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Prüfer der Dissertation:

1. Univ.-Prof. Dr.-Ing./Univ. Tokio Martin Buss
2. Priv.-Doz. Micah M. Murray, PhD, Universität

Lausanne/Schweiz

Die Dissertation wurde am 21.04.2008 bei der Technischen Universiẗat München
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Abstract

By inferring the intention of human subjects from signals generated by the cen-
tral nervous system (CNS), Brain-Computer Interfaces (BCIs) provide an alterna-
tive means of communication for subjects with damages to theperipheral nervous
system, e.g., caused by neuro-degenerative diseases such as amyotrophic lateral
sclerosis or brain stem stroke. While state-of-the-art BCIs based on non-invasive
recording modalities enable elementary communication, more complex tasks, such
as the control of a robotic endeffector, remain beyond the feasibility of current sys-
tems.

In this thesis, it is argued that the primary cause for this limitation is the inadequacy
of present algorithms for feature extraction, i.e., of algorithms that aim to extract
those characteristics of the data recorded from the CNS providing most information
on the BCI-user’s intention. The main contribution of this thesis in addressing this
problem is threefold. In terms of supervised feature extraction, the framework of
information theoretic feature extraction is employed to derive an algorithm that is,
under some assumptions, optimal in terms of maximizing mutual information of
the BCI-user’s intention and extracted features. In terms of unsupervised feature
extraction, an algorithm based on beamforming methods is designed that optimally
extracts signals originating in certain regions of interest within the brain. Due to
its unsupervised nature, this algorithm is very robust and requires substantially less
training data than supervised approaches. Both algorithms are validated experimen-
tally and shown to outperform state-of-the-art approachesfor feature extraction in
non-invasive BCIs. Finally, a theoretically founded and experimentally validated
explanation for the success of Independent Component Analysis (ICA) in the anal-
ysis of EEG/MEG recordings in general, and as tool for feature extraction in BCIs
in particular, is provided that resolves the apparent contradiction between the re-
quirement of ICA of at least as many sensors and sources and thephysiological
implausibility of this assumption.

In summary, it is argued that the main limitation for featureextraction in non-
invasive BCIs is insufficient knowledge on how cognitive states are encoded in
signals generated by the CNS. The thesis concludes with a discussion why future
research on feature extraction in non-invasive BCIs should take into account the
nature of the brain as a complex network with time-varying connectivity patterns.
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Chapter 1

Introduction

1.1 Motivation

Any act of human communication depends on volitional musclecontrol. When we
speak to another person, use our fingers to type a text on a keyboard, or engage in
any other type of communication, we rely on our ability to produce goal directed
muscle activations. While such actions are initiated withinthe central nervous sys-
tem (CNS), no muscle activation, and thus no communication, is possible without
the peripheral nervous system. The peripheral nervous system comprises all nerves
and neurons outside the CNS, i.e., outside the brain and the spinal cord, and pro-
vides the connection between the brain and the rest of the body. As such, it is much
more exposed and less protected than the CNS. What happens if the peripheral ner-
vous system is injured and the connection between the CNS and the rest of the body
is affected? Depending on the severity of the damage the resulting effects may range
from mild impairment up to a so called locked-in state - a state in which a person
becomes imprisoned in her/his body without being able to communicate with the
outside world. One disease that inevitably leads to a locked-in state is amyotrophic
lateral sclerosis (ALS), a degenerative disease that affects motor neurons. During
the progress of the disease patients gradually loose control over their motor system,
until all voluntary and involuntary motor control is lost. Prominent patients with
ALS include the physicist Stephen Hawking and the recently deceased painter Jörg
Immendorf. Diseases such as ALS, however, are not the only cause of damage to
the peripheral nervous system. Accidents and strokes are other frequent causes for a
loss of voluntary motor control. While these impairments rarely lead to a locked-in
state, they also constitute a significant decrease in the affected patients’ life quality.
Scenarios such as these provide the motivation for researchon Brain-Computer In-
terfaces (BCIs). BCIs are devices that enable communication without using the pe-
ripheral nervous system. They solely rely on signals generated by the CNS, which
are used to infer the BCI-user’s intention. BCIs thereby providea new output chan-
nel for the brain that can be used to replace or assist a damaged peripheral nervous
system. While BCIs can be realized by a variety of means (discussed in Section
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1.2), the work of this thesis only concerns non-invasive BCIs,i.e., BCIs that solely
utilize signals generated by the CNS that can be recorded without penetrating the
skull. Subsequently, if not stated differently, the term BCI refers to non-invasive
BCIs.
Nowadays BCIs hardly enable more than basic communication to those with severe
damages to the peripheral nervous system. In the future, however, the use of BCIs
will not be restricted to basic communication. The control of a wheelchair by a BCI
already is an active field of research [LNF+06], and the extension to more powerful
robotic systems only a matter of time. For example, a locked-in patient might be
equipped with a BCI that enables the control of a humanoid robot. This robot would
be used as a replacement for the patient’s body, enabling her, at least to some extent,
to participate in every day life.
The primary goal of research on BCIs is the construction of a neuro-prothesis that
can replace or assist the peripheral nervous system, but this is by far not its only
purpose. In fact, the main task in constructing a BCI is the development of powerful
tools to analyze and interpret signals generated by the brain. As such, the advances
in research on BCIs provide new tools that are of large value forunderstanding
the way information is processed by our brains. However, besides improving the
life quality of disabled patients and enabling advances in neuroscientific research,
there are also less noble areas of application. BCIs will probably find the largest
proliferation as input devices for video games. Taking intoconsideration the wide
success of alternative input devices, such as movement sensors for video games,
and the simple fact that it is fun to control a video game just by thought, a BCI that
can be sold at a reasonable price for private use is likely to become a large financial
success.
Before these visions turn into reality, several major obstacles have to be overcome.
One of these obstacles is the currently very low informationtransfer rate (ITR) of
BCIs 1. The amount of information that can be send through a BCI roughly deter-
mines the complexity of the device that can be controlled with it. While the ITR of
current BCIs suffices to write short sentences [BGH+99] or, after intensive subject
training, control a computer cursor [WM04], the reliable control of more complex
systems, such as a humanoid robot or just a robotic arm, requires a significant in-
crease in the amount of bits that can be send per second.
There exist two principal approaches to increase the ITR of aBCI. First, new exper-
imental paradigms can be designed that allow for higher ITRs.The experimental
paradigm of a BCI consists of a set of rules that determine whichthoughts should be
executed by a subject to express a certain intention. These thoughts lead to pattern
changes in the signals recorded from the CNS, which can be detected and used to
infer the BCI-user’s intention. The number of intentions thatcan be expressed by
an experimental paradigm determines an upper bound on the amount of information
that can be transmitted. Research in this field aims at discovering paradigms that

1The concept of ITR does not apply to BCIs in a straightforwardmanner, as discussed in Section
2.3. For now, however, it suffices to accept ITR as a measure ofthe performance of a BCI.
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a) allow expressing a multitude of intentions, b) lead to strong and distinct pattern
changes in the data recorded from the CNS for each expressed intention, and c)
can be used by disabled subjects without extensive subject training. The second
approach to increase the ITR is to focus on the available dataand improve the infer-
ence of the user’s intention from the recorded signals. Thisapproach can be roughly
subdivided into feature extraction and statistical inference, although there is some
overlap between these two concepts. In the framework of BCIs, the goal of statis-
tical inference is to design algorithms that learn to optimally infer the BCI-user’s
intention from the recorded signals. Feature extraction, in contrast, is not concerned
with actual inference, but with extracting those components/characteristics of the
recorded data that are optimal for inferring the user’s intention. Feature extraction
can thus be seen as a pre-processing of the recorded data, with the aim to facilitate
a subsequent inference. While machine learning algorithms for statistical inference
are highly developed and can be applied in a straight-forward manner to BCIs, fea-
ture extraction for BCIs is still largely in its infancy. In BCIs,the data recorded
from the CNS is usually high-dimensional, non-stationary, and has a low signal-
to-noise (SNR) ratio, i.e., the components of the data providing information on the
BCI-user’s intention are deeply buried in ongoing backgroundactivity of the brain.
This combination poses problems that are seldomly encountered in other areas of
signal processing or machine learning. Consequently, few algorithms exist that are
suitable for feature extraction in the context of BCIs.
The motivation for the work presented in this thesis is the conviction that the lack
of advanced methods for feature extraction constitutes themain bottleneck for a
significant increase in ITR of BCIs. Consequently, the main topic of this thesis is
the development of algorithms for BCIs that extract those characteristics of signals
recorded from the CNS that are optimal for inferring the BCI-user’s intention.

1.2 State-of-the-Art of Brain-Computer Interfaces

A multitude of approaches to realizing a BCI exist. The most influential of these,
from a historical and state-of-the-art perspective, are briefly presented in this sec-
tion. A more detailed discussion of the components employedin state-of-the-art
non-invasive BCIs is carried out when appropriate in Chapters 3- 6.
In general, BCIs can be realized by invasive- and by non-invasive means. Invasive
BCIs infer the user’s intention from signals recorded directly inside the CNS, e.g.,
from local field potentials or single cell activity. This offers the advantage of pro-
viding direct access to information processing within the brain, but poses a signifi-
cant medical risk and raises ethical concerns. Non-invasive BCIs, on the other hand,
only utilize signals that can be recorded without penetrating the skull. These include
signals such as the electric or magnetic field of the brain, measured by electroen-
cephalography (EEG) and magnetoencephalography (MEG), orthe hemodynamic
response modulated by neuronal activity and measured by functional magnetic res-
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onance imaging (fMRI) or near infrared spectroscopy (NIRS). Recordings of these
signals can be performed without medical risks for the subject, but have the disad-
vantage of only providing measures of neural mass activity,i.e., only superpositions
of the signals generated by hundred-thousands of single neurons can be measured.
As a consequence, BCIs based on non-invasive methods currently only achieve a
fraction of the ITR achieved by invasive BCIs.

1.2.1 Invasive Approaches

Research on invasive approaches is mostly carried out withinthe USA. While mea-
surements of local field potentials are increasingly seen asan alternative to single-
cell recordings in the context of invasive BCIs (cf. [HWCM06], [MRV+03]), most
groups still focus on decoding movement intentions from firing patterns of single
neurons located in motor areas of the cortex. Due to the medical risks and ethical
concerns associated with brain implants most experiments,with one notable ex-
ception, are carried out with non-human primates. One of themain problems, that
all groups employing invasive methods face, is the insufficient stability of record-
ings obtained from chronically implanted electrodes. Subsequently, an overview of
research groups developing invasive BCIs is given. While care has been taken to
include the most significant work, this overview is necessarily biased.

MotorLab, University of Pittsburgh

The group of A. Schwartz, now at the University of Pittsburgh, was the first one
to realize online control of a neuroprosthetic device in three dimensions [THS02].
Direction tuning properties of single-cells, recorded from motor and pre-motor ar-
eas, were used to enable two Rhesus macaques to move a three-dimensional cursor
to one of eight locations on a three-dimensional grid. Interestingly, Schwartz et
al. could show that the tuning properties of the recorded cells adapted to the neuro-
prosthesis. This lead to improved movement accuracy with training and, more im-
portantly, decreased the number of cortical units necessary for movement predic-
tion.

Laboratory of Miguel A. L. Nicolelis, Department of Neurobiology Duke Uni-
versity Medical Center

The group of M. Nicolelis at Duke University uses single-cell recordings from large
neuronal ensembles in non-human primates to predict several motor parameters
such as hand position, velocity, and gripping force. These parameters are then used
to control a neuroprosthetic device or enable reaching and grasping movements
in virtual environments (cf. [CLC+03] and the references therein). Interestingly,
recordings are not confined to a single area of cortex, but simultaneous recordings
from multiple sites are obtained. The recordings from all sites are then shown to
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contribute, to varying degrees, to the estimation of the desired motor parameters.
This is in contrast to most other groups, which aim to record from brain regions
specialized for certain motor tasks.

Neural Prosthetic Systems Laboratory, Stanford University

The Neural Prosthetic Systems Laboratory at Stanford University, headed by K.
Shenoy, employs single-cell recordings from dorsal pre-motor cortex for motor in-
ference. Contrary to the groups of Schwartz and Nicolelis they do not aim to trans-
late neural activity into continuous movement commands. Instead, they predict the
intended target location of reaching movements from single-cell activity. Using
this approach they obtained a maximum ITR of 6.5 bits/s [SRY+06], which is the
highest ITR reported for BCIs so far.

Cyberkinetics / Donoghue Lab, Brown University

The ”BrainGate”, developed by Cyberkinetics, a company founded by J. Donoghue
of Brown University, is the first invasive BCI actually tested ona human subject
[HSF+06]. Electrodes were implanted in primary motor cortex of a human subject
with tetraplegia, and single-cell activity was used to enable control of a computer
cursor in two dimensions. While this was an important study, in terms of proving
that results obtained by invasive BCIs on non-human primates transfer to human
subject, the limited functionality of the BCI and questionable benefit to the human
subject raises serious ethical concerns.

1.2.2 Non-invasive Approaches

Contrary to invasive BCIs, non-invasive approaches can not record single-cell ac-
tivity but measure neural mass action of many hundred-thousands of neurons. This
aggravates the direct decoding of motor plans, since tuningcharacteristics of sin-
gle neurons can not be utilized for inference. While there is some evidence that
the electrical field of the brain does provide detailed information on kinematic pa-
rameters [SKM+07], all currently employed non-invasive BCIs are based on ex-
perimental paradigms: specific thoughts are carried out by subjects to express cer-
tain intentions. Non-invasive BCIs can thus be characterizedby the experimental
paradigm that is employed. Typically, one research group focuses on only one type
of paradigm, although there are exceptions to this rule. Subsequently, the work of
some of the most influential groups working on non-invasive BCIs is presented. A
more comprehensive review of work on non-invasive BCIs is given in [WBM+02].

Laboratory of E. Donchin, University of South Florida

The name of E. Donchin is associated with the P300, a positivedeflection in the
EEG measured over parietal areas that occurs approximately300 ms after an infre-



10 CHAPTER 1. INTRODUCTION

quent stimulus. Building upon the P300, Donchin et al. were the first to realize a
non-invasive BCI in 1988 [FD88]. They arranged the letters of the alphabet (and
some additional symbols) in a 6x6 matrix and consecutively flashed random rows
or columns of this matrix. By concentrating on a certain letter subjects could spell
words, since only flashing of those rows and columns including the letter the subject
concentrated on would elicit a P300. This basic principle still serves as the exper-
imental paradigm of many recent BCIs, with most research directed at improving
detection of a P300 (cf. [RGMA05] and [SYTI05]). Non-invasive BCIs based on
the P300 do not require any subject training and are especially suited for spelling
devices in which one out of many symbols has to be selected. However, they are
only of limited use for control of an end-effector such as a computer cursor or a
robotic device.

Institute of Medical Psychology and Behavioral Neurobiology, Eberhard Karls
Universität Tübingen

The group of N. Birbaumer, head of the Institute of Medical Psychology and Behav-
ioral Neurobiology at the Eberhard Karls Universität Tübingen, is another pioneer-
ing group of research on non-invasive BCIs. Their so called ”Thought-Translation-
Device” is based on slow cortical potentials (SCPs), i.e., the DC electric potential
on the scalp. SCPs can be intentionally modulated by subjects, which can be used
to answer simple yes/no questions or write short sentences [BGH+99]. The signif-
icance of the work of Birbaumer et al. is the fact that their BCI was the first to be
operated by subjects with amyotrophic lateral sclerosis (ALS), thereby providing
the first proof of principle that BCIs are indeed suited for paralyzed subjects. A
drawback of using SCPs for communication is the extensive training time of several
months necessary to master this paradigm. As a consequence,modulating SCPs has
been widely discarded as a suitable paradigm for non-invasive BCIs.

Wadsworth Center, New York State Department of Health

The group of J. Wolpaw at the Wadsworth Center, New York State Department
of Health, proposed a BCI similar in principle to the one of Birbaumer et al. in
1991 [WMNF91]. Instead of using SCPs, they trained their subjects to modulate
the strength of the EEG mu-rhythm, i.e., the variance of the EEG signal in the
8-12 Hz frequency range. Over the period of several weeks of training healthy
subjects thereby gained control over a cursor in one dimension. In 2004, Wolpaw et
al. published results on two-dimensional cursor control, also using modulations of
EEG rhythms [WM04]. The significance of this work is that it wasthe first study
to show that subjects could achieve independent volitionalcontrol over different
EEG rhythms. By independently modulating the variance of themu- (8-12 Hz)
and beta-rhythm (approximately 18-25 Hz), subjects could use one frequency band
for horizontal and the other for vertical cursor control. Sofar this study remains the
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only one to demonstrate two-dimensional cursor control by means of a non-invasive
BCI. One reason for this is the intensive training of up to 170 hours required by
subjects to learn modulating their EEG rhythms. This prolonged training might be
due to the fact that Wolpaw et al. could not provide instructions for subjects how to
control their EEG-rhythms. Instead, each subject had to explore different strategies
to discover suitable ones. Not surprisingly, this led to different subjects utilizing
different strategies.

Laboratory of Brain-Computer Interfaces, Technische Universität Graz

In 1997, G. Pfurtscheller et al. published a seminal study onnon-invasive BCIs
also utilizing volitional modulation of EEG rhythms [PNFP97]. While they did not
obtain better results than Wolpaw et al. in 1991 [WMNF91], thesignificance of
their work was that they provided specific instructions how to modulate the EEG
mu-rhythm. They instructed subjects to perform haptic imagination of left and right
hand movements, and showed that haptic motor imagery of one hand resulted in a
decrease in variance in the EEG mu-rhythm measured over the contralateral motor
cortex. While in the study of Wolpaw et al. extensive trainingwas required for
subjects to gain control over their EEG-rhythms, the use of haptic motor imagery
almost eliminated the need for subject training. This was not the only important
contribution of Pfurtscheller’s group to non-invasive BCIs.Another seminal study
introduced the concept of optimal spatial filtering to non-invasive BCIs [RMGP00].
They showed how to combine measurements of the electric fieldat different scalp
locations to extract those components of the EEG suitable for inferring the subject’s
intention, thereby significantly improving classificationaccuracies.

1.3 Contributions and Outline of this Thesis

The work presented in this thesis only concerns non-invasive BCIs. In this context,
the main obstacle to a significant increase in ITR is identified as the lack of sophis-
ticated methods for feature extraction. Consequently, mostof this thesis deals with
the development of algorithms for feature extraction in thecontext of non-invasive
BCIs.
Before these algorithms can be presented, it is necessary to establish a framework
for the analysis and evaluation of BCIs. This is done in Chapter 2, in which it is
argued that BCIs constitute communication channels that can be investigated with
the powerful tools provided by information theory as initiated by C. Shannon in
1948 [Sha48]. After introducing the framework of BCIs as communication channels
in Section 2.1, Sections 2.2 and 2.3 discuss how to measure the performance of BCIs
and address a common misconception about the meaning of ITR in BCIs. This leads
to a discussion why feature extraction is of central importance to increasing the ITR
of BCIs in Section 2.4. The rest of Chapter 2 addresses the control of an unstable
dynamic system solely by use of a BCI (Section 2.5).
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Chapters 3 - 6 cover the main contributions of this thesis. Three new algorithms
for feature extraction in non-invasive BCIs are presented andcompared with each
other as well as with existing approaches. The experimentalevaluation of these
algorithms is largely carried out using signals recorded byEEG. This is done for
the simple reason that of all non-invasive recording modalities for brain signals
EEG is the most readily available. In terms of a future widespread dissemination of
BCIs, EEG is thus the current method of choice. It should be pointed out, however,
that all algorithms presented here are not limited to EEG, and can be adapted to
other modalities with relative ease.
In Chapter 3, the feasibility of source localization for feature extraction in non-
invasive BCIs is investigated. It is shown that it is possible to infer whether a sub-
ject is performing imaginary tapping movements of the left or the right index finger
from estimates of the current density in left and right motorcortex. Estimates of
the current density are obtained by performing IndependentComponent Analysis
(ICA) on the available data, and localizing the sources of theobtained independent
components (ICs) by single current dipoles in a four-shell spherical head model.
Since ICA can not separate multiple Gaussian sources, a new procedure is derived
that identifies correctly reconstructed (non-Gaussian) sources, and incorrectly re-
constructed (Gaussian) noise.
Chapter 4 develops a supervised method for feature extraction using concepts of
information theory. A procedure for spatial filtering is designed that extracts those
components of the recorded EEG data that provide a maximum ofinformation on
the BCI-user’s intention. This is achieved by deriving an analytic approximation
of mutual information of class labels, i.e., BCI-user’s intention and extracted EEG
components under assumptions valid in the context of non-invasive BCIs. Using
this approximation, it is shown that Common Spatial Patterns(CSP), an algorithm
frequently used for feature extraction in BCIs, is optimal in terms of maximizing
(an approximation of) mutual information for two-class paradigms but not for multi-
class paradigms. The approximation of mutual information is then used to derive
a procedure for spatial filtering, termed multi-class Information Theoretic Feature
Extraction (ITFE), that is optimal in terms of maximizing mutual information for
multi-class paradigms. Multi-class ITFE is then applied toexperimental data from
a motor imagery paradigm, and is shown to perform superior tomulti-class CSP.
In Chapter 5, ICA is investigated in more detail in the context of EEG/MEG anal-
ysis and non-invasive BCIs. It is argued that the mixing model usually assumed in
complete ICA, i.e., assuming an equal number of sensors and sources, is unrealistic
in the context of EEG/MEG analysis. This serves as the motivation for a theoreti-
cal investigation of the behavior of complete ICA for arbitrary mixture models, i.e.,
including overcomplete mixture models with more sources than sensors. Necessary
and sufficient conditions for separability and identifiability of complete ICA for ar-
bitrary mixture models are derived. These results serve to argue that in EEG/MEG
analysis a mixture model with more sources than sensors but less non-Gaussian
sources than sensors should be assumed. The implications ofthis mixture model
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for EEG/MEG analysis by ICA are discussed, and testable predictions are formu-
lated. A new approach for improving the SNR of ICA in EEG/MEG analysis based
on linearly constrained minimum variance (LCMV) spatial filtering is presented,
and used to validate the predictions resulting from the proposed mixture model.
This new method is then applied to feature extraction in the context of BCIs based
on motor imagery paradigms, and used to provide an explanation for the success of
complete ICA in EEG/MEG analysis in spite of an overcomplete mixture model.
In Chapter 6, an unsupervised method for feature extraction is developed. Spatial
filters are derived that optimally extract all EEG sources that originate in a cho-
sen region of interest within the brain. By utilizing neuro-physiological a-priori
knowledge these regions of interest can be chosen to correspond to those locations
within the brain that provide most information on the BCI-user’s intention for a
given paradigm. This concept, similar in spirit to beamforming in array signal pro-
cessing, leads to very robust feature extraction, since allartifacts that do not origi-
nate in the chosen regions of interest are optimally attenuated. The efficacy of the
proposed method is demonstrated on experimental data from atwo-class motor im-
agery paradigm. It is shown that it outperforms establishedalgorithms for feature
extraction, and that it reduces the amount of required training data. Furthermore, an
online implementation of this algorithm is presented that allows real-time control
of a cursor in one dimension.
In the final Chapter 7 the relevance of the contributions of this thesis are discussed,
and directions for future research are delineated. Section7.1 provides a critical eval-
uation of the capabilities and limitations of the algorithms presented in Chapters 3 -
6. Future research directions addressing these limitations are delineated in Section
7.2. In Section 7.3, a framework for discovering the effective connectivity struc-
ture within the brain, termed Network Information TransferAnalysis (NITA), is
proposed, and implications of this framework for feature extraction in non-invasive
BCIs are discussed. In the final Section 7.4 of this thesis, the question of causal
relevance of the electric field of the brain, as measured by EEG, is discussed. The
prevalent belief that the electric field of the brain is an epiphenomenon, i.e., does
not play a role in information processing within the brain, is criticized. Finally, an
approach is delineated to investigate the relevance of the electric field of the brain
for information processing within the brain building upon the framework of NITA.
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Chapter 2

Information Transfer in
Brain-Computer Interfaces

In this chapter, the framework of information- and statistical learning theory for the
analysis of BCIs is introduced. This serves several purposes.First, it establishes the
background for theoretical work presented in later chapters. While most informa-
tion theoretic concepts can be applied to BCIs in a straightforward manner, there are
some assumptions inherent to classical information theorythat are not applicable in
this context. These differences have to be taken into account when applying infor-
mation theoretic concepts to BCIs in order to avoid drawing incorrect conclusions.
However, the primary purpose of this chapter is to present a conclusive argument
why feature extraction constitutes the main bottleneck in the performance of BCIs.
This argument is carried out in the framework of information- and statistical learn-
ing theory, and results in a mathematical definition of the main objective of this
thesis (Definition 2.13).
Basic knowledge of the concepts of information theory, e.g.,as presented in [CT06],
is assumed. In Section 2.1, BCIs are modeled as memoryless communication chan-
nels. This serves as the basis for Sections 2.2 and 2.3, in which the problem of
measuring the performance of BCIs and a common misconception about the mean-
ing of the information transfer rate (ITR) in BCIs are addressed. In Section 2.4, it
is argued that feature extraction constitutes the main challenge in developing high-
performance BCIs. This section thereby serves as the theoretical motivation for
Chapters 3 - 6. The chapter concludes with a discussion of the control of unstable
dynamic systems solely by use of a BCI in Section 2.5.

2.1 The BCI Communication Channel

A communication channel is a description of a process that transmits information. A
model of a communication channel usually consists of the three components shown
in Fig. 2.1. The central element in each model of communication is the channel
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ChannelEncoding Decoding
c ∈ C ĉ ∈ Cy ∈ Y x ∈ X

Figure 2.1: A communication channel.

c1
c2

cN

ĉ1
ĉ2

ĉN

P (ĉj |ci)

Figure 2.2: Graph representation of a discrete memoryless communication channel.

itself, i.e., the medium over which the information is to be transmitted. Here, only
the discrete memoryless channel is considered. This implies that the information
consists of symbolsc that take on values in a finite setC, and that the output of the
channel̂c ∈ C does not depend on past inputs to or outputs of the channel. The
communication channel can then be described by the graph depicted in Fig. 2.2.
Each arrow in Fig. 2.2 has an associated conditional probability P (ĉ = cj|c = ci),
that describes the probability of receiving symbolcj given symbolci has been sent.
The expressionP (ĉ = cj|c = ci) is subsequently abbreviated asP (ĉj|ci). The
actual channel is complemented by an encoding and a decodingprocedure that serve
two purposes. The first purpose is to map the input symbols in the setC into a
setY, which consists of symbols that can be send over the channel.The channel
then answers to each transmitted symbol inY with a received symbol inX . In
the decoding procedure, the received symbols inX are then mapped back toC.
Note that the set of received symbolsX does not have to coincide with the set of
transmitted symbolsY, and thatX andY may or may not coincide withC. The
second purpose of the encoding/decoding procedure is to minimize the probability
of receiving an incorrect symbol while maximizing the number of symbols sent over
the channel. This problem is discussed in Section 2.3.

In the context of BCIs, the symbolsc ∈ C transmitted over the channel are the
BCI-user’s intentions. The setC hence consists of the possible intentions the user
can choose from. The actual channel of the BCI is the brain itself, i.e., the central
nervous system (CNS). As a consequence, the encoding procedure in BCIs is rep-
resented by the experimental paradigm. The paradigm determines which thoughts
should be carried out by the user to express a certain intention, thereby mapping the
user’s intentionc ∈ C into a not further specified setY. The CNS then answers to
each intention expressed through the experimental paradigm with a symbolx ∈ X .
The setX represents all possible signals that can be recorded from the CNS, e.g.,
the electric field of the brain as measured by EEG. In the decoding procedure, the
received symbol is then used to reconstruct the user’s intention. This model of a
BCI as a communication channel is summarized in Fig. 2.3.
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2.2 Measuring Performance of BCIs

There are two principal ways of measuring the performance ofa communication
channel. The first is the error probability of the channel, defined as follows:

Definition 2.1 (Error probability). The error probability of a communication chan-
nel with inputc ∈ C = {c1, . . . , cN} and output̂c ∈ C is defined as

Pe :=
N∑

i=1

P (ci) (1 − P (ĉi|ci)) , (2.1)

with P (ci) the prior probability of symbolci andP (ĉi|ci) the probability of receiv-
ing symbol̂ci if symbolci was transmitted.

The error probability hence equals the average probabilityof receiving an incorrect
symbol. In the context of BCIs, it is desirable to minimize the error probability in
order to minimize the instances in which the BCI does not react according to the
user’s intention.
The second performance measure is the mutual information.

Definition 2.2 (Mutual information). The mutual information of the inputc ∈ C =
{c1, . . . , cN} and the output̂c ∈ Ĉ = {ĉ1, . . . , ĉM} of a communication channel is
defined as

I(c, ĉ) =
N∑

i=1

M∑

j=1

P (ci, ĉj) log
P (ci, ĉj)

P (ci)P (ĉj)
, (2.2)

with P (ci, ĉj) the probability of jointly observing input/output symbolsci and ĉj,
andP (ci) andP (ĉj) the marginal probabilities of symbolsci and ĉj.

Mutual information can also be expressed in terms of the (class-conditional) Shan-
non entropy asI(c, ĉ) = H(c) − H(c|ĉ) = H(ĉ) − H(ĉ|c) (cf. [CT06]). Note that
while the definition of error probability requires the inputand output of the channel
to take values in the same set, mutual information can be computed for random vari-
ables that take values in arbitrary sets. In terms of generality, it is hence beneficial to
also consider̂c ∈ Ĉ 6= C. The significance of mutual information as a performance
measure for communication channels is due to the famous channel coding theorem
of C. Shannon [Sha48], which states that the mutual information corresponds to the
maximum number of bits that can be send on average over a channel with arbitrarily

ĉ ∈ C
Intention CNSExp. Paradigm Decoding

c ∈ C x ∈ X
Brain

y ∈ Y

Figure 2.3: A BCI communication channel.
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low error probability. This gives rise to the channel capacity of a communication
channel and the concept of information transfer rate (ITR), which is discussed in the
context of BCIs in Section 2.3. There are, however, more reasons to utilize mutual
information as a performance measure for BCIs, or for communication channels in
general, which are discussed now.

Mutual Information and the Minimum Bayes Error

First, mutual information provides upper and lower bounds on the minimum Bayes
error.

Definition 2.3 (Minimum Bayes error). Let c ∈ C = {c1, . . . , cN} and ĉ ∈ Ĉ =
{ĉ1, . . . , ĉM}. The minimum Bayes error in estimatingc from ĉ is defined as

PBayes:=
M∑

j=1

P (ĉj)

(

1 − max
i∈{1,...,N}

{P (ci|ĉj)}
)

. (2.3)

The minimum Bayes error is the average probability of incorrectly inferring the
transmitted symbol if always that symbol is selected that isthe most probable one
given the observed output of the channel. This constitutes an induction principle in
machine learning. The minimal achievable average probability in inferring the value
of one random variable from observation of another random variable is defined as
the error that is obtained if the optimal Bayes classifier is employed.

Definition 2.4 (Optimal Bayes classifier). Let c ∈ C = {c1, . . . , cN} and ĉ ∈ Ĉ =
{ĉ1, . . . , ĉM}. The optimal Bayes classifier for inferring the value ofc from observ-
ing ĉ is defined as

gBayes(ĉ) := argmax
c∈C

{P (c|ĉ)}. (2.4)

By construction, the optimal Bayes classifier achieves the minimum Bayes error.
As it is easy to see, the minimum Bayes error coincides with theerror probability
as defined in (2.1) if̂C = C and for eachci, i = 1, . . . , N it holds thatP (ĉi|ci) ≥
P (ĉj|ci) for all j = 1, . . . , N andj 6= i. If these conditions do not hold, the error
probability may exceed the minimum Bayes error.
A lower bound on the minimum Bayes error in terms of mutual information was
first given by R.M. Fano in his class notes on information theory in 1952.

Theorem 2.1(Fano’s inequality). Let c ∈ C = {c1, . . . , cN} and ĉ ∈ Ĉ = {ĉ1, . . . ,
ĉM}. Then for the minimal Bayes error of estimatingc from observation of̂c the
following inequality holds:

PBayes≥
H(c|ĉ) − H(PBayes)

log |C| ≥ H(c|ĉ) − 1

log |C| =
H(c) − I(c, ĉ) − 1

log N
, (2.5)

with |C| the number of elements inC. If C = Ĉ the inequality can be further strength-
ened by replacinglog N in the denominator bylog(N − 1).
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Figure 2.4: Relation of minimum Bayes error and mutual information.

A proof of Fano’s inequality can be found in [CT06]. Fano’s inequality is tight, i.e.,
there are probability distributions onc andĉ for which equality holds in (2.5). Note
that tightness does not imply that equality in (2.5) holds for every distribution onc
andĉ.

An upper bound on the minimum Bayes error in terms of mutual information is
given by Feder and Merhav in [FM94].

Theorem 2.2(Feder & Merhav). Let c ∈ C = {c1, . . . , cN} and ĉ ∈ Ĉ = {ĉ1, . . . ,
ĉM}. Then for the minimal Bayes error of estimatingc from observation of̂c the
following inequality holds:

PBayes≤ 1 − 2I(c,ĉ)−H(c). (2.6)

Contrary to Fano’s inequality, this bound is only tight at certain points.

SinceH(c) is constant, the two bounds (2.5) and (2.6) imply that maximizing mu-
tual information ofc and ĉ minimizes the minimum Bayes error. Furthermore,
PBayes = 0 if and only if I(c, ĉ) = H(c), i.e., if the mutual information ofc and ĉ
equals the entropy ofc. The relationship of the minimum Bayes error and mutual
information is illustrated in Fig. 2.4 forC = Ĉ = {c1, . . . , c4} andP (c) = 1/4,
with the area outside the shaded region corresponding to impossible combinations
of minimum Bayes error and mutual information.

In summary, mutual information can be used, with some limitations, as a substitute
for error probability. While this certainly is an interesting feature, it is unclear so far
why mutual information should be used instead of or in addition to error probability.
This is addressed next.
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Mutual Information and Error Entropy

Since the mapping between mutual information and the minimum Bayes error is
not one-to-one, it is instructive to investigate what givesrise to this ambiguity. Un-
fortunately, this is a difficult and so far poorly understoodproblem. Here, only the
influence of the error uncertainty on the relation of minimumBayes error and mu-
tual information is discussed, and used to motivate the use of mutual information as
a performance measure for BCIs.

Both, mutual information and minimum Bayes error, are fully determined by the
probability distributionP (c, ĉ). Thus, any change in minimum Bayes error or mu-
tual information has to be reflected inP (c, ĉ). As it is obvious from Fig. 2.4,P (c, ĉ)
can be varied in order to alter mutual information while keeping the minimum
Bayes error constant. The key to understanding why this is possible is the defi-
nition of the minimum Bayes error. Again, letc ∈ C = {c1, . . . , cN} be the input
andĉ ∈ Ĉ = {ĉ1, . . . , ĉM} the output of the communication channel, andgBayes(ĉ)
the optimal Bayes classifier as defined in (2.4) for a given distributionP (c, ĉ). The
minimum Bayes error can then be written as

PBayes =
M∑

j=1

P (ĉj)(1 − max
i∈{1,...,N}

{P (ci|ĉj)})

= 1 −
M∑

j=1

P (ĉj) max
i∈{1,...,N}

{P (ci|ĉj)}

= 1 −
M∑

j=1

P (ĉj)P (gBayes(ĉj)|ĉj)

= 1 −
M∑

j=1

P (gBayes(ĉj), ĉj). (2.7)

As a consequence, thoseM elements ofP (c, ĉ) that are indexed bygBayes(ĉj) with
j = 1, . . . ,M fully determine the minimum Bayes error. SinceP (c, ĉ) has a total
of MN elements,M(N − 1) elements can be varied freely to alter the mutual
informationI(c, ĉ). Then note that mutual information can be written as [CT06]

I(c, ĉ) = H(c) − H(c|ĉ) = H(c) + H(ĉ) − H(c, ĉ). (2.8)

Now defineδ(ĉ) := argmaxi∈{1,...,N}{P (ci, ĉ)}, i.e., the index of the input symbol
decoded by the minimum Bayes classifier for each output symbol. The joint entropy
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of c andĉ can then be further decomposed into

H(c, ĉ) = −
M∑

j=1

N∑

i=1

P (ci, ĉj) log P (ci, ĉj)

= −
M∑

j=1

N∑

i=1;i6=δ(ĉj)

P (ci, ĉj) log P (ci, ĉj)

︸ ︷︷ ︸

=:H̃Error(c,ĉ)

−
M∑

j=1

P (gBayes(ĉj), ĉj) log P (gBayes(ĉj), ĉj)

︸ ︷︷ ︸

=:H̃Bayes(c,ĉ)

. (2.9)

Here, the termH̃Bayes(c, ĉ) contains the elements ofP (c, ĉ) that determine the min-
imum Bayes error and̃HError(c, ĉ) all other elements. Consequently,H̃Bayes(c, ĉ) is
a measure related to the entropy of the correctly classified symbols if the optimal
Bayes classifier is used, and̃HError(c, ĉ) is a measure related to the error entropy, i.e.,
the uncertainty which type of error is being made. Note that both expressions are
not real entropies since their probabilities do not add up toone. It is now assumed
that the elements ofP (c, ĉ) that determinẽHBayes(c, ĉ) are fixed, which implies that
the minimum Bayes error is also held constant. If then the measure of error entropy
H̃Error(c, ĉ) is decreased while keepingH(c) andH(ĉ) constant, this leads to an in-
crease in mutual informationI(c, ĉ) due to (2.8) and (2.9). The converse holds if
H̃Error(c, ĉ) is increased, i.e., this leads to a decrease in mutual information. This
relation is indicated by the arrows in Fig. 2.4. The uncertainty which type of error
is being made thus influences mutual information, with high mutual information
correlating with low error uncertainty. This is further illustrated in the following
example.

Example 2.1. Consider two different BCIs a) and b) (Fig. 2.5) with input/output
symbolsc, ĉ ∈ C = {c1, . . . , c4}. For BCI a), letP (ci, ĉi) = 3/15 andP (ci, ĉj 6=i) =
1/60, i.e., the probability of jointly observing the same input and output symbol
equals3/15 for all symbols, and the joint probability of observing different input
and output symbols equals1/60 for all combinations of symbols. This leads to
an error probability ofPe = 0.2 and a mutual information ofI(c, ĉ) = 0.96 bits.
Now consider BCI b). Here, the probability of jointly observing the same input and
output symbol also equals3/15. As a result, the error probability of BCI b) is the
same as that of BCI a):Pe = 0.2. The joint probability of observing different input
and output symbols however is not equal for all combinations of symbols. Instead,
this probability is1/20 for combinations{c1, c2}, {c2, c1}, {c3, c4}, {c4, c3}, and
zero for all other symbol combinations (indicated by the missing arrows in Fig. 2.5).
This constitutes a decrease in the error uncertainty, sinceeach symbol can only be
decoded incorrectly in one way. As a result, the mutual information of BCI b) equals
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ĉ1

ĉ2
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Figure 2.5: Two BCIs with equal error probability but a) lower and b) higher mutual
information.

I(c, ĉ) = 1.23 bits and hence exceeds the mutual information of BCI a) in spite of
equal error probability.

The relation of error entropy and mutual information is of high significance for
BCIs. Consider again the two BCIs in Fig. 2.5. If these are used for control of a
hand prosthesis, input symbolsc1 andc2 could be used for moving the hand to the
left or right, and input symbolsc3 andc4 could be used for opening and closing
the hand. If BCI a) is used for control of the hand, each type of error can occur.
For example, instead of moving the hand to the left the user ofthe BCI might un-
intentionally open the hand and thus drop a previously picked up object. This type
of error is not possible when using BCI b) for control of the neuro-prosthesis. In
BCI b), the two sets of input symbols{c1, c2} and{c3, c4} are decoupled. As a
consequence, errors can only occur within one set. Accidentally opening instead of
moving the hand can not occur.
In summary, the exact relation of mutual information and minimum Bayes error is
largely not yet understood. Nevertheless, a high mutual information of a BCI is
desirable not only because of the relation to the minimum Bayes error, but also due
to the relation to error entropy. Mutual information thus provides a measure for the
performance of BCIs that should be used in addition to error probability.

Mutual Information of Random Variables from Arbitrary Sets

One further benefit of mutual information is that it can be computed for random
variables from different sets. While at first glance this doesnot seem significant, it
does provide an important advantage in comparison to the error probability defined
in (2.1). As illustrated in Fig. 2.3, information transmission in BCIs is not confined
to one set. Instead, at different stages of the information transmission process the
BCI-user’s intention is encoded in variables that take valuesin different sets. If the
error probability is used to measure performance of a BCI only variables that take
values in the same set can be evaluated. As a direct consequence, the BCI can be
evaluated only as a whole. Mutual information, on the other hand, allows, at least in
principle, to measure the performance of different components of a BCI by estimat-
ing the mutual information of the input to and output of a component. This enables
the analysis and optimization of different components of a BCIindependently of
other components. While in principle this also holds true forthe minimum Bayes
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error, mutual information is in general easier to estimate.Intensive use of this prop-
erty of mutual information is made in Chapter 4.

2.3 Channel Capacity and Information Transfer Rate

One performance measure frequently used in the BCI literatureis the so called
information transfer rate (ITR) briefly mentioned in Section2.2. In this section, the
ITR is discussed in more detail, and it is shown that in the context of BCIs it does
not have the meaning usually attributed to it.
The ITR is defined as follows [WBH+00].

Definition 2.5. Let c, ĉ ∈ C = {c1, . . . , cN} the input and output of a BCI commu-
nication channel. Furthermore, letPe the error probability of the BCI as defined in
(2.1). The information transfer rate is then defined as

ITR(c, ĉ) := log N + Pe log
Pe

N − 1
+ (1 − Pe) log(1 − Pe). (2.10)

It is easy to show that the ITR equals the mutual informationI(c, ĉ) iff P (c) = 1/N ,
the error probability for each transmitted symbol is equal,and each possible error
is equally likely. The relation of ITR and mutual information can be rendered more
precise by the following theorem.

Theorem 2.3. Let c, ĉ ∈ C = {c1, . . . , cN} the input and output of a BCI commu-
nication channel. Furthermore, letPe the error probability of the BCI as defined in
(2.1),PBayesthe minimum Bayes error as defined in (2.3), and letPe = PBayes. Then
the ITR as defined in (2.10) constitutes a lower bound on the mutual information of
the output and input of a communication channel, i.e.,

I(c, ĉ) ≥ ITR(c, ĉ). (2.11)

Proof. Recollect Fano’s inequality in (2.5) for input and output of achannel taking
values in the same set,

PBayes≥
H(c|ĉ) − H(PBayes)

log(N − 1)
. (2.12)

Rearranging and usingPe = PBayesresults in

I(c, ĉ) ≥ H(c) − H(Pe) − Pe log(N − 1). (2.13)

Then note that forP (c) = 1/N the entropyH(c) = log N , and thatH(Pe) =
−Pe log Pe − (1 − Pe) log(1 − Pe). Equation (2.13) then becomes

I(c, ĉ) ≥ log N + Pe log
Pe

N − 1
+ (1 − Pe) log(1 − Pe) = ITR(c, ĉ). (2.14)
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The use of ITR as a performance measure for BCIs hence derives from the fact
that it provides a lower bound on the mutual information of the input and output
of a BCI that, contrary to the actual mutual information, can beeasily estimated.
Since the mutual information equals the maximum number of bits that can be send
on average over a communication channel with arbitrarily low error probability, the
ITR is taken to provide a conservative measure of how much information can be
send over a BCI. This is incorrect, as is shown now.
The basis of this argument is the famous channel coding theorem of C. Shannon
[Sha48]. For a discussion of this theorem the following definitions (adapted from
[CT06]) are required.

Definition 2.6 (Code). Consider a communication channel depicted in Fig. 2.1 with
input c and outputĉ with c, ĉ ∈ C = {c1, . . . , cN} and a given probability mass
functionP (c, ĉ). A (N,n) code for this channel consists of

1. An encoding functionh(n)
enc : C → Y(n) that maps each input symbol inC into

a sequence of lengthn in Y.

2. A decoding functionh(n)
dec : X (n) → C that maps each sequence ofn symbols

in X into C.

In a communication channel with an encoding and decoding procedure the infor-
mation is thus not directly transmitted over the channel. Instead, a sequence ofn
symbols inY is sent over the channel for each input symbol inC, and the corre-
sponding sequence at the output of the channel inX is used to infer the original
transmitted symbol inC. Note thatC, Y andX may or may not coincide.

Definition 2.7 (Maximum error probability). The maximum error probability for a
(N,n) code is defined as

λ(n) := max
i∈{1,...,N}

{

Pr
(

h
(n)
dec

(
x(n)
)
6= ci|h(n)

enc(ci)
)}

. (2.15)

Definition 2.8 (Rate). The rate of a(N,n) code is defined as

R :=
log N

n
. (2.16)

The rate specifies the average number of bits per transmission that carry useful
information, i.e., information that is to be transmitted over the channel.

Definition 2.9 (Achievable rates). A rateR is said to be achievable if there exists a
sequence of(2nR, n) codes such thatlimn→∞ λ(n) = 0.

Definition 2.10(Channel capacity). The channel capacity of a discrete memoryless
channel is defined as

C := max
P (y)

{I(y, x)}. (2.17)
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Note that the channel capacity refers toI(y, x), while the ITR provides a lower
bound onI(c, ĉ). This, however, does not affect the following argument. With
these definitions the channel coding theorem can be stated [CT06].

Theorem 2.4(Channel coding theorem). For a discrete memoryless channel, all
ratesR below capacityC are achievable. Conversely, any sequence of(2nR, n)
codes withlimn→∞ λ(n) = 0 must haveR ≤ C.

An accessible proof of the theorem is provided in [CT06]. Here, only the first part
of the theorem is of interest. It asserts that for every rate below capacity as defined
in (2.17) there exists a coding scheme that achieves an arbitrarily low maximum
error probability. The channel coding theorem thereby alsospecifies what precisely
is meant by the term information transfer.

Definition 2.11(Information transfer). Information transfer is understood as trans-
mitting data over a channel with arbitrarily low maximum error probability.

The crucial part in the statement of the channel coding theorem is that arbitrarily
low maximum error probability requires arbitrarily long codes, i.e., thatn may go
to infinity in Definition 2.9. In ordinary communication channels this seldom poses
problems, since here long codes, at least in principle, onlyimply a delay in the
data transmission. In BCIs, however, this is different. Consider again the structure
of a BCI communication channel in Fig. 2.3. Here, the encoding procedure is im-
plemented by the experimental paradigm. It thus has to be carried out within the
brain, i.e., by the user of the BCI. While this might still be feasible for short and
simple codes, increasing the code length and/or code complexity will soon exhaust
the intellectual capabilities of any BCI-user. The channel coding theorem, however,
only applies if arbitrarily long codes are permitted. As a direct consequence, the
channel coding theorem does not apply to BCIs. For this reason,the ITR can not be
interpreted as the amount of information that can be transmitted over a BCI.
The results of this section can be summarized as follows. TheITR provides a lower
bound on the mutual information of a BCI which is easy to compute. Since in
ordinary communication channels mutual information equals the maximum number
of bits that can be send on average over a channel with arbitrarily low maximum
error probability, ITR is often used in the BCI literature in a way that implies that
it specifies a lower bound on the information that can be transmitted over a BCI.
This is incorrect, since the channel coding theorem does notapply to BCIs. Hence,
the ITR does not have any theoretically justifiable meaning in the context of BCIs,
and it does not provide any information on the performance ofthe BCI that is not
already provided by the error probability in conjunction with the number of actions
the user of the BCI can choose from. Its only use is the combination of these two
properties of a BCI into a single expression.
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2.4 The Significance of Feature Extraction

While so far only the problem of measuring performance was addressed, this sec-
tion discusses the problems that arise when actually designing a BCI in order to
optimize performance measures. In this context, it is argued that the problem of fea-
ture extraction constitutes the main challenge in designing high-performance BCIs.
This section thereby provides the theoretical justification for the work presented in
Chapters 3 - 6.
Recollecting the structure of a BCI communication channel in Fig. 2.3, there are two
components of a BCI that can be engineered to optimize performance. These are the
experimental paradigm and the decoding procedure. The experimental paradigm
controls how much information on the user’s intention is contained in the data
recorded from the CNS. This amount of information can be expressed in terms of
the mutual informationI(c, x) and determines, via (2.5) and (2.6), upper and lower
bounds on the minimum Bayes error that can be achieved in estimating c from x.
For this reason, one goal in designing experimental paradigms is to maximize mu-
tual information of the BCI-user’s intention and the recordeddata. For now, it is
assumed that the experimental paradigm and the recording procedure are fixed, and
a signalx is recorded with a certain mutual informationI(c, x). This signal is then
used in the decoding procedure to infer the BCI-user’s intention. Here, the goal is
to optimize the decoding procedure in terms of a certain performance measure, e.g.,
the error probability or the mutual information of originalintentionc and inferred
intentionĉ.

Learning the Optimal Bayes Classifier

Drawing from the discussion of the previous section, the minimum error that can
be achieved in estimatingc from x is the minimum Bayes error. Hence, it seems
sensible to employ the optimal Bayes classifier to inferc from x. For c ∈ C =
{c1, . . . , cN} andx ∈ X = {x1, . . . , xM} the optimal Bayes classifier is given by

gBayes(x) := argmax
c∈C

{P (c|x)} = argmax
c∈C

{P (c, x)}. (2.18)

Constructing the optimal Bayes classifier thus requires knowledge of the unknown
distributionP (c, x). This raises the question how the optimal Bayes classifier can
be constructed. Assuming a set of training dataS = {(c1, xL), . . . , (cL, xL)} with L
samples drawn i.i.d. fromP (c, x) is available, one way to obtain the optimal Bayes
classifier is the following procedure. First, the distributionP (c, x) is estimated from
S as

P̂ (ci, xj) =
♯S{c = ci ∧ x = xj}

L
(2.19)

for i = 1, . . . , N , j = 1, . . . ,M , and♯S{.} the number of occurrences of the ex-
pression in the bracket in the training set. Almost sure convergence of this estimate
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Figure 2.6: Illustration of the learning curve for the optimal Bayes classifier

to the real distributionP (c, x) for L → ∞ is guaranteed by the Bernoulli Theorem.
An estimate of the optimal Bayes classifier is then constructed from P̂ (c, x) as

ĝBayes(x) := argmax
c∈C

{P̂ (c, x)}. (2.20)

The viability of this procedure depends on the amount of training data available.
To see this, it is instructive to investigate the conditionsunder which the estimated
optimal Bayes classifier and the true optimal Bayes classifier coincide, i.e., make the
same decision for eachx ∈ X . Quite surprisingly, this does not require thatP̂ (c, x)
is a good estimate ofP (c, x). Necessary and sufficient conditions forgBayes≡ ĝBayes

are that∀x ∈ X it holds that

argmax
c∈C

{P̂ (c|x)} = argmax
c∈C

{P (c|x)}. (2.21)

Upper and lower bounds on the probability that (2.21) holds for a certainx ∈ X can
be calculated as a function of the amount of training data using Chernoff bounds.
In general, the probability that (2.21) holds for a certainx ∈ X increases with the
number of occurrences ofx in S. The elements inX for which (2.21) does not hold
then determine by how much the error probability of the estimated Bayes classifier
exceeds the minimum Bayes error. This gives rise to the learning curve, which il-
lustrates the convergence of the expected classification error to the minimum Bayes
error as a function of the size of the training setS (Fig. 2.6).
Now consider the setX which constitutes the feature space. As defined in Section
2.1, each elementx ∈ X specifies one possible observation of recorded EEG data.
Let T be the duration of the recorded data,fs the sampling rate,d the quanitzation
accuracy andN the number of electrodes. Then the number of elements inX equals
|X | = dT ·fs·N . For example, assume that one second of EEG data is recorded from
128 channels at a sampling rate of 500 Hz and digitized with 16bit. Then the
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number of elements inX equals|X | = 161·500·128. This is an incredibly large
number. To make matters worse, constructing the optimal Bayes classifier in (2.20)
from the training setS requires observing multiple instances of each element of
X in S to obtain an estimate of (2.19) that fulfills the conditions in (2.21) with
high probability. Accordingly, just recording the amount of training data necessary
to obtain a sensible estimate of the optimal Bayes classifier in (2.18) is absolutely
impossible. Conversely, for any practically feasible amount of training data the
error probability of the estimated Bayes classifier will by far exceed the minimum
Bayes error. It is thus apparent that the optimal Bayes classifier can not be directly
applied tox to infer c.
In the above discussion only the optimal Bayes classifier for discrete feature spaces
is considered. This restriction is made due to the fact that the optimal Bayes clas-
sifier is the theoretically optimal classifier. As such, it isespecially well suited to
illustrate important concepts. It can be argued that other classifiers, such as support
vector machines or logistic regression, can be employed that display significantly
higher rates of convergence than the optimal Bayes classifier. This is indeed cor-
rect, and such classifiers are extensively employed in laterchapters. However, the
above discussion is similar for other types of classification algorithms and continu-
ous feature spaces. For example, if support vector machinesare considered instead
of the discrete optimal Bayes classifier, the above argument can be carried out by in-
vestigating the VC-dimension of the separating hyper-plane, and demonstrating the
slow convergence of the empirical to the expected risk usingdistribution indepen-
dent bounds [Vap98]. In summary, even the most advanced classification algorithms
fail if they are applied to feature spaces as large as those discussed here.

Feature Extraction and the Rate of Convergence

The above discussion raises the question how the rate of convergence of the esti-
mated Bayes classifier to the minimum Bayes error can be increased. In general, it
is impossible to derive distribution independent bounds onthe rate of convergence
for the estimated Bayes classifier [DGL96]. This implies that, not surprisingly, the
rate of convergence of the expected error probability to theminimum Bayes error
depends on the properties of the distributionP (c, x). Unfortunately, it is largely un-
known exactly which properties ofP (c, x) influence the rate of convergence. The
only obvious property that adversely affects the rate of convergence is|X |, the size
of the feature space. Given a fixed amount of training data, decreasing the size of
the feature space leads to a better estimate ofP̂ (c, x), and thereby∀ǫ > 0 to a
higher probability that the error probability of the estimated Bayes classifier does
not exceed the minimum Bayes error by more thanǫ. It is thus desirable to find a
transformationT : X 7→ X̂ with |X̂ | < |X | and usêx = T (x) instead ofx to infer
c. However, as the following theorem shows, not everyT with |X̂ | fixed is equally
suited.
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Theorem 2.5(Transformations ofx can not decrease the minimum Bayes error).
Let c ∈ C = {c1, . . . , cN}, x ∈ X = {x1, . . . , xM}, and P

(x→c)
Bayes the minimum

Bayes error in inferringc fromx as defined in (2.18). Then for all transformations
T : X 7→ X̂ it holds thatP (T (x)→c)

Bayes ≥ P
(x→c)
Bayes .

Proof. The proof of Theorem 2.5 is easiest to understand ifP (c, x) is seen as a
matrix, with the rows corresponding to theN elements ofC and the columns to the
M elements ofX . The minimum Bayes error in estimatingc from x is defined as

P
(x→c)
Bayes := 1 −

M∑

j=1

max
i∈{1,...,N}

{P (ci, xj)} , (2.22)

i.e., as the error that is obtained if for each column ofP (c, x) the row with the
maximum entry is chosen. The joint probability mass function of c andx̂ = T (x) is
denoted byPT (x)(c, x̂), and the corresponding minimum Bayes error is defined as

P
(x̂→c)
Bayes := 1 −

M∑

j=1

max
i∈{1,...,N}

{
PT (x) (ci, x̂j)

}
. (2.23)

Now, any transformationT : X 7→ X̂ can either be one-to-one and onto, one-to-one
but not onto, not one-to-one and onto, or not one-to-one and not onto.

1. T is one-to-one and onto
In this case,T is an invertible transformation and|X | = |X̂ |. This implies
that each column ofPT (x)(c, x̂) corresponds to exactly one column ofP (c, x),
i.e., the columns are permuted. This does not affect the minimum Bayes error,
since in (2.22) and (2.23) the sum over all columns is taken.

2. T is one-to-one but not onto
This implies that|X | < |X̂ |, since in addition to thoseM elements inX̂
that are hit byT exactly once there are elements in̂X that are not hit byT .
However, these elements do not enter into the minimum Bayes error since
their probability is zero. SinceT is one-to-one, all columns ofPT (x)(c, x̂)
with PT (x)(x̂) > 0 correspond to exactly one column ofP (c, x). This again
does not alter the minimum Bayes error, since in (2.22) and (2.23) the sum
over all columns is taken.

3. T is not one-to-one but onto
This implies that|X | > |X̂ |, since every element in̂X is hit (T is onto),
and at least one element in̂X is hit at least twice (T is not one-to-one). First
consider all elements in̂X that are hit exactly once. Each of the corresponding
columns ofPT (x)(c, x̂) corresponds to exactly one column ofP (c, x), which
does not alter the contribution of these columns to the minimum Bayes error.
Now consider all elements in̂X that are hit at least twice. Denote this set by
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X̂ ∗, and letXj = {x ∈ X : x̂j = T (x)}, i.e., all elements ofX that hit a
certain element̂xj ∈ X̂ . Then note that∀x̂j ∈ X̂ ∗ it holds that

max
i∈{1,...,N}

{PT (x)(ci, x̂j)} = max
i∈{1,...,N}







∑

x∈Xj

P (ci, x)







≤
∑

x∈Xj

max
i∈{1,...,N}

{P (ci, x)} (2.24)

by the triangle inequality. Plugging (2.24) into (2.23) then leads toP (x̂→c)
Bayes ≥

P
(x→c)
Bayes .

4. T is not one-to-one and not onto
First note that all elements in̂X that are not hit byT do not enter into the
computation of the minimum Bayes error due to zero probability. Then apply
the argument forT one-to-one and onto.

In summary, transformations that are one-to-one do not alter the minimum Bayes
error, and transformations that are not one-to-one can onlyincrease the minimum
Bayes error. This completes the proof.

The above theorem shows that any transformation ofx that reduces the size of the
feature space can at best not affect the minimum Bayes error, while in practice it
very likely increases it. It is hence desirable to find a transformation of the observed
data that reduces the dimension of the feature space in orderto increase the rate
of convergence while not affecting the minimum Bayes error. This is the goal of
feature extraction.

Definition 2.12 (Feature Extraction). The goal of feature extraction is to find a
transformationT : X 7→ X̂ with |X̂ | < |X | andP

(T (x)→c)
Bayes = P

(x→c)
Bayes .

This goal might be overly optimistic, since reducing the dimensionality of the fea-
ture space can be expected to almost always increase the minimum Bayes error. On
the other hand, a small increase of the minimum Bayes error might be irrelevant as
long as insufficient training data is available to actually get close to the minimum
Bayes error. In practice, the goal of feature extraction is tofind a transformation
of the data that minimizes theexpectederror probability for a given set of training
data. This done by trying to find a transformation that achieves an optimal trade-off
between increasing the rate of convergence of the learning curve and not increasing
the minimum Bayes error.

Implementing Feature Extraction in BCIs

After demonstrating the necessity of feature extraction for BCIs, it is now discussed
how feature extraction can be approached. First, recall that any transformationT :
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X 7→ X̂ with |X̂ | < |X | is a possible feature extraction algorithm. Consequently,
the setX̂ can be any subset of the power set ofX with |X̂ | < |X |, i.e., X̂ ⊂
P(X ). For example,X̂ can be the set of possible variances at a certain electrode,
the set of maximum amplitudes at a certain electrode, or evenmore abstract sets
such as the set of all possible values of mutual information of the EEG signals
at multiple electrodes. In fact, the notation used here is general enough forX̂ to
represent any property of the observed datax. This raises the question which set
X̂ ⊂ P(X ) with |X̂ | < |X | should be chosen as the new feature space. One
way to approach this is to fix the dimension of the feature space, e.g., let|X̂ | =
d, and then develop a sophisticated algorithm that determines the subset ofP(X )
with the lowest (estimated) minimum Bayes error under the constraint that|X̂ | =
d. Unfortunately, it can be proved that this requires an exhaustive search over all
possible subsets ofP(X ) with |X̂ | = d [Cv78]. Considering the enormous size of
P(X ), i.e., all possible subsets ofX , this is impossible to realize.
This finally leads to what is regarded in this work as the main challenge in the design
of high-performance BCIs. The original feature space of BCIs is by far too large
to be used directly for training a classification algorithm.This requires a feature
extraction algorithm that maps the original feature space into a lower dimensional
feature space, on which it is feasible to train a classifier given a limited amount of
training data. However, in the context of BCIs, the size of the class of possible
feature spaces is enormous. Consequently, any algorithm that does not restrict the
class of possible feature spaces is impossible to realize. How then can the class of
possible feature spaces be restricted? Such a restriction has to be specific enough to
decrease the number of allowed feature spaces to a computationally feasible point,
while being general enough to ensure that feature spaces with a low minimum Bayes
error are included. The only possible procedure to restrictthe class of allowed
feature spaces in a sensible way is to incorporate a-priori information. This a-priori
information has to reflect our knowledge on how the brain processes information,
and which properties of signals recorded from the CNS can provide information on
the BCI-user’s intention. Given such a restriction on the class of possible feature
spaces, powerful algorithms have to be developed that determine the in some way
optimal element of the class of admitted feature spaces. This can be summarized in
a mathematical way as follows.

Definition 2.13 (Feature extraction in BCIs). Let c ∈ C the BCI-user’s intention
andx ∈ X the data recorded from the central nervous system. The goal of feature
extraction in BCIs is to solve the optimization problem

T ∗ = argmin
T :X 7→X̂

{f(c, T (x))} s.t.X̂ ∈ P∗ ⊂ P(X ), (2.25)

with f : C × X̂ 7→ R some cost function related to the expected error probability
of inferring c from T (x), andP∗ some subset of the power setP(X ) that encodes
a-priori knowledge on how the brain processes information, i.e., which properties
of the datax provide information onc.
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Figure 2.7: Control of a dynamic system by a BCI.

Note that in order to solve the optimization problem (2.25) asubsetP∗ and a cost
functionf have to be specified in advance. The process of developing a sophisti-
cated method for feature extraction in non-invasive BCIs can thus be summarized
in the following three tasks:

1. DetermineP∗ by specifying assumptions on how information on the user’s
intention is encoded in the recorded data.

2. Find a suitable cost functionf that estimates the expected error probability.

3. Find a way to efficiently solve (2.25).

Finding suitable subsetsP∗ and good estimators of the expected error probability
f constitute the main contributions of this thesis in Chapters3 - 6. It should be
emphasized again that finding a suitable subsetP∗, specifyingf , and solving (2.25)
for a certain choice ofP∗ andf are problems from different domains. The first
problem of determiningP∗ pertains to how information is processed by our brain,
and how this is reflected in data that can be recorded from the CNS. This is usu-
ally considered to be the domain of neuroscience. The problems of determiningf
and solving (2.25), on the other hand, lie within the domain of signal processing
and machine learning. Designing high-performance featureextraction algorithms
requires a good understanding of both domains, which stresses the importance of
interdisciplinary research in the context of BCIs.

2.5 Control of Dynamic Systems by BCIs

Currently, BCIs are only used for controlling simple devices such as a cursor on a
screen or a spelling device. The goal of research on BCIs, however, is controlling
more complex systems such as robotic devices. These systemsare often unstable,
which leads to the following question: Can an unstable dynamic system be stabi-
lized by control through a BCI (Fig. 2.7)? The limitation that is imposed here due
to the presence of a BCI is the limited bandwidth in the feedbackloop between
the operator and the dynamic system. The problem of controlling a dynamic sys-
tem through a BCI can thus be formulated as a control problem with bandwidth
constraints.
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Research on control with bandwidth constraints on the communication channel be-
tween plant and controller has been initiated about ten years ago. A recent overview
of the state-of-the-art in this field is given in [NFZE07]. Most research on band-
width limited control assumes that the bandwidth of the feedback from the sensors
to the controller is limited, but data can be transmitted with zero error probability.
While the obtained results differ depending on which notion of stability is adopted
(e.g., whether asymptotic stability or only boundedness ofthe state is required), it
has been shown that depending on the dynamic system there exists a lower bound
on the rate of the communication channel that must be met to allow stabilizabil-
ity. Hence, the amount of information that can be transferedby the communication
channel determines the class of dynamic systems that can be stabilized.
The use of a BCI in place of the controller of a dynamic system differs from the
problem usually considered in the control literature. Here, the bandwidth is limited
only between the controller, i.e., the BCI, and the dynamic system. Feedback from
the system to the BCI on the other hand is provided by visual feedback, and can thus
be considered, at least in practice, as obtained with infinite capacity. This setting
is considered in [MS07], in which it is proved that if a communication channel
between controller and dynamic system has zero zero-error capacity no unstable
system can be stabilized almost surely. The concept of zero-error capacity has been
introduced by C. Shannon in [Sha56].

Definition 2.14 (Zero-error capacity). The zero-error capacityC0 of a noisy chan-
nel is defined as the least upper bound of rates at which it is possible to transmit
information with zero probability of error.

In general, the problem of establishing the zero-error capacity of an arbitrary noisy
channel remains unsolved [KO98]. If, however, feedback of the received symbols
back to the sender is allowed, which is the case in the settingconsidered here,
C. Shannon provided a sufficient condition for zero zero-error capacity using the
concept of adjacency [Sha56].

Definition 2.15 (Adjacency). Let c ∈ C = {c1, . . . , cN} the input and̂c ∈ Ĉ =
{ĉ1, . . . , ĉM} the output of a discrete memoryless communication channel.Two
symbolsci and cj with i, j ∈ {1, . . . , N} and i 6= j are called adjacent if there is
an output symbol̂ck, k ∈ {1, . . . ,M} that can be caused by either of these two.

Theorem 2.6(Zero-error capacity of memoryless discrete channels withfeedback).
In a memoryless discrete channel with complete feedback of received symbols to the
transmitting point, the zero-error capacityC0 is zero if all pairs of input symbols
are adjacent.

For this reason, a BCI can only have a zero-error capacity greater than zero if there
exist at least two intentions of the user that are never confused with each other by
the BCI. At present, there is no BCI that meets this requirement, and it is unclear
how such a BCI could be constructed. On the other hand, there appear to be no
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reasons why this should be impossible, at least in principle. Nevertheless, due to
[MS07] and Theorem 2.6 at present no BCI can be used to stabilizeany unstable
dynamic system. This conclusion can be illustrated by the following example.

Example 2.2.Consider the discrete-time scalar dynamic system

x[t + 1] = ax[t] + bu[t], (2.26)

with x[t] the state of the system at timet, u[t] the input to the system at timet, and
a, b ∈ R. It is assumed that|a| > 1, i.e., the system is unstable, andb > 0. If
u[t] ≡ 0 andx[t0] 6= 0, thenlimt→∞ |x[t]| = ∞, i.e., the state is unbounded. The
state of the system can be bounded if a control law

u[t] = −sign{x[t]} (2.27)

is chosen. Then

x[t + 1] = ax[t] − b · sign{x[t]} =

{
x[t + 1] = ax[t] − b ; x[t] ≥ 0
x[t + 1] = ax[t] + b ; x[t] < 0

. (2.28)

For x[t] ≥ 0, x[t + 1] < x[t] ⇔ x[t] < b
a−1

, and forx[t] < 0, x[t + 1] > x[t] ⇔
x[t] > − b

a−1
. Consequently,lim supt→∞ |x[t]| < b

a−1
if |x[t0]| < b

a−1
, i.e., the state

of the dynamic system is bounded. If however|x[t]| > b
a−1

for any t, the state of
the system grows without bounds since the control input is not powerful enough to
drive the state of the system back to its stable region|x[t]| < b

a−1
(see Fig. 2.8).

Now consider the control law (2.27) to be carried out by an operator using a binary
BCI. The control law then becomes stochastic, since errors might be introduced by
the BCI. HenceP (u[t] = −sign{x[t]}) = 1 − Pe, andP (u[t] = sign{x[t]}) = Pe,
with Pe > 0 the error probability of the binary BCI. Independently of thedesired
output of the controller, the probability that the control sequenceu[ti] = 1, i =
0, . . . , T , occurs is hence greater zero. Since the state of the system at time T is
given by

x[T ] = atx[t0] +
T∑

i=1

ai−1bu[ti], (2.29)

this control sequence leads to the statex[T ] = atx[t0] + b
T∑

i=1

ai−1. This is an

increasing function ofT with limT→∞ x[T ] = ∞. Consequently, there is someT
such thatx[T ] > b

a−1
, which leads to the state of the system becoming unbounded

even if the correct control signals are transmitted by the BCIfor t > T . This
illustrates why no unstable dynamic system can be stabilizedalmost surely by a
BCI with zero zero-error capacity.

While in practical situations a low error probability of the BCImight lead to a very
low probability of the state of the system exceeding some bound in finite time, the
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Figure 2.8: State evolution for the dynamic system (2.28) for a = 1.1, b = 0.2 and
different initial conditions.

boundedness can not be guaranteed as long as BCIs have zero zero-error capacity.
Consequently, if an unstable system is controlled by a BCI, measures have to be
taken that ensure stability of the system independently of the control signals re-
ceived from the BCI. This is a non-trivial control theoretic problem, which could be
approached by methods such as invariance control that ensure that the state of the
system never leaves an invariance region (cf. [WB05], [WB07]).
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Chapter 3

Feature Extraction via Source
Localization

3.1 Introduction

In this chapter, the feasibility of source localization as amethod for feature ex-
traction in non-invasive BCIs is investigated. This is motivated by the following
considerations. As discussed in Section 2.4, it is necessary in BCIs to restrict the
class of allowed feature spaces, denoted byP∗, in order to construct viable fea-
ture extraction algorithms. The classP∗ determines which properties of the data
recorded from the CNS are allowed as possible features. It hence represents the
a-priori knowledge that is available on how the BCI-user’s intention is encoded
in the recorded data. This is the problem of deciphering the neural code. Most
research on neural coding deals with action potentials of single neurons or small
networks of neurons (cf. [DA01] for an introduction to this topic). For the record-
ing modalities employed in this thesis, i.e., EEG and MEG, the question of the
neural code is a largely open problem (cf. [NS05]). In traditional neuropsychol-
ogy the main tool for the analysis of EEG/MEG data is averaging event related
potentials (ERPs), i.e., averaging responses of the electric or magnetic field of the
brain to external stimuli over many trials. In recent years,measures of event related
synchronization/desynchronization (ERS/ERD), i.e., changes in the power of the
electric/magnetic field in specific frequency bands, have been increasingly used for
investigating neural processes [PL99]. Considering the complexity of the human
brain, these are relatively simple measures. In general, the problem of how infor-
mation on cognitive processes is encoded within EEG/MEG data remains unsolved.
For this reason, it is also unclear how the class of allowed feature spacesP∗ could
be restricted to properties of the recorded data that provide most information on the
BCI-user’s intention.
The idea behind using source localization for feature extraction in BCIs is not to
decipher the neural code, but rather to largely circumvent this problem. The aim of
source localization in EEG/MEG is to detect areas within thebrain that are active
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during a certain cognitive task. Here, active brain areas are defined as areas with a
high current density, since the spatial distribution of current density within the brain
gives rise to the electric/magnetic field that can be measured on the scalp [NS05].
It is well known that information processing within the brain, at least for low-level
processes such as the first stages in processing of visual, auditory, or sensorimotor
stimuli, is spatially localized, i.e., that certain brain areas are specialized for certain
tasks. It thus seems sensible to infer the user’s intention,or in general any cognitive
task, from measures of activity of certain brain areas. Thishas got the advantage
that the specific nature of how the information is temporallyencoded within the
electric/magnetic field becomes irrelevant.
Employing source localization methods for feature extraction in non-invasive BCIs
has been first proposed almost simultaneously by this authorin [GGWB05], by Qin
et al. in [QDH04], and by Grave de Peralta Menendez et al. in [GGP+05]. More
recent studies include [KLH05] and [LLA07]. A comparison ofthese studies with
the work presented in this chapter is carried out in Section 3.4, along with a critical
evaluation of the efficiency of source localization for feature extraction.
In this chapter, source localization is combined with Independent Component Anal-
ysis (ICA) to obtain estimates of the current density in specific brain regions. ICA
decomposes the measured EEG data into statistically independent components (ICs).
Using ICA as a preprocessing step before source localizationhas got the advantage
that often simple source models for each IC can be used for which the EEG inverse
problem, i.e., estimating the current density within the brain from measurements
on the scalp, is well defined. A disadvantage of using ICA is that it is necessary
to identify which ICs constitute meaningful components, andwhich ICs represent
noise. This is solved here by proving that ICs representing noise are not invariant
with respect to initial conditions of the ICA algorithm. Using ICA multiple times
on the same data set with randomized initial conditions hence allows the identifica-
tion and exclusion of ICs that represent noise. The origin of meaningful ICs is then
localized by modeling each IC as a single current dipole within a four-shell spher-
ical head model. This methodology is applied to EEG data obtained during real
and imaginary tapping movements of the right and left index finger, and it is shown
that it constitutes a viable option for feature extraction in non-invasive BCIs. The
contribution of this chapter is therefore twofold. First, it establishes the viability of
source localization for non-invasive BCIs, and second, it develops a methodology
how in ICA components representing noise can be reliably identified and excluded
from further analysis.
The structure of this chapter is as follows. In Section 3.2, the concept of ICA
and the specific algorithm used in this work are introduced. It is then shown how
the origin of each IC can be localized, and how an estimate of the spatial current
density distribution within the brain can be obtained. The main contributions of
this Section are a theorem on the behavior of ICA in presence ofmultiple Gaussian
sources, and a methodology for identifying and excluding ICsrepresenting noise. In
Section 3.3, preliminary experimental results from one subject are presented. The
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chapter concludes with a critical evaluation of the efficiency of source localization
for feature extraction in BCIs. Parts of the work in this chapter have been presented
in [GGWB05] and [GB06].

3.2 Methods

As before, letc ∈ C = {c1, . . . , cN} be the BCI-user’s intention, andx ∈ X
the recorded EEG/MEG data. Since the experimental evaluation in Section 3.3 is
performed using EEG recordings, only this modality is considered here. In Chapter
2,X was defined as a discrete space in which each element uniquelydetermines the
recorded EEG data. For the purpose of this chapter, it is beneficial to letX = R

M×T

with M the number of recording electrodes andT the number of recorded samples.
Distinguishing the variableT , describing the number of samples, and the mapping
T , representing the feature extraction algorithm, should beclear from the context.
Consequently, the matrixX ∈ R

M×T refers to one block of recorded data, and the
vectorx(t) ∈ R

M refers to the recorded data at all electrodes at one sample point.
Note that while this is the convention usually employed in the analysis of EEG data,
it is in fact an approximation if EEG data is digitally recorded.
Before going into details of the methodology, it is importantto clearly state the
main assumptions that are being made in this chapter on the class of allowed feature
spacesP∗ to solve the feature extraction problem (cf. Definition 2.13).

1. Only the activity of brain areas, defined as the spatial distribution of current
density within the brain, provides information on the BCI-user’s intention.

2. Distinct brain areas produce electric fields that that arestatistically indepen-
dent.

3. The activity of a distinct brain area can be modeled by a single current dipole.

These assumptions warrant some further explanations. The first assumption has al-
ready been motivated in Section 3.1. The second assumption is required in order to
apply ICA to EEG data, and there is considerable experimentalevidence that it is
indeed justified (reviewed in [HKO01]). Assumption three isbased on experimental
evidence [VSJ+00], and constitutes the main reason for using ICA as a preprocess-
ing step in source localization as discussed in Section 3.2.2.
It is furthermore necessary to specify the exact form of the desired feature extraction
algorithm T . Since the goal of this chapter is to infer the user’s intention from
activity of certain brain areas,T (X) should return an estimate of the current density
at certain locations within the brain. For simplicity, it isassumed that for each class
c ∈ C the activity in one region of the brain is sufficient. The desired feature
extraction algorithm is thus a mappingT : X 7→ R

N
+ , i.e., given some data the

mappingT returns an estimate of the current density atN distinct locations within
the brain. The optimal feature extraction algorithm is thenfound by solving (2.25)
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with f(c, T (x)) =
∑N

i=1 |T (Xci
)| with Xci

denoting the recorded EEG data during
conditionci. The resulting mappingT ∗(X) thus returns estimates of the current
density at thoseN locations in the brain with maximum activity for each condition.
These areas are assumed to be optimal for inferring the BCI-user’s intention. The
implementation of this approach is now presented.

3.2.1 Independent Component Analysis

In ICA, a generative model of the dataX = [x(t1), . . . ,x(T )] ∈ R
M×T measured

atM electrodes is assumed,
x(t) = As(t). (3.1)

Here, s(t) ∈ R
M describes the electric field of the original sources within the

brain, and each column of the full rank matrixA ∈ R
M×M describes the projec-

tion strength of a source to each of the electrodes. Throughout this chapter, all
variables and matrices are assumed to be real. For now, it is assumed that at most
one source has got a Gaussian distribution. Furthermore, itis assumed that each of
theM sources has got zero mean and unit variance. This is no loss ofgenerality,
since the mean can be subtracted and added again at any point due to the linear-
ity of the model, and the variance of each source can be arbitrarily traded between
the source and the corresponding column of the mixing matrixA. The crucial as-
sumption in ICA is that for the probability density function of the source vector it
holds thatp(s) =

∏M
i=1 p(si), i.e., that the original sources are mutually statistically

independent. This also defines what is meant by the term source in this context.

Definition 3.1 (ICA sources in EEG analysis). In ICA applied to EEG data, a source
is defined as a spatial current density distribution within the brain with identical
temporal dynamics that is statistically independent of allother sources.

Consequently, a source does not have to be spatially confined to one region of the
brain or even consist of one connected region. This is discussed in the context of
source localization in Section 3.2.2. Besides the assumption of mutual statistical in-
dependence of the sources, which is supported by experimental evidence reviewed
in [HKO01], four other assumptions on the EEG dataX are made by the model in
(3.1). These are a) linearity of the mixing process, b) instantaneous propagation of
the sources to the sensors, c) at most one source has got a Gaussian distribution,
and d) equal number of sensors and sources. The first two assumptions are justi-
fied in the context of EEG analysis as discussed extensively in [NS05]. The third
assumption is discussed in Section 3.2.3. The fourth assumption is questionable.
Typically, EEG is recorded with up to 128 electrodes. This iscontrasted with an
estimated number of several million cortical columns within the brain, which are
believed to constitute the main current sources within the brain giving rise to the
electric field on the scalp [NS05]. In spite of this apparent contradiction, ICA has
been applied with great success to EEG data. This is addressed in detail in Chapter
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5. For now, this assumption is adopted as a working assumption, keeping in mind
that its validity is questionable.
The goal of ICA is to reconstruct the original sourcess(t) and the mixing matrix
A only from observations ofx(t) and the assumption on the sources of mutual
statistical independence. The general approach to this problem is to formulate an
optimization problem

W ∗ = argmin
W∈RM×M

{F (WX)} (3.2)

such thatW ∗ = PΛA−1 with P ∈ R
M×M a permutation matrix andΛ ∈ R

M×M a
diagonal matrix. Consequently, it then holds thaty(t) = W ∗x(t) = PΛs(t). The
elements ofy(t) are called the independent components (ICs). Different choices
of the cost functionF , sometimes also called a contrast function [Com94], lead to
different algorithms. An excellent review of algorithms for ICA and the statistical
principles underlying the construction of their contrast functions is [Car98].
Here, only the extended Infomax algorithm ([BS95],[LGS99])is considered, which
has been shown to perform well in the context of EEG analysis (reviewed in [JMB+01]).
Results obtained with other algorithms might slightly vary.The Infomax algorithm
is based on minimizing mutual information of the reconstructed ICs, i.e.,

F (y) = I(y1, . . . , yM) =
M∑

i=1

H(yi) − H(y1, . . . , yM). (3.3)

Contrary to Chapter 2, hereH(.) refers to the differential entropy (cf. [CT06]).
Equation (3.3) is an adequate cost function for ICA due to the following theorem
(cf. [Com94]).

Theorem 3.1. Let y ∈ R
M be a vector of random variables. Then it holds that

I(y1, . . . , yM) ≥ 0 with equality if and only if the elements ofy are mutually statis-
tically independent.

Proof. Mutual information can be expressed as

I(y1, . . . , yM) =

∞∫

−∞

p(y) log
p(y)

M∏

i=1

p(yi)

dy = D

(

p(y)‖
M∏

i=1

p(yi)

)

, (3.4)

with D

(

p(y)‖
M∏

i=1

p(yi)

)

the Kullback-Leibler divergence ofp(y) and
M∏

i=1

p(yi).

Due to Gibbs’s inequality, it holds thatD

(

p(y)‖
M∏

i=1

p(yi)

)

≥ 0 with equality if

and only ifp(y) =
M∏

i=1

p(yi).



42 CHAPTER 3. FEATURE EXTRACTION VIA SOURCE LOCALIZATION

Finding a transformationW ∗ with F (W ∗x) = 0 thus results in mutually statisti-
cally independent components. Under the assumptions on thesource model (3.1) it
then holds thaty(t) = W ∗x(t) = PΛs(t) andW ∗ = PΛA−1 [Com94]. Details
on how the optimization problem (3.2) can be solved for this contrast function are
given in [LGS99].

3.2.2 Source Localization and ICA

Excellent reviews of different source localization methods for EEG data are given in
[BML01] and [MML+04]. For this reason, only those aspects of source localization
important in this context are presented here.
There are two reasons for using ICA as a preprocessing step before source localiza-
tion, which was first suggested in [ZWJ00]. The first reason is that the inverse of
the obtained unmixing matrix constitutes an estimate of theoriginal mixing matrix
up to scaling and permutation. Scaling and permutations areneglected from here
on, since these are irrelevant in the context of source localization. It is thus assumed
that(W ∗)−1 = A. Recall that each columnai of A describes the projection strength
of sourcesi to each of the electrodes. Since the temporal evolution of the source
si only constitutes a scaling of the topographyai, all information required to lo-
calize the specific source is already contained inai. Source localization of ICs can
thus be completely decoupled from their temporal evolution. The second reason
for using ICA before source localization is empirical evidence that ICs can often be
accurately modeled by a single current dipole [VSJ+00]. Since a current dipole has
only got six degrees of freedom (three for its position, two for its orientation, and
one for its strength), the inverse problem of determining the parameters of a current
dipole that best explain the topography of an IC is well-defined. This is in contrast
to source localization of raw EEG data, which usually requires multiple current
dipoles to explain the data. If more thanM/6 current dipoles are employed, the
inverse problem is ill-posed. Consequently, additional assumptions on the param-
eter space, such as minimum variance or sparsity constraints, have to be imposed
to obtain an unique solution (cf. [BML01, MML+04]). This is usually unnecessary
when performing source localization of ICs.
It should be noted that increasing the complexity of a model,i.e., increasing the
number of current dipoles, always leads to a more accurate representation of the
observed data. Choosing a model that achieves an optimal trade-off between model
accuracy and model complexity is an intricate problem that requires a prior on the
class of allowed models (see [HB01] for a general introduction and [KBJP98] for a
comparison of model selection techniques in EEG analysis).The assumption that
one IC can be modeled by a single current dipole is thus not to be understood as
meaning that the source of an IC does indeed correspond to a single current dipole,
or that a single current dipole is the best model in terms of some trade-off between
model accuracy and model complexity. Instead, it only asserts that a single current
dipole, which constitutes the most simple model in EEG source localization, is



3.2. METHODS 43

x

y z

Current dipole

EEG electrode

Brain

CSF

Skull

Skin

Figure 3.1: The four-shell spherical head model.

Radius [cm] Conductivity [S/m]
Brain 7.1 0.33
CSF 7.2 1
Skull 7.9 0.0042
Skin 8.5 0.33

Table 3.1: Radii and conductivities used in the four-shell spherical head model

sufficiently accurate to model the topography of one IC for the purpose of feature
extraction.
In addition to a source model, source localization also requires specification of a
suitable head model. Here, only a four-shell spherical headmodel is considered
(see Fig. 3.1). This head model consists of four nested spheres, with the shells
representing the brain, the cerebrospinal fluid (CSF), the skull, and the scalp. Each
sphere is assumed to be isotropic with a certain conductivity value. The radius
and conductivity value of each sphere shown in Tab. 3.1 is chosen as in the publicly
available toolbox EEGLAB [DM04]. It should be noted that theconductivity values
and radii of the spheres vary between subjects. However, an accurate choice of these
parameters is not required for feature extraction, as is discussed at the end of this
section.
Using Legendre-polynomials, an analytic solution for the electric potential at any
position on the scalp due to a current dipole inside the innermost sphere, i.e., the
brain, can be computed [RD69]. Letrdip ∈ R

3 be the position of the dipole and
θ ∈ R

3 the orientation of the dipole. The electric potential at theith electrode with
coordinatesri can then be computed as

x̂i = l(rdip, ri)
Tθ, (3.5)

with l ∈ R
3 the so called leadfield vector. The position of the dipole enters non-
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linearly into the computation, while the influence of the orientation is linear. The
electric potential at all electrodes can then be computed as

x̂ = L(rdip)θ, (3.6)

with L(rdip) ∈ R
M×3 the leadfield matrix. Note that for simplicity the dependence

of the leadfield matrix on the positions of the EEG electrodesis dropped. It should
be pointed out that it is incorrect to speak of an electric potential without specifying
a reference. In EEG source localization, all electric potentials are computed with
respect to a common average reference. For this reason, before performing source
localization, the recorded EEG data has to be transformed such that the mean elec-
tric potential across all electrodes equals zero for every sample point.
The goal of source localization in this context is then to solve the optimization
problem

[r∗
dip,θ

∗] = argmin
rdip,θ

{‖ai − L(rdip)θ‖2} (3.7)

for each IC, i.e.,i = 1, . . . ,M . Depending on the topography of an IC, this can
constitute a non-convex optimization problem. Consequently, (3.7) is solved in a
two-step procedure for each IC. First, a dipole grid, covering the volume of the
innermost sphere, is constructed, and the optimal orientation of each dipole on the
grid is computed. The grid position that minimizes (3.7) is then chosen as the initial
position for a standard numerical optimization procedure (see [NW06] for a good
introduction to numerical optimization). The result of theoptimization procedure
is an optimal dipole positionr∗

i and dipole orientationθ∗
i for each of theM ICs.

The locations of theM dipoles thereby identify the regions of the brain that can be
considered active for the observed data.
Considering the complex geometry of the brain and the skull, the use of an isotropic
spherical head model might appear questionable. Furthermore, the source localiza-
tion accuracy might be impaired by imprecise conductivity values and sphere radii.
Both concerns are indeed justified if the goal of source localization is to identify ac-
tive brain areas with maximum accuracy. In this case, more complex head models
such as boundary element models (BEM) or finite element models(FEM) should
be employed (cf. [BML01]). For the purpose of feature extraction, however, this is
irrelevant. The goal of feature extraction is not to localize active brain areas with
maximum precision, but rather to map the observed data, i.e., the original feature
space, into another feature space in which classification issimplified. All that is
required of feature extraction by source localization is that the observed features
in the new feature space are separable, i.e., that differentintentions lead to distinct
dipole locations. The physiological validity of the dipolelocations is irrelevant.

3.2.3 Signal Subspace Identification by ICA

It is well known that if ICA is applied repeatedly to the same data set some ICs are
stable while others vary [JMB+01]. Those ICs that vary are termed unstable, since



3.2. METHODS 45

they depend on the initial conditions of the ICA algorithm. Assuch, these ICs do not
solely depend on the observed data and should be excluded from further analysis. In
this section, it is shown that in the framework considered here unstable components
represent mixtures of Gaussian sources. This is in contrastto the assumption usu-
ally made in ICA in order to ensure separability and identifiability that at most one
of the original sources may have a Gaussian distribution [Com94]. For real-world
applications, this is an unrealistic assumption. However,dropping this assumption
requires an analysis whether the mixing matrix and the original sources can still be
reconstructed in the framework of ICA. It is shown here that this is indeed the case
for those sources with a non-Gaussian distribution. Gaussian sources, on the other
hand, can not be reconstructed. Furthermore, it is shown howthe incorrectly recon-
structed Gaussian sources can be excluded from further analysis without requiring
the a-priori specification of any cut-off criterion. This can be seen as a method for
subspace identification, with the signal subspace defined asthe space spanned by
sources with a non-Gaussian distribution.

ICA and Multiple Gaussian Sources

So far, it was assumed in the mixing model (3.1) that at most one source has a
Gaussian distribution. This ensured separability and identifiability of the ICA model
as discussed in [Com94]. This assumption is now dropped. Morespecifically, it is
assumed thatL < M of the sources have a Gaussian distribution. Without loss of
generality, it is assumed that these are the firstL sources, i.e.,p(si) = N (0, 1), i =
1, . . . , L. The following argument requires a famous theorem derived independently
by Darmois and Skitovic (cf. [Com94]).

Theorem 3.2(Darmois-Skitovic). Define two random variables

y1 =
M∑

i=1

aisi, y2 =
M∑

i=1

bisi, (3.8)

with si statistically independent random variables. Ify1 and y2 are statistically
independent, then all variablessi for whichaibi 6= 0 are Gaussian.

Put differently, Theorem 3.2 states that two different sumsof M statistically inde-
pendent random variables can only be statistically independent if theM variables
are Gaussian. Now consider the unmixing matrixW ∗, obtained by running ICA
on the dataX, with F (W ∗x) = 0. Then the elements ofy = W ∗x are mutually
statistically independent due to Theorem 3.1. Now write

y = W ∗x = W ∗As =: Cs. (3.9)

It is then instructive to consider the possible class of matricesC = W ∗A ∈ R
M×M

that are in accord with the requirements of the elements ofs as well as the elements
of y being mutually statistically independent. Note that a different proof of this
theorem is given in [CL96].
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Theorem 3.3. Let s ∈ R
M be a random variable with mutually statistically inde-

pendent elements, and lety = Cs with C ∈ R
M×M full rank. Furthermore, let

p(si) = N (0, 1) for i = 1, . . . , L < M , and si not Gaussian but also with zero
mean and unit variance fori = L + 1, . . . ,M. Then a necessary and sufficient con-
dition for mutual statistical independence of the elementsof y ∈ R

M is thatC is of
the form

C =

[
Q 0
0 P

]

, (3.10)

with Q ∈ R
L×L an orthogonal matrix, andP ∈ R

M−L×M−L a permutation matrix.

Proof. Sufficiency is proved first, i.e., it is shown that forC of the form in (3.10) the
elements ofy are mutually statistically independent. Consider the firstL elements
of y, denoted byy(1). These are a mixture of theL original Gaussian sources
si, i = 1, . . . , L. It then holds that

E
{

y(1)y(1)T
}

= E
{

Qs(1)s(1)T
QT
}

= CCT = I. (3.11)

Here, the second equality is due to unit variance and statistical independence of
the original sources, and the third equality due toQ orthogonal. The elements
of y(1) are hence uncorrelated. Since they are also jointly Gaussian, being a sum
of Gaussian random variables, this implies mutual statistical independence. Next,
consider the lastM − L elements ofy, denoted byy(2). Each element ofy(2)

corresponds to exactly one scaled non-Gaussian source variable. By assumption,
the elements ofy(2) are hence mutually statistically independent. Now consider
y(1) andy(2). Their joint probability function can be written as

p
(
y(1),y(2)

)
= p

(
y(1)|y(2)

)
p
(
y(2)
)

=
1

det |Q|p
(
s(1)|y(2)

)
p
(
y(2)
)

= p
(
s(1)|y(2)

)
p
(
y(2)
)

= p
(
s(1)
)
p
(
y(2)
)

= p
(
y(1)
)
p
(
y(2)
)

(3.12)

sincedet |Q| = 1 due to orthogonality andy(2) corresponds to the (scaled and
permuted) statistically independent non-Gaussian sourcevariables. This establishes
mutual statistical independence of the elements ofy(1) andy(2), which completes
the proof of sufficiency.
To prove necessity, it is shown that any deviation ofC from the form in (3.10) leads
to a contradiction. First, assume that the elements ofy(1) are mutually statistically
independent and thatQ is not orthogonal (the trivial case ofQ being diagonal is
neglected here). Then it holds that

E
{

y(1)y(1)T
}

= E
{

Qs(1)s(1)T
QT
}

= CCT 6= I. (3.13)

The elements ofy(1) are hence correlated, which is a contradiction to the assump-
tion of mutual statistical independence of the elements ofy(1). Next, assume that
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the elements ofy are mutually statistically independent, and consider the upper
right block of zeros inC. If at least one of these elements is not equal to zero, there
is at least one element iny that is a mixture of at least one Gaussian source and one
non-Gaussian source (denoted bys(∗)). Since the elements ofy are assumed mutu-
ally statistically independent, it can be concluded thats(∗) is Gaussian by Theorem
3.2. This is a contradiction to the assumptions. A similar argument can be applied
if P is not a permutation matrix. In this case, there is at least one element ofy
which is a mixture of at least two non-Gaussian sources. Due to the assumed mu-
tual independence ofy it can be concluded by Theorem 3.2 that the non-Gaussian
sources are Gaussian, which is again a contradiction. Finally, consider the lower
left block of zeros inC. Assume this block contains one rowb ∈ R

L with at least
one non-zero element. Then the corresponding element ofy(2) can be written as
y(b) = bTs(1) + λs(∗), with λ ∈ R ands(∗) one of the non-Gaussian sources. Now
consider the covariance of the elements ofy(1), denoted byy(1)

i , i = 1, . . . , L, and
y(b). It then holds that

E
{

y
(1)
i y(b)

}

= E
{
qT

i s
(1)
(
bTs(1) + λs(∗)

)}
= qT

i b, (3.14)

due to the assumptions of unit variance and statistical independence of the original
sources. Now there exists at least onei ∈ {1, . . . , L} for whichqT

i b 6= 0, since the
rowsqi of Q form a complete orthogonal basis. For this row ofQ it hence holds that

E
{

y
(1)
i y(b)

}

6= 0. Consequently,y(b) is correlated with at least one element ofy(1),

which is a contradiction to mutual statistical independence ofy. This concludes the
proof.

Due to (3.9) and theorem 3.3, possible solutions of an ICA algorithm in the presence
of multiple Gaussian sources are given by

y(t) = W ∗x(t) =

[
Q 0
0 P

]

A−1As(t) =

[
Q 0
0 P

]

s(t). (3.15)

It can thus be concluded that in the presence of multiple Gaussian sources the non-
Gaussian sources are still correctly reconstructed by ICA. The Gaussian sources, on
the other hand, are arbitrarily mixed together. For the reconstructed mixing matrix,
solutions are given by

Â = W ∗−1 = AC−1 = A

[
QT 0
0 P−1

]

. (3.16)

SinceP−1 is also a permutation matrix, the columns ofA corresponding to non-
Gaussian sources are correctly reconstructed (up to the usual permutation and scal-
ing). The columns associated with Gaussian sources, however, are arbitrarily mixed
together. This result is illustrated in the following simple example.
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Figure 3.2: Reconstructed sources

Example 3.1. Consider the caseM = 3 with one non-Gaussian source with sub-
Gaussian distribution

s1(t) = sin(t) , t ∈
[
0, 3

2
π
]

(3.17)

and two Gaussian sources with zero mean and unit variance,

s2, s3 ∼ N(0, 1), (3.18)

each sampled with 5000 data points. The sources are mixed according to

x = A [s1, s2, s3]
T (3.19)

with a randomly generated full rank non-orthogonal matrix

A =





−0.1735 0.7240 −0.1545
0.3621 0.4088 0.7137
0.9158 −0.5556 0.6832



 . (3.20)

The original sources are then reconstructed as

y(t) = W ∗x(t), (3.21)

withW ∗ obtained with the extended Infomax algorithm [LGS99]. The reconstructed
signals are shown in Fig. 3.2 with normalized variance to remove scaling indeter-
minacies. As can be seen in the third panel, signals1 is reconstructed despite the
presence of two sources with Gaussian distribution.
Then, fifty reconstructions ofy using the extended Infomax algorithm with uni-
formly distributed initial conditionsW0 are carried out. Inverting the resulting
unmixing matrices delivers the representations(Ai, si), i = 1, . . . , 50 of x. Nor-
malizing the columns of all matricesAi to remove scaling indeterminacies and
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Figure 3.3: Original (ai, i = 1 . . . 3) and reconstructed columns of the mixing ma-
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plotting these together with the original columns of (3.20) results in Fig. 3.3. As
expected from (3.16), the columna1 of the non-Gaussian source is consistently re-
constructed, while the reconstructed columns associated with the Gaussian sources
are randomly distributed in the subspace spanned by the two columnsa2 and a3

of (3.20) associated with the Gaussian sourcess2 and s3. Note that for better vi-
sualization the data has been rotated such that the subspacespanned bya2 anda3

coincides with thexy - plane.

Application to Source Localization

The above discussion shows that ICs with a Gaussian distribution constitute a mix-
ture of originally Gaussian sources. If the associated topography of such an IC is
used for source localization, as described in Section 3.2.2, the location of the ob-
tained current dipole does not correspond to the location ofa any true source within
the brain due to (3.16). Consequently, Gaussian ICs should be excluded from the
analysis. This requires an identification of those ICs that have a Gaussian distribu-
tion. The most straight-forward way to do this is to estimatethe deviation of every
IC from a Gaussian distribution with identical variance, and specify a lower bound
on this deviation. If the deviation from Gaussianity of an ICfalls below this bound,
it is excluded from further analysis. This, however, requires the lower bound to be
matched to the capability of an ICA algorithm to correctly reconstruct sources close
to a Gaussian distribution. Moreover, for finite data no IC can have an exact Gaus-
sian distribution. It would hence be desirable to have a methodology that excludes
only those ICs that are too close to a Gaussian distribution inorder to be consistently
reconstructed by a certain algorithm. Such a methodology isnow presented.
ConsiderK representations of the observed dataX = AiSi, i = 1, . . . , K obtained
by running ICAK times on the observed dataX with randomized initial conditions.
For each original source with a non-Gaussian distribution there areK linearly de-
pendent columns in the set{A1, . . . , AK}, all representing the topography of this
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source. The topographies of the original sources that are too close to Gaussianity
for consistent reconstruction, on the other hand, are not represented multiple times
in the set{A1, . . . , AK}. Instead, if there areL sources that can not be consis-
tently reconstructed,KL columns of{A1, . . . , AK} are randomly distributed in a
L-dimensional subspace ofR

M . If then every column of{A1, . . . , AK} is localized
by a single current dipole, as described in Section 3.2.2, there is a spatial accumu-
lation of dipoles at those positions within the brain that correspond to the origin of
non-Gaussian ICs. Dipoles corresponding to Gaussian ICs are randomly distributed
within the brain.
This density of current dipoles can be estimated by the Parzen window method. Let
r̂i, i = 1, . . . , KM , be the locations of theKM current dipoles obtained by solving
(3.7) for all columnsai of the set{A1, . . . , AK}. The density of the the current
dipoles at a certain locationr, termed the Activation Density Function (ADF), is
then estimated as

ADF(r) =
1

KM

KM∑

i=1

h(ai)g(r, r̂i), (3.22)

with

g(r, r̂i) =
1

√

2πσ2
k

exp

(

‖r − r̂i‖2
2

2σ2
k

)

(3.23)

the Gaussian kernel with varianceσ2
k,

h(ai) = ch(1 − tanh(ahrv(ai) − bh)), (3.24)

and rv(ai) the normalized residual variance of approximatingai by a single current
dipole as obtained by solving (3.7). The functionh(ai) hence ensures that ICs with
a high residual variance, i.e., ICs that can not be represented reasonably well by a
single current dipole, do not contribute to the evaluation of the ADF-function.
The peaks of the ADF thereby identify the origins of ICs that can be modelled
reasonably well by a single current dipole and can be consistently reconstructed,
i.e., that represent non-Gaussian sources. The ADF thus constitutes an estimate of
the spatial distribution of non-Gaussian sources within the brain.

3.3 Experimental Results

In this section, the methodology for feature extraction described in the previous
section is used to classify imaginary tapping movements of the left and right index
finger using EEG data.
EEG signals caused by real and imaginary movements of the left and right index
finger were recorded from one subject (age 26, normal vision,no known neurolog-
ical disorders and no prior experience with BCIs or imaginary movements). The
subject sat in a shielded and dimly lit room in front of a computer screen, and was
instructed to perform real and imaginary tapping movementswith the left or right
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M K σ2
k ah bh ch

60 50 20 30 10 0.5

Table 3.2: Parameters used for the ADF.

index finger. These tapping movements were to be performed insynchrony with a
centrally displayed grey box, flashing with a frequency of1.33 Hz on a black back-
ground. A control condition was added in which the subject passively had to watch
the flashing box. Each of the five blocks (real movement right (MR), real move-
ment left (ML), imaginary movement right (IR), imaginary movement left (IL), no
movement (NG)) consisted of100 movements/flashes, and was repeated ten times
in pseudo-randomized order. Each block was followed by a break of five seconds in
which the instructions for the next block were displayed. EEG was recorded con-
tinuously with BrainAmp-Amplifiers (BrainProducts Inc.) with M = 60 channels
according to the extended 10-20 system at5 kHz sampling rate. Additionally, ver-
tical and horizontal eye movements were monitored. The datawas recorded with
FPz as reference, and re-referenced offline to common average reference.

To ensure that no covert muscle activation took place duringthe imaginary condi-
tions, EMG activity was recorded bipolarly using standard forearm flexor placement
[Lip67]. EMG recordings were then band-pass filtered with4 Hz and100 Hz cut-
off frequencies and half-rectified. Trials of imaginary movements were chosen to
be rejected if the mean EMG activity during the trial exceeded 10% of the maximal
EMG activity of the corresponding real movement [VMMW98]. Notrials had to be
rejected.

Ocular correction was performed [GCD83], and trials with onset of flashing boxes
were averaged separately for each condition. For conditions MR and ML, the grand
average of all 1000 trials for each condition was taken. For conditions IR and IL,
the average was computed for each block of 100 trials separately. This resulted in
one data set per condition MR and ML, and ten data sets per condition IR and IL.

The following steps were then applied to each of the data setswith the parameters
shown in Tab. 3.2. First, the grand average of condition NG was subtracted from
each data set to eliminate task irrelevant activity (e.g., visual evoked responses).
Subsequently, ICA was appliedK times to the data set by using the extended
Infomax-algorithm as implemented in EEGLAB [DM04]. This resulted inKM
ICs, each of which was then localized as described in Section 3.2.2. In a fourth
step, the locations of all ICs were used to compute the ADF as given in (3.22). This
resulted in one ADF for each of the conditions MR and ML, and ten ADFs for each
of conditions IR and IL.

The actual classification was then performed in the following way. In a first step, the
location of maximal activity for conditions MR and ML was determined as given
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a) b)

Figure 3.4: Maxima of the ADF for tapping movements of a) the left and b) the
right index finger.

by the corresponding ADFs, i.e.,

rMR = argmax
r

{ADF(r|MR)} , (3.25)

rML = argmax
r

{ADF(r|ML)} . (3.26)

The resulting maxima, shown in Fig. 3.4 superimposed on MRI images from the
publicaly available MNI database, are located in neuro-physiologically plausible
areas, i.e., in vicinity of the hand areas of the left and right motor cortex.
To determine the correct class of a data set caused by an imaginary movement, its
respective ADF was evaluated at the positions of maximal activation for real move-
mentsrMR andrML . If ADF(rMR) ≥ ADF(rML ), the data set was classified as
being caused by an imaginary movement of the right index finger and vice versa.
This very simple classification procedure is based on evidence that real and imag-
inary movements are indeed correlated with activity in overlapping brain regions
[PL99].
This procedure was used to classify all20 data sets of imaginary movements, and
resulted in nine out of ten correct classifications for condition IR, and eight out of
ten correct classifications for condition IL. Thus a total of17 out of 20 data sets
(85%) were correctly classified.

3.4 Discussion

In this chapter, the viability of source localization for feature extraction in non-
invasive BCIs was investigated. By combining ICA with source localization, it
was shown that without any knowledge on the temporal aspectsof neural coding,
i.e., how cognitive states are temporally encoded in the electric field of the brain,
a low-dimensional feature space providing information on the BCI-user’s intention
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can be extracted. This feature space was shown to provide enough information
to classify imaginary tapping movements of the left and right index finger with
an accuracy of85% in one untrained subject. The main theoretical contribution
of this chapter is Theorem 3.3, characterizing the behaviorof ICA in presence of
multiple Gaussian sources. This result was further used to derive a methodology for
identifying unstable ICs without explicitly estimating their Gaussianity.
While the work presented in this chapter establishes the viability of source local-
ization for non-invasive BCIs, the results can only be considered preliminary due
to several factors. First, the proposed methodology was only tested experimentally
on one subject. Clearly, a sound evaluation and assessment ofthe capabilities of
the proposed methodology require validation on experimental data from multiple
subjects and substantially more test data. Second, the classification results were
obtained using averaged data of multiple trials. Ideally, aBCI should be capable of
processing single-trial data in order to realize online control of an effector such as a
computer cursor. Finally, some aspects of the employed procedure are very simplis-
tic and surely sub-optimal. The proposed methodology is based on the assumptions
that a) the activity of only two areas within the brain provide all information on
the BCI-user’s intention, b) real and imaginary tapping movements lead to peak
activations at the same spatial locations within the brain,and c) imaginary tapping
movements of one finger are accompanied by larger contralateral than ipsilateral
activity in areas of the motor cortex. In terms of the generalprocedure of feature
extraction for non-invasive BCIs (Definition 2.13), assumption a) amounts to a re-
striction on the dimension of the new feature spaceX̂, and assumption b) specifies
the cost functionf that forms an estimate of the expected Bayes error. Assump-
tion three is not related to feature extraction, but specifies the actual classification
procedure. All three assumptions are questionable, and could be easily eliminated
by combining the proposed methodology for feature extraction with state-of-the-art
classification algorithms.
Interestingly though, the classification accuracies reported in two other studies on
non-invasive BCIs utilizing source localization for featureextraction are within the
same range as the accuracy reported here [QDH04, KLH05], while in a third study
classification accuracies above95% were obtained [GGP+05]. Comparing these
studies with each other and the results presented in this chapter, one crucial dif-
ference can be found. While in the results reported here as well as in [QDH04]
and [KLH05] only information on the spatial distribution ofbrain activity was em-
ployed, in [GGP+05] spatialand temporal features were used for classification.
While there is very little knowledge on how cognitive states are temporally encoded
within the electric field of the brain, it is known that motor imagery is accompanied
by frequency specific changes in variance of the electric field originating in motor
areas [PL99]. Even though this is a very simple measure, the results reported in
[GGP+05] demonstrate that using this information results in a significant increase
in classification accuracy.
In summary, the lesson learned from using source localization for feature extrac-
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tion in non-invasive BCIs is the following. Source localization alone can provide
information on the BCI-user’s intention. However, if information on how cognitive
states are encoded in temporal properties of the electric field is available, no matter
how limited it may be, this information can and should be used.
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Chapter 4

Information Theoretic Feature
Extraction

4.1 Introduction

In the previous chapter, only the spatial distribution of current density within the
brain was used for inferring the BCI-user’s intention. While this was shown to be
a viable option, it is demonstrated in [GGP+05] that additionally making use of in-
formation on how cognitive states are temporally encoded within the electric field
results in a significant increase in classification accuracy, even if the available infor-
mation on temporal coding is rather limited. In this chapter, the available informa-
tion on temporal coding of EEG/MEG signals is used to design afeature extraction
algorithm that (under some assumptions) is optimal in termsof maximizing an ap-
proximation of mutual information of class labels, i.e., the BCI-user’s intention and
extracted features.
As briefly discussed in Sections 1.2 and 3.4, it is known that some information
on cognitive states is encoded in the power of specific frequency bands of the elec-
tric/magnetic field in specific brain regions (reviewed in [PL99]). An increase in the
power of the EEG/MEG is usually termed event related synchronization (ERS), and
a decrease is referred to as event related desynchronization (ERD). This is due to the
fact that an increase in EEG/MEG power is caused by temporal synchronization of
the electric field across cortical columns [NS05]. Quite contrary to intuition, ERD
is usually associated with increased activity of a certain brain region, while ERS
can often be observed during rest. The significance of this process for non-invasive
BCIs was first realized by the group of J. Wolpaw [WMNF91]. The work presented
in this chapter is primarily based on the seminal work in [PNFP97], in which it is
demonstrated that imaginary movements of different limbs lead to strong ERD over
the contralateral motor cortex. These changes can be used toinfer the BCI-user’s
intention without or with only little subject training. However, in [PNFP97] average
classification accuracies of only about80% were obtained, which can be attributed
to a lack of sophisticated feature extraction algorithms.
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As demonstrated in [GGP+05], it is possible to combine feature extraction by source
localization with ERD/ERS caused by motor imagery to construct non-invasive
BCIs with a high classification accuracy. However, source localization is a com-
putationally intensive procedure. If information is available on which temporal
properties of the recorded EEG/MEG data provide information on the BCI-user’s
intention, it should be possible to derive less computationally intensive algorithms
that selectively extract those components of the recorded data that are optimal for
inferring the BCI-user’s intention. This was already realized by Ramoser et al. in
[RMGP00], in which for two-class paradigms spatial filters are devised that extract
those components of the recorded data which variances maximally vary between
conditions. Using this algorithm, termed Common Spatial Patterns (CSP), it was
shown that in a two-class paradigm classification accuracies close to100% could be
achieved. CSP has become one of the most frequently used algorithms for feature
extraction in BCIs, and was also used in the winning entry of theBCI competition
2003 [BB04]. Its improvement, especially its extension to thespectral domain, is
an active field of research (cf. [LBCM05, DBCM04, TDN+06, FHLS06] and the
references therein).

In this chapter, a conceptually different approach to spatial filtering is taken. Under
the assumption that the user’s intention is encoded in variance changes of compo-
nents of the EEG/MEG data, spatial filters are derived that maximize (an approxi-
mation of) mutual information of the user’s intention and extracted EEG/MEG com-
ponents. This approach, termed Information Theoretic Feature Extraction (ITFE),
has got the advantage that maximizing mutual information provides a direct link to
minimizing the minimum Bayes error as discussed in Section 2.2. It is proved that
for two-class paradigms the obtained spatial filters are identical to those obtained by
CSP, thereby establishing the optimality of CSP in terms of maximizing an approx-
imation of mutual information. An extension of the CSP algorithm for multi-class
paradigms proposed in [DBCM04], on the other hand, is shown to be suboptimal.
This deficiency of multi-class CSP is resolved by showing how this algorithm can
be rendered optimal in the framework of ITFE. To support the theoretical results,
multi-class CSP and multi-class ITFE are applied to experimental EEG data from a
four-class motor imagery paradigm provided by the Laboratory of Brain-Computer
Interfaces at the Technische Universität Graz for the third BCI competition, and it is
shown that multi-class ITFE leads to an average increase in classification accuracy
of 23.4% in comparison to multi-class CSP.

The structure of this chapter is as follows. In Section 4.2, the assumptions made
onP∗ andf for the CSP and ITFE algorithms are specified (cf. Section 2.4), and
the CSP algorithm is presented for two-class and multi-classparadigms. Then,
it is shown how ITFE can be realized in this context by deriving an approxima-
tion of mutual information of class labels and extracted EEG/MEG components.
This approximation of mutual information is then used to prove the optimality of
two-class CSP, and to show how multi-class CSP can be rendered optimal. After
demonstrating some experimental results in Section 4.3, the chapter concludes with
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a discussion of the limitations of CSP and ITFE in Section 4.4.

4.2 Methods

In this chapter, the same notation as in Chapter 3 is used. The BCI-user’s intention
is again denoted byc ∈ C = {c1, . . . , cN}, and the recorded EEG/MEG data by
X ∈ R

M×T for a block of data andx(t) ∈ R
M for a single sample point recorded

atM electrodes. If the time indext is dropped,x is considered as aM -dimensional
random variable with probability density functionp(x). All results equally apply to
EEG and MEG signals. Since the experimental evaluation is carried out using EEG
signals, only this modality is subsequently referred to. The precise assumptions
made on the class of allowed featuresP∗ (cf. Definition 2.13) are as follows:

1. The BCI-user’s intention is encoded in variance changes of the recorded EEG
data.

2. For each subject and paradigm, those components of the electric field of the
brain that provide information on the subject’s intention originate in spatially
invariant brain regions.

It should be emphasized again that the first assumption is a working assumption.
While there is certainly more to neural coding in the electricfield of the brain than
variance changes, these provide a basis for developing useful feature extraction al-
gorithms. The second assumption, which was already employed in Chapter 3, ex-
presses our knowledge on localized information processingin the brain, i.e., that
(at least for low-level information processing) certain brain areas are specialized for
certain tasks. Since propagation of the electric field of a certain brain region to the
EEG electrodes is linear (cf. Section 3.2.1), and brain regions relevant for a certain
task are assumed invariant, this limits the class of transformations that have to be
considered to time-invariant linear spatial filters.
The desired feature extraction algorithm hence takes the form T : R

M×T 7→ R
KL
+ ,

T (X) = Var
{
W TX

}
, with W ∈ R

M×L the matrix ofL << M spatial filters
andK ∈ N the number of analyzed frequency bands of each component. Itthen
remains to specifyf of Definition 2.13 in this context, i.e, the cost function used to
estimate the expected error probability.

4.2.1 Two-class Common Spatial Patterns

In this section, a two-class paradigm is assumed, i.e.,C = {c1, c2}. The CSP algo-
rithm then solves the optimization problem [PSGS05]

w∗ = argmax
w∈RM

{
wTRx|c1w

wTRx|c2w

}

, (4.1)
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with Rx|c1 , Rx|c2 the covariance matrices ofx givenc1, c2 respectively. Since (4.1)
is in the form of the well-known Rayleigh quotient, solutionsto (4.1) are given by
eigenvectors of the generalized eigenvalue problem

Rx|c1w = λRx|c2w. (4.2)

The eigenvectors of (4.2) thus correspond to the desired spatial filters. Furthermore,
for a given eigenvectorw∗ the corresponding eigenvalue determines the value of
the cost function:

λ∗ =
w∗TRx|c1w

∗

w∗TRx|c2w
∗
. (4.3)

The eigenvalues thus are a measure for the quality of the obtained spatial filters,
i.e., the eigenvalue associated with a spatial filter expresses the ratio of the vari-
ance between conditions of the component of the EEG data extracted by the spatial
filter. Feature extraction is then usually done by combiningthe L eigenvectors
of (4.2) with the smallest/largest eigenvalues to formW ∈ R

M×L and computing
T (X) = Var

{
W TX

}
. Note thatL has to be specified in advance and determines

the dimension of the new feature space.
The cost function maximized in the CSP algorithm in order to minimize the ex-
pected error probability is thus given by

fCSP(c, T (X)) =
L∑

i=1

max

{
wT

i Rx|c1wi

wT
i Rx|c2wi

,
wT

i Rx|c2wi

wT
i Rx|c1wi

}

, (4.4)

with wi theith column ofW . While choosing spatial filters that extract those com-
ponents of the EEG with maximum ratio of variance between conditions seems sen-
sible, it is in fact an open question whether this is optimal in terms of minimizing
the optimal Bayes error or the expected error probability.

4.2.2 Multi-class Common Spatial Patterns

Extending CSP to multi-class paradigms, i.e., again lettingC = {c1, . . . , cN},
is either done by performing two-class CSP on different combinations of classes
(e.g., by computing CSPs for all combinations of classes or bycomputing CSP for
one class versus all other classes), or by joint approximatediagonalization (JAD)
(cf. [DBCM04] and the references therein). Since the first approach is conceptually
identical to CSP for two-class paradigms, the focus here is onCSP by JAD.
Given EEG data ofN different classes, the goal of CSP by JAD is to find a trans-
formationW ∈ R

M×M that diagonalizes the covariance matricesRx|ci
, i.e.,

W TRx|ci
W = Dci

, i = 1, . . . , N, (4.5)

with Dci
∈ R

M×M diagonal matrices. There are several approaches to this prob-
lem (discussed in [ZLNM04]), the details of which are not of interest here. The



4.2. METHODS 59

idea behind using JAD for multi-class CSP lies in the fact thatCSP for two classes
can be understood as diagonalizing two covariance matrices. More precisely, if the
eigenvectors of the generalized eigenvalue problem (4.2) are combined in a matrix
W , thenW TRx|ci

W = Dci
, i = 1, . . . , 2. It then seems plausible to extend CSP to

multi-class paradigms by finding a transformationW that approximately diagonal-
izes multiple covariance matrices. A total ofL columns of the obtained matrixW
are then taken as the desired spatial filters.
There are, however, two caveats. First, this approach is motivated heuristically and
lacks a firm theoretical foundation. Second, it remains unclear which columns ofW
provide the optimal spatial filters. Or, as it is put in [DBCM04], as opposed to the
two-class problem, there is no canonical way to choose the relevant CSP patterns
for multi-class CSP. In [DBCM04], the following heuristic is proposed to choose
the L optimal spatial filters: Given a matrixW obtained by JAD, compute the
eigenvalues of all covariance matrices, i.e., computeλi = diag{W TRx|ci

W}, i =
1, . . . , N . Then map allj = 1, . . . ,M eigenvalues of each classi = 1, . . . , N to
λi,j = max{λi,j, 1/(1 + (N − 1)2λi,j/(1 − λi,j))}, and select theL/N eigenvec-
tors with the largest transformed eigenvalues of each classas spatial filters. If one
eigenvector is selected more than once, replace it by the eigenvector with the next
highest transformed eigenvalue.
One disadvantage of this extension of CSP to multiple classesis that the cost func-
tion f that is optimized is not specified. It is hence unclear whether multi-class CSP
is optimal in any sense. In this chapter, it is shown that multi-class CSP by JAD is
equivalent to ICA. This allows treating multi-class CSP in theframework of ITFE,
which can be used to derive a methodology to select those spatial filters of multi-
class CSP that are optimal in terms of maximzing (an approximation of) mutual
information of class labels and extracted EEG components. Atheoretical founda-
tion for multi-class CSP by JAD is thereby provided, and the need for heuristics in
choosing spatial filters is eliminated.

4.2.3 Information Theoretic Feature Extraction

In this section, the framework of Information Theoretic Feature Extraction (ITFE)
for feature extraction is introduced. ITFE has recently received considerable at-
tention in the machine learning community, mostly in a non-parametric setting
(cf. [PXZF00, Tor03]). The general idea of ITFE is to find a transformation that
directly maximizes mutual information of class labels and extracted features. This
is desirable, since maximizing mutual information minimizes bounds on the opti-
mal Bayes error as discussed in Section 2.2. The cost functionthat is maximized in
this context is hence given by

fITFE

(
c,W TX

)
= I

(
c,W TX

)
(4.6)

with W ∈ R
M×L.
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To find the spatial filters that maximize (4.6) the optimization problem

w∗
i = argmax

w∈RM

{
I
(
c,wT

i x
)}

, (4.7)

with wi the ith column ofW andi = 1, . . . , L is considered. Note that (4.7) im-
plies that the desired spatial filters are derived sequentially. While it is also possible
to extract several components simultaneously, this is equivalent to extracting com-
ponents sequentially in the setting considered here as is shown later. Furthermore,
note that (4.7) requires computing mutual information of a discrete and a continuous
variable. To make this expression well defined, it is necessary to assume a quan-
tization that discretizes the continuous variablewT

i x. This quantization scheme,
however, has negligible influence on the mutual information, since the entropy of a
n-bit quantization of a continuous random variable is approximately the entropy of
the continuous variable plusn [CT06]. Since the entropy enters twice with different
sign into the computation of mutual information, the terms due to the quanitzation
cancel out. The quantization scheme is thus disregarded in the sequel and only the
differential entropy is employed.
To the best of the author’s knowledge no analytic expressionof I(c,wTx) for
the assumptions made in this chapter exists. Hence, an analytic approximation of
I(c,wTx) is first derived. Then, the solution of (4.7) based on this approximation is
discussed for two-class paradigms. Finally, the extensionto multi-class paradigms
is presented.

Approximation of Mutual Information

First note that the mutual information ofc andx̂ = wTx can be written as

I(c,wTx) = H(wTx) − H(wTx|c) = H(x̂) − H(x̂|c)

= H(x̂) −
N∑

i=1

P (ci)H(x̂|ci). (4.8)

Since differential entropy is not scale invariant, it is assumed thatσ2
x̂ = 1. This

is no loss of generality, sincew can always be scaled to meet this assumption.
Now recollect that it is assumed that all information on the BCI-user’s intention
is contained in variance changes of the EEG. Hence, no information is lost if it is
assumed thatp(x|c) = N (0, Rx|c). Sincex̂ is a linear combination of the elements
of x it also follows a (now one-dimensional) Gaussian distribution with zero mean,
i.e.,p(x̂|c) = N (0, σ2

x̂|c). It is then possible to express the entropy ofx̂ given class
ci as

H(x̂|ci) = log
√

2πeσ2
x̂|ci

= log
√

2πewTRx|ci
w. (4.9)

The marginal distributionp(x̂), however, does not follow a Gaussian distribution
since

p(x̂) =
N∑

i=1

P (ci)p(x̂|ci) =
N∑

i=1

P (ci)N (0, σx̂|ci
), (4.10)
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which is a sum ofN Gaussian distributions and thus not itself Gaussian. To thebest
of the author’s knowledge there is no analytical solution tothe entropy of a sum
of Gaussian distributions, and thus no closed form solutionof H(x̂). It is possible,
however, to approximateH(x̂) in the following manner. First, note that the entropy
of x̂ can be expressed as

H(x̂) = Hg(x̂) − J(x̂), (4.11)

with Hg(x̂) the entropy of a Gaussian random variable with the same variance aŝx
andJ(x̂) the (always positive) negentropy ofx̂. The negentropy of̂x can then be
approximated as

J(x̂) ≈ 1

12
κ3(x̂)2 +

1

48
κ4(x̂)2, (4.12)

with the third- and fourth-order cumulantsκ3(x̂) = E{x̂3} andκ4(x̂) = E{x̂4}− 3
[Com94]. Sincep(x̂) is a sum of Gaussian distributions with zero mean it is sym-

metric, and henceκ3(x̂) = 0. Furthermore,κ4(x̂) = 3
∑N

i=1 P (ci)
(

σ4
x̂|ci

− 1
)

since the fourth moment of a Gaussian distribution with zeromean and unit vari-
ance equals three andκ4(αx) = α4κ4(x) (see any textbook on advanced statistics).
Combining (4.11) and (4.12) yields

H(x̂) ≈ log
√

2πe − 3

16

(
N∑

i=1

P (ci)
(
σ4

x̂|ci
− 1
)

)2

. (4.13)

Combining (4.8), (4.9) and (4.13) an estimate of the mutual information ofc andx̂
is obtained as

I(c, x̂) ≈ −
N∑

i=1

P (ci) log
√

wTRx|ci
w − 3

16

(
N∑

i=1

P (ci)
(
(wTRx|ci

w)2 − 1
)

)2

.

(4.14)
Note that in terms of the observed data this expression only depends on the variance
conditioned on class labels, as required by the assumptionson the class of allowed
features employed in this chapter.

Validating the Approximation of Mutual Information

It then remains to investigate the accuracy of this approximation of mutual infor-
mation. The only approximation used in deriving (4.14) is the approximation of
negentropy in (4.12). This approximation is based on an Edgeworth expansion up
to order four of the true probability density function (4.10) about its best Gaussian
approximation. As such, (4.14) is exact ifp(x̂) is Gaussian distributed, and the
quality of the approximation deteriorates with deviation of p(x̂) from Gaussianity.
To quantitatively evaluate the accuracy of the approximation of mutual information,
the true mutual information in (4.8) was computed by numerical integration (using
recursive adaptive Lobatto quadrature as implemented in Matlab) for C = {c1, c2}
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andσx̂|c1 ∈]0, 1]. Note that this covers the whole range ofσx̂|ci
, i ∈ {1, 2} due to

symmetry of (4.8) with respect toσx̂|ci
and the assumption of unit variance ofx̂.

The error of the approximation of mutual information in (4.14) was then evaluated
for different prior class probabilities by subtracting thenumerically computed true
mutual information from the approximation of mutual information. The resulting
error (in per cent of the true mutual information) is shown inFig. 4.1. Note that
σx̂|c1 = 1 implies σx̂|c2 = 1 and hencep(x̂) = N (0, 1). As expected, the error
between the approximated and true mutual information is zero for σx̂|c1 = 1 and
small for σx̂|c1 close to one. In fact, the error of the approximation is belowone
per cent forσx̂|c1 ∈ [0.84, 1]. As long asσx̂|c1 > 0.36 the error stays below ten
per cent. However, for even smaller values ofσx̂|c1 the error grows large, limiting
the usefulness of the approximation. Qualitatively, this behavior of the approxima-
tion is independent of the number of classes, i.e., ifp(x̂) is close to Gaussianity a
small error can be expected also forM > 2. Quantitatively, the goodness of the
approximation varies as a function of the number of classes.The validity of the
approximation in (4.14) for multiple classes is experimentally validated in Section
4.3.

The applicability of the approximation of mutual information in the context of non-
invasive BCIs thus depends on by how much EEG/MEG sources that provide in-
formation on the user’s intention deviate from Gaussianity, i.e., how much their
variances vary across conditions. In general, such sourcescan be expected to be
rather close to Gaussianity, and thus the approximation to be accurate, for the
simple reason that inferring a BCI-user’s intention is a hard task. If variances of
EEG/MEG sources providing information on the user’s intention would vary sig-
nificantly across conditions, inferring the user’s intention could be expected to be
substantially easier than it is the case. This claim is experimentally validated in
Section 4.3.

Two-class ITFE and Optimality of Two-class CSP

Solutions to (4.7) based on the above approximation of mutual information are now
discussed for two-class paradigms, i.e., it is again assumed thatC = {c1, c2}. Equa-
tion (4.14) then reduces to

I(c, x̂) ≈ −P (c1) log
√

wTRx|c1w − P (c2) log
√

wTRx|c2w

− 3

16

(
P (c1)

(
σ4

x̂|c1
− 1
)

+ P (c2)
(
σ4

x̂|c2
− 1
))2

. (4.15)

From here on this expression is referred to as mutual information, keeping in mind
that it is in fact an approximation thereof. Taking the derivative of (4.15) with
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Figure 4.1: Error of the approximation of mutual information (4.14) in per cent for
C = {c1, c2} as a function ofσx̂|c1 for different prior class probabilities.

respect tow then yields

∂

∂w
I(c, x̂) = − P (c1)

wTRx|c1w
Rx|c1w − P (c2)

wTRx|c2w
Rx|c2w

−3

2

(
P (c1)(w

TRx|c1w)2 + P (c2)(w
TRx|c2w)2 − 1

)

(
P (c1)w

TRx|c1wRx|c1w + P (c2)w
TRx|c2wRx|c2w

)
(4.16)

Letting αi := − P (ci)
wTR

x|ci
w

, βi := −3
2

(
∑2

j=1 P (cj)(w
TRx|cj

w)2 − 1
)

wTRx|ci
w,

and setting (4.16) to zero results in

(α1 + β1)Rx|c1w + (α2 + β2)Rx|c2w = 0. (4.17)

Rearranging and lettingλ := −α2+β2

α1+β1

then finally yields

Rx|c1w = λRx|c2w. (4.18)

In the case of two-class paradigms and the stated assumptions, solutions to (4.7)
are thus given by the eigenvectors of the generalized eigenvalue problem (4.18).
Comparing the solutions obtained by ITFE (4.18) and CSP (4.2) shows that for
two-class paradigms both methods yield identical spatial filters. Furthermore, if
equal class probabilities are assumed and the obtained spatial filters are ranked in
terms of the ratio of the variance between conditions (CSP) and in terms of mu-
tual information (ITFE) the ordering is the same. This can beseen by the fol-
lowing argument. For spatial filters obtained by CSP, the maximum ratio of the
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variance between conditions of every spatial filterw∗ is given bymax{λ∗, 1/λ∗} =
max{σ2

x̂|c1
/σ2

x̂|c2
, σ2

x̂|c2
/σ2

x̂|c1
}. Forσ2

x̂ = 1 this is a symmetric and convex function.
This also holds true for (4.15), as is easy to check. Hence, iffor two spatial fil-
tersw∗

1/2 it holds thatmax{λ∗
1, 1/λ

∗
1} > max{λ∗

2, 1/λ
∗
2}, then alsoI(c,w∗

1
Tx) >

I(c,w∗
2

Tx) and vice versa. As a result, choosingL eigenvectors of (4.18) or (4.2)
with maximum ratio of variance between conditions is identical to choosingL
eigenvectors with maximum mutual information. Note, however, that this does not
hold anymore for unequal class probabilities. In this caseI(c, x̂) becomes asym-
metric, and choosingL spatial filters with maximum ratio of variance between con-
ditions is not identical to choosingL spatial filters with maximum mutual informa-
tion.
Summarizing the results of this section, it was shown that for equal class prob-
abilities, conditionally Gaussian distributed EEG data, and linear transformations
feature extraction by CSP and ITFE lead to the same spatial filters. Under the given
assumptions, two-class CSP thus maximizes an approximationof mutual informa-
tion of extracted EEG components and class labels.

Multi-class Information Theoretic Feature Extraction

Possible solutions of (4.7) for multi-class paradigms, i.e., for C = {c1, . . . , cN},
are now discussed. In principle, taking the derivative of (4.14) with respect tow
and setting it to zero gives an implicit solution for the spatial filters that correspond
to local extrema of (4.14). However, due to the presence of multiple covariance
matrices∂I(c,wTx)/∂w = 0 can not be formulated as a generalized eigenvalue
problem anymore. Furthermore, to the best of the author’s knowledge, no analytic
solution to this expression exists. This leaves the possibility of deriving a gradient
descent rule for finding a solution to (4.7). While this is a straightforward procedure,
(4.7) does not constitute a convex optimization problem. Consequently, gradient
descent is not an efficient approach for finding all local extrema of (4.14).
Due to these difficulties a different approach is considered. It is assumed that the
observed EEG data follows the standard mixing model of Independent Component
Analysis (ICA) as discussed in Section 3.2.1, i.e.,

x = As, (4.19)

with s ∈ R
M a random vector with zero mean representing the original EEGcur-

rent sources inside the cortex, andA ∈ R
M×M a full-rank mixing matrix with each

columnaj, j = 1, . . . ,M describing the projection strength of sourcesj to each of
theM EEG electrodes. It is furthermore assumed thatp(s) =

∏M
j=1 p(sj), i.e., it is

assumed that the elements ofs are mutually statistically independent. For a discus-
sion of the validity of this model in the context of EEG analysis cf. Section 3.2.1.
In addition, it is also assumed that there are onlyL sources that provide information
on the BCI-user’s intention. Without loss of generality, these are assumed to be the
first L sources, i.e.,I(c, si) = 0, i = L + 1, . . . ,M .
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It is now shown how for this model multi-class ITFE can be realized by JAD,
thereby also establishing a connection to multi-class CSP asdiscussed in Section
4.2.2. First note that the covariance matrix ofx given conditionci is now given by

Rx|ci
= ARs|ci

AT, (4.20)

with Rs|ci
the covariance matrix ofs given conditionci. If JAD is performed, it

is obvious thatW T = A−1 is a solution of the JAD procedure that diagonalizes all
covariance matrices:

W TRx|ci
W = Rs|ci

= Dci
(4.21)

for i = 1, . . . , N . Note thatRs|ci
= Dci

are diagonal matrices because of the mutual
independence of the elements ofs. In this case it holds that

x̂ = W Tx = W TAs = s, (4.22)

and the obtained spatial filtering matrixW applied to the EEG data results in es-
timates of the underlying independent components (ICs) of the observed data. It
remains to be established if, or under which conditions,W T = A−1 is the only
matrix that jointly diagonalizes all covariance matrices.This question of unique-
ness has been addressed for orthogonal mixing matricesA (or for sphered data) in
[BAMCM97] and for arbitrary mixing matrices in [ten02]. It turns out that in the
context considered here a necessary and sufficient condition forW T = A−1 to be the
unique joint diagonalizer (up to scaling and permutations)of Rx|ci

, i = 1, . . . , N ,
is that the matrix

S :=






σ2
s1|c1

. . . σ2
sM |c1

...
.. .

...
σ2

s1|cN
. . . σ2

sM |cN




 (4.23)

has no pair of proportional columns, i.e, that for no pair of ICs the variances covary
across conditions. Under these conditions any JAD procedure that converges, i.e.,
that jointly diagonalizes all covariance matrices, returns a matrixW that, if applied
to the observed EEG data, returns (scaled and permuted) estimates of the underlying
ICs according to (4.22). While it is not possible to ensure a-priori that the variances
of no pair of ICs covary across conditions, this can be considered highly unlikely.
Consequently, JAD of the EEG covariance matrices conditioned on the class la-
bels, and thus multi-class CSP as discussed in Section 4.2.2,can be considered an
implementation of ICA.
It then remains to be established which columns of the unmixing matrixW should
be chosen as spatial filters. While so far this choice was basedon heuristics such as
the one presented in Section 4.2.2, the framework of ITFE suggests to choose those
spatial filters that maximize mutual information of extracted EEG components and
class labels. Now note that if the ICA model (4.19) and the uniqueness condition
hold, a matrixW obtained by JAD that diagonalizes all EEG covariance matrices
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conditioned on class labels implies that

I(c,x) = I
(
c,W Tx

)
= I(c, s) =

M∑

i=1

I(c, si) =
L∑

i=1

I(c, si) =
L∑

i=1

I
(
c,wT

i x
)
.

(4.24)
with wi some column ofW . Here, the first equality follows from the fact that mu-
tual information is invariant under invertible transformations [CT06], the second
equality follows from (4.22), the third equality follows from the mutual indepen-
dence of the elements ofs, the fourth equality from the assumption that only the
first L sources provide information on the BCI-user’s intention, andthe fifth equal-
ity again from (4.22). Hence, all information inx onc is contained in the firstL ICs,
and consequently theL spatial filters that maximize mutual information are simply
thoseL columns ofW with the highest mutual informationI(c,wT

i x). This term
can be easily evaluated, and thus the optimal spatial filtersidentified, according to
the approximation of mutual information (4.14) derived in Section 4.2.3.
To summarize the results of this section, it was shown that JAD of the EEG covari-
ance matrices conditioned on class labels can be consideredequivalent to ICA. By
deriving an analytic approximation of the mutual information of class labels and
EEG components a procedure was provided to choose the optimal spatial filters in
terms of maximization of (an approximation of) mutual information. The need for
heuristics in choosing optimal spatial filters obtained by multi-class CSP is thereby
eliminated, and a sound theoretical foundation for spatialfiltering in the context of
BCIs using multi-class paradigms is provided. Finally, multi-class ITFE, as derived
here, allows incorporating unequal class probabilities bychoosing those spatial fil-
ters that maximize mutual information in (4.14). For convenience, the complete
procedure of multi-class ITFE is summarized in Fig. 4.2.

4.3 Experimental Results

Experimental results from a four-class motor imagery paradigm supporting the re-
sults of the previous section are now presented. The purposeof this section is to
compare pre-processing by multi-class ITFE with multi-class CSP, i.e., compar-
ing the effect of choosing spatial filters that maximize mutual information versus
choosing spatial filters according to the heuristic presented in Section 4.2.2.
The data used was recorded in the Laboratory of Brain-ComputerInterfaces at the
Technische Universität Graz for the third BCI Competition (data set IIIa), and is
available athttp://ida.first.fraunhofer.de/ projects/bci/competition iii/ . A detailed
description of the recording procedure can be found in [BMK+06]. Three subjects
(k3b, k6b, and l1b) were asked to perform motor imagery of theleft/right hand, one
foot, or tongue. Each trial lasted for seven seconds, with the motor imagery per-
formed during the last four seconds of each trial. During theexperiment EEG was
recorded at 60 channels, using the left mastoid as referenceand the right mastoid as
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Input: Covariance matricesRx|ci
, i = 1, . . . , N

1. Perform joint approximate diagonalization s.t.W TRx|ci
W = Dci

, i =
1, . . . , N (e.g., with the FFDiag-algorithm [ZLNM04]).

2. For each columnwj, j = 1, . . . ,M , of W scalewj s.t. wT
j Rxwj = 1 and

estimate mutual information according to

I(c,wT
j x) ≈ −

N∑

i=1

P (ci) log
√

wT
j Rx|ci

wj

− 3

16

(
N∑

i=1

P (ci)
(
(wT

j Rx|ci
wj)

2 − 1
)

)2

.

3. Choose theL columns ofW with highest mutual information.

Output: Spatial filtering matrixW ∈ R
M×L

Figure 4.2: Multi-class Information Theoretic Feature Extraction

ground. The sampling rate was 250 Hz, and the data was filteredbetween 1 and 50
Hz with a notchfilter on. For subjects k6b and l1b a total of 60 trials per condition
were recorded, and for subject k3b 90 trials per condition were recorded. Four trials
of subject k6b had to be discarded due to missing data. Otherwise no trials were
rejected and no artifact correction was performed.
For each subject, the following evaluation procedure was performed. First, all data
was filtered with a fifth-order butterworth filter with cut-off frequencies 5 and 35
Hz. Then, the four seconds of each trial in which motor imagery was performed
were extracted. Afterwards, the data was randomly partitioned into a training and
a test set. The size of the training set was varied between 10 and 50 trials in steps
of ten trials for subjects k6b and l1b, and between 10 and 80 trials for subject k3b.
The covariance matrices of all four conditions were computed using only data of
the training set. JAD was performed on the obtained covariance matrices using the
algorithm presented in [ZLNM04], and theL optimal spatial filters were chosen
according to a) the heuristic presented in Section 4.2.2 (multi-class CSP), b) the
procedure described in Fig. 4.2 (multi-class ITFE), and c) multi-class ITFE with
evaluation of the mutual information of class labels and extracted EEG components
by numerical integration as described in Section 4.2.3. Note that while procedure c)
is feasible due to the knowledge ofp(x̂) in (4.10), it is undesirable from a practical
point of view due to increased computational complexity. For multi-class ITFE,
equal class probabilities were assumed. Note that the choice of L is a problem of
model identification that is beyond the scope of this work. Here, L = 8 was arbi-
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trarily chosen. The spatial filters obtained by procedures a) - c) were then applied
to the training- and test data sets. This resulted in eight-dimensional signals for
each trial of the test and training data set. Features were then computed by extract-
ing 15 frequency bands of 2 Hz width ranging from 5 to 35 Hz using a fifth-order
butterworth filter, and computing the sample variance in each frequency band for
each of the extracted EEG/MEG components. This resulted in a120-dimensional
feature vector for each trial. The feature vectors of the training set were then used
to train four logistic regression classifiers with L1-regularization, since this classi-
fier is known to perform well in the presence of many irrelevant features [Ng04].
Each classifier was trained on one versus all other conditions, with a regularization
parameter chosen manually as 0.1. To infer the class label oftrials in the test data
set the continuous output of each classifier was computed forall trials. The output
of each logistic regression classifier ranges from zero to one, representing the prob-
ability of a certain class. Then, the class label attached toeach trial was chosen as
the index of the classifier with maximum output for that trial. For each partitioning
of the data in a test- and training set this procedure was repeated 20 times.

The resulting classification accuracies for all subjects and evaluation procedures a)
and b) are shown in Tab. 4.1 and Fig. 4.3, with the thin horizontal line indicating
chance level. Results of evaluation procedure c) are not shown, since on average
these differed from procedure b) by only 0.4%. This experimentally validates the
accuracy of the derived approximation of mutual information (4.14) in the context
of non-invasive BCIs. While the classification accuracies varysignificantly across
subjects, it is evident that multi-class ITFE outperforms multi-class CSP by far,
with a mean increase in classification accuracy of 23.4%. This increase is especially
significant for subject l1b, for which multi-class CSP performs only slightly above
chance. With spatial filters chosen according to multi-class ITFE, subject k3b even
achieves classification accuracies of about 95%.

It should be pointed out that the classification accuracies achieved here do not,
with the exception of subject k3b, compare favorably with the best entries to the
BCI competition III for the same data set [Sch05]. This is attributed to the fact
that while the algorithms submitted to the third BCI competition were extensively
tuned, there are several parameters in the procedure presented here that were de-
termined arbitrarily. For example, it is well known that computing spatial filters
in narrow frequency bands, tuned according to the most reactive frequency bands
for each subject, significantly improves classification accuracy as opposed to se-
lecting a rather broad frequency band as done here. Furthermore, the number of
spatial filters retained was chosen arbitrarily as eight forall subjects and training
sets, and the regularization parameter of the classification procedure was also de-
termined manually and constant for all subjects. All of these parameters could be
tuned using methods such as cross-validation on the training set to achieve higher
classification accuracies. This, however, is not the point of this section. A rather
simple classification procedure was chosen to emphasize theimportance of choos-
ing the optimal spatial filters: while the total set of spatial filters is identical for
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Figure 4.3: Classification accuracies of subjects k3b, k6b, and l1b as a function
of the number of training trials for multi-class ITFE and multi-class CSP. The thin
horizontal line indicates chance level.

Training trials per cond. 10 20 30 40 50 60 70 80

Subject k3b (ITFE) 72.7 81.9 86.0 87.7 91.0 90.7 90.1 94.2
Subject k3b (CSP) 56.9 61.6 65.8 67.9 68.1 69.3 70.0 72.9

Subject k6b (ITFE) 48.2 52.3 58.4 60.5 69.0 - - -
Subject k6b (CSP) 33.7 42.3 45.7 47.0 46.8 - - -

Subject l1b (ITFE) 56.9 66.6 72.3 74.1 78.6 - - -
Subject l1b (CSP) 28.1 31.7 35.9 33.8 32.1 - - -

Table 4.1: Mean classification results in percent for multi-class ITFE and multi-
class CSP.

multi-class CSP and multi-class ITFE, choosing a subset of filters that maximize
mutual information, according to the procedure of multi-class ITFE summarized in
Fig. 4.2, as opposed to the procedure proposed in [DBCM04], leads to a significant
increase in classification accuracy.

4.4 Discussion

In this chapter, the knowledge that variance changes in the electric field of the brain
provide information on the BCI-user’s intention was used to design linear spatial
filters that extract those components of the EEG that maximize (an approximation)
of mutual information of class labels and extracted features. Using mutual infor-
mation to design spatial filters was shown to be beneficial fortwo reaons. First,
mutual information provides a direct link to the optimal Bayes error as discussed
in Section 2.2. Second, an analytic approximation of mutualinformation could be
derived that a) allowed investigating optimality of the popular CSP algorithm, and
b) is easy to evaluate from a computational point of view. It could be shown that
the popular two-class CSP algorithm [RMGP00] is optimal in terms of maximiz-
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ing (an approximation) of mutual information of class labels and extracted features.
An extension of CSP to multiple classes as proposed in [DBCM04],on the other
hand, was shown not to be optimal. This deficiency of multi-class CSP could be
resolved by showing how optimal spatial filters can be selected in the framework of
multi-class ITFE. The theoretical results were supported by experimental evidence
from a four-class paradigm, demonstrating a significant increase in classification
accuracy for multi-class ITFE in comparison to multi-classCSP. In summary, the
results presented in this chapter underline the importanceof utilizing any available
information on how cognitive states are encoded in the electric field of the brain.
While the results in this chapter demonstrate that learning spatial filters from the
available data enables high classification accuracies in multi-class paradigms, the
CSP and ITFE algorithms both suffer from a tendency of overfitting. Inspecting
the topographies of spatial filters learned by CSP/ITFE reveals that some of the
extracted filters focus on artifactual components of the data such as eye blinks or
muscle activity. This can be attributed to the fact that muscle artifacts cause electric
fields which variances usually exceed the variance of electric fields generated by the
CNS. Since both CSP and ITFE are based on variance measures only, they are espe-
cially prone to focussing on artifactual components only present in the EEG data of
one condition. The effects of overfitting can be alleviated by increasingL, i.e., by
selecting more spatial filters for feature extraction. However, increasingL decreases
the rate of convergence of the subsequent classifier to its minimum classification er-
ror (cf. Section 2.4). It would thus be desirable to develop an algorithm that extracts
those components of the EEG that provide most information onthe user’s intention
in an unsupervised manner, i.e., without using labeled training data, since such an
algorithm would be robust against artifactual components in the recorded data. This
is the topic of Chapter 6.
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Chapter 5

Complete Independent Component
Analysis in EEG/MEG Analysis

5.1 Introduction

In Chapters 3 and 4, it has been shown that Independent Component Analysis (ICA)
(introduced in Section 3.2.1) can be used to construct powerful algorithms for fea-
ture extraction in non-invasive BCIs. While in Chapter 3 ICA was utilized as a
preprocessing step in order to simplify a subsequent sourcelocalization procedure
and exclude irrelevant noise sources, it was shown in Chapter4 that the multi-class
Common Spatial Patterns (CSP) algorithm proposed in [DBCM04] isalso based
on an implementation of ICA. By deriving an approximation of mutual informa-
tion applicable in the context of non-invasive BCIs, it was further shown how ICA
can be used to compute spatial filters that are, under some assumptions, optimal in
terms of maximizing an approximation of mutual informationof class labels and
extracted features. This algorithm, termed multi-class Information Theoretic Fea-
ture Extraction (ITFE), was shown to enable classification accuracies above 90% in
a four-class motor imagery paradigm.
ICA has been considered for feature extraction in other studies on non-invasive
BCIs as well. In [BNL+07], different ICA algorithms are compared with each other
and with the CSP algorithm in terms of the quality of the obtained spatial filters in a
four-class motor imagery paradigm based on EEG. In [HLS+06], ICA is compared
with CSP in a two-class motor imagery paradigm using EEG, MEG and ECoG
recordings. While these two studies differ in how the independent components (ICs)
that provide most information on the user’s intention are identified, both conclude
that ICA outperforms CSP.
The success of ICA as a tool for feature extraction in non-invasive BCIs seems sur-
prising in light of the restrictive assumptions incorporated in this framework. While
different algorithms require divers assumptions, in this chapter only the assumptions
required by the extended Infomax algorithm is considered [LGS99]. This is done for
three reasons. First, the extended Infomax algorithm is based on mutual informa-
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tion and is thus closely related to a wider class of ICA algorithms [HKO01, Car97].
Second, extended Infomax is shown to outperform other ICA algorithms in the con-
text of computing spatial filters for non-invasive BCIs in [BNL+07], and third, it is
one of the most frequently employed ICA algorithms in the analysis of EEG/MEG
data due to its implementation in the open-source toolbox EEGLab [DM04]. The
assumptions incorporated in this context are

1. Linearity of the mixture model.

2. Mutual statistical independence of the original sources.

3. At most one Gaussian distributed source.

4. At least as many sensors as sources.

The first assumption is justified in the context of non-invasive BCIs based on EEG
or MEG (cf. Section 3.2.1 and [NS05]). The second assumptionmight appear ques-
tionable. However, this hinges on what is considered to constitute a source in the
context of ICA applied to EEG/MEG data. If an EEG/MEG source isnot identified
with a certain region within the brain but rather seen as a spatial current distribution
with identical dynamics (as defined in Section 3.2.1), then the second assumption
does not necessarily constitute a restriction on the applicability of ICA. Instead,
it should be understood as a restriction on the interpretability of an IC. While the
goal of ICA is to reconstruct statistically independent sources, the physiological
relevance of an IC can not be determined a-priori but has to beinferred from the
topography and dynamics of each reconstructed source. Notwithstanding this ar-
gument, EEG/MEG sources reconstructed by ICA can indeed often be identified
with a single brain region (cf. Section 3.2.1). This, however, should not be seen as
an empirical justification for identifying EEG sources reconstructed by ICA with
certain brain regions, but rather as a special (although frequent) case. Furthermore,
note that in the above discussion it is assumed that ICA is capable of reconstruct-
ing a set of independent sources for a given data set. In practice, this should be
checked by running ICA repeatedly on the same data set with randomized initial
conditions. Only if ICA is capable of reconstructing a set of identical ICs indepen-
dently of the initial conditions of the algorithm the reconstructed ICs should be con-
sidered meaningful [MZKM02]. The third assumption has already been discussed
in Section 3.2.3. In brief, this assumption is only necessary if all original sources
are to be reconstructed. If only non-Gaussian sources are ofinterest assumption
three can be neglected. The fourth assumption, however, is highly questionable.
In EEG/MEG, the continuous current distribution in the brain that gives rise to the
electric/magnetic field on the scalp is mapped by a linear transformation onto a
finite number of EEG/MEG electrodes. As such, the measurements of the elec-
tric/magnetic potential on the scalp constitute an underdetermined representation of
the spatial current distribution within the brain. Accordingly, the fourth assumption
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is justified only if the continuous current distribution within the brain can be parti-
tioned intoM distinct sets with identical dynamics, whereM refers to the number
of EEG/MEG electrodes. This can be considered as highly unlikely, and hence the
fourth assumptions has to be rejected in the context of EEG/MEG analysis. Instead,
it is maintained here that this assumption has been adopted as a working assumption
for a lack of better alternatives.
Since the introduction of ICA with complete bases in [Com94], several algorithms
have been developed that address the problem of ICA with overcomplete bases, i.e.,
with more sources than sensors. In [LLGS99] and [ZP01], sparsity constraints are
imposed to obtain a unique reconstruction of sources, whilein [TLP04] a geometric
approach to overcomplete ICA is proposed. Interestingly, algorithms for overcom-
plete ICA have found virtually no application in the EEG/MEG community so far.
This can be attributed to the success of applying complete ICAto EEG/MEG data.
Since the obtained results are in accord with physiologicalexpectations, it is gener-
ally assumed that complete ICA is sufficient for the analysis of EEG/MEG signals
[OWTM06].
This view is challenged in this chapter. Instead of accepting the adequacy of com-
plete ICA in the context of EEG/MEG analysis, the behavior of ICA designed for
complete bases is investigated if the assumption of completeness is violated, i.e., if
more sources than sensors are assumed. This serves several purposes. The first is
to establish whether, or under which conditions, ICA designed for complete bases
can be applied to underdetermined problems, and to investigate how this affects the
reconstruction of the original sources. This is a prerequisite for the second purpose,
which is to address the question which type of mixture model can realistically be
assumed in EEG/MEG analysis. Finally, it is investigated how adverse effects on
reconstructed ICs resulting from underdetermined problemscan be alleviated with-
out resorting to additional constraints on the reconstructed sources as in [LLGS99]
and [ZP01].
To address these issues, a linear mixture model with an arbitrary number of non-
Gaussian and Gaussian sources is assumed. Then, necessary and sufficient con-
ditions for solutions of complete ICA for this mixture model are derived. While
identifiability and separability of ICA have already been considered in [Com94,
EK03], and [CL96], to the best of the author’s knowledge the theorem presented
here is the first one providing necessary and sufficient conditions for solutions of
complete ICA for a mixture model with an arbitrary number of non-Gaussian and
Gaussian sources. This theorem is then used to investigate source separability and
model identifiability for different relations of sensors, non-Gaussian-, and Gaussian
sources. The conclusions of this investigation are used to argue that in EEG/MEG
analysis it is valid to assume that less non-Gaussian sources than sensors but more
Gaussian sources than sensors are present. This reconcilesthe apparent contradic-
tion of the underdetermined nature of EEG/MEG recordings and the physiological
plausibility of results obtained by complete ICA. It is shownthat this mixture model
further implies that while the topographies of non-Gaussian sources are recon-
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structed correctly by complete ICA in spite of an overcomplete mixture model, the
reconstructed dynamics of non-Gaussian sources are arbitrarily mixed with Gaus-
sian sources. The consequences of this result for the analysis of EEG/MEG data
are discussed, and testable predictions for further validation of the assumed mixture
model in the context of EEG/MEG analysis are formulated.

It is then shown how the adverse effect of applying complete ICA to overcom-
plete mixture models can be alleviated by linearly constrained minimum variance
(LCMV) spatial filtering [VvYS97]. Since the topographies ofnon-Gaussian sources
are correctly reconstructed by complete ICA in spite of the presence of an arbitrary
number of Gaussian sources, this knowledge can be used to construct spatial fil-
ters that minimize the interference of Gaussian sources in the reconstruction of the
dynamics of non-Gaussian sources.

The combined procedure of complete ICA and LCMV spatial filtering is then ap-
plied to experimental MEG and EEG data. First, it is shown that in the recon-
struction of auditory event related fields (ERFs) recorded byMEG combining ICA
with LCMV spatial filtering significantly outperforms ordinary ICA. Then, com-
bined ICA and LCMV spatial filtering is employed to construct spatial filters for
a four-class motor imagery BCI based on EEG. Interestingly, itis shown that ICA
and LCMV spatial filtering does not outperform ordinary ICA. The reasons for
this observation are discussed in light of the theoretical results of this chapter,
thereby further validating the proposed overcomplete mixture model in the context
of EEG/MEG analysis. Also, an explanation is provided for the success of complete
ICA in constructing feature extraction algorithms for non-invasive BCIs.

The remainder of this chapter is structured as follows. As inprevious chapters,
Section 5.2 begins with introducing the notation and stating the assumptions made
in this chapter on the class of allowed feature spacesP∗. Then, the ICA mixture
model used throughout this chapter is introduced. In Section 5.2.2, necessary and
sufficient conditions for solutions of ICA applied to overcomplete mixture models
are derived. This constitutes the primary theoretical contribution of this chapter. It
also serves as the basis for Section 5.2.3, in which the validity of different source
models for EEG/MEG are discussed. Section 5.2 concludes with a discussion on
how the performance of complete ICA can be improved by LCMV spatial filter-
ing in Section 5.2.4. In Section 5.3, experimental results from the reconstruction
of auditory ERFs recorded by MEG as well as from a four-class motor imagery
BCI based on EEG are presented. The chapter concludes with a discussion of the
theoretical and experimental results and their relevance for EEG/MEG analysis by
complete ICA in Section 5.4. Parts of the work in this chapter already have been
presented in [GWB07].
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5.2 Methods

The same notation as in previous chapters is also employed inthis chapter. The
BCI-user’s intention is again denoted asc ∈ C = {c1, . . . , cN}, and the EEG/MEG
data recorded atM electrodes asx(t) ∈ R

M . If the time index is droppedx refers
to aM -dimensional random variable with probability density functionp(x). Again,
X ∈ R

M×T refers to a block of data withT samples. The assumptions on the class
of allowed feature spacesP∗ employed in this chapter are:

1. The BCI-user’s intention is encoded in variance changes of the electric/magnetic
field of the brain originating in spatially invariant brain regions.

2. The electric/magnetic field of the brain can be decomposedinto statistically
independent components.

Note that the second assumption does not make any statement on the number of
statistically independent sources within the brain. It just asserts that the spatial cur-
rent distribution within the brain can be decomposed into statistically independent
sources (cf. Definition 3.1 for what is considered to constitute a source in this con-
text). The first assumption again expresses our knowledge onhow cognitive states
are temporally encoded in the electric/magnetic field of thebrain (cf. Chapter 4). It
also provides a justification for using linear time-invariant spatial filters for extract-
ing those components of the electric/magnetic field of the brain that provide most
information on the user’s intention.

5.2.1 The ICA Model

The source model assumed in this chapter is similar to the onein Section 3.2.1. The
EEG/MEG data is assumed to obey the generative model

x(t) = As(t), (5.1)

with s(t) ∈ R
K the original EEG/MEG sources with probability density function

p(s) and the matrixA ∈ R
M×K the full row-rank mixing matrix, describing the

projection strength of each source to each of theM electrodes. Without loss of
generality, it is assumed that each source has got zero mean and unit variance. Fur-
thermore, it is assumed that the firstL sources are non-Gaussian distributed, while
the lastK − L sources follow a Gaussian distribution, i.e., thatp(si) = N (0, 1) for
i = L+1, . . . , K. The special case of only one Gaussian source, i.e.,L+1 = K, is
disregarded. Finally, it is assumed thatp(s) =

∏K
i=1 p(si), i.e., that the sources are

mutually statistically independent. Note that at this point no assumption is made
on the relation ofM , L, andK, i.e., complete as well as overcomplete models are
considered.
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5.2.2 Identifiability and Separability of Complete ICA for Arbi-
trary Mixture Models

The goal in ICA is to reconstruct the original sourcess and the mixing matrixA only
from observations ofx and using the assumption of mutual statistical independence
of the original sources. One way to approach this problem in complete ICA is to
construct a full-rank unmixing matrixW ∈ R

M×M that solves the optimization
problem (cf. Section 3.2.1)

W = argmin
W∈RM×M

{I(y1, . . . , yM)} (5.2)

with y = Wx and I(y1, . . . , yM) the mutual information of the elements ofy

(cf. [CT06]). The elements ofy are called the independent components (ICs). This
approach is due to Theorem 3.1, establishing that the mutualinformation of the el-
ements ofy is zero if and only if they are mutually statistically independent. Other
(largely equivalent) approaches to ICA are discussed in [HKO01]. While it seems
sensible to assume that reconstructing mutually statistically independent sources re-
sults in the original independent sources, it remains to be investigated which form
W may take such that the elements ofy are mutually statistically independent, and
whether this does indeed result in the elements ofy corresponding to the original
sources ins. This is referred to as the problem of source separability. Furthermore,
it has to be investigated whether taking the inverse of the unmixing matrixW re-
constructs the mixing matrixA, i.e., if Â = W−1 = A. This is referred to as the
problem of model identifiability.
Toward these goals, first note thatx can always be sphered, i.e., subjected to a

transformationP = R
− 1

2

x such that for the covariance matrixRx̂ of x̂ = Px it
holds that

Rx̂ = 〈Px, Px〉 = PRxP T = IM×M . (5.3)

The sphering transformation is subsequently neglected, assuming thatx has already
been sphered. Note that this implies that

Rx = 〈x,x〉 = ARsA
T = AAT = IM×M . (5.4)

Without loss of generality, the rows ofA can hence be considered mutually orthog-
onal. Then defineC := WA, such that

y = Wx = WAs = Cs. (5.5)

Now note that any solution of (5.2) requires the elements ofy to be mutually statis-
tically independent. This implies uncorrelatedness, and hence

Ry = 〈y,y〉 = CRsC
T = IM×M . (5.6)

Hence the rows ofC have to be mutually orthogonal. Since this also holds forA and
furthermoreWA = C, the class of matrices that have to be considered for solutions
of (5.2) can be constrained to orthogonal matrices.
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The following theorem extends the results in [Com94] and [EK03] to mixture mod-
els with an arbitrary number of Gaussian and non-Gaussian sources. Note that a
similar theorem is given in [CL96], but without proving sufficiency and only for
pairwise independence of the elements ofy.

Theorem 5.1(Separability of complete ICA for arbitrary mixture models). Lets ∈
R

K and y ∈ R
M , y = WAs = Cs with full rank W ∈ R

M×M and full rank
A ∈ R

M×K , and the elements ofs as well as the elements ofy mutually statistically
independent. Furthermore, letp(si) = N (0, 1) only for i = L + 1, . . . , K. Then it
holds that

C = [B | Q], (5.7)

with B ∈ R
M×L a matrix with only one non-zero entry in each column, at most

M − L zero rows, and at mostM − 1 zero entries in each row. Furthermore,
Q ∈ R

M×(K−L) is a matrix with orthogonal rows.

Proof. Proving Theorem 5.1 amounts to showing that forC of the form in (5.7)
the elements ofy are mutually statistically independent (sufficiency), andthat any
deviation ofC from this form leads to a contradiction to the elements ofy being
mutually statistically independent (necessity). Sufficiency is proved first.
To prove sufficiency, it is necessary and sufficient to show that I(y1, . . . , yM) = 0
for C of the form in (5.7), since this is a necessary and sufficient condition for mu-
tual statistical independence of the elements ofy due to Theorem 3.1. Then note
thatI(y1, . . . , yM) = D(p(y)||∏M

i=1 p(yi)) with D(.||.) the Kullback-Leibler diver-
gence. SinceI(y1, . . . , yM) ≥ 0, with equality if and only if the elements ofy are
mutually statistically independent, and the Kullback-Leibler divergence is convex as
well as continuously differentiable (cf. [CT06]),I(y1, . . . , yM) has a unique global
minimum at zero, and consequentlyI(y1, . . . , yM) = 0 ⇔ ∂

∂W
I(y1, . . . , yM) = 0.

Then note that

∂

∂W
I(y1, . . . , yM) =

∂

∂W

{
M∑

i=1

H(yi) − H(y)

}

=
∂

∂W

{
M∑

i=1

H(yi) − log(|W |) − H(x)

}

=
∂

∂W

M∑

i=1

H(yi), (5.8)

sinceW orthogonal andH(x) independent ofW . The following derivations extend
the results of [BPR02] to the overcomplete case. DefineF (W ) :=

∑M
i=1 H(yi). The

gradient ofF (W ) under the orthogonality constraint onW is given by [EAS98]

∇orthoF (W ) = ∇F (W ) − W∇F (W )TW. (5.9)
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SinceWW T = IM×M , solutions to ∂
∂W

I(y1, . . . , yM) = ∇orthoF (W ) = 0 are given
by

∇F (W )W T = W∇F (W )T . (5.10)

Denotingh(wi) := H(yi) with wi theith row ofW , (5.10) becomes

∇h(wk) · wT
l = ∇h(wl) · wT

k (5.11)

for k, l = 1, . . . M ; k 6= l. With

∂h(wi)

∂wi,j

= −
∞∫

−∞

(log pyi
(u) + 1)

∂pyi
(u)

∂wi,j

du, (5.12)

(5.11) results in

∞∫

−∞

(log pyk
(u) + 1)

[
∂pyk

(u)

∂wk,1
wl,1 + . . . +

∂pyk
(u)

∂wk,M
wl,M

]

du

=
∞∫

−∞

(log pyl
(u) + 1)

[
∂pyl

(u)

∂wl,1
wk,1 + . . . +

∂pyl
(u)

∂wl,M
wk,M

]

du
(5.13)

for k, l = 1, . . . ,M ; k 6= l. A sufficient condition for (5.13) to hold is

∂pyk
(u)

∂wk,1

wl,1 + . . . +
∂pyk

(u)

∂wk,M

wl,M = 0 (5.14)

for k, l = 1, . . . ,M ; k 6= l. Recalling (5.5), the elements ofy can be written as

yi = ci,1s1 + . . . + ci,KsK , (5.15)

with ci,j denoting the element ofC in theith row and thej th column. The probability
density function ofyi is then given by

pyi
(u) =

1

ci,1

ps1

(
u

ci,1

)

∗ . . . ∗ 1

ci,K

psK

(
u

ci,K

)

. (5.16)

The analysis of (5.14) is simplified in the frequency domain.With ϕyi
(ω) the char-

acteristic function ofpyi
, (5.16) becomes

ϕyi
(ω) =

K∏

j=1

ϕsj
(ci,jω). (5.17)

Transforming (5.14) into the frequency domain as well, substituting (5.17), and
dividing by

∏K
j=1 ϕsj

(ci,jω) results (after some tedious algebraic manipulations) in

ωϕ′
s1

(ck,1ω)cl,1

ϕs1
(ck,1ω)

+ . . . +
ωϕ′

sK
(ck,Kω)cl,K

ϕsK
(ck,Kω)

= 0 (5.18)
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for k, l = 1, . . . ,M ; k 6= l. Now only if si has a Gaussian distribution it holds that

ϕ′
si
(αω) = −αωϕsi

(αω). (5.19)

Since the sourcessi, i = L+1, . . . , K are assumed to be Gaussian, (5.18) simplifies
to

ωϕ′
s1

(ck,1ω)cl,1

ϕs1
(ck,1ω)

+ . . . +
ωϕ′

sL
(ck,Lω)cl,L

ϕsM
(ck,Lω)

−ω2(ck,L+1cl,L+1 + . . . + ck,Kcl,K) = 0
(5.20)

for k, l = 1, . . . ,M ; k 6= l. Note thatϕ′
si
(ci,jω)|ci,j=0 = 0 because all sources

have zero mean. Hence, the first term in (5.20) is zero if in thefirst column of
C for every pair of elements only one of them is non-zero. This in turn implies
that only one element of the first column ofC may be non-zero. The same holds
for every up to and including theLth column. Considering the last term of (5.20),
this term is zero if the rows ofC, starting with the(L + 1)th element, are mutually
orthogonal. It hence follows thatC of the form in (5.7) implies that (5.20) holds
and consequentlyI(y1, . . . , yM) = 0. SinceI(y1, . . . , yM) = 0 implies mutual
statistical independence of the elements ofy this completes the proof of sufficiency.
The proof of necessity consists of three steps. The first stepfollows directly from
Theorem 3.2 (Darmois-Skitovic). Assume that columnbk, k ∈ {1, . . . , L}, of B in
(5.7) has got more than one non-zero entry, and further assume the elements ofy to
be mutually statistically independent. Then the original sourcesk is Gaussian dis-
tributed by Theorem 3.2. This is a contradiction to the assumptions, which proves
that each column ofB may have at most one non-zero entry. Second, note that

wT
i [a1, . . . ,aL] = bT

i = 0
T, (5.21)

with wT
i theith row of W , aj thej th column ofA, andbT

i theith row of B, implies
thatwi ∈ R

M lies in a(M −L)-dimensional subspace ofR
M . SinceW is assumed

to have full rank, (5.21) can hold for at mostM −L rows ofW . This is turn proves
thatB can have at mostM − L zero rows. Furthermore, note that (5.21) can only
hold if M > L. Conversely, this shows that each row ofB may have at most
M − 1 zero elements. Finally, the requirement of orthogonality of Q follows from
orthogonality ofC. This completes the proof of necessity.

It should be noted that in Theorem 5.1 no assumptions are madeon the relation
of M , K, andL. The theorem thus applies to mixture models with an arbitrary
number of non-Gaussian and Gaussian sources. The implications of Theorem 5.1
for different relations ofM , K, andL are now discussed. The case of less sources
than sensors is neglected, since this case can be reduced to the problem of an equal
number of sources and sensors by disregarding some sensors.

Equal Number of Sources and Sensors (M = K > L)

If M = K, it follows from Theorem 5.1 that

y = Cs = PM×M

[
ΛL×L 0M−L×L

0M−L×L QM−L×M−L

]

s, (5.22)
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with P ∈ R
M×M a permutation matrix,Λ ∈ R

L×L a diagonal matrix, andQ ∈
R

M−L×M−L an orthogonal matrix. The permutation matrixP is subsequently dis-
regarded, since it does not have any qualitative influence onthe source reconstruc-
tion. The lower left block of zeros follows from the fact thatB in (5.7) may have
only one non-zero entry in each column. Furthermore, sinceQ forms a(M − L)-
dimensional complete orthogonal basis andC is orthogonal, the upper right hand
block ofC has to consist of zeros. Finally, rows with only zero elements (that could
result in non-Gaussian sources mixed with each other or withGaussian sources) are
not allowed due to full rank ofA andW . Consequently, ifK = M , all sources with
non-Gaussian sources are correctly reconstructed by complete ICA, while all Gaus-
sian sources are arbitrarily mixed together. The non-Gaussian sources are hence
separable, while the Gaussian sources are non-separable.
In terms of identifiability of the mixing matrixA, note that

Â = W−1 = AC−1 = A

[
Λ−1

L×L 0M−L×L

0M−L×L QT
M−L×M−L

]

. (5.23)

The inverse of the unmixing matrixW hence correctly reconstructs the columns of
A corresponding to topographies of non-Gaussian sources (upto scaling and permu-
tations), while the columns ofA corresponding to Gaussian sources are arbitrarily
mixed together. Hence, the topographies of non-Gaussian sources are identifiable
by complete ICA, while the topographies of Gaussian sources are non-identifiable.
Note that these results are in agreement with the results on complete ICA in Section
3.2.3.

More non-Gaussian Sources than Sensors (K > L > M )

If more non-Gaussian sources than sensors are present in thedata set, thenB ∈
R

M×L has got more columns than rows. Then note that Theorem 5.1 states that the
matrix B may have at mostM − 1 zero entries in each row. Since there are more
columns than rows inB, this is a contradiction to the requirement of each column
of B having at most one non-zero entry. Consequently, forK > L > M it is
impossible to construct a matrixC that is in agreement with Theorem 5.1. Thus,
separation of the original sources by complete ICA is not possible.
Regarding the identifiability of the mixing model forK > L > M , it should be
noted that in general an overcomplete mixing model is identifiable [CL96]. Con-
sider the following example.

Example 5.1 (Block-independent reconstructions). If M = 3, L = 6 and K >
L, then one possible source reconstruction with mutually independent elements is
given by

y =





1 1 0 0 0 0 qT
1

0 0 1 1 1 0 qT
2

0 0 0 0 0 1 qT
3



 s, (5.24)

with qi ∈ R
K−L mutually orthogonal vectors.
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Note that indeed any partitioning of the original sources into distinct sets results
in mutually statistically independent reconstructions. However, in Example 5.1 the
requirement of at mostM − 1 zero elements in each row ofB is violated. Example
5.1 hence does not provide an admissible solution forcompleteICA applied to
overcomplete mixture models. In general, the form ofC obtained by applying
complete ICA to an overcomplete mixture model with more non-Gaussian sources
than sensors depends on the specific algorithm. It is easy to show that sinceC
can not achieve source separation, the columns of the reconstructed mixing matrix
Â = W−1 do not correspond to the columns of the original mixing matrix A (using
the same argument that is used below for the case ofK > M > L). ForK > L >
M the mixing model is thus not identifiable. Note that this is inagreement with
previous studies on complete ICA [Com94, EK03].

More Sources than Sensors, but less non-Gaussian Sources than Sensors (K >
M > L)

If more sources than sensors are present in the data set, but the number of non-
Gaussian sources is smaller than the number of sensors, possible source reconstruc-
tions in agreement with Theorem 5.1 are given by

y = Cs =

[
ΛL×LPL×L

0
QM×K−L

]

s, (5.25)

with Λ ∈ R
L×L a diagonal matrix,P ∈ R

L×L a permutation matrix, andQ ∈
R

M×K−L a matrix with mutually orthogonal rows. This implies that while the
Gaussian sources are non-separable, the set of non-Gaussian sources is separable.
However, Gaussian sources are arbitrarily mixed into the non-Gaussian sources.
In terms of the identifiability of the mixing matrixA by complete ICA forK >
M > L, it is shown now that the columns ofA corresponding to the non-Gaussian
sources can indeed be reconstructed, i.e., that the non-Gaussian part of the mixing
model is identifiable by complete ICA. Without loss of generality, it is assumed that
the reconstructed sources are given by

y = Cs =

[
IL×L

0
QM×K−L

]

s. (5.26)

This implies that

wT
i aj =







1 ; i = j ∧ i, j ∈ {1, . . . , L}
0 ; i 6= j ∧ i ∈ {1, . . . ,M}, j ∈ {1, . . . , L}

6= 0 ; i ∈ {1, . . . ,M}, j ∈ {L + 1, . . . , K}
, (5.27)

with wT
i theith row of W andai theith column ofA. For the reconstructed columns
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âi of Â it holds that

wT
1 â1 = 1 wT

1 â2 = 0 · · · wT
1âM = 0

wT
2 â1 = 0 wT

2 â2 = 1 · · · wT
2âM = 0

...
...

.. .
...

wT
M â1 = 0 wT

M â2 = 0 · · · wT
M âM = 1,

(5.28)

sinceÂ = W -1 and henceWÂ = IM×M by construction. Now consider̂a1, which
has to be jointly orthogonal towT

i with i = {2, . . . ,M}. Equation (5.27) implies
thatwT

i â1 = 0 if and only if

â1 =
L∑

j=1,j 6=i

αjaj, (5.29)

with αi ∈ R. Since it is required in (5.28) thatwT
i â1 = 0 for all i ∈ {2, . . . , L},

it follows that â1 = α1a, and the first column of̂A is a scaled version of the first
column ofA. The same argument applies for the remaining firstL columns ofÂ.
Hence, the columns ofA corresponding to the non-Gaussian sources are correctly
reconstructed up to scaling and possible permutations.
With regard to the lastK − L columns ofÂ, consider the following example.

Example 5.2(Non-identifiability of Gaussian mixture models). LetM = 4, L = 2
andK = 8. Then one possible source reconstruction in agreement with Theorem
5.1 is given by

y = WAs = Cs =







1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 1
0 0 1 1 0 −1 0 1
0 0 0 0 −1 0 1 0







s. (5.30)

Now consider the third column̂a3 of the reconstructed mixing matrix̂A = W−1,
and letâ3 = αa3 + βa4 with α, β ∈ R. Then due to the third and fourth column of
C in (5.30) it holds that

wT
1â3 = 0

wT
2â3 = 0

wT
3â3 = 1

wT
4â3 = 0

, (5.31)

with α, β chosen such thatwT
3(αa3 + βa4) = 1. This is in agreement withWA =

IM×M , and hencêa3 = αa3 + βa4 constitutes an admissible reconstruction of a
column of the mixing matrixA.

This example establishes that in general the columns ofA corresponding to Gaus-
sian sources are not correctly reconstructed by complete ICA.
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Separability of sources M = K > L K > L > M K > M > L
Non-Gaussian X - X

Gaussian - - -
Gaussian from non-Gaussian X - -

Model identifiability M = K > L K > L > M K > M > L
Non-Gaussian X - X

Gaussian - - -

Table 5.1: Identifiability and separability of mixture models with K sources,L
non-Gaussian sources, andM sensors by complete ICA.

In summary, complete ICA correctly reconstructs the columnsof the mixing matrix
A corresponding to non-Gaussian sources ifK > M > L. The columns ofA
corresponding to the Gaussian sources, however, are not correctly reconstructed.
Hence, only the non-Gaussian part of the mixing model is identifiable by complete
ICA for the case ofK > M > L.
For convenience, all results on identifiability and separability of arbitrary mixture
models by complete ICA obtained in this Section are summarized in Tab. 5.1.

5.2.3 Validity of Mixture Models in EEG/MEG Analysis

In this section, the plausibility of different source models is discussed in the context
of EEG/MEG analysis. As pointed out in the introduction of this chapter, the con-
tinuous spatial current distribution within the brain gives rise to the electric potential
/ magnetic field measurable on the scalp [NS05]. If this potential / field is sampled
at M electrodes, this constitutes a mapping from an infinite to finite dimensional
space. As such, this mapping can only fully describe the continuous current dis-
tribution within the brain if the current distribution can be partitioned into at most
M distinct sets with identical dynamics. In general, this canbe considered highly
unlikely, and hence the assumption of less sources than sensors has to be rejected in
EEG/MEG analysis.
This conclusion is usually not accepted by the EEG/MEG community, since it ap-
pears in contradiction to the apparent success of complete ICA in the analysis of
EEG/MEG recordings. Instead, it is argued that only a few EEG/MEG sources are
strong enough to be picked up by ICA, and that hence, at least from a practical
point of view, less sources than sensors can be assumed (cf. [OWTM06]). This ar-
gument is supported by empirical evidence that source dynamics and topographies
constructed by complete ICA are physiologically plausible [JMB+01, MWJ+02,
MDOD04].
In contrast, it is maintained here that the available empirical and theoretical evidence
suggests that the reason for the success of complete ICA in EEG/MEG analysis is
not that only a few sources are strong enough to be picked up byICA, but rather that
only a few sources arenon-Gaussianenough to be picked up by ICA. This claim
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is based on the following argument. First, assuming a mixture model with only
a few non-Gaussian sources is in agreement with the physiological plausibility of
results obtained by complete ICA, since in this case the non-Gaussian sources are
separable and the non-Gaussian part of the mixture model is identifiable (cf. Section
5.2.2). Second, this model is not in contradiction to the underdetermined nature of
EEG/MEG recordings, since an arbitrary number of additional Gaussian sources
can be assumed. Thirdly, consider the following definition.

Definition 5.1 (Stable Independent Component). An independent component is cal-
led stable if it is contained (up to possible scaling) in all source reconstructions
obtained by complete ICA, i.e., if it is independent of the type of algorithm used for
complete ICA and the initial conditions of the algorithm.

If only a few non-Gaussian and multiple Gaussian sources arepresent in a data set,
Theorem 5.1 asserts that that there exists a subset of unstable ICs that correspond
to mixtures of Gaussian sources. This is indeed supported byempirical evidence,
with unstable ICs usually observed in EEG/MEG analysis [JMB+01].
It is hence maintained that a mixture model with less non-Gaussian sources than
sensors but more Gaussian sources than sensors constitutesa realistic assumption
in EEG/MEG analysis. Note that due to Theorem 5.1 this mixture model im-
plies that reconstructed dynamics of non-Gaussian sourcesare arbitrarily mixed
with Gaussian sources. This prediction can be used to further validate the pro-
posed mixture model. In terms of the analysis of event related potentials/fields
(ERPs/ERFs) by ICA, the inclusion of Gaussian sources results in a lower signal-
to-noise ratio (SNR) of the reconstructed ICs. Note, however,that Gaussian sources
can be temporally white as well as correlated, i.e., in general no statement can
be made on whether the inclusion of Gaussian sources distorts the temporal struc-
ture of reconstructed ICs. Regarding the analysis of event related synchroniza-
tion/desynchronization (ERD/ERS) (cf. [PL99] and [NS05]), note that ERS/ERD
measures dynamic changes in variance of reconstructed sources. As such, only
non-stationary sources can contribute to the temporal structure of ERS/ERD. Since
Gaussianity of a source over the whole temporal range of the recorded EEG/MEG
implies stationarity, the inclusion of Gaussian sources inreconstructed ICs amounts
to only raising the baseline of ERS/ERD measurements. This hasgot no adverse ef-
fects on the temporal structure or the significance level of ERS/ERD measurements.
Consequently, the proposed mixture model predicts adverse effects on reconstructed
ERPs/ERFs, and no adverse effects on the analysis of ERS/ERD. In the next section
a methodology is presented that allows testing these predictions.

5.2.4 Overcomplete ICA via LCMV Spatial Filtering

If a mixture model with a small number of non-Gaussian and a very large amount
of Gaussian sources applies, the temporal reconstruction of non-Gaussian sources is
arbitrarily mixed with Gaussian sources. It is then desirable to derive a methodology
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with which this adverse effect can be minimized without having to resort to over-
complete ICA, which raises the complexity of source reconstruction and requires
additional constraints on the reconstructed sources (cf. [LLGS99, ZP01]).
Towards this goal, note that the topographies of the non-Gaussian sources are cor-
rectly reconstructed by complete ICA in spite of the presenceof an arbitrary num-
ber of Gaussian sources. This can be used to improve the SNR ofthe reconstructed
non-Gaussian sources in the following way. Assume that a reconstructed source
topographŷai correctly represents the topography of a non-Gaussian sourcesi, i.e.,
that âi = ai. Without loss of generality possible scaling is disregarded here. To
estimate the temporal evolution ofsi, it is desirable to design a spatial filtervi that
extracts the sourcesi from the available measurementsx while optimally attenuat-
ing all other sources. If optimal attenuation is defined in terms of the variance of
interfering sources, this can be formulated mathematically as

vi = argmin
v∈RM

{
vTRxv

}
s.t. vT

i ai = 1. (5.32)

This is the problem of linearly constrained minimum variance (LCMV) spatial fil-
tering, which has been originally proposed and solved in [VvYS97]. The solution
to (5.32) is given by

vi =
(
aT

i R
−1
x ai

)−1
aT

i R
−1
x . (5.33)

Accordingly, yi = vT
i x is an optimal estimate ofsi in so far that the variance

of the interference of all other sources is minimized. Note that this minimization
of interference includes other Gaussian as well as non-Gaussian sources. Conse-
quently, statistical independence of the non-Gaussian sources is traded here against
minimization of the variance of the interference of all sources.
In terms of the predictions formulated in Section 5.2.3, in order to validate the pro-
posed mixture model, note that a reduction of the SNR of the reconstructed ICs by
LCMV spatial filtering can only be expected for an overcomplete mixture model.
If K = M , and henceA ∈ R

M×M , it is easy to show that indeedyi = vT
i x = si

by plugging in (5.33). The proposed mixture model thus predicts that complete
ICA in conjunction with LCMV spatial filtering outperforms complete ICA in the
reconstruction of ERPs/ERFs, while a complete mixture model leads to no improve-
ments. This is tested in the next section. In studies using measures of ERS/ERD, as
in feature extraction for non-invasive BCIs based on motor imagery, LCMV spatial
filtering can not be expected to affect the results since onlythe baseline is altered.
Consequently, the proposed mixing model predicts that usingcomplete ICA in con-
junction with LCMV spatial filtering in feature extraction for non-invasive BCIs
does not alter results in comparison to using complete ICA alone.

5.3 Experimental Results

In this section, complete ICA in conjunction with LCMV spatialfiltering is ap-
plied to auditory evoked ERFs and to EEG data from a four-classmotor imagery
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paradigm. The primary purpose of this section is to test the predictions made
in Section 5.2.3, i.e., to validate the assumption of a mixture model with more
sources than sensors but less non-Gaussian sources than sensors in the context of
EEG/MEG analysis. This is achieved by showing that completeICA in conjunction
with LCMV spatial filtering achieves results superior to complete ICA alone in the
reconstruction of auditory ERFs in Section 5.3.1, and by showing that in the context
of non-invasive BCIs based on motor imagery constructing spatial filters by com-
plete ICA and LCMV spatial filtering does not perform better than complete ICA
alone (Section 5.3.2).
Besides the validation of the proposed mixture model, this also serves to illustrate
the efficacy of complete ICA in conjunction with LCMV spatial filtering in the
reconstruction of the dynamics of non-Gaussian sources, and to establish why ICA
constitutes a powerful tool for feature extraction in the context of non-invasive BCIs
in spite of the overcomplete mixture model.

5.3.1 Denoising of Event Related Fields

In this section, complete ICA combined with LCMV spatial filtering is employed
for denoising of ERFs recorded by MEG. In general, data denoising by ICA is
based on the assumption that only a small number of ICs reconstructed from a
given data set are relevant for the considered experimentalsetup, i.e., belong to the
signal subspace, while all other ICs constitute noise. Only the ICs belonging to the
signal subspace are then reprojected onto the observation space, resulting in a rank-
reduced signal with improved signal-to-noise ratio (SNR). It should be noted that
the identification of ICs relevant for a given experimental setup is not trivial, and
hence mostly done manually. In the context of the source model considered here,
it is assumed that only theL non-Gaussian sources belong to the signal subspace.
The deviation from Gaussianity of the reconstructed sources is hence considered as
a criterion for the identification of relevant ICs (cf. [BGUB06]).
As MEG data Event Related Fields (ERFs) are chosen. ERFs typically have a very
low SNR, and are difficult to detect in single trial data. For this reason numerous
trials are recorded, and the ERF is estimated by taking the ensemble average of all
trials. Based on the assumption that only the ERF component of the MEG is invari-
ant in every trial, this results in an unbiased estimator of the ERF (termed thegrand
averageERF). In complex experimental setups, or if subjects with a short attention
span such as small children are under investigation, the recording of numerous trials
is not feasible. The goal of ERF denoising by ICA is then to reconstruct the grand
average ERF from only a small number of trials. This application is well suited
for evaluating the approach presented in the Section 5.2.4,because a data set can be
used for which the grand average ERF actually is available. This allows an objective
evaluation of the obtained denoising results, and thus a validation of the predictions
formulated in Section 5.2.4.
The test data set consists of Auditory Evoked Fields (AEFs),recorded during an
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Figure 5.1: Grand average ERFy∗ (a) and ERF average of ten randomly chosen
trialsyraw (b).

auditory oddball task at the Biomagnetic Imaging Laboratoryof the University of
California, San Francisco. Auditory stimuli were applied tothe left ear, while MEG
was recorded at a sampling rate of4 kHz with M = 132 sensors covering the right
hemisphere. A total of250 trials were recorded, with each trial lasting from−275
to 275 ms and the stimulus being applied at0 ms (see [NAHS06] for a detailed de-
scription of the recording procedure). Out of the total number of250 trials ten trials
were chosen randomly for estimation of the raw average ERF. The grand average
y∗ was computed by taking the average time course of all250 trials, and filtering
the resulting average sequentially with a low- and high-pass filter with cut-off fre-
quencies2 Hz and16 Hz respectively (for all temporal filtering procedures in this
section a third order Butterworth filter was used). The resulting temporal activity at
all channels is shown in Figure 5.1 (a). The same temporal filtering procedure was
applied to the average of the randomly chosen ten trials, resulting in the temporal
activity yraw shown in Figure 5.1. Note that only the post-stimulus periodis shown
in both figures. For a quantitative comparison of the data sets, the SNR is defined
as

SNR(ŷ) := 10 log10







1

M

M∑

i=1

T∑

t=1

y∗
i [t]2

T∑

t=1

(y∗
i [t] − ŷi [t])

2







(dB), (5.34)

with samplest = 1 . . . T corresponding to the post-stimulus period of the data.
Each data sets was first normalized to the maximum value of allchannels before
computing the SNR. This resulted in a SNR of−0.09 dB for the data setyraw.
To evaluate the denoising capabilities of ICA, the extended Infomax-algorithm as
implemented in EEGLab [DM04] was applied to the concatenated ten trials that
were randomly chosen as test data (from here on referred to asthe data vectorx),
resulting in estimated source topographiesâi and temporal source estimatesyi with
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i = 1, . . . ,M . Note that for simplicity the time index is dropped. Four different
evaluation schemes were then investigated:

1. Ordinary ICA.The reconstructed sourcesyi are sorted in descending order
according to the variance of the original data explained by each source. Only
the firstL sources with the highest explained variance are reprojected onto
the observation space,

x̂(1) =
L∑

i=1

âiyi. (5.35)

2. ICA with LCMV spatial filtering.The temporal source activity of each source
is estimated using the LCMV spatial filtering approach, and the resulting
source estimates are again sorted in descending order according to the amount
of variance of the original data explained by each source. The firstL sources
explaining the highest amount of variance are reprojected onto the observa-
tion space, resulting in

x̂(2) =
L∑

i=1

âi(â
T
i R

−1
x âi)

−1âT
i R

−1
x x. (5.36)

Note that in this and the fourth evaluation scheme diagonal loading is used
to obtain numerically stable estimates of the inverse of thecovariance matrix
Rx.

3. Ordinary ICA with identification of relevant non-Gaussian sources.The sour-
ces are reconstructed with complete ICA, but not sorted in descending order
according to the amount of variance explained by each IC. Instead, the devia-
tion from Gaussianity of each sourceyi is estimated in multiple stages. First,
the average temporal activity of each source across the ten trials is computed.
Then, the probability density function (pdf) of each averaged source is esti-
mated for the post-stimulus period using a non-parametric kernel approach
(cf. [BA97]). A Gaussian kernel is used, which is optimal forGaussian dis-
tributions. Then, the Kullback-Leibler distance (cf. [CT06]) of the estimated
pdf to a Gaussian distribution with equal variance is calculated by numerical
integration. Finally, the sources are sorted from highest to lowest Kullback-
Leibler distance, i.e., from least to most Gaussian. The data setx̂(3) is then
calculated in the same way as in (5.35), but by reprojecting theL most non-
Gaussian sources.

4. ICA with LCMV spatial filtering and identification of relevant non-Gaussian
sources.The temporal source activity of each source is again estimated us-
ing complete ICA in conjunction with LCMV spatial filtering. The estimated
sources are sorted in descending order according to their deviation from Gaus-
sianity as for evaluation scheme three. The data setx̂(4) is then calculated
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Figure 5.2: SNR of the evaluation schemes 1-4.

in the same way as in (5.36), but by reprojecting theL most non-Gaussian
sources.

The denoised data setsy(j), j = 1, . . . , 4, are calculated from the data setsx̂(j) by
taking the average across the ten trials ofx(j), applying the same temporal filter-
ing procedure as for the grand average data set, and normalizing to the maximum
value across all channels of eachy(j). Note that determining the parameterL, cor-
responding to the dimension of the signal subspace, is a non-trivial issue related to
model identification. This is beyond the scope of this work. The resulting SNRs for
all four schemes applied to the ten randomly chosen trials are shown in Figure 5.2
as a function ofL ∈ N. The maximum SNR achieved for each evaluation scheme
is summarized in Table 5.2 with Figure 5.3 showing the corresponding time series.
As can be seen from Table 5.2, the best SNR of9.29 dB is achieved for ICA with
LCMV spatial filtering and sorting of the estimated sources bytheir deviation from
Gaussianity. The SNRs for the other three evaluation schemesare roughly equal
at about3.5 dB. Note that the best SNR for evaluation scheme four is obtained
for L = 6, while the optimal SNRs for the other evaluation schemes are obtained
for much higher dimensions of the signal subspace (cf. Figure 5.2). As it can be
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Evaluation Scheme 1 2 3 4
Maximum SNR 3.75 dB 3.48 dB 3.32 dB 9.29 dB

Lmax 30 61 51 6

Table 5.2: Maximum SNR for each of the four denoising schemes.

Training trials per cond. 10 20 30 40 50 60 70 80

Subject k3b (ICA) 73.7 82.0 86.4 89.1 88.8 91.2 91.2 93.4
Subject k3b (LCMV) 73.6 82.0 86.5 89.1 89.3 91.4 91.8 93.4

Subject k6b (ICA) 45.8 52.0 56.7 59.8 62.9 - - -
Subject k6b (LCMV) 45.9 51.8 56.5 59.4 62.9 - - -

Subject l1b (ICA) 59.8 67.3 71.2 74.0 78.9 - - -
Subject l1b (LCMV) 59.6 67.6 71.1 74.2 78.4 - - -

Table 5.3: Mean classification results in percent for multi-class ITFE with complete
ICA and complete ICA in conjunction with LCMV spatial filtering.

expected from the SNRs, the temporal activities at the recording channels for the
optimum SNR of each evaluation scheme differ significantly (cf. Figure 5.3). While
the fourth evaluation scheme correctly reconstructs all major peaks of the grand
average ERF (compare Figure 5.1), for the other three evaluation schemes only the
major peak around100 ms is clearly discernible.
In summary, the experimental results presented in this section establish that com-
bining ICA with LCMV spatial filtering significantly improves the performance of
ICA in the reconstruction of ERFs. Note that this is in agreement with the expected
results for an overcomplete mixture model with more sourcesthan sensors but less
non-Gaussian sources than sensors as formulated in Section5.2.3. Furthermore,
note that the results are in contradiction to the assumptionof a complete mixture
model, for which LCMV spatial filtering would not result in improved performance
(cf. Section 5.2.4).

5.3.2 Feature Extraction in BCIs

To investigate the efficacy of complete ICA in conjunction with LCMV spatial fil-
tering for feature extraction in non-invasive BCIs, the same experimental data and
evaluation procedure as in Section 4.3 are employed (multi-class ITFE). However,
instead of performing ICA by joint approximate diagonalization (JAD) [ZLNM04],
spatial filters are computed using a) the extended Infomax algorithm as imple-
mented in EEGLab [DM04], and b) using the extended Infomax algorithm in con-
junction with LCMV spatial filtering as described in Section 5.2.4. The obtained
classification results for subjects k3b, k6b, and l1b are shown in Table 5.3. Compar-
ing these results with those obtained in Section 4.3 revealsonly minor differences
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in mean classification accuracy between using JAD and extended Infomax for ICA.
More importantly, however, the mean classification accuracies differ on average by
less than0.2% between using the extended Infomax algorithm alone and combining
it with LCMV spatial filtering.
Note that this is in agreement with expectations due to the fact that interference
from Gaussian sources, which can be alleviated by LCMV, only corresponds to a
shift of the baseline of ERS/ERD measurements as discussed in Section 5.2.3. If
ERS/ERD measurements, i.e., variance changes, are used as features for inferring
the BCI-user’s intention, a baseline shift corresponds to a translation of the feature
space. A translation has got no qualitative influence on the training process of a
linear classifier, and thus does not affect classification accuracies.

5.4 Discussion

Motivated by the apparent contradiction between the success of complete ICA and
the implausibility of a complete mixture model in EEG/MEG analysis, in this chap-
ter the performance of complete ICA was theoretically investigated for arbitrary
mixture models. Necessary and sufficient conditions for solutions of complete ICA
for arbitrary mixture models could be provided (Theorem 5.1), resulting in the char-
acterization of separability of sources and model identifiability of complete ICA for
arbitrary mixture models (summarized in Table 5.1).
These results were then used to argue that empirical evidence on complete ICA in
the analysis of EEG/MEG data is in agreement with an overcomplete mixture model
with less non-Gaussian sources than sensors but an arbitrary number of Gaussian
sources. Under the assumption of this mixture model, predictions were formulated
on the behavior of complete ICA in the reconstruction of ERPs/ERFs and in the
analysis of ERS/ERD. By combining complete ICA with LCMV spatial filtering,
a methodology was presented that enables testing these predictions. It was then
shown that the performance of complete ICA with and without LCMV spatial fil-
tering in the reconstruction of ERFs does indeed conform to the predictions derived
from the proposed mixture model, and that this empirical evidence is in contradic-
tion to a complete mixture model. Furthermore, it was shown that experimental
results on feature extraction for non-invasive BCIs by complete ICA and LCMV
spatial filtering also agree with an overcomplete mixture model. Note, however,
that the results on feature extraction are not in contradiction to a complete mixture
model and thus, in comparison to the results on ERFs, provide no compelling ev-
idence for an overcomplete mixture model. In summary, it is concluded that the
theoretical and empirical evidence is in favor of the proposed mixture model. This
argument thereby provides an explanation for the success ofcomplete ICA in the
analysis of EEG/MEG recordings without resorting to a physiologically implausible
complete mixture model.
It should be noted that the validity of an overcomplete mixture model with few
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non-Gaussian and arbitrary many Gaussian sources has got several implications
for the analysis of EEG/MEG recordings by complete ICA. First, it ensures that
the topographies of non-Gaussian sources are correctly reconstructed in spite of
an overcomplete mixture model. Second, Gaussian sources are arbitrarily mixed
into reconstructed Gaussian sources. While this has got no qualitative effect on
the analysis of ERS/ERD measures, it does degrade the SNR of thedynamics of
reconstructed ICs. This adverse effect can be alleviated by combining complete
ICA with LCMV spatial filtering. However, this trades statistical independence
of reconstructed sources against minimization of the variance of interference from
unwanted sources. This has to be taken into account when deriving physiological
conclusions from reconstructed ICs.
Finally, the presented theoretical and experimental results provide an explanation
for the success of complete ICA in the design of feature extraction algorithms for
non-invasive BCIs. As long as only variance changes are used for inferring the
user’s intention, as it is usually done in BCIs based on motor imagery paradigms,
the inclusion of Gaussian sources in reconstructed ICs amounts to a translation of
the feature space. Since this does not affect the performance of linear classifiers, this
adverse effect of complete ICA in EEG/MEG analysis can at present be disregarded
in the context of non-invasive BCIs based on motor imagery.
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Chapter 6

Feature Extraction via Beamforming

6.1 Introduction

In Chapter 3, only the spatial distribution of current density within the brain was
used for inferring the BCI-user’s intention, while in Chapters4 and 5 algorithms for
feature extraction were developed that were primarily based on a-priori information
on temporal coding of cognitive states in the electric field of the brain. In this
chapter, a-priori information on spatial as well as temporal coding of cognitive states
is used to design a robust, computationally simple, and effective feature extraction
algorithm. This algorithm can be interpreted as a special type of beamformer, a
spatial filter usually associated with applications in radar technology or classical
communication theory (cf. [VB88] for a review).
In EEG analysis, a beamformer is a linear spatial filter that optimally attenuates
all EEG sources not originating from a specific location or region within the brain
(cf. [GI99] for a review). Beamformers are applicable in the context of non-invasive
BCIs, since some knowledge on which regions of the brain, termed regions of in-
terest (ROIs), provide information on the user’s intentionis usually available. For
example, for non-invasive BCIs based on motor imagery paradigms it is well known
that haptic motor imagery of a limb leads to a decrease in power of the electric field
of the brain originating in that part of the motor cortex representing the specific
limb (cf. [PL99] and the experimental results presented in Chapter 3). Furthermore,
the location of a certain region of the human brain within theskull, e.g., the mo-
tor cortex, does not vary significantly across subjects, andis thus approximately
known. In conjunction, this information can be used to design spatial filters that
selectively extract those components of the EEG that originate in the regions of the
brain considered most relevant for inferring the user’s intention.
In comparison to approaches discussed in the previous chapters this has got several
advantages. First, beamforming is a very robust form of feature extraction, since
any noise that does not originate within the ROI, e.g., that is caused by muscular
or ocular artifacts, is optimally attenuated. Second, is demonstrated in Section 6.3
and discussed in Section 6.4, beamforming is computationally less demanding than
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source localization, and thus applicable in online BCIs with real-time feedback. Fi-
nally, beamforming is completely unsupervised, i.e., it does not require any labeled
training data. As such, it does not suffer from overfitting phenomena as the algo-
rithms presented in Chapters 3 and 4, and enables a high rate ofconvergence of a
subsequent classifier to its minimum expected error probability.
The structure of this chapter is as follows. In Section 6.2, the assumptions made in
this chapter on the class of allowed feature spaces is specified. Then, a beamform-
ing approach, similar to the concept of maximum SNR beamforming [MM80], is
derived that selectively extracts EEG components from specific brain regions. In
Section 6.3, experimental results based on EEG recordings from a two-class motor
imagery paradigm are presented. First, offline classification results of ten healthy
subjects are presented, and classification accuracies are compared with those ob-
tained by using the CSP algorithm for feature extraction (cf.Section 4.2.1). Then,
the feasibility of using the beamforming approach for realizing real-time control of
a cursor in one dimension is demonstrated. The chapter concludes in Section 6.4
with a general discussion of the usability of beamforming for feature extraction in
non-invasive BCIs. Some of the work in this chapter has alreadybeen presented in
[GWGB07].

6.2 Methods

In this chapter, only two-class paradigms are considered. Hence, the BCI-user’s
intention is denoted byc ∈ C = {c1, c2}. The recorded EEG data is again referred
to asX ∈ R

M×T for a block ofT samples, andx(t) ∈ R
M for a single sample point.

If the time index is dropped,x is treated as aM -dimensional random variable. The
assumptions made in this chapter to limit the class of allowed feature spacesP∗

(cf. Definition 2.13) are:

1. The user’s intention is encoded in variance changes of therecorded EEG data.

2. For motor imagery paradigms, only the EEG components originating in those
parts of the motor cortex representing the involved limbs provide information
on the BCI-user’s intention. These regions are termed regionsof interest
(ROIs).

The first assumption is identical to Chapters 4 and 5, and expresses our knowledge
on temporal coding of cognitive states in the electric field of the brain. The second
assumption, on the other hand, incorporates more detailed spatial constraints on
the class of allowed features than in previous chapters. Contrary to previously em-
ployed spatial constraints, those imposed here depend on the specific experimental
paradigm being used. In general, different paradigms require different ROIs.
The desired feature extraction algorithm then is of the formT : R

M×T 7→ R
KN
+ ,

T (X) = Var
{
W TX

}
, with the columns of the matrixW ∈ R

M×N containing the



6.2. METHODS 97

N beamformers. Note that, as in previous chapters, the operator Var{.} refers to the
variances of the components inK specific frequency bands, andN = 2 due to the
restriction to two-class paradigms.
In the context of EEG analysis, beamforming is frequently used for the purpose
of source localization ([VvYS97],[GI99]). This is realized by specifying a three-
dimensional grid within the brain, and designing a beamformer for every single
grid point. The power of the obtained estimate of the electric field at a grid point
is then taken as an estimate of the current density at this location within the brain.
In this way, the whole brain can be scanned, resulting in a three-dimensional map
of the estimated current density distribution. For this purpose, it is desirable to
maximize the spatial resolution of the employed beamformerin order to ensure
minimum interference from adjacent grid points in estimating the current density
at a certain location within the brain. This is in contrast tothe requirements of
beamforming in the context of non-invasive BCIs. Here, the ROIcan be considered
as an extended region rather than a single point within the brain. Furthermore, the
ROI is only approximately known. It is hence desirable to derive a beamformer that
can be pointed at a whole region within the brain, and that optimally attenuates all
sources not originating within this ROI. In the next section, the derivation of such a
beamformer is presented.

6.2.1 Maximum SNR Beamforming in EEG

In general, it is desirable to derive a spatial filter that eliminates all electric activity
that does not originate in a chosen ROI. This, however, is notpossible due to the
ill-posed nature of the inverse problem of EEG. In EEG recordings, electric activity
originating from an infinite dimensional space (the continuous current distribution
within the brain) is mapped onto a finite number of measurement electrodes. For this
reason, estimating the electric field at a certain position inside the brain constitutes
an underdetermined problem. The best one can do is to find a spatial filter that
in some sense optimally attenuates all activity not originating in the chosen ROI.
Motivated by the assumption that only variance changes provide information on the
BCI-user’s intention, optimal attenuation is defined here as maximizing the ratio of
the variance of the electric field originating in a certain ROI and the total variance
of the electric field. Such a linear spatial filter is now derived, and its properties are
discussed.

Derivation of the Maximum SNR Beamformer

The electric potential generated by the brain and measured at a positionr on the
scalp is given by (cf. [NS05])

Φ(r, t) =

∫

V

L(r, r′)TP (r′, t)dV (r′), (6.1)
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with V the volume of the brain,P : R
3 × R 7→ R

3 the tissue dipole moment
(source strength) at positionr′ and timet in x, y, and z - direction, andL : R

3 ×
R

3 7→ R
3 the so called leadfield equation, describing the projectionstrength of a

source with dipole moment in x, y, and z - direction at position r′ to a measured
electric potential at positionr. Note that the leadfield equation incorporates all
geometric and conductive properties of the brain. Here, theelectric field of the
brain is spatially sampled ati = 1, . . . ,M electrodes on the scalp with positionri,
resulting in a measurement vectorx(t) with the elements

xi(t) =

∫

V

L(ri, r
′)TP (r′, t)dV (r′), i = 1, . . . ,M. (6.2)

The goal of maximum SNR beamforming is to find a linear transformation of the
measured EEG

y(t) = w∗T
x(t) (6.3)

that maximizes the ratio of the variance of the electric fieldoriginating in a certain
region of the brain and the overall variance. For this, the component of the EEG
originating in a certain ROI is defined asx̃(t), with the elements

x̃i(t) =

∫

ROI

L(ri, r
′)TP (r′, t)dV (r′), i = 1 . . . M. (6.4)

Computing the spatial filter that maximizes the ratio of the variance ofx̃ andx

requires their respective covariance matrices. Forx, the electric field due to sources
within the whole brain, the covariance matrixRx(t) can be computed using the
recorded EEG data. The covariance matrix ofx̃, however, has to be estimated in
a different way. First note that the integral in (6.4) can be approximated in a very
simplistic manner as

x̃i(t) = α
J∑

j=1

L(r′
j, ri)

TP (r′
j, t), (6.5)

with r′
j, j = 1, . . . , J the locations of an equally spaced grid withJ points within

the ROI andα some numerical constant. The electric field at theM electrodes on
the scalp can thus be approximated as

x̃(t) = αLp(t), (6.6)

with the leadfield matrixL ∈ R
M×3J describing the projection strength inx,y, and

z-direction of the sources at theJ grid points to theM electrodes, andp(t) ∈ R
3J

representing the dipole moments of theJ sources. Without loss of generality, it is
assumed that each element ofp(t) has zero mean. The covariance matrix ofx̃(t)
can then be written as

Rx̃(t) = α2LRp(t)LT, (6.7)
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with Rp(t) the source covariance matrix. The desired spatial filter is then found by
solving the optimization problem

w∗ = argmax
w∈RM

{
wTRx̃(t)w

wTRx(t)w

}

. (6.8)

Since (6.8) is in the form of the well-known Rayleigh quotient, solutions to (6.8)
are given by the eigenvectors of the generalized eigenvalueproblem

Rx̃(t)w = λRx(t)w. (6.9)

Since for an eigenvalueλ∗ with associated eigenvectorw∗ it holds that

λ∗ =
w∗TRx̃(t)w∗

w∗TRx(t)w∗
, (6.10)

the eigenvector of (6.9) with the largest eigenvalue constitutes the desired beam-
former. Then note that letting̃λ := λ/α2 and inserting (6.7) into (6.9) yields the
generalized eigenvalue problem

LRp(t)LTw = λ̃Rx(t)w. (6.11)

Solving (6.11) requires knowledge of the leadfield matrixL and the covariance ma-
trix Rp(t) for the sources within the ROI. The leadfield matrix for a given ROI can
be estimated using models of EEG volume conduction discussed in Section 3.2.2
and [BML01]. In this chapter, as in Chapter 3, only the four-shell spherical head
model is considered [RD69]. Each column ofL describes the projection strength of
a current dipole at a certain grid point within the ROI to allM electrodes due to its
dipole moment inx, y, or z-direction. The columns ofL thereby implicitly define
the ROI and the orientation of sources within the ROI. The source covariance matrix
Rp(t), on the other hand, has to be specified using a-priori knowledge. In absence
of any a-priori knowledge, it is assumed thatRp(t) = I, i.e., that all sources have
equal variance and are mutually uncorrelated. However, more realistic assumptions,
such as an exponential decrease of correlation of sources with geometric distance,
could easily be implemented. Finally, it should be noted that any constant scaling
of the source covariance matrix or the leadfield matrix has noeffect on the eigen-
vectors of (6.11), and thus also no effect on the optimal spatial filter. The largest
eigenvector of (6.11), and thus the optimal beamformer, canthen be computed by
standard numerical tools for generalized eigenvalue problems.

Properties of the Maximum SNR Beamformer

Several issues in the derivation of the beamformer warrant afurther discussion.
First, it is assumed that the covariance matrix of the EEG data can and should be es-
timated from available data. This is not imperative. Instead, the same model-based
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approach used for estimating the covariance matrixRx̃(t) could be employed to
estimateRx(t). This would result in a data-independent beamformer, i.e.,a beam-
former that does not depend on the observed EEG. There are twoprimary reasons,
however, to prefer estimatingRx(t) from available data. First, a model-based ap-
proach for estimatingRx(t) introduces unnecessary uncertainties, i.e., the source
and head model, into the evaluation process. This should be avoided if possible.
Second, for real EEG data some regions of the brain can be expected to be more
active than others, resulting in a non-uniform current distribution. If Rx(t) is esti-
mated from real data, the beamformer can adapt to this non-uniform current distri-
bution. The result is a spatial filter that focuses on attenuating those sources within
the brain that interfere most with the electric field originating within the ROI. This
is in contrast to a beamformer using a model-based approach for estimatingRx(t).
Here, all sources within the brain are attenuated regardless of their actual contribu-
tion to the deterioration of the SNR. Hence, a higher SNR of thebeamformer can
be expected ifRx(t) is estimated from real data.
Up to this point, it has been assumed thatRx(t) can be easily estimated from avail-
able data. This is in indeed correct ifx is a stationary (or quasi-stationary) random
variable with independently distributed samples. In this case the standard unbiased
estimator of a covariance matrix can be employed, i.e.,

Rx =
1

T − 1

T∑

t=1

(x(t) − µx)(x(t) − µx)T (6.12)

with µx the (sample) mean ofx. However, ifx is non-stationary, which for EEG
data unfortunately is indicated by empirical evidence [Pal96], estimation ofRx(t)
becomes non-trivial. More specifically, estimation of a non-stationary covariance
matrix requires, explicitly or implicitly, the definition of a time window in which
the random variable is considered stationary (parametric methods for estimating
Rx(t) in which the non-stationarity is explicitly modelled are disregarded here).
The optimal length of this window, in terms of minimizing some error between
estimated and real covariance matrix, is influenced by several factors. These include
a) the extent of the non-stationarity, i.e., the speed with which the covariance matrix
changes, b) the deviation ofx from the assumption of independently distributed
samples (temporally correlated samples ofx provide less information onRx(t)
than uncorrelated samples), and c) the actual probability density function ofx (note
that the standard unbiased estimator for a covariance matrix is only optimal in terms
of the Cramer-Rao lower bound ifx is Gaussian distributed). The actual effect of
varying the number of samples for computing (6.12) on the classification accuracy
is demonstrated in Section 6.3.1.
Furthermore, the beamformer derived here differs from the maximum SNR beam-
former usually considered in the literature (cf. [MM80]) inthe choice of the de-
nominator in (6.8). In the standard maximum SNR beamformer,Rx̃(t) refers to
the covariance matrix of the signal subspace, whileRx(t) refers to the covariance
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matrix of the noise subspace. Here, however,Rx(t) represents the covariance ma-
trix of the recorded EEG data, and thereby includes the noiseas well as the signal
subspace. As such, it is not immediately evident that (6.8) indeed results in a de-
sirable spatial filter, and it could be argued that instead ofsolving (6.8) it would be
desirable to solve the optimization problem

w∗ = argmax
w∈RM

{
wTRx̃(t)w

wTRNoise(t)w

}

(6.13)

with RNoise(t) describing the covariance matrix of all sources outside theROI. Hav-
ing to solve (6.13) would be disadvantageous, since it is in practice impossible to
estimateRNoise(t) from recorded data. Using a model-based approach to estimate
RNoise(t), on the other hand, is undesirable due to the same reasons as discussed
above for estimatingRx(t). It is shown now that under some mild assumption
solving (6.8) and (6.13) yield the same generalized eigenvalue problem, thereby
establishing that solving (6.8) does indeed result in the desired spatial filter. First,
consider again the linear EEG model

x(t) = As(t) =
[

As An

]
[

s(t)
n(t)

]

, (6.14)

with s(t) denoting the sources within the ROI (the signal subspace) and n(t) de-
noting the signals outside the ROI (the noise subspace). Assumings(t) andn(t) to
be uncorrelated (and, without loss of generality, to have zero mean), the covariance
matrix ofx is given by

Rx(t) = AsRs(t)A
T
s + AnRn(t)AT

n = Rx̃(t) + RNoise(t). (6.15)

Now, solutions to (6.13) are given by eigenvectors of the generalized eigenvalue
problem

Rx̃(t)w = λRNoise(t)w, (6.16)

which can be rewritten using (6.15) as

Rx̃(t)w = λ̃Rx(t)w (6.17)

with λ̃ = λ/(1 + λ). Comparing (6.17) and (6.9) then shows that under the as-
sumption of the EEG sources within and outside the ROI being uncorrelated the
optimization problems (6.8) and (6.13) yield identical spatial filters.

6.3 Experimental Results

In this section, the beamformer derived in the previous section is applied to ex-
perimental EEG data from a two-class motor imagery paradigm. First, offline re-
sults of ten healthy subjects are presented, and the performance of the beamform-
ing approach, using two beamformers with their ROIs centered within the left and
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right motor cortex, are compared with that of the CSP algorithm (cf. Section 4.2.1).
The CSP algorithm is chosen for comparison due to its optimality for two-class
paradigms in terms of maximizing (an approximation of) mutual information of
class labels and extracted features as proved in Section 4.2.3.
Two different procedures for computing the beamformers areevaluated. In the first
procedure, termed static beamforming, the beamformers arecomputed using previ-
ously recorded EEG data and then kept invariant for the rest of the experiment. In
static beamforming, the beamformers are hence not dynamically adapted to the ob-
served EEG, but are optimized based on some imprint of brain activity as measured
by the EEG covariance matrix of previously recorded data. Inthe second procedure,
termed block-adaptive beamforming, the optimal beamformers are re-computed for
each trial of EEG data, resulting in a time-discrete adaptation of the beamformers
to the observed EEG data. This section concludes with the presentation of experi-
mental results from a BCI with real-time feedback based on the static beamforming
approach.

6.3.1 Offline Results

Experimental Setup

Ten healthy subjects (S1-S10) participated in the experimental evaluation. Of these
two were female, eight were right handed, and their average age was 25.6 years
with a standard deviation of 2.5 years. Subject S3 had already participated twice in
a BCI experiment, while all other subjects were naive to BCIs.
Each subject was seated in a dimly lit and shielded room, approximately two meters
in front of a silver screen. Each trial started with the central display of a white
fixation cross. After three seconds, a white arrow was superimposed on the fixation
cross, either pointing to the left or the right. Subjects were instructed to perform
haptic motor imagery of the left or the right hand, as indicated by the direction of
the arrow, while seeing the arrow. The conditions motor imagery of the left and
right hand are subsequently referred to as conditionsc1 andc2. After another seven
seconds the arrow was again removed, indicating the end of the trial. While subjects
were explicitly instructed to perform haptic motor imagerywith the specified hand,
the exact choice of which type of imaginary movement, i.e., moving their fingers
up and down, gripping an object, etc., was left unspecified. Atotal of 150 trials
per condition were carried out by each subject, with the trials presented in pseudo-
randomized order.
During the experiment, EEG was recorded atM = 128 electrodes placed according
to the extended 10-20 system. Data was recorded at 500 Hz withelectrode Cz as
reference. Four BrainAmp amplifier were used for this purpose, using a temporal
analog high-pass filter with a time constant of 10 s. The data was re-referenced to
common average reference offline. Electrode impedances were below 10 kHz for
all electrodes and subjects. No trials were rejected and no artifact correction was



6.3. EXPERIMENTAL RESULTS 103

performed. For each subject, the locations of the 128 electrodes were measured in
three dimensions using a Zebris ultrasound tracking systemand stored for further
offline analysis.

Common Spatial Patterns

To evaluate the classification accuracy using CSP for featureextraction the follow-
ing procedure is adopted. First, the EEG data is filtered witha sixth-order butter-
worth filter with cut-off frequencies 7 and 30 Hz, since this is known to improve
the quality of the obtained CSP filters [BDK+07]. Then, the data is randomly par-
titioned into a training and test data set. While the number oftrials included in the
training set is systematically varied, always the same number of trials per condition
are selected. The EEG covariance matrices of conditionsc1 andc2 are then esti-
mated according to (6.12), only using data from the trainingset and the last 6.5 s of
each trial. This is done to ensure that visual evoked responses due to presentation
of the arrow at 3 s have already decayed. CSPs are then computedas described in
Section 4.2.1. TheL = 5 spatial filters with maximum and minimum eigenvalues
are used to form the spatial filtering matrixW ∈ R

M×2L.
This matrix is then applied to each trial in the training and the test data set, resulting
in a reduced data space of2L EEG components for each recorded trial. For each
trial and extracted EEG component,K = 20 frequency bands of 2 Hz width, rang-
ing from 2 - 40 Hz, are extracted using a sixth-order butterworth filter. For each
trial, the sample variance in the time window ranging from 3.5 - 10 s in each fre-
quency band for all components then forms the200-dimensional feature vector. The
feature vectors of the trials included in the training set are then used to train a lo-
gistic regression classifier withL1-regularization, with the regularization parameter
tuned heuristically to0.1. This linear classifier is chosen for two reasons. First, it
is well known that considering non-linear classifiers does not significantly improve
classification accuracy in non-invasive BCIs while needlessly increasing complexity
[GPAT03, MAB03]. Second, it is also known that only some frequency bands pro-
vide information on the user’s intention in motor imagery paradigms, and that these
frequency bands vary across subjects [PL99]. It can thus be expected that most fea-
tures of the200-dimensional feature vector are irrelevant, but it is unknown which
ones are relevant for a certain subject. For this class of classification problems,
i.e., a high-dimensional feature space with many irrelevant features, it is proved
in [Ng04] that logistic regression withL1-regularization possesses a sample com-
plexity that only grows logarithmically in the number of irrelevant features, while
rotationally invariant classifiers, such as support vectormachines, have a worst case
sample complexity that grows linearly in the number of irrelevant features. Hence,
for this class of problems logistic regression withL1-regularization can be expected
to display a faster convergence (in terms of the required amount of training data) to
its minimum error than other state-of-the-art classification algorithms. The classi-
fier trained on the training set is then used to infer the BCI-user’s intention for the
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trials in the test set. The number of training trials per condition are systematically
varied between 10 and 100 trials, and the above evaluation procedure is carried out
10 times for each subject and amount of training data to obtain sensible estimates
of the mean and standard deviation of the classification accuracy for each subject as
a function of the number of training trials.

Static Beamforming

To evaluate feature extraction by static beamforming, the recorded EEG data is
again first randomly partitioned into a training and a test data set. The EEG data
in the time window ranging from 3.5 - 10 s of all trials in the training data set is
then used to estimate the EEG covariance matrix according to(6.12). Note that
the EEG covariance matrix is not estimated separately for each condition. Instead,
trials from both conditions are combined to obtain an imprint of subject specific
EEG patterns as manifested in the EEG covariance matrix. Then, two beamformers
are computed, with their respective ROIs chosen as spheres of 1 cm radius centered
1.9 cm radially below electrodes C3 and C4. Electrodes C3 and C4 are chosen due
to their location over the left and right motor cortex according to the 10-20 system
for electrode placement. The leadfield matricesL for each ROI, required in (6.11),
is computed by placing a radially oriented current dipole atevery position of an
equally spaced grid with 2 mm grid point distance within eachROI, and computing
the contribution of each current dipole to the electric potential at theM electrodes
on the scalp according to the four-shell spherical head model (cf. Section 3.2.2
and [BML01]). For each subject, the employed electrode positions are obtained by
radially projecting the measured electrode positions ontothe outermost sphere of
the four-shell spherical head model. The beamformers are then finally obtained by
computing the eigenvector with the largest eigenvalue of (6.11) for each of the two
leadfield matrices, assuming a unit source covariance matrix Rp(t). This results
in a spatial filtering matrixW ∈ R

M×2. The actual computation of the feature
vectors and evaluation of the classification accuracy is then carried out as for feature
extraction by CSP. Note, however, that since only two spatialfilters are employed
the feature vector for static beamforming is of dimension 40.

Block-adaptive Beamforming

For evaluation of block-adaptive beamforming, the same procedure as for static
beamforming is adopted. However, instead of computing the EEG covariance ma-
trix from the training data, an EEG covariance matrix is computed for every single
trial. These covariance matrices are then used to compute two beamformers for ev-
ery trial according to (6.11), resulting in a time-discreteadaptation of the beamform-
ers to actually observed data. The computation of the feature vectors and estimation
of the classification accuracies is then again performed as for feature extraction by
CSP and static beamforming.
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Figure 6.1: Estimated mean and standard deviation of classification accuracies for
subjects S1-S10 as a function of the number of training trials.
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Trial # 10 20 30 40 50 60 70 80 90 100

S1 (CSP) 52.8 53.7 52.5 54.3 55.6 55.7 53.7 55.0 53.3 55.9
S1 (SB) 51.1 52.9 54.5 56.0 55.0 58.1 58.6 58.3 61.0 60.0
S1 (BB) 53.0 55.4 56.3 55.9 56.9 54.9 58.4 56.0 57.4 58.9

S2 (CSP) 49.9 50.2 49.9 50.6 50.2 50.0 50.0 50.2 50.3 49.5
S2 (SB) 87.0 89.4 90.4 90.7 91.3 90.8 92.1 91.9 91.7 92.3
S2 (BB) 84.9 86.7 89.6 90.5 91.5 91.1 90.6 92.3 90.6 91.8

S3 (CSP) 58.1 68.3 79.3 83.2 88.2 90.7 92.0 93.9 93.3 93.7
S3 (SB) 91.2 93.1 94.1 94.9 95.1 95.5 95.9 95.2 96.0 96.5
S3 (BB) 92.8 95.0 94.9 95.7 95.5 95.2 95.6 95.8 95.9 96.0

S4 (CSP) 82.8 89.9 91.2 91.9 92.1 94.2 93.9 95.0 95.8 93.9
S4 (SB) 91.3 93.9 95.3 95.8 96.1 96.3 97.1 96.9 97.2 97.3
S4 (BB) 93.0 96.1 96.8 96.5 97.2 97.1 97.1 97.2 98.3 97.9

S5 (CSP) 51.6 52.5 55.8 59.5 58.9 66.6 65.1 72.6 67.9 77.0
S5 (SB) 84.9 88.6 91.3 92.6 92.3 91.9 92.4 92.3 92.9 92.2
S5 (BB) 67.5 76.3 78.7 83.0 80.7 83.8 86.1 84.4 88.2 85.3

S6 (CSP) 68.3 70.6 69.9 79.3 75.6 82.4 86.3 83.4 86.2 89.1
S6 (SB) 81.0 85.9 88.2 88.1 89.2 88.8 88.7 89.4 88.4 87.5
S6 (BB) 62.3 69.2 72.5 75.2 76.0 74.6 74.5 73.8 74.6 74.3

S7 (CSP) 49.4 49.9 49.7 49.4 50.8 49.6 49.6 48.6 48.5 49.6
S7 (SB) 53.2 55.2 56.6 60.3 58.3 59.1 60.8 60.7 61.0 60.3
S7 (BB) 50.6 50.8 52.6 52.5 53.6 55.1 54.1 55.4 56.4 55.8

S8 (CSP) 50.8 50.7 50.8 51.6 50.5 50.7 50.6 50.5 49.8 49.9
S8 (SB) 63.5 70.4 74.6 74.3 75.3 75.6 75.4 75.0 76.2 77.1
S8 (BB) 59.0 60.9 64.7 65.5 68.3 71.0 69.8 70.4 73.4 72.5

S9 (CSP) 51.5 55.7 53.7 62.2 67.3 61.2 66.1 59.5 62.7 70.0
S9 (SB) 57.2 59.4 58.5 61.7 60.7 61.6 62.3 62.1 62.0 60.5
S9 (BB) 60.5 61.6 63.3 62.2 66.2 64.8 66.0 64.3 67.3 68.0

S10 (CSP) 54.2 53.2 52.4 57.0 56.1 59.4 56.7 61.6 67.8 67.6
S10 (SB) 80.8 85.0 88.7 87.3 88.6 88.3 89.6 88.4 90.0 91.5
S10 (BB) 72.4 77.6 80.4 83.2 83.9 85.7 86.1 85.2 85.7 87.9

Table 6.1: Mean classification results in percent as a function of the number of
training trials per condition for feature extraction by CSP,static beamforming (SB),
and block-adaptive beamforming (BB).
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Results

The resulting classification accuracies of all subjects andevaluation methods are
shown in Fig. 6.1 and Tab. 6.1. As can be seen from the figure, the mean and the
standard deviation of the classification accuracies vary significantly across subjects,
number of training trials, and algorithm used for feature extraction. It should be
pointed out again that the evaluation procedures differ only in the choice of the al-
gorithm used for spatial filtering, and not in the classification procedure itself. Any
differences in the classification accuracy for a subject canthus solely be attributed
to the different algorithms used for extracting relevant EEG components.

Classification results obtained with the CSP algorithm vary significantly across sub-
jects. While three subjects (S3, S4, and S6) achieve an accuracy close to or even
above 90%, classification accuracy is not (or only hardly) above chance for four
other subjects (S1, S2, S7, and S8). As a result, the mean classification accuracy ob-
tained with the CSP algorithm if averaged across all subjectsand number of training
trials equals only 64.2%. In comparison to CSP, the beamforming approaches dis-
play a considerable higher mean classification accuracy if averaged across all sub-
jects and number of training trials of 79.2% for static- and 76.1% for block-adaptive
beamforming. In fact, static beamforming achieves classification accuracies above
90% for five out of ten subjects, with only two subjects displaying accuracies not
significantly above 60%. Notably, there are two subjects (S2and S8) for which CSP
does not perform above chance, while both beamforming approaches display clas-
sification accuracies of above 90% and above 70%, respectively. In summary, the
best mean classification results are observed for static beamforming, outperforming
block-adaptive beamforming by 3.6% and CSP by 15.5%.

It should be pointed out again that these rather low mean classification results are
due to computing classification accuracies across different amounts of training data,
with few training trials naturally resulting in low classification accuracies. The max-
imum classification results, usually obtained for the largest amount of training data,
are significantly higher (cf. Tab. 6.1), with subjects S3 andS4 even achieving clas-
sification accuracies close to 100%. However, the quality ofa feature extraction
algorithm is determined not only by the maximum classification accuracy that is
achieved, but also by the amount of training data required toachieve a desired clas-
sification accuracy. For this reason, mean classification results taking into account
different amounts of training data are considered more meaningful.

The above remark naturally leads to the question of the rate of convergence of the
classification results to the maximum classification accuracy for a given feature
extraction algorithm. Here, the CSP algorithm displays a rather low rate of con-
vergence. Even though excellent maximum classification results are obtained using
CSP for subjects S3 and S4, about 80 training trials are required until the classifica-
tion accuracy approximately converges. This observation is even more pronounced
for subjects S5, S6, S9, and S10, for which even 100 trials do not suffice for con-
vergence. Considering that 100 trials per condition correspond to a training time
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of over 30 minutes, this is a rather significant limitation ofthe CSP algorithm. In
contrast, the beamforming approaches display a much higherrate of convergence.
Using the static beamformer, a mean classification accuracyabove 90% is obtained
for subjects S3 and S4 using only ten training trials per condition, corresponding
to a training time of less than three and a half minutes. While not all subjects dis-
play such a fast rate of convergence, it is nevertheless evident in Fig. 6.1 that the
beamforming approaches require much less trials to converge to their maximum
classification accuracy than the CSP algorithm.
Another important issue in the evaluation of feature extraction methods is the stan-
dard deviation of the obtained classification results for a given amount of training
data, i.e., how much the classification accuracy varies for different sets of training
data of equal size. In general, it is desirable to have a low standard deviation to
increase the probability that for a given amount of trainingdata the resulting mean
classification accuracy is close to the expected one. As can be seen in Fig. 6.1,
the standard deviation is rather large for the CSP algorithm,with a mean standard
deviation across all subjects and amounts of training data of 6.5%. The beam-
forming approaches, on the other hand, result in a standard deviation of only 3.5%
(block-adaptive beamforming) and 3.0% (static beamforming), i.e., roughly half the
standard deviation of the CSP algorithm.
In summary, the proposed beamforming approaches outperform the CSP algorithm
considerably in terms of mean classification accuracy, rateof convergence, and stan-
dard deviation of classification accuracy for a given amountof training data.

6.3.2 Online Results

To establish the feasibility of beamforming for BCIs with real-time feedback, the
experimental setup of Section 6.3.1 is adapted in the following way. First, a certain
number of training trials are recorded with an equal number of trials per condi-
tion presented in pseudo-randomized order. This training data set is then used to
compute two static beamformers and train a logistic regression classifier withL1-
regularization. Up to this point, the experimental setup, the computation of the
static beamformers, and the training of the classifier are (including all parameters)
identical to the procedures in Section 6.3.1. After training, however, real-time feed-
back is provided to the BCI-user. To achieve this, the following procedure is im-
plemented in Matlab/Simulink. First, the recorded EEG datais sent via TCP/IP to
Matlab/Simulink running at 500 Hz. The two static beamformers are then applied
to every new data sample, and the resulting two extracted EEGcomponents are
band-pass filtered with a sixth-order butterworth filter in 20 frequency bands of 2
Hz width ranging from 2 to 40 Hz. The variances of the temporally and spatially
filtered time series are then calculated recursively for every sample step according
to

Var(yi)[t + 1] =
t − 1

t
Var(yi)[t] +

1

t − 1
yi[t + 1]2, (6.18)
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Figure 6.2: Setup of the feedback experiment.

with i = 1, . . . , 40, t = t0, . . . , T (with t0 designating the time of display of the ar-
row indicating the class of the trial andT the length of each trial), and Var(yi)[t0] =
0. Note that due to the band-pass filtering the elements ofy have approximately
zero mean, which is hence neglected in (6.18). The estimatesof the variances of
the extracted EEG components in the different frequency bands are then fed into
the previously trained logistic regression classifier. Theoutput of the classifier at
each sample point, ranging from zero to one, is then fed back to the subject by
drawing a white filled square on the screen. The output of the classifier is linearly
mapped to the horizontal position of the square, with an output of zero mapped to
the left border and an output of one mapped to the right borderof the screen. The
horizontal position of the square thus informs the BCI-user ofthe certainty of the
classifier about his intention (with the left border of the screen indicating 100% cer-
tainty of an imaginary movement of the left hand and the rightborder of the screen
indicating 100% certainty of an imaginary movement of the right hand). To further
motivate the subject, two white boxes are drawn at the left and right borders of the
screen into which the subject has to move the white square. Also, the color of the
centrally displayed arrow is set to green or red, depending on whether the output of
the classifier leads to a correct decision or an error. The complete setup is shown
in Fig. 6.2. Each trial ends after a preset time, or if a certain threshold of certainty
of the classifier is achieved. Note that the threshold criterion is only checked after
a certain minimum time into each trial to ensure sensible estimates of the variances
of the EEG components, and that each trial begins with a pauseof 3 s.

Due to the excellent performance in the offline experiment, subject S4 was asked
to perform again in the online experiment. Twenty-five trials per condition were
recorded as training data, corresponding to a training timeof eight minutes and
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Block # Min trial length Max trial length Thresholds (1 − Pe)
1 9.99 s 10 s [0.1 0.9] 92.5%
2 9.99 s 10 s [0.1 0.9] 87.5%
3 6 s 10 s [0.1 0.9] 87.5%
4 6 s 30 s [0.1 0.9] 92.5%
5 6 s 30 s [0.1 0.9] 90.0%

Table 6.2: Results of the online experiment for subject S4.

twenty seconds. Then five blocks of twenty trials per condition were carried out
with feedback provided, with a break of approximately two minutes between each
block. The obtained classification results are shown in Tab.6.2, along with the min-
imum and maximum trial lengths and the thresholds for termination of a trial. The
mean classification accuracy across all blocks was 90.0%, which is in accord with
the classification accuracy obtained by subject S4 in the offline experiment using the
static beamforming approach (cf. Tab. 6.1). A video recording of this experiment
can be downloaded athttp://www.lsr.ei.tum.de/fileadmin/multimedia/videos/TUM
BCI.avi.

6.4 Discussion

6.4.1 Comparison of CSP and Beamforming

In Section 6.3.1, it has been shown that beamforming enablesa higher mean classi-
fication accuracy, a higher rate of convergence, and a lower standard deviation of the
classification accuracy than the CSP approach. This raises the question why the CSP
algorithm performs so poorly in this study in spite of its popularity within the BCI
community. The mediocre performance of the CSP algorithm canbe attributed pri-
marily to the choice of the eigenvectors of (4.2) used as spatial filters. According to
(4.3), the eigenvectors with the smallest and largest eigenvalue of (4.2) correspond
to the spatial filters that maximize the ratio of the class-conditional variances, and
are thus optimal in terms of maximizing an approximation of mutual information of
class labels and extracted EEG components (cf. Section 4.2.3). However, the vari-
ance of artifactual components frequently present in EEG data usually exceeds the
variance of endogenous EEG components. If a certain artifact, e.g., an eye blink,
is only present in the training data of one class, then the CSP algorithm focuses on
optimally extracting the artifactual EEG component. Sincethis component is unre-
lated to the actual motor imagery, this results in a poor classification accuracy. This
overfitting phenomenon is illustrated in Fig. 6.3, showing ten typical spatial filters
with maximum/minimum eigenvalues as obtained by CSP for subject S2 using 20
trials of each condition for training. Subject S2 is chosen for this purpose since the
recorded EEG data is very noisy, but the subject is capable ofoperating the BCI
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Figure 6.3: Typical spatial filters obtained by CSP for subject S2.

as indicated by mean classification accuracies of above 90% for feature extraction
by block-adaptive beamforming. As can be seen in Fig. 6.3, ofall spatial filters
obtained by CSP only the third one focuses on the vicinity of the left motor cortex
(electrode C3), albeit some activity in the left temporal lobe is also picked up. All
other filters focus on artifactual components not related toEEG signals originating
in the motor cortex. Consequently, the spatial filters do not pick up those compo-
nents that provide information on the user’s intention, resulting in a classification
accuracy not above chance. This is in contrast to subject S4,for which ten typical
spatial filters, obtained by CSP using 20 trials of each condition for training, are
shown in Fig. 6.4. Here, all spatial filters except the second, fourth and fifth one
focus on areas over the left and right motor cortex (electrodes C3 and C4). As a
result, the spatial filters extract EEG components that are related to motor imagery,
and provide sufficient information on the user’s intention to achieve a mean classi-
fication accuracy of about 90%. For comparison, typical spatial filters obtained by
block-adaptive beamforming for subjects S2 and S4 are shownin Fig. 6.5. Here, it
is evident that, as expected, the beamformers focus on areasover the left and right
motor cortex. Furthermore, for subject S4 the spatial filters obtained by beamform-
ing resemble those obtained by CSP, indicating that both approaches extract similar
EEG components if applied to data sets with few artifactual components. The re-
sults of subject S2 demonstrate that CSP breaks down for noisydata with many
artifactual components, while the beamforming approach still extracts meaningful
components.
In principle, there are three ways to alleviate overfitting phenomena observed when
using CSP for feature extraction. The first is to increase the amount of training data.
Since the probability that one special type of artifact is present in the training data of
only one condition decreases with the amount of training data, overfitting phenom-
ena are attenuated by increasing the number of trials in the training set. However, it
is in general desirable to minimize the amount of training data to minimize training
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Figure 6.4: Typical spatial filters obtained by CSP for subject S4.
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Figure 6.5: Typical spatial filters obtained by block-adaptive beamforming for sub-
jects S2 and S4.
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time for each subject. Another approach to alleviate overfitting phenomena is to in-
crease the number of eigenvectors of (4.2) used as spatial filters. This increases the
probability of including spatial filters that focus on motorareas and thus provide in-
formation on the user’s intention. There is, however, an inherent trade-off between
increasing the number of spatial filters and the rate of convergence of the subse-
quent classification algorithm. This is illustrated in Fig.6.6, showing the mean and
standard deviation of the classification accuracy of subject S3 for different numbers
of spatial filters per condition as obtained by CSP. Using onlyone spatial filter per
condition (Fig. 6.6.a) excellent classification results are obtained for 80 or more
training trials per condition. However, if the number of trials used for training is
decreased, the standard deviation of the classification accuracy increases. More
specifically, if 50 or less trials per condition are used for training, which still cor-
responds to a training time of over 15 minutes, the standard deviation becomes so
large that classification accuracies not above chance as well as close to 100% be-
come rather likely. This undesired large dependence of the classification accuracy
on the specific training set can be significantly reduced by increasing the number
of spatial filters. Unfortunately, this also results in a slower rate of convergence
of the mean classification accuracy, as can be seen in Fig. 6.6.e. Furthermore, this
dependence of the classification results on the number of spatial filters varies across
subjects. In this study, five spatial filters per condition have been chosen for each
subject to achieve an acceptable trade-off between a fast rate of convergence and
small overfitting effects. Due to the difficulties of choosing the correct spatial filters
in order to alleviate overfitting phenomena, CSPs are frequently manually selected
by an experienced researcher. This is the third approach to reducing overfitting
phenomena. By only selecting spatial filters that focus on motor areas excellent
classification results can be obtained, and the effects of overfitting can be signifi-
cantly reduced. However, manual selection of spatial filters introduces subjectivity
into the analysis and thus prevents an objective evaluationof the power of different
feature extraction algorithms. Furthermore, having to select spatial filters manu-
ally is clearly undesirable if BCIs are to be employed by subjects without expert
supervision.

In summary, CSP is a feature extraction algorithm that enables excellent results if
a large amount of training data is available and the recordedEEG does not contain
many artifacts, or if it is feasible to have an experienced user manually selecting the
spatial filters that provide most information on the BCI-user’s intention by visual
inspection. However, if expert supervision is undesirable, long training periods are
unfeasible, or the recorded data is very noisy classification results obtained by using
CSP for feature extraction are unsatisfactory. The beamforming approach, on the
other hand, enables a high mean classification accuracy withlow standard deviation
and a high rate of convergence. Importantly, the problem of selecting a subset of
optimal spatial filters, as it is necessary when using the CSP algorithm, is absent
in the beamforming approach. This is due to the fact that the signal subspace of
the data, i.e., the subspace of the recorded data providing information on the user’s
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Figure 6.6: Classification accuracies (mean and standard deviation) of subject S3
for different numbers of CSPs.

intention, is already determined by the a-priori knowledgeused in specifying the
ROIs for a certain paradigm. Once the ROIs have been selected, the unsupervised
adaptation of the beamformers only concerns the noise subspace, i.e., the space
spanned by sources which are not to be included in the extracted EEG components
(the denominator in (6.8)). As such, the beamforming approach does not suffer
from overfitting phenomena. On the contrary, any artifacts present in the EEG data
and not originating within the ROI can be optimally attenuated. The unsupervised
nature of the beamforming approach also provides an explanation for the high rate
of convergence and the small standard deviation of the classification results. The
beamformers are essentially independent of the specific data in the training set,
since no class-related information is utilized. Consequently, the rate of convergence
and standard deviation of the classification results can be primarily attributed to the
logistic regression classifier.

6.4.2 Beamformer Optimization

Evidently, the performance of the beamforming approach depends on the accuracy
of the incorporated a-priori knowledge. This includes the choice of the ROIs, the
model used for volume conduction, the orientation of current sources within a ROI,
and the source covariance matrix of sources within a ROI. Considering this mul-
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titude of parameters, the obtained classification results might seem surprising, es-
pecially since parameters have not been optimized for each subject but have been
specified a-priori.
In terms of the chosen ROIs, it is indeed unlikely that spheres located radially be-
low electrodes C3 and C4 are optimal in terms of the expected classification error.
A marginal misspecification of the ROIs, on the other hand, isunlikely to result in
a large decrease of the expected classification error. This is again due to the un-
derdetermined nature of the inverse problem of EEG (cf. Section 6.2.1). Due to
the impossibility of extracting only sources within the ROI, the spatial edges of the
obtained beamformers are not sharp, i.e., attenuation of sources is low directly out-
side the ROI and increases with distance to the ROI. In practice, the beamformers
can thus be expected to extract sources from a rather large region within the brain,
alleviating adverse effects of misspecifying the ROIs. On the other hand, this effect
naturally also leads to a lower SNR if the ROIs are correctly centered within the
hand areas of the left and right motor cortex. In [LGWGB07], theoptimal centers
of the ROIs for the beamforming approach presented in this chapter are determined
for four subjects using a source localization approach, andthe resulting classifica-
tion performances are compared with those obtained if the ROIs are chosen as in
this study. For two subjects, optimizing the centers of the ROIs resulted in a mean
increase in classification accuracy of 4.4%, with the optimal centers of the ROIs
located on average 1.9 cm away from the positions chosen in this study. This in-
dicates that a rather large misspecification of the locationof the ROIs of almost 2
cm (taking into account that the human head has got a radius ofonly approximately
8.5 cm) results in only a moderate decrease in mean classification accuracy. For
the other two subjects evaluated in [LGWGB07], classificationaccuracies obtained
with optimized ROIs decreased. This illustrates another important issue. One of
the primary advantages of the beamforming approach is its unsupervised nature,
rendering it robust to artifactual components in the EEG data. Any optimization
procedure carried out on the data dilapidates this advantage. It should be noted that
the classification procedure in [LGWGB07] differs from the oneemployed here.
Absolute classification accuracies can thus not be compared.
A further issue in the derivation of the beamforming approach is the head model
used for computing the leadfield matrices. In this study, oneof the most simplistic
head models available in the literature has been employed. The beamforming ap-
proach can be easily combined with more complex head models (cf. [BML01] and
Chapter 3) by altering the methodology for computing the leadfield matrices of the
ROIs used in (6.11). This can be done without significantly increasing the com-
putational complexity of the beamforming approach, since the leadfield matrices
only have to be computed once for each subject and electrode configuration. An as-
sessment of the effects of more realistic head models on the classification accuracy,
however, is beyond the scope of this work.
Regarding the orientation of sources within a ROI, it might beexpected that im-
proved classification results can be obtained by specifyingthree-dimensional dipole
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moments at every grid point within the ROI, since this allowsextracting EEG
sources from the ROI with arbitrary dipole orientation. This does not appear to be
the case. Increasing the dimensionality of the dipole moments increases the rank of
Rx̃, the covariance matrix of sources within the ROI, and thus the rank of the signal
subspace. As a direct result, less dimensions of the spatialfilters are available for
attenuating sources outside the ROI, leading to decreased classification accuracies.
Best results were obtained in this study by only using radially oriented dipoles,
which is attributed to the physiological accuracy of this assumption. Finally, the
choice of the source covariance matrixRp(t) is a parameter whose effect on the
classification accuracy has to be investigated in future work.

6.4.3 Static- vs. Block-adaptive Beamforming

So far the discussion of the beamforming approach has neglected the differences
between static- and block-adaptive beamforming. Interestingly, static beamform-
ing outperforms block-adaptive beamforming in all but one subject (S9) in terms
of mean classification accuracy. This is rather surprising,since it could have been
expected that a trial-wise adaptation of beamformers to recorded data results in a
higher SNR. The converse observation suggests, that in a trial wise adaptation of
the beamformers the available data is not sufficient to obtain good estimates of the
EEG covariance matrix. On the other hand, the classificationaccuracies obtained
with static beamforming suggest that non-stationarities in EEG data do not prohibit
excellent classification results. This is fortunate from a practical point of view, since
static beamforming is computationally less intensive thanblock-adaptive beam-
forming, and can be applied directly in BCIs with real-time feedback as demon-
strated in Section 6.3.2.

6.4.4 Source Localization and Beamforming

It could be argued that source localization methods, as discussed in Chapter 3,
should enable identical classification results as the beamforming approaches pre-
sented in this chapter. If in source localization identicalROIs are chosen as in
beamforming, the estimated EEG components should, at leastin principle, provide
identical information on the BCI-user’s intention. This is indeed correct. However,
the computational complexity of beamforming methods is significantly lower than
that of most methods for source localization. Once the leadfield matrix for sources
in the ROI has been computed, which only has to be done once foreach subject
and electrode configuration, the actual beamformer can be computed by solving
a single generalized eigenvalue problem. In static beamforming, this eigenvalue
problem has to be solved only once for every ROI, while in block-adaptive beam-
forming it has to be solved once for every ROI and block of EEG data. For every
sample point, the desired EEG components can then be estimated by a simple linear
transformation. Source localization methods, on the otherhand, usually possess a
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larger computational complexity [BML01]. This renders source localization meth-
ods unfeasible for BCIs with real-time feedback.

6.5 Summary and Outlook

In this chapter, it has been shown that beamforming providesa viable alternative
to supervised spatial filtering in non-invasive BCIs. This holds true especially if
the goal is to design a BCI that can operate without expert supervision and with
little training data. For these specifications, the beamforming approach was shown
to outperform the CSP algorithm in terms of mean classification accuracy, standard
deviation of the classification accuracy, and rate of convergence of the classifier.
Also, beamforming was shown to be feasible in BCIs with online feedback.
While feature extraction via beamforming is completely unsupervised, the classi-
fication procedure employed in this chapter still requires labeled training data. It
should be pointed out that this is not necessary, and a completely unsupervised BCI
can, at least in theory, be devised by resorting to clustering approaches in feature
space. First results using block-adaptive beamforming with non-supervised classifi-
cation procedures are reported in [EGWB07]. While in this paperthe feasibility of
a completely unsupervised BCI based on beamforming is established, the obtained
classification results are not yet satisfactory and requirefurther work.
In this work, only motor-imagery paradigms have been considered. It should be
pointed out, however, that beamforming approaches can be applied to BCIs based
on other experimental paradigms as well. This requires knowledge on the brain re-
gions involved in a certain experimental paradigm. As discussed in Section 6.1, this
is the case for motor imagery paradigms. Other paradigms might require source
localization studies to identify relevant ROIs prior to utilizing beamforming ap-
proaches.
Finally, only two-class paradigms have been considered here. However, beam-
forming approaches can be extended in a straight-forward manner to multi-class
paradigms. If motor imagery of further limbs, e.g., a foot and the tongue, are con-
sidered, new ROIs have to be specified for those parts of the motor cortex represent-
ing the specific limbs. It remains to be experimentally established if beamforming
approaches also display the advantageous properties demonstrated in this chapter if
they are applied to multi-class paradigms, with ROIs possibly buried deeper within
the cortex.
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Chapter 7

Conclusions and Open Problems

In this chapter, the most important contributions of this thesis are summarized and
critically evaluated (Section 7.1). It is discussed why, inspite of the progress al-
ready made, in non-invasive BCIs inferring the user’s intention still is a hard task.
Limitations of current methods for feature extraction in non-invasive BCIs are dis-
cussed, and possible future research directions are delineated. More specifically, in
Section 7.2 it is argued that it is necessary to acknowledge the fact that the brain
forms a complex network with time-varying functional connectivity patterns in or-
der to significantly enhance the capabilities of future non-invasive BCIs. In Section
7.3, a possible approach to this problem is outlined. Finally, this thesis concludes
in Section 7.4 with a few comments on the possibly underestimated significance of
the electric/magnetic field for information processing within the human brain.

7.1 Summary

The motivation for the work presented in this thesis is the conviction that the lack
of sophisticated feature extraction methods constitutes the main performance bot-
tleneck of non-invasive BCIs. This was explicated in Section 2.4, in which it was
argued that the high dimensionality of the feature space in non-invasive BCIs pro-
hibits training any type of classifier directly on the original features, i.e., without a
prior dimensionality reduction. Further, it was shown thatthe class of possible fea-
ture spaces in non-invasive BCIs is so large that the application of any automated
algorithm for dimensionality reduction is not feasible. Taken together, it was ar-
gued that this implies that a-priori knowledge on how cognitive states are encoded
in signals recorded from the CNS has to be incorporated into the process of feature
extraction in order to restrict the class of allowed featurespaces in a sensible way.
This resulted in Definition 2.13, summarizing the main topicof this thesis.
As further discussed in Section 2.4, for recording modalities considered in this the-
sis the high dimensionality of the original feature space isdetermined by two fac-
tors: the large number of EEG/MEG electrodes, used to samplethe electric/magnetic
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field on the scalp, and the duration and sampling rate of the recordings. Accord-
ingly, dimensionality reduction can be achieved by incorporating a-priori knowl-
edge on coding of cognitive states that a) acts on the spatialdomain by fusing the
data recorded at multiple channels, b) acts on the temporal domain by fusing mul-
tiple observations recorded at the same electrode, or c) acts simultaneously on both
domains.

In Chapter 3, it was argued that the activity of brain regions during a certain cog-
nitive task provides information on the BCI-user’s intentionand can thus be used
as a feature space in BCIs. It was further argued that the primary advantage of
this source localization approach to feature extraction isthat no information on how
cognitive states are temporally encoded in the EEG/MEG recordings is required,
thereby bypassing the largely unsolved problem of temporalcoding of cognitive
states in the electric/magnetic field of the brain. This approach, which only incor-
porates a-priori knowledge acting on the spatial domain, was realized by combining
ICA with source localization in a four-shell spherical head model, and develop-
ing a procedure to identify and exclude EEG/MEG sources representing (Gaussian)
noise. While the viability of this procedure for feature extraction in non-invasive
BCIs could be established in a preliminary study based on a two-class motor im-
agery paradigm, the reported classification result did not compare favorably with
a recent study combining source localization with temporala-priori knowledge on
coding of cognitive states for feature extraction in BCIs [GGP+05]. This led to the
conclusion that while the incorporation of spatial a-priori knowledge only does in-
deed constitute a viable option, considering all spatial and temporal a-priori knowl-
edge available on coding of cognitive states allows constructing superior feature
extraction algorithms for BCIs.

This conclusion was further pursued in Chapter 4. In this chapter, the CSP algo-
rithm (initially proposed in [RMGP00]) for feature extraction in BCIs was inves-
tigated theoretically for two-class as well as multi-classparadigms. By making
use of a-priori knowledge available on temporal coding of cognitive states in the
electric/magnetic field of the brain, the CSP algorithm computes spatial filters that
aim to optimally extract those components of the EEG/MEG providing most in-
formation on the BCI-user’s intention. The CSP algorithm thus utilizes temporal
a-priori knowledge to achieve a dimensionality reduction acting on the spatial do-
main. However, while excellent classification results havebeen reported using the
CSP algorithm for feature extraction, its optimality in terms of the minimum Bayes
error (as discussed in Section 2.2) remained unsolved. Here, it could be shown in
the framework of information theoretic feature extractionthat the two-class CSP
algorithm is optimal in terms of maximizing (an approximation of) mutual infor-
mation of class labels and extracted EEG/MEG components. This provided a pre-
viously unknown link between the CSP algorithm and the minimum Bayes error.
Note that while optimality in terms of maximizing mutual information is highly
desirable (cf. the discussion in Section 2.2), it rules out optimality in terms of the
minimum Bayes error. The extension of CSP to multi-class paradigms proposed in



7.1. SUMMARY 121

[DBCM04], on the other hand, was shown to be suboptimal in termsof maximiz-
ing mutual information of extracted EEG/MEG components andclass labels. This
deficiency could be resolved by proving that computation of potential spatial filters
by multi-class CSP is equivalent to ICA, and using the framework of information
theoretic feature extraction for identifying those ICs providing most information on
the user’s intention. This algorithm, termed multi-class information theoretic fea-
ture extraction, was then shown to outperform multi-class CSP in a four-class motor
imagery paradigm by on average 23.4%.

Motivated by the success of ICA in Chapters 3 and 4, Chapter 5 was devoted to
an investigation of complete ICA in the context of EEG/MEG analysis. The goal
of this analysis was to provide a theoretically and experimentally founded expla-
nation for the apparent success of complete ICA in EEG/MEG analysis in spite of
the physiologically unrealistic assumption of at most as many sources as sensors (as
required by complete ICA). This was approached by theoretically investigating the
behavior of complete ICA, i.e., ICA designed for an equal number of sensors and
sources, in the context of overcomplete mixture models, i.e., for models with more
sources than sensors. A general theorem (Theorem 5.1) couldbe proved, establish-
ing necessary and sufficient conditions for solutions of complete ICA for arbitrary
mixture models. This theorem was then used to argue that complete ICA performs
well in EEG/MEG analysis not due to the fact that only a few EEG/MEG sources
are strong enough (cf. [OWTM06]), but rather because only a few sources are non-
Gaussian enough to be picked up by ICA. Testable predictions were formulated for
this hypothesis and experimentally validated. In summary,an explanation for the
success of complete ICA in EEG/MEG analysis (including feature extraction for
BCIs) could be provided that dissolves the apparent contradiction between the re-
quirement of at most as many sources as sensors and the physiological doubtfulness
of this assumption.

In Chapters 4 and 5, only supervised feature extraction algorithms were consid-
ered, i.e., algorithms that require labeled training data.While algorithms that are
theoretically optimal in terms of maximizing (an approximation of) mutual infor-
mation of extracted features and class labels could be provided for two-class as
well as multi-class paradigms in Chapter 4, these algorithmsoften perform poorly
if only noisy training data is available. In Chapter 6, it was argued that this prac-
tical limitation of supervised feature extraction algorithms is caused by overfitting
phenomena. To obtain a more robust feature extraction algorithm, that can also be
applied to noisy EEG/MEG recordings, a spatial filtering approach incorporating
a-priori information on the spatial position of relevant brain regions was designed.
This algorithm, closely related to traditional beamforming methods, allows extract-
ing EEG/MEG sources from pre-defined regions within the brain while optimally
(in terms of the SNR) attenuating all sources outside these regions. In spite of the
manifold and possibly inaccurate a-priori information incorporated in this feature
extraction method, it could be shown that in a two-class motor imagery paradigm
the proposed beamforming approach outperforms the CSP algorithm in terms of
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classification accuracy and rate of convergence of the subsequent classifier. Indeed,
classification accuracies above 96% could be obtained with atraining time of less
than seven minutes. This success was primarily attributed to the unsupervised na-
ture of the beamforming approach, rendering it robust towards artifacts commonly
encountered in EEG/MEG data. Finally, a BCI, based on motor imagery and the
proposed beamforming approach, was realized, enabling online control of a cursor
in one dimension.
In summary, in this thesis three new algorithms for feature extraction in non-invasive
BCIs could be presented and experimentally validated. It could be shown that the
proposed beamforming approach outperforms the CSP algorithm, which is one
of the most powerful feature extraction algorithms for two-class paradigms. In
the context of multi-class paradigms, the proposed algorithm, termed multi-class
Information Theoretic Feature Extraction, was shown to outperform multi-class
CSP, thereby contributing to the development multi-class BCIswith high classi-
fication accuracies. Furthermore, a framework for investigating the optimality of
two-class CSP was presented, and an explanation for the success of complete ICA
in EEG/MEG analysis could be provided.

7.2 Open Problems

In spite of this progress, inferring a BCI-user’s intention still is a hard task. While
in two-class paradigms classification accuracies close to 100% can be achieved, so
far accurate classification has not been demonstrated for more than four classes.
Carrying out more complex tasks by non-invasive BCIs, such as online control of
an endeffector in multiple dimensions, hence still represents a long term rather than
a short term goal. This raises the question of the causes of this limitation of current
non-invasive BCIs. In general, it can not be ruled out that the electric/magnetic
field of the brain does not provide full information on the user’s intention, i.e.,
that (at least for paradigms with multiple classes)I(x, c) < H(c). However, it is
the conviction of this author that the significance of the electric/magnetic field of
the brain is generally underestimated, and that what is required in order to realize
powerful non-invasive BCIs is a better understanding of how cognitive states are
encoded in the electric/magnetic field of the brain.
As pointed out at the beginning of this chapter, feature extraction algorithms can
act on the spatial as well as on the temporal domain of EEG/MEGrecordings. An-
alyzing the feature extraction algorithms covered in this thesis, it is noteworthy that
they all focus on the spatial domain. More specifically, all feature extraction al-
gorithms designed in this thesis aim to extract EEG/MEG components from those
regions of the brain most relevant for inferring the BCI-user’s intention. While it
has been shown that this is a viable approach, it is importantto realize the inherent
restrictions.
First, the only a-priori information on temporal coding of cognitive states utilized
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in this thesis is that variance changes in specific frequencybands provide useful in-
formation. This restriction reflects the limited understanding of and the established
assumptions on coding of cognitive states in EEG/MEG recordings. In general, it
is an entirely open question whether measures other than variance changes, such as
higher-order moments, do provide more information on cognitive states. Quite sur-
prisingly, this question is hardly addressed in neuro-psychological research. This
can be attributed to the inherent theoretical difficulty of developing signal process-
ing methods departing from the assumption of Gaussianity, which hence have found
very little dissemination in the neuro-scientific community. This point again empha-
sizes the importance of interdisciplinary research in thisfield.
Second, all approaches presented in this thesis can be classified aslocalized, i.e.,
inferences are made from intentionally induced pattern changes of signals originat-
ing in individual brain regions. However, neurons within the brain form complex
networks with time-varying functional connectivity patterns [LS03, von99]. Con-
sequently, the assumption of localized information processing, implicit to all fea-
ture extraction algorithms investigated in this thesis, might be too constrictive. De-
localized approaches would take this into account, making inferences from class-
conditional functional connectivity patterns between brain regions. However, as
pointed out in [DCF04], uncovering functional connectivitypatterns from experi-
mental data is a challenging problem in itself. Algorithms developed for this pur-
pose are either based on linear models (reviewed in [ACM+07]), non-linear mea-
sures such as mutual information (reviewed in [DCF04]), or rather simple measures
such as phase synchronization [RPK96, RP01] and amplitude coupling.
Until now, only phase synchronization and amplitude coupling have been employed
as feature spaces in non-invasive BCIs [GC04, WWGG07]. This restriction can be
primarily attributed to the computational complexity of other approaches and the
rather large amount of training data required by these algorithms. Both studies re-
port comparable classification rates for using phase synchronization and variance
based measures as features, thereby establishing the viability of measures of func-
tional connectivity for feature extraction in BCIs. Interestingly, both studies also
report enhanced classification accuracies for combining connectivity- and variance
based measures, indicating a complementarity of both domains.
While the increase in classification accuracy reported in [GC04] and [WWGG07]
is rather small, it is nevertheless very promising considering the dimensionality of
the employed feature space. In both studies, functional connectivity measures are
computed for recordings obtained from different electrodes. Now note that even for
a modest number of electrodes, sayM = 64, the number of possible connectivity
measures (even when neglecting directionality) already sums to

∑M−1
i=1 i = 2016.

Since training a classifier on a feature space of this dimension requires a substantial
amount of training data, in [GC04] and [WWGG07] only a small subset of elec-
trodes is considered. In both studies, the selection of thissubset is based on rather
limited prior knowledge on the involvement of miscellaneous brain regions in the re-
spective experimental paradigms. Furthermore, note that these results are obtained
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without spatial filtering. As has been demonstrated in this thesis, spatial filtering
can improve classification accuracy in two-class motor imagery paradigms based on
variance measures from about 70% to almost 100%. In contrast, it has been shown
in [WWGG07] that even without spatial filtering functional connectivity measures
enable classification accuracies comparable to those obtained with variance based
measures in combination with spatial filtering. The two mostpromising approaches
for enhancing feature extraction by means of functional connectivity measures thus
appear to be improvement of the prior knowledge on functional connectivity within
the brain and inclusion of spatial filtering.

7.3 Network Information Transfer Analysis

In principle, functional connectivity measures can easilybe combined with beam-
forming [GHT+01] or source localization approaches [ACM+07], which could be
used for feature extraction in BCIs. Note, however, that this requires (usually un-
available) a-priori knowledge on which brain regions display class-conditional func-
tional connectivity changes. While a complete evaluation ofconnectivity patterns
for a set of recordings from different electrodes already constitutes a formidable
task, a complete evaluation of the interactions between allpossible regions of the
brain clearly is impractical. For this reason, all researchon functional connectivity
in EEG/MEG analysis is currently exploratory: a hypothesisis formulated, express-
ing expected functional connectivity patterns between certain brain regions (termed
regions of interest - ROIs), source localization or beamforming is performed to ex-
tract EEG/MEG signals originating in the ROIs, and functional connectivity mea-
sures are computed to validate or falsify the proposed hypothesis.
It would clearly be desirable to develop a data driven approach for the analysis
of functional connectivity within the human brain. Given a multi-variate time se-
ries, e.g., EEG/MEG recordings, and a (possibly linear) mixture model, the goal of
such a procedure would be to estimate those EEG/MEG sources that display maxi-
mum functional connectivity (or maximum functional connectivity changes) during
a certain cognitive task. Such an algorithm, termed NetworkInformation Transfer
Analysis (NITA), would be similar in spirit to ICA. However, instead of estimating
statistically independent sources, the goal would be to uncover the dynamic network
structure of information transfer within the brain.
While such an algorithm could be expected to enable significant progress in under-
standing how cognitive states are encoded in the electric/magnetic field of the brain,
it is far from trivial to realize. One promising approach to this problem might be
the concept of transfer entropy, initially proposed in [Sch00]. Here, information
transfer between two random processes is defined as the reduction in entropy of one
process due to knowledge of the other. In contrast to model-based connectivity mea-
sures (cf. [ACM+07]), this concept can be used to define a metric for information
transfer within the human brain and is amenable to a data driven optimization pro-
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cedure in the context of a generative mixing model. However,considerable research
is required to establish the viability of this approach for the proposed NITA.

7.4 Causality of the EM Field of the Brain

In this thesis, the electric/magnetic (EM) field of the brainwas successfully used
to infer the BCI-user’s intention. It is hence trivial to pointout that the EM field
of the brain does provide information on cognitive states. Due to the pervasiveness
of EEG/MEG recordings in neuro-scientific research, this rather surprising fact is
rarely scrutinized. Why does the brain create an EM field that does provide infor-
mation on cognitive states? As pointed out in [WL96], the EM field of the brain is
traditionally seen as an epiphenomenon, a byproduct of neural processes within the
brain. This argument is challenged by several authors [WL96,NS05, Fre01], argu-
ing for a causal role of the EM field for information processing within the brain.
Indeed, in [NS05, Fre01] it is argued that the EM field of the brain is essential for
consciousness, while in [McF02] it is even proposed that it is the physical substrate
of conscious awareness.
While a detailed presentation and discussion of the arguments for and against a
causal role of the EM field for information processing withinthe brain is beyond
the scope of this work, it is important to point out that indeed there is some empirical
evidence in favor of a causal role. As reviewed in [Jef95], itis known that exter-
nally applied electric fields with a smaller field strength than endogenous electric
fields alter cortical activity. Furthermore, it is shown in [MHMB06] that applying
weak external electric fields to the skull of human subjects during sleep can have
significant positive effects on declarative memory. Leaving aside the philosophical
issues regarding consciousness and the EM field of the brain,the available empir-
ical evidence suggests that the relevance of the EM field of the brain is probably
underestimated in current research.
In conclusion, future research on EEG/MEG should consider the possibility of a
causal role of the EM field of the brain. However, it is questionable whether estab-
lished methodologies for the analysis of EEG/MEG recordings are powerful enough
to reveal a causal role of the fields generated by the brain. One possible strategy to
prove a causal role of the EM field might be to combine measuresof functional
connectivity, as discussed in the previous section, with single-cell recordings of
neuronal activity. If it can be shown that there exists an information flow from one
neuron to another neuron via the EM field of the brain, this would provide strong
empirical evidence for a direct causal role of the EM field forinformation process-
ing within the brain.



126 CHAPTER 7. CONCLUSIONS AND OPEN PROBLEMS



LIST OF FIGURES 127

List of Figures

2.1 A communication channel. . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Graph representation of a discrete memoryless communication chan-

nel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 A BCI communication channel. . . . . . . . . . . . . . . . . . . . 17
2.4 Relation of minimum Bayes error and mutual information. . .. . . 19
2.5 Two BCIs with equal error probability but a) lower and b) higher

mutual information. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Illustration of the learning curve for the optimal Bayes classifier . . 27
2.7 Control of a dynamic system by a BCI. . . . . . . . . . . . . . . . . 32
2.8 State evolution for the dynamic system (2.28) fora = 1.1, b = 0.2

and different initial conditions. . . . . . . . . . . . . . . . . . . . . 35

3.1 The four-shell spherical head model. . . . . . . . . . . . . . . . .. 43
3.2 Reconstructed sources . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Original (ai, i = 1 . . . 3) and reconstructed columns of the mixing

matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Maxima of the ADF for tapping movements of a) the left and b) the

right index finger. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Error of the approximation of mutual information (4.14)in per cent
for C = {c1, c2} as a function ofσx̂|c1 for different prior class prob-
abilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Multi-class Information Theoretic Feature Extraction. . . . . . . . 67
4.3 Classification accuracies of subjects k3b, k6b, and l1b asa function

of the number of training trials for multi-class ITFE and multi-class
CSP. The thin horizontal line indicates chance level. . . . . . .. . . 69

5.1 Grand average ERFy∗ (a) and ERF average of ten randomly chosen
trialsyraw (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 SNR of the evaluation schemes 1-4. . . . . . . . . . . . . . . . . . 89
5.3 Denoised ERFs with optimalL for evaluation schemes 1-4. . . . . . 90

6.1 Estimated mean and standard deviation of classificationaccuracies
for subjects S1-S10 as a function of the number of training trials. . . 105



128 LIST OF FIGURES

6.2 Setup of the feedback experiment. . . . . . . . . . . . . . . . . . . 109
6.3 Typical spatial filters obtained by CSP for subject S2. . . .. . . . . 111
6.4 Typical spatial filters obtained by CSP for subject S4. . . .. . . . . 112
6.5 Typical spatial filters obtained by block-adaptive beamforming for

subjects S2 and S4. . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.6 Classification accuracies (mean and standard deviation)of subject

S3 for different numbers of CSPs. . . . . . . . . . . . . . . . . . . 114



BIBLIOGRAPHY 129

Bibliography

[ACM+07] L. Astolfi, F. Cincotti, D. Mattia, M.G. Marciani, L.A. Baccala, F. de
Vico Fallani, S. Salinari, M. Ursino, M. Zavaglia, L. Ding, J.C.
Edgar, G.A. Miller, B. He, and F. Babiloni. Comparison of different
cortical connectivity estimators for high-resolution EEGrecordings.
Human Brain Mapping, 28:143–157, 2007.

[BA97] A.W. Bowman and A. Azzalini.Applied Smoothing Techniques for
Data Analysis. Oxford University Press, 1997.

[BAMCM97] A. Belouchrani, K. Abed-Meraim, J.F. Cardoso, and E.Moulines.
A blind source separation technique using second-order statistics.
IEEE Transactions on Signal Processing, 45(2):434–444, 1997.

[BB04] G. Blanchard and B. Blankertz. BCI competition 2003 - data setIIa:
Spatial patterns of self-controlled brain rythm modulations. IEEE
Transactions on Biomedical Engineering, 51(6):1062–1066, 2004.

[BDK+07] B. Blankertz, G. Dornhege, M. Krauledat, K.R. Mueller, and G. Cu-
rio. The non-invasive berlin brain-computer interface: Fast acqui-
sition of effective performance in untrained subjects.NeuroImage,
27(2):539–550, 2007.

[BGH+99] N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen,
B. Kotchoubey, A. Kuebler, J. Perelmouter, E. Taub, and H. Flor.
A spelling device for the paralysed.Nature, 398:297–298, 1999.

[BGUB06] P. Breun, M. Grosse-Wentrup, W. Utschick, and M. Buss. Robust
MEG source localization of event related potentials: Identifying rel-
evant sources by non-gaussianity. InLecture Notes in Computer Sci-
ence, pages 394–403. Springer, Berlin/Heidelberg, 2006.

[BMK +06] B. Blankertz, K.R. Mueller, D. Krusienski, G. Schalk, J.R. Wolpaw,
A. Schloegl, G. Pfurtscheller, J.R. Millan, M. Schroeder, and N. Bir-
baumer. The BCI competition III: Validating alternative approaches
to actual BCI problems.IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 14(2):153–159, 2006.



130 BIBLIOGRAPHY

[BML01] S. Baillet, J.C. Mosher, and R.M. Leahy. Electromagnetic brain map-
ping. IEEE Signal Processing Magazine, 18(6):14–30, 2001.

[BNL+07] C. Brunner, M. Naeem, R. Leeb, B. Graimann, and G. Pfurtscheller.
Spatial filtering and selection of optimized components in four class
motor imagery EEG data using independent components analysis.
Pattern Recognition Letters, 28:957–964, 2007.

[BPR02] R. Boscolo, H. Pan, and V.P. Roychowdhury. Beyond Comon’s iden-
tifiability theorem for independent component analysis.Artificial
Neural Networks - ICANN 2002 Lecture Notes in Computer Science,
2415:1119–1124, 2002.

[BS95] A.J. Bell and T.J. Sejnowski. An information-maximization ap-
proach to blind separation and blind deconvolution.Neural Com-
putation, 7(6):1129–1159, 1995.

[Car97] J.F. Cardoso. Infomax and maximum likelihood for blind source
separation.IEEE Signal Processing Letters, 4(4):112–114, 1997.

[Car98] J.F. Cardoso. Blind signal separation: statistical principles.Proceed-
ings of the IEEE, 9(10):2009–2025, 1998.

[CL96] X.-R. Cao and R.-W. Liu. General approach to blind source sep-
aration. IEEE Transactions on Signal Processing, 44(3):562–571,
1996.

[CLC+03] J.M. Carmena, M.A. Lebedev, R.E. Crist, J.E. O’Doherty, D.M.
Santuccil, D.F. Dimitrov, P.G. Patil, C.S. Henriquez, and M.A.L.
Nicolelis. Learning to control a brain-machine interface for reaching
and grasping by primates.PLoS Biology, 1(2):193–208, 2003.

[Com94] P. Comon. Independent component analysis, a new concept? Signal
Processing, 36:287–314, 1994.

[CT06] T.M. Cover and J.A. Thomas.Elements of Information Theory. Wi-
ley & Sons, 2006.

[Cv78] T.M. Cover and J.M. van Campenhout. On the possible orderings in
the measurement selection problem.IEEE Transactions on Systems,
Man, and Cybernetics, 7(9):657–661, 1978.

[DA01] P. Dayan and L.F. Abbott.Theoretical Neuroscience: Computational
and Mathematical Modeling of Neural Systems. MIT Press, 2001.



BIBLIOGRAPHY 131

[DBCM04] G. Dornhege, B. Blankertz, G. Curio, and K.R. Mueller. Boosting bit
rates in noninvasive EEG single-trial classifications by feature com-
bination and multiclass paradigms.IEEE Transactions on Biomedi-
cal Engineering, 51(6):993–1002, 2004.

[DCF04] O. David, D. Cosmelli, and K.J. Friston. Evaluation ofdifferent
measures of functional connectivity using a neural mass model. Neu-
roImage, 21:659–673, 2004.

[DGL96] L. Devroye, L. Gyoerfi, and G. Lugosi.A Probabilistic Theory of
Pattern Recognition. Springer, 1996.

[DM04] A. Delorme and S. Makeig. EEGLAB: an open source toolbox for
analysis of single-trial EEG dynamics including independent compo-
nent analysis.Journal of Neuroscience Methods, 134(1):9–21, 2004.

[EAS98] A. Edelman, T.A. Arias, and S.T. Smith. The geometryof algo-
rithms with orthogonality constraints.SIAM J. Matrix Anal. Appl.,
20(2):303–353, 1998.

[EGWB07] S. Eren, M. Grosse-Wentrup, and M. Buss. Unsupervisedclassifi-
cation for non-invasive brain-computer interfaces.Tagungsband der
Automed 2007, VDI-Fortschrittsberichte, 17(267):65–66, 2007.

[EK03] J. Eriksson and V. Koivunen. Identifiability and separability of lin-
ear ICA models revisited. InProceedings of the 4th International
Symposium on Independent Component Analysis and Blind Signal
Separation (ICA), pages 23–27, Nara, Japan, April 2003.

[FD88] L.A. Farwell and E. Donchin. Talking off the top of your head:
toward a mental prosthesis utilizing event-related brain potentials.
Electroencephalography and clinical Neurophysiology, 70:510–523,
1988.

[FHLS06] J. Farquhar, N.J. Hill, T.N. Lal, and B. Schoelkopf.Regularised
CSP for sensor selection in BCI. InProceedings of the 3rd Inter-
national Brain-Computer Interface Workshop and Training Course,
pages 14–15. Verlag der Technischen Universitaet Graz, Graz, 2006.

[FM94] M. Feder and N. Merhav. Relations between entropy and error-
probability. IEEE Transactions on Information Theory, 40(1):259–
266, 1994.

[Fre01] W.J. Freeman.How Brains Make Up Their Minds. Columbia Uni-
versity Press, 2001.



132 BIBLIOGRAPHY

[GB06] M. Grosse-Wentrup and M. Buss. Subspace identificationthrough
blind source separation.IEEE Signal Processing Letters, 13(2):100–
103, 2006.

[GC04] E. Gysels and P. Celka. Phase synchronization for the recognition
of mental tasks in a brain-computer interface.IEEE Transactions
on Neural Systems and Rehabilitation Engineering, 12(4):406–415,
2004.

[GCD83] G. Gratton, M.G.H. Coles, and E. Donchin. A new method for off-
line removal of ocular artifact.Electroencephalography and Clinical
Neurophysiology, 55(4):468–484, April 1983.

[GGP+05] R. Grave de Peralta Menendez, S. Gonzalez Andino, L. Perez, P.W.
Ferrez, and J. del R. Millan. Non-invasive estimation of local field
potentials for neuroprosthesis control.Cognitive Processing, 6:59–
64, 2005.

[GGWB05] M. Grosse-Wentrup, K. Gramann, E. Wascher, and M. Buss. EEG
source localization for brain-computer interfaces. InProceedings of
the 2nd International IEEE EMBS Conference on Neural Engineer-
ing, pages 128–131, Arlington, Virginia, March 2005.

[GHT+01] J. Gross, M. Hamalainen, L. Timmermann, A. Schnitzler, and
R. Salmelin. Dynamic imaging of coherent sources: Studying neu-
ral interactions in the human brain.Proceedings of the National
Academy of Sciences, 98(2):694–699, 2001.

[GI99] J. Gross and A.A. Ioannides. Linear transformationsof data space in
MEG. Physics in Medicine and Biology, 44(8):2081–2097, 1999.

[GPAT03] D. Garrett, D.A. Peterson, C.W. Anderson, and M.H. Thaut. Com-
parison of linear, nonlinear, and feature selection methods for EEG
signal classification.IEEE Transactions on Neural Systems and Re-
habilitation Engineering, 11(2):141–144, 2003.

[GWB07] M. Grosse-Wentrup and M. Buss. Overcomplete independent com-
ponent analysis via linearly constrained minimum variancespatial
filtering. Journal of VLSI Signal Processing, 48(1-2):161–171, 2007.

[GWGB07] Moritz Grosse-Wentrup, Klaus Gramann, and Martin Buss. Adap-
tive spatial filters with predefined region of interest for EEG based
brain-computer-interfaces. In B. Schoelkopf, J. Platt, andT. Hoff-
man, editors,Advances in Neural Information Processing Systems
19, pages 537–544. MIT Press, Cambridge, MA, 2007.



BIBLIOGRAPHY 133

[HB01] M.H. Hansen and Y. Bin. Model selection and the principle of mini-
mum description length.Journal of the American Statistical Associ-
ation, 96(454):746–774, 2001.

[HKO01] A. Hyvaerinen, J. Karhunen, and E. Oja.Independent Component
Analysis. Wiley & Sons, 2001.

[HLS+06] N.J. Hill, T.N. Lal, M. Schroeder, T. Hinterberger, G. Widman,
C.E. Elger, B. Schoelkopf, and N. Birbaumer. Classifying event-
related desynchronization in EEG, ECoG and MEG signals. In
Lecture Notes in Computer Science, pages 404–413. Springer,
Berlin/Heidelberg, 2006.

[HSF+06] L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M.Saleh,
A.H. Caplan, A. Branner, D. Chen, R.D. Penn, and J.P. Donoghue.
Neuronal ensemble control of prosthetic devices by a human with
tetraplegia.Nature, 442:164–171, 2006.

[HWCM06] D.A. Heldman, W. Wang, S.S. Chan, and D.W. Moran. Localfield
potential spectral tuning in motor cortex during reaching.IEEE
Transactions on Neural Systems And Rehabilitation Engineering,
14(2):180–183, 2006.

[Jef95] J.G.R. Jefferys. Nonsynaptic modulation of neuronal-activity in the
brain - electric currents and extracellular ions.Physiological reviews,
75(4):689–723, 1995.

[JMB+01] T. Jung, S. Makeig, M.J. McKeown A.J. Bell, T. Lee, and T.J.Se-
jnowski. Imaging brain dynamics using independent component
analysis.Proceedings of the IEEE, 89(7):1107–1122, 2001.

[KBJP98] T.R. Knosche, E.M. Berends, H.R.A. Jagers, and M.J. Peters. Deter-
mining the number of independent sources of the EEG: A simulation
study on information criteria.Brain Topography, 11(2):111–124,
1998.

[KLH05] B. Kamousi, Z. Liu, and B. He. Classification of motor imagery tasks
for brain-computer interface applications by means of two equivalent
dipoles analysis.IEEE Transactions on Neural Systems and Reha-
bilitation Engineering, 13(2):166–171, 2005.

[KO98] J. Koerner and A. Orlitsky. Zero-error information theory. IEEE
Transactions on Information Theory, 44(6):2207–2229, 1998.

[LBCM05] S. Lemm, B. Blankertz, G. Curio, and K.R. Mueller. Spatio-spectral
filters for improving the classification of single trial EEG.IEEE
Transactions on Biomedical Engineering, 52(9):1541–1548, 2005.



134 BIBLIOGRAPHY

[LGS99] T. Lee, M. Girolami, and T.J. Sejnowski. Independent component
analysis using an extended infomax algorithm for mixed subgaussian
and supergaussian sources.Neural Computation, 11:417–441, 1999.

[LGWGB07] C. Liefhold, M. Grosse-Wentrup, K. Gramann, and M. Buss. Com-
parison of adaptive spatial filters with heuristic and optimized re-
gion of interest for EEG-based brain-computer interfaces.In
Lecture Notes in Computer Science, pages 274–283. Springer,
Berlin/Heidelberg, 2007.

[Lip67] O.C.J. Lippold. Electromyography. In P. H. Venablesand I. Mar-
tin, editors,Manual of Psychophysiological Methods. Wiley & Sons,
1967.

[LLA07] F. Lotte, A. Lecuyer, and B. Arnaldi. FuRIA: A novel feature extrac-
tion algorithm for brain-computer interfaces using inverse models
and fuzzy regions of interest. InProceedings of the 3rd Interna-
tional IEEE EMBS Conference on Neural Engineering, pages 175–
178, Kohala Coast, HI, USA, May 2007.

[LLGS99] T.W. Lee, M.S. Lewicki, M. Girolami, and T.J. Sejnowski. Blind
source separation of more sources than mixtures using overcomplete
representations.IEEE Signal Processing Letters, 6(4):87–90, 1999.

[LNF+06] E. Lew, M. Nuttin, P.W. Ferrez, A. Degeest, A. Buttfield,
G. Vanacker, and J.R. Millı̈¿1

2
n. Non-invasive brain computer inter-

face for mental control of a simulated wheelchair. In G.R. Mueller-
Putz, C. Brunner, R. Leeb, R. Scherer, A. Schloegl, S. Wriessnegger,
and G. Pfurtscheller, editors,Proceedings of the 3rd International
Brain-Computer Interface Workshop & Training Course. TU-Gratz,
2006.

[LS03] S.B. Laughlin and T.J. Sejnowski. Communication in neuronal net-
works. Science, 301:1870–1874, 2003.

[MAB03] K.R. Mueller, C.W. Anderson, and G.E. Birch. Linear and nonlinear
methods for brain-computer interfaces.IEEE Transactions on Neu-
ral Systems and Rehabilitation Engineering, 11(2):165–169, 2003.

[McF02] J. McFadden. Synchronous firing and its influence on the brain’s
electromagnetic field.Journal of Consciousness Studies, 9(4):23–
50, 2002.

[MDOD04] S. Makeig, S. Debener, J. Onton, and A. Delorme. Mining event-
related brain dynamics.Trends in Cognitive Sciences, 8(5):204–210,
2004.



BIBLIOGRAPHY 135

[MHMB06] L. Marshall, H. Helgadottir, M. Molle, and J. Born. Boost-
ing slow oscillations during sleep potentiates memory.Nature,
444(7119):610–613, 2006.

[MM80] R. Monzingo and T. Miller.Introduction to Adaptive Arrays. Wiley
& Sons, 1980.

[MML +04] C.M. Michel, M.M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and
R. Grave de Peralta. EEG source imaging.Clinical Neurphysiology,
115:2195–2222, 2004.

[MRV+03] C. Mehring, J. Rickert, E. Vaadia, S. Cardoso de Oliveira, A.Aert-
sen, and S. Rotter. Inference of hand movements from local field po-
tentials in monkey motor cortex.Nature Neuroscience, 6(12):1253–
1254, 2003.

[MS07] A.S. Matveev and A.V. Savkin. Shannon zero error capacity in the
problems of state estimation and stabilization via noisy communi-
cation channels.International Journal of Control, 80(2):241–255,
2007.

[MWJ+02] S. Makeig, M. Westerfield, T.P. Jung, S. Enghoff, J. Townsend,
E. Courchesne, and T.J. Sejnowski. Dynamic brain sources of vi-
sual evoked responses.Science, 295(5555):690–694, 2002.

[MZKM02] F. Meinecke, A. Ziehe, M. Kawanabe, and K.R. Mueller. A re-
sampling approach to estimate the stability of one-dimensional or
multidimensional independent components.IEEE Transactions on
Biomedical Engineering, 49(12):1514–1525, 2002.

[NAHS06] S.S. Nagarajan, H.T. Attias, K.E. Hild II, and K. Sekihara. A graphi-
cal model for estimating stimulus-evoked brain responses from mag-
netoencephalography data with large background brain activity. Neu-
roimage, 30:400–416, 2006.

[NFZE07] G.N. Nair, F. Fagnani, S. Zampieri, and R. J. Evans. Feedback con-
trol under data rate constraints: An overview.Proceedings of the
IEEE, 95(1):108–137, 2007.

[Ng04] A.Y. Ng. Feature selection,L1 vs.L2 regularization, and rotational
invariance. In Carla E. Brodley, editor,Proceedings of the Twenty-
first International Conference on Machine Learning (ICML 2004),
Banff, Alberta, Canada, July 4-8. ACM, 2004.

[NS05] P.L. Nunez and R. Srinivasan.Electric Fields of the Brain: The
Neurophysics of EEG. Oxford University Press, 2005.



136 BIBLIOGRAPHY

[NW06] J. Nocedal and S.J. Wright.Numerical Optimization. Springer, 2006.

[OWTM06] J. Onton, M. Westfield, J. Townsend, and S. Makeig. Imaging hu-
man EEG dynamics using independent component analysis.Neuro-
science and Biobehavioral Reviews, 30(6):808–822, 2006.

[Pal96] M. Palus. Nonlinearity in normal human EEG: cycles,temporal
asymmetry, nonstationarity and randomness, not chaos.Biological
Cybernetics, 75(5):389–396, 1996.

[PL99] G. Pfurtscheller and F.H. Lopes da Silva. Even-related EEG/MEG
synchronization and desynchronization: basic principles. Clinical
Neurophysiology, 110:1842–1857, 1999.

[PNFP97] G. Pfurtscheller, C. Neuper, D. Flotzinger, and M. Pregenzer. EEG-
based discrimination between imagination of right and lefthand
movement.Electroencephalography and clinical Neurophysiology,
103:642–651, 1997.

[PSGS05] L.C. Parra, C.D. Spence, A.D. Gerson, and P. Sajda. Recipes for
linear analysis of EEG.Neuroimage, 28:326–341, 2005.

[PXZF00] J.C. Principe, D. Xu, Q. Zhao, and J.W. Fisher III. Learning from
examples with information theoretic criteria.Journal of VLSI SIgnal
Processing, 26(1-2):61–77, 2000.

[QDH04] L. Qin, L. Ding, and B. He. Motor imagery classification by means
of source analysis for brain-computer interface applications.Journal
of Neural Engineering, 1:135–141, 2004.

[RD69] S. Rush and D.A. Driscoll. EEG electrode sensitivity - an applica-
tion of reciprocity. IEEE Transactions on Biomedical Engineering,
16:289–296, 1969.

[RGMA05] A. Rakotomamonjy, V. Guigue, G. Mallet, and V. Alvarado. Ensem-
ble of SVMs for improving brain computer interface P300 speller
performances. InArtificial Neural Networks: Biological Inspira-
tions - ICANN 2005, volume 3696 ofLecture Notes in Artificial In-
telligence, pages 45–50. Springer, 2005.

[RMGP00] H. Ramoser, J. Mueller-Gerking, and G. Pfurtscheller. Optimal spa-
tial filtering of single trial EEG during imagined hand movement.
IEEE Transactions on Rehabilitation Engineering, 8(4):441–446,
2000.



BIBLIOGRAPHY 137

[RP01] M.G. Rosenblum and A.S. Pikovsky. Detecting directionof coupling
in interacting oscillators.Physical Review E, 64:0452021 – 0452024,
2001.

[RPK96] M.G. Rosenblum, A.S. Pikovsky, and J. Kurths. Phase synchroniza-
tion of chaotic oscillators.Physical Review Letters, 76(11):1804–
1807, 1996.

[Sch00] T. Schreiber. Measuring information transfer.Physical Review Let-
ters, 85(2):461–464, 2000.

[Sch05] A. Schloegl. Results of the BCI competition 2005 for data set IIIa
and IIIb. Technical report, Institute for Human-Computer Interfaces
- BCI Lab, University of Technology Graz, Austria, 2005. avail-
able athttp://www.dpmi.tu-graz.ac.at/∼schloegl/
publications/TR BCI2005 III.pdf.

[Sha48] C.E. Shannon. A mathematical theory of communication. Bell Sys-
tems Technical Journal, 27:379–423 & 623–656, 1948.

[Sha56] C. Shannon. The zero error capacity of a noisy channel. IEEE Trans-
actions on Information Theory, 2(3):8–19, 1956.

[SKM+07] G. Schalk, J. Kubanek, K.J. Miller, N.R. Anderson, E.C. Leuthardt,
J.G. Ojemann, D. Limbrick, D. Moran, L.A. Gerhardt, and J.R. Wol-
paw. Decoding two-dimensional movement trajectories using elec-
trocorticographic signals in humans.Journal of Neural Engineering,
4:264–275, 2007.

[SRY+06] G. Santhanam, S.I. Ryu, B.M. Yu, A. Afshar, and K.V. Shenoy.A
high-performance brain-computer interface.Nature, 442:195–198,
2006.

[SYTI05] H. Serby, E. Yom-Tov, and G.F. Inbar. An improved P300-based
brain-computer interface.IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 13(1):89–98, 2005.

[TDN+06] R. Tomioka, G. Dornhege, G. Nolte, K. Aihara1, and K.R. Mueller.
Optimizing spectral filters for single trial EEG classification. In
Lecture Notes in Computer Science, pages 414–423. Springer,
Berlin/Heidelberg, 2006.

[ten02] J.M.F. ten Berge. On uniqueness in CANDECOMP/PARAFAC.Psy-
chometrika, 67(3):399–409, 2002.



138 BIBLIOGRAPHY

[THS02] D.M. Taylor, S.I. Helms Tillery, and A.B. Schwartz. Direct corti-
cal control of 3D neuroprosthetic devices.Science, 296:1829–1832,
2002.

[TLP04] F.J. Theis, E.W. Lang, and C.G. Puntonet. A geometricalgorithm
for overcomplete linear ICA.Neurocomputing, 56:381–398, 2004.

[Tor03] K. Torkkola. Feature extraction by non parametric mutual informa-
tion maximization.Journal of Machine Learning Research, 3:1415–
1438, 2003.

[Vap98] V.N. Vapnik.Statistical Learning Theory. Wiley & Sons, 1998.

[VB88] B.D. Van Veen and K.M. Buckley. Beamforming: A versatile ap-
proach to spatial filtering.IEEE ASSAP Magazine, 5(2):4–24, 1988.

[VMMW98] T.M. Vaughan, L.A. Miner, D.J. McFarland, and J.R. Wolpaw. EEG-
based communication: analysis of concurrent EMG activity.Elec-
troencephalography and Clinical Neurophysiology, 107(6):428–
433, December 1998.

[von99] C. von der Malsburg. The what and why of binding: The modeler’s
perspective.Neuron, 24:95–104, 1999.

[VSJ+00] R. Vigario, J. Sarela, V. Jousmaki, M. Hamalainen, and E. Oja.
Independent component approach to the analysis of EEG and
MEG recordings. IEEE Transactions on Biomedical Engineering,
47(5):589–593, 2000.

[VvYS97] B.D. Van Veen, W. van Drongelen, M. Yuchtman, and A. Suzuki.
Localization of brain electrical activity via linearly constrained min-
imum variance spatial filtering.IEEE Transactions on Biomedical
Engineering, 44(9):867–880, 1997.

[WB05] J. Wolff and M. Buss. Invariance control design for constrained non-
linear systems. InProceedings of the 16th IFAC World Congress,
Prague, Czech Republic, July 2005. Paper No. 04467.

[WB07] J. Wolff and M. Buss. On stability of invariance controlled linear
systems. InProceedings of the European Control Conference, pages
3281–3288, Kos, Greece, July 2007.

[WBH+00] J.R. Wolpaw, N. Birbaumer, W.J. Heetderks, D.J. McFarland, P.H.
Peckham, G. Schalk, E. Donchin, L.A. Quatrano, C.J. Robinson,and
T.M. Vaughan. Brain-computer interface technology: A review of
the first international meeting.IEEE Transactions on Rehabilitation
Engineering, 8(2):164–173, 2000.



BIBLIOGRAPHY 139

[WBM+02] J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, and
T.M. Vaughan. Brain-computer interfaces for communicationand
control. Clinical Neurophysiology, 113(6):767–791, 2002.

[WL96] J.J. Wright and D.T.J. Liley. Dynamics of the brain at global and
microscopic scales: Neural networks and the EEG.Behavioral and
Brain Sciences, 19(2), 1996.

[WM04] J.R. Wolpaw and D.J. McFarland. Control of a two-dimensional
movement signal by a noninvasive brain-computer interfacein
humans. Proceedings of the National Academy of Sciences,
101:17849–17854, 2004.

[WMNF91] J.R. Wolpaw, D.J. McFarland, G.W. Neat, and C.A. Forneris. An
EEG-based brain-computer interface for cursor control.Electroen-
cephalography and clinical Neurophysiology, 78:252–259, 1991.

[WWGG07] Q. Wei, Y. Wang, X. Gao, and S. Gao. Amplitude and phasecoupling
measures for feature extraction in an EEG-based brain-computer in-
terface.Journal of Neural Engineering, 4:120–129, 2007.

[ZLNM04] A. Ziehe, P. Laskov, G. Nolte, and K.R. Mueller. A fast algorithm
for joint diagonalization with non-orthogonal transformations and its
application to blind source separation.Journal of Machine Learning
Research, 5:777–800, 2004.

[ZP01] M. Zibulevsky and B.A. Pearlmutter. Blind source separation by
sparse decomposition in a signal dictionary.Neural Computation,
13(4):863–882, 2001.

[ZWJ00] L. Zhukov, D. Weinstein, and C. Johnson. Independent component
analysis for EEG source localization.IEEE Engineering in Medicine
and Biology Magazine, 19(3):87–96, 2000.


