
f f f f
fff fff fff ff

f
f f ff

Automated methods for formal proofs
in simple arithmetics and algebra

Amine Chaieb
Lehrstuhl für Software & Systems Engineering

Institut für Informatik
Technische Universität München

Lehrstuhl für Software & Systems Engineering
Institut für Informatik

Technische Universität München

Automated methods for formal proofs
in simple arithmetics and algebra

Amine Chaieb

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Hans-Joachim Bungartz

Prüfer der Dissertation: 1. Univ.-Prof. Tobias Nipkow, Ph.D.

2. Ass.Prof. Jeremy Avigad, Ph.D.
Canergie Mellon University, Pittsburgh/USA

Die Dissertation wurde am 31. Januar 2008 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 01. April 2008 angenommen.

Zusammenfassung

In einem LCF-ähnlichen Theorembeweiser, stammt jeder Beweis aus einer minimalen Menge
von Inferenzregeln ab. Somit sind Verfahren zur Generierung solcher Beweise von enormer
Wichtigkeit. Das Ziel dieser Abhandlung ist folgende Frage zu studieren: Wie soll, all-
gemein und im Spezialfall der Arithmetik, ein LCF-ähnlicher Theorembeweiser um eine
Entscheidungsprozedur erweitert werden?. Wir betrachten drei verschiedene Ansätze für
eine solche Integration und präsentieren mehrere Beweisverfahren im Detail. Die wichtig-
sten präsentierten Verfahren sind: a) Entscheidungsprozeduren für universelle und schwach
existentielle Probleme in Ringen, b) Univerelle Probleme reeller Polynome, c) Quantoren-
elimination für parametrische lineare Formeln über geordnete Körper, Presburger Arith-
metik, die gemischte lineare Theorie der reelen und ganzen Zahlen, Algebraisch- und Reel-
abgeschlossene Körper. Alle unsere Arbeiten basieren auf dem Isabelle Theorembeweiser.

Abstract

In an LCF-like theorem prover, any proof must be produced from a small set of inference
rules. The development of automated proof methods in such systems is extremely important.
In this thesis we study the following question How should we integrate a proof procedure in
an LCF-like theorem prover, both in general and in the special case of arithmetics. We
investigate three integration paradigms and present several proof procedures. These include
universal and weak existential problems over rings, universal polynomial problems over the
reals, quantifier elimination for parametric linear problems over ordered fields, Presburger
arithmetic, mixed real-integer linear arithmetic, algebraically and real closed fields. Our
work has been carried out in the Isabelle framework.

To Moufida, Salem and Rayfa.

I dreamed of a tree of indescribable beauty and great
height. Growing on it were three kinds of fruit unlike
any fruit known in this world. The size of a girl’s breast,
each shone like a moon or a sun against the green
surface of the tree. Awestruck, I looked at the
marvellous tree and asked, “Whence comes this tree?”

Acknowledgements

I am very grateful to Tobias Nipkow for giving me the opportunity to work in his group
and learn about theorem proving. His tactical advices, persuasions for interesting topics
and dissuasions from dangerous roads were of invaluable help.

I am very grateful to Jeremy Avigad, who had astonishing readiness to answer my ques-
tions and give lucid explanations. I thank him for his constructive discussions, motivating
comments and for giving me the honour to be my second adviser and examiner.

Great distraction is mandatory to oversee John Harrison’s influence on this work. I am
indebted to him for very constructive and encouraging discussions, advices and for giving
me access to preliminary versions of his book.

I am grateful to all my (ex-)colleagues for the nice atmosphere at the research group. Ste-
fan Berghofer, Sascha Böhme, Florian Haftmann, Alexander Kraus, Walid Maalej, Norbert
Schirmer and Makarius Wenzel made substantial comments on early drafts. I thank Norbert
and Sascha for the agreeable atmosphere at the office and for their patience with my loud
music. I thank Stefan and Makarius for various technical support and patience with my
requirements. I have learned from them that building and maintaining a working system is
by far the hardest part of theorem proving.

I can hardly thank my parents and my adorable wife enough for their constant love,
support and all the joyful moments. I am indebted to them for two of my sources of
happiness. I owe my education entirely to the great sacrifices of my selfless parents, and the
existence and happiness of our own little family to the devotion of my good-hearted wife.

Contents

1 Introduction 1

2 Integration of proof-procedures 5
2.1 Derived rules . 5

2.1.1 Basic tools for LCF proof composition 5
2.1.2 Higher concepts in the Isar framework 6
2.1.3 Example: dense linear orders . 8

2.2 Reflection . 10
2.2.1 Example: a simple case of sums . 10
2.2.2 Generic reification as derived rule . 12

2.3 Certificates . 13
2.4 Comparison . 15
2.5 Related work . 17

3 Certificates for polynomial problems 19
3.1 Polynomials . 19

3.1.1 A formalisation of univariate polynomials as functions 19
3.1.2 Reflected multivariate polynomial utilities 20

3.2 Equations and disequations . 25
3.2.1 The universal case . 25
3.2.2 An interesting subset of the ∀∃-fragment 26
3.2.3 Integration . 28

3.3 Inequalities via sums of squares . 29
3.3.1 SOS, PSD and Hilbert’s theorem . 29
3.3.2 Quadratic forms and SOS via SDP . 30
3.3.3 Finding Positivstellensatz certificates 31
3.3.4 Integration . 31

3.4 Related work . 32

4 Elimination of quantifiers 35
4.1 Preliminaries . 35
4.2 Dense linear orders, revisited . 39

4.2.1 Ferrante and Rackoff’s algorithm . 39
4.2.2 A derived rule . 40
4.2.3 Integration as a context-sensitive method 42
4.2.4 Linear arithmetic for ordered fields (almost) for free 42

4.3 Linear arithmetics . 42
4.3.1 Parametric linear problems in ordered fields 42
4.3.2 Presburger arithmetic . 46
4.3.3 Mixed real-integer arithmetic . 48

4.4 Algebraically closed fields . 52
4.4.1 The fundamental theorem of algebra 52
4.4.2 A quantifier elimination procedure . 53
4.4.3 A derived rule . 54

4.5 Real closed fields . 55
4.5.1 A quantifier elimination procedure . 55
4.5.2 A derived rule . 56

ix

4.5.3 An unfinished reflection . 59
4.5.4 Heuristics to reduce sign-assumptions 66
4.5.5 Optimisations using linear and quadratic equations 66

4.6 Related work . 70

5 Conclusion 75

x

Chapter 1

Introduction

Was beweisbar ist, soll in der Wissenschaft
nicht ohne Beweis geglaubt werden.

(J. W. R. Dedekind)

One major contribution of symbolic logic is to clarify the notion of a mathematical proof.
There, we use a fixed formal language and a set of inference rules for deduction. Any
proof must be expressed by a finite composition of the inference rules. Of course the used
symbols have a mathematical meaning, and the resulting deduction calculus must be at
least consistent. In practise, the formal language is represented on a computer and the
applicability of an inference rule is decidable. This thesis should be understood in the
context of this latter practical side of symbolic logic: theorem proving.

The pioneer system LCF [GMW79] provided general design principles for theorem provers,
which have been embraced by the HOL family [HSA06], Coq [TLG06] and the Isabelle/Isar
framework [WP06, Wen07]. All these systems, like all theorem provers, provide proce-
dures to automatically generate a formal proof for suitable classes of problems. Proving
even simple tautologies formally by hand is involved and time consuming. The above sys-
tems provide proof-procedures e.g. for simplification, propositional and predicate logic and
simple arithmetics. Although arithmetic plays a central role in mathematics, modelling sys-
tems, verification and engineering problems, proof automation for it is seldom satisfactory.
Non-linear statements are rarely proved automatically and even for linear arithmetics most
systems cannot deal with quantifiers.

The goal of this thesis is to study the following question:

How should we integrate proof-procedures into an LCF-like system both in general
and for particular relevant theories of arithmetic?

To study the integration issues of proof procedures in general, we consider the LCF archi-
tecture more closely. The main design principle in the LCF system is to couple a theorem
prover with a full programming language (the meta language or ML for short) and exploit
its strongly typed environment. In ML, theorems are values of an abstract type, whose
constructors implement the logical inferences. The most natural way to integrate a proof
procedure is maybe by implementing it in ML. For every problem instance, it goes through
the inference rules in a sophisticated manner to prove the goal. We shall refer to such an
integration as a derived rule, since the new procedure can be seen as a new inference rule
justifying its results in terms of other inference rules. A second approach is to find a certifi-
cate, which yields a simple proof of the goal, if interpreted appropriately. The certificate can
be found by any software solving a problem inspired by the goal. A very simple example is
that 7 is a certificate to show that 3 divides 21, since 3 · 7 = 21. We refer to this approach
as certificate-based. The last approach we will consider in this thesis is based on the follow-
ing observation. The object language (HOL) contains a functional programming language
with a big advantage over ML: we can prove our programs correct in HOL. We refer to this
approach of implementing the procedures inside the logic by reflection.

To study the integration issues of proof procedures for particular relevant theories of arith-
metic, we give a relatively broad case study applying the different approaches to some non-
trivial theories including universal and existential polynomial problems, quantifier elimina-

1

Chapter 1 Introduction

tion procedures for linear arithmetic over R, Z and their mixed theory, and for algebraically-
and real-closed fields. All our work has been done in Isabelle/HOL [NPW02].

Contributions

My main contributions in this thesis are as follows:
1. A broad case study on three paradigms for the integration of proof-procedures in an

LCF like theorem prover.
2. Various concrete proof methods (§2.1.3, §4.2 and §3.2) to work with respect to logical

contexts and abstract specification mechanisms (locales and type-classes [KWP99,
Bal04, Bal06, HW06]).

3. An abstract and executable formalisation of univariate and multivariate polynomials
with several utilities.

4. Reflected formalisations of full quantifier elimination for linear arithmetic over Z and
R, their mixed theories and for parametric linear arithmetic over ordered fields.

5. First steps towards clarifying the usage of virtual substitution to prove and implement
quantifier elimination procedures in Isabelle. Our use of “improper terms” as locale
parameters to lift a simple quantifier elimination procedure for dense linear orders
without endpoints to one for linear arithmetic over ordered fields is new.

6. Implementation of proof-procedures and formal proofs for non-trivial theorems, e.g.
the fundamental theorem of algebra in §4.4.

Overview

This thesis is structured as follows. In chapter 2 we address the issues of integrating proof
procedures and present the three paradigms sketched above in more detail with an elabo-
rated example for each approach. Chapter 2 is hence dedicated to study the general part
of our main question. We study particular cases in the rest of the thesis. Chapter 3 is
dedicated to the application of the certificate-based approach to simple polynomial prob-
lems: universal and a subset of ∀∃ problems over rings and universal problems over R with
ordering. In chapter 4, we focus on the method of quantifier elimination, which has inher-
ently bad certificates. We present, in derived rule and reflection style, quantifier elimination
procedures for dense linear orders, linear arithmetics (over R, Z and their mixed theory) and
the elementary theories of real and algebraically closed fields. We draw some conclusions in
Chapter 5.

Notation

In this thesis Mathematics, ML, and HOL are distinguished as three different worlds, where
the notions of theorems and functions have different meanings.

In Mathematics, theorems and helpful lemmas are proved on paper. We shall present
these as in Theorem 1 and (1.a), though with more formal notation.

Any composite number is measured by some prime number. (1.a)

Theorem 1 (Euclid). Prime numbers are more than any assigned multitude of prime num-
bers.

Important is that lemmas (e.g. (1.a)) will be labelled alphabetically, in contrast to HOL
theorems, which will be labelled by numbers. A function f from A to B will be denoted by
the usual arrow notation: f : A→ B, x 7→ f(x).

The meta-language ML is the programming language in which the theorem prover is
implemented, i.e. SML in Isabelle’s case. We will not present SML-code but rather a self
explanatory pseudo-code, and this in very few places only. An ML function f from type
α to type β will be denoted by f : α → β. In particular abstraction in ML is realised by
a bold λ, in contrast to the normal λ for HOL functions. We assume pattern matching
over terms with guards like in Haskell. A theorem in ML is an element of an abstract

2

type, whose constructors implement the underlying logic. Matching a theorem statement
against a pattern is possible using the as‘. . . ’ notation. If th is a theorem whose statement is
x > 0→ x2 > 0 then th as‘A→ B’ instantiates A to x > 0 and B to x2 > 0. If p is a theorem
for x > 0, then fwd th p yields a theorem for x2 > 0. The instantiation of the variables
x1, . . . , xn in the order of their appearance in a theorem q is realised by q[x1, . . . , xn], i.e.
the statement of th[0] is 0 > 0→ 02 > 0. This view of ML is not unrealistic, see [WC07].

In HOL we can see theorems as abstract entities with names and we will present them as
in (1.1).

∀x, y :: Z.x < y → 2 · x+ 1 < 2 · y (1.1)

Note that these in contrast to mathematical statements are labelled with numbers, unlike
the real theory sources in Isabelle. We assume that the presented theorems are accessible
in ML using their labels. All HOL theorems presented in this thesis have been formally
proved in Isabelle. A HOL function f from HOL type α to HOL type β will be denoted by
f :: α⇒ β. All HOL functions are total. We declare datatypes in HOL using datatype and
write functions by pattern matching. The HOL type [α] denotes lists of elements of type α.
These are constructed from the empty list [] and consing x · xs. We write [x1, . . . , xn] (also
with the informal dots) for clarity reasons. We denote the set of all elements of a list xs by
{{xs}}, the nth element of xs by xs!n and appending two lists xs and ys by xs@ys. The HOL
type α× β represents all pairs (a, b) where a :: α and b :: β. Many of the HOL theorems we
will present are not “formally” correct as presented. For example, we shall write

(P ↔ P ′) ∧ (Q↔ Q′)→ (P ./ Q)↔ (P ′ ./ Q′), for ./ ∈ {∧,∨,→,↔} (1.2)

as a meta-representation of a family of theorems. We will use, for the three worlds,
∅,N,Z,Q,R and C to denote the empty set, natural number, integers, rational, real and
complex numbers respectively. In this thesis 0 ∈ N. The HOL type [R] is for instance the
type of all lists over the reals. We will use this notation also for ML. The ∈ symbol denotes
set membership in each world. Also arithmetical operations +, ·, / and − denote addition,
multiplication, division, and (overloaded) negation and subtraction. Power will be denoted
by an exponent. The same applies to the logical connectives ∧,∨,→,↔, quantifiers ∀ and
∃, function composition ◦, list operations, and equality =, heavily overloaded in types and
worlds.

We hope the reader agrees that this simplifies the notation and makes the material more
accessible.

Informal notes

Using theorem provers which examine your arguments with minuteness like Isabelle is not
always easy. In my experience, descriptions of formalisations fall into two categories: those
full of moan, inciting pity and presenting the task as extremely hard and painful; and those
focusing on the content of the work describing it as simple, although not true in particular
cases. I write this thesis in the second style. I am aware that some parts might, on that
account, sound bold or unworthy. I hazard this risk, so much I dislike the first style. I
believe that presenting things as simple and abstracted from personal judgements is much
more convenient to the reader, who should concentrate on the content of the work. Personal
judgements differ with persons, systems and time.

Related work

The content of this thesis lies in the intersection of several interesting fields, e.g. symbolic
logic and computation, algebra, automated reasoning, theorem proving and computational
complexity. Due to this diversity we found it much more appropriate to discuss related work
at the end of every chapter. These discussions are by no means exhaustive, but include all
the references we used in our study and suggestions for further reading.

3

Chapter 1 Introduction

4

Chapter 2

Integration of proof-procedures

Contents
2.1 Derived rules . 5

2.2 Reflection . 10

2.3 Certificates . 13

2.4 Comparison . 15

2.5 Related work . 17

In this chapter, we study the integration issues of new proof-procedures. We concentrate
the study on three paradigms: a) derived rules (in §2.1) where we implement the procedure
in ML and invoke a sequence of inference-rules to prove the goal, b) reflection (in §2.2)
where we implement the procedure inside the logic and prove it correct once and for all,
and c) certificate-based methods (in §2.3) where we search, using external software, for a
succinct certificate, yielding a proof of the goal, when appropriately checked. We present
simple examples to illustrate each of the approaches. These three paradigms, especially a)
and b), have several advantages and drawbacks and raise quite challenging logical problems.
We close the chapter by a short comparison of the methods.

2.1 Derived rules

Rules in the LCF approach are the constructors of the abstract type thm of theorems.
They represent the inference rules of the implemented logic and live in the critical module
we call “kernel”. Let in the following “rule” denote any ML function whose range type is
thm. We call rules different from the kernel rules derived rules, since they construct their
results by sooner or later calling the kernel-rules. Implementing derived rules in practice
requires intimate knowledge of system internals. This integration paradigm has so far been
the most popular and various derived rules are available in the system, as well as generic
mechanisms to manipulate rules. We sketch some of these generic mechanisms in §2.1.1.
In §2.1.2 we give an overview of the Isar architecture. We emphasise the presentation on
the basic notion of contexts, which allows to integrate proof-procedure that depend on a
logical context. Using this last methodology, we come closest to meeting the expectations of
mathematicians. For instance, a decision procedure for the word problem in rings, should
work for all rings, regardless of the underlying set or how the operations are named. We
conclude by an example presenting a quantifier elimination procedure for dense linear orders
without endpoints.

2.1.1 Basic tools for LCF proof composition

We give a rough idea about the tool chest available in the pure approach.

Conversions: combinators for equational reasoning

A conversion cv is a special kind of rules with signature term → thm. The implicit contract is
that cv t returns a theorem t = t′. Conversions are a powerful tool for equational reasoning,

5

Chapter 2 Integration of proof-procedures

e.g the Isabelle simplifier is a rather complex conversion. Note that we can scrutinise the
input t and prove t = t′, with t′ in the exact syntactical shape we need. Thereby, the whole
theorem-proving machinery available so far is at hand.

Typically, we write conversions for special purposes and then combine them to more
complex ones using so called conversionals. The conversional argc, for instance, applies a
conversion to t when called on term f t, hence returning f t = f t′. Similarly func applies
a conversion cv to f in the example above, absc applies cv to the body of λx.t, and binopc
applies a conversion to both arguments of a binary operation. Given two conversions cv1
and cv2 then the conversion cv1 thenc cv2 applied to t returns t = t′′, where t = t′ and
t′ = t′′ are the theorems returned by cv1 t and cv2 t′ respectively. We use these conversions
in §2.1.3. Other conversionals include applying several conversions in a specific order or
applying a given conversion to all sub-terms of a term etc. We can consider conversionals
as a tiny programming language to write conversions.

Tactics: generic background reasoning

In Isabelle, a tactic is any ML function taking a theorem representing a goal state and
returning a sequence of theorems representing possible follow-on goal states. The theorem
proving task may hence be “defined” as emptying that resulting list of pending goals. Tactics
are often special purpose, e.g. predicate logic, arithmetic, rewriting, etc. They are therefore
best suited to prove theorems on the fly needed inside a derived rule. We can build more
sophisticated tactics from simpler ones by means of tacticals. These relate to tactics in a
similar way conversionals relate to conversions. Tacticals can hence be seen as a simple
language for writing tactics. Prominent tacticals include sequential composition, trying one
or several tactics, repeating a tactic, applying a conversion to a goal and many others.

Generic theorem synthesis

The following special combinator plays an important role in practice and in many develop-
ments in this thesis:

thm-of decomp t =
let (ts, recomb) = decomp t
in recomb (map (thm-of decomp) ts)

It takes a problem decomposition function decomp :α → [α] × ([β] → β) and a problem
t : α, decomposes t into a list of sub-problems ts and a recombination function recomb,
solves the sub-problems recursively, and combines their solution into an overall solution via
recomb. Often problems are formulae and solutions are theorems. This style of theorem
proving originates from the LCF system [GMW79, Pau87], where decomp is called a tactic
— not to be confused with our tactics. The underlying principle is divide and conquer. This
technique is especially helpful to construct induction proofs, where problems are decomposed
in the induction case and recombined with the induction hypothesis. We use this technique
extensively in §4.2.

All presented techniques are very appealing since they allow one to combine the different
proof-tools available in the system into special purpose ones in a uniform manner: they
operate on the universal term data structure and are hence applicable in a wide range of
problems.

2.1.2 Higher concepts in the Isar framework

From the tool-builder’s perspective, Isar is roughly the main organiser of Isabelle’s theorem-
proving machinery. We present only the few features we need later, but see [Wen02, WP06,
Wen07, CW07] for more details.

Generic contexts and context data In primitive inferences Γ ` A means that A is deriv-
able within a context Γ, which contains arbitrary logical and extra-logical data, e.g. back-

6

2.1 Derived rules

ground theory declarations (types, constants, axioms), local parameters and assumptions,
definitions, theorems, syntax and type-inference information, hints for proof tools (e.g. simp-
lification rules) etc. There are two main logical operations on contexts:

1. Context construction starts with an empty context Γ0 and proceeds by adding further
context elements consecutively. In particular, Γ + fix x declares a local variable, and
Γ + assume A states a local assumption.

2. Context export destructs the logical difference of two contexts, by imposing it on local
results. The effect of export Γ1 Γ2 is to discharge portions of the context on terms and
theorems as follows:

export (Γ + fix x) Γ (t x) = λx.t x
export (Γ + fix x) Γ (` Bx) = (`

∧
x.B x)

export (Γ + assume A) Γ (A ` B) = (` A =⇒ B)

Internally, context data consists of an inhomogeneous record of individual data slots, based
on dynamically typed disjoint sums. The external programming interface recovers strong
static typing by means of an SML functor, involving dependently-typed modules, functor
Data(ARGS): RESULT, where:

ARGS = sig type T val init: T end
RESULT = sig val put: T→ context → context

val get: context→ T

We emphasise that the ML type context assimilates all ML types. This means that we
can attach arbitrary ML code to contexts. We use this feature to attach proof procedures
using the local assumptions and theorems in a context.

Morphisms Morphisms organise certain logical operations by determining how results may
be transferred from one context into another, providing a different view. Formally, a mor-
phism φ is just an ML-mapping on theorems. φ0 refers to the identity morphism. The
following two kinds of morphisms, which resemble abstraction and application in λ-calculus,
are particularly important in practice.

1. Export morphism: the export operation between two contexts determines a morphism
φ = export Γ1 Γ2, giving a generalised view of local results.

2. Interpretation morphism: given concrete terms for the fixed variables, and theorems
for the assumptions of a context, the substitution operation determines a morphism
φ = interpret [t/x] [th/A]. By this view, results of an abstract theory are turned into
concrete instances.

Generic declarations Since morphisms are mappings on theorems, their application to the
logical part of a context is immediate. We handle the application of morphisms to arbitrary
data at the level of data declarations. Recall that arbitrary datatypes can be incorporated
into the generic context and hence any operation on data is subsumed by context→ context.
This motivates the following definition:

declaration = morphism → context → context

This means a declaration participates in applying the morphism. Being passed some φ
as additional argument it is supposed to apply it to any logical parameters (types, terms,
theorems) involved in its operation. Note that immediate declaration in the current context
works by passing the identity morphism φ0.

A traditional fact declaration in Isabelle is represented as a theorem-attribute pair. This
is an important special case. The general declaration is recovered by the apply operation:

fact declaration = thm × attribute
attribute = thm → context → context

apply (th, att) = λφ.att (φ th)

7

Chapter 2 Integration of proof-procedures

Observe that th is transformed separately before invoking the attribute. Here att does not
have to consider morphisms at all. A prominent example is the declaration of simplification
rules.

Locales and type-classes Locales [KWP99] provide a high-level mechanism to organise
context elements and declarations. Locale expressions [Bal04] compose existing locales by
means of merge and rename operations. Locale interpretation [Bal06] transfers results stem-
ming from a locale into another context. Type-classes [Wen97] express properties of polymor-
phic entities within the type-system. There is a canonical interpretation of classes as specific
locales [HW06]. All locale operations are reduced to basic inferences usually expressed via
morphisms. A locale specification consists of the following two distinctive parts.

1. Assumptions refer to fixed types, terms, and hypotheses, specified by “fixes” and
“assumes”. The definition “locale c = fixes x assumes A x” produces a context
construction Γ + fix x assume A x, and a predicate constant c = λx.A x.

2. Conclusions are essentially theorems or definitions that depend on the locale context.
We denote these using the notation “(in c)” as in (2.1) and (2.2).

fun (in c) foo a = if A a then a else x (2.1)
(in c) ∀y.A(foo y) (2.2)

The conclusion part is what really matters in practical use, including declarations of
arbitrary extra-logical data. Locales maintain a canonical order of declarations d1, . . . , dn,
used to reconstruct the context relative to a given morphism φ. The context is augmented
by the collective declaration of dn φ (· · · (d1 φ Γ) · · ·). Thus we may attach arbitrary SML
values to a locale, which will be transformed together with the logical content by morphism
application.

2.1.3 Example: dense linear orders

In this example we develop a quantifier elimination procedure (qep. for short) for the first
order theory of dense linear orders without endpoints (DLO). Quantifier elimination (qe.)
asks for a qep. which given any DLO formula φ returns a quantifier-free (qf.) formula ψ,
which is equivalent to φ in the DLO theory. Langford [Lan27] proved DLO to admit qe. and
we develop a proof-producing version of his algorithm. We axiomatise DLO as follows:

locale dlo = linorder + assumes

∀x.∃u.x < u ∧ ∃l.l < x ∧ ∀x, y.x < y → ∃z.x < z < y

Generic qe.

Assume we have a function qe to eliminate one existential quantifier over a quantifier free
formula, i.e. qe (∃x.P (x)) yields a theorem for (∃x.P (x))↔ Q for qf. P and Q. Then we can
eliminate all quantifiers in a formula by applying qe recursively, see function liftqe below.
Note that qe is a conversion and hence liftqe is a conversional:

liftqe qe P =
case P of
¬A ⇒ argc (liftqe qe) P
AβB | β ∈ {∧,∨,→,↔} ⇒ binopc (liftqe qe) P
∀x.A ⇒ fwd trans [all ex, liftqe qe ¬∃x.¬A]
∃x.A ⇒ ((argc ◦ absc ◦ liftqe qe) thenc qe) P
⇒ refl[P]

The theorems all ex, trans and refl denote ∀x.P (x)↔ ¬∃x.¬P (x), transitivity and reflex-
ivity of ↔ respectively. The interesting case is when P has the form ∃x.A. There we first
“convert” the body A and eliminate all its quantifiers. Note that ∃x.A(x) is internally the
constant ∃ applied to λx.A(x) and hence the use of argc and absc. We assume terms to

8

2.1 Derived rules

be in η-expanded form just for the presentation. After this step the theorem at hand is
∃x.A(x)↔ ∃x.A′(x), where A′ is qf. Therefore we just need to apply qe to ∃x.A′(x).

In the actual implementation, the liftqe conversional takes other conversions to be applied
at specific steps of the qe., e.g. normalise atomic formulae or simplify the formula before and
after applying qe. This allows several optimisations such as distributing ∃ over ∨. These
conversions and qe itself also depend on an environment of free variables and variables bound
by outer quantifiers. Note that by this mechanism, qe can safely assume its input to have
a specific shape, e.g. it is in negational normal form (NNF) and all atoms are of a specific
syntactical shape imposed by the variables.

In the following we develop langford, an instance of qe for DLO.

A proof-procedure for Langford’s algorithm

The first step is to transform the input into disjunctive normal form (DNF). We assume
that the input is a formula ∃x.P (x), where P is a conjunction of atoms x < y or z < x, for
y and z different from x. A proof-producing version of this step is simple and omitted. Now
consider a formula Q corresponding to ∃x.

∧n
i=1 li < x∧

∧m
i=1 x < uj . The goal is to produce

a proof that this is equivalent to
∧n

i=1

∧m
j=1 li < uj , if n > 0 and m > 0, and to True if

n = 0 or m = 0. First transform Q equivalently to ∃x.(∀l ∈ L.l < x) ∧ (∀u ∈ U.x < u) for
suitable HOL sets L and U . This step formalises the previous informal notation of

∧n
i=1

We abuse notation here and write x < S (resp. S < x) for finite S ∧ ∀s ∈ S.x < s (resp.
finite S ∧ ∀s ∈ S.s < x) and S < S′ for ∀x ∈ S.∀y ∈ S′.x < y. For the transformation, we
automatically prove the trivial properties (2.3)–(2.10). Given ∃x.P (x), we instantiate (2.3)
and then rewrite with (2.4)–(2.10).

(in dlo) : (∃x.P (x))↔ (∃x.∅ < x ∧ x < ∅ ∧ P (x)) (2.3)
(in dlo) : (∃x.L < x < U ∧ x < u ∧ P (x))↔ (∃x.L < x < {u} ∪ U ∧ P (x)) (2.4)
(in dlo) : (∃x.L < x < U ∧ l < x ∧ P (x))↔ (∃x.{l} ∪ L < x < U ∧ P (x)) (2.5)

(in dlo) : (∃x.L < x < U ∧ x < u)↔ (∃x.L < x < {u} ∪ U) (2.6)
(in dlo) : (∃x.L < x < U ∧ l < x)↔ (∃x.{l} ∪ L < x < U) (2.7)

Now we can apply the appropriate instance of (2.8), (2.9) or (2.10). Note that the sets L
and U are proved finite by construction.

(in dlo) : L 6= ∅ ∧ U 6= ∅ ∧ finite L ∧ finite U → (∃x.L < x < U)↔ L < U (2.8)
(in dlo) : L 6= ∅ ∧ finite L→ (∃x.L < x < ∅)↔ True (2.9)
(in dlo) : U 6= ∅ ∧ finite U → (∃x.∅ < x < U)↔ True (2.10)

Integration as a context-aware method

We exhibit an integration of the previous qep. working in different contexts, i.e. inside
locales. We refer to such procedures as context-aware or context-sensitive. Clearly the
previous procedure only depends on the theorems (2.3)–(2.10). The integrated method
reserves a data slot in the generic Isar-context to manage the different instances of dlo. This
is a mapping from keys to entries: keys are theorems identifying the locale instance, and
entries consist of the transformed theorems (2.3)–(2.10). Keys are technically just the locale
predicate instantiated according to the interpretation.

The main part of the integration code is the ML structure LangfordData below. To add
the theorems automatically for every instance, we use the fact declaration below.

type entry = {qes : [thm], gs : [thm], atoms : [term]}
type key = thm
structure LangfordData = Data(type T = [key ∗ entry])

declare(in dlo) dlo.axioms[langford qes : (2.8)–(2.10) gs : (2.3)–(2.7) atoms: < ≤]

9

Chapter 2 Integration of proof-procedures

datatype σ = R̂ | vN | σ + σ | σ − σ | σ ∗ σ | σN |
∑∑∑N

N σ

Lt + sMe
σ = LtMe

σ + LsMe
σ

Lt − sMe
σ = LtMe

σ − LsMe
σ

Lt ∗ sMe
σ = LtMe

σ · LsMe
σ

LĉMe
σ = c

LvnMe
σ = e!n

LtnMe
σ = (LtMe

σ)n

L
∑∑∑m

n tMe
σ =

∑m
k=nLtMk·e

σ

Figure 2.1: Syntax and semantics of σ-terms

Here langford is an Isar-attribute which parses and checks the arguments qes, gs and
atoms into the context data. The procedure performs qe. as explained above using only
these theorems, obtained by LangfordData.get, see §2.1.2. When the method is invoked on
a goal P , we extract an atom from P and search for a matching instance installed in the
context. For this we just match the extracted atom against the atoms in the context data.
When we find a corresponding instance, we call the core-method with the corresponding
entries. The formalisation of this example took around 100 lines of Isabelle proofs and 300
lines of SML code.

2.2 Reflection

Or, as we recognise the reflection of letters in
the water, or in a mirror, only when we know
the letters themselves

(Plato, The Republic)

Reflection means to perform a proof-step by computation inside the logic. Assume, for
concreteness, that we want to prove t = t′ for two terms t :: τ and t′ :: τ , where t′ is
algorithmically obtained from the structure of t. A problem arises when the structure
of τ -terms is not accessible inside the logic, since two syntactically different τ -terms may
be logically equivalent. For that consider formulae or integer expressions. Evidently this
systematic transformation and its correctness proof, cannot be defined inside the logic.

The basic idea of reflection is to represent, i.e. reflect, the relevant subset of τ -terms
inside the logic using a datatype rep (called shadow syntax in [Har96, Har95]) and define
the transformation simp :: rep ⇒ rep as a recursive function. To ensure correctness and
integration we define the semantics of rep-terms L·M :: rep ⇒ τ and prove the theorem
Lsimp sM = LsM. Now given a τ -term t, a proof of t = t′ needs two steps.
Reification: conjure up a rep-term s and prove LsM = t. This is an ML function.
Evaluation: instantiate simp’s correctness theorem above, compute s′ = simp s and obtain

the theorem Ls′M = LsM. The final result holds by transitivity.
The evaluation step is crucial for efficiency and can be performed in several manners using:

a) rewriting, b) execution of generated ML code or c) an internal λ-calculus evaluator. We
discuss the impacts of the evaluation approaches in §2.4.

2.2.1 Example: a simple case of sums

We reflect the computation of very simple sums: the bounds and the index variable are
natural numbers and the sum body is a real polynomial in the index variable. The syntax
(datatype σ) and its semantics in Figure 2.2.1 reflect the considered terms. We represent
variables by de Brujin indices: vn represents the bound variable with index n :: N. The
semantics L.M.

σ is parametrised by an environment e :: [N]. Note that LvnMe
σ is the real number

injected from the natural number e!n, the nth element in e. The bold symbols +, ∗ etc are
constructors and reflect their counterparts +, · etc in the logic. In particular, a coefficient
c :: R is represented by ĉ.

10

2.2 Reflection

selim se
∑∑∑m

n t = if n ≤ m then se n m (selim se t) else 0̂
selim se (t◦ s) = (selim se t) ◦(selim se s) for ◦ ∈ {+,−,∗}
selim se tn = (selim se t)n

selim se t = t

Figure 2.2: Generic elimination of
∑∑∑

in σ-terms

Generic
∑∑∑

-elimination

Let sfree t formalise that the σ-term t contains no
∑∑∑

and let se be a function that eliminates
a

∑∑∑
in front of any

∑∑∑
-free σ-term. The algorithm selim of Figure 2.2.1 eliminates all the∑∑∑

symbols. Isabelle can then prove (2.11) automatically. Hence, we only need to provide
an instance of se for eliminating the

∑∑∑
in

∑∑∑m
n t, where sfree t holds.

(∀e, n,m, s.sfree s ∧ n ≤ m→ Lse n m sMe
σ = L

m∑∑∑
n

sMe
σ ∧ sfree(se s))

→ ∀e, t.Lselim se tMe
σ = LtMe

σ ∧ sfree(selim se t)

(2.11)

For t :: σ, unbound t formalises that t does not contain v0. Function isnormσ imposes a
normal form on σ-terms. Moreover we assume without loss of generality that t is in the
normal form defined below, i.e. isnormσ t. Any

∑∑∑
-free σ-term t can be transformed into a

σ-term in normal form using normσ, simple and omitted, cf. (2.12).

isnormσ (c ∗ v0
m + t) = unbound c ∧ isnormσ t

isnormσ t = unbound t

sfree t→ Lnormσ tMe
σ = LtMe

σ ∧ isnormσ (normσ t) (2.12)

Differential algebra

Summation plays a similar role in the discrete case as integration in the continuous one.
The dual of derivative in this context is the difference operator ∆ defined by: ∆ f =
λx.f(x+ 1)− f(x). It is easy to prove the following for ∆:

∆ f = g →
m∑

k=n

g(k) = f(m+ 1)− f(n). (2.13)

Hence computing a sum over g reduces to computing f , an indefinite sum of g often denoted
by f =

∑
g, such that ∆ f = g. In our case we have to compute

∑m
k=n k

l, due to the normal
form. For this we only need to find a function f such that ∆ f = λk.kl. In the continuous
case this would have been λx.x

l+1

l+1 . In the discrete case this property is not preserved for
“normal” powers, but for “falling” powers. The nth falling power of x is denoted by xn and
formalises

∏n−1
i=0 x− i, cf. (2.14). Property (2.15) states that the indefinite sum of λx.xk is

λx.x
k+1

k+1 .

x0 = 1 | xn+1 = x · (x− 1)n (2.14)

∆(λx.
xk+1

k + 1
) = λx.xk (2.15)

In order to convert between normal and falling powers, we use Stirling numbers, cf. (2.16).
We have

∑m
k=n k

l =
∑m

k=n

∑l
i=0 Sl,i · ki =

∑l
i=0 Sl,i ·

∑m
k=n k

i =
∑l

i=0
1

i+1 · Sl,i · ((m +
1)i+1 − ni+1). Now we can convert normal powers to falling powers using (2.17).

S0,0 = 1 | S0,k+1 = Sn+1,0 = 0 | Sn+1,k+1 = (k + 1) · Sn,k+1 + Sn,k (2.16)

xn =
n∑

k=0

Sn,k · xk (2.17)

11

Chapter 2 Integration of proof-procedures

We implement function se to compute the result as above and to decrease the de Brujin
indices, using decrσ, since one

∑∑∑
has been eliminated. The function (se ◦ normσ) satisfies

the premise of (2.11) and finally (2.18) holds. The formalisation of this example took 1100
lines of Isabelle proofs.

se m n (d ∗ v0
k + t) = let c = foldl (λs, i.s+ ((m+ 1)i+1 − ni+1) · Sk,i

i+1) 0 [0..k]
in (decrσ d) ∗ ĉ + se n m t

se n m t = (decrσ t) ∗ ̂m− n+ 1

Lselim se tMe
σ = LtMe

σ ∧ sfree(selim se t). (2.18)

2.2.2 Generic reification as derived rule

Remember that to integrate a reflected proof procedure, two steps are needed: reification and
evaluation. Evaluation is automatic. We present in the following an algorithm to automate
reification in several practical cases. Consider a term t and a set of theorems (Ei) below,
and let ei be short for e1i . . . eni

i , where 1 ≤ i ≤ k.

f1 t1 e
1
1 . . . en1

1 = P1(r1, . . . , rm1) (E1)
... =

fk tk e
1
k . . . enk

k = Pk(rk, . . . , rmk
) (Ek),

The goal is to find t’s representation, i.e. a term s, and environments ej and prove t = fj s ej .
A simple example is to take the equations in Figure 2.2.1, where fi = λt, e.LtMe

σ. The
following algorithm works for several interdependent interpretation functions. We assume
the following restrictions:

1. fi is a rigid term of type ρi ⇒ γ1 ⇒ · · · ⇒ γn1 ⇒ τi for all 1 ≤ i ≤ k and τi = τj
implies fi = fj ,

2. the patterns ti and Pi are rigid patterns,
3. the ri represent the only occurrences of fi in Pi,
4. binding in the shadow syntax occurs only via de Brujin indices and through environ-

ments (of HOL type [α], for some α) using consing, cf. the summation example in
§2.2.1.

The basic idea is that reification consists of rewriting with the inverted equations above. Of
course this does not allow to discover the environments. In order to apply the techniques of
§2.1.1, we transform each of the Ei’s into a congruence rule Ci expressing the decomposition
into smaller reification problems:

mi∧
k=1

xk = rk → Pi(x1, . . . , xmi
) = fi ti ei (Ci), for fresh x1, . . . , xmi

These rules are trivial to prove. In order to deal with bindings, we introduce environments
(ML lists) Γα and Θα for free and bound environment variables, for every ej

i :: [α]. The
algorithm proceeds as follows:
R1: Find Ci such that Pi(xi, . . . , xmi

) matches t with θ as a mgu and let C ′
i = θCi be∧mi

k=1 sk = r′k → t = fi t
′
i ei. Then decompose the problem into [s1, . . . , smi] and

recombine with fwd C ′
i. If no such Ci exists go to step R2.

R2: We assume t = λ(x :: α).t′, otherwise go to step R3. Add x to Θα and decompose the
problem into [t′]. For recombination generalise over x, use extensionality and remove
x from Θα.

R3: Find Ei such that Pi(y1, . . . , yli) matches t with θ as a most general unifier. Here
y1, . . . , yli are fresh variables replacing any occurrence of ej

i !n for any j and n. Add
sj = θ(yj) to Γαj where sj has type αj , for 1 ≤ j ≤ l. Let kj be the index of sj in
Θαj @Γαj . Decompose into the empty set of problems, and recombine by returning
θ(Ei) instantiated as follows: nj 7→ kj , e

j
i 7→ y ·dj

i , for every 1 ≤ j ≤ l, where Θαj
= [y]

and dj
i , 1 ≤ i ≤ k, 1 ≤ j ≤ l are fresh variables.

12

2.3 Certificates

We have implemented the algorithm above in Isabelle in 300 lines of SML code. It is
available in the Isabelle 2007 distribution.1 In particular all reflections in this thesis, ex-
cept §4.3.1, admit automated reification with our method. The reason for §4.3.1 being an
exception is that there we have two interpretation functions with the same range type, and
hence does not satisfy our first restriction. To deal with these situations, we could extend
our algorithm with a completion procedure, but we have not investigated this approach. For
example, the previous algorithm returns Lv0 +

∑∑∑5
0

3̂
4 ∗ v0

2 + v1M
[m]
σ when called on the

term m+
∑5

k=0
3
4 · k

2 +m and the equations of Figure 2.2.1.

2.3 Certificates

Many interesting statements can be proved by checking a “certificate”. It is sufficient, for
instance, to provide a truth assignment to prove satisfiability of propositional formulae.
We present in the following a method to prove large numbers prime, using Pocklington
certificates. A natural number n is defined to be prime if prime n holds, see (2.19). There
are many equivalent formulations to primality and (2.20) is useful later.

prime n↔ p > 1 ∧ ∀m.m | p→ m = 1 ∨m = p (2.19)

prime n↔ n 6= 0 ∧ n 6= 1 ∧ ¬∃p.prime p ∧ p | n ∧ p2 ≤ n (2.20)

Two numbers n and m are coprime (coprime n m) if gcd n m = 1. For this example we need
several number theoretic theorems. Although we proved them all we do not present them
here in detail since this shifts the focus of the example. We refer to them by their known
names in mathematics, e.g. Bezout identity, Little Fermat or Chinese remainder theorem.
Pocklington’s theorem in (2.21) is the basis for our method.

n ≥ 2 ∧ n− 1 = q · r ∧ n ≤ q2 ∧ an−1 ≡ 1(mod n)

∧(∀p.prime p ∧ p | q → coprime (a
n−1

p −1) n)→ prime n.
(2.21)

Proof of (2.21). First note that from the premises and (2.20) it is sufficient to prove that
no prime p exists with p | n∧ p2 ≤ n. Assume for contradiction that such a p exists, then it
must satisfy p ≤ q. In the following, we prove p ≡ 1 (mod q), which implies q ≤ p − 1 and
hence a contradiction.

To prove p ≡ 1 (mod q), first note that there are natural number k and l such that
aq·r − 1 = n · k ∧ n = p · l and that a 6= 0 follows from the premises. Let ord n a be the
least positive d such that ad ≡ 1 (mod n), if n and a are coprime and 0 otherwise, for any
a and n. Hence ord p ar | q and there is a d such that q = d · ord p ar. This step entails the
application of various forms of the Bezout identity and Euler’s generalisation of Fermat’s
little theorem. Clearly d 6= 0 and we show d = 1. Assume d 6= 1 then it has a prime divisor
p′, i.e. prime p′∧d = p′ · t for some t and hence q = p′ ·s for some s. Hence p | at·r·ord par −1,
which contradicts the premises since coprime (a

n−1
p′ − 1) n holds. Now we know that d = 1

and hence ord p ar = q. Moreover we can easily show that p and a are coprime. Hence
coprime ar p and by Fermat’s little theorem p ≡ 1 (mod q)

Primality certificates

To prove prime n, according to (2.21), we only need to find r and q such that q ·r = n−1∧n ≤
q2, q’s prime number decomposition q1, . . . , qm, a witness a satisfying an−1 ≡ 1(mod n)
and coprime(a

n−1
p −1)n and certificates c1, . . . , cm for the qi’s that they are indeed prime.

Note that we only recur on the primes dividing q, i.e. r can be neglected. We reflect such a
certificate by Decomp q r a [(q1, k1, c1) . . . , (qm, km, cm)], where ki represents the multiplicity
of qi, i.e.

∏m
i=1 q

ki
i = q. Of course there are primes we already know of and for which no

1HOL/ex/Reflection.thy

13

Chapter 2 Integration of proof-procedures

further certificate is needed. We know at least that prime 2 holds, a fact which indeed cannot
be proved using (2.21). This is reflected by the following datatype:

datatype cert = Known | Decomp N N N [N× N× cert]

Note that r and a can actually be computed from n and the qi’s, but we include them in
the certificate to make checking faster and also easier to verify.

Finding certificates

We search for certificates outside the logical kernel. We make the search dependent on a
database of known primes, a table containing for every number n a theorem prime n. At
the beginning, the database contains only 2. Now given a candidate n, we first look up if it
is in our database, which, if true, makes the proof task trivial. If not, then we decompose
n− 1 into its prime factors and split those so that we find a q satisfying n ≤ q2. Note that
r = n−1

q and that the prime factors of q are also at hand. The computationally involved
task is to find a “primitive root” a satisfying the premise of (2.22). We perform this by
incrementally increasing a candidate a and checking if the conditions hold. Note that if n is
really prime such a number must exist. For the prime factors of q we proceed recursively as
explained. Finding prime number decompositions is not a simple task (it is in FNP, or in P
assuming the extended Riemann hypothesis). Here we use an external optimised software
[Bel07]. Our approach worked fine for medium sized prime number with up to 100 decimal
digits.

Checking certificates

Property (2.22) is a variation on (2.21) better suited for certificate checking. The proof of
(2.22) follows by observing that the premises enforce qs to be a factorisation of q into primes.
Recall that (p, k) ∈ {{qs}} intuitively means that p is a prime factor of q with multiplicity k.
Note the use of foldl instead of foldr, since the former is tail-recursive.

n ≥ 2 ∧ n− 1 = q · r ∧ n ≤ q2 ∧ an−1 ≡ 1(mod n) ∧ foldl(λr, (p, n).pn ∗ r) 1 qs = q

∧(∀(p, k) ∈ {{qs}}.prime p ∧ coprime (a
n−1

p −1) n)→ prime n
(2.22)

By (2.22) we should be prepared for an efficient execution of am mod n for large m and
n. For that we define pmod, below, and prove (2.23).

pmod a m n = if m = 0 then 1 else

let y = pmod x
m

2
n ; z = y2 mod n in if even m then z else x · z mod n

n ≥ 2→ pmod a m n = am mod n (2.23)

Now we implement our checker for primality certificates by check, below, and prove (2.24).

check ps n Known = n ∈ {{ps}}
check ps n (Decomp q r a qcs) = n ≥ 2 ∧ q · r = n− 1 ∧ n ≤ q ∗ q∧

foldl(λr, (f, k, c).r · fk) 1 qcs = q∧
let b = pmod a r n in

pmod b q n = 1 ∧ ∀(p, k, c) ∈ {{qcs}}.check ps p c ∧ coprime (pmod b
q

p
n− 1) n

(∀p ∈ {{ps}}.prime p) ∧ check ps n c→ prime n (2.24)

We generate code [BN00, HN07] for check, using arbitrary precision ML integers for natural
numbers. Moreover we can safely use the ML div and mod operations since these behave
the same way over N as in HOL.

14

2.4 Comparison

Integration

We integrate the method by means of an oracle, which given a number n first finds a
Pocklington certificate for n and a list ps of the claimed “known” primes. The ora-
cle then checks that all numbers in ps are indeed in the database and then runs the
checker presented above. In case of success, the oracle returns a theorem prime n, and
adds it to the database. We proved primality of all primes less than 106, some funny
ones 1111111111111111111 and 74747474747474747, and some Mersenne numbers 2n−1 for
n ∈ {31, 61, 89, 107, 127, 521, 607, 1279, 2281, 3217}. Note that the largest one already has
969 decimal digits. The formalisation of this example took 2500 lines of Isabelle proofs and
around 200 lines of SML code.

2.4 Comparison

However, many people have the less nuanced idea that I’m
against anything people describe as “reflection”, or
(presumably if they just read the title of my paper and not
the content) that I love all kinds of reflection.

(J. R. Harrison)

All presented paradigms have their advantages and drawbacks. I believe that it is not
possible to declare one of them as best. Especially derived rules and the reflection approaches
are so opposed to one another, that nearly every discussion about them ends in philosophical
logic, although raised by engineering issues initially. We propose here to compare the three
approaches with respect to efficiency, soundness, completeness and logical impacts on the
underlying calculus. Before we start, let us classify reflection with respect to its underlying
evaluation machinery.

Inference: here reflection becomes an instance of the pure approach. We dismiss this variant
in this section.

Reduction: here we use an ML program to reduce (or normalise) arbitrary HOL terms, and
accept its result as an equality proof. We call this R-reflection.

ML: here we generate ML code, run it, and accept the result as an equality proof. We refer
to this by ML-reflection.

Universality and applicability One main strength of the pure approach is that it has access
to the universal data structure of λ-terms. In §2.1 we presented some generic tools, like
conversions and tactics, to deal with arbitrary problems. Moreover in ML, we can use
efficient data structures such as destructive arrays and references. But even for purely
functional data structures and operations, the libraries in ML are much larger and efficient
than in HOL. This is of course just a matter of effort, since HOL implementations must
be extended by corresponding correctness theorems. We can write functions with complex
termination conditions, or even non-terminating functions. All this is not possible in HOL. In
particular a semi-decision procedure for first order logic is not reflectable. Of course we can
bound the search space by a parameter. The HOL subset of arbitrary first order statements
is not reflectable. For that we need a formalisation depending on a variable number of types
for the functions and relations occurring in formulae. These can also have a different number
of parameters of different types. Summed up: the pure approach is universal, reflection is
not. Moreover reflection requires a large theorem proving infrastructure. Some reflections
we present later in Chapter 4 would be just torture without packages for recursive functions
[Sli96, Kra06] and especially the invaluable tailored induction predicates [Sli96, Sli97].

15

Chapter 2 Integration of proof-procedures

Efficiency and complexity The price of universality is efficiency: λ-terms contain a lot
of redundancy, e.g. types. In both of its forms, R- and ML-reflection is more efficient
than the pure approach. In our experience, ML-reflection yields a speedup by a factor
of 100 over the pure approach. This difference, however, is always a constant factor. It
is quite often, however, that many derived rules are slow due to bad programming, e.g.
calling the resolution kernel which performs unification etc, where we just need the very
basic modus ponens. Some concrete examples demonstrate a speed up by a factor of up
to 1000, just by using the right methodology. For the certificate approach, there is a more
interesting relation to computational complexity, since checking is much simpler than finding
certificates. For instance, recall that we might define NP as the set of all problems having
certificates checkable in polynomial time. Hence unless P=NP, the certificate approach is
substantially more efficient for proofs. Regardless of P vs. NP, some problems which are
likely to be in P (e.g. factorisation of an n digits number is in P provided the extended
Riemann Hypothesis holds) have succinct certificates (just multiply the factors, which when
naively done is quadratic).

Completeness and soundness Derived rules are sound by construction. Reflection, how-
ever, requires tolerance and a relaxation in the notion of a formal proof. This issue arises
in the evaluation step, whose correctness follows meta-theoretically by “we could have, at
least in principle, performed evaluation using rewriting by full inferences”. Derived rules
might still not cover all the cases. Generally, we need a long debugging process to eliminate
lurking problems. Reflection solves this issue in an elegant way: we have a formal proof
that the formalised procedure always works. Note that in the certificate approach, we have
incompleteness of the checker and of the external software.

Reflection, meta-theory and the kernel’s size Let us consider the logical impact of reflec-
tion and the meta-theoretical argument: “we could have, at least in principle” above. Here
R- and ML-reflection differ. R-reflection amounts to augment the kernel with a new rule
accepting the results of the reduction-machine as equality proofs. The new kernel, although
huge, is still LCF and has constant size. In ML-reflection, we generate new ML code for
every new procedure using the code generator. The resulting kernel has variable size and
the code generator becomes a rule generator. Although ML-reflection is more efficient, it
might be less attractive, on account of this last consequence. Let us consider two further
scenarios for reflection. In the first, we have a reflected checker and a very large certifi-
cate at hand. So far we instantiated the checker’s correctness theorem with the certificate
and then run the checker to obtain equality to True in order to infer the conclusion. This
approach is very inefficient, if the certificate is very large. Since we could have done the
instantiation in principle, we can just omit it and run the generated checker (in ML) on an
ML certificate. This kind of reflection circumvents instantiation of the correctness theorem.
The second scenario raises the problem of omitting explicit instantiations for functions. As-
sume we have proved a checker check correct, i.e. check c x → P x. It is easy to prove
that check’ = λf, x.check(f x) x satisfies ∀f.check’ (f x) x → P x. We can generate code
for check’ and implement the parameter f by a certificate generator, e.g. for Pocklington
certificates, factorisation of polynomials or even calling a computer algebra system. In prin-
ciple, we must instantiate f with a HOL-term in order to derive P . In order to omit this
instantiation, we should argue that there is a corresponding function definition in HOL,
semantically equivalent to the ML function we use. Such arguments, although not trivial,
are often done by hand-waving and an intelligent looking smile. Reflection users should very
carefully consider all these issues, otherwise, and after enough meta-theory, we can drop
formal reasoning altogether.

16

2.5 Related work

2.5 Related work

ML was originally introduced as a meta-language layer over LISP in the original LCF sys-
tem [GMW79] to manipulate terms and theorems, see [GMM+78]. In particular ML was
enhanced to quote logical entities (mainly terms [MdR94]) in order to tighten the relation to
the logic. See [WC07] for an alternative approach of quoting SML within Isar sources, and
anti-quoting logical entities within that. Conversions, conversionals, tactics and tacticals
are described in [GMW79, Pau87, GM93]. See [Bar00] for optimised rewriting and [Wel95]
for using partial evaluation to optimise rewriting in HOL. In [Del02] Coq was augmented by
a tactic language, with several user-friendly facilities (e.g. matching the goal against a given
pattern), which now became the standard way to write tactics in Coq. Such a language is
especially useful in systems like Coq and Isabelle, where most users are not ML program-
mers. In the special case of Isabelle and Isar, we believe that pursuing the ideas in [WC07]
is more interesting: ML programming within the logical context with several means to refer
to logical entities.

Computational reflection in theorem proving at least goes back to the meta-functions in
[BM81] (now called gold functions [KM97]). In ACL2, reflection is natural since the object
language is a subset of LISP, and hence evaluation and reification are almost trivial using
LISP’s QUOTE and EVAL. Many researchers have studied reflection [BB02, Har95] and many
type-theory based theorem provers, e.g. [TLG06, Jac06], adopted it in their logic, e.g. the
ι-rule in the calculus of inductive constructions. The HOL community also used reflection
(called pro-forma theorem proving), but always using inferences for evaluation. See [Har95]
for a nice survey about reflection in general, not only computational reflection. In Coq a
simple generic reification is implemented as quote. However, it has far less functionalities
than ours: it does not deal with binding and only allows simple environments. Also dealing
with atoms is much more restrictive.

The first serious applications of the certificate approach (called skeptical approach) in
theorem proving were presented in [HT98]. The skeptical combination of computer algebra
systems and theorem provers has also been studied in [Bal99]. See [Obu05] for proving
bounds on linear programs using certificates (Farkas’s lemma). See also [KW07] for an
interesting alternative of implementing computer algebra facilities on top of HOL Light.
An interesting alternative approach to combine computation and deduction also appears in
[Far07]. Using Pocklington’s theorem and an efficient library [GT06] for modular arithmetic
to prove large numbers prime, has been presented in [GTW06]. Our method in §2.3 proves
all numbers prime they also prove. For more efficient methods using elliptic curves, see
[TH07].

The problem of programming errors in decision procedures has recently been addressed
using dependent types [AF04, KS04]. But it seems unlikely that the procedures we present
in this thesis can be dealt with automatically in such a framework. This approach does
not guarantee completeness. Indeed, missing cases and proofs that fail at run-time are not
detected.

17

Chapter 2 Integration of proof-procedures

18

Chapter 3

Certificates for polynomial problems

Contents
3.1 Polynomials . 19

3.2 Equations and disequations . 25

3.3 Inequalities via sums of squares 29

3.4 Related work . 32

The goal of this chapter is to present proof methods for simple problems involving polyno-
mials, based on certificates. First, we present formalisations of univariate and multivariate
polynomials in §3.1. In §3.2 we use extended Gröbner bases to prove universal statements
and an interesting subset of the ∀∃ fragment in rings. In §3.3 we use semidefinite program-
ming to prove universal inequalities of real polynomials.

Notation Let R be a ring, then R[x] denotes the ring of univariate polynomials with
coefficients in R. Similarly R[x1, . . . , xn] denotes the ring of multivariate polynomials over
R in n variables. We also write R[~x] for R[x1, . . . , xn]. We denote the degree of p ∈ R[x] by
∂p. A non-empty I ⊆ R is an ideal of R if ∀x, y ∈ I.x+ y ∈ I and ∀r ∈ R.∀x ∈ I.r · x ∈ I.
For a1, . . . , an ∈ R the set 〈a1, . . . , an〉 = {

∑n
i=1 ai ·xi | x1, . . . , xn ∈ R} is an ideal of R and

is generated by a1, . . . , an. Let I be an ideal of R, then
√
I = {x|∃n.xn ∈ I} is the radical

ideal of I. Note that I ⊆
√
I. Let {p1, . . . , pn} ⊆ R and q ∈ R, then we call r1, . . . , rn a

certificate for q ∈ 〈p1, . . . , pn〉 if q =
∑n

i=1 ri · pi holds.

3.1 Polynomials

The focus of our formalisations of polynomials is to be able to compute and prove with them.
The formalisations we present have a strong algorithmic flavour. In §3.1.1 we formalise
univariate polynomials as “functions”: given a list of coefficients c0, . . . , cn, they describe a
function x 7→

∑n
i=0 ci · xi. This approach was successfully used quite early [HSA06, Har06],

but due to the lack of classes or equivalent specification mechanisms, the formalisations are
duplicated for R and C. Our formalisation is done in a locale context, and hence carries
over to several instances including Z,R and C. In §3.1.2, we present a formalisation of
multivariate polynomials (also in locale).

3.1.1 A formalisation of univariate polynomials as functions

We formalise univariate polynomials as functions. Given a list of coefficients [c0, . . . , cn],
then [c0, . . . , cn] = λx.

∑n
i=0 ci · xi.

fun (in semiring0) : [] x = 0 | c · cs x = (cs x) · x+ c (3.1)

This formalisation is very appealing to switch views: a) view polynomials syntactically as
a list of coefficients and b) view a list of coefficients p as a polynomial function p. The zero
polynomial is []. Note that the list representation is not unique, since we can always append
zeros and p = p@[0].

19

Chapter 3 Certificates for polynomial problems

The first step is to implement algorithms for the usual operations on the syntax and
prove them correct. The definitions of these algorithms take place in locales with minimal
assumptions (mostly semiring0, i.e. a semi-ring with addition and neutral element 0). The
formalisation includes addition +, multiplication ·, exponentiation λp, n.pn, subtraction and
negation both denoted by −, degree deg p, normalisation to remove superfluous zero coef-
ficients, the multiplicity mp(a) of a root a in p and other utilities we do not present like
square free conditions. The definitions of addition and multiplication etc over the syntax
are straightforward. Here is for instance the definition of addition:

fun (in semiring0) : [] + q = q | p+[] = p | (c · cs) +(d · ds) = (c+ d) · (cs+ ds) (3.2)

We prove all these operations correct in classes with as few assumptions as possible (e.g.
for · we need commutativity, cf. (3.3)).

(in commsemiring0) p · q x = (p x) · (q x) (3.3)

We present here only a few interesting theorems, just to give a rough idea about the
formalisation. Like in algebra texts, stronger properties hold in classes with more axioms.
The key property (3.4) for roots-factorisation holds e.g. in commutative rings with unity:

(in commring1) : p a = 0↔ p = [] ∨ ∃q.p = [−a, 1] · q (3.4)

Moreover in an integral domain of characteristic zero (idom0), every polynomial has
finitely many roots exactly when it is not the zero polynomial (cf. (3.5)) and the entirety
property (3.6) holds. Here another strong and interesting property holds: a polynomial (as a
function) is zero exactly when all its coefficients are zero (cf. (3.7)). This last property plays
a central role in the implementation and also for the uniqueness property of multivariate
polynomials in §3.1.2.

(in idom0) : p 6= []↔ finite{x|p x = 0} (3.5)
(in idom0) : p · q = []↔ p = [] ∨ q = [] (3.6)
(in idom0) : p = []↔ ∀c ∈ {{p}}.c = 0 (3.7)

We also formalise the multiplicity mp(a) of a polynomial p’s root a, the degree of polyno-
mials (deg p) and square free decompositions. In §4.4 we shall use divisibility (|), cf. (3.8).
Let pn denote the nth power of p (iterative application of ·) and p - q denote ¬p | q. Any
non-zero polynomial p(x) can be decomposed into a product (x− a)m · q(x), where m is a’s
multiplicity in p and a is not a zero of q, see (3.9).

fun (in semiring0) : p | q ↔ ∃r.q = p · r (3.8)

(in idom0) : p 6= []→ ∃q.p = [−a, 1]mp(a) · q ∧ [−a, 1] - q (3.9)

The formalisation in (3.1) is very suitable for abstract reasoning about univariate poly-
nomials. We can also generate code if the underlying (semi)ring allows it. Note the ability
of the code-generator framework [HN07] to deal with classes using dictionaries. Note that
the generated code depends on the implementation of the operations and hence cannot be
used to compute abstractly. The main drawback is that it does not “naturally” carry over
to multivariate polynomials. The type corresponding to R[x1, . . . , xn] would be [. . . [α] . . .],
nested n times, which can not be expressed in HOL. This formalisation is 1000 lines long.

3.1.2 Reflected multivariate polynomial utilities

We present here an executable formalisation of multivariate polynomials over rings. As in
§3.1.1 stronger theorems only hold in classes with more axioms. To generate code running
for all instances, we restrict the coefficients to the sub-ring {i | i ∈ Z}, i.e. constants i
injected from i ∈ Z. “Injected” does not mean that λi.i is injective, this is true only for
rings of characteristic zero.

20

3.1 Polynomials

datatype ρ = Ẑ|vN| − ρ|ρ + ρ|ρ − ρ|ρ ∗ ρ|ρN

LĉMe
ρ = c

LvnMe
ρ = e!n

L− pMe
ρ = −LpMe

ρ

Lp + qMe
ρ = LpMe

ρ + LqMe
ρ

Lp − qMe
ρ = LpMe

ρ − LqMe
ρ

Lp ∗ qMe
ρ = LpMe

ρ · LqMe
ρ

LpnMe
ρ = (LpMe

ρ)n

Figure 3.1: Syntax and semantics of polynomial expressions

The syntax (datatype ρ) and its semantics in Figure 3.1 reflect multivariate polynomial ex-
pressions. The semantics L.M.

ρ is parametrised by an environment e (a list of “ring-elements”).
We represent variables by de Bruijn indices: vn represents the bound variable with index
n :: N. Note that LvnMe

ρ = e!n is the nth element of e. The bold symbols +,∗ etc are
constructors and reflect their counterparts +, · etc in the logic. We reflect i by î, i.e.̂is a
constructor of ρ.

The normal form defined by ishorn imposes a Horner scheme for multivariate polynomials
where the ordering on variables is induced by their indices.

ishornh ĉ n = True
ishornh (c + vm ∗ p) n = p 6= 0ρ ∧m ≥ n ∧ ishornh c (m+ 1) ∧ ishornh p m
ishorn p = ishornh p 0

For example 5 · y · x2 + y · (x + 2) is reflected by LqM[x,y]
ρ = LrM[x,y]

ρ , for q = 5̂ ∗ v1 ∗ v0
2 +

v1 ∗ (v0 + 2̂) and r = (0̂ + v1 ∗ 2̂) + v0 ∗ ((0̂ + v1 ∗ 1̂) + v0 ∗ (0̂ + v1 ∗ 5̂)). Only r is in
normal form.

Ultimately we would like to compute the normal form of arbitrary ρ-polynomials. We
show subsequently that it is legitimate to write the normal form, since we show uniqueness
in a certain sense: two ρ-polynomials in normal form are syntactically equal if and only if
their interpretations are equal in all possible environments. We present a function normρ to
normalise any ρ-polynomial. For this, it applies algorithms for addition (�), multiplication
(�), negation and subtraction (�) and power λp, n.p↓n, with the additional property that
they preserve the normal form. See Figure 3.2 for the definitions of addition, multiplication
and power. Subtraction and negation are straightforward. Taking p to the power of n
repeatedly applies � depending on the binary scheme of n. All these operations preserve
normal form, cf. (3.10), and semantics, cf. (3.11 – 3.13). Now the definition of normρ is
simple and mainly replaces the constructors with the definitions above. The main property
of normρ in (3.14) uses (3.10 – 3.13) is proved by structural induction. For � there is a
syntactical property, cf. (3.15).

ishorn p→ ishorn p↓n ∧ (ishorn q → ishorn (p� q) ∧ ishorn (p� q)) (3.10)
(in ring1) : Lp� qMe

ρ = Lp + qMe
ρ (3.11)

(in commring1) : Lp� qMe
ρ = Lp ∗ qMe

ρ (3.12)

(in commring1) : Lp↓nMe
ρ = LpnMe

ρ (3.13)
(in commring1) : ishorn (normρ p) ∧ Lnormρ pMe

ρ = LpMe
ρ (3.14)

ishorn p ∧ ishorn q → (p� q = 0ρ)↔ (p = q) (3.15)

Using (3.14) we obtain an incomplete method to prove equality of two polynomials and
hence cover all the results of [GM05]. We show completeness later.

Miscellaneous utilities and syntactical properties

We have a few further utilities mainly motivated by the algorithms in §4.4 and §4.5, which
mostly view a multivariate polynomial as univariate in v0. Figure 3.3 exhibits some of them:

21

Chapter 3 Certificates for polynomial problems

ĉ� d̂ = ĉ+ d
ĉ�(d + vk ∗ q) = (ĉ� d) + vk ∗ q
(c + vn ∗ p) � d̂ = (c� d̂) + vn ∗ p
(c + vn ∗ p) �(d + vk ∗ q) = if n < k then (c�(d + vk ∗ q)) + vn ∗ p

else if k < n then ((c + vn ∗ p) � d) + vk ∗ q
else let cd = c� d; pq = p� q

in if pq = 0ρ then cd else cd + vn ∗ pq
a� b = a + b

ĉ� d̂ = ĉ · d
ĉ�(d + vk ∗ q) = if c = 0 then 0ρ else (ĉ� d) + vk ∗ (ĉ� q)
(c + vn ∗ p) � d̂ = if d = 0 then 0ρ else (d̂� c) + vn ∗ (d̂� p)
(c + vn ∗ p) �(d + vk ∗ q) = if n < k then

(c�(d + vk ∗ q)) + vn ∗ (p�(d + vk ∗ q))
else if k < n then

((c + vn ∗ p) � d) + vk ∗ ((c + vn ∗ p) � q)
else ((c + vn ∗ p) � d) �(0ρ + vn ∗ ((c + vn ∗ p) � q))

a� b = a ∗ b

p↓0 = 1ρ

p↓n = let q = p↓ n
2 ; d = q� q

in if even n if d else p� d

Figure 3.2: Addition, multiplication and power for ρ-polynomials

coeffs (c + v0 ∗ p) = c · coeffs p
coeffs p = [p]
degρ m (c + vn ∗ p) = if n = m then 1 + degρ m p else 0
degρ m p = 0
head m (c + vn ∗ p) = if n = m then head m p else c + vn ∗ p
head m p = p

Figure 3.3: Degree, head and coefficients of ρ-polynomials

function coeffs returns the list of coefficients of a normalised polynomial seen as univariate in
v0 (this is a list of multivariate polynomials in the remaining variables) and functions degρ

and head return the degree and head (resp.) of a normalised polynomial seen as univariate
in vn, where no vm occurs with m < n. These correspond exactly to the notion of head and
degree for m = 0. Note that the head of a polynomial is its last coefficient and its degree is
one less than the length of the coefficients:

ishorn p→ last(coeffs p) = head 0 p ∧ degρ 0 p = |coeffs p| − 1. (3.16)

To start with, the theorems about � and degρ are simple to prove. Adding two polyno-
mials yields a polynomial with degree less or equal than their maximal degree (3.18) and
equality is certainly achieved for polynomials with different degrees (3.17). Finally (3.19)
states that if two polynomials add to a constant, then they must have the same degree.
Subtracting two polynomials with the same head and degree must yield a polynomial with
a strictly smaller degree or 0ρ, cf. (3.20). Property (3.20) plays an important role in the

22

3.1 Polynomials

correctness and termination proof of pseudo-division.

ishornh p n0 ∧ ishornh q n1 ∧ degρ m p 6= degρ m q ∧m ≤ min n0 n1

→ degρ m (p� q) = max (degρ m p m) (degρ m q) (3.17)
ishornh p n0 ∧ ishornh q n1 ∧m ≤ max n0 n1

→ degρ m (p� q) ≤ max (degρ m p) (degρ m q) (3.18)
ishorn p ∧ ishorn q ∧ p� q = ĉ→ degρ m p = degρ m q (3.19)

ishorn p ∧ ishorn q ∧ head 0 p = head 0 q ∧ degρ 0 p = degρ 0 q
→ degρ 0 (p� q) < degρ 0 p ∨ p� q = 0ρ (3.20)

The following properties connecting degρ and � have to be proved simultaneously alto-
gether by induction on p and q:

ishornh p n0 ∧ ishornh q n1 ∧m ≤ min n0 n1

→ ishornh (p� q) (min n0 n1) ∧ p� q = 0ρ ↔ p = 0ρ ∨ q = 0ρ

∧degρ m (p� q) = if p = 0ρ ∨ q = 0ρ then 0

else degρ m p+ degρ m q

(3.21)

Finally the main theorems about head hold as expected:

ishornh p n0 ∧ ishornh q n1 ∧ degρ 0 p 6= degρ 0 q
→ head 0 (p� q) = if degρ 0 p < degρ 0 q then head 0 q else head 0 p (3.22)

ishornh p n0 ∧ ishornh q n1 ∧ p 6= 0ρ ∧ q 6= 0ρ

→ head 0 (p� q) = head 0 p� head 0 q. (3.23)

We also formalise several other notions such as the fact that v0 does not occur in a
polynomial p (by unboundρ p) and decrementing all de Bruijn indices (by decrρ p). The
following simple property holds.

(in ring1) unboundρ p→ Ldecrρ pMe
ρ ↔ LpMx·e

ρ (3.24)

Multivariate vs. univariate polynomials and the uniqueness property

So far we considered multivariate polynomials as univariate implicitly: the implementation
treats v0 in a special manner. Given an environment e, then function λp.[p]e in (3.25)
connects ρ-polynomials to the univariate ones of §3.1.1. Obviously it satisfies (3.26). This
simple connection transfers properties from §3.1.1 to ρ-polynomials and is invaluable in §4.5.

fun (in ring1) : [p]e = map (λq.Ldecrρ qMe
ρ) (coeffs p) (3.25)

(in ring1) : ishornh p n0 → LpMx·e
ρ = [p]e x (3.26)

One of the strongest and most desirable properties is the uniqueness of normalised ρ-
polynomials, since it expresses a tight connection between syntax and semantics. This
is almost analogous to (3.7) in §3.1.1, which is central in the uniqueness proof.

Let maxv
p denote the maximal n, such that vn occurs in p. Property (3.27) is the analogue

of (3.7) and states that a normalised polynomial is 0ρ exactly when it evaluates to 0 for
any reasonable environment e. The proof of (3.27) is by complete induction on maxv

p where
(3.7) is applied to the coefficients of [p]e. This corresponds to an induction over the number
of variables n of the multivariate polynomial ring R[x1, . . . , xn]. From (3.15) and (3.27) we
derive the uniqueness property (3.28).

(in idom0) : ishorn p→ (∀e.|e| ≥ maxv
p → LpMe

ρ = 0)↔ p = 0ρ (3.27)
(in idom0) : ishorn p ∧ ishorn q → (∀e.LpMe

ρ = LqMe
ρ)↔ p = q (3.28)

An important impact of (3.28) is that all interesting algebraic properties about +, ·, etc.
ultimately carry over to �,�, etc on the syntax-level, e.g. distributivity and commutativity
hold for � and �. The only drawback we must accept is that the properties proved in this
manner, although purely syntactical, hold only inside idom0.

23

Chapter 3 Certificates for polynomial problems

pdiv a n p k s = if s = 0ρ then (k, s) else
let b = head 0 s;m = degρ 0 s in
if m < n then (k, s) else
let p′ = (0ρ + v0 ∗ 1ρ)↓m−n � p in
if a = b then pdiv a n p k (s� p) p′

else pdiv a n p (k + 1) (a� s� b� p′)
s� p = pdiv (head 0 p) (degρ 0 p) p 0 s

Figure 3.4: Pseudo-division of ρ-polynomials

Pseudo-division

Pseudo-division is a central algorithm in many procedures we consider (§4.4 and §4.5).
Pseudo-dividing s(x) by p(x) yields a quotient q(x) and remainder r(x) and a constant c,
i.e. a polynomial not involving x, such that

c · s(x) = p(x) · q(x) + r(x) ∧ ∂r < ∂p

For univariate polynomials with rational coefficients, we can ensure c = 1, but in the
multivariate case we can only ensure c = ak, where a is p’s head, i.e.

ak · s(x) = p(x) · q(x) + r(x) ∧ ∂r < ∂p

Pseudo-division of s by p asks for k, q and r above. Suppose p(x) = a · xn + p0(x) and
s(x) = b · xm + s0(x), where ∂p0 < ∂p and ∂s0 < ∂s. If m < n then q(x) = 0, r(x) = s(x)
and k = 0. For m ≥ n, first note that a · s(x) = b · xm−n · p(x) + s′(x), where s′(x) =
a · s0(x)− b · xm−n · p0(x). Note that ∂s′ < ∂s, since the heads cancel each other. Assume
now that recursively ak′ · s′(x) = q′(x) · p(x) + r′(x) holds, then

ak′+1 · s(x) = ak′ · b · xm−n · p(x) + ak′ · s′(x)

= (ak′ · b · xm−n + q′(x)) · p(x) + r′(x)

and hence k = k′+1, q(x) = ak′ · b ·xm−n + q′(x) and r(x) = r′(x) is a correct answer. Note
also that if a = b it is not necessary to multiply by a (i.e. increase k).

Given two ρ-polynomials s and p, s� p in Figure 3.4 returns r and k as above (in our
applications q is not relevant). The main recursion happens in pdiv, where the parameters
are assumed to satisfy (D) head 0 p = a ∧ degρ 0 p = n ∧ p 6= 0ρ ∧ ishorn p ∧ ishorn s.

We use Isabelle’s facility for partial functions [Kra06] to define pdiv. Note that termination
is not guaranteed for non-normalised polynomials. As a consequence pdiv has no induction
principle but a partial one allowing to apply the induction hypothesis only after proving
the recursive calls to be in pdiv’s domain. It is hence necessary to prove that pdiv’s domain
at least contains the parameters satisfying (D), cf. (3.29). The main property of pdiv is in
(3.30). Note the syntactical nature of the pseudo-division property.

ishorn p ∧ ishorn s ∧ head 0 p = a ∧ degρ 0 p = n ∧ p 6= 0ρ → (a, n, p, k, s) ∈ dom(pdiv)
(3.29)

ishorn p ∧ ishorn s ∧ head 0 p = a ∧ degρ 0 p = n ∧ p 6= 0ρ ∧ pdiv a n p k s = (k′, r)

→ k′ ≥ k ∧ ishorn r ∧ (degρ 0 r = 0 ∨ degρ 0 r < degρ 0 p)

∧(∃q.ishorn q ∧ a↓k′−k � s = p� q� r))
(3.30)

The proof of (3.30) is by complete induction on degρ 0 s. The decomposition proof follows
the sketch above, whereas the entailment into the domain of recursive calls massively uses
the syntactical properties and the uniqueness presented before. Defining pseudo-division
and proving (3.30) is a challenge for any formalised library of polynomial utilities. This
formalisation is 1700 lines long. In §3.2 and §3.3 we use our formalisations in reflected proof
methods.

24

3.2 Equations and disequations

3.2 Equations and disequations

In this section we consider two classes of formulae involving equations (p = 0) and dise-
quations1 (q 6= 0), for polynomials p and q: a) universal formulae and b) a subset of ∀∃
statements, which covers some interesting number theoretic properties. The formulae in b)
have the form

∀~x.
∧
i

ei(~x) = 0→ ∃~y.
k∧

i=1

m∑
j=1

pij(~x) · yj = ai(~x),

where ~x and ~y are shorthand for x1, . . . , xn and y1, . . . , ym resp., ei(~x), ai(~x) and pij(~x) are
polynomials in x1, . . . , xn for every 1 ≤ i ≤ n and 1 ≤ j ≤ m. The main tool both methods
use is the extended Gröbner bases algorithm (see [BWK93] or [Mis93]) to find a certificate
q1, . . . , qn for p ∈ 〈p1, . . . , pn〉, i.e.

∑n
i=1 qi · pi = p holds.

3.2.1 The universal case

Consider a universal formula P with equations (p = 0) and disequations (q 6= 0) as atoms,
where p and q are multivariate polynomials over an integral domain. We prove P by refuting
¬P and the latter by refuting each disjunct

∧n
i=1 pi = 0∧

∧m
j=1 qj 6= 0 of its DNF. We might

safely assume that m = 1 (if m = 0 just add 1 6= 0, otherwise
∧m

j=1 qj 6= 0 ↔ q 6= 0,
where q =

∏m
j=1 qi). If n = 0 then normalise q and compare it to 0. Otherwise, assume

n > 0. Clearly proving
∑n

i=1 fi ·pi = qk for some k and coefficients fi (i.e. q ∈
√
〈p1, .., pn〉),

contradicts
∧n

i=1 pi = 0 ∧ q 6= 0. The k, f1, . . . , fn form a “Nullstellensatz refutation”, after
Hilbert’s theorem.

Theorem 2 (Hilbert’s Nullstellensatz [Hil93]). Let K be a field and L an algebraically closed
extension of K, and q, p1, . . . , pn ∈ K[x1, . . . , xm], then the following are equivalent:

i) ∀z ∈ Lm.
∧n

i=1 pi(z) = 0→ q(z) = 0
ii) q ∈

√
〈p1, . . . , pn〉

Note that Theorem 2 guarantees the equivalence for algebraically closed fields. In our
application, we only need the trivial direction, which holds for arbitrary integral domains.
We obtain a Nullstellensatz-certificate using extended Gröbner bases [BWK93, §6.2,§5.6] or
[Mis93, §3.4]. We do not explain the construction of such certificates, since this is out of
the scope of this thesis, and refer the interested reader to [Mis93, BWK93]. We obtain the
certificates from an implementation in ML, or from a computer algebra system (e.g. Singular
or M2).

A reflected certificate-checker

We reflect Nullstellensatz certificates by 〈ρ〉 and L.M.
〈ρ〉 below:

datatype 〈ρ〉 = pN|〈ρ〉 + 〈ρ〉|ρ ∗ 〈ρ〉
LpnMps〈ρ〉 = ps!n
Lp ∗ cMps〈ρ〉 = p�LcMps〈ρ〉
Lc + dMps〈ρ〉 = LcMps〈ρ〉 �LdMps〈ρ〉

The idea is that given normalised polynomials ps = [p1, . . . , pn] and a certificate c, LcMps〈ρ〉
evaluates to a polynomial in the ideal 〈p1, . . . , pn〉. Clearly if p1, . . . , pn are as in Theorem 2
and LcMps〈ρ〉 evaluates to a power of q then q ∈

√
〈p1, . . . , pn〉 yielding a contradiction, cf.

(3.31). We use pn to refer to the nth polynomial in ps. Of course a well-formed certificate
must not contain references outside ps, cf. wf〈ρ〉 below. Well-formed certificates satisfy the
main property (3.31).

1This terminology is also used in e.g. [BW01]

25

Chapter 3 Certificates for polynomial problems

wf〈ρ〉 pn k = n < k
wf〈ρ〉 (p ∗ c) k = wf〈ρ〉 c k
wf〈ρ〉 (c + d) k = wf〈ρ〉 c k ∧ wf〈ρ〉 d k

(in idom) LcMps〈ρ〉 = (q1 � . . .� qn)↓m ∧ wf〈ρ〉 c |ps|

→ (∀p ∈ {{ps}}.LpMe
ρ = 0 ∧ ∀q ∈ {{[q1, . . . , qn]}}.LqMe

ρ 6= 0)↔ False
(3.31)

Note that the conditions of (3.31) are executable and correspond to the function check〈ρ〉,
which satisfies (3.32). Note that check〈ρ〉 reflects a checker for radical ideal membership.

check〈ρ〉 ps [q1, . . . , qn] c m = wf〈ρ〉 c |ps| ∧ LcMps〈ρ〉 = (q1 � . . .� qn)↓m

(in idom) check〈ρ〉 p q c m→ (∀p ∈ {{p}}.LpMe
ρ = 0 ∧ ∀q ∈ {{q}}.LqMe

ρ 6= 0)↔ False (3.32)

3.2.2 An interesting subset of the ∀∃-fragment

We present a proof-procedure for an interesting subset of ∀∃ ring problems, which generalises
solving systems of linear equations with polynomial coefficients. This presentation is based
on [Har07a], but we discuss some connections to [BWK93]. The goal is to prove statements
of the form (3.b) or, equivalently, using matrix and vectors notation (3.c), where ei(~x), pij(~x)
and ai(~x) are elements of R[x1, . . . , xn] and R is a commutative ring.

∀x1..xn.

l∧
i=1

ei(x1, .., xn) = 0→ ∃y1..ym.

k∧
i=1

m∑
j=1

pij(x1, .., xn) · yj = ai(x1, .., xn) (3.b)

∀~x.~e(~x) = ~0→ ∃~y.P (~x)~y = ~a(~x) (3.c)

Internally we use again the extended Gröbner bases algorithm to find an ideal membership
certificate r1(~x, ~u), .., rn(~x, ~u), q1(~x, ~u), .., qm(~x, ~u) for the problem in (3.d).

~a(~x) • ~u ∈ 〈e1, .., en, P
1(~x) • ~u, .., Pm(~x) • ~u〉, (3.d)

In (3.d), ~u = (u1, . . . , uk) is a fresh vector of variables, P j(~x) is the jth column of P (~x) and
• denotes the inner product of vectors, i.e. ~a •~b =

∑t
i=1 ai · bi. Concretely, we have

~a(~x) • ~u = ~e(~x) • ~r(~x, ~u) +
m∑

i=1

(P i(~x) • ~u) · qi(~x).

First note that on the left hand side each monomial contains exactly one ui. Next we
decompose the qi(~x, ~u) and ri(~x, ~u) into qi(~x, ~u) = ci(~x) + di(~x, ~u) and ri(~x, ~u) = si(~x, ~u) +
ti(~x, ~u), such that:

1. ci(~x) does not involve any uj ,
2. all monomials in di(~x, ~u) contain at least one uj ,
3. each monomial in si(~x, ~u) has degree 1 in exactly one uj , and
4. each monomial in ti(~x, ~u) either does not involve any ui, involves more than one or

has degree > 1 in one of them.
Now according to the observation above about the degree of ui in the LHS, all terms on

the RHS not of that form have to cancel, leaving:

~a(~x) • ~u = ~e(~x) • ~s(~x, ~u) +
m∑

i=1

P i(~x) • ~u · ci(~x)

Now using the fact that ~e = ~0, and successively setting ui = 1 and uj = 0, for j 6= i, 1 ≤
i, j ≤ k, yields k equations for 1 ≤ i ≤ k:

ai(~x) = c1(~x) · pi1(~x) + · · ·+ cm(~x) · pim(~x).

The vector ~c(~x) is therefore a witness for ~y.

26

3.2 Equations and disequations

An interpretation into modules

The problem (3.b), solved in [Har07a], is a slight generalisation of solving inhomogeneous
linear equations with polynomial coefficients, i.e. (3.b) without the assumption part. This
problem is often presented in the Gröbner bases literature as an application to modules and
Syzygies computation. We slightly generalise the presentations in [BWK93, Mis93] to deal
with (3.b) and establish hence a connection to [Har07a]. In particular we emphasise the
contributions of [Har07a]. I am thankful to John Harrison for encouraging me to include
this discussion here.

Given a ring R, an abelian group M and a mapping (r ∈ R, x ∈ M) 7→ r ◦ x, then M is
an R module if for all x, y ∈M and s, t ∈ R the following holds:

s ◦ (x+ y) = s ◦ x+ s ◦ y ∧ (s+ t) ◦ x = s ◦ x+ t ◦ x
(s · t) ◦ x = s ◦ (t ◦ x) ∧ 1 ◦ x = x.

This is a generalisation of vector spaces from fields to rings. It is also a generalisation of
ideals: any ideal I of R is an R-module, where ◦ = ·. If for N = {xi}i∈J ⊂ M and any
x ∈ M there are si ∈ R, i ∈ J such that x =

∑
i∈J si ◦ xi, then M is generated by N . Let

{x1, . . . , xn} ⊆ M , then any n-tuple (r1, . . . , rn) satisfying
∑n

i=1 ri ◦ xi = 0 is a Syzygy of
(x1, . . . , xn). The set of all Syzygies of (x1, . . . , xn) forms an R-module. It is a sub-module
of Rn, the set of all n-tuples over R with the usual operations.

Consider an instance of (3.b) and assume
∧l

i=1 ei(~x) = 0 and let E = 〈e1(~x), . . . , el(~x)〉.
First note that we can safely assume l = k, for if k < l then we can just duplicate some
equations under ∃ and conversely if l < k. Our original problem amounts to decide if the
inhomogeneous system of linear equations

p11 · y1 + · · ·+ p1m · ym = a1

... (3.e)
pk1 · y1 + · · ·+ pkm · ym = ak

has a solution in the unknowns y1, . . . , ym. We can view any solution as an element of R[~x]m,
which is an R[~x] module and hence (3.e) is equivalent to (3.f).

~p1 · y1 + · · ·+ ~pm · ym = ~a (3.f)

Such a solution exists if and only if

~a ∈ lin(~p1, . . . , ~pm) + Ek, (3.g)

where lin(~p1, . . . , ~pm) is the linear span of ~p1, . . . , ~pm in the module R[~x]k.
Now let u1, . . . , uk be k new variables and consider

H1(R[~x, ~u]) = {h1 · u1 + · · ·+ hk · uk|h1, . . . , hk ∈ R[~x]}.

H1(R[~x, ~u]) is a R[~x] module and is isomorphic to R[~x]k under

ϕ : R[~x]k → H1(R[~x, ~u])
(h1, . . . , hk) 7→ h1 · u1 + · · ·+ hk · uk

Hence (3.g) holds if and only if ϕ(~a) ∈ lin(ϕ(~p1), . . . , ϕ(~pm))+ϕ(Ek), which can be decided
using Gröbner bases as an ideal membership problem:

ϕ(~a) ∈ 〈ϕ(π1(~e)), . . . , ϕ(πl(~e)), ϕ(~p1), . . . , ϕ(~pm)〉,

where πj(~e) is the jth rotation of ~e’s elements, i.e. πj(~e) = (ej , . . . , el, e1, . . . , ej−1), for every
1 ≤ j ≤ l. Note that π1(~e), . . . , πl(~e) generate El = Ek. Note that this is just a paraphrase
of (3.d). In [BWK93] the authors note that it is not necessary to build a complete Gröbner

27

Chapter 3 Certificates for polynomial problems

basis of the ideal but just a so called 1-Gröbner basis, where during construction only S-
polynomials with degree at most 1 in any of the ui’s are included. Of course computing
1-Gröbner bases is much more efficient. In [Har07a] the author computes a complete Gröbner
basis but then argues that the terms leading to polynomials with degree greater than 1 in
any of the ui’s must vanish.

The presentation in [BWK93] does not deal with assumptions, the simple adaptation
above is ours. Most important is that in [BWK93] the authors look for a solution over
R[~x], whereas [Har07a] is interested in a solution over R. The main result in [Har07a] is
that existence of solutions in R is equivalent to existence of solutions in R[~x], as long as we
regard the statement as true over all rings. See [Har07a] for a very beautiful proof-theoretical
proof using the Horn-Herbrand theorem.

The approach in [BWK93, Mis93] to compute a Syzygy basis for the inhomogeneous
equations yields a finite representation of all solutions to the linear system. This is irrelevant
in a theorem proving context since we just want to prove the existence of solutions. One
witness is therefore enough.

3.2.3 Integration

An integration of the previous procedures using check〈ρ〉 in §3.2.1 is simple. We present
here a context-sensitive integration, which allows to use the previous procedures in semi-
rings (N is the main application). The core of the development is a normaliser for polynomial
expressions.

The normaliser is a conversion, parametrised with all the underlying operations and cor-
responding theorems, e.g. associativity, commutativity and distributivity. The normaliser
deals with polynomials over semi-rings, rings and fields, depending on how many operations
and axioms we fill in. The normaliser is also parametrised by the following four functions,
needed to recognise and compute on the coefficients:
is const: term→ bool recognises terms as numeral constants,
dest const: term→ Q obtains a rational number out of a numeral constant term,
mk const: Q→ term obtains a term representing a rational number, and
num cv: term→ thm a normalisation conversion of numeral expressions

The parameters to an instance of the procedure are mainly determined by those above
of the normaliser. The functions above, parametrised by an extra morphism, form the non-
logical part. The logical part consists of a large number of theorems (the input to the
normaliser) and the axioms of gb below. We add these to the context data by fact declaration
in gb. In particular, when morphed, we pass all parameters to the normaliser. In order to
manage the several instances of gb, the context data consists of a mapping of keys (morphed
locale predicates of the different instances) to the instance data above.

locale gb = semiring + assumes x+ y = x+ z ↔ y = y
and w · y + x · z = w · z + x · y ↔ w = x ∨ y = z

Overview: when invoked on a problem P , the method extracts a polynomial q occurring
in P . Using q we search for an instance installed in the context data and then proceed as
described in §3.2.1. We use an extended Gröbner bases algorithm to find a refutation for
each disjunct of P ’s DNF. Thereby, we treat an equation p = q in P , as if it were p− q = 0.
When interpreting certificates, we split them into a “positive” and a “negative” part and
obtain a contradiction in similar manner to §3.2.1.

To develop the proof-method for both universal and ∀∃ problems, we needed round 400
lines of Isabelle proofs and 1800 lines of SML code.

28

3.3 Inequalities via sums of squares

Applications of §3.2.1 include simple algebraic and geometric properties such as solving
the quartic equation, Simson’s theorem etc. The procedure in §3.2.2 is useful to prove
interesting number theoretic statements. In particular it deals with divisibility, coprime and
equality modulo. A prominent example is the Chinese remainder (for a specific number of
moduli) below. See [Har07a] for other interesting examples.

∀a, b, u, v.coprime a b→ ∃x.x ≡ u (mod a) ∧ x ≡ v (mod b).

3.3 Inequalities via sums of squares

After considering equations and disequations, we present here a method to prove universal
formulae with polynomial inequalities (i.e. p ≥ 0 for a polynomial p) as atoms. We consider
polynomials over R with coefficients in Q. For real polynomials, using the Nullstellensatz
turns quite unsatisfactory, e.g. x2 + 1 has no solution over R but 1 6∈

√
〈x2 + 1〉. Note that

the Nullstellensatz only guarantees equivalence if the underlying field is algebraically closed,
which is not the case for R. There is R-analogue of Theorem 2:

Theorem 3 (Real Nullstellensatz). Let p1(~x) = 0, . . . , pn(~x) = 0 for ~x ∈ Rm be polynomial
equations, then the following are equivalent:

i) ¬∃~z ∈ Rm.
∧n

i=1 pi(~z) = 0
ii) There exist s1(~x), . . . , sk(~x) ∈ R[x1, . . . , xn] s.t. 1 +

∑k
i=1 si(~x)2 ∈ 〈p1, . . . , pn〉

This is indeed a special instance of the more general Positivstellensatz by Stengle. Recall
that given a ring R and S ⊆ R, Cone(S) is the sub-semiring generated by S and all squares
of R, i.e. {a2|a ∈ R}.

Theorem 4 (Stengle’s Postivstellensatz [Ste74]). Consider the n+m+ t real polynomials
p1, . . . , pn, q1, . . . , qm and r1, . . . , rt, then the following are equivalent:

i) ¬∃~z.
∧n

i=1 pi(~z) = 0 ∧
∧m

i=1 qi(~z) ≥ 0 ∧
∧t

i=1 ri(~z) 6= 0
ii) There exists p ∈ 〈p1, . . . , pn〉, q ∈ Cone(q1, . . . , qm) and r =

∏t
i=1 r

ki
i , s.t. p+ q+ r2 = 0

The proofs of Theorem 3 and Theorem 4 are far out of the scope of this thesis, but we
refer the interested reader to [Ste74, BPR03]. We present in the following how to adapt a
method pioneered by Parillo [Par03] to obtain Positivstellensatz certificates (p, q and r in
Theorem 4) using semi-definite programming (SDP).

In the following we first consider just one real polynomial p ∈ R[x1, . . . , xn] and present
known results on the relation between p being positive semi-definite (PSD), i.e. ∀~x ∈
Rn.p(~x) ≥ 0, and p being a sum of squares (SOS), i.e. ∀~x ∈ Rn.p(~x) =

∑k
i=1 si(~x)2 for

some polynomials s1, . . . , sk ∈ R[x1, . . . , xn]. Trivially SOS implies PSD.

3.3.1 SOS, PSD and Hilbert’s theorem

Hilbert [Hil88] studied the relation between PSD and SOS and raised the problem if a PSD
polynomial p always has a SOS decomposition. He proved that this is not true if we restrict
the si’s above to be polynomials by giving a rather complicated counterexample. Motzkin
found a much simpler one: M(x, y, z) = x4 · y2 +x2 · y4 + z6−3 ·x2 · y2 · z2. Hilbert included
the PSD problem in his famous list (the 17th problem) asking for an SOS decomposition
of rational functions. Artin [Art27] solved this problem. Unfortunately, his proof does not
yield an algorithm to construct the rational functions. Hilbert also studied the relation
between PSD and SOS in special cases, and proved interesting results. A polynomial p is
an m-form (or homogeneous) if all its monomials have the same total degree m. Let Pn,m

be the set of PSD m-forms in n variables and Σn,m the set of m-forms p =
∑

i h
2
i , where hi

are m
2 -forms in n variables, then

Theorem 5 (Hilbert [Hil88]). Σn,m ⊆ Pn,m and the equality holds only for
a) Bivariate forms: n = 2

29

Chapter 3 Certificates for polynomial problems

b) Quadratic forms: m = 2
c) Ternary quartics: n = 3 and m = 4.

In terms of polynomials, instead of forms (using de-homogenisation), the cases in The-
orem 5 correspond to univariate, quadratic and quartic (in three variables) polynomials
respectively.

3.3.2 Quadratic forms and SOS via SDP

Quadratic forms

Quadratic forms play a particularly important role in our application. If p is a quadratic
form, then we can represent it in a standard way

p(x1, . . . , xn) =
n∑

i=1

n∑
j=1

aij · xi · xj = ~xTAp~x, where Ap = (a)ij and aij = aji.

Note that if in some representation aij 6= aji then we can set a′ij = a′ji = aij+aji

2 . Hence
a PSD polynomial p is represented by a symmetric matrix Ap = (a)ij . Generally we say
that a symmetric matrix A is PSD if ∀~x.~xTA~x ≥ 0, which is equivalent to saying that the
associated polynomial is PSD. Other equivalent formulations of A being PSD is that all
its eigenvalues are positive (they are all real since A is symmetric) or that A = LTL for
some triangular matrix L or also equivalently that A = LDLT for some lower-triangular
matrix L and a diagonal matrix D. The LDLT formulation is more appealing for symbolic
applications since computing it only needs rational operations, whereas square roots are
needed to obtain LTL using Choleski decomposition.

Finding SOS decompositions via SDP

The key idea is to view a given polynomial p(x1, . . . , xn) as a polynomial in new variables
z1, . . . , zm suitably chosen such that p(z1, . . . , zm) is a quadratic form.

First note that if p is PSD then it must have an even degree 2d. The only monomials
in R[x1, . . . , xn] that could appear in an SOS decomposition of p(x1, . . . , xn) are those with
degree at most d, since the others, when squared, would not cancel. There are m =

(
n+d

d

)
many of these and let z1, . . . , zm denote them. We can see p(x1, . . . , xn) as a polynomial in
z1, . . . , zm and let us express p as quadratic form in z1, . . . , zm, i.e. we ask for a matrix A
such that:

p(~x) = ~zTA~z =
m∑

i=1

m∑
i=1

aijzizj . (3.h)

Clearly if A is PSD then so is p. Note that since z1, . . . , zm are not algebraically independent,
A is not unique and hence might not be PSD for some representations. By expanding
both sides of (3.h) and comparing coefficients we obtain a set of linear constraints on the
coefficients aij of A. Clearly we are only looking for matrices satisfying these constraints.
We can further show that the set of all such matrices forms an affine subspace. Semidefinite
programming solves exactly this problem: it finds a PSD matrix subject to some linear
constraints (it actually maximises a linear function).

Now assume A is PSD. Then we have A = LTL for a lower-triangular matrix L by
Cholesky decomposition. Hence we can “read off” a sums of squares decomposition since
p(~x) =

∑m
i=1((L~z)i)2.

A simple Example [Par03]

Let p(x, y) = 2x4 + 2x3y − x2y2 + 5y4. Then no monomial of degree larger than 2 can
appear in the SOS decomposition and in fact the only candidates are z1 = x2, z2 = y2 and
z2 = xy. Now writing p(x, y) = ~zTA~z and expanding we obtain p(x, y) = a11x

4 + a22y
4 +

30

3.3 Inequalities via sums of squares

(a33 + 2a12)x2y2 + 2a13x
3y + 2a23xy

3. Remember that A is symmetric. Consequently the
following must hold:

a11 = 2, a22 = 5, a33 + 2a12 = −1, 2a13 = 2, 2a23 = 0

Using SDP we find a particular PSD A

A =

 2 −3 1
−3 5 0
1 0 5

 = LTL, for L =
1√
2

(
2 −3 1
0 1 3

)
.

Now we can “read off” the SOS decomposition: p(x, y) = 1
2 (2x2−3y2 +xy)2 + 1

2 (y2 +3xy)2.
Strictly speaking this is not an SOS decomposition, but every positive rational number is
the sum of four rational squares.

3.3.3 Finding Positivstellensatz certificates

Parrilo proved that we can use SDP to find the refutations in Theorem 4.

Theorem 6 (Parrilo [Par00]). Consider a system of equations and inequalities as in Theo-
rem 4 i). Then the search for bounded degree Positivstellensatz refutation can be done using
semidefinite programming. If the degree bound is chosen to be large enough, then the SDPs
will be feasible, and the certificates obtained from its solution.

Proof. Given a fixed degree d and let r =
∏t

i=1 r
2m
i , where m is such that ∂r ≥ d. For the

inequalities choose d2 ≥ max d ∂r and write

q = f0 + f1q1 + · · ·+ fmqm + f12q1q2 + · · ·+ f12...mq1 . . . qm,

and give a parametrisation of the fi’s with degree at most d2. Do similarly for p ∈
〈p1, . . . , pn〉:

p =
n∑

i=1

gipi,

and parametrise the gi’s with degree at most d2. Now solve the SDP for fi are sums of
squares, subject to the equations implied by p+ q + r2 = 0. The decision variables are the
coefficients of the fi’s and gi’s.

The last part of the theorem follows from the existence of such certificates by Theorem 4
and the fact that the SDP is feasible for all d ≥ d0 for some d0.

3.3.4 Integration

Unfortunately we have not been able to finish an integration of the procedure on time. We
formalise a certificate checker and prove it correct below, but it remains to implement the
interaction with SDP solvers. The formalisation of the checker needed 180 lines of Isabelle
proofs, of course not counting the formalisation of multivariate polynomials in§3.1.2.

A reflected checker

We reflect cone membership certificates by ρQ and L.M.
ρQ

below:

datatype ρQ = pN|ρ2|ρQ + ρQ|ρQ ∗ ρQ|ρQ
N

LpnMqsρQ
= qs!n

Lc ∗ dMqsρQ
= LcMpsρQ

�LdMpsρQ

LpnMqsρQ
= LpMqsρQ

↓n

Lc + dMqsρQ
= LcMqsρQ

�LdMqsρQ

Lp2MqsρQ
= LpMqsρ �LpMqsρ

A Positivstellensatz certificate consists of ideal membership and a cone membership certifi-
cate, and of the powers k1, . . . , kt for the disequations (cf. Theorem 4). The cone membership

31

Chapter 3 Certificates for polynomial problems

certificate and the ideal membership certificate must be well-formed (wfρQ is analogous to
wf〈ρ〉 in §3.2.1). Well-formed certificates satisfy the following “checker version” of Theo-
rem 4:

LcMps〈ρ〉 �LdMqsρQ
�(r1↓k1 � . . .� rp

↓kp) = 0̂r ∧ wf〈ρ〉 c |ps| ∧ wfρQ d |qs|

→ (∀p ∈ {{ps}}.LpMe
ρ = 0 ∧ ∀q ∈ {{qs}}.LqMe

ρ ≥ 0 ∧ ∀r ∈ {{rs}}.LrMe
ρ 6= 0)↔ False

(3.33)

The proof is similar to (3.31), but we have done it only for axiomatic type classes [Wen97],
and not inside locales. There are some problems when using locales for ordered structures
in Isabelle, e.g. monotony theorems need locales with more than one ordering. Analogously
to §3.2.1, we define an executable checker checkρQ and prove (3.34).

checkρQ ps qs [r1, . . . , rp] c d [k1, . . . , kp] =

wf〈ρ〉 c |ps| ∧ wfρQ d |qs| ∧ LcMps〈ρ〉 �LdMqsρQ
�(r1↓k1 � . . .� rp

↓kp)

checkρQ ps qs rs c d ks →
(∀p ∈ {{ps}}.LpMe

ρ = 0 ∧ ∀q ∈ {{qs}}.LqMe
ρ ≥ 0 ∧ ∀r ∈ {{rs}}.LrMe

ρ 6= 0)↔ False
(3.34)

3.4 Related work

Formalising polynomials as functions (as in §3.1) has been done quite early in HOL for R,
but there, due to the lack of classes or equivalent abstract specification mechanisms, had to
be duplicated for C or other structures. Our formalisation in §3.1 is mainly a generalisation
to classes. In [Mah06b] there is an alternative formalisation of univariate polynomials in
Coq. Another alternative formalisation of multivariate polynomials using dependent types
in Coq is presented in [GM05]. The formalisation in [GM05] does not include e.g. pseudo-
division or a proof of the uniqueness property. See also [Bal99] for a nice mathematical
formalisation of polynomials and several interesting properties. The formalisation in [Bal99]
is not executable.

The membership problem for polynomials ideals (PIMP) is central for §3.2. Given poly-
nomials p1, . . . , pn and f , find polynomials q1, . . . , qn such that f =

∑n
i=1 pi · qi, if f ∈

〈p1, . . . , pn〉. In her pioneer 1926 paper [Her26], Herman proved this problem decidable and
gave a doubly exponential upper bound on the degree of q1, . . . , qn. See also [Sei74, Ric74]
for decidability of PIMP for more general ideals. In [MM82], Mayr and Meyer show that
the doubly exponential growth above is unavoidable in general. This paper plays a crucial
role in lower bound complexity results for decision problems in algebraically and real closed
fields in Chapter 4. See also [Bro87, Kol88] for single exponential upper bounds on the
degrees of q1, . . . , qn in the special case of f = 1. Note that radical ideal membership is
not more complex than PIMP using the trick of Rabinovitsch. Using Gröbner bases for
PIMP yields doubly exponential degree in worst case, cf. [Huy86]. See [May97] for a nice
survey of more complexity results. For more details on Gröbner bases see [Buc65] or the
seminal books [BWK93, Mis93]. See also [Bün91, BN98] for a view from term rewriting
and the connection to the Knuth-Bendix completion procedure. Our application in §3.2.1
to Hilbert’s Nullstellensatz is quite standard in the literature, but see [BWK93, §6.4] for an
interesting section on uniform word problems (cf. also [Har08, §5.10]). In geometry, Gröbner
bases also serve as a decision method for several geometrical problems, see [Kap96, CG01]
for an interesting comparative survey. The methods presented in §3.2 are implemented in
HOL Light, but, to our knowledge, in no other theorem prover, except Isabelle.

The SDP vs. SOS problem has been raised and studied by Hilbert [Hil88]. Artin’s proof of
Hilbert’s 17th problem does not yield a method to construct the rational functions in the SOS
decomposition. There is a large series of Positivstellensätze by Pòlya [Pól28], Stengle [Ste74],
Schmüdgen [Sch91] etc, but they all do not yield an algorithmic construction of the SOS
decomposition, except [Pól28], but see [Sch99] for algorithms obtained from different proofs
of these theorems. Algorithms to compute an SOS decomposition using the Gram matrix

32

3.4 Related work

method appear in [CLR95, PW98]. Using SDP for Positivstellensatz certificates seems to
be first introduced in [Par00, Par03]. There is a software to solve SOS problems [PPSP04]
based on MATLAB, but we recently discovered an open source and free implementation
[PP07] on top of Macaulay. The first integration into an LCF-like theorem prover appears
in [Har07b]. This implementations has also been ported to Coq.

33

Chapter 3 Certificates for polynomial problems

34

Chapter 4

Elimination of quantifiers

The method is extremely valuable when we want to beat a
particular theory into the ground [. . .] The method may be
thought of as a direct attack on a theory.

(Chang and Keisler)

Contents
4.1 Preliminaries . 35

4.2 Dense linear orders, revisited . 39

4.3 Linear arithmetics . 42

4.4 Algebraically closed fields . 52

4.5 Real closed fields . 55

4.6 Related work . 70

The method of quantifier elimination (qe. for short) is a powerful tool of model theory
and the decision problem and is the focus of this chapter. We start with some preliminary
material in §4.1 and then present quantifier elimination procedures for several theories. In
§4.2 we reconsider dense linear order without endpoints and give an alternative approach
to Langford’s procedure in §2.1.3. In §4.3 we consider linear arithmetic over three theories:
parametric linear problems over ordered fields in §4.3.1, Presburger arithmetic in §4.3.2 and
mixed real-integer linear arithmetic in §4.3.3. In §4.4 and §4.5 we present qe. for algebraically
and real closed fields.

4.1 Preliminaries

The qe. problem for an L-theory T asks if any L-formula is T -equivalent to a quantifier free
(qf. for short) L-formula. If T admits qe. then T is model complete and also substructure
complete. Moreover if ground L-atoms are decidable then T is decidable. Theories admitting
qe. are very rare and of considerable interest. The following theorem gives an impression
on the strength of the qe. property for algebraic theories, see e.g. [MMvdD83] for similar
results.

Theorem 7 (Van den Dries 1980 [vdD80]). A linearly ordered ring whose theory admits
elimination of quantifiers is a real closed field

In principle every theory T has a conservative extension T ′ which admits qe., by adding
new relation symbols Rφ, also called a Skolem-relation for φ, and new axioms ∀x.φ(x) ↔
Rφ(x) for every formula φ of L. This extension was already used by Skolem in [Sko70a],
but is now known as Morley-extension. In this thesis we are interested in theories admitting
qe., for which we have an algorithm, i.e. a quantifier elimination procedure (qep. for short),
which given any L-formula φ returns a T -equivalent qf. L-formula. Note that it is sufficient
to have a procedure to eliminate only one existential quantifier from ∃x.P (x), where P is
quantifier free. By applying this procedure recursively to the innermost quantifier we obtain
a qep. for the whole theory. This can be further relaxed to P being a conjunction of atoms
all of them containing the bound variable x. Consider a qf. P and transform it into DNF,

35

Chapter 4 Elimination of quantifiers

i.e. P (x)↔
∨

i

∧
j aij(x)∧

∧
j cij , then ∃x.P (x)↔

∨
i

∧
j cij ∧ ∃x.

∧
j aij(x), where x occurs

in the atoms aij(x) but not in cij . Remember that ∃ satisfies:

(∃x.P (x) ∨Q(x))↔ ((∃x.P (x)) ∨ (∃x.Q(x))) (4.i)
(∃x.P ∧Q(x))↔ (P ∧ ∃x.Q(x)) (4.j)

This “lifting” property can be generalised to any representative subset of qf. formulae, where
a subset of qf. formulae Φ is representative if any qf. formula φ has a qf. T -equivalent formula
ψ ∈ Φ, which can be constructed by an algorithm.

Elimination sets and virtual substitution

Weispfenning introduced an interesting generic method for qe. and applied it successfully
to several non-trivial examples [Wei88, Wei90, Wei97a, LW93, Wei97b, Wei94b, Wei94a,
DSW98b, Wei99, Wei00, AW00]. The basic idea is to compute a finite set S of terms such
that ∃x.P (x) is equivalent to

∨
t∈S P (t). The terms in S are sometimes called Skolem

terms [Wei88, LW93] because they are the concrete witnesses in contrast to abstract Skolem
functions. This technique was already used by Skolem but somehow forgotten until taken
over by Cooper [Coo72] and later by others [RL78, FR75]. Weispfenning generalised this
device to let S include impure terms which are not part of L, e.g. +∞ of and ε representing
an infinitesimal. These have to be properly handled by a virtual substitution, i.e. when
“substituted” the result is again an L-formula but semantically equivalent to the substitution
of an intended value, i.e. ∃x.P (x)↔

∨
t∈S P (t//x). More generally virtual substitution of t

can be restricted by assumptions θt (t can be impure). The qe. theorem has the form

∃x.P (x)↔
∨
t∈S

θt ∧ P (t//x).

An example we encounter in §4.5 is substituting a “fraction” t = a
b for x in P using the

language of rings, but under the condition θt = (b 6= 0). This approach is often referred to
as generic qe. and was introduced in [DSW98a]. Note that θt could “artificially” contain
duplicate, or more precisely implicit, assumptions in order to optimise simplification in
subsequent steps, cf. [DSW98a] for an ingenious use of this approach.

Definable sets and projections

Quantifier elimination has a geometrical characterisation. Consider an L-structure M and
let φ be an L-formula with free variables x1, . . . , xn, then φ defines a subset S(φ) =
{(x1, . . . , xn) ∈ Mn|M |= φ(x1, . . . , xn)} of Mn. We say that A ⊆ Mn is definable (resp.
qf. definable) in M if there is an L-formula (resp. qf. formula) φ with n free variables, say
x1, . . . , xn, such that A = S(φ). A function f : Mn →Mm is definable (resp. qf. definable)
if its graph graph(f) = {(x1, . . . , xn, y1, . . . , ym) ∈ Mn+m|f(x1, . . . , xn) = (y1, . . . , ym)} is
definable (resp. qf. definable) in M . Clearly two formulae φ and φ′ are equivalent if and
only if S(φ) = S(φ′) and hence

Theorem 8. M admits qe. if and only if every definable set A ⊆Mn in M is qf. definable
in M .

Since it is much easier to characterise the structure of qf. definable sets in M , qe. is a
powerful tool to characterise the structure of all definable sets in M . Conversely if we can
find a set A ⊆ Mn structurally different from any qf. definable set in M , then M does
not admit qe. For instance, Weispfenning used this observation to prove that the mixed
real-integer theory of linear arithmetic does not admit qe. using a unary predicate true for
x ∈ R if and only if x ∈ Z. The study of definable sets is of great importance in model
theory but also in several other fields of mathematics such as algebraic geometry where the
main interest is the study of affine varieties mainly over C and R. Also for formalisations
in systems verification it is very useful to know that the formulae we use correspond to

36

4.1 Preliminaries

LT Me
iα

= True
LF Me

iα
= False

LAtaMe
iα

= iα e a
L∃ pMe

iα
= (∃x.LpMx·e

iα
)

L∀ pMe
iα

= (∀x.LpMx·e
iα

)

L¬pMe
iα

= (¬LpMe
iα

)
Lp∧ qMe

iα
= (LpMe

iα
∧ LqMe

iα
)

Lp∨ qMe
iα

= (LpMe
iα
∨ LqMe

iα
)

Lp→ qMe
iα

= (LpMe
iα
→ LqMe

iα
)

Lp↔ qMe
iα

= (LpMe
iα
↔ LqMe

iα
)

Figure 4.1: Semantics of first order formulae

definable sets we want to describe. The study of definable sets seems to be one of the main
motivations of Tarski’s interest in qe., see some early papers [Tar31, KT31] by Tarski and
Kuratowsky where they study definable sets of R based on Tarski’s result for real closed
fields (by then unpublished).

Quantifier elimination has a geometrical interpretation, using the notion of projection.
Let A ⊆Mn+1, for n ≥ 1, then we define the projection of B by πn+1(A) = {(x1, . . . , xn) ∈
Mn|(x1, . . . , xn, y) ∈ A for some y ∈M}.

Theorem 9. Let M be an L-structure, then the following are equivalent:
1. M admits qe.
2. For every qf. definable A ∈Mn+1, πn+1(A) is qf. definable.
3. For every qf. definable A ⊆Mn and definable f : Mn →Mm, f(A) is qf. definable.

In algebraic geometry one strong property of qe. is that the projection of a representable
set in one direction is again a representable set. The sets of interest are generally the affine
varieties and ideals of polynomials over fields (mostly C and R).

Reflecting generic quantifier elimination

In §2.1.3 we have presented generic qe. as a conversional. In the following, we present
generic qe. based on reflection. This gives a preliminary idea on the common basis used by
the reflected qe. procedures presented in this chapter. The qe. problem in its general form
is not suited for a certificate-based integration. All procedures we consider in this chapter
are integrated as derived rules or using reflection.

We use a datatype φα to reflect first-order formulae, whose atoms are of type α.

datatype φα = T | F | Atα | ¬ φα | φα ∧φα | φα ∨φα

| φα → φα | φα ↔ φα | ∃ φα | ∀ φα

A φα-formula p must be understood in connection with its interpretation LpMe
iα

in Fig-
ure 4.1. The interpretation of formulae depends on an environment e :: [β] and on the
interpretation of atoms iα :: [β] ⇒ α ⇒ bool . The environment e is a list of values taken
by the variables. The variables themselves are not part of the syntax of formulae, but only
occur in atoms. This is the reason why e is only passed through recursively to reach iα. In
our applications, we will formalise variables using de Bruijn indices, which serve as an index
in e for the interpretation. This is the reason why the quantifiers ∃ and ∀ carry no name.
The interpretation of the quantifiers ∃ and ∀ inserts the bound variable at the head of e.
Therefore, the variable with index 0 will be the bound variable in our applications.

Let P :: α ⇒ bool be a predicate on atoms and p :: φα be a qf. formula. Then we use
allAtα P p to express that all atoms in p :: φα satisfy P . Note that allAtα (λa.True) describes
exactly qf. formulae. Assume that unboundα :: α ⇒ bool formalises the fact that an atom
does not depend on the bound variable, then allAtα

unboundα formalises that a given formula
does not depend on the bound variable. Similarly to allAtα , we define onAtα

:: (α ⇒ α) ⇒
φα ⇒ φα to apply a function f :: α ⇒ α on all atoms of a formula. For instance, if decrα
decrements all de Bruijn indices in atoms, then onAtα decrα decrements all indices in a qf.
formula. Since most interesting operations on formulae depend on corresponding operations
on atoms, we introduce the following locale:

37

Chapter 4 Elimination of quantifiers

qelim qe (∀ p) = ¬qe(qelim qe (¬p))
qelim qe (∃ p) = qe(qelim qe p)
qelim qe (¬p) = ¬(qelim qe p)
qelim qe (p∧ q) = (qelim qe p) ∧(qelim qe p)
qelim qe (p∨ q) = (qelim qe p) ∨(qelim qe p)
qelim qe (p→ q) = (qelim qe p) →(qelim qe p)
qelim qe (p↔ q) = (qelim qe p) ↔(qelim qe p)
qelim qe p = simpφ p

Figure 4.2: Quantifier elimination for φα-formulae

locale atom =
fixes iα :: [β]⇒ α⇒ bool and unboundα :: α⇒ bool

and decrα :: α⇒ α and At :: α⇒ φα and At¬ :: α⇒ φα

assumes unboundα a→ (∀x, y.iα (x · e) a↔ iα (y · e) a)
and unboundα a→ (iα e (decrα a)↔ iα (x · e) a)
and (LAt aMe

iα
↔ LAtaMe

iα
) ∧ (LAt¬aMe

iα
↔ L¬(Ata)Me

iα
)

and qfree (At a) ∧ qfree (At¬a)
and unboundα a→ allAtα unboundα (At a) ∧ allAtα unboundα (At¬ a)

Functions iα, unboundα and decrα are as described above, cf. their axioms. Furthermore,
we require two functions At and At¬ motivated by efficiency in practice. They are seman-
tically equivalent to At and ¬ ◦At , respectively, but can be implemented more efficiently.
If, for instance, α reflects relations on arithmetical terms, then At (0=1) and At¬ (0=1)
could return F and T , respectively.

In our experience, using optimised versions of the constructors is invaluable. We define
for every constructor c of φα a function c, which is semantically equivalent to c. Here is for
instance a simple optimised conjunction:

p∧ q = if p = F ∨ q = F then F else if p = T then q else if q = T then p else p∧ q

We use the optimised constructors overall in this thesis. To avoid cumbersome notation,
every occurrence of any constructor of φα in the rest of the thesis, except for pattern match-
ing, represents the optimised version of that constructor. This also applies to any shadow
syntax in the rest of the thesis. Based on optimised constructors, we define a canonical simp-
lification simpφ satisfying (4.1). Function simpφ just simplifies sub-formulae and replaces
any constructor by its optimised version.

(in atom) Lsimpφ pMe
iα
↔ LpMe

iα
(4.1)

Assume that we have a function qe to eliminate on ∃ over a qf. body. Then we lift qe to a
qep. for all φ-formulae using qelim in Figure 4.2. The main property (4.2) is straightforward.

(in atom) (∀e, q. qfree q → qfree (qe q) ∧ (Lqe qMe
iα
↔ L∃ qMe

iα
))

→ qfree (qelim qe p) ∧ (Lqelim qe pMe
iα
↔ LpMe

iα
).

(4.2)

In practice, we must apply qe to formulae as small as possible, to overcome the strikingly
bad complexity results for qe. and obtain relatively efficient qe. procedures. For that we
must at least distribute ∃ over ∨ and eliminate conjunctions not depending on the bound
variable, cf. (4.i) and (4.j). For this purpose, we introduce functions split∧ and split∨ to
return all conjuncts and disjuncts of a formula, respectively. Similarly, list∧ and list∨ turn a
list of formulae into their conjunction and disjunction, respectively. Given f :: φα ⇒ φα and
formulae p1, . . . pn, then eval∨ f [p1, . . . , pn] returns f p1 ∨ . . . f pn evaluated lazily. If f is a
qep. for one ∃, then λp.eval∨ f (split∨ p) distributes f over disjunctions, and is therefore a

38

4.2 Dense linear orders, revisited

qep. for one ∃. Let p :: φα be qf. and ps = split∧ p. Function eval∧ first partitions ps into two
list: as consist of all formulae not involving the bound variable and bs consists of the rest.
The call eval∧ f p then returns onAtα

decrα (list∧ as) ∧ f (list∧ bs). If f is a qep. as above,
then eval∧ f applies f only to the conjuncts not involving the bound variable. Summed up,
given a qep. qe, then eval∨ (eval∧ qe) is an optimised qep. satisfying our purpose. In fact
the real definition of qelim for ∃ is as follows:

qelim qe (∃ p) = eval∨ (eval∧ qe) p.

The main property (4.2) still holds for qelim changed as above. Further optimisation for
using equations and Gaußelimination, i.e. (∃x.x = t ∧ P (x)) ↔ P (t) are also extremely
useful in practice. See [Nip08] for an optimiser using equations. In §4.5 we use a quadratic
equation to optimise qe. for real closed fields.

Unfortunately, I must disappoint the reader by pointing out that this generic treatment
above is included for presentation reasons only. Its formalisation took 500 lines proofs in
Isabelle. The reflected procedures in this chapter do not rely on the datatype φα but redefine
it time and again. All presented functionalities are duplicated. It would be interesting
to adapt all our developments in this generic framework. See [Nip08] for such a generic
treatment for dense linear orders and linear arithmetic.

4.2 Dense linear orders, revisited

In contrast to §2.1.3 we formalise DLO by requiring a function which given any x and y
returns an element x G y lying “between” them instead of the denseness axiom:

locale dloG = linorder + fixes . G .+
assumes ∀x.∃y.y < x

and ∀x.∃y.x < y
and ∀x, y.x < y → x < x G y < y
and ∀x.x G x = x

Note first that dloG indeed formalises DLO, i.e. it is an instance of dlo and hence we can
already use our Langford’s qe. of §2.1.3 for the sub-language not involving G.

instance dloG ⊆ dlo (4.3)

This formalisation does not admit qe. considering G as a language element.

Theorem 10. The theory of dloG does not admit qe. and is not complete.

Proof. Consider the sentence P := ∀x, y.x G y = y G x. Assume for contradiction dloG has
qe., then there is a qf. formula P ′ with no more free variables than P , such that P ↔ P ′

is true in all models of dloG. Since the only constants in the language of dloG are True and
False, these are the only two possibilities for P ′. Now consider two models of dloG as the
real numbers with the usual ordering and x G y is defined to be x+y

2 in the first and x+2·y
3

in the second model. Clearly these are two models of dloG but P only holds in the first.
Incompleteness follows from the same argument.

To obtain qe. we must not consider G as a language element but rather as an impure
term which must vanish after virtual substitution. In the following we show that Ferrante
and Rackoff’s qe. theorem for linear real arithmetic holds in dloG, and hence obtain under
acceptable conditions a qe. procedure for a class of special dense linear orders including
linear arithmetic over ordered fields.

4.2.1 Ferrante and Rackoff’s algorithm

Consider ∃x.P (x), where P is qf. Furthermore we assume P to be x-normalised, i.e. it
consists only of ∧,∨ and atoms of type (A) x = t, (B) x < t, (C) x > t or (D) those not

39

Chapter 4 Elimination of quantifiers

involving the existentially bound variable x. In (A)–(C), t does not depend on x. Any qf.
formula over the language of dlo (not dloG, i.e. not involving G) can be transformed into an
x-normalised formula by means of NNF and simple syntactical manipulations.

The algorithm constructs the set UP = {t|x = t, x < t or x > t occurs in P} and two
formulae P−∞ and P+∞ obtained from P by replacing atoms of type (A),(B) and (C) by
False, True, and False, respectively, (for P−∞) and by False,False, and True, respectively,
(for P+∞). The qe. is now a consequence of Theorem 11.

Theorem 11 (Lemma 1.1 in [FR75]). An x-normalised P satisfies:

(∃x.P (x))↔ P−∞ ∨ P+∞ ∨ ∃(u, u′) ∈ U2
P .P (u G u′).

Proof. We give an alternative proof to [FR75].

P−∞ ∨ P+∞ ∨ ∃(u, u′) ∈ U2
P .P (u GGG u′) → ∃x.P (x) Obviously ∃(u, u′) ∈ U2

P .P (u G
u′)→ ∃x.P (x) holds. The cases P−∞ → ∃x.P (x) and P+∞ → ∃x.P (x) follow directly from
(4.k) and (4.l), the main properties of P−∞ (resp. P+∞), proved by induction. They state
that P−∞ (resp. P+∞) simulate the behaviour of P for arbitrarily small (resp. big) values.

∃y.∀x < y.P (x)↔ P−∞ (4.k)
∃y.∀x > y.P (x)↔ P+∞ (4.l)

¬P−∞ ∧ ¬P+∞ ∧ ∃x.P (x) → ∃(u, u′) ∈ U2
P .P (u GGG u′) Assume P (x) for some x and

¬P−∞ and ¬P+∞, i.e. x is a neither “too large” nor “too small” witness for P . First note
that x must lie between two points in UP , a trivial consequence of (4.m) and (4.n), both
proved by induction.

∀x.¬P−∞ ∧ P (x)→ ∃l ∈ UP .l ≤ x (4.m)
∀x.¬P+∞ ∧ P (x)→ ∃u ∈ UP .x ≤ u. (4.n)

Ultimately either x ∈ UP , in which case we are done since x G x = x, or there is a smallest
interval with endpoints in UP containing x, i.e. lx < x < ux ∧ ∀y.lx < y < ux → y 6∈ UP for
some]lx, ux[∈ U2

P . The smallest interval construction is simple since UP is finite. Finally,
consider an arbitrary y and assume y ∈ (lx, ux). Proving P (y) finishes the proof: take u = lx
and u′ = ux. This property shows the expressibility limitations of DLO: P does not change
its truth value over smallest intervals with endpoints in UP , i.e.

∀x, l, u.(∀y.l < y < u→ y 6∈ UP) ∧ l < x < u ∧ P (x)
→ ∀y.l < y < u→ P (y) (4.o)

The proof of (4.o) is by induction on P . If P is of type (A) the result trivially holds. For the
case x < t, fix an arbitrary y and assume l < y < u. Note that y 6= t since t ∈ UP . Hence
y < t, i.e. P (y), for if y > t then l < t < u, which contradicts the premises since t ∈ UP .
The case x > t is analogous and the ∧ and ∨-cases are trivial.

We present a context-aware and proof-producing implementation of this qep.

4.2.2 A derived rule

Theorem 11, revisited

The Isabelle proof of Theorem 11 only needs the finiteness of U , a HOL-set representing
UP , and the properties (4.k)–(4.o), which correspond to the premises of (4.4).

(in dloG) finite U ∧ (∃y.∀x < y.P (x)↔ Q) ∧ (∃y.∀x > y.P (x)↔ R)∧
(∀x.¬Q ∧ P (x)→ ∃l ∈ U.l ≤ x) ∧ (∀x.¬R ∧ P (x)→ ∃u ∈ U.x ≤ u)∧
(∀x, l, u.(∀y.l<y<u→ y 6∈ U) ∧ l<x<u ∧ P (x)→ ∀y.l<y<u→ P (y))

→ ∃x.P (x)↔ (Q ∨R ∨ ∃(u, u′) ∈ U2.P (u G u′)). (4.4)

40

4.2 Dense linear orders, revisited

The Isabelle/HOL proof of (4.4) follows exactly the proof of Theorem 11. Given a problem
instance, we synthesise the premises of (4.4) using the techniques in §2.1.1 and hence obtain
the qe. equivalence. For the proof synthesis of (4.k), we first automatically prove (4.5), (4.6)
and (4.7). Let (4.5)β denote the respective theorem in (4.5) for every β ∈ {<,>,=} and
analogously for (4.7)3 and 3 ∈ {∧,∨}. The proof-synthesis of (4.k) for an x-normalised P
is then the result of prove−∞ x P .

(in dloG) : ∃z.∀x < z.x < t↔ True ∃z.∀x < z.x ./ t↔ False, for ./∈ {>,=} (4.5)
(in dloG) ∃z.∀x < z.F ↔ F (4.6)

(in dloG) (∃z.∀x < z.P (x)↔ P ′) ∧ (∃z.∀x < z.Q(x)↔ Q′)→
∃z.∀x < z.(P (x) 3Q(x))↔ (P ′ 3Q′), for 3 ∈ {∧,∨}. (4.7)

decomp−∞ x P =
case P of
y β t|y = x|β ∈ {<,>,=} ⇒ ([],λ[].(4.5)β [t])
A3B|3 ∈ {∧,∨} ⇒ ([A,B], fwd (4.7)3)
⇒ ([],λ[].(4.6)[P])

prove−∞ x = thm-of (decomp−∞ x)
The proof-synthesis of (4.l)–(4.o) follows analogously. We exhibit proof-synthesis for (4.m),
since it is representative for (4.m)–(4.o) and these depend on UP . First, we need (4.8),(4.9)
and (4.10). Let, as before, (4.8)β denote the respective theorem in (4.8) for every β ∈ {<,>
,=} and analogously for (4.10)3 and 3 ∈ {∧,∨}. For an x-normalised P , the function call
uset x P returns a function inU that for every t ∈ UP returns a theorem th as ‘t ∈ U ’, where
U is a HOL set representing UP . Technically this is realised by proving all these theorems
once and for all and storing them in a table. Function inU then just performs look up. The
synthesis of (4.m) is the result of prove−∞U.

(in dloG) t ∈ U → (∀x.¬True ∧ x < t→ ∃l ∈ U.l ≤ x)
t ∈ U → (∀x.¬False ∧ x > t→ ∃l ∈ U.l ≤ x)
t ∈ U → (∀x.¬False ∧ x = t→ ∃l ∈ U.l ≤ x) (4.8)

(in dloG) ∀x.¬F ∧ F → ∃l ∈ U.l ≤ x (4.9)
(in dloG) (∀x.¬P ′ ∧ P (x)→ ∃l ∈ U.l ≤ x) ∧ (∀x.¬Q′ ∧Q(x)→ ∃l ∈ U.l ≤ x)

→ ∀x.¬(P ′ 3Q′) ∧ (P (x) 3Q(x))→ ∃l ∈ U.l ≤ x, for 3 ∈ {∧,∨}. (4.10)

decomp−∞U x inU P =
case P of
y β t|y = x|β ∈ {<,>,=} ⇒ ([],λ[].fwd (4.8)β [inU t])
A3B|3 ∈ {∧,∨} ⇒ ([A,B], fwd (4.10)3)
⇒ ([],λ[].(4.9)[P])

prove−∞U x P = thm-of (decomp−∞U x (uset x P)) P
The actual implementation synthesises (4.k)–(4.o) at once using prove±∞U, in order to
avoid traversing the formula time and again. It returns a 6-elements list corresponding to
the premises of (4.4).

The overall procedure

Assume we have a conversion normalise, which given a variable x and a qf. P returns
P = Q, where Q is x-normalised. For an input ∃x.P (x), ferrack∃ obtains a theorem
∃x.P (x)↔ ∃x.Q(x), where Q is x-normalised and synthesises the corresponding instance of
Theorem 11. The call simplify Q′ returns th as ‘Q′ ↔ Q′′’, where, among other simplifica-
tions, the bounded ∃ has been eliminated from Q′.

41

Chapter 4 Elimination of quantifiers

ferrack∃ ∃x.P (x) =
let

nth as ‘∃x.P (x)↔ ∃x.Q(x)’ = argc(absc(normalise x))∃x.P (x)
frth as ‘∃x.Q(x)↔ Q′’ = fwd (4.4) (prove±U x Q)

in fwd trans [fwd trans [nth, frth], simplify Q′]

ferrack = liftqe ferrack∃

4.2.3 Integration as a context-sensitive method

The proof-method so far only relies on (4.4) and all the theorems needed to synthesise (4.k),
(4.l), (4.m), (4.n) and (4.o) and on an ML function normalise. These constitute the two parts
of the context-data, logical and non-logical respectively. We insert the logical data into the
context-data via fact-declaration as usual, and provide a declaration to the user/developer
to replace the default normalisation function (identity).

It is important to note here that the result of ferrack∃ is a theorem (∃x.P (x))↔ Q, where
Q involves G. Hence, in order to work properly, the implementation above heavily relies
on the fact that in the working instance of dloG, the applications of G “disappears” after
substitution or after simplification (i.e. simplify). In either case we say that G is definable in
the structure instantiating dloG and is together with the existence of normalise, a function
to x-normalise a qf. formula. The formalisation of the presented procedure took 500 lines
of Isabelle proofs and 380 lines of SML code.

4.2.4 Linear arithmetic for ordered fields (almost) for free

Linear arithmetic over ordered fields with x G y = x+y
2 , is an instance of dloG. To obtain qe.

we only need to define normalise. But this is very simple since our implementation in §3.2
works for general polynomials, and hence for linear ones in particular: normalise terms in
atoms, and transform them into one of the forms (A)-(D). In this way, we easily obtain a
qep. for linear arithmetic over ordered fields in Isabelle/HOL. This adaptation took further
100 lines of Isabelle proofs and 200 lines of SML code.

With more care, we could obtain a qep. for the same theory above, but where the co-
efficients of the bound variables are multivariate polynomials in another set of variables.
Normalisation works as above since the normaliser of §3.2 works for general polynomials.
The transformation of a · x+ b ./ 0, for ./∈ {=, 6=, <}, a parameter polynomial a and b (not
involving x) into one form (A)-(D), needs case splitting over the sign of a. The resulting
procedure would be rather inefficient due to huge duplications. We investigate this theory
separately in §4.3.1 using reflection and give a more efficient solution.

4.3 Linear arithmetics

In this section we present qe. procedures for three theories of linear arithmetic: parametric
problems in ordered fields F

ρ
+ which generalises R+ (linear arithmetic over R), Presburger

arithmetic Z+ and the mixed real-integer arithmetic Rb·c.

4.3.1 Parametric linear problems in ordered fields

We present a reflected qep. for F
ρ
+, the first order theory of parametric linear arithmetic

over ordered fields. The only difference to R+, linear arithmetic over ordered fields, is that
the coefficients of variables bound by quantifiers, are multivariate polynomials in a different
set of variables, called parameters. Note that F

ρ
+ is more expressive than R+. Consider for

instance P (x) = a2 = 2∧x < a. Then S(P) =]−∞,
√

2[, which is not expressible in R+. By
the qe. result for R+, expressible sets in R+ are finite unions of intervals whose endpoints
are infinite of rational. For F

ρ
+ expressible sets are exactly finite unions of intervals, whose

endpoints are infinite of algebraic.

42

4.3 Linear arithmetics

Lc̃Me
π = LcMπ

ρ

LunMe
π = e!n

L− tMe
π = −LtMe

π

Lt + sMe
π = LtMe

π + LsMe
π

Lt − sMe
π = LtMe

π − LsMe
π

Lc ∗ tMe
π = LcMπ

ρ · LtMe
π

LT Me
π = True

LF Me
π = False

Lt ./ sMe
π = (LtMe

π ./ LsMe
π)

L¬pMe
π = (¬LpMe

π)
Lp3 qMe

π = (LpMe
π 3LqMe

π)
L∃ pMe

π = (∃x.LpMx·e
π)

L∀ pMe
π = (∀x.LpMx·e

π)

Figure 4.3: Semantics of parametric linear arithmetic formulae

p Up p− p+

q3 r Uq @ Ur q− 3 r− q+ 3 r+
c ∗ u0 + t=0ρ [(t, c)] c= t=0ρ c= t=0ρ

c ∗ u0 + t 6=0ρ [(t, c)] c=0ρ 6= t∨ c 6=0ρ c=0ρ 6= t∨ c 6=0ρ

c ∗ u0 + t<0ρ [(t, c)] t<0ρ = c∨0ρ < c t<0ρ = c∨ c<0ρ

c ∗ u0 + t≤0ρ [(t, c)] t≤0ρ = c∨0ρ ≤ c t≤0ρ = c∨ c≤0ρ

[] p p

Figure 4.4: Definition of Up, p− and p+

The syntax of terms and formulae is as follows:

datatype τ = ρ̃ | uN |− τ | τ + τ | τ − τ | ρ ∗ τ
datatype φ = T | F | τ = τ | τ 6= τ | τ < τ | τ ≤ τ

| ¬ φ | φ ∧φ | φ ∨φ | φ → φ | φ ↔ φ | ∃ φ | ∀ φ

Note that in Figure 4.3, the coefficients of potentially bound variables are multivariate
polynomials over another set of variables, not involved in quantifiers. Recall ρ-polynomials
in Figure 3.1 from §3.1.2. We modify Ferrante and Rackoff’s algorithm to cope with poly-
nomials as coefficients. In the following we write 0τ as as shorthand for 0̃ρ. Let unboundτ t
(resp. unboundφ p) formalise that the τ -term t (resp. φ-formula p) does not contain u0

and decrφ p be p with all de Brujin indices un decremented. These are simple recursive
functions that satisfy:

unboundτ t→ ∀x, y.LtMx·e
π = LtMy·e

π (4.11)
unboundφ p→ ∀x, y.LpMx·e

π ↔ LpMy·e
π ∧ ∀x.Ldecrφ pMe

π ↔ LpMx·e
π (4.12)

Let a φ-formula p be linear (islinφ p) if it does not involve u0 (unboundφ p) or has the
form f 3 g, for linear f and g and 3 ∈ {∧,∨}, or c ∗ u0 + r ./ 0τ , for ./∈ {<,≤,=, 6=},
a normalised polynomial c 6= 0ρ and r :: τ not involving u0. Note that any qf. φ-formula is
transformed into an equivalent linear φ-formula by linφ. We do not present this in detail,
but see [Cha06b, CN06]. The important property is

qfree p→ islinφ (linφ p) ∧ Llinφ pMe
π ↔ LpMe

π (4.13)

Figure 4.4 defines p−, p+, and Up for a linear φ-formula p. They are analogues of P−∞,
P+∞ and UP in §4.2 for P = λx.LpMx·e

π , but encode the implicit dependency on the polynomial
parameters into the resulting formula by explicit case distinction. Note that we abuse
notation and write a ./1 b ./2 c for a ./1 b∧ b ./2 c, for ./i∈ {=, 6=,<,≤}.

It is very easy to verify that p− and p+ do not depend on u0 and that they mimic p for
values small (resp. large) enough in the underlying ordered field.

islinφ p→ unboundφ p− ∧ unboundφ p+ (4.14)
islinφ p→ ∃z.∀x < z.Lp−Mx·e

π ↔ LpMx·e
π (4.15)

islinφ p→ ∃z.∀x > z.Lp+Mx·e
π ↔ LpMx·e

π (4.16)
islinφ p→ ∀(t, c) ∈ {{Up}}.unboundτ t ∧ ishorn c ∧ c 6= 0ρ (4.17)

43

Chapter 4 Elimination of quantifiers

p p[−t
2·c + −s

2·d]
p∧ q p[−t

2·c + −s
2·d]∧ q[−t

2·c + −s
2·d]

p∨ q p[−t
2·c + −s

2·d]∨ q[−t
2·c + −s

2·d]
a ∗ u0 + r=0τ c̃= s= r=0τ ∨

c̃ 6=0τ = d̃∧ a ∗ t=(2̂r � c) ∗ r∨
d̃ 6=0τ = c̃∧ a ∗ s=(2̂r � d) ∗ r∨

c̃� d 6= 0τ ∧ a ∗ (d ∗ t + c ∗ s)=(2̂r � c� d) ∗ r
a ∗ u0 + r<0τ c̃= d̃= r=0τ ∨

d̃<0τ = c∧ a ∗ s<(2̂r � d) ∗ r∨
c=0τ < d̃∧(2̂r � d) ∗ r< a ∗ s∨
c̃<0τ = d∧ a ∗ t<(2̂r � c) ∗ r∨
d=0τ < c̃∧(2̂r � c) ∗ r< a ∗ t∨

0τ < c̃� d∧(2̂r � c� d) ∗ r< a ∗ (d ∗ t + c ∗ s) ∨
c̃� d<0τ ∧ a ∗ (d ∗ t + c ∗ s) <(2̂r � c� d) ∗ r

a ∗ u0 + r≤0τ . . .
a ∗ u0 + r 6=0τ . . .

p p

Figure 4.5: Modified substitution in φ-formulae

A proof similar to §4.2 yields the reflection of Ferrante and Rackoff’s theorem:

islinφ p→ ∃x.LpMx·e
π ↔ Lp− ∨ p+Mx·e

π ∨ ∃((t, c), (s, d)) ∈ {{Up}}2.LpM
(

LtMy·e
π

−2·LcMπ
ρ

+
LsMy·e

π
−2·LdMπ

ρ
)·e

π (4.18)

Note that for a full implementation only a modified substitution p[−t
2·c + −s

2·d] of the
“expression” t

−2·c + s
−2·d for u0 in p satisfying (4.19) is missing. We use the same technique

as for p− and p+ and encode all case splits on parameters into the result, see Figure 4.5.
Recall that p− and p+ are modified substitutions of very large values.

islinφ p ∧ unboundτ t ∧ unboundτ s→

Lp[
− t

2 · c
+

− s

2 · d
]Mx·e

π ↔ LpM
(

LtMx·e
π

−2·LcMπ
ρ

+
LsMx·e

π
−2·LdMπ

ρ
)·e

π ∧ unboundφ p[
− t

2 · c
+

− s

2 · d
]

(4.19)

The proof of (4.19) is only interesting for atoms and we show only the case of (a ∗ u0 +
r<0τ)[−t

2·c + −s
2·d]. The ≤-case is analogous and the = and 6= are even simpler. For this, fix

x and environments e and π. Clearly there are 9 disjoint cases depending on the strict sign
of LcMπ

ρ and LdMπ
ρ. These are exactly the cases encoded in Figure 4.5. Assume Lc� dMπ

ρ > 0,

then LcMπ
ρ 6= 0∧ LdMπ

ρ 6= 0 and hence LtMx·e
π

−2·LcMπ
ρ

+ LsMx·e
π

−2·LdMπ
ρ

= − Ld∗t+c∗sMx·
π

Lc2r � c � dMπ
ρ

. The claim now follows

using the property ∀a, b, c.b > 0 → a
b < c ↔ a < c · b and simple algebraic manipulations.

The other cases are similar.
Finally, we implement fr∃ to eliminate one ∃, and fr the full qep. below. The function call

eval∨ f [x1, .., xn] returns the disjunction f x1 ∨ . . .∨ f xn lazily evaluated. We prove the
main qe. theorem in (4.24)

fr∃ q = let p = linφ q ; U = allpairs(remdups (Up))
in decrφ(p− ∨ p+ ∨ eval∨ (λ((t, c), (s, d)).q[−t

2·c + −s
2·d]) U)

fr = qelim fr∃

qfree (fr p) ∧ Lfr pMe
π ↔ LpMe

π (4.20)

44

4.3 Linear arithmetics

Drawbacks and a better solution

By inspecting the previous modified substitution in Figure 4.5, it is not hard to predict that
the resulting procedure yields huge formulae and hence is not practicable even for simple
examples. Our tests corroborate this prediction. Figure 4.5 shows many duplications of case
splits. Of course for one atom there are no such duplications, but keeping in mind that we
substitute the same “fraction”, the conditions on the coefficients involved in that fraction
must not be encoded at the atoms level but rather globally to avoid duplication. We present
in the following an alternative substitution and procedure to achieve this goal.

Let us first reconsider the qe. theorem (4.18) and in particular the substitution of the frac-
tion on the RHS. Let p be linear and let (t, c) and (s, d) be two elements of Up. Furthermore
fix environments e and π and let P = λx.LpMx·e

π and t, s, c and d denote LtMy·e
π , LsMy·e

π , LcMπ
ρ

and LdMπ
ρ respectively. Our goal is to construct a φ-formula semantically equivalent to

P (t
−2·c + s

−2·d) but without case splits on c and d at the atoms-level. For that consider

all sign combinations of c and d. If both are zero then we have P (0). If exactly one
is zero, say d, then we have P (t

−2·c) and the whole disjunction (for only such cases) re-

duces to ∃(t, c) ∈ {{Up}}.c 6= 0 ∧ P (t
−2·c). For the last case we have c 6= 0 6= d and hence

t
−2·c + s

−2·d = d·t+c·s
−2·c·d . By considering this last fraction only two case splits on the strict sign

of the denominator are necessary to obtain a simpler substitution. Summed up, we prove
the following qe. theorem, where p[a]φ denotes the “normal” substitution of term a for u0

in p:

islinφ p→ L∃ pMe
π ↔ Lp− ∨ p+ ∨ p[0τ]φMy·e

π ∨ ∃(t, c) ∈ {{Up}}.LcMπ
ρ 6= 0 ∧ LpM

LtMy·e
π

−2·LcMπ
ρ
·e

π ∨

∃((t, c), (s, d)) ∈ {{Up}}2.LcMπ
ρ 6= 0 ∧ LdMπ

ρ 6= 0 ∧ LpM
Ld∗t+c∗sMy·e

π
−2·Lc∗dMπ

ρ
·e

π (4.21)

Note that we only need to find a substitution p[t
c]
6=
φ of a “fraction” t

c with “non-zero”
denominator. Our substitution first splits over the strict sign of c and then performs two
modified substitutions of t

c : the first p[t
c]

>
φ assumes c > 0, and the second p[t

c]
<
φ assumes

c < 0. The definition of p[t
c]
6=
φ and that of p[t

c]
>
φ for atoms are simple:

p[
t

c
] 6=φ = c<0τ ∧ p[

t

c
]<φ ∨ c>0τ ∧ p[

t

c
]>φ

(a ∗ u0 + b ./ 0τ)[
t

c
]>φ = a ∗ t + c ∗ b ./ 0τ for ./∈ {=,<,≤}

The definition of p[t
c]

<
φ is analogous. It is not hard to prove:

islinφ p ∧ LcMπ
ρ ./ 0→ Lp[

t

c
]./φ Mx·e

π ↔ LpM
LtMx·e

π
LcMπ

ρ
·e

π for ./∈ {>,<, 6=}. (4.22)

Now we can implement a new version of fr∃ by:

fr∃ q = let p = linφ q ;U = remdups (Up); U2 = allpairs U
in decrφ(p− ∨ p+ ∨ p[0τ]φ ∨ eval∨ (λ(t, c).q[t

−2ρ � c]φ) U
∨ eval∨ (λ((t, c), (s, d)).q[d∗t+c∗s

−2ρ � c � d]φ) U2)

fr = qelim fr∃

Using the previous theorems we prove their correctness:

qfree q → qfree (fr∃ q) ∧ (Lfr∃ qMe
π ↔ L∃ qMe

π) (4.23)
qfree (fr p) ∧ (Lfr pMe

π ↔ LpMe
π) (4.24)

The full reflection of F
ρ
+ took 3000 lines of Isabelle proof, but counting the first bad

approach (600 lines). We needed further 140 lines of SML code for reification and a tactic.

45

Chapter 4 Elimination of quantifiers

L̂iMe
ι = i

LvnMe
ι = e!n

L− tMe
ι = −LtMe

ι

Lt + sMe
ι = LtMe

ι + LsMe
ι

Lt − sMe
ι = LtMe

ι − LsMe
ι

Li ∗ tMe
ι = i · LtMe

ι

LT Me = True
LF Me = False
Ls< tMe = (LsMe

ι < LtMe
ι)

Ls≤ tMe = (LsMe
ι ≤ LtMe

ι)
Ls= tMe = (LsMe

ι = LtMe
ι)

Ls 6= tMe = (LsMe
ι 6= LtMe

ι)
Li | tMe = (i | LtMe

ι)
Li --- tMe = (i - LtMe

ι)

L¬pMe = (¬LpMe)
Lp∧ qMe = (LpMe ∧ LqMe)
Lp∨ qMe = (LpMe ∨ LqMe)
Lp→ qMe = (LpMe → LqMe)
Lp= qMe = (LpMe ↔ LqMe)
L∃ pMe = (∃x.LpMx·e)
L∀ pMe = (∀x.LpMx·e)

Figure 4.6: Semantics of Z+-terms and formulae

p Bp Ap p− p+ δp
q3 r Bq @ Br Aq @ Ar q− 3 r− q+ 3 r+ lcm δq δr
v0 < t [] [t] T F 1
v0 ≤ t [] [t + 1̂] T F 1
t< v0 [t] [] F T 1
t≤ v0 [t − 1̂] [] F T 1
v0 = t [t − 1̂] [t + 1̂] F F 1
v0 6= t [t] [t] T T 1

d | v0 + t [] [] p p d
d - v0 + t [] [] p p d

[] [] p p 1

Figure 4.7: Definition of Ap,Bp, p−, p+ and δp

4.3.2 Presburger arithmetic

In this section we present a formally verified implementation of Cooper’s qep. for Presburger
arithmetic Z+ = Th(Z, <,+, 0, 1). It is not hard to prove that Z+ in this form does not
admit qe. and that we must add divisibility predicates λx.i | x for every constant i :: Z, but
see [Sko30] for an interesting alternative.

We formalise the syntax as follows and the semantics in Figure 4.6:

datatype ι = Ẑ | vN |− ι | ι + ι | ι − ι | Z ∗ ι
datatype φ = ι< ι | ι≤ ι | ι= ι | ι 6= ι | Z | ι | Z --- ι | T | F

| ¬ φ | φ ∧φ | φ ∨φ | φ → φ | φ ↔ φ | ∃ φ | ∀ φ

We only present cooper, a function that eliminates one ∃ over a qf. formula. Let a
φ-formula p be linear (islinφ p) if it does not involve v0 (i.e. unboundφ p), has the form
f 3 g, where 3 ∈ {∧,∨} and f and g are linear, or v0 ./0 t, t ./1 v0 or d ./2 v0 + t ,
where ./0∈ {<,≤,=, 6=},./1∈ {<,≤},./2∈ {|, ---}, d > 0 and t :: ι not involving v0 (i.e.
unboundι t). Note that any qf. φ-formula is transformed into an equivalent linear one by
linφ. This is less trivial than in 4.3.1 and is done as follows:

1. perform NNF and gather the coefficients of v0 in atoms.
2. for the resulting formula p, compute l = lcm{c | c · v0 occurs in p}
3. multiply the relation sides of every atom containing c · v0 by l

c
4. replace the resulting formula according to ∃x.P (l · x)↔ ∃x.l | x ∧ P (x)
5. the rest follows by simple arithmetical transformations (e.g. d | t↔ |d| | t or −x+ t <

0↔ x > t etc.)
See [CN05, CN06] for a detailed formalisation of this step. The important property is

qfree p→ islinφ (linφ p) ∧ Llinφ pMe ↔ LpMe (4.25)

For a linear formula p Cooper’s theorems (4.26) and (4.27) give a qf. equivalent to ∃ p,

46

4.3 Linear arithmetics

based on functions Ap,Bp, p−, p+ and δp defined over the syntax of p in Figure 4.7.

islinφ p→ L∃ pMe ↔ ∃j ∈ {1..δp}.Lp−Mj·e ∨ ∃j ∈ {1..δp}.∃b ∈ {{Bp}}.LpM(LbMy·e
ι +j)·e (4.26)

islinφ p→ L∃ pMe ↔ ∃j ∈ {1..δp}.Lp+Mj·e ∨ ∃j ∈ {1..δp}.∃a ∈ {{Ap}}.LpM(LaMy·e
ι −j)·e (4.27)

Proof. For the proof of (4.26) fix e, assume islinφ p and let P = λx.LpMx·e, P∞ = λx.Lp−Mx·e,
δ = δp and B = {LbMy·e

ι | b ∈ {{Bp}}}. Clearly if ∃j ∈ {1..δ}, b ∈ B.P (b+ j) then ∃x.P (x). It
hence remains to prove ∃j ∈ {1..δ}.P−∞(j) → ∃x.P (x) and (∃x.P (x)) ∧ ¬(∃j ∈ {1..δ}, b ∈
B.P (b+ j))→ ∃j ∈ {1..δ}.P−∞(j).

1. ∃j ∈ {1..δ}.P−∞(j) → ∃x.P (x)

To prove this, we need the following properties of P−∞:

∃z.∀x < z.P (x)↔ P−∞(x) (4.28)
∀x, k.P−∞(x)↔ P−∞(x− k · δ). (4.29)

These properties are proved by induction on p: (4.28) states that P and P−∞ coincide
over arguments that are small enough ; (4.29) states that P−∞(x) is unaffected by the
subtraction of any number of multiples of δ, i.e. {x | P−∞(x)} is a periodic set. Note that
only divisibility relations d | x+ r occur in P−∞, where d | δ (cf. Figure 4.7).

Now assume that P−∞(j) holds for some 1 ≤ j ≤ δ, then using (4.29) we can subtract
enough multiples of δ to reach a number below the z from (4.28), and thus obtain a witness
for P .

2. (∃x.P (x)) ∧ ¬(∃j ∈ {1..δ}, b ∈ B.P (b + j)) → ∃j ∈ {1..δ}.P−∞(j)

By the argument above of decreasing witnesses by multiples of δ, it is sufficient to prove

∀x.¬(∃j ∈ {1..δ}, b ∈ B.x = b+ j)→ P (x)→ P (x− δ). (4.30)

The proof of (4.30) is by induction on p. The cases ∧ and ∨ are trivial. In the case v0 = t we
derive a contradiction by taking j = 1, since t − 1̂ ∈ Bp. In the cases v0 < t and d | v0 + t
the claim is immediate since δ > 0 and d | δ, respectively. For the case t< v0, assume that
LtMy·e

ι + δ ≥ x, hence x = LtMy·e
ι + j for some 1 ≤ j ≤ δ, which contradicts the assumption

since t ∈ {{Bp}}. The other cases are analogous.

A duality principle

Function mirror below formalises the duality principle (p− and Bp vs. p+ and Ap) pointed
out by Cooper in [Coo72]. The idea behind mirror is simple: if p reflects P (x) then mirror p
reflects P (−x). We prove this and other properties in (4.31). In the following mirror helps
optimising cooper.

mirror (p3 q) = (mirror p) 3(mirror q) for 3 ∈ {∧,∨}
mirror (v0 ./ t) = v0 ./ (− t) for ./∈ {=, 6=}
mirror (v0 ./ t) = (− t) ./ v0 for ./∈ {<,≤}
mirror (t ./ v0) = v0 ./ (− t) for ./∈ {<,≤}
mirror (d ./ v0 + r) = d ./ v0 + (− r) for ./∈ {|, -}
mirror p = p

islinφ p→islinφ (mirror p) ∧ Lmirror pM−i·e ↔ LpMi·e

∧ ∀e.{LtMe
ι | t ∈ {{Ap}}} = {−LtMe

ι | t ∈ {{B(mirror p)}}}
(4.31)

47

Chapter 4 Elimination of quantifiers

An implementation

The first step in the implementation of cooper is to normalise the formula and to choose the
smaller elimination set (Ap or Bp)

choose p = let q = linφ p; (A,B) = (remdups (Aq), remdups (Bq))
in if |B| ≤ |A| then (q,B) else (mirror q, A)

The main property of choose is that it reduces the +∞ case to the −∞ case:

qfree p ∧ choose p = (q, S)→ islinφ q ∧ L∃ pMe ↔ L∃ qMe ∧ {{S}} = {{Bq}} (4.32)

For (q, S), we generate the right-hand side of (4.26) and expand the bounded quantifiers
into disjunctions:

exp∨(q, S) = eval∨ (λi.q− [̂i]) [1..δq]∨ eval∨ (λt.q[t]) [t + î← t ∈ S, i ∈ [1..δq]]

The substitution of a term t for v0 in a formula p is performed by p[t]. Substitution also
simplifies the formula: it evaluates ground terms and relations and performs some logical
simplification. Finally we decrease the de Bruijn indices of the remaining variables using
function decrφ. The composition of decrφ and exp∨ preserves the interpretation:

islinφ p ∧ {{S}} = {{Bp}} → L∃ pMe ↔ Ldecrφ(exp∨ (p,B))Me ∧ qfree(decrφ(exp∨ (p,B))).
(4.33)

Finally cooper and qeZ+
are simple and so are the proofs of (4.34) and (4.35).

cooper = decr ◦ exp∨ ◦ choose

qeZ+
= qelim cooper

qfree q → qfree (cooper q) ∧ Lcooper qMe ↔ L∃ qMe (4.34)
qfree (qeZ+

p) ∧ LqeZ+
pMe ↔ LpMe (4.35)

For the formalisation of Z+, we needed 2000 lines of Isabelle proofs.

Definable sets

Definable sets in Z+ are exactly the almost periodic sets. Let A ⊆ Z be periodic if there
exists (a period) k ∈ N such that k ≥ 1 and for any x ∈ Z we have x ∈ A if and only if
x + k ∈ A. A ⊆ Z is almost periodic if there exists n ∈ Z and periodic sets B and C such
that n ≥ 1, A∩]−∞,−n] = B∩]−∞,−n] and A ∩ [n,+∞[= C ∩ [n,+∞[. A definable set
hence differs from a periodic set only by a finite set, as suggested by (4.26) and (4.27): p−
and p+ are periodic and Ap and Bp are finite.

4.3.3 Mixed real-integer arithmetic

Man versucht es zunächst mit einem Prädikat, denn das
verursacht oft weniger Probleme. Wenn es nicht glingt, so
hat man meistens den Keim eines negativen Resultats.

(V. Weispfenning)

Weispfenning [Wei99] proved Rb·c = Th(R, <,+, b.c, 0, 1) to admit qe. by reducing the
elimination of one ∃ to the elimination of two ∃: one over Z+ and one over R+. We
only exhibit a formalisation of this reduction, but see §4.3.2, §4.3.1 and [Cha06b] for a
formalisation of the full procedure. According to Weispfenning [Wei06] our formalisation is
the first implementation of this qep., a special joy for advocates of theorem proving.

Note that the natural mixture of R+ and Z+ using a unary predicate x ∈ Z ↔ ∃i.x = i,
although decidable [BJW05], does not admit qe. (see [Wei99] for a very elegant proof). This

48

4.3 Linear arithmetics

L̂iMe
µ = i

LxnMe
µ = e!n

L− tMe
µ = −LtMe

µ

Lt + sMe
µ = LtMe

µ + LsMe
µ

Lt − sMe
µ = LtMe

µ − LsMe
µ

Li ∗ tMe
µ = i · LtMe

µ

LbtcMe
µ = bLtMe

µc

LT Me = True
LF Me = False
Ls< tMe = LsMe

µ < LtMe
µ

Ls> tMe = LsMe
µ > LtMe

µ

Ls≤ tMe = LsMe
µ ≤ LtMe

µ

Ls≥ tMe = LsMe
µ ≥ LtMe

µ

Ls= tMe = (LsMe
µ = LtMe

µ)
Ls 6= tMe = LsMe

µ 6= LtMe
µ

Li | tMe = i | LtMe
µ

Li --- tMe = i - LtMe
µ

L¬pMe = ¬LpMe

Lp∧ qMe = LpMe ∧ LqMe

Lp∨ qMe = LpMe ∨ LqMe

Lp→ qMe = LpMe → LqMe

Lp= qMe = LpMe ↔ LqMe

L∃ pMe = ∃x.LpMx·e

L∀ pMe = ∀x.LpMx·e

Figure 4.8: Semantics of Rb·c-terms and formulae

emphasises that qe. is a stronger property. The syntax of terms and formulae is as follows:

datatype µ = Ẑ | xN |− µ | µ + µ | µ − µ | Z ∗ µ | bµc
datatype φ = µ<µ | µ>µ | µ≤µ | µ≥µ | µ=µ | µ 6=µ | Z | µ |

Z --- µ | T | F | ¬ φ | φ ∧φ | φ ∨φ | φ → φ | φ ↔ φ | ∃ φ | ∀ φ

The real integer constant i in the logic is represented by the term î. Bound variables are
again represented by de Bruijn indices. We use ./ as a place-holder for =, 6=,<,≤,> or ≥
and dte to denote − b− tc. The interpretation functions L.M.

µ and L.M. in Figure 4.8 map
the representations back into logic and are parametrised by an environment e (a list of real
expressions). Note that in Figure 4.8 we define Li | tMe in terms of the divisibility predicate
over the reals defined by x | y ↔ ∃i :: Z.y = i · x for x :: R and y :: R.

Linearity

The fact that x0 does not occur in a µ-term t (resp. in a φ-formula p) is formalised by
unboundµ t (resp. unbound p). Substituting t for x0 in p is defined by p[t]. Decreasing
all variable indexes in p is defined by decr p. These functions have such simple recursive
definitions that the properties (4.36) are proved automatically.

unbound p→ ∀x, y.LpMx·e ↔ LpMy·e

qfree p→ Lp[t]Mx·e ↔ LpM(LtM
x·e
µ)·e

unbound p→ ∀x.Ldecr pMe ↔ LpMx·e
(4.36)

We define p to be R+-linear (islinR+ p) if it is built up from ∧,∨ and atoms θ either of
the form c ∗ x0 ./ t, such that unboundµ t ∧ c > 0, or satisfying unbound θ. We define p to
be Z+-linear in a context e (islinZ+ p e) if in addition to the previous requirements every t
represents an integer, i.e. LbtcMe

µ = LtMe
µ. Moreover i | c ∗ x0 + t and i --- c ∗ x0 + t such that

i > 0 ∧ c > 0 ∧ unboundµ t ∧ LtMe
µ = LbtcMe

µ, are Z+-linear atoms. A R+- (resp. Z+-) linear
formula can be regarded as a formula in R+ (resp. Z+), assuming x0 will be interpreted by
some x :: R (resp. by some i, i :: Z).

Weispfenning’s reduction

The main idea is: “b·c is burdensome, get rid of it”. Since ∀x.0 ≤ x − bxc < 1 we have
∃x.LpMx·e ↔ ∃i, u.0 ≤ u < 1 ∧ LpM(i+u)·e. Let split0 p = 0̂ ≤x0 < 1̂ ∧ p′, where 0̂ ≤x0 < 1̂ is
short for 1 ∗ x0 + 0̂ ≥ 0̂ ∧ 1 ∗ x0 + −̂1 < 0̂, p′ results from p by replacing every occurrence
of x0 by x0 + x1 and xi by xi+1 for i > 0. We prove

qfree p→ (L∃ pMe ↔ ∃i, u.Lsplit0 pM
i·u·e) (4.37)

One main contribution of [Wei99] is to supply two functions linR and linZ, which transform
any qf. p into a R+- (resp. Z+-) linear formula (cf. (4.39) and (4.38)), assuming that x0 is
interpreted by u ∈ [0, 1) (resp. by i).

49

Chapter 4 Elimination of quantifiers

qfree p→ LlinZ pMi·e ↔ LpMi·e ∧ islinZ+ (linZ p) (i · e) (4.38)
qfree p ∧ 0 ≤ x < 1→ LlinR pMx·e ↔ LpMx·e ∧ islinR+ (linR p) (4.39)

We subsequently exhibit linZ and linR, which mainly “get rid of b·c”. Now given two qe.
procedures qeR+ for R+ and qeZ+ for Z+ satisfying the equations below, it is simple to prove
that mir = qeZl

◦ linZ ◦ qeRl
◦ linR ◦ split0 eliminates ∃ over a qf. body.

islinR+ p→ LqeR+ 0̂ ≤x0 < 1̂ ∧ pMe ↔ L∃ 0̂ ≤x0 < 1̂ ∧ pMe ∧ qfree(qeR+ p)

islinZ+ p→ LqeZ+ pMe ↔ ∃i.LpMi·e ∧ qfree(qeZ+ p)

linZ

In order to define linZ and prove (4.38), we first introduce a function splitZ that, given a
t :: µ, returns an integer c and s :: µ (not involving x0), such that (4.40) (Lemma 3.2 in
[Wei99]) holds. Note that x0 is interpreted by a real integer i.

splitZ t = (c, s)→ Lc ∗ x0 + sMi·e
µ = LtMi·e

µ ∧ unboundµs (4.40)

The definition of splitZ and the proof of (4.40) proceed by induction on t. If t = bt′c then
return (c, bsc), where splitZ t′ = (c, s). Remember that bx + jc = bxc + j holds for any
j :: Z. The other cases are trivial.

Now linZ is simple: push negations inwards and transform atoms according to the result
of splitZ and the properties (4.41), cf. example 4.3.3 for the = case, where the first property
in (4.41) is used. By induction on p, we easily prove (4.38) using the properties (4.40) and
(4.41).

c · i = y ↔ (c · i = byc ∧ y = byc)
c · i < y ↔ (c · i < byc ∨ c · i = byc ∧ byc < y)

d | c · i+ y ↔ (byc = y ∧ d | c · i+ byc)
0 | x↔ (x = 0)

(4.41)

Example

linZ (t= t′) = let (c, s) = splitZ (t − t′) in
if c = 0 then s= 0̂
else if c > 0 then c ∗ x0 + dse= 0̂ ∧bsc − s= 0̂
else − c ∗ x0 + b− sc= 0̂ ∧bsc − s= 0̂

linR

In order to define linR and prove (4.39), we first introduce a function splitR : µ⇒ [φ×Z×µ]
which, given a t :: µ, yields a complete finite case distinction given by R+-linear formulae
φi and corresponding µ-terms si (not involving x0) and integers ci such that LtMu·e

µ = Lci ∗
x0 + siMu·e

µ whenever LφiMu·e holds (Lemma 3.3 in [Wei99]), i.e.

∀(φi, ci, si) ∈ {{splitR t}}.(LφiMu·e → LtMu·e
µ = Lci ∗ x0 + siMu·e

µ)
∧unboundµ si ∧ islinR+ φi (4.42)

0 ≤ u < 1→ ∃(φi, ci, si) ∈ {{splitR t}}.LφiMu·e (4.43)

These cases are also disjoint as noted in [Wei99], but this is only needed for complexity con-
siderations. The definition of splitR and the proof of (4.42) and (4.43) proceed by induction
on t. Assume t = bt′c, let (φ′i, c

′
i, s

′
i) ∈ {{splitR t′}} and assume Lφ′iMu·e and c′i > 0. By the

50

4.3 Linear arithmetics

induction hypothesis Lt′Mu·e
µ = Lc′i ∗ x0 + s′iMu·e

µ holds and since 0 ≤ u < 1 and c′i > 0, it
follows that j ≤ c′i · u < j + 1 for some j ∈ {0 . . . c′i}, i.e.

j + bLs′iMu·e
µ c ≤ Lc′i ∗ x0 + s′iM

u·e
µ < j + 1 + bLs′iMu·e

µ c

and hence bLc′i ∗ x0 + s′iMu·e
µ c = j. For (φ′i, c

′
i, s

′
i) ∈ {{splitR t′}}, splitR returns the list of

(φ′i ∧Aj , 0, bsc + ĵ), where j ∈ {0 . . . c′i}, Aj = r≥ ĵ∧ r< ĵ + 1 and r = c′i ∗ x0 + s′i −
bs′ic. The cases c′i < 0 and c′i = 0, ignored in [Wei99], are analogous. The other cases for t
are simple.

The definition of linR is involved for atoms, but very simple for the rest: it just pushes
negations inwards. Due to the result of splitR, assume that atoms have the form f(c ∗ x0 +
s), where s does not involve x0 and f ∈ {λt.t ./ 0̂, λt.i | t, λt.i --- t for some i}. For every f ,
we define its corresponding R+-linear version fl : Z ⇒ µ ⇒ φ, and prove (4.44). Example
4.3.3 shows the case for = and the corresponding definition of linR.

0 ≤ u < 1 ∧ unboundµ s ∧ LtMu·e
µ = Lc ∗ x0 + sMu·e

µ

→ (Lfl c sMu·e ↔ Lf tMu·e) ∧ islinR+ (fl c s)
(4.44)

Example

c ∗ x0 + s=l 0̂ = if c = 0 then s= 0̂ else
if c > 0 then c ∗ x0 + s= 0̂ else − c ∗ x0 +− s= 0̂

linR(t= t′) = let [(p0, c0, s0), ..., (pn, cn, sn)] = splitR (t − t′)
in (p0 ∧(c0 ∗ x0 + s0 =l 0̂))∨ . . .∨(pn ∧(cn ∗ x0 + sn =l 0))

Since | and --- are not R+-linear, their corresponding linear versions eliminate them at the
cost of a case distinction according to (4.45).

0 ≤ u < 1 ∧ c > 0→
(d | c · u+ s↔ ∃j ∈ {0..c− 1}.(c · u = j + dse − s) ∧ d | j + dse)

(4.45)

Note here the importance of the coefficients being integers. Of course rational coefficients
add no expressibility power to the theory and can be eliminated to integer coefficients but
admitting multiplication by arbitrary real values yields undecidability, see [Wei99] for a very
beautiful proof by encoding irrationality of a number in the new language. We implement
the case distinction in (4.45) by dvd, and |l follows naturally:

d dvd c ∗ x0 + s = (c ∗ x0 + s − dse − 0̂= 0̂ ∧ d | dse + ĉ− 1) ∨ . . .

∨(c ∗ x0 + s − dse − ĉ− 1= 0̂ ∧ d | dse + ĉ− 1)
d |l c ∗ x0 + s = if d = 0 then c ∗ x0 + s=l 0 else

if c = 0 then d | s else
if c > 0 then |d| dvd c ∗ x0 + s
else |d| dvd −c ∗ x0 +− s

Now we define linR(d | t) analogously to the =-case.

linR(d | t) = let [(p0, c0, s0), ..., (pn, cn, sn)] = splitR t ;
g = λc, s.d |l c ∗ x0 + s

in (p0 ∧(g c0 s0))∨ . . .∨(pn ∧(g cn sn))

Note that linR has akin definitions for the atoms. In fact for an atom f(t), the actual
definition is linR(f(t)) = splitl fl t, where R+-linear version of f .

splitl fl t = let [(p0, c0, s0), . . . , (pn, cn, sn)] = splitR t
in (p0 ∧(fl c0 s0))∨ . . .∨(pn ∧(fl cn sn))

51

Chapter 4 Elimination of quantifiers

We prove the following simple, yet generic property for splitl

0 ≤ u < 1 ∧ (∀t, c, s.unboundµ s ∧ LtMu·e
µ = Lc ∗ x0 + sMu·e

µ

→ Lfl c sMu·e ↔ Lf tMu·e ∧ islinR+ (fl c s))
→ islinR+ (splitl fl t) ∧ (Lsplitl fl tMu·e ↔ Lf tMu·e)

(4.46)

Note that the premise of (4.46), which expresses that fl is a R+-linear version of f , is
discharged by the instances of (4.44) for each different f . After all these preparations, it is
not surprising that we proved (4.39) automatically. The formalisation of the full qep. for
Rb·c needed 4000 lines of Isabelle proofs, but including a qep. for Presburger arithmetic and
linear real arithmetic.

Definable sets

We already know that the definable sets in Z+ are the almost periodic sets and those of R+

are finite unions of intervals with rational or infinite endpoints. Call these last sets simple.
The definable sets in Rb·c have a mixed structure of the above sets. Let A ⊆ R be periodically
simple if A =

⋃+∞
n=−∞ np+ B, for some rational number p and a simple set B ⊆ [0, p). Let

A ⊆ R be ultimately periodically simple if A = (A′ \B) ∪ C for a periodically simple set A′

and simple sets B and C. A ⊆ R is definable in Rb·c if and only if it is ultimately periodically
simple. See [Wei99] for a very beautiful proof.

4.4 Algebraically closed fields

Der Heilige Geist fand einen erhabenen Ausweg in der Analysis
mit diesem Mittelding zwischen Sein und Nichtsein, das wir als
imaginäre (Quadrat)wurzel der negativen Einheit bezeichnen.

(G. W. Leibniz)

The theory of algebraically closed fields (ACF) extends the theory of fields by the axiom
for algebraic closure: every non-constant polynomial has a root. In the following we present
a proof-producing qep. only for the complex numbers C, based on [KK67]. First, we give
a formalisation of the fundamental theorem of algebra in §4.4.1. In §4.4.2, we present the
qep. abstractly. Finally we sketch a derived rule in §4.4.3.

4.4.1 The fundamental theorem of algebra

The fundamental theorem of algebra states that C is algebraically closed. Let f :: α ⇒ β
be constant (constant f) if ∀x, y.f x = f y. Then we formalise the fundamental theorem of
algebra in (4.47).

¬constant p→ ∃z :: C.p z = 0 (4.47)

Proof of (4.47). We present Argrand’s proof [Ebb04, §4.2] as refined in [Lit41, Est56] and
the ingenious argument in [Har01], which avoids using n

√
. for complex numbers and n 6= 2.

The main property to start with, and which we prove later, is that the complex modulus of
any non-constant complex polynomial attains an overall minimum:

∀p.∃z.∀w.|p z| ≤ |p w| (4.48)

The proof of (4.47) is now by complete induction on the degree n of p. By (4.48) we
know that ∀w.|p c| ≤ |p w| holds for some c. Assume for contradiction that p c 6= 0 and
consider the polynomials q and r such that |p| = |q| = |r| = n and ∀z.q z = p (z + c) and
∀z.r z = 1

q 0 · q z. Note that q and r are not constant and that q 0 = p c 6= 0 and that
r 0 = 1. To derive a contradiction it is sufficient to prove |r w| < 1 for some w, since
∀w.|r w| < 1↔ |q w| < |q 0|. For this we decompose r such that ∀z.r z = r 0 + zk · a · s z,

52

4.4 Algebraically closed fields

for a 6= 0, k 6= 0 and |s| + k + 1 = |r| = n. That such a decomposition is possible for
any non-constant polynomial p is a simple proof by induction on p. Note that k + 1 ≤ n.
First consider the case where k + 1 < n, then by the induction hypothesis, property (4.47)
holds for the polynomial 1 + a · zk, i.e. 1 + a · wk = 0 for some w. After several technical
manipulations, we show that |r w| < 1. In the case k + 1 = n we have s = []. Hence
∀z.|r(z)| = |1 + a · zk| and the claim is an immediate consequence of (4.49).

∀b, n.b 6= 0 ∧ n 6= 0→ ∃z.|1 + b · zn| < 1 (4.49)

Proof of (4.49). The proof of (4.49) is by complete induction over n. If n is even, then we
simply apply the induction hypothesis to n

2 and use the complex square root function. For the
case where n is odd, first note that ∀z.|z| = 1→ |z+1| < 1∨|z−1| < 1∨|z−i| < 1∨|z+i| < 1.
We apply this property to z = |b|

b and hence obtain | |b|b + vk| < 1 for some v (note that
w ∈ I → wk ∈ I for I = {1,−1, i,−i}). Now (4.49) holds for v

k
√
|b|

.

Proof of (4.48). This proof is simple once the key properties (4.50) and (4.51) are proved.
The first states that the modulus of a complex polynomial goes to infinity, when the mod-
ulus of its argument does. The second (4.51) states that the complex module of polynomi-
als attains a minimum over discs. This is a consequence of the continuity of polynomials
(cf. (4.52)) and the topological compactness of complex discs, cf. (4.53) for the Bolzano-
Weierstrass formulation.

(∃c ∈ {{p}}.c 6= 0)→ ∀a, d.∃r.∀z.|z| ≥ r → |a · p z| ≥ d (4.50)
∀p, r.∃z.∀w.|w| ≤ r → |p z| ≤ |p w| (4.51)

∀p, z.∀e > 0.∃d > 0.∀w.w < |w − z| < d→ |p w − p w| < e (4.52)
(∀n :: N.|s n| ≤ r)→ ∃fz.(∀m,n.m < n→ f m < f n)∧

∀e > 0.∃N.∀n ≥ N.|s(f n)− z| < e (4.53)

Proof of (4.52). Fix p, z and e > 0 and consider a polynomial q such that |q| = |p| and
∀x.q x = q (z + x). The proof of (4.52) is by induction on q. The [] case is trivial. For
q = a · h we know that ∀z.|z| ≤ 1 → |h z| ≤ m for some m > 0 and that there is a d such
that 0 < d < 1 ∧ d < e

m . Now (4.52) holds for d.

Proof of (4.53). Let s and r be as in the premise or (4.53) and call f a sub-sequence if
∀m < n.f m < f n. Moreover let < and = denote the real and imaginary part functions.
Then we know that there are two sub-sequences f and g such that <◦s◦f and =◦s◦f ◦g are
monotonic and hence converge to some x and y respectively. Now (4.53) holds for h = f ◦ g
and z = x+ i · y, where i2 = −1.

4.4.2 A quantifier elimination procedure

We only present the qe. for the following case (cf. §4.1 for this to be sufficient)

∃z.
n∧

i=1

pi(z) = 0 ∧
m∧

j=1

qj(z) 6= 0. (∗)

First note that (∗) is equivalent to ∃z.
∧n

i=1 pi(z) = 0 ∧ q(z) 6= 0, where q =
∏m

j=1 qi. If
n = 0 then q is either a constant non-zero polynomial or it takes infinitely many values and
hence q(z) 6= 0 for some z. If n ≥ 1 then pick some equation p = 0 where p has minimal
degree d, i.e. p(z) = a · zd + r(z), for some r with degree l < d. If a = 0, then proceed
recursively replacing p = 0 by r = 0. Otherwise a 6= 0. If n > 1 then reduce the degree of

53

Chapter 4 Elimination of quantifiers

the other equations by pseudo-division by p. For a given pi we have ak ·pi = p ·s+ t for some
k and polynomials s and t. Since a 6= 0 and p = 0 we have pi = 0↔ t = 0. If n = 1∧m = 0
then, by the algebraic closure, an equivalent qf. formula is that at least one coefficient of p
must be non-zero. Finally if n = 1 ∧m 6= 0, then we have ∃z.p(z) = 0 ∧ q 6= 0 is equivalent
to ¬∀z.p(z) = 0→ q(z) = 0. Moreover, ∀z.p(z) = 0→ q(z) = 0 (i.e. all zeros of p are zeros
of q) is equivalent to p|qd ∨ p = q = 0, where d is the degree of p. Note that taking qd is
necessary, since a zero of p might have multiplicity greater than one (yet never greater than
d) in p but one in q. The second disjunct is formally necessary, since if p = 0 then d = 0
and hence qd = 1 and 0|1 is not equivalent to ∀z.q(z) = 0, if q 6= 0. Hence we only need to
encode p|qd by a qf. formula. For this pseudo-divide qd by p and obtain ak · qd = p · s + t,
for some k and polynomials s and t. Since a 6= 0 we have p|qd ↔ p|t. The latter holds only
if t is the zero polynomial, since it has a degree less than d. Finally p|qd is equivalent to∧l

i=1 ci = 0, where the ci’s are the coefficients of t.

Definable sets

Atomic formulae p = 0 and q 6= 0 define a finite set of algebraic numbers and the complement
of such a set, respectively. Hence by qe. any formula in ACF defines a finite set or the
complement of a finite set of algebraic numbers. Conversely such sets are also definable in
ACF and ACF is strongly minimal.

More precisely let K be an algebraically closed field and consider S ⊆ K[x1, . . . , xn] (S
can be infinite). Denote the affine variety of S by V (S) = {~x ∈ Kn|p(~x) = 0 for all p ∈ S}
and call A ⊆ Kn Zariski closed if A = V (S) for some S. Zariski closed sets are closed
under finite unions and arbitrary intersections (using Hilbert’s basis theorem [Hil90]) and
are hence the closed sets of a topology (Zariski topology). A ⊆ Kn is definable in ACF if
and only if it is a boolean combination of Zariski closed sets.

4.4.3 A derived rule

We adopted a derived rule by Harrison [Har01] in HOL Light. We do not present any details
here, but emphasise the key theorems needed and then give an overview of the procedure.

The key theorems The algorithm in §4.4.2 is mainly based on two theorems: the funda-
mental theorem of algebra and the reduction of the case of one equation and one inequation
to a divisibility of two polynomials. We have already proved the fundamental theorem of
algebra in (4.47). For the derived rule we need a syntactical criterion for non-constant
polynomials. The variant in (4.54) is easily derivable from (4.47). The second important
theorem (4.55) has a Nullstellensatz flavour. The proof of (4.55) is by induction on deg p.

(∀c, cs.p = c · cs→ (c = 0 ∨ ∃b ∈ {{cs}}.b 6= 0))→ ∃x :: C.p z = 0 (4.54)

(∀z.p z = 0→ q z = 0)↔ (p | qdeg p ∨ p = [] ∧ q = []) (4.55)

The general structure The main loop of the derived rule proceeds exactly as explained in
§4.4.2. To organise case splits over the heads of polynomials we use continuations. We can
think of a continuation as a specific instance of the whole qep., using some assumptions.
After several case-splits, we arrive at one of the basic cases as presented in §4.4.2. We only
sketch the case of one equation and one inequation, i.e. ∃z.p z = 0∧q z 6= 0. Using (4.55) we
reduce the problem to dealing with the divisibility statement p | qdeg p. Note that by (3.7),
we reduce p = [] and q = [] to conditions on their coefficients. To obtain a qf. equivalent to
p | qdeg p, we perform pseudo-division as in §4.4.2, and find a pseudo-remainder r. We use
(4.56) to obtain an equivalent formulation in terms of the pseudo-remainder (in (4.56), a is
the head of p and p′ the pseudo quotient). The qf. equivalent is an immediate application

54

4.5 Real closed fields

of (4.57). Of course, when we compute the pseudo-remainder correctly, then deg r < deg p
holds.

a 6= 0 ∧ p | p′ ∧ (∀z.a · q z − p′ z = r z)→ (p | q ↔ p | r) (4.56)

p | q → deg p ≤ deg q ∨ q = [] (4.57)

For the formalisation of this procedure we needed 1300 lines of Isabelle proofs, includ-
ing the fundamental theorem of algebra, and further 800 lines of SML code for the qe.
conversion.

4.5 Real closed fields

The theory of real closed fields (RCF) is the theory of ordered fields having the intermediate
value property, but see [BPR03] for many equivalent formulations. It is not difficult to show
that RCF over the language of rings does not admit qe. Consider P (c) = ∃x.x2+2 ·x+c = 0.
Then P defines the set S(P) = {c | c ≤ 1}, which can not be expressed in the qf. language
of rings. We must hence add ordering to the language of rings. The qe. result for RCF by
Tarski [Tar51] is considered one of the most important results in formal logic of the last
century.

4.5.1 A quantifier elimination procedure

Consider ∃x.F (x), where F is qf. over the language of RCF. F consists of logical connectives
(∧,∨,→,↔ and ¬) over atoms pi ./ 0 for some polynomial pi and ./∈ {=, 6=,≤,≥, <,>}. Let
At(F) =

⋃
i∈I{pi ./i 0} denote all non-trivial atoms of F . Assume that we know the signs of

all polynomials pi over a set S 6= ∅ for all i ∈ I, i.e. we have a mapping ρS : I → {=, <,>}
such that ∀x ∈ S.pi(x) ρS(i) 0 for i ∈ I. Note that using ρS we can “evaluate” F over S
(denoted by F [ρs]) to True or False and hence decide ∃x ∈ S.F (x) in particular. We call
ρS a sign environment over S (or short SE over S or just SE). The idea of the qep. is to
partition the real line into disjoint non-empty sets S1, . . . , Sk (they are in fact intervals) and
compute a SE for each Si. This is a two dimensional mapping and we refer to it by a sign
matrix (or SM). The main challenge for the qep. is that any of the Si’s is expressible by an
RCF formula ψi not involving the bound variable x. Taking the liberty to write F [ψi] for
F [Si], we ultimately obtain

∃x.F (x)↔
k∨

i=1

ψi ∧ F [ψi].

The implication from right to left is clear, and the other direction relies on the fact that
partitioning the real line into intervals Si is exhaustive.

Computing the sign matrix

The basic case is that we have a constant polynomial c, i.e. not involving the bound variable
x. Here we just split over all possible signs of c (of course avoiding trivial assumptions like
4 < 0). The signs in the SM can be zero, positive or negative. A SM represents a “formula”
encoding our assumptions for further steps in the algorithm. In fact we compute a SM
depending on another SM, which represents the signs known so far. The intervals in the
SM describe a partition of R into non-empty intervals and points. We can think of them as
z1 < · · · < zm. The zj ’s turn out to be zeros of the polynomials under consideration. We
need no numerical value for z1, . . . , zm, but just their existence and their ordered positions
on the real line. A SM assigns a sign to each polynomial over each point {zj} and interval
]zj , zj+1[for every 0 ≤ j ≤ m and z0 = −∞ and zm+1 = +∞.

The crucial observation in the algorithm is that to determine a SM for p, p1, . . . , pn we
just need to find one for p0, p1, . . . , pn, r0, . . . , rn, where p0 = p′ is the first derivative of p
with respect to x and ri is the pseudo-remainder of p by pi for 0 ≤ i ≤ n. Assuming that a

55

Chapter 4 Elimination of quantifiers

is the head of p, we have ak · p(x) = qi(x) · pi(x) + ri(x) for some k and polynomial qi(x),
for 0 ≤ i ≤ n. Taking p with the largest degree in x among p, p1, . . . , pn, it is clear that
by proceeding as above we reduce the highest degree in x (or at least if there are several
candidates for p, we reduce their number). Recall that ∂ri < ∂p, for 0 ≤ i ≤ n. More
precisely, given p as above, we consider the two cases a = 0 and a 6= 0. If a = 0, then we
recur removing p’s head and hence reducing its degree. If a 6= 0, then we determine a SM
for p0, . . . , pn, r0, . . . , rn as above. Assume we have such a SM over say z1 < · · · < zm and
consider a SE in it. First, we can derive the sign of p at the zeros of p0, . . . , pn. Recall that
ak · p(x) = q(x) · pi(x) + ri(x) for every 0 ≤ i ≤ n and hence at a zero zl of some pj the sign
of p is exactly the sign of rj , if a is positive or k is even, and exactly the opposite sign of
rj , if k is odd and a is negative. For all intervals and other points which are not zeros of
some pi we assign “non-zero” sign and will infer the precise signs shortly. This was actually
all we needed from the SE for r0, . . . , rn and can throw it away. Moreover we remove all
points where at least one rj is zero but none of the pj ’s for 0 ≤ j ≤ n. Note that the signs
of p0, . . . , pn are not altered by the removed points, since none of the pi’s is zero and hence
can change its sign. The signs of p0, . . . , pn over the new merged intervals can hence be read
from any of the sub-intervals.

For now we have a SE for p0, . . . , pn, notably we know all zeros of p0, . . . , pn and the exact
sign of p at these zeros. Hence it remains to derive potential zeros of p and its sign over
intervals. This is not difficult since we have the exact signs of p0 = p′ and the intermediate
value theorem at hand. Consider an interval]wi, wi+1[and recall that p′ has no zeros over
]wi, wi+1[, then p has at most one zero in]wi, wi+1[. We can decide this by comparing the
signs of p at wi and wi+1 respectively: they must not be zero and must be different. If such
a zero exists then it is a zero only of p and we introduce a new point u between wi and
wi+1 where p has sign zero at u, the same sign as at wi and wi+1 over]wi, u[and]u,wi+1[
respectively. For the other polynomials we duplicate their signs over the new point and
intervals. If no such zero exists, then the sign of p over]wi, wi+1[is one of its sign at wi or
wi+1, which is not zero. Note that at least one is not zero, since otherwise p′ would have a
zero over]wi, wi+1[.

Definable sets

A subset of R is definable in RCF if and only if it is a finite union of intervals, whose
endpoints are algebraic or infinite. A subset S of Rn is definable in RCF if and only if
it is semi-algebraic, i.e. S =

⋃k
i=1

⋂mi

j=1{~x ∈ Rn | pij(~x) ./ij 0}, where pij(~x) ∈ R[~x] and
./ij∈ {=, >}. See [BR90] for an overview of semi-algebraic sets and their properties.

4.5.2 A derived rule

In order to give a rough idea about the implementation of a derived rule for the algorithm
in §4.5.1, we first present some more polynomials utilities (derivatives) and an encoding of
SE and SM. We subsequently only sketch the main theorems needed for the procedure and
its main loop. We present more implementation details in §4.5.3.

More polynomial utilities

For the implementation of the derived rule we use the univariate polynomials instantiated to
the reals. For ∃x.P (x), where P is qf., we consider polynomials occurring in P as univariate
in x, where the coefficients are polynomials in variables, which are free or bound by outer
quantifiers. We order these variables, say x, y, z etc, so that the coefficients of a polynomial
in x are polynomials in y, whose coefficients are polynomials in z etc. For example y · z ·
x2 + (z − 1) · x · y2 + 5 is represented by [5, [0, 0, [−1, 1] z] y, [0, [0, 1] z] y] x.

The algorithm in §4.5.1 massively uses derivatives, the intermediate value theorem and
the mean value theorem. For the qep. it is important to compute the derivative p′ of a

56

4.5 Real closed fields

datatype σ = Z | P | N | Z\ | >σ

S |=σ p : Z = ∀x ∈ S.p x = 0
S |=σ p : P = ∀x ∈ S.p x > 0
S |=σ p : N = ∀x ∈ S.p x < 0
S |=σ p : Z\ = ∀x ∈ S.p x 6= 0
S |=σ p : >σ = ∀x ∈ S.p x = p x

Figure 4.9: Signs and their interpretation

polynomial p, which is again a polynomial.

pderivh n [] = [] | pderivh n (c · cs) = (n · c) · pderivh (n+ 1) cs
p′ = if p = [] then [] else pderivh 1 p

In (4.58) we prove the main property of the syntactical derivative for polynomials: it
represents the derivative of the polynomial function, indeed. In Isabelle, the derivative of
a real function f at x is formalised by a predicate true for d when limh→0

f(x+h)−f(x)
h = d.

Since derivatives are unique, the following notation using equality is not misleading.

dp

dx
= p′ x (4.58)

The differentiability of polynomials is a trivial consequence of (4.58). The intermediate
value theorem (4.59) and the mean value theorem (4.60) for polynomials follow hence from
their general forms for continuous and differentiable functions. Moreover, the syntactical
derivative is well-defined (cf. (4.61)) in the following sense: if two polynomials are equal (as
functions) then so are the functions induced by their derivatives.

a < b ∧ p a · p b < 0→ ∃x.a < x < b ∧ p x = 0 (4.59)
a < b→ ∃x.a < x < b ∧ (p b− p a = (b− a) · (p′ x)) (4.60)

p = q → p′ = q′ (4.61)

Sign environments and matrices

Since the algorithm in §4.5.1 highly depends on signs and SM, we must represent them
efficiently. Figure 4.9 shows the definition of a datatype σ for signs. The signs Z\ (for not
zero) and >σ (for unknown) are useful to make formal statements about some steps of the
qep. in §4.5.2, where some signs have not been precisely inferred yet. A sign s is precise
(precise s) if s ∈ {Z,N,P}. In Figure 4.9, S |=σ f : s formalises that the real function
f has the sign s over the set S. Ultimately we lift this definition to a list fs of functions
having respective signs ss over a set S. We formalise this by S |=[σ] fs : ss below, which uses
∀2[]. Note that ∀2[] P [x1, . . . , xn] [y1, . . . , ym] formalises

∧n
i=1 P xi yi for n = m and False

otherwise.

∀2[] P [] [] = True | ∀2[] P (x · xs) [] = False | ∀2[] P [] (x · xs) = False

∀2[] P (x · xs) (y · ys) = P x y ∧ ∀2[] P xs ys

S |=[σ] fs : ss = ∀2[] (λf, s.S |=σ f : s) fs ss

In order to express the signs of real functions over a partition of the real line, we first
introduce a function partitionR to partition R into disjoint intervals and points. The result
of partitionR [a, b] is for instance [] −∞, a[, {a},]a, b[, {b},]b,+∞[]. For this to make sense
we also define a list xs of real numbers to contain elements in strictly increasing order if
orderedR xs holds. Note that orderedR [x1, . . . , xn] formalises

∧n−1
i=1 xi < xi+1.

57

Chapter 4 Elimination of quantifiers

partitionR [] = []−∞,+∞[] | partitionR [x] = []−∞, x[, {x},]x,+∞[]
| partitionR (x · y · ys) = ([]−∞, x[, {x},]x, y[])@tl (partitionR (y · ys))

orderedR [] = True | orderedR [x] = True
| orderedR (x · y · ys) = x < y ∧ orderedR (y · ys)

Finally we formalise the SM for several functions over a partition of R.

xs |=[[σ]] fs : m = orderedR xs ∧ ∀2[] (λS, ss.S |=[σ] fs : ss) (partitionR xs) m

Let p1 = [0, 0, 1] = λx.x2 and p2 = [−1, 1] = λx.x− 1 and x1 and x2 their respective roots.
For instance [x1, x2] |=[[σ]] [p1, p2] : [[P,N], [Z,N], [P,N], [P,Z], [P,P]] formalises

x1 < x2 ∧ (∀x < x1.p1(x) > 0) ∧ (∀x < x1.p2(x) < 0) ∧ p1(x1) = 0 ∧ p2(x1) < 0
∧(∀x > x1.x < x2 → p1(x) > 0) ∧ (∀x > x1.x < x2 → p2(x) < 0)

∧p1(x2) > 0 ∧ p2(x2) = 0 ∧ (∀x > x2.p1(x) > 0) ∧ (∀x > x2.p2(x) > 0)

Limit behaviour of real polynomials

After the formalisation of SE and SM, we formalise the relationship between the sign of a
non-constant polynomials p and its derivative p′ near infinity. This helps us to formalise the
step, in §4.5.1, of adding two “points” for +∞ and −∞ with signs determined by those of
the derivative.

We define p to be non-constant if it has more than one coefficient and a non-zero head,
i.e. nonconstant p in (4.62) holds. A key observation is that the degree of a non-constant
polynomial p is even exactly when the degree of p′ is odd, cf. (4.63).

nonconstant p = |p| > 1 ∧ last p 6= 0 (4.62)
nonconstant p→ even(deg p)↔ odd (deg p′) (4.63)

Since the sign of p near infinity is determined by its monomial with highest degree, p
and p′ have the same behaviour near +∞, cf. (4.66) and (4.67), and opposite signs near
−∞, cf. (4.65) and (4.64). The proofs involve monotonic and unbounded sequences and the
mean-value theorem (4.60).

nonconstant p ∧ (∀x < l′.p′ x < 0)→ ∃l < l′.∀y < l.p y > 0 (4.64)
nonconstant p ∧ (∀x < l′.p′ x > 0)→ ∃l < l′.∀y < l.p y < 0 (4.65)

nonconstant p ∧ (∀x > u′.p′ x > 0)→ ∃u > u′.∀y > u.p y > 0 (4.66)
nonconstant p ∧ (∀x > u′.p′ x < 0)→ ∃u > u′.∀y > u.p y < 0 (4.67)

Sign behaviour of real polynomials

Using (4.64)–(4.67) we prove a formalisation of extending the SM by two “points” +∞ and
−∞, cf. (4.68) and (4.69). Let us consider (4.68) more closely, (4.69) is analogous. Let p
be non-constant and assume we have a SM for p′ and other polynomials, and we are in the
process of inferring p’s sign near −∞. Property (4.68) considers a “snapshot” of the SM:
the sign of p near −∞ (the first interval) is not known yet (i.e. >σ), and p′ is positive (i.e.
P). Then (4.68) allows us to introduce a new point z−∞ and copy all entries for the other
polynomials and set the sign of p on the new “point” and interval to negative (i.e. N). There
are analogous versions, where p′ is negative.

58

4.5 Real closed fields

nonconstant p ∧ zs |=[[σ]] (p · p′ · ps) : ((>σ · P · r1) ·m)
→ ∃z−∞.(z−∞ · zs) |=[[σ]] (p · p′ · ps) : ((N · P · r1) · (N · P · r1) · (>σ · P · r1) ·m) (4.68)

nonconstant p ∧ zs |=[[σ]] (p · p′ · ps) : (m@[a, b,>σ · P · r2])
→ ∃z+∞.(zs@[z+∞]) |=[[σ]] (p · p′ · ps) : (m@[a, b,>σ · P · r2,P · P · r2,P · P · r2]) (4.69)

For the sign inference over an interval with finite endpoints, we consider a corresponding
“snapshot”, cf. (4.70), and prove that we can replace the unknown sign for p by a corre-
sponding one (P in (4.70)). We need all variants of (4.70), considering all the combinations
of signs of p on the neighbour intervals and the sign of p′. The proofs use the intermediate
value theorem (4.59).

(zs@x · y · zs ′) |=[[σ]] (p · p′ · fs) : (m@(P · r1) · (>σ · P · r2) · (P · r3) ·m′)
∧|m| = 2 · |zs|+ 1

→ (zs@x · y · zs ′) |=[[σ]] (p · p′ · fs) : (m@(P · r1) · (P · P · r2) · (P · r3) ·m′)

The sign inference on points is analogous. In (4.70), we consider again a “snapshot” of
the SM at the polynomials we are interested in. Recall from §4.5.1 that at this stage we
infer the sign of p at a point, which is a zero of q, using the sign of the pseud-remainder r of
p by q, i.e. we have an · p(x) = q(x) · s(x) + r(x), for some n and s(x). We show a particular
case in (4.70), but we need all the remaining combinations of signs.

zs@(x · zs ′) |=[[σ]] (p · ps@q · qs@r · rs) : (m@((>σ · s1@Z · s2@P · s3) ·m′))
∧|ps| = |s1| ∧ |qs| = |s2| ∧ odd |m| ∧ (∀x.an · p(x) = s(x) · q(x) + r(x)) ∧ a 6= 0 ∧ even n

→ zs@x · zs ′ |=[[σ]] (p · ps@q · qs@r · rs) : (m@(P · s1@Z · s2@P · s3) ·m′)
(4.70)

Sign inference is the main part of the procedure. From the 6000 lines of proofs we needed
for all theorems involved in the procedure, we needed 5000 lines for limit and sign behaviour
theorems.

Implementation

We ported the derived rule from HOL Light, presented in [MH05], which follows the imple-
mentation in [Har08, §5.9]. In §4.5.3, we present a formalisation of [Har08, §5.9] in detail.
The computation and proofs about SM is organised by continuations, as we shall see in
§4.5.3. Our implementation is at the debugging stage by now, but works for some examples.
Debugging continuation passing style implementations is tedious. The implementation of
the procedure itself is not as challenging as the proofs, needed to argue all the steps in §4.5.1.
In [MH05] the authors share this experience. In our case we needed 6000 lines of Isabelle
proofs, and 3500 lines of SML code.

4.5.3 An unfinished reflection

Unfortunately we have not been able to finish a reflection of §4.5.1 on time. Nevertheless,
we think that there are some lessons and new problems worth presenting. We reflect RCF
formulae by φ and their semantics L.M. in Figure 4.10. The type ρ is that of reflected
multivariate polynomials in §3.1.2 but with rational coefficients. We present and motivate
this change in more detail in the following. After that we present how we deal with SE and
SM and how we transfer all the useful results of §4.5.2 to ρ-polynomials. The rest of the
section formalises a working qep. for RCF, presents our steps so far and raises the problems
we encountered. For the formalisation of this reflection, we needed 1000 lines of Isabelle
definitions for the implementation inside HOL. The presented reflection needed 4000 lines
of Isabelle proofs so far.

59

Chapter 4 Elimination of quantifiers

datatype φ = T | F | ρ=ρ | ρ 6=ρ | ρ< ρ | ρ≤ ρ | ρ> ρ | ρ≥ ρ
| ¬ φ | φ ∧φ | φ ∨φ | φ → φ | φ ↔ φ | ∃ φ | ∀ φ

LT Me = True
LF Me = False
Ls< tMe = LsMe

ρ < LtMe
ρ

Ls> tMe = LsMe
ρ > LtMe

ρ

Ls≤ tMe = LsMe
ρ ≤ LtMe

ρ

Ls≥ tMe = LsMe
ρ ≥ LtMe

ρ

Ls= tMe = (LsMe
ρ = LtMe

ρ)
Ls 6= tMe = LsMe

ρ 6= LtMe
ρ

L¬pMe = ¬LpMe

Lp∧ qMe = LpMe ∧ LqMe

Lp∨ qMe = LpMe ∨ LqMe

Lp→ qMe = LpMe → LqMe

Lp↔ qMe = LpMe ↔ LqMe

L∃ pMe = ∃x.LpMx·e

L∀ pMe = ∀x.LpMx·e

Figure 4.10: Syntax and semantics of RCF formulae

Polynomials

We use the ρ-polynomials of §3.1.2 instantiated to the reals, but with a minor change:
coefficients are rational, i.e. â : b where a :: Z and b :: Z. This modification is not necessary
but it is more efficient and even simplifies some proofs. Assume for example that 2·x2−3·y >
0 is a sign assumption. When we encounter −4 · x2 + 6 · y we would like to deduce that it is
negative. For this we make all polynomials in sign assumptions monic, i.e. we divide them
by their head’s coefficient. To achieve the previous goal without using rational numbers, we
would need e.g. complicated gcd computations. Rational numbers are just pairs of integers
i : j interpreted as field elements by Li : jMr = i/j. This representation is not unique in
general, but it is for those in normal form (i.e. satisfying isnormr), see (4.71):

isnormr (i : j) = if i = 0 then j = 0 else b > 0 ∧ gcd i j = 1
isnormr a ∧ isnormr b→ LaMr = LbMr ↔ a = b (4.71)

We implement the usual arithmetical operations (+r, ·r,−r,/r) and ordering relations (<r

,≤r) and prove them correct:

isnormr a ∧ isnormr b→
La ◦ bMr = LaMr ◦ LbMr ∧ (a ./ b↔ LaMr ./ LbMr) ∧ isnormr (a ◦ b), (4.72)

for (◦, ◦) ∈ {(+r,+), (·r, ·), (−r,−), (/r, /)} and (./, ./) ∈ {(<r, <), (≤r,≤)}.

It is important to note that the implementation does not raise an exception but correctly
returns 0 as a result for x/0. This reflects Isabelle/HOL’s behaviour correctly. We also
provide a function normr to normalise any i : j and prove it correct. In the following ir

denotes i :1 for any integer i 6= 0 and 0r denotes 0 :0. We adapt the normal form (ishornh in
§3.1.2) to enforce that the rational coefficients are in normal form. All theorems we presented
in §3.1.2 still hold.

We implement the derivative of p :: ρ with respect to the bound variable v0 by dp
dv0

.

pderivhρ n p = case p of c + v0 ∗ p ⇒ (n̂r � c) + v0 ∗ (pderivhρ (n+ 1) p)

| ⇒ n̂r � p

dp

dv0
= case p of c + v0 ∗ q ⇒ pderivhρ 1 p | ⇒ dp

dv0
= 0ρ

Recall from §3.1.2 that given an environment e :: [R] we can view p :: ρ as univariate in
the sense of §3.1.1 by considering [p]e. Recall also the key property (3.26). Ultimately we
relate both derivative implementations:

ishorn p→ L
dp

dv0
Mx·e
ρ = ([p]x·e)′ x (4.73)

The proof of (4.73) is by induction on p. Using this technique (“changing the point of view”)
we transfer all the tediously proved theorems in §4.5.2 to ρ-polynomials. Subsequently we
define interpretation of signs for ρ-polynomials such that all the signs-related theorems of
§4.5.2 are transferred to ρ-polynomials.

60

4.5 Real closed fields

Sign environments and matrices

In contrast to §4.5.2, we need SE and SM only for computations. More precisely, we need the
interpretation of SE and SM (e.g. xs |=[[σ]] fs : m in §4.5.2) only to prove our implementation
correct. The first step is to interpret signs for ρ-polynomials and to establish a connection
to all useful theorems proved in §4.5.2. We use the “changing point of view” to define the
interpretations:

S, e |=ρ
σ p : s = S |=σ [p]e : s (4.74)

S, e |=ρ
[σ] ps : ss = ∀2[] (λp, s.S, e |=ρ

σ p : s) ps ss (4.75)

xs, e |=ρ
[[σ]] ps : m = orderedR xs ∧ ∀2[] (λS, ss.S, e |=ρ

[σ] ps : ss) (partitionR xs) m (4.76)

In the implementation we represent a SE by an association list se :: [ρ×σ]. An association
list se describes a partial function (denoted by

⇀
se :: ρ ⇀ σ) mapping p to bsc, if (p, s) is the

first occurrence in se, and ⊥ otherwise. Here bc and ⊥ are the constructors of the option
type bαc over the HOL type α. The HOL type α ⇀ β is just a suggestive notation for
α ⇒ bβc. We use del p se to remove all entries for p in se. In the following we often need
to lift functions to deal with option-values. For this we define pfq and pg⊥

q below. For a
binary function g we also denote its lifted version by pgq. Note the strictness with respect
to ⊥. Since the implementation in [Har08] heavily uses exceptions, the lifters below were
very helpful for an implementation in HOL. In most cases, an exception in [Har08] means
that the we have proved False from the current SM. We deal with this using pfF

q to lift a
function f :: α⇒ φ to deal with option-values where ⊥ is interpreted as F .

pfq x = case x of ⊥ ⇒ ⊥ | byc ⇒ bf yc
pg⊥

q x = case x of ⊥ ⇒ ⊥ | byc ⇒ g y

pfF
q x = case x of ⊥ ⇒ F | byc ⇒ f y

pgq x y = case (x, y) of (bac, bbc)⇒ bg a bc | ⇒ ⊥

Since se contains both polynomials and signs we also write S, e |=ρ
[σ] se to denote ∀(p, s) ∈

{{se}}.S, e |=ρ
σ p : s or equivalently S, e |=ρ

[σ] (map fst se) : (map snd se). We use and
maintain well-formed SE satisfying wf: no polynomial is assigned a sign twice and all signs
are precise.

wf se = distinct (map fst se) ∧ ∀(p, s) ∈ {{se}}.precise s

In SE, we also ensure that all polynomials are normalised and monic, i.e. their leading
coefficient is 1r. For that we define monic p to return a pair (q, b), where q is the resulting
monic polynomial and b is True if and only if the leading coefficient of p was negative. This
is important to know since we must swap the sign under consideration if we divide by a
negative number. This swapping is done by swapσ.

swapσ s b = if ¬ b then s else (case s of P⇒ N | N⇒ P | ⇒ s)
hconst (c + vn ∗ p) = hconst p
hconst â = a
monic p = let h = hconst p

in if h = 0r then (p,False) else (1̂r /r h� p, h <r 0r)

For monic we prove two key properties: (4.77) states that monic divides by the head’s
coefficient, and (4.78) relates the sign of a polynomial and that of its monic version.

ishorn p→ Lhconst pMe
ρ · Lfst (monic p)Me

ρ = LpMe
ρ (4.77)

monic p = (q, b)→ S, e |=ρ
σ q : (swapσ b s) = S, e |=ρ

σ p : s (4.78)

61

Chapter 4 Elimination of quantifiers

findσ se p = let (q, b) = monic p in p(swapσ b)q (
⇀
se q)

se[p← s] =
if p = 0ρthen if s = Z then bsecelse ⊥
else let (p′, b) = monic p ; s′ = swapσ b s ;
t = (case

⇀
se p′ of bt′c ⇒ t′ | ⊥ ⇒ s′)

in if s′ = t then b(p′, s′) · (del p′ se)c else ⊥

Figure 4.11: Finding and asserting signs

In Figure 4.11 we define two main operations on a SE se. Given p :: ρ, findσ se p tries
to find p’s sign in se. The call se[p← s] tries to add the new assumption “p has sign s” to
se. Both functions consider monic polynomials and both might fail (i.e. return ⊥). Failure
in findσ se p occurs exactly when q 6∈ dom(

⇀
se), where monic p = (q, b), cf. (4.79). In the

success case findσ se p = bsc we prove that S, e |=ρ
σ p : s is a consequence of S, e |=ρ

[σ] se,
for well-formed se, cf. (4.80).

findσ se p = ⊥ ↔ fst (monic p) 6∈ dom(
⇀
se) (4.79)

ishorn p ∧ wf se ∧ findσ se p = bsc ∧ S, e |=ρ
[σ] se → S, e |=ρ

σ p : s (4.80)

If sign assertion fails, se[p← s] = ⊥, then assuming p has sign s contradicts the remaining
assumptions in se. If se[p ← s] = bse0c, then se0 contains both, the old assumptions in se
and the new one. Property (4.81) formalises this explanation in a stronger form (note the
↔). Moreover, if se is well-formed, then so is se0, cf. (4.82).

S 6= ∅ ∧ precise s ∧ ishorn p ∧ wf se →
(case se[p← s] of bse0c ⇒ S, e |=ρ

[σ] se0 | ⊥ ⇒ False)↔ S, e |=ρ
[σ] se ∧ S, e |=ρ

σ p : s
(4.81)

se[p← s] = bse0c ∧ wf se → wf se0

(4.82)

Sign inference

The sign inference takes place in deduceσ (see Figure 4.12). Recall from §4.5.1 that to
determine a SE for p, p1, . . . , pn we just need one for p0, p1, . . . , pn, r0, . . . , rn, where p0 = p′

and ri is the pseudo-division remainder of p by pi, for 0 ≤ i ≤ n. In the call deduceσ ct m,
we assume that m is a SM environment for p0, . . . , pn, r0, . . . , rn, and that ct is the actual
continuation. Note that |hd m| = 2 · (n + 1) and hence splitting the SE in m into the half
(using chop), we obtain two separate SEs: pe for p0, . . . , pn and re for r0, . . . , rn. Ultimately
we infer the signs of p at the points where one of the pi’s is zero, using inferσ pe re. Now we
can throw away all points (and their neighbouring intervals) where we have no zeros (using
red). This yields the temporary SM m1. In the next step, deduceσ extends m1 with two
“points” for −∞ and +∞ (this is m2), whose respective signs are determined by the sign
of the derivative p0 = p′ at the first and last point, respectively. For −∞ we must swap
the sign, since near −∞, p and p′ have opposite signs, due to the even vs. odd behaviour
of p’s and p′’s degrees. Ultimately the step of inferring the right signs on the intervals and
determining the new zeros of p is done by infer]σ[m2. Of course we remove the two ±∞-
“points” after this step. This is simply done by butlast ◦ tl, but since infer]σ[m2 might fail,
we lift it. The result is m3, which is the right SM for p, p0, . . . , pn. In the last step we just
remove all entries of p0, reduce the matrix and finally apply the continuation. Note that
infer]σ[m2 fails if and only if m2 has inconsistent signs or a point with an imprecise sign.
We have proved all “mathematical” theorems needed for sign inference in §4.5.2. We have
not proved anything worth mentioning for the reflective implementation.

62

4.5 Real closed fields

inferσ pe re = case index (λx.x = Z) pe of bic ⇒ (re!i) · pe | ⊥ ⇒ Z\ · pe
red (is · xs · r) = let r′ = red r in if (Z ∈ {{xs}}) then is · xs · r′ else r′

red m = m

infer]σ[((l · ls) · (i · is) · (r · rs) ·m) =
if (l = Z ∧ r = Z) ∨ l = Z\ ∨ r = Z\then ⊥
else if l = Z then p(λxs.(l · ls) · (r · is) · xs)q (infer]σ[((r · rs) ·m))
else if r = Z then p(λxs.(l · ls) · (l · is) · xs)q (infer]σ[((r · rs) ·m))
else if l = r ∧ r ∈ {N,P}

then p(λxs.(l · ls) · (l · is) · xs)q (infer]σ[((r · rs) ·m))
else p(λxs.(l · ls) · (l · is) · (Z · is) · (r · is) · xs)q (infer]σ[((r · rs) ·m))

infer]σ[ps = bpsc
deduceσ ct m =

let l = |hd m|
2 ;

m1 = red (map((λ(x, y).inferσ x y) ◦ (chop l))m) ;
m2 = ([swapσ True ((hd m1)!1)] ·m1)@[[(last m1)!1]] ;
m3 = p(butlast ◦ tl)q (infer]σ[m2)

in pctF
q (predq (p(map (λl.(hd l) · (tl (tl l))))q

m3))

Figure 4.12: Sign inference

testφ se (f 3 g) = testφ se f 3 testφ se g
for (3,3) ∈ {(∧,∧), (∨,∨), (→,→), (↔,↔)}

testφ (p=0ρ) = case
⇀
se p of bsc ⇒ s = Z | ⇒ False

testφ (p 6=0ρ) = case
⇀
se p of bsc ⇒ s 6= Z | ⇒ False

testφ (p<0ρ) = case
⇀
se p of bsc ⇒ s = N | ⇒ False

testφ (p>0ρ) = case
⇀
se p of bsc ⇒ s = P | ⇒ False

testφ (p≤0ρ) = case
⇀
se p of bsc ⇒ s ∈ {Z,N} | ⇒ False

testφ (p≥0ρ) = case
⇀
se p of bsc ⇒ s ∈ {Z,P} | ⇒ False

Figure 4.13: Evaluation of φ-formulae in SE

The main loop

Before we explain the main loop, let us consider testφ, the evaluation of a formula in a SE
(see Figure 4.13). Let pols f (not shown) compute a list of all polynomials occurring in a qf.
φ-formula f . For any well-formed SE se defining the signs of all polynomials in pols f , f is
semantically equivalent to the result of testφ over S, whenever S, e |=ρ

[σ] se holds, cf. (4.83).

qfree f ∧ wf se ∧ {{pols f}} ⊆ dom(
⇀
se) ∧ S, e |=ρ

[σ] se

→ ∀x ∈ S.LfMx·e ↔ testφ se f
(4.83)

Given a qf. φ-formula f , the qep. for one ∃ (see qe∃R in Figure 4.14) first simplifies f
to g and then computes ps = pols g and ultimately calls the main loop (see casesplit in
Figure 4.15). Before we continue, we must clarify the meaning of Figure 4.15. It represents
what we input to Isabelle. Since we have not proved the termination of these functions, the
equations in Figure 4.15 do not hold in Isabelle/HOL. This is the unique exception in this
thesis. The main loop is organised in three mutually recursive functions, all of them are
continuation-based. In our context we have two kinds of continuations: one for SE of type
[ρ× σ] ⇒ φ, and one for SM of type [[σ]] ⇒ φ. We use SE-continuations to split over the

63

Chapter 4 Elimination of quantifiers

qe∃R f = let g = simpφ f ; ps = pols g ;
ct = (λm.if (∃se ∈ {{m}}.testφ g (zip ps se)) then T else F)

in (simpφ ◦ decrφ) (casesplit [] ps ct [(0ρ,Z), (1ρ,P)])
qeR = qelim qe∃R

Figure 4.14: The main qe. procedure

casesplit ds [] ct se = matrix ds ct se
casesplit ds (p · ps) ct se =

splitσ (head 0 p)
(if unboundρ p then delconst ds p ps ct else casesplit ds (behead p · ps) ct)
(if unboundρ p then delconst ds p ps ct else casesplit (ds@[p]) ps ct) se

delconst ds p ps ct se =
casesplit ds ps (λm.ct (map (insertat |ds| (the (findσ se p))) m)) se

matrix [] ct se = ct [[]]
matrix (a · as) ct se =

let ps = a · as ; p = foldr (λp, q.if degρ 0 p > degρ 0 q then p else q) as a
p′ = dp

dv0
; i = the (index (λx.x = p) ps) ;

qs = (let (p1, p2) = chop i ps in p′ · p1@tl p2)
gs = foldr ((p(λx, xs.x · xs)q) ◦ (pdivρ>0 se p)) qs b[]c ;
ct ′ = (λm.ct (map (λl.insertat i (hd l) (tl l)) m))

in case gs of ⊥ ⇒ F | bgs ′c ⇒ casesplit [] (qs@gs ′) (deduceσ ct ′) se

Figure 4.15: The main loop

heads of the polynomials in ps in casesplit. This splitting is organised by function splitσ,
which we consider more closely later on. During case split we detect constant polynomials
(unboundρ) and add their signs to the SM using delconst. Function casesplit also records
which polynomials have been considered so far and moves them to ds (cf. Figure 4.15). We
start the main loop with the SE for 0ρ and 1ρ only.

After splitting over all head’s signs, we compute the SM of ps (by then copied into ds)
using matrix. Function matrix computes the SM as we described it in §4.5.1. We use SM-
continuations to express the recursive SM computations using derivative and pseudo-division
(see Figure 4.16). Function pdivρ>0 returns the pseudo-remainder possibly negated depend-
ing on the head’s sign in the actual SE. for later computations, the sign of p will be exactly
the sign of r, cf. (4.86). Note also that pdivρ>0 fails exactly when the head’s sign is zero
or undefined, cf. (4.84), and that the degree of the result is strictly less than the input, cf.
(4.85). This last property plays an important role in the termination proof of the main loop.

pdivρ>0 se p q = ⊥ ↔ (findσ se (head q 0) ∈ {⊥, bZc}) (4.84)

ishorn p ∧ ishorn q ∧ ¬unboundρ q ∧ pdivρ>0 se p q = brc → degρ r 0 < degρ q 0 (4.85)

ishorn p ∧ ishorn q ∧ q 6= 0ρ ∧ wf se ∧ pdivρ>0 se p q = brc ∧ S, e |=ρ
σ q : Z

→ ∀s.precise s→ S, e |=ρ
σ p : s↔ S, e |=ρ

σ r : s (4.86)

pdivρ>0 se s p =
let a = head 0 p ; (k, r) = s� p ; t = findσ se a
in if t ∈ {bZc,⊥}then ⊥

else if (t = bPc ∨ even k) then brcelse b� rc

Figure 4.16: Pseudo-division within SE

64

4.5 Real closed fields

splitσ p ctZ ctZ\ se = case findσ se p of
bsc ⇒ (if s = Z then ctZ else ctZ\)se
| ⊥ ⇒ p=0ρ ∧ pctZF

q (se[p← Z])∨
p>0ρ ∧ pctZ\F

q (se[p← P])∨ p<0ρ ∧ pctZ\F
q(se[p← N])

Figure 4.17: Organisation of case splittings on signs

We call the main loop with a simple SM-continuation ct (cf. also Figure 4.14)

ct = λm.if (∃se ∈ {{m}}.testφ g (zip ps se)) then T else F .

Given a SM m, we test if there is a SE satisfying g. Function matrix updates this basic
SM-continuation by adding the signs computed so far, and finally calls it on the empty SM,
when no polynomials need to be considered. Due to the updates on the SM-continuation,
the full SM is computed out of the empty SM and all the case splits are encoded in the
resulting formula. The final step of qe∃R decreases the de Brujin indices and simplifies, cf.
Figure 4.14.

Let us now consider splitσ :: ρ ⇒ ([ρ × σ] ⇒ φ) ⇒ ([ρ × σ] ⇒ φ) ⇒ [ρ × σ] ⇒ φ in
Figure 4.17, the organiser of case splittings. The result of splitσ p ctZ ctZ\ se is a φ-formula
where we split over the signs of p but taking the SE se into account. Further computations
are performed by the two SE-continuations ctZ and ctZ\, which already assume that p has sign
zero and not zero (i.e. positive or negative) respectively. Note that splitσ p ctZ ctZ\ is itself
a SE-continuation. Interesting properties about splitσ must assume a functional behaviour
of the parameter SE-continuations. Such properties have a pre- and post-condition flavour.
One main challenge in the verification of continuation-based functions is to find an invariant
strong enough to prove correctness. Let S, e |=φ f ↔ g be short for ∀x ∈ S.LfMx·e ↔ LgMx·e.
In (4.87) we prove such a property for splitσ, but since the verification is not completed, we
do not know if the invariant is strong enough. Probably not.

S 6= ∅ ∧ ishorn p ∧ wf se ∧ (∃s.precise s ∧ S, e |=ρ
σ p : s)∧

(∀s, se.wfse ∧ S, e |=ρ
[σ] se ∧ s ∈ {P,N} ∧ S, e |=ρ

σ p : s→ S, e |=φ f ↔ ctZ\ se)∧

(∀se.wfse ∧ S, e |=ρ
[σ] se ∧ S, e |=ρ

σ p : Z→ S, e |=φ f ↔ ctZ se)→

S, e |=φ f ↔ splitσ p ctZ ctZ\ se (4.87)

Note that since splitσ is always called on the head of some polynomial, which is constant, it
is very easy to discharge the ∃s.precise s ∧ S, e |=ρ

σ p : s assumption.

Challenges and more questions

In §4.5.2 we have proved all “mathematical” properties about polynomials we need, and
we have presented means of transferring these properties to ρ-polynomials. The remaining
challenge in the verification of qeR is to find strong invariants, which accurately describe
the functional behaviour of SE- and SM-continuations. The general problem of verifying
continuation-based programs is an interesting challenge.

A further challenge and question is related to partial functions. So far, we have not proved
that the main-loop functions terminate. Hence, from a HOL perspective, the equations in
Figure 4.15 do not hold. Consequently, we can not generate ML code for the procedure,
without assuming the equations. We can argue that this step is correct only in meta-theory
(on paper, outside HOL). More generally, code-generation for partial functions is a very
interesting topic, so far with no satisfying answers. Assume we have a HOL partial function
f . Are we allowed to execute the definition of f on inputs x such that x ∈ dom(f)? If yes,
can we have a proof or proof-method in HOL?

65

Chapter 4 Elimination of quantifiers

4.5.4 Heuristics to reduce sign-assumptions

An undesirable property of the sign-splittings so far is that it splits over all signs blindly,
where some of them can be safely omitted by syntactical checks. A square polynomial,
e.g. y2, will never take negative values, and hence assuming y2 < 0 already leads to a
contradiction. This should be detected at the splitting-stage. Note that this does not only
influence the run-time of the qep., but also the size of the qe. result.

We subsequently consider a few simple syntactical tests according to which some splittings
can be safely avoided and prove this new splitting approach correct.

Assume we have a heuristic function h that given a SE se, a polynomial p and a sign
s returns True only if se[p ← s] is inconsistent, then we can parametrise sign assertions
by h. Note that the constant function h0 = λse, q, s.False is a correct yet useless heuristic
(se[p← s]h0 = se[p← s]). We prove the generic property (4.88).

se[p← s]h = if p = 0ρ then if s = Z then bsecelse⊥
else let (p′, b) = monic p ; s′ = swapσ b s ;

t = (case
⇀
se p′ of bt′c ⇒ t′ | ⊥ ⇒ s′)

in if s′ = t ∧ ¬h se p′ s′ then b(p′, s′) · (del p′ se)c else ⊥

S 6= ∅ ∧ precise s ∧ ishorn p ∧ wf se (4.88)
∧(∀S, se, p, s, e.wf se ∧ S 6= ∅ ∧ ishorn p ∧ h se p s→ ¬(S |=e se ∧ S |=e p : s)

→ (case se[p← s]h of ⊥ ⇒ False | bse0c ⇒ S |=e se0)↔ S |=e se ∧ S |=e p : s

In the following we develop an instance of h. Let us first consider simple criteria for p :: ρ
to be zero (p=?

se0ρ), non-positive (p≤?
se0ρ) or non-negative (p≥?

se0ρ) in a SE se. If p = 0ρ

or findσ se p = bZc then clearly p is zero, i.e.

p=?
se0ρ = (p = 0ρ ∨ findσ se p = bZc) (4.89)

Note that we can test non-positivity and non-negativity of a constant polynomial rρ directly.
Assume p has the form c + vn ∗ d + vm ∗ q, and consider the two cases n = m and n 6= m.
If n = m, then a sufficient non-negativity condition for p is that c≥?

se0ρ∧q≥?
se0ρ and either

d=?
se0ρ or d≥?

se0ρ ∧ vn≥?
se0ρ or d≤?

se0ρ ∧ vn≤?
se0ρ. Now assume n 6= m. If there is no

assumption on the sign of vn in se, then a sufficient condition is c≥?
se0ρ∧d + vm ∗ q≥?

se0ρ.
Assume vn is assigned a sign s in se. If s = Z then we require c≥?

se0ρ, if s = P then
c≥?

se0ρ ∧ d + vm ∗ q≥?
se0ρ is sufficient and if s = N then c≥?

se0ρ ∧ d + vm ∗ q≤?
se0ρ is

sufficient. We define the other cases analogously. Non-positivity proceeds similarly. Note
that the definition of non-positivity and that of non-negativity are mutually recursive. We
omit the definitions since these are lengthy and technical, while their idea is already captured
by the previous sketch. Using these functions we define a simple heuristic h and prove it
correct:

h se p s = case s of Z⇒ False | P⇒ p≤?
se0ρ | N⇒ p≥?

se0ρ | ⇒ False (4.90)
∀S, se, p, s, e.wf se ∧ S 6= ∅ ∧ ishorn p ∧ h se p s→ ¬(S |=e se ∧ S |=e p : s) (4.91)

Ultimately (4.81) holds, when se[p← s] is replaced by se[p← s]h.

4.5.5 Optimisations using linear and quadratic equations

In the following we show how to exploit the following rule, which leads to immediate elimi-
nation of the quantifier.

(∃x.x = t ∧ P (x))↔ P (t).

Of course in practice we expect that equality x = t should be recognised within all con-
juncts under ∃, i.e. it does not have to appear immediately after ∃ and it could also be t = x,

66

4.5 Real closed fields

or 5 · x+ y − z = 3 · z, for this is equivalent to x = 4·z−y
5 . Recognising equations containing

the bound variable linearly is simple. Note that it is not trivial to substitute e.g. z2+y
y2+4·z for

x only using the language of rings. This is subsumed by the techniques we consider in this
section.

In the following we show how to use a quadratic equation to optimise qe., i.e. we treat
formulae of the form ∃x.a · x2 + b · x + c = 0 ∧ P (x). This case is practically relevant, see
[Wei97b] upon which we base the following formalisation.

The solution of the quadratic equation over the reals is expressed in (4.92) or equivalently
in (4.93) in terms of the discriminant ∆ = b2 − 4 · a · c and δ =

√
∆.

a · x2 + b · x+ c = 0↔ a = 0 ∧ (b = c = 0 ∨ b 6= 0 ∧ x =
−c
b

)∨

a 6= 0 ∧∆ ≥ 0 ∧ (x =
−b− δ
2 · a

∨ x =
−b+ δ

2 · a
) (4.92)

(∃x.a · x2 + b · x+ c = 0 ∧ P x)↔ a = 0 ∧ (b = c = 0 ∧ (∃x.P x) ∨ b 6= 0 ∧ P (
−c
b

))∨

a 6= 0 ∧∆ ≥ 0 ∧ (P (
−b− δ
2 · a

) ∨ P (
−b+ δ

2 · a
)). (4.93)

Assume that P (−c
b) and P (−b±

√
∆

2·a) have qf. equivalent formulae in our language for R,
then (4.93) ultimately yields qe. for ∃x.a · x2 + b · x + c = 0 ∧ P (x) under the condition
that ¬(a = b = c = 0) and that P is qf. Recall that the coefficients a, b and c are generally
multivariate polynomials in the remaining variables. Weispfenning gave in [Wei97b] an
algorithm to construct qf. formulae equivalent to P (−c

b) and P (−b±
√

∆
2·a), which we formalise

in the following.

Fractions and their virtual substitution

In §4.3.1 we have already developed a virtual substitution of fractions, but there we consid-
ered only linear polynomials and the problem was much simpler. Here we need to substitute
fractions into polynomial expressions (this yields a fraction) and then transform the atoms
accordingly. As it will soon become clear, we only need to manipulate fractions with the
same denominator, taken to different powers though. Let

p

qn
denote the fraction of the

ρ-polynomial p by the ρ-polynomial q to the power of n. Formally these are just triples
interpreted by L

p

qn
Me
f (cf. (4.94)) and which we call normal and compatible if they satisfy

isnorme and ≡/ in (4.95) and (4.96), respectively.

L
p

qn
Me
f =

LpMe
ρ

(LqMe
ρ)n

(4.94)

isnorme
p

qn
= unboundρ p ∧ unboundρ q ∧ ishorn p ∧ ishorn q ∧ (LqMe

ρ)n 6= 0 (4.95)

a

bn
≡/

c

dm
↔ b = d (4.96)

We define addition (
a

bn
+f

c

dm
) and multiplication (

a

bn
∗f

c

dm
) of two normal and com-

patible fractions
a

bn
and

c

dm
in (4.97) and (4.98):

a

bn
+f

c

dm
= let k = max m n; l = min m n in

b↓m−l � a� b↓n−l � c

bk
(4.97)

a

bn
∗f

c

dm
=
a� c

bn+m
. (4.98)

Now we can define the substitution p[
a

bn
]ρ of a normal fraction

a

bn
for the bound variable v0

in a ρ-polynomial p (just recursively apply addition and multiplication of fractions). Note

67

Chapter 4 Elimination of quantifiers

that the result is a fraction. The following key properties (4.99) and (4.100) state that these
operations preserve the semantics, normal form and compatibility:

isnorme a

bn
∧ isnorme c

dm
∧ a

bn
≡/

c

dm
→

isnorme (
a

bn
β

c

dm
) ∧ L

a

bn
β

c

dm
Me
f = L

a

bn
Me
f ◦ L

c

dm
Me
f ∧

a

bn
β

c

dm
≡/

a

bn
(4.99)

for (β, ◦) ∈ {(+f ,+), (∗f , ·)}

isnormx·e a

bn
∧ ishorn p→ isnormx·e p[

a

bn
]ρ ∧ Lp[

a

bn
]ρMx·e

f = LpM
(L
a

bn
Mx·e
f)·e

ρ (4.100)

Now the substitution f [
a

bn
]φ of a normal fraction

a

bn
into a formula f is simple: for an

atom q ./ 0ρ, where ./∈ {<,≤,=}, compute the fraction
p

bk
= q[

a

bn
]ρ and return


p=0ρ for ./ = =
p≥0ρ ∧ b↓δk ≤0ρ ∨ p≤0ρ ∧ b↓δk ≥0ρ for ./ = ≤
p>0ρ ∧ b↓δk <0ρ ∨ p<0ρ ∧ b↓δk >0ρ for ./ = <,

where δk formalises Kronecker δ for odd k, i.e. δk = 0 if k is even and 1 otherwise, for any
k :: N. We finish the substitution of fractions by proving the main property in (4.101).

qfree p ∧ isnormx·e a

bn
∧ allρ ishorn p→

Lp[
a

bn
]φMx·e ↔ LpM

(L
a

bn
Mx·e
f)·e

∧ unboundφ (p[
a

bn
]φ).

(4.101)

Surds and their virtual substitution

Let a surd expression be d−k(a + bc
1
2) for a natural number k and ρ-polynomials a, b, c

and d. Formally this is just a 5-tuple interpreted in an environment e by Ld−k1(a + bc
1
2)Me√

(cf. (4.102)) and which we call normal and compatible with l−k2(f + gh
1
2) if it respectively

satisfies isnorme in (4.103) and d−k1(a + bc
1
2) ≡√ l−k2(f + gh

1
2) in (4.104).

Ld−k(a + bc
1
2)Me√ =

LaMe
ρ + LbMe

ρ ·
√

LcMe
ρ

(LdMe
ρ)k

(4.102)

isnorme d−k(a + bc
1
2) = LdMe

ρ 6= 0 ∧ LcMe
ρ ≥ 0

∧∀q ∈ {a, b, c, d}.ishorn q ∧ unboundρ q (4.103)

d−k1(a + bc
1
2) ≡√ l−k2(f + gh

1
2) = c = h ∧ d = l (4.104)

As before, we define the addition +√ and multiplication ∗√ of two normalised and compatible
surd expressions in (4.105) and (4.106), respectively.

d−k1(a + bc
1
2) +√l−k2(f + gh

1
2) =

let k = max k1 k2 ; d1 = d↓(k−k1) ; d2 = d↓(k−k2)

in d−k((d1 � a� d2 � f) + (d2 � b� g� d1)c
1
2) (4.105)

d−k1(a + bc
1
2) ∗√l−k2(f + gh

1
2) =

d−(k1+k2)((a� f � b� g� c) + (a� g� f � b)c
1
2) (4.106)

68

4.5 Real closed fields

It is an easy exercise to prove the previous operations correct, cf. (4.107) and to define the
substitution p[d−k(a + bc

1
2)]ρ of a normalised surd d−k(a + bc

1
2) into a ρ-polynomial p

and prove it correct, cf. (4.108).

isnorme d−k1(a + bc
1
2) ∧ isnorme l−k2(f + gh

1
2) ∧ d−k1(a + bc

1
2) ≡√ l−k2(f + gh

1
2)

→ Ld−k1(a + bc
1
2)β l−k2(f + gh

1
2)Me√ = Ld−k1(a + bc

1
2)Me√ ◦ Ll−k2(f + gh

1
2)Me√

∧isnorme (d−k1(a + bc
1
2)β l−k2(f + gh

1
2)) for (β, ◦) ∈ {(+√,+), (∗√, ·)}

(4.107)

isnormx·e d−k1(a + bc
1
2) ∧ ishorn p→

isnorme p[d−k(a + bc
1
2)]ρ ∧ Lp[d−k(a + bc

1
2)]ρMx·vs√ = LpM

(Ld−k(a+bc
1
2)Mx·e√)·e

ρ (4.108)

Now we are ready for the substitution f [d−k(a + bc
1
2)]φ of a normalised surd expression

d−k(a + bc
1
2) into a formula f . Similarly to the previous case of fractions, it is sufficient

to construct formulae semantically equivalent to Ld−k(a + bc
1
2)Me√ β 0, for β ∈ {=,<,≤}.

First consider the simple case where LbMe
ρ = 0. Then the following holds:

Ld−k(a + bc
1
2)Me√ = 0↔ LaMe

ρ = 0 (4.109)

Ld−k(a + bc
1
2)Me√ ≤ 0↔ La� d↓δkMe

ρ ≤ 0 (4.110)

Ld−k(a + bc
1
2)Me√ < 0↔ La� d↓δkMe

ρ < 0 (4.111)

In the general case, the following holds:

Ld−k(a + bc
1
2)Me√ = 0↔La� b≤0ρ ∧ a↓2 � b↓2 � c=0ρMe (4.112)

Ld−k(a + bc
1
2)Me√ ≤ 0↔La� d↓δk ≤0ρ ∧ a↓2 � b↓2 � c≥0ρMe

∨ Lb� d↓δk ≤0ρ ∧ a↓2 � b↓2 � c≤0ρMe (4.113)

Ld−k(a + bc
1
2)Me√ < 0↔La� d↓δk <0ρ ∧ a↓2 � b↓2 � c>0ρMe (4.114)

∨ Lb� d↓δk ≤0ρ ∧(a� d↓δk <0ρ ∨ a↓2 � b↓2 � c<0ρ)Me

The proofs proceed by case distinctions on the signs. We encourage the reader to do the
proof of (4.114). Finally we prove the desired property for substitution of surd expressions
into formulae:

qfree p ∧ isnormx·e s ∧ allρ ishorn p→

unboundφ p[d−k(a + bc
1
2)]φ ∧ Lp[d−k(a + bc

1
2)]φMx·e ↔ LpM(Ld

−k(a+bc
1
2)Mx·e√)·e

. (4.115)

The overall method

The overall method quad (see Figure 4.18) lifts a qep. qe to an optimising one using one
quadratic or linear equation. Given a φ-formula p, it first decomposes it into its conjuncts
(using split∧), and then looks for a linear or quadratic equation (using isquad). If no such
equation occurs then we just apply qe otherwise we apply (4.93) using our virtual substitu-
tion machinery for fractions and surds.

The main property of quad is expressed in (4.116). Note that when using a linear equation
there is no loss of efficiency or conciseness of the formula, since the a′ =0ρ in Figure 4.18
immediately evaluates to F and hence the whole conjunction is discarded. Recall that we
always use the optimised constructors. The whole formalisation of this optimisation took
1600 lines of Isabelle proofs.

69

Chapter 4 Elimination of quantifiers

isquad f = case f of p=0ρ ⇒ degρ 0 p ∈ {{1, 2}} | ⇒ False
quadcoeffs p = case p of c + v0 ∗ (b + v0 ∗ a)=0ρ ⇒ (a, b, c)

| c + v0 ∗ b=0ρ ⇒ (0ρ, b, c)
quadqe qe (a, b, c) p = let ∆ = b↓2 �4ρ � a� c; [a′, b′, c′, δ] = map decrρ [a, b, c, d]

in a′ =0ρ ∧(b′ = c′ =0ρ ∧(qe p) ∨ b′ 6= 0ρ ∧ decrφ(p[
� c

b1
]φ))

∨ a′ 6=0ρ ∧ δ≥0ρ ∧ decrφ(p[(2ρ � a)−1(� b + 1ρ∆
1
2)]φ

∨ p[(2ρ � a)−1(� b + −1ρ∆
1
2)]φ)

quad qe p = let cjs = remdups(split∧ p)
in case get index isquadeq cjs of ⊥ ⇒ qe p
| bic ⇒ let eq = cjs!i ; cjs ′ = remove eq cjs

in quadqe qe (quadcoeffs eq)(list∧ cjs ′)

Figure 4.18: Optimisation using quadratic equations

(∀e, p.qfree p→ qfree (qe p) ∧ Lqe pMe ↔ L∃ pMe) ∧ qfree p ∧ allρ ishorn p

→ qfree(quad qe p) ∧ Lquad qe pMe ↔ L∃ pMe (4.116)

How ad-hoc are Weispfenning’s considerations for special cases?

The key idea of the previous development is the following. Given a constraining equation
p = 0, we express all solutions to p = 0 using our language and radicals and perform a
modified substitution for any solution. Since the general polynomial equation of degree n
is not solvable for n > 4 by the Abel-Ruffini theorem (cf. [Art98]) the described method
cannot be generalised to arbitrary equations. Weispfenning considered the cubic and quartic
cases [Wei94b]. It would be interesting to pursue this approach for n > 4 where the Galois
group of p is solvable.

4.6 Related work

A brief history of qe.:

Quantifier elimination enjoys a very exciting history and can be traced back at least to the
work of Descartes, Boudin, Fourier, Sturm and Sylvester on counting the number of real
roots of polynomials, cf. [DSW98b]. In modern logic the problem of quantifier elimination
seems to originate in Boole’s and Schröders’s work as the elimination of middle terms from
(equational) hypotheses in the calculus of classes. First in the pioneer work of Löwenheim
[Löw15], where he proves a weaker form of the Löwenheim-Skolem theorem, we find initial
attempts to qe. Skolem [Sko19, Sko70a] soon recognised the importance of [Löw15] and
extended its results using an alternative proof. Skolem’s paper [Sko19] is highly interesting,
since it presents a formal treatment of qe., lifting properties and actually proves the first
qe. result: “the first-order theory of the calculus of classes with numerical predicates admits
qe.”. See also [Sko70a] for his generalisation of Löwenheim’s [Löw15] theorem, where he
also introduces what we know now as Morleysation of a theory. Skolemisation can be seen
as an abstract qep. For the cases where the Skolem functions can only take some values
expressible in the underlying language, the resulting device is qe. by terms, used later by
Cooper, Ferrante and Rackoff and generalised by Weispfenning.

Tarski is a major figure in qe.’s history. He soon realised the importance of [Löw15, Sko19,
Sko70a] and held many lectures on qe. After Langford’s qep. [Lan27, Sko28] for dense linear
orders without endpoints, he gave an “exercise” to his seminar student Presburger. The
result of this exercise is now known as the completeness and qe. of Presburger Arithmetic
[Pre29]. Presburger did not consider ordering in [Pre29] but published later an addendum
that his proofs can be easily modified to deal with ordering. Tarski did not recognise this

70

4.6 Related work

result worth a PhD , cf. [Smo91]. Apparently [Wei06] (Weispfenning was told this story but
was not absolutely sure himself), poor Presburger did not solve the assigned problem: a
qep. for Z with both addition and multiplication. One year after Presburger’s paper, Skolem
[Sko30] independently arrived at a qep. for linear arithmetic over Z quite differently: he
uses the bc-function and multiplication by rational constants. See [Smo91] for a comparison
of Preburger’s and Skolem’s qe. procedures. It is also interesting to compare some small
similarities of [Sko30] to Weispfenning’s qep. for mixed real-integer arithmetic in [Wei99].
In the same paper Skolem proved Peano arithmetic without addition, now known as Skolem
arithmetic, decidable.

Tarski proved several qe. results, e.g. [TM49, Tar51], but the most famous one is RCF
[Tar51]. He had a qep. in round 1930, but this result remained unpublished until 1948.
In [Tar31, KT31] he hints to his qe. result and uses it to study definable sets in RCF.
Tarski’s (and his many students) extensive work on (eastern) model theory made qe., as a
method, an extremely powerful tool to study particular theories. See [Wei83] for a survey
on qe. in algebraic structures and its connection to model theory. See e.g. [Rob49] for
impressive negative decidability results obtained by studying definability. The interest of
other communities in qe. had first to await computers.

Complexity results and algorithms for qe.

Round 1970, there was an intense revived interest in qe. and decision procedures for algebraic
theories. This is mainly due to complexity studies and the interest of automated reasoning
in the qe. and decision problem. This is an important shift of interest: it is not sufficient to
know about a qe. result, but the qe. algorithms themselves are important. Before 1970 most
qe. algorithms we non-elementary in complexity, e.g. [Tar51] and Cohen’s simpler procedure
[Coh69] for RCF. See also [KK67] for qe. procedures for RCF, ACF, DLO and Presburger
arithmetic.

Linear arithmetic: The first theorem prover [Dav57] is an implementation of Presburger’s
algorithm. See also [KK67, HB68] for alternative presentations of Presburger’s algorithm.
Unsatisfied with the bad complexity behaviour of Presburger’s algorithm in automated pro-
gram verification, Cooper [Coo72] published a new substantially more efficient qep. for Z+.
Apparently, this paper plays a tun-point in the history of qe.. Oppen [Opp73] proved that
Cooper’s algorithm is triply exponential in time. In 1974 Fisher and Rabin [FR74] published
a fundamental and striking result about lower complexity bounds for linear arithmetic: single
and doubly exponential in space for R and Z respectively. Cooper’s ideas of avoiding DNF
and introducing formulae to simulate the behaviour of the input near infinity is crucial.
This inspired Ferrante and Rackoff for a qe. for R+ [FR75]. See also [FR79] for a gen-
eral framework for decision procedures based on Ehrenfeucht-games together with generic
complexity results. Weispfenning [Wei88] generalised the underlying device by introducing
virtual substitution of impure terms (like +∞ and −∞). He also gave more efficient qe.
procedures for Z+ and R+ in [Wei88, Wei90] and also efficient qe. procedures that deal with
parameters [LW93, Wei90, Wei97a]. Berman [Ber77] proved that even the combination of
space and time, as complexity measures, is not enough to capture the exact complexity
behaviour of linear arithmetic. They must be combined with alternation, see also [Ber80].
Reddy and Loveland [RL78] gave the first complexity-optimal procedure for Z+ in Berman’s
sense. Complexity-optimal decision and qe. procedures for linear arithmetic over ordered
fields and Z can be found in [Wei88] and [Wei90] together with the first complexity stud-
ies of the qe. problem, which is one exponent worse than the decision problem. See also
[Wei97a] for a (weak) qep. for Presburger arithmetic with non-linear parameters (also called
uniform Presburger arithmetic), using bounded quantifiers. Especially [Wei88] is very inter-
esting for the first introduction of the virtual substitution device and also for several generic
complexity theorems for the qe. and decision problems for linear arithmetic over ordered
fields. Weispfenning, Dolzmann and Sturm used this device to develop many impressively
efficient qep. in REDLOG [DS97] for parametric linear arithmetic over ordered fields [LW93],

71

Chapter 4 Elimination of quantifiers

the quadratic [Wei94a, Wei97b] and cubic [Wei94b] case of real algebra (see [DSW98a] for
a very interesting adaptation to theorem proving in geometry) and the theory of mixed
real-integer linear arithmetic in [Wei99]. See [Wei00, AW00] for even harder theories of lin-
ear real arithmetics with transcendental (axiomatised in a manner to subsume exponential
and hyperbolic functions and the arcus tangus) or with trigonometric functions. These qe.
procedures in contrast to previous results do not rely on Shanuel’s conjecture but only on
Lindemann’s theorem from transcendence theory. One major strength of Weispfenning’s
approach to qe. is that it computes answers for purely existential problems. This is very
useful for a certificate-based integration in theorem provers. For efficient automata-based
alternatives for linear arithmetic see [WB95, BJW05] and [Kla04] for an optimal complex-
ity upper bound. This approach represents a formula φ by an automata whose accepted
language is exactly all the values to the free variables satisfying φ. All logical operations
reduce to operations on automata. Testing satisfiability of the input formula reduces to an
emptiness test of the resulting automata. This approach is potentially useful for a certifi-
cate based integration for universal or existential formulae: if the resulting automaton is not
empty then produce an element, this a witness or a counter example, respectively. See also
[GBD02] for a SAT-model-checking approach to Z+.

Real closed fields Tarski’s qep. for RCF was complicated and non-elementary. Cohen
[Coh69] gave a simpler qep., which has been further simplified in [Hör83]. This procedure
also has non-elementary complexity. The first doubly exponential qep. for RCF was CAD,
apparently found by Collins round 1973 and published in [Col75]. Independently, Monk
[Mon74] found a decision procedure for RCF, which was one exponent worse than CAD.
Solovay changed Monk’s procedure in 1975 to meet CAD’s complexity. This result is appar-
ently not published but mentioned in [Col75], as a letter communication, and by Wüthrich
[Wüt74] where he obtains a qep. for RCF based on the decision procedure. Collins’s CAD
was the first qep. for RCF to be implemented on a computer, and is until today one of the
most efficient algorithms in practice. See [Wei98] for a competitive approach, based on com-
prehensive Gröbner bases. In [BOKR84], the authors show that deciding RCF is complete for
EXPSPACE. Their result also applies to ACF. An other surprising result is that qe. for RCF
is doubly exponential, see [DH88, Wei88]. This means that qe. for RCF is, computationally,
not harder than qe. over ordered fields. There are many subtly different upper bounds on
the complexity of deciding RCF, see e.g. [Gri88, GV88] or [Ren92a, Ren92b, Ren92c] for an
overview.

Algebraically closed fields The history of ACF is not very clear. The qe. result is often
attributed to Tarski, but I was not able to find a convincing reference. In [Tar51], Tarski
points, as possible future work, that his results should easily extend to the complex numbers
where ordering holds only if the numbers are real. Note that a decision procedure for RCF
automatically yields a decision procedure for the complex numbers. The earliest algorithmic
description I was able to find is [KK67], which is non-elementary. The first doubly expo-
nential qep. for ACF appears in [HW75, Wüt77]. See also [Hei83, Hei85] for more detailed
presentation. For a fixed number of quantifier alternations the procedure in [CG84] is one
exponent better.

Q.e. in theorem proving:

In the context of theorem proving, qe. have unfortunately not received enough attention,
maybe due to the very bad complexity results. Most theorem provers implement Fourier’s
method for universal problems over R. Note that it also works for Z since the problems
are universal. The first qe. related work seems to be Harrison’s PhD [Har96], where he
integrated a proof procedure for RCF based on [KK67]. He also first gave a qep. for ACF
in HOL in [Har01]. Théry [Thé] formalised Presburger’s original algorithm in Coq in 2002.
The first implementation and exposition of a complete method for Presburger arithmetic
(Cooper’s method and Omega test) in an LCF-like theorem prover (HOL) is due to Norrish

72

4.6 Related work

[Nor03]. Omega test [Pug91] is a variation on Fourrier’s method to be complete on the
integers. It has bad theoretical properties (it works on DNF) but performs very good on
several practical problems. We also implemented Cooper’s method in [Cha03] as a derived
rule in Isabelle/HOL. In Coq an incomplete version of Omega test is due to [Cré04], but it
only deals with universal formulae, and even there, it is incomplete. See also [BGD03] for
an integration of a proof producing extension of Omega test for quantifier free mixed real
and integer constraints in CVC. In [CN05] we gave the first full formalisation (reflection)
of Cooper’s algorithm, in [Cha06a] the first integration of Ferrante and Rackoff’s procedure
both as a derived rule and using reflection, and in [Cha06b] the first formalisation of a
qep. for mixed real-integer linear arithmetic. An integration of Cohen’s (or Hörmander’s)
procedure for real closed fields in HOL is presented in [MH05]. A far more ambitious work
is Mahboubi’s PhD [Mah06a] aiming to formally verify CAD in Coq. Unfortunately the
formalisation is not complete but see [Mah06b, Mah06a] for impressive progress in gcd
computation and the sub-resultants algorithm. In [DM06] the authors present a “qep.” for
“ACF” using Maple in a skeptical manner to compute gcds. The method there although
original, can hardly be described as a qep., since it only deals with univariate polynomials,
where the coefficients lie in a decidable field. The theory is hence different from ACF. We are
not aware of any implementation of a qep. for ACF substantially more efficient than [KK67],
e.g. [HW75, Wüt77, CG84] needs Bezout’s theorem on intersections of algebraic curves, a
far less trivial theorem to prove formally than the fundamental theorem of algebra.

73

Chapter 4 Elimination of quantifiers

74

Chapter 5

Conclusion

The goal of this thesis was to study the following question:

How should we integrate proof-procedures into an LCF-like system both in general
and for particular relevant theories of arithmetic?

We have studied the in general part in Chapter 2 and the in particular through the
thesis, but especially in Chapter 3 and in Chapter 4. Figure 5.1 gives an overview of all
proof methods, we have presented in the thesis, and the used integration paradigm. The
latter part of the question is more technical but also easier to answer than the former. Like
for most hard Software engineering problems, it is difficult to answer the “in general” part
of our question categorically. I personally do not believe that it is possible. For particular
cases, however, we can most of the time argue that one paradigm is better than another by
measuring efficiency, implementation time etc. We give in the following a heuristic how to
integrate a proof procedure in an LCF-like theorem prover. This is is rather a best-practice
order inspired by our study.

1. Adopt a context-aware integration, as soon as the method covers several structures.

2. Use the certificate-based method, if the underlying problem allows it.

3. If no huge discrepancy in run-time is expected, use derived rules, otherwise reflection.
We can approximate such a discrepancy by the inherent size of the proofs and by the
amount of computation they contain. For instance qe. has inherently large proofs,
containing not much computations.

4. For engineering-driven applications, use reflection in order to scale up, hopefully.

Problem § Method
dlo (Langford) §2.1.3 Context-aware
Simple Sums §2.2.1 Reflection
Primes §2.3 Certificates
∀ and ∀∃ in Rings §3.2.1 and §3.2.2 Certificates and Context-aware
∀ Polynomials in R §3.3 Certificates
dloG (Ferrante and Rackoff) §4.2 Context-aware
F

ρ
+ (parametric ordered fields) §4.3.1 Reflection

Z+ (Presburger arithmetic) §4.3.2 Reflection
Rb·c (mixed R and Z) §4.3.3 Reflection
ACF §4.4 Derived rule
RCF §4.5 Derived rule and Reflection

Figure 5.1: All procedures presented in this thesis

75

Chapter 5 Conclusion

76

Bibliography

[AF04] Andrew W. Appel and Amy P. Felty. Dependent types ensure partial correct-
ness of theorem provers. 14(1):3–19, 2004.

[Art27] Emil Artin. Über die Zerlegung definiter Funktionen in Quadrate. Hamburger
Abhandlungen, 5:100–115, 1927.

[Art98] Emil Artin. Galois theory. Dover Publications Inc., Mineola, NY, second
edition, 1998. Edited and with a supplemental chapter by Arthur N. Milgram.

[AW00] Hirokazu Anai and Volker Weispfenning. Deciding linear-trigonometric prob-
lems. In ISSAC, pages 14–22, 2000.

[Bal99] Clemens Ballarin. Computer Algebra and Theorem Proving. PhD thesis, Uni-
versity of Cambridge, Computer Laboratory, Cambridge, UK, 1999.

[Bal04] Clemens Ballarin. Locales and locale expressions in Isabelle/Isar. In Stefano
Berardi et al., editors, Types for Proofs and Programs (TYPES 2003), volume
3085 of Lecture Notes in Computer Science, 2004.

[Bal06] Clemens Ballarin. Interpretation of locales in Isabelle: Theories and proof
contexts. In J. M. Borwein and W. M. Farmer, editors, Mathematical Knowl-
edge Management (MKM 2006), volume 4108 of Lecture Notes in Artificial
Intelligence, 2006.

[Bar00] Bruno Barras. Programming and computing in HOL. In Proceedings of the
13th International Conference on Theorem Proving in Higher Order Logics,
Lecture Notes in Computer Science, pages 17–37. Springer-Verlag, 2000.

[BB02] Henk Barendregt and Erik Barendsen. Autarkic computations in formal proofs.
Journal of Functional Programming, 28(3):321–336, 2002.

[Bel07] Karim Belabas et al . PARI/GP, version 2.3.1. Bordeaux, 2007. http:
//pari.math.u-bordeaux.fr/.

[Ber77] Leonard Berman. Precise bounds for Presburger arithmetic and the reals with
addition: Preliminary report. In FOCS, pages 95–99. IEEE, 1977.

[Ber80] Leonard Berman. The complexity of logical theories. Theoretical Computer
Science, 11:71–77, 1980.

[BGD03] Sergey Berezin, Vijay Ganesh, and David L. Dill. An online proof-producing
decision procedure for mixed-integer linear arithmetic. In Hubert Garavel and
John Hatcliff, editors, TACAS, volume 2619 of LNCS, pages 521–536. Springer,
2003.

[BJW05] Bernard Boigelot, Sébastien Jodogne, and Pierre Wolper. An effective decision
procedure for linear arithmetic over the integers and reals. ACM Transactions
on Computational Logic, 6(3):614–633, 2005.

[BM81] R. S. Boyer and J. S. Moore. Metafunctions: Proving them correct and using
them efficiently as new proof procedures. In R. S. Boyer and J S. Moore,
editors, The Correctness Problem in Computer Science, chapter 3, pages 103–
184. Academic Press, New York, 1981.

77

http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/

Bibliography

[BN98] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge
University Press, New York, NY, USA, 1998.

[BN00] Stefan Berghofer and Tobias Nipkow. Executing higher order logic. In Types
for Proofs and Programs (TYPES 2000), volume 2277 of Lecture Notes in
Computer Science, pages 24–40. Springer-Verlag, 2000.

[BOKR84] Michael Ben-Or, Dexter Kozen, and John Reif. The complexity of elementary
algebra and geometry. In STOC ’84: Proceedings of the sixteenth annual ACM
symposium on Theory of computing, pages 457–464, New York, NY, USA, 1984.
ACM.

[BPR03] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in real algebraic geometry,
volume 10 of Algorithms and Computation in Mathematics. Springer-Verlag,
2003.

[BR90] Riccardo Benedetti and Jean Jacques Risler. Real algebraic and semi-algebraic
sets. Hermann, éditeurs des sciences et des arts, Paris, 1990.

[Bro87] W. Dale Brownawell. Bounds for the degrees in the nullstellensatz. The Annals
of Mathematics, 2nd Ser., 126(3):577–591, 1987.

[Buc65] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis,
Mathematical Institute, University of Innsbruck, Austria, 1965.

[Bün91] R. Bündgen. Simulating Buchberger’s algorithm by Knuth-Bendix completion.
pages 386 – 397, 1991.

[BW01] Alexander Bockmayr and Volker Weispfenning. Solving numerical constraints.
In Robinson and Voronkov [RV01], chapter 12, pages 751–842.

[BWK93] Thomas Becker, Volker Weispfenning, and Heinz Kredel. Gröbner bases: a
computational approach to commutative algebra. Springer-Verlag, London, UK,
1993.

[CG84] Alexander L. Chistov and Dima Grigoriev. Complexity of quantifier elimination
in the theory of algebraically closed fields. In Michal Chytil and Václav Koubek,
editors, MFCS, volume 176 of Lecture Notes in Computer Science, pages 17–31.
Springer-Verlag, 1984.

[CG01] S. C. Chou and X. S. Gao. Automated reasoning in geometry. In Robinson
and Voronkov [RV01], chapter 11, pages 707–749.

[Cha03] Amine Chaieb. Isabelle trifft Presburger Arithmetik. Master’s thesis, TU
München, 2003.

[Cha06a] Amine Chaieb. Mechanized quantifier elimination for linear real-arithmetic in
Isabelle/HOL. Technical report, TU München, 2006.

[Cha06b] Amine Chaieb. Verifying mixed real-integer quantifier elimination. In Furbach
and Shankar [FS06], pages 528–540.

[CLR95] M. D. Choi, T. Y. Lam, and B. Reznick. Sums of squares of real polynomials.
In Symp. in Pure Math., volume 58, pages 103–126. AMS, Providence, R.I.,
1995.

[CN05] Amine Chaieb and Tobias Nipkow. Verifying and reflecting quantifier elimina-
tion for Presburger arithmetic. In G. Sutcliffe and A. Voronkov, editors, Logic
for Prog., Art. Intelligence, and Reasoning, volume 3835 of Lecture Notes in
Artificial Intelligence. Springer-Verlag, 2005.

78

Bibliography

[CN06] Amine Chaieb and Tobias Nipkow. Proof Synthesis and Reflection for Linear
Arithmetic. Submitted to JAR, 2006.

[Coh69] P. J. Cohen. Decision procedures for real and p-adic fields. Communications
in Pure and Applied Mathematics, 22:131–151, 1969.

[Col75] George E. Collins. Quantifier elimination for real closed fields by cylindrical
algebraic decomposition. In H. Barkhage, editor, Automata Theory and Formal
Languages, volume 33 of LNCS, pages 134–183. Springer, 1975.

[Coo72] D. C. Cooper. Theorem proving in arithmetic without multiplication. In
B. Meltzer and D. Michie, editors, Machine Intelligence, volume 7, pages 91–
100. Edinburgh University Press, 1972.

[Cré04] Pierre Crégut. Une procédure de décision réflexive pour un fragment de
l’arithmétique de Presburger. In Informal proceedings of the 15th journées
francophones des langages applicatifs, 2004.

[CW07] Amine Chaieb and Makarius Wenzel. Context aware calculation and deduction
— ring equalities via Gröbner Bases in Isabelle. In Kauers et al. [KKMW07],
pages 27–39.

[Dav57] Martin Davis. A computer program for Presburger’s algorithm. In Summaries
of talks presented at the Summer Inst. for Symbolic Logic, Cornell University,
pages 215–233. Inst. for Defense Analyses, Princeton, NJ, 1957.

[Del02] David Delahaye. A proof dedicated meta-language. In Logical Frameworks and
Meta-Languages (LFM 2002), ENTCS 70(2), 2002.

[DH88] James H. Davenport and Joos Heintz. Real quantifier elimination is doubly
exponential. Journal of Symbolic Computation, 5(1/2):29–35, 1988.

[DM06] David Delahaye and Micaela Mayero. Quantifier elimination over algebraically
closed fields in a proof assistant using a computer algebra system. ENTCS,
151(1):57–73, 2006.

[DS97] Andreas Dolzmann and Thomas Sturm. REDLOG: computer algebra meets
computer logic. SIGSAM Bulltin, 31(2):2–9, 1997.

[DSW98a] Andreas Dolzmann, Thomas Sturm, and Volker Weispfenning. A new approach
for automatic theorem proving in real geometry. Journal of Functional Pro-
gramming, 21(3):357–380, 1998.

[DSW98b] Andreas Dolzmann, Thomas Sturm, and Volker Weispfenning. Real quantifier
elimination in practice. In B. H. Matzat, G.-M. Greuel, and G. Hiss, editors, Al-
gorithmic Algebra and Number Theory, pages 221–247. Springer-Verlag, 1998.
Also as tech. rep. MIP-9720 of Universität Passau 1997.

[Ebb04] H-D. Ebbinghaus et al . Zahlen. Springer-Verlag, Germany, 3rd. edition, 2004.

[Est56] T. Estermann. On the fundamental theorem of algebra. Journal of the London
Mathematical Society, 31:238–240, 1956.

[Far07] William M. Farmer. Biform theories in Chiron. In Kauers et al. [KKMW07],
pages 66–79.

[FR74] Michael Fischer and Michael Rabin. Super-exponential complexity of Pres-
burger arithmetic. In SIAMAMS: Complexity of Computation: Proceedings of
a Symposium in Applied Mathematics of the American Mathematical Society
and the Society for Industrial and Applied Mathematics, 1974.

79

Bibliography

[FR75] Jeanne Ferrante and Charles Rackoff. A decision procedure for the first order
theory of real addition with order. SIAM J. of Computing, 4(1):69–76, 1975.

[FR79] Jeanne Ferrante and Charles Rackoff. The Computational Complexity of Logical
Theories, volume 718 of Lecture Notes in Mathematics. Springer-Verlag, NY,
1979.

[FS06] Ulrich Furbach and Natarajan Shankar, editors. Automated Reasoning, Third
International Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-
20, 2006, Proceedings, volume 4130 of Lecture Notes in Computer Science.
Springer-Verlag, 2006.

[GBD02] Vijay Ganesh, Sergey Berezin, and David L. Dill. Deciding presburger arith-
metic by model checking and comparisons with other methods. In Mark Aa-
gaard and John W. O’Leary, editors, FMCAD, volume 2517 of LNCS, pages
171–186. Springer, 2002.

[GM93] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: a theorem
proving environment for higher order logic. Cambridge University Press, New
York, NY, USA, 1993.

[GM05] Benjamin Grégoire and Assia Mahboubi. Proving equalities in a commutative
ring done right in coq. In Hurd and Melham [HM05], pages 98–113.

[GMM+78] M. Gordon, R. Milner, L. Morris, M. Newey, and C. Wadsworth. A meta-
language for interactive proof in LCF. In POPL ’78: Proceedings of the 5th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 119–130, New York, NY, USA, 1978. ACM Press.

[GMW79] M. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanized
Logic of Computation. Number 78 in LNCS. Springer-Verlag, 1979.

[Gri88] Dima Grigoriev. Complexity of deciding Tarski algebra. Journal of Symbolic
Computation, 5(1-2):65–108, 1988.

[GT06] Benjamin Grégoire and Laurent Théry. A purely functional library for modular
arithmetic and its application for certifying large prime numbers. In Furbach
and Shankar [FS06], pages 423–437.

[GTW06] Benjamin Grégoire, Laurent Théry, and Benjamin Werner. A computa-
tional approach to Pocklington certificates in type theory. In M. Hagiya and
P. Wadler, editors, Proceedings of FLOPS’06, volume 3945 of Lecture Notes in
Computer Science, pages 97 – 113. Springer-Verlag, 2006.

[GV88] Dima Grigoriev and Nicolai Vorobjov. Solving systems of polynomial inequal-
ities in subexponential time. Journal of Symbolic Computation, 5(1-2):37–64,
1988.

[Har95] John Harrison. Metatheory and reflection in theorem proving: A survey and
critique. Technical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge,
UK, 1995.

[Har96] John Harrison. Theorem proving with the real numbers. PhD thesis, University
of Cambridge, Computer Laboratory, 1996.

[Har01] John Harrison. Complex quantifier elimination in HOL. In Richard J. Boulton
and Paul B. Jackson, editors, TPHOLs 2001: Supplemental Proceedings, pages
159–174. Division of Informatics, University of Edinburgh, 2001.

[Har06] John Harrison. HOL Light Tutorial (for version 2.20), September 2006.

80

Bibliography

[Har07a] John Harrison. Automating elementary number-theoretic proofs using Gröbner
bases. In Frank Pfenning, editor, Proceedings of CADE 21, volume 4603 of
Lecture Notes in Computer Science, pages 51–66, Bremen, Germany, 2007.
Springer-Verlag.

[Har07b] John Harrison. Verifying nonlinear real formulas via sums of squares. In Klaus
Schneider and Jens Brandt, editors, Proceedings of the 20th International Con-
ference on Theorem Proving in Higher Order Logics TPHOLs 2007, volume
4732 of Lecture Notes in Computer Science, pages 102–118. Springer-Verlag,
2007.

[Har08] John Harrison. Introduction to Logic and Theorem Proving. Cambridge Uni-
versity Press, 2008. might appear under an different title.

[HB68] David Hilbert and Paul Bernays. Grundlagen der Mathematik I. Springer-
Verlag, 1968. 2. Auflage.

[Hei83] Joos Heintz. Definability and fast quantifier elimination in algebraically closed
fields. Theoretical Computer Science, 24:239–277, 1983.

[Hei85] Joos Heintz. Corrigendum: Definability and fast quantifier elimination in al-
gebraically closed fields. Theoretical Computer Science, 39:343, 1985.

[Her26] Grete Hermann. Die Frage der endlich vielen Schritte in der Theorie der Poly-
nomideale. Mathematische Annalen, 95:736–788, 1926.

[Hil88] David Hilbert. Über die Darstellung definiter Formen als Summe von Formen-
quadraten. Mathematische Annalen, 32:342–350, 1888.

[Hil90] David Hilbert. Über die Theorie der algebraischen Formen. Mathematische
Annalen, 36:473–534, 1890.

[Hil93] David Hilbert. Über die vollen Invariantensysteme. Mathematische Annalen,
42:313–373, 1893.

[HM05] Joe Hurd and Thomas F. Melham, editors. Theorem Proving in Higher Order
Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, August
22-25, 2005, Proceedings, volume 3603 of Lecture Notes in Computer Science.
Springer-Verlag, 2005.

[HN07] Florian Haftmann and Tobias Nipkow. A code generator framework for Is-
abelle/HOL. In K. Schneider and J. Brandt, editors, Theorem Proving in
Higher Order Logics: Emerging Trends. CS Department, University of Kaiser-
slautern, 2007.

[Hör83] Lars Hörmander. The Analysis of Linear Partial Differential Operators II,
volume 275 of Grundlehren der mathematischen Wissenschaften. Springer-
Verlag, 1983.

[HSA06] John Harrison, Konrad Slind, and Rob Arthan. HOL. In Wiedijk [Wie06].

[HT98] John Harrison and Laurent Théry. A skeptic’s approach to combining HOL
and Maple. Journal of Functional Programming, 21:279–294, 1998.

[Huy86] Dung T. Huynh. A superexponential lower bound for gröbner bases and church-
rosser commutative thue systems. Information and Control, 68(1-3):196–206,
1986.

[HW75] J. Heintz and R. Wüthrich. An efficient quantifier elimination algorithm for
algebraically closed fields of any characteristic. SIGSAM Bull., 9(4):11–11,
1975.

81

Bibliography

[HW06] Florian Haftmann and Makarius Wenzel. Constructive type classes in Isabelle.
In Thorsten Altenkirch and Conor McBride, editors, Types for Proofs and
Programs, 2006.

[Jac06] Paul Jackson. Nuprl. In Wiedijk [Wie06].

[Kap96] Deepak Kapur. Automated geometric reasoning: Dixon resultants, Gröbner
bases, and characteristic sets. In Dongming Wang, editor, Automated Deduc-
tion in Geometry, International Workshop on Automated Deduction in Geom-
etry, volume 1360 of Lecture Notes in Computer Science, pages 1–36. Springer,
1996.

[KK67] G. Kreisel and J.L. Krivine. Elements of mathematical logic (Model theory).
North-Holland, Amsterdam, 1967.

[KKMW07] Manuel Kauers, Manfred Kerber, Robert Miner, and Wolfgang Windsteiger,
editors. Towards Mechanized Mathematical Assistants, 14th Symposium, Cal-
culemus 2007, 6th International Conference, MKM 2007, Hagenberg, Austria,
June 27-30, 2007, Proceedings, volume 4573 of Lecture Notes in Computer
Science. Springer-Verlag, 2007.

[Kla04] Felix Klaedtke. On the automata size for Presburger arithmetic. In Proceedings
of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS
2004), pages 110–119. IEEE Computer Society Press, 2004.

[KM97] Matt Kaufmann and J S. Moore. An industrial strength theorem prover for
a logic based on common Lisp. IEEE Transactions on Software Engineering,
23(4):203–213, 1997.

[Kol88] J. Kollár. Sharp effective nullstellensatz. Journal of the AMS, 1:963–975, 1988.

[Kra06] Alexander Krauss. Partial recursive functions in higher-order logic. In Furbach
and Shankar [FS06], pages 589–603.

[KS04] R. Klapper and A. Stump. Validated Proof-Producing Decision Procedures. In
C. Tinelli and S. Ranise, editors, 2nd Int. Workshop Pragmatics of Decision
Procedures in Automated Reasoning, 2004.

[KT31] Casimir Kuratowski and Alfred Tarski. Les opérations logiques et les ensembles
projectifs. Fundamentae Mathematicae, pages 240–248, 1931.

[KW07] Cezary Kaliszyk and Freek Wiedijk. Certified computer algebra on top of an
interactive theorem prover. In Kauers et al. [KKMW07], pages 94–105.

[KWP99] Florian Kammüller, Makarius Wenzel, and Lawrence C. Paulson. Locales:
A sectioning concept for Isabelle. In Y. Bertot, G. Dowek, A. Hirschowitz,
C. Paulin, and L. Thery, editors, Theorem Proving in Higher Order Logics
(TPHOLs ’99), volume 1690 of LNCS, 1999.

[Lan27] C. H. Langford. Some theorems on deducibility (2nd series). Annals of math-
ematics, 28:16–40, 1927.

[Lit41] J. E. Littlewood. Mathematical notes (14): ”Every polynomial has a root”.
Journal of the London Mathematical Society, 16:95–98, 1941.

[Löw15] Leopold Löwenheim. Über Möglichkeiten im logischen Kalkül. Mathematische
Annalen, 76:447–470, 1915.

[LW93] Rüdiger Loos and Volker Weispfenning. Applying linear quantifier elimination.
Computer Journal, 36(5):450–462, 1993.

82

Bibliography

[Mah06a] Assia Mahboubi. Contributions à la certification des calculs sur R : théorie,
preuves, programmation. PhD thesis, Univ. Nice Sophia-Antipolis, 2006.

[Mah06b] Assia Mahboubi. Proving formally the implementation of an efficient gcd al-
gorithm for polynomials. In Furbach and Shankar [FS06], pages 438–452.

[May97] Ernst W. Mayr. Some complexity results for polynomial ideals. Journal of
Complexity, 13(3):303–325, Sep 1997.

[MdR94] M. Mauny and Daniel de Rauglaudre. A complete and realistic implementation
of quotations for ML. In ACM SIGPLAN Workshop on Standard ML and its
Applications, 1994.

[MH05] Sean McLaughlin and John Harrison. A Proof-Producing Decision Procedure
for Real Arithmetic. In Robert Nieuwenhuis, editor, CADE-20: 20th Interna-
tional Conference on Automated Deduction, proceedings, volume 3632 of Lec-
ture Notes in Computer Science, pages 295–314. Springer-Verlag, 2005.

[Mis93] Bhubaneswar Mishra. Algorithmic algebra. Springer-Verlag, 1993.

[MM82] Ernst W. Mayr and Albert R. Meyer. The complexity of the word problems
for commutative semigroups and polynomial ideals. Advances in Mathematics,
45:305–329, 1982.

[MMvdD83] Angus Macintyre, Kenneth McKenna, and Lou van den Dries. Elimination of
quantifiers in algebraic structures. Advances in Mathematics, 47:74–87, 1983.

[Mon74] Leonard Monk. An elementary recursive decision procedure for Th(R,+, ·).
PhD thesis, University of California, Berkeley, 1974.

[Nip08] Tobias Nipkow. Reflecting quantifier elimination for linear arithmetic. In
K. Spies, editor, Proceedings Marktoberdorf Summer School 2007. IOS Press,
2008. To appear.

[Nor03] Michael Norrish. Complete integer decision procedures as derived rules in HOL.
In D.A. Basin and B. Wolff, editors, Theorem Proving in Higher Order Logics,
TPHOLs 2003, volume 2758 of Lecture Notes in Computer Science, pages 71–
86. Springer-Verlag, 2003.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Makarius Wenzel. Isabelle/HOL —
A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer-Verlag, 2002.

[Obu05] Steven Obua. Proving bounds for real linear programs in isabelle/hol. In Hurd
and Melham [HM05], pages 227–244.

[Opp73] D. C. Oppen. Elementary bounds for Presburger arithmetic. In STOC ’73:
Proceedings of the fifth annual ACM symposium on Theory of computing, pages
34–37, New York, NY, USA, 1973. ACM Press.

[Par00] Pablo Parrilo. Structured semidefinite programs and semialgebraic geometry
methods in robustness and optimization. PhD thesis, California Institute of
Technology, Pasadena, CA, 2000.

[Par03] Pablo A. Parrilo. Semidefinite programming relaxations for semialgebraic prob-
lems. Mathematical Programming, 96(2):293–320, 2003.

[Pau87] L. C. Paulson. Logic and Computation. Cambridge University Press, 1987.

[Pól28] G. Pólya. Über positive Darstellungen von Polynomen. Vierteljahresschrift der
Naturforschenden Gesellschaft in Zürich, 73:141–145, 1928.

83

Bibliography

[PP07] H. Peyrl and P. A. Parrilo. A Macaulay 2 package for computing sum of squares
decompositions of polynomials with rational coefficients. In Symbolic-Numeric
Computation, pages 207–208, London, Ontario, Canada, July 2007.

[PPSP04] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo. SOSTOOLS:
Sum of squares optimization toolbox for MATLAB, 2004.

[Pre29] Mojzesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arith-
metik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt.
In Comptes rendus du I congrès de math. des pays slaves, pages 92–101, 1929.

[Pug91] William Pugh. The Omega test: a fast and practical integer programming
algorithm for dependence analysis. In Proceedings of the 1991 ACM/IEEE
conference on Supercomputing, pages 4–13. ACM Press, 1991.

[PW98] Victoria Powers and Thorsten Wörmann. An algorithm for sums of squares of
real polynomials. Journal of Pure and Applied Algebra, 127:99–104, 1998.

[Ren92a] J. Renegar. On the computational complexity and geometry of the first-order
theory of the reals, part I: Introduction. preliminaries. the geometry of semi-
algebraic sets. the decision problem for the existential theory of the reals. Jour-
nal of Symbolic Computation, 13(3):255–300, 1992.

[Ren92b] J. Renegar. On the computational complexity and geometry of the first-order
theory of the reals, part II: The general decision problem. preliminaries for
quantifier elimination. Journal of Symbolic Computation, 13(3):301–328, 1992.

[Ren92c] J. Renegar. On the computational complexity and geometry of the first-order
theory of the reals, part III: Quantifier elimination. Journal of Symbolic Com-
putation, 13(3):329–352, 1992.

[Ric74] Fred Richman. Constructive aspects of Noetherian rings. Proceedings of the
AMS, 44(2):436–441, 1974.

[RL78] C. R. Reddy and D. W. Loveland. Presburger arithmetic with bounded quan-
tifier alternation. In STOC ’78: Proceedings of the tenth annual ACM sym-
posium on Theory of computing, pages 320–325, New York, NY, USA, 1978.
ACM Press.

[Rob49] Julia Robinson. Definability and decision problems in arithmetic. Journal of
Symbolic Logic, 14:98–114, 1949.

[RV01] A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning,
volume I. Elsevier Science, 2001.

[Sch91] Konrad Schmüdgen. The k-moment problem for compact semi-algebraic sets.
Mathematische Annalen, 289(1):87–97, 1991.

[Sch99] Markus Schweighofer. Algorithmische Beweise für Nichtnegativ- und Posi-
tivstellensätze. Master’s thesis, Universität Passau, 1999.

[Sei74] Abraham Seidenberg. Constructions in Algebra. Transactions of the AMS,
197:273–313, 1974.

[Sko19] Thoralf Skolem. Untersuchungen über die Axiome des Klassenkalküls und
über Produktations- und Summationsprobleme, welche gewisse Klassen von
Aussagen betreffen. Skrifter Videnskapsakademiet i Kristiania, 3:37–71, 1919.
Written in 1917, reprinted in [Sko70b].

[Sko28] Thoralf Skolem. Über die mathematische Logik. Norsk Mathematisk Tidsskrift,
10:125–142, 1928.

84

Bibliography

[Sko30] Thoralf Skolem. Über einige Satzfunktionen in der Arithmetik. In Skrifter utgitt
av Det Norske Videnskaps-Akademi i Oslo, I. Matematisk Naturvidenskapelig
Klasse, volume 7, pages 1–28. Oslo, 1930. Reprinted in [Sko70b].

[Sko70a] Thoralf Skolem. Logisch-kombinatorische Untersuchungen über die
Erfüllbarkeit und Beweisbarkeit mathematischen Sätze nebst einem Theoreme
über dichte Mengen. In Selected Works in logic [Sko70b], pages 103–136. Edited
by Jens Erik Fenstad.

[Sko70b] Thoralf Skolem. Selected Works in Logic. Universitetsforlaget, Oslo-Bergen-
Tromsö, 1970. Edited by Jens Erik Fenstad.

[Sli96] Konrad Slind. Function definition in higher-order logic. In TPHOLs ’96: Pro-
ceedings of the 9th International Conference on Theorem Proving in Higher
Order Logics, pages 381–397, Turku, Finland, 1996. Springer-Verlag.

[Sli97] Konrad Slind. Derivation and use of induction schemes in higher-order logic.
In TPHOLs ’97: Proceedings of the 10th International Conference on Theorem
Proving in Higher Order Logics, pages 275–290, London, UK, 1997. Springer-
Verlag.

[Smo91] Craig Smoryński. Logical Number Theory I, An Introduction. Springer-Verlag,
1991.

[Ste74] Gilbert Stengle. A Nullstellensatz and a Positivstellensatz in semialgebraic
geometry. Mathematische Annalen, 207(2):87–97, 1974.

[Tar31] Alfred Tarski. Sur les ensembles définissables de nombres réels. Fundamen-
tae Mathematicae, 17:210–239, 1931. Translated as ”On definable sets of real
numbers”, in: J. Corcoran (Ed.), Logic, Semantics, Metamathematics: papers
from 1923 to 1938, Hackett Publishing Company, Indianapolis, IN, 1983, pp.
110-142.

[Tar51] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. Uni-
versity of California Press, 1951.

[TH07] Laurent Théry and Guillaume Hanrot. Primality proving with elliptic curves.
In Klaus Schneider and Jens Brandt, editors, TPHOLs, volume 4732 of Lecture
Notes in Computer Science, pages 319–333. Springer, 2007.

[Thé] Laurent Théry. Presburger’s algorithm. http://coq.inria.fr/contribs/
Presburger.html.

[TLG06] Laurent Théry, Pierre Letouzey, and Georges Gonthier. Coq. In Wiedijk
[Wie06].

[TM49] Alfred Tarski and Andrzej Mostowski. Arithmetical classes and types of well
ordered systems. Bulletin of the AMS, 55:65, 1949.

[vdD80] Lou P. D. van den Dries. A linearly ordered ring whose theory admits elimi-
nation of quantifiers is a real closed field. Proceedings of the American Mathe-
matical Society, 79(1):97–100, Mat 1980.

[WB95] P. Wolper and B. Boigelot. An automata-theoretic approach to presburger
arithmetic constraints (extended abstract). In SAS ’95: Proc. of the Second
Int. Symp. on Static Analysis, pages 21–32, London, UK, 1995. Springer-Verlag.

[WC07] Makarius Wenzel and Amine Chaieb. SML with antiquotations embedded into
Isabelle/Isar. In Jacques Carette and Freek Wiedijk, editors, Workshop on
Progr. Lang. for Mechanized Math. (part of CALCULEMUS 2007). Hagenberg,
Austria, June 2007.

85

http://coq.inria.fr/contribs/Presburger.html
http://coq.inria.fr/contribs/Presburger.html

Bibliography

[Wei83] Volker Weispfenning. Aspects of quantifier elimination in algebra. In Proc.
25 Universal Algebra and its links with logic, Arbeitstagung Darmstadt, pages
85–105. Heldermann V., Berlin, 1983.

[Wei88] Volker Weispfenning. The complexity of linear problems in fields. Journal of
Symbolic Computation, 5(1/2):3–27, 1988.

[Wei90] Volker Weispfenning. The complexity of almost linear diophantine problems.
Journal of Symbolic Computation, 10(5):395–404, 1990.

[Wei94a] Volker Weispfenning. Parametric linear and quadratic optimization by elimi-
nation. Technical Report MIP-9404, Universität Passau, Passau, April 1994.

[Wei94b] Volker Weispfenning. Quantifier elimination for real algebra — the cubic case.
In International Symposium on Symbolic and Algebraic Computation, pages
258–263, 1994.

[Wei97a] Volker Weispfenning. Complexity and uniformity of elimination in Presburger
arithmetic. In ISSAC, pages 48–53, 1997.

[Wei97b] Volker Weispfenning. Quantifier elimination for real algebra – the quadratic
case and beyond. Applicable Algebra in Engineering, Comm. and Computing,
8(2):85–101, 1997.

[Wei98] Volker Weispfenning. A new approach to quantifier elimination for real alge-
bra. In B.F. Caviness and J. R. Johnson, editors, Quantifier Elimination and
Cylindrical Algebraic Decomposition, pages 376–392. Springer-Verlag, 1998.

[Wei99] Volker Weispfenning. Mixed real-integer linear quantifier elimination. In ISSAC
’99, pages 129–136, New York, NY, USA, 1999. ACM Press.

[Wei00] Volker Weispfenning. Deciding linear-exponential problems. SIGSAM Bul-
letin (ACM Special Interest Group on Symbolic and Algebraic Manipulation),
34(1):30–31, 2000.

[Wei06] Volker Weispfenning. Private communication at Passau, June 2006.

[Wel95] Morten Welinder. Very efficient conversions. In Higher Order Logic, Theo-
rem Proving, and Its Applications, volume 971 of Lecture Notes in Computer
Science, pages 340–352, 1995.

[Wen97] Makarius Wenzel. Type classes and overloading in higher-order logic. In
Elsa L. Gunter and Amy Felty, editors, Theorem Proving in Higher Order
Logics (TPHOLs ’97), volume 1275 of LNCS, 1997.

[Wen02] Makarius Wenzel. Isabelle/Isar — A Versatile Environment for Human-
Readable Formal Proof Documents. PhD thesis, TU München, 2002. http:
//tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html.

[Wen07] Makarius Wenzel. The Isabelle/Isar Reference Manual (for Isabelle2007), 2007.

[Wie06] Freek Wiedijk, editor. The Seventeen Provers of the World, volume 3600 of
Lecture Notes in Artificial Intelligence. Springer-Verlag, 2006.

[WP06] Makarius Wenzel and Lawrence C. Paulson. Isabelle/Isar. In Wiedijk [Wie06].

[Wüt77] H. R. Wüthrich. Ein schnelles Quantoreneliminationsverfahren für die Theorie
der algebraisch abgeschlossenen Körper. PhD thesis, Uiversität Zürich, 1977.

[Wüt74] H. R. Wüthrich. Ein Entscheidungsverfahren für die Theorie der
reellabgeschlossenen Körper. In Komplexität von Entscheidungsproblemen–Ein
Seminar, volume 43 of Lecture Notes in Computer Science, pages 138–162.
Springer-Verlag, 1973/74.

86

http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html

	Introduction
	Integration of proof-procedures
	Derived rules
	Basic tools for LCF proof composition
	Higher concepts in the Isar framework
	Example: dense linear orders

	Reflection
	Example: a simple case of sums
	Generic reification as derived rule

	Certificates
	Comparison
	Related work

	Certificates for polynomial problems
	Polynomials
	A formalisation of univariate polynomials as functions
	Reflected multivariate polynomial utilities

	Equations and disequations
	The universal case
	An interesting subset of the -fragment
	Integration

	Inequalities via sums of squares
	SOS, PSD and Hilbert's theorem
	Quadratic forms and SOS via SDP
	Finding Positivstellensatz certificates
	Integration

	Related work

	Elimination of quantifiers
	Preliminaries
	Dense linear orders, revisited
	Ferrante and Rackoff's algorithm
	A derived rule
	Integration as a context-sensitive method
	Linear arithmetic for ordered fields (almost) for free

	Linear arithmetics
	Parametric linear problems in ordered fields
	Presburger arithmetic
	Mixed real-integer arithmetic

	Algebraically closed fields
	The fundamental theorem of algebra
	A quantifier elimination procedure
	A derived rule

	Real closed fields
	A quantifier elimination procedure
	A derived rule
	An unfinished reflection
	Heuristics to reduce sign-assumptions
	Optimisations using linear and quadratic equations

	Related work

	Conclusion

