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Abstract

By inferring the intention of human subjects from signals egyated by the cen-
tral nervous system (CNS), Brain-Computer Interfaces (BClsyigeoan alterna-

tive means of communication for subjects with damages tg#rgheral nervous
system, e.g., caused by neuro-degenerative diseases sw@chyatrophic lateral
sclerosis or brain stem stroke. While state-of-the-art BCketlaon non-invasive
recording modalities enable elementary communicatiomgroomplex tasks, such
as the control of a robotic endeffector, remain beyond thsikglity of current sys-

tems.

In this thesis, it is argued that the primary cause for thnstation is the inadequacy
of present algorithms for feature extraction, i.e., of alons that aim to extract
those characteristics of the data recorded from the CNSglirgymost information
on the BCI-user’s intention. The main contribution of thissisen addressing this
problem is threefold. In terms of supervised feature exitvacthe framework of
information theoretic feature extraction is employed tawkean algorithm that is,
under some assumptions, optimal in terms of maximizing adutiformation of
the BCI-user’s intention and extracted features. In termsnsuipervised feature
extraction, an algorithm based on beamforming methodssgded that optimally
extracts signals originating in certain regions of intereghin the brain. Due to
its unsupervised nature, this algorithm is very robust aogires substantially less
training data than supervised approaches. Both algorithengdidated experimen-
tally and shown to outperform state-of-the-art approadbegeature extraction in
non-invasive BCls. Finally, a theoretically founded and expentally validated
explanation for the success of Independent Component ArgI{3A) in the anal-
ysis of EEG/MEG recordings in general, and as tool for femaxtraction in BCls
in particular, is provided that resolves the apparent ealttion between the re-
quirement of ICA of at least as many sensors and sources anghttstological
implausibility of this assumption.

In summary, it is argued that the main limitation for featesdraction in non-
invasive BCls is insufficient knowledge on how cognitive staéeée encoded in
signals generated by the CNS. The thesis concludes with assien why future
research on feature extraction in non-invasive BCIs shold tato account the
nature of the brain as a complex network with time-varyingresctivity patterns.
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Chapter 1

Introduction

1.1 Motivation

Any act of human communication depends on volitional musol&rol. When we
speak to another person, use our fingers to type a text on a&eayor engage in
any other type of communication, we rely on our ability togwoe goal directed
muscle activations. While such actions are initiated withi central nervous sys-
tem (CNS), no muscle activation, and thus no communicatgppssible without
the peripheral nervous system. The peripheral nervousmsysbmprises all nerves
and neurons outside the CNS, i.e., outside the brain and thal sord, and pro-
vides the connection between the brain and the rest of thg Bedsuch, it is much
more exposed and less protected than the CNS. What happeeg#iipheral ner-
vous system is injured and the connection between the CNS$handsdt of the body
is affected? Depending on the severity of the damage th#irgsaffects may range
from mild impairment up to a so called locked-in state - aestatwhich a person
becomes imprisoned in her/his body without being able tornamicate with the
outside world. One disease that inevitably leads to a lodhkestiate is amyotrophic
lateral sclerosis (ALS), a degenerative disease thattaffaotor neurons. During
the progress of the disease patients gradually loose d¢avteotheir motor system,
until all voluntary and involuntary motor control is lost.rdinent patients with
ALS include the physicist Stephen Hawking and the recerdgbedsed paintebdy
Immendorf. Diseases such as ALS, however, are not the onisecaf damage to
the peripheral nervous system. Accidents and strokes laee nequent causes for a
loss of voluntary motor control. While these impairmentghatead to a locked-in
state, they also constitute a significant decrease in teetafl patients’ life quality.
Scenarios such as these provide the motivation for resear&rain-Computer In-
terfaces (BCIs). BCls are devices that enable communicatidrowttusing the pe-
ripheral nervous system. They solely rely on signals ge¢edray the CNS, which
are used to infer the BCI-user’s intention. BClIs thereby progidew output chan-
nel for the brain that can be used to replace or assist a dahpeggheral nervous
system. While BClIs can be realized by a variety of means (disdussSection



CHAPTER 1. INTRODUCTION

1.2), the work of this thesis only concerns non-invasive BCds, BCls that solely
utilize signals generated by the CNS that can be recordedutifhenetrating the
skull. Subsequently, if not stated differently, the term B€flers to non-invasive
BCls.

Nowadays BCls hardly enable more than basic communicatidrosetwith severe
damages to the peripheral nervous system. In the futureg\ewthe use of BCls
will not be restricted to basic communication. The contifcd avheelchair by a BCI
already is an active field of research [LN®6], and the extension to more powerful
robotic systems only a matter of time. For example, a lodkegatient might be
equipped with a BCI that enables the control of a humanoid rofius robot would
be used as a replacement for the patient’s body, enablingtieast to some extent,
to participate in every day life.

The primary goal of research on BCls is the construction of agpwothesis that
can replace or assist the peripheral nervous system, lsuistliy far not its only
purpose. In fact, the main task in constructing a BCl is the logveent of powerful
tools to analyze and interpret signals generated by the.bfa such, the advances
in research on BCls provide new tools that are of large valuaufmerstanding
the way information is processed by our brains. Howeverdessmproving the
life quality of disabled patients and enabling advanceseuroscientific research,
there are also less noble areas of application. BCls will golybind the largest
proliferation as input devices for video games. Taking icasideration the wide
success of alternative input devices, such as movementrsefos video games,
and the simple fact that it is fun to control a video game jysthought, a BCI that
can be sold at a reasonable price for private use is likelgtoine a large financial
success.

Before these visions turn into reality, several major oldetabhave to be overcome.
One of these obstacles is the currently very low informatransfer rate (ITR) of
BCls®. The amount of information that can be send through a BCI rqudéler-
mines the complexity of the device that can be controllethwitWhile the ITR of
current BCls suffices to write short sentences [B@H] or, after intensive subject
training, control a computer cursor [WMO04], the reliable wohof more complex
systems, such as a humanoid robot or just a robotic arm,re=gaisignificant in-
crease in the amount of bits that can be send per second.

There exist two principal approaches to increase the ITRBE b First, new exper-
imental paradigms can be designed that allow for higher ITRg experimental
paradigm of a BCI consists of a set of rules that determine wthichights should be
executed by a subject to express a certain intention. Thesghts lead to pattern
changes in the signals recorded from the CNS, which can betddtand used to
infer the BCl-user’s intention. The number of intentions tbamh be expressed by
an experimental paradigm determines an upper bound on therdrof information
that can be transmitted. Research in this field aims at discmyparadigms that

1The concept of ITR does not apply to BCls in a straightforwaahner, as discussed in Section
2.3. For now, however, it suffices to accept ITR as a measuteegierformance of a BCI.
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a) allow expressing a multitude of intentions, b) lead torsgrand distinct pattern
changes in the data recorded from the CNS for each expreswediam, and c)
can be used by disabled subjects without extensive sulganirtg. The second
approach to increase the ITR is to focus on the availableatatamprove the infer-
ence of the user’s intention from the recorded signals. ajpjsoach can be roughly
subdivided into feature extraction and statistical infers although there is some
overlap between these two concepts. In the framework of B@ésgoal of statis-
tical inference is to design algorithms that learn to optiynfer the BCl-user's
intention from the recorded signals. Feature extractionpntrast, is not concerned
with actual inference, but with extracting those composkhtaracteristics of the
recorded data that are optimal for inferring the user'snhte. Feature extraction
can thus be seen as a pre-processing of the recorded ddtdheviim to facilitate
a subsequent inference. While machine learning algoritlemstétistical inference
are highly developed and can be applied in a straight-faiwaanner to BCls, fea-
ture extraction for BCls is still largely in its infancy. In BClde data recorded
from the CNS is usually high-dimensional, non-stationang aas a low signal-
to-noise (SNR) ratio, i.e., the components of the data progithformation on the
BCl-user’s intention are deeply buried in ongoing backgroaciil/ity of the brain.
This combination poses problems that are seldomly encoechia other areas of
signal processing or machine learning. Consequently, fgarithms exist that are
suitable for feature extraction in the context of BCIs.

The motivation for the work presented in this thesis is thevadion that the lack
of advanced methods for feature extraction constitutesrthm bottleneck for a
significant increase in ITR of BCls. Consequently, the maindapithis thesis is
the development of algorithms for BCls that extract thoseauttaristics of signals
recorded from the CNS that are optimal for inferring the BClrigsatention.

1.2 State-of-the-Art of Brain-Computer Interfaces

A multitude of approaches to realizing a BCI exist. The mosugnikial of these,

from a historical and state-of-the-art perspective, areflgrpresented in this sec-
tion. A more detailed discussion of the components emplaogestate-of-the-art

non-invasive BCls is carried out when appropriate in Chapter®.3

In general, BCls can be realized by invasive- and by non-imeasieans. Invasive
BCls infer the user’s intention from signals recorded disettkide the CNS, e.g.,
from local field potentials or single cell activity. This efs the advantage of pro-
viding direct access to information processing within thaif, but poses a signifi-
cant medical risk and raises ethical concerns. Non-ineeB@ls, on the other hand,
only utilize signals that can be recorded without penetggiine skull. These include
signals such as the electric or magnetic field of the brairgsue=d by electroen-
cephalography (EEG) and magnetoencephalography (MEGhednemodynamic

response modulated by neuronal activity and measured loyidunal magnetic res-
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onance imaging (fMRI) or near infrared spectroscopy (NIRStdréings of these
signals can be performed without medical risks for the stibfmt have the disad-
vantage of only providing measures of neural mass activity,only superpositions
of the signals generated by hundred-thousands of singi®ngwean be measured.
As a consequence, BCls based on non-invasive methods curoeyl achieve a
fraction of the ITR achieved by invasive BCls.

1.2.1 Invasive Approaches

Research on invasive approaches is mostly carried out whkitdSA. While mea-
surements of local field potentials are increasingly seeanadternative to single-
cell recordings in the context of invasive BCls (cf. [HWCMO06], RM*03]), most

groups still focus on decoding movement intentions frorm@rpatterns of single
neurons located in motor areas of the cortex. Due to the rakdsks and ethical
concerns associated with brain implants most experimevite, one notable ex-
ception, are carried out with non-human primates. One ofithim problems, that
all groups employing invasive methods face, is the inswficstability of record-
ings obtained from chronically implanted electrodes. &gbently, an overview of
research groups developing invasive BCIs is given. While casebieen taken to
include the most significant work, this overview is necebsarased.

MotorLab, University of Pittsburgh

The group of A. Schwartz, now at the University of Pittsbyrglas the first one

to realize online control of a neuroprosthetic device ireéhdimensions [THS02].
Direction tuning properties of single-cells, recordediromnotor and pre-motor ar-
eas, were used to enable two Rhesus macaques to move a tmesesidinal cursor
to one of eight locations on a three-dimensional grid. kg&ngly, Schwartz et
al. could show that the tuning properties of the recordeld eelapted to the neuro-
prosthesis. This lead to improved movement accuracy waihitrg and, more im-

portantly, decreased the number of cortical units necggsarmovement predic-

tion.

Laboratory of Miguel A. L. Nicolelis, Department of Neurobiology Duke Uni-
versity Medical Center

The group of M. Nicolelis at Duke University uses singletcetordings from large
neuronal ensembles in non-human primates to predict deveri@r parameters
such as hand position, velocity, and gripping force. Thesampeters are then used
to control a neuroprosthetic device or enable reaching aadpgng movements
in virtual environments (cf. [CLCO03] and the references therein). Interestingly,
recordings are not confined to a single area of cortex, butlsameous recordings
from multiple sites are obtained. The recordings from déssiare then shown to
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contribute, to varying degrees, to the estimation of therdésnotor parameters.
This is in contrast to most other groups, which aim to recoodhf brain regions
specialized for certain motor tasks.

Neural Prosthetic Systems Laboratory, Stanford University

The Neural Prosthetic Systems Laboratory at Stanford Wsitye headed by K.
Shenoy, employs single-cell recordings from dorsal preéemecortex for motor in-
ference. Contrary to the groups of Schwartz and Nicolelig tteenot aim to trans-
late neural activity into continuous movement commandstelad, they predict the
intended target location of reaching movements from skegléactivity. Using
this approach they obtained a maximum ITR of 6.5 bits/s [S6&], which is the
highest ITR reported for BCls so far.

Cyberkinetics / Donoghue Lab, Brown University

The "BrainGate”, developed by Cyberkinetics, a company fewahioly J. Donoghue
of Brown University, is the first invasive BCI actually tested atuman subject
[HSF"06]. Electrodes were implanted in primary motor cortex ofianan subject
with tetraplegia, and single-cell activity was used to deaontrol of a computer
cursor in two dimensions. While this was an important studyerms of proving

that results obtained by invasive BCIs on non-human primagester to human
subject, the limited functionality of the BCI and questiorebénefit to the human
subject raises serious ethical concerns.

1.2.2 Non-invasive Approaches

Contrary to invasive BCIs, non-invasive approaches can nordesingle-cell ac-
tivity but measure neural mass action of many hundred-twds of neurons. This
aggravates the direct decoding of motor plans, since tuclgacteristics of sin-
gle neurons can not be utilized for inference. While thereoimes evidence that
the electrical field of the brain does provide detailed infation on kinematic pa-
rameters [SKM07], all currently employed non-invasive BCls are based on ex-
perimental paradigms: specific thoughts are carried ouubjests to express cer-
tain intentions. Non-invasive BCIs can thus be characterigethe experimental
paradigm that is employed. Typically, one research grogpges on only one type
of paradigm, although there are exceptions to this rule.s8agibently, the work of
some of the most influential groups working on non-invasive Bi€lpresented. A
more comprehensive review of work on non-invasive BCls isiyindWBM*02].

Laboratory of E. Donchin, University of South Florida

The name of E. Donchin is associated with the P300, a pogitfiection in the
EEG measured over parietal areas that occurs approxini6lyns after an infre-
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guent stimulus. Building upon the P300, Donchin et al. weeefitst to realize a
non-invasive BCI in 1988 [FD88]. They arranged the lettershef alphabet (and
some additional symbols) in a 6x6 matrix and consecutivelghitd random rows
or columns of this matrix. By concentrating on a certain fesighjects could spell
words, since only flashing of those rows and columns inclyithie letter the subject
concentrated on would elicit a P300. This basic principlestrves as the exper-
imental paradigm of many recent BCIs, with most research wideat improving

detection of a P300 (cf. [RGMAOQ5] and [SYTIO5]). Non-invasiBCls based on
the P300 do not require any subject training and are espesigted for spelling

devices in which one out of many symbols has to be selecteavelrkr, they are
only of limited use for control of an end-effector such as enpater cursor or a
robotic device.

Institute of Medical Psychology and Behavioral NeurobiologyEberhard Karls
Universitat Tubingen

The group of N. Birbaumer, head of the Institute of MedicaldP®jogy and Behav-
ioral Neurobiology at the Eberhard Karls UniveésiTubingen, is another pioneer-
ing group of research on non-invasive BCIs. Their so callecbUidiht-Translation-
Device” is based on slow cortical potentials (SCPs), i.e,[IC electric potential
on the scalp. SCPs can be intentionally modulated by subj&bish can be used
to answer simple yes/no questions or write short sente®®5l{ 99]. The signif-
icance of the work of Birbaumer et al. is the fact that their BCbwze first to be
operated by subjects with amyotrophic lateral sclerosisS)\thereby providing
the first proof of principle that BCls are indeed suited for parad subjects. A
drawback of using SCPs for communication is the extensiveitigtime of several
months necessary to master this paradigm. As a consequrodalating SCPs has
been widely discarded as a suitable paradigm for non-imedCls.

Wadsworth Center, New York State Department of Health

The group of J. Wolpaw at the Wadsworth Center, New York Stagpdbtment
of Health, proposed a BCI similar in principle to the one of Butreer et al. in
1991 [WMNF91]. Instead of using SCPs, they trained their stibjéeo modulate
the strength of the EEG mu-rhythm, i.e., the variance of tE&Esignal in the
8-12 Hz frequency range. Over the period of several weeksaafihg healthy
subjects thereby gained control over a cursor in one diroansgn 2004, Wolpaw et
al. published results on two-dimensional cursor contriglp asing modulations of
EEG rhythms [WMO04]. The significance of this work is that it whs first study
to show that subjects could achieve independent voliticoatrol over different
EEG rhythms. By independently modulating the variance ofrthe (8-12 Hz)
and beta-rhythm (approximately 18-25 Hz), subjects cosklane frequency band
for horizontal and the other for vertical cursor control.f8othis study remains the
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only one to demonstrate two-dimensional cursor control bams of a non-invasive
BCI. One reason for this is the intensive training of up to 17Qreaequired by
subjects to learn modulating their EEG rhythms. This prgkmhtraining might be
due to the fact that Wolpaw et al. could not provide instiutsifor subjects how to
control their EEG-rhythms. Instead, each subject had ttoesplifferent strategies
to discover suitable ones. Not surprisingly, this led tdedént subjects utilizing
different strategies.

Laboratory of Brain-Computer Interfaces, Technische Universitat Graz

In 1997, G. Pfurtscheller et al. published a seminal studyon-invasive BCls
also utilizing volitional modulation of EEG rhythms [PNFA9While they did not
obtain better results than Wolpaw et al. in 1991 [WMNF91], sigmificance of
their work was that they provided specific instructions howrtodulate the EEG
mu-rhythm. They instructed subjects to perform haptic imatjon of left and right
hand movements, and showed that haptic motor imagery of ané resulted in a
decrease in variance in the EEG mu-rhythm measured oveptiteatateral motor
cortex. While in the study of Wolpaw et al. extensive trainings required for
subjects to gain control over their EEG-rhythms, the useapitic motor imagery
almost eliminated the need for subject training. This watsthe only important
contribution of Pfurtscheller’'s group to non-invasive BCAgi1other seminal study
introduced the concept of optimal spatial filtering to nawaisive BCls [RMGPOO].
They showed how to combine measurements of the electricdiadifferent scalp
locations to extract those components of the EEG suitableferring the subject’s
intention, thereby significantly improving classificatiaocuracies.

1.3 Contributions and Outline of this Thesis

The work presented in this thesis only concerns non-ineaBls. In this context,
the main obstacle to a significant increase in ITR is idewtifie the lack of sophis-
ticated methods for feature extraction. Consequently, wiaiis thesis deals with
the development of algorithms for feature extraction indbetext of non-invasive
BCls.

Before these algorithms can be presented, it is necessasyablish a framework
for the analysis and evaluation of BCls. This is done in Chaptén @hich it is
argued that BCls constitute communication channels that eanvestigated with
the powerful tools provided by information theory as irtiéid by C. Shannon in
1948 [Sha48]. After introducing the framework of BCls as comination channels
in Section 2.1, Sections 2.2 and 2.3 discuss how to measeipetformance of BCls
and address a common misconception about the meaning ohlBRIs. This leads
to a discussion why feature extraction is of central impuwrégto increasing the ITR
of BCls in Section 2.4. The rest of Chapter 2 addresses the ¢aftam unstable
dynamic system solely by use of a BCI (Section 2.5).
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Chapters 3 - 6 cover the main contributions of this thesis.e&hrew algorithms
for feature extraction in non-invasive BClIs are presentedcamapared with each
other as well as with existing approaches. The experimavauation of these
algorithms is largely carried out using signals recordedEEy. This is done for

the simple reason that of all non-invasive recording maiéalifor brain signals

EEG is the most readily available. In terms of a future wideag dissemination of
BCls, EEG is thus the current method of choice. It should betpdiout, however,

that all algorithms presented here are not limited to EE@, @an be adapted to
other modalities with relative ease.

In Chapter 3, the feasibility of source localization for ig&t extraction in non-

invasive BCls is investigated. It is shown that it is possiblénfer whether a sub-
jectis performing imaginary tapping movements of the lefthe@ right index finger

from estimates of the current density in left and right matortex. Estimates of
the current density are obtained by performing Indepen@amponent Analysis
(ICA) on the available data, and localizing the sources obittained independent
components (ICs) by single current dipoles in a four-shdtlesigal head model.
Since ICA can not separate multiple Gaussian sources, a resedgure is derived
that identifies correctly reconstructed (non-Gaussianycas, and incorrectly re-
constructed (Gaussian) noise.

Chapter 4 develops a supervised method for feature extnagimg concepts of
information theory. A procedure for spatial filtering is psed that extracts those
components of the recorded EEG data that provide a maximunfamation on
the BCl-user’s intention. This is achieved by deriving an gii@lapproximation
of mutual information of class labels, i.e., BCl-user’s iriten and extracted EEG
components under assumptions valid in the context of neasiwe BCIs. Using
this approximation, it is shown that Common Spatial Patté@P), an algorithm
frequently used for feature extraction in BCIs, is optimalémis of maximizing
(an approximation of) mutual information for two-classg@igms but not for multi-
class paradigms. The approximation of mutual informat®then used to derive
a procedure for spatial filtering, termed multi-class Infation Theoretic Feature
Extraction (ITFE), that is optimal in terms of maximizing toal information for
multi-class paradigms. Multi-class ITFE is then appliegxperimental data from
a motor imagery paradigm, and is shown to perform superioruthi-class CSP.

In Chapter 5, ICA is investigated in more detail in the contddEBEG/MEG anal-
ysis and non-invasive BCIs. It is argued that the mixing modeklly assumed in
complete ICA, i.e., assuming an equal number of sensors amdes) is unrealistic
in the context of EEG/MEG analysis. This serves as the mmddor a theoreti-
cal investigation of the behavior of complete ICA for arbigranixture models, i.e.,
including overcomplete mixture models with more sourcesitbensors. Necessary
and sufficient conditions for separability and identifidpibf complete ICA for ar-
bitrary mixture models are derived. These results servegwesthat in EEG/MEG
analysis a mixture model with more sources than sensorsebatrion-Gaussian
sources than sensors should be assumed. The implicatighs ahixture model
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for EEG/MEG analysis by ICA are discussed, and testable gieds are formu-
lated. A new approach for improving the SNR of ICA in EEG/ME&bsis based
on linearly constrained minimum variance (LCMV) spatialéfilhg is presented,
and used to validate the predictions resulting from the psegd mixture model.
This new method is then applied to feature extraction in thext of BCls based
on motor imagery paradigms, and used to provide an exptantdr the success of
complete ICA in EEG/MEG analysis in spite of an overcomplebetune model.

In Chapter 6, an unsupervised method for feature extracsiaeveloped. Spatial
filters are derived that optimally extract all EEG sourcest thriginate in a cho-
sen region of interest within the brain. By utilizing neuroypiological a-priori
knowledge these regions of interest can be chosen to comdsp those locations
within the brain that provide most information on the BCI-useéntention for a
given paradigm. This concept, similar in spirit to beamforgnin array signal pro-
cessing, leads to very robust feature extraction, sincaradécts that do not origi-
nate in the chosen regions of interest are optimally attexliarhe efficacy of the
proposed method is demonstrated on experimental data ftam-aelass motor im-
agery paradigm. It is shown that it outperforms establiskigdrithms for feature
extraction, and that it reduces the amount of requireditrgidata. Furthermore, an
online implementation of this algorithm is presented thHewes real-time control
of a cursor in one dimension.

In the final Chapter 7 the relevance of the contributions of thésis are discussed,
and directions for future research are delineated. Se¢tibprovides a critical eval-
uation of the capabilities and limitations of the algorithpresented in Chapters 3 -
6. Future research directions addressing these limitaaoa delineated in Section
7.2. In Section 7.3, a framework for discovering the effecttonnectivity struc-
ture within the brain, termed Network Information Transfaralysis (NITA), is
proposed, and implications of this framework for featurgrastion in non-invasive
BCls are discussed. In the final Section 7.4 of this thesis, tiestepn of causal
relevance of the electric field of the brain, as measured bg,B&discussed. The
prevalent belief that the electric field of the brain is anpbenomenon, i.e., does
not play a role in information processing within the bramgiiticized. Finally, an
approach is delineated to investigate the relevance ofldutrie field of the brain
for information processing within the brain building updr tframework of NITA.
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Chapter 2

Information Transfer in
Brain-Computer Interfaces

In this chapter, the framework of information- and stattiearning theory for the
analysis of BClIs is introduced. This serves several purp®3es, it establishes the
background for theoretical work presented in later chapt&vhile most informa-
tion theoretic concepts can be applied to BCls in a straigivdicdt manner, there are
some assumptions inherent to classical information theé@tyare not applicable in
this context. These differences have to be taken into a¢ewli@n applying infor-
mation theoretic concepts to BCls in order to avoid drawingirect conclusions.
However, the primary purpose of this chapter is to presemrglasive argument
why feature extraction constitutes the main bottleneckégerformance of BCls.
This argument is carried out in the framework of informatiand statistical learn-
ing theory, and results in a mathematical definition of thennudjective of this
thesis (Definition 2.13).

Basic knowledge of the concepts of information theory, @gpresented in [CT06],
is assumed. In Section 2.1, BCls are modeled as memorylesswacation chan-
nels. This serves as the basis for Sections 2.2 and 2.3, ichwthe problem of
measuring the performance of BCls and a common misconcegimut ¢he mean-
ing of the information transfer rate (ITR) in BCls are addresdadsection 2.4, it
is argued that feature extraction constitutes the mairexge in developing high-
performance BCIs. This section thereby serves as the thealratiotivation for
Chapters 3 - 6. The chapter concludes with a discussion ofathiat of unstable
dynamic systems solely by use of a BCI in Section 2.5.

2.1 The BCI Communication Channel

A communication channel is a description of a process thastnits information. A
model of a communication channel usually consists of thestisomponents shown
in Fig. 2.1. The central element in each model of commurocais the channel
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ceC yey r e X cecC

s ~[Encoding—~{ChamRE— ~| Decodi—~

Figure 2.1: A communication channel.
(&1 L él
—— ey
Figure 2.2: Graph representation of a discrete memoryt@ssrainication channel.

itself, i.e., the medium over which the information is to bensmitted. Here, only
the discrete memoryless channel is considered. This istiat the information
consists of symbols that take on values in a finite st and that the output of the
channel¢ € C does not depend on past inputs to or outputs of the channa&. Th
communication channel can then be described by the graphtedpn Fig. 2.2.
Each arrow in Fig. 2.2 has an associated conditional prétyalsi(¢ = c;|c = ¢;),
that describes the probability of receiving symbptiven symbok; has been sent.
The expressiorP(¢ = ¢;jlc = ¢;) is subsequently abbreviated &§¢;|c;). The
actual channel is complemented by an encoding and a decodingdure that serve
two purposes. The first purpose is to map the input symbolgeensetC into a
set), which consists of symbols that can be send over the chaiiimg.channel
then answers to each transmitted symbo}iwith a received symbol it’. In
the decoding procedure, the received symbolgimre then mapped back t
Note that the set of received symbadtsdoes not have to coincide with the set of
transmitted symbol3’, and thatY and) may or may not coincide witld. The
second purpose of the encoding/decoding procedure is tionmig the probability
of receiving an incorrect symbol while maximizing the numbiesymbols sent over
the channel. This problem is discussed in Section 2.3.

In the context of BCIs, the symbols € C transmitted over the channel are the
BCl-user’s intentions. The séthence consists of the possible intentions the user
can choose from. The actual channel of the BCI is the brairf,iisel, the central
nervous system (CNS). As a consequence, the encoding precedBCls is rep-
resented by the experimental paradigm. The paradigm digtesrwhich thoughts
should be carried out by the user to express a certain intgritiereby mapping the
user’s intentiore € C into a not further specified sgt. The CNS then answers to
each intention expressed through the experimental paredith a symbol: € X'.
The sett’ represents all possible signals that can be recorded frer@MNS, e.g.,
the electric field of the brain as measured by EEG. In the daggatocedure, the
received symbol is then used to reconstruct the user’stinotenThis model of a
BCl as a communication channel is summarized in Fig. 2.3.
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2.2 Measuring Performance of BCls

There are two principal ways of measuring the performance cbmmunication
channel. The first is the error probability of the channeliragel as follows:

Definition 2.1 (Error probability) The error probability of a communication chan-
nel with inputc € C = {cy, ..., cy} and output € C is defined as

N

P.:=> P(c) (1= P(éer)) (2.1)

i=1

with P(c;) the prior probability of symbat; and P(¢;|c;) the probability of receiv-
ing symbok; if symbolc; was transmitted.

The error probability hence equals the average probabiitgceiving an incorrect
symbol. In the context of BCls, it is desirable to minimize theeprobability in
order to minimize the instances in which the BCI does not reecbraling to the
user’s intention.

The second performance measure is the mutual information.

Definition 2.2 (Mutual information) The mutual information of the inpute C =

{c1,...,cny} and the output € C = {é¢1,..., ¢y} of a communication channel is
defined as
algeL P(c;,¢)
](C7 é) = P(Clué>10g #7 (22)
22 7T P(e) P(¢y)

i=1 j=1

with P(¢;, ¢;) the probability of jointly observing input/output symbejsand ¢;,
and P(c;) and P(¢;) the marginal probabilities of symbols and¢;.

Mutual information can also be expressed in terms of thesgetanditional) Shan-
non entropy ag(c,¢) = H(c) — H(cl¢) = H(¢) — H(¢|c) (cf. [CTO6]). Note that
while the definition of error probability requires the in@utd output of the channel
to take values in the same set, mutual information can be atedgor random vari-
ables that take values in arbitrary sets. In terms of geitgriais hence beneficial to
also considet € C # C. The significance of mutual information as a performance
measure for communication channels is due to the famousiehaading theorem

of C. Shannon [Sha48], which states that the mutual infoonatorresponds to the
maximum number of bits that can be send on average over aehaith arbitrarily

_Bran
: | ceC
[Intention < S~ [Exp. Paradigi’— = [cNS-~ <[ Decoditg-m

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2.3: A BCl communication channel.
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low error probability. This gives rise to the channel capaof a communication
channel and the concept of information transfer rate (ITR)ctvis discussed in the
context of BCls in Section 2.3. There are, however, more reaputilize mutual
information as a performance measure for BCIs, or for comnatioic channels in
general, which are discussed now.

Mutual Information and the Minimum Bayes Error

First, mutual information provides upper and lower boundsh@ minimum Bayes
error.

Definition 2.3 (Minimum Bayes error)Letc € C = {¢,...,cy} andé € C =

{¢1,..., ¢y }. The minimum Bayes error in estimatingrom ¢ is defined as
M

The minimum Bayes error is the average probability of inatityeinferring the
transmitted symbol if always that symbol is selected th#ésmost probable one
given the observed output of the channel. This constitutesduction principle in
machine learning. The minimal achievable average proibahilinferring the value
of one random variable from observation of another randonabke is defined as
the error that is obtained if the optimal Bayes classifier ipleged.

Definition 2.4 (Optimal Bayes classifier)Letc € C = {¢i,...,ex}andé € C =
{¢1,..., ¢ }. The optimal Bayes classifier for inferring the value:éfom observ-
ing ¢ is defined as

JBayed €) = arggéax{P(dé)}. (2.4)
By construction, the optimal Bayes classifier achieves thémum Bayes error.
As it is easy to see, the minimum Bayes error coincides withether probability
as defined in (2.1) i€ = C and for each;, i = 1,..., N it holds thatP(¢;|c;) >
P(¢jle;) forall j = 1,..., N andj # i. If these conditions do not hold, the error
probability may exceed the minimum Bayes error.
A lower bound on the minimum Bayes error in terms of mutual infation was
first given by R.M. Fano in his class notes on information thieor1952.

Theorem 2.1(Fano’s inequality) Letc € C = {¢,...,cy} andé € C = {¢1,...,
¢y} Then for the minimal Bayes error of estimatindrom observation ot the
following inequality holds:

H(c|¢) — H(Psayed S H(cl¢) =1 H(c)—I(c,¢) — 1
log [C| —  log|C| log N ’

B Bayes > (2.5)

with |C| the number of elementséh If C = C the inequality can be further strength-
ened by replacindgpg N in the denominator bjog(N — 1).
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Figure 2.4: Relation of minimum Bayes error and mutual infdroma

A proof of Fano’s inequality can be found in [CT06]. Fano’sqoality is tight, i.e.,
there are probability distributions erandc¢ for which equality holds in (2.5). Note
that tightness does not imply that equality in (2.5) holdseieery distribution ore
andc.

An upper bound on the minimum Bayes error in terms of mutuarmétion is
given by Feder and Merhav in [FM94].

Theorem 2.2(Feder & Merhav) Letc € C = {c¢y,...,cy} andé € C = {¢1,...,
¢y} Then for the minimal Bayes error of estimatindrom observation ot the
following inequality holds:

PBayeSS 1 - 2[(6’6)_1—[(6). (26)

Contrary to Fano’s inequality, this bound is only tight attaer points.

SinceH (c) is constant, the two bounds (2.5) and (2.6) imply that mazimg mu-
tual information ofc and ¢ minimizes the minimum Bayes error. Furthermore,
Pgayes = 0 if and only if I (¢, ¢) = H(c), i.e., if the mutual information of and¢
equals the entropy af. The relationship of the minimum Bayes error and mutual
information is illustrated in Fig. 2.4 fof = C = {cy,...,cs} and P(c) = 1/4,
with the area outside the shaded region corresponding tossifple combinations
of minimum Bayes error and mutual information.

In summary, mutual information can be used, with some litaites, as a substitute
for error probability. While this certainly is an interegjifeature, it is unclear so far
why mutual information should be used instead of or in addito error probability.
This is addressed next.
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Mutual Information and Error Entropy

Since the mapping between mutual information and the mimnBayes error is
not one-to-one, it is instructive to investigate what gixiee to this ambiguity. Un-
fortunately, this is a difficult and so far poorly understqgodblem. Here, only the
influence of the error uncertainty on the relation of minimBayes error and mu-
tual information is discussed, and used to motivate the tiseitual information as
a performance measure for BCIs.

Both, mutual information and minimum Bayes error, are fullyedined by the
probability distributionP(c, ¢). Thus, any change in minimum Bayes error or mu-
tual information has to be reflected (¢, ¢). As itis obvious from Fig. 2.4P(c, ¢)
can be varied in order to alter mutual information while kaegpthe minimum
Bayes error constant. The key to understanding why this isiplesis the defi-
nition of the minimum Bayes error. Again, lete C = {c¢;,...,cy} be the input
andé € C = {é1,...,¢én} the output of the communication channel, apged¢)

the optimal Bayes classifier as defined in (2.4) for a giveridigion P(c, ¢). The
minimum Bayes error can then be written as

Prayes = ZP(éj)(l —iegl?XN}{P(Cﬂéj)})

- 1 ZP(@) max }{P(Cz’|éj)}

€{1,...,.N
M
= 1= P(&)P(geayed¢;)|é;)
j=1

= 1- Zp(gsayes(éj)7éj)- (2.7)

As a consequence, thosé¢ elements ofP(c, ¢) that are indexed bygayed ¢;) With

j =1,..., M fully determine the minimum Bayes error. Sinf¢c, ¢) has a total

of M N elements,M (N — 1) elements can be varied freely to alter the mutual
information(c, ¢). Then note that mutual information can be written as [CT06]

I(¢,¢) = H(c)— H(c|¢) = H(c) + H(¢) — H(c, ¢). (2.8)

.....

decoded by the minimum Bayes classifier for each output synilha joint entropy
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of ¢ andé can then be further decomposed into

H(c,e) = — Z > P(ci,é5)log P(c;, ¢;)

(. J

:5HError(C:é)
M
— ) P(gsayed &), &) 10g P(gBayed¢;), &) (2.9)
j=1
::ﬁBayes(c,é)

Here, the termHgayed ¢, ¢) contains the elements éf(c, ¢) that determine the min-
imum Bayes error and{Ermr(c, ¢) all other elements. ConsequentfyBayes(c, ¢)is

a measure related to the entropy of the correctly classifietbsls if the optimal
Bayes classifier is used, aﬁ&rro,(c, ¢) is a measure related to the error entropy, i.e.,
the uncertainty which type of error is being made. Note tludh lexpressions are
not real entropies since their probabilities do not add upn®. It is now assumed
that the elements d?(c, ¢) that determine’?Bayes(c, ¢) are fixed, which implies that
the minimum Bayes error is also held constant. If then the areasf error entropy
Henol(c, ¢) is decreased while keepirdg(c) and H (¢) constant, this leads to an in-
crease in mutual informatioh(c, ¢) due to (2.8) and (2.9). The converse holds if
FIEm,r(c, ¢) is increased, i.e., this leads to a decrease in mutual irgfbom This
relation is indicated by the arrows in Fig. 2.4. The uncetiawhich type of error

is being made thus influences mutual information, with hightual information
correlating with low error uncertainty. This is furtheruditrated in the following
example.

Example 2.1. Consider two different BCIs a) and b) (Fig. 2.5) with input/outpu
symbols:;, ¢ € C = {cy,...,cqa}. For BCl a), letP(c;, ¢;) = 3/15and P(c;, ¢j4;) =
1/60, i.e., the probability of jointly observing the same inpuidaoutput symbol
equals3/15 for all symbols, and the joint probability of observing diffnt input
and output symbols equalg60 for all combinations of symbols. This leads to
an error probability of P, = 0.2 and a mutual information of (¢, ¢) = 0.96 bits.
Now consider BCI b). Here, the probability of jointly obsexytihe same input and
output symbol also equally 15. As a result, the error probability of BCI b) is the
same as that of BCl a)P, = 0.2. The joint probability of observing different input
and output symbols however is not equal for all combinatidrsymbols. Instead,
this probability is1/20 for combinations{c;, c2}, {c2, c1}, {cs, ca}, {ca, c3}, and
zero for all other symbol combinations (indicated by thesmig arrows in Fig. 2.5).
This constitutes a decrease in the error uncertainty, sgeeh symbol can only be
decoded incorrectly in one way. As a result, the mutual inédrom of BCI b) equals
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1 me, Ple,¢) =2
sz-éz P(ci, ¢j4) € {0, 5

c3 3 P,=0.2

42:64 I(c,¢) =~ 1.23 bits

Figure 2.5: Two BClIs with equal error probability but a) loweda) higher mutual
information.

o

I(c,¢) = 1.23 bits and hence exceeds the mutual information of BCI a) ire syit
equal error probability.

The relation of error entropy and mutual information is aofthisignificance for
BCls. Consider again the two BClIs in Fig. 2.5. If these are useddotrol of a
hand prosthesis, input symbeisandc, could be used for moving the hand to the
left or right, and input symbols; and ¢, could be used for opening and closing
the hand. If BCI a) is used for control of the hand, each type freran occur.
For example, instead of moving the hand to the left the uséne@BCI might un-
intentionally open the hand and thus drop a previously miake object. This type
of error is not possible when using BCI b) for control of the meprosthesis. In
BCI b), the two sets of input symbols:, c,} and{cs,c,} are decoupled. As a
consequence, errors can only occur within one set. Accdlgripening instead of
moving the hand can not occur.

In summary, the exact relation of mutual information andimum Bayes error is
largely not yet understood. Nevertheless, a high mutuarmétion of a BCI is
desirable not only because of the relation to the minimum Bayeor, but also due
to the relation to error entropy. Mutual information thusyides a measure for the
performance of BCls that should be used in addition to errdogodity.

Mutual Information of Random Variables from Arbitrary Sets

One further benefit of mutual information is that it can be poied for random
variables from different sets. While at first glance this deesseem significant, it
does provide an important advantage in comparison to tioe probability defined
in (2.1). As illustrated in Fig. 2.3, information transm@sin BCIs is not confined
to one set. Instead, at different stages of the informatiansimission process the
BCl-user’s intention is encoded in variables that take vainekfferent sets. If the
error probability is used to measure performance of a BCI oahjables that take
values in the same set can be evaluated. As a direct consexrjuba BCI can be
evaluated only as a whole. Mutual information, on the otlzerd allows, at least in
principle, to measure the performance of different comptef a BCI by estimat-
ing the mutual information of the input to and output of a cam@nt. This enables
the analysis and optimization of different components of a B@ependently of
other components. While in principle this also holds truetfa minimum Bayes
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error, mutual information is in general easier to estimhtensive use of this prop-
erty of mutual information is made in Chapter 4.

2.3 Channel Capacity and Information Transfer Rate

One performance measure frequently used in the BCI literastutke so called
information transfer rate (ITR) briefly mentioned in SectiA. In this section, the
ITR is discussed in more detail, and it is shown that in theexrof BCls it does
not have the meaning usually attributed to it.

The ITR is defined as follows [WBHDO0].

Definition 2.5. Letc, ¢ € C = {cy, ..., cy} the input and output of a BCl commu-
nication channel. Furthermore, Iét. the error probability of the BCI as defined in
(2.1). The information transfer rate is then defined as

P
ITR(c, ¢) :=log N + P, log N <

1 + (1 — P.)log(l — P,). (2.10)

It is easy to show that the ITR equals the mutual informafien¢) iff P(c) = 1/N,
the error probability for each transmitted symbol is egaal] each possible error
is equally likely. The relation of ITR and mutual informatican be rendered more
precise by the following theorem.

Theorem 2.3.Lete, ¢ € C = {cy,...,cy} the input and output of a BClI commu-
nication channel. Furthermore, Idt. the error probability of the BCI as defined in
(2.1), Peayesthe minimum Bayes error as defined in (2.3), anddet= Fgayes Then
the ITR as defined in (2.10) constitutes a lower bound on theahinformation of
the output and input of a communication channel, i.e.,

I(c,¢) > ITR(c, é). (2.11)

Proof. Recollect Fano’s inequality in (2.5) for input and output aftennel taking
values in the same set,

H{(c|¢) — H(Phayed

B > 2.12
Bayes — log(N —_ 1) ( )

Rearranging and using. = Pgayesresults in
I(e,¢) > H(¢) — H(P.) — P.log(N — 1). (2.13)

Then note that forP(¢) = 1/N the entropyH (c) = log N, and thatH (P.) =
—P.log P. — (1 — P,)log(1 — P.). Equation (2.13) then becomes

P,
I(c,¢) > logN+PelogN

(1= P)log(1— ) = ITR(c,é).  (2.14)

[
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The use of ITR as a performance measure for BCls hence derwestfre fact

that it provides a lower bound on the mutual information @& thput and output
of a BCI that, contrary to the actual mutual information, carebsily estimated.
Since the mutual information equals the maximum numbertsftbat can be send
on average over a communication channel with arbitrarily éoror probability, the

ITR is taken to provide a conservative measure of how muabrimétion can be
send over a BCI. This is incorrect, as is shown now.

The basis of this argument is the famous channel coding ¢heaf C. Shannon
[Sha48]. For a discussion of this theorem the following dedfins (adapted from

[CTO6]) are required.

Definition 2.6 (Code) Consider a communication channel depicted in Fig. 2.1 with
input ¢ and outputé with ¢,¢ € C = {¢,...,cn} and a given probability mass
function P(c, ¢). A (N, n) code for this channel consists of

1. An encoding functiohins : C — Y™ that maps each input symbol ¢hinto
a sequence of lengthin ).

2. A decoding functiohé’;l : XM — C that maps each sequencerogymbols
in X into C.

In a communication channel with an encoding and decodingeatare the infor-
mation is thus not directly transmitted over the channestdad, a sequence of
symbols in)’ is sent over the channel for each input symboljrand the corre-
sponding sequence at the output of the channél’ irs used to infer the original
transmitted symbol ii€. Note thatC, ) andX may or may not coincide.

Definition 2.7 (Maximum error probability) The maximum error probability for a
(N, n) code is defined as

A = max {Pr <h((;;l_ (x(”)) # cz-|hé’;)c(ci)>} . (2.15)

1e{l,...,N}
Definition 2.8 (Rate) The rate of & N, n) code is defined as

log N
R:= Oi . (2.16)

The rate specifies the average number of bits per transmisisad carry useful
information, i.e., information that is to be transmitteceothe channel.

Definition 2.9 (Achievable rates)A rate R is said to be achievable if there exists a
sequence of2"#, n) codes such thdtm,,_., A\ = 0.

Definition 2.10(Channel capacity)The channel capacity of a discrete memoryless
channel is defined as

C .= I}I;g}){{[(y, x)}. (2.17)
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Note that the channel capacity refersitagy, =), while the ITR provides a lower
bound oni(c,¢). This, however, does not affect the following argument. HNit
these definitions the channel coding theorem can be state@5]CT

Theorem 2.4(Channel coding theorem}or a discrete memoryless channel, all
rates R below capacityC' are achievable. Conversely, any sequencé¢26f, n)
codes witHim,, .., A = 0 must haveR < C.

An accessible proof of the theorem is provided in [CTO6]. Herdy the first part
of the theorem is of interest. It asserts that for every ratevb capacity as defined
in (2.17) there exists a coding scheme that achieves arrailyittow maximum
error probability. The channel coding theorem thereby simrifies what precisely
is meant by the term information transfer.

Definition 2.11 (Information transfer) Information transfer is understood as trans-
mitting data over a channel with arbitrarily low maximum ermrobability.

The crucial part in the statement of the channel coding #rads that arbitrarily
low maximum error probability requires arbitrarily longd=s, i.e., thah may go
to infinity in Definition 2.9. In ordinary communication chagls this seldom poses
problems, since here long codes, at least in principle, onply a delay in the
data transmission. In BCls, however, this is different. Cogrisajain the structure
of a BCl communication channel in Fig. 2.3. Here, the encodioggdure is im-
plemented by the experimental paradigm. It thus has to b@edaput within the
brain, i.e., by the user of the BCI. While this might still be fisées for short and
simple codes, increasing the code length and/or code caitypiell soon exhaust
the intellectual capabilities of any BCl-user. The channdirg theorem, however,
only applies if arbitrarily long codes are permitted. As eedi consequence, the
channel coding theorem does not apply to BCls. For this redlseiT R can not be
interpreted as the amount of information that can be trattsdover a BCI.

The results of this section can be summarized as follows.ITRgrovides a lower
bound on the mutual information of a BCI which is easy to compunce in
ordinary communication channels mutual information egjtfa maximum number
of bits that can be send on average over a channel with atlyittaw maximum
error probability, ITR is often used in the BCI literature in aythat implies that
it specifies a lower bound on the information that can be tratsd over a BCI.
This is incorrect, since the channel coding theorem doeaply to BCls. Hence,
the ITR does not have any theoretically justifiable meanmtphe context of BCls,
and it does not provide any information on the performancenefBCI that is not
already provided by the error probability in conjunctiorimthe number of actions
the user of the BCI can choose from. Its only use is the combinaif these two
properties of a BCI into a single expression.
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2.4 The Significance of Feature Extraction

While so far only the problem of measuring performance wasess$ed, this sec-
tion discusses the problems that arise when actually degignBCI in order to
optimize performance measures. In this context, it is atgiat the problem of fea-
ture extraction constitutes the main challenge in desghigh-performance BCIs.
This section thereby provides the theoretical justificafar the work presented in
Chapters 3 - 6.

Recollecting the structure of a BCl communication channelgi i3, there are two
components of a BCI that can be engineered to optimize perforend hese are the
experimental paradigm and the decoding procedure. Theriexpatal paradigm
controls how much information on the user’s intention isteared in the data
recorded from the CNS. This amount of information can be esq@é in terms of
the mutual informatior (¢, =) and determines, via (2.5) and (2.6), upper and lower
bounds on the minimum Bayes error that can be achieved in &stign: from z.
For this reason, one goal in designing experimental panaslig to maximize mu-
tual information of the BCI-user’s intention and the recordeda. For now, it is
assumed that the experimental paradigm and the recordinggure are fixed, and
a signalx is recorded with a certain mutual informatié(x, ). This signal is then
used in the decoding procedure to infer the BCl-user’s imantHere, the goal is
to optimize the decoding procedure in terms of a certainoperdnce measure, e.g.,
the error probability or the mutual information of originatentionc and inferred
intentionc.

Learning the Optimal Bayes Classifier

Drawing from the discussion of the previous section, theimim error that can
be achieved in estimatingfrom z is the minimum Bayes error. Hence, it seems
sensible to employ the optimal Bayes classifier to inférom z. Forc € C =
{c1,...,exy}andx € X = {4, ...,z } the optimal Bayes classifier is given by

gBayed ) := argmax{ P(c|z)} = argmax{P(c,z)}. (2.18)

ceC ceC

Constructing the optimal Bayes classifier thus requires kedge of the unknown
distribution P(c, ). This raises the question how the optimal Bayes classifier can
be constructed. Assuming a set of training d&ta {(c1, ), ..., (cp,xr)} with L
samples drawn i.i.d. fron®(c, =) is available, one way to obtain the optimal Bayes
classifier is the following procedure. First, the distribatP(c, ) is estimated from
S as

Ples,z;) — tS{c=ci Nz =1}

L

fori=1,...,N,7 =1,..., M, and4S{.} the number of occurrences of the ex-
pression in the bracket in the training set. Almost sure eggence of this estimate

(2.19)
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Figure 2.6: lllustration of the learning curve for the opginBayes classifier

to the real distributiorP(c, z) for L — oo is guaranteed by the Bernoulli Theorem.
An estimate of the optimal Bayes classifier is then constduttam P(c, z) as

JBayed @) 1= argérclaX{P(c, x)}. (2.20)
The viability of this procedure depends on the amount ohingl data available.
To see this, it is instructive to investigate the conditiansler which the estimated
optimal Bayes classifier and the true optimal Bayes classibiecae, i.e., make the
same decision for eache X'. Quite surprisingly, this does not require ttﬂ%(tc, x)
is a good estimate dP(c, z). Necessary and sufficient conditions {@kyes= Gsayes
are thatvx € X it holds that

argmax{ P(c|z)} = argmax{P(c|z)}. (2.21)
ceC ceC

Upper and lower bounds on the probability that (2.21) hotdsfcertaine € X can

be calculated as a function of the amount of training datagu€hernoff bounds.

In general, the probability that (2.21) holds for a certaig X increases with the

number of occurrences efin S. The elements itk for which (2.21) does not hold

then determine by how much the error probability of the easted Bayes classifier

exceeds the minimum Bayes error. This gives rise to the legrcurve, which il-

lustrates the convergence of the expected classificationterthe minimum Bayes

error as a function of the size of the training Seffig. 2.6).

Now consider the set’ which constitutes the feature space. As defined in Section

2.1, each element € X specifies one possible observation of recorded EEG data.

Let T be the duration of the recorded datathe sampling rate/ the quanitzation

accuracy anaV the number of electrodes. Then the number of elementsaquals

|X| = dT"/+N. For example, assume that one second of EEG data is recomiad f

128 channels at a sampling rate of 500 Hz and digitized witlbil.6 Then the
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number of elements ik’ equals|X’| = 161°0912 This is an incredibly large
number. To make matters worse, constructing the optimal 8elgssifier in (2.20)
from the training setS requires observing multiple instances of each element of
X in S to obtain an estimate of (2.19) that fulfills the conditions(2.21) with
high probability. Accordingly, just recording the amoumti@ining data necessary
to obtain a sensible estimate of the optimal Bayes classifi€2.1.8) is absolutely
impossible. Conversely, for any practically feasible antaafntraining data the
error probability of the estimated Bayes classifier will by éaceed the minimum
Bayes error. It is thus apparent that the optimal Bayes class#in not be directly
applied tox to inferc.

In the above discussion only the optimal Bayes classifier ismrdte feature spaces
is considered. This restriction is made due to the fact tabptimal Bayes clas-
sifier is the theoretically optimal classifier. As such, iespecially well suited to
illustrate important concepts. It can be argued that otleessdiers, such as support
vector machines or logistic regression, can be employeddibplay significantly
higher rates of convergence than the optimal Bayes classiftés is indeed cor-
rect, and such classifiers are extensively employed in thiapters. However, the
above discussion is similar for other types of classificatitgorithms and continu-
ous feature spaces. For example, if support vector machmeesonsidered instead
of the discrete optimal Bayes classifier, the above argunamibe carried out by in-
vestigating the VC-dimension of the separating hyper-pland demonstrating the
slow convergence of the empirical to the expected risk udiafgibution indepen-
dent bounds [Vap98]. In summary, even the most advancesiftasion algorithms
fail if they are applied to feature spaces as large as theseissed here.

Feature Extraction and the Rate of Convergence

The above discussion raises the question how the rate obogence of the esti-
mated Bayes classifier to the minimum Bayes error can be irenle&s general, it
is impossible to derive distribution independent boundshernrate of convergence
for the estimated Bayes classifier [DGL96]. This implies timat surprisingly, the
rate of convergence of the expected error probability tontii@mum Bayes error
depends on the properties of the distributi®fr, z). Unfortunately, it is largely un-
known exactly which properties @?(c, x) influence the rate of convergence. The
only obvious property that adversely affects the rate of’eagence igX|, the size
of the feature space. Given a fixed amount of training dateredeing the size of
the feature space leads to a better estimat®(@f ), and therebyve > 0 to a
higher probability that the error probability of the estie Bayes classifier does
not exceed the minimum Bayes error by more thait is thus desirable to find a
transformatiorl” : X — X with |X| < |X| and usei = T'(x) instead ofz to infer

c. However, as the following theorem shows, not evEnyith \)3| fixed is equally
suited.
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Theorem 2.5(Transformations of: can not decrease the minimum Bayes error)
Letc € C = {er,...,en}, @ € X = {a1,..., 25}, and Pigcd the minimum

Bayes error in inferring: from = as defined in (2.18). Then for all transformations
T : X — X itholds thatPs 2" > piro.

Bayes ayes

Proof. The proof of Theorem 2.5 is easiest to understang(if, z) is seen as a
matrix, with the rows corresponding to théelements of and the columns to the
M elements oft’. The minimum Bayes error in estimatiadrom z is defined as

P =1 omax {P(eir;)}, (2.22)
J=1

i.e., as the error that is obtained if for each column/gt, =) the row with the
maximum entry is chosen. The joint probability mass functbc andz = 7'(z) is
denoted byPr(,(c, 2), and the corresponding minimum Bayes error is defined as

P =1 ieglaXN}{PT(x) (cidy)} - (2.23)
S el

Now, any transformatiof’ : X — X can either be one-to-one and onto, one-to-one
but not onto, not one-to-one and onto, or not one-to-one ahdmto.

1. T is one-to-one and onto
In this case[" is an invertible transformation arje’| = |X|. This implies
that each column aPp(,)(c, Z) corresponds to exactly one columnifc, x),
i.e., the columns are permuted. This does not affect themuim Bayes error,
since in (2.22) and (2.23) the sum over all columns is taken.

2. T is one-to-one but not onto

This implies that|X'| < |X|, since in addition to thosé/ elements int
that are hit byl" exactly once there are elementsinthat are not hit byr".
However, these elements do not enter into the minimum Bayes gince
their probability is zero. Sincé is one-to-one, all columns oy, (c, 2)
with Pp¢y(2) > 0 correspond to exactly one column Bfc, z). This again
does not alter the minimum Bayes error, since in (2.22) arZBjazhe sum
over all columns is taken.

3. T is not one-to-one but onto
This implies that|X'| > |X|, since every element ii is hit (I" is onto),
and at least one element.i s hit at least twice T is not one-to-one). First
consider all elements iY that are hit exactly once. Each of the corresponding
columns ofPr(,(c, &) corresponds to exactly one column®fc, =), which
does not alter the contribution of these columns to the mininBayes error.
Now consider all elements i that are hit at least twice. Denote this set by
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Xx* and letX; = {zr € X : #; = T(z)}, i.e., all elements oft that hit a
certain element; € X'. Then note thatz; € X it holds that

e{1,...,N} e{1,...,N}

max {Prq)(c;,2;)} = max ZP(ci,x)

(2.24)

A
S
i 5
~—
g
o
&
——

by the triangle inequality. Plugging (2.24) into (2.23)nHeads toPéﬁy_e’g) >
P,

4. T is not one-to-one and not onto
First note that all elements &’ that are not hit byl" do not enter into the
computation of the minimum Bayes error due to zero probgbilihen apply
the argument foll” one-to-one and onto.

In summary, transformations that are one-to-one do not tdeeminimum Bayes
error, and transformations that are not one-to-one canianhgase the minimum
Bayes error. This completes the proof. n

The above theorem shows that any transformation thiat reduces the size of the
feature space can at best not affect the minimum Bayes erhile w practice it
very likely increases it. It is hence desirable to find a tfarmeation of the observed
data that reduces the dimension of the feature space in twdecrease the rate
of convergence while not affecting the minimum Bayes errdrisTs the goal of
feature extraction.

Definition 2.12 (Feature Extraction)The goal of feature extraction is to find a
transformation?” : X — X with |X| < |X| and PEET(I)_’C) — ple—o).

ayes — * Bayes

This goal might be overly optimistic, since reducing the eitsionality of the fea-
ture space can be expected to almost always increase theummBayes error. On
the other hand, a small increase of the minimum Bayes errdntrbigirrelevant as
long as insufficient training data is available to actuaky glose to the minimum
Bayes error. In practice, the goal of feature extraction iBrtd a transformation
of the data that minimizes thexpectecerror probability for a given set of training
data. This done by trying to find a transformation that aasean optimal trade-off
between increasing the rate of convergence of the learning@nd not increasing
the minimum Bayes error.

Implementing Feature Extraction in BCls

After demonstrating the necessity of feature extractiomfOls, it is now discussed
how feature extraction can be approached. First, recdllbimatransformatior” :
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X X with |X| < |X|is a possible feature extractlon algorithm. Consequently,
e, X C
P(X). For example X can be the set of possible variances at a certaln electrode,
the set of maximum amplitudes at a certain electrode, or evare abstract sets
such as the set of all possible values of mutual informatibthe EEG signals
at multiple electrodes. In fact, the notation used here ieg® enough fort’ to
represent any property of the observed datdl his raises the question which set
X C P(X) with |X| < |X]| should be chosen as the new feature space. One
way to approach this is to fix the dimension of the feature speaqy., Iet|X]

d, and then develop a sophisticated algorithm that detesrtime subset oP (X))
with the lowest (estimated) minimum Bayes error under thesgamt that|/’f’ | =

d. Unfortunately, it can be proved that this requires an extiael search over all
possible subsets @#(X) with | .X| = d [Cv78]. Considering the enormous size of
P(X), i.e., all possible subsets &f, this is impossible to realize.

This finally leads to what is regarded in this work as the mhallenge in the design
of high-performance BClIs. The original feature space of BClsyi$ab too large
to be used directly for training a classification algorithifhis requires a feature
extraction algorithm that maps the original feature spate & lower dimensional
feature space, on which it is feasible to train a classifieemgia limited amount of
training data. However, in the context of BCls, the size of tlas< of possible
feature spaces is enormous. Consequently, any algorithinddes not restrict the
class of possible feature spaces is impossible to realina: tHen can the class of
possible feature spaces be restricted? Such a restri@®tolbe specific enough to
decrease the number of allowed feature spaces to a congmallyifeasible point,
while being general enough to ensure that feature spadesatv minimum Bayes
error are included. The only possible procedure to resthietclass of allowed
feature spaces in a sensible way is to incorporate a-prifmimation. This a-priori
information has to reflect our knowledge on how the brain @sses information,
and which properties of signals recorded from the CNS canigieaaformation on
the BCl-user’s intention. Given such a restriction on the<lafspossible feature
spaces, powerful algorithms have to be developed thatrdeterthe in some way
optimal element of the class of admitted feature spaces ddn be summarized in
a mathematical way as follows.

Definition 2.13 (Feature extraction in BCls)etc € C the BCI-user’s intention
andx € X the data recorded from the central nervous system. The ddabhture
extraction in BCls is to solve the optimization problem

T* = argmin { f(c, T(x))} s.t.X € P* C P(X), (2.25)
T:X—X
with f : C x X — R some cost function related to the expected error probahbilit
of inferring ¢ from 7T'(x), and’P* some subset of the power g&tY’) that encodes
a-priori knowledge on how the brain processes informatios, which properties
of the datar provide information on.
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Figure 2.7: Control of a dynamic system by a BCI.

Note that in order to solve the optimization problem (2.25pbasetP* and a cost
function f have to be specified in advance. The process of developinghassie
cated method for feature extraction in non-invasive BCls bais be summarized
in the following three tasks:

1. DetermineP* by specifying assumptions on how information on the user’s
intention is encoded in the recorded data.

2. Find a suitable cost functiofithat estimates the expected error probability.
3. Find a way to efficiently solve (2.25).

Finding suitable subsef8* and good estimators of the expected error probability
f constitute the main contributions of this thesis in Chap8t¥st. It should be
emphasized again that finding a suitable suBSespecifyingf, and solving (2.25)
for a certain choice ofP* and f are problems from different domains. The first
problem of determiningP* pertains to how information is processed by our brain,
and how this is reflected in data that can be recorded from th®.dNis is usu-
ally considered to be the domain of neuroscience. The pmublEf determiningf
and solving (2.25), on the other hand, lie within the domdisignal processing
and machine learning. Designing high-performance feaMtection algorithms
requires a good understanding of both domains, which gsetb& importance of
interdisciplinary research in the context of BCIs.

2.5 Control of Dynamic Systems by BCls

Currently, BClIs are only used for controlling simple deviceshsas a cursor on a
screen or a spelling device. The goal of research on BCls, rewsvcontrolling
more complex systems such as robotic devices. These syatenaften unstable,
which leads to the following question: Can an unstable dyonaystem be stabi-
lized by control through a BCI (Fig. 2.7)? The limitation thatinposed here due
to the presence of a BCl is the limited bandwidth in the feeddack between
the operator and the dynamic system. The problem of coimgodl dynamic sys-
tem through a BCI can thus be formulated as a control problem kandwidth
constraints.
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Research on control with bandwidth constraints on the coneatian channel be-
tween plant and controller has been initiated about tersysgo. A recent overview
of the state-of-the-art in this field is given in [NFZEOQ7]. Btaesearch on band-
width limited control assumes that the bandwidth of the beat from the sensors
to the controller is limited, but data can be transmittechvziéro error probability.
While the obtained results differ depending on which notibstability is adopted
(e.g., whether asymptotic stability or only boundednesthefstate is required), it
has been shown that depending on the dynamic system thaits axower bound
on the rate of the communication channel that must be metdw atabilizabil-
ity. Hence, the amount of information that can be transfésethe communication
channel determines the class of dynamic systems that caalibzed.

The use of a BCI in place of the controller of a dynamic systerfediffrom the
problem usually considered in the control literature. Hére bandwidth is limited
only between the controller, i.e., the BCI, and the dynamitesys Feedback from
the system to the BCI on the other hand is provided by visuabfeeld and can thus
be considered, at least in practice, as obtained with ieficétpacity. This setting
is considered in [MSO07], in which it is proved that if a comnuation channel
between controller and dynamic system has zero zero-eapaaity no unstable
system can be stabilized almost surely. The concept of @eoy-capacity has been
introduced by C. Shannon in [Sha56].

Definition 2.14 (Zero-error capacity) The zero-error capacity’, of a noisy chan-
nel is defined as the least upper bound of rates at which it isiplesto transmit
information with zero probability of error.

In general, the problem of establishing the zero-error cipaf an arbitrary noisy
channel remains unsolved [KO98]. If, however, feedbackefreceived symbols
back to the sender is allowed, which is the case in the setimgidered here,
C. Shannon provided a sufficient condition for zero zerofetepacity using the
concept of adjacency [Sha56].

Definition 2.15 (Adjacency) Letc € C = {c¢1,...,cy} the input andé € C =
{¢1,...,¢u} the output of a discrete memoryless communication chanheb
symbols; ande¢; with i, 7 € {1,..., N} and: # j are called adjacent if there is
an output symbaty, k£ € {1, ..., M} that can be caused by either of these two.

Theorem 2.6(Zero-error capacity of memoryless discrete channels fegdback)
In a memoryless discrete channel with complete feedbackeifsed symbols to the
transmitting point, the zero-error capacity, is zero if all pairs of input symbols
are adjacent.

For this reason, a BCI can only have a zero-error capacitygrédadn zero if there
exist at least two intentions of the user that are never camafwith each other by
the BCI. At present, there is no BCI that meets this requirement,itais unclear
how such a BCI could be constructed. On the other hand, theraapp be no
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reasons why this should be impossible, at least in principlevertheless, due to
[MSO07] and Theorem 2.6 at present no BCI can be used to stahitigainstable
dynamic system. This conclusion can be illustrated by tHeviing example.

Example 2.2. Consider the discrete-time scalar dynamic system
z[t + 1] = ax[t] + bult], (2.26)

with z[t] the state of the system at timeu[t] the input to the system at timeand
a,b € R. Itis assumed thaiz| > 1, i.e., the system is unstable, ahd> 0. If
ult] = 0 andz[ty] # 0, thenlim;_., |z[t]| = oo, i.e., the state is unbounded. The
state of the system can be bounded if a control law

ult] = —sign{z[t]} (2.27)

is chosen. Then

ot + 1] = azlt] — b - sign{z[t]} :{ igiﬂ iiﬁﬁli ;E =0 @29
Forx[]>0x[t+1] olt] & =t] < L, andforx[]<0 x[t—l—l] oft] &
z[t] > —-25. Consequentlylim sup, . [z[t]| < 25 if ]:c[to]] < -2, i.e., the state

of the dynamlc system is bounded. If howq\m@ﬂ > b for anyt, the state of
the system grows without bounds since the control input is owepful enough to
drive the state of the system back to its stable regiff| < - (see Fig. 2.8).
Now consider the control law (2.27) to be carried out by an ape&rusing a binary
BCI. The control law then becomes stochastic, since erroghtiie introduced by
the BCI. HenceP(u[t] = —sign{z[t]}) = 1 — P., and P(u[t] = sign{«x[t]}) = P,
with P, > 0 the error probability of the binary BCI. Independently of tthesired
output of the controller, the probability that the contr@quenceuft;] = 1, i =

0,...,T, occurs is hence greater zero. Since the state of the systémeal’ is
given by
T
2[T] = a'zfto] + ) a'bulty), (2.29)
=1

this control sequence leads to the statd’] = a'z[to] + bZ a’~!. This is an

increasing function of” with limy_. . z[T] = oc. Consequently, there is sorfie
such thatz[T] > L,
even if the correct control signals are transmitted by the B&I¢ > 7. This
illustrates why no unstable dynamic system can be stabikb®dst surely by a
BCI with zero zero-error capacity.

While in practical situations a low error probability of the B@lght lead to a very
low probability of the state of the system exceeding somention finite time, the

which leads to the state of the system becoming unbounded
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Figure 2.8: State evolution for the dynamic system (2.28%fe- 1.1,6 = 0.2 and
different initial conditions.

boundedness can not be guaranteed as long as BCls have zemrpercapacity.

Consequently, if an unstable system is controlled by a BCI, oreashave to be
taken that ensure stability of the system independentlyhefdontrol signals re-
ceived from the BCI. This is a non-trivial control theoretioplem, which could be
approached by methods such as invariance control thatestisairthe state of the
system never leaves an invariance region (cf. [WBO05], [WB07]).
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Chapter 3

Feature Extraction via Source
Localization

3.1 Introduction

In this chapter, the feasibility of source localization amathod for feature ex-
traction in non-invasive BCIs is investigated. This is mdiehby the following
considerations. As discussed in Section 2.4, it is necg$sd@Cls to restrict the
class of allowed feature spaces, denoted™y in order to construct viable fea-
ture extraction algorithms. The clags determines which properties of the data
recorded from the CNS are allowed as possible features. tehsgpresents the
a-priori knowledge that is available on how the BCl-user'ition is encoded
in the recorded data. This is the problem of deciphering #gral code. Most
research on neural coding deals with action potentialsraflsineurons or small
networks of neurons (cf. [DA01] for an introduction to thagtc). For the record-
ing modalities employed in this thesis, i.e., EEG and MEG, question of the
neural code is a largely open problem (cf. [NS05]). In tradial neuropsychol-
ogy the main tool for the analysis of EEG/MEG data is averggwent related
potentials (ERPS), i.e., averaging responses of the elemtmagnetic field of the
brain to external stimuli over many trials. In recent yeamsasures of event related
synchronization/desynchronization (ERS/ERD), i.e., cleang the power of the
electric/magnetic field in specific frequency bands, hawenbecreasingly used for
investigating neural processes [PL99]. Considering theptexity of the human
brain, these are relatively simple measures. In genemlptbblem of how infor-
mation on cognitive processes is encoded within EEG/ME@G dahains unsolved.
For this reason, it is also unclear how the class of allowatufe space®* could
be restricted to properties of the recorded data that peawvidst information on the
BCl-user’s intention.

The idea behind using source localization for feature ektva in BCIs is not to
decipher the neural code, but rather to largely circumv@stgroblem. The aim of
source localization in EEG/MEG s to detect areas withintihen that are active
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during a certain cognitive task. Here, active brain areagafined as areas with a
high current density, since the spatial distribution ofreat density within the brain
gives rise to the electric/magnetic field that can be meadsonethe scalp [NS05].
It is well known that information processing within the braat least for low-level
processes such as the first stages in processing of visuai#ipuor sensorimotor
stimuli, is spatially localized, i.e., that certain brameas are specialized for certain
tasks. It thus seems sensible to infer the user’s intenbioim, general any cognitive
task, from measures of activity of certain brain areas. hhas got the advantage
that the specific nature of how the information is temporaltyoded within the
electric/magnetic field becomes irrelevant.

Employing source localization methods for feature extoacin non-invasive BCls
has been first proposed almost simultaneously by this authGGWBO05], by Qin
et al. in [QDHO04], and by Grave de Peralta Menendez et al. BP&5]. More
recent studies include [KLHO5] and [LLAQ7]. A comparisontbése studies with
the work presented in this chapter is carried out in Sectidna88ong with a critical
evaluation of the efficiency of source localization for featextraction.

In this chapter, source localization is combined with Irefegient Component Anal-
ysis (ICA) to obtain estimates of the current density in sfpebrrain regions. ICA
decomposes the measured EEG data into statistically indepeécomponents (ICs).
Using ICA as a preprocessing step before source localizhtisrgot the advantage
that often simple source models for each IC can be used farhwthe EEG inverse
problem, i.e., estimating the current density within thaitbbfrom measurements
on the scalp, is well defined. A disadvantage of using ICA i th&s necessary
to identify which ICs constitute meaningful components, arfich ICs represent
noise. This is solved here by proving that ICs representingenare not invariant
with respect to initial conditions of the ICA algorithm. UgimCA multiple times
on the same data set with randomized initial conditions @atlows the identifica-
tion and exclusion of ICs that represent noise. The origin@nngful ICs is then
localized by modeling each IC as a single current dipole iwighfour-shell spher-
ical head model. This methodology is applied to EEG datainétaduring real
and imaginary tapping movements of the right and left indegdr, and it is shown
that it constitutes a viable option for feature extractiomon-invasive BCIs. The
contribution of this chapter is therefore twofold. Firstestablishes the viability of
source localization for non-invasive BCls, and second, ietgs a methodology
how in ICA components representing noise can be reliablytifieth and excluded
from further analysis.

The structure of this chapter is as follows. In Section 32 ¢oncept of ICA
and the specific algorithm used in this work are introduceds then shown how
the origin of each IC can be localized, and how an estimat@eftpatial current
density distribution within the brain can be obtained. Thainmcontributions of
this Section are a theorem on the behavior of ICA in presenosutiiple Gaussian
sources, and a methodology for identifying and excluding &psesenting noise. In
Section 3.3, preliminary experimental results from ongexttare presented. The
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chapter concludes with a critical evaluation of the effickenf source localization
for feature extraction in BCls. Parts of the work in this chapive been presented
in [GGWBO05] and [GBO06].

3.2 Methods

As before, letc € C = {¢,...,cn} be the BCl-user’s intention, and € X

the recorded EEG/MEG data. Since the experimental evatluati Section 3.3 is
performed using EEG recordings, only this modality is cdased here. In Chapter
2, X was defined as a discrete space in which each element ungtelymines the
recorded EEG data. For the purpose of this chapter, it isflogamieto let X = R T
with M the number of recording electrodes ahthe number of recorded samples.
Distinguishing the variabl&’, describing the number of samples, and the mapping
T, representing the feature extraction algorithm, shouldlear from the context.
Consequently, the matriX € R™*7 refers to one block of recorded data, and the
vectorz(t) € RM refers to the recorded data at all electrodes at one samjpie po
Note that while this is the convention usually employed mdnalysis of EEG data,
itis in fact an approximation if EEG data is digitally recedd

Before going into details of the methodology, it is importémtclearly state the
main assumptions that are being made in this chapter ondke of allowed feature
spacesP* to solve the feature extraction problem (cf. Definition 2.13

1. Only the activity of brain areas, defined as the spatidtidigion of current
density within the brain, provides information on the BCl4tsetention.

2. Distinct brain areas produce electric fields that thatségstically indepen-
dent.

3. The activity of a distinct brain area can be modeled by @isiourrent dipole.

These assumptions warrant some further explanations. mhasisumption has al-
ready been motivated in Section 3.1. The second assumptrequired in order to
apply ICA to EEG data, and there is considerable experimenidence that it is
indeed justified (reviewed in [HKOO01]). Assumption threé@sed on experimental
evidence [VSJ00], and constitutes the main reason for using ICA as a prepssc
ing step in source localization as discussed in Sectio.3.2.

Itis furthermore necessary to specify the exact form of #&reéd feature extraction
algorithm 7. Since the goal of this chapter is to infer the user’s intemtirom
activity of certain brain area$,;(X') should return an estimate of the current density
at certain locations within the brain. For simplicity, itissumed that for each class
¢ € C the activity in one region of the brain is sufficient. The dedifeature
extraction algorithm is thus a mappifg : X — RY, i.e., given some data the
mapping! returns an estimate of the current densityvatlistinct locations within
the brain. The optimal feature extraction algorithm is tfmmd by solving (2.25)
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with f(c, T(z)) = Zfil |T(X,,)| with X, denoting the recorded EEG data during
condition¢;. The resulting mapping™(X) thus returns estimates of the current
density at thoseV locations in the brain with maximum activity for each coratit
These areas are assumed to be optimal for inferring the B@kustention. The
implementation of this approach is now presented.

3.2.1 Independent Component Analysis

In ICA, a generative model of the dafa = [x(t),...,z(T)] € RM®*T measured
at M electrodes is assumed,

x(t) = As(t). (3.1)

Here, s(t) € RM describes the electric field of the original sources witliia t
brain, and each column of the full rank matrik ¢ R»*M describes the projec-
tion strength of a source to each of the electrodes. Thrautgtinis chapter, all
variables and matrices are assumed to be real. For now,ssigeed that at most
one source has got a Gaussian distribution. Furthermadseagisumed that each of
the M sources has got zero mean and unit variance. This is no lggsnefrality,
since the mean can be subtracted and added again at any peitd the linear-
ity of the model, and the variance of each source can be ariyttraded between
the source and the corresponding column of the mixing matriX he crucial as-
sumption in ICA is that for the probability density functiohtbe source vector it
holds thap(s) = [T, p(s;), i.e., that the original sources are mutually statisticall
independent. This also defines what is meant by the termesauthis context.

Definition 3.1 (ICA sources in EEG analysish ICA applied to EEG data, a source
is defined as a spatial current density distribution withie thrain with identical
temporal dynamics that is statistically independent obéller sources.

Consequently, a source does not have to be spatially confineadket region of the
brain or even consist of one connected region. This is dssmis the context of
source localization in Section 3.2.2. Besides the assumpfimutual statistical in-
dependence of the sources, which is supported by expemir@ntience reviewed
in [HKOO1], four other assumptions on the EEG dataare made by the model in
(3.1). These are a) linearity of the mixing process, b) imstacous propagation of
the sources to the sensors, c¢) at most one source has got sigsadistribution,
and d) equal number of sensors and sources. The first two pisasiare justi-
fied in the context of EEG analysis as discussed extensiag$05]. The third
assumption is discussed in Section 3.2.3. The fourth assmmis questionable.
Typically, EEG is recorded with up to 128 electrodes. Thisastrasted with an
estimated number of several million cortical columns witthe brain, which are
believed to constitute the main current sources within ttanbgiving rise to the
electric field on the scalp [NSO05]. In spite of this apparemitcadiction, ICA has
been applied with great success to EEG data. This is addrasdetail in Chapter
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5. For now, this assumption is adopted as a working assumieeping in mind
that its validity is questionable.
The goal of ICA is to reconstruct the original souregs) and the mixing matrix
A only from observations o#(¢) and the assumption on the sources of mutual
statistical independence. The general approach to thidemrois to formulate an
optimization problem

W* = argmin {F(WX)} (3.2)

WEeRMxM

such thatV* = PAA~! with P ¢ RM*M g permutation matrix and € RM*M g
diagonal matrix. Consequently, it then holds thét) = W*x(t) = PAs(t). The
elements ofy(t) are called the independent components (ICs). Differentoesoi
of the cost function?’, sometimes also called a contrast function [Com94], lead to
different algorithms. An excellent review of algorithms 1€A and the statistical
principles underlying the construction of their contrastdtions is [Car98].
Here, only the extended Infomax algorithm ([BS95],[LGS98onsidered, which
has been shown to perform well in the context of EEG analysisdwed in [JMB 01]).
Results obtained with other algorithms might slightly variie Infomax algorithm
is based on minimizing mutual information of the recongeddCs, i.e.,

F(y)=1I(y1,...,yn) ZH% H(yi,- .. yu)- (3.3)

Contrary to Chapter 2, herH(.) refers to the differential entropy (cf. [CT06]).
Equation (3.3) is an adequate cost function for ICA due to thiewing theorem
(cf. [Com94)).

Theorem 3.1.Lety € RM be a vector of random variables. Then it holds that
I(y1,...,ynm) > 0 with equality if and only if the elements gfare mutually statis-
tically independent.

Proof. Mutual information can be expressed as

o0

I(yl,---,yM)z/ p(y)log - —— ply) dy =D (p@)I [[pw) |, (34
—00 Zl;llp(yz) =1

M M
with D (p(y)” II p(yi)) the Kullback-Leibler divergence qf(y) and [ p(v;)-
i=1

=1

M
Due to Gibbs’s inequality, it holds thad? (p(y)” I1 p(yi)) > 0 with equality if
=1

M
and only ifp(y) = l:[lp(yz-)- O
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Finding a transformatiom* with F'(W*x) = 0 thus results in mutually statisti-
cally independent components. Under the assumptions asotiree model (3.1) it
then holds thay(t) = W*z(t) = PAs(t) andWW* = PAA~! [Com94]. Details

on how the optimization problem (3.2) can be solved for tloistrast function are
given in [LGS99].

3.2.2 Source Localization and ICA

Excellent reviews of different source localization methiéal EEG data are given in
[BMLO1] and [MML *04]. For this reason, only those aspects of source locadizat
important in this context are presented here.

There are two reasons for using ICA as a preprocessing stepelsiurce localiza-
tion, which was first suggested in [ZWJO0O0]. The first reasomad the inverse of
the obtained unmixing matrix constitutes an estimate obtiginal mixing matrix
up to scaling and permutation. Scaling and permutationsegéected from here
on, since these are irrelevant in the context of sourceilat@n. It is thus assumed
that(W*)~! = A. Recall that each columm; of A describes the projection strength
of sources; to each of the electrodes. Since the temporal evolution@fturce
s; only constitutes a scaling of the topograpday all information required to lo-
calize the specific source is already contained;inSource localization of ICs can
thus be completely decoupled from their temporal evolutidhe second reason
for using ICA before source localization is empirical evidenhat ICs can often be
accurately modeled by a single current dipole [V&J]. Since a current dipole has
only got six degrees of freedom (three for its position, twoifs orientation, and
one for its strength), the inverse problem of determinireggarameters of a current
dipole that best explain the topography of an IC is well-d&dinThis is in contrast
to source localization of raw EEG data, which usually reggimultiple current
dipoles to explain the data. If more thard/6 current dipoles are employed, the
inverse problem is ill-posed. Consequently, additionaliaggions on the param-
eter space, such as minimum variance or sparsity consydiatve to be imposed
to obtain an unique solution (cf. [BML0O1, MML04]). This is usually unnecessary
when performing source localization of ICs.

It should be noted that increasing the complexity of a model, increasing the
number of current dipoles, always leads to a more accurgtresentation of the
observed data. Choosing a model that achieves an optimaltihtetween model
accuracy and model complexity is an intricate problem tegtires a prior on the
class of allowed models (see [HBO1] for a general introductéind [KBJP98] for a
comparison of model selection techniques in EEG analy3isg assumption that
one IC can be modeled by a single current dipole is thus noetorfalerstood as
meaning that the source of an IC does indeed correspond ngle siurrent dipole,
or that a single current dipole is the best model in terms ofestrade-off between
model accuracy and model complexity. Instead, it only asgbat a single current
dipole, which constitutes the most simple model in EEG sedocalization, is
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EEG electrode

Current dipole
Skull

Figure 3.1: The four-shell spherical head model.

Radius [cm]| Conductivity [S/m]
Brain 7.1 0.33
CSF 7.2 1
Skull 7.9 0.0042
Skin 8.5 0.33

Table 3.1: Radii and conductivities used in the four-shdllesal head model

sufficiently accurate to model the topography of one IC far plurpose of feature
extraction.

In addition to a source model, source localization also ireguspecification of a
suitable head model. Here, only a four-shell spherical hmadel is considered
(see Fig. 3.1). This head model consists of four nested spharith the shells
representing the brain, the cerebrospinal fluid (CSF), thé,sknd the scalp. Each
sphere is assumed to be isotropic with a certain conductidtue. The radius
and conductivity value of each sphere shown in Tab. 3.1 is@has in the publicly
available toolbox EEGLAB [DMO04]. It should be noted that ttenductivity values
and radii of the spheres vary between subjects. Howeveg@amate choice of these
parameters is not required for feature extraction, as sudised at the end of this
section.

Using Legendre-polynomials, an analytic solution for thectic potential at any
position on the scalp due to a current dipole inside the miost sphere, i.e., the
brain, can be computed [RD69]. Leg, € R® be the position of the dipole and
0 < R3 the orientation of the dipole. The electric potential atfAelectrode with
coordinates-; can then be computed as

Ti = Uraip, )"0, (3.5)

with I € R? the so called leadfield vector. The position of the dipoleeenhon-
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linearly into the computation, while the influence of theeotation is linear. The
electric potential at all electrodes can then be computed as

xr = L(’I‘dip)e, (36)

with L(rgp) € RYM*3 the leadfield matrix. Note that for simplicity the dependenc
of the leadfield matrix on the positions of the EEG electradesopped. It should
be pointed out that it is incorrect to speak of an electrieptél without specifying
a reference. In EEG source localization, all electric poédshare computed with
respect to a common average reference. For this reasomehmfdorming source
localization, the recorded EEG data has to be transformeld that the mean elec-
tric potential across all electrodes equals zero for evanyde point.
The goal of source localization in this context is then tovedhe optimization
problem

7l 0°) = argmin {|la; — L(rap)6).) 3.7)

Tdip,0

foreach IC, i.e.; = 1,..., M. Depending on the topography of an IC, this can
constitute a non-convex optimization problem. Conseque(8l7) is solved in a
two-step procedure for each IC. First, a dipole grid, coxgtime volume of the
innermost sphere, is constructed, and the optimal orientaf each dipole on the
grid is computed. The grid position that minimizes (3.7hisrt chosen as the initial
position for a standard numerical optimization procedgese([NWO06] for a good
introduction to numerical optimization). The result of thgtimization procedure
is an optimal dipole positiom! and dipole orientatio®; for each of theM ICs.
The locations of thé/ dipoles thereby identify the regions of the brain that can be
considered active for the observed data.
Considering the complex geometry of the brain and the skdluse of an isotropic
spherical head model might appear questionable. Furthrerriee source localiza-
tion accuracy might be impaired by imprecise conductivajues and sphere radii.
Both concerns are indeed justified if the goal of source laatibn is to identify ac-
tive brain areas with maximum accuracy. In this case, moneptex head models
such as boundary element models (BEM) or finite element mq&&M) should
be employed (cf. [BMLO1]). For the purpose of feature exiagthowever, this is
irrelevant. The goal of feature extraction is not to localactive brain areas with
maximum precision, but rather to map the observed datathe.original feature
space, into another feature space in which classificati@mslified. All that is
required of feature extraction by source localization @t tfhe observed features
in the new feature space are separable, i.e., that differenitions lead to distinct
dipole locations. The physiological validity of the dipdteations is irrelevant.

3.2.3 Signal Subspace Identification by ICA

It is well known that if ICA is applied repeatedly to the sameadset some ICs are
stable while others vary [JMB)1]. Those ICs that vary are termed unstable, since
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they depend on the initial conditions of the ICA algorithm.sAgh, these ICs do not
solely depend on the observed data and should be excludeddrther analysis. In
this section, it is shown that in the framework considere® lastable components
represent mixtures of Gaussian sources. This is in corttydbe assumption usu-
ally made in ICA in order to ensure separability and identifigikthat at most one
of the original sources may have a Gaussian distribution [@fmFor real-world
applications, this is an unrealistic assumption. Howedgpping this assumption
requires an analysis whether the mixing matrix and the waigsources can still be
reconstructed in the framework of ICA. It is shown here thé& ihindeed the case
for those sources with a non-Gaussian distribution. Ganssdurces, on the other
hand, can not be reconstructed. Furthermore, it is shownthewcorrectly recon-
structed Gaussian sources can be excluded from furtheysasmalithout requiring
the a-priori specification of any cut-off criterion. Thisrche seen as a method for
subspace identification, with the signal subspace defingdeaspace spanned by
sources with a non-Gaussian distribution.

ICA and Multiple Gaussian Sources

So far, it was assumed in the mixing model (3.1) that at most source has a
Gaussian distribution. This ensured separability andtitialility of the ICA model

as discussed in [Com94]. This assumption is now dropped. Bjaeeifically, it is
assumed that. < M of the sources have a Gaussian distribution. Without loss of
generality, it is assumed that these are the firsburces, i.ep(s;) = N(0,1), i =
1,..., L. The following argument requires a famous theorem derinddpendently

by Darmois and Skitovic (cf. [Com94]).

Theorem 3.2(Darmois-Skitovic) Define two random variables

M M
= Z QaiSi, Y2 = Z bisi, (3.8)
=1 =1
with s; statistically independent random variables. yif and y, are statistically
independent, then all variables for whicha;b; # 0 are Gaussian.

Put differently, Theorem 3.2 states that two different swing/ statistically inde-
pendent random variables can only be statistically indéeehif the A/ variables
are Gaussian. Now consider the unmixing maifix, obtained by running ICA
on the dataX, with F(W*x) = 0. Then the elements @f = W*x are mutually
statistically independent due to Theorem 3.1. Now write

y=W'z=W"As =: Cs. (3.9)

It is then instructive to consider the possible class of imesiC' = W*A € RM*M
that are in accord with the requirements of the elementsasfwell as the elements
of y being mutually statistically independent. Note that aed#ht proof of this
theorem is given in [CL96].
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Theorem 3.3.Lets € RM be a random variable with mutually statistically inde-
pendent elements, and lgt= Cs with C € R™*M fyll rank. Furthermore, let
p(si) = N(0,1) fori = 1,...,L < M, ands; not Gaussian but also with zero

mean and unit variance far= L+ 1,..., M. Then a necessary and sufficient con-
dition for mutual statistical independence of the elemehig ¢ R is thatC is of
the form
| @ 0
C = { RE (3.10)

with Q € R¥*L an orthogonal matrix, and® € RM-1*M~L g permutation matrix.

Proof. Sufficiency is proved first, i.e., it is shown that fGrof the form in (3.10) the
elements ofy are mutually statistically independent. Consider the firelements
of y, denoted byy"). These are a mixture of the original Gaussian sources
s;, i =1,..., L. Itthen holds that

E {y<1>y<1>T} —E {Qs(l)s(l)TQT} —ccT=1. (3.11)

Here, the second equality is due to unit variance and staishdependence of
the original sources, and the third equality dueicorthogonal. The elements
of y() are hence uncorrelated. Since they are also jointly Gayss&@ng a sum
of Gaussian random variables, this implies mutual staéiktndependence. Next,
consider the lasfi/ — L elements ofy, denoted byy®. Each element of?
corresponds to exactly one scaled non-Gaussian sour@bkariBy assumption,
the elements ofy® are hence mutually statistically independent. Now conside
y andy®. Their joint probability function can be written as

1
1) @) _ (1)},,(2) @y _ L, (2)
p (", y"?) = p(yMy?)p(y )—det|Q|p(s 1y p (y?)

= p (S<1>|y(2>)p (y(z)) —p (S(n)p (y(2>)
= p(¥")p(u"?) (3.12)

sincedet |Q| = 1 due to orthogonality ang/® corresponds to the (scaled and
permuted) statistically independent non-Gaussian soacables. This establishes
mutual statistical independence of the elementgdfandy®, which completes
the proof of sufficiency.

To prove necessity, it is shown that any deviatioddfom the form in (3.10) leads
to a contradiction. First, assume that the elementgBfare mutually statistically
independent and tha&p is not orthogonal (the trivial case @f being diagonal is
neglected here). Then it holds that

E {y<1>y<1>T} —E {Qs(l)s(l)TQT} —CCT A1 (3.13)

The elements ofy") are hence correlated, which is a contradiction to the assump
tion of mutual statistical independence of the elementg'bf Next, assume that
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the elements ofy are mutually statistically independent, and consider theeu
right block of zeros irC'. If at least one of these elements is not equal to zero, there
is at least one element that is a mixture of at least one Gaussian source and one
non-Gaussian source (denotedd§§). Since the elements @f are assumed mutu-
ally statistically independent, it can be concluded #{4tis Gaussian by Theorem
3.2. This is a contradiction to the assumptions. A similguarent can be applied
if P is not a permutation matrix. In this case, there is at leaste@lament ofy
which is a mixture of at least two non-Gaussian sources. Dulke assumed mu-
tual independence @j it can be concluded by Theorem 3.2 that the non-Gaussian
sources are Gaussian, which is again a contradiction. liansider the lower
left block of zeros inC'. Assume this block contains one rdwe R” with at least
one non-zero element. Then the corresponding elemegt?btan be written as
y® = pTs) + \s®) with A € R ands™® one of the non-Gaussian sources. Now
consider the covariance of the elementg/6t, denoted by/§1), i=1,...,L,and
y®). It then holds that

E{yy} = B{qls® (BTsV < )} = glb, (34)

due to the assumptions of unit variance and statisticajpaedéence of the original
sources. Now there exists at least ere {1, ..., L} for which ¢]b # 0, since the
rowsg; of () form a complete orthogonal basis. For this rowtot hence holds that

E {yi(l)y(b)} £ 0. Consequently,® is correlated with at least one element6?,

which is a contradiction to mutual statistical independeoicy. This concludes the
proof. n

Due to (3.9) and theorem 3.3, possible solutions of an ICArélya in the presence
of multiple Gaussian sources are given by

y(t) = Wra(t) = [ @ ]A‘lAs(t) _ { @ ] s(t). (3.15)

It can thus be concluded that in the presence of multiple Sansources the non-
Gaussian sources are still correctly reconstructed by I@w.Gaussian sources, on
the other hand, are arbitrarily mixed together. For themstracted mixing matrix,
solutions are given by

A—wt—act—a| @ O (3.16)
N N N 0o Pt '
Since P! is also a permutation matrix, the columns.fcorresponding to non-
Gaussian sources are correctly reconstructed (up to tla pstmutation and scal-
ing). The columns associated with Gaussian sources, hoyarearbitrarily mixed
together. This result is illustrated in the following siragxample.
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0 t

Figure 3.2: Reconstructed sources

Example 3.1. Consider the cas@/ = 3 with one non-Gaussian source with sub-
Gaussian distribution

s1(t) =sin(t) , te [0, 3n] (3.17)
and two Gaussian sources with zero mean and unit variance,
So, 83 ~ N(0,1), (3.18)
each sampled with 5000 data points. The sources are mixeddicgdo
x = Alsy, s9,55]" (3.19)
with a randomly generated full rank non-orthogonal matrix

—0.1735 0.7240 —0.1545
A= 0.3621  0.4088  0.7137 . (3.20)
0.9158 —0.5556 0.6832

The original sources are then reconstructed as
y(t) = Wra(t), (3.21)

with W* obtained with the extended Infomax algorithm [LGS99]. Thenstructed
signals are shown in Fig. 3.2 with normalized variance to reenswvaling indeter-
minacies. As can be seen in the third panel, signdbk reconstructed despite the
presence of two sources with Gaussian distribution.

Then, fifty reconstructions a@j using the extended Infomax algorithm with uni-
formly distributed initial conditiongV;, are carried out. Inverting the resulting
unmixing matrices delivers the representatiduns, s;),« = 1,...,50 of . Nor-
malizing the columns of all matriced; to remove scaling indeterminacies and
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Reconstructed Co|umns of theReconStrUCted COlumnS of the

mixing matrix representing ~ Mixing matrix representing
Gaussian sources. the non-Gaussian source.

Figure 3.3: Original §,,7 = 1...3) and reconstructed columns of the mixing ma-
trix

plotting these together with the original columns of (3.283ults in Fig. 3.3. As
expected from (3.16), the column of the non-Gaussian source is consistently re-
constructed, while the reconstructed columns associatdutingt Gaussian sources
are randomly distributed in the subspace spanned by the tWworocsa, and as

of (3.20) associated with the Gaussian sourggand s;. Note that for better vi-
sualization the data has been rotated such that the subsgyzarened by, andas
coincides with thery - plane.

Application to Source Localization

The above discussion shows that ICs with a Gaussian distrboonstitute a mix-
ture of originally Gaussian sources. If the associateddoggahy of such an IC is
used for source localization, as described in Section 3tBe?location of the ob-
tained current dipole does not correspond to the locati@anfy true source within
the brain due to (3.16). Consequently, Gaussian ICs shouladeded from the
analysis. This requires an identification of those ICs thaeleGaussian distribu-
tion. The most straight-forward way to do this is to estintagedeviation of every
IC from a Gaussian distribution with identical varianceg apecify a lower bound
on this deviation. If the deviation from Gaussianity of anf&s below this bound,
it is excluded from further analysis. This, however, regsithe lower bound to be
matched to the capability of an ICA algorithm to correctlyaestruct sources close
to a Gaussian distribution. Moreover, for finite data no 1@ bave an exact Gaus-
sian distribution. It would hence be desirable to have a odlogy that excludes
only those ICs that are too close to a Gaussian distributiondar to be consistently
reconstructed by a certain algorithm. Such a methodologgpuspresented.
ConsiderK representations of the observed data= A;S;, i =1, ..., K obtained
by running ICAK times on the observed dakawith randomized initial conditions.
For each original source with a non-Gaussian distributieare areX” linearly de-
pendent columns in the s¢#,, ..., Ak}, all representing the topography of this
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source. The topographies of the original sources that arelase to Gaussianity
for consistent reconstruction, on the other hand, are moesented multiple times
in the set{A;,..., Ax}. Instead, if there aré sources that can not be consis-
tently reconstructedi’ L columns of{ A, ..., Ax} are randomly distributed in a
L-dimensional subspace Bf. If then every column of A, ..., Ak} is localized
by a single current dipole, as described in Section 3.2e2getls a spatial accumu-
lation of dipoles at those positions within the brain thatrespond to the origin of
non-Gaussian ICs. Dipoles corresponding to Gaussian ICaadgemly distributed
within the brain.

This density of current dipoles can be estimated by the Rawvaedow method. Let
r,,i=1,..., KM, be the locations of th& M current dipoles obtained by solving
(3.7) for all columnsa; of the set{ A, ..., Ax}. The density of the the current
dipoles at a certain location, termed the Activation Density Function (ADF), is
then estimated as

1 KM
ADF(r) = =7 Z h(a;)g(r, ), (3.22)

with

A 1 Ir — 74l
) = e 3.23
the Gaussian kernel with varianeg,
h(a;) = cp(1 — tanh(aprv(a;) — by)), (3.24)

and ra;) the normalized residual variance of approximatindpy a single current
dipole as obtained by solving (3.7). The functiofu;) hence ensures that ICs with
a high residual variance, i.e., ICs that can not be repredeatesonably well by a
single current dipole, do not contribute to the evaluatibthe ADF-function.

The peaks of the ADF thereby identify the origins of ICs that t@ modelled
reasonably well by a single current dipole and can be camigtreconstructed,
i.e., that represent non-Gaussian sources. The ADF thidittdgas an estimate of
the spatial distribution of non-Gaussian sources withanktain.

3.3 Experimental Results

In this section, the methodology for feature extractioncdésd in the previous
section is used to classify imaginary tapping movementletdft and right index

finger using EEG data.

EEG signals caused by real and imaginary movements of thanefright index

finger were recorded from one subject (age 26, normal vigsiorknown neurolog-

ical disorders and no prior experience with BCIs or imaginagvements). The
subject sat in a shielded and dimly lit room in front of a cotgpiscreen, and was
instructed to perform real and imaginary tapping movemeiits the left or right
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M| K O',% ap bh Cp,
60 | 50 | 20 | 30 | 10 | 0.5

Table 3.2: Parameters used for the ADF.

index finger. These tapping movements were to be performegnohrony with a
centrally displayed grey box, flashing with a frequency 88 Hz on a black back-
ground. A control condition was added in which the subjestspeely had to watch
the flashing box. Each of the five blocks (real movement righiR), real move-
ment left (ML), imaginary movement right (IR), imaginary nement left (IL), no
movement (NG)) consisted a0 movements/flashes, and was repeated ten times
in pseudo-randomized order. Each block was followed by akboé five seconds in
which the instructions for the next block were displayed.CEkas recorded con-
tinuously with BrainAmp-Amplifiers (BrainProducts Inc.) Wwit\/ = 60 channels
according to the extended 10-20 systerd &Hz sampling rate. Additionally, ver-
tical and horizontal eye movements were monitored. The Watarecorded with
FPz as reference, and re-referenced offline to common aveségrence.

To ensure that no covert muscle activation took place dutirgmaginary condi-
tions, EMG activity was recorded bipolarly using standamarm flexor placement
[Lip67]. EMG recordings were then band-pass filtered witHz and100 Hz cut-
off frequencies and half-rectified. Trials of imaginary reavents were chosen to
be rejected if the mean EMG activity during the trial excabt#®s of the maximal
EMG activity of the corresponding real movement [VMMW98]. Mials had to be
rejected.

Ocular correction was performed [GCD83], and trials withedred flashing boxes
were averaged separately for each condition. For condifibR and ML, the grand
average of all 1000 trials for each condition was taken. Boddions IR and IL,
the average was computed for each block of 100 trials segwardthis resulted in
one data set per condition MR and ML, and ten data sets peitcontR and IL.

The following steps were then applied to each of the datavegitsthe parameters
shown in Tab. 3.2. First, the grand average of condition NG subtracted from
each data set to eliminate task irrelevant activity (e.gsyual evoked responses).
Subsequently, ICA was applied” times to the data set by using the extended
Infomax-algorithm as implemented in EEGLAB [DMO04]. Thisstdted in K M
ICs, each of which was then localized as described in Sect®:2.3In a fourth
step, the locations of all ICs were used to compute the ADFwdn (3.22). This
resulted in one ADF for each of the conditions MR and ML, anmdA®Fs for each

of conditions IR and IL.

The actual classification was then performed in the follgwiray. In a first step, the
location of maximal activity for conditions MR and ML was demined as given
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Figure 3.4: Maxima of the ADF for tapping movements of a) tai &nd b) the
right index finger.

by the corresponding ADFs, i.e.,

rvr = argmax {ADF(r|MR)} | (3.25)
rm. = argmax {ADF(r|ML)} . (3.26)

The resulting maxima, shown in Fig. 3.4 superimposed on MRiges from the
publicaly available MNI database, are located in neurospiggically plausible
areas, i.e., in vicinity of the hand areas of the left andtrightor cortex.

To determine the correct class of a data set caused by annarggnovement, its
respective ADF was evaluated at the positions of maximalatain for real move-
mentsryr andry,. If ADF(ryr) > ADF(rw.), the data set was classified as
being caused by an imaginary movement of the right index fiagd vice versa.
This very simple classification procedure is based on egedhnat real and imag-
inary movements are indeed correlated with activity in @aming brain regions
[PL99].

This procedure was used to classify 20l data sets of imaginary movements, and
resulted in nine out of ten correct classifications for ctodilR, and eight out of
ten correct classifications for condition IL. Thus a totalldgf out of 20 data sets
(85%) were correctly classified.

3.4 Discussion

In this chapter, the viability of source localization forafare extraction in non-
invasive BCls was investigated. By combining ICA with sourceal@ation, it

was shown that without any knowledge on the temporal aspdcteural coding,
i.e., how cognitive states are temporally encoded in thetrtefield of the brain,
a low-dimensional feature space providing information o BCl-user’s intention
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can be extracted. This feature space was shown to providegbnaformation
to classify imaginary tapping movements of the left and trigidex finger with
an accuracy oB5% in one untrained subject. The main theoretical contrilsutio
of this chapter is Theorem 3.3, characterizing the behafiéCA in presence of
multiple Gaussian sources. This result was further usedrigala methodology for
identifying unstable 1Cs without explicitly estimating th&aussianity.

While the work presented in this chapter establishes thal¥jabf source local-
ization for non-invasive BCIs, the results can only be considreliminary due
to several factors. First, the proposed methodology wagtested experimentally
on one subject. Clearly, a sound evaluation and assessm#rg oapabilities of
the proposed methodology require validation on experiaietdta from multiple
subjects and substantially more test data. Second, thsifedation results were
obtained using averaged data of multiple trials. IdealBCd should be capable of
processing single-trial data in order to realize onlinetagrof an effector such as a
computer cursor. Finally, some aspects of the employecdepliae are very simplis-
tic and surely sub-optimal. The proposed methodology isdas the assumptions
that a) the activity of only two areas within the brain praidll information on
the BCI-user’s intention, b) real and imaginary tapping mosets lead to peak
activations at the same spatial locations within the braid c) imaginary tapping
movements of one finger are accompanied by larger contralatean ipsilateral
activity in areas of the motor cortex. In terms of the gengraktedure of feature
extraction for non-invasive BClIs (Definition 2.13), assummpta) amounts to a re-
striction on the dimension of the new feature spAceand assumption b) specifies
the cost functionf that forms an estimate of the expected Bayes error. Assump-
tion three is not related to feature extraction, but spexifie actual classification
procedure. All three assumptions are questionable, anid teueasily eliminated
by combining the proposed methodology for feature extoactiith state-of-the-art
classification algorithms.

Interestingly though, the classification accuracies rgabin two other studies on
non-invasive BCls utilizing source localization for featesdraction are within the
same range as the accuracy reported here [QDHO04, KLHO5lewha third study
classification accuracies abo98% were obtained [GGP05]. Comparing these
studies with each other and the results presented in thistehane crucial dif-
ference can be found. While in the results reported here adsaseh [QDHO04]
and [KLHO5] only information on the spatial distribution bfain activity was em-
ployed, in [GGP 05] spatialand temporal features were used for classification.
While there is very little knowledge on how cognitive statestemporally encoded
within the electric field of the brain, it is known that motanagery is accompanied
by frequency specific changes in variance of the electrid fielginating in motor
areas [PL99]. Even though this is a very simple measure,gblts reported in
[GGP05] demonstrate that using this information results in aificant increase
in classification accuracy.

In summary, the lesson learned from using source locabadtr feature extrac-
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tion in non-invasive BCls is the following. Source localizatialone can provide
information on the BCI-user’s intention. However, if infortitan on how cognitive
states are encoded in temporal properties of the electlici$i@vailable, no matter
how limited it may be, this information can and should be used
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Chapter 4

Information Theoretic Feature
Extraction

4.1 Introduction

In the previous chapter, only the spatial distribution ofrent density within the
brain was used for inferring the BCIl-user’s intention. Whilestvas shown to be
a viable option, it is demonstrated in [GGB5] that additionally making use of in-
formation on how cognitive states are temporally encoddtimwthe electric field
results in a significant increase in classification accyraggn if the available infor-
mation on temporal coding is rather limited. In this chaptiee available informa-
tion on temporal coding of EEG/MEG signals is used to desifgature extraction
algorithm that (under some assumptions) is optimal in tesfmaaximizing an ap-
proximation of mutual information of class labels, i.eg BCI-user’s intention and
extracted features.

As briefly discussed in Sections 1.2 and 3.4, it is known tlates information
on cognitive states is encoded in the power of specific frequbéands of the elec-
tric/magnetic field in specific brain regions (reviewed ib§®]). Anincrease in the
power of the EEG/MEG is usually termed event related synaketion (ERS), and
adecrease is referred to as event related desynchromzB&fRD). This is due to the
fact that an increase in EEG/MEG power is caused by tempgnahsonization of
the electric field across cortical columns [NS05]. Quitetcany to intuition, ERD
is usually associated with increased activity of a certamrbregion, while ERS
can often be observed during rest. The significance of tlisgss for non-invasive
BCls was first realized by the group of J. Wolpaw [WMNF91]. The kvoresented
in this chapter is primarily based on the seminal work in [PSF], in which it is
demonstrated that imaginary movements of different linelaslto strong ERD over
the contralateral motor cortex. These changes can be usefetdhe BCl-user’s
intention without or with only little subject training. Haver, in [PNFP97] average
classification accuracies of only ab@it% were obtained, which can be attributed
to a lack of sophisticated feature extraction algorithms.



56

CHAPTER 4. INFORMATION THEORETIC FEATURE EXTRACTION

As demonstrated in [GGM5], it is possible to combine feature extraction by source
localization with ERD/ERS caused by motor imagery to constnen-invasive
BCls with a high classification accuracy. However, sourcelipaton is a com-
putationally intensive procedure. If information is aafile on which temporal
properties of the recorded EEG/MEG data provide infornmata the BCl-user’s
intention, it should be possible to derive less computatignntensive algorithms
that selectively extract those components of the recordéal tthat are optimal for
inferring the BCI-user’s intention. This was already realiby Ramoser et al. in
[RMGPO0Q], in which for two-class paradigms spatial filters devised that extract
those components of the recorded data which variances rafixinary between
conditions. Using this algorithm, termed Common SpatiatdPas (CSP), it was
shown that in a two-class paradigm classification accusadase tal00% could be
achieved. CSP has become one of the most frequently usedtlatgerfor feature
extraction in BCls, and was also used in the winning entry oB6¢ competition
2003 [BB04]. Its improvement, especially its extension togpectral domain, is
an active field of research (cf. [LBCM05, DBCM04, TDR6, FHLS06] and the
references therein).

In this chapter, a conceptually different approach to spétiering is taken. Under
the assumption that the user’s intention is encoded in vegi@hanges of compo-
nents of the EEG/MEG data, spatial filters are derived thaimmiae (an approxi-
mation of) mutual information of the user’s intention antragted EEG/MEG com-
ponents. This approach, termed Information TheoreticUfedExtraction (ITFE),
has got the advantage that maximizing mutual informati@vigies a direct link to
minimizing the minimum Bayes error as discussed in Secti@nI2is proved that
for two-class paradigms the obtained spatial filters anatidal to those obtained by
CSP, thereby establishing the optimality of CSP in terms ofimening an approx-
imation of mutual information. An extension of the CSP altfori for multi-class
paradigms proposed in [DBCMO04], on the other hand, is showretsutoptimal.
This deficiency of multi-class CSP is resolved by showing hiow algorithm can
be rendered optimal in the framework of ITFE. To support treptetical results,
multi-class CSP and multi-class ITFE are applied to expertaldEG data from a
four-class motor imagery paradigm provided by the Laboyadd Brain-Computer
Interfaces at the Technische UniveasiGraz for the third BCl competition, and it is
shown that multi-class ITFE leads to an average increaskagsiication accuracy
of 23.4% in comparison to multi-class CSP.

The structure of this chapter is as follows. In Section 42, assumptions made
onP* and f for the CSP and ITFE algorithms are specified (cf. Section, 244
the CSP algorithm is presented for two-class and multi-gesadigms. Then,
it is shown how ITFE can be realized in this context by degvan approxima-
tion of mutual information of class labels and extracted BBG components.
This approximation of mutual information is then used toverthe optimality of
two-class CSP, and to show how multi-class CSP can be rendptiedah After
demonstrating some experimental results in Section 4e3;apter concludes with
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a discussion of the limitations of CSP and ITFE in Section 4.4.

4.2 Methods

In this chapter, the same notation as in Chapter 3 is used. Thai8k intention
is again denoted by € C = {c;,...,cn}, and the recorded EEG/MEG data by
X € RM*T for a block of data ane:(t) € R™ for a single sample point recorded
at M electrodes. If the time indexis dropped is considered as &/-dimensional
random variable with probability density functipiz). All results equally apply to
EEG and MEG signals. Since the experimental evaluationrrgeckout using EEG
signals, only this modality is subsequently referred to.e Pinecise assumptions
made on the class of allowed featuf@s(cf. Definition 2.13) are as follows:

1. The BCl-user’s intention is encoded in variance changdssofdcorded EEG
data.

2. For each subject and paradigm, those components of tbeieléeld of the
brain that provide information on the subject’s intentisigmate in spatially
invariant brain regions.

It should be emphasized again that the first assumption isrkirgpassumption.
While there is certainly more to neural coding in the eledigtd of the brain than
variance changes, these provide a basis for developingldsature extraction al-
gorithms. The second assumption, which was already emglimy€hapter 3, ex-
presses our knowledge on localized information processirte brain, i.e., that
(at least for low-level information processing) certainibrareas are specialized for
certain tasks. Since propagation of the electric field ofreagebrain region to the
EEG electrodes is linear (cf. Section 3.2.1), and brainomegrelevant for a certain
task are assumed invariant, this limits the class of transitions that have to be
considered to time-invariant linear spatial filters.

The desired feature extraction algorithm hence takes tme 10: R *" — REF,
T(X) = Var{WTX}, with W € RM*L the matrix of L << M spatial filters
and K € N the number of analyzed frequency bands of each componetiterit
remains to specify of Definition 2.13 in this context, i.e, the cost function d$e
estimate the expected error probability.

4.2.1 Two-class Common Spatial Patterns

In this section, a two-class paradigm is assumed,d.e:, {c;, ¢, }. The CSP algo-
rithm then solves the optimization problem [PSGSO05]

TR:E (&
w” = argmax {u} , 4.1)

weRM 'wTRwa
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with R, , Rz, the covariance matrices afgivenc,, c, respectively. Since (4.1)
is in the form of the well-known Rayleigh quotient, solutidng4.1) are given by
eigenvectors of the generalized eigenvalue problem

Rajeyw = ARy, w. (4.2)

The eigenvectors of (4.2) thus correspond to the desiredpliers. Furthermore,
for a given eigenvectow* the corresponding eigenvalue determines the value of

the cost function:

xT *
w* ' Ryje, w

A= (4.3)

w*TRm‘Qw* :
The eigenvalues thus are a measure for the quality of thenelokspatial filters,
i.e., the eigenvalue associated with a spatial filter exggeshe ratio of the vari-
ance between conditions of the component of the EEG datactett by the spatial
filter. Feature extraction is then usually done by combirtimg L. eigenvectors
of (4.2) with the smallest/largest eigenvalues to fdime RY*%Z and computing
T(X) = Var{WTX}. Note thatL has to be specified in advance and determines
the dimension of the new feature space.
The cost function maximized in the CSP algorithm in order tomimize the ex-
pected error probability is thus given by

fesse. T(X) = 3 max { (4.4

T T
w; Rw|c1wi w; Rw|02wi }
)

T P
w; Rm|02wi w; R:c|c1wi

with w; the ™ column of . While choosing spatial filters that extract those com-
ponents of the EEG with maximum ratio of variance betweeritmms seems sen-
sible, it is in fact an open question whether this is optimaierms of minimizing
the optimal Bayes error or the expected error probability.

4.2.2 Multi-class Common Spatial Patterns

Extending CSP to multi-class paradigms, i.e., again letting- {ci,...,cn},

is either done by performing two-class CSP on different comtons of classes
(e.g., by computing CSPs for all combinations of classes adogputing CSP for
one class versus all other classes), or by joint approximi@igonalization (JAD)
(cf. [IDBCMO04] and the references therein). Since the first aaph is conceptually
identical to CSP for two-class paradigms, the focus here S®R by JAD.

Given EEG data ofV different classes, the goal of CSP by JAD is to find a trans-
formation’V € R"*™ that diagonalizes the covariance matriégs.,, i.e.,

WTRyeW =D,,, i=1,...,N, (4.5)

with D., € RM*M diagonal matrices. There are several approaches to this pro
lem (discussed in [ZLNMO4]), the details of which are not oferest here. The
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idea behind using JAD for multi-class CSP lies in the fact @&P for two classes
can be understood as diagonalizing two covariance matrMere precisely, if the
eigenvectors of the generalized eigenvalue problem (4€2¢@mbined in a matrix
W, thenW'R,,.W = D,,, i = 1,...,2. Itthen seems plausible to extend CSP to
multi-class paradigms by finding a transformatiénthat approximately diagonal-
izes multiple covariance matrices. A total bfcolumns of the obtained matrix’
are then taken as the desired spatial filters.

There are, however, two caveats. First, this approach izvatetl heuristically and
lacks a firm theoretical foundation. Second, it remainsesxcivhich columns ot
provide the optimal spatial filters. Or, as it is put in [DBCMQ4$ opposed to the
two-class problem, there is no canonical way to choose the@aaleCSP patterns
for multi-class CSPIn [DBCMO04], the following heuristic is proposed to choose
the L optimal spatial filters: Given a matrik/ obtained by JAD, compute the
eigenvalues of all covariance matrices, i.e., compyte- diag{ W' Ry, W}, i =
1,...,N. Thenmap alj = 1,..., M eigenvalues of each class=1,..., N to
Nij = max{\;;,1/(1+ (N —1)2\;;/(1 — X))}, and select thd./N eigenvec-
tors with the largest transformed eigenvalues of each easpatial filters. If one
eigenvector is selected more than once, replace it by tleneagtor with the next
highest transformed eigenvalue.

One disadvantage of this extension of CSP to multiple clasdésat the cost func-
tion f that is optimized is not specified. It is hence unclear whethdgti-class CSP
is optimal in any sense. In this chapter, it is shown that roldtss CSP by JAD is
equivalent to ICA. This allows treating multi-class CSP in ttaanework of ITFE,
which can be used to derive a methodology to select thoseakpliers of multi-
class CSP that are optimal in terms of maximzing (an appraxmapf) mutual
information of class labels and extracted EEG componenttheAretical founda-
tion for multi-class CSP by JAD is thereby provided, and thedhi®r heuristics in
choosing spatial filters is eliminated.

4.2.3 Information Theoretic Feature Extraction

In this section, the framework of Information Theoretic &ea Extraction (ITFE)

for feature extraction is introduced. ITFE has recentlyeneed considerable at-
tention in the machine learning community, mostly in a nangmetric setting
(cf. [PXZFO0O0, Tor03]). The general idea of ITFE is to find anséormation that

directly maximizes mutual information of class labels anttacted features. This
is desirable, since maximizing mutual information minigszbounds on the opti-
mal Bayes error as discussed in Section 2.2. The cost funtttams maximized in

this context is hence given by

frre (e, W'X) =1 (¢, W'X) (4.6)

with W € RM*E,
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To find the spatial filters that maximize (4.6) the optimiaatproblem

w; = argmax {I (c, wlTw)} , 4.7)
weRM
with w; the i column of W andi = 1,..., L is considered. Note that (4.7) im-

plies that the desired spatial filters are derived sequgnti&hile it is also possible
to extract several components simultaneously, this isvatgnt to extracting com-
ponents sequentially in the setting considered here a®wrshater. Furthermore,
note that (4.7) requires computing mutual information oisgiiete and a continuous
variable. To make this expression well defined, it is neaggsgaassume a quan-
tization that discretizes the continuous variabl¢z. This quantization scheme,
however, has negligible influence on the mutual informatsamce the entropy of a
n-bit quantization of a continuous random variable is appnaxely the entropy of
the continuous variable plus[CT06]. Since the entropy enters twice with different
sign into the computation of mutual information, the terme do the quanitzation
cancel out. The quantization scheme is thus disregarddtkisdquel and only the
differential entropy is employed.

To the best of the author’'s knowledge no analytic expressioi(c,w ) for
the assumptions made in this chapter exists. Hence, antanabproximation of
I(c,w'x) is first derived. Then, the solution of (4.7) based on thigaximation is
discussed for two-class paradigms. Finally, the extensionulti-class paradigms
is presented.

Approximation of Mutual Information

First note that the mutual information efandz = w'x can be written as
Ic,w'z) = Hw'z)— H(w'z|c) = H(2) — H(Z|c)

= H(i)— Z P(c;)H(ilc;). (4.8)

Since differential entropy is not scale invariant, it iswased thats? = 1. This

is no loss of generality, sincew can always be scaled to meet this assumption.
Now recollect that it is assumed that all information on the 86ér’s intention

is contained in variance changes of the EEG. Hence, no itiomis lost if it is
assumed thai(x|c) = N (0, Ry.). Sincez is a linear combination of the elements
of « it also follows a (now one-dimensional) Gaussian distidoutvith zero mean,
i.e.,p(z]c) = N(0, U§|C)' It is then possible to express the entropytajiven class

c; aS

H(z|e;) = log 4 /271'60'?6'01_ = log \/2mew " Ry, w. (4.9)

The marginal distributiorp(z), however, does not follow a Gaussian distribution

since
N

p(7) = ZP(Cz‘)p(ff’Cz‘) = ZP(Ci)N(Q%\q)a (4.10)

=1
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which is a sum ofV Gaussian distributions and thus not itself Gaussian. Todisé
of the author’s knowledge there is no analytical solutiorth® entropy of a sum
of Gaussian distributions, and thus no closed form solutioA (z). It is possible,
however, to approximat# (z) in the following manner. First, note that the entropy
of & can be expressed as

H(z) = H,(z) — J(2), (4.12)

with H,(z) the entropy of a Gaussian random variable with the samenaiast
andJ(z) the (always positive) negentropy of The negentropy of can then be

approximated as
A 1 2 1 ~\2
J(&) ~ 15 ks(2) +4—8H4(9€) :

with the third- and fourth-order cumulants(z) = F{#3} andr,(z) = E{2'} -3
[Com94]. Sincep(z) is a sum of Gaussian distributions with zero mean it is sym-
metric, and hences(#) = 0. Furthermoreysy (i) = 33 0 1P(cz)< Ole; — 1)
since the fourth moment of a Gaussian distribution with zesmn and unit vari-

ance equals three and(ax) = o'k (z) (see any textbook on advanced statistics).
Combining (4.11) and (4.12) yields

(4.12)

(i)NlogF——(ZPcl b — )) . (4.13)

Combining (4.8), (4.9) and (4.13) an estimate of the mutudarmation ofc andz
is obtained as

N
I(c,2) = — > P(c;)logy/wT Ryje,w — — ( P(c;) (w' Rgje;w)” — 1))
; v >

(4.14)
Note that in terms of the observed data this expression @pgwulds on the variance
conditioned on class labels, as required by the assumpiotise class of allowed
features employed in this chapter.

2

Validating the Approximation of Mutual Information

It then remains to investigate the accuracy of this apprakion of mutual infor-
mation. The only approximation used in deriving (4.14) is #pproximation of
negentropy in (4.12). This approximation is based on an ®wdghl expansion up
to order four of the true probability density function (4) Hbout its best Gaussian
approximation. As such, (4.14) is exactpifz) is Gaussian distributed, and the
quality of the approximation deteriorates with deviatidrpor) from Gaussianity.
To quantitatively evaluate the accuracy of the approxiomedif mutual information,
the true mutual information in (4.8) was computed by nunaiittegration (using
recursive adaptive Lobatto quadrature as implemented ittellefor C = {cq, ¢}
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ando;., €]0,1]. Note that this covers the whole rangexf.,, i € {1,2} due to
symmetry of (4.8) with respect to;., and the assumption of unit variance df
The error of the approximation of mutual information in @) ivas then evaluated
for different prior class probabilities by subtracting ti@merically computed true
mutual information from the approximation of mutual infation. The resulting
error (in per cent of the true mutual information) is showrFig. 4.1. Note that
0se, = 1 impliesoy, = 1 and hencen(z) = N(0,1). As expected, the error
between the approximated and true mutual information is f@ro;., = 1 and
small for o, close to one. In fact, the error of the approximation is betoe
per cent foro;., € [0.84,1]. As long aso;., > 0.36 the error stays below ten
per cent. However, for even smaller valuesgf, the error grows large, limiting
the usefulness of the approximation. Qualitatively, trekdior of the approxima-
tion is independent of the number of classes, i.ep(f) is close to Gaussianity a
small error can be expected also faf > 2. Quantitatively, the goodness of the
approximation varies as a function of the number of clas3dge validity of the
approximation in (4.14) for multiple classes is experinadigtvalidated in Section
4.3.

The applicability of the approximation of mutual infornatiin the context of non-
invasive BCls thus depends on by how much EEG/MEG sources tbeide in-
formation on the user’s intention deviate from Gaussianig, how much their
variances vary across conditions. In general, such sowaede expected to be
rather close to Gaussianity, and thus the approximationet@dxurate, for the
simple reason that inferring a BCl-user’s intention is a haskt If variances of
EEG/MEG sources providing information on the user’s intamtvould vary sig-
nificantly across conditions, inferring the user’s intentcould be expected to be
substantially easier than it is the case. This claim is expartally validated in
Section 4.3.

Two-class ITFE and Optimality of Two-class CSP

Solutions to (4.7) based on the above approximation of nhutt@mation are now
discussed for two-class paradigms, i.e., it is again asduh@C = {c;, c»}. Equa-
tion (4.14) then reduces to

I(c, &) = —P(c1)log \/wT Ryje,w — P(c2)log \/wT Ryje,w

—% (P(c1) (0, = 1) + Ple) (o), — 1)) (4.15)

From here on this expression is referred to as mutual infoomakeeping in mind
that it is in fact an approximation thereof. Taking the dative of (4.15) with
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Figure 4.1: Error of the approximation of mutual informati@.14) in per cent for
C = {c1, c2} as afunction ofr; ., for different prior class probabilities.

respect taw then yields

0 . P(cy) P(cs)
D fed) = ) g Pl

TR Ra:|02w
w m‘clw

wT Ryjc,w
3
) (P(c1)(w' Ryje,w)”® + P(ca)(w' Ryje,w)® — 1)

(P(c1)w" RyjeyWRgje,w + P(C2)W" Ryjey W Ry, w) (4.16)

Letting a; 1=~ 6 = —3 (201, Ple)(w! Ryjeyw)? = 1) w! By,
and setting (4.16) to zero results in
(a1 + B1)Rpje,w + (a2 + (2) Ryje,w = 0. (4.17)
Rearranging and letting := —33—153 then finally yields
Raje,w = ARy, w. (4.18)

In the case of two-class paradigms and the stated assurmpsiolutions to (4.7)
are thus given by the eigenvectors of the generalized eadeeproblem (4.18).
Comparing the solutions obtained by ITFE (4.18) and CSP (h@)s that for
two-class paradigms both methods vyield identical spati@ré. Furthermore, if
equal class probabilities are assumed and the obtainediddedrs are ranked in
terms of the ratio of the variance between conditions (CSH)iarierms of mu-
tual information (ITFE) the ordering is the same. This cansben by the fol-
lowing argument. For spatial filters obtained by CSP, the maxn ratio of the
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variance between conditions of every spatial fitieris given bymax{\*, 1/\*} =
max{o3 /03, 0%.,/0%., }. Fora? = 1this is a symmetric and convex function.
This also holds true for (4.15), as is easy to check. Hendey ifwo spatial fil-
terswj , it holds thatmax{A}, 1/A7} > max{)3,1/As}, then alsol (¢, wiTz) >
I(c, w3 x) and vice versa. As a result, choosihgeigenvectors of (4.18) or (4.2)
with maximum ratio of variance between conditions is ideaitito choosingL
eigenvectors with maximum mutual information. Note, hoarethat this does not
hold anymore for unequal class probabilities. In this cAgez) becomes asym-
metric, and choosing spatial filters with maximum ratio of variance between con-
ditions is not identical to choosing spatial filters with maximum mutual informa-
tion.

Summarizing the results of this section, it was shown thatefjual class prob-
abilities, conditionally Gaussian distributed EEG datad &inear transformations
feature extraction by CSP and ITFE lead to the same spatakfilunder the given
assumptions, two-class CSP thus maximizes an approximattioutual informa-
tion of extracted EEG components and class labels.

Multi-class Information Theoretic Feature Extraction

Possible solutions of (4.7) for multi-class paradigms,, ifer C = {c,...,cn},
are now discussed. In principle, taking the derivative o144 with respect tav
and setting it to zero gives an implicit solution for the spldilters that correspond
to local extrema of (4.14). However, due to the presence dfiphel covariance
matricesdI(c,w'x)/0w = 0 can not be formulated as a generalized eigenvalue
problem anymore. Furthermore, to the best of the authodsviedge, no analytic
solution to this expression exists. This leaves the pd#gibif deriving a gradient
descent rule for finding a solution to (4.7). While this is agfhtforward procedure,
(4.7) does not constitute a convex optimization problem. séqnently, gradient
descent is not an efficient approach for finding all local@xia of (4.14).

Due to these difficulties a different approach is consideteds assumed that the
observed EEG data follows the standard mixing model of Ieddpnt Component
Analysis (ICA) as discussed in Section 3.2.1, i.e.,

x = As, (4.19)

with s € RM a random vector with zero mean representing the original EEG
rent sources inside the cortex, adds R**M a full-rank mixing matrix with each
columna;, j =1,..., M describing the projection strength of sourceo each of
the M EEG electrodes. It is furthermore assumed gia) = Hj.”ilp(sj), ie.,itis
assumed that the elementssodire mutually statistically independent. For a discus-
sion of the validity of this model in the context of EEG anadysf. Section 3.2.1.

In addition, it is also assumed that there are dnources that provide information
on the BCl-user’s intention. Without loss of generality, #na@se assumed to be the

first L sources, i.ef(c,s;) =0, it =L+ 1,..., M.
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It is now shown how for this model multi-class ITFE can be imsal by JAD,
thereby also establishing a connection to multi-class CS#isasissed in Section
4.2.2. First note that the covariance matrixxofiven conditione; is now given by

Ryje; = ARg, AT, (4.20)

with Ry, the covariance matrix o given conditionc;. If JAD is performed, it
is obvious that?¥’T = A~ is a solution of the JAD procedure that diagonalizes alll
covariance matrices:

W' Rge, W = Ry, = D, (4.21)

fori =1,..., N. Note thatR,., = D., are diagonal matrices because of the mutual
independence of the elementssofin this case it holds that

&=WTe =W"As = s, (4.22)

and the obtained spatial filtering matiiX applied to the EEG data results in es-
timates of the underlying independent components (ICs) @fotbserved data. It
remains to be established if, or under which conditions, = A~! is the only
matrix that jointly diagonalizes all covariance matric@his question of unique-
ness has been addressed for orthogonal mixing matddes for sphered data) in
[BAMCMO 7] and for arbitrary mixing matrices in [ten02]. Ittus out that in the
context considered here a necessary and sufficient comélitidl " = A~! to be the
unique joint diagonalizer (up to scaling and permutati@fsi,.,, i = 1,..., N,

is that the matrix

2 2
Oiler  Tsuler
S = (4.23)
2
Osilen ** Isarlen

has no pair of proportional columns, i.e, that for no pair@$ the variances covary
across conditions. Under these conditions any JAD proeetihat converges, i.e.,
that jointly diagonalizes all covariance matrices, resusrmatrixiy’ that, if applied
to the observed EEG data, returns (scaled and permuteatedss of the underlying
ICs according to (4.22). While it is not possible to ensureiarpthat the variances
of no pair of ICs covary across conditions, this can be comsdlighly unlikely.
Consequently, JAD of the EEG covariance matrices conditiane the class la-
bels, and thus multi-class CSP as discussed in Section 4ghde considered an
implementation of ICA.

It then remains to be established which columns of the umgiraatrix1” should
be chosen as spatial filters. While so far this choice was baséeéuristics such as
the one presented in Section 4.2.2, the framework of ITFEgesig to choose those
spatial filters that maximize mutual information of extedtEEG components and
class labels. Now note that if the ICA model (4.19) and the ueigess condition
hold, a matrixi¥' obtained by JAD that diagonalizes all EEG covariance medric
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conditioned on class labels implies that

L L
Ice,x)=1I(c,W'zx) = I(c, s) Z[CS Zf(c,si):ZI(c,wiTw).

=1 =1 (424)
with w; some column ofl/. Here, the first equality follows from the fact that mu-
tual information is invariant under invertible transfortioas [CTO06], the second
equality follows from (4.22), the third equality followsadim the mutual indepen-
dence of the elements @f the fourth equality from the assumption that only the
first L sources provide information on the BCl-user’s intention, doedfifth equal-
ity again from (4.22). Hence, all informationanoncis contained in the first ICs,
and consequently the spatial filters that maximize mutual information are simply
thoseL columns of/¥ with the highest mutual informatiof(c, wx). This term
can be easily evaluated, and thus the optimal spatial flhietrstlfled according to
the approximation of mutual information (4.14) derived ic8on 4.2.3.
To summarize the results of this section, it was shown th&x dithe EEG covari-
ance matrices conditioned on class labels can be considqredhlent to ICA. By
deriving an analytic approximation of the mutual infornoatiof class labels and
EEG components a procedure was provided to choose the dsipazal filters in
terms of maximization of (an approximation of) mutual infation. The need for
heuristics in choosing optimal spatial filters obtained hytirclass CSP is thereby
eliminated, and a sound theoretical foundation for spétiating in the context of
BCls using multi-class paradigms is provided. Finally, maléiss ITFE, as derived
here, allows incorporating unequal class probabilitieshyosing those spatial fil-
ters that maximize mutual information in (4.14). For coreexe, the complete
procedure of multi-class ITFE is summarized in Fig. 4.2.

4.3 Experimental Results

Experimental results from a four-class motor imagery pgracsupporting the re-
sults of the previous section are now presented. The pumodes section is to
compare pre-processing by multi-class ITFE with multissl&SP, i.e., compar-
ing the effect of choosing spatial filters that maximize nalitnformation versus
choosing spatial filters according to the heuristic presgimt Section 4.2.2.

The data used was recorded in the Laboratory of Brain-Compntifaces at the
Technische Universit Graz for the third BCI Competition (data set Illa), and is
available athttp://ida.first.fraunhofer.de/ projects/bci/competitiii/. A detailed
description of the recording procedure can be found in [BMIK]. Three subjects
(k3b, k6b, and 11b) were asked to perform motor imagery ofeftéight hand, one
foot, or tongue. Each trial lasted for seven seconds, wihntiotor imagery per-
formed during the last four seconds of each trial. Duringekgeriment EEG was
recorded at 60 channels, using the left mastoid as refegetthe right mastoid as
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Input: Covariance matriceB,.,, i =1,..., N

1. Perform joint approximate diagonalization sWTR,.W = D., i =
1,..., N (e.g., with the FFDiag-algorithm [ZLNMO4]).

2. For each colummu;, j = 1,..., M, of W scalew; s.t. w] R,w; = 1 and
estimate mutual information according to

N

Hewle) ~ =" Ple)log \/u] Ry,

(3P (@m0

3. Choose thd, columns ofi¥” with highest mutual information.

Output: Spatial filtering matrixty € RM*-

Figure 4.2: Multi-class Information Theoretic Featureragtion

ground. The sampling rate was 250 Hz, and the data was filb®deen 1 and 50
Hz with a notchfilter on. For subjects k6b and I1b a total of &l per condition
were recorded, and for subject k3b 90 trials per conditiorewecorded. Four trials
of subject k6b had to be discarded due to missing data. Otbemwo trials were
rejected and no artifact correction was performed.

For each subject, the following evaluation procedure watpeed. First, all data
was filtered with a fifth-order butterworth filter with cutfdfequencies 5 and 35
Hz. Then, the four seconds of each trial in which motor imgpgeas performed
were extracted. Afterwards, the data was randomly pamgtibinto a training and
a test set. The size of the training set was varied betweemd ®@ trials in steps
of ten trials for subjects k6b and I11b, and between 10 andi8 fior subject k3b.
The covariance matrices of all four conditions were comgutsing only data of
the training set. JAD was performed on the obtained covegianatrices using the
algorithm presented in [ZLNMO04], and the optimal spatial filters were chosen
according to a) the heuristic presented in Section 4.2.dt{tlass CSP), b) the
procedure described in Fig. 4.2 (multi-class ITFE), and ajtirtlass ITFE with
evaluation of the mutual information of class labels andasted EEG components
by numerical integration as described in Section 4.2.3elwdt while procedure c)
is feasible due to the knowledge ) in (4.10), it is undesirable from a practical
point of view due to increased computational complexity.r Flti-class ITFE,
equal class probabilities were assumed. Note that the eludit is a problem of
model identification that is beyond the scope of this workrelé = 8 was arbi-
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trarily chosen. The spatial filters obtained by procedujeschd were then applied
to the training- and test data sets. This resulted in eighedsional signals for
each trial of the test and training data set. Features weredbmputed by extract-
ing 15 frequency bands of 2 Hz width ranging from 5 to 35 Hz gsrfifth-order
butterworth filter, and computing the sample variance irhdaequency band for
each of the extracted EEG/MEG components. This resultedl2Oadimensional
feature vector for each trial. The feature vectors of thmiing set were then used
to train four logistic regression classifiers with L1-regpigation, since this classi-
fier is known to perform well in the presence of many irreléviaatures [NgO4].
Each classifier was trained on one versus all other conditieith a regularization
parameter chosen manually as 0.1. To infer the class lalght in the test data
set the continuous output of each classifier was computediforals. The output
of each logistic regression classifier ranges from zero & presenting the prob-
ability of a certain class. Then, the class label attacheshtd trial was chosen as
the index of the classifier with maximum output for that triabr each partitioning
of the data in a test- and training set this procedure wasatede0 times.

The resulting classification accuracies for all subjects@raluation procedures a)
and b) are shown in Tab. 4.1 and Fig. 4.3, with the thin hotialoime indicating
chance level. Results of evaluation procedure c) are notshsiwce on average
these differed from procedure b) by only 0.4%. This expentally validates the
accuracy of the derived approximation of mutual informatfd.14) in the context
of non-invasive BCls. While the classification accuracies \&gyificantly across
subjects, it is evident that multi-class ITFE outperformsltirclass CSP by far,
with a mean increase in classification accuracy of 23.4%s iflarease is especially
significant for subject I11b, for which multi-class CSP penfigronly slightly above
chance. With spatial filters chosen according to multi€Ida$E, subject k3b even
achieves classification accuracies of about 95%.

It should be pointed out that the classification accuracesesed here do not,
with the exception of subject k3b, compare favorably with best entries to the
BCI competition Il for the same data set [Sch05]. This is htited to the fact
that while the algorithms submitted to the third BCl competitivere extensively
tuned, there are several parameters in the procedure peddegre that were de-
termined arbitrarily. For example, it is well known that gomting spatial filters
in narrow frequency bands, tuned according to the mostiveaitequency bands
for each subject, significantly improves classificationusacy as opposed to se-
lecting a rather broad frequency band as done here. Furtineyrthe number of
spatial filters retained was chosen arbitrarily as eightalbsubjects and training
sets, and the regularization parameter of the classifitgiocedure was also de-
termined manually and constant for all subjects. All of thparameters could be
tuned using methods such as cross-validation on the tgagento achieve higher
classification accuracies. This, however, is not the pdirthis section. A rather
simple classification procedure was chosen to emphasizenphetance of choos-
ing the optimal spatial filters: while the total set of sphtfilters is identical for
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Figure 4.3: Classification accuracies of subjects k3b, k@, ab as a function
of the number of training trials for multi-class ITFE and inalass CSP. The thin
horizontal line indicates chance level.

| Training trials percond] 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
Subjectk3b (ITFE) | 72.7| 81.9| 86.0| 87.7| 91.0| 90.7| 90.1| 94.2
Subject k3b (CSP) | 56.9| 61.6| 65.8| 67.9| 68.1| 69.3| 70.0| 72.9
Subjectk6b (ITFE) | 48.2| 52.3| 58.4| 60.5| 69.0] - | - | -
Subjectk6b (CSP) | 33.7| 42.3| 45.7| 47.0| 46.8| - | - | -
Subject I1b (ITFE) | 56.9] 66.6| 72.3| 74.1| 78.6] - | - | -
Subject11b (CSP) | 28.1| 31.7| 35.9| 33.8| 32.1| - - -

Table 4.1: Mean classification results in percent for melliss ITFE and multi-
class CSP.

multi-class CSP and multi-class ITFE, choosing a subsettefgitthat maximize
mutual information, according to the procedure of multiss ITFE summarized in
Fig. 4.2, as opposed to the procedure proposed in [DBCMO04]sl&aa significant
increase in classification accuracy.

4.4 Discussion

In this chapter, the knowledge that variance changes inl#otrie field of the brain
provide information on the BCI-user’s intention was used tsigie linear spatial
filters that extract those components of the EEG that maxiifan approximation)
of mutual information of class labels and extracted featutdsing mutual infor-
mation to design spatial filters was shown to be beneficiatiar reaons. First,
mutual information provides a direct link to the optimal Bayezror as discussed
in Section 2.2. Second, an analytic approximation of mutufakmation could be
derived that a) allowed investigating optimality of the ptgy CSP algorithm, and
b) is easy to evaluate from a computational point of view.olild be shown that
the popular two-class CSP algorithm [RMGPO0Q] is optimal imgiof maximiz-
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ing (an approximation) of mutual information of class laba&hd extracted features.
An extension of CSP to multiple classes as proposed in [DBCM&@4the other
hand, was shown not to be optimal. This deficiency of muliss| CSP could be
resolved by showing how optimal spatial filters can be setéot the framework of
multi-class ITFE. The theoretical results were supporteeiperimental evidence
from a four-class paradigm, demonstrating a significanteiase in classification
accuracy for multi-class ITFE in comparison to multi-cl&SP. In summary, the
results presented in this chapter underline the importahaélizing any available
information on how cognitive states are encoded in the rdefeld of the brain.
While the results in this chapter demonstrate that learnpagia filters from the
available data enables high classification accuracies iti-olass paradigms, the
CSP and ITFE algorithms both suffer from a tendency of ovarit Inspecting
the topographies of spatial filters learned by CSP/ITFE deviat some of the
extracted filters focus on artifactual components of the datch as eye blinks or
muscle activity. This can be attributed to the fact that neiadifacts cause electric
fields which variances usually exceed the variance of etfattds generated by the
CNS. Since both CSP and ITFE are based on variance measurethenlsre espe-
cially prone to focussing on artifactual components onsent in the EEG data of
one condition. The effects of overfitting can be alleviatgdrizreasingl, i.e., by
selecting more spatial filters for feature extraction. Hesveincreasing. decreases
the rate of convergence of the subsequent classifier to itsmaim classification er-
ror (cf. Section 2.4). It would thus be desirable to developlgorithm that extracts
those components of the EEG that provide most informatiothemser’s intention
in an unsupervised manner, i.e., without using labeleditrgidata, since such an
algorithm would be robust against artifactual componentke recorded data. This
is the topic of Chapter 6.



71

Chapter 5

Complete Independent Component
Analysis in EEG/MEG Analysis

5.1 Introduction

In Chapters 3 and 4, it has been shown that Independent Contpamagsis (ICA)
(introduced in Section 3.2.1) can be used to construct gahaigorithms for fea-
ture extraction in non-invasive BCIls. While in Chapter 3 ICA waiizetd as a
preprocessing step in order to simplify a subsequent sdacedization procedure
and exclude irrelevant noise sources, it was shown in Chédpteat the multi-class
Common Spatial Patterns (CSP) algorithm proposed in [DBCMO04]se based
on an implementation of ICA. By deriving an approximation oftoal informa-
tion applicable in the context of non-invasive BCls, it waglier shown how ICA
can be used to compute spatial filters that are, under soraemptiens, optimal in
terms of maximizing an approximation of mutual informatioinclass labels and
extracted features. This algorithm, termed multi-clagerimation Theoretic Fea-
ture Extraction (ITFE), was shown to enable classificaticrugacies above 90% in
a four-class motor imagery paradigm.

ICA has been considered for feature extraction in other studn non-invasive
BCls as well. In [BNL07], different ICA algorithms are compared with each other
and with the CSP algorithm in terms of the quality of the ob#dispatial filters in a
four-class motor imagery paradigm based on EEG. In [HME, ICA is compared
with CSP in a two-class motor imagery paradigm using EEG, MBG BCoG
recordings. While these two studies differ in how the indelegrh components (ICs)
that provide most information on the user’s intention aenitfied, both conclude
that ICA outperforms CSP.

The success of ICA as a tool for feature extraction in nonsmeaBCls seems sur-
prising in light of the restrictive assumptions incorpexin this framework. While
different algorithms require divers assumptions, in thiggter only the assumptions
required by the extended Infomax algorithm is consider&&i§R9]. This is done for
three reasons. First, the extended Infomax algorithm isdas mutual informa-
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tion and is thus closely related to a wider class of ICA algonis [HKOO1, Car97].
Second, extended Infomax is shown to outperform other ICArélgns in the con-
text of computing spatial filters for non-invasive BCls in [BNQ7], and third, it is
one of the most frequently employed ICA algorithms in the gsialof EEG/MEG
data due to its implementation in the open-source toolbo%Edb [DM04]. The
assumptions incorporated in this context are

1. Linearity of the mixture model.

2. Mutual statistical independence of the original sources
3. At most one Gaussian distributed source.

4. At least as many sensors as sources.

The first assumption is justified in the context of non-inva®Cls based on EEG
or MEG (cf. Section 3.2.1 and [NS05]). The second assumptiigiit appear ques-
tionable. However, this hinges on what is considered to tttoes a source in the
context of ICA applied to EEG/MEG data. If an EEG/MEG sourceasidentified
with a certain region within the brain but rather seen as damauirrent distribution
with identical dynamics (as defined in Section 3.2.1), thendecond assumption
does not necessarily constitute a restriction on the agplity of ICA. Instead,
it should be understood as a restriction on the interprigiabif an IC. While the
goal of ICA is to reconstruct statistically independent segt the physiological
relevance of an IC can not be determined a-priori but has tofieered from the
topography and dynamics of each reconstructed source. ithstanding this ar-
gument, EEG/MEG sources reconstructed by ICA can indeea digeidentified
with a single brain region (cf. Section 3.2.1). This, howesgéould not be seen as
an empirical justification for identifying EEG sources rastructed by ICA with
certain brain regions, but rather as a special (althougiuéret) case. Furthermore,
note that in the above discussion it is assumed that ICA ishdepd reconstruct-
ing a set of independent sources for a given data set. Inipeachis should be
checked by running ICA repeatedly on the same data set witthoraized initial
conditions. Only if ICA is capable of reconstructing a setd#ntical ICs indepen-
dently of the initial conditions of the algorithm the rectmsted ICs should be con-
sidered meaningful [MZKMO02]. The third assumption has adle been discussed
in Section 3.2.3. In brief, this assumption is only necessfaall original sources
are to be reconstructed. If only non-Gaussian sources argayest assumption
three can be neglected. The fourth assumption, howevergldyhquestionable.
In EEG/MEG, the continuous current distribution in the hrtiat gives rise to the
electric/magnetic field on the scalp is mapped by a linearsftamation onto a
finite number of EEG/MEG electrodes. As such, the measurteradrihe elec-
tric/magnetic potential on the scalp constitute an underdened representation of
the spatial current distribution within the brain. Accargliy, the fourth assumption
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is justified only if the continuous current distribution tiih the brain can be parti-
tioned intoM distinct sets with identical dynamics, whelé refers to the number
of EEG/MEG electrodes. This can be considered as highlkeiyliand hence the
fourth assumptions has to be rejected in the context of EEE&Nnalysis. Instead,
itis maintained here that this assumption has been adoptearking assumption
for a lack of better alternatives.

Since the introduction of ICA with complete bases in [Com94Yy,esal algorithms
have been developed that address the problem of ICA with ongslete bases, i.e.,
with more sources than sensors. In [LLGS99] and [ZP01],ssfyaconstraints are
imposed to obtain a unique reconstruction of sources, wm[[ELP04] a geometric
approach to overcomplete ICA is proposed. Interestingtyordthms for overcom-
plete ICA have found virtually no application in the EEG/MEGnhtmunity so far.
This can be attributed to the success of applying completettCBEG/MEG data.
Since the obtained results are in accord with physiologigpkctations, it is gener-
ally assumed that complete ICA is sufficient for the analy$iBBEG/MEG signals
[OWTMO6].

This view is challenged in this chapter. Instead of accepiie adequacy of com-
plete ICA in the context of EEG/MEG analysis, the behavior@Aldesigned for
complete bases is investigated if the assumption of coempdsts is violated, i.e., if
more sources than sensors are assumed. This serves sevpadgs. The first is
to establish whether, or under which conditions, ICA dedigioe complete bases
can be applied to underdetermined problems, and to inestigpw this affects the
reconstruction of the original sources. This is a preratpuier the second purpose,
which is to address the question which type of mixture modael realistically be
assumed in EEG/MEG analysis. Finally, it is investigated laalverse effects on
reconstructed ICs resulting from underdetermined probleamsoe alleviated with-
out resorting to additional constraints on the reconstdisburces as in [LLGS99]
and [ZPO01].

To address these issues, a linear mixture model with arranpibumber of non-
Gaussian and Gaussian sources is assumed. Then, necessayffacient con-
ditions for solutions of complete ICA for this mixture modekalerived. While
identifiability and separability of ICA have already been sidered in [Com94,
EKO03], and [CL96], to the best of the author’'s knowledge theotem presented
here is the first one providing necessary and sufficient ¢mmdi for solutions of
complete ICA for a mixture model with an arbitrary number ohfBaussian and
Gaussian sources. This theorem is then used to investigateesseparability and
model identifiability for different relations of sensor@mGaussian-, and Gaussian
sources. The conclusions of this investigation are usedgieeathat in EEG/MEG
analysis it is valid to assume that less non-Gaussian setine@ sensors but more
Gaussian sources than sensors are present. This recdheilagparent contradic-
tion of the underdetermined nature of EEG/MEG recordingstae physiological
plausibility of results obtained by complete ICA. It is shotlat this mixture model
further implies that while the topographies of non-Gaussaurces are recon-
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structed correctly by complete ICA in spite of an overconglaixture model, the

reconstructed dynamics of non-Gaussian sources areaaillgitmixed with Gaus-

sian sources. The consequences of this result for the analyEEG/MEG data

are discussed, and testable predictions for further vadidaf the assumed mixture
model in the context of EEG/MEG analysis are formulated.

It is then shown how the adverse effect of applying compléa to overcom-
plete mixture models can be alleviated by linearly consgdiminimum variance
(LCMV) spatial filtering [VvYS97]. Since the topographiesmain-Gaussian sources
are correctly reconstructed by complete ICA in spite of thespnce of an arbitrary
number of Gaussian sources, this knowledge can be used straecnspatial fil-
ters that minimize the interference of Gaussian sourcdsaimegconstruction of the
dynamics of non-Gaussian sources.

The combined procedure of complete ICA and LCMV spatial fifigris then ap-
plied to experimental MEG and EEG data. First, it is showrt thahe recon-
struction of auditory event related fields (ERFs) recorde®IBBG combining ICA
with LCMV spatial filtering significantly outperforms ordinalCA. Then, com-
bined ICA and LCMV spatial filtering is employed to construcasal filters for
a four-class motor imagery BCI based on EEG. Interestinglg, shown that ICA
and LCMV spatial filtering does not outperform ordinary ICA.€Theasons for
this observation are discussed in light of the theoretiesalits of this chapter,
thereby further validating the proposed overcomplete uné&xmodel in the context
of EEG/MEG analysis. Also, an explanation is provided fa $skiccess of complete
ICA in constructing feature extraction algorithms for nowasive BCIs.

The remainder of this chapter is structured as follows. Asprigvious chapters,
Section 5.2 begins with introducing the notation and stgtie assumptions made
in this chapter on the class of allowed feature spgesThen, the ICA mixture
model used throughout this chapter is introduced. In Sedid.2, necessary and
sufficient conditions for solutions of ICA applied to overgolete mixture models
are derived. This constitutes the primary theoretical woution of this chapter. It
also serves as the basis for Section 5.2.3, in which theityabdl different source
models for EEG/MEG are discussed. Section 5.2 concludédsavitiscussion on
how the performance of complete ICA can be improved by LCMV igpétter-
ing in Section 5.2.4. In Section 5.3, experimental resulisnfthe reconstruction
of auditory ERFs recorded by MEG as well as from a four-classomionagery
BCI based on EEG are presented. The chapter concludes witlussiisn of the
theoretical and experimental results and their relevaoc&EG/MEG analysis by
complete ICA in Section 5.4. Parts of the work in this chaptezaaly have been
presented in [GWBO7].
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5.2 Methods

The same notation as in previous chapters is also employ#udsirchapter. The
BCl-user’s intention is again denoted@s C = {¢i,...,cy}, and the EEG/MEG
data recorded at/ electrodes ag(t) € RM. If the time index is droppea refers

to aM-dimensional random variable with probability densitydtion p(x). Again,

X € RMxT refers to a block of data witlh samples. The assumptions on the class
of allowed feature spacé®* employed in this chapter are:

1. The BCl-user’sintention is encoded in variance changdsdéltiectric/magnetic
field of the brain originating in spatially invariant braiegions.

2. The electric/magnetic field of the brain can be decompasedstatistically
independent components.

Note that the second assumption does not make any statemené mumber of
statistically independent sources within the brain. It psserts that the spatial cur-
rent distribution within the brain can be decomposed inatisically independent
sources (cf. Definition 3.1 for what is considered to contifa source in this con-
text). The first assumption again expresses our knowleddg®warcognitive states
are temporally encoded in the electric/magnetic field ofateen (cf. Chapter 4). It
also provides a justification for using linear time-invatiapatial filters for extract-
ing those components of the electric/magnetic field of tlnbthat provide most
information on the user’s intention.

5.2.1 The ICA Model

The source model assumed in this chapter is similar to thénd®ection 3.2.1. The
EEG/MEG data is assumed to obey the generative model

x(t) = As(t), (5.1)

with s(t) € R¥ the original EEG/MEG sources with probability density ftion
p(s) and the matrixd € RM*X the full row-rank mixing matrix, describing the
projection strength of each source to each of theclectrodes. Without loss of
generality, it is assumed that each source has got zero meamé variance. Fur-
thermore, it is assumed that the fifssources are non-Gaussian distributed, while
the lastK” — L sources follow a Gaussian distribution, i.e., that;) = A/ (0, 1) for
i=L+1,..., K. The special case of only one Gaussian source/i€.] = K, is
disregarded. Finally, it is assumed thés) = Hfilp(si), i.e., that the sources are
mutually statistically independent. Note that at this peia assumption is made
on the relation of\/, L, and K, i.e., complete as well as overcomplete models are
considered.
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5.2.2 ldentifiability and Separability of Complete ICA for Arbi-
trary Mixture Models

The goal in ICA is to reconstruct the original soureeand the mixing matrix4 only
from observations at and using the assumption of mutual statistical indeperalenc
of the original sources. One way to approach this problenomplete ICA is to
construct a full-rank unmixing matri¥y € R™*M that solves the optimization
problem (cf. Section 3.2.1)

W = argmin {I(vy1,...,ym)} (5.2)
WeRMxM
with y = Wz and I(yy, ..., yy) the mutual information of the elements of

(cf. [CTO6]). The elements af are called the independent components (ICs). This
approach is due to Theorem 3.1, establishing that the munticetmation of the el-
ements ofy is zero if and only if they are mutually statistically indeyent. Other
(largely equivalent) approaches to ICA are discussed in [BKOWhile it seems
sensible to assume that reconstructing mutually staditimdependent sources re-
sults in the original independent sources, it remains taestigated which form
W may take such that the elementsyoére mutually statistically independent, and
whether this does indeed result in the elementg abrresponding to the original
sources irs. This is referred to as the problem of source separabilitlytiérmore,

it has to be investigated whether taking the inverse of thmixing matrix W' re-
constructs the mixing matri«, i.e., if A= W-! = A. This is referred to as the
problem of model identifiability.

Toward these goals, firlst note thatcan always be sphered, i.e., subjected to a

transformation”? = R.?2 such that for the covariance matri, of & = Pz it
holds that
Rz = (Px, Px) = PRyP" = L. (5.3)

The sphering transformation is subsequently neglectaednaisag thate has already
been sphered. Note that this implies that

Ry = (x,x) = AR AT = AAT = Iy (5.4)

Without loss of generality, the rows af can hence be considered mutually orthog-
onal. Then defin€' := W A, such that

y=Wzx=WAs =_Cs. (5.5)

Now note that any solution of (5.2) requires the elementg tf be mutually statis-
tically independent. This implies uncorrelatedness, arth

Ry - <yay> = CRSCT = IM><M~ (56)

Hence the rows of’ have to be mutually orthogonal. Since this also holdsffand
furthermorelV A = C, the class of matrices that have to be considered for sakitio
of (5.2) can be constrained to orthogonal matrices.
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The following theorem extends the results in [Com94] and [EKO mixture mod-

els with an arbitrary number of Gaussian and non-Gaussiarces. Note that a
similar theorem is given in [CL96], but without proving suf@ocy and only for

pairwise independence of the elementgof

Theorem 5.1(Separability of complete ICA for arbitrary mixture modelgpts €

RE¥ andy € RM, y = WAs = Cs with full rank W € R™*M and full rank
A € RM*K "and the elements afas well as the elements gfmutually statistically
independent. Furthermore, lgfs;) = N(0,1) only fori = L+ 1,..., K. Thenit
holds that

C=[B[qQ (5.7)

with B € RM*L a matrix with only one non-zero entry in each column, at most
M — L zero rows, and at most/ — 1 zero entries in each row. Furthermore,
Q € RM*(K=L) js a matrix with orthogonal rows.

Proof. Proving Theorem 5.1 amounts to showing that ¢oof the form in (5.7)
the elements ofy are mutually statistically independent (sufficiency), dmak any
deviation ofC' from this form leads to a contradiction to the elementgdieing
mutually statistically independent (necessity). Sufficieis proved first.

To prove sufficiency, it is necessary and sufficient to shaat iy, ..., yy) = 0
for C' of the form in (5.7), since this is a necessary and sufficientltion for mu-
tual statistical independence of the elementgy afue to Theorem 3.1. Then note
that!(ys, ..., yar) = D(p(y)|| TI2, p(v:)) with D(.||.) the Kullback-Leibler diver-
gence. Sincé (yq,...,yn) > 0, with equality if and only if the elements ef are
mutually statistically independent, and the Kullbackiler divergence is convex as
well as continuously differentiable (cf. [CTO61)(y1, - .., ya) has a unique global
minimum at zero, and consequentliy:. ..., ya) = 0 < 2 1(y,...,ya) = 0.
Then note that

%J(yl,...,ym = % {E;H(yi) —H(y)}

= G 2 Hw). (5.8)

=1

sincelV orthogonal and? (x) independent ofV. The following derivations extend
the results of [BPR02] to the overcomplete case. Defiiti’) := > H(y;). The
gradient of '(1¥') under the orthogonality constraint &# is given by [EAS98]

Vorthol (W) = VE(W) — WV F(W)TW. (5.9)
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SinceWWT = I, solutions to(%](yl, <3 ynm) = VornoF (W) = 0 are given
by
VEW)WT =WVEW)". (5.10)

Denotingh(w;) := H (y;) with w; theith row of W, (5.10) becomes
Vh(wy) - w] = Vh(w,) - w] (5.11)

fork,l=1,...M; k # 1. With

o

Oh(w;) / Opy, (u)
=— | (logpy(u) + 1) —*—du, (5.12)
Ow . ! Ow
(5.11) results in
T Opy, (u Opy
B
s Opy, (u Opy, (u '
= [ (logp,(u) +1) [#w o 2] du

—0o0

fork,l=1,...,M; k # . A sufficient condition for (5.13) to hold is

Oy (w), Oy ()
Gwm ’ Oth

wyp =0 (5.14)
fork,l=1,...,M; k # . Recalling (5.5), the elements gfcan be written as
Y :ci,131+...+ci7K$K, (515)

with ¢; ; denoting the element @f in thei" row and thej™ column. The probability
density function ofy; is then given by

1 U 1 U
(u) = —py [ — ) %...x —p, . 5.16
Py, (u) Cmp . (CM) Lk Ci’Kp x (%K) (5.16)

The analysis of (5.14) is simplified in the frequency domaéifith ¢,, (w) the char-
acteristic function op,,, (5.16) becomes

oy (w H s, (€5 jw (5.17)

Transforming (5.14) into the frequency domain as well, stlishg (5.17), and
dividing bny{:1 s, (cijw) results (after some tedious algebraic manipulations) in

Wéﬁlsl (Ck,lw)cz,1 WSDQK (Ck,Kw)Cz,K

Py (Craw) o Do (Cr, kW)

=0 (5.18)



5.2. METHODS 79

fork,l=1,...,M; k # 1. Now only if s; has a Gaussian distribution it holds that
0, (aw) = —awp,, (aw). (5.19)

Since the sources, i = L+1, ..., K are assumed to be Gaussian, (5.18) simplifies
to

wel, (eraw)ern wey, (er,Lw)er, L
TonGe) T T e (5.20)
_W2<Ck,L+ICl,L+1 + ...+ Ck,KCl,K) =0

for k,l = 1,...,M; k # [. Note thaty! (c; w)l., ,—o = 0 because all sources
have zero mean. Hence, the first term in (5.20) is zero if infils¢ column of
C for every pair of elements only one of them is non-zero. Thisurn implies
that only one element of the first column @fmay be non-zero. The same holds
for every up to and including the™ column. Considering the last term of (5.20),
this term is zero if the rows of, starting with the(L + 1) element, are mutually
orthogonal. It hence follows that of the form in (5.7) implies that (5.20) holds
and consequently(yy,...,yx) = 0. Sincel(yi,...,yn) = 0 implies mutual
statistical independence of the elementg tiis completes the proof of sufficiency.
The proof of necessity consists of three steps. The firstfstipvs directly from
Theorem 3.2 (Darmois-Skitovic). Assume that colubpnk € {1,..., L}, of B in
(5.7) has got more than one non-zero entry, and further asguerelements ajf to
be mutually statistically independent. Then the origiralrses, is Gaussian dis-
tributed by Theorem 3.2. This is a contradiction to the aggtions, which proves
that each column oB may have at most one non-zero entry. Second, note that

w)] [ay, ...,ar]=b =0, (5.21)

with w] thei" row of W, a; the ;1 column of A, andb; the ™" row of B, implies
thatw; € RM lies in a(M — L)-dimensional subspace Bf". SincelV’ is assumed

to have full rank, (5.21) can hold for at mast — L rows of /. This is turn proves
that B can have at most/ — L zero rows. Furthermore, note that (5.21) can only
hold if M > L. Conversely, this shows that each row Bfmay have at most
M — 1 zero elements. Finally, the requirement of orthogonalitg)dollows from
orthogonality ofC'. This completes the proof of necessity. n

It should be noted that in Theorem 5.1 no assumptions are madeRe relation

of M, K, and L. The theorem thus applies to mixture models with an arlyitrar
number of non-Gaussian and Gaussian sources. The imphsadf Theorem 5.1
for different relations of\/, K, and L are now discussed. The case of less sources
than sensors is neglected, since this case can be redudedgmblem of an equal
number of sources and sensors by disregarding some sensors.

Equal Number of Sources and Sensors\( = K > L)

If M = K, it follows from Theorem 5.1 that

Arxr Orm—rxr s (5.22)

y:C’s:PMxM 0
M—LXL Q]VIfLX]\/[fL
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with P € RM™*M g permutation matrix\ € RX*% a diagonal matrix, and) <
RM-LxM-L gn orthogonal matrix. The permutation matfixis subsequently dis-
regarded, since it does not have any qualitative influendbd@source reconstruc-
tion. The lower left block of zeros follows from the fact thatin (5.7) may have
only one non-zero entry in each column. Furthermore, sipderms a(M — L)-
dimensional complete orthogonal basis @hds orthogonal, the upper right hand
block of C' has to consist of zeros. Finally, rows with only zero eleraétitat could
result in non-Gaussian sources mixed with each other or@ailssian sources) are
not allowed due to full rank off andV. Consequently, if{ = M, all sources with
non-Gaussian sources are correctly reconstructed by ebenl@A, while all Gaus-
sian sources are arbitrarily mixed together. The non-Gansurces are hence
separable, while the Gaussian sources are non-separable.

In terms of identifiability of the mixing matrix!, note that

-1

Aewroact=al| Aoa Owepa | (5.23)

Om—rxz Qy—rxm—1

The inverse of the unmixing matri¥” hence correctly reconstructs the columns of
A corresponding to topographies of non-Gaussian sources ggaling and permu-
tations), while the columns of corresponding to Gaussian sources are arbitrarily
mixed together. Hence, the topographies of non-Gaussiarte® are identifiable
by complete ICA, while the topographies of Gaussian soureaa@n-identifiable.
Note that these results are in agreement with the resultsroplete ICA in Section
3.2.3.

More non-Gaussian Sources than Sensorg( > L > M)

If more non-Gaussian sources than sensors are present datheet, therB <
RM*L has got more columns than rows. Then note that Theorem Sek stat the
matrix B may have at most/ — 1 zero entries in each row. Since there are more
columns than rows i, this is a contradiction to the requirement of each column
of B having at most one non-zero entry. Consequently,for>- L > M itis
impossible to construct a matriX that is in agreement with Theorem 5.1. Thus,
separation of the original sources by complete ICA is notiptess

Regarding the identifiability of the mixing model féf > L > M, it should be
noted that in general an overcomplete mixing model is idiable [CL96]. Con-
sider the following example.

Example 5.1 (Block-independent reconstructiondj M = 3,L = 6 and K >
L, then one possible source reconstruction with mutually pedelent elements is
given by

11000 0]gq]
y=100 111 0/|q |s, (5.24)
00000 1|q}

with g; € RE~L mutually orthogonal vectors.
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Note that indeed any partitioning of the original sources idistinct sets results
in mutually statistically independent reconstructionswdver, in Example 5.1 the
requirement of at most/ — 1 zero elements in each row &f is violated. Example
5.1 hence does not provide an admissible solutionctompletelCA applied to
overcomplete mixture models. In general, the formCbbbtained by applying
complete ICA to an overcomplete mixture model with more n@u€sian sources
than sensors depends on the specific algorithm. It is easgaw that since”
can not achieve source separation, the columns of the regotesi mixing matrix
A = W' do not correspond to the columns of the original mixing nxatri(using
the same argument that is used below for the cagé of M > L). ForK > L >
M the mixing model is thus not identifiable. Note that this isagreement with
previous studies on complete ICA [Com94, EKO03].

More Sources than Sensors, but less non-Gaussian Sourcesnisensors >
M > L)

If more sources than sensors are present in the data setyeonuiber of non-
Gaussian sources is smaller than the number of sensorglpassurce reconstruc-
tions in agreement with Theorem 5.1 are given by

y=0Cs= [ ALXLOPLXL Qmxr-L } s, (5.25)
with A € RY*E a diagonal matrix,P? € RE*L a permutation matrix, and <
RMxK-L g matrix with mutually orthogonal rows. This implies that ilghthe
Gaussian sources are non-separable, the set of non-Gagssi@es is separable.
However, Gaussian sources are arbitrarily mixed into thre@aussian sources.

In terms of the identifiability of the mixing matrixt by complete ICA forK >

M > L, itis shown now that the columns df corresponding to the non-Gaussian
sources can indeed be reconstructed, i.e., that the noss@aupart of the mixing
model is identifiable by complete ICA. Without loss of genityait is assumed that
the reconstructed sources are given by

I
y:CSI[ LOXL QMXKL:|S- (526)
This implies that
1 i=j ANi,je{l,...,L}
wla; =4 0 ; i#jANie{l,....M},je{l,....,L} , (5.27)

#0 ; de{l,....M},je{L+1,...,K}

with w! the:" row of W anda; the:™" column of A. For the reconstructed columns
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a; of A it holds that

wla; =1 wlay=0 wlay =0
) (5.28)
wha, =0 wia;=0 way = 1,

sinceA = W and hencéV A = Iy« Dy construction. Now consider;, which
has to be jointly orthogonal tew] with i = {2,..., M}. Equation (5.27) implies
thatw/a, = 0 if and only if

dlz Z a;a;, (529)

with «; € R. Since it is required in (5.28) thab]a, = 0 for all i € {2,..., L},

it follows thata, = a,a, and the first column ofl is a scaled version of the first
column of A. The same argument applies for the remaining firsolumns ofA.
Hence, the columns of corresponding to the non-Gaussian sources are correctly
reconstructed up to scaling and possible permutations.

With regard to the lask” — L columns ofA, consider the following example.

Example 5.2(Non-identifiability of Gaussian mixture modeld)et M =4, L = 2
and K = 8. Then one possible source reconstruction in agreement wigoem
5.1 is given by

1 0{00 1T 0 10
0 1/]0 0 0 1 01

y=WAs=Cs = 0o0l11 0 —10 113 (5.30)
00|00 -1 0 10

Now consider the third columa; of the reconstructed mixing matrix = W1,
and letas = aas + fa4 With o, 5 € R. Then due to the third and fourth column of
C'in (5.30) it holds that

w! a3 0
'w2a3 0
'w3a3 o (5.31)
wiaz =0

with «, 3 chosen such thawv](aasz + 3a4) = 1. This is in agreement witl’ A =
Ivw v, and hencears = aas + fay constitutes an admissible reconstruction of a
column of the mixing matrid.

This example establishes that in general the column$ odrresponding to Gaus-
sian sources are not correctly reconstructed by complete ICA



5.2. METHODS 83

Separability ofsources | M =K >L | K>L>M | K> M > L
Non-Gaussian v - v
Gaussian - - -
Gaussian from non-Gaussian v - -

Model identifiability M=K>L|K>L>M)|K>M>L

Non-Gaussian v - v
Gaussian - - -

Table 5.1: Identifiability and separability of mixture mdslevith X sources,L
non-Gaussian sources, afflsensors by complete ICA.

In summary, complete ICA correctly reconstructs the colunfrie mixing matrix
A corresponding to non-Gaussian source&’if> M > L. The columns of4
corresponding to the Gaussian sources, however, are nectgrreconstructed.
Hence, only the non-Gaussian part of the mixing model istitiable by complete
ICA for the case of’ > M > L.

For convenience, all results on identifiability and sepditgtof arbitrary mixture
models by complete ICA obtained in this Section are summeaiizdab. 5.1.

5.2.3 \Validity of Mixture Models in EEG/MEG Analysis

In this section, the plausibility of different source magliesl discussed in the context
of EEG/MEG analysis. As pointed out in the introduction aétbhapter, the con-
tinuous spatial current distribution within the brain givese to the electric potential
/ magnetic field measurable on the scalp [NSO5]. If this pidéhfield is sampled
at M electrodes, this constitutes a mapping from an infinite tbefidimensional
space. As such, this mapping can only fully describe theigoatis current dis-
tribution within the brain if the current distribution cae Ipartitioned into at most
M distinct sets with identical dynamics. In general, this barconsidered highly
unlikely, and hence the assumption of less sources thaorsamas to be rejected in
EEG/MEG analysis.

This conclusion is usually not accepted by the EEG/MEG comitpusince it ap-
pears in contradiction to the apparent success of complAen the analysis of
EEG/MEG recordings. Instead, it is argued that only a few BNHESS sources are
strong enough to be picked up by ICA, and that hence, at least & practical
point of view, less sources than sensors can be assume®Wf I106]). This ar-
gument is supported by empirical evidence that source digsaamd topographies
constructed by complete ICA are physiologically plausikl®B*01, MWJ 02,
MDODO04].

In contrast, itis maintained here that the available erogiand theoretical evidence
suggests that the reason for the success of complete ICA ilNHEG analysis is
not that only a few sources are strong enough to be picked UpAybut rather that
only a few sources aneon-Gaussiarenough to be picked up by ICA. This claim
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is based on the following argument. First, assuming a mextaodel with only
a few non-Gaussian sources is in agreement with the phgsealioplausibility of
results obtained by complete ICA, since in this case the nans&an sources are
separable and the non-Gaussian part of the mixture modtdmsifiable (cf. Section
5.2.2). Second, this model is not in contradiction to thearddtermined nature of
EEG/MEG recordings, since an arbitrary number of addiliédaussian sources
can be assumed. Thirdly, consider the following definition.

Definition 5.1 (Stable Independent Componemin independent component is cal-
led stable if it is contained (up to possible scaling) in allusce reconstructions
obtained by complete ICA, i.e., if it is independent of the typalgorithm used for
complete ICA and the initial conditions of the algorithm.

If only a few non-Gaussian and multiple Gaussian sourcepragent in a data set,
Theorem 5.1 asserts that that there exists a subset of ie$Gxbthat correspond
to mixtures of Gaussian sources. This is indeed supporteshipirical evidence,
with unstable ICs usually observed in EEG/MEG analysis [J1AH.

It is hence maintained that a mixture model with less nongSim sources than
sensors but more Gaussian sources than sensors conditgakstic assumption
in EEG/MEG analysis. Note that due to Theorem 5.1 this metomodel im-
plies that reconstructed dynamics of non-Gaussian soweesirbitrarily mixed
with Gaussian sources. This prediction can be used to fuxthielate the pro-
posed mixture model. In terms of the analysis of event rdlgi@tentials/fields
(ERPS/ERFsS) by ICA, the inclusion of Gaussian sources resulislower signal-
to-noise ratio (SNR) of the reconstructed ICs. Note, howekat,Gaussian sources
can be temporally white as well as correlated, i.e., in ganeo statement can
be made on whether the inclusion of Gaussian sources gdist@ttemporal struc-
ture of reconstructed ICs. Regarding the analysis of eveate@lsynchroniza-
tion/desynchronization (ERD/ERS) (cf. [PL99] and [NSO5ptenthat ERS/ERD
measures dynamic changes in variance of reconstructedesouAs such, only
non-stationary sources can contribute to the temporattsirel of ERS/ERD. Since
Gaussianity of a source over the whole temporal range ofdberded EEG/MEG
implies stationarity, the inclusion of Gaussian sourcegaonstructed ICs amounts
to only raising the baseline of ERS/ERD measurements. Thigdtas adverse ef-
fects on the temporal structure or the significance leve R&EEERD measurements.
Consequently, the proposed mixture model predicts advéesgseon reconstructed
ERPs/ERFs, and no adverse effects on the analysis of ERS/ER1i2. hext section
a methodology is presented that allows testing these pireiaksc

5.2.4 Overcomplete ICA via LCMV Spatial Filtering

If a mixture model with a small number of nhon-Gaussian andrg l&ge amount
of Gaussian sources applies, the temporal reconstrudtimomeGaussian sources is
arbitrarily mixed with Gaussian sources. Itis then deseéderive a methodology
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with which this adverse effect can be minimized without hgvio resort to over-
complete ICA, which raises the complexity of source recaitsiion and requires
additional constraints on the reconstructed sourcesl(ct3599, ZP01]).

Towards this goal, note that the topographies of the nons&an sources are cor-
rectly reconstructed by complete ICA in spite of the preserfa@n arbitrary num-
ber of Gaussian sources. This can be used to improve the SNie ocfconstructed
non-Gaussian sources in the following way. Assume that anstoucted source
topographya; correctly represents the topography of a non-Gaussiarcssyi.e.,
thata; = a;. Without loss of generality possible scaling is disregdrtiere. To
estimate the temporal evolution f;, it is desirable to design a spatial filtey that
extracts the source from the available measurementsvhile optimally attenuat-
ing all other sources. If optimal attenuation is defined mmie of the variance of
interfering sources, this can be formulated mathemayiees!

%

v; = argmin {’UTR;B’U} st v
veERM
This is the problem of linearly constrained minimum varfcCMV) spatial fil-
tering, which has been originally proposed and solved inY{897]. The solution
to (5.32) is given by
v; = (a}R;lai)_l a] R,". (5.33)

Accordingly, y, = v]x is an optimal estimate of; in so far that the variance
of the interference of all other sources is minimized. No& this minimization
of interference includes other Gaussian as well as nongkausources. Conse-
guently, statistical independence of the non-Gaussiarcests traded here against
minimization of the variance of the interference of all stas.
In terms of the predictions formulated in Section 5.2.3,riden to validate the pro-
posed mixture model, note that a reduction of the SNR of tbhernstructed ICs by
LCMV spatial filtering can only be expected for an overcompletixture model.
If K = M, and henced € RM*M it is easy to show that indeag = v]x = s;
by plugging in (5.33). The proposed mixture model thus prisdihat complete
ICA in conjunction with LCMV spatial filtering outperforms cqgiete ICA in the
reconstruction of ERPS/ERFs, while a complete mixture medeld to no improve-
ments. This is tested in the next section. In studies usirgsores of ERS/ERD, as
in feature extraction for non-invasive BCls based on motogieng LCMV spatial
filtering can not be expected to affect the results since thdybaseline is altered.
Consequently, the proposed mixing model predicts that usingplete ICA in con-
junction with LCMV spatial filtering in feature extractionfmon-invasive BCls
does not alter results in comparison to using complete ICA&lo

5.3 Experimental Results

In this section, complete ICA in conjunction with LCMV spatidtering is ap-
plied to auditory evoked ERFs and to EEG data from a four-atastor imagery
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paradigm. The primary purpose of this section is to test tiegliptions made
in Section 5.2.3, i.e., to validate the assumption of a metonodel with more
sources than sensors but less non-Gaussian sources tlsanssenthe context of
EEG/MEG analysis. This is achieved by showing that comp{@gein conjunction
with LCMV spatial filtering achieves results superior to cdetp ICA alone in the
reconstruction of auditory ERFs in Section 5.3.1, and by shgwhat in the context
of non-invasive BCIs based on motor imagery constructingiapdters by com-
plete ICA and LCMV spatial filtering does not perform betterrttnmplete ICA
alone (Section 5.3.2).

Besides the validation of the proposed mixture model, tiie akrves to illustrate
the efficacy of complete ICA in conjunction with LCMV spatialtéiting in the
reconstruction of the dynamics of non-Gaussian sourcestaestablish why ICA
constitutes a powerful tool for feature extraction in thateat of non-invasive BCls
in spite of the overcomplete mixture model.

5.3.1 Denoising of Event Related Fields

In this section, complete ICA combined with LCMV spatial filteg is employed
for denoising of ERFs recorded by MEG. In general, data dergpisy ICA is
based on the assumption that only a small number of ICs recoted from a
given data set are relevant for the considered experimsetap, i.e., belong to the
signal subspace, while all other ICs constitute noise. QmyI€s belonging to the
signal subspace are then reprojected onto the observa@me sresulting in a rank-
reduced signal with improved signal-to-noise ratio (SNRshould be noted that
the identification of ICs relevant for a given experimentalpds not trivial, and
hence mostly done manually. In the context of the source humtesidered here,
it is assumed that only the non-Gaussian sources belong to the signal subspace.
The deviation from Gaussianity of the reconstructed saliicbence considered as
a criterion for the identification of relevant ICs (cf. [BGUB)6]

As MEG data Event Related Fields (ERFs) are chosen. ERFs tlyplaale a very
low SNR, and are difficult to detect in single trial data. Fdstteason numerous
trials are recorded, and the ERF is estimated by taking thenelnle average of all
trials. Based on the assumption that only the ERF componehedfEG is invari-
ant in every trial, this results in an unbiased estimatohefERF (termed thgrand
averageERF). In complex experimental setups, or if subjects withatsdttention
span such as small children are under investigation, tleedawy of numerous trials
is not feasible. The goal of ERF denoising by ICA is then to retatt the grand
average ERF from only a small number of trials. This applaais well suited
for evaluating the approach presented in the Section So2cguse a data set can be
used for which the grand average ERF actually is availables dllows an objective
evaluation of the obtained denoising results, and thusidatain of the predictions
formulated in Section 5.2.4.

The test data set consists of Auditory Evoked Fields (AEFx)prded during an
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Figure 5.1: Grand average ERF (a) and ERF average of ten randomly chosen
trials y" (b).

auditory oddball task at the Biomagnetic Imaging Laboratafrthe University of
California, San Francisco. Auditory stimuli were appliedtte left ear, while MEG
was recorded at a sampling rateddtHz with M/ = 132 sensors covering the right
hemisphere. A total 0250 trials were recorded, with each trial lasting fron275
to 275 ms and the stimulus being appliediams (see [NAHSO06] for a detailed de-
scription of the recording procedure). Out of the total nemtdf 250 trials ten trials
were chosen randomly for estimation of the raw average ER&.grand average
y* was computed by taking the average time course dt&lltrials, and filtering
the resulting average sequentially with a low- and highsgdier with cut-off fre-
guencie2 Hz and16 Hz respectively (for all temporal filtering procedures iisth
section a third order Butterworth filter was used). The rasgitemporal activity at
all channels is shown in Figure 5.1 (a). The same temporatifilj procedure was
applied to the average of the randomly chosen ten trialsjtieg in the temporal
activity ¢y shown in Figure 5.1. Note that only the post-stimulus peisoshown
in both figures. For a quantitative comparison of the dats, ke SNR is defined
as

T
LM >y [1]?
SNR(%) := 101log;, MZ —= (dB), (5.34)
=Y ] - g )

with samplest = 1...7T corresponding to the post-stimulus period of the data.
Each data sets was first normalized to the maximum value ahalhnels before
computing the SNR. This resulted in a SNR-6§.09 dB for the data seg"".

To evaluate the denoising capabilities of ICA, the extendgdnhax-algorithm as
implemented in EEGLab [DMO04] was applied to the concateh#a trials that
were randomly chosen as test data (from here on referredtteeatata vectoi),
resulting in estimated source topographigsnd temporal source estimatgsvith
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i = 1,..., M. Note that for simplicity the time index is dropped. Fourfeli&nt
evaluation schemes were then investigated:

1. Ordinary ICA. The reconstructed sourcgs are sorted in descending order
according to the variance of the original data explaineddshesource. Only
the first L sources with the highest explained variance are reprajemiéo
the observation space,

L
2 =Y "awy. (5.35)
=1

2. ICA with LCMV spatial filtering.The temporal source activity of each source
is estimated using the LCMV spatial filtering approach, arnel tésulting
source estimates are again sorted in descending ordedaugts the amount
of variance of the original data explained by each source.fifbt L sources
explaining the highest amount of variance are reprojecigd the observa-
tion space, resulting in

L
&® =Y aia/R,'a;) 4] R, @, (5.36)

i=1

Note that in this and the fourth evaluation scheme diagaradihg is used
to obtain numerically stable estimates of the inverse otthariance matrix
Rg.

3. Ordinary ICA with identification of relevant non-Gaussian sms. The sour-
ces are reconstructed with complete ICA, but not sorted icateting order
according to the amount of variance explained by each ICe&akstthe devia-
tion from Gaussianity of each sourggis estimated in multiple stages. First,
the average temporal activity of each source across theiédsis computed.
Then, the probability density function (pdf) of each ave@gource is esti-
mated for the post-stimulus period using a non-parameataéd approach
(cf. [BA97]). A Gaussian kernel is used, which is optimal ®aussian dis-
tributions. Then, the Kullback-Leibler distance (cf. [CTD6f the estimated
pdf to a Gaussian distribution with equal variance is ca@ad by numerical
integration. Finally, the sources are sorted from highesbwest Kullback-
Leibler distance, i.e., from least to most Gaussian. The dati® is then
calculated in the same way as in (5.35), but by reprojectieg.tmost non-
Gaussian sources.

4. ICA with LCMV spatial filtering and identification of relevantm&aussian
sources.The temporal source activity of each source is again estignas-
ing complete ICA in conjunction with LCMV spatial filtering. €restimated
sources are sorted in descending order according to theatots from Gaus-
sianity as for evaluation scheme three. The datai&tis then calculated
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Figure 5.2: SNR of the evaluation schemes 1-4.

in the same way as in (5.36), but by reprojecting thenost non-Gaussian
sources.

The denoised data sey’, j = 1,...,4, are calculated from the data séf¢’ by
taking the average across the ten trialse6?, applying the same temporal filter-
ing procedure as for the grand average data set, and nomgaizthe maximum
value across all channels of eagt). Note that determining the paramefercor-
responding to the dimension of the signal subspace, is drmaal-issue related to
model identification. This is beyond the scope of this worke Tesulting SNRs for
all four schemes applied to the ten randomly chosen tri@shown in Figure 5.2
as a function of.. € N. The maximum SNR achieved for each evaluation scheme
is summarized in Table 5.2 with Figure 5.3 showing the c@wesing time series.
As can be seen from Table 5.2, the best SNR.29$ dB is achieved for ICA with
LCMV spatial filtering and sorting of the estimated sourcesh®ir deviation from
Gaussianity. The SNRs for the other three evaluation schameesughly equal
at about3.5 dB. Note that the best SNR for evaluation scheme four is obthin
for L = 6, while the optimal SNRs for the other evaluation schemes hraired
for much higher dimensions of the signal subspace (cf. Eigu2). As it can be
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Figure 5.3: Denoised ERFs with optimalfor evaluation schemes 1-4.
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Evaluation Scheme 1 2 3 4
Maximum SNR | 3.75dB | 3.48dB | 3.32dB | 9.29 dB
Limax 30 61 51 6

Table 5.2: Maximum SNR for each of the four denoising schemes

| Training trials percond} 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |

Subjectk3b (ICA) | 73.7] 82.0] 86.4| 89.1] 88.8] 91.2] 91.2] 93.4
Subjectk3b (LCMV) | 73.6| 82.0| 86.5| 89.1| 89.3| 91.4| 91.8| 93.4
Subjectk6b (ICA) | 45.8[52.0]56.7] 59.8] 62.9] - | - | -
Subjectk6b (LCMV) | 45.9|51.8|56.5| 59.4| 62.9| - | - | -
SubjectI1b (ICA) |59.8]67.3] 71.2] 74.0] 789] - | - | -
SubjectI1b (LCMV) | 59.6| 67.6| 71.1| 74.2| 78.4| - | - | -

Table 5.3: Mean classification results in percent for melbiss ITFE with complete
ICA and complete ICA in conjunction with LCMV spatial filtering.

expected from the SNRs, the temporal activities at the réegrchannels for the
optimum SNR of each evaluation scheme differ significardfyKigure 5.3). While
the fourth evaluation scheme correctly reconstructs ajpmgeaks of the grand
average ERF (compare Figure 5.1), for the other three evatusthemes only the
major peak aroundl00 ms is clearly discernible.

In summary, the experimental results presented in thisseestablish that com-
bining ICA with LCMV spatial filtering significantly improvesie performance of
ICA in the reconstruction of ERFs. Note that this is in agreemmeéth the expected
results for an overcomplete mixture model with more soutisas sensors but less
non-Gaussian sources than sensors as formulated in Sécidh Furthermore,
note that the results are in contradiction to the assummtiancomplete mixture
model, for which LCMV spatial filtering would not result in impved performance
(cf. Section 5.2.4).

5.3.2 Feature Extraction in BCls

To investigate the efficacy of complete ICA in conjunctionhWitCMYV spatial fil-
tering for feature extraction in non-invasive BCls, the saxgeemental data and
evaluation procedure as in Section 4.3 are employed (rolalsis ITFE). However,
instead of performing ICA by joint approximate diagonaliaat(JAD) [ZLNMO04],
spatial filters are computed using a) the extended Infomggrihm as imple-
mented in EEGLab [DMO04], and b) using the extended Infomgw@hm in con-
junction with LCMV spatial filtering as described in Sectior28. The obtained
classification results for subjects k3b, k6b, and I11b arevshin Table 5.3. Compar-
ing these results with those obtained in Section 4.3 revadisminor differences
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in mean classification accuracy between using JAD and egtelmdomax for ICA.
More importantly, however, the mean classification acdesadiffer on average by
less thar).2% between using the extended Infomax algorithm alone and congb
it with LCMV spatial filtering.

Note that this is in agreement with expectations due to toetfeat interference
from Gaussian sources, which can be alleviated by LCMV, onlyasponds to a
shift of the baseline of ERS/ERD measurements as discusseettin® 5.2.3. If
ERS/ERD measurements, i.e., variance changes, are usedusddar inferring
the BCl-user’s intention, a baseline shift corresponds tamstation of the feature
space. A translation has got no qualitative influence onrdi@ihg process of a
linear classifier, and thus does not affect classificatiaucies.

5.4 Discussion

Motivated by the apparent contradiction between the sgooksomplete ICA and
the implausibility of a complete mixture model in EEG/MEGadysis, in this chap-
ter the performance of complete ICA was theoretically ingaséd for arbitrary
mixture models. Necessary and sufficient conditions fautsmhs of complete ICA
for arbitrary mixture models could be provided (Theorem) Fdsulting in the char-
acterization of separability of sources and model idemiiitg of complete ICA for
arbitrary mixture models (summarized in Table 5.1).

These results were then used to argue that empirical evedemcomplete ICA in
the analysis of EEG/MEG data is in agreement with an overdéet@mixture model
with less non-Gaussian sources than sensors but an aybimarber of Gaussian
sources. Under the assumption of this mixture model, ptiedis were formulated
on the behavior of complete ICA in the reconstruction of ERR&& and in the
analysis of ERS/ERD. By combining complete ICA with LCMV spatiétefing,
a methodology was presented that enables testing thesetmesl. It was then
shown that the performance of complete ICA with and without N\NChpatial fil-
tering in the reconstruction of ERFs does indeed conformegtkdictions derived
from the proposed mixture model, and that this empiricalence is in contradic-
tion to a complete mixture model. Furthermore, it was shomat experimental
results on feature extraction for non-invasive BCIs by conepl€A and LCMV
spatial filtering also agree with an overcomplete mixturedeio Note, however,
that the results on feature extraction are not in contramtidb a complete mixture
model and thus, in comparison to the results on ERFs, prowvadsompelling ev-
idence for an overcomplete mixture model. In summary, itasatuded that the
theoretical and empirical evidence is in favor of the preabsixture model. This
argument thereby provides an explanation for the successrplete ICA in the
analysis of EEG/MEG recordings without resorting to a pblggjically implausible
complete mixture model.

It should be noted that the validity of an overcomplete migtmodel with few
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non-Gaussian and arbitrary many Gaussian sources has\gwalsamplications
for the analysis of EEG/MEG recordings by complete ICA. Firfsensures that
the topographies of non-Gaussian sources are correcthnsacicted in spite of
an overcomplete mixture model. Second, Gaussian soureearhitrarily mixed
into reconstructed Gaussian sources. While this has got abtafive effect on
the analysis of ERS/ERD measures, it does degrade the SNR df/tizenics of
reconstructed ICs. This adverse effect can be alleviatedobybming complete
ICA with LCMV spatial filtering. However, this trades stattsdl independence
of reconstructed sources against minimization of the wagaof interference from
unwanted sources. This has to be taken into account whevirdgphysiological
conclusions from reconstructed ICs.

Finally, the presented theoretical and experimental tegubvide an explanation
for the success of complete ICA in the design of feature etitma@lgorithms for
non-invasive BCIs. As long as only variance changes are ugenhfrring the
user’s intention, as it is usually done in BCls based on motagieny paradigms,
the inclusion of Gaussian sources in reconstructed ICs atsdom translation of
the feature space. Since this does not affect the performr@finear classifiers, this
adverse effect of complete ICA in EEG/MEG analysis can atgeise disregarded
in the context of non-invasive BCIs based on motor imagery.
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Chapter 6

Feature Extraction via Beamforming

6.1 Introduction

In Chapter 3, only the spatial distribution of current densiithin the brain was
used for inferring the BCI-user’s intention, while in Chaptéi@nd 5 algorithms for
feature extraction were developed that were primarily d@sea-priori information
on temporal coding of cognitive states in the electric fieldhe brain. In this
chapter, a-priori information on spatial as well as tempowoding of cognitive states
is used to design a robust, computationally simple, anad&fefeature extraction
algorithm. This algorithm can be interpreted as a speca tyf beamformer, a
spatial filter usually associated with applications in ramghnology or classical
communication theory (cf. [VB88] for a review).

In EEG analysis, a beamformer is a linear spatial filter thaineally attenuates
all EEG sources not originating from a specific location @ioa within the brain
(cf. [GI99] for a review). Beamformers are applicable in tbatext of non-invasive
BCls, since some knowledge on which regions of the brain, ténregions of in-
terest (ROIs), provide information on the user’s intent®misually available. For
example, for non-invasive BCIs based on motor imagery panasligis well known
that haptic motor imagery of a limb leads to a decrease in poihe electric field
of the brain originating in that part of the motor cortex regenting the specific
limb (cf. [PL99] and the experimental results presented iagér 3). Furthermore,
the location of a certain region of the human brain within $kell, e.g., the mo-
tor cortex, does not vary significantly across subjects, iartlus approximately
known. In conjunction, this information can be used to despatial filters that
selectively extract those components of the EEG that aatgim the regions of the
brain considered most relevant for inferring the user'sntibn.

In comparison to approaches discussed in the previousenisapis has got several
advantages. First, beamforming is a very robust form ofufeaéxtraction, since
any noise that does not originate within the ROI, e.g., thataused by muscular
or ocular artifacts, is optimally attenuated. Second, imalestrated in Section 6.3
and discussed in Section 6.4, beamforming is computatiolesls demanding than
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source localization, and thus applicable in online BClIs waihl4time feedback. Fi-
nally, beamforming is completely unsupervised, i.e., g#slaot require any labeled
training data. As such, it does not suffer from overfittinggpbmena as the algo-
rithms presented in Chapters 3 and 4, and enables a high rateeérgence of a
subsequent classifier to its minimum expected error prdibabi

The structure of this chapter is as follows. In Section &,dssumptions made in
this chapter on the class of allowed feature spaces is specifhen, a beamform-
ing approach, similar to the concept of maximum SNR beamifagrfiMM80], is
derived that selectively extracts EEG components fromiipdwrain regions. In
Section 6.3, experimental results based on EEG recordingsd two-class motor
imagery paradigm are presented. First, offline classiboatesults of ten healthy
subjects are presented, and classification accuracieamngaced with those ob-
tained by using the CSP algorithm for feature extractionSefction 4.2.1). Then,
the feasibility of using the beamforming approach for i=aly real-time control of
a cursor in one dimension is demonstrated. The chapter wdeglin Section 6.4
with a general discussion of the usability of beamformingféature extraction in
non-invasive BCls. Some of the work in this chapter has alréaegy presented in
[GWGBO07].

6.2 Methods

In this chapter, only two-class paradigms are considereeinck, the BCl-user’s
intention is denoted by € C = {¢1,¢2}. The recorded EEG data is again referred
toasX € RM*T for a block of 7" samples, ana(t) € R for a single sample point.

If the time index is droppeds is treated as &/-dimensional random variable. The
assumptions made in this chapter to limit the class of altbfeature spacef*

(cf. Definition 2.13) are:

1. The user’s intention is encoded in variance changes oéttewded EEG data.

2. For motor imagery paradigms, only the EEG componentsnaiing in those
parts of the motor cortex representing the involved limlmsvjate information
on the BCl-user’s intention. These regions are termed regibnsterest
(ROISs).

The first assumption is identical to Chapters 4 and 5, and sgpssour knowledge
on temporal coding of cognitive states in the electric fidlthe brain. The second
assumption, on the other hand, incorporates more detgiatias constraints on
the class of allowed features than in previous chapters.r@urio previously em-
ployed spatial constraints, those imposed here dependesspttific experimental
paradigm being used. In general, different paradigms regliiferent ROIs.

The desired feature extraction algorithm then is of the f@fmRM*" — REYN,
T(X) = Var{WTX}, with the columns of the matrik’ € R**" containing the
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N beamformers. Note that, as in previous chapters, the apérat{.} refers to the

variances of the components i specific frequency bands, aid = 2 due to the

restriction to two-class paradigms.

In the context of EEG analysis, beamforming is frequentlgduor the purpose
of source localization ([VvYS97],[GI99]). This is realiddy specifying a three-
dimensional grid within the brain, and designing a beam#aror every single

grid point. The power of the obtained estimate of the eledteld at a grid point

is then taken as an estimate of the current density at thagittwithin the brain.

In this way, the whole brain can be scanned, resulting in @etaimensional map
of the estimated current density distribution. For thispose, it is desirable to
maximize the spatial resolution of the employed beamformesrder to ensure
minimum interference from adjacent grid points in estimgtihe current density
at a certain location within the brain. This is in contrasthe requirements of
beamforming in the context of non-invasive BCls. Here, the B&I be considered
as an extended region rather than a single point within taembFurthermore, the
ROl is only approximately known. It is hence desirable taviea beamformer that
can be pointed at a whole region within the brain, and thatragly attenuates all
sources not originating within this ROI. In the next sectithre derivation of such a
beamformer is presented.

6.2.1 Maximum SNR Beamforming in EEG

In general, it is desirable to derive a spatial filter thatatiates all electric activity
that does not originate in a chosen ROI. This, however, ipossible due to the
ill-posed nature of the inverse problem of EEG. In EEG rerwysl, electric activity
originating from an infinite dimensional space (the conbunsi current distribution
within the brain) is mapped onto a finite number of measurélentrodes. For this
reason, estimating the electric field at a certain positiside the brain constitutes
an underdetermined problem. The best one can do is to findtelsfiger that
in some sense optimally attenuates all activity not origgain the chosen ROI.
Motivated by the assumption that only variance changesgeaaformation on the
BCl-user’s intention, optimal attenuation is defined here agimizing the ratio of
the variance of the electric field originating in a certainlR@d the total variance
of the electric field. Such a linear spatial filter is now dedyand its properties are
discussed.

Derivation of the Maximum SNR Beamformer

The electric potential generated by the brain and measuradasitionr on the
scalp is given by (cf. [NS05])

B(r, 1) = / Lir,v)T P, )dV (+), 6.1)
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with V' the volume of the brainP : R3 x R — R3 the tissue dipole moment
(source strength) at positiari and timet in x, y, and z - direction, and, : R3 x

R3 — R3 the so called leadfield equation, describing the projecitoength of a
source with dipole moment in x, y, and z - direction at positio to a measured
electric potential at positiom. Note that the leadfield equation incorporates all
geometric and conductive properties of the brain. Here,etbetric field of the
brain is spatially sampled at= 1, ..., M electrodes on the scalp with positiep
resulting in a measurement vectoft) with the elements

() = /L(ri,r’)TP(r’,t)dV(r’), i1, M 6.2)
\%4

The goal of maximum SNR beamforming is to find a linear tramsgtgion of the
measured EEG
y(t) = w*a(t) (6.3)

that maximizes the ratio of the variance of the electric faidinating in a certain
region of the brain and the overall variance. For this, theponent of the EEG
originating in a certain ROI is defined a&$t), with the elements

zi(t) = / L(ry, )T P(r' , t)dV(r'), i=1... M. (6.4)
ROI

Computing the spatial filter that maximizes the ratio of thearece ofx and x
requires their respective covariance matrices.a5dhe electric field due to sources
within the whole brain, the covariance matii,(¢) can be computed using the
recorded EEG data. The covariance matrixegpfhowever, has to be estimated in
a different way. First note that the integral in (6.4) can ppraximated in a very
simplistic manner as

J

Ei(t) = a Y L(rl,m) P(r),t), (6.5)

j=1

with r%, j = 1,..., J the locations of an equally spaced grid witfpoints within
the ROI andy some numerical constant. The electric field at Mieelectrodes on
the scalp can thus be approximated as

&(t) = aLp(t), (6.6)

with the leadfield matrix, € R>*37 describing the projection strength:ry, and
z-direction of the sources at thegrid points to thel/ electrodes, ang(t) € R3/
representing the dipole moments of theources. Without loss of generality, it is
assumed that each elementpdt) has zero mean. The covariance matrixodf)
can then be written as

Rz(t) = ®LR,(t)LT, (6.7)
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with R, (t) the source covariance matrix. The desired spatial filtdrés found by
solving the optimization problem

. w' Rz (t)w
v s { i | o0

Since (6.8) is in the form of the well-known Rayleigh quotiestlutions to (6.8)
are given by the eigenvectors of the generalized eigenyahldem

Rz(t)w = AR, (t)w. (6.9)
Since for an eigenvalug® with associated eigenvectar* it holds that

w*T Ry (t)w*

N W telw
w*T Ry (t)w*’

(6.10)
the eigenvector of (6.9) with the largest eigenvalue ctutss the desired beam-
former. Then note that letting := \/a? and inserting (6.7) into (6.9) yields the
generalized eigenvalue problem

LR, (t)LTw = AR, (t)w. (6.11)

Solving (6.11) requires knowledge of the leadfield mafriand the covariance ma-
trix R,(t) for the sources within the ROI. The leadfield matrix for a giROI can
be estimated using models of EEG volume conduction disduss8ection 3.2.2
and [BMLO1]. In this chapter, as in Chapter 3, only the fourlisggherical head
model is considered [RD69]. Each columnlotiescribes the projection strength of
a current dipole at a certain grid point within the ROI to &llelectrodes due to its
dipole moment inz, y, or z-direction. The columns of. thereby implicitly define
the ROI and the orientation of sources within the ROI. Thes®aovariance matrix
R, (t), on the other hand, has to be specified using a-priori knayeleth absence
of any a-priori knowledge, it is assumed thig§(¢) = I, i.e., that all sources have
equal variance and are mutually uncorrelated. Howeveremaalistic assumptions,
such as an exponential decrease of correlation of sourckggeometric distance,
could easily be implemented. Finally, it should be noted #mgy constant scaling
of the source covariance matrix or the leadfield matrix hasffext on the eigen-
vectors of (6.11), and thus also no effect on the optimaliapfiter. The largest
eigenvector of (6.11), and thus the optimal beamformer.tban be computed by
standard numerical tools for generalized eigenvalue prob!

Properties of the Maximum SNR Beamformer

Several issues in the derivation of the beamformer warrdutther discussion.
First, it is assumed that the covariance matrix of the EE@ daih and should be es-
timated from available data. This is not imperative. Indtehe same model-based
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approach used for estimating the covariance matjxt) could be employed to
estimateRR,.(¢). This would result in a data-independent beamformer,a.eeam-
former that does not depend on the observed EEG. There angrinvary reasons,
however, to prefer estimating, (¢) from available data. First, a model-based ap-
proach for estimating?,.(¢) introduces unnecessary uncertainties, i.e., the source
and head model, into the evaluation process. This should/dneed if possible.
Second, for real EEG data some regions of the brain can bewdp® be more
active than others, resulting in a non-uniform currentritigtion. If R,(t) is esti-
mated from real data, the beamformer can adapt to this ndaromcurrent distri-
bution. The result is a spatial filter that focuses on atténgahose sources within
the brain that interfere most with the electric field origing within the ROI. This

is in contrast to a beamformer using a model-based approadsfimatingR?,. (¢).
Here, all sources within the brain are attenuated regagdiEtheir actual contribu-
tion to the deterioration of the SNR. Hence, a higher SNR ofodgemformer can
be expected i?,(¢) is estimated from real data.

Up to this point, it has been assumed tRatt) can be easily estimated from avail-
able data. This is in indeed correctifis a stationary (or quasi-stationary) random
variable with independently distributed samples. In tlisecthe standard unbiased
estimator of a covariance matrix can be employed, i.e.,

1
Ry = ——

77 2 (@(t) = o) (@(t) — pa)' (6.12)

T
t=1

with p,, the (sample) mean af. However, ifx is non-stationary, which for EEG
data unfortunately is indicated by empirical evidence 9Bhlestimation ofR?.(¢)
becomes non-trivial. More specifically, estimation of a 1sbationary covariance
matrix requires, explicitly or implicitly, the definitionfa time window in which
the random variable is considered stationary (parametdthods for estimating
R.(t) in which the non-stationarity is explicitly modelled aresitigarded here).
The optimal length of this window, in terms of minimizing sererror between
estimated and real covariance matrix, is influenced by aéfaators. These include
a) the extent of the non-stationarity, i.e., the speed wiifctvthe covariance matrix
changes, b) the deviation af from the assumption of independently distributed
samples (temporally correlated samplesxoprovide less information o, ()
than uncorrelated samples), and c) the actual probabéitgitly function ot (note
that the standard unbiased estimator for a covariancexngtnly optimal in terms
of the Cramer-Rao lower bound:f is Gaussian distributed). The actual effect of
varying the number of samples for computing (6.12) on thesifecation accuracy
is demonstrated in Section 6.3.1.

Furthermore, the beamformer derived here differs from thg&imum SNR beam-
former usually considered in the literature (cf. [MM80]) time choice of the de-
nominator in (6.8). In the standard maximum SNR beamformig(t) refers to
the covariance matrix of the signal subspace, whilgt) refers to the covariance
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matrix of the noise subspace. Here, howevegy(t) represents the covariance ma-
trix of the recorded EEG data, and thereby includes the rassgell as the signal
subspace. As such, it is not immediately evident that (18¢ed results in a de-
sirable spatial filter, and it could be argued that insteasbbfing (6.8) it would be
desirable to solve the optimization problem

w" = argmax{§ ———-t—— 6.13
wgeRM { 'wTRNoise(t)w ( )

with Rnoise(t) describing the covariance matrix of all sources outsiddR@é Hav-

ing to solve (6.13) would be disadvantageous, since it igatice impossible to
estimateRnoise(t) from recorded data. Using a model-based approach to estimat
Rnoise(t), on the other hand, is undesirable due to the same reasoriscassid
above for estimating?,.(¢). It is shown now that under some mild assumption
solving (6.8) and (6.13) yield the same generalized eidarvproblem, thereby
establishing that solving (6.8) does indeed result in therdd spatial filter. First,
consider again the linear EEG model

(t) = As(t) = [ A Ay ] [ s(t) } , (6.14)

with s(¢) denoting the sources within the ROI (the signal subspacé)dt) de-
noting the signals outside the ROI (the noise subspaceumisg s(t) andn(t) to
be uncorrelated (and, without loss of generality, to have r@&an), the covariance
matrix of x is given by

Rm (t) - AsRs(t>A-,lg— + Aan(t)A;rl - R:i:<t> + RNOiSE(t)' (615)

Now, solutions to (6.13) are given by eigenvectors of theegalized eigenvalue
problem

which can be rewritten using (6.15) as
Ra(t)w = ARy (t)w (6.17)

with A = A/(1 + \). Comparing (6.17) and (6.9) then shows that under the as-
sumption of the EEG sources within and outside the ROI bemzpurelated the
optimization problems (6.8) and (6.13) yield identicaltsgdilters.

6.3 Experimental Results

In this section, the beamformer derived in the previousieeds applied to ex-
perimental EEG data from a two-class motor imagery paradigirst, offline re-
sults of ten healthy subjects are presented, and the pexfmenof the beamform-
ing approach, using two beamformers with their ROIs cedteri¢hin the left and
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right motor cortex, are compared with that of the CSP algorifbf. Section 4.2.1).
The CSP algorithm is chosen for comparison due to its optignédr two-class
paradigms in terms of maximizing (an approximation of) nalittnformation of
class labels and extracted features as proved in Sectidh 4.2

Two different procedures for computing the beamformersaatuated. In the first
procedure, termed static beamforming, the beamformerscam@uted using previ-
ously recorded EEG data and then kept invariant for the ffethteoexperiment. In
static beamforming, the beamformers are hence not dyndynéckapted to the ob-
served EEG, but are optimized based on some imprint of braivity as measured
by the EEG covariance matrix of previously recorded dat#hérsecond procedure,
termed block-adaptive beamforming, the optimal beamfosraee re-computed for
each trial of EEG data, resulting in a time-discrete adapiaif the beamformers
to the observed EEG data. This section concludes with theeptation of experi-
mental results from a BCI with real-time feedback based onttiteedbeamforming
approach.

6.3.1 Offline Results
Experimental Setup

Ten healthy subjects (S1-S10) participated in the experiahevaluation. Of these
two were female, eight were right handed, and their averggevaas 25.6 years
with a standard deviation of 2.5 years. Subject S3 had ajrpadicipated twice in
a BCI experiment, while all other subjects were naive to BCIs.

Each subject was seated in a dimly lit and shielded room cxjrpately two meters
in front of a silver screen. Each trial started with the cainttisplay of a white
fixation cross. After three seconds, a white arrow was saopersed on the fixation
cross, either pointing to the left or the right. Subjectseviestructed to perform
haptic motor imagery of the left or the right hand, as indedalby the direction of
the arrow, while seeing the arrow. The conditions motor iemggf the left and
right hand are subsequently referred to as conditigr@dc,. After another seven
seconds the arrow was again removed, indicating the ene@ ofighh. While subjects
were explicitly instructed to perform haptic motor imagengh the specified hand,
the exact choice of which type of imaginary movement, i.eyimg their fingers
up and down, gripping an object, etc., was left unspecifiedotal of 150 trials
per condition were carried out by each subject, with thdstpaesented in pseudo-
randomized order.

During the experiment, EEG was recordedat= 128 electrodes placed according
to the extended 10-20 system. Data was recorded at 500 Hzleittrode Cz as
reference. Four BrainAmp amplifier were used for this purpaseng a temporal
analog high-pass filter with a time constant of 10 s. The dats ne-referenced to
common average reference offline. Electrode impedances bedow 10 kHz for
all electrodes and subjects. No trials were rejected andtifac correction was
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performed. For each subject, the locations of the 128 eldes were measured in
three dimensions using a Zebris ultrasound tracking systednstored for further
offline analysis.

Common Spatial Patterns

To evaluate the classification accuracy using CSP for feaiiraction the follow-
ing procedure is adopted. First, the EEG data is filtered wigiixth-order butter-
worth filter with cut-off frequencies 7 and 30 Hz, since thisknown to improve
the quality of the obtained CSP filters [BDR7]. Then, the data is randomly par-
titioned into a training and test data set. While the numberials included in the
training set is systematically varied, always the same raurabtrials per condition
are selected. The EEG covariance matrices of conditigradc, are then esti-
mated according to (6.12), only using data from the traisieigand the last 6.5 s of
each trial. This is done to ensure that visual evoked regsodsge to presentation
of the arrow at 3 s have already decayed. CSPs are then cormgsutiscribed in
Section 4.2.1. Thé, = 5 spatial filters with maximum and minimum eigenvalues
are used to form the spatial filtering matfix ¢ R *2L,

This matrix is then applied to each trial in the training amel test data set, resulting
in a reduced data space 2f EEG components for each recorded trial. For each
trial and extracted EEG componeiif, = 20 frequency bands of 2 Hz width, rang-
ing from 2 - 40 Hz, are extracted using a sixth-order buttetiwdilter. For each
trial, the sample variance in the time window ranging frofa 310 s in each fre-
guency band for all components then forms2he-dimensional feature vector. The
feature vectors of the trials included in the training settwen used to train a lo-
gistic regression classifier with, -regularization, with the regularization parameter
tuned heuristically td.1. This linear classifier is chosen for two reasons. First, it
is well known that considering non-linear classifiers doaissignificantly improve
classification accuracy in non-invasive BCIs while need{gssireasing complexity
[GPAT03, MABO03]. Second, it is also known that only some frexqecy bands pro-
vide information on the user’s intention in motor imagerygghgms, and that these
frequency bands vary across subjects [PL99]. It can thugjected that most fea-
tures of the200-dimensional feature vector are irrelevant, but it is unknavhich
ones are relevant for a certain subject. For this class akifleation problems,
i.e., a high-dimensional feature space with many irrelevaatures, it is proved
in [Ng04] that logistic regression with,-regularization possesses a sample com-
plexity that only grows logarithmically in the number ofetevant features, while
rotationally invariant classifiers, such as support vegtachines, have a worst case
sample complexity that grows linearly in the number of exint features. Hence,
for this class of problems logistic regression withrregularization can be expected
to display a faster convergence (in terms of the requiredusataf training data) to
its minimum error than other state-of-the-art classifmatlgorithms. The classi-
fier trained on the training set is then used to infer the BCIsisatention for the
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trials in the test set. The number of training trials per ¢bo are systematically
varied between 10 and 100 trials, and the above evaluatasegdure is carried out
10 times for each subject and amount of training data to nlsansible estimates
of the mean and standard deviation of the classificationracgdor each subject as
a function of the number of training trials.

Static Beamforming

To evaluate feature extraction by static beamforming, #eonmded EEG data is
again first randomly partitioned into a training and a tesadeet. The EEG data
in the time window ranging from 3.5 - 10 s of all trials in thaitring data set is
then used to estimate the EEG covariance matrix accordir{§.12). Note that
the EEG covariance matrix is not estimated separately fon eandition. Instead,
trials from both conditions are combined to obtain an impahsubject specific
EEG patterns as manifested in the EEG covariance matrixa, e beamformers
are computed, with their respective ROIs chosen as spheteso radius centered
1.9 cm radially below electrodes C3 and C4. Electrodes C3 and&€dhaisen due
to their location over the left and right motor cortex acéogdto the 10-20 system
for electrode placement. The leadfield matriéefor each ROI, required in (6.11),
is computed by placing a radially oriented current dipolewry position of an
equally spaced grid with 2 mm grid point distance within eREN, and computing
the contribution of each current dipole to the electric pote at the)M electrodes
on the scalp according to the four-shell spherical head m@ieSection 3.2.2
and [BMLO1]). For each subject, the employed electrode jrsitare obtained by
radially projecting the measured electrode positions ¢iméooutermost sphere of
the four-shell spherical head model. The beamformers arefthally obtained by
computing the eigenvector with the largest eigenvalue dfi(6for each of the two
leadfield matrices, assuming a unit source covariance xn&iy{t). This results
in a spatial filtering matrix? € RM>*2, The actual computation of the feature
vectors and evaluation of the classification accuracy is tiaeried out as for feature
extraction by CSP. Note, however, that since only two spétials are employed
the feature vector for static beamforming is of dimension 40

Block-adaptive Beamforming

For evaluation of block-adaptive beamforming, the samegutare as for static
beamforming is adopted. However, instead of computing &€ Eovariance ma-

trix from the training data, an EEG covariance matrix is caiep for every single

trial. These covariance matrices are then used to compote@amformers for ev-

ery trial according to (6.11), resulting in a time-discratiaptation of the beamform-
ers to actually observed data. The computation of the featertors and estimation
of the classification accuracies is then again performedraieéture extraction by
CSP and static beamforming.
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[ Trial# | 10 | 20 [ 30 [ 40 | 50 | 60 [ 70 | 80 | 90 [ 100
S1(CSP)|52.8] 53.7] 52.5| 54.3] 565.6| 55.7| 53.7| 55.0] 53.3] 55.9
S1(SB) | 51.1] 52.9|54.5/56.0| 55.0) 58.1| 58.6| 58.3| 61.0] 60.0
S1(BB) | 53.0| 55.4] 56.3| 55.9] 56.9| 54.9| 58.4| 56.0| 57.4| 58.9

S2 (CSP)| 49.9| 50.2| 49.9| 50.6 | 50.2| 50.0| 50.0| 50.2 | 50.3 | 49.5
S2(SB) | 87.0/ 89.4|90.4|90.7|91.3|90.8|92.1| 91.9|91.7| 92.3
S2(BB) [ 84.9|86.7|89.6/ 90.5|91.5|/91.1| 90.6| 92.3| 90.6 | 91.8

S3(CSP)| 58.1| 68.3| 79.3| 83.2| 88.2| 90.7| 92.0| 93.9| 93.3| 93.7
S3(SB) {91.2|93.1/94.1|94.9|95.1| 95.5|95.9| 95.2| 96.0| 96.5
S3(BB) | 92.8|95.0|94.9| 95.7| 95.5| 95.2| 95.6| 95.8| 95.9| 96.0

S4(CSP)| 82.8/ 89.9|91.2|91.9|92.1| 94.2| 93.9| 95.0| 95.8| 93.9
S4(SB) [ 91.3]93.9/95.3|/95.8|96.1|96.3|97.1| 96.9| 97.2| 97.3
S4(BB) [93.0]96.1|96.8| 96.5| 97.2|97.1|97.1| 97.2| 98.3| 97.9

S5(CSP)| 51.6| 52.5| 55.8| 59.5| 58.9| 66.6| 65.1| 72.6| 67.9| 77.0
S5(SB) | 84.9|88.6|91.3|92.6(92.3|91.9|92.4| 92.3| 92.9| 92.2
S5(BB) | 67.5| 76.3| 78.7| 83.0| 80.7| 83.8| 86.1| 84.4| 88.2| 85.3

S6 (CSP) | 68.3| 70.6| 69.9| 79.3| 75.6| 82.4| 86.3| 83.4| 86.2| 89.1
S6 (SB) | 81.0| 85.9/88.2|88.1| 89.2| 88.8| 88.7| 89.4| 88.4| 87.5
S6(BB) | 62.3]69.2|725|752|76.0|74.6| 745| 73.8| 74.6| 74.3

S7(CSP)| 49.4| 49.9| 49.7| 49.4| 50.8| 49.6| 49.6| 48.6| 48.5| 49.6
S7(SB) | 53.2| 55.2| 56.6| 60.3| 58.3| 59.1| 60.8| 60.7 | 61.0| 60.3
S7(BB) | 50.6| 50.8| 52.6| 52.5| 53.6| 55.1| 54.1| 55.4| 56.4 | 55.8

S8 (CSP) | 50.8| 50.7| 50.8| 51.6| 50.5| 50.7| 50.6 | 50.5| 49.8| 49.9
S8 (SB) | 63.5| 70.4| 74.6| 74.3| 75.3| 75.6| 75.4| 75.0| 76.2| 77.1
S8 (BB) | 59.0/ 60.9| 64.7| 65.5| 68.3| 71.0| 69.8| 70.4| 73.4| 725

S9 (CSP)| 51.5| 55.7| 53.7| 62.2| 67.3| 61.2| 66.1| 59.5| 62.7 | 70.0
S9(SB) | 57.2|59.4585|61.7| 60.7| 61.6| 62.3| 62.1| 62.0| 60.5
S9(BB) | 60.5| 61.6| 63.3| 62.2| 66.2| 64.8| 66.0| 64.3| 67.3| 68.0
S10 (CSP)| 54.2| 53.2| 52.4| 57.0| 56.1| 59.4| 56.7 | 61.6| 67.8| 67.6
S10(SB) | 80.8| 85.0| 88.7| 87.3| 88.6| 88.3| 89.6| 88.4| 90.0| 91.5
S10(BB) | 72.4| 77.6| 80.4| 83.2| 83.9| 85.7| 86.1| 85.2| 85.7| 87.9

Table 6.1: Mean classification results in percent as a fanabf the number of
training trials per condition for feature extraction by CStatic beamforming (SB),
and block-adaptive beamforming (BB).
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Results

The resulting classification accuracies of all subjects evaduation methods are
shown in Fig. 6.1 and Tab. 6.1. As can be seen from the figueaian and the
standard deviation of the classification accuracies vanmyifscantly across subjects,
number of training trials, and algorithm used for featuré&raotion. It should be

pointed out again that the evaluation procedures diffey onthe choice of the al-

gorithm used for spatial filtering, and not in the classifmaprocedure itself. Any

differences in the classification accuracy for a subjectthas solely be attributed
to the different algorithms used for extracting relevanGatomponents.

Classification results obtained with the CSP algorithm vaggificantly across sub-
jects. While three subjects (S3, S4, and S6) achieve an acaol@se to or even
above 90%, classification accuracy is not (or only hardlygvabchance for four
other subjects (S1, S2, S7, and S8). As a result, the measifidason accuracy ob-
tained with the CSP algorithm if averaged across all subggzdshumber of training
trials equals only 64.2%. In comparison to CSP, the beamfayrapproaches dis-
play a considerable higher mean classification accuracyefaged across all sub-
jects and number of training trials of 79.2% for static- aBdL¥%o for block-adaptive
beamforming. In fact, static beamforming achieves clasdiin accuracies above
90% for five out of ten subjects, with only two subjects digplg accuracies not
significantly above 60%. Notably, there are two subjectsai&2S8) for which CSP
does not perform above chance, while both beamforming agpes display clas-
sification accuracies of above 90% and above 70%, resphctivesummary, the
best mean classification results are observed for statiofoeming, outperforming
block-adaptive beamforming by 3.6% and CSP by 15.5%.

It should be pointed out again that these rather low measi@izaion results are

due to computing classification accuracies across diftes@ounts of training data,

with few training trials naturally resulting in low classifition accuracies. The max-
imum classification results, usually obtained for the latganount of training data,

are significantly higher (cf. Tab. 6.1), with subjects S3 &ddeven achieving clas-
sification accuracies close to 100%. However, the qualitg téature extraction

algorithm is determined not only by the maximum classifamataccuracy that is

achieved, but also by the amount of training data requirettkoeve a desired clas-
sification accuracy. For this reason, mean classificatisult®taking into account

different amounts of training data are considered more mgén.

The above remark naturally leads to the question of the fatervergence of the
classification results to the maximum classification acourfar a given feature
extraction algorithm. Here, the CSP algorithm displays hamatow rate of con-
vergence. Even though excellent maximum classificatiomteare obtained using
CSP for subjects S3 and S4, about 80 training trials are redjuintil the classifica-
tion accuracy approximately converges. This observas@ven more pronounced
for subjects S5, S6, S9, and S10, for which even 100 trialsad@uiffice for con-
vergence. Considering that 100 trials per condition coomrdpo a training time
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of over 30 minutes, this is a rather significant limitationtieé¢ CSP algorithm. In
contrast, the beamforming approaches display a much hrgkeiof convergence.
Using the static beamformer, a mean classification accuwaiagaye 90% is obtained
for subjects S3 and S4 using only ten training trials per @@ corresponding
to a training time of less than three and a half minutes. Wholeatl subjects dis-
play such a fast rate of convergence, it is neverthelesestid Fig. 6.1 that the
beamforming approaches require much less trials to coaviergheir maximum
classification accuracy than the CSP algorithm.

Another important issue in the evaluation of feature exibacmethods is the stan-
dard deviation of the obtained classification results foivaergamount of training
data, i.e., how much the classification accuracy variesifterdnt sets of training
data of equal size. In general, it is desirable to have a landsrd deviation to
increase the probability that for a given amount of traingaga the resulting mean
classification accuracy is close to the expected one. As easebn in Fig. 6.1,
the standard deviation is rather large for the CSP algorithithh, a mean standard
deviation across all subjects and amounts of training da&5%. The beam-
forming approaches, on the other hand, result in a standasidtcbn of only 3.5%
(block-adaptive beamforming) and 3.0% (static beamfoghine., roughly half the
standard deviation of the CSP algorithm.

In summary, the proposed beamforming approaches outpetfa CSP algorithm
considerably in terms of mean classification accuracyafatenvergence, and stan-
dard deviation of classification accuracy for a given amadifitaining data.

6.3.2 Online Results

To establish the feasibility of beamforming for BCls with réiahe feedback, the
experimental setup of Section 6.3.1 is adapted in the fatigwvay. First, a certain
number of training trials are recorded with an equal humbdrials per condi-
tion presented in pseudo-randomized order. This trainatg det is then used to
compute two static beamformers and train a logistic regyasdassifier withL,-
regularization. Up to this point, the experimental setlye tomputation of the
static beamformers, and the training of the classifier anx@(ding all parameters)
identical to the procedures in Section 6.3.1. After tragnimowever, real-time feed-
back is provided to the BCl-user. To achieve this, the follgvmocedure is im-
plemented in Matlab/Simulink. First, the recorded EEG datsent via TCP/IP to
Matlab/Simulink running at 500 Hz. The two static beamforsnare then applied
to every new data sample, and the resulting two extracted Edfgponents are
band-pass filtered with a sixth-order butterworth filter thflequency bands of 2
Hz width ranging from 2 to 40 Hz. The variances of the tempyprahd spatially
filtered time series are then calculated recursively foryegample step according
to

Var(y)t +1] =~ Var(yo)[f] + it + 1% (6.18)
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Figure 6.2: Setup of the feedback experiment.

withi =1,...,40,t = tq,...,T (with ¢, designating the time of display of the ar-
row indicating the class of the trial arfdthe length of each trial), and Ma;)[to] =
0. Note that due to the band-pass filtering the elementg lbave approximately
zero mean, which is hence neglected in (6.18). The estinvdtéwe variances of
the extracted EEG components in the different frequencylbane then fed into
the previously trained logistic regression classifier. dgut of the classifier at
each sample point, ranging from zero to one, is then fed batkd subject by
drawing a white filled square on the screen. The output of esdier is linearly
mapped to the horizontal position of the square, with anwudpzero mapped to
the left border and an output of one mapped to the right bavtldre screen. The
horizontal position of the square thus informs the BCl-usethefcertainty of the
classifier about his intention (with the left border of theesm indicating 100% cer-
tainty of an imaginary movement of the left hand and the rigdrder of the screen
indicating 100% certainty of an imaginary movement of tightihand). To further
motivate the subject, two white boxes are drawn at the leftraght borders of the
screen into which the subject has to move the white squarso, Ahe color of the
centrally displayed arrow is set to green or red, dependmgleether the output of
the classifier leads to a correct decision or an error. Theptete setup is shown
in Fig. 6.2. Each trial ends after a preset time, or if a cartreshold of certainty
of the classifier is achieved. Note that the threshold doiteis only checked after
a certain minimum time into each trial to ensure sensiblenases of the variances
of the EEG components, and that each trial begins with a pafus.

Due to the excellent performance in the offline experimembject S4 was asked
to perform again in the online experiment. Twenty-five gigkr condition were
recorded as training data, corresponding to a training timeight minutes and
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Block # | Min trial length | Max trial length | Thresholds (1 — P.)
1 9.99s 10s [0.10.9] | 92.5%
2 9.99s 10s [0.10.9] | 87.5%
3 6s 10s [0.10.9] | 87.5%
4 6s 30s [0.10.9] | 92.5%
5 6s 30s [0.10.9] | 90.0%

Table 6.2: Results of the online experiment for subject S4.

twenty seconds. Then five blocks of twenty trials per conditivere carried out
with feedback provided, with a break of approximately twauates between each
block. The obtained classification results are shown in @&h.along with the min-
imum and maximum trial lengths and the thresholds for teatnom of a trial. The
mean classification accuracy across all blocks was 90.0%hvidin accord with
the classification accuracy obtained by subject S4 in thmeffixperiment using the
static beamforming approach (cf. Tab. 6.1). A video recggdf this experiment
can be downloaded duttp://www.lsr.ei.tum.de/fileadmin/multimedia/vided$iT_
BCl.avi

6.4 Discussion

6.4.1 Comparison of CSP and Beamforming

In Section 6.3.1, it has been shown that beamforming enalitdggher mean classi-
fication accuracy, a higher rate of convergence, and a ldardard deviation of the
classification accuracy than the CSP approach. This raisegigrstion why the CSP
algorithm performs so poorly in this study in spite of its ptgrity within the BCI
community. The mediocre performance of the CSP algorithmbeaattributed pri-
marily to the choice of the eigenvectors of (4.2) used asaddters. According to
(4.3), the eigenvectors with the smallest and largest gajaa of (4.2) correspond
to the spatial filters that maximize the ratio of the classetittonal variances, and
are thus optimal in terms of maximizing an approximation otual information of
class labels and extracted EEG components (cf. SectioB)4owever, the vari-
ance of artifactual components frequently present in EE@ dsually exceeds the
variance of endogenous EEG components. If a certain ditéag., an eye blink,
is only present in the training data of one class, then the @@Ridam focuses on
optimally extracting the artifactual EEG component. Sitiie component is unre-
lated to the actual motor imagery, this results in a poorsifi@ation accuracy. This
overfitting phenomenon is illustrated in Fig. 6.3, showiag typical spatial filters
with maximum/minimum eigenvalues as obtained by CSP foresuil$2 using 20
trials of each condition for training. Subject S2 is chosanrtlfis purpose since the
recorded EEG data is very noisy, but the subject is capabtpefating the BCI
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Figure 6.3: Typical spatial filters obtained by CSP for sub§z

as indicated by mean classification accuracies of above @0%dture extraction
by block-adaptive beamforming. As can be seen in Fig. 6.3llodpatial filters
obtained by CSP only the third one focuses on the vicinity efléit motor cortex
(electrode C3), albeit some activity in the left temporaldab also picked up. All
other filters focus on artifactual components not relatelEG® signals originating
in the motor cortex. Consequently, the spatial filters do mck pp those compo-
nents that provide information on the user’s intentionultasg in a classification
accuracy not above chance. This is in contrast to subjedio&4hich ten typical
spatial filters, obtained by CSP using 20 trials of each cawitor training, are
shown in Fig. 6.4. Here, all spatial filters except the secdodrth and fifth one
focus on areas over the left and right motor cortex (eleetsod3 and C4). As a
result, the spatial filters extract EEG components thateleded to motor imagery,
and provide sufficient information on the user’s intentiorathieve a mean classi-
fication accuracy of about 90%. For comparison, typicaliapflters obtained by
block-adaptive beamforming for subjects S2 and S4 are showig. 6.5. Here, it
is evident that, as expected, the beamformers focus on aveashe left and right
motor cortex. Furthermore, for subject S4 the spatial &lté#tained by beamform-
ing resemble those obtained by CSP, indicating that bothoagpes extract similar
EEG components if applied to data sets with few artifacteahjgonents. The re-
sults of subject S2 demonstrate that CSP breaks down for wlaitsy with many
artifactual components, while the beamforming approaitihegtracts meaningful
components.

In principle, there are three ways to alleviate overfittilgpomena observed when
using CSP for feature extraction. The first is to increase tiveusnt of training data.
Since the probability that one special type of artifact sgent in the training data of
only one condition decreases with the amount of training daterfitting phenom-
ena are attenuated by increasing the number of trials irrdimarig set. However, it
is in general desirable to minimize the amount of traininada minimize training
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Figure 6.4: Typical spatial filters obtained by CSP for subf&t
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Figure 6.5: Typical spatial filters obtained by block-adapbeamforming for sub-
jects S2 and S4.
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time for each subject. Another approach to alleviate overgitphenomena is to in-
crease the number of eigenvectors of (4.2) used as spagasfillhis increases the
probability of including spatial filters that focus on motoeas and thus provide in-
formation on the user’s intention. There is, however, aright trade-off between
increasing the number of spatial filters and the rate of cgarece of the subse-
guent classification algorithm. This is illustrated in Fég6, showing the mean and
standard deviation of the classification accuracy of sul§8dor different numbers
of spatial filters per condition as obtained by CSP. Using onlg spatial filter per
condition (Fig. 6.6.a) excellent classification results abtained for 80 or more
training trials per condition. However, if the number ofatd used for training is
decreased, the standard deviation of the classificationracg increases. More
specifically, if 50 or less trials per condition are used fairting, which still cor-
responds to a training time of over 15 minutes, the standavéhtion becomes so
large that classification accuracies not above chance dsasvelose to 100% be-
come rather likely. This undesired large dependence of ldssification accuracy
on the specific training set can be significantly reduced byeising the number
of spatial filters. Unfortunately, this also results in avgto rate of convergence
of the mean classification accuracy, as can be seen in Fig. &=@rthermore, this
dependence of the classification results on the number taspliers varies across
subjects. In this study, five spatial filters per conditionenbeen chosen for each
subject to achieve an acceptable trade-off between a faesbfaonvergence and
small overfitting effects. Due to the difficulties of choagiime correct spatial filters
in order to alleviate overfitting phenomena, CSPs are frefjueranually selected
by an experienced researcher. This is the third approackdiocing overfitting
phenomena. By only selecting spatial filters that focus onomateas excellent
classification results can be obtained, and the effects efffitting can be signifi-
cantly reduced. However, manual selection of spatial §ltetroduces subjectivity
into the analysis and thus prevents an objective evaluafitimee power of different
feature extraction algorithms. Furthermore, having tecespatial filters manu-
ally is clearly undesirable if BCls are to be employed by suisj@gthout expert
supervision.

In summary, CSP is a feature extraction algorithm that esadteellent results if
a large amount of training data is available and the recoEde@ does not contain
many artifacts, or if it is feasible to have an experiencest uzanually selecting the
spatial filters that provide most information on the BCI-useéntention by visual

inspection. However, if expert supervision is undesiraloleg training periods are
unfeasible, or the recorded data is very noisy classifinagsults obtained by using
CSP for feature extraction are unsatisfactory. The beanifgr@pproach, on the
other hand, enables a high mean classification accuracyawtbtandard deviation
and a high rate of convergence. Importantly, the problenmetdcsing a subset of
optimal spatial filters, as it is necessary when using the Q&étitnm, is absent

in the beamforming approach. This is due to the fact that idpeas subspace of
the data, i.e., the subspace of the recorded data providiognation on the user’s
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Figure 6.6: Classification accuracies (mean and standatdtis) of subject S3
for different numbers of CSPs.

intention, is already determined by the a-priori knowledged in specifying the
ROls for a certain paradigm. Once the ROIs have been seldbednsupervised
adaptation of the beamformers only concerns the noise aabsp.e., the space
spanned by sources which are not to be included in the egtt&fG components
(the denominator in (6.8)). As such, the beamforming apgradoes not suffer
from overfitting phenomena. On the contrary, any artifacesent in the EEG data
and not originating within the ROI can be optimally atteragat The unsupervised
nature of the beamforming approach also provides an exjban@r the high rate

of convergence and the small standard deviation of theifitzgon results. The

beamformers are essentially independent of the specife idathe training set,

since no class-related information is utilized. Conseduygthie rate of convergence
and standard deviation of the classification results carribgaply attributed to the

logistic regression classifier.

6.4.2 Beamformer Optimization

Evidently, the performance of the beamforming approacteddg on the accuracy
of the incorporated a-priori knowledge. This includes theice of the ROIs, the
model used for volume conduction, the orientation of cursemirces within a ROI,
and the source covariance matrix of sources within a ROI. ideriag this mul-
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titude of parameters, the obtained classification resuighnseem surprising, es-
pecially since parameters have not been optimized for ealgjec but have been
specified a-priori.

In terms of the chosen ROIs, it is indeed unlikely that sphéweated radially be-
low electrodes C3 and C4 are optimal in terms of the expectediéitzation error.
A marginal misspecification of the ROIs, on the other handpigely to result in
a large decrease of the expected classification error. $hagain due to the un-
derdetermined nature of the inverse problem of EEG (cf.i&e@&.2.1). Due to
the impossibility of extracting only sources within the R@le spatial edges of the
obtained beamformers are not sharp, i.e., attenuationus€es is low directly out-
side the ROI and increases with distance to the ROI. In mmcthe beamformers
can thus be expected to extract sources from a rather laggerevithin the brain,
alleviating adverse effects of misspecifying the ROIs. Bedther hand, this effect
naturally also leads to a lower SNR if the ROIs are correctlgtered within the
hand areas of the left and right motor cortex. In [LGWGBO7], tipgmal centers
of the ROIs for the beamforming approach presented in thapten are determined
for four subjects using a source localization approach,thadesulting classifica-
tion performances are compared with those obtained if this R€@ chosen as in
this study. For two subjects, optimizing the centers of tkdResulted in a mean
increase in classification accuracy of 4.4%, with the opitioemters of the ROIs
located on average 1.9 cm away from the positions chosensdrstindy. This in-
dicates that a rather large misspecification of the locatiothe ROIs of almost 2
cm (taking into account that the human head has got a raduslpBpproximately
8.5 cm) results in only a moderate decrease in mean classificaccuracy. For
the other two subjects evaluated in [LGWGBO07], classificatioouracies obtained
with optimized ROIs decreased. This illustrates anothgrortant issue. One of
the primary advantages of the beamforming approach is gsipervised nature,
rendering it robust to artifactual components in the EEGda&ny optimization
procedure carried out on the data dilapidates this advantaghould be noted that
the classification procedure in [LGWGBO07] differs from the amaployed here.
Absolute classification accuracies can thus not be compared

A further issue in the derivation of the beamforming apploecthe head model
used for computing the leadfield matrices. In this study, @frtbe most simplistic
head models available in the literature has been employbkd.b&amforming ap-
proach can be easily combined with more complex head modiel88ML01] and
Chapter 3) by altering the methodology for computing thefiettimatrices of the
ROIs used in (6.11). This can be done without significantlyreéasing the com-
putational complexity of the beamforming approach, sirte leadfield matrices
only have to be computed once for each subject and electmdryaration. An as-
sessment of the effects of more realistic head models orldksification accuracy,
however, is beyond the scope of this work.

Regarding the orientation of sources within a ROI, it mightelpected that im-
proved classification results can be obtained by specifyirgp-dimensional dipole
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moments at every grid point within the ROI, since this allogvdracting EEG
sources from the ROI with arbitrary dipole orientation. §Hbes not appear to be
the case. Increasing the dimensionality of the dipole masnerreases the rank of
Rz, the covariance matrix of sources within the ROI, and theg#mk of the signal
subspace. As a direct result, less dimensions of the sffidtéas are available for
attenuating sources outside the ROI, leading to decredassiftcation accuracies.
Best results were obtained in this study by only using ragliatiented dipoles,
which is attributed to the physiological accuracy of thiswmaption. Finally, the
choice of the source covariance matiiy(¢) is a parameter whose effect on the
classification accuracy has to be investigated in futurekwor

6.4.3 Static- vs. Block-adaptive Beamforming

So far the discussion of the beamforming approach has rtedl¢lae differences
between static- and block-adaptive beamforming. Interglst static beamform-

ing outperforms block-adaptive beamforming in all but onbject (S9) in terms

of mean classification accuracy. This is rather surprissige it could have been
expected that a trial-wise adaptation of beamformers tordsx data results in a
higher SNR. The converse observation suggests, that inlavida adaptation of

the beamformers the available data is not sufficient to nlgaod estimates of the
EEG covariance matrix. On the other hand, the classificatcmuracies obtained
with static beamforming suggest that non-stationaridSEG data do not prohibit
excellent classification results. This is fortunate frommacfical point of view, since

static beamforming is computationally less intensive théotk-adaptive beam-
forming, and can be applied directly in BCls with real-timedkack as demon-
strated in Section 6.3.2.

6.4.4 Source Localization and Beamforming

It could be argued that source localization methods, asuséssd in Chapter 3,
should enable identical classification results as the beamnig approaches pre-
sented in this chapter. If in source localization identiR&ls are chosen as in
beamforming, the estimated EEG components should, atifepsnciple, provide
identical information on the BClI-user’s intention. This isl@ed correct. However,
the computational complexity of beamforming methods isigicantly lower than
that of most methods for source localization. Once the leltifnatrix for sources
in the ROI has been computed, which only has to be done onceafdr subject
and electrode configuration, the actual beamformer can beueted by solving
a single generalized eigenvalue problem. In static beanifay, this eigenvalue
problem has to be solved only once for every ROI, while in kladaptive beam-
forming it has to be solved once for every ROI and block of EEEad For every
sample point, the desired EEG components can then be estifoyaa simple linear
transformation. Source localization methods, on the dtlaed, usually possess a
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larger computational complexity [BMLO1]. This renders smifocalization meth-
ods unfeasible for BCls with real-time feedback.

6.5 Summary and Outlook

In this chapter, it has been shown that beamforming provédeisible alternative
to supervised spatial filtering in non-invasive BCls. Thisdsotrue especially if
the goal is to design a BCI that can operate without expert sigs@n and with
little training data. For these specifications, the beamiing approach was shown
to outperform the CSP algorithm in terms of mean classificaiccuracy, standard
deviation of the classification accuracy, and rate of cayerece of the classifier.
Also, beamforming was shown to be feasible in BCls with onleedback.

While feature extraction via beamforming is completely pewised, the classi-
fication procedure employed in this chapter still requigdseled training data. It
should be pointed out that this is not necessary, and a céehplensupervised BCI
can, at least in theory, be devised by resorting to clugeajproaches in feature
space. First results using block-adaptive beamforminh man-supervised classifi-
cation procedures are reported in [EGWBO07]. While in this palperfeasibility of
a completely unsupervised BCI based on beamforming is esttalolj the obtained
classification results are not yet satisfactory and reduiteer work.

In this work, only motor-imagery paradigms have been careid. It should be
pointed out, however, that beamforming approaches can fleedpo BCls based
on other experimental paradigms as well. This requires keaye on the brain re-
gions involved in a certain experimental paradigm. As disedl in Section 6.1, this
is the case for motor imagery paradigms. Other paradigm&tmeguire source
localization studies to identify relevant ROIs prior toliathg beamforming ap-
proaches.

Finally, only two-class paradigms have been considered. hétowever, beam-
forming approaches can be extended in a straight-forwantherato multi-class
paradigms. If motor imagery of further limbs, e.g., a footl dhe tongue, are con-
sidered, new ROIs have to be specified for those parts of thermortex represent-
ing the specific limbs. It remains to be experimentally eghbd if beamforming
approaches also display the advantageous properties daated in this chapter if
they are applied to multi-class paradigms, with ROIs pdgdibried deeper within
the cortex.
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Chapter 7

Conclusions and Open Problems

In this chapter, the most important contributions of thissis are summarized and
critically evaluated (Section 7.1). It is discussed whyspite of the progress al-
ready made, in non-invasive BCls inferring the user’s intamstill is a hard task.
Limitations of current methods for feature extraction imsnvasive BCls are dis-
cussed, and possible future research directions are dedtheMore specifically, in
Section 7.2 it is argued that it is necessary to acknowledgddct that the brain
forms a complex network with time-varying functional contigty patterns in or-
der to significantly enhance the capabilities of future mwasive BCIs. In Section
7.3, a possible approach to this problem is outlined. Rm#iis thesis concludes
in Section 7.4 with a few comments on the possibly underegédhsignificance of
the electric/magnetic field for information processinghatthe human brain.

7.1 Summary

The motivation for the work presented in this thesis is thevadgion that the lack
of sophisticated feature extraction methods constitdtegriain performance bot-
tleneck of non-invasive BCIs. This was explicated in Sectigh & which it was
argued that the high dimensionality of the feature spaceminvasive BCIs pro-
hibits training any type of classifier directly on the origifieatures, i.e., without a
prior dimensionality reduction. Further, it was shown tthet class of possible fea-
ture spaces in non-invasive BCIs is so large that the appicati any automated
algorithm for dimensionality reduction is not feasible.ké&a together, it was ar-
gued that this implies that a-priori knowledge on how cageistates are encoded
in signals recorded from the CNS has to be incorporated irt@tbcess of feature
extraction in order to restrict the class of allowed feagpaces in a sensible way.
This resulted in Definition 2.13, summarizing the main tagithis thesis.

As further discussed in Section 2.4, for recording modsditonsidered in this the-
sis the high dimensionality of the original feature spaceetermined by two fac-
tors: the large number of EEG/MEG electrodes, used to satmplelectric/magnetic
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field on the scalp, and the duration and sampling rate of tberdengs. Accord-

ingly, dimensionality reduction can be achieved by incoatiag a-priori knowl-

edge on coding of cognitive states that a) acts on the sphtrakin by fusing the
data recorded at multiple channels, b) acts on the temporaath by fusing mul-

tiple observations recorded at the same electrode, or € santiltaneously on both
domains.

In Chapter 3, it was argued that the activity of brain regionsnd) a certain cog-
nitive task provides information on the BCl-user’s intenteomd can thus be used
as a feature space in BCls. It was further argued that the priedwantage of
this source localization approach to feature extractiahasno information on how
cognitive states are temporally encoded in the EEG/MEGrdaags is required,
thereby bypassing the largely unsolved problem of tempooding of cognitive
states in the electric/magnetic field of the brain. This apph, which only incor-
porates a-priori knowledge acting on the spatial domairs, walized by combining
ICA with source localization in a four-shell spherical headdal, and develop-
ing a procedure to identify and exclude EEG/MEG sourcessapting (Gaussian)
noise. While the viability of this procedure for feature extiion in non-invasive
BCls could be established in a preliminary study based on actags motor im-
agery paradigm, the reported classification result did notgare favorably with
a recent study combining source localization with temparptiori knowledge on
coding of cognitive states for feature extraction in BCls [G@¥]. This led to the
conclusion that while the incorporation of spatial a-grlarowledge only does in-
deed constitute a viable option, considering all spatidltamporal a-priori knowl-
edge available on coding of cognitive states allows constrg superior feature
extraction algorithms for BCls.

This conclusion was further pursued in Chapter 4. In this tdragthe CSP algo-
rithm (initially proposed in [RMGPOOQ]) for feature extramti in BCls was inves-
tigated theoretically for two-class as well as multi-clgssadigms. By making
use of a-priori knowledge available on temporal coding ajrobve states in the
electric/magnetic field of the brain, the CSP algorithm cotaepspatial filters that
aim to optimally extract those components of the EEG/MEGrigliag most in-
formation on the BCl-user’s intention. The CSP algorithm thtikzas temporal
a-priori knowledge to achieve a dimensionality reductiotirey on the spatial do-
main. However, while excellent classification results hiagen reported using the
CSP algorithm for feature extraction, its optimality in terof the minimum Bayes
error (as discussed in Section 2.2) remained unsolved., Hareuld be shown in
the framework of information theoretic feature extractibat the two-class CSP
algorithm is optimal in terms of maximizing (an approxineatiof) mutual infor-
mation of class labels and extracted EEG/MEG components provided a pre-
viously unknown link between the CSP algorithm and the mimmiayes error.
Note that while optimality in terms of maximizing mutual armation is highly
desirable (cf. the discussion in Section 2.2), it rules quinoality in terms of the
minimum Bayes error. The extension of CSP to multi-class panasiproposed in
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[DBCMO04], on the other hand, was shown to be suboptimal in teshmaximiz-
ing mutual information of extracted EEG/MEG components elads labels. This
deficiency could be resolved by proving that computationatéptial spatial filters
by multi-class CSP is equivalent to ICA, and using the framé&vadrinformation
theoretic feature extraction for identifying those ICs pdivg most information on
the user’s intention. This algorithm, termed multi-clas®rmation theoretic fea-
ture extraction, was then shown to outperform multi-clasB @Sa four-class motor
imagery paradigm by on average 23.4%.

Motivated by the success of ICA in Chapters 3 and 4, Chapter 5 easted to
an investigation of complete ICA in the context of EEG/MEG lgsis. The goal
of this analysis was to provide a theoretically and expeniaiéy founded expla-
nation for the apparent success of complete ICA in EEG/MEGQyaisain spite of
the physiologically unrealistic assumption of at most asyreources as sensors (as
required by complete ICA). This was approached by theolgtizavestigating the
behavior of complete ICA, i.e., ICA designed for an equal nundfesensors and
sources, in the context of overcomplete mixture models,foe models with more
sources than sensors. A general theorem (Theorem 5.1) lseydcbved, establish-
ing necessary and sufficient conditions for solutions of plete ICA for arbitrary
mixture models. This theorem was then used to argue thatletenCA performs
well in EEG/MEG analysis not due to the fact that only a few EHAEG sources
are strong enough (cf. [OWTMO06]), but rather because onlyesfgurces are non-
Gaussian enough to be picked up by ICA. Testable predicti@ne Wormulated for
this hypothesis and experimentally validated. In summanyexplanation for the
success of complete ICA in EEG/MEG analysis (including featxtraction for
BCIs) could be provided that dissolves the apparent contiadibetween the re-
guirement of at most as many sources as sensors and thelpbysabdoubtfulness
of this assumption.

In Chapters 4 and 5, only supervised feature extraction idhgos were consid-
ered, i.e., algorithms that require labeled training d&tile algorithms that are
theoretically optimal in terms of maximizing (an approxima of) mutual infor-
mation of extracted features and class labels could be gedvior two-class as
well as multi-class paradigms in Chapter 4, these algoritbitesn perform poorly
if only noisy training data is available. In Chapter 6, it waigwed that this prac-
tical limitation of supervised feature extraction algbnits is caused by overfitting
phenomena. To obtain a more robust feature extractionidigarthat can also be
applied to noisy EEG/MEG recordings, a spatial filtering raajgh incorporating
a-priori information on the spatial position of relevanaiorregions was designed.
This algorithm, closely related to traditional beamforgnimethods, allows extract-
ing EEG/MEG sources from pre-defined regions within therbrealnile optimally
(in terms of the SNR) attenuating all sources outside thegens. In spite of the
manifold and possibly inaccurate a-priori informationangorated in this feature
extraction method, it could be shown that in a two-class mmiagery paradigm
the proposed beamforming approach outperforms the CSPithlgoin terms of
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classification accuracy and rate of convergence of the gulese classifier. Indeed,
classification accuracies above 96% could be obtained withigng time of less
than seven minutes. This success was primarily attributeédet unsupervised na-
ture of the beamforming approach, rendering it robust tdwartifacts commonly
encountered in EEG/MEG data. Finally, a BCI, based on motogé@naand the
proposed beamforming approach, was realized, enablingeoobntrol of a cursor
in one dimension.

In summary, in this thesis three new algorithms for featuteaetion in non-invasive
BCls could be presented and experimentally validated. Itccbelshown that the
proposed beamforming approach outperforms the CSP alggrithich is one
of the most powerful feature extraction algorithms for telass paradigms. In
the context of multi-class paradigms, the proposed algorittermed multi-class
Information Theoretic Feature Extraction, was shown tgpetform multi-class
CSP, thereby contributing to the development multi-class B&@ts high classi-
fication accuracies. Furthermore, a framework for invesiingy the optimality of
two-class CSP was presented, and an explanation for thessusteomplete ICA
in EEG/MEG analysis could be provided.

7.2 Open Problems

In spite of this progress, inferring a BCI-user’s intentioifl & a hard task. While
in two-class paradigms classification accuracies clos@®84lcan be achieved, so
far accurate classification has not been demonstrated foe than four classes.
Carrying out more complex tasks by non-invasive BCIs, such aseooontrol of
an endeffector in multiple dimensions, hence still repnésa long term rather than
a short term goal. This raises the question of the causessdirtitation of current
non-invasive BCIs. In general, it can not be ruled out that tleetec/magnetic
field of the brain does not provide full information on the Kseéntention, i.e.,
that (at least for paradigms with multiple classégy, c) < H(c). However, it is
the conviction of this author that the significance of thecele/magnetic field of
the brain is generally underestimated, and that what isiredjin order to realize
powerful non-invasive BCIls is a better understanding of hogndive states are
encoded in the electric/magnetic field of the brain.

As pointed out at the beginning of this chapter, featureagtion algorithms can
act on the spatial as well as on the temporal domain of EEG/VdeGrdings. An-
alyzing the feature extraction algorithms covered in thests, it is noteworthy that
they all focus on the spatial domain. More specifically, elitlire extraction al-
gorithms designed in this thesis aim to extract EEG/MEG comapts from those
regions of the brain most relevant for inferring the BCl-uséntention. While it
has been shown that this is a viable approach, it is impottargalize the inherent
restrictions.

First, the only a-priori information on temporal coding afgnitive states utilized
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in this thesis is that variance changes in specific frequeaaygls provide useful in-
formation. This restriction reflects the limited understiaug of and the established
assumptions on coding of cognitive states in EEG/MEG ranged In general, it
is an entirely open question whether measures other thé&anearchanges, such as
higher-order moments, do provide more information on cignstates. Quite sur-
prisingly, this question is hardly addressed in neuro-psiagical research. This
can be attributed to the inherent theoretical difficulty efeloping signal process-
ing methods departing from the assumption of Gaussianitigmhence have found
very little dissemination in the neuro-scientific commynithis point again empha-
sizes the importance of interdisciplinary research infieisl.

Second, all approaches presented in this thesis can béfielhsslocalized i.e.,
inferences are made from intentionally induced pattermgha of signals originat-
ing in individual brain regions. However, neurons withire thrain form complex
networks with time-varying functional connectivity patte [LS03, von99]. Con-
sequently, the assumption of localized information preireg implicit to all fea-
ture extraction algorithms investigated in this thesigmbe too constrictive. De-
localized approaches would take this into account, makifigrénces from class-
conditional functional connectivity patterns betweenitna@gions. However, as
pointed out in [DCFO04], uncovering functional connectividgtterns from experi-
mental data is a challenging problem in itself. Algorithneveloped for this pur-
pose are either based on linear models (reviewed in [AGK]), non-linear mea-
sures such as mutual information (reviewed in [DCFO04]), treasimple measures
such as phase synchronization [RPK96, RP01] and amplituddiogu

Until now, only phase synchronization and amplitude coxgphave been employed
as feature spaces in non-invasive BCls [GC04, WWGGO07]. Thisegstr can be
primarily attributed to the computational complexity ohet approaches and the
rather large amount of training data required by these #lgos. Both studies re-
port comparable classification rates for using phase sgnctation and variance
based measures as features, thereby establishing thétyiabmeasures of func-
tional connectivity for feature extraction in BClIs. Inteiagty, both studies also
report enhanced classification accuracies for combinimgectivity- and variance
based measures, indicating a complementarity of both dmnai

While the increase in classification accuracy reported in [§@nhd [WWGGO07]
is rather small, it is nevertheless very promising consigdethe dimensionality of
the employed feature space. In both studies, functionah@ctivity measures are
computed for recordings obtained from different electsodéow note that even for
a modest number of electrodes, sey= 64, the number of possible connectivity
measures (even when neglecting directionality) alreadyssio Zﬁ;li = 2016.
Since training a classifier on a feature space of this dino@ngiquires a substantial
amount of training data, in [GC04] and [WWGGO07] only a small sl elec-
trodes is considered. In both studies, the selection ofsthiiset is based on rather
limited prior knowledge on the involvement of miscellanedwain regions in the re-
spective experimental paradigms. Furthermore, note liesetresults are obtained
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without spatial filtering. As has been demonstrated in thésis, spatial filtering
can improve classification accuracy in two-class motor iemagaradigms based on
variance measures from about 70% to almost 100%. In copirasis been shown
in [WWGGO07] that even without spatial filtering functional ceectivity measures
enable classification accuracies comparable to thosenglotavith variance based
measures in combination with spatial filtering. The two nprsimising approaches
for enhancing feature extraction by means of functionaheativity measures thus
appear to be improvement of the prior knowledge on functiooaanectivity within
the brain and inclusion of spatial filtering.

7.3 Network Information Transfer Analysis

In principle, functional connectivity measures can ealsgycombined with beam-
forming [GHT"01] or source localization approaches [ACI], which could be

used for feature extraction in BCls. Note, however, that tbguires (usually un-

available) a-priori knowledge on which brain regions digptlass-conditional func-
tional connectivity changes. While a complete evaluatiooafnectivity patterns

for a set of recordings from different electrodes alreadystitutes a formidable
task, a complete evaluation of the interactions betweepadsible regions of the
brain clearly is impractical. For this reason, all reseamHunctional connectivity

in EEG/MEG analysis is currently exploratory: a hypothési®rmulated, express-
ing expected functional connectivity patterns betweetagebrain regions (termed
regions of interest - ROIs), source localization or beamiog is performed to ex-
tract EEG/MEG signals originating in the ROIs, and funcéibconnectivity mea-

sures are computed to validate or falsify the proposed gsis.

It would clearly be desirable to develop a data driven apgrdar the analysis

of functional connectivity within the human brain. Given altirvariate time se-

ries, e.g., EEG/MEG recordings, and a (possibly linear)tanexmodel, the goal of
such a procedure would be to estimate those EEG/MEG souraedisplay maxi-

mum functional connectivity (or maximum functional contieity changes) during

a certain cognitive task. Such an algorithm, termed Netvioidrmation Transfer

Analysis (NITA), would be similar in spirit to ICA. Howevemstead of estimating
statistically independent sources, the goal would be towgrdhe dynamic network
structure of information transfer within the brain.

While such an algorithm could be expected to enable signifijzaogress in under-
standing how cognitive states are encoded in the electghatic field of the brain,
it is far from trivial to realize. One promising approach kastproblem might be

the concept of transfer entropy, initially proposed in [@@h Here, information

transfer between two random processes is defined as theimducentropy of one

process due to knowledge of the other. In contrast to moasdd connectivity mea-
sures (cf. [ACM 07]), this concept can be used to define a metric for inforomati
transfer within the human brain and is amenable to a datemptimization pro-
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cedure in the context of a generative mixing model. Howes@msiderable research
is required to establish the viability of this approach fug proposed NITA.

7.4 Causality of the EM Field of the Brain

In this thesis, the electric/magnetic (EM) field of the braias successfully used
to infer the BCI-user’s intention. It is hence trivial to pomit that the EM field
of the brain does provide information on cognitive statege b the pervasiveness
of EEG/MEG recordings in neuro-scientific research, thteeasurprising fact is
rarely scrutinized. Why does the brain create an EM field tbasdgrovide infor-
mation on cognitive states? As pointed out in [WL96], the ENtfief the brain is
traditionally seen as an epiphenomenon, a byproduct obhpurcesses within the
brain. This argument is challenged by several authors [WN&E)5, Fre01], argu-
ing for a causal role of the EM field for information procesginithin the brain.
Indeed, in [NSO5, Fre01] it is argued that the EM field of thaitis essential for
consciousness, while in [McF02] it is even proposed thattihé physical substrate
of conscious awareness.

While a detailed presentation and discussion of the argusrfentand against a
causal role of the EM field for information processing witline brain is beyond
the scope of this work, it is important to point out that indéeere is some empirical
evidence in favor of a causal role. As reviewed in [Jef95is iknown that exter-
nally applied electric fields with a smaller field strengtlrirendogenous electric
fields alter cortical activity. Furthermore, it is shown MHMBO6] that applying
weak external electric fields to the skull of human subjecisngd) sleep can have
significant positive effects on declarative memory. Leg\aside the philosophical
issues regarding consciousness and the EM field of the litergvailable empir-
ical evidence suggests that the relevance of the EM fieldebtiain is probably
underestimated in current research.

In conclusion, future research on EEG/MEG should considerpossibility of a
causal role of the EM field of the brain. However, it is questible whether estab-
lished methodologies for the analysis of EEG/MEG recorslizage powerful enough
to reveal a causal role of the fields generated by the braie. gossible strategy to
prove a causal role of the EM field might be to combine measofdégnctional
connectivity, as discussed in the previous section, witiglsicell recordings of
neuronal activity. If it can be shown that there exists anrmfation flow from one
neuron to another neuron via the EM field of the brain, this liquovide strong
empirical evidence for a direct causal role of the EM fieldifdormation process-
ing within the brain.
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