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ABSTRACT

We address the problem of resource minimization subject to
a set of constraints on the quality of service. Based upon a set
of mathematical properties of the mode dependent mapping
from resources to quality of service, an iterative procedure is
derived to determine the mode of operation and the resource
allocation in the multi-user system. The algorithm is proven
to be optimum with respect a chosen metric on the system
resources. Furthermore, it can be shown that every step of
the iterative scheme is of extremely low complexity. Numeri-
cal results visulalize the great importance of cross-layer mode
optimization in an exemplarily chosen setting.

1. INTRODUCTION

Several contributions have been made to investigate cross-
layer optimization as a generically formulated problem.
These investigations do not focus on a specific system model
but rather try to formulate general properties of different
cross-layer approaches. A large portion of these works fo-
cuses on bottom up approaches offering a maximum of ser-
vice quality to upper layers at the price of a fix amount of
resources. Among these works are the publications [1, 2]
where the throughput in a multi-user system is maximized
by means of optimum power allocation. The considerations
within base upon a very abstract system that allows to transfer
the resulting techniques to a variety of communication sys-
tems. While the results in [1] mainly apply to the bottom sub-
layers of communication systems more recent developments
aim at the bottom-up optimization for a wider span of system
layers. To this end e.g. [3] introduces a framework that bases
on utility functions, i.e. a generalized QoS expression that is
implied to be monotonic with respect to the data rate on the
physical link. A central requirement within is the monotonic-
ity of this relation. On the background of an OFDM system
with infinitesimal granularity in the frequency domain the au-
thors derive solutions to the problem of dynamic subcarrier
allocation and an adaptive power allocation scheme for QoS
maximization. Moreover the results are employed to derive
statements on the convexity of the feasibility regions of data

rates and the global optimum of the posed cross-layer opti-
mum. The authors in [5] moreover employ the concept of util-
ity functions to formulate a pricing problem for the optimiza-
tion of network resources. Dispensing with the formulation
of a single abstract model of the complete regarded portion of
the system stack modular approaches evolved that focus on
the passing of information between different layers. In [6] the
authors propose to base the layer descriptions on efficient sets
of Pareto optimum points of operation. With a central mono-
tonicity constraint on the employed layer description this ap-
proach leads to a multiobjective optimization problem as the
core of the bottom-up cross-layer design.

On the other hand a series of generic publications have
dealt with top-down formulations of resource allocation prob-
lems. The authors in [7, 8, 9] discuss the problem of QoS
constraint power allocation in cellular networks with single
antenna CDMA links. Their PHY layer contribution includes
statements about the capacity regions and establish an uplink-
downlink duality. In a more generic setting the framework
in [10] proves the optimality of a power allocation scheme
in an SINR constraint setting for a standardized class of in-
terference functions. The latter is defined through its posi-
tivity, its monotonicity and its scalability. This approach has
been generalized to multiple complex valued resource vari-
ables per user, i.e. multiple-input single-output (MISO) sys-
tems, in [11]. Moreover the authors in [11] prove that the
achievable QoS region for the regarded class of interference
functions is a convex set. Hence the cross-layer program can
be solved through methods of conventional convex optimiza-
tion.

This article introduces a generic approach to top-down
cross-layer optimization of communications systems. It aims
at delivering a certain amount of quality of service (QoS)
Q(rq) to the users, while simultaneously minimizing the re-
quired system resources. To this end let us define the three
relevant classes of system parameters explicitly:

• The matrix Q ∈ R
NQ×K contains the NQ QoS parame-

ters of the K users that are present in the system. These
QoS parameters are the only relevant interface to upper
layers and sublayers or the application itself. The dif-



ferent service demands of the users are characterized
by requirements Q(rq) upon these QoS parameters.

• The resources of the K users are denoted by a vector
P ∈ R

K . Hence only a single resource parameter per
user is considered.1

• The mode of operation M contains all optimization pa-
rameters that are not considered as resources.

Without loss of generality let the ordering of users in P , M

and Q coincide. With these definitions the cross-layer prob-
lem can be formulated as the minimization of resources. For
a given norm2 in P we find the optimum resource allocation
and the optimum mode of operation as the solution to the fol-
lowing optimization:

{P ∗, M∗} = argmin
{P ,M}

‖P ‖ s.t.: Q ≥ Q(rq), (2)

where the constraining inequalities hold component-wise.
The presented technique is proven to be optimum for a wide
class of systems. To this end Section 2 introduces 3 Proposi-
tions, which guarantee the applicability of the upcoming con-
siderations. Based upon these Propositions Section 3 and 4
formulate a converging iterative approach that yields the op-
timum solution up to arbitrary accuracy. Key to solving the
problem in this wide generality is the transformation of the
original program into a conditioned version that is solved in
Section 3. This equivalent problem can be shown to be inde-
pendent of the shortterm channel properties. Moreover it is
proven to be decoupled among the users which allows for an
offline computation of the optimum mode of operation.

2. PROPOSITIONS

Let the representation of the K user system be given in the
form:

Q = ΥM(P ), ΥM : R
K
+,0 7→ R

NQ×K (3)

where the NQ different QoS values for each of the K users in
Q ∈ R

NQ×K are defined through a mode M dependent map-
ping of the system resources P ∈ R

K
+,0. This representation

1The extension to multiple resource parameters per user or the extension
to integer resource metrics does in general not contradict the results of this
paper. Yet the solution of the in this case matrix valued problem:

P ∗ = argmin
P

‖P ‖ s.t.: P̃ ≥ P̃
(rq)

, (1)

which occurs to be part of the resulting cross-layer optimization algorithm
can not be implied for general choices of P /∈ R

K
+,0. Hence the extension

to multiple resources per user is left to the specific environment where addi-
tional constraints might apply to provide a solution to (1).

2In fact any order relation can be used to define this problem. For the
remainder of this paper though we exemplarily employ the quasi order re-
lations of different matrix norms. These norms are reflexive and transitive,
i.e. a quasi-relation, and hence qualify in this context.

exists for all systems and for all choices of QoS and resources
respectively. Yet not all of these representations can be given
in closed or even in invertible explicit form. Preparing the
derivation of a generic approach for cross-layer optimization
of a wide class of communication systems some precondi-
tions on ΥM will be made in the following paragraphs. To
this end let us introduce the notation of longterm and short-
term parameters. It refers to the fading process of the physi-
cal channel and classifies all parameters that depend upon the
instantaneous realization of this process as shortterm param-
eters. Characteristics of their probability density function and
variables that are independent of the channel fading process
are considered longterm parameters. On this background let
the following propositions hold:

Proposition 1 The mode of operation M as well as all com-
ponents of the QoS matrix Q are longterm parameters.

Proposition 2 The function ΥM is decomposable into three
components as follows:

Υ
(1) :P 7→ P̃ = Υ

(1)(P ), P̃ , P ∈ R
K
0,+ (4)

Υ
(2)
M

:P̃ 7→ Q̃ = Υ
(2)
M

(P̃ ), Q̃ ∈ R
NQ×K (5)

Υ
(3) :Q̃ 7→ Q = Υ

(3)(Q̃, πout), Q ∈ R
NQ×K . (6)

Within P̃ = Υ
(1)(P ) gives a longterm description of the fad-

ing multiple access channel. The outage probability πout ∈

[0; 1]K is defined through the shortterm pendant P̃
(st)

of P̃

as:

πout = Pr
(

P̃
(st)

< P̃
)

, (7)

where the inequality holds component wise.

Proposition 3 The functions Υ
(1), Υ

(2)
M

and Υ
(3) fulfill the

following properties:

1. The function Υ
(1) is independent of the mode of opera-

tion and is a monotonic function. It is strictly monoton-
ically increasing on its diagonal3 and is monotonically
decreasing in all off-diagonal elements.

2. The function Υ
(2)
M

is diagonal and independent of
shortterm system parameters.

3. The function Υ
(3) is independent of shortterm system

parameters. Moreover conditioned on πout a solution
for its unique inversion Υ

(3),−1 exists with

Q = Υ
(3)

(

Υ
(3),−1(Q, πout), πout

)

, (8)

Through the decomposability in Proposition 2 the param-
eters P̃ and πout form a longterm description of the shortterm
fading processes on the physical channel that is valid as long

3Diagonality in this context refers to the user indices.



as the fading processes can be assumed stationary. For an in-
formation theoretic backup of this approach we refer to [13].
The outage probability therefore is defined as the probability

that the shortterm representation P̃
(st)

of P̃ is smaller than
P̃ .4 The function Υ

(2)
M

gives a description of the remain-
ing system in non-outage cases, while Υ

(3) determines how
these outage events affect the specified QoS. Later reason-
ings will suggest the terminology equivalent resources for P̃

and equivalent QoS for Q̃ respectively. Fig. 1 visualizes the
decomposition of ΥM. With the definition of the three rep-
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Fig. 1. Schematic representation of the system model

resentatives Υ
(1), Υ(2)

M
and Υ

(3) the decomposable function
ΥM can be expressed in a concatenated form as:

Q = ΥM (P ) = Υ
(3)

(

Υ
(2)
M

(

Υ
(1) (P )

)

, πout

)

. (9)

The components of this composition are subject to precon-
ditions as presented in Proposition 3. According to the first
clause within, the equivalent resource P̃ of a user is strictly
monotonically increasing with this user’s resource while it
is monotonically decreasing with the resources of all other
users.5 Through the second and third clause Υ

(1) moreover is
required to carry the complete regarded influence of shortterm
system parameters. The required diagonal nature of Υ

(2)
M

translates into user wise decoupled system cores that carry the
complete dependence on the mode of operation. Hence the

equivalent requirements of a user k in the vector Q̃
(rq)

k must
be completely determined by the equivalent scalar resource

4This definition applies no matter if the strategy to adapt P operates on
a longterm or a shortterm scale, i.e. no matter whether P itself is a longterm
or shortterm parameter.

5The demanded property is inherent to a wide variety of multiple access
schemes. It can as well be found in axiomatic approaches like [10, 11].

P̃k of the same user k. This condition is somewhat canoni-
cal as parameters that influence the performance of all users
are typically classified as resources rather than as mode pa-
rameters, e.g. the transmit power in multiple access schemes.
Typically the function Υ

(2)
M

will span the widest part of the
cross-layer problem as the corresponding Clause 2 in Proposi-
tion 3 does not make any restrictions on its diagonal elements.
Clearly Υ

(2)
M

does not even have to be a continuous function
neither does it need to be available in closed form. This fact
comprises the central strength of the presented approach, be-
cause it can solve problems that are typically not accessible
for conventional optimization techniques and their applica-
tion in cross-layer design. The third representative Υ

(3) in-
cludes the influence of the outage probability πout and addi-
tionally allows for an invertible non-diagonal extension of the

concatenation Υ
(2)
M

(

Υ
(1) (P )

)

. This feature allows to in-

clude upper layer resource allocation schemes the parameters
of which are not subject to the regarded cross-layer optimiza-
tion themselves. Hence Υ

(3) does not depend on the mode
of operation M and must be given in a description that is
independent of shortterm system parameters. The extension
Υ

(3) is more important for the validity of the regarded QoS
expressions than it is relevant to the optimization process with
respect to M.

3. CONDITIONED OPTIMIZATION

The central problem of this work is to derive cross-layer re-
source allocation schemes for the above defined system class
through the solution of the following optimization problem:

{P ∗, M∗} = argmin
{P ,M}

‖P ‖ (10)

s.t.: Q ≥ Q(rq), with Q = ΥM (P ) .

To this end let us first derive the solution of this problem
conditioned on the outage probability πout. Conditioning the
solution to an a priori known value for πout allows for the
decomposition of the optimization task and thus shall be of
a certain relevance to the optimum procedure in Section 4.
Hence, the following paragraphs consider the optimization:

{P ∗, M∗} = argmin
{P ,M}

‖P ‖ (11)

s.t.: Υ
(3)

(

Υ
(2)
M

(

Υ
(1) (P )

)

, πout

)∣

∣

∣

πout

≥ Q(rq).

As this program as well as the original task (10) is not ac-
cessible to conventional optimization techniques because the
derivatives with respect to the possibly integer valued mode
variable M is not defined and Υ

(2)
M

additionally does not nec-
essarily allow for a closed solution of the resulting Karush-
Kuhn-Tucker conditions, let us regard the following theorem:



Theorem 1 Let πout be the outage probability that through

Υ
(1) corresponds to the equivalent resources P̃

(rq)
. Further-

more let the equivalent requirements Q̃
(rq)

be defined through
the inversion of Υ

(3) conditioned on πout. Then the solution
to the problem:

{

M∗
k, P̃

(rq)
k

}

= argmin
{Mk ,P̃k}

P̃k s.t.: Q̃k ≥ Q̃
(rq)
k , (12)

is independent of the requirements6 Q̃
(rq)
` , ∀` 6= k and is

independent of all shortterm system parameters. The union of
the solutions M∗

k forms an optimizer M
∗ to the cross-layer

optimization program in (11).

The first two clauses of this Theorem are directly proven by
Proposition 3. Due to the diagonality of Υ

(2)
M

the constraints
are diagonal too and hence the solution for the user k does
not depend upon other users’ equivalent QoS requirements.
The same applies to the independence of the fading parame-
ters. Key to the proof of the last clause of Theorem 1 is the
monotonicity of the equivalent resources P̃ with respect to all
resources P . This monotonicity has been part of Proposition
3 above. As the resources only through P̃ and through πout

influence the QoS and furthermore the problem is conditioned
on the outage probability this monotonicity suffices to show
that a minimization of the resources P will inherently result
in a minimization of all equivalent resources P̃ . Therefore
the objective and the optimization with respect to P in (11)
can be replaced by P̃ without violating the validity of the so-
lution M∗

k. Employing the decomposability of ΥM and the
invertibility of Υ(3) the constraints of (11) can equivalently be

expressed through a set of requirements Q̃
(rq)

on the equiva-
lent QoS Q̃. This concludes the proof of the optimal nature
of M

∗ for (11).
The decoupled and equivalent formulation of the origi-

nal program through the problems in (12) provides little ad-
vantage in terms of Lagrangian optimization. Still compo-
nents of the optimization parameter Mk are discrete, the cor-
responding derivatives do not exist and the Karush-Kuhn-
Tucker conditions can not be applied. But the achieved de-
coupling among users and the gained independence of the
problem from the instantaneous channel realization render the
accessibility to Lagrangian methods unnecessary:

Corollary 1 The equivalent requirements Q̃
(rq)
k uniquely de-

termine the solution to the optimization problems in (12). In
particular the program is independent of the state of oper-
ation and therefore the solution for any equivalent QoS re-
quirements can be obtained offline and prior to operation.

Explicitly the optimum mode of operationM∗
k can be pre-

computed for a sufficiently dense grid in Q̃
(rq)
k offline by sam-

pling the NQ ×K dimensional range of Υ
(2)
M

. The equivalent

6Q̃k, Mk and P̃k denote the kth user’s portion of Q̃, M and P̃ respec-
tively.

QoS Q̃ to this end is computed for an arbitrarily large but fi-
nite number of system modes and for a suitable number of
values for P̃ k. Storing these offline computed solutions in
an NQ dimensional database allows for the offline determi-
nation of the optimum mode of operation for grid of equiva-
lent requirements. Each grid point defines a feasibility region
through its equivalent requirements. Searching this feasibil-

ity region for the mode that provides Q̃
(rq)
k with a minimum

P̃k

(rq)
is chosen as the optimum mode M∗

k. During operation
the solution to (12) thus can be obtained through a single ta-
ble lookup. The problem (12) therefore can be solved very
efficiently at an absolute minimum of computation cost. This
makes the proposed procedure easily accessible for real-time
implementations.

4. GENERAL CROSS-LAYER OPTIMIZATION

With the above Section a low complexity solution to the con-
ditioned problem setting (12) is available. The upcoming con-
siderations in this Section now focus on optimizing the mode
of operation and the resource allocation among all K users
employing the results form above. We target the problem of
finding the mode of operation M

∗ that fulfills a set of QoS
requirements Q(rq) with a minimum amount of resources, cf.
(10):

{P ∗, M∗} = argmin
{P ,M}

‖P ‖ (13)

s.t.: Q ≥ Q(rq), with Q = ΥM (P ) ,

where the function ΥM belongs to the above defined sys-
tem class and fulfills the properties in Propositions 1-3 intro-
duced in Section 2. Aiming at a generic solution that applies
to all representatives of the above defined class the solution
of (13) through the calculus of Lagrangian multipliers and the
Kuhn-Tucker theorem renders impossible. Moreover neither
the function Υ

(2)
M

(P̃ ) nor the mode of operation M neces-
sarily is accessible to these methods.7

4.1. Iterative solution

We propose an iterative framework to solve (13) with arbi-
trary accuracy. An overview of this approach is given in
Fig. 2. The approach is based on an iterative adaptation of
the outage probability πout which in the further context will
be indexed by the iteration number i as πout[i]. The solu-
tions within each iteration hence can base upon an assump-
tion π̂out[i] on the outage probability that was obtained dur-
ing the last iteration. The problem thus reduces to the condi-

7The function Υ
(2)
M

(P̃ ) in non-trivial settings usually is too complex to
provide an invertible system of equations from the Karush-Kuhn-Tucker con-
ditions, whereas the mode of operation in many relevant applications contains
integer variables. Hence the derivatives involved in the conventional solution
of this problem are not defined.



tioned optimization investigated in Section 3. Given the out-
age probability π̂out[i] that corresponds to the optimum vector
of equivalent resources P̃

∗
the program reads, cf. (11):

{P ∗, M∗} = argmin
{P ,M}

‖P ‖ (14)

s.t.: Υ
(3)

(

Υ
(2)
M

(

Υ
(1) (P )

)

, π̂out[i]
)

≥ Q(rq).

As shown in Section 3 the propositions made can be used to
decompose this optimization into three separate subproblems:

Q̃
(rq)

= Υ
(3),−1(Q(rq), π̂out[i]), (15)

{

M∗
k, P̃

(rq)
k

}

= argmin
{Mk ,P̃k}

P̃k s.t.: Q̃k ≥ Q̃
(rq)
k , ∀k (16)

P ∗ = argmin
P

‖P‖ s.t.: P̃ ≥ P̃
(rq)

. (17)

For convenient reading we dropped the index [i] in the no-

tation of P ∗, P̃
(rq)

and Q̃
(rq)

. While an efficient solution
for the inverse of Υ

(3) was a precondition on the regarded
system class the solution to the problems (16) has been de-
rived in Section 3. Moreover the solution to (17) for the vast
majority of multiple access schemes is known or can be ob-
tained through the monotonicity of Υ

(1) as it was introduced
in Section 2. The solution of the cross-layer optimization con-
ditioned on π̂out[i] thus is known and can be obtained at very
low computational cost. With the optimum pair of modes and
resources {P ∗, M∗} the resulting outage probability πout[i]
of the system can be determined through its definition in (7).
Unless πout[i] = π̂out[i] the solutions obtained from the con-
ditioned problem (16) is not a valid solution for the original
task (13). The made assumption on πout[i] has to be adapted
and a new conditioned problem has to be solved. To this end
we propose the following update rule:

π̂out[i + 1] = πout[i]. (18)

The resulting structure of the iterative scheme is sketched in
Fig. 2.

4.2. Convergence

Through the solution of an π̂out[i] conditioned version of the
original problem the cross-layer optimization can be solved
through an iterative scheme as sketched in Fig. 2. Yet the
obtained iteration is of no use if its convergence can not be
proven. To this end let us state the following Theorem:

Theorem 2 Let πout[0] = 0 be the initialization for the iter-
ative scheme. Furthermore let πout[i] be defined as the out-
age probability that results from M

∗ and P ∗ as defined in
(14). Then the iteration π̂out[i] = πout[i − 1] converges and
πout[i] = πout[i − 1] holds with arbitrary accuracy for large
i.
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optimization

To prove this convergence assume an arbitrary π̂out[i] =
πout[i−1] > π̂out[i−1] from the interval [0; 1]K . By the def-
inition of the outage probability the increase in π̂out[i] nec-

essarily results in an increase in all components of Q̃
(rq)

,
i.e. larger equivalent requirements with respect to the itera-
tion i − 1. This is due to the fact that an increased outage
probability will enlarge the QoS decrease in Υ

(3). Due to the
inequality nature of the constraints in (16) this monotonic-
ity with respect to π̂out[i] applies to the requirements on the

equivalent resources P̃
(rq)

as well. To this end assume that

an increase in Q̃
(rq)
k from iteration i − 1 to i yields a de-

crease of P̃
(rq)
k in the optimum solution of (16). Then this

new value for P̃
(rq)
k would provide a smaller solution to the

problem in iteration i− 1. Thus the solution in iteration i can
not be optimum, which is a contradiction. Hence an increase
in outage probability π̂out[i] > π̂out[i − 1] always results in

requirements P̃
(rq)

that are equal to or larger than the cor-
responding values in the previous iteration. Due to the pos-
itive semidefinite nature of the equivalent resources and the
definition of the outage probability this inherently results in
πout[i] ≥ πout[i−1]. Through the update π̂out[i+1] = πout[i]
a single increase in π̂out causes a monotonically increasing se-
ries π̂out[i]. Because πout[i] is positive semidefinite, the initial
choice π̂out[0] = 0 results in π̂out[1] ≥ π̂out[0]. In the case of
equality i = 1 directly fulfills the condition for convergence
πout[i] = πout[i − 1]. In all other cases, the above derivation
proves πout[i] to be an monotonically increasing sequence.
Hence the proof of convergence is obtained from the bounded



nature of the probability integral, i.e. πout[i] ∈ [0; 1]K .
With the conclusion of this proof the iterative procedure

of Section 4 is known to converge for all problem settings and
systems that fall in the defined class. Yet this convergence
does not prove the feasibility of the posed optimization task.
As possible feasibility constraints on the system resources can
always be included in the definition of the corresponding out-
age probability we propose to define the feasibility through
the optimum mode of operation M

∗. Hence a set of QoS
requirements is considered feasible if for every iteration i a
mode of operation M

∗ =
⋃K

k=1 M
∗
k exists among the finite

number of system configurations such that:

{

M∗
k, P̃

(rq)
k

}

= argmin
{Mk,P̃k}

P̃k s.t.: Q̃k ≥ Q̃
(rq)
k , ∀k. (19)

For all feasible constellations though, the above results
provide the means to solve the cross-layer problem (10)
through the iterative consideration of K decoupled longterm
problems. Based upon the results from the previous iteration,
these problems are all conditioned on the outage probability.
They have been subject to consideration in Section 3 where
the optimum was proven to be independent of the state of
operation and the solution therefore was obtained through a
look-up in an offline generated table. Hence the presented
iterative scheme provides the means to efficiently solve the
top-down cross-layer optimization program (2) for all systems
that fulfill the Propositions 1-3.

5. EXEMPLARY APPLICATION TO A SMART
ANTENNA SYSTEM

To support the above elaborations and to visualize their ap-
plicability to HSDPA like MISO systems8 this section per-
forms numerical simulations of the proposed techniques and
compares the resulting performance with relevant state-of-
the-art approaches. To this end every simulation analyzes a
total of 1000 longterm settings, each consisting of 5000 time
slots. Each longterm environment faces independent user po-
sitions assuming an uniform distribution of users in the cell.
The spatial channel model assumes 8 antenna elements at the
transmitter and a 2◦ Laplacian angular spread. The coeffi-
cients in the corresponding Karhunen-Loewe representation
are assumed to have circulary symmetric Gaussian distribu-
tions. The variances of these random variables are computed
using the Hata pathloss model [16, 17, 18]. For further de-
tails of the used spatio-temporal channel model we refer to
[19]. With these randomly generated vector valued channel
coefficients an industrially employed FEC turbo code is used
within an hybrid automatic repeat request (HARQ) protocol.
The latter is used in its Chase combining (type I HARQ) form.

8For details of the resulting form of ΥM and its decomposition we refer
to works like [14] and its MISO extension in [15].

We assumed a receiver noise level of −105 dBm and a max-
imum transmit power of 16 W, which together with a fix an-
tenna gain of 18 dBi, results in an effective isotropic radiated
power (EIRP) of 60 dBm.

5.1. QoS compliance

As the QoS compliant service of all users is a precondi-
tion to any performance enhancement in terms of transmit
power savings or capacity increase in the upcoming sections,
Fig. 3 verifies this compliance. Serving three users with
QoS demands on throughput/delay of [200 kbps / 100 ms],
[400 kbps / 100 ms] and [600 Kbps / 100 ms] respectively, the
simulation of 1000 user settings, i.e. location of the users
in the cell, resulted in 1000 values for the throughput ob-
tained as the ratio of the sum of correctly received informa-
tion bits and the total transmit time. The different lines in
the plot represent the corresponding histograms. The result-
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Fig. 3. Demonstration of the achieved QoS compliance with
optimum scheme

ing performance was obtained using the proposed cross-layer
resource allocation and solving the occurring downlink pro-
cessing problem.9 It can be seen from the results in Fig. 3 that
the derived cross-layer scheme provides the means to assure
the request QoS in the given MISO system. As the optimiza-
tion can only access a finite number of modes of operation,
the QoS all users are slightly oversatisfied. Let us remark,
that the scheme precisely achieves the target throughput inde-
pendent of the user positions, i.e. independent of the longterm
channel properties. Yet different longterm scenarios will re-
sult in different transmit powers necessary to provide the QoS

9Choosing the SINR as equivalent resource, this leads to a downlink pro-
cessing problem investigated in e.g. [20].



compliance. These power savings are subject to the evalua-
tions in Subsection 5.2.

5.2. Power advantage

In terms of the optimization (1) tackled within this paper the
above analyzed QoS compliance shows that the posed con-
straints can be met with the scheme. Yet it remains to ver-
ify how large the power advantages are that can be obtained
through the performed resource minimization. Hence this
Section elaborates on the distribution of total transmit power
that is necessary to provide the above QoS results in the de-
scribed environment. As HSDPA does not yet command a
cross-layer QoS management the only usefull reference is
given by the use of the full available EIRP. Fig. 4 shows the
cumulative distribution of the transmit power that is neces-
sary in the 1000 different longterm settings. The plotted his-
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Fig. 4. Comparison of the necessary total transmit power for
different modes

tograms reveal that a vast majority of longterm settings can be
met with significantly less transmit power than the available
60 dBm. Precisely speaking the optimum scheme can ful-
fill the posed QoS constraints with less than 31 dBm in 50%
of all cases. As this comparison with the maximum transmit
power is a somehow coarse reference Fig. 4 also includes the
histogram of transmit powers that are necessary to satisfy the
QoS requirements with suboptimum mode choices. To this
end higher modes neighboring the optimum choice were used
to solve the downlink beamforming problem. These subopti-
mum modes inherently will pose higher SINR requirements in
every iteration of the procedure. This will entail an increase of
the corresponding outage probability. Through this iterative
connection the loss in performance can significantly exceed
the mere SINR gap known from conventional throughput con-
siderations. Overall the distribution of transmit powers shows

the high sensitivity of the MISO system with respect to mode
mismatches.

6. CONCLUSION

The presented approach allows for the determination of the
optimum resource allocation and the joint optimization of
parameters in the lower layers of a communication system.
Decomposing the functional description and conditioning the
core optimization on the channel outage probability motivated
an iterative procedure to solve the cross-layer problem. Each
step can be shown to be of extremely low numerical com-
plexity and the iterative algorithm is proven to converge. Due
to its generic formulation in terms of a set of proposition the
technique not only applies to one specific system set up, but
is valid for an extremely large class of systems. This include
the prominent HSDPA extension to UMTS to which the tech-
nique was applied yielding significant enhancements in power
savings. The latter can be used for increasing the servable
system load.
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