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Abstract

Lowest common ancestor (LCA) problems in directed acyclic graphs (dags) have attracted scientific
interest in the recent years. Directed acyclic graphs are powerful tools for modeling causality systems
or other kind of entity dependencies, and efficient solutions to the respective lowest common ances-
tor problems are indispensable computational tools with regard to proper analysis of these systems.
Similar problems in trees are widely understood, however, the generalizations to dags fall short of
achieving comparable efficiencies.

In this work, we develop and analyze algorithmic techniques for solving LCA problems in dags.
The main focus is on all-pairs LCA problems, i.e., problems that require the answers to the respective
LCA queries for all vertex pairs in the dag. In particular, the basic problems studied are finding
one arbitrary (representative) LCA for all vertex pairs and listing all LCAs for all vertex pairs. We
identify and describe in-depth three basic algorithmic approaches that lead to efficient solutions to
these problems, namely dynamic programming, matrix multiplication, and a path cover approach.

The dynamic programming method in combination with using transitive reduction yields algorithms
that are efficient in the average case and – as a result of an experimental study also described in this
thesis – in practice. However, the running times depend on the number of edges in the transitive
reduction of the input dags and are hence vulnerable to special constructs such as dense bipartite
graphs.

Matrix multiplication approaches lead to general upper time bounds for the two problems that
improve upon hitherto best solutions. More specifically, we prove that representative LCAs for all
vertex pairs can be computed in time O(n2.575), and all LCAs for all vertex pairs can be computed in
time O(n3.334) for a dag with n vertices. We note in this place that any improvement of the matrix
multiplication exponent automatically improves these bounds for the LCA problems.

The third algorithmic approach, a path cover technique, yields efficient solutions for the two prob-
lems in dags G with small width w(G), namely O(n2w(G) logn) for computing representative and
O(n2w(G)2 log2 n) for computing all LCAs. However, perhaps the most important result connected
with the path cover technique is an improved algorithm for finding representative LCAs in general
that restricts the class of dags for which the upper bound O(n2.575) is actually attained significantly.
Further research in this direction might ultimately improve this bound.

Additionally, we review algorithmic applications of the presented techniques, namely problem vari-
ants in dynamic settings, in weighted dags, and under space-efficiency considerations. Although some
of the upper time bounds that we present in this work might turn out to be tight, further study of these
and alike problems seems to be a promising direction for future research.

Finally, we present the results of an experimental study of some of the algorithms described in this
work, in particular, the algorithms that are based on dynamic programming. As a consequence, we
conclude that both representative and all LCAs for all vertex pairs can be computed reasonably fast in
practice, i.e., with runtime close to O(n2).
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CHAPTER

1

INTRODUCTION

1.1 Motivation

Lowest common ancestor problems in directed acyclic graphs have attracted scientific interest in the
recent years. Directed acyclic graphs are powerful tools for modeling causality systems or other kind
of entity dependencies, and efficient solutions to the respective lowest common ancestor problems are
indispensable computational tools with regard to proper analysis of these systems. Similar problems
in trees are widely understood, however, the generalizations to dags fall short of achieving comparable
efficiencies.

If we think of causal relations among a set of events, natural questions come up, such as: Which
events entail two given events? What is the first event that entails two given events? In dags, these
questions can be answered by computing common ancestors (CAs), i.e., vertices that reach each of
the given vertices via a path, and computing lowest common ancestors (LCAs), i.e., those common
ancestors that do not reach any other common ancestor of the two given vertices.

Although LCA algorithms for general dags are essential computational primitives, they have be-
come an independent subject of studies only recently, initiated by the seminal paper of Bender et al.
[BFCP+05]. This work has led to an increasing interest for this topic in the community, and a number
of follow-up papers have been published since [KL05, BEG+07, CKL07, KL07, EMN07].

There is a lot of sophisticated work devoted to LCA computations for the special case of trees,
see, e.g., [HT84, SV88, BFCP+05], but due to the limited expressive power of trees they are often
applicable only in restrictive or over-simplified settings.

A number of natural applications of (lowest) common ancestor computations in dags have been
described in [BFCP+05, BEG+07, EMN07]. We review these applications below.

• Object inheritance in programming languages. In object-oriented programming languages like
Java and C++, objects are instances of classes. By object-inheritance one denotes the fact
that objects inherit properties of super-classes. Moreover, the object inheritance relation of a

1



2 Chapter 1. Introduction

given set of objects depends on the temporal order in which the classes are defined and appear
in a certain expression. The structure of object-inheritance is commonly modeled by partial
orders. Modern object-oriented programming languages support multiple inheritance; hence
the resulting partial order can not expected to be tree-like. The topology of the inheritance
order has to be evaluated at several stages of the compilation and execution of a program.
Lowest common ancestor computations are a natural tool for resolving and analyzing such
orders. Early research [AKBLN89] in this context is restricted to posets with lattice properties,
i.e., upper semi-lattices. However, in general lowest common ancestors of pairs of objects are
not unique.

So far this problem has been only considered in a static context, i.e., static compilation, and
hence static lowest common ancestor solutions can be used. However, there are systems that
use incremental compilation where compilation is done during the execution of a program.
For such cases we extend the study of the respective lowest common ancestor computations to
dynamic cases, see Chapter 6.

• Genealogical linkage analysis. Genetic linkage refers to the fact that sets of genetic loci, e.g.,
genes, are often inherited jointly. The linkage of these loci has physical reasons, i.e., physical
connection on the same chromosome. The probability that closely situated loci are separated
during the crossing over of the DNA is lower than for loci that are far apart.

Pedigree graphs are used to represent family or hereditary relationships. Such graphs are used
for linkage analysis, a technique to identify genes associated we certain features, e.g., a genetic
disease. The basic idea of linkage analysis is to identify genetic markers that are linked to a
gene of interest.

In the presence of inbreeding, that is, spouses might be genetically correlated, linkage analy-
sis techniques rely on a method for quantifying pairwise degrees of inbreeding in such graphs.
This is readily done by identifying so-called inbreeding loops. Such loops are formed by an-
cestral and descendant paths of vertex pairs. The degree of inbreeding in turn can be derived
from shortest inbreeding loops. Such loops can be found by using (lowest) common ancestor
algorithms on weighted dags (Chap. 6).

• Analysis of the Internet graph. Currently, Internet inter-domain routing is mainly done using the
Border Gateway Protocol (BGP). BGP allows participating autonomous systems to announce
and withdraw routable paths over physical connections with their neighbors. This process is
governed by local routing policies which are rationally based on commercial relationships be-
tween autonomous systems. It has been recognized that, even if globally well-configured, these
local policies have a critical influence on routing stability and quality [GW99, GR01]. An ori-
entation of the underlying connectivity graph imposed by customer-to-provider relations can be
viewed as a dag. Routes through the Internet have the typical structure of uphill and downhill
parts to the left and right of a top provider in the middle of the route (see e.g., [Gao01]). Com-
puting such top providers, which are just CAs and LCAs, is needed for reliability or efficiency
analyses.

The snapshot of the Internet dag that we use in our experimental setting (Chap. 7) has 22,218
vertices and 57,413 edges. Finding top providers for each of the 493,617,306 pairs makes fast
CA and LCA algorithms an issue.

• Analysis of phylogenetic networks. Lowest common ancestor algorithms have been frequently
used in the context of phylogenetic trees, i.e., trees that depict the ancestor relations of species,
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genes, or features. Bacteria obtain a large portion of their genetic diversity through the acquisi-
tion of distantly related organisms via horizontal gene transfer (HGT) or recombination. While
views as to the extent of HGT and cross species recombination in bacteria differ, it is widely
accepted that they are among the main processes driving prokaryotic evolution and are (with
random mutations) mainly responsible for the development of antibiotic resistance. Such evolu-
tionary developments cannot be modeled by trees, and thus there has been an increasing interest
in phylogenetic dag networks and appropriate analysis methods [NSW+03, MNW+04, NW05].
Unfortunately, many of the established approaches from phylogenetic trees cannot trivially be
extended to dags. This is particularly true for the computation of ancestor relationships.

• Analysis of citation data. Citation graphs are obtained from scientific literature and have been
studied and analyzed extensively, see e.g., [AJM04]. Basically, the vertex set of such a graph
is given by a set of publications and an edge represents a citation from one publication to
another. Computing LCAs in such dags may provide valuable information, e.g., which papers
are original to two or more papers on a particular topic.

1.2 Results

The main focus in this thesis is on algorithmic solutions for all-pairs LCA problems in directed acyclic
graphs. All-pairs in this context means computing a solution matrix that contains the answers for the
LCA problem in question for all vertex pairs. We distinguish at first between two problem variants,
namely ALL-PAIRS REPRESENTATIVE LCA, computing one (representative) LCA, and ALL-PAIRS

ALL LCA, listing all LCAs. We outline the contents and main results described in this work below.

Notational concepts and concise problem statements are introduced in Chapter 2. Chapters 3
through 5 are dedicated to the description of three basic algorithmic techniques that lead to efficient
solutions to the considered problems.

Chapter 3 describes dynamic programming algorithms for LCA problems. It is shown that this
approach combined with using a transitive reduction of the input dag yields algorithms whose running
times are (a) efficient if the number of edges in the transitive reduction is reasonably small and (b)
close to trivial lower bounds in the average case. For ALL-PAIRS REPRESENTATIVE LCA we prove
the following.

Theorem 3.7. In a dag G with n vertices, the time needed by the dynamic programming algorithm
(Algorithm 2) to solve ALL-PAIRS REPRESENTATIVE LCA can be bounded by O(nmred), where mred
is the number of edges in the transitive reduction of G.

The average case time complexity of this approach can be bounded by O(n2 logn)1 (Cor. 3.8) and
is hence optimal up to a logarithmic factor. The main result in this chapter for ALL-PAIRS ALL LCA
is stated in Theorem 3.15.

Theorem 3.15. In a dag G with n vertices, the time needed by the dynamic programming algorithm
(Algorithm 4) to solve ALL-PAIRS ALL LCA can be bounded by O(nmred ·min{

(
κ2 +κ logn

)
,n}),

where mred is the number of edges in the transitive reduction of G and κ is the maximum LCA set
cardinality in G.

1Throughout this work, we denote by logn the logarithm with base 2 of n.
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Average case analysis yields upper time bounds of O(n3 logn) in the general case and, if κ is
assumed to be bounded by a constant, even O(n2 logn) (Cor. 3.16), which is an assumption supported
by experimental evidence in many cases.

In Chapter 4 algorithms that use (rectangular) matrix multiplication are studied in detail. The two
major results presented in this chapter are the currently tightest upper time bounds for ALL-PAIRS

REPRESENTATIVE LCA and ALL-PAIRS ALL LCA.

Theorem 4.8. ALL-PAIRS REPRESENTATIVE LCA can be solved in time O
(
n2+µ

)
on a dag G with

n vertices, where µ satisfies 1+2µ = ω(1,µ,1).

Here, ω(a,b,c) denotes the exponent of the multiplication of an na×nb by an nb×nc matrix. The
numerical value of µ can currently be bounded by µ < 0.575. For more details on the derivation and
implications of parameters related to matrix multiplication we refer to Chapter 4.

Theorem 4.19. ALL-PAIRS ALL LCA can be solved in time O
(
nω(2,1,1)

)
on a dag G with n vertices.

We note that this theorem implies an upper time bound of O(n3.334) for ALL-PAIRS ALL LCA.
Further results described in this chapter involve computational equivalence proofs of so-called fixed-
vertex all LCA variants and Boolean matrix multiplication (Thm. 4.9). These considerations lead to
algorithms that improve the general upper time bound for ALL-PAIRS ALL LCA on dags that are
moderately sparse (Thm. 4.21, Thm. 4.24). Note, however, that this improvement is stronger than the
results in Chapter 3. For example, while the running time of the dynamic programming algorithm can
be bounded by O(n3) in the worst case only if mred = O(n), the results of Chapter 4 imply that this
bound can already be achieved if mred = O(n1.294).

Chapter 5 deals with algorithmic approaches that use derivatives of a path cover approach, i.e., a
set of directed paths in a dag G that cover the whole vertex set. Applying a fairly general path cover
technique that essentially decomposes the LCA problem into a number of LCA problems in trees
yields the following theorem.

Theorem 5.16. ALL-PAIRS REPRESENTATIVE LCA can be solved in time O(n2w(G) logn), and
ALL-PAIRS ALL LCA can be solved in time O(n2w(G)2 log2 n) on a dag G with n vertices and width
w(G).

It is also shown that the path cover technique can be combined with an earlier algorithm [CKL07]
for ALL-PAIRS REPRESENTATIVE LCA that exploits low depth in the input dag. As a consequence
we present an algorithm that has worst case time complexity Õ(n2+µ) (Thm. 5.20), which corresponds
to the current best upper time bound, up to polylogarithmic factors. Most importantly, however, we
show that the class of dags in which this bound is actually attained is significantly restricted.

Theorem 5.22. For a dag G with n vertices and an arbitrary constant µ ≥ δ > 0 ALL-PAIRS REPRE-
SENTATIVE LCA can be solved in time Õ(n2+µ−δ ) if G does not contain a subgraph H that contains
at least nµ−δ chains of length at least n1−µ−δ .

As an additional application, the combined algorithm can be used to improve a recently established
upper time bound for the ALL-K-SUBSETS REPRESENTATIVE LCA problem for k = 3.
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Theorem 5.23. The ALL-K-SUBSETS REPRESENTATIVE LCA problem on a dag G with n vertices
can be solved in time O(n3.5214) for k = 3 and Õ(nk+ 1

2 ) for k ≥ 4.

In Chapter 6 algorithmic applications of the techniques developed are described. The considered
problems extend the study of the two problem primitives, ALL-PAIRS REPRESENTATIVE LCA and
ALL-PAIRS ALL LCA. The first extension concerns edge- and vertex-weighted dags. Instead of
computing arbitrary LCAs one is interested in (L)CAs that minimize (or maximize) ancestral distances
or weights. Non-trivial solutions are given for each of the problem variants. Furthermore, reductions
to better understood problems are given, namely:

Theorem 6.2. ALL-PAIRS SHORTEST DISTANCE CA and can be reduced to ALL-PAIRS SHORTEST

DISTANCES, up to a polylogarithmic factor.

Theorem 6.6. ALL-PAIRS MINIMUM WEIGHT CA and ALL-PAIRS MAXIMUM WITNESSES FOR

BOOLEAN MATRIX MULTIPLICATION are computationally equivalent.

However, there is a complexity gap between the CA and the LCA versions of the problems. It is
not clear whether this gap can be closed.

For ALL-PAIRS REPRESENTATIVE LCA and ALL-PAIRS ALL LCA in a fully-dynamic environ-
ment, an algorithmic solution is described that decreases the update time under vertex-centered up-
dates (Thm. 6.17) compared to recomputing a solution from scratch. This can be further improved for
an incremental model on dense dags (Thm. 6.24).

Finally, it is shown that using the path cover technique developed in Chapter 5, ALL-PAIRS REP-
RESENTATIVE LCA and ALL-PAIRS ALL LCA can be solved in a space-efficient way for dags with
small width.

Theorem 6.25. The representative LCA problem on a dag G with n vertices and width w(G) can
be solved with O(w(G)n2 logn) preprocessing time, O(w(G)n logn) space, and O(w(G) logn) query
time.

The approach can also be extended to the all LCA problem and k-subset LCA problem variants.

An experimental study of some of the algorithms described in this thesis is presented in Chapter 7.
In particular, the dynamic programming approaches are evaluated and tested against results of an ear-
lier experimental analysis. As the first main result, we conclude that ALL-PAIRS REPRESENTATIVE

LCA can be solved in time close to O(n2) for a wide spectrum of random and real-world dags by
applying the dynamic programming approach. In all cases its performance is superior to the algo-
rithms tested in the previous experimental study. The second result concerns ALL-PAIRS ALL LCA
algorithms. Again, results imply that ALL-PAIRS ALL LCA can be computed in time close to O(n2)
in most cases. However, medium-sized input dags, i.e., dags where the number of edges is close to
n logn turn out to be more difficult. For such dags, none of our algorithms are significantly subcubic.

1.3 Publications

Parts of the results in this thesis have been presented previously at the 1st International Sympo-
sium on Combinatorics, Algorithms, Probabilistic and Experimental Methodologies (ESCAPE’07) in
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Hangzhou, China [BEG+07] and at the 15th Annual European Symposium on Algorithms (ESA’07) in
Eilat, Israel [EMN07]. In addition to that two technical reports [BEG+06, EMN06] contain material
described in this thesis. Finally, large parts of the results described in Chapter 5 and partly Chapter 6
can be found in [KLN08], which is submitted for publication.

As a citation policy, we have decided to prioritize journal versions over conference works through-
out this thesis. Note that this might lead to chronological inconsistencies since not all of the relevant
works have appeared in journals. That is, a result from 2007 (journal version) might be improved in
2006 (conference version). Furthermore, the respective research history cannot directly be derived
from citations prioritized in this way. However, journal versions can in general be expected to have a
higher quality, both with respect to the correctness and completeness of the presented results.

Results by other authors that are used in this thesis are generally labeled “Proposition”, regardless of
the significance of the results or the type of usage (theorem, lemma) in the respective work. Moreover,
results that belong to the standard repertoire in computer science such as depth first traversal or
standard asymptotic notation are not referenced explicitly, but by references to standard textbooks
like [CLRS01].



CHAPTER

2

PRELIMINARIES

2.1 Elementary Concepts

Basic Graph Theory

We assume basic knowledge of graph theory throughout this work. Nevertheless, we review some
basic facts for the sake of introducing our notational concepts.

An (undirected) graph is a pair G = (V,E) of sets such that the elements of E are unordered pairs
{u,v} of elements of V . The elements of V are called the vertices or nodes of the graph G, the
elements of E are called the edges of G. In a directed graph or digraph, the edges have a direction
as an additional attribute, i.e., the elements of E are ordered pairs (u,v) of vertices. The edge (u,v)
is said to be directed from u to v. In what follows we restrict our attention to directed graphs without
explicitly stating this fact.

The cardinality of the vertex set V is denoted by n, and the cardinality of the edge set E is denoted
by m unless stated otherwise. Let e = (u,v) ∈ E be an edge in G. We say the two vertices u and v
are adjacent to each other. On the other hand, e is said to be incident to both u and v. We restrict
ourselves to the consideration of simple graphs, i.e., there is at most one edge between each pair of
vertices in G. A loop is an edge (v,v) for some v ∈V . A graph without loops is called loopless.

The following notational concepts are equivalent for a directed graph G = (V,E):

1. (u,v) ∈ E.

2. u is a parent of v and v is child of u respectively.

3. u is direct predecessor of v and v is a direct successor of u in G respectively.

A path of length l − 1 for l ≥ 1 in G = (V,E) is a sequence (v1, . . . ,vl) of vertices such that
(vi,vi+1) ∈ E for all (1 ≤ i ≤ l− 1), i.e., vl can be reached from v1 by a sequence of l− 1 directed
edges. In this work, we consider only simple paths, i.e., paths such that all vertices on the path are

7
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pairwise disjoint.

Again, the following are equivalent:

1. There exists a path (v1, . . . ,vl) such that v1 = u and vl = v.

2. u reaches v and v is reachable from u.

3. u is a predecessor or ancestor of v and v is a successor or descendant of u.

Observe that in our terminology a vertex v reaches itself by a path of length 0. By u v we denote
u reaches v.

Let v ∈ V be a vertex. By N(v) we denote the set of vertices u that are adjacent to v in G. We say
that N(v) is the neighborhood of v. N(v) can be further subdivided into the in-neighborhood Nin(v)
and the out-neighborhood Nout(v). For a vertex u ∈V , u ∈ Nin(v) if (u,v) ∈ E, whereas u ∈ Nout(v) if
(v,u) ∈ E. Observe, however, that Nout(v) and Nin(v) are not necessarily disjoint in general digraphs.
For a vertex v, the in-degree of v, denoted by indeg(v), is equal to the cardinality of Nin(v). Conversely,
the out-degree of v, denoted by outdeg(v), is equal to the cardinality of Nout(v).

Directed Acyclic Graphs

Directed acyclic graphs are used in numerous applications. This includes, for example, Bayesian
networks, directed acyclic word graphs, dependency graphs of classes in object-oriented programming
languages, or representing spacetime as a causal set in theoretical physics. In general, dags are used to
model systems in which entities are related or depend on each other in a non-cyclic way, e.g., imposed
by causal or temporal dependencies.

A cycle is a path (v1, . . . ,vl) such that l ≥ 2 and v1 = vl . A simple cycle is a cycle (v1, . . . ,vl)
such that (v2, . . . ,vl) is a simple path. A directed graph G = (V,E) that does not contain a cycle as
a subgraph is called a directed acyclic graph (dag). A topological ordering of the vertex set V is
an injective mapping top : V → {1, . . . ,n} such that for all vertices u,v ∈ V , v is reachable from u
implies top(u)< top(v). A topological ordering can be found in time O(n+m) through a depth first
traversal (DFS) of G. It is well known that a directed graph G = (V,E) is a dag if and only if there is
a topological ordering of V .

A source is a vertex with no incoming edges, and a sink is a vertex with no outgoing edges. The
depth of a vertex v ∈ V , denoted by dp(v), in a dag is defined as the length of a longest path p =
(s, . . . ,v) from a source s to v in G. Analogously, the height of a vertex v, denoted by h(v), is the
length of a longest path p = (v, . . . ,s) from v to a sink s in G. The depth of G is given by

dp(G) = max
v∈V

dp(v). (2.1)

Observe that maxv∈V dp(v) = maxv∈V h(v), and therefore the terms “depth” and “height” of a dag
are commonly intermixed in the literature. Let G = (V,E) be a dag with depth dp(G). The vertex
set V of G can be divided into dp(G)+ 1 levels L0, . . . ,Ldp(G), where Li = {v ∈ V |dp(V) = i} for all
0≤ i≤ dp(G).

The notions of transitive closure and transitive reduction of a directed acyclic graph G = (V,E)
play a prominent role in this work.
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Definition 2.1 (Transitive Closure). The reflexive, transitive closure of a dag G = (V,E), denoted by
Gclo = (V,Eclo), is a dag with vertex set V and edge set Eclo such that for all u,v ∈ V , (u,v) ∈ Eclo
if and only if u is a predecessor of v in G.

Again, we note that we consider a vertex v to be a predecessor of itself. Throughout this work, we
denote the number of edges in Gclo by mclo.

Definition 2.2 (Transitive Reduction). The transitive reduction Gred = (V,Ered) of a dag G = (V,E)
is a dag with vertex set V and edge set Ered such that

(i) Gred and G have the same transitive closure and

(ii) Gred is the smallest (with respect to the number of edges) dag G′ on the vertex set V such that
Gclo = G′clo.

Throughout this work, let |Ered |= mred be the number of edges in the transitive reduction Gred of G.
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Figure 2.1: Transitive closure and transitive reduction of a dag G = (V,E).
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The following well-known proposition is due to Aho, Garey, and Ullman [AGU72].

Proposition 2.3. Let G = (V,E) be a directed acyclic graph. Then

(i) Gclo and Gred are unique.

(ii) Gred is a subgraph of G.

Observe that property (ii) of the above proposition is not true for general digraphs, which makes
it considerably harder to compute transitive reductions. In the case of dags, however, computing
the transitive closure and the transitive reduction are computationally equivalent [AGU72], see also
Proposition 4.1.

The transitive closure Gclo of a dag G = (V,E) is in one-to-one correspondence with a partially
ordered set (poset) P = (V,≤). Here, V is the ground set and the relation ≤ corresponds to the edges
in Gclo. In this sense, by slight abuse of notation, we refer to Gclo also as a poset. Observe that
by definition Gred and G correspond to the same poset Gclo. We say that two vertices u,v ∈ V are
comparable if either (u,v) ∈ Eclo or (v,u) ∈ Eclo. Otherwise, they are incomparable. An antichain in
a dag G is a vertex subset V ′ ⊆V such that the vertices in V ′ are pairwise incomparable. A maximum
antichain is an antichain of maximum cardinality. The width of a dag G, denoted by w(G), has a
prominent role in several places of this thesis, most notably in Chapter 5.

Definition 2.4 (Dag Width). For a dag G = (V,E) the width w(G) of G is equal to the cardinality of
a maximum antichain.

For a dag G = (V,E), a path cover P is a set of (directed) paths {p1, . . . , pr} in G such that for
every v ∈V there exists at least one path p ∈P such that v lies on p. A minimum path cover is a path
cover P of minimum cardinality. The cardinalities of a maximum antichain and a minimum path
cover are related by the famous Dilworth Theorem [Dil50]:

Proposition 2.5 (Dilworth ’50). The width w(G) of a dag G = (V,E) equals the size of a minimum
path cover of G.

In the context of posets one usually considers chain covers instead of path covers. In general, a
chain cover of V in a dag G = (V,E) is a path cover P of V such that the paths in P are vertex-
disjoint, i.e., pi∩ p j = /0 for all pi, p j ∈P with i 6= j. The terms “path cover” and “chain cover” are
sometimes intermixed due to the fact that there is a one-to-one correspondence between path covers
in G and chain covers in Gclo. In particular, this means that each chain cover in Gclo corresponds to
one or more path covers in G and vice versa. Furthermore, it holds that the cardinality of a minimum
chain cover of Gclo is equal to the cardinality of a minimum path cover of G. Consider, e.g., the
graph Gred depicted in Figure 2.1(b). A possible path cover of size 4 for Gred is given by P =
{(1,5,9),(2,4,6),(3,4,6,10),(7,8)}. The corresponding chain cover in Gclo (Fig. 2.1(c)) is C =
{(1,5,9),(2,4,6),(3,10),(7,8)}, i.e., the path (3,4,6,10) is simply replaced by the chain (3,10).

2.2 Analysis of Algorithms

While it is difficult to give a formal definition of an algorithm, one can easily agree that an algorithm
can be informally described as a precisely defined sequence of instructions to solve a certain task. The
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analysis of algorithms is a fundamental subject in computer science. Discovering the characteristics of
specific algorithms enables us to compare algorithms or evaluate the usability of algorithms in certain
applications. Before we describe how we approach the task of analyzing algorithms in this thesis, we
briefly clarify our view on algorithms and their underlying computational problems.

We usually consider algorithms for computational problems. A computational problem is an (some-
how) abstract formalization of concrete problems sharing particular characteristics. For example,
computing shortest paths in graphs is an abstraction of finding the fastest route from A to B in a given
road network. In algorithmics one usually takes this abstract point of view. That is, one concentrates
on computational problems and general solutions for them instead of tailoring a solution for a spe-
cific underlying application. However, in many cases it is possible to improve general algorithms for
computational problems by exploiting properties of specific concrete applications.

In order to assess the quality of an algorithm one most commonly analyzes the cost of the algo-
rithm in terms of resources, e.g., time and space. Algorithms can be analyzed mathematically and
experimentally. While experimental analysis mainly aims at predicting the behavior of algorithms in
a realistic environment, i.e., with respect to concrete problems, as accurately as possible, mathemati-
cal analysis often restricts to asymptotic classification of algorithms and the underlying computational
problem.

Computational Complexity

The complexity of an algorithm is a description of the cost of the algorithm in dependence of the
input size. In this sense complexities are commonly expressed as functions of the input size. That
is, for an algorithm A we denote by TA (n) the cost of A for an input of size n. The worst case
complexity refers to the maximum cost of the algorithm on inputs of a given size, whereas average
case complexity is with respect to the expected cost of the algorithm; for more details, see below.
We usually consider worst case complexities in this work and omit explicitly stating this to ease
exposition.

Only in rare cases it is possible to find functions that describe the complexity of a given algorithm
exactly. Therefore, one usually neglects constant terms. This gives rise to the standard asymptotic
notation or Landau symbols. For more details we refer to standard text books on algorithms, e.g.,
[CLRS01].

Since we consider algorithms for computational problems, we naturally extend the notion of com-
putational complexity to problems. More specifically, the computational complexity of a problem
is equal to the best possible complexity of a (possibly not yet found) respective algorithm. Observe
that, in order to determine the complexity of a problem, we have to find a function that serves both
as appropriate (asymptotic) upper and lower bound. Hence, we say a computational problem B has
complexity TB(n) if the complexity of an optimal algorithm for the problem is Θ(TB(n)).

An upper bound for a computational problem is readily given by specifying an algorithm and prov-
ing that the cost of the algorithm is bounded accordingly. For direct lower bounds, one often needs
more complicated mathematical arguments, and in many cases finding good lower bounds seems to
be a demanding task. Therefore, one often characterizes the relationship of computational problems
instead. This gives rise to the notion of computational equivalence. For example, the only known
lower time bound for Boolean matrix multiplication is the trivial lower bound Ω(n2). On the other
hand, it is well-known that Boolean matrix multiplication is computationally equivalent to a variety
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of other problems, e.g., finding the transitive closure of a digraph [AHU76]. Informally speaking, this
means that these two problems have the same complexity, i.e., upper and lower bounds. Equivalence
implies further that an upper (lower) bound for one of the problems can be directly transferred to the
other problem. Using asymptotic notation one can define computational equivalence as follows.

Definition 2.6 (Computational Equivalence). Two computational problems B and C with compu-
tational complexities TB(n) and TC (n) respectively are computationally equivalent if and only if
TB(n) = Θ(TC (n)) for inputs of size n.

Alternatively, B and C are computationally equivalent if and only if the two problems can be
reduced to each other. A reduction from B to C can be viewed as an algorithm that (i) transforms
problem B into problem C and (ii) specifies how a solution to B can be obtained from a solution to C .
In this work we consider reductions that allow upper bound transfers in order to establish relationships
between computational problems. That is, a valid reduction from B to C implies TB(n)=O(TC (n)).
To this end, the transformation algorithm is obviously required to be upper bounded by O(TC (n)).
Observe that this is in a certain sense the same as requiring a linear transformation. Just consider
a virtual problem that incorporates the non-linear part of the transformation and the solution to C .
Then, B can be transformed in linear time into the virtual problem which is, by construction, com-
putationally equivalent to C . This in turn implies that B is equivalent to C . In some cases we drop
the requirement of a valid reduction as described above in the following way. We say that B can
be reduced to C , up to a polylogarithmic factor, if the transformation algorithm is upper bounded
by O(TC (n) · logc n) for a constant c. As a consequence of a transformation of this kind we obtain
weaker complexity results, i.e., TB(n) = O(TC (n) · logc n). However, in some cases we are satisfied
with rougher complexity classifications so that ignoring polylogarithmic factors is acceptable.

A Note on Polylogarithmic Factors

We extend the common asymptotic symbols slightly by using the so-called soft-Oh notation, which
subsumes polylogarithmic factors. That is, Õ( f (n)) is short for O( f (n) · logc n) for a constant c. The
reason for neglecting polylogarithmic terms in the context of some considered problems and algo-
rithms is that – as of now – one is primarily interested in finding the appropriate exponents with
respect to the complexities. Polylogarithmic factors, on the other hand, are asymptotically negligible
compared to constant improvements in the exponent. While we apply the soft-Oh notation mainly
to ease exposition, the usage can cause confusion in some places, and the relevant literature is scat-
tered with inaccuracies. This is particularly true when using exponents whose numerical value is
not yet finally determined. For example, ω is commonly used to denote the exponent of square ma-
trix multiplication, i.e., two n× n matrices can be multiplied in time O(nω). Currently, we have a
bound of ω < 2.376 for ω [CW90]. However, actually the assertion of this bound is slightly stronger,
namely ω ≤ 2.376− δ for a constant δ > 0. Having this in mind, a complexity of Õ(nω) implies
O(n2.376). Similarly, Õ(n2+µ) implies O(n2.575) for µ satisfying 1+ 2µ = ω(1,µ,1), which in turn
implies µ < 0.575, see Chapter 4.

Model of Computation

We adopt the uniform cost model, that is, with regard to time complexity, an algorithm consists of
primitive operations and each operation is assigned a unit cost. In contrast, the logarithmic cost model
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takes the number of bits on which the operation operates into account. The rational behind the uniform
cost model is that primitive operations with moderately sized operands are usually implemented in
the main processor to take only a constant number of clock ticks. Although certain operations like
multiplication depend on the number of bits of the operands, assuming constant cost is a reasonable
assumption on modern system architectures. With regard to memory requirements, the complexity
is measured in the uniform cost model with respect to the number of words, i.e., chunks of bits of a
certain size.

Average Case Analysis

Average case analysis of algorithms aims at answering the following question: What is the complexity
of an algorithm for a typical input. In this context, a typical input of a given length n is an input drawn
at random from an underlying input space In according to some distribution. Consider, for example,
the problem of sorting arbitrary permutations of {1, . . . ,n} by using the well known Quicksort algo-
rithm with a deterministic pivot rule. The worst case running time of Quicksort is Θ(n2), whereas
the average case running time is only Θ(n logn) under the assumption that all possible inputs, i.e.,
all permutations, are uniformly distributed. That is, the probability that a fixed permutation is cho-
sen as input is given by 1/n!. In the case that every input has the same probability, the average case
complexity can be calculated as follows. Let T (i) be the running time of a given algorithm on input i.

Tavg(n) =
∑i∈In T (i)
|In|

(2.2)

The accuracy of average case analysis with respect to predicting the behavior of an algorithm in
practice depends heavily on the considered distribution of the input space. That is, the adopted prob-
abilistic model has to be sufficiently realistic. Given an arbitrary distribution of the input space, the
average case complexity of an algorithm corresponds to the expected value of the considered resource:

Tavg(n) = ∑
i∈In

T (i)Pr[i] (2.3)

We note that although the value of the considered resource can be considered as a random variable
in this context one usually avoids to use the term expected complexity. This is done to prevent con-
fusion with complexity results for randomized algorithms, which are usually referred to as expected
complexities.

2.3 Common Ancestor Problems in Directed Acyclic Graphs

Lowest Common Ancestors in Trees

The problem of finding lowest common ancestors in trees is defined as follows: Given a pair of
vertices {x,y} in a rooted tree T with n vertices, find the deepest vertex z that is an ancestor of both
x and y. In the context of trees the depth of a vertex v is usually defined as its distance from the root
vertex – as opposed to the maximum length of a path from a source vertex to v in a dag. However,
the definitions are not contradicting since the path from the root to a vertex v is unique in a tree. In
addition to its inherent algorithmic beauty, the problem of finding lowest common ancestors in trees



14 Chapter 2. Preliminaries

is an indispensable algorithmic tool in many areas of computer science and in particular in the context
of string algorithms and computational biology. In the latter case LCA computations are frequently
carried out on suffix trees, e.g., in order to find the longest common prefix of a given pair of substrings.
For more applications see, e.g., [Gus97].

In a seminal paper Harel and Tarjan [HT84] showed that it is possible to preprocess a tree in linear
time in order to enable constant time LCA queries. The algorithm given in the above paper was later
simplified by Schieber and Vishkin [SV88] and again by Berkman and Vishkin [BV94]. Bender et
al. [BFCP+05] use a reduction to range minimum queries in an array to give a simple and practical
LCA solution. The connection between LCA queries and range minimum queries in an array that is
obtained from an Euler tour of the tree was first discovered by Gabow et al. [GBT84]. Cole and Har-
iharan [CH05] showed that a datastructure supporting constant time LCA queries can be maintained
in a dynamic setting with constant update time.

In spite of the broad spectrum of research done in the context of LCAs in trees, generalizations to
directed acyclic graphs have only been an independent subject of research in the last decade.

Basic De�nitions

We formally define common ancestors (CAs) and lowest common ancestors (LCAs) of vertex pairs in
directed acyclic graphs.

Definition 2.7 (Common Ancestor). Let G = (V,E) be a dag and x,y∈V . A vertex z∈V is a common
ancestor (CA) of x and y if and only if both z x and z y in G.

By CAG{x,y}, we denote the set of all CAs of x and y in G.

Definition 2.8 (Lowest Common Ancestor). Let G = (V,E) be a dag and x,y ∈ V . A vertex z ∈ V
is a lowest common ancestor (LCA) of x and y if and only if z ∈ CA{x,y} and there is no vertex
z′ ∈ CA{x,y} distinct from z such that z z′.

LCAG{x,y} denotes the set of all LCAs of x and y in G. We omit the subscript and use CA{x,y} and
LCA{x,y} whenever it is clear from the context which graph G is referred to. Alternatively, one can
define LCA{x,y} as follows. Consider the subgraph GS that is induced by the vertices of CA{x,y}.
Then LCA{x,y} is equal to the set of vertices having an empty out-neighborhood in GS.

Let z ∈ CA{x,y}, but z /∈ LCA{x,y} for some x,y,z ∈V . From the above definitions, it follows that
there exists a vertex w ∈V , such that w ∈ CA{x,y} and z w. We call such a vertex w witness to the
fact that z /∈ LCA{x,y}, or simply witness for z and {x,y}. We capture the following easy observation.

Observation 2.9. For a vertex pair {x,y} and a vertex z such that z ∈ CA{x,y} and z /∈ LCA{x,y}
the following holds:

(i) There exists a witness w for {x,y} and z such that w is a child of z.

(ii) There exists a witness w for {x,y} and z such that w ∈ LCA{x,y}.

In general, LCAs of vertex pairs are not unique in dags. However, there are special classes of dags,
most prominently trees and (upper) semi-lattices in which the LCAs are unique. Observe, however,
that unless stated otherwise we consider the general case and treat LCA{x,y} as a set.
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Figure 2.2: (Lowest) common ancestors of a vertex pair {x,y}. CA{x,y} = {z1,z2,z3} and
LCA{x,y}= {z1,z3}. Observe that z3 is a witness for z2 and {x,y}.

Problem De�nitions and Related Work

This thesis is mainly concerned with all-pairs problem variants. This means that we are interested in
computing answers to certain (lowest) common ancestor query problems for each vertex pair {x,y}.
Solutions to all-pairs problem variants are usually outputted by specifying a solution matrix L, i.e.,
L[x,y] holds the solution for the given query with respect to {x,y}.

In the more general case of dags where a pair of nodes may have more than one LCA, one distin-
guishes – in contrast to trees – representative and all LCA problems. In early research both versions
still coincide by considering dags with each pair having at most one LCA. Extending the work on
LCAs in trees [NU94], an algorithm was described with linear preprocessing and constant query time
for the LCA problem on arbitrarily directed trees (or causal polytrees). Another solution was given in
[AKBLN89], where the representative LCA problem in the context of object inheritance lattices was
studied. The approach in [AKBLN89], which is based on poset embeddings into Boolean lattices,
yielded O(n3) preprocessing and O(logn) query time on lower semilattices.

Historically, the first considered all-pairs LCA problem on general dags was the ALL-PAIRS REP-
RESENTATIVE LCA problem [BFCP+05]. In this problem, we are interested in computing an arbitrary
(representative) LCA for each pair of vertices.

Problem: ALL-PAIRS REPRESENTATIVE LCA
Input: A dag G = (V,E)
Output: A matrix R of size n×n such that for all vertices x,y ∈V , R[x,y] ∈ LCA{x,y}; if

LCA{x,y}= /0 for some vertex pair {x,y}, then R[x,y] = NIL.

In the context of representative LCA computations, the notion of maximum common ancestors
(MCAs) is of particular importance. Let G = (V,E) and let top : V → {1, . . . ,n} be a topological
ordering of V . For an arbitrary vertex subset V ′ ⊆V , let u∈V ′ be a vertex such that top(u) is maximal
among all vertices in V ′, i.e., u = argmaxv∈V ′{top(v)}. Then u is said to be the maximum vertex in
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V ′. The following proposition is fundamental to many solutions to representative LCA problems.

Proposition 2.10 ([BFCP+05, KL05]). Let G = (V,E) be a dag and let top be a topological ordering.
Furthermore, let x,y ∈ V be vertices with a non-empty set of CAs. If z ∈ V is the maximum vertex in
CA{x,y} with respect to top, then z is an LCA of x and y.

Proof. By definition, a common ancestor z is a lowest common ancestor if no other common ancestor
is reachable from z. That is, if a common ancestor z is not a lowest common ancestor, there must be
a witness z′, i.e., z′ ∈ CA{x,y} and z z′. For every vertex z′ that is reachable from z in G it is true
that top(z)< top(z′) in any consistent ordering. Hence, if top(z) is the maximum vertex in CA{x,y},
there is no witness, and it follows that z is a lowest common ancestor of x and y. �

Most algorithms for the ALL-PAIRS REPRESENTATIVE LCA problem presented in this work make
use of the above proposition. That is, they compute maximum common ancestors (MCAs) with
respect to some topological ordering. However, the problems do not seem to be equivalent. For
example, the ALL-PAIRS REPRESENTATIVE LCA algorithm for dags of small depth given by Czumaj
et al. [CKL07] does not necessarily compute maximum CAs but only CAs of maximum depth. A
variation of the problem of computing maximum CAs with respect to a topological ordering is the
problem of computing maximum CAs with respect to an arbitrary vertex weight function, which is
considered in Chapter 6.

The first subcubic algorithm for ALL-PAIRS REPRESENTATIVE LCA was given by Bender et
al. [BFCP+05]. The authors essentially make use of Proposition 2.10 to transform the problem to an
all-pairs shortest paths computation. Using the approximate all-pairs shortest distances algorithm by
Zwick [Zwi98], the sets of candidate vertices are narrowed down to a sublinear fraction of the original
vertex sets to achieve an upper bound of Õ(n

ω+3
2 ). This was improved by Kowaluk and Lingas [KL05]

by reducing the problem to computing maximum witnesses for Boolean matrix multiplication; again
by a straightforward application of Proposition 2.10. The resulting bound was O(n2+ 1

4−ω ). In [KL05]
and [BEG+07], O(nm) time algorithms, which are efficient for sparse dags, have been presented as
well.

The following non-trivial lower bound for ALL-PAIRS REPRESENTATIVE LCA is also due to
[BFCP+05].

Proposition 2.11. The problem of computing the transitive closure of an arbitrary digraph G = (V,E)
can be reduced to ALL-PAIRS REPRESENTATIVE LCA on G.

The above proposition follows from the fact that u v if and only if LCA{u,v}= u. Furthermore,
the problem of computing the transitive closure of a general digraph is not harder than computing the
transitive closure of a dag. Since computing the the transitive closure of a digraph is computationally
equivalent to Boolean matrix multiplication, Proposition 2.11 essentially implies a lower bound of
Ω(nω), where ω is the exponent of square matrix multiplication, for ALL-PAIRS REPRESENTATIVE

LCA.

A more general problem variant is the ALL-PAIRS ALL LCA problem where one asks for the sets
LCA{x,y}, i.e., listing all LCAs for all vertex pairs.
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Problem: ALL-PAIRS ALL LCA
Input: A dag G = (V,E)
Output: A matrix A of size n×n such that for all vertices x,y ∈V , R[x,y] = LCA{x,y}.

Although this problem is of interest in its own right, algorithmic solutions for it have an interesting
implication on LCA problems in edge- or vertex-weighted dags. By now, the asymptotically best
algorithms for computing LCAs that minimize constraints related to the weight functions use an ALL-
PAIRS ALL LCA solution as a subroutine. Again, for more details on problems related to weighted
dags we refer to Chapter 6.

Theorem 2.12. ALL-PAIRS ALL LCA in a dag G with n vertices has a lower time bound of Ω(n3)
in the worst case.

Proof. It is easy to see that the output complexity of ALL-PAIRS ALL LCA is Ω(n3) in the worst
case. This is even true for sparse dags with m = O(n) as the example in Figure 2.3 shows. �

.............

.............

.............

Ω(n) vertices

Ω(n) vertices Ω(n) vertices

Figure 2.3: Sparse dags with an Ω(n3) total number of LCAs.





CHAPTER

3

DYNAMIC PROGRAMMING
ALGORITHMS

3.1 Introduction

Dynamic programming is a general algorithm design technique that solves a problem by combining
solutions to subproblems. In this sense, dynamic programming is similar to the well-known divide-
and-conquer paradigm. However, dynamic programming is preferred over divide-and-conquer when
the considered subproblems are dependent, that is, they share subsubproblems. The advantage of
dynamic programming in this scenario is that the repeated solution of the same subproblem is avoided.

Typically, the process of developing a dynamic programming algorithm includes the following two
steps:

1. Decompose the problem into subproblems and find a recursive formulation for the problem
solution.

2. Compute the optimal solution in a bottom-up fashion. To this end, it is important that there
exists a natural order of the (not too many) subproblems from small to large. The solutions to
the subproblems are typically stored in a table. Using a bottom-up approach enables dependent
subproblems to share solutions to smaller subsubproblems.

An introductory example for dynamic programming is the iterative computation of Fibonacci num-
bers. Here, the dynamic programming approach yields a linear time solution whereas the pure divide-
and-conquer approach results in an exponential running time. More examples for efficient dynamic
programming algorithms are, e.g., the Floyd-Warshall algorithm [CLRS01] for computing all-pairs
shortest paths, the Cocke-Younger-Kasami algorithm (CYK) [HMU01] for determining if and how a
given string can be generated by a given context-free grammar, many string algorithms in general and
sequence alignment in particular.

19
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In this chapter we describe algorithmic solutions to LCA problems based on dynamic program-
ming. More specifically, we obtain the following results for a dag G with n vertices whose transitive
reduction has mred edges.

• ALL-PAIRS REPRESENTATIVE LCA can be solved in O(nmred) time in the worst case and
O(n2 logn) time in the average case.

• ALL-PAIRS ALL LCA can be solved in O(n2 mred) time in the worst case and O(n3 logn) time
in the average case.

• ALL-PAIRS ALL LCA can be solved in O(nmred min{
(
κ2 +κ logn

)
,n}) time in the worst

case and O(n2 lognmin{(κ2 +κ logn),n}) time in the average case, where κ is the maximum
number of LCAs of a vertex pair {x,y}.

As a result of an experimental study described in Chapter 7, the algorithms presented in this chapter
turn out to be practical.

We give a brief chapter outline. In Section 3.2 we describe basic concepts and algorithms that are
used by our dynamic programming approach. In particular, we describe how transitive reduction can
be used to improve algorithms that depend on the number of edges, an algorithm by Simon [Sim88]
to compute the transitive reduction and closure of a dag, and, finally, how we approach the matter
of average case analysis with respect to graph algorithms throughout this work. We proceed by de-
veloping dynamic programming algorithms for ALL-PAIRS REPRESENTATIVE LCA in Section 3.3
and ALL-PAIRS ALL LCA in Section 3.4. For all of the described algorithms we provide appropriate
worst case and average case upper time bounds.

3.2 Preliminaries

Transitive Reduction as a Speed-Up

The dynamic programming approaches presented in this chapter depend heavily on the number of
edges m in the considered dag G = (V,E). This leads to efficient solutions for (moderately) sparse
dags only. However, the following lemma enables significant improvements for dense instances in the
majority of cases.

Lemma 3.1. For a dag G = (V,E) and vertices x,y,z ∈V , it holds that z ∈ LCAG{x,y} if and only if
z ∈ LCAGred{x,y}.

Proof. Suppose, for the sake of contradiction, that z is an LCA of {x,y} in G, but not in Gred. Then, by
definition, either z is not a common ancestor of x and y in Gred, or there exists a common ancestor z′ of
{x,y} such that z reaches z′ in Gred. Since G and Gred share the same transitive closure by definition,
both implies that z cannot be an LCA of x and y in G, contradicting the assumption. The opposite
direction is analogous. �

Computing Transitive Closures and Reductions

A computational equivalence between transitive closure and transitive reduction computation on a
given dag G was shown by Aho, Garey, and Ullman [AGU72]. Moreover, both problems are com-
putational equivalent to Boolean matrix multiplication. This implies a general upper bound of O(nω)
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for both problems, where ω is the exponent of square matrix multiplication. For more details on algo-
rithms using matrix multiplication we refer to Chapter 4. The following more practical result is due
to Simon [Sim88].

Proposition 3.2. The transitive closure Gclo and the transitive reduction Gred of a dag G = (V,E)
can be computed in time O(mclo+mred ·k), where k is the width of a greedily constructed but not
necessarily minimum chain cover, mclo is the number of edges in Gclo and mred is the number of edges
in Gred.

In practice Simon’s algorithm constructs the transitive closure and/or reduction of a dag reasonably
fast, i.e., in time close to the optimum of O(n2). Since we use the algorithm throughout this work, we
give a brief informal description in this place.

The algorithm is an improvement of an earlier algorithm given by Goralćíková and Koubek [GK79].
The basic observation of their approach can be summarized as follows. Let v ∈V be a vertex and let
Nout(v) = {v1, . . . ,vk} be the out-neighborhood of v in increasing topological order. Then

• Nout
clo (v) = v∪

⋃
1≤i≤k

Nout
clo (vi).

• Nout
red (v) = {vl ∈ Nout(v)|vl /∈

⋃
1≤i≤l−1

Nout
clo (vi)} for all 1≤ l ≤ k.

The above observation translates easily to an algorithm with running time O(nmred). The im-
provement to O(k mred) relies on using a greedily constructed chain cover of the dag to prune out
unnecessary operations. Recall that a chain cover of a dag G = (V,E) is a set of vertex-disjoint paths
C = {c1, . . . ,ck} such that

⋃
1≤i≤k ci = V . Observe that here, a chain cover is constructed on the

non-transitive dag G.

A chain cover can be greedily constructed by simply repeating the following until the whole vertex
set V of G = (V,E) is covered: Identify an uncovered vertex with minimum topological number and
construct a path by always adding the next uncovered child with the minimum topological number, see
Algorithm 1. In the rest of this chapter, we refer to chain covers as covers constructed by Algorithm 1.
We note at this point that we use another greedy chain cover construction in Chapter 5. While both
follow the greedy paradigm, we stress the fact that the approaches are not equivalent.

The improvement over the method by Goralćíková and Koubek is based on the following observa-
tion. Recall again that we compare vertices with respect to some topological ordering top. That is,
for u,v ∈V , u > v if and only if top(u)> top(v).

• Nout
clo (v) = v∪

⋃
1≤i≤k

{w ∈ ci|w≥min{Nout
clo (v)∩ ci}}

Thus, it is sufficient to compute the minimum vertices of the intersections of transitive closure out-
neighborhoods and the chains. The complexity for this task can be bounded by O(k mred), for details
we refer to [Sim88].

Average Case Analysis of Graph Algorithms

Throughout this chapter and occasionally in the rest of this thesis we perform average case analysis
of the algorithms presented. To this end, we assume a probabilistic distribution of the input space,
see Section 2.2, Equation (2.3). In the average case analysis of problems on undirected graphs, the
most prominent probabilistic models are the Gn,p and the Gn,m model, see, e.g., [Bol01]. Let in the
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Algorithm 1: Greedy Chain Cover Construction
Input: A dag G = (V,E).
Output: A chain cover C = c1, . . . ,ck of the dag.
begin1

Initialize an empty chain cover C .2

while there exists an uncovered vertex do3

Initialize a chain c with start vertex v, where v is the uncovered vertex with minimum4

label.
while there exists an uncovered child of v do5

Let u be the child of v with minimum label.6

Add u to c and set v← u.7

end8

Add c to C .9

end10

end11

following N be the maximum number of edges in a graph. For example, if we consider undirected
simple graphs without loops, N =

(n
2

)
.

Gn,p In the Gn,p model each possible edge of a graph G = (V,E) with |V | = n is chosen with a
prescribed probability 0 < p < 1. Thus, for a given (labeled) graph G = (V,E) with m edges,
the probability that G is chosen from an input space that is modeled according to the Gn,p model
is given by Pr[G] = pm(1− p)N−m.

Gn,m In the Gn,m model, the graphs with m edges are assumed to be uniformly distributed, that is,
given two arbitrary (labeled) graphs G1 and G2 with m edges, we have Pr[G1] = Pr[G2] = 1/

(N
m

)
.

Both models are readily extended to directed acyclic graphs by simply fixing an arbitrary order of
the vertices and directing each edge from the smaller to the larger vertex with respect to this order.
The Gn,p model was extended in this way by Barak and Erdős themselves [BE84] and is sometimes
referred to as random order model. In the rest of this work we implicitly assume this extension
whenever referring to Gn,p and Gn,m random dags.

The average case analysis in this chapter is restricted to Gn,p random dags. However, it should be
noted that in many cases the asymptotic properties of random dags in the Gn,p and Gn,m models are
practically identical if p ·N is close to m. The following proposition was given in [AF07]. It is a
generalization of an analogous result on general graphs [Bol01].

Proposition 3.3. Let f be a non-negative function defined over the set of dags with n vertices such
that f (G) ≤ f (H) for G ⊆ H. Let Ep[ f ] and Em( f ) denote the expected value of f with respect to
random dags in the Gn,p and Gn,m models.

1. If limn→∞ p(1− p)N = limn→∞
pN−m√
p(1−p)N

= ∞ then Em( f )≤ Ep( f )+o(1).

2. If limn→∞ p(1− p)N = limn→∞
m−N p√
p(1−p)N

= ∞ then Ep( f )≤ Em( f )+o(1).

As stated above a parameter of particular interest in the analysis of the algorithms described in this
chapter is mred, the number of edges in the transitive reduction of the input dag G. The expected value
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of mred in the Gn,p model is given in the following proposition, which is due to Simon [Sim88]. We
note that mred is not monotonic in the sense of Proposition 3.3, i.e., H ⊆ G does not imply that the
transitive reduction of H is smaller than or equal to the transitive reduction of G. However, as a result
of the experimental study conducted in Chapter 7, the expected values of mred seem to be very similar
for Gn,p and Gn,m random dags. In the following, however, we restrict our attention to the Gn,p model
without explicitly stating this.

Proposition 3.4. Let G = (V,E) be a random dag in the Gn,p model. Let mred be the number of edges
in the transitive reduction. Then E[mred] = O(n logn).

Moreover, Crippa improved earlier bounds on E[k mred] to O(n2) in his PhD thesis [Cri94]. Recall
that k is the cardinality of a chain cover constructed by Algorithm 1. This implies in particular the
following proposition.

Proposition 3.5. The transitive closure and reduction of a dag G with n vertices can be computed in
time O(n2) in the average case.

We extensively make use of the above two propositions in the remainder of this chapter. Observe
that, e.g., a worst case bound of O(nmred) implies an average case bound of O(n2 logn) by linearity
of expectation.

3.3 All-Pairs Representative LCA

We start by describing our dynamic programming approach for the ALL-PAIRS REPRESENTATIVE

LCA problem. To this end, we make use of Proposition 2.10, i.e., we compute the maximum CAs in
order to find representative LCAs. Recall again that we assume that the dag G = (V,E) is equipped
with some topological order top : V → {1, . . . ,n} and a comparison of two vertices x and y is with
respect to top, i.e., x < y if and only if top(x)< top(y). Suppose further that reachability queries in G
can be answered in constant time, i.e., Gclo is known. The idea of the approach is as follows. Given
a vertex x ∈ V , suppose we want to determine the maximum CA for the pairs {x,y}, for all y ∈ V .
Let {x1, . . . ,xl} be the parents of x in G and suppose that MCA{xi,y} is known for all 1≤ i≤ l. The
following lemma shows how to derive the maximum CA of {x,y}.

Lemma 3.6. Let G = (V,E) be a dag and let {x,y} be a pair of vertices. Furthermore, let z be the
maximum CA of {x,y}, i.e., z = MCA{x,y}.

(i) If x y, then z = x.

(ii) If y is not a successor of x, then the following holds: Let {x1, . . . ,xl} be the parents of x. Let
Z =

⋃
1≤i≤l MCA{xi,y}. Then z is the maximum vertex in Z.

Proof. If (x,y) ∈ Eclo, x is the only LCA of {x,y} and hence the maximum CA. This proves the first
statement.

For the second statement, suppose that y is not reachable from x. We only have to show that z ∈ Z
since Z ⊆ CA{x,y}. Suppose for the sake of contradiction that z /∈ Z. Since z 6= x, there is a path
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from z to x which includes some parent xk, 1 ≤ k ≤ l, of x. Let now z′ = MCA(xk,y). Observe the
following:

1. z ∈ CA{x,y} and z ∈ CA(xk,y)

2. z′ ∈ CA{x,y} and z′ ∈ CA(xk,y)

Assume first that top(z) > top(z′). This contradicts the assumption that z′ is the maximum CA of
xk and y. On the other hand, if top(z)< top(z′), z cannot be the maximum CA of x and y. It follows
that z ∈ Z. �

x = LCA{x,y}
(x,y) ∈ Eclo

. . . . . .z1

x

x1

y

zl

xl. . . . . .

Choose maximum vertex in this set

. . . . . .z1

x

x1

y

zl

xl. . . . . .

Figure 3.1: Idea of the dynamic programming approach for ALL-PAIRS REPRESENTATIVE LCA.

If we visit the vertices of V in ascending order with regard to top, the necessary maximum CAs are
known and MCA{x,y} can be determined by simply comparing the precomputed solutions. Observe
that the design of this solution follows the dynamic programming paradigm. This is implemented in
Algorithm 2.

Algorithm 2: Dynamic programming algorithm for ALL-PAIRS REPRESENTATIVE LCA
Input: A dag G = (V,E).
Output: An array R of size n×n where R[x,y] is the maximum CA of x and y.
begin1

Initialize R[x,y]← NIL.2

Compute a topological order top.3

Compute the transitive closure Gclo and the transitive reduction Gred of G.4

foreach x ∈V in ascending order of top(v) do5

foreach (z,x) ∈ Ered do6

foreach y ∈V do7

if (x,y) ∈ Eclo then R[x,y]← x8

else if R[z,y]> R[x,y] then R[x,y]← R[z,y]9

end10

end11

end12

end13
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Theorem 3.7. In a dag G = (V,E) with n vertices, the time needed by the dynamic programming
algorithm (Algorithm 2) to solve ALL-PAIRS REPRESENTATIVE LCA can be bounded by O(nmred),
where mred is the number of edges in the transitive reduction of G.

Proof. The correctness follows from Lemma 3.6. Observe that in Line 9 the maximum CA of {z,y}
is already determined since the vertices are visited in ascending topological order, i.e., all parents of x
are already processed. Let T (G) be the running time of the algorithm on input G. The preprocessing
steps can be implemented in time O(nmred) by Proposition 3.2. We have

T (G) = O(nmred)+ ∑
v∈V

indegGred
(v) ·n = O(nmred).

�

Recall again that for the purpose of average case analysis we assume that the input graphs are dis-
tributed according to the Gn,p model. Proposition 3.4, i.e., E[mred] = O(n logn), yields the following.

Corollary 3.8. In a dag G = (V,E) with n vertices, the time needed by the dynamic programming
algorithm (Algorithm 2) to solve ALL-PAIRS REPRESENTATIVE LCA can be bounded by O(n2 logn)
in the average case.

3.4 All-Pairs All LCA

We turn our attention to the ALL-PAIRS ALL LCA problem. Before we embark on applying our
dynamic programming approach, we start by specifying a simple, natural algorithm. First, it computes
the transitive closure and reduction of G in time O(nmred). Then, for each vertex z and each pair {x,y},
it determines in time O(outdeg(z)) (with respect to Gred) if z is an LCA of {x,y}. If z is a CA of {x,y},
but none of its children, then z is an LCA of {x,y}. Checking whether a given vertex is a CA of a
vertex pair can be done by simple transitive closure look-up. The total running time of the algorithm
is O(n2 mred).

Algorithm 3: Algorithm for ALL-PAIRS ALL LCA based on transitive closure look-ups
Input: A dag G = (V,E).
Output: An array A of size n×n where A[x,y] is the set of all LCAs of x and y.
begin1

Compute a topological order top.2

Compute the transitive closure Gclo and the transitive reduction Gred of G.3

foreach z ∈V in ascending order with respect to top do4

foreach x,y ∈V with z≤ x,y do5

if z ∈ CA{x,y} and w /∈ CA{x,y} for all w ∈ Nout
red (z) then add z to A[x,y]6

end7

end8

end9
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1 1

1 0

1

1 1

0x y

x2 x3x1

z
transitive closure matrix

x y

z

x1

x2

x3

Figure 3.2: Idea of Algorithm 3. Observe that x3 is a witness for z and {x,y}.

Theorem 3.9. For a dag G = (V,E) with n vertices the running time needed by Algorithm 3 to solve
ALL-PAIRS ALL LCA is bounded by O(n2 mred), where mred is the number of edges in the transitive
reduction of G.

Proof. Let T (G) be the running time of Algorithm 3 on G=(V,E). Let V = {v1, . . . ,vn} be the vertex
set such that the vertices are ordered in ascending topological order. The preprocessing steps can be
implemented in time O(nmred). Let again T (G) be the running time of Algorithm 3. Decomposing
the structure of the main loop of the algorithm, we find

T (G) =
n

∑
i=1

(
n

∑
j=i

n

∑
k= j

outdegGred
(vi)

)

= O

(
n

∑
i=1

outdegGred
(vi)

(
n− i+1

2

))
= O(n2 mred).

�

Observe that Algorithm 3 has a lower bound of Ω(n3) whenever there is a linear fraction of vertices
with at least one outgoing edge, i.e., in all but particularly degenerate cases. The next corollary is
again a direct consequence of Proposition 3.4.

Corollary 3.10. For a dag G = (V,E) with n vertices, the running time needed by Algorithm 3 to
solve ALL-PAIRS ALL LCA is bounded by O(n3 logn) in the average case.

We proceed by giving an O(n2 mred) dynamic programming approach which does not improve the
naive algorithm in the worst case but turns out to be very efficient in practice, see Section 7. This
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algorithm adopts ideas from Algorithm 2. Suppose that we want to determine LCA{x,y} and suppose
the sets LCA{x1,y}, . . . ,LCA{xl,y} are known for all parents {x1, . . . ,xl} of x. Instead of choosing
the maximum CA out of the solutions for the parents, we “merge” the respective LCA sets in order
to obtain LCA{x,y}. Recall that z ∈ CA{x,y} is an LCA of x and y if there is no other vertex z′ ∈
CA{x,y} such that (z,z′) ∈ Eclo.

(x,y) ∈ Eclo

x = LCA{x,y}

Z1 . . . . . .

x1 . . . . . . xl

x

y

Zl

Find LCAs in Z = Z1∪ . . .∪Zl
Z1 . . . . . .

x1 . . . . . . xl

x

y

Zl

Figure 3.3: Idea of the dynamic programming approach for ALL-PAIRS ALL LCA.

The following is a generalization of Lemma 3.6.

Lemma 3.11. Let G = (V,E) be a dag. Let x and y be vertices of G. Let {x1, . . . ,xl} be the parents
of x and let Z be the union of the sets LCA{xi,y} for all 1≤ i≤ l, i.e., Z =

⋃
1≤i≤l LCA{xi,y}. Then

(i) If (x,y) ∈ Eclo, then LCA{x,y}= {x}.

(ii) If (x,y) /∈ Eclo, then z ∈ LCA{x,y} if and only if z ∈ Z and @z′ ∈ Z such that z z′.

Proof. The first statement is trivial. For the second statement, we observe that

LCA{x,y} ⊆ Z ⊆ CA{x,y}. (3.1)

The second inclusion holds since Z ⊆ CA{x,y} by construction. For the first inclusion let z ∈
LCA{x,y} be an arbitrary LCA of x and y and suppose that z /∈ Z. Obviously, since z 6= x, there is a
path from z to x through some parent xk of x. Thus, z ∈ CA{xk,y}. By assumption, z is not an LCA of
xk and y. This implies that there is a witness w for z and {xk,y} and w ∈ LCA{xk,y} (Obs. 2.9). Yet,
as stated above, every CA of xk and y is also a CA of x and y. Hence, w is also a witness to the fact
that z is not an LCA of x and y contradicting our assumption.

However, Equation (3.1) implies statement (ii). To see this, consider the subdag GZ that is induced
by the vertices of Z. Each z ∈ Z such that z /∈ LCA{x,y} has at least one child, namely a witness w
such that w ∈ LCA{x,y} (which exists by Observation 2.9) since LCA{x,y} ⊆ Z. On the other hand,
since Z ⊆ CA{x,y}, each z ∈ Z such that z ∈ LCA{x,y} has no outgoing edges in GZ . �

Lemma 3.11 is implemented by Algorithm 4. We still have to specify the merge operation in Line 8.
We propose two different strategies. The efficiency of each of the operations depends effectively on the
maximum cardinality κ of an LCA set in G, see Equation (3.2). More specifically, we will elaborate
below that the merging cost for a vertex x is bounded by O

(
indeg(x) ·min{(κ logn+κ2),n}

)
by an
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Algorithm 4: Dynamic programming algorithm for ALL-PAIRS ALL LCA
Input: A dag G = (V,E).
Output: An array A of size n×n where A[x,y] is the set of all LCAs of x and y.
begin1

Compute the transitive closure Gclo and the transitive reduction Gred of G.2

Compute a topological order top.3

foreach x ∈V in ascending order of top(x) do4

foreach y ∈V do5

if (x,y) ∈ Eclo then A[x,y]←{x}6

else Let x1, . . . ,xl be the parents of x.7

A[x,y]←Merge(A[x1,y], . . . ,A[vl,y])8

end9

end10

end11

appropriate choice of the merging method. Observe that indeg(x) is with respect to Gred; we omit the
subscript to ease exposition. Let in the following x,y ∈V such that (x,y) /∈ Eclo and let {x1, . . . ,xl} be
the parents of x. Let Zi = LCA{xi,y} for all 1≤ i≤ l.

• Iterative Merging: Initialize an empty set ZM and merge Z1, . . . ,Zl iteratively to ZM as follows.
Let z ∈ Zi. Add z to ZM if and only if z is not a predecessor of any of the vertices in the current
set ZM. Conversely, let z ∈ ZM. Retain z in ZM if and only if z is not a predecessor of any vertex
in Zi. Finally, set LCA{x,y}← ZM.

• Lazy Merging: Construct a multi-set C = LCA(x1,y)] . . .]LCA(xl,y). Sort the vertices in C
in descending order according to their topological number and remove non-unique vertices.
Initialize an empty set ZM. Process the vertices in descending order as follows. Add z ∈ C
to ZM if and only if z is not a predecessor of any vertex in the current set ZM. Finally, set
LCA{x,y}← ZM.

Before analyzing the time complexities of the two merging approaches, we proceed by verifying
the correctness.

Lemma 3.12. For vertices x,y ∈ V such that (x,y) /∈ Eclo and {x1, . . . ,xl} are the parents of x, the
following holds.

(i) The iterative merging method correctly constructs LCA{x,y}.

(ii) The lazy merging method correctly constructs LCA{x,y}.

Proof. For the rest of the proof, let again Zi = LCA{xi,y} for all 1≤ i≤ l and Z =
⋃

1≤i≤l Zi. Again,
we observe

LCA{x,y} ⊆ Z ⊆ CA{x,y},

compare the proof of Lemma 3.11.

(i) Let A[x,y] = Z′ after the iterative merging procedure. Let z ∈ LCA{x,y} and suppose for the
sake of contradiction that z /∈ Z′. Since LCA{x,y} ⊆ Z this implies that z is discarded in
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some merging step. This in turn implies z z′ for some vertex z′ ∈ Z distinct from z. Since
Z ∈ CA{x,y}, z′ is a witness for z and {x,y}, a contradiction.

On the other hand, it is easy to see that each z ∈ Z such that z /∈ LCA{x,y} is discarded. By
definition, there exists a witness w such that w ∈ LCA{xi,y} and w ∈ LCA{x,y}, compare
Observation 2.9. Since w ∈ Z and no LCA of {x,y} is discarded during the iterative merging,
the reachability of z and w is tested at some point of the iterative merging procedure and z is
discarded.

(ii) Let Z = {z1, . . . ,z|Z|} such that the vertices in Z are sorted in descending order with respect to
their topological number.
Claim 3.13. For all 1 ≤ j ≤ |Z| let LCA( j){x,y} be the intermediate LCA set of {x,y} after
vertex z j has been processed. The following is true for all vertices z ∈V .

a) If z ∈ LCA{x,y} and top(z)≥ top(z j), then z ∈ LCA( j){x,y}.
b) If z ∈ LCA( j), then z ∈ LCA{x,y}.

Proof. We establish this claim by induction on j. For j = 1, the claim is true by Proposi-
tion 2.10. Suppose now, the claim is true through j−1. We only have to show that z j is added
to LCA( j−1){x,y} if and only if z j ∈ LCA{x,y}. Suppose first that z j ∈ LCA{x,y}. Then, by
the induction hypothesis, z j is not a predecessor of any of the vertices in LCA( j−1){x,y} and is
hence added. Assume now that z j /∈ LCA{x,y}. We observe that there exists a witness w for z j

such that w ∈ LCA{x,y} (Obs.2.9) and top(w)> top(z j). Again, by the induction hypothesis,
this implies that w ∈ LCA( j−1){x,y} and hence z j is discarded. �

The correctness of the lazy merging approach is immediate from the above claim.

�

Since in Algorithm 4 the vertices are visited in ascending order with respect to a topological order
top, A[xi,y] corresponds to LCA{xi,y} by the time that x is visited. All parents of x are visited before x.
This and Lemmas 3.11 and 3.12 establish the correctness of Algorithm 4.

Before we bound the times needed by the two merging methods, we introduce a parameter κ , where

κ = max
x,y∈V
{|LCA{x,y}|} (3.2)

is the maximum cardinality of an LCA set in G. Recall further that the width w(G) of a dag G is
defined as the maximum cardinality of an antichain in G.

Lemma 3.14. For vertices x,y ∈ V such that (x,y) /∈ Eclo and {x1, . . . ,xl} are the parents of x, the
time needed by the merging methods to construct LCA{x,y} can be bounded as follows.

(i) Iterative Merging: O(indeg(x) ·min{w(G)κ,n})

(ii) Lazy Merging : O(indeg(x)κ log(indeg(x)κ)+ indeg(x)κ2)

Proof. Recall again that {x1, . . . ,xl} are the parents of x and let Zi = LCA{xi,y} for all 1≤ i≤ l.
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(i) Iterative Merging: Let ZM be an intermediate LCA set of {x,y} and assume Zi is supposed
to be merged to ZM. The straightforward approach simply checks pairwise reachability by
transitive closure look-up in time O(|Zi| · |ZM|). Since all intermediate vertex sets are antichains
(easy induction), the naive approach gives an upper time bound of O(w(G)κ).

For large sets, this can be improved to O(n) as follows, see also Algorithm 5. To ease exposition
we introduce some additional notation:

• Let V ′ ⊆ V be any subset of V . We denote by V ′ the forbidden set of V ′, where u ∈ V ′ if
and only if u is a predecessor of some vertex v ∈V ′.

• For all 1≤ i≤ l we denote by Z(i) the intermediate set LCA{x,y} after the sets Z1, . . . ,Zi

have been merged to the (initially empty) set ZM.

Assume now that we want to merge Zi to Z(i−1) and that we possess forbidden sets Z(i−1) and Zi.
Then, for any z∈ Zi, we merge z to Z(i−1) if z /∈ Z(i). Conversely, we retain z∈ Z(i−1) if z /∈ Zi. If
the forbidden sets are maintained as bit vectors of length n the membership of z in the forbidden
set can be checked in constant time and the two sets can be merged in time O

(
|Z(i−1)|+ |Zi|

)
.

The bottleneck of this merge operation is updating the forbidden set Z(i) for Z(i), which is done
by a bitwise or combination of Z(i−1) and Zi. Thus, the merge operation takes time Θ(n).

(ii) Lazy Merging: The running time of the lazy merging approach can be bounded as follows.

• The construction of C = Z1] . . .]Zl takes ∑
l
i=1 |Zi| and can be bounded by O(indeg(x) ·κ).

• Sorting and removing non-unique vertices in C can be bounded by

O

(
min

{(
l

∑
i=1
|Zi|

)
log

(
l

∑
i=1
|Zi|

)
,n+

l

∑
i=1
|Zi|

})
.

To see this, observe that we can use bucket sort whenever(
l

∑
i=1
|Zi|

)
log

(
l

∑
i=1
|Zi|

)
> n+

l

∑
i=1
|Zi|.

However, in order to prove the lemma, it is enough to bound this step by O((indeg(x) ·κ ·
log(indeg(x) ·κ)).
• Finally, we check in time O(κ) whether a vertex z is to be retained or discarded. Hence,

we can bound this step by O(indeg(x)κ2).

�

Theorem 3.15. In a dag G with n vertices, the time needed by the dynamic programming algorithm
(Algorithm 4) to solve ALL-PAIRS ALL LCA can be bounded by O(nmred ·min{

(
κ2 +κ logn

)
,n}),

where mred is the number of edges in the transitive reduction of G and κ is the maximum LCA set
cardinality in G.

Proof. Recall that we use transitive reduction as speed-up. We combine the two merging strategies as
follows. Start with the lazy merging approach. If for some pair {x,y} the merging cost exceeds some
prescribed linear threshold, start anew with iterative merging.
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By Lemma 3.14 the time for an iterative merging operation can be bounded by O(min{w(G)κ,n}).
Let T (G) be the running time of Algorithm 4 on G = (V,E). We get

T (G) = ∑
v∈V

indeg(v)O(n)O(min{w(G)κ,n}) = O(nmred min{w(G)κ,n}). (3.3)

For the lazy merging operation we have derived an upper bound of O(indeg(v)κ · log(indeg(v)κ)+
indeg(v)κ2). Hence:

T (G) = ∑
v∈V

O(indeg(v)κ log(indeg(v)κ)+ indeg(v)κ2) ·n

= ∑
v∈V

O(indeg(v)κ (log(indeg(v))+ log(κ))+ indeg(v)κ2) ·n

≤ ∑
v∈V

O(indeg(v)κ (log(n)+ log(κ))+ indeg(v)κ2) ·n

= O(mred nκ logn)+O(mred nκ
2) (3.4)

The theorem follows by combining Equations (3.3) and (3.4). �

Again, the next corollary is a consequence of Theorem 3.15 and Proposition 3.4.

Corollary 3.16. In a dag G = (V,E) with n vertices, the time needed by the dynamic programming al-
gorithm (Algorithm 4) to solve ALL-PAIRS ALL LCA on G can be bounded by O(n2 logn ·min{(κ2+
κ logn),n}) in the average case.

Algorithm 5: Merge with Forbidden Sets

Input: Sets S1 and S2 and the corresponding forbidden sets S1 and S2.
Output: A new set S and a new forbidden set S.
begin1

S← /02

foreach s1 ∈ S1 do3

if s1 /∈ S2 then4

S← S∪{s1}5

end6

end7

foreach s2 ∈ S2 do8

if s2 /∈ S1 then9

S← S∪{s2}10

end11

end12

for i← 1 to n do13

S[i]← S1[i]∨S2[i]14

end15

end16

The advantage of this dynamic-programming-based algorithm over the trivial one is that if we can
upper bound the size κ by o(

√
n) we have an improved upper bound on the running time. In fact,
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the experimental evaluation of the algorithms in Section 7 reveals that κ can usually be bounded by a
constant. This is the main reason for the fact that Algorithm 4 is the best choice in practice.

Moreover, the bounds on the running time given in Theorem 3.15 may be overly pessimistic due to
rough estimates used in the proof of Lemma 3.14 (e.g., |LCA{xi,y}|= κ or log(indeg(v)) = log(n)).
Experimental evidence supports the conjecture that Algorithm 4 actually runs in time close to O(n2)
in practice on most of the tested dag classes.

As an immediate consequence we obtain fast algorithms for testing lattice-theoretic properties of
posets represented by dags. Observe that κ = 1 in lattices.

Corollary 3.17. Testing whether a given dag is a lower semilattice, an upper semilattice, or a lattice
can be done in time O(nmred logn).

3.5 Summary

Dynamic programming approaches find application in the realm of all-pairs LCA problems in a natural
way. Essentially, the combinatorial properties expressed in Lemmas 3.6 and 3.11, i.e., solutions with
respect to a vertex x can be derived from the solutions for its parent vertices, impose the kind of
subproblem order that is necessary for applying efficient dynamic programming algorithms. While
the main benefit of the pure dynamic programming approach is the efficiency on sparse input dags, the
combination with using the transitive reduction makes the algorithmic tools described in this chapter
versatile and powerful. Observe that the average complexities of the algorithms are at least close (up
to logarithmic factors) to the trivial lower bounds for both ALL-PAIRS REPRESENTATIVE LCA and
ALL-PAIRS ALL LCA. Moreover, Theorem 3.15 implies that if the maximum LCA set size κ can
be bounded by a constant, ALL-PAIRS ALL LCA can be solved in time Õ(n2), which is a significant
improvement of an order of magnitude compared to the by now optimal matrix-multiplication-based
solutions, see Chapter 4 for details. As a result of the experimental analysis presented in Chapter 7, we
conclude that κ is indeed small on all tested classes of input dags with exception of dags in which the
number of edges is close to n logn. However, while the ALL-PAIRS REPRESENTATIVE LCA solution
is almost optimal in the average case, future research with respect to ALL-PAIRS ALL LCA might
be directed towards finding algorithms that scale linearly with κ instead of quadratically. This would
close the efficiency gap observed in practice between medium-sized (m≈ n logn) on the one hand and
sparse and dense input instances on the other hand.

Another open question in this context is if a bound on the average cardinality κ of the LCA sets
implies a general improvement of the upper bound given in Theorem 3.15. That is, is the running time
of Algorithm 4 in o(n2 mred) in this case? At least for the dynamic programming algorithm without
transitive reduction, the answer is “no”, even for κ ≤ c for a constant c, as the graph in Figure 3.4
shows. Since there are Ω(m) edges among vertices of V ′, the cost of merge operations associated with
constructing the sets LCA{w,y} for w ∈V ′ alone amounts to Ω(n2m) if implemented naively. On the
other hand, it is easy to see that the average size of the LCA sets is bounded by a constant in this
example. However, transitive reduction clearly eliminates this counterexample.
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Figure 3.4: Bad graph for naive merging.





CHAPTER

4

MATRIX-MULTIPLICATION-BASED
ALGORITHMS

4.1 Introduction

Matrix multiplication is a central problem in algorithmic linear algebra. This is particularly true since
numerous other important problems have been shown to have the same algorithmic complexity, e.g.,
computing the matrix inverse, computing the determinant, or solving a system of linear equations.
Furthermore, many algorithmic graph problems and algebraic problems are inherently connected. For
example, Aho, Garey, and Ullman [AGU72] have established a computational equivalence between
Boolean matrix multiplication and computing the transitive closure of a digraph, see Proposition 4.1.
Another prominent example is the algorithm by Zwick [Zwi02] for solving the all-pairs shortest path
problem in digraphs. Recently, matrix-multiplication-based approaches have been used to obtain
improved dynamic algorithms for a variety of graph problems, see the thesis of Sankowski [San05]
for details.

Proposition 4.1. Let G= (V,E) be a dag with n vertices. The following problems are computationally
equivalent:

(i) Computation of the transitive closure Gclo of G.

(ii) Computation of the transitive reduction Gred of G.

(iii) Multiplication of two Boolean n×n matrices.

A relationship between (lowest) common ancestors in dags and matrix multiplication was first
observed by Bender et al. [BFCP+05]. The ALL-PAIRS COMMON ANCESTOR EXISTENCE problem
is to determine for each vertex pair {x,y} in a dag G = (V,E) whether there exists a common ancestor
of {x,y} or not. The basic idea is to construct a dag G′ from G and reduce each common ancestor

35
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existence query in G to a reachability query in G′, see Figure 4.1. A similar construction was also
used to obtain the first subcubic ALL-PAIRS REPRESENTATIVE LCA algorithm, see [BFCP+05] and
Section 6.3. Recognizing its fundamental status, we briefly describe the construction below.

Let again G = (V,E) be a dag with topologically sorted vertex set V = {v1, . . . ,vn}. Construct a dag
G′ = (V ′,E ′) from G as follows.

• V ′ = X ∪Y , where X = {x1, . . . ,xn} and Y = {y1, . . . ,yn}.
• E ′ = EX ∪EY ∪E ′′, where

– EX = (xi,x j) for all 1≤ i, j ≤ n such that (v j,vi) ∈ E.

– EY = (yi,y j) for all 1≤ i, j ≤ n such that (vi,v j) ∈ E.

– E ′′ = (xi,yi) for all 1≤ i≤ n.

x1 x2

x3

G′

G

v5 v6 v7

v3 v4

v2v1

x6x5 x7

x4

y5 y6 y7

y4y3

y2
y1

Figure 4.1: Construction of G′ from G for reducing ALL-PAIRS COMMON ANCESTOR EXISTENCE

to reachability. For all 1 ≤ i, j ≤ n, CA{vi,v j} 6= /0 if and only if xi y j in G′. Roughly,
G′ is constructed from G by making a copy of G, reversing all edges in the copy, and
connecting the respective vertex duplicates with edges.

It is not difficult to see that there exists a CA of {vi,v j} in G if and only if y j is reachable from
xi in G′: vk  vi and vk  v j in G translates to xi  xk, (xk,yk), and yk  y j in G′. This and
Proposition 4.1 lead to the following proposition, which was first formulated in [BFCP+05].

Proposition 4.2. For a dag G = (V,E) with n vertices, the ALL-PAIRS COMMON ANCESTOR EXIS-
TENCE problem can be solved in O(nω).

Recall that O(nω) is the number of arithmetic operations needed to multiply two n× n matrices.
Another way of proving Proposition 4.2, which gives rise to the algorithmic techniques introduced
in [CKL07], is as follows. Let Aclo be the adjacency matrix of Gclo. Obviously, CA{x,y} 6= /0 if and
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only if there exists a vertex z such that (z,x) ∈ Eclo and (z,y) ∈ Eclo. This easily reduces to matrix
multiplication. Let C = AT

clo ·Aclo. Observe that AT
clo[u,v] = 1 if and only if (v,u) ∈ Eclo. Hence, there

exists a common ancestor of {x,y} if and only if C[x,y] = 1.

Kowaluk and Lingas [KL05] were the first to show that ALL-PAIRS REPRESENTATIVE LCA re-
duces to finding maximum witnesses for Boolean matrix multiplication. This reduction is a straight-
forward application of Proposition 2.10. Let A and B be two Boolean n×n matrices and let C = A ·B.
Given i, j, 1≤ i, j≤ n such that C[i, j] = 1, a maximum witness for (i, j) is the maximum index k such
that A[i,k] ·B[k, j] = 1. Let now again A = AT

clo and B = Aclo and suppose that the rows and columns
of Aclo are sorted with respect to a topological ordering of the vertices. Further, let C[x,y] = 1 for
x,y ∈V . Then, a maximum witness for (x,y) corresponds to the maximum common ancestor of {x,y}
and hence to an LCA by Proposition 2.10.

Proposition 4.3. ALL-PAIRS REPRESENTATIVE LCA on a dag G = (V,E) with n vertices can be
reduced to ALL-PAIRS MAXIMUM WITNESSES FOR BOOLEAN MATRIX MULTIPLICATION for ma-
trices of dimension n×n.

We note that representative CAs for all vertex pairs can be computed by determining arbitrary
witnesses instead of maximum witnesses for the Boolean matrix product C = AT

clo ·Aclo. This can be
done in time Õ(nω) using a sampling approach by Seidel [Sei95] and the according derandomization
due to Alon and Naor [AN96]. The sampling technique is described in detail in the context of LCA
problems in weighted dags, see Section 6.2 and in particular the proof of Theorem 6.2.

The main contributions of this chapter are improved general upper bounds for both the ALL-PAIRS

REPRESENTATIVE LCA and ALL-PAIRS ALL LCA problems by application of rectangular matrix
multiplication methods. Moreover, we show how to improve the bounds for ALL-PAIRS ALL LCA if
the considered dags are sparse. Additionally, we establish computational equivalences between prob-
lem variants of ALL-PAIRS ALL LCA in which one vertex is fixed and Boolean matrix multiplication.
More specifically, we achieve the following results with regard to a dag G with n vertices:

• ALL-PAIRS REPRESENTATIVE LCA can be solved in time O
(
n2+µ

)
, where µ satisfies 1+

2µ = ω(1,µ,1). This and the currently best bounds for rectangular matrix multiplication imply
an upper bound of O(n2.575), which improves upon the O(n2.616) bound of [KL05]. We note
that the same improvement was discovered independently in [CKL07].

• ALL-PAIRS ALL LCA can can be solved in time O
(
nω(2,1,1)

)
. Again, plugging in the current

best upper bounds for matrix multiplication this implies O(n3.334).

• The following upper time bounds for ALL-PAIRS ALL LCA improve upon the general upper
bounds for sparse dag instances: O

(
nω(1,r,1)+1

)
, where r = logn(mred /n) and mred is the number

of edges in the transitive reduction of G, and O
(
nω(s,s,1)+1

)
, where s = logn(mclo /n) and mclo

is the number of edges in the transitive closure of G. We show that these values imply an
improvement if we can bound mred by O(n1.92) or mclo by O(n1.96) respectively.

• The following problems are computationally equivalent: BOOLEAN MATRIX MULTIPLICA-
TION, ALL-PAIRS FIXED-VERTEX LCA, FIXED-VERTEX-PAIRS ALL LCA.

We outline the contents of this chapter. First, we review briefly the relevant results on (rectangular)
matrix multiplication and introduce the necessary notational concepts. In Section 4.3 we describe the
improvement for the maximum witness computation by applying rectangular matrix multiplication.
Section 4.4 is dedicated to ALL-PAIRS ALL LCA and the respective fixed-vertex variants. We start
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by establishing the computational equivalence between BOOLEAN MATRIX MULTIPLICATION, ALL-
PAIRS FIXED-VERTEX LCA, and FIXED-VERTEX-PAIRS ALL LCA and use these results to obtain
an upper bound of O(n1+ω) for ALL-PAIRS ALL LCA. Then, we show how this can be improved to
O(nω(2,1,1)) by applying rectangular matrix multiplication. We conclude the section and the chapter
by improving the upper bounds for sparse dags.

4.2 Preliminaries

Let A,B ∈ IRn×n be two matrices with real-valued entries. The entry C[i, j] of the matrix product
C = A ·B is defined as

C[i, j] =
n

∑
k=1

A[i,k] ·B[k, j]. (4.1)

Naively, a matrix product can be computed in time O(n3) using Equation (4.1). In this work we
use Boolean matrix multiplication as fundamental algorithmic tool in the design of common ancestor
algorithms. Formally, let A,B ∈ {0,1}n×n be two Boolean matrices with entries from {0,1}. The
entry C[i, j] of the Boolean matrix product C = A ·B is given by

C[i, j] =
n∨

k=1

A[i,k]∧B[k, j]. (4.2)

Boolean matrix multiplication can be easily reduced to matrix multiplication over IR. We use this
reduction implicitly in the rest of this work. That is, we transfer upper bounds for the general ma-
trix multiplication problem to the Boolean case. However, we note that for Boolean matrix products
a combinatorial improvement over the naive upper bound is given by Avlazarov et al. [ADKF70].
The so-called four-Russian-algorithm, named after its four Russian inventors, computes the Boolean
matrix product in O(n3/ logn) time. The algorithm was later improved to O(n3/ log2 n) by Ryt-
ter [Ryt84]. For more details on these algorithms, we refer to [Man89].

We introduce basic results and notational concepts. Let ω denote the exponent of square ma-
trix multiplication, i.e., ω corresponds to the smallest constant such that two n× n matrices can be
multiplied in time O(nω). The first subcubic algorithm with running time O

(
n2.81

)
was given by

Strassen [Str69]. Currently, the best bound is due to Coppersmith and Winograd [CW90] and implies
ω < 2.376 (actually even ω ≤ 2.376−δ for a constant δ > 0, compare Section 2.2).

Some of the algorithms presented in this work rely on fast rectangular matrix multiplication. Let
ω(a,b,c) denote the exponent of the multiplication of an na× nb matrix by an nb× nc matrix over
the reals. That is, given matrices A ∈ IRa×b and B ∈ IRb×c it is possible to compute C = A ·B with
O
(
nω(a,b,c)

)
arithmetic operations. For a = b = c = 1, ω(a,b,c) corresponds to the exponent of the

multiplication of two square matrices. Let in the following α be a constant such that

α = sup{0≤ r ≤ 1 : ω(1,r,1) = 2+o(1)}. (4.3)

Coppersmith [Cop97] has shown that α > 0.294. The following proposition is a direct consequence
of this result; a formal proof can be found in [HP98].
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Proposition 4.4. Let ω = ω(1,1,1)< 2.376 and let α = sup{0≤ r≤ 1 : ω(1,r,1) = 2+o(1)}. Then,

ω(1,r,1)≤
{

2+o(1) if 0≤ r ≤ α

2+ ω−2
1−α

(r−α)+o(1) if α ≤ r ≤ 1.
(4.4)

The next proposition is again given by Huang and Pan [HP98] by extending the solutions in [Cop97].

Proposition 4.5. Let ω(2,1,1) be the exponent of the multiplication of an n2×n and an n×n matrix.
Then, ω(2,1,1)< 3.334.

4.3 Representative LCA

The solution for ALL-PAIRS REPRESENTATIVE LCA given by Kowaluk and Lingas [KL05] relies
on computing maximum witnesses for Boolean matrix multiplication (Prop.4.3). Their algorithm
for ALL-PAIRS MAXIMUM WITNESSES FOR BOOLEAN MATRIX MULTIPLICATION has running
time O

(
n2+1/(4−ω)

)
, which can be bounded by O(n2.616) using current exponents. We describe how

to improve their approach by using fast rectangular matrix multiplication for the maximum witness
computations. In the following, we assume that we have already computed the adjacency matrix
Aclo of the transitive closure Gclo of G in time O(nω). Also, we assume implicitly that the rows and
columns in A are ordered according to a topological sort of G’s vertex set.

Let µ ∈ [0;1] be a parameter. In order to ease exposition, we assume in the following that nµ and
n1−µ are integers. This does not affect the asymptotics of the results. We divide V into equal-sized
sets V1, . . . ,Vr of consecutive vertices (with respect to the topological order), where r = n1−µ . Thus,
the size of the sets is nµ . Maximum witnesses for the Boolean matrix multiplication AT

clo ·Aclo are
found in two steps:

1. For each (x,y), determine l ∈ {1, . . . ,r} such that the maximum witness of (x,y) is in Vl .

2. For each (x,y) and respective l, search Vl exhaustively to find the maximum witness.

Step one can be solved by performing rectangular matrix multiplications. Before we describe the
approach, we introduce the concept of matrix sampling, see also Figure 4.2.

Definition 4.6 (Matrix Sampling). Let M be an n×m matrix, and let I⊆{1,2, . . . ,m}. Then, M[∗, I] is
defined to be the matrix that is composed of the columns of M whose indices belong to I. Conversely,
for I ⊆ {1,2, . . . ,n}, M[I,∗] is the matrix composed of the rows of M whose indices belong to I.

M[I2,∗]

11
1

1 1
001

1 1
0

1 0
00

1 1

1
00

0
10

1
1 11 1

0 0 1 1

M[∗, I1]M

Figure 4.2: Example of matrix sampling with regard to a matrix M, I1 = {1,3} and I2 = {2,4}.

Let in the following C(i) = AT
clo[∗,Vi] ·Aclo[Vi,∗] for 1≤ i≤ r.
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Observation 4.7. A pair {x,y} of vertices has a common ancestor z ∈Vi if and only if C(i)[x,y] = 1.

Hence, for i ∈ {1, . . . ,r}, we compute the r = n1−µ (rectangular) matrix products C(i) in time
O(n1−µ+ω(1,µ,1)). Recall that ω(1,µ,1) is the exponent of the algebraic matrix multiplication of
an n× nµ with an nµ × n matrix. Then, we choose for each (x,y) the maximum index l such that
C(l)[x,y] = 1, which can be done in O

(
n1−µ+2

)
. Since ω(1,µ,1)≥ 2 for all µ ∈ [0;1], the total time

needed for step one is O
(
n1−µ+ω(1,µ,1)

)
.

For the second step, we simply search for each (x,y) and the corresponding index l the set Vl
manually, that is, for each z ∈ Vl in descending order until we find z such that both z x and z y.
This takes time O(n2 · |Vl|) = O

(
n2+µ

)
. We get the optimal complexity by balancing the costs of

the first and second step, i.e., for µ satisfying 1−µ +ω(1,µ,1) = 2+µ . Currently, the best known
upper bounds for rectangular matrix multiplication [Cop97] imply µ < 0.575. Throughout the rest
of this work, we fix the meaning of µ in the above sense. That is, let µ be the constant satisfying
ω(1,µ,1) = 1+2µ .

VrV2V1

V1

V2

VrBr

B2

B1

ArA2A1 Ai

Bi

Ci

Figure 4.3: Idea for the decomposition of the square matrix product C = A ·B into r rectangular matrix
products Ci = Ai ·Bi in the context of finding maximum witnesses. Ci[x,y] = 1 implies that
CA{x,y}∩Vi 6= /0.

Theorem 4.8. ALL-PAIRS REPRESENTATIVE LCA can be solved in time O
(
n2+µ

)
on a dag G with

n vertices, where µ satisfies 1+2µ = ω(1,µ,1).

4.4 All LCA

Solving ALL-PAIRS ALL LCA on a dag G = (V,E) essentially corresponds to computing answers
to the following kind of query for all x,y,z ∈ V : Is z ∈ LCA{x,y}? Taking this perspective a natural
subproblem can be described as follows. Compute answers to the above queries where one of the three
input vertices is fixed, e.g., given z ∈ V , determine if z ∈ LCA{x,y} for all x,y ∈ V . This approach
decomposes ALL-PAIRS ALL LCA into n subproblems. That is, fix vertex z for each z ∈ V and
solve the corresponding subproblem. An ALL-PAIRS ALL LCA solution can be easily obtained by
combining the solutions to the subproblems.
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To this end, we start by studying the fixed-vertex variants of ALL-PAIRS ALL LCA. Subsequently,
we combine the solutions to the variants to obtain a tight upper bound for the general ALL-PAIRS

ALL LCA problem. Furthermore, we proceed by exploiting sparseness of input instances in the two
fixed-vertex variants in different ways. This leads to improved upper bounds for ALL-PAIRS ALL

LCA for input dags having a sparse transitive reduction and/or sparse transitive closure.

4.4.1 Fixed-Vertex LCA Variants

We formally define the fixed-vertex LCA variants, which we call ALL-PAIRS FIXED-VERTEX LCA
and FIXED-VERTEX-PAIRS ALL LCA respectively. Recall that we consider queries z ∈ LCA{x,y}
where one of the three vertices is fixed. We first fix z. The ALL-PAIRS FIXED-VERTEX LCA problem
is defined as follows. Given a dag G and a fixed vertex z, find all pairs {x,y} such that z is an LCA of
{x,y}.

Problem: ALL-PAIRS FIXED-VERTEX LCA (APFVLCA)
Input: A dag G = (V,E) and a vertex z ∈V
Output: A matrix L of size n×n such that for all vertices x,y ∈ V , L[x,y] = 1 if and only

if z ∈ LCA{x,y} and L[x,y] = 0 else.

The second kind of fixed-vertex LCA variant is derived from the queries z ∈ LCA{x,y} by fixing
either x or y. Observe, however, that fixing x is symmetric to fixing y. In the following we concern
ourselves solely with fixing x. This gives rise to the problem FIXED-VERTEX-PAIRS ALL LCA.
Given G and x, compute (the set) LCA{x,y} for all y ∈V .

Problem: FIXED-VERTEX-PAIRS ALL LCA (FVPALCA)
Input: A dag G = (V,E) and a vertex x ∈V
Output: A matrix L of size n×n such that for all vertices z,y ∈ V , L[z,y] = 1 if and only

if z ∈ LCA{x,y} and L[z,y] = 0 else.

In fact, as we show below, both of the problems are computationally equivalent to BOOLEAN MA-
TRIX MULTIPLICATION and hence to each other (Thm. 4.9). In the following we establish the respec-
tive theorem by proving the equivalence of BOOLEAN MATRIX MULTIPLICATION and ALL-PAIRS

FIXED-VERTEX LCA (Lemmas 4.10 and 4.13) and, in a second step, the equivalence of BOOLEAN

MATRIX MULTIPLICATION and FIXED-VERTEX-PAIRS ALL LCA (Lemmas 4.14 and 4.18).

Theorem 4.9. The following problems are computationally equivalent:

(i) BOOLEAN MATRIX MULTIPLICATION

(ii) ALL-PAIRS FIXED-VERTEX LCA

(iii) FIXED-VERTEX-PAIRS ALL LCA

All-Pairs Fixed-Vertex LCA

In the following let z ∈ V be the fixed vertex. Let {x,y}, x,y ∈ V be a pair of vertices such that
z ∈ CA{x,y}. Recall that a witness to the fact that z /∈ LCA{x,y} is a vertex w such that w ∈ CA{x,y}



42 Chapter 4. Matrix-Multiplication-Based Algorithms

and z w. At the high level a solution to the ALL-PAIRS FIXED-VERTEX LCA problem for z in G
works as follows.

1. Determine all pairs {x,y} such that z ∈ CA{x,y}.
2. Test for each such pair if there exists a witness, i.e., a successor of z that is also a CA of this

pair. To this end, it is enough to consider the children of z in G by Observation 2.9.

Lemma 4.10. ALL-PAIRS FIXED-VERTEX LCA on a dag G = (V,E) with n vertices can be reduced
to BOOLEAN MATRIX MULTIPLICATION of two n×n matrices in time O(nω).

Proof. We show that ALL-PAIRS FIXED-VERTEX LCA can be reduced to BOOLEAN MATRIX MUL-
TIPLICATION by specifying an implementation to the above high-level description of a solution.

Let G = (V,E) and z∈V be the input to ALL-PAIRS FIXED-VERTEX LCA. We start by computing
Gclo in time O(nω). Recall that computing Gclo and BOOLEAN MATRIX MULTIPLICATION are com-
putational equivalent by Proposition 4.1. Let Aclo be again the adjacency matrix of Gclo. We initialize
a common ancestor matrix C(z), where C(z) is an n×n matrix such that C(z)[x,y] = 1 if and only if z is
a CA of {x,y}. Obviously, C(z) can be derived from Aclo in time O

(
n2
)
.

Let A(z) be a Boolean n× n matrix such that A(z)[x,z′] = 1 if and only if x is reachable from z′

and z′ is a child of z. Observe that A(z) is similar to the rectangular matrix AT
clo[∗,Nout(z)]. The only

difference is that columns not corresponding to children of z are not completely deleted from AT
clo, but

are replaced by all zero columns.

Let W(z) = A(z) ·Aclo be the witness matrix of z.

Claim 4.11. Let L(z) be the solution matrix of ALL-PAIRS FIXED-VERTEX LCA on G and z. Then,
L(z) = C(z)∧¬W(z).

Proof. Let x,y ∈V and assume z ∈ LCA{x,y}. Clearly, C(z)[x,y] = 1 by definition. On the other hand
there exists no witness. Suppose that A(z)[x,z′] ·Aclo[z′,y] = 1 for some z′. Then, by construction, z′ is
a child of z and z′ reaches both x and y contradicting our assumption. That is, A(z)[x,z] ·Aclo[z,y] = 0
for all z and hence W(z)[x,y] = 0. The other direction is analogous. �

W(z) can be computed by one matrix multiplication. L(z) can be derived from C(z) and W(z) in time
O
(
n2
)
. Observe that the reduction from ALL-PAIRS FIXED-VERTEX LCA to BOOLEAN MATRIX

MULTIPLICATION takes time O(nω) and is therefore valid in the sense of our reduction concept, see
Section 2.2. �

The matrix A(z) used in the proof of Lemma 4.10 to compute the witness matrix W is structurally
very similar to the rectangular matrix AT

clo[∗,Nout(z)]. Moreover, it is easy to see that W corresponds
to a rectangular matrix product.

Observation 4.12. Let W(z) be the witness matrix of z. Then,

W(z) = AT
clo[∗,Nout(z)] ·Aclo[Nout(z),∗].

In particular, this implies that the witness matrix W(z) can be computed significantly faster whenever
the number of out-neighbors of z is small. However, it is necessary to compute the transitive closure
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of G, i.e., Aclo, in order to derive the rectangular matrices. Therefore, we cannot bound the time
needed to solve ALL-PAIRS FIXED-VERTEX LCA by O

(
nω(1,logn(|Nout(z)|),1)

)
. On the other hand,

Observation 4.12 is useful for some of the algorithmic solutions developed below.

Lemma 4.13. BOOLEAN MATRIX MULTIPLICATION of two n×n matrices can be reduced to ALL-
PAIRS FIXED-VERTEX LCA on a dag G = (V,E) with O(n) vertices in time O(n2).

Proof. We show that matrix multiplication can be solved by solving ALL-PAIRS FIXED-VERTEX

LCA.

Let A and B be two Boolean n×n matrices and let C = A ·B. We construct a dag G = (V,E) from
A and B as follows.

• V = {z}∪W ∪X ∪Y where z is a single vertex and W = {w1, . . . ,wn}, X = {x1, . . . ,xn}, and
Y = {y1, . . . ,yn} are vertex sets of cardinality n.

• E = E1∪E2∪E3 where

– E1 = (z,v) for all vertices v ∈W ∪X ∪Y .

– E2 = (wk,xi) for all 1≤ i,k ≤ n such that A[i,k] = 1.

– E3 = (wk,y j) for all 1≤ k, j ≤ n such that B[k, j] = 1.

xn

w1 wk wn

y1 y j yn

z

x1 xi

if A[i,k] = 1 if B[k, j] = 1

Figure 4.4: Construction of G from A and B. Observe that z /∈ LCA{xi,y j} if and only if there exists
an index k such that wk ∈ CA{x,y}. This, in turn implies C[i, j] = 1 by construction.

Observe that the construction of G from A and B takes time O(n2). The following observations are
immediate.

1. z ∈ CA{xi,y j} for all 1≤ i, j ≤ n.

2. wk ∈ CA{xi,y j} if and only if A[i,k] = B[k, j] = 1, i.e., A[i,k] ·B[k, j] = 1.

From this, we can conclude

C[i, j] = 1 ⇐⇒ ∃k ∈ {1, . . . ,n} such that A[i,k] ·B[k, j] = 1

⇐⇒ there is a witness for z /∈ LCA{xi,y j}
⇐⇒ z /∈ LCA{xi,y j}.

Hence, we can derive a solution to the matrix multiplication from a solution to ALL-PAIRS FIXED-
VERTEX LCA in time O

(
n2
)

which concludes the proof.
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�

Lemmas 4.10 and 4.13 establish the computational equivalence between BOOLEAN MATRIX MUL-
TIPLICATION and ALL-PAIRS FIXED-VERTEX LCA.

Fixed-Vertex-Pairs All LCA

We proceed by establishing the equivalence between BOOLEAN MATRIX MULTIPLICATION and
FIXED-VERTEX-PAIRS ALL LCA in a similar manner. Recall that the FIXED-VERTEX-PAIRS ALL

LCA problem is to compute (the set) LCA{x,y} for a fixed vertex x and all y ∈V .

Lemma 4.14. FIXED-VERTEX-PAIRS ALL LCA on a dag G = (V,E) with n vertices can be reduced
to BOOLEAN MATRIX MULTIPLICATION of two n×n matrices in time O(nω).

Proof. Let in the following G = (V,E) be a dag and fix a vertex x ∈ V . Let Nin
clo(x) ⊆ V denote the

set of ancestors of x. We proceed similarly as in the proof of Lemma 4.10. Let C(x) be a common
ancestor matrix such that C(x)[z,y] = 1 if and only if z ∈ CA{x,y}. Observe that C(x) can be derived
from Aclo in time O

(
n2
)
.

Let z,y ∈V such that z ∈ Nin
clo(x) and z is a predecessor of y. Observe that this implies z ∈ CA{x,y}.

Moreover, the following is true for x,y,z.

Claim 4.15. z ∈ LCA{x,y} if and only if there is no path (z,w,y) in Gclo such that w ∈ Nin
clo(x).

To see this, observe that w corresponds to a witness for {x,y} and z. Similarly to the proof of
Lemma 4.10, we compute a witness matrix W(x) by exploiting the above claim. Let A(x) be a Boolean
n×n matrix such that A(x)[z,z′] = 1 if and only if z,z′ ∈Nin

clo(x) and (z,z′)∈Eclo. Let W(x) =A(x) ·Aclo.
Observe that W(x)[z,y] = 1 if and only if there exists a path (z,w,y) such that z,w ∈ Nin

clo(x) in Gclo.

Claim 4.16. Let L be the solution matrix of FIXED-VERTEX-PAIRS ALL LCA for G and x. Then,
L = C(x)∧¬W(x).

The matrix A(x) can be derived from Aclo in O
(
n2
)

as well as L from C(x) and W(x). Hence,
FIXED-VERTEX-PAIRS ALL LCA can be reduced to BOOLEAN MATRIX MULTIPLICATION in time
O(nω). �

Now consider again the square matrix product W(x) = A(x) ·Aclo used in the proof of Lemma 4.14.
Recall that W(x)[z,y] = 1 if and only if there exists a witness for z and {x,y}. Observe that W(x)[z,y] = 0
for z /∈ Nin

clo(x).

Observation 4.17. Let W(z) be the witness matrix of z. Then,

W(x)[Nin
clo(x),∗] = Aclo[Nin

clo(x),N
in
clo(x)] ·Aclo[Nin

clo(x),∗].

This observation implies that the witness matrix computation can be reduced to a rectangular matrix
problem, i.e., multiplying an |Nin

clo(x)|× |Nin
clo(x)| matrix by an |Nin

clo(x)|× n matrix. The complexity
of this approach depends on the number of ancestors of x. Again, since the reduction depends on
computing the transitive closure in O(nω), this does not result in an improved upper bound for FIXED-
VERTEX-PAIRS ALL LCA but is useful in the context of ALL-PAIRS ALL LCA.
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Lemma 4.18. BOOLEAN MATRIX MULTIPLICATION of two n×n matrices can be reduced to FIXED-
VERTEX-PAIRS ALL LCA on a dag G = (V,E) with O(n) vertices in time O(n2).

Proof. Let A and B be two arbitrary Boolean n× n matrices and let C = A ·B. We construct a dag
G = (V,E) from A and B as follows.

• V = {x}∪ Z ∪W ∪Y where x is a single vertex and Z = {z1, . . . ,zn}, W = {w1, . . . ,wn}, and
Y = {y1, . . . ,yn} are vertex sets of cardinality n.

• E = E1∪E2∪E3∪E4 where

– E1 = (v,x) for all vertices v ∈ Z∪W .

– E2 = (z,y) for all vertices z ∈ Z and y ∈ Y .

– E3 = (zi,wk) for all 1≤ i,k ≤ n such that A[i,k] = 1.

– E4 = (wk,y j) for all 1≤ k, j ≤ n such that B[k, j] = 1.

z1 zi

w1 wnwk

y1 y j yn

x

zn

if B[k, j] = 1

if A[i,k] = 1

Figure 4.5: Construction of G from A and B. Observe that zi /∈ LCA{x,y j} if and only if there exists
an index k such that wk ∈ CA{x,y j}. This, in turn implies C[i, j] = 1 by construction.

Observe that G has 3n+1 vertices and that G can be constructed from A and B in time O
(
n2
)
. We

observe:

1. zi ∈ CA(x,y j) for all 1≤ i, j ≤ n.

2. wk ∈ CA(x,y j) if and only if B[k, j] = 1.

3. wk is a witness for zi and (x,y j) if and only if wk ∈ CA(x,y j) and A[i,k] = 1, that is, A[i,k] ·
B[k, j] = 1.

Now we conclude as follows.

C[i, j] = 1 ⇐⇒ ∃k ∈ {1, . . . ,n} such that A[i,k] ·B[k, j] = 1

⇐⇒ there is a witness for zi /∈ LCA(x,y j)

⇐⇒ zi /∈ LCA(x,y j)

�

Hence, by Lemmas 4.14 and 4.18, BOOLEAN MATRIX MULTIPLICATION and FIXED-VERTEX-
PAIRS ALL LCA are computationally equivalent. This, in turn, combined with Lemmas 4.10 and
4.18, establishes Theorem 4.9.
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4.4.2 All-Pairs All LCA

Theorem 4.9 implies that ALL-PAIRS FIXED-VERTEX LCA and FIXED-VERTEX-PAIRS ALL LCA
can be solved in time O(nω). Furthermore, this immediately leads to an O

(
n1+ω

)
algorithm for ALL-

PAIRS ALL LCA – simply solve one of the two fixed-vertex LCA variants for all vertices v ∈ V .
However, the application of fast rectangular matrix multiplication yields even stronger upper time
bounds.

General Upper Bound

In the following we establish an upper time bound of O
(
nω(2,1,1)

)
for ALL-PAIRS ALL LCA on

general dags. We use the decomposition into n ALL-PAIRS FIXED-VERTEX LCA subproblems.
Observe, however, that the same bound can be obtained by using a decomposition with respect to
FIXED-VERTEX-PAIRS ALL LCA.

Let in the following W(v), C(v), and A(v) denote the witness matrix, the common ancestor matrix,
and the children matrix of v with respect to the ALL-PAIRS FIXED-VERTEX LCA problem, i.e., as
described in the proof of Lemma 4.10. As elaborated in the proof, W(v) is computed in time O(nω) by
multiplying A(v) and Aclo. For n instances of ALL-PAIRS FIXED-VERTEX LCA, n witness matrices
are constructed in time O

(
n1+ω

)
by this approach. The total time needed for the construction of

the witness matrices can be reduced by applying fast rectangular matrix multiplication as follows.
Compute the witness matrices W(v) for all vertices v ∈V in one step by multiplying an n2×n and an
n×n matrix in time O

(
nω(2,1,1)

)
. Let V = {v1, . . . ,vn}.

A(v1)

A(v2)

...
A(vn)

 ·Aclo =


W(v1)

W(v2)

...
W(vn)

 (4.5)

Theorem 4.19. ALL-PAIRS ALL LCA can be solved in time O
(
nω(2,1,1)

)
on a dag G with n vertices.

Proof. The full algorithm works as follows:

1. Compute the transitive closure Gclo of G.

2. Compute the common ancestor matrices C(v) for all v ∈ V . Since Gclo is known, this can be
done in time O

(
n3
)
.

3. Compute the witness matrices W(v) for all v ∈ V using Equation (4.5). This takes total time of
O
(
nω(2,1,1)

)
.

4. Let L(v) = C(v)∧¬W(v) for each v ∈ V . Then, for each pair {x,y}, all LCAs can be read from
the entries L(v)[x,y] for each v. That is, z ∈ LCA{x,y} if and only if L(z)[x,y] = 1. This step
takes a total of O

(
n3
)

time.

�

Hence, ALL-PAIRS ALL LCA reduces to the multiplication of a Boolean n2 × n matrix by a
Boolean n×n matrix. Currently, upper bounds for rectangular matrix multiplication imply ω(2,1,1)<
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3.334, see Proposition 4.5. Extending the idea of the proof of Lemma 4.13 does not directly yield an
equivalence between the two problems. More specifically, we can only reduce rectangular matrix
multiplication instances with a certain property to ALL-PAIRS ALL LCA on a dag with O(n) ver-
tices. The general problem on the other hand can be reduced to the problem of computing all LCAs
of Θ(n2) pairs in a dag with Θ(n2) vertices.

Corollary 4.20. Let A be a Boolean n2 × n matrix and let B be a Boolean n× n matrix. Then,
computing C = A ·B can be reduced to ALL-PAIRS ALL LCA if

(i)

A =


A(1)

A(2)

...
A(n)


such that A(1), . . . ,A(n) are Boolean n×n matrices.

(ii) There exists a Boolean n×n matrix D such that for all 1 ≤ i,k ≤ n either A(i)[∗,k] = D(i)[∗,k]
or A(i)[∗,k] = 0. Recall that A(i)[∗,k] corresponds to the kth column of matrix A(i).

Sparse Transitive Reduction

The upper bound given in Theorem 4.19 applies to general dags. For sparse dags, more specifically
for dags such that mred = O

(
n1.92

)
, we can improve the bound by exploiting Observation 4.12.

Theorem 4.21. ALL-PAIRS ALL LCA on a dag G with n vertices can be solved in time
O
(
nω(1,r,1)+1

)
, where r = logn (mred /n) and mred is the number of edges in the transitive reduction

of G.

Proof. The cost for computing the witness matrices W(v) by using independent rectangular matrix
multiplication is given by

∑
v∈V

O
(

nω(1,logn(|Nout
red (v)|),1)

)
.

We need Jensen’s inequality to bound the above sum.

Proposition 4.22 (Jensen’s Inequality). Let φ be real convex function. Then,

φ

(
∑

n
i=1 xi

n

)
≤ ∑

n
i=1 φ(xi)

n
.

The inequality is reversed if φ is concave.

We observe that the function f (x) = nω(1,x,1)−2 is concave for 0 ≤ x ≤ 1. Hence, we can conclude
that nω(1,logn(|Nout

red (v)|),1)−2 is concave. Thus, we obtain:
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∑
v∈V

nω(1,logn(|Nout
red (v)|),1) = n2

∑
v∈V

nω(1,logn(|Nout
red (v)|),1)−2

= n2 ·n ·∑
v∈V

nω(1,logn(|Nout
red (v)|),1)−2

n

≤ n2 ·n ·n
ω

(
1,logn

(
∑v∈V |Nout

red (v)|
n

)
,1
)
−2

= n2 ·n ·nω(1,logn(mred /n),1)−2

= n ·nω(1,logn(mred /n),1)

Hence, we have proved that the witness matrices can be computed in O
(
n1+ω(1,logn(mred /n),1)

)
. Now

recall the algorithm given in the proof of Theorem 4.19. Steps 1,2, and 4 can obviously be bounded
by O(n3) which concludes the proof. �

As a consequence of Theorem 4.21, the general upper time bound given in Theorem 4.19 can be
tightened for sparse dags.

Corollary 4.23. Let G be a dag with n vertices such that mred is the number of edges in the transitive
reduction of G.

(i) If mred = O
(
n1.294

)
, then ALL-PAIRS ALL LCA can be solved in O

(
n3
)
.

(ii) If mred = O
(
n1.92

)
, then, there exists a constant δ > 0 such that ALL-PAIRS ALL LCA on G

can be solved in time O
(
n3.334−δ

)
.

Proof. By Proposition 4.4:

ω(1,r,1)≤
{

2+o(1) if 0≤ r ≤ α

2+ ω−2
1−α

(r−α)+o(1) if α ≤ r ≤ 1.

Let now mred /n = nr. Obviously, for r≤ 0.294 we have nω(1,r,1)+1 = O
(
n3
)
. Moreover, for r > 0.294

we have:

ω(1,r,1)+1 ≤ 3.334−δ

r ≤
(

0.334+
(ω−2)α

1−α

)
1−α

ω−2
−δ

Plugging in the current value for ω and α , i.e., 2.376 and 0.294 respectively, we find r ≤ 0.9208−δ

for a constant δ > 0. �

Sparse Transitive Closure

We proceed by considering ALL-PAIRS ALL LCA on dags with a (moderately) small transitive clo-
sure. More specifically, we show that if the average number of ancestors of a vertex v in a dag G
is bounded by O

(
n0.96

)
, we can improve the general upper bound of Theorem 4.19. This result is

achieved by decomposing ALL-PAIRS ALL LCA into n FIXED-VERTEX-PAIRS ALL LCA subprob-
lems and using fast rectangular matrix multiplication to compute the corresponding witness matrices.
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Theorem 4.24. ALL-PAIRS ALL LCA on a dag G with n vertices can be solved in time
O
(
nω(s,s,1)+1

)
, where s = logn (mclo /n) and mclo is the number of edges in the transitive closure

of G.

Proof. Obviously, ALL-PAIRS ALL LCA can be solved by solving FIXED-VERTEX-PAIRS ALL

LCA for each vertex v ∈ V . By Observation 4.17, the witness matrix for a fixed vertex v can be
computed by rectangular matrix multiplication in time O

(
nω(logn(|Nin

clo(v)|),logn(|Nin
clo(v)|),1)

)
. Hence, we

can be bound the total time needed to compute the witness matrices by

∑
v∈V

O
(

nω(logn(|Nin
clo(v)|),logn(|Nin

clo(v)|),1)
)
.

The above sum can be bounded by Jensen’s inequality in the same way as in the proof of Theo-
rem 4.21. Hence, we get the following upper bound for ALL-PAIRS ALL LCA:

O
(

nω(logn(mclo /n),logn(mclo /n),1)+1
)

�

Corollary 4.25. Let G be a dag with n vertices and let mclo be the number of edges in the transitive
closure of G.

(i) If mclo = O
(
n1.72

)
, then ALL-PAIRS ALL LCA on G can be solved in time O(n3).

(ii) If mclo = O
(
n1.96

)
, then, there exists a constant δ > 0 such that ALL-PAIRS ALL LCA on G

can be solved in time O
(
n3.334−δ

)
.

Proof. Let 0 < r ≤ 1 such that r = logn (mclo /n). By using square matrix multiplication we have

ω(r,r,1) = 1− r+ rω.

By Theorem 4.24 the total time needed can thus be bounded by

O
(
n2−r+rω

)
.

Now simply solve the following inequality

2− r+ rω < λ

for λ = 3 and λ = 3.334 to get r < 0.726 and r < 0.969 respectively. �

Remark 4.26. The upper bounds for the last corollary can be improved by using the slightly tighter
upper bound for the rectangular matrix multiplication exponent given in the paper of Huang and
Pan [HP98]. For example, plugging in q = 7 and β = 0.0336 in the right-hand side of (7.1) yields
r < 0.7329.
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4.5 Conclusion

Similar as in the case of many thoroughly studied graph problems like ALL-PAIRS SHORTEST DIS-
TANCES, computing the transitive closure, or finding maximum matchings, matrix multiplication turns
out to be an indispensable ingredient in the design of efficient solutions to all-pairs LCA problems.
The up to this point best upper time bounds for both ALL-PAIRS REPRESENTATIVE LCA and ALL-
PAIRS ALL LCA presented in this chapter rely crucially on fast (rectangular) matrix multiplication.
This in turn implies that any improvement on the constants ω and/or α gives a more accurate picture
of the actual numerical exponents, which we now bound by 2.575 for ALL-PAIRS REPRESENTATIVE

LCA and 3.334 for ALL-PAIRS ALL LCA. Although the results presented in this chapter widen the
understanding of the underlying problems significantly, intriguing open questions persist. A first line
of future research concerns the ultimate classification of the problems within the hierarchy of well
studied related graph problems. Is it coincidental that the current exponents of ALL-PAIRS REPRE-
SENTATIVE LCA and ALL-PAIRS SHORTEST DISTANCES in unweighted dags correspond to each
other? Can we eventually show a computational equivalence? Similarly, can we show that ALL-
PAIRS ALL LCA and the multiplication of an n2 × n by an n× n matrix is equivalent? Closely
connected to questions of this kind are research efforts that aim at virtually improving the exponents
of ALL-PAIRS REPRESENTATIVE LCA and ALL-PAIRS ALL LCA, i.e., improvements that are not
derived from improvements of the matrix multiplication constants. It seems, however, that purely
matrix-multiplication-based methods are exploited. A more promising step into this direction is given
in Chapter 5, where matrix multiplication is combined with techniques that use other combinatorial
properties.



CHAPTER

5

PATH COVER TECHNIQUES

5.1 Introduction

Unless the exponents of matrix multiplication are improved, algorithms of the kind presented in the
previous chapter can hardly be expected to provide significant improvement for the considered LCA
problems. The approach taken in this chapter is fundamentally different. We apply a path cover
technique to decompose the problem of finding LCAs in the input dag to several LCA problems
in trees, where the trees are derived from the respective path cover. It turns out that this approach
is efficient on dags with low width. In Czumaj et al. [CKL07], an algorithm for computing ALL-
PAIRS REPRESENTATIVE LCA that exploits low depth of the input dag was presented. Although this
algorithm uses matrix multiplication, the basic observation, namely that a maximum depth CA is a
lowest common ancestor, dissolves the necessity for computing maximum CAs, which is common to
the purely matrix-multiplication-based algorithms. In some sense, the approach taken in this chapter
is dual to the algorithm in [CKL07] and both can be combined in a natural way. In particular, the
results presented in this chapter can be summarized as follows:

1. We elaborate in-depth on using path cover techniques for the solution to LCA problems in dags.
To this end, we present a versatile decomposition technique that can be applied to a variety of
LCA problems.

2. We apply our technique to the ALL-PAIRS REPRESENTATIVE LCA problem improving re-
cently developed solutions for dags of small width [KL07]. Our result implies an upper time
bound of O(n2w(G) logn) and improves the result in [KL07] for dags with width w(G) bounded
by O(nω−2−δ ) for a constant δ > 0. Similarly, the application of our approach to the ALL-
PAIRS ALL LCA problem yields an upper time bound of O(n2w(G)2 log2 n). This improves
the general upper bound of O(nω(2,1,1)) (Thm. 4.19) for w(G) = O(n

ω(2,1,1)−2
2 −δ ). This also im-

proves the upper time bound of O(nmred min{
(
w(G)2 +w(G) logn

)
,n}), which can be derived

from Theorem 3.15, whenever the size of the transitive reduction of G cannot be bounded by
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Õ(n).

3. We show that it is possible to combine the path cover approach with the efficient method for
low depth dags given in [CKL07]. Our algorithm has the same asymptotic worst case time com-
plexity as the currently fastest algorithm for this problem, i.e., O(n2+µ), see Theorem 4.8, up
to polylogarithmic factors. However, the class of dags for which the algorithm needs Ω(n2+µ)
time is considerably limited (Thm. 5.22).

4. Finally, we describe an application of our approach. We improve the general upper bound for
the ALL-K-SUBSETS REPRESENTATIVE LCA problem (i.e., compute representative LCAs for
each vertex subset of size k) for k = 3, which was recently established by Yuster [Yus]. Another
application of the path cover approach is within the realm of space-efficient LCA algorithms,
however, the description of this application is deferred to Chapter 6.

We start by reviewing work related to the construction of path covers of minimum size (Section 5.2).
Next, in Section 5.3, we describe an algorithm for ALL-PAIRS ALL LCA that can be considered to be
the historical precursor of path-cover-based LCA algorithms. We note that the very same algorithm
also was the first algorithm with general upper bound of o(n4) for ALL-PAIRS ALL LCA.

In Section 5.4, we describe the more generalized version of the path cover technique and derive
its main properties. This technique is then combined with the method for dags of low width in Sec-
tion 5.5. Finally, we conclude by applying the combined algorithm to improve the upper time bound
for ALL-K-SUBSETS REPRESENTATIVE LCA for k = 3.

5.2 Related Work

Recall that the width w(G) of a dag G corresponds to the cardinality of a maximum antichain, or to
the cardinality of a minimum path (chain) cover of G (Gclo). Recall also that path covers and chain
covers are in one-to-one correspondence, see Section 2.1 for more details.

Let in the following G = (V,E) be a dag with vertex set V = {v1, . . . ,vn}, m edges, and transitive
closure Gclo = (V,Eclo). The path cover technique described in this chapter relies crucially on efficient
methods for constructing small path covers for a given dag G. In the following we review algorithmic
approaches for constructing minimum chain covers for transitive closures of dags; however, these
algorithms can also be used for constructing path covers in G by the following observation.

Observation 5.1. Given a chain cover for Gclo with cardinality r, a path cover for G with cardinality
r can be constructed in time O(rm).

Proof. We observe that a given chain c = (v1, . . . ,vk) in Gclo can be expanded to a path in G by
performing a depth first search in G in time O(m). To this end, the corresponding stack is initialized
with the vertices v1, . . . ,vk (in this order); hence the start vertex of the DFS is vk. It is not difficult to
see that the resulting DFS tree contains a path from v1 to vk. �

A minimum chain cover for Gclo is usually constructed by using a reduction to bipartite matching
given by Ford and Fulkerson [FF62]. We briefly sketch this idea below. Compute the transitive closure
Gclo of G and construct a bipartite (undirected) graph G′ = (X ]Y,E ′) where X and Y are copies of V
and E ′ = {{xi,y j} | xi ∈ X , y j ∈ Y and (vi,v j) ∈ Gclo}. Let M be a maximum bipartite matching in G′.
The edges in M, interpreted as directed edges, define a chain cover of Gclo. More specifically, the
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graph GM
clo that is induced by the edges of M corresponds to a chain cover of Gclo. It is not difficult to

see that the number of chains is equal to the number of unmatched vertices in X (Y ). On the other hand,
any chain cover of Gclo induces a matching of G′; hence, the chain cover induced by the maximum
matching in G′ is of minimum cardinality. Given a matching M, the chains can be constructed using,
e.g., a breadth first search of Gclo restricted to the edges of M.

A maximum bipartite matching M in G′ can be found in time O(m′
√

n) = O(n2.5) applying the
algorithm by Hopcroft and Karp [HK73]1. Observe that m′ corresponds to |E ′| = |Eclo|, i.e., the
number of comparable vertex pairs in G. Recently, Mucha and Sankowski [MS04] gave a random-
ized algorithm for the maximum bipartite matching problem with running time O(nω). Benczúr et
al. [BFK99] modify the original reduction described above to obtain algorithms with running times
O(nm) and O(m

√
n logn) respectively. Observe that this improves significantly on the O(mclo

√
n)

upper time bound whenever m� mclo. Closer inspection of the algorithms and Proposition 3.2 show
that both bounds can even be improved to O(nmred) and O(mred

√
n logn) respectively. We summarize

the results in the following proposition.

Proposition 5.2. Given a dag G with n vertices, a minimum chain cover for Gclo can be constructed
in time O(min{n2.5,nmred}).

5.3 A First Non-Trivial All-Pairs All LCA Solution

Before we embark upon the description of a general, multi-purpose decomposition technique, we
study an ALL-PAIRS ALL LCA algorithm that reduces ALL-PAIRS ALL LCA to several ALL-PAIRS

REPRESENTATIVE LCA computations. Historically, this approach yielded the first ALL-PAIRS ALL

LCA algorithm [BEG+07] with running time o(n4), but was later improved in [EMN07], see Chap-
ter 4. Below, we describe the underlying idea.

Suppose we are given a vertex z and want to determine all pairs {x,y} for which z is an LCA, i.e.,
solve ALL-PAIRS FIXED-VERTEX LCA for z. (In fact, the basic idea of the reduction is also used in
Section 4.4.)

To this end, we employ an ALL-PAIRS REPRESENTATIVE LCA algorithm on G instead of using
Lemma 4.10. Hence, the rough idea is to manipulate the ALL-PAIRS REPRESENTATIVE LCA algo-
rithm such that it returns a fixed vertex z as a representative LCA for {x,y} whenever z ∈ LCA{x,y}.
Since most ALL-PAIRS REPRESENTATIVE LCA algorithms return maximum CAs, i.e., make use of
Proposition 2.10, this can be achieved by maximizing the topological number of z.

For a dag G = (V,E) and a vertex z ∈ V , let topm(z) denote the maximum number of z in any
topological order of G. It is easily seen that a topological order top satisfies top(z) = topm(z) if and
only if top(z)≤ top(x) implies z x for all x ∈V . This immediately leads to a linear time algorithm
for finding a corresponding order.

Lemma 5.3. A topological order realizing topm(z) for any vertex z in a dag G with n vertices and
m edges can be computed in time O(n+m).

Proof. Given a dag G = (V,E), remove vertex set {z} ∪ { x | x is reachable from z in G } from V ,
topologically sort the dag (via DFS) induced by the remaining vertices arbitrarily, topologically sort

1This bound was mildly improved to O(n2.5/
√

logn) in [ABMP91].
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the dag induced by the removed vertices arbitrarily (via DFS), and concatenate both vertex lists each
of which is sorted in ascending order with respect to the topological numbers. �

If we fix a vertex z’s number maximizing topological order, then z is the maximum CA of all vertex
pairs {x,y} such that z ∈ LCA{x,y}. Now clearly, our strategy is to iterate for each v ∈ V over the
orders that maximize topm(v). Note that the o(n3) algorithms in [BFCP+05, KL05, CKL07] as well
as the algorithms described in Sections 3 and 4 naturally return the vertex z with the highest number
top(z) (for a fixed topological order) among all LCAs of any pair {x,y}. This leads to Algorithm 6.

Algorithm 6: All LCA Using Representative LCAs
Input: A dag G = (V,E).
Output: An array A of size n×n where A[x,y] is the set of all LCAs of x and y.
begin1

foreach z ∈V do2
Compute a topological ordering top such that top(z) is maximal.3
Solve ALL-PAIRS REPRESENTATIVE LCA using any algorithm that returns the maximum CAs4
with respect to top and get matrix R.
foreach {x,y} with R[x,y] = z do A[x,y]← A[x,y]∪{z} (by multiset-union)5

end6
Remove elements of multiplicity greater than one from A[x,y] for all x,y ∈V .7

end8

The runtime of the algorithm is clearly O(n3+µ) for general dags, which is inferior to the O(nω(2,1,1))
bound given in Theorem 4.19. However, a key observation is that an algorithm that outputs maximum
CAs does it for all vertices v ∈ V with top(v) = topm(v) in parallel. Hence, we aim at maximizing
topological numbers simultaneously for as many vertices as possible. This can easily be achieved for
vertices on chains.

Lemma 5.4. A topological ordering maximizing topm(z) for all vertices z on a chain c in the transitive
closure Gclo of a dag G simultaneously can be computed in time O(n+m).

Proof. For a chain c = (v1, . . . ,vk), iteratively use the algorithm described in the proof of Lemma 5.3
starting at vk and going to vertex v1. �

This lemma implies that, given such an ordering, it is possible to process a chain c in only one
iteration of the algorithm, i.e., only one call of an ALL-PAIRS REPRESENTATIVE LCA algorithm.
Thus, we can reduce the running time if we minimize the number of chains to be processed. This
leads to the improved Algorithm 7.

The time bound for the improved approach follows immediately. Recall that a minimum chain
cover can be computed in time O(min{n2.5,nmred}), see Proposition 5.2. The additional term of
n2w(G) logw(G) is needed for the removal of non-unique elements. This can be done by sorting and
scanning the multisets in time O(n2w(G) logw(G)). Observe that bucket sort could be used in the
case that w(G) logw(G)> n.

Theorem 5.5. Algorithm 7 solves ALL-PAIRS ALL LCA on a dag G with n vertices and width w(G)
in O

(
n2w(G) logw(G)+w(G) ·min{n2+µ ,nmred}

)
, where mred is the number of edges in the transi-

tive reduction of G.
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Algorithm 7: All LCA Using Representative LCAs (Improved)
Input: A dag G = (V,E).
Output: An array A of size n×n where A[x,y] is the set of all LCAs of x and y.
begin1

Compute a transitive closure Gclo of G.2
Compute a minimum chain cover C of Gclo.3
foreach c ∈ C do4

Compute a topological ordering top such that top(z) is maximal for all vertices of c.5
Solve ALL-PAIRS REPRESENTATIVE LCA with respect to top and get matrix R.6
foreach {x,y} with R[x,y] = z and z ∈C do7

A[x,y]← A[x,y]∪{z} (by multiset-union)8
end9

end10
Remove elements of multiplicity greater than one from A[x,y] for all x,y ∈V .11

end12

5.4 Generalized Path Cover Approach

We continue by presenting an alternative, but natural and versatile approach to computing LCAs in
dags based on using path covers. The method can be regarded as a generalization of ideas used in the
previous section. Again, the efficiency of our decomposition technique depends mainly on the width
w(G) of the underlying dag G.

We start by giving an intuitive description of our approach. Let {x,y} be any vertex pair in G and
let z ∈ LCA{x,y} be a lowest common ancestor of x and y. Suppose now that we start a depth first
search (DFS) in G at vertex z. Let Tz be the corresponding DFS tree [CLRS01]. Then, it is not difficult
to verify that LCATz{x,y}= z. Observe that the partial order induced by the tree is a suborder of Gclo.
Moreover, for all vertices w ∈ Tz it holds that w is reachable from z. Hence, since z ∈ LCA{x,y}, the
only common ancestor of x and y in Tz is z. Recall again, that the vertex with the highest topological
number among CA{x,y} is a lowest common ancestor. This leads to a first naive solution to computing
representative LCAs based on decomposing the problem:

1. For all v ∈V , compute DFS trees Tv and preprocess the trees for constant time LCA queries.

2. Upon an LCAG{x,y} query, execute LCATv{x,y} queries for all v ∈V . Observe that the answer
to such a query might be NULL.

3. Let Z =
⋃

v∈V zv, where zv = LCATv{x,y}, be the answers to the LCA queries in the DFS trees.
Return z, where z is the vertex with the maximum topological number in Z.

The correctness of the above approach follows from the fact that the maximum CA z is returned
at least once by the n LCA queries in the trees, i.e., by the query LCATz{x,y}. Moreover, since all
returned vertices zv are common ancestors of {x,y}, the topological number of z is maximal among
the vertices in Z. Recall that trees can be preprocessed in linear time and space for constant time
LCA queries. Hence, this first naive approach results in a preprocessing time of O(nm). Subsequent
queries for LCAs in G can be answered in time O(n) implying an upper time bound of O(n3) for the
ALL-PAIRS REPRESENTATIVE LCA problem. However, we show below that only w(G) DFS trees
have to be considered.
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Definition 5.6 (Special DFS Trees). For a path p = (v1, . . . ,vl) in G, Tp is a special DFS tree obtained
by starting the DFS at vertex v1 and first exploring the edges along the path p.
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(a) input dag G
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7 8109

4

1

23

5 6

(c) (1,3,4,7)

Figure 5.1: Special DFS tree for the paths (1,2,5,10) and (1,3,4,7) in a dag G with 10 vertices.

In the following we denote by Tp(vi) the subtree of Tp rooted at vertex vi for some vertex vi ∈ p.

Lemma 5.7. For a path p = (v1, . . . ,vl) in G, Tp(vi) corresponds to a DFS tree Tvi for all 1≤ i≤ l.

Proof. Consider again the special DFS, i.e., the DFS that results in Tp, starting at v1. The following is
true for all vi ∈ p. When vi is visited for the first time by the DFS, all vertices that have been explored
up to that point are predecessors of vi in G. This follows from the fact that the DFS proceeds directly
down the path p. This, in turn, implies that no successor of vi has been reached since G is acyclic.
The claim now follows from the recursive nature of depth first traversals. �

The above lemma implies that given a path cover P of G, only |P| DFS trees have to be consid-
ered. We recapitulate our decomposition technique:

1. Compute a path cover P = {p1, . . . , pr} of G.

2. Compute DFS-trees Tp1 , . . . ,Tpr .

3. Preprocess the DFS-trees Tp1 , . . . ,Tpr for constant time LCA queries in trees.

4. Compute Z =
⋃

zi where zi = LCATpi
{x,y} for 1≤ i≤ r.

5. Derive the solution of LCAG{x,y} from Z.

Lemma 5.8. Let P = {p1, . . . , pr} be a path cover of G. Next, let Z =
⋃

zi, where zi = LCATpi
{x,y}

for 1≤ i≤ r. Then, the following chain of inclusion holds:

LCA{x,y} ⊆ Z ⊆ CA{x,y}

Proof. The second inclusion follows again from the fact that each tree Tpi induces a suborder on the
poset induced by G. Hence, a common ancestor of {x,y} in a tree is also a common ancestor of {x,y}
in G. Let z be an LCA of x and y. Let pi be chosen such that z ∈ pi. Since by Lemma 5.7, Tpi(z)
corresponds to (some) DFS tree Tz, by the previous discussion we have LCATpi

{x,y}= z. �



5.4. Generalized Path Cover Approach 57

Remark 5.9. By Lemma 5.8 both answers to representative LCA queries and all LCA queries in a
dag G = (V,E) can be derived from the set Z. For representative LCAs, we simply have to find the
vertex with the maximum number in Z in time O(|Z|). In order to find all LCAs, it is necessary to
identify the set of vertices without outgoing edges in the subdag induced by Z. This can be achieved
in time O(|Z|2). To this end, we assume that we have a mapping from V to P such that for each v ∈V
a path Pi including v is known. With this mapping reachability queries of two vertices z1,z2 ∈ Z can
be answered in constant time by querying the LCA of {z1,z2} in the corresponding tree.

The following lemma follows immediately from the previously established facts.

Lemma 5.10. For a path cover P = {p1, . . . , pr} of a dag G = (V,E) with n vertices and m edges,
ALL-PAIRS REPRESENTATIVE LCA can be solved in time O(TPC(G,r)+rm+rn2), where TPC(G,r)
is the time needed to compute P .

Proof. The special DFS trees for p1, . . . , pr can be constructed in time O(rm). The preprocessing of
the trees for LCA-queries takes time O(nr) since the size of the trees is bounded by O(n). Finally,
since the resulting data structure supports representative LCA queries in O(r), computing the solutions
for all pairs takes O(n2r) time. �

Kowaluk and Lingas [KL07] have recently established the following.

Proposition 5.11. For a dag G = (V,E) with n vertices, ALL-PAIRS REPRESENTATIVE LCA can be
solved in time Õ(nω +w(G)n2)

Furthermore, this bound is improved to Õ(w(G)n2) in [KL07] by using randomization. We continue
by showing that the decomposition technique can be applied to obtain a simple algorithm for ALL-
PAIRS REPRESENTATIVE LCA with deterministic upper time bound Õ(w(G)n2).

For a given minimum path cover of size r = w(G), the Lemma 5.10 immediately yields the claimed
result. However, it is not known how to compute a minimum path cover in time Õ(n2w(G)). Nonethe-
less, we show how to compute a path cover P of G of size O(w(G) logn) in time O(n2w(G) logn),
i.e., P is minimal up to a logarithmic factor. This, in turn, is used to improve the upper bounds of the
ALL-PAIRS REPRESENTATIVE LCA and ALL-PAIRS ALL LCA problems on dags of small width.

Recall that the best known time bounds for computing a minimum path cover of a dag G are O(n2.5)
and O(nmred) for deterministic algorithms and O(nω) for randomized algorithms, see Section 5.2.
On the other hand, Felsner et al. [FRS03] showed that it is possible to recognize a poset P (which
corresponds to a transitive dag) of width at most k in time O(n2k). In their approach, the parameter k
is given beforehand and – in the case that the width of P is bounded by k – their algorithm can be
extended to output a chain cover of size k. However, the approach works only for transitive dags and
cannot be directly applied to general dags.

We proceed by describing an algorithm that effectively yields a path cover of size O(w(G) logn)
for any dag G. It is based on the ideas in [FRS03]. To this end, we define the concept of a greedy path
cover. Again, we stress that this concept is not equivalent to the approach taken in Section 3.2 in the
context of computing a greedy chain cover for constructing the transitive closure of a dag.

Definition 5.12 (Greedy Path Cover). Let G = (V,E) be a dag. A greedy path cover of G is obtained
by iteratively finding paths p1, . . . , pr with

⋃
1≤i≤r pi =V such that for all pi, the value |pi \

⋃
k≤i−1 pk|,

i.e., the number of vertices on pi that are not covered by any of the paths p1, . . . , pi−1, is maximized.



58 Chapter 5. Path Cover Techniques

We decompose the dag into paths by iteratively finding paths that contain as much uncovered ver-
tices as possible. In [FRS03], a similar approach is used to cover a partial order P by chains in a
greedy manner. In their approach, all covered vertices are removed from the partial order. Since we
do not want to construct the poset Gclo, we cannot discard vertices. However, the following lemma
establishes a one-to-one correspondence between covering G and Gclo. By slight abuse of notation,
we use set notation in conjunction with paths and chains, which actually are defined as sequences. For
example, p \V ′ denotes the path p with vertices v ∈ V ′ deleted. The relative order of the remaining
vertices is unchanged.

Lemma 5.13. In a dag G = (V,E), P = {p1, . . . , pr} is a greedy path cover of G if and only if
C = {c1, . . . ,cr} is a greedy chain cover of Gclo, where ci = pi \

⋃
k≤i−1 pk.

Proof. We proof the lemma by induction on i. For i = 1, we obviously have p1 = c1. Suppose now the
claim is true for k = 1, . . . , i−1. Let ci be a chain of maximum size in Gclo restricted to V \

⋃
k≤i−1 pk.

Then, by definition, there exists a path pi in G such that the number of uncovered vertices on pi is
equal to |ci|. On the other hand, suppose that pi is a path in G such that the number of uncovered
vertices is strictly larger than |ci|. Then, again, it is easy to see that this implies an existence of a chain
of size strictly larger than |ci| in Gclo restricted to V \

⋃
k≤i−1 pk contradicting our assumption. �

The above lemma effectively implies that a greedy path cover is minimal up to a logarithmic factor.

Corollary 5.14. For P = {p1, . . . , pr} be a greedy path cover of a dag G with n vertices and width
w(G), r ≤ w(G) logn.

Proof. In [FRS03], it is shown that the size of a greedy chain cover of a partial order P is at most
w(P) logn. The corollary now follows from Lemma 5.13 and the fact that w(Gclo) = w(G). �

Lemma 5.15. A greedy path cover P = {p1, . . . , pr} of a dag G = (V,E) with m edges can be
computed in time O(mr).

Proof. The (weighted) single source longest path problem can be solved in time O(n+m) by using
standard algorithms for solving the single source shortest path problem in dags, see, e.g., [CLRS01].
Observe that arbitrary edge weights are possible. We assume without loss of generality that G is
equipped with a single source s, otherwise we simply add a super source. We initialize each edge
in G with weight 1. Then, we iteratively solve the single source longest path problem for the source s.
After the ith iteration we set the weight of each edge e = (v,w) such that w ∈ pi to 0. It is easy to
check that the weight of pi is equal to the number of uncovered vertices on pi. Hence, we obtain a
greedy path cover. It is also easy to see that each step can be implemented in time O(m). �

Corollary 5.14, and Lemma 5.15 imply the main result of this section.

Theorem 5.16. ALL-PAIRS REPRESENTATIVE LCA can be solved in time O(n2w(G) logn) and
ALL-PAIRS ALL LCA can be solved in time O(n2w(G)2 log2 n) on a dag G with n vertices and width
w(G).
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This result improves the upper bound of ALL-PAIRS REPRESENTATIVE LCA (Prop. 5.11) for dags
with w(G) =O(nω−2−δ ) and the general upper time bound for ALL-PAIRS ALL LCA (Thm. 4.19) for
dags with w(G) = O(n

ω(2,1,1)−2
2 −δ ) for a constant δ > 0. We note that results on the expected value of

the width of Gn,p random dags [BE84, Sim88] imply that the average case complexity of this approach
can be bounded by Õ(n2) both for ALL-PAIRS REPRESENTATIVE LCA and ALL-PAIRS ALL LCA
in the case that p is a constant.

5.5 Combining Small Width and Low Depth

The path cover technique described in the previous section can be naturally used together with the
solution for dags with low depth given in [CKL07]. Recall that the depth of a vertex v, denoted by
dp(v), is defined as the length of longest path from a source vertex to v. The depth of a dag G, dp(G),
is given by dp(G) = maxv∈V{dp(v)}. The following proposition is due to Czumaj et al. [CKL07].

Proposition 5.17. On a dag G = (V,E) be with n vertices and depth dp(G) = nq, ALL-PAIRS REP-
RESENTATIVE LCA can be solved in time Õ(nω +nq+ω(1,1−q,1)).

This result is achieved by exploiting that a common ancestor of maximum depth in a dag G is a
lowest common ancestor. That is, z = argmaxz′∈CA{x,y}dp(z′) implies z ∈ LCA{x,y}. Observe that a
possible witness would have greater depth by definition. The following lemma can be derived from
the above proposition.

Lemma 5.18. For a dag G = (V,E) with n vertices and depth dp(G) = nq, the ALL-PAIRS REPRE-
SENTATIVE LCA problem can be solved in time Õ(n2+µ−δ ) if q ≤ 1− µ − δ for an arbitrary small
constant δ > 0.

Proof. Õ(nq+ω(1,1−q,1)) is an upper time bound for ALL-PAIRS REPRESENTATIVE LCA in G by
Proposition 5.17. By Proposition 4.4, we have

ω(1,1−q,1)≤
{

2+o(1) if 0≤ 1−q≤ α

2+ ω−2
1−α

(1−q−α)+o(1) if α ≤ 1−q≤ 1.

Let in the following β = ω−2
1−α

. We aim at solving the following inequality for q:

q+ω(1,1−q,1)≤ 2+µ−δ (5.1)

Recall that µ satisfies ω(1,µ,1) = 1+2µ , i.e.,

µ =
1−βα

2−β
. (5.2)
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Now we plug (5.2) into (5.1) and solve for q:

q+ω(1,1−q,1) ≤ 2+µ−δ

2+q(1−β )+β (1−α) ≤ 2+
1−βα

2−β
−δ

q ≤ 1−βα−β (1−α)(2−β )

(2−β )(1−β )
−δ

q ≤ 1+βα−2β +β 2−β 2α

(2−β )(1−β )
−δ

q ≤ (1−β )(1−β +βα)

(2−β )(1−β )
−δ

q ≤ 1−β +βα

2−β
−δ

q ≤ 1−µ−δ

�

Assume first that we have already computed Gclo. On a high level, the combination of the above
result with our path cover technique works as follows:

1. Construct a partial chain cover C = {c1, . . . ,cr} of Gclo greedily. That is, search for chains of
maximum size until a termination criterion (to be specified below) is satisfied. Note that we do
not require that the chains cover all vertices of Gclo. Note further that in general r 6= w(G).

2. Construct the special DFS trees associated with the chains as described in the previous chapter
and prepare them for constant time LCA queries.

3. Reduce Gclo along the chains. That is, let VC =
⋃

1≤i≤r ci. Then, remove all edges (v,w) such
that v ∈VC. Observe that all edges (v,w) with v /∈VC are retained. The resulting graph is called
the reduced dag denoted by GR = (V,ER).

4. Compute maximum depth common ancestors in GR. The maximum depth CAs are either lowest
common ancestors in G or all of their witnesses are in the set VC. Thus, in a second step we
search for possible witnesses by querying the special DFS trees. If witnesses exist, i.e., common
ancestors that are successors of the maximum depth CAs, we output the witness with highest
label, which corresponds to a lowest common ancestor.

The reasoning behind this approach is as follows. By decomposing the graph along the longest
chains we reduce successively the depth of Gclo. As soon as we reach a certain threshold depth, we
can apply the algorithm given in [CKL07] to efficiently compute maximum depth CAs in the reduced
dag. Moreover, if a maximum depth CA in the reduced dag GR is not a lowest common ancestor in the
original dag G, we know that all its witnesses are covered by the chains. Observe that outgoing edges
of non-covered vertices are not removed. Hence, if z′ is a witness of z and {x,y} and we suppose
z′ /∈ VC, we have z z′ and z′  x,y in the reduced dag contradicting the fact that z is a maximum
depth CA in GR.

In the following we refer to the algorithm described in this section as the combined algorithm.
Before proving the key properties of the approach we give a formal description of the decomposition
in Algorithm 8.
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Algorithm 8: Preprocessing
Input: A dag G = (V,E) (and threshold parameters W and H).
Output: Special DFS trees Tc1 , . . . ,Tcr that are prepared for constant LCA queries and a reduced dag

GR = (V,ER).
begin1

Compute Gclo and initialize an empty partial chain cover C .2

Set GR← Gclo.3
repeat4

Find a chain c of maximum size in GR.5

Add c to C and remove all edges (v,w) from GR such that v ∈C.6
until termination criterion7
Compute special DFS trees Tc1 , . . . ,Tcr on Gclo as described in the previous section.8
Prepare the special DFS trees for constant time LCA queries.9

end10

Lemma 5.19. Let zh be a maximum depth common ancestor of a pair {x,y} in GR. Then, either
z ∈ LCAG{x,y} or all witnesses of zh, i.e., vertices z′ such that zh z′ and z′ ∈ CAG{x,y} are in the
set VC.

Proof. Suppose that zh is not an LCA of {x,y} in G. In that case there exists a witness z′ such that
z′ ∈ LCAG{x,y} and z′ is a successor of z. This immediately implies z′ ∈ VC. Indeed, suppose that
z′ /∈ VC. This implies (i) dp(z′) > dp(z) since z′ is a successor of z and (z,z′) is not removed by the
decomposition and (ii) z∈CAGR{x,y}. Moreover, (i) and (ii) contradict the fact that z is the maximum
depth CA of {x,y} in GR. �

Observe that we have constructed special DFS trees for the chains in Gclo. However, in general it
is also possible to use an approach that allows constructing the trees in G. This involves computing
a partial greedy path cover of G instead of the partial greedy chain cover of Gclo. In any case, how-
ever, the reduced dag GR results from reducing Gclo. A formal description of the method for finding
representative LCAs is given in Algorithm 9.

Algorithm 9: Algorithm for Representative LCA
Input: The reduced dag GR = (V,ER) and special DFS trees Tc1 , . . . ,Tcr that are prepared for constant

LCA queries (output of Algorithm 8).
Output: All-pairs representative LCA matrix.
begin1

Compute maximum depth CAs on for all vertex pairs in GR using the algorithm described in [CKL07].2
foreach vertex pair {x,y} do3

Let zh be the maximum depth CA of {x,y} with respect to GR.4
Initialize an empty result set Z.5
foreach chain Ci, 1≤ i≤ r do6

Query LCA{x,y} in Tci and add the result to Z.7
end8
Remove all vertices from Z that are not successors of zh.9
Return the maximum vertex in Z and zh if Z is empty.10

end11
end12
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(b) computing a partial chain cover C in a greedy manner, C = {(3,4,6,11),(1,5,10),(7,8)}
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(c) the special DFS trees corresponding to the partial chain cover, the result set Z for queries for LCA{10,11}
in the trees is given by Z = {4,5,7}
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(d) the reduced dag GR, both 2 and 9 correspond to maxi-
mum depth CAs of {10,11}. However, only one of them is
returned, e.g., 2.

Figure 5.2: Example for the combined algorithm on a dag with 11 vertices. Suppose that the maximum
depth CA of {10,11} in GR that is returned is 2. Then, the maximum vertex in Z (7) is
not an LCA. However, restricting the candidate vertices to successors of 2 excludes 7. In
consequence 5 is returned and 5 ∈ LCA{10,11}.
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An example of the combined algorithm is given in Figure 5.5. The correctness of Algorithm 9
is a consequence of Lemma 5.19 and the results of Section 5.4. We turn our attention to the time
complexity of this approach. Obviously, the running time depends on (i) r, the cardinality of the
partial chain cover, and (ii) dp(GR), the depth of the reduced dag. Our goal is an algorithm that does
not exceed the worst case complexity for the general problem of O(n2+µ) but performs better in as
many cases as possible. To this end, one can specify an implementation of the termination criterion
in Algorithm 8 as follows: Pick threshold parameters W and H and terminate whenever r ≥W or
dp(GR)≤H. Any reasonable choice of H should satisfy H ≤ n1−µ according to Lemma 5.18. Observe
that any choice of W such that W ≤ nµ is sufficient to guarantee a worst case upper bound of O(n2+µ).
Simply modify the combined algorithm such that it uses the general solution whenever r ≥W (which
implies dp(GR) > H). However, there is a more elegant way to find the optimal decomposition. The
idea is to look for the intersection point of the functions nq+ω(1,1−q,1) and rn2, i.e., the functions that
describe the asymptotic behavior of the two approaches. The respective termination criterion becomes
(neglecting polylogarithmic factors)

rn2 > nlogn(dp(GR))+ω(1,1−logn(dp(GR)),1). (5.3)

Theorem 5.20. The time complexity of the combined algorithm on a dag G with n vertices can be
bounded by Õ(n2+µ), where µ satisfies ω(1,µ,1) = 1+2µ .

Proof. Let in the following β = ω−2
1−α

. Let r be the cardinality of the path cover produced by Algo-
rithm 8 and let nq be the depth of the the reduced graph after step r−1. Since the reduction does not
terminate after step r−1, by Equation (5.3) we have

r−1≤ nq+ω(1,1−q,1)−2.

Moreover, observe that Õ(n2r) is obviously an upper time bound for the combined algorithm. We
can safely assume that q < 1−α . To see this, suppose first that q ≥ 1−α . Since r− 1 paths cover
at least nq vertices, we have r− 1 ≤ n1−q ≤ nα . This in turn implies an upper bound of the time
complexity of O(nω) and we are done. We apply Proposition 4.4 and get

r−1≤ nq+2+β (1−q−α)−2+o(1).

This simplifies to
r−1≤ nq(1−β )+β (1−α)+o(1). (5.4)

On the other hand, since we know that each of the r−1 paths covers at least nq vertices we have

q≤ logn
n

r−1
. (5.5)

Plugging (5.5) into (5.4) yields

r−1≤ nlogn
n

r−1 (1−β )+β (1−α)+o(1).

Since we have nlogn
n

r−1 (1−β )+β (1−α) =
( n

r−1

)1−β ·nβ (1−α), this simplifies to

r−1≤ n
1−βα

2−β
+o(1)

. (5.6)
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On the other hand, recall that µ satisfies ω(1,µ,1) = 1+ 2µ . Again, we use Proposition 4.4 to
obtain

µ =
1−βα

2−β
. (5.7)

Equations (5.6) and (5.7) conclude the proof. �

As an immediate consequence of the above theorem we get the following corollary.

Corollary 5.21. The time complexity of the combined algorithm for solving ALL-PAIRS REPRESEN-
TATIVE LCA is O(n2.575) on a dag G = (V,E) with n vertices.

Observe that the average case bound of Õ(n2) is still valid under the assumption that the input space
is distributed according to the Gn,p model with constant edge probability p. To see this, recall that
the transitive closure of a random dag in the Gn,p model for arbitrary values of p can be computed in
average case time Õ(n2) by Proposition 3.2.

The combination of these two techniques narrows down the classes of dags for which no solution
faster than O(n2+µ) is known considerably. Indeed, recall that for dags G of depth dp(G) ≤ n1−µ−δ

the ALL-PAIRS REPRESENTATIVE LCA problem can be solved in time Õ(n2+µ−δ ) by Lemma 5.18.

Theorem 5.22. For a dag G with n vertices and an arbitrary constant µ ≥ δ > 0 ALL-PAIRS REPRE-
SENTATIVE LCA can be solved in time Õ(n2+µ−δ ) if G does not contain a subgraph H that contains
at least nµ−δ (vertex-disjoint) chains of length at least n1−µ−δ .

Observe that this is a significant restriction for bad dag classes, namely an almost linear-sized, i.e.,
n1−2δ for an arbitrary small constant δ , subdag of extremely regular structure.

All-k-Subsets Representative LCA

The ALL-K-SUBSETS REPRESENTATIVE LCA problem is an extension of the ALL-PAIRS REPRE-
SENTATIVE LCA problem. Given a constant k ≥ 2, compute a representative LCA for each k-subset
of vertices in G.

Problem: ALL-K-SUBSETS REPRESENTATIVE LCA
Input: A dag G = (V,E)
Output: A matrix R of size nk such that for all k-subsets of vertices {x1, . . . ,xk},

R[x1, . . . ,xk] ∈ LCA{x1, . . . ,xk}; if LCA{x1, . . . ,xk}= /0 for some vertex k-subset
{x1, . . . ,xk}, then R[x1, . . . ,xk] = NIL.

The problem has been considered recently by Yuster [Yus]. He shows that the ALL-K-SUBSETS

REPRESENTATIVE LCA problem can be solved in time O(n3.575) for k = 3 and O(nk+1/2) for k ≥ 4.
We improve slightly upon the bound for k = 3 by using our combined approach.

Theorem 5.23. The ALL-K-SUBSETS REPRESENTATIVE LCA problem on a dag G with n vertices
can be solved in time O(n3.5214) for k = 3 and Õ(nk+ 1

2 ) for k ≥ 4.
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Proof. Let G = (V,E) be a dag of depth dp(G) = nq. Combining the ideas in [Yus] and [CKL07] for
computing LCAs in dags of small depth, ALL-K-SUBSETS REPRESENTATIVE LCA can be solved by
computing (arbitrary) witnesses for Boolean matrix products MMT for each level of the dag. More
specifically, let li be the number of vertices on level Li, then the matrix M corresponding to level Li is
an n(

n
k/2)×nli matrix. Further, by Jensen’s inequality (Prop. 4.22), the time complexity of the algorithm

is maximized if the levels of G are of equal size. That is, the running time of this approach can be
bounded by Õ(nq+ω(1, 2(1−q)

k ,1) k
2 ). The additional polylogarithmic factor results again from the witness

computations.

On the other hand, we note that the LCA of a k-subset of vertices in a preprocessed tree can be
computed in O(1) since we assume that k is a constant. This implies that ALL-K-SUBSETS REPRE-
SENTATIVE LCA can be solved in time O(nkw(G)) by extending the ideas in Section 5.4.

Now we combine these two approaches in an analogous way as described above. We get an algo-
rithm with time complexity

Õ(rnk +nq+ω(1, 2(1−q)
k ,1) k

2 ) for
2(1−q)

k
> 0.294

and

Õ(rnk +nq+k) for
2(1−q)

k
≤ 0.294,

where q ≤ logn
n
r . Observe first that for k ≥ 4 the respective function is minimized for q = 1

2 , which
implies a time bound of Õ(nk+ 1

2 ).

Let now k = 3 and assume first that 2(1−q)
3 ≤ 0.294. This implies q ≥ 0.559 and hence an upper

bound of Õ(nk+0.559). Suppose now that 2(1−q)
3 > 0.294. We solve the equality

rnk = nq+ω(1, 2(1−q)
k ,1) k

2

By using q ≤ logn
n
r and β = ω−2

1−α
we find the following bound for r in a similar way as in the proof

of Theorem 5.16.
r ≤ n1− 3

2 βα

The claim follows now since 0.5214 > 1− 3
2 βα . �

Note that Theorem 5.23 slightly subsumes Yuster’s upper time bound for k = 3 and matches his
remaining upper bounds for k≥ 4 [Yus] ignoring polylogarithmic factors. Again, we observe that if the
input dags are distributed according to the Gn,p model for random dags such that p is a constant, ALL-
K-SUBSETS REPRESENTATIVE LCA can be solved in time Õ(nk) in the average case. Nonetheless,
we can even state the following corollary which is valid for all choices of the edge probability p.

Corollary 5.24. ALL-K-SUBSETS REPRESENTATIVE LCA can be solved in Õ(nk) in the average
case.

Proof. We modify Algorithm 2. The following claim is a straightforward generalization of Lemma 3.6.

Claim 5.25. Let G = (V,E) be a dag and let {y1, . . . ,yk} be a k-subset of vertices. Furthermore, let z
be the maximum CA (MCA) of {y1, . . . ,yk}.
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1. If y1 is an ancestor of y2, . . . ,yk, then z = y1.

2. If y1 is not an ancestor of y2, . . . ,yk, then the following holds: Let {x1, . . . ,xl} be the parents of
y1. Let Z =

⋃
1≤i≤l MCA{xi,y2, . . . ,yk}. Then MCA{y1, . . . ,yk} is the maximum vertex in Z.

The above claim yields a dynamic programming algorithm that is analogous to Algorithm 2. By
an analysis similar to the one given in the proof of Theorem 3.7, we can bound the running time by
O(mred nk−1) which implies an average case complexity of O(nk logn) by Proposition 3.4. �

5.6 Conclusion

The width w(G) of a dag G represents a crucial parameter in the context of classifying the difficulty
of LCA problems on certain dag classes. That is, die upper time bounds for ALL-PAIRS REPRESEN-
TATIVE LCA and ALL-PAIRS ALL LCA improve significantly on dags with small width. However, a
second major contribution of the results presented in this chapter is the concise characterization of dif-
ficult dag classes as a consequence of the combined algorithm described in Section 5.5. This together
with the results of the previous chapters might indicate a direction that ultimately yields an improved
upper time bound for ALL-PAIRS REPRESENTATIVE LCA and possibly also ALL-PAIRS ALL LCA
in the general case. To achieve this, it seems to be critical to dissolve from algorithmic solutions that
are purely based on Proposition 2.10 as done in the case of the combined algorithm. The extremely
regular structure of worst case dag classes, i.e., nµ−δ levels with n1−µ−δ vertices in each level, might
provide exploitable combinatorial properties. Even if the upper time bound for ALL-PAIRS REPRE-
SENTATIVE LCA can not be improved in the general case, the combined algorithm is the currently
best solution in terms of worst case upper time bound and efficiency over the broad range of possi-
ble input dags since the purely matrix-multiplication-based algorithm presented in Section 4.3 takes
Ω(n2+µ) time in any case.

In practice, algorithms whose efficiency depends on small width do not yield as many benefits as
may be expected. For instance, rooted binary trees can be viewed as dags. The width of a tree is the
number of its leaves which is in fully binary trees Ω(n). In contrast to this, each pair has exactly one
LCA. As another example, in the experimental setting of Internet dags mentioned in the introductory
section, we obtained a width of 9,604 (i.e., there is an antichain containing around 85% of all vertices),
a maximum LCA set-size of 27, and an average LCA set-size of 9.66. All this shows that improving
our algorithms towards a linear-scaling behavior with respect to LCA set-sizes is essential.



CHAPTER

6

ALGORITHMIC APPLICATIONS

6.1 Introduction

While the main focus in this work is on ALL-PAIRS REPRESENTATIVE LCA and ALL-PAIRS ALL

LCA in a fixed dag G, a variety of problem variants is motivated by applications and/or related the-
oretical questions. In this chapter we extend and combine the approaches developed for the two
problem primitives in Chapters 3, 4, and 5 to obtain solutions to some natural variations. In particu-
lar, we consider LCA problems in weighted dags (Section 6.2), LCA problems in a dynamic setting
(Section 6.3), and space-efficient LCA algorithms, i.e., LCA algorithms that use less than Θ(n2) space
(Section 6.4). To the best of our knowledge, we initiate the particular study of most of the problem
variants considered in this chapter. Accordingly, we compare the quality of our solutions mainly to
naive or trivial approaches. Introductory paragraphs are deferred to the beginnings of the respective
sections along with a detailed description of the results. Since we have not yet given a concise de-
scription of the considered problems at this point, we outline the main results in this chapter in a more
abstract way than in the previous chapters.

1. We present algorithms and computational equivalence results for (L)CA problems in edge- and
vertex-weighted dags. The CA versions of the problems seem to be much easier than the LCA
versions in general. To solve the LCA versions in full generality, our algorithms rely on ALL-
PAIRS ALL LCA solutions, which implies a hard Ω(n3) lower bound. It is not clear and an
intriguing open question whether this can be improved to subcubic running time.

2. We improve update times of ALL-PAIRS REPRESENTATIVE LCA and ALL-PAIRS ALL LCA
in dynamic settings (fully and partially dynamic) slightly over naive recomputation from scratch.
Essentially, the improvement in the fully dynamic case relies on reducing the key ingredients
of the algorithms presented in Chapter 4, namely the (rectangular) matrix products, to transitive
closure computations – a problem that is well understood in dynamic contexts. An improvement
for an incremental problem version is obtained by combining several algorithmic approaches,
i.e., the non-optimal ALL-PAIRS REPRESENTATIVE LCA algorithm given in [BFCP+05], an

67
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online topological order algorithm by Pearce and Kelly [PK06], the fully dynamic algorithm
for ALL-PAIRS REPRESENTATIVE LCA, and a dynamic ALL-PAIRS SHORTEST DISTANCES

algorithm by Thorup [Tho04].

3. We show that LCA computations in a dag G can be solved in a space-efficient way if the width
w(G) of G is accordingly bounded. The approach is derived from the path cover technique
presented in Chapter 5. Furthermore, by combining the path cover approach with a rather
simple datastructure, we are able to show that space-efficient solutions exist in the average case.

6.2 (L)CA Problems in Weighted Dags

In many real-world scenarios accurate modeling of causality systems by dags requires the use of
weight functions, i.e., a real-valued weight is associated with each edge, vertex, or both. Consider
computing lowest common ancestors in phylogenetic networks as described in Section 1.1. In some
cases it is possible to assign edge weights to such networks by considering speciation distances based
on available evolutionary data. The distance between two vertices on a path in such networks is
proportional to elapsed time, e.g., time between a speciation event and the present. If we consider
and analyze phylogenetic networks with edge weights, naturally, we extend our notion of LCAs to
questions of the following kind: What is the most recent speciation event between pairs of species?
What is the first speciation event between pairs of species? On the other hand associating providers
with a certain cost can be modeled by vertex weights in the Internet dag. Then, we make the transition
from computing arbitrary top providers to computing cheapest (most expensive) top providers.

With respect to weighted dags the problem of computing representative LCAs is readily generalized
to questions of the following flavor: What is the (L)CA that minimizes the ancestral distance of a
vertex pair {x,y}? What is the (L)CA with minimum vertex weight of a vertex pair {x,y}?

Bender et al. [BPSS01] have shown that shortest ancestral (CA) distances in unweighted dags can
be computed in time O(n2.575). In the same work, the authors consider a restricted version of the
problem of computing shortest LCA distances, i.e., only ancestral distances with respect to LCAs are
considered. Here, additional information from genealogical data is used to rank candidate LCAs in
pedigree graphs. This ranking implies that shortest distance CAs are LCAs. However, the general
version seems to be much more difficult.

Let G = (V,E) be dag. G is called edge-weighted if it is equipped with an edge weight function
we : E → IR. G is vertex-weighted if it is equipped with a vertex weight function wv : V → IR. In
edge-weighted dags the distance between two vertices u and v, denoted by d(u,v), is defined as the
minimum weight of an u-v-path, where the path weight is given by the sum of the weights of the
edges on the path. Computing shortest distances and paths in graphs is a fundamental problem in al-
gorithmic graph theory and has been studied extensively. In the context of this chapter, we restrict our
attention to the ALL-PAIRS SHORTEST DISTANCES problem (APSD), i.e., the problem of computing
shortest distances between all vertex pairs. ALL-PAIRS SHORTEST DISTANCES can be solved in time
O(nm) for arbitrary edge weights [CLRS01]. For special classes of edge weights, faster solutions are
available, e.g., O(n2+µ) for integer weights of constant absolute value [Zwi02].

While in general the research focus is on edge-weighted graphs, a number of interesting algorithmic
problems and solutions on vertex-weighted graphs have been studied recently. This includes, e.g.,
computing bottleneck paths [SYZ07] or finding triangles of maximum weight [CL07].
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Suppose first that G is edge-weighted. Before formally defining corresponding common ancestor
problems, we introduce the notion of ancestral distance.

Definition 6.1 (Ancestral Distance). Let G = (V,E) be dag with edge weight function we : E → IR.
Let {x,y} be a vertex pair. The ancestral distance of {x,y}, denoted by AD{x,y}, is defined as

AD{x,y}=

{
min

z∈CA{x,y}
d(z,x)+d(z,y) if CA{x,y} 6= /0

+∞ else.

In the following we denote by ADz{x,y} the ancestral distance of x and y with respect to vertex z,
i.e., ADz{x,y} = d(z,x)+ d(z,y). Using the above definition we define the ALL-PAIRS SHORTEST

DISTANCE CA problem in edge-weighted dags.

Problem: ALL-PAIRS SHORTEST DISTANCE CA
Input: A dag G = (V,E) with weight function w : E→ IR.
Output: A matrix SDC of size n× n such that for all vertices x,y ∈ V , SDC[x,y] =

argminz∈CA{x,y}ADz{x,y}; if CA{x,y} = /0 for some vertex pair {x,y}, then
SDC[x,y] = NIL. (Ties are arbitrarily broken.)

Note that we want to compute the respective vertices and not only ancestral distances. Given a
solution to ALL-PAIRS SHORTEST DISTANCES in G, the shortest ancestral distances can be readily
derived from the matrix SDC.

1

yx

51

1w

z

Figure 6.1: z is the shortest distance CA of {x,y} but z /∈ LCA{x,y}.

Observe that a shortest distance CA does not necessarily correspond to an LCA as the example in
Figure 6.1 shows. This motivates the ALL-PAIRS SHORTEST DISTANCE LCA problem.

Problem: ALL-PAIRS SHORTEST DISTANCE LCA
Input: A dag G = (V,E) with weight function w : E→ IR.
Output: A matrix SDL of size n× n such that for all vertices x,y ∈ V , SDL[x,y] =

argminz∈LCA{x,y}ADz{x,y}; if CA{x,y} = /0 for some vertex pair {x,y}, then
SDL[x,y] = NIL. (Ties are arbitrarily broken.)
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We turn our attention to vertex-weighted dags. The problem definitions of (L)CA problems for
vertex-weighted dags are analogous. Observe again that we distinguish the consideration of general
common ancestors and the restriction to lowest common ancestors.

Problem: ALL-PAIRS MINIMUM WEIGHT CA
Input: A dag G = (V,E) with (vertex) weight function w : V → IR.
Output: A matrix MWC of size n× n such that for all vertices x,y ∈ V , MWC[x,y] =

argminz∈CA{x,y}w(z); if CA{x,y} = /0 for some vertex pair {x,y}, then
MWC[x,y] = NIL. (Ties are arbitrarily broken.)

Problem: ALL-PAIRS MINIMUM WEIGHT LCA
Input: A dag G = (V,E) with (vertex) weight function w : V → IR.
Output: A matrix MWL of size n× n such that for all vertices x,y ∈ V , MWL[x,y] =

argminz∈LCA{x,y}w(z); if CA{x,y} = /0 for some vertex pair {x,y}, then
MWL[x,y] = NIL. (Ties are arbitrarily broken.)

We summarize the results presented in this section.

1. We prove that it is possible to reduce ALL-PAIRS SHORTEST DISTANCE CA to ALL-PAIRS

SHORTEST DISTANCES, up to a polylogarithmic factor. This in turn implies that the complexity
of ALL-PAIRS SHORTEST DISTANCE CA essentially depends on the edge weight function
under consideration. In the case of integral edge weights of small absolute value the result
leads to subcubic algorithms. Moreover, we describe a dynamic programming approach with
complexity O(nm) for ALL-PAIRS SHORTEST DISTANCE CA.

2. We establish a computational equivalence of ALL-PAIRS MINIMUM WEIGHT CA and ALL-
PAIRS MAXIMUM WITNESSES FOR BOOLEAN MATRIX MULTIPLICATION. As a conse-
quence ALL-PAIRS MINIMUM WEIGHT CA can be solved in O(n2+µ) time.

3. We derive upper bounds for ALL-PAIRS SHORTEST DISTANCE LCA and ALL-PAIRS MIN-
IMUM WEIGHT LCA by using ALL-PAIRS ALL LCA solutions. Additionally, we show that
ALL-PAIRS MINIMUM WEIGHT LCA can be solved substantially faster if the vertex weight
function has benign properties, i.e., the function respects topological properties up to a cer-
tain error f (n). In such cases ALL-PAIRS MINIMUM WEIGHT LCA can be solved in time
O(n2+µ + f (n)2n2).

6.2.1 Common Ancestor Problem Variants

We start this section by establishing the close relationship between ALL-PAIRS SHORTEST DIS-
TANCES and ALL-PAIRS SHORTEST DISTANCE CA. In particular, we show that ALL-PAIRS SHORT-
EST DISTANCE CA can be reduced to ALL-PAIRS SHORTEST DISTANCES, up to a polylogarithmic
factor.
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There is a close relationship between computing shortest-distance CAs and computing shortest
ancestral distances. On the other hand, it is possible to reduce the problem of computing shortest
ancestral distances to the ALL-PAIRS SHORTEST DISTANCES problem in dags. This reduction is in-
spired by ideas used for reducing ALL-PAIRS COMMON ANCESTOR EXISTENCE to transitive closure
computation, see Chapter 4 and in particular Figure 4.1.

There are classes of dags on which ALL-PAIRS SHORTEST DISTANCES can be solved in time
o(n3), e.g., dags in which the edge weights are small integer weights of absolute value O(nt) and
t < 3−ω . However, it is not obvious how to derive the shortest distance CAs from shortest ancestral
distances. Our approach is based on ideas in [Sei95, Zwi02] used for computing witnesses for shortest
paths. A detailed description of the reduction and the identification of the shortest distance CAs is
given in the proof of Theorem 6.2.

Theorem 6.2. ALL-PAIRS SHORTEST DISTANCE CA can be reduced to ALL-PAIRS SHORTEST

DISTANCES, up to a polylogarithmic factor.

Proof. Let G = (V,E) be a dag with weight function we : E→ IR. Let V = {v1, . . . ,vn}. We construct
a dag G′ = (V ′,E ′) with edge weight function w′e as follows:

• V ′ = X ∪Z∪Y , where X = {x1, . . . ,xn}, Z = {z1, . . . ,zn}, and Y = {z1, . . . ,zn}.
• E ′ = EX ∪EY ∪EZ , where

– EX = (xi,x j) for all 1≤ i, j ≤ n such that (v j,vi) ∈ E.

– EY = (yi,y j) for all 1≤ i, j ≤ n such that (vi,v j) ∈ E.

– EZ = (xi,zi),(zi,yi) for all 1≤ i≤ n.

Furthermore, we define the following weight function w′e : E ′→ IR.

w′e(u,v) =


we(v j,vi) if u = xi, v = x j and (v j,vi) ∈ E,
we(vi,v j) if u = yi, v = y j and (vi,v j) ∈ E,
0 else.

The graph G′ (see Figure 6.2) is structurally similar to the graph given in Figure 4.1 in the context
of the CA existence problem. However, we represent edges between vertex pairs (xi,yi) by additional
vertices zi and use edge weights. It is easy to see that

dG′(xi,y j) = min
z∈CA(vi,v j)

dG(z,vi)+dG(z,v j),

i.e., the distance between xi and y j in G′ equals the ancestral distance between vi and v j in G for all
1≤ i, j ≤ n. Obviously, the graph G′ can be constructed in time O(n+m).

Now let A be an ALL-PAIRS SHORTEST DISTANCES algorithm for weighted dags. Given a dag
G = (V,E) we can construct the graph G′, solve ALL-PAIRS SHORTEST DISTANCES on G′ using
Algorithm A and then construct the n×n ancestral distance matrix D of G with

D[vi,v j] = dG′(xi,y j)

for all vi,v j ∈ V . The overall process takes time O(TA (3n,2m+ 2n)), where TA (n,m) is the time
needed by algorithm A on a dag with n vertices and m edges. However, we cannot directly read off
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Figure 6.2: Solving ALL-PAIRS SHORTEST DISTANCE CA for a dag G with ALL-PAIRS SHORTEST

DISTANCES in a dag G′ that is constructed from G. Dashed lines have weight zero.

the shortest distance common ancestors themselves. Instead, we make use of techniques described
in [Zwi02] to compute witnesses for distance products. This only adds a polylogarithmic factor to
the overall running time. In the following, we describe the witness computation technique. Readers
familiar with this approach can skip the rest of the proof.

The main idea behind the witness construction is the following: Suppose, G′′ is a graph in which
one of the vertices from VZ , say the vertex zk, 1 ≤ k ≤ n, is contained, but all other vertices from VZ

and all their adjacent edges are deleted. Further, let D′ and D′′ be the distance matrices of G′ and G′′,
respectively. Apparently, for all vertices vi,v j with 1 ≤ i, j ≤ n, dG′′(xi,y j) = dG′(xi,y j) implies that
zk lies on some shortest path from xi to y j in G′ and, by construction of G′, that vk corresponds to a
shortest distance CA of {vi,v j} in G. Thus, we could find all pairs {vi,v j} such that vk is a shortest
distance CA of vi and v j by solving the ALL-PAIRS SHORTEST DISTANCES problem on G′′ and
comparing D′′ with D′, element by element. Alas, trying all vertices from VZ = {z1, . . . ,zn} one by
one yields O(n) ALL-PAIRS SHORTEST DISTANCES computations in order to derive the shortest
distance CAs.

In the following we outline a randomized approach. Assume that a pair {vi,v j} has exactly c short-
est distance CAs. We first describe how to sample a subset V ′Z ⊆VZ (which represents the candidates
for shortest distance CAs in G) such that there is only one candidate in V ′Z for the pair {vi,v j} with
constant positive probability. Let d ∈ IN satisfy n

2 ≤ c ·d ≤ n and suppose that we draw V ′Z as a multiset
of size d uniformly at random from {z1, . . . ,zn} with repetition. The probability of choosing exactly
one of the c ancestors into V ′Z is greater than 1

2e . This holds for each pair which has c shortest distance
CAs such that n

2 ≤ c · d ≤ n, independently. By amplification, we increase the probability for each
pair to 1− 1

n . Construct d(log 2e
2e−1)

−1 logne such candidate multisets V ′Z of size d each. Then, the
probability that in none of these sets there is exactly one of the c shortest distance CAs is less than
(1− 1

2e)
d(log 2e

2e−1 )
−1 logne ≤ 1

n , for each pair independently. Finally, letting d range from 1 to dlogne
makes sure that the condition n

2 ≤ c · d ≤ n is satisfied for each pair with c shortest distance CAs at
least once with the desired probability.

Next we show how to find all unique shortest distance CAs in a candidate set V ′Z . For all pairs
{vi,v j} such that there is exactly one shortest distance CA vk in V ′Z , we can construct vk determinis-
tically as follows: For all 1 ≤ ` ≤ dlogne, let I` be the set of all vertices zk in V ′Z such that the `-th
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bit in the binary representation of k is one. Further, let G(`) be the graph G′, containing all vertices
v ∈ V ′Z ∩ I`, but with all other vertices from VZ and all their adjacent edges removed. Let D(`) denote
the distance matrix of G(`). Again, D(`)[i, j] = D′[i, j] if and only if the `-th bit of k is one. Also,
the (unique) shortest distance CA of vi and v j in G must have its `-th bit equal to one, too. Hence
all unique shortest distance CA in V ′Z can be found by computing dlogne distance matrices D(`) and
comparing them to D.

Thus, by choosing d(log 2e
2e−1)

−1(logn)2e candidate sets each of size at most n and carrying out
O(logn) ALL-PAIRS SHORTEST DISTANCES computations for each set, it follows that the probabil-
ity that the number of pairs for which no candidate is found is greater than d(logn)3e is less than γn

for some positive γ < 1 by applying a Chernoff bound. For the remaining such pairs, we simply test
all possible ancestors. This postprocessing takes time O((logn)3 · n2) in expectation. The above can
be derandomized by the method of c-wise ε-independent random variables (see [AN96] for more
details). The derandomized approach takes O((logn)6) ALL-PAIRS SHORTEST DISTANCES compu-
tations and the theorem follows. �

Theorem 6.2 and the results in [Zwi02] imply the following corollary.

Corollary 6.3. Let G be a dag with n vertices. ALL-PAIRS SHORTEST DISTANCE CA can be solved
in time Õ(n2+µ) if the edge weights are restricted to integers of constant absolute value. ALL-PAIRS

SHORTEST DISTANCE CA can be solved in time o(n3), if the edge weights are restricted to integers
of absolute value M such that M < n3−ω .

From the above-mentioned, currently best bound for µ , we obtain an O(n2.575) algorithm for ALL-
PAIRS SHORTEST DISTANCE CA for constant integral edge weights.

Dynamic programming techniques can also be applied to solve weighted common ancestor prob-
lems. We extend the ideas developed in Chapter 3 to solve the ALL-PAIRS SHORTEST DISTANCE

CA problem in time O(nm). Recall again that we focus explicitly on computing shortest distance
common ancestors instead of only computing shortest ancestral distances.

A naive solution is as follows:

1. Compute the all-pairs shortest distance matrix D of G.

2. For each pair {x,y} choose z such that D[z,x]+D[z,y] is minimized.

As the all-pairs shortest-distance matrix of a dag can be computed for arbitrary edge weights in time
O(nm) (see [CLRS01] for more details) and the second step takes time O(n) for each pair once the
shortest distances are known, the naive solution takes time O(n3). This can be improved to O(nm)
by applying dynamic programming. Observe, however, that it is in general not possible to use tran-
sitive reduction as a speed-up trick in common ancestor problems involving distances. We give an
O(nm) dynamic programming solution to ALL-PAIRS SHORTEST DISTANCE CA, which is similar to
Algorithm 2. The following lemma describes the structure of the dynamic programming matrix.

Lemma 6.4. Let G = (V,E) be a weighted dag and let {x,y} be a vertex pair such that CA{x,y} 6= /0.
Furthermore, let {x1, . . . ,xl} be the parents of x and let Z = {z1, . . . ,zl} be the set of the corresponding
shortest distance CAs of {xi,y} for 1 ≤ i ≤ l. Then, for the shortest distance CA z of x and y it holds
that z = argminz′∈Z∪{x}ADz′{x,y} .
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Proof. The proof is similar to the proofs of Lemmas 3.6 and 3.11. To ease exposition, we assume
that the shortest distance CAs (SDCAs) are unique. Let z be the unique SDCA of {x,y}. Suppose for
the sake of contradiction that z /∈ Z∪{x}. Consider a path p = (z, . . . ,x) that minimizes the distance
d(z,x). Since z 6= x, p has the form z, . . . ,xk,x for some 1 ≤ k ≤ l and xk is a parent of x. Obviously
z ∈ CA{xk,y}. Let z′ = SDCA{xk,y}. We have

ADz{x,y} = d(xk,x)+d(z,xk)+d(z,y)︸ ︷︷ ︸
ADz{xk,y}

< ADz′{x,y}
= d(xk,x)+d(z′,xk)+d(z′,y)︸ ︷︷ ︸

ADz′{xk,y}

,

(6.1)

since z is the unique SDCA of {x,y}. On the other hand, Equation (6.1) implies

ADz{xk,y}< ADz′{xk,y}

contradicting z′ = SDCA(xk,y). �

Algorithm 10: DP-Algorithm for Shortest Distance CA
Input: A dag G = (V,E) with a weight function w : E→ IR.
Output: An array SDC of size n×n where SDC[x,y] is a minimum-weight CA of {x,y}.
begin1

Compute the all-pairs shortest-distance matrix D of G.2

Compute a topological ordering top.3

foreach {x,y} with D[x,y]< ∞ do4

SDC[x,y]← x5

end6

foreach x ∈V in ascending order of top(v) do7

foreach (z,x) ∈ E do8

foreach y ∈V do9

if ADz{x,y}< SDC[x,y] then10

SDC[x,y]← SDC[z,y]11

end12

end13

end14

end15

end16

Theorem 6.5. In a dag G with n vertices and m edges, the dynamic programming algorithm (Algo-
rithm 10) solves ALL-PAIRS SHORTEST DISTANCE CA in time O(nm).

Proof. The analysis is similar to the proof of Theorem 3.7. The correctness follows from Lemma 6.4.
Since vertices are visited in ascending topological order, the shortest distance CA of {z,y} has already
been determined at the first visit of x. Finally, the running time is clearly O(nm), because Line 2 can
be achieved in time O(nm), as mentioned above. �
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We turn our attention to the respective problem in vertex-weighted dags, i.e., the ALL-PAIRS MIN-
IMUM WEIGHT CA problem. As our main result we establish a computational equivalence between
ALL-PAIRS MINIMUM WEIGHT CA and ALL-PAIRS MAXIMUM WITNESSES FOR BOOLEAN MA-
TRIX MULTIPLICATION below.

Observe that the relationship between ALL-PAIRS REPRESENTATIVE LCA and ALL-PAIRS MAX-
IMUM WITNESSES FOR BOOLEAN MATRIX MULTIPLICATION given by Proposition 4.3 is only one-
sided, i.e., ALL-PAIRS REPRESENTATIVE LCA can be reduced to ALL-PAIRS MAXIMUM WIT-
NESSES FOR BOOLEAN MATRIX MULTIPLICATION, but the opposite direction is open. On the other
hand, this reduction implicitly makes use of a vertex weight function, namely a topological ordering.
That is, ALL-PAIRS REPRESENTATIVE LCA is in fact reduced to the problem of finding maximum
CAs with respect to a weight function that implies that a maximum weight CA corresponds to an
LCA.

Theorem 6.6. ALL-PAIRS MINIMUM WEIGHT CA and ALL-PAIRS MAXIMUM WITNESSES FOR

BOOLEAN MATRIX MULTIPLICATION are computationally equivalent.

Proof. We reduce the problem of finding minimum weight CAs to the problem of finding maximum
weight CAs by simply negating the vertex weight function wv.

1. ALL-PAIRS MINIMUM WEIGHT CA to ALL-PAIRS MAXIMUM WITNESSES FOR BOOLEAN

MATRIX MULTIPLICATION: This follows from Proposition 4.3. Order the vertices according
to the negated vertex weight function and compute maximum witnesses for AT

clo ·Aclo. Here,
Aclo corresponds again to the adjacency matrix of the transitive closure of the respective dag.

2. ALL-PAIRS MAXIMUM WITNESSES FOR BOOLEAN MATRIX MULTIPLICATION to ALL-
PAIRS MINIMUM WEIGHT CA: Let A ·B be the considered Boolean matrix product. Construct
a dag G = (X ∪Z∪Y,EX ∪EY ) with vertex weight function wv such that:

• X = {x1, . . . ,xn}, Z = {z1, . . . ,zn}, and Y = {y1, . . . ,yn}.
• EX = (zi,x j) for all 1≤ i, j ≤ n such that A[ j, i] = 1.

• EX = (zi,y j) for all 1≤ i, j ≤ n such that B[i, j] = 1.

• wv(zi) =−i for all 1≤ i≤ n and wv(v) = 0 for all other vertices.

Then, the minimum weight CA of {xi,y j} in G corresponds to the maximum witness of (i, j)
with regard to the matrix product A ·B.

�

Corollary 6.7. For a dag G with n vertices, there exists a dynamic programming algorithm for
ALL-PAIRS MINIMUM WEIGHT CA with running time O(nmred) and average case running time
O(n2 logn), where mred is the number of edges in the transitive reduction of G.

Proof. It is not difficult to verify that Algorithm 2 can be modified such that it computes mini-
mum CAs with respect to an arbitrary vertex weight function in time O(nmred) (Thm. 3.7), which
is O(n2 logn) in the average case. �
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6.2.2 Lowest Common Ancestor Problem Variants

While Theorems 6.2 and 6.6 give a fairly accurate complexity classification of the common ancestor
problem variants, algorithmic solutions with respect to lowest common ancestors, i.e., for ALL-PAIRS

SHORTEST DISTANCE LCA and ALL-PAIRS MINIMUM WEIGHT LCA, seem to be far more diffi-
cult. In particular, the best upper time bounds for the LCA variants both in edge- and vertex-weighted
dags rely on solving ALL-PAIRS ALL LCA. This in turn bounds the complexity in the worst case
by Ω(n3) from below, see Theorem 2.12. Furthermore, the best upper bound for ALL-PAIRS ALL

LCA is O(nω(2,1,1)) by Theorem 4.19 although we have identified benign input classes. It is not clear
whether the solutions to one or both of the problems studied below can be solved without solving
ALL-PAIRS ALL LCA. We continue by describing the solutions leading to the general upper time
bounds.

A generic solution to finding shortest distance lowest common ancestors can be described as fol-
lows:

1. Solve ALL-PAIRS SHORTEST DISTANCES on dag G (understood as a weighted dag).

2. Solve ALL-PAIRS ALL LCA on dag G (understood as an unweighted dag).

3. For each pair {x,y} choose in time O
(
|LCA{x,y}|

)
the vertex z ∈ LCA{x,y} that minimizes

the ancestral distance dG(z,x)+dG(z,y) and set SDL[x,y] = z.

From solutions to ALL-PAIRS SHORTEST DISTANCES and ALL-PAIRS ALL LCA, the shortest
distance LCAs can be readily derived in time O

(
∑x,y∈V |LCA{x,y}|

)
. The following theorem is an

immediate consequence of the generic solution given above.

Theorem 6.8. Let G be a dag with n vertices and m edges. Let A be an algorithm that solves
ALL-PAIRS ALL LCA in time TA (n,m). Let B be an algorithm that solves ALL-PAIRS SHORTEST

DISTANCES in time TB(n,m). Then, ALL-PAIRS SHORTEST DISTANCE LCA can be solved in time
O(TA (n,m)+TB(n,m)).

Recall that in the worst case ALL-PAIRS ALL LCA is lower bounded by Ω(n3), see Theorem 2.12.
On the other hand, ALL-PAIRS SHORTEST DISTANCES can be solved in time O(nm) in dags with
arbitrary edge weights [CLRS01]. Hence, in the worst case the complexity of the ALL-PAIRS ALL

LCA algorithm subsumes the complexity of the ALL-PAIRS SHORTEST DISTANCES algorithm. Nev-
ertheless, there are classes of dags for which ALL-PAIRS ALL LCA can be solved more efficiently.
For example, consider dense dags with arbitrary (large) real-valued edge weights with a sparse transi-
tive reduction and unique LCAs. In such dags the ALL-PAIRS SHORTEST DISTANCES computation
becomes the bottleneck. For dags with integral edge weights of constant absolute value we get the
following corollary.

Corollary 6.9. In an edge-weighted dag G with n vertices and m edges such that the edge weights
are integers of absolute value bounded by a constant ALL-PAIRS SHORTEST DISTANCE LCA can
be solved in time O(min{n2m,nm(κ2 +κ logn})+n2+µ), where κ is the maximum cardinality of all
LCA sets.

The next theorem establishes the general upper bound for ALL-PAIRS MINIMUM WEIGHT LCA
and is straightforward. Since we do not have to solve ALL-PAIRS SHORTEST DISTANCES, upper
bounds for ALL-PAIRS ALL LCA directly transfer to ALL-PAIRS MINIMUM WEIGHT LCA.
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Theorem 6.10. ALL-PAIRS MINIMUM WEIGHT LCA in a dag G can be reduced to ALL-PAIRS

ALL LCA in G.

In particular, Theorems 6.8 and 6.10 imply that the current best possible upper bound for ALL-
PAIRS SHORTEST DISTANCE LCA and ALL-PAIRS MINIMUM WEIGHT LCA in full generality is
O(nω(2,1,1)). It is an interesting open question whether this can be improved or proved to be optimal.

While the general upper time bound for ALL-PAIRS MINIMUM WEIGHT LCA relies on the so-
lution of ALL-PAIRS ALL LCA, we can identify classes of distance functions that allow to solve
ALL-PAIRS MINIMUM WEIGHT LCA directly, thereby circumventing the Ω(n3) lower bound for
ALL-PAIRS ALL LCA.

To ease exposition we consider the ALL-PAIRS MAXIMUM WEIGHT LCA problem instead of the
ALL-PAIRS MINIMUM WEIGHT LCA problem in the following. Observe that these two problems
are in one-to-one correspondence. It is sufficient to negate the vertex weights in order to switch from
one problem to the other.

Let now wv : V → IR be an arbitrary vertex weight function and let ord : V → {1, . . . ,n} be a
function that orders the vertices with respect to wv. That is, ord(u) ≤ ord(v) implies wv(u) ≤ wv(v)
for all u,v ∈V .

Obviously, if ord corresponds to a valid topological order of V , ALL-PAIRS MAXIMUM WEIGHT

LCA reduces again to ALL-PAIRS MAXIMUM WITNESSES FOR BOOLEAN MATRIX MULTIPLICA-
TION and can hence be solved in time O(n2+µ). However, even if ord is not a valid topological order,
but only close to one, we can derive substantially better upper bounds than in the general case.

Theorem 6.11. Let G be a vertex-weighted dag with n vertices. Let the vertex weight function w be
such that ord(u) ≤ ord(v)+ f (n) for all u,v ∈ V such that u is a predecessor of v. Here, f is an
arbitrary positive function of n. Then, ALL-PAIRS MAXIMUM WEIGHT LCA can be solved in time
O
(
n2+µ + f (n)2n2

)
.

Proof. We start by solving ALL-PAIRS MAXIMUM WEIGHT CA on G with respect to ord in time
O(n2+µ). Let now zc be the maximum weight CA of a pair {x,y} and let zl be the maximum weight
LCA of {x,y}.

Claim 6.12. ord(zl) ∈ {ord(zc)− f (n), . . . ,ord(zc)}.

Proof. For zc = zl the claim readily follows. If zc 6= zl , we have zc /∈ LCA{x,y} and hence there
exists a witness w for zc such that w ∈ LCA{x,y} (Obs. 2.9) and w is a successor of zc. This implies
ord(zc)≤ ord(w)+ f (n) and hence ord(w)≥ ord(zc)− f (n). Since w is an LCA, we get

ord(zc)≥ ord(zl)≥ ord(w)≥ ord(zc)− f (n)

which concludes the proof of the claim. �

Let now Z ⊆ V be a vertex subset such that
⋃

z∈Z ord(z) = {ord(zc)− f (n), . . . ,ord(zc)}. Observe
that Z can be constructed in linear time assuming we have a reverse mapping from ord(v) to v for all
v ∈V . By the above claim zl ∈ Z. As a consequence of the vertex weight property we can determine
for each vertex in z∈ Z whether it is an LCA of {x,y} or not in O( f (n)) time. Recall that the maximum
order of a possible witness for z is less than ord(zc) but greater or equal than ord(z)− f (n). �
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Observe that, e.g., for f (n) = O(nµ/2), ALL-PAIRS MAXIMUM WEIGHT LCA can be solved in
O(n2+µ) and in subcubic time for f (n) = o(n0.5).

Again, we stress the fact that the bound for ALL-PAIRS MAXIMUM WEIGHT LCA also applies
to ALL-PAIRS MINIMUM WEIGHT LCA. Note that weight functions that are close to topological
orderings appear in situations where the vertex weights are related to causal dependencies modeled
by the dag. Consider for example an assignment of costs to providers in the Internet dag. Obviously,
one expects decreasing costs with decreasing level, i.e., the costs of providers on the lowest level are
expected to be minimal. However, the data used might be faulty or contradicting such that it might
make sense to drop strict topological requirements. On the other hand, the assumption ord(u) ≤
ord(v)+ f (n) for u v is more restrictive than, for example, assuming wv(u)≤wv(v)+ f (n). Observe
that in the latter case there might be a linear fraction of the vertices with weights between wv(v) and
wv(u). In the first case we assume that only f (n) vertices have weights in between, hence we implicitly
assume that the vertex weights are nicely distributed in some sense.

Note that it can be checked in time O(n2) if a given vertex weight function is good in the sense of
Theorem 6.11 if the transitive closure of the input graph is known and the vertex weights are unique.
Simply fix the unique ordering and compute max(u,v)∈Eclo ord(u)−ord(v).

6.3 Dynamic Algorithms

The consideration of graph algorithms in a dynamic context is motivated by many applications such as
communication networks, graphical applications, information systems, assembly planning, or VLSI
design. In these applications graphs are subject to changes like insertions or deletions of vertices and
edges. The design of specialized solutions for dynamic situations aims at preventing to recompute
the problem of interest from scratch. Interest in dynamic graph algorithms has been growing tremen-
dously in the last two decades. Progress has been made for many classical problems such as transitive
closure [San04, DI05] or all-pairs shortest paths [DI04, Tho04]. In the context of lowest common
ancestor computations, Cole and Hariharan [CH05] have recently obtained an improved dynamic so-
lution for the special case of trees. The results in this section are a first step in establishing dynamic
solutions for the general case of acyclic digraphs. We describe the following results with regard to a
dag G with n vertices, which improve over naive recomputation:

• The update time for ALL-PAIRS REPRESENTATIVE LCA can be bounded by O(n2.5) under
vertex-centered updates. Using a similar approach the result can be extended to O(n3) update
time for ALL-PAIRS ALL LCA. We note that the result for ALL-PAIRS REPRESENTATIVE

LCA requires preprocessing of O(n2.876). The main technique used to achieve this result is a
reduction from the rectangular matrix products to transitive closure computations.

• For an incremental version of ALL-PAIRS REPRESENTATIVE LCA, i.e., the edges of the dag
are sequentially inserted, we obtain an amortized update complexity of Õ(min{n4/m,n2.5}).
This improves over the fully dynamic case for dense dags with m = ω(n1.5). This result is
achieved by a non-trivial combination of an earlier solution [BFCP+05] to ALL-PAIRS REPRE-
SENTATIVE LCA based on shortest path computations with dynamic ALL-PAIRS SHORTEST

DISTANCES algorithms [Tho04] and an online topological order algorithm [PK06].

Throughout this chapter we assume that no update operation in a dag G causes a cycle.
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6.3.1 Fully Dynamic Lowest Common Ancestors

We start by considering LCA problems in a fully dynamic setting, i.e., update operations involve
deletions and insertions. In contrast to that, a problem is called partially dynamic if only one type
of operation is allowed. An algorithm that handles insertions only is usually called incremental,
whereas decremental algorithms are restricted to deletions. We consider an incremental problem in
Section 6.3.2. Throughout this section, we focus on update operations with respect to the edge set.
That is, the set V is fixed, but in every step, a subset of edges might be deleted from or added to the
edge set E of a dag G = (V,E). We consider vertex-centered updates.

Definition 6.13 (Vertex-Centered Update). Let G = (V,E) be a dag and let Eu = E+ ∪E− be the
set of edges to be updated in an update operation. Here, E+ corresponds to a set of edges to be
added to the dag, and E− corresponds to a set of edges to be deleted. The update operation is called
vertex-centered if there exists a vertex v ∈V such that every edge in Eu is incident to v.

Let A be the adjacency matrix of G = (V,E). Observe that a vertex-centered update with respect to
a vertex v updates exactly the row and column with index v in A. On the other hand, the addition or
deletion of a single edge can change up to Θ(n2) entries in the adjacency matrix Aclo of Gclo.

Recall the matrix-multiplication-based solutions to ALL-PAIRS REPRESENTATIVE LCA and ALL-
PAIRS ALL LCA in the static case described in Chapter 4. For both problems we compute matrix
products in order to answer questions of the following type: Is there a vertex z ∈ S that is a common
ancestor of a pair {x,y}? Here, S ⊆ V is some subset of the vertex set. In the case of the ALL-
PAIRS REPRESENTATIVE LCA problem, we use answers to these questions in order to determine the
subset of vertices that contain the maximum CA. In the ALL-PAIRS ALL LCA solution, the products
correspond to witness existence queries. Naturally, extending these approaches to a dynamic setting
we need to maintain the matrix products under row- and column-updates of the adjacency matrix A
of G. However, the products involve Aclo rather than A so that the updates are not restricted to a single
row and column.

In the following, we slightly extend our notion of matrix sampling given in Definition 4.6. Let
M be an n× n matrix and let I ⊆ {1, . . . ,n}. We denote by M[∗, I,0] an n× n matrix in which the
columns whose indices belong to I correspond to the columns with the same index in M and all other
columns correspond to 0-vectors. We call M[∗, I,0] a column-submatrix of M. M[I,∗,0] is called a
row-submatrix of M and is defined analogously, see Figure 6.3.

M[∗, I]

1
1

1

0

1

1
00

1
1

1

1 1

0 0
00

0 000
0

0

0

11

1
1 1

0
00

0
1 1

1
00

0
1

M[∗, I,0]M

Figure 6.3: Example of extended matrix sampling with regard to a matrix M and I = {1,3}.

Observe that all matrices involved in the matrix multiplication steps of the solutions to ALL-PAIRS

REPRESENTATIVE LCA and ALL-PAIRS ALL LCA can be viewed as column-submatrices of AT
clo
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or row-submatrices of Aclo. The following lemma is essential for obtaining non-trivial solutions for
all-pairs LCA problems under vertex-centered updates.

Lemma 6.14. Let Aclo be the adjacency matrix of the transitive closure Gclo of a dag G = (V,E)
with n vertices. Next, let A be a column-submatrix of AT

clo and B be a row-submatrix of Aclo and let
C = A ·B. Then, the computation of C can be reduced to the computation of the transitive closure G′clo
of a dag G′ = (V ′,E ′) with the following properties:

(i) The number of vertices n′ of G′ is linear in n, more specifically, n′ = |V ′|= 3n.

(ii) The result of A ·B can be directly read off the adjacency matrix Aclo of G′.

(iii) A vertex-centered update operation in G incurs at most 2 column-updates and at most 2 row-
updates in G′.

Proof. We start by describing the reduction of the matrix multiplication A ·B to the transitive closure
computation in a corresponding dag G′. Let in the following G = (V,E) where V = {v1, . . . ,vn}. By
assumption, A is a column-submatrix of AT

clo and B is a row-submatrix of Aclo. That is, there exist
vertex-subsets VA ∈ V and VB ∈ V such that A = AT

clo[∗,VA,0] and B = Aclo[VB,∗,0]. We construct
G′ = (V ′,E ′) as follows:

• V ′ = X ∪W ∪Y , where X = {x1, . . . ,xn}, W = {w1, . . . ,wn}, and Y = {y1, . . . ,yn} are vertex sets
of cardinality n.

• E ′ = EX ∪EY ∪EA∪EB where

– EX = (xi,x j) for all 1≤ i, j ≤ n such that (v j,vi) ∈ E.

– EY = (yi,y j) for all 1≤ i, j ≤ n such that (vi,v j) ∈ E.

– EA = (xi,wi) for all 1≤ i≤ n such that vi ∈VA.

– EB = (wi,yi) for all 1≤ i≤ n such that vi ∈VB.

This construction is similar to constructions used in earlier chapters, e.g., the construction of the
graph used for the reduction of ALL-PAIRS COMMON ANCESTOR EXISTENCE to BOOLEAN MA-
TRIX MULTIPLICATION, see Section 4. The difference here is that we restrict connections between
the two parts of the graph to vertices in the sets VA and VB (actually VA∩VB).

We get the following claim.

Claim 6.15. C[i, j] = 1 if and only if y j is reachable from xi in G′.

Proof. Indeed, observe that every path from a vertex xi to y j contains a vertex wk. The following is
easy to check.

1. vk ∈VA and vk ∈VB.

2. (vk,vi) and (vk,v j) are both edges in Gclo.

On the other hand, C[i, j] = 1 if and only if there exists an index k such that vk ∈ VA, vk ∈ VB and
A[i,k] ·B[k, j] = 1. It is not difficult to check that this implies xi y j in G′. �

This establishes property (ii) of the reduction. Observe that C = Aclo[X ,Y ]. Property (iii), i.e.,
a vertex-centered update in G incurs only 2 vertex centered updates in G′, also follows from the
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construction of G′. The edges in G′ are either edges in G, reverse edges in G, or connecting edges.
Hence, one vertex-centered update in G incurs two vertex-centered updates in G′. �

The following is due to Sankowski [San04].

Proposition 6.16. Let G be a directed acyclic graph with n vertices. Let Aclo be the adjacency matrix
of Gclo. Then, Aclo can be maintained under vertex-centered updates with O(nω) initialization and
O
(
n2
)

update time.

Lemma 6.14 and Proposition 6.16 yield the following theorem.

Theorem 6.17. For a dag G with n vertices, there exists an algorithm for dynamic ALL-
PAIRS REPRESENTATIVE LCA under vertex-centered updates with O

(
n1−λ+ω +n2+λ

)
initialization,

O(n1−λ+2 +n2+λ ) update, and O(1) query time, for some λ ∈ [0;1].

Proof. Recall that for the static ALL-PAIRS REPRESENTATIVE LCA solution we divide up the ver-
tices into n1−λ sets of size nλ for some λ ∈ [0;1]. To ease exposition, we assume again in the sequel
that nλ and n1−λ are integers. For each vertex set V i, 1≤ i≤ n1−λ , one rectangular matrix product of
an n×nλ and an nλ ×n matrix is computed in order to identify all pairs for which a CA in the set V i

exists. The maximum CAs are then searched for in the vertex set with the largest index i. In order
to improve the upper time bound for vertex-centered updates, we use the reduction from rectangular
matrix product to transitive closure described in Lemma 6.14 for each of the matrix products.

We analyze the complexity of this approach. The initialization needs time O
(
n1−λ+ω +n2+λ

)
. The

time needed to compute the transitive closures of the graphs G(1), . . . ,G(n1−λ ) corresponds to the time
needed to compute the corresponding rectangular matrix products, i.e., O

(
(n1−λ+ω(1,λ ,1)

)
. Addition-

ally, however, we have to initialize the dynamic data structure (matrix inverse) for each transitive
closure. The best known time bound for this is O(nω), see Proposition 6.16. Deriving the maximum
common ancestors for all pairs is again in O

(
n2+λ

)
. An optimal upper time bound for the initialization

is obtained by choosing λ such that 1−λ +ω = 2+λ is satisfied, which implies λ < 0.688.

The update complexity, on the other hand, is O
(
n1−λ+2 +n2+λ

)
due to Proposition 6.16. Hence,

we get a dynamic algorithm with O
(
n1−λ+ω +n2+λ

)
initialization, O(n1−λ+2 + n2+λ ) update, and

O(1) query time. �

Optimizing λ for updates yields λ = 0.5. The usage of transitive closures causes a slight overhead
for the initialization, but improves the time bound for updates in the dynamic case.

Corollary 6.18. There exists an algorithm for dynamic ALL-PAIRS REPRESENTATIVE LCA on a
dag G with n vertices with O

(
n2.876

)
initialization, O(n2.5) update, and O(1) query time.

We apply the same technique to the ALL-PAIRS ALL LCA problem to achieve the next theorem.

Theorem 6.19. There exists an algorithm for dynamic ALL-PAIRS ALL LCA on a dag G with n ver-
tices with O

(
nω+1

)
initialization, O(n3) update, and O(1) query time.
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Proof. We reduce the n matrix products that are used to compute the witness matrices by dags
G(1), . . . ,G(n) according to the reduction described in Lemma 6.14. Since the common ancestor matri-
ces C(v) can be computed in time O

(
n3
)

for all v ∈V , the bounds follow from Proposition 6.16. �

Observe that O
(
n3
)

update time is optimal in the worst case, since a single update can change up
to Θ(n3) entries.

6.3.2 Incremental LCA Algorithm

We proceed by considering an incremental LCA variant, which we also refer to as online representa-
tive LCA problem. That is, we are given a dag with vertex set V and an initially empty edge set E
and incrementally add edges to the dag. The goal is to maintain a representative LCA matrix L after
each edge addition. Using the dynamic solution presented in the previous section, L can clearly be
maintained with O(n2.5) update complexity. However, we show below that the amortized update com-
plexity can be improved whenever the number of inserted edges is large. For example, for m = Θ(n2),
the amortized update complexity is only O(n2). The main motivation for online LCA problem vari-
ants stems from incremental compilation. Recall that in Section 1.1 we have described an application
of LCA algorithms which is related to compilation and execution of object-oriented programming
languages. A lot of modern compilers use incremental compilation, e.g., the Eclipse Java compiler.
Roughly speaking, an incremental compiler maintains a dependency graph between modules to re-
duce the amount of needed recomputation work when updates occur or to enable fast compilation at
the runtime level. Such a setting is readily modeled by considering respective computational problems
incrementally. We note that incremental compilation is also the main motivation for the related online
topological order problem, see below.

Before we describe our approach we review related work and introduce the concepts needed.

Maximum CA by Shortest Paths

There is a close relationship between finding arbitrary CAs and reachability on the one hand, and
finding maximum CAs and shortest paths on the other hand. This was first noticed and used by Bender
et al. [BFCP+05]. The reduction from finding arbitrary CAs to reachability has been already described
in the context of ALL-PAIRS COMMON ANCESTOR EXISTENCE. Recall again the construction of
the graph G′ in the context of the reduction from ALL-PAIRS COMMON ANCESTOR EXISTENCE to
BOOLEAN MATRIX MULTIPLICATION in Section 4.1 (Fig.4.1). We augment G′ with the following
edge-weight function we : E ′→ IN0.

we(e) =
{

0 if e ∈ EX ∪EY

n− i if e ∈ E ′′ and e = (xi,yi)

We have the following immediate relationship between maximum CAs in G = (V,E) and shortest
distances in G′ derived from G. For the lemma, we assume again that the vertex set V = {v1, . . . ,vn}
is in ascending order with respect to a topological ordering.

Lemma 6.20. For a pair of vertices {vi,v j} in a dag G, vk is the maximum CA of {vi,v j} in G if and
only if dG′(xi,y j) = k.
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Bender et al. [BFCP+05] used this relationship in order to develop the first truly subcubic ALL-
PAIRS MAXIMUM CA algorithm. Since no o(n3) algorithm for ALL-PAIRS SHORTEST DISTANCES

in digraphs with large (here, up to n) integer weights is known, they compute approximate shortest
paths using an algorithm given by Zwick [Zwi98]. Zwick’s algorithm computes shortest distances
within a factor of 1+ ε in time Õ((nω/ε) log(W/ε)), where W is an upper bound for the largest edge
weight. The approximate shortest distances narrow down the number of candidates for each pair to
O(εn). Ignoring the polylogarithmic terms and equating nω/ε = n3ε yields ε = n

ω−3
2 and hence an

upper time bound of Õ(n
ω+3

2 ).

Dynamic All-Pairs Shortest Distance

In the dynamic all-pairs shortest distance problem one is interested in maintaining a matrix storing
the shortest distances between each vertex pair under update operations. The following proposition is
due to Thorup [Tho04].

Proposition 6.21. The dynamic all-pairs shortest distance problem under vertex-centered updates
can be solved with amortized update time O(n2(log logn+ logn log logn)) if the edge weights are
integers.

The above bound is based on earlier work by Demetrescu and Italiano [DI04] improving their result
by logarithmic factors. We note that Thorup considers vertex updates, i.e., a vertex with incident
edges is inserted or deleted in each update step. However, it is easy to see that vertex-centered updates
correspond to at most 2 vertex updates: Simply remove the respective vertex and add a new vertex
whose incident edges correspond to the result of the vertex-centered update.

Online Topological Ordering

The online topological order problem, i.e., maintaining a valid topological order under a sequence of
edge insertions, has attained interest recently, [AHR+90, MSNR96, KB05, PK06, AFM06, AF07].
Achievements in this field have provided upper time bounds of O(min{m1.5 logn,m1.5 + n2 logn})
[KB05] and O(n2.75) [AFM06] for the insertion of m edges in an initially empty graph; the second
algorithm outperforms the first on dense dags. The algorithm given by Pearce and Kelly [PK06] (PK)
outperforms the other approaches empirically under sparse random edge insertions; recently an av-
erage case running time of O(n2 log2 n) was shown for this algorithm in [AF07]. We summarize
properties of the PK approach that are needed for our online LCA solution.

Proposition 6.22. Let G = (V,E) be a dag with n vertices and initially empty edge set E in which
m edges are inserted incrementally. Suppose further that a valid topological sort is maintained after
each insertion by using the PK algorithm. Then, the following holds:

(i) The total running time on any sequence of m edge insertions is bounded by O(n3).

(ii) Let δi denote the number of vertices that are assigned a new topological number after the
insertion of the ith edge. Then

m

∑
i=1

δi = O(n2). (6.2)

We further note that the PK algorithm recognizes edges that close a cycle in G.
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Online Representative LCA

In order to find a non-trivial upper time bound for maintaining a representative LCA matrix online,
we now combine Lemma 6.20, Proposition 6.21, and Proposition 6.22.

Obviously, by Lemma 6.20, if we are able to maintain an all-pairs shortest distance matrix for G′

after each edge insertion, we can read off the corresponding maximum CAs, i.e., representative LCAs.
Observe however, that the correctness of Lemma 6.20 is crucially depending on the fact that the ver-
tices {v1, . . . ,vn} are topologically ordered. Now, edge insertions can invalidate previously used topo-
logical orders. To this end we use the online topological order algorithm by Pearce and Kelly [PK06],
i.e., Proposition 6.22. That is, we assume that we have a black box giving us a valid topological or-
dering top(i) after the insertion of the ith edge for all 1≤ i≤ m. Now, let again δi denote the number
of vertices whose topological number is changed by the insertion of edge i.

Observation 6.23. The insertion of the ith edge leads to 2 edge insertions and δi edge-weight updates
in G′.

This is immediate from the construction of G′ and the definition of δi. Now combining this observation
with Lemma 6.20, Proposition 6.22, and Theorem 6.17 leads to the following theorem, which states a
non-trivial update time bound for the online representative LCA problem.

Theorem 6.24. The amortized update time of the online representative lowest common ancestor prob-
lem in a graph G with n vertices under m edge insertions can be bounded by

Õ(min{n4/m,n2.5}).

Proof. We describe the respective algorithm. To simplify matters we suppose in the following that
n1.5 is an integer. We use the online topological order solution by Pearce and Kelly [PK06] in order to
update the topological order after each edge insertion. For the update of the representative LCA matrix
we use the result from Theorem 6.17 for the first n1.5 edges. From the (n1.5+1)st edge onward, we use
a refined approach. We start by constructing the graph G′ and computed an ALL-PAIRS SHORTEST

DISTANCES matrix in time O(n3). Then, after each edge insertion, we update the edge weights in G′

according to the new topological order and recalculate the ALL-PAIRS SHORTEST DISTANCES matrix
using the approach of [Tho04]. Observe that the time needed for this step is bounded by Õ(n2δi). The
LCA matrix can be updated in time O(n2) with knowledge of the ALL-PAIRS SHORTEST DISTANCES

matrix. In order to analyze the amortized update time on m edge insertions, we distinguish two cases:

• m≤ n1.5: The update cost per edge insertions is trivially bounded by O(n2.5) in this case.

• m > n1.5: The total update complexity T can be bounded as follows:

T ≤ O(n1.5 ·n2.5)+O(n3)+
n

∑
i=1

O(n2(log logn+ logn log logn)δi)

= O(n4(log logn+ logn log logn))

Since n4/m = O(n2.5) for m > n1.5, the theorem follows.

�
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6.4 Space-E�cient LCA Computations

With respect to possible applications, the consideration of “all-pairs” LCA problems is fairly specific.
Often, one is not interested in LCA information associated with every possible vertex pair in a dag.
Rather, LCAs are only queried for a subset of the vertex pairs. Precomputing the answers to all possi-
ble queries and storing these answers in a matrix is brute force in this context. Considering the huge
memory requirements of this approach, it is desirable to design more space-efficient solutions. More
specifically, we give a generalized formulation of LCA problems as follows: Preprocess G such that a
query of the form LCA{x,y} can be answered as quickly as possible. The query LCA{x,y} can be any
variant of LCAs in dags, e.g., representative, all, or minimum weight. The quality of solutions to the
above problems is measured in terms of preprocessing time, space requirements, and query time. We
refer to these parameters – in dependence of the number of vertices n – by a triple 〈p(n),s(n),q(n)〉,
i.e., using an ALL-PAIRS REPRESENTATIVE LCA solution we get 〈O(n2.575),O(n2),O(1)〉. This
point of view is naturally taken in the context of LCA queries in trees, i.e., LCAs in trees can be
solved in 〈O(n),O(n),O(1)〉 [BFCP+05].

In the following we concern ourselves solely with the representative LCA problem. Observe how-
ever, that the results can be generalized to the all LCA problem. Our goal is to study data struc-
tures with subquadratic space requirement, i.e., s(n) = o(n2). A lot of work has been devoted to the
space-efficient encoding of posets, see, for example, [Fal98] and the references therein. Here, one is
interested in encoding a partial order in a space-efficient way such that reachability queries, i.e., is
vertex v reachable from vertex u, can be answered quickly. For general posets there is – to the best of
our knowledge – no solution that achieves o(n2) space and o(n) query time in the worst case. Since
reachability queries can be answered via representative LCA queries [BFCP+05], the lack of a solu-
tion to the general poset encoding problem imposes a possible theoretical obstacle to space-efficient
and quick LCA solutions.

In this section we give two natural approaches, which yield substantially space-efficient solutions
on certain classes of dags. We analyze the according parameters, i.e., again, the width w(G) of G and
the number of edges mclo in the transitive closure of G on random dags in the Gn,p model showing that
for every choice of p there exists a solution with space requirement o(n2) and query time o(n) in the
average case. Recall that we consider average case running times and space requirements under the
assumption that the input space is distributed according to the Gn,p model.

For the following theorem we apply the path cover technique described in Chapter 5 in a straight-
forward manner. Let TPC(G) be the time needed to construct a minimum path cover for a dag G
with n vertices and m edges. Then, the representative LCA problem in dags can be solved within
〈O(TPC(G)+w(G)m),O(w(G)n),O(w(G))〉. Using results from Section 5.4 we get the following
theorem.

Theorem 6.25. The representative LCA problem on a dag G with n vertices and width w(G) can
be solved with O(n2w(G) logn) preprocessing time, O(nw(G) logn) space, and O(w(G) logn) query
time.

Note, however, that w(G) = Θ(n) in the worst case. In what follows, let G be dag in the Gn,p

model. Let p = f (n)/n. The width is in expectation benign for dense dags, e.g., for f (n) = Θ(n) and
0 < p < 1 is a constant.
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Lemma 6.26. Let G be random dag in the Gn,p model such that p = f (n)/n. Then,

E[w(G)] =

{
o(n) if f (n) = ω(1)
O(n) else.

Proof. Simon [Sim88] has shown that there exists an algorithm that produces a (not necessarily mini-
mum) path cover of G of size k such that E[k] =O( log(pn)

p ). The width w(G) is trivially upper bounded

by k. For p = f (n)/n we get log(pn)
p = n log( f (n))

f (n) . From this we can conclude that E[w(g)] = o(n) for
f (n) = ω(1). Since w(G)≤ n, the lemma follows. �

The above Lemma along with the results of the previous sections imply the following corollary.

Corollary 6.27. Let G be a random dag in the Gn,p model such that p = f (n)/n and f (n) = ω(1).
Then, there exists a solution to the representative LCA problem in dags with average case complexity
〈o(n3),o(n2),o(n)〉.

We continue by giving a simple solution for sparse dags, in particular dags having a small transitive
closure. Suppose we have a sorted predecessor list Lv stored with each node v of G. Then, upon a
query LCA{x,y}, a representative LCA of x and y can be found by simply searching the vertex with
the greatest topological number that is included in both Lx and Ly. This step obviously takes time
O(|Lx|+ |Ly|) since the lists are sorted. The lists can be created as follows. For each vertex v ∈ V ,
perform a DFS traversal on the reverse dag G = (V,E) starting at v. This takes a total of O(nm).
Sorting the list Lv costs O(|Lv| log |Lv|). Using this easy approach, we get.

Theorem 6.28. Representative LCA in a dag G can be solved within 〈O(nm +

∑v∈V |Lv| log |Lv|),O(∑v∈V |Lv|),O(|Lx|+ |Ly|)〉 for a query LCA{x,y}.

In the worst case the above bounds are 〈O(n3),O(n2),O(n)〉, which does not improve over naive
solutions. However, again it is possible to show that if G is a random dag in the Gn,p model the
expected value of s(n) is o(n2) for certain choices of the parameter p.

We note that the space requirement of the above data structure, ∑v∈V |Lv|, is proportional to the
size of the transitive closure of G, i.e., the number of 1s in the adjacency matrix of Gclo. Let in the
following γ(s) be the transitive, reflexive closure of vertex s∈V , where s is the vertex with topological
number 1 in G. The following lemma can be derived from results presented in [SCC93].

Lemma 6.29. Let G be a random dag in the Gn,p model. Then,

E[|γ(s)|] =
{

o(n) if f (n) = o(logn)
Θ(n) else.

Proof. The quantity |γ(s)| was analyzed in random dags in the Gn,p model in [SCC93]. It is shown
that

lim
n→∞

n−E [|γ(s)|] = L(q), (6.3)

where L(q) = ∑
∞
i=1

qi

1−qi is the so-called Lambert series with parameter q and q = 1− p. The Lambert
series cannot be analytically resolved, but again in [SCC93], an approximation for the expected value
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of interest is given. Let g(n) be a function that approximates E [|γ(s)|] such that E [|γ(s)|] = O(g(n)).
Then,

g(n)<−
log(1− logq

qn )

logq
+

log(1−2logq)
2logq

exp
(

1−qn

logq

)
. (6.4)

We consider

lim
n→∞

g(n)

< lim
n→∞
−

log(1− logq
qn )

logq
+

log(1−2logq)
2logq

exp
(

1−qn

logq

)
.

for q = 1− f (n)/n. We split up the right-handed expression as follows:

lim
n→∞
−

log(1− logq
qn )

logq︸ ︷︷ ︸
an

+
log(1−2logq)

2logq︸ ︷︷ ︸
bn

exp
(

1−qn

logq

)
︸ ︷︷ ︸

cn

For the limit of an we get

lim
n→∞

an = lim
n→∞
−

≤− log(1− f (n)/n)
(1− f (n)/n)n︷ ︸︸ ︷

log
(

1− log(1− f (n)/n)
(1− f (n)/n)n

)
log(1− f (n)/n)

= lim
n→∞

((1− f (n)/n)n)−1

= e f (n).

For bn we use the following identity.

lim
x→0

log(1+ x)
x

= 1 (6.5)

We observe that 1− f (n)/n approaches 1 as n → ∞ since f (n) = o(n). Hence, lim
n→∞
−2log(1−

f (n)/n) = 0. By setting x =−2log(1− f (n)/n) and using Equation (6.5) we get lim
n→∞

bn = 1.

Finally, we consider

lim
n→∞

cn = lim
n→∞

exp


→1−e− f (n)︷ ︸︸ ︷

1− (1− f (n)/n)n

log(1− f (n)/n)︸ ︷︷ ︸
→0(<0)


= 0.

Altogether, since the limits of bn and cn exist, we have

lim
n→∞

g(n) < lim
n→∞

an + lim
n→∞

bn lim
n→∞

cn

= e f (n).
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Clearly, e f (n) = o(n) for f (n) = o(log(n)) and e f (n) = Ω(n) for f (n) = Ω(logn). Since trivially,
E[|γ(s)|] = O(n), the lemma follows. �

Lemma 6.29 implies, e.g., that for sparse random dags with p = c/n for some constant c, the
number of vertices reached by any vertex v is in expectation also bounded by a constant, i.e., ec. Dags
originating from real-world applications are often sparse in this sense, that is, the average degree of
the vertices can be bounded by a constant, see [EMN07] and Chapter 7. However, under practical
considerations, the constant ec might be quite large. Lemma 6.29 also implies that for p = f (n)/n
and f (n) = Ω(logn), the above approach does not provide an asymptotic advantage over the naive
approaches with regard to space requirements.

Corollary 6.30. Let G be a random dag in the Gn,p model where p = f (n)/n. Then, the representative
LCA problem can be solved in 〈O(n3),o(n2),o(n)〉 in the average case if f (n) = o(logn).

Proof. Let v ∈V be any vertex in G. The quantity |Lv| corresponds to the size of the transitive closure
of v in the reverse dag G′. It is easy to see that G′ is also a random dag in Gn,p with parameter p. For all
v∈V it holds that E[|γ(v)|]≤E[|γ(s)|]. By linearity of expectation we have ∑v∈V |Lv| ≤ no(n)= o(n2).
The same reasoning yields E[|Lx|+ |Ly|] = o(n). �

In particular, for f (n) = Θ(1), the above approach yields 〈O(n3),O(n),O(1)〉 and is thus in the
average case in terms of space requirements and query speed competitive to the respective solutions
for trees. We conclude by combining Corollaries 6.27 and 6.30.

Corollary 6.31. Let G be a random dag in the Gn,p model. Then, there exist solutions to the represen-
tative LCA problem with space requirement o(n2) and expected query time o(n) in the average case
for any choice of the parameter p.

6.5 Summary

We have considered natural and well-motivated LCA problem variants and have predominantly been
able to improve naive approaches. However, we conjecture that our contributions are mostly first steps
in the direction of understanding the problems and that significant improvements can be expected. We
are left with intriguing open questions in all of the three considered domains (dynamic algorithms,
weighted variants, space-efficient algorithms). Computational relationships of some of the problems
considered in this work are schematically depicted in Figure 6.4.

• Making the transition from unweighted to weighted dags in the context of (L)CA problems
has left us with reasonable accurate understanding of the common ancestor variants, but also
with a complexity gap to the lowest common ancestor variants. Most intriguingly, the follow-
ing questions are left open: Can one or both of the considered lowest common ancestor vari-
ants in weighted dags be solved without implicitly solving ALL-PAIRS ALL LCA? If yes, can
the problems be solved in subcubic (neglecting the implications of the respective ALL-PAIRS

SHORTEST DISTANCES problem) time? If no, is it possible to give a proof? Furthermore, it is
not clear whether the level of difficulty of the two LCA variants is the same. Intuitively, one
might lean towards a position that favors the opinion that the vertex-weighted variant is easier.
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• With respect to dynamic LCA algorithms, it seems likely that the slight asymptotic improve-
ments presented in this chapter can be significantly improved using more specialized approaches,
e.g., to Õ(n2) update time for dynamic ALL-PAIRS REPRESENTATIVE LCA. There is evidence
for the fact that ALL-PAIRS REPRESENTATIVE LCA lies in between transitive closure compu-
tation and ALL-PAIRS SHORTEST DISTANCES as far as problem difficulty is concerned. For
both of these problems solutions with update time Õ(n2) have been described. This might in-
dicate that a direct extension of the currently optimal static solutions to the dynamic setting
is ultimately not the optimum approach. Observe that any approach that follows the idea of
Section 4.3 needs Ω(n2.5) update time. Similarly, there is hope that the online version of ALL-
PAIRS REPRESENTATIVE LCA can be improved by exploiting combinatorial relationships be-
tween vertices that obtain new topological numbers and vertex pairs for which the maximum
CA has to be updated by these changes in a more subtle way.

• As stated above, the state of studies in the field of encoding partial orders might impose a
possible theoretical obstacle to general space-efficient, yet reasonably fast LCA data structures.
However, the arsenal of algorithmic approaches that yield good solutions for special dag classes
and in practical scenarios might not be fully consumed. Can, for example, a bounded height
or uniqueness of LCAs be used to obtain space-efficient data structures? Is it possible to com-
bine benign dag attributes to narrow down the class of bad dags in a similar way as done in
Section 5.5?
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ALL-PAIRS ALL-PAIRS
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SHORTEST DIST.
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Figure 6.4: Schematic description of some of the currently established problem relationships. An ar-
row from A to B means that A can be reduced to B. Observe that we ignore polylogarithmic
factors for reductions.





CHAPTER

7

EXPERIMENTAL ANALYSIS

7.1 Introduction

In this chapter we describe the results of an experimental analysis of LCA algorithms. In particular,
we conduct a study of the dynamic-programming-based algorithms for ALL-PAIRS REPRESENTA-
TIVE LCA and ALL-PAIRS ALL LCA. The benefits of the experimental analysis are twofold. A
recent trend in algorithmics is algorithm engineering. Basically, algorithm engineering aims at bridg-
ing the gap between theoretical bounds and algorithmic solutions of practical relevance. Many of the
algorithmic methods presented in Chapters 4 and 5 have limited practical relevance. This is particu-
larly true for the methods that use fast matrix multiplication. Although there are reasonable efficient
implementations of subcubic matrix multiplication algorithms [DN05, DN07], the methods yielding
the best exponents [CW90] are currently considered to be impractical. To be a good candidate for a
practically good solution, an algorithm should be reasonably easy to implement and reasonably ef-
ficient on typical problem instances. Here, typical means data that has characteristics of data that is
expected in the respective applications. We close the gap between the established theoretical upper
bounds and practically satisfying solutions by the experimental study presented in this chapter.

On the other hand, experimental analysis of algorithms can be used to derive asymptotic properties
of algorithms where mathematical analysis fails or is too much of an effort to be conducted. The av-
erage case complexities of the dynamic programming algorithms given in Chapter 3 give explanation
for the good performance of the algorithms on random dags in the Gn,p model. However, this is not
sufficient to conclude that the algorithms perform well on typical data. Therefore, experimental anal-
ysis of algorithms is used to extend the results of the average case analysis to more refined random
models and real world instances.

In Section 7.2 we describe the experimental setup, i.e., the tested algorithms and respective im-
plementations, the used input instances, and the evaluation approach. Subsequently, we present the
results of the experimental study in Section 7.3. The main conclusions that can be drawn from the
study are the following:

91
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• ALL-PAIRS REPRESENTATIVE LCA can be solved by using the dynamic programming algo-
rithm presented in Chapter 3 in time close to O(n2) in practice. In fact, an upper bound of O(n2)
seems to hold except for dags in which the number of edges is close to n logn. For such dags,
the results indicate an upper time bound of O(n2 logn).

• Similarly, algorithms based on dynamic programming solve ALL-PAIRS ALL LCA efficiently.
Here, the improvement with regard to the best general upper bound is even more dramatic, from
O(n3.334) to approximately O(n2). As in the case of ALL-PAIRS REPRESENTATIVE LCA,
instances having close to n logn edges appear to be the most difficult. Here, however, the
additional penalty is roughly a factor of n rather than logn.

7.2 Experimental Setup

7.2.1 Implementation

We have implemented Algorithm 2 (DP-LCA), Algorithm 3 (TC-APA), Algorithm 4 (DP-APA) de-
scribed in Chapter 3, and Algorithm 6 (PC-APA) described in Chapter 5 in C++1. For comparison
with two of the algorithms that were subject to the experimental study in [BFCP+05], we adapted the
code provided by the authors to fit in our C++ framework. We followed the concept of making as few
changes to the original code as possible in order to prevent bias against or for foreign methods. The
third algorithm tested in [BFCP+05] was ruled out due to its inferior performance. This finding is in
accordance with the results of the study presented in the respective paper. The first algorithm (RMQ)
is based on combining ancestor lists for each of the vertices with LCA queries on a spanning tree of G.
The running time of the algorithm is O(n3). However, RMQ was by far the best performing algorithm
in the experimental study in [BFCP+05]. The second algorithm (TC) is based on transitive closure
look-ups. It computes Gclo first and then chooses the maximum CA of a pair {x,y} by comparing the
corresponding rows of the adjacency matrix Aclo of Gclo. The running time of the algorithm is Θ(n3).

Additionally, we implemented the two transitive closure algorithms described in [Sim88]: the al-
gorithm of Goralćíková and Koubek[GK79] (GK) with average case running time of O(n2 logn) and
the algorithm of Simon [Sim88] (Simon) with average case running time of O(n2) [Cri94]. Our pre-
processing routines are complemented by the greedy algorithm for computing a chain cover of G with
running time O(n+m) [Sim88], see also Section 3.2, Algorithm 1. Both of the transitive closure
algorithms naturally compute the transitive reduction and are used to accomplish both tasks. Ap-
proaches based on fast algebraic matrix multiplication were excluded from this study. These methods
are widely believed to be not efficient in practice.

7.2.2 Test Data

We tested the algorithms on four families of dags:

• Gn,p random dags: In order to mirror random dags of varying density we use the parameter
p to control the expected number m of edges in the dag G. Observe that E[m] = p ·

(n
2

)
. We

created the following random Gn,p dags.

– sparse: p = 4/n, i.e., m≈ 2n
1Our implementations and the used test data are available at

http://wwwmayr.informatik.tu-muenchen.de/personen/nowakj/lca/
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– medium: p = 2logn/n, i.e., m≈ n logn

– dense: p = 0.5, i.e., m≈ 0.25n2

• Gn,m random dags: Gn,m random dags were created in an analogous way. Here, we fix the
number of edges instead of the parameter p.

– sparse: m = 2n

– medium: m = n logn

– dense: m = 0.25n2

• Power law random dags: Modeling real world data often leads to graphs in which the degrees
of the vertices satisfy a power law. That is, the number of vertices of degree k is proportional
to k−α for some constant α > 1. This is also true for dags, e.g., a citation graph compiled
from crawling scientific literature obeys a power law with α ≈ 1.7 [AJM04]. There are nu-
merous examples of large-scale networks that fall into the category of power law graphs, most
prominently the World-Wide-Web [AJB99, KKR+99]. We generated random dags in which the
expected out-degrees of the vertices follow a power law by slightly adapting the Chung-Lu
model [ACL01, CL02]. First, target out-degrees of the vertices are generated according to the
power law. Suppose that the vertices are sorted in decreasing order with respect to their target
degrees. Then, for each vertex pair (i, j), i < j (with respect to the order) an edge (i, j) is added
with probability pi, j =

degi
n−i , where degi is the target degree of vertex i. We generated dags for

α = 3 (sparse), α = 2 (medium), and α = 1.5 (dense), representing common exponents. It
should be noted that the densities of power law dags are not directly comparable with their
respective Gn,p and Gn,m counterparts. While the power law dags for α = 1.5 are indeed the
densest instances, the expected number of edges in such graphs is only slightly superlinear. The
exponents for these models are chosen to reflect commonly observed exponents.

• Real-world data sets: Our real-world data sets include the Internet dag, the citation dag, and
phylogenetic networks.

1. The Internet dag is derived from business relationships of autonomous systems (ASes) in
the Internet. Our data set is obtained from observable BGP routes. From these routes an
acyclic AS graph is inferred with the method proposed in [KMT06]. We use the same data
set as in [HK07], where a detailed description of the data collection and postprocessing
steps can be found. The final dag has 22,218 vertices and 57,413 edges.

2. The citation dag is compiled from Citeseer’s OAI publicly available records2. Similar
graphs have been studied and analyzed extensively in the past, see [AJM04] and references
therein. Computing LCAs in such dags may provide valuable information, e.g., which
papers are original to two or more papers on a particular topic. The dag has 716,772
vertices and 1,331,948 edges. The data provided by CiteSeer is automatically obtained
by crawling the web and not free of errors. We first parsed the documents and created a
citation graph, where an edge (x,y) was added whenever y references x. We then manually
cleaned the data by ordering the vertices according to their timestamps (which are part of
the data) and deleting edges that are not consistent with the partial order imposed by the
timestamps.

3. We considered two phylogenetic networks for which the data sets are included as examples
in the SplitsTree4 [HB06] package. The first network represents evolutionary relationships

2http://citeseer.ist.psu.edu/oai.html
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between mammals. It has 498 vertices and 889 edges. The second network represents
evolutionary relationships between a single protein, namely myosin, a protein involved
in muscle contraction, in different organisms. The network has 5462 vertices and 10,321
edges.

The Internet dag and the citation dag had to be sampled in order to be processed by our algo-
rithms. We were interested in dense subgraphs in order to evaluate the effect of the transitive
reduction in real-world dags. To achieve this, we sampled the graphs by performing breadth
first searches starting at high-degree vertices. To sample a graph of size n, we choose the dag
which is induced by the first n visited vertices. The sampling imposes a bias towards dense sub-
graphs. However, most of the instances generated are still sparse in the sense that the average
degree of the vertices is a small constant, e.g., < 5 in the case of the citation graph samples.
The densities of the used samples are plotted in Figure 7.1. These graphs have to be taken
into account when comparing the results of the experimental study on the real-world data sets
with the results on randomly generated instances in which the dag densities can be controlled.
Although the effect of the transitive reduction on sparse dags is small, naturally, the O(nmred)
dynamic programming approach is by far the best choice for such dags.
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Figure 7.1: Densities of the real-world dags before and after application of transitive reduction.

7.2.3 Evaluation

We evaluated the performance of the algorithms on all input dag families, varying densities, and
varying graph sizes. The performance was measured in terms of CPU time. On randomly created
instances, the experiments were repeated several times in order to obtain an accurate average. How-
ever, we note at this point that the number of iterations had to be held small on some combinations
of slow algorithms and large problem instances due to extremely long computation times (more than
one hour for one iteration in such cases). Nevertheless, in all cases the variances of the running time
were rather small so that as few as 10 iterations give an accurate estimate of the expected value.

An important goal of the experimental evaluation was to verify the results implied by the average
case analyses given in Chapters 3 and 5 in models that are not directly covered by assuming an input
space distribution according to the Gn,p model, i.e., other random dag models and real-world instances.
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Although constant factors matter in practice, we focus on the derivation of asymptotic behavior in the
presentation of the experimental results below. However, in cases where competing algorithms appear
to have the same asymptotics, we aim at indicating constant differences as well.

Measuring running times as time per element, i.e., dividing the running time by an adequate factor
(e.g., per vertex, or per vertex pair) provides insights about the asymptotic behavior, see, e.g., [San00].
We make use of such representations of our results throughout this chapter. More specifically, suppose
we evaluate results on a dag G with n vertices. We use the following terminology:

• time per vertex: total running time divided by n

• time per vertex pair: total running time divided by n2

Note that we use n2 as number of vertex pairs instead of n(n−1) or n(n−1)/2. This does not affect
the respective asymptotic conclusions.

All tests were performed on a system with an AMD Athlon 64 X2 6000+ dual core processor
clocked at 3013 MHz with 2 GB RAM running on Linux.

7.3 Results

Transitive Reduction: We first compared the two methods for creating the transitive reduction of a
dag. Simon clearly outperforms GK on medium and dense dags. Moreover, the space requirement for
GK is significantly larger than for Simon imposing a limiting factor on large problem instances. As a
result of the study Simon was used to create the transitive reductions in all further experiments.

Since all of the dynamic programming algorithms depend heavily on the number of edges in the
transitive reduction of the input dag G, we measured the actual size of the reduction on the different
input data sets, see Figure 7.2. Results for Gn,p random dags follow the known results on the respective
expectations (Chapter 3). The sizes of the transitive reductions of Gn,m random dags seem to be close
to equal to the sizes of the comparable Gn,p dags; this indicates that the average case results of the
previous chapters hold for an input space that is distributed according to the Gn,m model. However,
Proposition 3.3 cannot be applied to establish this mathematically, since mred is not a monotonic graph
property. The graphs depicted in Figure 7.2 give also a first indication to the fact that medium-sized
instances turn out to be the most difficult. This is in accordance with the results presented below.

7.3.1 All-Pairs Representative LCA

We tested the effect of using transitive reduction along with the RMQ algorithm. The effect is very
small compared to the dynamic programming algorithms, but improves the running time slightly.
Subsequently, transitive reduction is used also for RMQ, whereas TC clearly does not benefit from
transitive reduction. As a first immediate consequence of the results with respect to the tested ALL-
PAIRS REPRESENTATIVE LCA algorithms, DP-LCA is far superior to both RMQ and TC on all
tested input classes, where the advantage of DP-LCA over its closest competitor RMQ is minimized
for sparse input dags. Figure 7.3 depicts a sample of the respective results.

We turn our attention to the evaluation of the asymptotics of the considered algorithms. Since the
time complexity of TC is Θ(n3), we exclude the respective results from this study. Close examination
of the RMQ algorithm reveals that the running time depends effectively on the total size of the ancestor
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lists and hence on the size of the respective transitive closures. The expected transitive closure sizes in
random Gn,p dags can be bounded by O(n ·e f (n)), where p = f (n)/n, recall the proof of Lemma 6.29.
This in turn implies that the running time of RMQ can be expected to be quadratic on sparse Gn,p and,
eventually, input instances with similar properties. Experimental evaluation supports this as can be
seen in Figure 7.4. The running times for the majority of input classes are cubic, with exceptions given
in Figure 7.4(b). Sparse Gn,p, sparse Gn,m, and sparse power law seem to be close to O(n2). Medium
power law is clearly superquadratic, however, the additional factor is probably only polylogarithmic.
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Figure 7.4: Asymptotic evaluation of RMQ on various input classes.

Figure 7.5 depicts the running times of DP-LCA measured as time per vertex pair. The results
indicate that DP-LCA has running time close to O(n2) for all tested input classes. However, while an
actual upper bound of O(n2) seems to hold for almost all classes, the graphs in Figure 7.5(b) show
that the running times are slightly superquadratic for medium Gn,p, medium Gn,m, and dense power
law dags. The additional factor is conjectured to be proportional to logn.

We have not included most of the respective graphs for the real-world test instances in Figures 7.4
and 7.5. The reason for this is that the graphs appear wild and erratic, in particular in high resolution.
Recall that the densities of these graphs are not controlled as in the case of the randomly created
graphs, see Figure 7.1. However, the real-world dags behave much like sparse Gn,p or Gn,m random
dags as the number of vertices grows, see Figure 7.6. Even the running time of RMQ seems to be
quadratic. The finding that the real-world graphs appear to have the same asymptotic behavior as
sparse Gn,p and Gn,m dags is supported by all of our conducted experiments. However, we usually do
not print the respective graphs below in order to keep clarity.

We summarize the conclusions drawn from the experiments with regard to the asymptotic behavior
of the tested algorithms in Table 7.3.1.

7.3.2 All-Pairs All LCA

We continue by considering ALL-PAIRS ALL LCA. The algorithms that were subject to the experi-
mental evaluation are:
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Figure 7.5: Performance evaluation of DP-LCA measured as CPU-time per vertex pair

TC RMQ DP-LCA
sparse Gn,p O(n3) O(n2) O(n2)

medium Gn,p O(n3) O(n3) O(n2 ·polylog(n))
dense Gn,p O(n3) O(n3) O(n2)

sparse Gn,m O(n3) O(n2) O(n2)
medium Gn,m O(n3) O(n3) O(n2 ·polylog(n))

dense Gn,m O(n3) O(n3) O(n2)
sparse PL O(n3) O(n2) O(n2)

medium PL O(n3) O(n2polylog(n)) O(n2 ·polylog(n))
dense PL O(n3) O(n3) O(n2 ·polylog(n))

real-world O(n3) O(n2) O(n2)

Table 7.1: Predicted asymptotic behavior of tested ALL-PAIRS REPRESENTATIVE LCA algorithms.

1. TC-APA: the simple method (Algorithm 3) with running time O(n2 mred).

2. DP-APA-it: the dynamic programming method (Algorithm 4) using the iterative merging strat-
egy with running time O(nmred w(G)κ).

3. DP-APA-lazy: the dynamic programming method (Algorithm 4) using the lazy merging strat-
egy with running time O(nmred(κ

2 +κ logn)).

4. PC-APA: the method that uses ALL-PAIRS REPRESENTATIVE LCA solutions and the path
cover technique (Algorithm 6) with running time O(nmred w(G)).

Again, the performance of the considered algorithms depends on the number of edges in the transi-
tive reductions of the input dags, see Figure 7.2. Comparing the performance of the tested algorithms,
it is readily seen that the two dynamic programming algorithms (DP-APA-it and DP-APA-lazy) clearly
outperform TC-APA and PC-APA on almost all input dag classes. The only exception to this finding
is the good performance of PC-APA on very dense input classes, i.e., dense Gn,p and Gn,m. The size of
the path cover is sufficiently small only in these tests. Observe that this can be expected considering
results on the expected width of random dags [Sim88, BE84].
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Figure 7.6: Performance evaluation of RMQ and DP-LCA on real-world instances

# vertices RMQ TC DP-LCA
Mammals 498 1.45 1.33 0.01
Myosin 5462 1540.95 1917.73 2.01

n TC-APA PC-APA DP-APA-it DP-APA-lazy
Mammals 498 12.82 2.4 0.26 0.46
Myosin 5462 19652.2 1821.02 38.76 66.01

Table 7.2: Experimental results for phylogenetic networks.

The results for the two versions of DP-APA, i.e., using the iterative and lazy merging strategies,
are very similar. The asymptotic behavior (Figures 7.8 and 7.9) of both algorithm variants seems to
be equivalent on all tested input classes. Most interestingly, the running times are close to quadratic
for all but two input classes (medium-sized Gn,p and Gn,m dags). Observe that this is an improvement
over the best general upper bound (Thm. 4.19) of more than an order of magnitude. Furthermore, this
indicates that the trivial Ω(n3) lower bound is rarely attained. In contrast to this, the running times on
the bad input classes, namely medium-sized Gn,p and Gn,m dags, is not subcubic. The gap between
theses two classes and the rest of classes is roughly a factor of n. The reason for this complexity gap is
that the LCA set sizes in the medium-sized random dags are considerably larger than for their sparse
and dense counterparts. Since the running time scales quadratically with this quantity, our dynamic
programming algorithms are vulnerable to such spikes.

The running times of both TC-APA and PC-APA are roughly cubic on almost all input classes
with the only exception being the results of PC-APA on dense Gn,p and Gn,m dags. For these dense
instances, the running time of PC-APA seems to be close to quadratic, see Figure 7.10.

Interestingly, medium-sized dags turn out to be the most difficult problem instances both in terms
of running time and maximum size of problem instances that can be handled by the main memory. We
evaluated the size of the LCA sets in dependence of the dag densities with n = 800, see Figure 7.11.
We conjecture that the values peak out in Gn,p dags for p≈ 8/n. This is supported by Figure 7.11(b)
which plots the expected average degree for the edge probability that maximizes the set sizes for
various n. Figure 7.11(c) analyzes the p-values for which the average LCA set size is maximized.
This quantity might be more suited for predicting the running time of the DP-APA algorithms. The p-
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Figure 7.7: Performance comparison of ALL-PAIRS ALL LCA algorithms
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Figure 7.8: Asymptotic evaluation of DP-APA-lazy
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Figure 7.9: Asymptotic evaluation of DP-APA with iterative merging strategy.
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values seem to peak for p≈ logn/n. The average LCA sizes are close to
√

n for these p-values. This
finding explains the inferior running time (close to O(n3)) of the DP algorithms for such instances.
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Figure 7.11: Evaluation of LCA set cardinalities in dependence of the parameter p in Gn,p dags.

The conclusions drawn from the experimental study with regard to asymptotic properties of the
ALL-PAIRS ALL LCA algorithms are summarized in Table 7.3.2.
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TC-APA PC-APA DP-APA-it DP-APA-lazy
sparse Gn,p O(n3) O(n3) O(n2) O(n2)

medium Gn,p O(n3) O(n3) O(n3) O(n3)
dense Gn,p O(n3) O(n2) O(n2) O(n2)

sparse Gn,m O(n3) O(n3) O(n2) O(n2)
medium Gn,m O(n3) O(n3) O(n3) O(n3)

dense Gn,m O(n3) O(n2) O(n2) O(n2)
sparse PL O(n3) O(n3) O(n2) O(n2)

medium PL O(n3) O(n3) O(n3) O(n3)
dense PL O(n3) O(n2) O(n2) O(n2)

real-world O(n3) O(n3) O(n2) O(n2)

Table 7.3: Predicted asymptotic behavior of tested ALL-PAIRS ALL LCA algorithms ignoring poly-
logarithmic factors.





SUMMARY OF NOTATION

notation meaning
Gclo transitive closure of a (directed acyclic) graph G
mclo number of edges in Gclo
Aclo adjacency matrix of Gclo
Gred transitive reduction of a (directed acyclic) graph G
mred number of edges in Gred
Ared adjacency matrix of Gred

u v there is a directed path from u to v in G
indeg(v) number of incoming edges of vertex v

outdeg(v) number of outgoing edges of vertex v
N(v) the set of all vertices adjacent to v in G

Nout(v) the set of children of vertex v in G
Nin(v) the set of parents of vertex v in G

Nout
clo (v) the set of successors of vertex v in G

Nin
clo(v) the set of ancestors of vertex v in G
h(v) height of a vertex v in G

dp(v) depth of a vertex v in G
dp(G) depth of a dag G
w(G) width of a dag G

top(v) topological number of a vertex v
topm(v) maximum topological number of a vertex v in any topological sort

CA{x,y} set of all common ancestors of a vertex pair {x,y} in G
LCA{x,y} set of all lowest common ancestors of a vertex pair {x,y} in G

MCA{x,y} maximum CA of a vertex pair {x,y} with respect to some topological order
top

κ maximum cardinality of an LCA set in G
κ average cardinality of the LCA sets in G

V ′ forbidden set w.r.t. V ′, i.e., all vertices v ∈V such that v v′ for some v′ ∈V
M[i, j] entry in row i and column j of a matrix M
M[∗, I] submatrix of columns of M whose indices belong to I

105



106 Summary of Notation

M[I,∗] submatrix of rows of M whose indices belong to I
M[∗, I,0] column-submatrix of M, consists of columns of M whose indices belong to I,

other columns are 0-vectors
M[I,∗,0] row-submatrix of M, consists of rows of M whose indices belong to I, other

rows are 0-vectors
MT transpose of the matrix M

ω exponent for square matrix multiplication
ω(a,b,c) exponent of multiplication of an na×nb by an nb×nc matrix

α parameters satisfying α = sup{0≤ r ≤ 1 : ω(1,r,1) = 2+o(1)}
β constant satisfying β = ω−2

1−α

µ parameter satisfying 1+2µ = ω(1,µ,1)
dG(x,y) distance of a shortest path from x to y in a digraph G

AD{x,y} shortest ancestral distance of a vertex pair {x,y}
ADz{x,y} ancestral distance of a vertex pair {x,y} with respect to z

Lx list of ancestors of a vertex x
DP dynamic programming
GR (reduced) dag that results from a dag Gred by removing all edges incident to

vertices covered by a partial chain cover
Õ( f (n)) O( f (n) logc n) for a constant c > 0
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