for k > k′,

0 for k < k′.

3. ∇pc,k
εc′,k′ , with c′ 6= c, where εc′,k′ corresponds to

the MSE’s of the transmissions of the other users in the

other cells, i.e.,

∇pc,k
εc′,k′ = h∗

c,c′,k′ · hT
c,c′,k′ · pc,k ·

(

1−Bc′,k′

A2
c′,k′

)

.

The beamforming vectors are then updated using (24) and

(19) or (20) with γ given by (15).

6. SIMULATION RESULTS AND COMPARISON

Consider now an interference limited network with 57 sector-

ized cells, with an intersite distance of 0.500 km as shown in

Fig. 1 with PT = 20 W for every cell in the network. We

assume that Kc = 4 users ∀c cells in the network, and so, we

have 4 users uniformly distributed in each cell. Additionally,

we assume that Mc = 4 antennas ∀c base stations in the net-

work and that the users experience flat independent Rayleigh

fading over the antennas. The variance of the shadowing is

given by σs = 8 dB and the beam pattern employed by the

antennas is the one described in [4].

For the following, let us consider three cases:

1. Lower Bound Non-cooperative Game: corresponds

to the case where each cell tries to maximize its own

sum capacity with DPC based on the intercell interfer-

ence generated in the previous iteration, i.e., game G0

given in (10).

2. Lower Bound Partial Cooperative Game: corresponds

to the proposed approach where all the cells partially

cooperate in order to maximize the sum network broad-

cast capacity. In each cell we perform DPC based on

the intercell interference generated in the previous iter-

ation based on the partial cooperation among the play-

ers, i.e., game G1 given in (11).

3. Upper Bound Cooperative Game: corresponds to the

case where each cell maximizes its own sum capacity

with DPC without any intercell interference, i.e., as-

suming that each cell is isolated.

The first case represents a lower bound of the non-cooperative

game G0, since it has not been shown that applying DPC in a

decentralized way over the cells in the network is the optimal

strategy for game G0. As for the cooperative game G1, apply-

ing DPC over all the cells with the partial cooperation2 among

the cells is not the optimal strategy for this game and hence, it

represents a lower bound [10]. As for the last case, it is clear

that this represents an upper bound to the partial cooperative

game of G1. Note that this upper bound for a cellular net-

work, where the cells inherently suffer intercell interference,

is of course unachievable!

Based on these definitions, in Fig. 2 we show the average

sum capacity per cell for 170 network realizations for cells

1-28 for the three bound mentioned above. As expected the

smallest average sum cell capacity is achieved by the lower

bound of the non-cooperative game, while the largest corre-

sponds to the upper bound of the cooperative game. Neverthe-

less, notice that the lower bound of the cooperative game G1

is not far away from the unachiavable upper bound of G1. Al-

though that the DPC is the optimal strategy for a single cell, it

also seems that DPC is a viable strategy in the multi-cell con-

text. Also notice that the performance of the DPC in game G0

is also not far away from the lower bound of game G1.
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LB Non−Cooperative Game, Average Sum Network Capacity = 214.04 bpcu

LB Cooperative Game, Average Sum Network Capacity = 237.70 bpcu

UB Cooperative Game, Average Sum Network Capacity = 264.40 bpcu

Fig. 2. Average Sum Capacity per Cell for 170 realizations

In order to observe the performance of the sum network

broadcast capacity over several network realizations, Fig. 3

depicts the abovementioned bounds for 50 network realiza-

tions. Again it can be seen that at each realization and on

average the proposed scheme, i.e. applying DPC in game G1,

comes close to the unachievable upper bound of the coopera-

tive game G1.

Now consider the results obtained with game G2, i.e., the

minimization of the sum MSE of all the users in the network.

To this end, let us consider the same simulation scenario de-

scribed before, except that we know assume that there are 10

2i.e., we assume that a RCP knows the channels from every base station

to every user in the network, but the symbols to be transmitted to the users

are not known by the RCP.
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Fig. 3. Sum Network Capacity for Different Network Real-

izations

randomly uniformly distributed users in each cell of the net-

work, i.e., Kc = 10 ∀c. In Fig. 4, we depict the cumulative

distribution function (cdf) of the sum cell capacity achieved

over several network realizations for the three bounds dis-

cussed previously and the sum cell capacity achieved with

game G2. If is interesting to notice that the distribution with

the smallest variance is the one corresponding to game G2.

This is as expected since when minimizing the sum MSE, we

introduce fairness and there is a less variation of the sum cell

capacities.
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Lower Bound Non Cooperative Game, Mean = 11.35 bpcu

Lower Bound Cooperative Game, Mean = 11.99 bpcu
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Min Sum Network MSE Cooperative Game, Mean = 8.57 bpcu

Fig. 4. CDF of the Sum Cell Broadcast Capacity

However, when looking into the region of the 5% value of

the cdf as shown in Fig. 5 with the abcissa in the logarithmic

scale, we can see that the approach of game G2 is better than

the lower bound of the cooperative game G1 aiming at maxi-

mizing the sum network broadcast capacity. At 5%, the lower

bound of game G0 and the lower bound of game G1 achieve

both a sum cell capacity of about 0.54 bpcu, while when min-

imizing the sum MSE we achieve a sum cell capacity of 0.88
bpcu, which represents a gain of more than 60%. Further-

more, we have that the upper bound of the cooperative game

G1 achieves a sum cell capacity of 1.31.

10
−3

10
−2

10
−1

10
0

10
1

0

0.05

0.1

0.15

0.2

0.25

CDF of Sum Cell Capacity

Sum Cell Capacity in bpcu

C
D

F

 

 

Lower Bound Non Cooperative Game, Mean = 11.35 bpcu

Lower Bound Cooperative Game, Mean = 11.99 bpcu
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Fig. 5. 5% Region of the CDF of the Sum Cell Broadcast

Capacity

Now let us focus now on the CDF of the sum MSE of the

users in a cell for the three bounds discussed previously and

game G2, as shown in Fig. 6. Taking as performance metric

the sum MSE of the users in a cell, we have that the perfor-

mance of game G2 is the best. This is the same simulation

scenario described above with Kc = 10 user for each cell

c ∈ C in the network with 4 transmit antennas at each base

station. Note that performance with respect to this figure of

merit of the lower bound of games G0 and G1 are basically the

same.

7. SUMMARY AND FURTHER REMARKS

In this work, we have undertaken the task of optimizing a cel-

lular network. As stated before, in a multi-user context and

even more in a multi-cell context it is very difficult to define a

meaningful performance measure of the system. On the one

hand, we have considered the maximization of the sum net-

work broadcast capacity, i.e. the maximum rate that can be

achieved in the downlink in all of the cells of the network.

On the other hand, we have also consider the minimization of

the sum of the MSE’s of all the users in the network to pro-

vide fairness. Due to the competitive nature of the multi-cell

context, an iterative algorithm, i.e., the gradient projection

algorithm, was employed to find a solution to the discussed

games. However, due to the non-convexity of the capacity
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Fig. 6. CDF of the Sum MSE of the users per Cell

and the MSE region, the solutions we can achieve are just

local optima.

We have considered the use of dirty paper coding as the

transmit strategy employed by each of the cells of the network

based on the intercell interference generated in the previous

iteration. It was shown that the order of the users is irrelevant

for the maximization of the sum cell capacity or the maxi-

mization of the sum network capacity, since the intercell in-

terference depends on the transmit covariance matrices of the

interfering cells, but not on the specific order or beamforming

vectors of the users in the interfering cells.

Moreover, we could observe that the suboptimal solution

to the partially cooperative game G1, i.e., the lower bound of

the cooperative game G1, comes close to the unachievable up-

per bound of the isolated cell capacity. We recall that this

suboptimal strategy is based on the employment of DPC in

each of the cells of the network. Hence, considering DPC in

the multi-cell context seems heuristically to be a viable ap-

proach. Let us recall that the performance of the investigated

lower bound of the non-cooperative game G0 was also ob-

tained with DPC.

We have also analyzed the minimization of the sum MSE’s

of all the users in the network, not only to introduce fairness

but also as a more practical approach than applying dirty pa-

per coding to achieve the sum capacity. As we have also

discussed here, each performance metric leads to different

conclusions and hence, an appropiate definition of a figure

of merit is still an open question in the cellular scenario.

As for future work, it would be interesting to consider de-

centralized schemes which can achieve a performance close

to that of the partially cooperative game described in this pa-

per. In this way one can ease the assumptions of a RCP which

knows all the channels from every base station to all the users

in the netwok. An interesting to the tradeoff issue between

fairness and overall efficiency consists in combining both so-

lutions of the maximum sum network broadcast capacity and

the minimium sum network MSE by means of time-sharing,

which may lead to an improvement on the entire region of the

cdf of the sum cell capacity.
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[3] M. T. Ivrlač and J. A. Nossek, Intercell-Interference in the

Gaussian MISO Broadcast Channel. in the Proc. of the

IEEE Global Communications Conference (Globecom),

Nov. 2007.

[4] M. Castañeda, M. T. Ivrlač, I. Viering, A. Klein, and
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