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Abstract— A study of the transmission line parameters of a
multiconductor transmission line, used as an on-chip digital
interconnect is presented in this work. As a first step a quasi-
static approach in connection with Schwarz-Christoffel mapping
has been used to determine the capacitance per unit length
values. Then the obtained results have been used to solve the
multiconductor transmission line equations in frequency domain.
The resulting frequency response was used to compute the pulse
distortion and the crosstalk effect in a real-case on-chip digital
bus.

I. INTRODUCTION

With the increase of the on-chip data transfer rate to several

10 Gbit/sec the spatio-temporal intersymbol interference (auto-

interference) within the multiconductor interconnect systems

starts to play a role on the device performance. In order to

minimize the effects of such parasitic phenomena different

solutions are proposed, like space-coding techniques [1]. The

proper design of such tools requires a thorough knowledge of

the electrical parameters of the digital bus. Therefore a pre-

cise electromagnetic modeling of the multiwired interconnect

systems is required.

In this work an on-chip digital bus with equidistant con-

ductors of equal cross section is considered. The quasi-static

parameters are computed under the assumption for symmetry

using even-odd mode analysis [2] and Schwarz-Cristoffel

transformation [3]. The obtained results are used to solve

the multiconductor transmission line equations in frequency

domain, thus obtaining the frequency response of the digital

interconnect [4]. Then the pulse distortion is computed using

simple Fourier transformation.

The earliest attempts for analytical computation of rectan-

gular coupled lines between parallel grounded plates were

based on the assumption of zero conductor thicknesses and

adding a correction term for the finite thickness case. Cohn,

for example, has calculated the transmission line parameters

for the zero-thickness case using conformal mapping methods

[5]. Getsinger has extended Cohn’s work to computing the

fringing field capacitances at the conductor edges, but he has

imposed restrictions on the conductor dimensions [6].

In this work a numerical inversion of the Schwarz-

Christoffel conformal mapping is used to produce exact results

for the even and odd mode capacitances. The only assumption

that is made is for symmetry. No restrictions on the width

to height ratio of the conductor cross section are made. The
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Fig. 1. A cross section of three-wire digital interconnect embedded between
ground plates with a coupling and a ground capacitance

multiconductor transmission line equations are also solved

numerically.

Section II gives a short theoretical introduction to multicon-

ductor transmission lines and to Schwarz-Christoffel mapping.

Section III describes the application and section IV presents

the parameters, computed with the described technique.

II. THEORY

A. Multiconductor Transmission Lines

In this section the TEM modes of a multiconductor trans-

mission line filled with homogenous isotropic dielectric ma-

terial used for digital interconnect bus are treated. A cross

section of such line with three signal conductors between

two ground planes is presented in Fig. 1. In order to fully

characterize a line, consisting of n conductors and reference

ground plane, the voltage vk(z, t) and the current ik(z, t) of

each line are needed. These variables can be summarized in

the following vectors

v(z, t) = [v1(z, t), v2(z, t), ..., vn(z, t)]T , (1)

i(z, t) = [i1(z, t), i2(z, t), ..., in(z, t)]T . (2)

The relation between these two vectors can be expressed via

the frequency-domain telegrapher’s equation in matrix form

d2V (z)

dz2
= Z′Y ′V (z), (3)

d2I(z)

dz2
= Y ′Z′I(z), (4)
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where

Z′ = R′ + jωL′, (5)

Y ′ = G′ + jωC′. (6)

are respectively the complex impedance and complex admit-

tance per unit length. R′ is the resistance per unit length,

which models the ohmic losses in the conductors, G′ is the

conductivity per unit length, which accounts for the dielectric

losses in the material, in which the line is embedded, and C′

and L′ are respectively the capacitance and inductance per

unit length. In the case of quasi-TEM modes the following

relation between C′ and L′ holds

L′C′ = C′L′ =
1

c2
1, (7)

where c is the phase velocity of the TEM mode and 1 is the

unity matrix.

In order to find a close form solution of the transmission

line equations the uncoupled modal voltages and currents are

introduced

Ṽ = MV V , (8)

Ĩ = MII. (9)

The transformation matrices MV and MI can be found by

diagonalizing the product Z′Y ′ as follows

γ̃2 = Z̃′Ỹ ′ = M−1Z′Y ′M , (10)

where γ̃ is the modal propagation coefficient diagonal matrix,

and Z̃′ and Ỹ ′ are the diagonalized Z′ and Y ′ matrices

Z̃′ = M−1
V Z′MI = diag[Z̃1, Z̃2, ..., Z̃n], (11)

Ỹ ′ = M−1
I Y ′MV = diag[Ỹ1, Ỹ2, ..., Ỹn]. (12)

The relation between MV , MI , and M is given by

M = MV = (MT
I )−1. (13)

The characteristic impedance matrix is defined as

Z0 = Mγ̃M−1Z̃. (14)

The boundary conditions for solving equations (3) and

(4) are applied by introducing matrices ZS , accounting for

the source impedances, and ZL, accounting for the load

impedances, as well as vectors VS and VL, accounting for

the impressed source and load voltages.

Finally we need to solve for the modal currents Ĩ the

following matrix equation
[

(Z0 + ZS)M (Z0 − ZS)M
(Z0 − ZL)Me−γ̃l (Z0 − ZL)Meγ̃l

] [

Ĩ(+)

Ĩ(−)

]

=

[

VS

VL

]

,

(15)

where Ĩ(+) and Ĩ(−) are the amplitudes of the solution of the

diagonalized equation (4)

Ĩ(z) = e−γ̃z Ĩ(+) + eγ̃z Ĩ(−). (16)
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Fig. 2. Mapping an arbitrary simple bounded polygon to a rectangle

B. Schwarz-Christoffel Mapping to Simply Connected Polyg-

onal Domains

The Schwarz-Christoffel mapping is a conformal mapping

technique, which maps the upper half of the complex plane Ωz

into a polygonal domain by preserving the local angles [3], [7].

This transformation is described by the Schwarz-Christoffel

formula

f(z) = A + C

∫ z n−1
∏

k=1

(ζ − zk)αk−1dζ. (17)

In this equation zk are the points on the real axis of the Ωz

domain, which are mapped into the polygon vertices, αk are

the internal angles of the polygon in counterclockwise direc-

tion, normalized to π, and A and C are complex constants.

Under this transformation a capacitance, which characterizes

the original structure characterizes the image too.

A simply connected planar domain can be defined as the

interior of a planar closed line, that does not contain any

holes. Using the inverse of the SC transformation any simply

connected polygon can be mapped into the upper half of the

image plane. Using one more SC transformation we can map

the upper half-plane into a canonical shape like a rectangle (see

Fig. 2). This is the mapping that will be used for symmetric

transmission lines, as shown in the next section.

III. APPLICATION

The following procedure is used for computing the trans-

mission line parameters. First the capacitance per unit of

length C′ and resistance per unit of length R′ matrices are

calculated. The losses in the dielectric are neglected, therefore

the conductance per unit of length matrix G′ is considered 0.

From the C′ matrix the inductance per unit of length matrix

L′ is computed using (7). The multiconductor transmission

line equations are solved by numerically inverting (15).

A. Computation of the Capacitance Matrix

In order to compute the static capacitance matrix of the

transmission line even-odd mode analysis is utilized. If an

electric wall inserted at the plane of symmetry between the

signal conductors (see Fig. 1) only one signal conductor

can be considered. The capacitance between this conductor

and ground is the odd-mode capacitance C ′

o. If a magnetic

wall is inserted at the plane of symmetry the capacitance

of the resulting structure is the even-mode capacitance C ′

e

(see Fig. 3). The ground and the coupling capacitances are
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Fig. 3. Mapping a quoter of an even/odd mode equivalent structure to a
rectangle

connected with the even and odd mode capacitance with the

following equations

C ′

g = C ′

o, (18)

C ′

c =
1

4
(C ′

o − C ′

e). (19)

The even and odd mode capacitances have been computed

by making use of the symmetry of the structure, as depicted

in Fig. 3. Schwarz-Christoffel mapping is applied to the

quoter of the structure, shown in bold lines. The capacitance

per unit of length of the resulting rectangle is computed as

the ratio of the electric wall length to the magnetic wall

length times the dielectric permitivity of the medium. The

Schwaz-Christoffel mapping is performed numerically using

an integrated MATLAB toolbox [8].

Up to now it was considered that the ground capacitances of

all signal conductors are equal. This does not hold for the end

bus lines in the case of small distance between conductors

d and long extended ground planes. In order to find the

ground capacitance of the end conductors we consider the

SC mapping, shown in Fig. 4, where the ground planes have

been extended to infinity. Here we can use only one symmetry

plane. The ground capacitance of the end conductors is equal

to twice the capacitance of the equivalent rectangle.
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∞
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Fig. 4. Mapping half of an end-conductor equivalent structure to a rectangle

Finally the capacitance per unit of length matrix is con-

structed. Its diagonal elements are the sum of all capacitances,

connected to the corresponding conductor, and its off-diagonal
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Fig. 5. Ground capacitance vs. geometry for digital transmission line, filled
in with silicon. Here d/h = 0.125

elements are the coupling capacitances between the corre-

sponding conductors with a negative sign, as shown below

C′ =











C ′

g + C ′

c −C ′

c . . . 0
−C ′

c C ′

g + 2C ′

c . . . 0
...

...
. . .

...

0 0 . . . C ′

g + C ′

c











. (20)

B. Computation of the Inductance and Resistance Matrices

The inductance per unit of length matrix L′ is computed

from the capacitance per unit of length matrix C′ from the

following equation

L′ =
1

c2
C′−1. (21)

This equation is only approximative for lossy lines, but due

to the low resistivity of the used conductor this approximation

can be used.

The clock frequency of the digital bus under consideration

is several hundred megahertz and the bus dimensions are in the

range of several hundred nanometers, therefore we can assume

an uniform current distribution in the conductors. Therefore

the resistance per unit length matrix R′ can be computed from

the metal conductivity σ and the bus dimensions as follows

R′

ij =

{

1
σab

for i = j,

0 otherwise.
(22)

IV. RESULTS

The above described computational procedure was imple-

mented on a MATLAB code. The results for the capacitances

per unit length for a transmission line, filled in with silicon,

are presented in Fig. 5 and Fig. 6. Since the capacitance is only

a function of the ratio of the line dimensions, all geometry is

normalized to the distance between the ground planes h.

As a real case study a 4-line digital bus with the dimensions,

shown in table I is investigated. In order to solve (15) the

following values were chosen. The load and source impedance

matrices ZL and ZS were chosen as diagonal matrices with

a value of 50 Ω for every diagonal element. This was done in

order to compare the results with the data, obtained from the
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Fig. 6. Coupling capacitance vs. geometry for digital transmission line, filled
in with silicon. Here a/h = 0.25

TABLE I

REAL DIGITAL BUS DIMENSIONS

Description Notation Dimension

Conductor width a 200 nm
Conductor height b 400 nm
Distance between conductors d 100 nm
Distance between ground plates h 800 nm
Line length l 1mm

commercial MoM-based simulator MOMENTUM from ADS.

The load voltages vector VL was set to zero, and the source

voltage vector VS was set to zero except for one element,

which was set to one, providing an excitation, as follows

VS = [ 1 0 0 0 ]T . (23)

The frequency response for the crosstalk voltage at the far

end of the line is presented in Fig. 7. The simulation time

required by MOMENTUM on a Pentium 4 based computer with

2.4 GHz clock frequency and 1 GB of RAM was in the order

of 60 minutes, while the equation-solving routine requires less

than a second on the same machine.

In order to compute the pulse distortion more realistic values

for the load and source impedance matrices ZL and ZS were

chosen. The source impedance matrix ZS has been set to zero,

and the diagonal elements of the load impedance matrix ZL

were set to 10 MΩ. After performing a Fourier transform the

shape of the distorted pulse at the far end of the line, shown in

Fig. 8, was obtained. The results are compared with the data,

obtained from SPICE simulation of the equivalent lumped-

element circuit of the bus, using the previously computed

capacitance and resistance values.

V. CONCLUSIONS

A precise electromagnetic model of a multiconductor trans-

mission line, used as an on-chip digital bus was presented.

The structure was investigated under static conditions using

numerical inversion of the Schwarz-Christoffel transformation.

Using the even-odd mode analysis techniques the capacitance,

inductance and resistance per unit length matrices were calcu-

lated. The dependance of the electrostatic parameters on the

transmission line dimensions was explored. Using the obtained

results the frequency response and the pulse distortion of a
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Fig. 7. Frequency response of the crosstalk voltage at the far end of the
line. Comparison of the results, obtained by solving the transmission line
equations, and the data, obtained by full-wave analysis
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Fig. 8. Pulse distortion at the far end of the line. Comparison of the data,
obtained with the proposed method, and the results from a SPICE simulation
of the equivalent lumped-element circuit of the bus

real-case on-chip digital bus was obtained. The advantages of

the proposed method are its accuracy, the lack of geometrical

limitations and the algorithm efficiency.

ACKNOWLEDGEMENT

This work has been supported by the Deutsche Forschungs-

gemeinschaft.

REFERENCES

[1] M. T. Ivrlac and J. A. Nossek, “Chalanges in coding for quantized MIMO
systems,” Proc. IEEE International Symposium on Information Theory,
pp. 2114–2118, July 2006.

[2] D. M. Pozar, Microwave Engineering, 3rd ed. Ney York, NY: John
Wiley & Sons, 2005.

[3] P. Russer, Electromagnetics, Microwave Circuit and Antenna Design for

Communications Engineering, 2nd ed. Nordwood, MA: Artec House,
2006.

[4] C. R. Paul, Analysis of Multiconductor Transmission Lines. New York,
NY: Wiley, 1994.

[5] S. B. Cohn, “Shielded coupled-strip transmission line,” IEEE Trans.

Microwave Theory Tech., vol. 8, pp. 29–38, Oct. 1955.
[6] W. J. Getsinger, “Coupled rectangular bars between parallel plates,” IEEE

Trans. Microwave Theory Tech., vol. 10, pp. 65–72, Jan. 1962.
[7] T. A. Driscoll and L. N. Trefethen, Schwarz-Christoffel Mapping, ser.

Cambridge Monographs on Applied Computational Mathematics. Cam-
bridge, UK: Cambridge University Press, 2002.

[8] T. A. Driscoll, “Algorithm 756: A MATLAB toolbox for schwarz-
christoffel mapping,” AMC Trans. Math. Softw., vol. 22, no. 2, pp. 168–
186, June 1996.

1380


