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ABSTRACT 

In this paper two methods for designing almost linear phase wave 
digital filters are compared. First of them is based on designing a 
minimum phase filter and equalizing its phase response by some 
all-pass equalizer. The, second one utilizes previously published 
method of designing'almost linear phase filters without the equal- 
izer. Several improvements to bo? approaches are introduced and 
a comparison of the two methods is given. 

1. INTRODUCTION 

In today's advanced technologies power'consumption Las become 
the main limiting factor for many applications. Starting with pro- 
cessors for personal computing through terminals for mobile com- 
munications systems, down to applications like bionic ear In many 
of those applications digital filtering is a very important issue and 
represents one of the most power consuming subsystems. There- 
fore it is important to compare different digital filter architectures 
to find the one that best fits the requiremenrs for law-power design 
while maintaining all properties of a good filtering operation: For 
a filter designer the fastest and most simple solution is to employ 
FIR filters. There exist many tools to do so, and the design process 
is reduced to a few simple mouse clicks, However in most cases a 
FIR solution will no1 he the most efficient one, thus not optimal in 
terms of low power design. Rerefore, in this paper we explore IIR 
solutions. The greatest disadvantage of IIR filters is the non-linear 
phase response. However, many methods of approximating it have 
been presented in the past[6][7][10][11][1][9j: Even if with none 
of these methods perfecrphasc linearity can he achieved, the error 
can he very small and is often insignificant for practical applica- 
tions. Moreover, in many cases the phase linearity can be traded 
for effort, which leads to good low power solutions and gives the 
designer more freedom than in  the FIR case. Since all algorithms 
for designing linear phase bireciprocal wave digital filters found 
in the literature are based on two principles, for this comparison 
one from each family has been chosen. In the first method, in- 
troduced by [9], a minimum phase filter is being designed and an 
all-pass equalizer in cascade is then employed. The second method 
is based on [6j and allows for designing almost linear phase filters 
without.the need of an equalizer. Several improvements to both 
methods are introduced here to obtain either better convergence 
of the algorithm or more accurate results. For the comparison we 
have chosen bireciprocal wave digital filters. This class of half- 
hand filters is the most efficient one and therefore the overhead for 

obtaininglinearphase response is the greatest. Thus, it can be seen 
as the worst case approach and will allow for a fair comparison 10 
FIR half-hand filters. 

This paper is structured as follows. In Section 2 a short in- 
troduction to bireciprocal wave digital filters is given. In Section 
3 the method based on all-pass equalization is described. Section 
4 contains a description of the method of designing linear phase 
wave digital filten. A comparison of the results is.given in Sec. 5 
and Section 6 concludes the paper. 

2. BIRECIPROCAL WAVE DIGITAL FILTERS 

Wave digital filters (WDFs) are known to have many advantageous 
properties. They have low coefficient sensitivity, good, dynamic 
range, and especially, good stability properties, under quantization 
effects. Out of all wave digital filters the lattice wave digital filter 
is the most attractive one. Each WDF has a corresponding filter 
in the reference domain. The design can therefore he carried out 
in the analog domain using classical filter approximation<. Then 
a transformation from analog to digital domain can he performed. 
For lattice WDF explicit formulae are given in [51. However there 
exist no closed form solutions for filters satisfying given require- 
ments on both magnitude and phase response. 

A lattice WDF is a two-branch structure where each branch 
realizes an all-pass filter [31. Out of several ways of realizing 
them [2] the most attractive one is to use cascaded first-order and 
second-order sections. They are realized using symmetric two- 
port adaptors. A bireciprocal (half-band) lattice WDF is a special 
case of lattice WDF. In this case every other coefficient of the fil- 
ter becomes 0 [IZ],  which results in a structure shown in Fig. l .  
Moreover, when the application is in a decimator or interpolator 
by a factor of 2, the filter can run at the lower sampling rate (41. 

The transfer function of a bireciprocal lattice, WDF can be 
written as 

H ( z )  = ,(U&*) 1 '  +z-"H*(zz ) )  

where the transfei function HO ( x ' )  Eorresponds t o  the lower branch 
in Fig. 1. The transfer function of the filter and its complementary 
transfer function are power complementary. Therefore for birecip- 
rocal lattice WDFs 

/H(e'YT)IZ + JH(e'"T-' ) I  * = I  

which means that the passband and stop-bandedges are related by 
w,T + w,T = r with wc and wr being respectively the passband 
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Fig. 1. A 7th-order bireciprocal lattice wave digital filter 

and stop-band cutoff frequencies. The consequence is that the 
passhand ripple will be extremely small for practical requirements 
on the stop-band attenuation. Thus the bireciprocal WDFs have 
the efficiency of a FIR half-band filter in terms of reduced com- 
putational effort(compared to not half-hand counterparts), while 
preserving the main advantages of IIR filters over FIR, which are 
sharp transitions far low order filters. Moreover, it is a well known 
fact, that wave digital filters have very low coefficient sensitivity. 
Thus it is possible to represent filter coefficients utilizing only a 
few bits. This could allow for decreasing the size of applied mul- 
tipliers or even replacing them by shift and add operations. 

As can be seen from Fig. 2 the main drawback of lattice WDFs 
is the non-linear phase response. However, many methods for oh- 

Fig. 2. Phase response (radians) of a 17th order hireciprocal wave 
digital filter. 

taining almost linear phase of IIR filters have been presented in the 
past [7][101[1]. Two of them are described in the following. 

3. ALL-PASS EQUALIZATION FOR NON-LINEAR 
PHASE FILTERS 

One of the most widely used applications of all-pass filters is in 
group delay equalization of IIR filters. However, there exist no 
easy-to-use method or a closed form solution for this problem. 
' h e  existing formulations are based on numerical approximation. 
The method used here is based on eigenfilter formulation and has 
been presented in [9]. Traditionally, eigenfilter techniques have 
been used for the design of linear-phase FIR filters where the least- 

squares error can readily he given as a quadratic form. However, 
for phase approximation a quadratic form is not available due to 
non-linear trigonometric functions involved. Nevertheless the au- 
thors use  approximate least-squares phase error solutions, which 
enable eigenfilter formulation. One of the great advantages of this 
approach is the fact, that it can be applied to any class of filters 
and is capable of equalizing almost any phase response. This is 
not the case for the approach described in Sec. 4 since it's de- 
signed for lattice wave digital filters only. However, as will he 
shown, the all-pass approximation is in many cases not as efficient 
as the approach described in Section 4. Nevertheless, very good 
results have been achieved with this method, even if a modifica- 
tion to the algorithm had to be introduced to achieve best possible 
results. The authors of [PI estimate the nominal group delay of the 
all-pass equalizer from the formula given in [81 to 

70 = MT?"' 

with 
To""' = NT-*H(WU) 

W U  

where N is the order of the all-pass equalizer, W L :  is the passband 
cutoff frequency and '3s ( w u )  the phase response to he equalized 
at that frequency. M = 0.8. This estimation is quite good (hut 
not the hest) for wider band signals. For narrow band signals best 
solutions can be achieved for M = 0.2 ... 0.8 depending on the 
passband width and order of the equalizer. In particular for the 
example given in [91 of a 6th-order Chebyshev I1 low-pass filter 
with a 40 dB stop-band attenuation and 0.371 stop-hand cutoff fre- 
quency, with phase response equalized by an order 6 all-pass, the 
optimal choice is M = 0.7145. For this choice of M phase er- 
ror decreases from 2.7 . lo-' to 3.57 . lo-' and the group delay 
ripple from 1.585355 to 0.045426. These differences are quite 
significant. After performing numerous simulations we propose 
the following initial guess for M: 

M = -N/250t0.55t0.45~2-1'N~~i~(2~(5.6~wc-4t -)) 

with wc being the passband edge of the filter. This guess tends to 
be very close to the optimum value. In some cases the algorithm 
may not converge with the initial value given here. However, con- 
sidering significant improvements obtained by variation of M ,  it 
may be worth to vary this parameter around the initial guess. In 
many cases phase error will be by orders of magnitude lower than 
for the choice of M proposed by the authors of [91. Please note 
that this guess has been validated for bireciprocal lattice WDFs 
only and may not be accurate in general case. 

1 
2 . N  

4. ALMOST LINEAR PHASE BIRECIPROCAL WAVE 
DIGITAL FILTERS 

In this paper we concentrate on bireciprocal lattice wave digital fil- 
ters. They represent the most efficient, in terms of computational 
effort, family of IIR filters and are therefore of great interest. It is 
therefore very important to take a look at the methods dedicated 
to the design of linear phase bireciprocal lattice WDFs to he able 
to compare this solution to all-pass equalization. It is possible to 
obtain a bireciprocal lattice WDF with approximately linear phase 
by letting one of the branches in Fig. 1 consist of pure delays 
[71[10][1 I]. The other branch is a general all-pass function in z z ,  
which can be realized using cascaded first and second orders sec- 
tions (Fig. 3). The transfer function of a linear-phase lattice WDF 
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Fig. 3. Structure of an 1 Ith order almost linear phase hireciprocal 
lattice WDF. 

i s  

H ( z )  = H O ( 2 )  + z-zn+l: R=1>2: . .  

with R being the number of attenuation zeros and the overall fre- 
quency response is given as 

In the passband the phase response of branch zero, % ( w T ) ,  must 
approximate the phase response of the other branch, which in this 
case is linear, This forces the overall phase response to be approx- 
imately linear in the passband. The design algorithm considered 
here is based on [6] ,  which is a special case of algorithm pre- 
sented in [lO][l I]. It considers filters which are characterized by 
the property of having the maximal number of attenuation zeros 
for a given number of degrees of freedom (number of filter coeffi- 
cienti). The main disadvantage of the algorithm is that it needs an 
initial guess of the values of the frequencies at which the attenu- 
ation zeros occur. With the formula given in [6] only filters up to 
order 23 converged. To achieve convergence also for higher orders 
of the filter we propose to choose 

)) 
1 . -, ( 2 ( R  + T )  + 1)woT + TIT 

2 2R+ 1 
$IT = c-sin (sin(w,T)&( 

instead of 

for the initial solution. In this equations is R. the number of attenu- 
ation zeros,w, the passband cutofffrequency,woT = 1.2. * / l 8 0  
and c = 0.OG. Moreover, faster and better convergence has been 
achieved by introducing variable step size in different iterations. 
Still, some convergence problems exist. However, they occur only 
if the filter order is much roo high for the chosen transition band. 
When converging, stop-band attenuation of such a filter would 
probably be in the range of 300 dB.which is not feasible for practi- 
cal applications and the computed numbers are limited by machine 

precision. Unfortunately, the algorithm does not allow for specify- 
ing the attenuation that has lo be achieved. The specifications that 
can be modified are filter order and the transition band. There's 
also no way to trade off phase linearity for filter complexity. How- 
ever, the achievable phase linearity and group delay ripple are very 
small. Even if the order of such designed filter will he higher than 
that of the corresponding minimum phase solution, one has to take 
into account that the number of multipliers in this structure is only 
(order + 1)/4. These filters are thus as efficient, when comparing 
effort per filter order, as FIR half-band filters and a comparison to 
FIR solution is straightforward. 

5. EXPERIMENTAL RESULTS 

The all-pass equalization gives more degrees of freedom allowing 
the designer to choose how good or bad the approximation of the 
linear phase will be. It is not possible for the other approach de- 
scribed here. Therefore we first applied the method of Section 4 
to obtain linear phase filters, then we have evaluated the results 
to extract information on stop-band attenuation and phase error. 
This specifications have then been used to design minimum phase 
filters according to formulae given in IS]. The phase response of 
these filters has then been equalized in a way that the phase er- 
ror of the resulting filter was not larger than the constraint given 
by linear phase approach. The results are summarized in Table 1. 
They are sorted in descending order beginning with the wide tran- 
sition bands (120 degrees) and ending with very narrow one (95 
degrees). Since the filters are half-band, stop-band and passband 
frequencies are symmetric around 90 degrees. Only results with 
stop-band attenuation between 70 dB and IO0 dB are presented. 
Clearly, even if phase response error is the same in both cases, the 
group delay error of the equalized solution is always larger than 
for the linear phase WDF. Also the maximum group delay is a lit- 
tle higher. For the realization of the all-pass we propose to apply 
wave digital filters. Also for this purpose they are very efficient 
and only one multiplier per equalizer order is required. As the 
numbers in brackets indicate even then the combination of mini- 
mum phase filter and equalizer is significantly less efficient than 
the almost linear phase solution. However, in many practical cases 
the requirements on the phase error will he orders magnitude lower 
than in the examples from Table 1 and applying an equalizer could 
lead to an advantageous solution. 

6.  CONCLUSION 

In this paper a comparison of two approaches to almost linear 
phase bireciprocal wave digital filters has been discussed. Sev- 
eral improvements concerning convergence of the algorithms as 
well as their accuracy have been proposed. The results show sig- 
nificant differences in computational effort for the realization of 
both approaches, ?he solution based on a cascade of minimum 
phase filter and equalizer could result in as much as 10% - 80% 
more effort as for its linear-phase counterpart. However, in many 
applications the specification on phase linearity could be orders of 
magnitude lower than in the examples presented here and result 
in lower equalizer complexity. vary depending on requirements 
on phase linearity. Moreover, if applying solution of Section 4 in 
a multistage structure all filters in the cascade have to be linear 
phase, which results in higher filter orders. On the other hand the 
all minimum phase filters in the cascade require only one equal- 
izer as the last element in the cascade. In some cases the order of 
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Table 1. Comparison of the two methods (Phase error in radians, group delay in sampling intervals). LPF - Almost Linear Phase Filter, 
MPF - Minimum Phase Filter with all-pass equalizer, MULT - number of multipliers. 

the linear-phase filter could be very high, which could cause proh- 
lems due to computational accuracy. Higher coefficient andlor data 
word-length may be necessary in such cases. The numbers pre- 
sented here do not take into account these effects, which represent 
a topic for further study. The comparison presented here seems 
to gain on importance from the point of view of low-power design 
and almost linear phase IIR filters may represent a good altemative 
to today's standards. There are many applications ranging from 
ZA analog-to-digital converters to any kind of portable devices 
like MP3-Players or terminals for mobile communication systems, 
where computational efficiency is extremely important and power 
consumption the main limiting factor. Especially in mobile com- 
munication, where extemal inrerferers like multi-path propagation 
do not allow for perfect symbol synchronization, smct phase lin- 
earity may not be a required feature. 
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