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Abstract

The science of computer engineering in wireless networks is growing more and more
complex. This is the result of the fast evolving set of new communication technolo-
gies. Especially, since the integration of the Bluetooth technology and the IEEE
802.11 standard into cellular phones has taken place, nearly every user is able to
build up short living wireless connections and to transfer data. In the near future,
these kinds of connections will grow evermore complex and will be omnipresent at
any time. Complex networks will be created, which will have to be organized very
elaborately. Simultaneously, the usage of such networks for clients must be as simple
as possible.

This thesis introduces a software system, named BlueSpot System, designed to
organize such underlying wireless networks. By applying these networks, the system
makes possible to use platform-independent communicative mobile services. A main
aspect hereby is to provide a system with a well defined structure to which these
services can connect to and be run independently from any underlying hardware
and communication technology. Throughout the development process, the design of
software interfaces became important in order to easily add new or adapt existing
functionalities, such as various wireless routing protocols or QoS approaches. Addi-
tionally, self-management is included into the resulting middleware in order to have
a fault-tolerant and easy-to-use system.
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Chapter 1
Introduction

Contents

1.1. Thematic Context . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Scope and Contribution . . . . . . . . . . . . . . . . . . . 2

1.3. Aims of this Thesis . . . . . . . . . . . . . . . . . . . . . . 2

1.4. Structure of this Thesis . . . . . . . . . . . . . . . . . . . . 4

1.1. Thematic Context

The theory behind wireless networks is growing more and more complex, triggered by
new realities from the fast evolution of new communication technologies. Especially,
with the recent integration of the Bluetooth [Bluetooth SIG, 2007] technology or the
IEEE 802.11 [IEEE 802.11, 2007] standard into cellular phones, nearly every user is
able to build up short living wireless connections and to transfer data. In the near
future, the trend is that these ”emergent”’ kinds of connections will grow even more
complex. They will be omnipresent in time, especially in the category of so-called
wireless information networks, on which we focus in this work.

On the one hand, through the emergence of temporary, short-living wireless con-
nections, even more complex networks will be created which will have to be orga-
nized very elaborately. On the other hand, the application of such networks for
great numbers of participants must be as simple as possible. The trade-off between
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1. Introduction

these requirements is why we focus our work on this topic, as it necessitates theory
building and reality building simultaneously.

1.2. Scope and Contribution

This thesis introduces a software system designed to make the use of platform-
independent communicative mobile services possible. A main aspect hereby is the
providing of a well defined structure in which these services can be placed on top of
and be run independently from any underlying hardware. Additionally, this software
system is able to build up an autonomous wireless network which operates using the
currently widely spread Bluetooth and the IEEE 802.11 standards.

Throughout the development process we emphasized the necessity of the system’s
easiness of installation and application. Also, we concentrated on designing software
interfaces in order to easily add new or adapt existing functionalities. These func-
tionalities are mobile services, which are seen as external extensions and adaptive
behavior modules, which are seen part of the network self-organization and thus are
internal extensions.

The name of this software system is the BlueSpot system. Chapters 3 and 8 are
devoted to its theoretical understanding.

1.3. Aims of this Thesis

Currently available mobile devices are very heterogeneous concerning their hard-
ware, services, and user interface. Almost every device is based on a different hard-
ware platform and has a different configuration concerning its attached peripherals.
In this thesis we concentrate on a selected set of these devices such as smartphones,
PDAs or embedded devices. We also included x86-compatible desktops as an ad-
ditional testing environment. To be able to provide a homogeneous communication
platform for mobile services running on those devices, it was necessary to identify a
subset of corresponding supported peripherals and technology standards all applied
devices provide. In particular, for the choice of the underlying wireless communi-
cation standard, only the Bluetooth standard and the IEEE 802.11 standard came
into question, as these two standards are currently the most common ones.

One aim is purpose: the purpose of the BlueSpot system is to provide an environ-
ment in which as many capabilities of those devices as possible can be brought to

2



1.3. Aims of this Thesis

one standardized platform to support mobile services in a mostly general manner.
To this end, the resulting system must be viable and adaptable to a wide-reaching
spectrum of requirements. It must endeavor to build up a wireless network between
those devices, which allows them to communicate with each other, as well as to ex-
change data. The function of a mobile service is not only limited to the local device
it runs on, but it is also extended to be able to communicate with other mobile ser-
vices running on other devices within the BlueSpot system. The underlying wireless
network is held completely transparent to the user of the mobile service, so that he
does not need to have any knowledge of network configuration or of organizational
issues involved.

Another aim is experimental: in terms of computer science, the BlueSpot system
is employed to demonstrate a platform that allows to examine and compare existing
as well as new network self-organization concepts. It includes well defined interfaces
where additional software modules can be added or existing ones can be replaced.
That way, the BlueSpot system is kept as general as possible so that even the
underlying communication technology, which is used for networking, can be replaced
very easily by another, not yet existent network technology.

Owing to the generality of the concept, the main software module needs no mod-
ification, but special features of a new technology can be very easily added via the
provided interfaces. E.g. the master-slave allocation of the Bluetooth standard was
included into the networking module of the BlueSpot middleware without any loss
of generality. In doing so, network forming algorithms can be implemented in a gen-
eral manner, and they can additionally take advantage of this special characteristic
of Bluetooth. On all supported devices we used a general Bluetooth stack. It was
very important for the design of the BlueSpot system that the stack does not have
any restrictive requirements on existing hardware drivers and supporting software.
Hence the used Bluetooth stacks did not need to be modified for application within
the BlueSpot system.

A third aim is to understandability: in order to make the BlueSpot system even
more clear, we implemented several different kinds of mobile services which are
used to represent the varying requirements mobile services can have. The most
illustrating service is a small remote controlled car. We replaced its receiver with an
embedded computer. This computer was later integrated into the BlueSpot system,
which made it possible to steer the car via the entire network. The controlling of
the car could also be performed by any device that had a corresponding car steering
service installed on it. As an extra demonstration we supplemented a second remote
controlled car with a camera mounted onto its roof. The video of the camera is
streamed via the BlueSpot system, so that a user can see where the car is driving

3



1. Introduction

to and instantly watch the video on the display of his device.

Finally, the aim of this thesis is to present the concept of a generalizable software
system: a system that enables the inclusion of a far-reaching spectrum of hard- and
software technologies, network mechanisms, and large variety of mobile services.
We had to show that the resulting system is viable when generalized. With the
resources at hand, the investigation of an all-encompassing software platform that
enables the proving of services was made possible. As can be seen in chapter 7, our
first attempt of a fairly general description of the BlueSpot system went well, but,
admittedly, a more general approach is and will always remain a vision. With the
BlueSpot system described in this thesis, we tried to provide a solution that goes
one step further in this direction, yet many appear to be possibly feasible at a later
time.

In order to demonstrate the current system’s capabilities, we investigated the dis-
tinctive behavior of Bluetooth-base Scatternets with M/S and S/S bridges in great
detail. By use of the system, we were able to show that S/S bridged Scatternets pro-
vide a much better scalability than M/S bridged ones. For the detailed description
of these experiments we refer to section 9.2.5.

1.4. Structure of this Thesis

This thesis is divided into three parts. Part one provides all the fundamentals needed
to understand the BlueSpot system, and is built up as follows:

Starting with the motivation, we will describe the underlying problematic this
thesis points at. We will therefore introduce example scenarios the BlueSpot system
was designed for. For a better classification of the field of application this thesis
aims at, related work will be shown and its accordances and diversities in contrast
to the BlueSpot system discussed.

The subsequent chapter 3 will provide necessary definitions that are fundamental
for the research and development work in this thesis. Starting with a formal defi-
nition of wireless network configurations and how they can be described as math-
ematical edge graphs, wireless networks will be classified concerning their charac-
teristics. The communication model of the BlueSpot system will be explained by
use of the previously presented network classification. In order to understand the
software model, a short introduction into a general description of software models
will be given. The main software components that came to application within the
BlueSpot system will be introduced and formally defined. By transferring these
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1.4. Structure of this Thesis

elucidations onto the BlueSpot system, this chapter is rounded up by depicting the
software model of the BlueSpot system in detail.

Based on the underlying network topology, each network needs a mechanism that
is responsible for the end-to-end communication. Otherwise, communication would
only be possible between two neighboring nodes. The fourth chapter contains all
information needed to understand such mechanisms. It classifies wireless routing
algorithms concerning their properties and shows an example for each class in more
detail. The present classes of wireless routing algorithms are pro-active and reac-
tive ones. These two class distinctions characterize such algorithms. In addition,
more specialized approaches such as hybrid and flow oriented algorithms will be
explained. Finalizing the chapter, further specialized algorithms will be addressed
which establish the far-reaching spectrum of possible solution approaches that can
be expected to emerge in the near future.

The last chapter of this first part, chapter 5, will present the main characteris-
tics of the two supported communication technologies Bluetooth and IEEE 802.11
WLAN. Especially, in case of Bluetooth, the underlying network structure with its
distribution of roles must be understood in order to enable the description of further
investigations that will be made in the later chapters of this thesis. In addition to
the used communication technologies, the hard- and software products that served
as basis for the BlueSpot system will be discussed. Each class of hardware will be
presented by describing its architecture, the installed operating system as well as
the needed extension software modules.

The second part of this thesis begins by introducing the BlueSpot system and
explaining in great detail in chapter 6. Beginning with the definition of the re-
quirements of the BlueSpot system’s software architecture, different views of the
entire system’s schematics will be presented. These serve to describe the points of
integration for further adaptivity extension modules as well as the structure of the
implemented middleware with its various system layers.

In chapter 7 we will present all aspects concerning the self-organization function-
alities that are needed to control the underlying network. Therefore, alternatively
possible Bluetooth network topologies will be shown and their properties discussed.
In order to provide an algorithm that is responsible for the automatic network es-
tablishment, subsequently, general network formation approaches will be shown that
are based on the usage of selected edge graph constellations. Once the network is
formed, we will demonstrate how this formation can be modified to full-fill changing
or new requirements of on-top running mobile services. We will show up the adap-
tive behavior of the BlueSpot middleware in correlation with the several existing
software interfaces for extension modules. The last point in this chapter regards
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1. Introduction

mobility aspects, such as finding new clients or the appearing of handover events.

In chapter 8 we will classify mobile services according to their characteristics
and to the requirements they place to the underlying system. After presenting a
collection of parameters that categorize the needs of mobile services, we describe
the implementation of this collection within the BlueSpot middleware. At the end
of this chapter we demonstrate several different example implementations.

Chapter 9 contains selected simulation and benchmarking results we collected in
the course of our investigations of the BlueSpot system. firstly, we will introduce the
monitoring tool used to display the actual behavior of the BlueSpot system during
runtime. Additionally, we will describe our testing environment running on an NS2
simulator with its various different network constellations. Thirdly, comparable
benchmark results gained during simulation and real life testing proceedings will be
presented and unexpected behaviors of Bluetooth-based networks we detected will
be discussed.

The last chapter of this thesis, chapter 10, gives a conclusion summarizing the
results of the entire thesis and pointing out the scientific advances made during our
theoretical and empirical investigations. It closes this thesis with an outlook on
open questions concerning the BlueSpot system as well as future wireless network
technologies.

The appendix makes up the third part of this thesis. It contains the short abstracts
of all student works conducted in the course of the development of the BlueSpot
system. All these works can be seen as milestones that helped to compose individual
approaches and ideas to a complex software system. In addition to this, the most
important software interfaces are presented in source code. This is used to provide
the reader with a better understanding of selected functionalities of the BlueSpot
system.

6



Chapter 2
Motivation and Related Work

Contents

2.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1. Motivation

In this chapter we wish to explain the motivation for beginning the research and
development that led to the BlueSpot system. Research in the field of wireless
networks is plenty. But there are many open questions still to be investigated. With
the aid of the BlueSpot system we desired to provide a self-organizing platform,
which on one hand enables any research using wireless networks. On the other
hand, the system serves as starting point for our own research activities on selected
problems within wireless networks and mobile service providing. There are questions
such as ”How must a system be constructed in order to manage or organize itself?”.
Another question asked is: ”How can the performance be increased during run-
time?”. Current mobile devices - the main clients of wireless networks - are very
heterogeneous concerning their hardware. This leads to questions such as ”How can
we simplify the providing of mobile services for such kinds of devices?”, and ”What
are the abilities of those devices, if they get connected to a wireless network?”.

These and other questions motivated us to construct the BlueSpot system. A
preliminary investigation led to the result that the posed questions can be classified

7



2. Motivation and Related Work

into two categories. The first category covers questions concerning the underlying
wireless network, the second those related to mobile services. Classified this way,
a simple division of the system’s components emerged, as can be seen in the figure
2.1.

Figure 2.1.: Schematic Diagramm of the BlueSpot system

The diagram shows that the BlueSpot system is divided into two independent
layers: the mobile services lying on-top (depicted as green boxes), responsible for
the type of utilization, and the underlying network components (depicted as blue
cloud) used to build up the formation of the wireless network. The service interface is
responsible for providing a standardized platform on each device the mobile services
can use to connect to (depicted as orange rectangle).

A whole variety of wireless networks and service systems exist to which the scheme
applies. In accordance to the utilization of the system, it is necessary to provide
adapted services in order to meet the requirements of a user. When installed in
a museum, for example, the BlueSpot system could be used to offer information
to visitors about the exhibit a visitor is standing in front of. The visitor’s current
position within the museum could be calculated using the network connections his
mobile device currently holds upright. A second possible mobile service could act
as tour guide, leading the visitor on his path throughout the museum. In advance
to his tour, the visitor could choose the exhibits he would like to see, which are
of special interest to him. After the visitor has completed his choices, the service
would calculate the shortest path through the rooms of the museum and start the
guided tour.

Another exemplary field of utilization of the BlueSpot system is sensor networking.
After equipping every device within such a network with one or more sensors, the
measured value would be propagated by the system. If a centralized instance is
placed inside the network, all data could be collected and evaluated there. This
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2.2. Related Work

arrangement could, for example, be used to observe environmental parameters, such
as the detection of toxic gas concentrations in the air.

With the BlueSpot system, an elaborate experimental environment can be pro-
vided. Our first area of interest was to invent such an experimental environment for
comparing new and alternative approaches of wireless networking to existing ones.
By adding a platform for mobile services to the system, we were able to simulate
any kind of utilization. Normally, this can also be achieved by any Java middleware.
But we went further. Exceeding Java, the BlueSpot system has the great advantage
of building up and organizing a wireless network entirely on its own. The result-
ing communication links to all other involved participants are then provided to the
on-top running mobile services in a technology-independent manner. This way, the
network forming process runs completely transparent to both mobile service and the
participants.

The second area of interest is the underlying network layer. With this layer we are
able to demonstrate various network topologies, such as a spanning tree formation,
or a linear order independent of the communication technology in use. Due to its
immanent generality, the BlueSpot system allowed us to add new network organi-
zation algorithms. These added algorithms can be tested and compared to exiting
ones, and thus be verified. Along with these types of algorithms, the BlueSpot
system can also be extended by different routing algorithms or adaptive behavior
mechanisms. The latter mechanisms are used to alter the behavior of the entire
system in accordance to changes of the mobile service’s requirements. An example
for such a change can be an increase of the needed bandwidth-throughput after a
user has initiated the transfer of a large file.

2.2. Related Work

State of the art wireless networks are currently in use in four fields of application.
One field are wireless networks that consist of wireless integrated network sensors
(WINS) [Asada et al., 1998]. The sensor nodes are highly integrated, and in most
cases, they do not have their own power supply. They obtain their energy by induc-
tion current that is emitted from a central master.

A second field of wireless networks concerns wireless sensor networks (WSN)
[Szewczyk et al., 2004]. They consist of many small nodes that are organized in
order to cover and observe a large geographical area. Each node contains its own
logic and tries to connect to a neighboring node in order to establish a single- or
multi-hop network (for wireless network types classifications see section 3.2). They
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2. Motivation and Related Work

are distinguished by focus: by the dedication to a specialized purpose.

The BlueSpot system presented here belongs into a third category. Wireless net-
works in this class aspire to provide more complex services; complexity being char-
acterized by: 1) streaming versus message based communication, 2) critical latency
times, 3) critical bandwidth, and 4) client-server communication versus peer-to-peer
communication. The detailed characteristics of such services are described in section
8.1. Due to their more complex requirements, the underlying hardware needs to be
equipped with a larger amount of resources, and the providing wireless infrastruc-
ture needs to be managed more extensively. Since about the mid 1990s, wireless
networks within this third category are named wireless information systems (WIS)
[Pahlavan and Levesque, 1995]. As an early example of this type of networks that
deliver services based on produced information over an elaborately organized wireless
network see Gerla and Tsai [Gerla and Tsai, 1995]. The BlueSpot system provides
more potential for variety of future mobile services (generalizability at the service
level) versus potential for volume on the level of one special service (specialization).
This laboratory work at TUM focused on as much generalizability as possible.

A fourth field of wireless networks concerns providing of infrastructures for services
with a certain degree of geographical coverage and depth. In this case the type
of sub-services is not explicitly specified, but is mostly tied to telecommunication
services or internet providing services. Examples for this field are GSM and UMTS
networks as well as IEEE 802.11 WLAN or IEEE 802.16 WIMAX infrastructures.

A common feature of the entire wireless field of development is its expected un-
reliability. Traditionally, reliability is attained by more redundancies built into
the system; see fundamental theorems about networks’ and systems’ reliability
of systems with unreliable circuits, such as the theorems of Moore and Shannon
[Moore and Shannon, 1956] and of Barlow [Barlow, 1968]. Here, in the BlueSpot
system, we have implemented an alternative to redundancy: reliability is accom-
plished in the form of integrating adaptivity and self-organization capabilities into
the software system. See chapter 7 for a description of theses proceedings. In this
thesis we have reached a certain degree of integration that can be used to easily
investigate more detailed explorations.

One intermediate result on our path to more integration was a completely new
adaptive middleware approach. Most current approaches aim at extending existent
middleware technologies. E.g. Blair et al. [Blair et al., 1997] described how to ex-
tend CORBA to gain better network adaptivity for multimedia applications. Their
approach is to obtain a look into black-box systems to add special algorithms for
different network bindings. A preliminary version of this intermediate result has
been published as a contribution to the chapter Including Adaptive Behavior in a
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Wireless Network System [Dümichen and Baumgarten, 2008] in the book of Huang
et al. (editors) Advances in Communication Systems and Electrical Engineering,
forthcoming Springer, 2008.

As has been sketched in the before mentioned pre-publication, the following three
additional intermediate results apply:

In the quest for extending CORBA, a further-going approach than the one pre-
sented by Yau and Karim [Yau and Karim, 2004] applies. They extended CORBA
for context-sensitive communication in ubiquitous environments. By doing this,
the special requirements within ad hoc networks combined with the perception of
context-sensitive sensors can be met with. But both approaches of Blair et al. and
Yau and Karim have in common that they use an existing CORBA implementa-
tion and thus are not able to directly change the behavior of more than one node
simultaneously in a network. Their point of view is to examine only one node and
to make the best efforts to optimize its situation. The idea of the BlueSpot system
is to move beyond the boundaries of such a single node. The complete system is
involved in the adaption behavior, and thus a much larger spectrum of possibilities
is available. This enlarges the set of feasible requirements of any one single service
running on the BlueSpot middleware.

Regarding our advancement in adaptive software, McKinley et al. gave a detailed
overview of different processes of composing such a software [McKinley et al., 2004].
This serves to see what we have accomplished. In order to classify the kind of
adaption it describes two different processes: the parameter adaption and the com-
positional adaption. The first one focuses on an advancement of performance by
changing predefined parameters. As described in section 7.4.2, the BlueSpot sys-
tem provides several possibilities to adjust the current behavior of the system for a
better performance. In case one of these adjustments is to load another adaptivity
extension module (see section 6.2.2), a new code is loaded and thus new algorithms
are included into the middleware. This correlates to the compositional adaption
defined by McKinley et al. [McKinley et al., 2004].

Further, McKinley et al. [McKinley et al., 2004] examined the different elements
of an adaptive middleware. This idea goes back to Schmidt [Schmidt, 2002]. Schmidt
divided a middleware into four layers: Host-infrastructure middleware, Distribution
middleware, Common middleware, and Domain-specific middleware. McKinley et
al. [McKinley et al., 2004] denote this distinction of four types of middleware to be
responsible for bridging the gap between an application program and the underlying
operating systems, network protocols, and hardware devices. The BlueSpot mid-
dleware stack described in section 6.2.2 can also be linked to this decomposition.
The Network Adapter Interface and the Network Adaption Layer in the BlueSpot
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system correspond to the Host-interface middleware. They cloak the heterogeneity
of the underlying network devices. The Protocol Layer and the Session Layer fit
to both the Distribution middleware and the Common middleware. They handle
fault tolerance as well as high-level programming abstraction to enable developers
to write distributed applications in a way similar to stand-alone applications. The
Service Interface implements parts of the Distribution middleware as well as of the
Domain-specific middleware. Consequently, a whole range of already existing and
not yet existing services can thus be connected to the BlueSpot middleware by im-
plementing the functions of the service interface. Therefore, even in its current early
version, the BlueSpot system’s potential application range is larger.
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Chapter 3
Definitions and Model

In this chapter, the underlying assumptions and models for this thesis shall be
described. The first section includes the abstract presentation of a wireless network
as a mathematical graph. The following section provides an overview of how wireless
networks can be classified according to their properties. Next, we will describe the
underlying model of the BlueSpot system using the terms introduced before. The
chapter is rounded up by additional definitions necessary for understanding the
BlueSpot system, ending with a short summary.
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3.1. Defining a Wireless Network as an Edge Graph . . . . . 15

3.2. Classification of Wireless Network Types . . . . . . . . . 17
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3.5. Software Model of the BlueSpot System . . . . . . . . . 25
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3.1. Defining a Wireless Network as an Edge Graph

Analogically to wired networks, a wireless network can be presented as a mathe-
matical non-directed edge graph. Such an edge graph G = (V,E) consists of nodes,
which are also called vertexes V = {v1, . . . , vn}, and edges E = {e1, . . . , em} where
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n ∈ N+ is the amount of nodes, and m ∈ N the amount of edges of the graph G.
All nodes are distributed within a two dimensional euclidean plane. Therefore, each
node has an absolute position that describes its position in relation to the point of
origin and a relative position that determines its position in relation to its neigh-
boring nodes. The geographical distribution of the nodes is, as a result, defined by
use of the absolute positions, whereas the relative distribution of nodes describes
the distribution in dependence to other nodes.

A node vi ∈ V represents a wireless network device, while an edge eij ∈ E
represents a communication link between the two nodes vi and vj . This definition
represents a static snapshot of a network situation. Contrary to wired networks,
wireless networks are dynamic and can change over time. Therefore, we need to
introduce the parameter t as a time factor. With the use of this parameter we
are able to extend the definition of the edge graph G to G = {Gt0 , . . . , GtN } with
Gti = (Vti , Eti) that represents the snapshot of G at time ti. tN represents the
maximum lifetime of G. Without loss of generality, in the following we will use G
instead of Gti for a more simple understanding. This way, G will always represent
a snapshot in the following.

Similar to a wired network, when examining wireless networks, we must differen-
tiate between a communication link and an established communication connection.
We must consider the medium ”air”, which is used here to transfer data from one
node to another, as a shared medium. Every node within the range of a communi-
cating network device’s radio is able to listen to it. The moment a node perceives
a neighbor that is also able to participate in the network, it will indicate that it is
able to build up a link to this neighboring node. Considering the ISO-OSI stack
[Zimmermann, 1980] of the used network device driver, a link is established by the
data-link layer of the driver. After two nodes have established a link, it is necessary
for them to build up a connection in order to exchange data. This is done by the
network and the transport layers. Taking this into account, it can be see in figure 2.1
in chapter 2 that the nodes have established a entirely connected graph, illustrated
in blue color.

Generally, an edge graph can be used to depict a wireless network in three dif-
ferent layers: an edge graph that represents the links, an edge graph that contains
the established connections, and an edge graph that illustrates the established com-
munication paths as they will be described in section 4.1. These three types of
edge graphs are shown in figure 3.1. We define a link-based edge graph as a non-
directed edge graph G = (V,E), as we assume that an edge eij between the two
nodes vi and vj exists in the moment in which each node is within radio range of
the other. That way, links are seen as symmetrical. An edge graph that illustrates
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the established connections between the nodes can, by contrast, be directed as well
as undirected. To indicate that an edge e is directed from nodevi to node vj , we
use the following depiction: ~eij . A directed graph is especially useful for describing
Bluetooth-based Pico- and Scatternets (see section 7.1.1). In this case, the direc-
tion indicates from which node to which node the connection was established. The
third layer that concerns communication paths is yet again undirected. It describes
established end-to-end communication paths, as they are defined in section 4.1.

Communication paths

Connections

Links

Figure 3.1.: Three layers of presenting a wireless network by use of an edge graph

In the following, the term edge graph is usually used for representing connection
establishments, in case nothing else is denoted.

3.2. Classification of Wireless Network Types

In order to be able to classify different types of wireless networks, it is necessary
to investigate the properties of such networks. In general, wireless networks can be
divided into two categories. One category are ad-hoc networks that are the result
of having only one kind of nodes. In this case, these nodes are mobile, and they
simultaneously act as a client - which is a network customer - as well as as a router
- which is responsible for forwarding data to other network nodes. Ad-hoc networks
again can also be divided into two different types: the entirely connected networks
and the opportunistic networks. Entirely connected ad-hoc networks are defined by
the existence of at least one path with the length l ≥ 1 between two nodes vi and
vj ∈ V in G at any time ti.

In opposition to this, opportunistic networks consist of nodes that move around,
and that build up temporary connections to their neighbors. After two nodes have
exchanged their data, they will either close the connection, or one will exit the
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communication range of the other node, and hence loose the connection. There-
fore, connections are always of a short duration. Furthermore, entirely connected
networks can be separated into single-hop and multi-hop networks. In case of a
single-hop network, all nodes of the network are within communication range of
each other, while in a multi-hop network, data must be routed by nodes located
within a communication path. As a result, communication paths within a network
in general have the length l = 1, while in a multi-hop network the paths have the
length l ≥ 1.

Beside ad-hoc networks there is the class of infrastructured networks. These are
networks established by nodes - the infrastructure nodes - installed especially for
this task. These nodes are responsible for the network management, while a second
kind of nodes - the client nodes - are the customers of the network. The latter use
the network for communication between one another and are not responsible for
data forwarding. The infrastructure nodes build up an entirely connected network.
The client nodes function as the endpoints of all communication paths with at least
one infrastructure node in between. For this reason, a path in G always has the
length l ≥ 2.

Similar to entirely connected ad-hoc networks, infrastructured networks can be
divided into single-hop and multi-hop networks.

Hybrid solutions of each of the described networks are possible by combining
different networks. The complete described classification can be seen in figure 3.2.

wireless

ad hoc infrastructuredad‐hoc infrastructured

entirely 
opportunistic single hop multi hop

connected
opportunistic single‐hop multi‐hop

single‐hop multi‐hop

Figure 3.2.: Hierarchical classification of wireless network structures

In literature we can find several additional, more general, ways of classifying
wireless networks. E.g. Günes et al. describe the structure of a wireless network as
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shown in the following [Günes et al., 2007]. They begin the classification by dividing
wireless networks into three different categories, depending on their sizes:

• wireless wide area networks like GSM

• wireless local area networks like IEEE 802.11 in infrastructure mode

• wireless networks without infrastructure called MANETs

Within the first two kinds of networks, the only existing wireless links are those
between the mobile device of a user and a base station. The remaining network,
called infrastructure, is mostly wire based. In contrast to this, the communication
in a MANET [Perkins, 2001] is accomplished completely wirelessly. The network is
capable of organizing itself, i.e. the forming and routing is done in a decentralized
manner and autonomously by each node.

Based on these different types of wireless networks, Günes et al. describe a wireless
mesh network (WMN) as a composition of the components of all three categories.
They introduce a Backbone Mesh Gateway (BMG) that acts as gateway between
the internet and the mesh network. A BMG is connected to the internet by a wire,
while the link to the mesh net is done wirelessly. To span up the mesh infrastructure,
several Backbone Mesh Routers (BMR) are used. They form the backbone of the
network by transporting data between the Clients and the BMG. Also wirelessly
connected, the BMR form the coverage area, to which Routing Mesh Clients (RMC)
as well as Non-routing Mesh Clients (NMC) can connect to.

The figure 3.3 points out how Günes et al. compose a mesh net using the described
components.

In addition to the different components, Günes et al. describe the most important
properties of a mesh network:

• Wireless: The characteristics of the used technologies within a wireless network
lead to various restrictions. These include the need of high fault reliability and
short communication distances.

• Multi-hop communication: Similar to our definition, multi-hop communication
is used for end-to-end communication. It is needed because in most cases the
two communication partners are not within each other’s communication range.
Other network participants are needed to forward the data and thus to build up
a communication path. On the one hand, this makes the mesh network more
flexible, on the other hand, the restrictions due to the wireless communication
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Wired Connection

Wired Internet 
Backbone

Wireless Connection

Backbone Mesh Gateway

Backbone Mesh Router

Routing Mesh Clients

Non‐routing Mesh Clientsg

Figure 3.3.: Classification of a mesh net by Günes et al.

technology are enforced.

• Redundancy: As a rule, the BMR form a network with a highly redundant
infrastructure. This is important to be able to overcome connection failures.
A broken communication path can easily be replaced by an existing alternative
path without any need of additional resources.

• Mobility: According to the definition of a WMN, the infrastructure (BMG
and BMR) of such a network is static. Mobility is added to the network by
the clients. They are able to connect to the BMR while moving around within
the coverage area of the WMN, or additionally, form an ad-hoc network by
connecting to other RMC.

• Dynamic and extensibility: two of the main properties of WMN. These are
gained by adding self-capabilities to the network, such as self-configuration,
self-organization and self-management. With the aid of self-configuration, a
mesh network is able to configure itself automatically. This is necessary, as
the costs for configuration increase quickly with a rising number of nodes.
The same applies to the self-organization capability. In addition to this, the
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self-organization capability is needed to achieve the wanted dynamic of the
network. If a communication path brakes, the network itself is responsible
of finding an alternative path. The self-management enables the network to
handle its available resources itself.

• Infrastructure: According to our definition, a mesh network has an infras-
tructure. In opposition to ad-hoc networks, this leads to a high reliability
for services like DNS and routing. Furthermore, the energy consumption of
each node and the network density become less important due to the static
placement of the BMR.

• Integration and convergence: Because of the ability to easily connect NMC to
the mesh network, these nodes do not need to take over additional tasks for
the network. This way, the integration of new client nodes bears no problems.

A property not described by Günes et al. is decentralization. Every wireless
network - both ad-hoc and mesh networks - is always managed decentrally. The
network has no central instance that is able to coordinate actions for the entire
network. This way, decisions made by nodes are mostly local decisions, as nodes
usually do not have the over view over the entire network. This should be kept in
mind constructing a wireless network.

Mapping the mesh network above onto our definition of wireless networks, the
mesh network is mainly an infrastructured multi-hop network, due to the static BMR
and the BMG that are responsible for the infrastructure forming. The integration
of the NMC matches our understanding of an infrastructured network. By adding
RMC, the resulting network is a hybrid form of a wireless network, as RMC form
an ad-hoc network within their coverage area. One of the mesh networks’ properties
is the multi-hop property. According to our point of view, a mesh network can also
be a single-hop network. However, the qualifications of such a mesh network remain
the same.

3.3. Communication Model of the BlueSpot system

With the definition of the edge graph, the two classifications of wireless networks,
and the properties described in the sections above we are able to describe the un-
derlying model of the BlueSpot system.

The network layer (refer figure 2.1) which is responsible for the network forming
can be described as an edge graph with non-directed edges. Each node represents
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a participant of the network, while the edges represent the links built up between
the nodes. A node can either be a client device, such as a PDA, a smartphone, or a
laptop, or an infrastructure forming node. But they all have in common that they
have a low performance and low resources.

Due to the distinction of two different kinds of nodes, we define the BlueSpot
system as a mesh network with one restriction: only NMCs are possible. Clients that
do routing are not available. The role of a BMG is not especially assigned because
of the utilization of the BlueSpot system. Mobile services - that run on top of the
BlueSpot system - are only available within the system. If a mobile service needs to
communicate with another network or with the internet, the gateway functionality
has to be implemented within the mobile service running on the selected node that
has access to both networks. A difference to the mesh network definition is, that
mobile services also can be run on the BMRs. BMRs are static by definition. They
do not have any user interface, so that a user interaction is not possible.

Based on our definition of wireless networks, the BlueSpot system can be spec-
ified as a infrastructured multi-hop network. The system tries to form an entirely
connected network at any time. It builds-up communication paths that are several
hops long. The client nodes are consumers of the network and do not have any other
task within the network. This is the definition of an infrastructured network.

The BlueSpot system is built up completely wirelessly. They underlying commu-
nication technology is not restricted to any special technology. In order to be able to
demonstrate the system, we programmed reference implementations for both Blue-
tooth and WLAN. As an additional feature, the BlueSpot system supports handover,
so that a client does not lose its connection to the network while it leaves the radio
vicinity of the currently connected infrastructure node. By adapting to changing
requirements of the running mobile services, the system has self-capabilities. E.g. it
is able to modify its underlying network topology. This way, the BlueSpot system
is dynamic and extensible. In order to integrate a new client node it is necessary
to install the BlueSpot middleware on this node. After successful installation the
node is immediately able to connect to the system and use the provided services.
Network convergence is gained by the abstraction of the underlying wireless net-
work technology. In our reference implementation we are able to interconnect both
Bluetooth based nodes and WLAN based nodes into one network.
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3.4. Model of the software system

After having described the underlying communication model of the BlueSpot sys-
tem, we shall define its software system. To understand the concept in detail, it is
necessary to take a closer look at software systems in general. After this, we shall
give a definition of the most interesting components and map the architecture of the
BlueSpot system to them.

3.4.1. General Description of a Software System

At first, it is necessary to discuss the architecture of a software system providing
any kind of service in general. See figure 3.4 for a general structure.

Software system

Service 1 … Service N

Middleware

Operating system

Hardware platform

Figure 3.4.: Structure of a software system with services

Every software system is based on a hardware platform. In order to run pro-
grams such as applications or services on a hardware platform, an operating system
is needed. The operating system supports programs by providing system calls.
These system calls facilitate the access of hardware resources to the on top running
programs. Therefore, it usually disables direct access to be able to manage race
conditions and to prevent deadlocks between different programs.

By adding a middleware on top of the operating system, the access to the hard-
ware resources grows increasingly more comfortable. Programs can function in a
more abstract way, meaning that they do not need to be adapted to the underlying
hardware platform. This way, one and the same program can be run on different
hardware platforms and operating systems without any need of modification or re-
compilation. The only requirement is, that a ported version of the middleware is
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available for each used hardware platform.

3.4.2. Formal Definition of the Components

One main field of interest in this thesis is the deployment of a well defined software
platform for mobile services. To have a common understanding of the term service,
we shall quote a definition for it introduced by Dinkel et al. [Dinkel et al., 2006].

Definition 1:
Service

Definition 1: Service

A service is a set of functionalities that is realized with the help of a computer. A
service has a set of users, who draw benefit from the offered functionality via a well
defined interface.

The main point of this very general definition is that users draw benefit from a
service. The meaning of the term user can either be a person interacting with the
service or another software component communicating with it. A service provides
a well defined interface to enable interaction with it, but it also uses an interface to
interact with an underlying platform in turn. This interface is part of the software
platform. Such a platform is defined by Dinkel et al. as follows:

Definition 2:
Service
Platform

Definition 2: Service Platform

A service platform is a collection of infrastructure functionalities that simplifies the
implementation of services.

Such a collection of functionalities can be part of the hardware, of the operating
system, or of a middleware. In contrast to the functionalities of a service, the
platform’s functionalities facilitate a comfortable usage of the system resources.

If the underlying hardware is mobile, the service itself must be mobile, too. Dinkel
et al. define the term mobility in context to a service as follows.

Definition 3:
Mobility of a
Service

Definition 3: Mobility of a Service

An entity is mobile if it has the ability to change its geographic position over time.
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In the definition, the term entity is used pursuant to two different meanings of
mobility. On the one hand, a service can be placed statically on top of a mobile
hardware platform. In this case the entire software system is mobile. On the other
hand, the service itself can be mobile. This way, it can to be moved from one hard-
ware platform to another. For this performance we use the term service mobility .
In contrast to a mobile agent [White, 1997], such a service does not move itself
from one platform to another. Rather, it is moved passively by a user, or by the
middleware the mobile service is running on.

In this thesis ”both” types of mobile services shall be utilized and investigated.

3.5. Software Model of the BlueSpot System

The main component of the BlueSpot system is its middleware. To be able to
support several different hardware platforms, we ported this middleware to each of
them. The middleware contains the service platform used to run the services on top
of it. The main type of hardware platform the BlueSpot system was developed for
are mobile devices, such as smartphones or PDAs. This way, it provides a platform
for mobile services.

To enable communication to other network participants for mobile services, the
middleware manages the connections to them. By doing this, it allows a mobile
service to use these connections in a technology-independent manner. Regardless
whether the underlying technology is Bluetooth or WLAN, the communication part-
ner can be accessed by the mobile service in the same way.

If a user wants to use a mobile service which is currently not installed on his device,
this service is automatically located within the network. After its localization, the
mobile service will be transferred to the user´s device and started automatically by
the middleware. This way, service mobility is gained for the BlueSpot system.

3.6. Summary

The main aspect in this chapter is to describe the underlying communication and
software models of the BlueSpot system. For this, the structure of a wireless network
is mapped onto a mathematical edge graph. Additionally, properties of wireless
networks are discussed. These properties are used to classify different types of
wireless networks. We shall introduce mesh networks and describe their components.
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Afterwards, the communication model of the BlueSpot system shall be explained by
the use of the introduced wireless network classification, properties and components.

Next, the software model shall be described. We will describe a software system in
general, and then define the most important components for the BlueSpot system.
By doing this, the terms service, service platform and mobility of a service are
introduced. At the end, we shall explain how the middleware of the BlueSpot
system can be understood by the use of the structure defined before.
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Chapter 4
Routing Protocols in a Wireless
Network

This chapter includes detailed information about routing aspects within wireless
networks. After the forming of wireless networks has been explained in the last
chapter, the next layer - the network layer - of the ISO-OSI stack shall be regarded.
In order to achieve end-to-end communication, a fitting routing protocol is needed
here. The routing protocol determines, on which path data is to be sent to reach
its destination and how to find this path in the first place. As a result of the many
different field of applications, there are various requirements to such a protocol.

First, this chapter points out the properties of wireless routing protocols. After-
wards, these properties are used to classify them. While performing this classifica-
tion, every type of protocol is explained by use of an example.
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4.1. Properties of Wireless Routing Algorithms

It is the task of the implemented nodes within the network to enable end-to-end
communication to any other node in the system. The difficulty is that the node
does not know how to find the right communication path to the designated endpoint.
This is why there is the need for a mechanism responsible for path-finding through
the network. This mechanism is named routing and is defined within the ISO-OSI
stack on layer three.

End-to-end communication is enabled by the establishment of the before men-
tioned communication paths. A communication path is defined as the result of
stringing together all connections established between nodes that lie in-between the
endpoints. Prerequisite is, that links already exist among the involved nodes. Oth-
erwise, connections cannot be built up.

Due to the different requirements of routing algorithms in wireless networks, they
need to be handled more elaborately than algorithms for wired networks. Especially,
because of having nodes that can move nearly without any restrictions through the
entire network, the network’s structure changes permanently. For this reason, static
routing algorithms are not applicable. Such algorithms are not able to react to a
topology change and hence are not able to keep established communication paths
upright. But this is one of the main tasks of routing algorithms for a wireless
network. They need to be able to constantly adapt to changes as fast as possible.
This is the only way to always ensure the currently on-going communication.

By moving around within a multi-hop network, a node can loose its connection
to its neighboring node anytime. In order to replace this connection it must estab-
lish a new one to an other node in range that is also part of the wireless network.
Next, this event must be posted to the other participants of the network currently
communicating with it or using a communication path the node is part of. Another
characteristic of wireless networks are unstable communication links. Because of
interferences or disturbances of the radio signal, a communication link can break
off anytime. As a reaction to this, the lost link needs to be reestablished as quickly
as possible in order to enable further communication. These two scenarios demon-
strate that routing algorithms for wireless networks additionally need to have a high
fault tolerance. These and further requirements of wireless routing algorithm are
described by Al-Karaki [Al-Karaki and Kamal, 2004] in more detail. The results of
the described characteristics lead to the following proposition:

The more dynamic a network is, the more frequently its routes change. But, the
more frequently the routes change, the more actively the various participants of the
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network need to take care of new communication paths.

Consequence of this proposition is, that we are able to give a first differentiation
of wireless routing algorithms. On the one hand, there are pro-active algorithms,
that try to find routes to all other participants of the network immediately after
they have joined the network. All other node recognize the new node and add it
to their own routing tables. On the other hand, there are reactive algorithms. The
moment a nodes must transmit data to another node, it starts to search for the best
route. This way, routes are established on demand.

Further distinctions of routing algorithms are the geographic order of the nodes,
energy efficiency of the algorithm itself, or the usage of existing information, such
as the network topology or transmission statistics. The latter is called flow ori-
ented routing . All types of routing algorithms can be combined with hybrid routing
approaches, which are mainly the combination of reactive and pro-active routing
mechanisms.

When contemplating the published literature concerning wireless routing algo-
rithms, it becomes clear that there will not be one singular routing approach that
will fit to all utilizations of wireless networks equally in future. Dependant from the
application, it is always necessary to select the right network type, as well as the best
fitting class of routing algorithms. During the installation of a wireless network, the
properties of the area of application for this network need to be evaluated. These are
used in order to find the best fitting algorithm for this configuration. The following
section can be used to simplify the finding. With its aid, first the according routing
class and second the best algorithm of this class can be found.

4.2. Classification

In the following we shall present the above mentioned classes of wireless routing
algorithms and describe them one by one using an example for each. This way, pro-
active routing shall be described using the Destination-Sequenced Distance-Vector
(DSDV) routing. With the aid of Dynamic Source Routing (DSR), reactive rout-
ing shall be explained. As an example for hybrid routing, we shall introduce the
Zone Routing Protocol (ZRP). The flow oriented routing we shall be presented by
explaining the Link life Based routing (LBR).

Other classes are geographical routing, power aware routing and multicast routing.
These classes shall be described by pointing out the main idea of each class in a
summary at the end of this section.
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4.2.1. Pro-active Routing

As the term pro-active indicates, these algorithms try to obtain an up-to-date list
of paths to each node within the network before the next communication takes
place. This way, routes must be determined right after a node has joined the net-
work. The underlying problem can be solved by use of the Bellman-Ford algorithm
[Cormen et al., 1990]. This algorithm finds the shortest path between each node in
an edge graph. In order to transfer it to wireless networks, it must be modified to a
distributed version. In most cases a central management instance is not available.

Considering the ISO-OSI stack, the network layer is normally responsible for
routing issues. But in the field of wireless networks, routing algorithms are more
and more often implemented within the data-link layer. The big advantage if this
is, that wireless routing algorithms often must react on broken or newly established
links. Contrary to wired networks, links cannot be seen as stable, due to moving
nodes and fluctuating signal strengths. This way, the point of entry for path finding
needs to be based on communication links, not on communication connections of
the network layer.

As first step in direction of pro-active routing was done for wired networks by
Halpern et al. [Halpern and Bradner, 1996] by defining the Distance-Vector algo-
rithm. The core statement is: ”Tell your neighbors your sight of the world”. In
detail, the algorithm works with metrics that represent the costs for the use of a
connection. The lower the metric is, the better the connection is. A short description
looks as follows:

1. produce a matrix of metrics to the other nodes

2. extract a vector with the best metrics and exchange this vector with the other
neighbors

3. include the received vectors of the neighbors in the own vector

4. if the best metrics vector has changed goto step 2, else goto step 3

In order to be able to use the distance-vector routing for wireless networks, it needs
to be modified. The resulting algorithm is called Destination-Sequenced Distance-
Vector routing (DSDV) first described by Perkins [Perkins and Bhagwat, 1994]. The
DSDV algorithm is the result of adding a sequence number to each entry in the
metrics vector. The number indicates the currentness of the corresponding entry.
In case of a no longer reachable node, the metric entry for this node is set to infinity,
as defined by the distance-vector algorithm. Only if the node receives an updated
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vector from a neighboring node, where the metric is smaller than infinity and the
sequence number is higher than the currently assigned one, the node stores the
new entry. The availability of a new path to the up to then not reachable node is
indicated this way. Furthermore, the sequence numbers are divided into even and
odd numbers. If the node has found a new neighbor on its own, the entry in the
vector is always assigned to an even sequence number. In the other case, if the new
node was announced by another node, the stored sequence number is odd. When an
entry is updated, the sequence number always is incremented by two. This way, the
node is always able to differentiate between its own entries and information received
from its neighbors.

Considering pro-active routing algorithms in general, they inherently have advan-
tages and disadvantages in common. The advantages are a fast packet switching, as
the route to a destination is well known from the beginning. Additionally, topology
changes are recognized immediately. If a new node joins the network, its entrance
and thus the path to it is announced throughout the entire network. This way, every
node is noticed. As a disadvantage the pro-active routing does not scale very well.
Because of having an entry in the distance vector for every node that is participant
of the network, the size of vectors increase with the number of nodes. Addition-
ally, the vectors must be exchanged with the neighbors. With a great number of
nodes and hence large vectors, the traffic resulting from routing management in-
creases dramatically. Closely linked to this disadvantage is the bad convergence of
the algorithm that indicates the time needed to reach stable routing tables. Due
to the need of extra data exchange to keep the distance vectors up-to-date, it takes
disproportionally long time until the vectors of the single nodes are stable and need
not be updated anymore.

4.2.2. Reactive Routing

The disadvantages of the pro-active routing algorithms were the motivation for the
development of reactive ones. In order to be able to manage larger wireless networks,
the needed information for routing must be reduced. Therefore, the path to the
destination is determined the moment the data needs to be sent to it. This is called
on-demand routing [Das et al., 2000]. The path is found by using a variant of the
Dijkstra algorithm. Within an edge graph, this algorithm finds the shortest path
between two nodes [Dijkstra, 1956]. After the path is found, it is added to the
data and transmitted along with it. This way, each node that is part of the path
between the source and the destination node is able to find the next hop by searching
the additional path information coming with the data. The most common routing
algorithm based on this approach is called Dynamic Source Routing (DSR) and was
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first described by Johnson et al. [Johnson et al., 2001]. This routing protocol was
designed for the internet protocol and hence the routing information needed to find
the destination node is stored within the header of an IP packet.

Similar to the above mentioned pro-active routing algorithms, the reactive ones
have advantages and disadvantages. The advantages are - as mentioned before - that
there is no need for continuously exchanging large amounts of routing information
between the nodes. By needing less information to be stored on each node, these
do not need to have such a high-performance as they do when working pro-actively.
Additionally, they do not need as much memory for storing the routing information.
Due to the reactive behavior the first time for transmitting data takes very long.
The time is needed to first find the path to the destination, before the data can be
sent. This is the main disadvantage of reactive routing algorithms. An extension of
the DSR algorithm named DSRFLOW [Hu et al., 2001] avoids long waiting times
while the nodes accomplish the path finding. This algorithm is part of the class
of flow oriented routing algorithms that is described in subsection 4.2.4 in more
detail. Another disadvantage of the reactive routing algorithm is, that, if the network
topology changes, the single nodes are not notified concerning this event. As a result,
data that was sent before a change can no longer reach its destination and thus needs
to be retransmitted. This leads to a bad behavior for reacting to dynamics within
the wireless network.

4.2.3. Hybrid Routing

Hybrid routing is the result of joining pro-active and reactive routing algorithms.
By doing so, these approaches try to combine the advantages of both types of al-
gorithms. Hybrid routing shall be explained in more detail using the Zone Routing
Protocol (ZRP) - first described by Haas [Haas, 1997], [Haas and Pearlman, 2001]
- as an example. This algorithm is based on the assumption that the most traffic
occurs locally in direct neighborhood of the nodes. For this reason, the wireless
network is divided into several smaller routing zones. Within these zones, a pro-
active routing algorithm is used to guarantee a fast routing. Haas et al. recommend
the use of the standard DSDV algorithm, but other pro-active algorithms can be
used alternatively. For longer distances, beyond the borders of a zone, an additional
algorithm is necessary. In order to reduce complexity, Haas et al. have developed a
reactive routing algorithm, that constructs a hierarchical order of the various zones.
The proposed algorithm is able to keep multiple paths to one and the same zone
upright. The occurrence of a strong backbone forming is thus prevented.

The advantage of this approach is obvious: due to the forming of small routing
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zones, the distance vectors within these zones remain small. Therefore, pro-active
routing is applicable. The usage of a reactive routing algorithm for inter-zone routing
is also useful due to a higher stability of the zones. Even if the nodes within a zone
are very mobile, it is unlikely that all nodes will leave the zone at once, which would
lead to the disappearance of the zone. It is more likely that only a number of nodes
leave the zones while new ones join it. This results in the zone being continuously
available any time.

4.2.4. Flow Oriented Routing

As described in subsection 4.2.2, the most flow oriented routing approaches are an
extension of reactive routing algorithms (but also the extension of pro-active routing
is thinkable). By saving the link state to each neighbor, the reactive route finding is
improved. Additionally, historical information based on the statistics of the traffic
having occurred before can be used to select the optimal path to a destination node.
The historical information can be latency times, throughput of data, or link stability.

As an example for flow oriented routing, we present the link life based routing
(LBR) [Manoj et al., 2001]. To determine the best route to a destination node,
a parameter called link life is calculated by the algorithm. This parameter is an
indicator for the worst case expected lifetime of a wireless link. I.e. the longer
the link has been stable, the better the value of this parameter is, hence the link is
assumed to remain stable in future. In order to calculate the link life, the current link
quality is measured. This is compared to the measurements accomplished before.
By use of this comparison the actual value is calculated. This knowledge can be used
to form a communication path through the network that is as stable as possible.
Nodes with a high movement rate are omitted, as a result of their bad link life
parameter. The underlying routing algorithm can be either pro-active or reactive.
It was first described by Manoj et al. based on a reactive one.

Flow oriented routing algorithms enable routing in highly dynamic wireless net-
works in which a set of nodes exist, that do not move much. The occurring traffic will
be handled by these nodes. With the usage of statistical information, predictions
of future situations can be made. This way, the path finding for both pro-active
and reactive routing approaches can be improved. As a disadvantage, the approach
does not work very well when the system is first started. At that moment, no pre-
knowledge is available. Therefore, the system has to be running for a while, until
enough information has been collected.
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4.2.5. Other Routing Approaches

Many other routing algorithms and approaches exist beside those mentioned before.
Each implementation is customized to a set of scenarios an algorithm was designed
for. The algorithms described before have in common that they do not need any
knowledge of their geographical position. This is possible as every node can be
identified by its unique address. In case only the geographical position of a node
is known, another type of routing is needed. In the course of application of such
a network, the position of a node must first be found. There are several ways this
can be achieved. The simplest way is to equip the node with a positioning device,
such as a GPS receiver. The disadvantage is, that GPS only works outdoors and is
very energy consuming. As an alternative, another approach is the triangulation.
Here, the node takes the bearings by measuring the direction and the strength of
received signals from at least three different neighboring nodes. After this is done,
the position can be calculated in relation to these nodes. After the node’s position
is known, this information can be used to route data in the direction the destination
node is expected to be. An example for geographic routing is the Greedy Perimeter
Stateless Routing (GPSR) [Karp and Kung, 2005]. It uses a greedy algorithm to
locate the geographical destination for the data that is to be transmitted. When it
reaches the perimeter of its destination, the receiver is able to collect it there.

Another point of interest is the power consumption accompanied by the routing
efforts. Since, in many cases, the nodes are mobile and thus have a limited power
supply, the power consumption should be as little as possible. This way, a long
operating time of all nodes can be obtained. E.g. sending data is power consuming.
The more routing information must be sent in order to keep the routes up-to-date,
the more energy is used. This was the motivation to develop routing algorithms that
need very little energy. An example for energy efficient routing is Span described
by Chen et al. [Chen et al., 2002].

Sometimes it is needed to send data to more than one destination node. In this
case, bandwidth of the network can be saved by using a multicast routing protocol.
A group of receivers can be defined this way and the data needs to be sent just once.
The underlying routing algorithm again can be both pro-active and reactive. One
of the best known multicast routing approaches is the Distance Vector Multicast
Routing Protocol (DVMR) [Waitzman et al., 1988].
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4.3. Summary

It is seen as given that every kind of wireless network is used in its own area of
application. With the different applications running on such a wireless network,
the properties the network has vary from case to case. In order to emphasize this
situation, we showed up the main differences between wired and wireless routing
and point out the corresponding properties. Afterwards, by use of these properties,
the best fitting class of routing algorithms can be selected in dependency of the area
of application.

In order to enhance the understanding of wireless routing further, the most com-
mon classes are shown and an example is given for every class. Therefore, we start
with the description of pro-active and reactive routing in detail. This is done by use
of the DSDV and the DSR algorithms. In addition to this, hybrid routing approaches
are shown. This combination of pro-active and reactive routing mechanisms conjoin
the advantages of both algorithm classes. By using additional information, such as
the link state between two nodes, the concept of flow oriented routing algorithms is
described. At the end, the classification of wireless routing algorithms is rounded up
by presenting the main motivations and concepts for geographical, energy efficient
and multicast routing approaches.
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Chapter 5
Technologies

In this chapter the technologies we used in the course of the development of the
BlueSpot system shall be presented. For each technology, the main properties and
especially the restrictions will be discussed in detail. The aim of this chapter is to
give the reader the background information on what kind of hardware was used and
what the main reasons for their selection were. Additionally, the reader will be able
to understand some decisions made in the BlueSpot system, by reason of hardware
limitations. The handling of these limitations will be described in the next chapter,
where also the concrete design of the BlueSpot system shall be explained.

This chapter is divided into two sections: we shall start with the communication
technologies used in this project. Here the relevant aspects of Bluetooth and IEEE
802.11 WLAN will be discussed. In the second section, the used hardware platforms
shall be described. These descriptions are amended by the corresponding operating
systems, running on each presented hardware platform.
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5.1. Communication Technologies

A main objective in the course of the development of the BlueSpot system was to
be as technology-independent as possible. But for a proof of concept, we needed
to select some technologies for presentation. These technologies are Bluetooth and
IEEE 802.11 WLAN. Both provide an implementation of a complete TCP/IP stack.
But in case of Bluetooth, we forgo the usage of the TCP/IP protocol. Its utilization
would reduce the low available bandwidth furthermore and a satisfactory operation
would by unachievable. For this reason, the support for WLAN is implemented in
terms of a TCP/IP based extension. In case of Bluetooth, we use the RFCOMM
protocol as basis for implementation. By the usage of TCP/IP every other or new
technology providing this protocol is automatically supported as well.

Next, the project relevant properties of the Bluetooth standard will be described.
Afterwards, IEEE 802.11 WLAN will be introduced, divided into two subsections.
The first shows the relevant properties of the communication standard, the second
subsection discusses the configuration of TCP/IP according to the BlueSpot system.

5.1.1. Bluetooth

In 1994, a first standard for Bluetooth was published by the Bluetooth Special In-
terest Group (Bluetooth SIG). This group was formed by the companies Ericsson,
Nokia, IBM, Toshiba and Intel in order to define a standard that enables the re-
placement of wired connections between computers and peripherals (e.g. keyboards,
mouses or printer) by wireless ones.

Additionally, the standard included a definition for the formation of a Bluetooth
based network that is valid till this day. In order to implement Bluetooth support
in a system, the standard is constructed as a stack. Each layer is responsible for its
especially defined tasks. This stack is named Bluetooth stack.

Figure 5.1 gives an overview of a Bluetooth stack. Beside various other profiles,
the most relevant for the BlueSpot system are shown. The baseband is situated on
top of the radio hardware as well as underneath the protocols. Its properties are
discussed in the next subsection. The setup of the protocols will be described in
subsection 5.1.1.
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Figure 5.1.: Bluetooth core system stack

Bluetooth Baseband

Bluetooth uses the ISM-Band located at 2,4 GHz, and currently has a maximum
data throughput of 2Mbit/s (standard V.2.0+EDR [Bluetooth SIG, 2004]). The
technique of communication is a Frequency Hopping Spread Spectrum (FHSS) ap-
proach, e.g. explained in detail by Schiller[Schiller, 2003a].

In order to construct a network, a node must actively build up a link to another
node. After the successful link-establishment, the first node is named master node
(M), the latter slave node (S). The link-establishment is divided into three steps.
First, the master node broadcasts an inquiry request. This is answered by other
nodes within communication range by sending an inquiry reply including their 48-
bit Bluetooth-address. This step is named scanning. In the next step - named paging
- the master creates a unique frequency hopping sequence calculated in dependency
of the earlier received Bluetooth-addresses. The master sends this sequence to the
other nodes. By use of this sequence, the other nodes are now able to synchronize
to the master and communicate with it. This is the third step, named connected.
The nodes are ready to communicate. The construction they have formed is named
Piconet . It consists of at least one master and up to seven slaves. This way, the
size of a Piconet is limited to eight nodes. Slave nodes are not able to communicate
directly with one another. Each data exchange must be done via the master node.

If a node is connected, it can be in four different states in turn. These states are
either active, sniff, hold or park . The first state is the standard state. If a node is in
active state, it is able to partake the Piconet regularly. Therefore it obtains a 3-bit
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address, named Active Member Address (AMA) used to identify the node. Due to
the length of this address - 3-bit - the size of a Piconet is limited to eight members.

The other three states are used to reduce the energy consumption of the node. If
a node is in sniff state, it reduces the intervals in which it is listening to the master.
This way, it can save power and bandwidth is freed for other nodes. In the hold state
all active links are closed. This state is also used when the node leaves a Piconet
to temporarily join another Piconet. The third state is the park state. If a node
is in this state, it obtains an 8-bit long Parked Member Address (PMA) from the
master instead of the AMA. Now the node is no longer able to communicate with
other nodes in the Piconet, but it keeps the hopping sequence of the master, thus
remaining synchronized to it. This is done by listening to the master periodically, in
order to receive the clock signal. The freed AMA can be assigned to another node,
such as a currently parked one. This way, it can switch back to active state. By use
of the 8-bit PMA a Piconet can be extended to eight active and up to 256 parked
nodes. All the Bluetooth states a node can be in can be seen in figure 5.2.

standby

scanning page

connected
(active)

transmit
( )(active)

park sniffhold

Figure 5.2.: Main states of a Bluetooth device at baseband [Schiller, 2003b]

In order to connect to more than eight active nodes simultaneously, several Pi-
conets can be combined to a Scatternet . Therefore, a Scatternet is a composition
of two or more Piconets. In order to make communication between two Piconets
possible, a bridging node is needed. Such a bridging node is part of both Piconets
and can either be master in the one and slave in the other (M/S), or slave in both
Piconets (S/S). Due to the Bluetooth standard´s restrictions, a node can be active
in only one Piconet. Therefore, it must be set in hold state in the first Piconet, in
order to switch to the other. But this is precisely one of the main disadvantages of
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Bluetooth Scatternets. Because of this restriction, the communication throughput
within a Scatternet is reduced dramatically. Even worse, if the bridging node is a
M/S node and it is currently active in the Piconet in which it functions as a slave,
all nodes of the other Piconets are completely inactive, due to the missing master.
In contrast to this, if the node is a S/S node, both Piconets can act regularly. But if
the benchmarking results are compared, the communication throughput over a small
amount of Piconets is higher by using M/S bridging nodes. But this changes the
more Piconets are involved into communication. The results can be seen in chapter
9.2.5. This behavior can be explained as follows: in case a node joins a Piconet, it
needs to synchronize its own clock to the master’s. By acting as an S/S bridging
node, it cannot be synchronized to both Piconets simultaneously. By switching to
the other Piconet, it needs to resynchronize to the clock signal of the other master.
Therefore, it is very time consuming, until the node is able start communication in
the new Piconet. In another case - considering a M/S node - the node is the master
providing the clock signal to one of the two Piconets. In case it switches to the
second Piconet, within which the node acts as a slave node, the system behaves the
same as a S/S bridged Scatternet. But the moment the node switches back to the
first Piconet, in which it is the master, it does not need to synchronize anymore.
The slave nodes of this Piconet are still synchronized to it and hence are able to
immediately receive data from it. This way, the overall throughput of the Scatternet
with a bound number of bridging nodes is higher by using M/S nodes than by using
S/S bridges.

Bluetooth links can be divided into two different types: the Synchronous Connec-
tion Oriented (SCO) links and the Asynchronous Connectionless Links (ACL). As
the names indicate, one type is connectionless, the other connection-oriented. SCO
links are used for audio transmission. Therefore, it is important to have a constant
data stream without any interruption. SCO links are installed to guarantee the
bandwidth used for such a constant data stream. They provide a guaranteed data
rate of 64 kbit/s. In contrast to this, ACL links have a data rate of up to 723,2
kbit/s (Bluetooth standard v1.1) or 2Mbit/s (Bluetooth standard v2.0+EDR). ACL
links work packet based and thus the throughput rate cannot be guaranteed. But
due to the higher data rate, ACL links are usually used. Additionally, currently
there is no completely functioning implementation of a Bluetooth stack that sup-
ports SCO links in its full complexity. This can be traced back to the fact that even
the Bluetooth standard itself leaves open essentials in the definition of SCO links.
For example, most of the currently available headsets for mobile phones work with
an ACL based protocol due to the missing SCO support. It transpired that the
throughput rate is high enough to reach appropriate voice quality.

During the implementation of the BlueSpot system, we had to use several dif-
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ferent Bluetooth stacks due to the different hardware platforms. On Linux based
systems we used the BlueZ stack[Holtmann and Krasnyansky, 2007]. This stack
is the one used most commonly for Linux based systems. On PocketPC based
PDAs, a Bluetooth stack provided by the company Widcomm (today Broadcom
[Broadcom, 2007]) is preinstalled. The Nokia smartphones include a stack imple-
mented by Symbian [Sym, 2007]. All three stacks have in common that implemen-
tation of SCO links is either not included or not usable due to implementation bugs.
For this reason, we had to forgo the usage of SCO links.

Bluetooth Protocols

Beside several other features, the Bluetooth baseband provides the features link
establishment and network formation. In order to use a link, there is the need to
select one of the many profiles defined for Bluetooth. A profile is used to combine
a protocol with the configuration information needed to run the protocol properly.
By exchanging of the list of the supported profiles, a communication partner knows
the supported profiles as well as the corresponding configuration. In the following,
we will focus on the protocols that are important the utilization of Bluetooth for the
BlueSpot system. In addition to the applied protocols, the OBEX and the BNEP
protocols shall be discussed. They are candidates for usage, but are currently not
integrated. The reason for this will be given after they have been described later.
In order to get an overview of a Bluetooth stack and the on top running protocols
see figure 5.1.

The supported Bluetooth protocols take place on top of the baseband. They
are in a hierarchical order in dependency to the main protocol, the Logic Link
Control and Adaptation Protocol (L2CAP). Every connection, that is based on an
ACL link is established via the L2CAP. As the name indicates, it is responsible
for the logic link control. On top of the L2CAP, there is the Radio Frequency
Communication (RFCOMM) protocol. It enables the emulation of up to 60 serial
ports. The RFCOMM protocol is the standard protocol used for communication
between two nodes. The same applies to the BlueSpot system.

Beside the RFCOMM protocol there are two further common protocols for Blue-
tooth. These are the Object Exchange protocol (OBEX) and the Bluetooth Network
Encapsulation Protocol (BNEP). The OBEX protocol was first specified within the
IrDA standard [Millar et al., 1998] in 1998. It was designed to enable mobile devices
to easily exchange contact information in form of visiting cards (vcard) or calender
entries. The main advantage of this protocol is that the format of data, to be ex-
changed is defined very strictly. As a result, the interoperability between several
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different devices currently available on the market can be guaranteed. This is done
by defining objects that include the information to be sent. These objects can be
pushed to the other device. However, this is the big disadvantage for utilization in
the BlueSpot system. Especially streaming service cannot be implemented by use
of a protocol based on object pushing. But one of the main targets of our research
was to support every kind of mobile service.

The second common protocol is named BNEP protocol. It enables TCP/IP sup-
port for Bluetooth by simulating a virtual Ethernet device. It is used for the es-
tablishment of standard TCP/IP based socket connections via Bluetooth. The uti-
lization of TCP/IP would seem to be obvious. But it has the great disadvantage
that the overhead used to form the needed TCP/IP header for each packet is huge.
The bandwidth, that was small to begin with, is thus reduced additionally. As the
BlueSpot middleware is also responsible for the network organization - normally
one main task of the TCP/IP protocol - the BlueSpot system can go without the
support of the BNEP protocol.

A special part of the Bluetooth stack is the Service Discovery Protocol (SDP). It is
responsible for scanning a communication partner for its supported protocols. This
scanning takes several seconds due to its complexity, which is a rather long time. For
this reason, the SDP protocol does not take part in the BlueSpot system. Instead, a
node tries to build up a connection via a predefined link configuration. The moment
the other node accepts the connection, the BlueSpot system is supported by this
node. Otherwise, the node will reject the connection request. Therefore, the only
supported protocol is the RFCOMM protocol. The used parameters are hard-coded
into the middleware.

5.1.2. (W)LAN with TCP/IP

Beside Bluetooth, IEEE 802.11 WLAN was used for the BlueSpot project. Unlike
Bluetooth, the WLAN stack implies that the main area of application is TCP/IP.
For this reason, this subsection is divided into two parts. The first part describes
all of the properties of the IEEE standard relevant for the BlueSpot system relevant
in general. The second part aims at the TCP/IP layer of the IEEE 802.11 ISO-OSI
stack. In this part all the important properties of TCP/IP will be pointed out. It
shall also be described how it can be mapped onto Bluetooth so that the resulting
network behaves like a Scatternet.
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IEEE 802.11 WLAN

In the last years, WLAN has evolved to the most common wireless communication
standard in small network organizations like home networks. But also nearly every
company provides its own WLAN network to support their employees with indepen-
dent mobile working within the company’s premises. In most cases, the covering of
the entire premises with only one radio device is not possible. Therefore, additional
radio devices are needed to form a network.

The IEEE 802.11 standard describes two different possibilities to do this. These
are the infrastructure mode and the ad-hoc mode [Schiller, 2003c]. If the network
is run in infrastructure mode - this is the common way - a specialized node, named
access point (AP), is needed. The type of the formed network is a single-hop infras-
tructured network with the access point as gateway between the wireless LAN and
a wired LAN (BMG). By adding additional AP, the coverage area of the network
can be extended. Clients of the network are NMC. They always have to communi-
cate via the AP. The AP can communicate among one another by using the wired
backbone. They are not able to exchange data directly via air.

The second mode, supported by IEEE 802.11, is the ad-hoc mode. Within a
network run in this mode an AP is not needed. All nodes can communicate with
each other directly. The resulting network is a single-hop ad-hoc network. In terms
of the IEEE standard, such a formation of nodes is named Independent Basic Service
Set (IBSS). Principally, it is possible to overlap two or more IBSS. A node can just
be member of one IBSS at once. Finally, the IEEE standard does not include a
definition for dedicated nodes that enable routing or the exchange of data between
two IBSS. Summarized, there are no bridging nodes for IBSS.

For utilization in the BlueSpot system, WLAN is run in infrastructured mode.
As a result of the missing bridging nodes, WLAN in ad-hoc mode is not applicable,
because of the restricted scaling possibilities. An IBSS with more than five nodes
will have a bad performance. WLAN has a transfer rate that is up to 150 times
faster (IEEE 802.11n standard) than Bluetooth, which is WLAN’s big advantage.
The described overhead for TCP/IP is thus no longer relevant. As a disadvantage,
every node must be configured singularly in order to connect to a TCP/IP subnet.
Therefore, its IP address and subnet mask must be specified. An additional disad-
vantage is the energy consumption of WLAN. Bluetooth devices work much more
energy efficiently and thus have a longer operating time.

In the course of our testings in the laboratory, we detected that running Bluetooth
and WLAN at the same time with a high density of overlapping Piconets (five or

44



5.2. Hardware Platforms and their Operating Systems

more) lead to problems with Bluetooth. The used IEEE 802.11b/g standards work
at the frequency of the ISM-Band at 2.4 GHz. This is the same frequency Bluetooth
works on. The result are instable Bluetooth connections. For this reason, we ex-
tended the BlueSpot middleware with an auto-reconnect functionality. With aid of
this extension, a node tries to reconnect immediately if it detects that a connection
that was established before has been closed. But experiments have shown that a
reconnection can take several seconds. In this time, data transfer is not possible and
thus large buffers are needed to bridge over the downtime of the connection.

TCP/IP

In the beginning, the IEEE 802.11 standard was introduced to replace wired cables
for TCP/IP based networks. It defines the physical and the data-link layer of the
ISO-OSI stack. TCP/IP concerns the network and the transport layer of the stack.
Additionally, for the last ten years, the TCP/IP protocol in version IPv4 has devel-
oped to the most widely spread network protocol. Many other network standards
provide support for TCP/IP. For this reason, this protocol sets a good basis for the
BlueSpot system. By implementing support to it, the BlueSpot system can be run
on several different network types; even future developments will be usable.

Connections via TCP/IP are built-up via sockets. The destination addressing
is performed by the combination of the destination’s IP address and a port num-
ber. Nodes are organized in subnetworks. Mapped onto a WLAN that is run in
infrastructured mode, all nodes within this network are organized in one subnet.
If the network is enlarged by adding additional AP, these AP are included in the
same subnet. Principally, it would be possible to span a new subnet with each AP.
This entails, that every client needs to be reconfigured when it connects to another
AP. By partitioning the network into several subnets, the configuration would be
apparently closer to a Bluetooth Scatternet. But because of the contemplated con-
figuration overhead, the network could not be used in a for user transparent manner
any longer. For this reason we decided to form a BlueSpot system based on WLAN
in one subnet. The resulting BlueSpot topology is a single-hop infrastructured wire-
less network. The requirements made to this network otherwise remain unchanged.

5.2. Hardware Platforms and their Operating Systems

To be able to demonstrate the results of the BlueSpot project, various hardware
components were used. These were selected to represent each known category of
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mobile devices. The categories are smartphones, PDA, desktop PCs and embedded
computers. The selected devices are two different NOKIA smartphones, a FSC
Pocket Loox PDA, various Gumstix and desktop PCs. Next in this section, these
hardware components are discussed in more detail. We shall describe the properties
of each hardware platform and its on top running operation system. Furthermore,
the additionally needed software components shall be specified.

5.2.1. Gumstix with Embedded Linux

The Gumstix [Gumstix, 2007] is a small computer in size of a chewing-gum stick,
therefore its name. Its dimensions are 80mm x 20mm x 6.3mm. The Gumstix
consists of a Intel XScale processor, a flash ROM and SDRAM memory placed on a
PCB. There are various different versions available. They either have a PXA 255 or
a PXA270 processor with 200MHz, 400Mhz or 600MHz clock speed, and different
sizes of memory between 64 and 128MB. Additionally, there are versions equipped
with a Bluetooth chip. These are the ones we used for our project. All Gumstix
can be enhanced with extension boards via two connectors, placed on its top-side as
well as its bottom-side. This way, the Gumstix can be equipped with WLAN and
LAN, audio support, an LCD display, various types of memory flash cards or a GPS
module. Additionally, it supports many current connection standards such as USB,
I2C, NSSP or UART interfaces. See figure 5.3 that depicts a Gumstix.

Figure 5.3.: A photo of two Gumstix

The operating system used to run the Gumstix is Linux. The applied distri-
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bution is an embedded version that uses the Busybox toolkit [Busybox, 2007] - a
replacement for many small UNIX commands which are part of the POSIX stan-
dard [Josey et al., 2004]. The standard GNU C library is replaced by the uClibc
library [uClibc, 2007]. In contrast to the standard library, this library requires less
memory. Additionally, the uClibc library supports processors that do not have a
floating point unit (FPU), as the processors of the XScale series do. The library
provides floating point operations by emulating such a unit.

To be able to implement mobile services for the Gumstix a toolchain is available.
This toolchain is supported by the manufacturer of the Gumstix and is kept up-
to-date concerning the Linux kernel and standard Linux software. Beside native
C, there is the possibility to implement mobile services in Java (see subsection 8.2
for details). Therefore, a Java Virtual Machine (JVM) is needed to be run on the
Gumstix. In this case, the applied JVM is Sun’s J2ME (Java 2 Micro Edition)
[J2ME, 2007]. This is the most common JAVA version for Linux based systems.

To enable a more comfortable programming, the standard template library (STL)
was used. This library supports more complex data types, such as vectors or maps.
Additionally, strings and various string operations are included. This library was
developed for Linux and can be easily used on the Gumstix platform.

5.2.2. Nokia Smartphones (6600/6630/E60) with SymbianOS

The smartphones used for the BlueSpot project demonstrator were made by Nokia.
These are the Nokia 6600 and the Nokia 6630. The Nokia E60 is not supported
currently, but support is planned in the future, due to the integrated WLAN support.
Each smartphone has a different processor type. The resolutions of the displays are
between 176 x 208 pixel (Nokia 6600) and 352 x 416 pixel (Nokia E60). Each
smartphone has at least 6MB of internal memory and can be extended by an SD or
MMC flash card.

In comparison to the Gumstix, smartphones are more difficult to be programmed.
This is due to the installed operating system, which is Symbian OS [Sym, 2007].
The version of the operating system differs from phone to phone. E.g. the Nokia
6600 runs with version 7.0s, whereas the Nokia 6630 comes with Symbian OS in
version 8.0. The Nokia E60 is equipped with version 9.1. Due to the different
versions, there was a need to adapt the BlueSpot middleware to each smartphone
individually. E.g. major changes were made in the implementation of the Bluetooth
support. The Nokia 6600 as well as the Nokia 6630 support Bluetooth version 1.1.
But between Symbian OS 7.0s and 8.0 the Bluetooth API needed to implement
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Figure 5.4.: The smartphones used in the project from left to right: Nokia 6600,
6630 and E60

Bluetooth support was completely revised. Therefore, a complex redesign of the
Bluetooth interface within the BlueSpot middleware became necessary. But all
versions of the BlueSpot middleware have in common that the generic interface for
mobile services are standardized. As a result, any mobile service can be run on
the smartphones, regardless of the used Symbian OS version. Additionally, there is
the restriction that all API used to develop applications for Symbian OS are closed
source. A developer depends on the documentation provided by Symbian and by
Nokia.

All three smartphones come with Java preinstalled. The Java version is the Mo-
bile Information Device Profile 2.0 (MIDP 2.0) [Bloch and Wagner, 2003]. This is
a profile of J2ME that is especially adapted to the requirements of smartphones and
cellular phones. To enable an easy implementation of applications for such devices,
MIDP is kept very simple in its object model. This way, it allows a straight forward
development analogous to the desktop and the enterprise versions of Java. Despite
its simple object model, MIDP lacks support for modularizing the implementation
of technical concerns such as data persistence, screen management, session man-
agement, security management, etc. All these aspects are normally not needed for
the development of applications for mobile devices. For the BlueSpot system, the
support of MIDP based mobile services allows to have services that are portable
onto all other hardware platforms used in this project. E.g. a MIDP based service
can easily be transferred to a Gumstix and executed there.

Considering the STL, there is no equivalent implementation available for Symbian
OS based smartphones. For this reason, we decided to newly design an implementa-
tion of the data types and functions used in the BlueSpot middleware on our own.
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This way, we managed to port the middleware to the smartphones with moderate
efforts.

Our choice to support Symbian OS based smartphones representative for cellular
phones can be explained by several properties immanent to these kinds of smart-
phones. First of all, these smartphones can be extended by extra software that is
not part of original configuration. In order to enable such a software, there are var-
ious SDK available to make the development of applications possible. Furthermore,
the hardware resources theses smartphones provide suffice to run more complex
software, such as the BlueSpot middleware. Finally, the support of standard tech-
nologies that are used by the BlueSpot system is most advanced in comparison to
other cellular phones. E.g. all devices have a MIDP 2.0 Java VM that comes close
to the standardization introduced by the Sun Corporation.

5.2.3. PDA FSC Pocket Loox 720 with PocketPC 2003

Another large group of mobile devices are PDAs. In order to present the class of
PDAs, we chose the FSC Pocket Loox 720 [cognitas, 2005], depicted in picture 5.5.
It was manufactured by Fujitsu-Siemens and is equipped with an XScale PXA 272
processor running at 520 MHz. The memory sizes are 128 MB RAM and 64 MB
ROM. The display has a size of 3,6” and a resolution of 480 x 640 pixel (QVGA).
Bluetooth is supported in the version 1.2. Additionally, the PDA is equipped with
an IEEE 802.11b WLAN network adapter.

Figure 5.5.: FSC Pocket Loox 720 with Windows Pocket PC 2003 SE

The operating system that runs on the device is Windows Mobile Software 2003
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for Pocket PC Second Edition (PPC2003SE). This is a Windows CE based operat-
ing system developed by Microsoft. The used Bluetooth stack was implemented by
Broadcom (former Widcomm). A corresponding SDK needed to implement appli-
cations with Bluetooth support is also provided by Widcomm. Unfortunately, the
available documentation was tenuous, which strongly impeded our development ef-
forts. A second difficulty was to find a Java Virtual Machine based on PPC2003SE.
There are several machines available, but none of them provides all features defined
by the standard introduced by Sun. The result of an evaluation showed that the
best fitting implementation would be IBM J9, which is part of the WebSphere Ev-
eryplace Micro Environment [IBM WEME, 2007]. This version comes close to the
Sun standard and supports all main features of J2ME and MIDP 2.0.

This device is especially suitable for the BlueSpot system due to its technical
parameters. It supports WLAN as well as Bluetooth, and additionally the manufac-
turer provides well-designed SDKs to enable programming of both communication
standards. Additionally, there is a large community providing support concerning
implementation issues, which proved very helpful in the course of development.

5.2.4. Desktop PC with Linux

In order to reach a stable testing environment, we decided to port the BlueSpot
middleware to standard desktop PCs and laptops. The used operating system is
Linux, based on a Linux kernel in version 2.6. On this type of system, the develop-
ment is simplified by well-engineered debugging tools. E.g. these can be used to find
memory leaks or to debug deadlocks. The usage of the STL showed no problems due
to the sophisticated implementations available for Linux. In order to enable Blue-
tooth support, we used USB dongles made by the companies Acer and Broadcom.
These are operated with the BlueZ stack [Holtmann and Krasnyansky, 2007] placed
on top of the Host Controller Interface (HCI) standard and hence function similarly
to the Bluetooth devices installed on the Gumstix. In order to develop Midlets
- a Java based application especially developed for MIDP - we used the standard
J2ME version provided by Sun [J2ME, 2007]. The MIDP 2.0 profile is enabled by
an emulator, also provided by Sun. Part of the emulator is a virtual mobile device,
which pops up on the screen when a Midlet is started. This virtual device has a
telephone keypad and softkeys, with which the Midlet can be controlled. Outputs
are displayed on the virtual display of the device, that pops up on the screen.

Due to the more refined background available when running the BlueSpot system
on a desktop PC or a laptop, it is possible to analyze the proceedings as they happen
during runtime. This way, the development efforts can be accelerated and a better

50



5.3. Summary

quality of code can be achieved.

5.3. Summary

In this chapter we have shown the main ideas behind the Bluetooth standard. We
have introduced the terminology used by the standard and explained how to form
Bluetooth based networks. The IEEE 802.11 standard was then investigated. Anal-
ogously to the Bluetooth section, the terminology was introduced and resulting
network topologies discussed. In the second part of this chapter we described the
different embedded devices, smartphones, and handheld devices we used for demon-
strating the BlueSpot system. Here, especially the operating system, the used soft-
ware extensions, and the Java support were of interest due to their usage within the
BlueSpot system.

The support of Java especially proved to be a great challenge, as Java functions
differently on every device. As a result of our efforts, it can be seen that even Java,
which has the main intension to be absolutely hardware independent, is not able to
bridge the gap between the different kinds of mobile devices. With the BlueSpot
system, we demonstrate that there is a way to support all the above mentioned
device classes with one and the same system software.
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Chapter 6
BlueSpot System

After presenting the basics, now the concept of the BlueSpot system itself will in-
troduced. This chapter shall especially describe the architecture of the underlying
network view and the corresponding software model in detail. This chapter is there-
fore structured as follows: first, the software architecture of the BlueSpot middleware
shall be explained by depicting the requirements made to the system. After that,
the network view and the software model shall be discussed in depth. Within this
section, the different abstraction layers of the network view will be explained. These
are needed to explain the scope of adjustments done in the system during runtime to
meet the requirements of mobile services. In order to describe the software model,
the different layers of the middleware will be presented and their main tasks dis-
cussed. The interfaces needed to extend the middleware by adaptivity models shall
be additionally shown.

Contents

6.1. Requirements to the Software Architecture . . . . . . . . 55
6.2. System Description . . . . . . . . . . . . . . . . . . . . . . 57
6.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1. Requirements to the Software Architecture

The designing of a new complex software system is usually a challenge for a de-
veloper. All problems that need to be solved must be determined, registered, and
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categorized. Furthermore, additional requirements need to be found and described.
The problem handling and the description of the requirements are the basis needed
in order to construct the software concept. In our case, the BlueSpot system turned
out to be very complex. The best solution in course of development therefore was
to divide the entire implementation into several modules. These are ordered into a
software stack consisting of five layers. For this very common approach, the ISO-OSI
stack served us as model.

A second point of interest are the underlying network structures. Each network
has different requirements according to the network technology it bases on. In or-
der to gain a network technology independent solution, a subset of functionalities
that contains the minimum of the required capabilities must be defined. By use of
this subset, the required similarities can be located and transferred into the imple-
mentation. The wireless technology independence of the BlueSpot system is gained
by providing an interface that forms an abstraction layer on top of the underlying
network. Above this layer, no more knowledge about the type of the underlying
network technology is needed. The details of this abstraction layer is described in
section 6.2.2.

As further requirement in the concept of the BlueSpot system, the integration of
adaptive behavior extensions must be made possible, even during runtime. They
shall be provided as extra modules, and thus their integration must not imply the
need to change the source code of BlueSpot system’s middleware itself. In order to
solve this problem, the resulting software architecture is equipped with an interface
that lies transversely to the rest of the software stack. It is responsible for opening
each layer to enable the inclusion of additional functionalities during runtime. The
name of this interface is adaptive behavior extension. The detailed description of it
can be found in section 6.2.2.

In order to integrate the most current extension approaches, the previously men-
tioned interface must be divided into several sub-interfaces. Most of the current
state of the art approaches concern more than one layer of the software stack. They
are named crosslayer approaches. A resulting requirement of the BlueSpot system’s
software architecture is to enable access to each layer individually and even more
important, simultaneously. This is succeeded by the subdividing of the adaptive
behavior extension interface into sub-interfaces.

The concept of the BlueSpot system requires the enabling of a large spectrum of
mobile services running on the middleware. Analogously to the adaptive behavior
extensions, there must be a point of connection available that allows the connection
of a service to the middleware during runtime. The code base of mobile services,
that are provided as stand alone software packets, can be constructed in different
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manners. They can be implemented in native C as well as in Java source code
(see section 8.2 for a detailed description). The resulting requirement the software
architecture must meet with is to provide a connection for all possible types of
mobile services, independently from the underlying programming language.

6.2. System Description

In order to understand the BlueSpot system in its full complexity, it is necessary to
determine different views of the system. By aid of these views, the description of
the system can be structured, making it better understandable for the reader.

There are basically two different views used to describe the system. One view
concerns the network model the system bases on, the other displays the middleware
structure and shows up the tasks of each layer. The latter can be used to describe the
different functionalities of the system, whereas the network view is used to describe
the behavior of the system as it evolves in the course of its dynamic behavior. It
is used to explain how the system reacts to changes according to the requirements
mobile services have when they are run on the system. E.g. when a new service
is started, it brings with it the requirement of having a defined minimum of free
bandwidth. In order to run the service properly, this bandwidth must be provided,
and contingently certain adjustments must be made by the system in order to fulfill
these requirements. Beside a required minimum, various other parameters must be
considered for describing the requirements of a mobile service. A description of these
can be found in section 8.2.1.

Beside the previously mentioned adjustments, various adaptive behavior exten-
sions can be applied to the system that all concern different parts of underlying
software architecture. In order to categorize these approaches and describe their
point of contact concerning the system’s middleware, it is necessary to have various
views of differing layers of abstraction. These are defined by use of the network
view.

6.2.1. Network View

The network of the BlueSpot system is an infrastructed multi-hop wireless network.
As a result, there are two different types of nodes available. One type are NMC
nodes, which are named clients. Within the BlueSpot system, they are responsible
for the user interaction. In most cases this type of node is a PDA or a smartphone.

57



6. BlueSpot System

The support of clients with routing abilities is not provided.

Nodes that form the infrastructure (BMR) are named BlueSpots. They are de-
ployed by use of the Gumstix. Gateway nodes (BMG) are not provided, but the
gateway functionality can be achieved by use of mobile services. In this case, the ser-
vice must be run on a node that has access to another network beside the BlueSpot
system. An example for this is a client that is also connected to the internet. The
BlueSpot system works in a completely decentral manner. I.e. there is no central
server that is responsible for network organization.

MIB

Figure 6.1.: Network Layers for abstraction

By use of the network model, the network view can be described in more detail.
Consider figure 6.1 for a classification. The view can be divided into four sub-
views, here named areas for clarity. The first area is the infrastructured network . It
represents the global view of the entire network and consists of single domains and
the connections between them. Each single domain represents a connected number of
nodes that are in close interaction with each other. It consists of nodes that form the
infrastructure as well as client nodes. In figure 6.1, the infrastructure forming nodes
are presented by an additional dotted line that illustrate a connection to another
domain. It is import to additionally know that client nodes are mobile within the
BlueSpot system. Therefore, they are able to move between single domain areas
and connect to the provided infrastructure at this area.

Considering Bluetooth as the underlying network technology, the infrastructured
network is represented by a Scatternet, while a domain is represented by a Piconet.
The connection between two domains is performed by bridging nodes that belong to
both domains. The same applies to IEEE 802.11 WLAN. Here, a domain is repre-
sented by an access point with all its connected client devices. By bridging several
access points together, an infrastructured network is created. The differentiation
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between these two areas is needed in order to distinguish the different approaches
of system behavior during runtime. That way, the infrastructured network area can
be used to describe the global behavior of the system, while local approaches that
appear in the vicinity of a node can be explained by use of the single domain area.

In order to investigate the behavior of a single node, an additional area is needed.
It represents the area of the node with the middleware running on it. By aid of
this area, all adjustments made for a node can be described. Unlike the first two
areas, this area not only concerns the network but also the software and hardware
adjustments. That way, the resources a node provides can be reassigned as a result
of changing demands of mobile services. The last area of the network view concerns
the mobile services. Each service contains an additional set of information named
Meta Information Base (MIB). The MIB contains all parameters needed to run the
service properly. The architecture of the MIB and the content of these parameters
are described in section 8.2.1.

In the further proceedings, the term view will be used instead of area. Here, the
term area was used in order to distinguish between the summarized terms network
view and middleware view, and the different layers of abstractions within the network
view.

6.2.2. Middleware View

In contrast to the network view, the middleware view is used to describe function-
alities the BlueSpot system includes. With its aid their position within the software
architecture can be described. As mentioned before, the middleware is constructed
as a software stack. Each layer combines various tasks ordered by their common
bond. This way, the complexity of the entire system is split into several parts that
can be easily implemented. By defining software interfaces that are placed between
the layers, these layers are made more independent of each other. See figure 6.2 for
the software architecture.

In order to extend the middleware with adaptive behavior, several software inter-
faces are included, one for each layer. These functionalities are grouped within the
adaptivity module, which lies transverse to the entire stack. The adaptive behavior
extensions are needed for doing adjustment during runtime. This way, the mid-
dleware reacts to changing demands of the mobile services. By aid of the software
interfaces adaptivity extensions can be included into every single layer. The layers
themselves remain completely untouched by these extensions and thus do not need
to be modified, if a new adaptive mechanism is inserted.
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BSBthDev BSLanDev

Network Adapter Interface

Network Adaption Layer

Protocol Layer

Session Layer

Service Interface

Mobile ServiceMobile ServiceMobile ServiceMobile Services

Adaptive Behavior
Extensions

Figure 6.2.: The middleware used in the BlueSpot system

In the following, the software stack shall be described first. Each layer shall be
presented in detail and its included functionalities explained. The description shall
begin with the lowest layers, the network devices’ libraries, continued with the layers
in between, and finished with the top layer, named the service interface. Later, the
adaptive behavior extensions shall be discussed. In this section, the process of
extending the middleware by additional software modules shall be explained using
several example extensions.

Stack

As described in the end of section 5.1.1, the BlueZ stack is used to provide Bluetooth
support to the Linux based systems. The BlueZ stack includes a well documented
API that helped us enormously to add Bluetooth functionality to the BlueSpot
system.

In the case of the BlueSpot system, the access to the different network devices is
standardized. As a result, the access to each network device takes place in identical
manner. The network access is implemented within the network adapter interface
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and the network adaption layer . The latter is responsible for the management of
the network adapters as well as of the communication handling of each adapter.
In order to enable common access to Bluetooth as well as to TCP/IP, the network
adapter interface is used. It defines a set of functions that must be provided by
the connection network library, such as the BSBthDev or the BSLanDev, which will
be described in the next paragraph. Here is the list of functions to be provided by
extending libraries:

• scanning for new devices

• connecting and disconnecting to other devices

• initialization of a master - slave role switch (only if needed)

• reading of the received signal strength indicator (RSSI) (for future use)

• reading of the link quality (for future use)

• sending and receiving of data

The scan process is threaded. Therefore, the process can be started in an asyn-
chronous way. Hence, it does not block the responsiveness of the middleware. A
second thread is started after a new connection has been established. This thread
is responsible for receiving data and for forwarding it to the upper layers. In order
to determine the quality of a link, Bluetooth provides two indicators. One is the
link quality . A higher link quality value indicates a better link signal quality. The
second parameter is the received signal strength indicator (RSSI), which is used to
describe the optimal distance between two nodes. In case of Bluetooth, the stan-
dard defines an optimum distance of approximately one meter. In case of a shorter
distance, the signal strength gets too strong, otherwise, if the distance is too large
the signal strength gets too weak. These parameters are very dependent on exterior
influences and thus must be used very carefully. As a result, these parameters are a
constituent part of the network adapter interface, but are currently not used within
the middleware.

In order to support Bluetooth functionality, the BSBthDev library is part of the
middleware stack. It is responsible for connecting the Bluetooth API functionalities
provided by the manufacturer of the Bluetooth hardware to BlueSpot middleware,
and thus enables the communication via the Bluetooth hardware. Therefore, it im-
plements all of the previously mentioned functions of the network adapter interface.

In order to access the WLAN adapter hardware, the BSLanDev library is ap-
plied, which works similarly to the BSBthDev one. It also implements the required
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functions of the network adapter interface. The role switch is implemented as an
empty function, due to the lack of roles within the IEEE 802.11 standard and the
TCP/IP protocol. In these two technologies, links are defined to be symmetrical. A
differentiation between nodes after a link has been established is not necessary. An
indicator for the link quality is available for IEEE 802.11, but it is not provided for
the BlueSpot system. Experiments have shown that this indicator cannot be used
reasonably due to the high reflection rate of walls and other objects within the radio
range of an WLAN device. All these objects reflect the signals transmitted by a
sender. On the receiver side, the signal arrives from more than one direction and
at different points of time. The latter is the result of different signal propagation
delays. Therefore, the link quality indicator is falsified and hence useless.

The scanning process for new devices is accomplished by use of a broadcast mes-
sage. This message is inserted into a UDP packet and sent to the broadcast address
of the IP subnetwork the node is placed in. Other nodes within the vicinity of the
broadcasting node answer with their IP address. After this, the node is able to
establish a connection to them.

When a node is detected - no matter whether via Bluetooth or WLAN - it must
be entered on a list of known devices, named DeviceDetails. The source code and
a description of this list can be found in appendix B.1. This list must be provided to
the middleware stack in order to enable the middleware to manage all connections.
By use of it, a node gains knowledge of all nodes that are currently connected to
it. This is needed the moment the nodes wants to interact with another node, and
thus must know which connection must be used.

On top of the network adaption layer, the protocol layer is situated. It uses
the DeviceDetails structure in order to handle the connections to the neighbor-
ing nodes. The protocol layer correlates with the network layer and the transport
layer within the ISO-OSI stack. Therefore, it is responsible for the end-to-end com-
munication and thus controls the routing algorithms. The communication of the
BlueSpot system is divided into two types of messages: control messages and data
messages. Control messages are sent exclusively by use of a first routing algorithm
that is integral part of the BlueSpot middleware. This algorithm is a flooding ap-
proach with duplicate detection that is enhanced in order to guarantee delivery of
messages [Urrutia, 2002]. Without this guarantee a consistent state of the entire
network could not be achieved.

Data messages are delivered by use of extending routing algorithms that are re-
sponsible for regular communication. These algorithms are exchangeable, and there-
fore the protocol layer has the ability to load a routing extension module and forward
all data messages to it. Subsequent to this, the routing algorithm is responsible for
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selecting the next hop node in order to forward the data. The selection and exchange
of the routing protocols is done by the protocol interface, which is part of the adap-
tive behavior extensions. The currently implemented routing protocols available for
the BlueSpot system are DSDV and DSR, which are representatives of the two most
common classes of routing algorithms. A general classification of wireless routing
protocols is given in section 7.3. The application and integration of such protocols
within the BlueSpot system is described in section 7.3 and section 7.4.

The next higher layer is the session layer. It is responsible for the mobile services
dependent session handling, analogously to the session layer of the ISO-OSI stack.
After a service has been started, the session layer creates a new session with a unique
128 bit long session identifier. This identifier is used to address the mobile service
run on the corresponding communication partner node. If the communication path
between the two partners breaks down, the session is kept upright for a predefined
timespan. The moment a new connection path has been reestablished between
the two nodes, the still existing session ID is detected and the mobile services are
reconnected automatically. This behavior is part of the mobility aspects that will
be described in detail in section 7.5.

The binding of mobile services to the BlueSpot middleware is accomplished by
the service interface. Mobile Services are implemented in an extra software packet
and loaded to the system during runtime. Therefore, the service interface provides
an API, which is used to control it. For a more detailed description of the service
interface API see appendix B.2.

Mobile services can be implemented in two different programming languages. On
the one hand, a service can be implemented in native C language. After compiling
the source code, a software packet is created that can be loaded into the same process
space of the BlueSpot middleware. The set-up is depicted on the left hand side of
figure 6.3.

On the other hand, a service can consist of Java source code. In this case, the ser-
vice is started in a Java virtual machine and thus runs in an extra process space. In
this case, the communication between the mobile service and the BlueSpot middle-
ware is established via a socket connection that uses the localhost device. Therefore,
two connector classes are provided by the BlueSpot middleware that implement this
connectivity as seen on the right hand side of figure 6.3: one is placed within the
service interface, and thus runs in the process space of the middleware. The other
is situated on top of the JVM, and therefore, it is run in the JVM’s process space.
The moment a mobile service is started, it is integrated into the same process space
of the JVM and the BS connector class, and thus is able to communicate with
the BlueSpot middleware. In that way, the needed inter-process communication is
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solved. Normally, the standard way to connect the service would be to use a JNI
interface. But in this case, JNI is not available due to its lacking within the MIDP
2.0 Java standard. The detailed mobile service description for the BlueSpot system
can be found in chapter 8.

process space of process space of process space of
middleware

mobile 
service

middleware JVM

mobile 
service

JVM 
connector

BlueSpot
middleware

service

BlueSpot
middleware JVM

connector
BS connector

native C based
mobile service

Java based mobile service
mobile service

Figure 6.3.: Comparison of the connection of a native C based and a Java based
mobile service to the middleware

This way of structuring the BlueSpot middleware was very useful in the course
of development due to the resulting possibility to divide the development into sepa-
rate work packages. These could be accomplished by student works: the Bluetooth
support for the Gumstix, and thus the basis of the BSBthDev library was imple-
mented by Steinle and Eiband [Steinle and Eiband, 2006]. The BSBthLan library,
the network adapter interface, network adaption layer, and protocol layer and was
implemented by Hacker [Hacker, 2006]. The session layer, the service interface and
the connector classes were developed by Schupfner [Schupfner, 2007]. Langham-
mer and Metzger were responsible for the porting of the whole middleware to the
smartphones and the PDA [Langhammer and Metzger, 2007].

Adaptive Behavior Extensions

As described before, the middleware can be extended by additional software mod-
ules. In order to enable these extensions for adaptive behavior, interfaces are needed,
one for each layer of the middleware stack. These interfaces are organized within
the adaptive behavior extensions module. The detailed source code description can
be found in section B.3. For a more general description see figure 6.4.

Depicted on the left side are the layers of the middleware stack. Each layer has
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6.2. System Description

Figure 6.4.: Structure of the adaptivity module

a corresponding interface marked with the prefix Adm. In most cases, an approach
yet to be implemented concerns more than one layer of the stack, and thus is a
crosslayer approach. As a result, the interfaces of the middleware stack can be used
to insert desired functionalities on the level of the stack the functionality belongs
to. To simplify the usage of theses interfaces, their functions and methods are
standardized within the adaptivity core class. For further information see Steinle
[Steinle, 2007].

When a mobile service is to be started, the general work flow can be described
as follows: before the service is started, the service interface requests the MIB (see
section 8.2.1) of the service. This is provided to the adaptivity module that must
decide whether or not the requirements can be met with. This is done by comparing
the required resources to the own available ones. Each node has a database that
is used to store its current occupancy rate. This rate is made up of a vector of
parameters similar to those stored in the MIB of the service. By comparing the
values of each parameter, the middleware is able to find out if the resources the
service requires are available. For a detailed description of this approach we refer
to section 8.2.1. In case the requirements cannot be met with at the first, available
extension modules are tested to see if they can be used to adjust the system in
order to gain the needed resources. If a positive result is found, the corresponding
extension modules are loaded and started. After this, the service can be started and
the allocated resources registered in the local resources database. The adaptivity
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module therefore is always the central instance making crucial decisions, and as
such it is an essential part of the adaptive behavior processes made by the BlueSpot
system.

6.3. Summary

This chapter commenced with the explanation of the used software architecture of
the BlueSpot system. Due to this, the middleware is implemented as a stack with
layers. The adaptivity module lies transversely to the layers in order to compose the
provided interfaces of each of them. To explain the tasks of the BlueSpot system in
more detail, two different views of the system were introduced. One view deals with
the underlying network model, the other is responsible for showing the software stack
in great detail, and therefore, it is used to explain the functionalities of each layer.
Starting with the underlying network device libraries and the corresponding network
adapter interface, the available software interfaces are presented. The service inter-
face positioned on top was used to round up the overall picture. Afterwards, the
adaptive behavior extensions module were illustrated. Without giving any concrete
examples, the general work flow for starting a mobile service is explained. The un-
derstanding of this work flow is important for categorizing the available adjustments
for adaptive behavior, that will be introduced in the next chapter together with an
overview of possible extension modules.
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Chapter 7
Network Self-Organization

In the previous chapter, the different views as well as the structure of the BlueSpot
system were introduced. Now, the mentioned adaptive behavior of the system shall
be explained. This chapter is therefore structured as follows: before the system
can go productive, an infrastructure must be established. For this reason, possible
topologies in terms of Bluetooth based networks shall be introduced. The advantages
and disadvantages of each possible topology shall be discussed, then basic approaches
for automated network forming introduced.

After a wireless network has been formed, it is started and mobile services can go
active. But due to the changing demands the system must meet with, it needs to
be adjusted continuously.

The available adjustments shall be explained commencing with approaches con-
cerning the modification of the topology. Afterwards, the possibilities of adjusting
the used routing protocol shall be described.

The complete exchange of the routing protocol as well as simple configuration ad-
justments shall be shown. In order to provide a general approach that adds adaptive
behavior to a wireless network system, the BlueSpot system’s adaptive capabilities
shall be introduced and discussed in detail. In addition, the description of the
Blue Spot system shall be rounded up by explaining the functionalities available for
supporting mobile clients.
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7.1. Network Forming

In order to establish a new wireless network, a network topology on basis of con-
nections must be found that fulfills the minimum requirements the on top running
services have. Factors such as the latency times and the throughput within the
network must be kept in mind. But the organization of the network’s topology is
also crucial for a later successful network operation. E.g. a network with a greater
amount of nodes is more difficult to organize than a flat topology due to a bad
scalability. A result would be huge routing tables and long communication paths
with high hopping lengths in average. A better solution here would be to have a
hierarchical order into which nodes are grouped into single domains with a bound
maximum size.

All these discussions are very fundamental. The implementation in real life with
real hardware is much more difficult. Usually, the main idea is to enable the nodes
to organize themselves automatically. But in the initialization phase of a wireless
network, a node has no knowledge of the actual situation of any other node. Even if
the design of the network was made manually, nodes must be able to react to events
that harm the network. In general, it is common to completely separate the network
forming problem from the network management and controlling performed during
runtime. As a result, the forming process is simplified, since it can be considered as
an isolated problem. Beside the deliberations that shall be made in the following,
we like to refer to Langhammer [Langhammer, 2007] for an overview of related
approaches on this sector made by other researching groups.
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7.1.1. Bluetooth Topologies

The main communication technology used by the BlueSpot system is Bluetooth.
For this reason, network forming shall be discussed by use of Bluetooth. The fol-
lowing description of Bluetooth topologies is taken from Dümichen and Baumgarten
[Dümichen and Baumgarten, 2007].

An issue of interest are points of contact, at which clients are able to connect
to the infrastructure. As described in the Bluetooth fundamentals in section 5.1.1,
an infrastructure node that acts as an master node can only accept one additional
connection request. After accepting, it turns to a M/S bridging node and is only able
to establish further connections by its own initiative. A way out is to initiate a role
switch in order to integrate the client node into the Piconet. The infrastructure node
turns back to a master and can accept another connection request. A slave node
can accept one further connection. Moreover, it can neither accept nor establish any
further connections as it turns to a S/S bridging node.

Generally, two parameters are of interest. On the one hand, the more points of
contact are provided by the infrastructure, the better. On the other hand, these
points must be spread evenly over the entire network in order to gain a balanced
structure. These two issues are very fundamental requirements. Currently, there is
no standard mechanism that allows to easily solve these issues simultaneously.

Another aspect to be considered is the average size of the Piconets within the
Scatternet. Large Piconets come along with a small number of bridging nodes that
are evidently the bottlenecks of the network. As a result, the average throughput
will be higher than in networks with sparsely populated Piconets. But in contrast
to that, large Piconets offer only a small number of points of contact. In summary, a
high throughput rate stands in contrast to the number of available points of contact.
Therefore, the middle course is strongly required.

Due to the Bluetooth system’s immanent restrictions, there is only a minimal
amount of topology types possible. Concerning the BlueSpot system, these topolo-
gies only concern the infrastructure. A client node is connected after the formation
process was finished successfully by accessing an available point of contact. Before a
formation process can be started, an entirely linked network is assumed. The result-
ing topology is the product of a directed conduction of connection establishments
between nodes. The distribution of nodes must be considered in two ways: their
geographical distribution, where the exact position is of interest, and their relative
distribution, where the position is seen in relation to the node’s vicinity (see section
3.1). The possible resulting topologies and their characteristics will be described
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next.

The most common topology is the random Scatternet. It is the result of estab-
lishing a network without any coordination. All types of nodes occur randomly.
Piconets are connected by M/S bridging nodes as well as by S/S bridging nodes.
See figure 7.1 for an example.
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Figure 7.1.: Random Scatternet topology

A randomly organized network has the big advantage that no forming manage-
ment is needed. But as a result, no predictions can be made whether or not the
resulting network is entirely connected. Additionally, it is unlikely that the net-
work is balanced concerning the points of contact. An even distribution of points of
contact can also not be guaranteed.

A completely different approach is a Scatternet put into linear order. This can
be constructed in two ways: by use of M/S bridging nodes or by use of alternating
master and S/S bridging nodes. The forming management is not very costly and
thus can be easily implemented. An illustration can be seen in figure 7.2.

S M|S MM|S M|S M|S

S M S|S M S|S M

Figure 7.2.: Linearly ordered networks

Both types of linearly ordered Scatternets have a very even distribution of points
of contact. However, the M/S bridged type provides more points of contact due
to the fact that S/S bridging nodes can neither accept nor establish any further
connections (see section 5.1.1), and thus only the master nodes are able to establish
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new connections or to accept incoming connection request. In contrast to this,
M/S bridging nodes are not able to accept any further connection requests. If such
a configuration is used, the network must permanently poll for new possible client
nodes in order to contact them. The performance of the two types of linearly ordered
topologies is very different and will be discussed in sec 9.2.5 in detail.

A disadvantage of both types of linearly ordered networks is, that the moment
a node drops off, the entire network will be split up into two parts. In addition
to this, all nodes communicate only via the one existing path, and thus alternative
paths are not available. This results in long communication paths as well as in a
high throughput concentration at the nodes placed in the center. Therefore, the
expected scaling behavior will be very bad.

An advancement of the linearly ordered Scatternet topology is the spanning tree
formation. Due to its definition, no S/S bridging nodes occur within this topology.
The root node is always a master node. The leaves are slaves. All other nodes
are M/S bridging nodes. In figure 7.3 an example of a spanning tree Scatternet is
depicted.

M

M|S M|S

SM|S SS SM|S SS

S S

Figure 7.3.: Spanning tree topology

Analogously to a linearly ordered Scatternet, this topology provides many points
of contact for clients. The forming of the network is simple due to several forming
algorithms already existing for this topology, e.g. the Bluetree algorithm introduced
by Zaruba et al. [Zaruba et al., 2001]. In comparison to a linearly ordered Scatter-
net, the spanning tree formation has a reduced backbone appearance. The length of
communication paths is shortened additionally, but nonetheless remains not ideal.
If a node drops off, the complete network will fall apart, as it would in a linearly
ordered one. The reason for this is, that still only one path from one node to another
exists. The throughput and latency times will be higher than in random Scatternets
due to the large number of Piconets.
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In order to construct a network with redundant paths between the nodes, a S/S
bridged Scatternet can be used. This topology configuration connects several Pi-
conets by S/S bridging nodes; M/S nodes do not appear. The master nodes are the
only available points of contact for connecting clients to the network. The redun-
dant paths originate from Piconets with more than one S/S bridging node, as can
be seen in figure 7.4.

S|S
M M

S|S

S|S S|SS|S

M M
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Figure 7.4.: Slave/Slave bridged topology

It is the nature of the master nodes that they are the only points of contact, result-
ing in their even distribution. The client accepting capacity can be managed easily:
the more connection points are needed, the more single domains must be installed
(see domain view in section 6.2.1). The throughput of the network is increased by
adding supplementary S/S bridges. Clients are connected to the network either by
initiative of a master node or of their own. In the second case, it is necessary to
initiate a role switch between the two involved nodes to integrate the client into
the Piconet of the master node. As a disadvantage, the S/S nodes are not able the
handle any further connections. At this point the only function of a S/S node is to
forward the data between two Piconets. Additionally, communication paths will be
long, as a S/S node is needed for connecting two Piconets.

By adding supplementary slave nodes to a S/S bridged Scatternet, we will obtain
a network with nodes we have named satellite nodes. See figure 7.5 for an example.

The resulting advantage is a better geographical distribution. Clients connect to
these nodes as a master or get connected as a slave. In the first case, it is useful
to initiate a role switch since a satellite node acting as a S/S bridge is not able to
establish any further connections. In the second case the satellite note runs as a
M/S node and is able to connect to six additional clients at maximum. In most cases
the enhancement of a S/S bridged Scatternet is necessary to connect all nodes to
the infrastructure. Otherwise, it is possible that nodes that could not be integrated
into the network will be left behind after completion of the network forming process.
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Figure 7.5.: Slave/Slave bridged topology with satellite nodes

An example for a forming algorithm that produces a S/S bridged Scatternet with
satellite nodes is the Bluetooth Topology Construction Protocol (BTCP) that was
first introduced by Salonidis et al. [Salonidis et al., 2001].

After one of the satellite nodes has initialized a role switch and becomes a master,
a S/S bridged Scatternet with satellite nodes and extension of point of contact is
obtained. It structure can be seen in figure 7.6.
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Figure 7.6.: Slave/Slave bridged topology with satellite nodes and extension

The aim of the extension is to be able to satisfy an increasing amount of connec-
tion requests occurring momentarily within a particular area of the Scatternet. At
this point the resulting master node is able to accept one and to build up several
additional connections, meaning an improvement of coverage in this area. After
these connections have been terminated, the node can be switched back to regular
satellite node. This process can be used as an easy-to-implement feature for the
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adaptive behavior of the BlueSpot system.

7.1.2. Topology Forming Approaches

The forming of the above described topologies is very difficult and complex especially
for the three latter topologies. For these, the most common approaches are based on
the application of selected graph theory-based theorems. A detailed overview of the
most promising theorems for our gives Li [Li, 2004]. He introduced the application
of high-degree yao graphs with k = 7, where k is the degree of the node’s established
connections, in order to construct Scatternets that are relatively distributed in an
even manner. His deliberations as well as the meaning of high-degree yao graphs
for the BlueSpot system, as it is the most promising for network forming, shall be
described at the end of this section.

We will start by introducing the unit disk graphs that are the common entry
point for modeling network formation approaches for wireless networks on basis of
the graph theory. On the basis of these unit disk graphs, we shall introduce the
relative neighborhood graph as well as the gabriel graph. These two geometrical
structures are applied on top of unit disk graphs and are common approaches that
could be used to form networks topologies.

After this, the directed and undirected versions of the yao graph are introduced.
As an advancement to the other two geometrical structures, the yao graph allows
to limit the maximum amount of inbound and outbound connections of a node. In
addition to this, two special versions of the yao graph shall be discussed, due to
their ability to model the main restrictions made by the Bluetooth standard.

u v u v u

UDG RNG GG YGk

Figure 7.7.: Examples of UDG, RNG, GG and a yao graph.

In the following we consider a wireless network on the level of connections as an
edge graph G(V,E) with the nodes V distributed in a euclidean plane as defined in
section 3.1. Now, we additionally assume that all nodes have the same maximum
transmission range, which is set to one unit. In order to mark this maximum trans-
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mission range, a disk is depicted with the node in its center. Two nodes are only
able to establish a connection between each other if both nodes are situated within
each other’s depicted disks. The distance between the two nodes is named length
stretch factor and is described by the euclidean distance function (len(eij) = ‖uv‖).
A resulting graph is named unit disk graph UDG(V ) (see figure 7.7 for an example)
that is formally defined as follows:

Definition 4:
Unit Disk
Graph

Definition 4: Unit Disk Graph

A unit disk graph is defined by considering an edge graph G(V,E), where all edges
E have the maximum length equal to one unit. As a result, there is an edge eij ∈ E
between two nodes vi and vj ∈ V if only and only if their euclidean distance is at
most one.

Further definitions of the UDG(V ) that differ from this definition can be found
(e.g. Clark et al. [Clark et al., 1990] defines the maximum length stretch factor
equal two). But concerning wireless networks, this version makes the most sense,
as any two nodes must be within radio range of each other in order to be able to
communicate.

A geographical structure that bases on the UDG(V ) is the relative neighborhood
graph RNG(V,E) ⊆ G(V,E). It first was introduced by Toussaint with pattern
recognition as its main field of application [Toussaint, 1980]. This geometric concept
bases on a set of nodes V that are distributed on a euclidean plane analogously to
the definition of UDG(V ). Within this graph only those edges exist that have the
shortest distance defined by the length stretch factor between two nodes. The formal
definition looks as follows:

Definition 5:
Relative
Neighborhood
Graph

Definition 5: Relative Neighborhood Graph

A relative neighborhood graph RNG(V ) consists of all edges euv such that there is
no node w ∈ V with euw and ewv satisfying ‖uw‖ < ‖uv‖ and ‖wv‖ < ‖uv‖.

By use of this structure, the resulting RNG(V ) structure is sparser than the
underlying UDG(V ). Additional edges, that would ”overload” the network, and
thus would highly influence the performance of an applied routing algorithm are
eliminated.
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The second geometrical structure that can be considered as interesting for network
forming algorithms is the Gabriel graph GG(V ). It was first introduced by Gabriel
and Sokal [Gabriel and Sokal, 1969], who defined the structure as follows:

Definition 6:
Gabriel Graph Definition 6: Gabriel Graph

Let disc(u, v) be the disk with diameter ‖uv‖. Then, the Gabriel graph GG(V )
contains an edge euv ∈ E if and only if disk(u, v) contains no other node w ∈ V
inside.

Analogously to the RNG(V ), the resulting graph GG(V ) is sparser than the
underlying UDG(V ). Therefore, the same results apply to the RNG(V ) and the
GG(V ). The area defined by the disk(u, v) is smaller than the intersection of the
two disks defined by the RNG(V ) (compare figure 7.7). As a result, more edges
will be integrated into the resulting graph than by applying a RNG(V ) structure.
Li [Li, 2004] showed that RNG(V ) is a subgraph of the Gabriel graph GG(V ). He
deduces furthermore that the relative neighborhood graph and the Gabriel graph
only contain the edges in UDG satisfying the respective definitions.

An example for the usage of an GG(V ) structure was given by Karp and Kung
[Karp and Kung, 2005]. By use of their approach a spanning tree topology is estab-
lished that is the result of a GG(V ) based algorithm. They proposed this approach
in order to obtain a network topology their GPSR routing algorithm (see section
4.2.5) is working on.

A more promising geometrical structure concerning Bluetooth-based Scatternets
is the Yao graph. By use of this structure, the disk with a radius of the maximum
length stretch factor and the node in its center is divided into k separated cones
bordered by rays originating at the node itself. For an illustration of a yao graph
see the right most illustration in figure 7.7.

Definition 7:
Yao Graph Definition 7: Yao Graph

Say, k is an integer value with k ≥ 6. A directed yao graph
→

Y Gk (V ) based on k is
defined as follows: at each node u ∈ V , any k equally separated rays originated at u
define k cones. In each cone, choose the shortest edge euv, if there is any, and add
a directed link

→
uv.
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The great advantage of the yao graph is that the maximum number of the out-
bound connections are define by the factor k. This is especially important for Blue-
tooth Scatternets, where the size of a Piconet is limited to eight nodes: the master
and seven slaves.

In order to describe a Scatternet, this structure is not sufficient, due to the lacking
of inbound connections. Here the most promising algorithms are the symmetric Yao
graph and the high-degree Yao graph which are special versions of the Yao graph.
By adding the oppositely directed links

←
uv to a Yao graph the resulting structure is

named reverse Yao graph, denoted as
←

Y Gk (V ). In case an edge is only added to a
graph if the link

→
uv as well as the link

←
uv exist, the resulting graph is undirected.

It is denoted as symmetric Yao graph Y Sk(V ). Peng and Lu [Peng and Lu, 2000]
showed, that a Y Sk(V ) is strongly connected if UDG(V ) is connected and k ≥ 6.
The resulting Scatternet consists of Piconets not larger than seven nodes (six cones
plus the node itself) in size in case of k = 6.

By using a high-degree yao graph the master-slave relation can be taken into
account additionally. An algorithm that uses this type of geometric structure as
basis for network forming was proposed by Li et al. [Li et al., 2004]. Here, only the
main steps of this algorithm are described. For a detailed description we refer to
the citation given above. This algorithm consists of two steps. The first step is to
prepare all nodes in order to satisfy some properties such as the resulting structure
must be planar. In this case, planar subgraphs are formed using the available nodes.

During the second step, the amount of outbound connections of each node is lim-
ited to seven by applying the yao structure with k = 7. The subgraphs created
before, are used in order to assign master-slave relations to all nodes that are mem-
bers of the subgraph. In addition, each node creates a key, which can be the identity
of the node, its degree or a combination of both. In latter case, the key can be used
for comparison with its neighbors. Step two is iterated as long as there are no more
unassigned nodes. The final structure is denoted as Y Hk(V ).

7.2. Modification

After a wireless network has been formed, the mobile services to be provided can be
started. As a result, the entire system is set active. By this, the demands made to
the system begin to vary. New services are started and thus the needed bandwidth
must be provided in order to run them properly. Therefore, the entire system must
permanently be adjusted in a highly dynamical manner. Additionally, new clients
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the system needs to attend to can appear. These are able to move throughout the
entire coverage area, which results in the usage of permanently changing points of
contact. New connections must be established, while connections no longer needed
are closed. Both, the changing demands as well as the mobility of the clients require
a permanent modification of the network topology. This results in the following
events:

• adding of new nodes and thus establishing of new connections

• dropping off of nodes or actively closing of connections

• restructuring the topology, due to reacting to new demands

The first two events always effect a single connection concurrently. The third
event needs to be handled more elaborately. The moment the demands change and
thus the system decides to trigger modifications, a sequence of events will occur.
These events must be thought through carefully and their executing must be well
organized.

A restructuring event always concerns more than one connection. Therefore, in
order to perform the restructuring event, it is split into various adding and dropping
events. This is done at the originating node which has previously detected that the
demands cannot be met with anymore, due to changes that are the results of an
exogenous event (see section 7.4.2). Afterwards, tasks describing the single atomic
events are spread to the concerning nodes, and are executed after one another.

An example for a restructuring event is the path isolation. Consider a mobile
service that requires a high and constant bandwidth, such as telephony service, that
shall be run on the system. The moment the mobile service is started, the used
communication path can be taken out of the network topology. All connections
that are not part of the communication path are closed. As a result, bandwidth
previously assigned to other services is revoked and provided to the new service.
Additionally, the number of connections to be handled is reduced to the minimum.

By triggering a path-isolation event, the network falls apart into at least two
pieces. Subsequently, the isolated communication path is exclusively responsible
for providing the resources the service demands. The rest of the network must
reorganize itself. In case the network was divided into three or more parts, the
remaining ones must be reconnected in order to reestablish a entirely connected
network.

78



7.3. Routing

The main usage of modification within the BlueSpot system is to enable the
mobility of clients. Here, modification events are the result of handover requests, the
joining of new, or the disappearing of existing clients. All the procedures concerning
the mobility of clients shall be described in section 7.5 in more detail.

7.3. Routing

If a wireless network contains redundant communication paths, changing demands
can be additionally satisfied by adjusting the used routing protocol. These ad-
justments can be divided into two kinds: the exchange of the complete routing
algorithm itself, and adjustments made to a currently running protocol. In case the
complete routing algorithm is exchanged, a broadcast message must be sent to all
other nodes. This is used to announce the pending exchange event. The moment a
node has received an exchange request, it immediately stops transmitting any data
and performs the exchange. All upcoming data is queued in order to prevent data
loss, due to timeouts or currently unreachable destination faults. After the new
routing protocol is started and all needed communication paths are reestablished,
the queued data is transmitted.

The BlueSpot system currently provides reference implementations of a DSDV and
a DSR algorithm. Providing these two algorithms, it contains an implementation
for the proactive as well as for the reactive routing protocol classes. Additional
routing protocols are easy to implement due to the protocol interface that is part
of the adaptive behavior extensions module. As a result, all functionalities needed
to accomplish an exchange of the routing protocol are already included within the
BlueSpot middleware. The detailed description of the protocol interface and the
two reference implementations of routing protocols for the BlueSpot system was
authored by Hacker [Hacker, 2006].

The second kind of adjustments are those made to the currently running routing
protocol. These adjustments can be very manifold: beginning with the possibility
to change the maximum transmission unit (MTU) size that is responsible for the
used packet size, over alternative route finding, up to multi-path routing. Any type
of adjustment is thinkable. E.g. multi-path routing can be used in order to enhance
the available bandwidth of a desired communication path.

A promising example therefore is the split multi-path routing protocol (SMR)
introduced be Lee and Gerla [Lee and Gerla, 2001]. With their protocol, which
is based on an on-demand routing approach, they enable multiple communication
paths between a source and a destination node for wireless networks. By this, two
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advantages are gained: on the one hand the stability of communication paths is
increased dramatically. If a path breaks apart, an alternative path that can be used
instead immediately. On the other hand, all alternative paths can be combined and
used for communication simultaneously. As a result, the throughput of the network
can be increased.

Due to the generality of the interfaces of the adaptive behavior extensions model,
such an algorithm can be easily implemented for the BlueSpot system. Especially the
low bandwidth of Bluetooth can be increased in order to support more demanding
mobile services.

7.4. Adaptive Behavior

All the adaptive mechanisms so far described in this chapter concern only one single
field of application. They are placed on a specific layer of the BlueSpot middleware.
The network adaption layer as well as the implementations of the network adapter
interface are responsible for the network forming. Therefore, it is their task to
administer all modifications and thus to put the events into action. The routing is
implemented at the level of the protocol layer, analogously to the ISO-OSI stack.

Next, resource reservation mechanisms shall be explained. These mechanisms are
used to control the globally occurring data traffic as well as that in a local domain.

All approaches have very different ways of adjusting the behavior of the middle-
ware. As a result, they tie on different levels of the software stack. Also, not every
mechanism can be used to obtain the desired target, and thus they need to be man-
aged elaborately. How to manage these mechanisms shall be described in the second
part of this section. For further information we refer to Dümichen and Baumgarten
[Dümichen and Baumgarten, 2008].

7.4.1. Resource Reservation

Wired networks have many mechanisms to enable resource reservation. Some of
these mechanisms can also be applied to wireless networks. E.g. the standard way of
allocating bandwidth to services is the best-effort approach [Clark and Fang, 1998].
By its usage, no limitations are made to any service. As long as there is bandwidth
left, services can use it. Other services that have a higher demand must either wait
until enough bandwidth is freed or they cannot be run. Alternatives to best-effort are
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the DiffServ [Nichols et al., 1998] and the IntSrv [Bernet et al., 2000] approaches.
These approaches are examples for the global resource reservation protocols group.
All these approaches can be transferred to a wireless network and deployed there.

Another group of resource reservation protocols concerns the local assignment of
resources. These approaches are known from local area networks. Examples are
very manifold, such as token reservation, dynamic allocation of resources, or any
type of credit approaches.

The token reservation approach is known from the local area networking. One
token is provided to a bound amount of nodes. Only the node the token is currently
given to is allowed to send data. After a defined amount of data has been transmitted
or a timeout has occurred, the node must pass the token to the next node.

The token reservation is a very fair mechanism. Each node obtains the same
conditions for sending its data. But as a disadvantage, the performance of this
mechanism is not very good, resulting from the providing of the token to nodes that
currently do not need to send anything.

The dynamic allocation requires a central instance that is responsible for observing
the actual status of the connected nodes. Usually, this instance is the master in a
Bluetooth Piconet. All nodes must announce that they want to send data as well as
the amount of data to be sent. The central instance collects all requests and allots
sending time to each single node.

The way the next node is selected functions completely analogously to process
scheduling mechanisms such as first come first serve (FCFS), shortest remaining
processing time (SRPT), or longest processing time (LPT). But here the time of
arrival of the request as well as the amount of data to be sent are used as param-
eters for the mechanisms. Correlating to the process scheduling, time scheduled
mechanisms with static or dynamic priorities are also thinkable. As a result, a di-
rect control of the communication of each node would be possible. E.g. nodes that
act as bridging node could be preferred in order to support the in- and outbound
communication traffic of a single domain.

In order to guarantee a high degree of fairness, credit approaches can be used.
Each node obtains a predefined amount of credits that the node can set in order to
send data. If it has used up its credits, it must wait until new credits are dispensed.
In comparison to the token reservation mechanisms, the order in which the nodes
come up is not predefined. The estimated average performance will then be higher
than it would be when using token-based approaches. This is the result of a better
usage of the communication channel. Additionally, single nodes can be preferred
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by dispensing a higher amount of credits to them. That way, such a node can send
more data than others.

All these mechanisms have in common that they concern nodes which are in
direct vicinity of each other. Concerning the BlueSpot system, the implementation
of all resource reservation protocols takes place on the level of the network adaption
layer and the network adapter interface. The only resource reservation mechanism
currently provided by the BlueSpot system is a best-effort approach that works
across the entire network. In order to make the local assignment of resources, the
BlueSpot system uses an FCFS approach. The implementation of further approaches
is planned for the future.

7.4.2. Network Control

For controlling the different presented mechanisms, an elaborate management must
take place within the wireless network system. This management is named network
control . In order to give a first direction for the management, a time scale is shown
in figure 7.8, which illustrates exemplary events appearing in a possible life cycle of
the BlueSpot system.

Network
forming

start MS2
change routing

various client
connections

Start BlueSpot
system

start MS1 adjust adaptive
behavior

modify
topology

time t
…

y

Figure 7.8.: Time scale with events occurring during the life cycle of the BlueSpot
system

The solid line shows the time scale during runtime, whereas the dashed line in-
dicates the initialization phase of the wireless network system. Within the time
interval depicted with the dashed line, all nodes are connected in order to form the
underlying infrastructure network. Here, a selected forming algorithm, described
in section 7.1, takes place. The moment the forming is completed, the system is
started. This event as well as other exogenous events, such as the connection of an
client node or the start of an mobile service, are marked on the time scale with a
blue vertical line.

Internal events that are the result of an adjustment action are marked with a red
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vertical line. As you can see in the figure, two more exogenous events take place after
the system was started. These indicate the starting of two mobile services. After
the second service has been started, the network control must undertake several
adjustments in order to meet with the requirements of both services.

The order of the adjustments is predefined. Generally, the network control has
three steps at hand. In order to meet with the requirements of the mobile services,
resource reservation mechanisms are first executed. If the requirements for the
mobile services cannot be met with by this, the network control adjusts the routing
protocol in a second step, as described in section 7.3. The third step concerns
the modification of the network topology as described in section 7.2. An alternative
fourth step, that is not executed by the network control but rather must be executed
manually, is the complete reformation of the network topology. For this, the entire
system must be stopped. Afterwards, a new formation algorithm is selected and
executed. In the end, the system is started again with the new network configuration
that fits the requested mobile service.

The first step can be subdivided into four further steps. These are ordered de-
pending on the network view that was introduced in section 6.2.1. First, the global
resource reservation protocol is reconfigured or exchanged. In order to illustrate the
changing behavior of the wireless network, the infrastructured network view is used.
The second step concerns all nodes within a single domain. The used algorithms are
based on the local assignment of resources. The methods applicable for these first
two steps are described in the previous section.

The node with middleware view is the basis for the third step. Here, a single
node is examined in order to adjust its provided hardware resources, such as the
available memory. E.g. in case a video capturing unit is connected to the node - as
is used by the CamCar Service described in section 8.2.3 - it is necessary to provide
more memory to the mobile service that processes the data from the device. It must
acquire a large amount of data as well as convert this into a video signal that can
be sent over the network system. As a result, the service has increased requirements
concerning the used memory space.

The last step bears a relation to the service view. In order to investigate a newly
developed service before running it on top of the network system, it is run on a
simulator. There is a simulator available for the BlueSpot system, which is described
in section 9.1.2 in more detail. The simulator provides various standard network
configurations. These are used to discover the values of its MIB’s parameters as
well as its estimated behavior during runtime. As a result, the mobile service can
be certified for the BlueSpot system, and thus it is guaranteed to run properly in
real life.
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Summarizing, it can be seen that there is a large amount of possibilities to adjust
the system in order to achieve a better performance. Each mechanism can be used
for tuning the system in a different direction. The network control must be as
decentralized as possible due to the lack of a central instance. Some approaches
need a complete overview of the entire system, but most of them can be controlled
by a single node and thus implemented fully self-sufficiently.

7.5. Mobility Aspects

Beside the adjustment of the system, the network control is also responsible for
the support of client connections. Appearing clients need to be included into the
network, and thus points of contact provided to them. Additionally, these clients
are mostly mobile. As a result, they will move throughout the entire network. By
this, their connection to the system will break up from time to time, which must be
handled. The mechanism used to handle such events is named handover . In case
a connection breaks up, the currently running session for a mobile service is kept
alive. The system as well as the node immediately start to reestablish a connection.

After the node was successfully reintegrated into the system, the session is recon-
nected and the service that belongs to the session can be continued. This approach is
named hard handover. All these actions must be completely transparent to the user
currently working with the device. But as a result of the time consuming connection
reestablishment, the users will notice a delay while using the service.

In order to evade such delays, a second kind of handover is used, named soft
handover. Contrary to the hard handover, a node always tries to establish a second
connection with the infrastructure. This connection is a backup connection and
is switched inactive. The moment the primary active connection breaks up, the
second connection is set active and all communication is detoured to it. Afterwards,
the node immediately tries to establish a new backup connection, that is switched
inactive.

The BlueSpot system provides both functionalities, and thus it is also able to
provide a balanced support to mobile clients. In order to find a client the moment it
appears as well as during a handover event, the network must have the ability to per-
form an inquiry for the client. This functionality is also part of the mobile behavior
extension of the system and is implemented within the network device libraries that
connect to the network interface. In case of Bluetooth, an inquiry request is sent out
periodically. The moment a client answers, it is added to the DeviceDetails list
(see apendix B.1) and thus advertised to the rest of the middleware. For TCP/IP
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the inquiry is implemented as a broadcast message that is sent into the entire sub-
network. The moment a client node has reestablished its connection to the network,
it is able to receive and in the following answer the inquiry request.

7.6. Summary

The task of this chapter was to describe a general approach of including any kind
of adaptive behavior into a wireless network, such as the BlueSpot system. The
BlueSpot system was used exemplarily to explain how these mechanism can be clas-
sified and afterwards integrated step-by-step. Therefore, this chapter started with
the description of various Bluetooth topologies, since the mainly used communica-
tion technology of the BlueSpot system is Bluetooth.

Next, the basics needed in order to construct an own network forming approach
were introduced. This was done by use of geometric structures, such as the relative
neighborhood graph, the Gabriel graph, or the Yao graph. In order to form a
Bluetooth-based Scatternet, the most promising structure is the high-degree Yao
graph approach. By use of it, the maximum size of a Piconet as well as the master-
slave relation between the involved nodes can be taken into account, which is not
possible with the others.

The BlueSpot system is a solution that is able to adjust itself to the demands
mobile services make. Therefore, an elaborate network control mechanism was pre-
sented. Beginning with the individual categories of adjustments, all approaches were
brought into a clearly defined order of application. Additionally, the approaches were
classified concerning the network view presented in 6 as well as their position within
the middleware stack. At the end of this chapter, the handover functionality of the
BlueSpot system was introduced. This is needed in order to support the mobility of
client nodes and thus to provide a network infrastructure comfortable for the users.
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Chapter 8
Mobile Services

The main task of the BlueSpot system is to enable mobile services of any kind.
Therefore, this chapter shall first introduce the main characteristics of mobile ser-
vices concerning their properties. The architecture mobile services must have in
order to run on the BlueSpot system shall be shown next. Here, the different kinds
of mobile service implementation methods shall be described and in addition pos-
sible software concepts for the structure of such services discussed. This mobile
service description is rounded up by the explanation of the service mobility needed
to transport a mobile service from one node to another.

As described in section 6.2.2, each service is equipped with a meta information
base (MIB). In this chapter, this MIB shall be investigated in more detail. Addi-
tionally, each node includes its own information database that contains the current
status of its resources. The approaches used to compare the available resources with
those that are needed by the service as well as the evaluation mechanisms shall be
explained. Latter are used to decide whether a service can be started or not. The
subsequent section concentrates on the life cycle of a mobile service. The process
designed to develop and afterwards test a new service shall be explained. If the
testings were successful, it can be run on the BlueSpot system.

Finally, the various example mobile services available for the BlueSpot system
shall be described.
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8.1. Characteristics of Mobile Services

In order to support mobile services, it is necessary to characterize them according to
their properties. These properties are strictly linked to their requirements. A first
distinction for mobile services is, whether their communication is based on messages
or on a continuous data stream. While a simple chat service creates single messages
in order to exchange information, an audio stream produces a constant data flow. As
a result, the latter places much stricter demands to the system than a chat service
does. In case the audio service is enhanced by an reverse audio channel, this service
can be used as a telephony service.

A second characteristic is important to enable a proper service quality. This is the
latency time that occurs during data exchange of an end-to-end communication path.
Current telephony services such as VoIP services require a maximum latency time of
300 milliseconds. The moment the latency time is higher, the two persons using the
service would interrupt each other. Generally, tests showed that for a high quality
service, the latency time must remain below 150 milliseconds [James et al., 2004].
That way, these two persons can discourse comfortably.

The moment a video signal is additionally sent along with the audio stream, the
available bandwidth must be kept in mind. The better the video signal is captured,
the higher the occurring data rate will be. But especially with wireless networks, the
throughput of the network is a limiting factor and thus must be watched incessantly.

Beside the limiting factors occurring due to the underlying network, the type of
usage of the service can be taken to characterize it. In most cases a service is used
in a client-server configuration. One side provides the service’s point of contact,
which is the server, the other side is responsible for establishing the connection to
the server as in the role as client part.

Another configuration is a peer-to-peer based setup. In this case, each side can
act as server as well as client. Any communication partner can communicate with
any other one, with almost no restrictions [Cheriton and Mann, 1989].

88



8.2. Mobile Services in the BlueSpot System

Further, the result of the usage of a mobile service can change depending on the
location at which it is used. Such services are named location based service. In order
to run such a service properly, the user’s position must be known. But positioning
shall not be part of this thesis. Therefore, location based services play a marginal
role here and are not discussed any further.

In summary, the following characteristics for mobile services are of interest:

• streaming vs. message based communication

• are the latency times critical?

• is the bandwidth critical?

• client-server communication vs. peer-to-peer communication

8.2. Mobile Services in the BlueSpot System

In general, mobile services are loaded and executed within the BlueSpot system by
connecting them to the service interface. As a result, the service interface must
provide all functionalities needed to run a service, such as finding a communication
partner, or exchanging data with this partner.

Considering the definition of a service made by Dinkel et al. [Dinkel et al., 2006], a
service consists of the following components: its implementation, a service interface,
and service meta information. The implementation contains all functionalities the
service provides, as expected. The service interface (not to be confused with the
service interface of the BlueSpot middleware) contains all functionalities that are
needed in order to access the service’s implementation. Dinkel et al. describe
these functionalities as a subset of a text console, a GUI, a protocol, and an API.
Furthermore, they denote the service interface as horizontal interface. The meta
information base contains information a service user must interpret in order to
use the service in a semantically correct way. The service itself runs on a service
platform. This interface is denoted by Dinkel et al. as vertical interface.

This definition fully applies to the mobile services of the BlueSpot system. Again,
the implementation contains the functionalities of the service, as expected. But con-
sidering the service interface, the application of this definition is more interesting.
Here, the possibilities of the provided functionalities depend completely dependent
the underlying hardware platform. If a service is run on a Gumstix, a GUI is

89



8. Mobile Services

not available. Only a text console can be used, and this must be accessed via an
additional protocol (ssh or telnet) that runs independently from the BlueSpot mid-
dleware. Considering a smartphone or a PDS, usually a text console is not available.
Here, the support of a GUI is needed in order to enable user interaction. Functional-
ities such as a protocol or an API can be provided on all types of hardware platforms.
These restrictions must be taken into account during the course of designing and
implementing a mobile service.

In the application of the service meta information, a mobile service that runs on
the BlueSpot middleware differs from the given definition. Here, the service meta
information is amended by the meta information base (MIB, see section 8.2.1) re-
quired for the BlueSpot system. This MIB is provided to the underlying middleware
via the vertical interface and used to characterize the service’s requirements. A fur-
ther specialty of our mobile services is that they can be transferred from one service
platform to another. Therefore, the mobile service must be provided as an isolated
software packet.

Usually, mobile services for the BlueSpot system can be provided in three ways:
as binary, as Java MIDlet or as container service. If it is provided as binary, it
is implemented in native C code that is compiled to a binary shared library. The
library can be loaded into the process space by the middleware during runtime.
Subsequently, the mobile service can be started and its services used by a client.
If the service is provided as Java MIDlet it must be run on a JVM installed on
the target device independently to BlueSpot middleware. The resulting issues that
must be taken into account have already been discussed in section 6.2.2. The applied
JVM versions have been described in section 5.2. All the used versions are MIDP
2.0 compatible, which is a profile for the Java 2 Micro Edition (J2ME). This profile
was especially construed for mobile devices, such as smartphones or handhelds. It
provides libraries for using the small displays and reading inputs from a telephone
keypad and its softkeys. The implementation of a GUI as part of the service interface
is immensely simplified due to this.

As a result of the various hardware platforms supported by the BlueSpot system, a
native C service must be compiled separately for each hardware platform. In order to
handle this problem, container services were added to the BlueSpot system. Such a
service consists of a zip-compressed package. Within this package, a predefined folder
structure exists that includes various binaries, one for each supported hardware.
Additionally, it contains a folder named Java that includes the Java version of the
service, if available. In order to distribute a mobile service throughout the BlueSpot
system and to gain service mobility as defined in section 3.4.2, this type of service
is best to be used. A single binary of native C service can also be sent from one
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node to another without the need of a container service. In this case, the underlying
hardware platforms must correspond to each other in order to be able to run the
service on the new platform. Concerning a Java service, the hardware platform does
not play a crucial role, since Java was developed to enable a hardware platform
independent code. But, as a result of the limited range of functions of MIDP 2.0,
the implementation of such types of services is very limited. In most cases, a Java
service would drain too much of the resources. Native C services can be optimized
additionally, and thus function with better performance.

In some cases it is useful to divide a service into two parts. One part of the
service is then responsible for user interaction, while the second enables the desired
functionalities. The first part can be run on the client node. It is responsible for
relaying the user commands to the second part. These can be run anywhere within
the BlueSpot system. The Gumstix is the most suitable place for this due to its
vast free resources in comparison with the other supported hardware platforms of
the BlueSpot system.

8.2.1. Meta Information Base (MIB)

A mobile service always places demands to the system it shall be run on. These
demands must somehow be captured in order to enable a prognosis whether it will
function properly or not. In case of the BlueSpot system, this problem is solved
by the use of the meta information base (MIB). In addition, knowledge about the
status of the node the service shall be run on is necessary. This information is used
as a counterpart for the comparison the prognosis is the result of. A distinction
between the node MIB and the service MIB within the BlueSpot system is therefore
made. The latter includes the demands the service makes, while the first displays
the current status of the node.

In the following, the parameters of the service MIB shall be described in detail,
and subsequently, the parameters of the node MIB. The selection process used to
decide whether a service can be run or not will be described at the end of this
section.

The parameters of the service MIB:

• minimum bandwidth: this parameter describes the minimum available band-
width a service needs. Especially, streaming services demand a defined mini-
mum of bandwidth in order to ensure their functionality.

• maximum latency time: the second parameter of interest for defining the qual-
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ity of a network connection is the latency time. It describes the time span that
elapses until data sent reaches its destination. Here, the maximum allowed
time span is of interest, as the buffers of the receiver side would underrun if
the latency time is exceeded, and thus the data flow would be interrupted.

• minimum free memory space: while the first two parameters are used to de-
scribe the minimum quality of the network connection, this parameter defines
the minimum demands concerning the resources of the node. By usage of this
parameter, the minimum needed working memory is specified. A definition of
the minimum needed size of the persistent memory would not make any sense.
Most devices that are used for the BlueSpot system such as the Gumstix do
not provide this type of memory.

All these parameters define the minimum requirements of a mobile service. But
in order to support and simplify the adaptive behavior mechanisms of the BlueSpot
system, knowledge is also needed about the estimated maximum demands. There-
fore, these parameters are also included into the meta information base, beside the
preferred routing protocol and communication characteristics of the service. They
shall be described in the following:

• maximum bandwidth: this parameter indicates the estimated maximum band-
width the service will produce. In some cases, an estimation is not possible due
to an unpredictable communication behavior of the service. In this particular
case, the estimated bandwidth is set to the average throughput of the entire
network system that was measured during the simulation runs. Setting it to
the maximum value would result in the displacement of all other services that
are running currently, otherwise the middleware would refuse the start of the
service due to insufficient available resources.

• maximum memory space usage: this parameter defines the maximum needed
working memory space.

• preferred routing class: depending on the communication behavior of the ser-
vice, it can be useful to explicitly define a preferred routing class for a service,
a routing class as it was introduced in section 4.2. The moment the service
is started, a selection event is triggered. If there is more than one service
running, the used routing algorithm is selected by the middleware globally.
Therefore, it sends a request by use of a control message to all other nodes
within the network in order to receive their preferred routing classes and their
priority values. The returning values and the own value are used to calculate
a mean value for each routing class spanning the entire network. The node
with the highest mean value is determined and the predefined standard algo-
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rithm of this class is chosen as the next algorithm. If it is not the routing
algorithm currently running, the middleware triggers an exchange event that
is broadcasted to all other nodes.

• type of communication: this parameter is used to indicate if the service is a
streaming or message-based service.

• priority of the service: the priority of a service indicates how the service must
be handled in comparison to other services currently running on a node. The
moment a particular service with a high priority shall be run and the require-
ments cannot be met with, another currently running service with a lower
priority value is stopped. As a result, the resources of this service are freed
and can be provided to the new service. This parameter is predefined manu-
ally.

It does not make sense to define a minimum or an average value for the latency
time, since this value should always converge to zero. Additionally, the average
value would give information about the latency times of the underlying network,
but would not give any information about the service’s requirements. Therefore,
this parameter is excluded from the service MIB.

Additionally, the used CPU power could be of interest. But the ascertaining
of this parameter is very difficult, especially on the very heterogeneous hardware
platforms used in the BlueSpot system.

In order to make a prediction whether a service can be run or not, a counterpart
is needed for the comparison of single values. As described above, the node MIB is
used for this. Beside the information needed to perform the comparison with the
service MIB, this MIB also contains the parameters that are provided to the adaptive
behavior extensions. These can use the node MIB to determine own configuration
issues.

The node MIB includes the following parameters:

• modus of the node: in case a S/S bridged network type is configured, the
bridging nodes are not able to accept or to establish any connections. There-
fore, all layers above the network adaption layer can be deactivated. Incoming
messages are redirected to the other connection immediately. Possible values
are bridge or full service.

• current MTU size: this parameter contains the maximum transmission unit
(MTU) size of a data packet sent by the protocol layer. The protocol layer
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itself contains a packet splitter that is responsible for data fragmentation. As
a result, the maximum packet size can be bound to a static value, and the
implementation of a routing protocol is simplified immensely. Additionally,
this parameter can be used to calibrate the BlueSpot system to the underlying
network technology. E.g. Bluetooth uses a different MTU size than IEEE
802.11. By adjusting this value to the underlying network technology, more
performance can be gained.

• inquiry interval size: this parameter defines the time span between two inquiry
processes. The smaller this interval is set, the more often the middleware
searches for new or moved client nodes. But as a result of the smaller intervals,
more command messages are produced. This requires bandwidth and thus
should be configured with care.

• service discover interval size: on the other side of the middleware stack, the
node polls periodically to obtain a list of all available mobile services within
the entire network. The same rules apply for the adjustment of this parameter
as for the previous parameter: the more often the middleware polls for the
services list, the more current this list is, but also the more traffic is produced.

• currently used routing algorithm: the currently running routing algorithm is
named by this parameter.

• hardware platform: this parameter is used to identify the underlying hardware
platform. By its use, the middleware can find the correct version of a service
within a container service.

• available local resources: this parameter contains a set of values that are com-
posed of the available resources of the node. As a result, these are the parame-
ters needed to perform the comparison with the service MIB. The set includes
the current free memory, the network load, and a value for the current mea-
sured average latency time of the network. The latter parameter is gained by
observing the in- and outbound traffic. The moment a mobile service starts
its communication, the time until the awaited response returns is measured.
The result is used for the average calculation. The rest of these parameters
are read periodically from the system information base such as the
proc directory of the Linux operating system.

The selection process used to decide whether a service can be run or not is part of
the adaptive behavior extension module described in section 6.2.2. The decision is
based on the application of the above parameters. Currently, the BlueSpot system
uses a first come first serve (FCFS) approach, that additionally is aware of the
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priority of a service. This approach is part of the local assignment of resources
mechanism of the resource reservation phase described in section 7.4.1. The moment
a service shall be started, the MIBs are compared. If the needed resources are
available, the service is started. Otherwise, the network control (see 7.4.2) is used
to free the required resources. If the resources can still not be provided, the start of
the new service is refused by the middleware.

Another method that forgoes the refusal of service starts can be applied by en-
abling the suspension of running services. Instead of refusing the start of a service,
a service with a lower priority is suspended and its resources are revoked and as-
signed to the new service. This can be made for all types of resources, excepting the
used memory. The most devices supported by the BlueSpot system do not have a
persistent secondary memory storage, such as a hard drive or a memory card. The
moment the used memory is revoked by the middleware, the service would loose its
current state. A reactivation of the service would no longer be possible.

8.2.2. Code Life Cycle of Mobile Services

The life cycle of a mobile service shall now be described in more detail. Beginning
with the development, every phase will be described until the service is run on the
BlueSpot system.

Commencing with the design and coding phase, the functionalities of the new
service are constituted. A template for both types - the native C version as well
as the Java version - of services are provided and can be used. These templates
are filled with the desired functionalities. Meanwhile, they are tested by use of the
simulator and retested continuously. As a result, bugs can be found easily, and the
operability of the service can be tested. In case of a native C typed service, the
developer must decide whether he provides the binaries of the service for only one
hardware platform or whether he additionally compiles the service for further ones.
In latter case, the various versions must be collected within a container service.

After this phases is completed, the evaluation phase starts. During this phase,
the parameters of the service MIB are specified and stored. This is done by use of
the simulator and the available testing scenarios described in section 9.1.2.

The service is now ready for application and thus enters the deployment phase.
Therefore, the binaries are placed at disposal by copying them to a designated
node. In case the service shall be provided as container service, the binaries for
the different hardware platforms are combined to a zip archive which afterwards is
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placed at disposal. Users wanting to use the new service must wait until the service
is detected by the service discovery process run by the middleware of their own
node. After detection, the service appears in a list the users can view. By selecting
the service, it is automatically copied to its device. In case of a container service,
the version of the service corresponding to the hardware is extracted into a defined
directory. Finally, the service is started and can be used.

Sometimes when the node is in the deployment phase, it can be useful to readjust
the MIB parameter. This can be the result of an exogenous change that affects
the entire BlueSpot system. In this case, the service is rerun on the simulator,
and the changed parameters are assigned to the service MIB. This phase is named
maintenance phase within the BlueSpot system.

8.2.3. Example Mobile Service Implementations

In the course of our developments, we focused on the implementation of services
that have very different requirements. Some need a high throughput rate, others
depend on a maximum allowed latency time between the tow end nodes of the
used communication path, whereas others yet again require additional functionalities
provided by the BlueSpot system, such as handover, peer-to-peer functionality, or a
streaming based communication. In the following, these services will be explained
in detail and their main properties pointed out.

Chat Service

The Chat Service was the first mobile service we developed for the BlueSpot sys-
tem. By its use, we investigated the behavior of the BlueSpot system concerning
the service discovery mechanism as well as the different possible types of mobile
services. Therefore, the chat service was implemented in all three types: as Java
version, in various native C versions, and as container with the various native C
binaries combined within it. The underlying communication model is a client-server
configuration. For this reason, only two users can communicate with each other.
Figure 8.1 shows a screenshot of the Chat Service in action.

As the name indicates, the service enables the chatting between two users. These
two users can find each other by use of the service discovery mechanism. Every
node that is currently running the Chat Service is depicted in the list of available
services, presented to the user by the middleware.
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Figure 8.1.: Screenshot of the Java-based Chat Service

After a communication path to a selected destination is established, a session is
created and the Chat Service started.

Car Service

By use of the Car Service the mobility aspects of the BlueSpot system can be
investigated. Due to the high movement rate of one part of this service, the handover
functionality as well as a high inquiry rate are required. In addition to this, the result
of varying latency times can be demonstrated. A low latency time is required in
order to run this service properly.

The Car Service is the result of modifying a remote controlled (RC) car in order to
enable its integration into the BlueSpot system as a client node. This car is named
Mini Mauler, as it is called by the manufacturer, and is depicted in figure 8.2.

The development of the hardware and the corresponding software drivers was per-
formed by Schmidmeir and Schmidmeir [Schmidmeir and Schmidmeir, 2007]. They
constructed a printed circuit board (PCB) that is connected to a Gumstix. The
PCB board contains a microcontroller that communicates with the Gumstix via a
UART interface. The steering servo as well as the electrical motor of a RC car are
addressed by the microcontroller. In the left picture of figure 8.2, the completely
assembled car can be seen. In the right picture, the car body was removed, so that
the PCB board we developed can be seen. The Gumstix is placed on the bottom
side of the board. The antenna is used to enhance the WLAN signal. The car
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Figure 8.2.: The Mini Mauler: RC car with its own hardware that enables the steer-
ing of the car by aid of the BlueSpot system

additionally supports Bluetooth, due to the on-board Gumstix’ Bluetooth chip.

The BlueSpot system is installed on the Gumstix. As a result, the car can be
integrated into the BlueSpot system as a client node. One part of the Car Service,
which is responsible for the steering, is run on the car’s Gumstix, whereas the part
that contains the graphical user interface was developed as a native C service for the
Nokia smartphones. By use of these two parts, the car can be controlled with the aid
of the smartphone’s telephone keypad. On top of the car, we placed a distance sensor
that is used to measure the distance to a obstacle. The measurement results are
transferred to the destination node and are shown on the display of the smartphone.

pH/temp Service

In order to investigate the behavior of the BlueSpot system during communication
that effects a large amount of nodes, the pH/temp service was developed. It produces
a constant data rate that can be easily adjusted to own required values. As a result
of this, this service can be used to analyze and demonstrate issues concerning the
throughput rate of the underlying network over a large amount of hops as well as the
behavior of current and new routing protocols within complex network topologies.

The basis of the service is a PCB board that was constructed by Schmidmeir and
Schmidmeir [Schmidmeir and Schmidmeir, 2007], additionally to that of the Mini
Mauler. The signal of a pH electrode and temperature sensor can be monitored.
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The PCB board also contains a microcontroller that is responsible for the A/D
conversion of the analogue signal of the two sensors. This board is connected to a
Gumstix, which is equipped with the BlueSpot middleware. By use of the pH/temp
Service, the measured data can be transferred throughout the BlueSpot system and
viewed on the client screen which runs on the client part of the service. The service
is available in the native C version for both the PDA and the Gumstix. By use of
the service, the pH electrode can be calibrated as well. This is necessary each time
the sensor board is restarted. See figure 8.3 for a screenshot.

Figure 8.3.: Screenshot of the pH/temp Service

As you can see in the screenshot, the client side of the service displays the cur-
rently measured pH and temperature values. By pressing the calibrate-button,
the calibration process for the pH electrode is initialized and executed. The needed
steps for this process are displayed on the client node’s screen.

CamCar Service

The CamCar Service is an extension of the Car Service. It can be used to demon-
strate various adaptive behavior extensions and adjustments. On the one hand, the
service supports different classes of quality. Due to a higher available bandwidth,
a better class of quality can be selected, and vice versa. On the other hand, the
capturing and encoding of a video signal requires hardware resources. As a result,
available resource reservation mechanisms as part of the node with middleware view
(see section 6.2.1) can be tested and demonstrated.

Our second RC car, the CamCar, had all the functionalities of the Mini Mauler,
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but additionally, a USB webcam was mounted onto its roof, as can be seen in figure
8.4.

Figure 8.4.: The CamCar with the USB webcam on the roof

The video signal captured by the webcam can be transferred to the steering part
of the CamCar Service and shown on the display. In order to reduce the needed
bandwidth, the signal is compressed into a jpeg-based data stream, which is avail-
able in two different qualities. The standard signal has a resolution of 640 x 480
(VGA) pixels. By reducing this resolution to 320 x 240 (QVGA) pixels, the needed
bandwidth is decreased by factor four and a second class of quality is defined for
the service.

File Sharing Service

The File Sharing Service is used to construct a peer-to-peer network on top of the
BlueSpot system. A defined amount of data can be sent across the network by
selecting a file from another node that participates with the peer-to-peer network.
The resulting data traffic can be used for measurement and analyzing proceedings.
Additionally, the traffic stream can be used to demonstrate the maximum through-
put of the system as well as the functionality of newly developed adaptive behavior
extensions concerning the single domain and the infrastructure view. In addition
to this, the File Sharing Service places high demands to the currently used routing
protocol, as many communication paths are to be established simultaneously. The
File Sharing Service is available in native C as well as in Java. Hence, it provides
support for all hardware platforms within the BlueSpot system.
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Audio Streaming Service

By aid of the Audio Streaming Service, a constant audio stream is sent through-
out the BlueSpot system. The audio stream is compressed into the Ogg Voribs
[Xiph community, 2008] format. At the client node, this stream is decompressed and
played. The main task of the Audio Streaming service is to demonstrate a steady
data stream throughout the network. It can be used for investigation proceedings
concerning the latency time of the underlying network. This can be achieved by
playing the audio stream on both end-points: on the client node as well as on the
node the audio stream is fed into the BlueSpot system with. As a result, the latency
time is presented by the delay between the two audio signals.

TCP/IP over BlueSpot Service

In order to support all TCP/IP based services through the BlueSpot system, the
TCP/IP over BlueSpot Service can be used. When the service is run, a virtual
network interface is provided to the operating system. This is achieved by use of
the TUN/TAP virtual network kernel driver, which is usually used to connect to a
VPN. As a result, the BlueSpot middleware can be run in the user space of the node.
With the aid of the TUN/TAP driver, all requests are redirected to the kernel space
and can be processed there by the kernel of the operating system. Another user
space application, such as a ssh client program, can use the new virtual network
device and thus function without any need of modification. This service is only
available for Linux based nodes and is implemented in native C. A support of the
smartphones and of the PDA is not possible due to the missing of this mechanism
on such devices.

Usually, this service is applied by designating one node as gateway between the
BlueSpot system and a network connected to the internet. As a result, all commu-
nication within the BlueSpot system will occur between the client nodes and the
one gateway node. The network load in vicinity of this node will therefore be very
high. New network forming approaches can be installed and tested in order to han-
dle the locally unbalanced network by finding intelligent distributions of network
connections and thus overcome possible bottlenecks.
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Benchmark Service

The last service to be described is the Benchmark Service. It is used to pointedly
measure the current bandwidth and the latency time of the underlying network.
Execution of this service is divided into two steps. During the first step, ping
packages are sent to the counterpart node and are answered by it. The time that
elapses between the sending of a packet and the receiving of the answer is measured
and divided by two in order to approximate the latency time of the network. The
amount of ping packets is not predefinded. Therefore, the more pings are sent, the
better the averaged result will be.

During the second step, packages in various pack sizes are transmitted to the
counterpart node. The bandwidth of the network can be measured that way. The
service starts to send packages with a size of 1 kilobyte. After 50 packages have
been sent, the size of the packages is doubled and the procedure repeated. This is
done until the packages have reached a size of 2048 kilobytes. The time needed to
send 50 packages of the same size is measured and the average value gained. This
is displayed on the screen of the client node. By dividing this value through the
amount of data sent, the throughput can be calculated.

The service is available in native C code. A Java version does not exist. The
controlling of the service is done via a text console. Therefore, is was designed to
run on a Gumstix or within a terminal of a desktop computer. The Benchmark
Service was the basis for our measurement proceedings presented in section 9.2. It
is the easiest way to produce a defined amount of traffic on a communication path
throughout the network. In order to establish a second communication path, the
Benchmarking Service node must be run on two further nodes, which connect to
each other by use of the service. In addition to this, this service can be used for
testing proceedings of a new mobile service. The data transfer of this new service
can be influenced by use of the Benchmarking Service, and thus its behavior during
low data rates can be simulated.

8.3. Summary

This chapter was divided into two sections. In the first section, the characteristics
of mobile services that are important within the BlueSpot system were described.
These characteristics were used beside other parameters to introduce the construc-
tion of the service meta information base as well as the node meta information
base. In addition, two approaches were presented that can be used to influence the
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network control behavior of the BlueSpot system. These approaches are needed to
enable the evaluation of the available resources in order to decide whether a service
can be started or not. The decision process can be supported by use of priorities or
by use of revoking resources that are already assigned to another service. That way,
the decision process is the entry point for adaptive behavior mechanisms described
in the previous chapter.

Subsequently, the life cycle of a mobile service within the BlueSpot system was
introduced. This life cycle includes the designing and coding of a mobile service,
as well as its evaluation concerning the parameter estimation for its service MIB. It
also includes its deployment and the eventually needed reevaluation of the service
MIB parameter the moment the service does not function properly after it was
deployed. This can be the result of not-well estimated MIB parameters as well as
of a configuration change concerning the entire BlueSpot system.

At the end of this chapter, the various example mobile services currently available
for the BlueSpot system were presented. The main idea behind the selection to
implement each service was given and possible scenarios for measurements of selected
parameters and adaptive behavior mechanisms were shown up.
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Chapter 9
Results and Benchmarking

An elaborate monitoring tool for the BlueSpot system shall now be presented. This
tool can be used to view the current situation of the BlueSpot system focusing on
each layer of the middleware individually. Furthermore, the environment used to
simulate the BlueSpot system is introduced. By utilization of this environment, the
services’ MIB parameter can be stated and new adaptive behavior extensions tested
before applying them in the real system. Next, scenarios shall be presented that are
used as templates in order to test a mobile service in selected situations. Based on
these templates, many common situations can be modeled and simulated.

Subsequent to this section, selected benchmarking results made by use of the
BlueSpot system shall be presented. The used configuration of the system and the
benchmarked parameters shall be described first. These configurations and parame-
ters are used to explain the procedure for executing the benchmarking process. This
is followed by the presentation of the results that we gained: the measurements of
throughput and latency times of various Scatternet configurations. The influence of
the size of data packets for communication by use of the BlueSpot system shall then
be investigated. Additionally, the behavior of M/S bridged networks is compared
to S/S bridged ones. This chapter will be rounded up by the investigation of the
duration of establishing a Bluetooth connection. During a handover, this param-
eter is of great interest, as it is a result of the interruption of currently running
communication processes.
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9.1. Monitoring and Simulating the System

Further software applications and tools are needed in addition to the BlueSpot
middleware. Beside various shell scripts, the two most important applications are
the monitoring tool and the connection of the middleware to the NS2 simulator.
These two applications shall be explained in more detail in the following.

9.1.1. Monitoring Tool

The monitoring tool was developed by Rieck [Rieck, 2007] as part of his Bachelor
thesis. In order to collect information of the current status of the BlueSpot system,
each node has the ability to continuously send monitoring messages to a predefined
destination. This can be achieved in two ways: the first is to directly send messages
to the monitoring tool by use of UDP packets. In figure 9.1 this is depicted by the
red arrows from a node to the monitoring tool. Each node must be connected to an
IP based network that can access the monitoring tool. The IP address of the host
with the monitoring tool running on it is previously given to each node before the
BlueSpot system is started. In order to keep the influence of the monitor as small
as possible, datagram packages are used that do not need to be acknowledged. Due
to the continuous monitoring process, the loss of a packet is not critical, thus the
sending of datagrams is sufficient.

The second way is to use the BlueSpot system to relay monitoring messages. Some
nodes shall not be connected to an IP based network, as this would influence the
behavior of the node too much. Then, monitoring messages can be relayed to a
node that is connected to an IP based network. This forwards the messages for the
node to the monitor. This way can be seen in figure 9.1 on the top right side of
the network. The client node uses the S/S bridge for relaying its messages to the
monitoring tool.

As can be seen on the left side of figure 9.1, the slave node is not directly connected
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Figure 9.1.: Monitor message relaying

to the monitoring tool. Nevertheless, it is depicted on the monitoring tool due to
the monitoring messages of its neighboring node. These contain that the node must
exist as a result of occurring data messages that are sent to this node.

The monitor does not provide any possibility for taking influence on the BlueSpot
system. In the course of development, this was one of the main tasks due to the need
of keeping the disturbances originating from the activated monitoring mechanism
as low as possible. E.g. by relaying monitoring information through the BlueSpot
system, bandwidth is used. This in turn influences currently running services that
are dependent on the available bandwidth. A screenshot of the monitor can be seen
in figure 9.2.

In the middle of the application window, the current status of the network can be
seen as an edge graph. This is surrounded by additional monitoring information that
can be grouped, ordered, and filtered in various ways. In order to group information,
the monitor supports traces. By use of such a trace, all messages that concern
a selected work flow are collected as they appear. Afterwards, it is possible to
reconstruct and follow the exact work flow as it happened before in the monitored
system. The complete description of the monitoring tool can be found in Rieck
[Rieck, 2007].

9.1.2. Simulation Environment

In order to provide a simulation environment for the BlueSpot system, the NS2
simulator is used [ns2webpage, 2008]. In his diploma thesis, Metzger [Metzger, 2007]
implemented a new network device library named BSSimDev. By use of this device,
all requests and answers of the BlueSpot middleware are redirected to the simulator
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Figure 9.2.: Screenshot of the monitoring tool

and worked up there. For testing mobile services and for gaining the services’ MIB
parameters, various predefined scenarios are needed. These are provided by a set of
predefined network formations, which are described in the next section. In order to
simulate Bluetooth-based as well as TCP/IP-based networks, the simulator supports
the simulation of both technologies. The desired technology is specified within the
scenario description that is provided to the simulator.

All scenarios are defined in a separate network formation file. This file contains
the configuration of available nodes as well as the topology the nodes will establish
after the simulation is started. Ensuing the successful completion of the formation,
the mobile service that shall be investigated is started. This and further exogenous
events that shall appear during the simulation process are provided in a TCL script.
This script must be provided by the tester, thus it must be adapted manually. In
order to assist the tester in this procedure, various example scenarios are provided
by the BlueSpot system. They already include the configuration parameters such as
the available bandwidth of the underlying network or the mean time needed for a
hop from one node to another. The detailed description for running such simulations
is described in [Metzger, 2007].
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9.1.3. Scenarios

In the following, predefined network formations are discussed. The shown screen-
shots are the result of illustrating the run simulations by aid of the nam tool, which
is part of the NS2 simulator package. During a simulation run, all events are written
into a simulation file. After the simulation is completed successfully, the nam tool is
used to present the complete simulation process in a graphical illustration.

Figure 9.3.: Illustration of a simulation run with the nam tool

As can be seen in the screenshot of figure 9.3, two nodes appear in the simulation.
Node 1 is currently sending four packets to node 0. Underneath the graphical
illustration of the nodes, a time scale presenting the current simulation times as
well as the detailed information of the currently appearing communication can be
seen. These details concern occurring events such as the exchange of a data packet.

Full Piconet

The first scenario to be presented here is a Piconet with eight nodes. In figure 9.4
the master node with the number 0 is situated in the middle. The maximum amount
of seven slave nodes possible for a Piconet is arranged around the master node.
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Figure 9.4.: Simulation of a full Piconet

All communication must be relayed by the master node. As a result, this simu-
lation can be used to gain the maximum throughput the mobile service will need.
This is achieved by starting a service on two slave nodes. The entire occurring com-
munication of this service is measurable at the master node. In order to simulate
a stress test, the Benchmarking Service can be started additionally on two further
nodes. By varying the size of the packets sent by the Benchmarking Service, the be-
havior of the service to be investigated can be tested in case not enough bandwidth
is available. Additionally, the hardware resource requirements of the service can be
gained by regarding each node individually.

Linearly ordered network

By arranging several nodes in a linear order, this scenario allows the investigation
of the latency time aspect in more detail. The scenario is depicted in figure 9.5.

Five nodes are lined up in a row. The master-slave allocation is usually turned
off in this scenario, due to the desired interoperability of the BlueSpot system con-
cerning the used communication technology. M/S and S/S bridges are the result
of the Bluetooth specification. If this specialty would be added permanently to the
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Figure 9.5.: Simulation of a linearly ordered network

simulation scenario, it would lose its generality due to the lack of such restrictions in
the standards of other network communication technologies. By turning the nodes’
distribution of roles on, a Bluetooth-based linearly ordered network can be easily
simulated.

By running one part of the mobile service on an endpoint of the row and the other
part on varying nodes, experiments with the latency time can be made. The more
hops are placed between the two service parts, the longer the resulting latency time
will be. As a result, the maximum latency time as well as the average bandwidth
can be approximated.

Spanning Tree

The third testing scenario defines a spanning tree formation. With this scenario,
more complex simulations can be run due to the thirteen available nodes. As a
result, different routing algorithms can be applied, and the one that fits best for
a mobile service found. The complete formation can be seen in figure 9.6. Due
to an automated presentation of the nodes done by the nam tool, some nodes are
overlapped in this screenshot.

This scenario can also be used in order to test new adaptive behavior extensions.
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Figure 9.6.: Simulation of a network organized as spanning tree

A distinction between master, M/S bridges, and slave nodes is usually not made,
but can be turned on if desired. E.g. a modification approach can be applied and
tested. The characteristic of a spanning tree formation is that it contains only one
connection path between two nodes. By use of this characteristic, the behavior of
the algorithm can be tested respecting a connection loss and the resulting breaking
apart of the network. The moment this happens, the network must reconnect, and
the correctness of the applied algorithm can be verified.

Simple S/S Bridged Scatternet

Like the spanning tree scenario, this scenario is used for testing new adaptive be-
havior extensions. The network contains two Piconets that are connected by a S/S
bridging node. This is the main difference to the spanning tree simulation. Here,
the center nodes are handled as master nodes of each Piconet. The bridging node
is a S/S bridge. All other nodes are handled as slaves. See figure 9.7 for the node
configuration.
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Figure 9.7.: Simulation of a simple S/S bridged Scatternet

Complex S/S Bridged Scatternet

The complex S/S bridged Scatternet simulation is the most demanding simulation
available for the BlueSpot system., as it is the scenario that consists of the most
nodes. The initial network is constructed as S/S bridged Scatternet with satellite
nodes, and therefore each node is assigned a Bluetooth-based role. By applying a
modification approach the topology can be restructured, and thus different types
of topologies can be gained during runtime. The main field of application is to
test extensions that apply especially to the Bluetooth based standard. But further
extensions that fit to other fields of adaptiveness within the BlueSpot system can
be also integrated and investigated. In figure 9.8 the entire formation can be seen.

As a result of the large amount of nodes, the simulation run needs a lot of compu-
tational power. Therefore, more complex simulations can take up to several hours.
The aim of this scenario is to provide the possibility of testing new adaptive behav-
ior extensions within complex environments. This scenario can be useful for testing
modification approaches, new routing approaches, as well as resource reservation
mechanisms.

All the simulation scenarios presented here are just a selection of possible network
formations. Further formations can be constructed easily by editing the correspond-
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Figure 9.8.: Simulation of a complex S/S bridged Scatternet

ing network formation file, and subsequently run in own simulations.

9.2. Benchmark Results

The BlueSpot system - in the form of its current implementation - is a proof of con-
cept and it is not yet very stable. But with our present state of the implementation,
it is already possible to demonstrate new approaches and mechanisms that concern
the wireless networks technologies and configurations supported here.

In this section, various measurement results that concern Bluetooth-based net-
works will be presented. All of these measurements were made by use of the BlueSpot
system. Some of these measurements were made by use of the simulator, but most
of them were performed with real hardware components. Firstly, basic through-
put measurements that take the underlying hardware into account shall be shown.
Subsequently to this, the occurring latency times are investigated that are brought
in correlation with the amount of hops. These fundamental measurements shall be
rounded up by analyzing the dependency of the occurring data rate of the used
packet size.
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A more detailed investigation is made for the different behaviors of M/S and S/S
bridged networks. In the course of the development of the BlueSpot middleware,
we revealed great differences of these to network constellations concerning their
performance. We used this revelation as an opportunity to analyze and afterwards
gain the ability to explain this behavior.

At the end of this section we provide measurement results concerning the duration
of a connection establishment. We discerned that a small amount of connection
establishment approaches have a very long duration. Here, we can unfortunately
only present the measurements results. An interpretation of these results we will
present in the near future.

All results presented here must be considered as exemplary and constitutive. They
show that the concept presented in this thesis is working and applicable. But due
to the wide-reaching approach the BlueSpot system bases on, there are still many
open questions that must be handled in the future. A selection of results of the
benchmarking processes shall be shown next.

9.2.1. Benchmarking Procedures

In order to understand the following benchmarking approaches, it is necessary to
explain the used benchmarking methods. These are described next in addition to
their underlying BlueSpot middleware configurations.

Currently, we have three methods of performing measurements, each depending
on the software configuration used for the benchmarking approach. The first bases
on the measurement on the level of the protocol layer. The presented values in
this chapter concern Bluetooth-based wireless networks. For this reason, initially,
the used network library is the BSBthDev library. For the benchmarking process,
we implemented an extra application that connects to the protocol layer of the
middleware and uses its functionalities. In order to establish communication paths,
the routing protocol DSDV was selected.

The second way of measurement connects to the BlueSpot system on the level of
a mobile service. This is achieved by use of the Benchmarking Service that contains
predefined testing scenarios which can be run in random order. This configuration
enables the integration of any wanted set of functionalities of the BlueSpot system
into the measurement process. Also, any available adaptive behavior extension
can be easily integrated into the measurement process, and can thus be taken into
account. Here, the standard configuration of the BlueSpot system is used, which
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runs without any additional adaptive behavior extensions and the standard DSDV
routing algorithm.

By use of the simulator, results are gained in the mentioned third way. The simu-
lator is connected to the BlueSpot middleware with the aid of the BSSimDev library,
and thus the Benchmarking Service can be used to perform the measurement pro-
cesses. Analogously to the second way of benchmarking, the standard configuration
with DSDV routing and no other extensions is used here.

9.2.2. Throughput Measurements

The available bandwidth of a Bluetooth-based network shall be shown apriori.
Therefore, the throughput of a single connection is investigated. Early experiments
have shown that the real throughput of a connection depends highly on the under-
lying hardware that was used. The theoretical values of 723,2 kbit/s respectively
2Mbit/s defined in the Bluetooth standard were reached by none of our hardware
configurations, but were near the mark (e.g. 241,331 kBytes/s = 1930,648 kbit/s).
The testing results proved to depend immensely on the hardware configuration. In
order to reduce the influence of the hardware, we permuted our available hardware
and additionally often repeated the measurement process. Afterwards the measured
values were averaged. All measurements were made on the level of the protocol
layer. The results can be seen in table 9.1 and are illustrated as a diagram in figure
9.10.

1 2 3 4 5
one hop 117,0759 128,604 241,331 138,433 145,318
two hops 34,183 37,761 65,065 67,559 83,892
seven hops 5,242

6 7 8 9
one hop 232,442 85,594 89,866 85,672

Table 9.1.: Values of throughput measurements based on the protocol layer in [kB/s]

All used network constellations are organized linearly. The installed bridging
nodes are configured as M/S bridges (see figure 9.9 for an illustration). For the
first set of benchmarking runs, the used topology consists of two nodes. The avail-
able hardware components were arranged randomly in order to construct different
random hardware configurations. By chance, nine configurations were selected.

The seven-hop constellation consists of all types of hardware devices. These are
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the on-board chips of the Gumstix, and two types of USB Bluetooth dongles: one
supporting the Bluetooth standards V.1.2, and one supporting the Bluetooth stan-
dard V2.0+EDR. The two-hops measurements are the result of connecting three
Gumstix together - first two values - and combining two USB dongles Bluetooth
V.1.2 and one USB dongle Bluetooth V.2.0+EDR - third and fourth value - and one
USB dongle Bluetooth V1.2 connected to two USB dongles Bluetooth V.2.0+EDR
- fifth value. Considering the nine one-hop configurations, the first two values are
the result of connecting two USB dongles Bluetooth V.1.2, the third and the sixth
values are the result of connecting two USB dongles Bluetooth V.2.0+EDR. The
forth and the third value are the result of one USB dongle Bluetooth V.1.2 and
one USB dongle Bluetooth V.2.0+EDR. The last three configurations were made
exclusively with combinations of Gumstix.

M Sone hop M S

M M|S

p

two hops S

M M|Sseven hops SM|S…

Figure 9.9.: Network constellations used for the throughput measurements

The second set of measurement processes depicted in the second row concerns
topologies with tree nodes. Analogously to the first approach, different hardware
components were used in a random order. Due to the few available hardware com-
ponents and high connection break-up rates, only five measurement runs for this
configuration could be achieved. Occurring connection break-ups can be explained
by the overlapping of many Piconets. In this configuration the resulting topology
contains four Piconets (one master, three M/S bridges and one slave) that disturb
each other immensely. The moment the influence of other Piconets grows too high,
some of the connections within a Piconet will break up. The reestablishment of such
connections is tried by the BlueSpot system automatically, but cannot be guaran-
teed. That way, the BlueSpot system tries to minimize possible system failures
and to enhance its stability. Unfortunately, this falsifies our measurement results,
therefore, the best results were selected here.

Instable connections are even more relevant for the third measured network con-
stellation. This one includes eight nodes. Due to the use of M/S bridges, the network
consists of seven Piconets. The moment these Piconets overlap each other, steady
connections cannot be assumed anymore. Due to this, only one successful measure-
ment could be achieved that yields an acceptable outcome. The results of the three
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test assemblies are depicted in a diagram depicted in figure 9.10.
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Figure 9.10.: Throughput measurements of the BSBthDev for one, two and seven
hops

The results of the one-hop network are displayed by blue bars, while the results
of the two-hops and the seven-hops measurements are marked as red and as green
bars. It can be seen that the results of the one-hop configurations vary very much
according to the throughput rate. Especially, during the usage of the hardware
constellations three and six, the achieved data rate was nearly twice the data rate
of other constellations. In the course of our experiments, it became apparent that
the application of Bluetooth USB sticks brings a much better performance than the
usage of the on-board Bluetooth chips of the Gumstix. The results of the Gumstix
are depicted in constellations seven, eight and nine. In order to be able to explain
this behavior, the implementations of the hardware and their connection to the
hardware platform the BlueSpot system runs on must be investigated in detail in
another place. This shall not be part of this thesis.

When comparing a one-hop scenario to a two-hop scenario, the throughput rate
decreases dramatically. Furthermore, taking the seven-hop scenario into account, the
throughput rate drops to approximately 5 kilobytes per second, which is very low.
This high decrease can be explained by the bad scalability of M/S bridged network
and is discussed in section 9.2.5 in more detail. As a result, the establishment of a
Bluetooth-based Scatternet with seven or more nodes that is based on M/S bridges
can be made but comes along with the restriction of a very low data rate. Therefore,
long communication paths should be avoided.
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9.2.3. Latency Times Measurements

This section presents measurements concerning the average latency times in compar-
ison to the hop rate. The hardware dependency is put into perspective by averaging
over a random selected set of hardware configurations and a high rate of iteration of
the benchmarking processes. The used network topology also bases on M/S bridging
nodes, where the nodes are ordered in a linear manner. All benchmarking processes
were made by use of the protocol layer. The gained results are shown in table 9.2.

1hop 2hops 3hops 4hops 5hops

average 22,345 58,806 62,145 91,785 144,341
maximum 45,356 108,459 137,2 185,67 265,563
minimum 20,943 49,491 59,873 83,833 138,457

Table 9.2.: Latency times measurements based on the protocol layer in [ms]

The table contains the average values as well as the corresponding maximum and
minimum values for each performed measurement process. The results of applied
network configurations with two to six nodes are depicted in figure 9.11.
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Figure 9.11.: Comparison of latency times in comparison to the number of hops

The results depicted in the graph show that the average latency time increases in
relation to the number of hops, as expected. The interesting result in this measure-
ment process is the large interval between the minimum and the maximum measured
latency times. The more nodes are involved in a communication path, the larger
the possible interval of latency time is. Especially in constellations with five or more
nodes, the interval grows so large that it becomes quite difficult to make any state-
ment of particulars describing the quality of the underlying communication path.
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Mobile services with high demands according to their maximum allowed latency
time can be impaired due to these results.

9.2.4. Packet Size Measurments

Throughput rates stand in direct correlation with the packet size used on the level
of the protocol layer. In order to investigate this correlation, we performed mea-
surements by use of the simulator. The results can be seen in table 9.3 and are
presented as diagram in figure 9.12.

packet size 1 2 4 8 16 32
average 21,165 25,752 37,030 58,441 84,843 110,408
maximum 21,441 26,137 37,634 59,107 86,067 112,171
minimum 16,074 21,394 30,487 50,868 78,309 101,226

packet size 64 128 256 512 1024 2048
average 129,503 141,901 149,285 154,493 156,250 157,136
maximum 131,867 145,015 151,064 156,361 158,334 158,819
minimum 124,901 128,681 147,216 149,173 154,499 156,417

Table 9.3.: Values of packet size measurements based on the protocol layer in [kB/s]

120

140

160

180

0

20

40

60

80

100

1 2 4 8 16 32 64 128 257 512 1024 2048

data rate
in [kB/s]

packet size in [kB]

throughput in [kB/s]

Figure 9.12.: Throughput measurements with the simulator for one hop with differ-
ent packet sizes

The underlying network is a Piconet that consists of a master and a slave node.
The resulting values for the twelve different packet sizes are averaged, but the corre-
sponding minimum as well as the maximum value are also integrated into the graph.
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The maximum values do not differ greatly from the average values, therefore, the
points of the graphs lay very near each other. In fact, the maximum values can
hardly be seen. The throughput rate increases very fast when small packet sizes are
sent, as can be seen on the left side of the diagram. But, beginning with a packet
size of 32 kilobytes, the slope of the curve starts to decrease again. At the maximum
packet size of two megabytes, the throughput remains nearly static. It is important
to keep in mind that the effective values of all throughput rates depend on the used
hardware. The values presented here are an approximation.

In contrast to the throughput rate, it does not make sense to measure latency
times in relation to the packet size (see section 8.2.1). The result would not be
transferable to a real world configuration due to too many additional factors that
would be needed to be taken into account. E.g. if only one packet is to be sent,
the latency time does not depend on the packet size. But, the moment a second
packet is in the queue, the latency times are influenced dramatically by the packet
size. Consider a packet with the size of two megabytes and the resulting data rate
of 150 kilobytes per second. The transmission of one packet would take at least 13
seconds. This is the time the queueing packet would have to wait for its forwarding
in minimum.

However, in order to get realistic values during simulation runs, the worst case
latency times of measurements with real hardware were taken into account. The
simulator was adjusted accordingly, so that the resulting latency times during a
simulation run approximate to the worst case value of these measurements. The
comparison is depicted in figure 9.13.
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Figure 9.13.: Throughput measurements with the simulator for one hop with differ-
ent packet sizes
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The measurement process was made by the use of ping packets with a size of 50
bytes and 100 bytes. A small packet size was deliberately selected for keeping the
influence of the packet size as small as possible. The measured round trip time was
divided by two in order to get the one way latency time, and was averaged over
various iteration runs afterwards.

The measured values of the simulator are shown by the blue bars. These are
put into comparison with the latency times measured with real hardware (red bars)
and measurements made by use of our benchmarking application that connects to
the protocol layer (green bars). Obviously, the results of the simulator approximate
the worst case values of the other two configurations, as assumed beforehand. By
this, a good estimation of a mobile service’s latency times can be made during the
evaluation process of the service MIB parameters.

9.2.5. Comparison M/S vs. S/S Bridged Networks

Considering a Bluetooth-based Scatternet with nodes in a linear order, this Scatter-
net can be constructed in two different ways. On the one hand, it can be established
by use of M/S bridging nodes, on the other hand, the occurring Piconets are bridged
by S/S nodes. Both configurations have advantages and disadvantages; some were
already described in section 5.1.1. Now these as well as further considerations shall
be taken up again in order to give a complete understanding of the differences of
these two types of network bridges.

In order to start the investigation, we made some measurements with the aid
of the Benchmarking Service. Therefore, two M/S bridged and two S/S bridged
topologies were used, each with two different hardware constellations to relativize
the influence of the hardware. The gained throughput results can be seen in table
9.4. For a better understanding, the underlying topologies are depicted in figure
9.14.

S/S 1 S/S 2 M/S 1 M/S 2
two hops 13,7 17,1 55,8 59,1
four hops 13,1 16,2 7,8 6,9

Table 9.4.: Throughput comparison of a S/S and a M/S bridged Scatternet in [kB/s]

The first topology depicted in the upper row of the table consists of three nodes.
In the S/S bridged constellation, the nodes on the ends are masters, whereas the
node in the middle is the S/S bridge. As a result, the network consists of two
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M S|S Mtwo hops S/S bridged

M SM|Stwo hops M/S bridged

p g

M S|S M S|S Mfour hops S/S bridged

M SM|S M|Sfour hops M/S bridged M|S

Figure 9.14.: Network constellations for the comparison of S/S bridged an M/S
briged Scatternets with two and four hops

Piconets. The M/S configuration is constructed of a master, a M/S bridge in the
middle, and a slave node, and thus also includes two Piconets.

The second row of the table shows the results of the four hop measurements.
The S/S bridged networks consists of five nodes: three master nodes and two S/S
bridges in alternating order. Therefore, this configuration contains three Piconets.
For the M/S bridged network, one master, three M/S bridges, and a slave are used.
In comparison to the S/S configuration, this constellation consists of four Piconets,
which is one more than S/S bridged networks with the same amount of nodes have.
For a better presentation, the values are illustrated in a diagram in figure 9.15.
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Figure 9.15.: Throughput comparison of S/S and M/S bridged Scatternets

The blue bars mark the measurements with two hops, whereas the red bars present
the results of the four hop scenarios. Apparently, the measurement of M/S bridged
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Scatternets with only two hops provide a much higher throughput than the corre-
sponding S/S bridged constellations. But with the increasing amount of hops, the
throughput rate drops rapidly. Contrary to this, the S/S bridged networks with
few hops have a lower throughput, but the rate remains almost constant with an
increasing number of hops. As can be seen in the diagram, the Scatternets with S/S
bridges and four hops provide a higher data rate than those with M/S bridges.

In order to confirm this result, a further measurement approach was made. Four
different network constellations were compared to each other. The formations are
illustrated in figure 9.16.

M S1 Piconet M S

M SM|S2 Piconets

M SM|S M|S3 Piconets

M S|S M S|S M3 Piconets

Figure 9.16.: The four different network topologies of this measurement

The first constellation is a simple Piconet. The measurement results for this
Piconet are added in order to gain comparable values of a simple hop within a
Piconet and hops over a bridge. The second and the third constellations are M/S
bridged networks, where the first contains one bridging node and the second contains
two. Hence, the first constellation consists of two Piconets and a two-hop path
in length, whereas the second includes three Piconets and three hops. The fourth
scenario consists of a S/S bridged network that is also constructed of three Piconets,
but due to the S/S bridges, the communication path has a length of four hops.

The aim of this measurement is to compare the throughput and the latency times
with the amount of Piconets and the used type of bridging node. In the course of
this measurement, various testing runs were made with different packet sizes. Af-
terwards, the results were averaged to one value for each network constellation. By
doing so, the dependency on the packet size is eliminated. All results are gained
by use of the Benchmarking Service. The throughput-measurement results are pre-
sented in figure 9.17.

The diagram shows the throughput rates of the four different network constella-
tions. The used packet sizes were 10kB, 50kB, 100kB, and 500kB, and they were
averaged afterwards. The first entry on the left side, depicted as the blue bar,
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Figure 9.17.: Average throughput comparison of S/S and M/S bridged networks

presents the throughput rate of the single hop within a Piconet. The next two bars,
in red, illustrate the two M/S bridged networks, whereas the green bar shows the
measured throughput of the S/S bridged network with four hops.

When comparing the third and the fourth values, it can be seen that the S/S
bridged network provides a higher throughput than the M/S bridged one, while
they both consist of the same amount of Piconets. Furthermore, the measurement
of the S/S bridged network was made over one more hop. In addition to this, the
results of the corresponding latency time measurement are presented in figure 9.18.
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Figure 9.18.: Average latency time in comparison of S/S and M/S bridged networks

Analogously to the throughput results, the S/S bridged network behaves better
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than the M/S one. As a result, the latency time is lower even though the measured
communication path is one more hop in length.

In order to explain these results, various properties of the Bluetooth standard
must be considered. To begin with, it is obvious that the throughput of a Scatternet
with a small amount of Piconets provides a much higher throughput and much better
latency times than a S/S bridged Scatternet of the same size. But with an increasing
amount of nodes, the throughput rate of a M/S bridged network decreases rapidly in
relation to the amount of nodes, whereas the throughput of a S/S bridged network
remains near-constant, as seen in figure 9.15.

A bridging node can only be in one Piconet at a time, as described in section
5.1.1. In order to transfer data to the other Piconet, it must switch its mode to
hold in the one Piconet and resynchronize to the other. In case this bridge is a
M/S node, the resynchronization process happens very fast, as it is the master that
provides the clock signal for this Piconet. In case of a S/S bridge, the node must wait
until it has received the required synchronization signal from the master. But this
is time consuming, and as a result, the latency time increases and the throughput
decreases. The large difference concerning the throughput and the latency times of
small Scatternets can be explained by this.

But, in order to explain the behavior of larger Scatternets, the amount of occurring
Piconets must be taken into account. As seen in the previous measurement process,
the amount of Piconets has a great influence on the quality of the network. By
establishing a Scatternet on the basis of S/S bridges, a Piconet always contains two
hops - from the S/S bridge to the master and furthermore to the next S/S bridge
- whereas a M/S bridged Piconet contains only one hop - from one M/S bridge to
the next (see figure 9.16). The latter results in networks with a larger amount of
Piconets. Considering the previous measurement results of one hop within a Piconet,
the throughput was at least six times as high as the rate of a M/S bridged network
with two hops (first and second values of figure 9.17). By additionally taking into
account that all S/S bridged Piconets contain two internal hops, the disadvantage
of the worse performing S/S bridge is balanced out.

Another advantage of the S/S bridged network is the capability of this kind of
network to maintain connections to other slave nodes, whereas in a M/S bridged
network, a Piconet is closed to communication if the master node is switched to
the other Piconet. If more than one node communicates via the master node, its
communication paths can be kept upright, whereas in M/S bridged networks, the
same paths would be interrupted.

Based on these facts, it is obvious that networks that run services which require
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short communication paths should be constructed on basis of M/S bridges. But
if services are run on top of a network that requires communication paths that are
longer than two hops, the underlying network should consist of S/S bridged Piconets.

9.2.6. Bluetooth Connection Establishment

A last testing scenario to be presented here concerns the establishment of a simple
Bluetooth connection. In the course of the development of the BlueSpot system,
we noticed that the establishment sometimes takes up to several seconds. Such
a behavior dramatically influences the execution of mobile services the moment a
handover of the underlying client node is in progress.

By use of a small benchmarking tool, eleven different hardware constellations
were tested. The tool performed 100 connection establishments with a consecutive
disconnection after each establishment. During this process, the duration of each
connection establishment was measured. The results can be see in table 9.5.

1 2 3 4 5 6
average 179,99 224,902 148,268 195,204 101,465 425,478
maximum 3070,764 4962,413 2883,666 3459,148 944,188 1289,163
minimum 100,089 87,886 83,048 86,105 70,861 387,931

7 8 9 10 11
average 447,968 742,64 699,606 158,966 175,952
maximum 1098,537 1206,06 1161,202 3297,217 3991,811
minimum 400,58 639,32 654,384 97,969 97,88

Table 9.5.: Measurements for the establishment of a Bluetooth connection with dif-
ferent hardware constellations. All values are in [ms]

In the table, the average values are shown. Additionally, the maximum values as
well as minimums are presented in the second and third row. The corresponding
diagram to the table can be found in figure 9.19.

The calculated overall average duration of a connection establishment gives 318,22
milliseconds. The absolute maximum value measured in the complete process is
4962,413 milliseconds. Out of 100 testing cycles arises that between three and five
connection establishments have an duration of above two seconds. A reason for this
behavior could not be found.

Another interesting revelation can be seen in the diagram. In case of the hardware
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Figure 9.19.: Connection establishment times for different hardware constellations

constellations six, seven, eight, and nine, at least one Gumstix was involved. This
led to a very poor average value of the connection establishment. But exactly these
constellations have the lowest maximum values, which is very eye-catching. This
result also cannot be explained.

9.3. Summary

The BlueSpot monitoring tool, an additional software tool available for the BlueSpot
system, was introduced and explained in this chapter. A further important extension
is the connection of the middleware to the NS2 simulator, which is implemented by
use of the BSSimDev library. The application of this extension was presented by
showing various preconfigured testing scenarios.

The second part of this chapter covers benchmarking results made by use of the
BlueSpot system. These results were presented in great detail, and the possible
conclusions discussed. Therefore, the throughput, the average latency times as well
as possible data packet sizes were measured. Subsequently, the properties of M/S
bridged networks were compared to those of S/S bridged ones. Finally, measure-
ments of the duration of Bluetooth-based connection establishments were presented.

As a result, we were able to show that the concept of the BlueSpot system works.
By its usage we easily showed the behavior of Bluetooth based networks concerning
their performance. Furthermore, we were able to investigate the differences of M/S
bridged and S/S bridged Scatternets in detail. An explanation of the measured
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results that fits to our assumptions in the previous chapters could be given.

By use of the provided simulation scenarios, further aspects of wireless networks
can be analyzed. Therefore, these scenarios can be modified in order to gain the
wanted network constellations and configurations. These new scenarios can again
be used to investigate adaptive behavior extensions, such as resource reservation
mechanisms, wireless routing protocols, or network modification approaches.
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10.1. Aims of this Thesis

One of the aims of this thesis is to work out a viable system for providing a large
spectrum of mobile services running on wireless networks. Our objective is that
the underlying network technology, as well as the network constellation, should be
insignificant for running a service. Into the system’s development we had to add the
formation and organization of the underlying network. Especially, the complexity
of the formation process grows rapidly with an increasing amount of nodes.

The main group of target devices the BlueSpot system is dedicated to are mobile
devices such as smartphones and PDAs. The usage of such heterogeneous hard-
ware platforms is very challenging. They include different processor architectures, a
highly diversified set of hard- and software, and a diverging set of operating systems.
The built-in programming models for these devices are very limited, which is very
challenging in the course of development.

In this thesis, the viable system’s solution covers all their varying characteristics

131



10. Conclusion

by providing a service platform that contains a standardized software interface on
which mobile services can run. In order to gain service mobility, the transfer of
mobile service packages between users of the network infrastructure created by the
BlueSpot system was also approached. As a result, the BlueSpot system allows to
automatically deliver mobile services to any point within the wireless network.

In the course of development, we enabled the resulting system to be enhanced by
various adaptive behavior extensions. The software interfaces needed to integrate
such extensions were designed to make as few restrictions as possible, thus providing
the integration of a large potential spectrum of known and new network adaptivity
approaches. By including such approaches, the underlying system can be pointedly
adjusted to the evolving requirements made by mobile services. These requirements
are manifold. Due to the wide-reaching spectrum of possible kinds of mobile services,
this manifold is growing rapidly.

Due to the gained complexity of possible utilizations of adaptive behavior exten-
sions, a concept was needed in order to organize the directed application of these
extensions. Additionally, a point of entry for the adaptive behavior of the system was
required. The moment a new mobile service is started, the network configuration
must be adjusted to fit the service’s requirements, specified by the meta information
base (MIB) that is part of the service. At this point, the BlueSpot system must
select the best fitting mechanisms provided by the adaptive behavior extensions.

10.2. Results

The before-mentioned aims were discussed in this thesis in great detail and demon-
strated with the prototype of the BlueSpot system. A whole new middleware-based
software system was developed in the course of our investigations. The BlueSpot
system itself is seen as proof of concept and is used to verify the concepts and the
solutions presented as pilot-experiments in this thesis.

Particular attention was devoted to the reuse of existing network technologies,
network management and organization as well as currently state of the art software
modeling approaches.

By combining these existing network technologies to a highly integrated and com-
plex system, a broad software system was attained, that signifies by a high degree
of generality, in contrast to many other approaches. This generality can be used to
further develop, integrate, and test a wide spectrum of new procedures for wireless
networks, and a range of new mobile services.
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For a better classification of such procedures, we introduced the network view that
contains different layers of abstraction in a software system. This network view as
well as the middleware view that both include the points of contact - extension mod-
ules need to communicate with such a system - are used as basis for understanding
and describing the adjustments that can be made to the entire system. Especially,
current cross-layer approaches can be easily explained by use of these views and can
subsequently become integrated into the system.

Enabled by the highly complex standard of the Bluetooth technology and the
resulting Scatternet formations, we investigated possible configurations of networked
nodes and analyzed their behavior in context of the BlueSpot system. For the
formation of a network, an elaborate forming algorithm is needed. We modeled
the most encouraging approaches defined within the field of the graph theory. As a
result, we revealed the fundamentals of a variety of potential new network formation
algorithms.

After a network is formed, a routing algorithm is needed to provide end-to-end
communication. As part of the adaptive behavior extension, we can integrate almost
any kind of routing algorithm for the BlueSpot system. The system provides the
exchange of the routing protocol during runtime. In that way, the entire behavior of
the software system can be modified and adapted to newly occurring or even chang-
ing demands of mobile services. For a better understanding of routing algorithms,
we provided a classification of routing algorithms concerning their properties (from
the point of view of the provider).

The utilization of a routing protocol exchange is part of the adaptive behavior of
the BlueSpots system. This adaptive behavior can be seen as a new approach for
covering adaptivity of wireless networks in general. It contains the initialization of
wireless networks by explaining the main issues for finding the best fitting network
formation as well as for selecting the corresponding forming algorithm. Additionally,
it includes a concept for managing the underlying network during runtime. The
moment when the demands made on the system changes, this concept describes
various steps that are feasible ways to react to such events. By use of the previously
described model of the system, available mechanisms can be assessed and ordered
into these steps. Thus the utilization of these step-wise options can be optimized.
This proof-of-concept-result may demarcate the academically most advanced result
of this thesis - in terms of generality.

The network organization process was rounded up by aspects to be determined
the very moment mobile clients appear. Here, the main tasks are the handover
functionality and the integration of newly appearing nodes. With the help of the
BlueSpot system’s model we were able to integrate soft- as well as hard-handover
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functionalities into our proof-of-concept.

Also, in order to run mobile services on such a software system, the most important
characteristics of such services were listed. In addition to this, these characteristics
were used to provide a set of interesting parameters that are needed to describe
a service’s requirements. On the other hand, the BlueSpot system contains a set
of system parameters that form the counterpart to those of the service. By use
of these parameters, we provided a new approach that allows the determination
whether a service can be run or not. This determination is in turn the entry point
for the application of available adaptive mechanisms by use of the adaptive behavior
concept previously introduced. After a successful readjustment of the underlying
network, resources were freed and the requirements of the service can be met with.

The covering of mobile services was rounded up by describing various exemplarily
developed mobile services for the BlueSpot system. During the selection process,
when we asked ourselves which mobile services should be implemented, we focused
on selecting services with widely varying requirements to the underlying network
system. By their application, the scope of functionality of the BlueSpot system was
demonstrated: it supported a whole variety of existing applications, and of emerging
options.

One of these services is the Benchmarking Service. It was used to execute vari-
ous measuring processes on top of the BlueSpot system. Selected parameters and
phenomena dependent on an underling Bluetooth-based network were investigated.
Measurements were made of the throughput rate, the average latency time, as well
as of the used size of packets on the level of the protocol layer. While we elabo-
rated the formation of different Scatternet structures, we noticed different behaviors
of M/S bridged Piconets compared to S/S bridged ones. Additional investigations
were made by use of the simulator. As a result, we were able to show that both
types perform differently, owing to an increasing amount of nodes.

10.3. Outlook

The laboratory-version of the BlueSpot system provides a basis for advances. The
full swing of experiments at the MVS-lab opened vistas at various further approaches
concerning the rapid evolution in the field of wireless networks and mobile services.
As a result of the many software interfaces, the BlueSpot system can be enhanced
by a large amount of further adaptivity approaches. Especially, the investigation of
security issues and energy consumption could be interesting. It was seen, but not
applied as yet. The current state of development of the BlueSpot system is a proof
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of concept. Therefore, much ”bug fixing” must be accomplished in order to enhance
its stability and to provide a reliable basis for future approaches.

One way ahead is feasible by integrating different adaptive mechanisms. These
can be compared to each other. E.g. a new routing approach can by applied to
the system, and thus it can be compared to existing ones. Due to the standard-
ized architecture for these proceedings, far-reaching mensuration processes can be
executed and useful results gained in the future.

The actual version of the Bluetooth technology for the BlueSpot system entails
various restrictions that need to be dealt with. Considerable expenditures must be
expected to cover research and development costs. Especially, the distribution of
roles, such as the master and the slave roles, as well as the two types of bridges,
results in a highly demanding forming algorithm, if the resulting topology is to
have a predefined configuration. Therefore, the forming of such networks will be a
challenging topic in future elaborations.

Another way ahead regards the integration of further wireless communication
technologies. The ZigBee standard [ZigBee Alliance, 2004] as well as the wibree
[Bluetooth SIG, 2008] communication technology, which is part of the Bluetooth
standard, provide an interesting possibility for the integration of further network
constellation models. By use of the ZigBee standard, nodes are distinguished in
three different roles: end device, router, and coordinator. The underlying networks
are constructed in a star topology that contains one router and up to 240 end devices,
which would represent a single domain within the BlueSpot system. Additionally,
many routers can be combined to an infrastructured network, where one router is
selected as coordinator. In respect of these characteristics, ZigBee can be easily
integrated into the BlueSpot system. Thus, the functionality of the present system
can be applied to future network technologies, as well.

Furthermore, in the course of this thesis, the Bluetooth standard v3.0 was an-
nounced. In contrast to the existing ones, this standard contains a completely
reviewed baseband. As a result of this, the Bluetooth standard will be integrated
into the ultra wide band (UWB) specification [Porcino and Hirt, 2003] in the near
future. The used frequency spectrum will be between 3,1 GHz and 10,6 GHz. The
main specification of UWB describes the underlying network as a star topology.
Details concerning the standard that include the question, whether this can also be
applied applied to the Bluetooth standard or if the master-slave distribution of roles
will be kept upright, are currently unknown.
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Appendix A
Related Student Work

It is my desire to express my gratitude to the faculty of the TUM, especially to the
chair, for the opportunity to cope with such a wide scope of topics by being granted
many assisting students. More than a dozen parts of the BlueSpot system presented
above are the results of a student works program. The themes and tests were guided
by the viable system’s objective implemented here. A list of these works including
title and a short description are summarized in the following in chronological order,
as they were finalized in terms of academic, empirical, and experimental output.
Some works are still pending.

• Personalisierte Informations- und Positionierungsdienste für mobile Endge-
räte auf der Basis von Bluetooth und CE .Net (Ulrich Dümichen): in this
diploma thesis, the initial developments for the BlueSpot system were made.
At that juncture, all approaches were performed on basis of the Windows
CE operating system. The underlying network topology bases on a network
which at that time had a wired backbone. Multi-hop communication was not
included. Mobile services were integrated into the system by the COM model.
The necessary binaries were provided in the form of dynamic link libraries. A
support for other hardware platforms that did not run with Windows CE was
not available.

• VoIP auf Nokia 6600 (Manfred Schreiber): the aim of this bachelor thesis was
the implementation of a voice over IP (VoIP) client for the Nokia smartphone
6600. The approach was technically unsuccessful in the end, due to restrictions
Nokia included into the smartphone. E.g. an audio signal received via a
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Bluetooth connection could not be played by use of the internal speaker. This
restriction was deliberately integrated into this type of device by Nokia in
order to inhibit approaches in this direction. This, and further restrictions,
was not documented by Nokia previous to the commencing of this work. As
a result of the necessary investigations, the final work of Schreiber provided a
great depth covering the thematic of VoIP.

• Erweiterung des BlueSpot Systems um weitere Infrastrukturen (David Vidal-
Rodriguez): in order to enable the usage of completely wireless networks with-
out the need of a backbone mechanism, the multi hop capability was added
to the BlueSpot middleware. Therefore, a simple routing protocol was imple-
mented that bases on a flooding protocol. Additionally, simple topologies for
the BlueSpot system were introduced, such as a spanning tree formation of a
linearly ordered one. The establishment of the network was made manually,
thus an automated forming algorithm was not included.

• Portierung des BlueSpot-Bluetooth-Adapters auf Linux-basierte Plattformen
(Steinle, Eiband): to begin with, it was apparent that the entire system needed
to be ported to a Linux-based platform. This was the only possible way to
support a larger spectrum of hardware platforms and to investigate the in-
tegration of further extension modules such as routing protocols. With this
thesis, the porting proceedings were started and the BSBthDev library was
implemented. Our first Bluetooth Scatternets were assembled, resulting in
various mensurations of selected scenarios and parameters. This was the start
of the designing of a wholistic system.

• Evaluierung und Realisierung von Routing Protokollen für BlueSpot Netzwerke
(Johann Hacker): as a next step of the porting of the BlueSpot middleware
from Windows CE to Linux, the lower layers of the middleware were completely
revised. In order to achieve a better performance of the underlying network,
two new routing protocols were implemented and integrated into the system. A
mechanism was defined for exchanging the currently running routing protocol
with another one without needing to completely restart of the system. The
product of this diploma thesis, therefore, was basic work on the ground layers
of the BlueSpot middleware with proof of subsystem.

• Portierung der BlueSpot Middleware auf Symbian OS und Pocket PC 2003
(Langhammer, Metzger : in order to enlarge the coverage of supported de-
vices,in the course of this work, the middleware was ported to two further
software platforms . By doing so, the support of smartphones such as the
Nokia 6600 and the Nokia 6630 as well as the PDA FSC Pocket Loox was
enabled. As a result, these devices could be used as client nodes within the
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BlueSpot system, and thus a more powerful presentation of the entire software
system was possible.

• Realisierung des Handover in BlueSpot-Netzen und Nutzung von Mobilen Dien-
sten über ein Service Interface (Christian Schupfner): by use of this diploma
thesis, a session layer was integrated into the BlueSpot system. For a better
support of mobile services, the service interface was worked out and imple-
mented. As a result, mobile services could be implemented as Java services as
well as native C ones. In order to overcome the gap of supporting more than
one hardware platform by one service, the container service was additionally
introduced. To keep a session upright even when a node moves to another
point of contact, the handover mechanism was integrated additionally as part
of this thesis. In the end of this thesis, a large spectrum of viability of the
BlueSpot system was gained.

• Systemanbindung eines Mikrocontrollers zur Sensorik und Gerätesteuerung
(Schmidmeir, Schmidmeir): after the service interface and the general struc-
ture of mobile services for the BlueSpot system were defined, a demonstrator
was needed in order to show the functionalities of the BlueSpot system. The
result was the ability to steer the Mini Mauler RC car over the entire un-
derlying network system. In addition to this, the pH/temp sensor board was
developed and simple API for its usage implemented. Concluding their work,
the Schmidmeir brothers demonstrated the capability of the BlueSpot system
to support mobile services as required by the fundamental concept.

• Implementierung eines Monitoringtools zur Beobachtung des BlueSpot Netz-
werks (Simon Rieck): this bachelor thesis describes the monitoring tool for
the BlueSpot system. In the course of the development of the system, it be-
came apparent that a view of the current situation of a running BlueSpot
network would provide a large amount of useful information. The resulting
tool allows to search for selected events in all received monitoring messages.
For a better overview, messages that belong together are grouped, and an easy
way for surveying the behavior of the system is given.

• Erweiterung der Dienstschnittstelle und Integration adaptiver Unterstützung
mobiler Dineste in das BlueSpot-System (Michael Steinle): the diploma thesis
of Langhammer and of Steinle accompanied. In order to integrate adaptive
behavior into a large spectrum, Steinle in the course of his diploma thesis
integrated the adaptivity extension module into the middleware. The resulting
extensibility of the BlueSpot system through various network management
mechanisms formed the basis for the interoperability of the system, as it works
today.
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• Beschreibung und Verwaltung von Netzwerkressourcen durch das BlueSpot-
System und Integration adaptiven Verhaltens in die Middleware (Matthias
Langhammer): the diploma thesis of Langhammer and of Steinle accompa-
nied. Where Steinle developed the integration of the service MIB and the
node MIB, Langhammer achieved the integration of adaptive behavior on the
lower layers of the middleware. He enabled the modification mechanisms dur-
ing runtime and reviewed the mechanism needed for the integration of further
routing protocols. Therefore, a broadcast mechanism was integrated into the
middleware that allows to send control messages to all nodes of an established
network.

• Simulation eines BlueSpot Netzwerks anhand ausgewählter Szenarien (Chri-
stoph Metzger): as a result of the limited hardware available during our re-
search proceedings, we decided to provide a connection to a simulator. This
connection was investigated and implemented in the course of the diploma
thesis of Metzger. For a solution as realistic as possible, various available
Bluetooth extensions for the NS2 simulator were investigated. Surprisingly,
none of them showed to be feasible for the BlueSpot system. The implemen-
tation of the BSSimDev library was the result. It enables the connection to
a generally formed wireless network simulated by the NS2. The parameters
needed in order to make a realistic simulation possible were directly integrated
into the simulation environment. For the first time in the course of the research
and development of the BlueSpot system, the existence of a new relationship
between state of the art in technology and generalizability of the viable system
was demonstrated.
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Appendix B
Overview of Selected Software
Interfaces

In the following, the DeviceDetails structure as well as the main software interfaces
shall be described. The here presented code must be seen as an extract of the entire
software design. The intension is to provide the reader with a better understanding
of selected functionalities described in this thesis. For a complete description of the
software design, we refer to the available BlueSpot code documentation.

B.1. DeviceDetails

The DeviceDetails structure is used within the software stack any where and any
time a communication partner must be addressed. The structure contains informa-
tion such as the used communication technology needed to contact the device, its
address (a union that includes an IP address, a Bluetooth address, or the address
of an IrDA based network device), and a representative name. In order to enable
a connection to this device, further information is needed: a flag that indicates
whether the BlueSpot system is installed on that device, and a listing of the param-
eters needed to establish a connection. The latter consists of the RFComm channel
in case a Bluetooth based channel shall be used, or of the TCP port number, if the
underlying network is IP-based.

The structure itself is constructed as a linked list. Therefore, each entry of the
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DeviceDetails list contains a pointer to the next entry. The last element contains
a null pointer to signalize the end of the list. The following code fragment shows
the basis of the DeviceDetails structure:

struct BSLAYERINDEP_DLL_API DeviceDetails
{
/** Type of device.
* The type of the device (LAN_DEVICE, BTH_DEVICE oder IR_DEVICE).
* Currently support is available for Bluetooth and WLAN.
*/
DeviceType devType;

/// Bluetooth-, LAN- or IRDA-Address of the device.
DeviceHWAddress addr;

/** Name of device.
* The (Bluetooth-)name of the device. Ethernet uses the host name.
* The name is a zero terminated C-String.
*/
BD_NAME devName;

/** is the BlueSpot middleware available at the device.
* BlueSpot support available.
* Boolean value that indicates BlueSpot support.
* This value is gained by executing a discovery process
* on the other device.
*/
bool hasService;

/// Middleware parameter (RFCOMM channel, TCP Port number, etc.).
DeviceService service;

/** Next entry in list.
* Pointer to the next entry in the DeviceDetails list.
* If the entry is the last in the list, this parameter is NULL.
*/
DeviceDetails *pNext;
};
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B.2. Service Interface

The service interface provides the needed structure to connect mobile services to
the BlueSpot middleware. It is divided into two parts, the ServiceInterface class
and the CServiceBase class.

The following code fragment contains the main methods and functions needed to
enable the communication from a mobile service to the middleware. A mobile service
must include this class in order to enable the middleware to load the service’s shared
library object. The code presented here is part of a native C service. In order to
implement a Java-based service, a Java class with similar functions and methods is
available. The internal socket communication to the middleware is already included
in this class, and thus does not need to be provided by the mobile service.

/** Interface to connect mobile services.
* These methods can be called by a service in order to
* communicate with the middleware stack.
*/
class BSSESSION_DLL_API ServiceInterface
{
public:
/// destructor.
virtual ~ServiceInterface() {};

/// connect the service.
virtual int Connect(uint16_t service,

const std::string& RemoteSession) = 0;

/** disconnect service.
* @param connectionhandle this parameter contains the
* handle for the connection.

* @return true indicates success, else false.
*/
virtual bool Disconnect_nothrow(int connectionhandle) = 0;

/** enabling the service to send data.
* by usage of this method, services are able to send data via
* the middleware.
* @return true indicates success, else false
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*/
virtual bool SendData_nothrow(int connectionhandle,

const void* data, int size) = 0;

/** receive list of possible communication partners.
* The list contains the virtual addresses of all devices that
* are currently running the service.
* @param sesslist handle of the list.
* @param service ID of the service the list contains
* communication partners of.
*/
virtual void GetVirtualAddressList(std::vector<std::string>

&sesslist, uint16_t service) = 0;

// additional adaptivity functions
virtual void *AllocateRessources (uint16_t ServiceID,

int connectionhandle, CAdaptivityModule::BS_ADM_Request Type,
int Value) = 0;

virtual bool FreeRessources (uint16_t ServiceID,
int connectionhandle, CAdaptivityModule::BS_ADM_Request Type,
int Value) = 0;

virtual bool RequestFeature (CAdaptivityModule::BS_ADM_Feature
Feature, int Value) = 0;

virtual int GetCurrentFeatures () = 0;
};

For enabling the communication in the other direction (from the middleware to
the mobile service) the CserviceBase class is needed. By including this class, the
service must implement the callback functions of the class.

/** Base for a mobile service.
* This class contains the callback functions needed to be
* implemented by the service.
*/
class CServiceBase {
public:
/// destructor.
virtual ~CServiceBase() {};

/// returns the ID of the service.
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virtual uint16_t GetServiceId() = 0;

/// returns the revision of the service.
virtual uint16_t GetServiceRevision() = 0;

/// returns a representative name string.
virtual std::string GetServiceString() = 0;

/// starts the service.
virtual void start() = 0;

/// ends the service.
virtual void stop() = 0;

/** connection callback is triggered the moment a connection
* was established.
* @return 0 indicates a successful establishment.
* all other values represent an error situation.
*/
virtual bool OnConnect_nothrow(int newconnectionhandle,

uint16_t service, const std::string& RemoteSession) = 0;

/// callback that indicates the disconnection from the partner
virtual void OnDisconnected(int connectionhandle) = 0;

/** Incoming data.
* This method is triggered the moment data is received for
* the service.
*/
virtual void OnDataReceived(int connectionhandle,

const void* data, int size) = 0;
};
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B.3. Adaptivity Module

The integration of adaptive behavior extensions is implemented by the use of the
CAdaptivityModule class. This class must be included into a new developed exten-
sion in order to enable the communication in direction of the middleware as well as
in the opposite direction. Due to the complexity of this class, the most important
functions and methods are extracted and presented here.

/** Central class of the Adaptivity module.
* This class provides support for the integration of adaptive
* extension modules.
*/
class CAdaptivityModule
{
public:
/** Constructor of the class CAdaptivityModule
* During instantiation of this class pointers to all layers of
* the middleware are needed. That way, the interaction with
* the various layers is enabled.
* \param Si pointer to the CBSServiceLayer object
* \param Sl pointer to the Session object
* \param Pl pointer to the CBSProtocolLayer object
* \param Nal pointer to the CBSCommunicationLayer object
*/
IMPORT_C CAdaptivityModule(CBSServiceLayer *Si, Session *Sl,
CBSProtocolLayer *Pl, CBSCommunicationLayer *Nal);

/// destructor
IMPORT_C ~CAdaptivityModule();

/** provide resource reservation to a service.
* By use of this method, requests for specific resources are
* provided to an extension module. A distinction is made by
* use of the parameter ’Type’ that defines the class of the
* needed resource, whereas the ’Value’ parameter provides
* the amount of the resource needed for the service.
*
* \param ServiceID the ID of the demanding service
* \param AdmID the ID of the connection. If the call is
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* not connection specific, this value is 0
* \param Type type of the required resource
* \param Value amount of the resource specified by the
* type value
*
* \return the return value depends on the value of the type
* parameter:
* \return - ADM_REQUEST_BANDWIDTH/ADM_REQUEST_LATENCY:
* 0 indicates that an error occurred, every
* value non-equal indicates success.
* \return - ADM_REQUEST_MEMORY: null indicates an error,
* otherwise a pointer to the allocated
* memory is returned.
*/
void *AdmSiAllocateRessources (uint16_t ServiceID, uint32_t AdmID,

CAdaptivityModule::BS_ADM_Request Type, int Value);

/// frees the provided resource.
/// Parameters are equal to previous method.
void AdmSiFreeRessources (uint16_t ServiceID, uint32_t AdmID,

CAdaptivityModule::BS_ADM_Request Type, int Value);

/** Requests a specified feature a service requires.
* This method tries to enable a requested feature specified in
* the parameter ’Feature’.
*
* \param Feature BS_ADM_Feature based value that specifies one
* or more requested features combined by
* disjunction.
* \param Value in case ’Feature’ indicates a routing
* algorithm, the ID of the algorithm. Otherwise
* this value is ignored.
*
* \return true if the providing was successful, otherwise false.
*/
bool AdmSiRequestFeature (CAdaptivityModule::BS_ADM_Feature Feature,

int Value);

/// returns a list of activated features
int AdmSiGetCurrentFeatures ();
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/** A new service shall be run.
*
* This method compares the minimal requirements of the service
* to the available ones. That way, a decision is made whether
* the service can be started or not.
*
* \param ServiceID ID of the service to be started.
* \param ServiceContainer in case of a container service, a
* handle to this container.
*
* \return ADM_ERROR_SUCCESS if the service can be started.
* \return every other value indicates an error occurred.
*/
unsigned int AdmSiStartService(uint16_t ServiceID,

BlueSpot::System::CBSZipFile& ServiceContainer);

/// stops the service and frees its allocated resources.
void AdmSiStopService(uint16_t ServiceID);

/// callback that is triggered the moment a service connects to
/// another one.
unsigned int AdmSiConnect(const std::string& Session,

uint16_t ServiceID);

/// callback that is triggered the moment another service connects
/// to a service running on this node.
bool AdmSiOnConnect (const std::string& Session, uint16_t ServiceID,

uint32_t AdmID);

/// callback that is triggered when a connection was closed on the
/// level of the service interface.

void AdmSiDisconnect(uint32_t AdmID);

/// callback that is triggered when data was received on level of
/// the service interface.
bool AdmSiRecvData (uint32_t AdmID, const std::string& Session,

uint16_t ServiceID, const void *data, uint32_t size);

/// callback that is triggered when data is sent on level of the
/// service interface.
bool AdmSiSendData (uint32_t AdmID, const std::string& Session,
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uint16_t ServiceID, const void *data, uint32_t size);

/// callback that is triggered when data was received on level of
/// the session layer.
bool AdmSlRecvData (uint32_t AdmID, const std::string& Session,

const void *data, uint32_t size);

/// callback that is triggered when data is sent on level of the
/// session layer.
bool AdmSlSendData (uint32_t AdmID, const std::string& Session,

const void *data, uint32_t size);

/// callback that is triggered when data was received on level of
/// the protocol layer.
void AdmPlRecvData (uint32_t AdmID, const void *data, uint32_t size);

/// callback that is triggered when data is sent on level of the
/// protocol layer.
unsigned int AdmPlSendData (uint32_t AdmID,

const DeviceDetails *Device, const void *data, uint32_t size);

/// callback that is triggered when data was received on level of
/// the network adaption layer.
IMPORT_C void AdmNalRecvData (const DeviceDetails *SrcDevice,

const void *Data, uint32_t Size);

/// callback that is triggered when data is sent on level of the
/// network adaption layer.
IMPORT_C unsigned int AdmNalSendData(uint32_t AdmID,

const DeviceDetails& Device, const void *Data, uint32_t Size);
};
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