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Abstract- The performance of MIMO systems and the use- 
fulness of dedicated signal processing and channel coding tech- 
niques is strongly affected by presence of fading correlation. For 
instance, space-time block coding is favored hy low fading corre- 
lation, while heam-forming techniques are advantageous at high 
amounts of correlation. In this paper we define an easy to com- 
pute quantitative description of fading correlation and diversity 
present in a MIMO channel. This definition offers the possihil- 
ity to build equivalence classes of channels which offer the same 
amount of diversity or Correlation. It turns out, that channels 
from such an equivalence class perform essentially equivalently 
with respect to channel capacity or throughput. 

I. INTRODUCTION 
MIMO communication systems recently have drawn consid- 

erable attention in the area of wireless communications as they 
promise huge capacity increase [ I ]  in a fading wireless envi- 
ronment. It is known, that fading correlation has significant 
impact on the performance of MIMO systems. Depending on 
how much the transmitter is aware of the fading correlation, 
the effect can be capacity decreasing [2], [3] or even capacity 
increasing [9]. 

Fading correlation is directly connected to the diversity gain 
of  a MIMO system. It is also strongly related to MIMO an- 
tenna gain [IO] and multiplexing gain. The close relation of 
fading correlation with these three elementary gains provided 
by a MIMO system, suggests to search for a quantitative de- 
scription of fading correlation. Such an attempt has already 
been made in [8] for the SIMO case, which provides a gen- 
eralized definition of receive diversity order. This definition 
computes the ratio of variance of SNR after maximum ratio 
combining of all received signals and the variance of SNR of 
a single received signal. In this paper we define a measure of 
diversity and correlation which 

does not assume maximum ratio combining . is usable for the MIMO case 
is able to separate receive and transmit diversity . is also applicable in some non-Gaussian fading cases. 

Interestingly, for the case of receive diversity, this results in the 
same definition as the one given in [8] for the SIMO case. With 
our definition we can 

quantify the amount of correlation and diversity present in 
the channel. This allows for instance to decide which of 
two MIMO channels has stronger correlation or provides 
more diversity. In [6] and [7] the principle of ma,jorization 

i 

[41 of  eigenvalue profiles is used to order MIMO channels 
by their amount of correlation. It is interesting to note, 
that the ordering obtained by the principle of majorization 
is always the same as the ordering obtained by the corre- 
lation measure. The reverse is however not true, since 
the principle of majorization sometimes does not yield a 
result. 
build equivalence classes of channels which offer the 
same amount of diversity or correlation. It turns out, that 
channels having the same correlation measure perform es- 
sentially equivalently with respect to channel capacity or 
throughput. This result may have impact on simulation 
aspects, as the simulation results obtained for one channel 
can essentially he used for the whole equivalence class. 

11. SYSTEM MODEL 

In the following we will assume a frequency flat fading 
MIMO channel, with N transmit and M receive antennas, de- 
scribed by its channel matrix H E C M x N  which is composed 
of complex, circularly symmetric random variables, which ex- 
hihit certain correlations. In the absence of receiver noise, the 
received signal y E C M  can be written as 

. 

y = H s ?  (1) 

where s E C N  contains the data from N independent data 
streams. For the derivation of the diversity and comelation 
measures, we assume uncorrelated and unity power data sig- 
nals, i.e. E [ss"] = I N ?  where IN is the N x N identity 
matrix and E [.I is the expectation operation, while (.)H repre- 
sents complex conjugate transpose. Let us stack all columns 
of the channel matrix H into one K = M . N dimensional 
channel vector 

where we have used vet[.] as the column stacking operation. 
We can describe the correlations between the random entries 
of H by the correlation matrix 

The channel vector h can then be written as 
3 

h = vec[H] = R t g .  (4) 

158 

mailto:nws.ei.tum.de


The vectorg E CKY' is populated by i.i.d. complex random 
variables gk = C k  + j q k ,  which meet for I; = 1,. . . , K the 
following condition: 

1 , <k and Tp+ : i.i.d. real random variables 

= 0 
(5) 

This condition covers the important special case, where the 
( g k )  are complex, circularly symmetric, zero-mean, Gaussian 
random variables, which leads to correlated Rayleigh fading. 
Even though other distributions exist which fulfill (3, we will 
concentrate on Rayleigh fading in the following. 

111. DIVERSITY MEASURE 

A. Motivation 

Let us think about the sum y of K i.i.d. random variables ye 

K 

y = 71;. with ye = /anI2 
k=1 

and a b  E Nc(O. 1) being i.i.d. zero mean. unity variance 
Gaussian distributed random variables. This describes a K-  
th order diversity in uncorrelated and equal average power 
Rayleigh fading. The probability density function of y be- 
comes a Nakagami distnbution of the order K .  Let us compute 
the ratio of the squared expected value of y and its variance: - 

where varI.1 denotes the variance of a random variable. This 
tells us, how much the random variable y varies relative to its 
average value. The larger this number is, the smaller is the rel- 
ative variance in y, i.e., the more diversity is available. Further- 
more, the numerical value of this ratio is equal to the diversity 
order, i.e., K in this case. This motivates the following generic 
definition of a measure of diversity for MIMO systems. 

B. Definition of Diversiry Measure 

Definition 1: The Diversity Measure Q(R)  of a Rayleigh 
fading MIMO systemdescribed by the channel matrix H with 
correlation matrix R = E [vec [H]~ec [H]~]  is given by 

2 

*(RI = (E) 
'. Here the symbol t r  is used for the trace operator, while 1 1 . 1 1 ~  

declares the Frobenius norm. 

C. Properties of the Diversity Measure 

The connection between the definition of diversity measure 
given in section 111-B and the motivation provided in section 
111-A is made by the following 

Theorem I :  The Diversity Measure Q ( R )  of a correlated 
fading MIMO system from Definition 1 has the property 

(8) 

is the receive signal power for a given MIMO channel matrix 
H from (4) which meets condition (5). 0 The proof can be 
found in [ 1 I ] .  The diversity measure has several funher prop- 
erties, including 

1s Q(R)  5 K ,  where R E CKxK.  
If the first L eigenvalues of the correlation matrix R are 
positive and identical and the remaining eigenvalues van- 
ish, i.e. X = XI = . _ _  = XL > X L + ~  = _ ._  = 0, the 
diversity measure becomes 9 = L. 

. .  

D. Independent Receive and Transmit Correlation 

o f t w o m a t r i c e s R ~ ~  E C N x N a n d R ~ x  E C M x M  
If the matrix R can be decomposed into the tensor product 

the channel matrix H from (4) becomes 

(9) 

where vec[G] = g.  Here R R ~  = E[HHH] is the receive 
correlation matrix, while R T ~  = E[HHH] is the transmit 
correlation matrix. We can write the diversity measure as 

*(RI = *(fix). * ( R R ~ ) ?  (11) 

which decomposes into the product of a transmit diversity 
measure ~ ( R T ~ )  and a receive diversity measure *(RH,) .  
In case only the transmit correlation matrix is different from 
a scaled identity matrix, the channel defined in (10) is said to 
be semi-correlated [ IO]. 

Iv. CORRELATION MEASURE 

The measure for diversity in Rayleigh fading MIMO sys- 
tems, that has been defined in Chapter 111 is based on correla- 
tion matrices, and therefore directly related to the correlation 
properties of a MIMO channel. In this section, based on the de- 
fined diversity measure, we provide a definition of correlation 
measure. 
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A. Definition of MIMO Correlation Measure 
We state the generic definition ofour measure of correlation. 

Definition 2; The Correlation Measure Q(R)  of a L x L 
correlation matrix R is given by 

Q(R)  = /T 
This generic definition of the correlation measure Q(R)  can 

be applied to measure receive, transmit or the total correlation 
depending on the choice of R. The motivation stems from the 
following observation. Let us have a look at a specific correla- 
tion matrix R E C L x L :  

r l  ... p i  . .  
1 p " '  

p m  p' p- ... 
' ._  '., .., :J 

Since in this case, the correlation properties are essentially cap- 
tured by the single parameter p,  we want our proposed corre- 
lation measure to yield the same result. Since the diversity 
measure in this situation is 

L 
W R )  = 1 + ( L  - 1 ) .  

by substituting into (12): we obtain 9 ( R )  = IpI . as desired. 

B. Special cases 
There are two special cases. we want to bring to the reader's at- 
tention. They are characterized by their eigenvalue profile. 

1) Rank one situation: the correlation matrix has only one 
non-zero eigenvalue. This represents the strongest possi- 
ble correlation. The correlation measure from ( I  2) yields 

* = I >  

2) Uncorrelated and  equal power situation: all eigenval- 
ues of the L x L correlation matrix are identical and pos- 
itive. The correlation measure this time yields 

0 = 0. 

Note, that we always have 0 5 Q 5 1. Therefore, by 
virtue of Definition 2. we have a way to quantify the amount 
of correlation, from Q = 0 representing the uncorrelated case, 
up to d = 1 for maximum correlation. 

C. Basic properties 
The correlation measure has some interesting propenies. 

For a correlation matrix 

r 1 Pl.z p1.3 ... P1.K 1 

the correlation measure computes to 

n=1 * = I  
K ( K  - 1) 

U m f n  

Hence, the correlation measure is the root mean square of 
the magnitudes of all correlation coefficients. 
The larger the correlation measure, the stronger the corre- 
lation and the less diversity is available. 
For large numbers of both receive and transmit antennas 
there is the asymptotic property lim II, = 1. 

N . M + m  

V. APPLICATIONS 
There are several applications of the diversity and corre- 

lation measures defined in Chapters I11 and IV, respectively. 
They include the following: - 

Establishment of equivalence classes: 
By grouping together different correlation matrices which 
have the same diversity or correlation measure, a so called 
equivalence class is obtained. It tums out that MIMO 
channels from one such equivalence class offer similar 
performance in terms of ergodic capacity and through- 
put. One element out of the equivalence class can then 
be used as a representative for the whole class. This bas 
impact for physical layer simulation of mobile communi- 
cation systems, as only a small number of representative 
channel types have to be simulated. 
Build an order relation o f M I M 0  channels: 
The diversity and correlation measures define an order 
relation according to which correlation matrices can be 
sorted by their amount of correlation. 
Statistical analysis of correlation matrices: 
Sometimes the correlation matrices are modeled as ran- 
dom variables themselves. The diversity and correlation 
measures can be used to analyze the statistical properties 
of diversity and correlation associated with these random 
correlation matrices. This is especially useful for analysis 
of data obtained through field measurement. 
ClassiJication of channel types: 
The amount of diversity or correlation can be used to 
classify a MIMO channel. For instance one could define 
three classes, which collect channels of low, medium and 
high correlation, respectively. Since different transmit 
and receive signal processing may be used for different 
amount of correlation, the classification may decide upon 
the proper signal processing or its parameters. This may 
include selection of number of transmitted data streams_ 
associated modulation schemes and distribution of trans- 
mit power, as well as selection between transmit process- 
ing algorithms which are built on diversity (like space- 
time block coding) or beam-forming oriented schemes, 
which profit from higher correlation. Since the diversity 
and the correlation measures can be computed with both 

6 
.~ 
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Fig. 1. Left: Ergodic channel capacity vs. transmit power for transmit correlation mavices from the sets So.25, So.5 and So.75. Right: Same 
for throughput. For each of the sets two lines are shown. which represent the m g e  of +1 standard deviation around the average. MIMO- 
Eigenbramforming is applied at the transmitter. The number of receive and transmit antennas equals 8 each. 

very low and constant complexity, a decision based on 
this criterion is attractive for real-time applications. 

For sake of brevity we will discuss only the first application 
in a little bit more detail. The correlation (or diversity ) mea- 
sure allows the definition of equivalence classes Se of correla- 
tion matrices, which all have the same correlation measure Q, 
that is 

S+ = {RI Q(R)  = Q}. (13) 
These equivalence classes have one important feature: the per- 
formance of MIMO systems with respect to channel capacity 
and throughput is essentially equivalent for all correlation md- 
trices out of the equivalence class. In order IO demonstrate this 
property in a random channel we provide a sample numerical 
result in Figure 1. The ergodic capacity and the throughput are 
shown as a function of transmit power for correlation matr- 
ces from the equivalence classes. We have a semi-correlated 
channel from (IO), where the transmitter is aware of the trans- 
mit correlation matrix, which enables the application of Eigen- 
beamforming [9 ] .  In order to obtain the results shown in Figure 
1, we select randomly 250 transmit correlation matrices from 
each of the equivalenceclasses S,.,,, S,., and So.,, and com- 
pute throughput and ergodic capacity as functions of transmit 
power. Further, we compute the mean and standard deviation 
of the ergodic capacity and throughput over the 250 matrices 
for each equivalenceclass. As can be seen from Figure 1 trans- 
mit correlation matrices out  of the same equivalence class lead 
to highly similar performance with respect to both ergodic ca- 
pacity and throughput. 

Z 

VI. CONCLUSION 
In this paper a measure for diversity and correlation present 

in a wireless MIMO communication system is defined. With 
this definition it is not only possible to quanlify the amount 
of correlation and diversity present in the channel, but also 
to classify channel types by their amount of diversity or cor- 
relation. Thereupon equivalence classes of channels can be 

defined, which offer the same amount of diversity or  correla- 
tion. It is demonstrated, that channels with the same corre- 
lation measure, i.e. from the same equivalence class perform 
essentially equivalent with respect to both ergodic capacity and 
throughput. The correlation measure may also be used for 
other applications, like ranking the suitability of different sig- 
nal processing and coding techniques, for instance space-time 
block-coding or beam-forming in correlated fading. 

REFERENCES 
[ I ]  E. Tclafar, ”Capacity of Multi-Antenna Gaussian Channels”. AT&T-Bell 

Technical Memorandum, 1995. 
[2] C. Chuah. J. M. Kahn and D. Tse. “Capacity of multi-antenna m a y  sys- 

t e m  in indwr wireless environment”, Clubecom, 1998. 
131 D-S. Shiu and G. J. Wschini and M. J. Cans and J. M. Kahn, ”Fading 

Correlation, and its Effect on the Capacity of Multielamnt Antenna Sys- 
tem”, IEEE Tmnr. Comtnunicafions, vol. 48, no. 3, pp. 502-513.2000. 

[4] A. W. Marschall and I. Olkin, ”Inequalities: Theory of  Majorizalion and 
its Applications”, Mathemalics in Science and Engineering. vol. 143. 
Academic Press Inc. (London) Ltd.. 1979. 

151 C. N. Chuah, D. N. C. Tse, and J. M. Kahn, ”Capacity scaling in MIMO 
wireless systcm under comlated fading”, lEEE Transocrions in lnfonm- 
rim Theop, vol. 48, No. 3, pp. 637-659, March 2002. 

161 H. BocheandE.A.Iorswieck”OntheSchurconcavityoftheergodicand 
outage capacity with respect to correlation in multiantenna systems with 
no CSI at the transmittef‘, Proceedings ofAllerron Conference, 2002. 

171 H. BacheandE. A. Jarswieck, ”Optimal Power Allocation for MIS0 sys- 
t e m  and Complete Characterization of the Impact of Correlation on the 
Capacity”. lEEE lnremafionol Conference in Accouylics Speech a d  Sip- 
no1 Pmcessing (ICASSP), vol. 4, pp. 373-316.2003 

[XI J.S. Hammenchmidt and C. Brunner. “A unified approach to diversity, 
beamforming and interference suppression”. European Wire1e.w. Dredden, 
Germany, September 2WO 

191 M. T. lvrlaf and T. P. Kurpjuhn and C. Brunner and W. Utschick, 
”Efficient use of fading correlations in MlMO systems”, Pmc. S4lh /E€€ 
Vehicular Technology CO$ ( V I C  ‘01). October 2WI. 

[IO] M.T. lvrlaf and W. Utschick and J. A. Nossek.’’Fading Correlations 
in Wireless MlMO Communication Systems”, IEEE Joumol on Selecred 
Areas in Communicalions, Special I.~ssue on MlMO Syslemr, Vol. 21. pp. 
819-828. June 2003. 

[ I  I] M. T. Ivrlaf. ”Measuring Diversity and Correlation in Rayleigh Fading 
MlMO Communication Systems”. Technical Repon No: TUM-LZIS-TR- 
03-04, Munich University of Technology, April 2003. 

161 


