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Abstract

In this dissertation the following three main topics are presented:

1. The study of time discrete monomial dynamical and control systems over a finite field.

2. The analysis of a recently developed method ([65]) for reverse engineering the dynamical
properties of an observed system. (The method uses the modeling paradigm of time discrete
dynamical systems over a finite field.)

3. The description and parameter space exploration of the stochastic agent-based model Path-
Sim ([36], [104]), which attempts to model and simulate the interaction of the Epstein-Barr
virus and parts of the human immune system.

The specifics regarding 1.: A monomial dynamical system f : K™ — K™ over a finite
field K is a nonlinear deterministic time discrete dynamical system with the property that each
component function f; : K" — K is a monic nonzero monomial function. In this work we
provide an algebraic and graph theoretic framework to study the dynamic properties of monomial
dynamical systems over a finite field, in particular, the structure of cyclic trajectories. Within this
framework, characterization theorems for fixed point systems (systems in which all trajectories
end in steady states) are proved. In particular, we present an algorithm of polynomial complexity
to test whether a given monomial dynamical system over a finite field is a fixed point system.
Furthermore, theorems that complement previous work are presented and alternative proofs to
previous results are supplied.

The formalism introduced in the framework mentioned above also constitutes the basis for
the study of monomial control systems, i.e. mappings g : K™ x K™ — K", where m € N is the
number of control inputs, such that every component function g; : K™ x K™ — K is a monic
nonzero monomial function in the state variable x € K™ and the control variable ©u € K™. Within
this study, necessary and sufficient conditions for the controllability of such systems are proved.
Additionally, a method for synthesizing a monomial state feedback controller is presented, which,
under the assumption of controllability, imposes a desired state transition structure on monomial
control systems in the closed-loop.

The specifics regarding 2.: This topic is concerned with the practical use of time discrete
dynamical systems over a finite field as a modeling paradigm for biological phenomena. [65]
developed a top-down reverse engineering algorithm for this paradigm. This algorithm can be seen
as a parameter identification algorithm, where the parameters tuned according to the available
data are abstract quantities and don’t represent any physical or biological magnitude. Herein,
we will refer to it as the LS-algorithm. In this thesis, a mathematical framework is developed
that allows the study of the LS-algorithm in depth. This framework is based on a result (also
presented in this work) that relates the concept of orthogonality and the canonical representatives
for residue classes of a polynomial ideal.

Our aim is to identify minimal requirements on data sets to be used with the LS-algorithm
and to characterize optimal data sets. We found minimal requirements on a data set based on how



many terms the functions to be reverse engineered display. Furthermore, we identified optimal
data sets, which we characterized using a geometric property called "general position". Moreover,
we developed a constructive method to generate optimal data sets, provided a codimensional
condition is fulfilled. In addition, we present a generalization of the LS-algorithm that does not
depend on the choice of a term order. For this method we derived a formula for the probability
of finding the correct model, provided the data set used is optimal. We analyzed the asymptotic
behavior of the probability formula for a growing number of variables n (i.e. interacting chemicals).
Unfortunately, this formula converges to zero as fast as r?", where ¢ € Nand 0 < r < 1. Therefore,
even if an optimal data set is used and the restrictions in using term orders are overcome, the
reverse engineering problem remains unfeasible, unless prodigious amounts of data are available.
Such large data sets are experimentally impossible to generate with today’s technologies.

The specifics regarding 3.: We provide an exposition of the agent-based model of Epstein—
Barr Virus infection developed by Dr. David Thorley-Lawson and his collaborators [36], [104].
Once the model is explained, the joint work (performed during the period of time the author spent
at Dr. David Thorley-Lawson’s research group) of parameter space exploration is presented. The
resulting biological interpretations and potential biologically relevant insights are elucidated.

The connection between these three main topics is explained in the introduction.
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Introduction

Computer simulation and mathematical modeling are receiving increased attention as alter-
native approaches for providing insight into biological systems [41]. An important potential area
of application is the increasingly complex field of immunology, and in particular, the study of
viral pathogenesis. This approach is specially attractive in cases of human diseases for which
applicable animal models are lacking. To date, most simulations of viral pathogenesis have tended
to focus on HIV [94], [88], [87], [78], [82], [46], and employ mathematical models based on differ-
ential equations. However, there are reasons to mistrust the spatial homogeneity and well-mixed
assumptions that underlie continuous models based on ordinary differential equations [85], [86],
[100], despite the success of such models in immunology and virology [95], [19], [88], [80], [81],
[39], [13], [27], [82]. Disease processes are spatially distributed. Indeed, it seems likely that this
spatial distribution is often critical in determining the course of infection, as has been argued by
many, including [7], [37]. As an alternative to ordinary differential equation models, agent-based
modeling is increasingly being recognized as a viable way to simulate biological processes [58],
[59], [61], [79] (See also [17], [9], [10], [12], [18], [20], [21], [51], [60], [71], [72], [77], [91], [103], [108],
[109], [101], [16], [3], [4], [41], [43], [70], [114], [102], [107] for agent-based modeling approaches
in the fields of immunology and pathology). The main advantage is that the “agent” paradigm
complies by definition with the discrete and finite character of biological structures and entities
such as organs, cells, and pathogens. This makes it more accurate, from the point of view of
scientific modeling. It is also less abstract since the simulated objects, processes, and interactions
usually have a straightforward biological interpretation and the spatial structure of the anatomy
can be modeled meticulously. The stochasticity inherent to chemical and biological processes can
be incorporated in a natural way. Moreover, agent-based models are typically local in nature,
allowing the global picture to emerge from local interactions. Lastly, it is generally much easier
to incorporate qualitative or semi-quantiative information into rule sets for discrete models than
it is for such data to be converted to accurate rate equations.

The major drawback of using agent-based models is that there is no satisfying mathematical
theory that allows for their analysis. As a consequence, currently, scientists must rely on multiple
computer simulations of the model and statistical analysis of their output to assess the likely
dynamical properties of the model. Developing a mathematical theory that would allow the
analysis of the dynamical properties of agent-based models remains an important goal in the field.
One of the aims of this thesis is to provide some contributions to that end.

Motivation

Based on a widely accepted biological model of Epstein-Barr Virus (EBV) infection (in hu-
mans), Dr. David Thorley-Lawson and his collaborators developed an agent-based model and
computer simulation (PathSim, Pathogen Simulation) of the interaction between the virus and
the host’s immune system [36], [104].

I joined the PathSim project at the end of 2004, when Dr. Reinhard Laubenbacher, one of Dr.
David Thorley-Lawson’s collaborators, engaged me as a graduate student in his research group
at the Virginia Bioinformatics Institute at Virginia Tech. Since PathSim is a stochastic agent-
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based computer simulation, Dr. Laubenbacher’s idea was to use the average output of PathSim
as data to construct (or to "reverse engineer") a deterministic, time discrete dynamical system
over a suitable finite field. To this end, he and some of his graduate students had developed some
specific methods![65], [35]. This approach needed to be analyzed and tested, so, I performed
the mathematical analysis of the reverse engineering method described in [65]. This analysis is
presented in Part IT of this thesis; (see also [32]).

One of the fundamental assumptions in Dr. Laubenbacher’s reverse engineering program
was that the deterministic, time discrete dynamical system over a finite field obtained through
the reverse engineering method would reflect key dynamical properties of PathSim. Under this
assumption, Dr. Laubenbacher proposed that control variables could be introduced or identified,
turning the dynamical system into a control system. In this context, the natural issue arises as to
whether the dynamical properties of such a system can be predicted. This is how the PathSim
project motivated the mathematical study of deterministic, time discrete dynamical and control
systems over a finite field. Part I of this thesis is devoted to the study of a particular class of
dynamical and control systems over a finite field.

Some types of agent-based models and cellular automata can be interpreted as time discrete
dynamical system over a finite field. In this sense, the study of such dynamical systems contributes
directly to a deeper understanding of agent-based models and cellular automata. The reverse
engineering method proposed by Laubenbacher and his students represents an indirect way by
which the knowledge about such dynamical systems could help analyze the dynamics of agent-
based models.

My involvement in the PathSim project also included an active participation in the use and
interpretation of PathSim, especially after September 2006, when I joined Dr. David Thorley-
Lawson’s research group at the Pathology Department of Tufts University’s Medical School,
Boston. In Part III of this thesis, a brief description of PathSim and its capabilities is provided.

Mathematical background and motivation

The deterministic mathematical modeling efforts within the PathSim project involve the core
idea of describing the different states of a biological system using the elements of a finite nonempty
set X. A common fundamental assumption in a time discrete (and time invariant) deterministic
modeling approach is that the future state of the system is a function of its current state. In
other words, there is a function f : X — X such that the future state of the system, described
by zn11 € X, and the current state of the system, described by x, € X, satisfy the following
relationship

Tn+l1 = f($n)

Once such a function has been found, given an initial state of the system represented by zg, the
evolution of the system is described by the iteration of the function f. Since the sequence of values
generated by this iteration represents the evolution of the system modeled, any mathematical
technique that describes and predicts the dynamics of such a function (so called dynamical system)
is highly desirable, at least from the point of view of the modeler.

To study the dynamics of such a dynamical system mathematically, it is necessary to focus
on more specific classes of systems. One way to accomplish this is to add some mathematical
structure to the set X, for instance, by endowing X with a topological or algebraic structure.
In the vein of an algebraic approach, one could, for example, try to endow the set X with the
algebraic structure of a finite field (with the binary operations + and ). A well-known result
states that this is possible if and only if there is a prime number p € N and a natural number
m € N such that the cardinality | X| of the set X satisfies

| X|=p™ (1)

! These methods will be described in Chapter 5.
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This result imposes a limitation on our algebraic approach. However, on the other hand, if the
cardinality of the set X satisfies the condition (1), it turns out that every function f: X — X is a
polynomial function of bounded degree. (We will prove this remarkable result in Chapter 1.) This
peculiarity allows for the use of a large tool box of algebraic (and even graph theoretic, as we will
see in Chapter 2) techniques to study the dynamical system. As a matter of fact, mathematicians
and engineers have studied such systems, in particular the linear systems, i.e. the linear space
endomorphism of the vector space X over the finite field X and their higher dimensional analogues;
[38], [45], [26]. From an algebraic point of view, it also seems interesting to study the monoid
endomorphisms of the multiplicative monoid (X, -) and their higher dimensional analogues. These
are precisely the monomial dynamical systems (to be defined below), which are studied in depth
in this dissertation.

An extension of the idea of a dynamical system is the concept of a control system. In a control
system, besides the state of the system (described by a variable € X), also intervention in
the system is quantified. This intervention is represented by a control or input variable uw € U
contained in a so called control set (or space) U. Formally, such a system has the form

f: X xU—=X

Given an initial state of the system represented by g, and a sequence ug, uq, ..., ut,... € U of
control inputs, the system evolves according to the law

Tp4+1 = f(xnaun)

One of the classical problems of control theory is the controllability problem, which is concerned
with the existence of a suitable sequence of control inputs such that the system evolves towards a
desired state (or set of states). This sequence of control inputs could, for instance, be generated
as a function g : X — U of the current state

u; = g(x;)

Such a function is called a feedback law. Another important control theoretic issue is the design
of suitable feedback laws, such that the so called closed-loop system

h : X—-X
z — flz,9(z))

satisfies predetermined dynamical properties.

Mathematical control theory is a growing field. Especially for linear functions f: X xU — X
(when the sets X and U are endowed with a vector space structure), very satisfying answers to the
problems mentioned above (and to other, similar problems) have been found. See, for instance,
[106], and in the framework of finite fields, [92]. In this thesis, we extend the concept of monomial
dynamical systems to monomial control systems (to be defined below) and perform a control
theoretic study of them.

Contributions of this Dissertation

The first main contribution of this work is to provide an algebraic and graph theoretic frame-
work to study the dynamic properties of monomial dynamical systems over a finite field. These
are mappings f : K™ — K", where K is a finite field and n € N, such that every component
function f; : K™ — K is a monic nonzero monomial function. Within this framework, characteri-
zation theorems for fixed point systems (systems in which all trajectories end in steady states) are
proved. In particular, an algorithm of polynomial complexity is presented, which tests whether
a given monomial dynamical system over a finite field is a fixed point system [33]. Furthermore,



theorems that complement previous work by [23], [22] and [24] are presented, and alternative
proofs to previous results are supplied. Many of these theorems discuss the structure of cyclic
trajectories. The formalism introduced in our framework also constitutes the basis for the study
of monomial control systems, i.e. mappings g : K™ x K™ — K", where m € N is the number
of control inputs, such that every component function g; : K™ x K™ — K is a monic nonzero
monomial function in the state variable x € K™ and the control variable u € K™.

A further important novelty presented in this thesis is the control theoretic study of monomial
control systems. In particular, necessary and sufficient conditions for the controllability of such
systems are proved. Additionally, a method for synthesizing a monomial state feedback controller
is presented, which, under the assumption of controllability, imposes a desired state transition
structure on monomial control systems in the closed-loop.

The third main result in this thesis is concerned with the practical use of time discrete dynam-
ical systems over a finite field as a modeling paradigm for biological phenomena. [65] developed
a top-down reverse engineering algorithm for this paradigm. This algorithm can be seen as a pa-
rameter identification algorithm, where the parameters tuned according to the available data are
abstract quantities and don’t represent any physical or biological magnitude. Herein, we will refer
to it as the LS-algorithm. In this thesis, a mathematical framework is developed that allows the
study of the LS-algorithm in depth. This framework is based on a result that relates the concept
of orthogonality and the canonical representatives for residue classes of a polynomial ideal. This
result itself constitutes a pure algebraic contribution of this work [31]. Having expressed the steps
of the LS-algorithm in our framework, concrete answers to the following questions are provided:

1. What are the minimal requirements on data sets?

2. Can data sets be characterized in such a way that "optimal" data sets can be identified?
(Optimality meaning that the algorithm performs better using such a data set compared to
its performance using other data sets.)

The second question is related to the design of experiments and optimality is characterized in
terms of quantity and quality of the data sets. Furthermore, a generalization of the LS-algorithm
that does not depend on the choice of a term order is introduced. For this method, a formula
for the probability of finding the correct model is derived, provided the data set used satisfies an
optimality criterion. In addition, the asymptotic behavior of the probability formula is analyzed
for a growing number of variables n (i.e. interacting entities modeled) [32].

In the last part of this thesis the reader will find an exposition of the agent-based model of
Epstein—Barr Virus infection developed by Dr. David Thorley-Lawson and his collaborators. Once
the model is explained, the joint work (performed during the period of time the author spent at
Dr. David Thorley-Lawson’s research group) of parameter space exploration is presented. The
resulting biological interpretations and potential biologically relevant insights are elucidated. This
represents a co-contribution of this thesis to both the biological and biomedical sciences [104].

Outline

This thesis is subdivided in 3 parts. Part I is devoted to the theory of monomial dynamical
and control systems over a finite field. It comprises three chapters: Chapter 1 introduces time
discrete finite dynamical systems as well as time discrete dynamical systems over a finite field.
Chapter 2 is devoted to the study of the dynamics of monomial dynamical systems over a finite
field. Chapter 3 studies monomial control systems over a finite field with emphasis on Boolean
monomial control systems.

Part II deals with the practical use of time discrete dynamical systems over a finite field as
a modeling paradigm for biological phenomena. It starts with Chapter 4, which is an excursus
into the relationship between the concept of orthogonality and the canonical representatives for
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residue classes of a polynomial ideal. This material provides the basis for Chapter 5, in which the
LS-algorithm and its performance are studied in depth.

Part III elucidates the biological research that motivated the mathematical developments pre-
sented in this dissertation. Chapter 6 provides an exposition of the agent-based model PathSim.
Chapter 7 presents the results of the parameter space exploration as well as some of its biological
interpretations and potential consequences.

vii



Part 1

The theory of monomial dynamical
and control systems over a finite field



Chapter 1

Time discrete finite dynamical
systems

1.1 Definition, characteristics and general dynamical properties

Definition 1 Let X be a nonempty finite set and n € N a natural number. An n-dimensional
time invariant time discrete finite dynamical system is a mapping

f: X" = X"
Remark 2 Due to the finiteness of X it is obvious that the trajectory
7, f@), F2(@), ..

of any point x € X™ contains at most |X"| = |X|" different points and therefore becomes either
cyclic or converges to a single point y € X with the property f(y) =y (i.e. a fized point of f).

1.1.1 The phase space and the period number
Definition 3 (Notational Definition) A directed graph G = (Vg, Eg, 7¢ : Eq¢ — Vo x Vi)
that allows self loops and parallel directed edges is called digraph.

Definition 4 Let G = (Vg, Eq, mq) be a digraph. Two vertices a,b € Vi are called connected if
there is a t € Ny and (not necessarily different) vertices v1, ...,vy € Vg such that

a— v — Uy —..—U —Db

In this situation we write a ~>4 b, where s is the number of directed edges involved in the sequence
from a to b (in this case s =t + 1). Two sequences a ~s b of the same length are considered
different if the directed edges involved are different or the order at which they appear is different,
even if the visited vertices are the same. As a convention, a single vertex a € Vg is always
connected to itself a ~~qg a by an empty sequence of length 0.

Definition 5 Let G = (Vg, Eg, mq) be a digraph and a,b € Vi two vertices. A sequence a ~>g b
a—v — vy — ... v —b

is called a path, if no vertex v; is visited more than once. If a = b, but no other vertex is visited
more than once, a ~4 b is called a closed path.



1.1. Definition, characteristics and general dynamical properties

Definition 6 Let X be a nonempty finite set, n € N a natural number and f: X" — X" a time
discrete finite dynamical system. The phase space of f is the digraph with node set X™, arrow set
E defined as

E={(z,y) € X" x X" | f(z) =y}

and vertex mapping

T : E—-X"xX"
(z,y) — (z,9)

Remark 7 The phase space consists of closed paths of different lengths between 1 (i.e. loops
centered on fized points) and | X™| = |X|" and directed trees that end each one at exactly one
closed path. The nodes in the directed trees correspond to transient states of the system. In
particular, if f is bijective', every point x € X" is contained in a closed path and the phase space
18 the union of disjoint closed paths. Conversely, if every point in the phase space is contained in
a closed path, then f must be bijective.

Definition 8 Let X be a nonempty finite set, n € N a natural number and f: X" — X" a time
discrete finite dynamical system. We define

o =id: X" — X"

T = T
and for t € N we recursively define

o X X
z = f(f7 )

Given a time discrete finite dynamical system f : X™ — X", we can find in the phase space
the longest path ending in a closed path. Let m € Ng be the length of this path. It is easy to
see, that for any s > m the time discrete finite dynamical system f*: X™ — X™ has the following
properties

1. Vo € X" f5(x) is a node contained in one closed path of the phase space.

2. If T is the least common multiple of all the lengths of closed paths displayed in the phase
space, then it holds
=V AeN

and

£ Evie{l,..,T -1}
We call T the period number of f. If T =1, f is called a fixed point system.

Definition 9 Let X be a nonempty finite set, n € N a natural number and f: X" — X" a time
discrete finite dynamical system. Furthermore, let s € N with s < |X"™|. A closed path of length
s in the phase space of f is called a cycle of length s. We refer to the total number of cycles and
their legths in the phase space of f as the cycle structure of f.

Definition 10 Let X be a nonempty finite set, n € N a natural number and f : X" — X" a time
discrete finite dynamical system. Furthermore, let s € N with s < |X"|. A point £ € X™ is said
to show s-periodicity under f if f5(&) = ¢&.

!Note that for any map from a finite set into itself, surjectivity is equivalent to injectivity.



1.2. Time discrete dynamical systems over a finite field

Remark 11 Lett € N be an integer multiple of s. A point £ € X" that shows s-periodicity under
f also shows t-periodicity under f (f{(€) = (&) = (fHMNE) = (fSo0...0 ) (&) = £). As a
consequence, a point £ € X" is contained in a cycle of length t in the phase space of f if and only
if € satisfies the equation f'(€) = &, but f4(&) # & for any integer divisor d of t with d < t. Once
such a point has been found, necessarily further t — 1 pairwise different points &y, ...,§;—1) € X"

with ft(gl) = gz and fd(gl) 7é gz must EZEiSt, namely, the pomts f(£)> f2(£)> et ft—l(f)‘

1.1.2 The dependency graph

Definition 12 Let M be a nonempty finite set. Furthermore, let n := |M| be the cardinality of
M. A numeration of the elements of M is a bijective mapping

f:M—{1,..,n}
Given a numeration f of the set M we write

M = {fb 7fn}

where the unique element x € M with the property f(x) =i € {1,...,n} is denoted as f;.

Definition 13 Let X be a nonempty finite set, n € N a natural number and f : X" — X" a time
discrete finite dynamical system. Furthermore, let G = (Vg, Eg, 7g) be a digraph with vertex
set Vg of cardinality |Va| = n. The digraph G is called dependency graph of f iff a numeration
a: M —{1,....n} of the elements of Vi exists such that ¥ i,5 € {1,...,n} the following holds

Jec€ Eg:mgle) = (a;,a;) < fi depends on x;

Remark 14 In the chapter about monomial dynamical systems we will introduce a slightly dif-
ferent and more specific definition of dependency graph.

1.2 Time discrete dynamical systems over a finite field

Given a time discrete finite dynamical system f : X" — X™ how can the period number T
be calculated? An obvious brute force procedure would be to actually determine the structure of
the phase space by evaluating f on each of the | X|" different points of the space X™. However,
this quickly becomes computationally intractable, even for small dimension n. If the set X is en-
dowed with an algebraic structure and we consider certain classes of time discrete finite dynamical
systems, we might have more mathematical structure and tools to solve this problem. Indeed, if
X can be endowed with the algebraic structure of a finite field, all component functions f; of a
system f: X™ — X" are polynomial functions in n variables. We will show this remarkable and
well-known result in the next subsection. (See, for instance, pages 368-369 in [67] for a different
proof.)

1.2.1 The ring of polynomial functions in n variables over F, and the vector
space of functions F; — F,

Definition 15 (Notational Definition) Since for every finite field K there is a prime number
p € N (the characteristic of K) and a natural number n € N such that for the number of elements
|K| of K it holds

K| =p"

we will denote a finite field with ¥y, where q stands for the number of elements of the field (See,
for instance, [67]). Clearly, q is a power of the (prime) characteristic of the field.
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Definition 16 Let n € N be a natural number. An n-tuple o = (aq,...,a) € (No)" is called
multi index.

Definition 17 (Notational definition) We call a commutative Ring (R, +,-) with multiplica-
tive identity 1 #£ 0 and the binary operations - and + just Ring R.

Definition 18 Let R be a ring and n € N a natural number. For n > 1, the elements of the
Cartesian product R"™ are marked by arrows, e.g. T € R". Let a € (Ng)" be a multi index. For a

product of powers of the form z* - ... -z € R we write
T =a L a

Definition 19 Let R be a ring, n € N a natural number and m € Ny a non negative integer.
Furthermore let a; € R, i = 0,...,m be elements of the ring R and a; = (aj1,...,5n) € N,
j =0,...,m multi indezxes of length n. A mapping of the form

g : R'— R

m
E o g(T):=) aT™
j=0

is called polynomial function over R in n R-valued variables. If m = 0 and ag # 0 then g is also
called a monomial function over R in n R-valued variables.

Theorem 20 (and Definition) Let R be a ring and n € N a natural number. The set
PF,(R):={g | g: R" — R is polynomial}

together with the common operations + and - of addition and multiplication of mappings is a ring.
This ring is called ring of all polynomial functions over R in n R-valued variables.

Proof. The easy proof is left to the reader. m

Theorem 21 (and Definition) Let K be an arbitrary field and n € N a natural number. The

set of all functions
f K"K

together with the common operations of addition of mappings and scalar multiplication is a vector
space over K. We denote this vector space with F,,(K).

Proof. The easy proof is left to the reader. m

Definition 22 Let n,q € N be natural numbers. Further let > be a total ordering on (Ng)" . The
according to > decreasingly ordered set

M :={a € (No)"|aj <qVje{l,..,n}}
of all n-tuples with entries smaller than q is denoted by M C (Ng)™.

Remark 23 In order to avoid a too complicated notation, we skip the appearance of the order
relation > in the symbol for this set. It is easy to prove, that Mg contains exactly " n-tuples.
We will index the n-tuples in Mg starting with the biggest and ending with the smallest:

a1 >052>...>qun
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Definition 24 For any fized natural numbers n,q € N and for each multi index o € My consider
the monomial function

Onga :+ K'"—=K
E = gnga(T) =T
All these monomial functions gnga, @ € My are called fundamental monomial functions.

Lemma 25 Let Fy be a finite field. The vector space Fy,(Fy) has the dimension ¢".

Proof. Since F,; contains exactly ¢ elements, there are exactly ¢" n-tuples contained in Fy. For
each n-tuple § € Fy; consider the characteristic function

gy FZ—>Fq

) [ 1lifE=7
v 1{5}(33) T { 0 otherwise

Obviously, every function f : Fj — Fy can be written as a linear combination of all characteristic
functions. In addition, the ¢" characteristic functions (l{g})gng are linearly independent, as can
be easily concluded from evaluating the expression

> Ml =0
FEFYy
at any value 7 € F m

Theorem 26 Let Fy be a finite field. A basis for the vector space Fy,(F,) is given by the funda-
mental monomial functions

(gnqa)aeM;

Proof. First, we show that (gnga)ac Mp are linearly independent. For this purpose, we will use
induction on the number of variables n: ®m
When n = 1 we have

{g1g0(z) |a € M}} = {1,2",2%, .., 297"}
Now consider a linear combination
Ao+ Mzt + Ao 4+ AT N EF,, i=0,..,9—1
where not all A\; are equal to 0. If it holds
o + Mzt + Xoz? + L+ )\q_la:qfl =0Vze Z;

then we could construct a nonzero polynomial in F[7] of degree less or equal to ¢ — 1 having
|F,| = ¢ distinct roots. This is a contradiction to the well known fact, that the number of roots
of a nonzero polynomial h € R[r| over an integral domain R is bounded by the degree of the
polynomial. Now let n > 1 and assume that the linear independence is given for n — 1. Using the
multi indexes in M, g to index the coeflicients, we can write a linear combination of the (gnga)ac My
as
>0 Aagnga(T) = D AT Ay € F, ac M;
acMy acMp
By collecting the various powers of x,, we can write the above expression in the form

qg—1

Z hi(xl, ceey xn_l)x%
=0
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where the h;, i = 0,...,q — 1 are the following linear combinations of the monomial functions
(9(n-1)q8) genip—1

hi = Z A(ﬁl,...,ﬁnfl,i)g(n—l)qﬁ Vie {07 e q — 1}
peMg ™!

Now if it holds
Y ANT=0VTeF]
acMy
then in particular

q—1
Z:O hi(xl, ...,{IJn_l){E% =0V Zxe FZ

The same reasoning as in in the case n = 1 forces all the polynomial functions h;, i =0,...,q — 1
to be the zero function:

hi@) = X Aoy 9n1)gs(@) =0V FEZy™, i=0,.,q—1
peMy

From the induction hypothesis now follows for every i € {0,...,q — 1}
AByofpy 1) =0V € MP!

and therefore
Aa=0Vace Mg‘

Now, it follows from Remark 23 and from the linear independence of the monomial functions
(gnqa)aeM;, that Hgnqa | a € M;‘}‘ = ¢", which is the dimension of F,,(F,;) according to the
previous lemma.

Remark 27 The basis elements in the basis (Gnga)ac My are ordered according to the order relation
> used to order the n-tuples in the set M,'. That means (see Remark 23)

(gnqa)aeM; = (gnqai)ie{l,..,,q"}
Corollary 28 Let F, be a finite field. Then for the sets F,(F,) and PF,(F,) it holds
Fn(Fq) = PFy(Fq)

Proof. The inclusion
PF,(Fq) C Fy(Fy)

is given by the definitions. Now, since every function f € F,(F,) can be written as a linear
combination of the fundamental monomial functions (gnga)ac My We have

f € PF,(Fy)

and therefore
F,(Fq) C PF,(Fy)



1.2. Time discrete dynamical systems over a finite field

1.2.2 Currently available techniques for dynamics forecast

We come back to the more specific question: Given a time discrete finite dynamical system
[ Fy — Fy, over a finite field Fy, how can the period number 7" be calculated? If 7' > 1, can the
cycle structure be accurately described? For instance, can the number of cycles and their lengths
be determined without actually constructing the phase space?

To the author’s best knowledge, the systems for which a complete and satisfying theory exists
are the linear systems, (i.e. f : F; — Fj is a linear map). See the seminal work of Bernard
Elspas [38] and also [45] for an excellent and more mathematical exposition. [93] and [92] present
applications of the Boolean case in control theory. Furthermore, the affine case was studied by
[73]. An interesting contribution was made by Paul Cull ([26]), who extended the considerations
to nonlinear functions, and showed how to reduce them to the linear case. However, the drawback
of this method is that, if the nonlinear system has dimension n and the field has ¢ elements, then
the linear system has dimension ¢". It is also very difficult to see directly the effect of the specific
nonlinear functions on the state space structure.

For monomial systems, i.e. f:Fy — Fp is such that every component f; is a monic monomial
function in n variables, groundbreaking results were achieved by [23] and [22]. It is one of the
aims of this dissertation to extend and supplement those results. Moreover, we provide a novel
mathematical formalism to study monomial systems. Chapter 2 is devoted to the theory of
monomial systems.

We finish this chapter with a short review of the linear systems theory:

The linear theory is based on the fact that there are subspaces U, W C Fy with the property
F; = U @® W such that the subgraph of trees of transient states and the subgraph of all cycles
in the phase space of a linear system f : Fjy — Fy can be linked to a nilpotent linear mapping
fn U — U and a bijective linear mapping fp : W — W, respectively.

The length and structure of the trees of transient states can now be obtained by analyzing the
Jordan canonical form of the matrix associated to the mapping fn by means of Theorems 2 and
3 of [45].

The lengths and number of cycles can be calculated from the factorization in so called ele-
mentary divisor polynomials of the characteristic polynomial of the mapping fp by repeated use
of Elspas’ formula (see [38] and Theorem 5 of [45]).

In [93] the calculation of the Jordan canonical form representing the mapping fx is avoided by
using a slightly different approach that takes advantage of the Smith form of a matrix. However,
the authors do not elaborate on the computational aspects of calculating the Smith form.



Chapter 2

Monomial dynamical systems over a
finite field

As discussed at the end of the previous chapter, there exists a satisfying theory that explains
the dynamical properties of linear systems f : Fy — Fy, i.e. the vector space endomorphisms of
the vector space Fy over the field ;. From an algebraic point of view, it also seems interesting
to study the monoid endomorphisms of the multiplicative monoid (Fy,-) as well as the monoid

n
endomorphisms of the direct product! [ (Fy,-). Due to the well known fact that the multiplicative

=1
n

group (F7,-) is cyclic, it turns out, that the monoid endomorphisms of the direct product [ (Fy,)
are precisely the monomial mappings, i.e. mappings f : Fy — Fy such that every comI;orllent fi
is a monic monomial function in n variables.

Since the component functions f; of time discrete finite dynamical systems f : Fjy — Fy over
a finite field F,; are polynomial functions, (i.e. linear combinations of monic monomial functions),
the combined knowledge about linear systems and monomial systems could represent the starting
point for a complete theory of time discrete finite dynamical systems over a finite field.

In this chapter we provide key results towards a better understanding of monomial systems.

Throughout this chapter, and in contrast to Chapter 1 and Part II of this thesis, we will denote
the elements of the Cartesian product Fy as z € Fy, neglecting the vector arrow.

2.1 What are monomial dynamical systems?

In this section we will introduce n-dimensional monomial dynamical systems over a finite field
F,. Moreover, we will show that the study of monomial dynamical systems is actually the study of

n
the monoid endomorphisms of the direct product [] (Fy,-). To this end we will prove the equality
i=1

of the set of all monoid endomorphisms of the multiplicative monoid (F, -) and the set of all one
dimensional monomial systems over the finite field F,. This set becomes a monoid if it is endowed
with the binary operations of composition and product, respectively.

Definition 29 Let F, be a finite field. The set
E,:={0,..¢q—1} C Ny

is called the exponents set of the field F .

'The direct product [](M,-) of a monoid (M, ) is defined as the set [][ M (cartesian product) endowed with
=1 =1
the binary operation - defined as (z - y); := x;y;.
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Definition 30 Let Fy be a finite field. A map f : Fy — Fy is called a monic monomial dynamical
system over ¥ if for every i € {1,...,n} there exists a tuple (Fi1, ..., Fin) € Ej} such that

filx) =at aln vz e Fy
We will call a monic monomial dynamical system just monomial dynamical system.

Remark 31 We exclude in the definition of monomial dynamical system the possibility that one
of the functions f; is equal to the zero function. This is not a loss of generality because of the
following: If we were studying a dynamical system f : Fyj — Fy where one of the functions, say
[, was equal to zero, then, for every initial state v € ¥y after one iteration the system would
be in a state f(x) whose jth entry is zero. In all subsequent iterations the value of the jth entry
would remain zero. As a consequence, the long term dynamics of the system are reflected in the
projection

. n n—1
T Fq—>Fq

y — m5(y) = (Y1, =15 Y1y oY)

and it is sufficient to study the system

. -1 -1
f o FrlEn

fl(yla e Yj—1, anj+17 7yn)

fi—1(y1, 3 Y5=1,0, Y1, s Yn)
Fie1(W1s o ¥i-1,0, Y541, s Yn)

fn(yla c Yi—1, anj+1> 7:'-/11)

In general, this system f could contain component functions equal to the zero function, since every
component f; that depends on the variable x; would become zero. As a consequence, the procedure
described above needs to be applied several times until the lower n’-dimensional system obtained
does not contain component functions equal to zero. The long term dynamics of f are reflected in
the projection to an n'-dimensional subspace, in particular, all the cycles and fized points of f are
located in this lower dimensional space. Moreover, points located outside this lower dimensional
subspace are transient states of the system. It is also possible that this repeated procedure yields
the one dimensional zero function. In this case, we can conclude that the original system f is a
fized point system with (0,...,0) € Fy as its unique fived point. Note that this procedure reduces
the dimension by s where 0 < s < n. As a consequence, the procedure needs to be iterated at most
n times.

Definition 32 (Notational Definition) Let be n,m € N natural numbers and S a set. The set
of all m x n matrices (m rows and n columns) with entries in S is denoted by M(m x n; S).

Definition 33 Let Fy be a finite field and n,m € N natural numbers. The set
MEL(F) ={f :F' > F! |3F € M(nxm; Ey) : fi(z) =" ..alim ¥V z € FI'}
is called the set of n-dimensional monomial mappings in m variables.

Lemma 34 Let Fy be a finite field. Then the multiplicative group® (Fy, ) is cyclic.

°F; = F,\{0}

10
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Proof. The proof of this well known fact can be found, for instance, in Theorem 2.8 of [67]. =
The validity of the following theorem represents an algebraic justification for the conventional
definition
0°=1 (2.1)

(where the zero in the exponent is the entire number 0 € Z, whereas 0,1 € F;). The next
theorem would be namely false if we set a different value for the expression 0°. In real analysis,
the convention (2.1) has a justification in terms of rendering the function

h : R—R

JIF—>ZL‘O

continuous at the point z = 0.

Theorem 35 Let F, be a finite field. Furthermore, let End(Fy,-) be the set of monoid endomor-
phisms of the multiplicative monoid (Fy,-). Then the following set theoretic equality holds

End(Fy,-) = MFll(Fq)

Proof. To show the inclusion End(Fy,-) C MF}(F,) we consider an arbitrary monoid endomor-
phism f: (Fy,-) — (Fg,-). The goal is to show that there is an a(f) € E; such that

flz) =2V vz cF,

To prove this, consider a generator u € F of the cyclic group (F},-) (see Lemma 34). Since the
order of the cyclic finite group (Fy,-) is ¢ — 1, for every element = € F} thereis ani € {1,...,¢—1}
such that

z=u"

Now we consider the two following cases:

f(u) = 0. This case is not possible, since f(1) = f(u9™!) = f(u)? ! =0#1,ie f wouldnt
be a monoid homomorphism.

f(u) # 0. In this case f(u) € F; and therefore 3 a € {1,...,q — 1} such that

fu) =u®
As a consequence, V x € F we have
fla) = f(u) = f(u)' = (u?)’ = (u')* = 2" (2.2)

For z = 0 we have two possibilities: f(0) =0 or f(0) # 0. In the former situation, we immediately
have
fle)=2"VazeF,

On the other hand, if f(0) # 0, it follows
f(0) = £(0-0) = f(0) - f(0)

thus

and consequently
L= f(0-u) = f(0) f(u) = f(u)
By equation (2.2) this implies
f(z) =1Vx € F}

11
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Summarizing, we have f = 1. In this situation, the convention (2.1) saves the proof by allowing
f(x)=2"Vz eF,

(any other exponent b € E,\{0} would yield f(0) = 0° = 0). Given 2.1, the converse inclusion
MFL(F,) C End(F,,-) follows from the fact that all the functions contained in M F}}(F,), namely

fi : Fq — Fq
z - T
where ¢ = 0, ...,q — 1, obviously satisfy the axioms of a monoid homomorphism. m
n
Corollary 36 Let F, be a finite field andn € N a natural number. Furthermore, let End([] (Fy,-))
i=1
n
be the set of monoid endomorphisms of the direct product® ] (Fg,-). Then the following set theo-
i=1

retic equality holds

n

End(H(qu ) = MF;(Fq)
=1

n
Proof. To show the inclusion End([](Fy,:)) € MFE(F,) we consider an arbitrary monoid

i=1
endomorphism f : ﬁ( ) — H( ,-). The goal is to show that there is an F' € M(n x m; E,)
such that for each i e {1,.. }
file) =t afm vz e Fy

Consider for each i,7 € {1,...,n} the function defined as

hij + Fq—F,

z —  fi(y;(2))

where v, : Fq — F} is a mapping such that V 2 € F,

itk #j
W‘(‘””)k_{ wifk=j

Since f is a monoid endomorphism, it follows from the definition of h;;

and
hij(wy) = filv;(zy)) = fily;(@) - 7;(W) = fily; (@) fi(v; () = hij(x)hij(y)
Consequently h;; : F; — F, is a monoid endomorphism V 4,5 € {1,...,n}. By Theorem 35 we
know 3 Fj; € {0,...,q — 1} such that
hij(z) =25V x € F,
Again, since f is a monoid endomorphism, it follows from the definition of h;; V y € Fy

n

n n
sz%yJ =H (v (i) = [ [ has ) = H R

Jj=1

Given 2.1, the converse inclusion M F}}(F,) C End(H (Fy,-)) follows from the fact that all the
i=1
functions contained in M F}}(F,) obviously satisfy the axioms of a monoid homomorphism. =

3The direct product H( ,-) of a monoid (M,-) is defined as the set [[ M (cartesian product) endowed with
i= i=1

the binary operation - deﬁned as (- y)i := Ty

12
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Remark 37 In the next section we will show that the set M F]'(F,) can become a monoid in two
different ways: The monoid (MF](Fy),0), where o is the composition of endomorphisms; and the
commutative monoid (M F}}(Fy), *), where x is the component-wise multiplication defined as

(f x 9)i(x) == fi(z)gi(x)

Moreover, it turns out that these two binary operations satisfy distributivity properties, i.e.
(ME}Y(F,),*,0) is a semiring with identity elements with respect to each binary operation.

2.2 Algebraic and graph theoretic formalism

In this section we will introduce the monoid (M F}}(Fy), o) of n-dimensional monomial dynam-
ical systems over a finite field F,, where o is the composition of such systems. Furthermore, we will
introduce the commutative monoid (M F}'(Fy), *), where * is the component-wise multiplication
defined as

(f *g)i(z) == fi(x)gi(x)

In addition, we will show that these two binary operations satisfy distributivity properties, i.e.
(MEF}(F,),*,o0) is a semiring with identity elements with respect to each binary operation. More-
over, we will prove that this semiring is isomorphic to a certain semiring of matrices. This result
establishes on the one hand, that the composition f o g of two monomial dynamical systems f, g is
completely captured by the product F' - G of their corresponding matrices. On the other hand, it
also shows that the component-wise multiplication f * g is completely captured by the sum F + G
of the corresponding matrices.

Finally, we will introduce the concept of dependency graph of a monomial dynamical system f
and prove that the adjacency matrix of the dependency graph is precisely the matrix F' associated
with f via the isomorphism mentioned above. This finding allows us to link topological properties
of the dependency graph with the dynamics of f. We start with a short step by looking at the
exponents of monomial dynamical systems:

As proved in Chapter 1, every function h : Fjy — F, is a polynomial function in n variables
where no variable appears to a power higher or equal to ¢. Calculating the composition of a
dynamical system f : Fy — Fj with itself, we face the situation where some of the exponents
exceed the value ¢ — 1 and need to be reduced according to the well-known rule

a’=aVackF, (2.3)

For instance, if we have ¢ = 3 and z!' then we would write

2

et = @3P? =23l =’ =¥ =2V cFs

This process can be accomplished systematically if we look at the polynomial 77 € Fq[7]4 (where
p > q), as described in the Lemma and Definition below. But first we need an auxiliary result:

Lemma 38 Let Fy be a finite field and a € Ny a nonnegative integer. Then
*=1V2eeF,\{0} I AeNy:a=XAg—1)

Proof. If a = A\(g — 1) then 2% = 227D = (2=} = 1V 2 € F,\{0} by (2.3). Now assume
z* =1V xz € F,\{0} and write a = a(q — 1) + s with suitable @ € Ny and 0 < s < (¢ — 1). Then
it follows

1= g0 =M D+s — A0y — 25 v o ¢ F\ {0}

As a consequence, the polynomial 75 — 70 € F,[r] has |F,| — 1 =¢—1 > s = deg(7* — 7) roots in
F, and must be therefore of degree s =¢—1. Thusa = (o +1)(¢—1). m

‘F,[7] is the ring of polynomials over F,.

13
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Lemma 39 (and Definition) Let F, be a finite field and ¢ € Ny a nonnegative integer. The
degree of the (unique) remainder of the polynomial division 7€+ (79— ) is called redy(c). redy(c)
satisfies the following properties

1. redg(redq(c)) = redy(c)
redq(c) =0 < c=0

For a,b € Ny, 2¢ = 2° V 2 € F, & redy(a) = red,(b)

e e

For a,be N, redy(a) =redy(b) &I acZ:a=b+a(qg—1)

Proof. By the division algorithm there are unique g,r € F,[r] with either r = 0 or
deg(r) < deg(7? — 1) such that
¢ =g(r?l—7)+r

If we look at the corresponding polynomial functions® defined on F, it follows by (2.3)
z“=7r(z)VzeF, (2.4)

In particular, » # 0. From the division process it is also clear that r must be a monomial and
we conclude 7 = 77°%(®) with red,(c) < q. The first property follows trivially from the fact
redq(c) < q. The second property follows immediately from evaluating the equation z¢ = zreda(€)
(i.e. equation (2.4)) at the value x = 0. The third property is shown as follows: By the division
algorithm 31 go , g» , ra , 7p € Fy[7] such that
T4 = go(tI—T)+ 1y =go(TT—T) + rredq(a) (2.5)
™ = g —7) 1= gp(7? — 7) 4 7% )

From 2% =2 V z € F, now we have
mredq(a) _ xredq(b) Vo € Fq

and since redy(a), red,(b) < q we get redy(a) = redy(b). On the other hand, from red,(a) = red,(b)
it would follow from equations (2.5)

b

T4 —go (1! —7) =7 — gp(71 — 7)

and thus by (2.3)
*=a"VzeF,
Last we prove the fourth claim: If red,(a) = redy(b), then by 3. we have

a:a:bea:EFq

Now assume wlog a > b and d := a — b € Ny. Then the last equation can be written as

:L‘b:vd::vaxqu

yielding
=1V 2z € F,)\{0}

If r € F[r] is a polynomial of degree n, i.e. 7 = Y a;7%, then 7 is defined as the polynomial function

1=0
T F,—F,
n
r E a; T
=0
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By Lemma 38 we have 3 o € Ny : d = a(q — 1) and therefore a = b+ a(qg—1) or b=a—a(qg—1).
Now assume the converse, namely 3 o € Z : a = b+ a(q — 1). Assume wlog a > 0 (otherwise
consider b = a — a(q — 1)). Then we would have

7O — 7_oz(qfl),]_b

and thus by Lemma 38
2% =2’V x € F,\{0}

Since a,b > 0 we also have
*=2"Vae F,

Remark 40 From the properties above we have z% = x"%(a) V g ¢ F,.

When calculating the composition of dynamical systems f, g : Fj — F¢, one needs to add and
multiply exponents. Similarly, when calculating the product f* g of dynamical systems one needs
to add exponents. Therefore, it is pertinent to formalize this "exponents arithmetic" based on the
reduction algorithm described by the previous lemma. Indeed, we can endow the set

Eq - {07 17 ey (q - 2)7 (q - 1)}

with the algebraic structure of a commutative semiring with identity. This is shown in the theorem
below.

Lemma 41 Let Fy be a finite field and a,b € Ng nonnegative integers. Then it holds
redq(ab) = redy(redy(a)redy (b))
Proof. We have V z € F,
2% — (3)b — (370%a(@))reda(b) _ predy()redy ()

and by the previous lemma
redq(ab) = redgy(redy(a)redy (b))

|
Lemma 42 Let Fy be a finite field and a,b € Ng nonnegative integers. Then it holds
redq(a + b) = redy(redy(a) + redqy (b))

Proof. By the division algorithm 31 g4 , g6, Gatb s Ta » T > Tatb € Fg[T] such that

70 = go(T9 = T) 4 g = ga(79 — 7) + 77%(@)
™ = g —1) 41y =gp(r?— 1) + 7% ?)
P = gah(r8 =) ag = Gasa(r? — 1) + )

From the first two equations follows

T = gag(1? = 7)% 4 gary (19 = ) + ragy(7? — 7) + 7Tl HTed D)

redq(a)+redq(b)

Applying the division algorithm to 7 we can say 3 gr , 7 € Fg[7] such that

Ta+b = ga9b<Tq - 7—)2 + garb(Tq - T) + Tagb<7q - T) + gr(Tq - T) + 7y

(gagb(’]'q — T) + gaTy + Tagy + 97‘)<7_q _ 7—) + Tredq(TEdq(a)+T5dq(b))

15



2.2. Algebraic and graph theoretic formalism

From the uniqueness of quotient and remainder it follows

redgq(a+b) 7_redq (redq(a)+redq(b))

T

and consequently
redq,(a + b) = redy(redy(a) + redqy (b))

|
Theorem 43 (and Definition) Let F, be a finite field. The set

E,={0,1,...,(¢—2),(¢—1)} CZ

together with the operations of addition a®b := redy(a+0b) and multiplication aeb := redy(ab) is a
commutative semiring with identity 1. We call this commutative semiring the exponents semiring
of the field F.

Proof. First we show that £, is a commutative monoid with respect to the addition ©. The
reduction modulo the ideal (77 — ) ensures that E, is closed under this operation. Additive
commutativity follows trivially from the definition. The associativity is shown using Lemma 42
and the fact that c € B, & ¢ = redy(c)

(adb)@dc = redy(a+b) e
dg(a+b) +c)
d

g

= redy(

= redy(redy(a+0b) + redy(c))
q
g
g

re

= redqy((a+b)+c¢)

= redg(a+ (b+c))

= redg(redy(a) + redy(b+c))

= redg(a+redy(b+c))

= a®redyb+c)

= a®(bdc)
It is trivial to see that 0 is the additive identity element. E, is also a commutative monoid with
respect to the multiplication e : The reduction modulo the ideal (77 — 7) ensures that E; is closed
under this operation. Multiplicative commutativity as well as the fact that 1 is the multiplicative

identity follow trivially from the definition. The associativity is shown using Lemma 41 and the
fact that ¢ € E, & ¢ = redy(c)

(aeb)ec = redy(redy(ab)c)
dy(

16



2.2. Algebraic and graph theoretic formalism

The distributivity is shown as follows

ae(bdc) = redy(a(b®c))

redq(aredy(b+ c))
q(redq(a)redy (b + c))

redq(a(b+c))
q
q(re
q(a

red,

redqy(ab + ac)
redgq(ab) + redy(ac))
= redy(ab) ® redy(ac)

= (aeb)@(aec)

= red

Remark 44 From the point of view of the solvability of linear equations it would be convenient
to have the commutative semiring K, as a subsemiring of a commutative ring or integral do-
main. The straightforward extension of the set E4 is to introduce negative powers that can be
defined on a nonzero field element x € F,\{0} as o7 := zP, where p € Ny and T € F, denotes
the multiplicative inverse of x. The exponent reduction according to (2.3) is naturally defined as
redy(—p) := —redy(p). Unfortunately, this natural extension of the set E, does not yield a ring,
because the property of Lemma 42 does not hold for negative powers. For instance, we could try
to extend the set Fo by including the negative exponent —1. The table of pairwise addition would
look like

@ | 0 |1f-1
0 0 |1]|-1
1 11110
—11-1]0[ x

Now, no matter which of the three values —1,0,1 we choose for x, (the result of the operation
(=1) @ (=1)), we end up with an algebraic structure that transgresses associativity:

1e—-1=0
la(-1)e(-)=0p(-)=—1#1a((-)e(-1)=¢ 1a0=1
lel=1

That such an extension is not possible as a matter of principle is shown with help of the Grothendieck
construction (see, for instance, §7 of [64]): Assume there is a semiring isomorphism

t:(Ey,®,) = R

of the semiring (Eq, ®,-) into a ring (R,+,*). This semiring homomorphism induces a monoid®
homomorphism
L (E(b @) - (R>+)

from the underlying commutative monoid (Ey, ®) into the Abelian group (R,+). Now, as shown
in the Appendiz, there is an Abelian group G((Ey, @)) (the so called Grothendieck group), such
that every monotd homomorphism

K (Eq,®) — G((Ey, D))

from the additive monoid (Eq, ®) into the group G((Eq,®)) must be noninjective. Furthermore,
according to the Grothendieck construction, there exists a monoid homomorphism

v (Efb@) - G((EQa @))
6,(0) = (0 +0) = ¢(0) + ¢(0) = +(0) = Or € R, since ¢(0) € R has an inverse.

17



2.2. Algebraic and graph theoretic formalism

having the following universal property: If f : (Eq,®) — U is a monoid homomorphism into an
Abelian group U, then there is a unique group homomorphism fy : G((Eq,®)) — U such that the

following diagram commutes
(Eq:®) —+ G((Eg,®))

N L.
U

(for the proof, see §7 of [64]). Now, if we replace U by the group (R,+) and f by
L (Ey,®) — (R, +), we obtain

(Eqa@) 7y G((Eqa D))
AN bi
(R, +)

Thus, we can write v : (Eq, &) — (R,+) as t = 1, 0. Since 7 is not injective (see Appendiz), ¢
cannot be injective either.

Lemma 45 Let n € N be a natural number, F, be a finite field and E, the exponents semiring
of Fy. The set M(n x n; Eq) of n x n quadratic matrices with entries in the semiring E, together
with the operation + of matriz addition over E, is a commutative monoid.

Proof. The matrix addition is defined in terms of the operation @ on the matrix entries, i.e. for
two matrices A, B € M(n x n; E;) we define C := A+ B as

Cij := Aij @ Byj

Now the claim follows directly from the previous theorem and the fact that the zero matrix 0
constitutes the identity element. m

Lemma 46 Let n € N be a natural number, F, be a finite field and E, the exponents semiring
of Fy. The set M(n x n; Eq) of n x n quadratic matrices with entries in the semiring E4 together
with the operation - of matrixz multiplication over Ey is a monoid.

Proof. The matrix multiplication - is defined in terms of the operations & and e on the matrix
entries, therefore M (n x n; E;) is closed under multiplication. To show the associativity, consider
A,B,C € M(n x n; Eg). According to the definition of matrix product we have for D := A - B,
E:=(A-B)-C,F:=B-Cand G:=A-(B-C)

Dz'j =A; e Blj G Ape ng D..OA,e an
and therefore

Ey = Dp1eCyy®DpoeCy@... 0 Dy, e Cyy

= (AklOBH@AkQOBgl@...@AknOBnl)OCu@...
. @ (Ag1 @ B1y, @ Apa @ Boy, @ ... ® Ay, @ Bpy) @ Ciyg

= ((Ax10B11)eCy ... D (Agn, @ Bp1)eCyy) @ ...
. ®((Ag1 0 B1y,) 0 Cpy @ ... B (Agy, @ Bpy) @ Ciyp)

= (Ap1o(B110Cy) D ... D A0 (Bp1eChpy)) D ...
e @ (Ag1 0 (B, 0Crp) @ ... ® Agyy @ (Bpp @ Cryp))

= Ap1e(B110C D ... B1p,eCy)+ Apoe (B0 Cy @ ... D BapeCpy) @ ...
i D App 0 (Br1eCy® ... B By e Cyy)

= ApoFy+Apely®.. & Ay, e Fy =Gy

The identity element is obviously the unit matrix 7. =

18



2.2. Algebraic and graph theoretic formalism

Remark 47 (and Definition) Since the entries for the matriz product D = A - B are defined
as
D;j = A @ Bij ® Ajp @ Boj @ ... ® Ay, @ B

according to the definitions of the operations e and @& we can write

Dij = Tedq(AilBlj) D Tedq(Aingj) D...D Tedq(Aman)
= redq(redq(AﬂBlj) + redq(Al-ngj) + ...+ T’edq(Aman))

Now, by Lemma 42 we have
Djj = redy(AnBij + AiaBaj + ... + AinBnj)

As a consequence, if we define the following reduction operation for matrices with nonnegative
integer entries

mred, : M(nxn;Ng) — M(n xn; Ey)
Aij — redq(Aij)

then the following property holds for U,V € M(n x n;Ng) and W := UV € M(n x n;Np)
ij)

zlvlj + . +Uznvnj)

mredy(W)i; = redy(W,
q

= redg(redq(UinVij) + ... +redg(UinVnj))
a
a

= red
= redq(UinVij) ® ... ® redq(Usn Vij)
= redy(redy(Uit)redq(Vij)) @ ... @ redq(redy(Usp)redy(Vag))
= redy(Uir) e redy(Vij) & ... ® redy(Uspn) ® redq(Vyj)
= (mredy(U)mredqy(V))i;
In other words
mredy(UV) = mredy(U) - mredy(V')

It can be easily shown that M(n x n;Ng) is a monoid and mredy : M(n x n;Ng) — M(n x n; Ey)
a monoid homomorphism. In addition, by 2. of Lemma 39 we can conclude

mredy(A) =0 A=0 (2.6)

Theorem 48 Let n € N be a natural number, F, be a finite field and E, the exponents semiring
of Fg. Then (M(n x n; Eq),+,-) is a semiring with identity elements with respect to each binary
operation.

Proof. Given the two previous lemmas, we only need to show that the two binary operations
satisfy distributivity properties: Consider A,C,D € M(n x n; E;). According to the definitions
we have for B:=C + D

(A- (C—i—D))ij = AZ‘I.Blj@AiQOBQj@...@Ain.an
= Aj10(Ci; ®Dy1j)® Aipe (Coj @ Daj) @ ... & Ay @ (Cpj ® Dyyj)
= A1 eCijPA1eD; D ApeCoj D Ape Dy @ ... D Ay, 0 Cryj & Ajyy @ Dy
= (A1 0C1; D ApeCy®...0 A eC ) ®(A10D1; B Appe Dy ® ... D Ajp, @ Dyj)
= (A-C)ij+(A-D)y

where the distributivity properties of £; where used. The right-distributivity is shown analogously.
[
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2.2. Algebraic and graph theoretic formalism

We recall the following definition from the previous section:
Definition 49 Let Fy be a finite field and n,m € N natural numbers. The set
MEL(Fy) ={f:F]' = Fy [ I FeMnxmEy): fi(x):= xfﬂzf;m VzeF]}
is called the set of n-dimensional monomial mappings in m variables.

Lemma 50 Let F, be a finite field and n,m,r € N natural numbers. Furthermore, let
feME™F¥,) and g € MF},(F,) with

filz) = xf’“acﬁm VezeFy, i=1,.,m
G Gim .
gi(r) = zay" VaeeFy, j=1,..,r

where ' € M(m x n; Ey) and G € M(r x m; Eg). Then for their composition go f : Fy — Fy it
holds

m
redy( Z GriFy)

:H Vo eF?, ke{l,..r}

Proof. From the definition it follows for every k € {1,...,r}

m m n

(go fx(z) = H(fl(ﬂJ))le _ H(H xf’lj)GM

=1 =1 j=1

For a fixed but arbitrary m € N we will prove the claim using induction on the number of variables
n of the mapping g o f. For n = 1 we have

ZleFll TEdq(Z GriFi1)
i=1

m m

Fyy le _ Gl _ =1 _
H = Hxl =T =T
=1 =1

(see Remark 40), thus the claim holds for 1 variable. Now we consider the case of n + 1 variables:

m n+1

Fl' G
(go Arx) = JI(IT="%
=1 j=1
m
- n+1
l_1
i G F R
o kl l(n+1) 1j le
= IT{ =™ L")
=1 j=1
m m n
= [Tee ) T AT =)0
- (n+1)
=1 =1 j=1
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and by induction hypothesis

2.2. Algebraic and graph theoretic formalism

m m

lZ: leFl(nJrl) n Tedq(z leFlj)
! x; =

(n+1) j

=1

m m
Z leFl(n+1) n ZGMFU
=1 —

T T i=t
(n+1) j

=1

m
ntl Zszsz

=1
Lj

m
ntl redq(D GriFi;)

. =1
Lj

Remark 51 (and Lemma) If we generalize the matriz multiplication defined on the monoid
M(n x n; Eq) for matrices F' € M(m x n; Ey) and G € M(r x m; Ey) then we can write

(go Nila) =]z W VaeFy, kel . r}
j=1

To see this, apply the Lemmas 42 and 50 as well as the definitions of & and e to [] xj(G'F)kj :

n
I] =
J
7=1

7j=1

2. (Gr10F1;®.. Gk e Fj)

—.

n
H xjredq(leFlj)EB...EBredq(kaij)

redg(redq(GriFij)+...4redq(GrmFmj))

8

m
redq(D GrFi;)

n
. =1
H Ly

Theorem 52 Let Fy be a finite field. The set

MFEMNF,) :={f :Fl = F! |IF € MnxnEy): fi(x) =" ..alin ¥z € FI'}

of all monomial dynamical systems over Fy together with the composition o of mappings is a

monoid.

Proof. By Lemma 50 the set M EF}}(F,) is closed under composition. Composition of mappings
is trivially associative. The identity function

Id FZL—>FZL

r = X

is a monomial system and is therefore the identity element of the monoid (M F}(F,),c). m
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Lemma 53 (and Definition) Let F, be a finite field and n,m,r € N natural numbers. Further-
more, let f € MF)(F,) and g € MF}}(Fy) with

fi(z) = xf“:rfm VezeFy, i=1,.,n
G Gin .
gi(x) = zMx)"VaeFy, j=1,..,n

where F € M(n x n; Ey) and G € M(n x n; Ey). Then for their component-wise multiplication
gx [ :Fy — Fy defined as

(g f)i(x) := gi(x) fi(x)
it holds

n
(g% fi(z) = H:UjredQ(G"ﬁF”) VzeFy, ie{l, ..,n}
j=1

Proof. The claim follows directly from the exponents rules on the finite field F,; and Remark 40.
|

Remark 54 From the definition of ® it follows easily

n

(g% i) =[[; % Vo eFy, ic{l,..,n}
7j=1

Theorem 55 Let Fy be a finite field. The set
MFMNF,) :={f :Fl = F! |IF € MnxnEy): fi(z) =" ..alin ¥z € FI'}

of all monomial dynamical systems over F, together with the multiplication x of mappings is a
commutative monotid.

Proof. By Lemma 53 the set MF}(F,) is closed under multiplication. Now the claim follows
from the commutativity and associativity of the multiplication in F,; and the fact that the one
function

1 : F;—F;
r — (1,..,1)

is a monomial system and obviously constitutes the identity element of the monoid (M F}}(F), *).
|

Theorem 56 Let n € N be a natural number and Fy be a finite field. Then (MF)}(Fy),*,0) is a
semiring with identity elements with respect to each binary operation.

Proof. Given Theorems 55 and 52, we only need to show that the two binary operations satisfy
distributivity properties: Consider f,g,h € MF}}(F,) with

fi(z) = xf“...xfi" VeeFy,i=1..,n
G Gin .

gi(x) = x" . a"VaeFy, j=1,..n

hp(z) = a2zl oy g e Fi, k=1,..n
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where F,G,H € M(m x n; E;). According to the definitions and by Lemmas 41, 42 as well as
Remark 40 we have

" Tedq(f: Gri(Hij@F;))
(go(h*f))k = Hl‘.] =1 J J
7j=1

m
" redq() | redq(Gry)redq(Hij+Fiy))

— . =1
= H Lj

" redq ZGM (Hyj+Fy))

redy ZleHlﬁleFl])

- I

red Zredq leHl])+T€d (leFl]))

- I

redq Zredq (GriHiy ) +Zred (GriFiy))
T =1
J

Il
’:]:

<.
I
—

> redg(GriHyy)+) | redq(GriFij)
x]-l:l =1

Il
=

<.
I
—

redg(GrHyy) Y redq(GriFiy)

Il
’;]:
NgE!

:L'jlzl :L'jl:I
e
m m
n > redg(GrHy) ™ Z (GriFyy)
S| )
J
j=1 j=1

redq Z redq(GriHyj))

(zj = ) [ 1

redq Z redq(GriFij))

Il
1=

7=1 7j=1
n redq(ZleHlj) n redq(ZleFlj)
= H(:[;j =1 ) H(x] =1
j=1 Jj=1

= (goh)r(@)(go flr(x)

This shows
(go(hxf))=(goh)*(gof)
The right-distributivity is shown analogously. m

Theorem 57 The monoids (M(n x n; Ey),-) and (MF}}(F,),0) are isomorphic.
Proof. From the definition of M F}}(F,) it is clear that the mapping

U M(nxnEy)) — MF)(F,)
G — Y(G)

such that
U(G)i(x) := a:?”xgm fori=1,...,n
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2.2. Algebraic and graph theoretic formalism

is a bijection. Moreover, ¥(I) = id. In addition, by Remark 51 it follows easily that
U(F-G)=Y(F)o¥(G)V F,G € M(n xn; Ey)

|

Corollary 58 The semirings (M(n x n; Ey),+,-) and (MF]'(Fy),*,0) are isomorphic.

Proof. Consider the mapping

U M(nxnEy) — MF)(F,)
G — Y(G)

such that
U(G)i(z) := a:?”xgm fori=1,...,n

defined in the previous proof. By Remark 54, ¥ also satisfies
V(F+G)=Y(F)«¥(G)V F,G € M(n xn; Ey)
[ ]

Remark 59 (and Definition) For a given monomial dynamical system f € MF)(F,) the ma-
triz F := WY(f) is called the corresponding matrix of the system f. For a matriz power in the
monoid M(n x n; E,) we use the notation F'™. By induction it can be easily shown

v = P

Remark 60 (and Definition) The image of the n x n zero matriz 0 € M(n x n; E;) under the
isomorphism W has the property
U(0)(z); =1V zeFy

we call this monomial function the one function 1 := W(0).
Remark 61 The image of the unit matriz I € M(n x n; E;) under the isomorphism ¥ has the

property
V(I)(r); =z; ¥V x €Fy

ie. W(I) = id.

Now we turn our attention to some graph theoretic considerations. We recall the following
definition from Chapter 1:

Definition 62 Let M be a nonempty finite set. Furthermore, let n := |M| be the cardinality of
M. A numeration of the elements of M is a bijective mapping

f:M—{1,..,n}
Given a numeration [ of the set M we write

M={f1,..., fn}

where the unique element x € M with the property f(x) =i € {1,...,n} is denoted as f;.
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2.2. Algebraic and graph theoretic formalism

Definition 63 Let f € MF(F,) be a monomial dynamical system and G = (Vg, Eq, 7a)
a digraph (recall Definition 3) with vertex set Vg of cardinality |Vg| = n. Furthermore, let
F := U~Y(f) be the corresponding matriz of f. The digraph G is called dependency graph of
f iff a numeration a : M — {1,...,n} of the elements of Vi exists such thatV i,j € {1,...,n} there
are exactly Fj; directed edges a; — aj in the set Eg, i.e.

|7&' ((ai,07))| = F

Remark 64 [t is easy to show that if G and H are dependency graphs of f then G and H are iso-
morphic.  In this sense we speak from the dependency graph of f and denote it by
Gy = (Vs Ef, mp)-

We recall the following two definitions from Chapter 1:

Definition 65 Let G = (Vi, Eg, 7g) be a digraph. Two vertices a,b € Vi are called connected
if there is a t € Nog and (not necessarily different) vertices vi,...,v; € Vg such that

a—v — vy — ... >0 —b

In this situation we write a ~5 b, where s is the number of directed edges involved in the sequence
from a to b (in this case s =t + 1). Two sequences a ~s b of the same length are considered
different if the directed edges involved are different or the order at which they appear is different,
even if the visited vertices are the same. As a convention, a single vertex a € Vg is always
connected to itself a ~»q a by an empty sequence of length 0.

Definition 66 Let G = (Vi, Eg, mg) be a digraph and a,b € Vi two vertices. A sequence a ~>4 b
a— v — Uy — ... 0 —b

18 called a path, if no vertex v; is visited more than once. If a = b, but no other vertex is visited
more than once, a ~4 b is called a closed path.

Definition 67 Let G = (Vg, Eg, 7g) be a digraph. Two vertices a,b € Vg are called strongly
connected if there are natural numbers s,t € N such that

a~sbandb~~;a
In this situation we write a = b.

Theorem 68 (and Definition) Let G = (Vi, Eq, 7a) be a digraph. = is an equivalence re-
lation on Vg called strong equivalence. The equivalence class of any vertex a € Vg is called a
strongly connected component and denoted by ‘@ C Vg.

Proof. Due to the convention a ~»( a the relation = is reflexive. Symmetry follows trivially from
the definition of = . Transitivity follows from

a = bandb=c

& a~~gband b~y aand b~ cand c~, b
= @ ~gpy cand ¢ ~rypp a
&S a=c

Definition 69 Let G = (Vg, Eq, mg) be a digraph and a € Vi one of its vertices. The strongly
connected component ‘@ C Vi is called trivial iff ‘a” = {a} and there is no edge a — a in Eg.
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Definition 70 Let G = (Vig, Eq, 7a) be a digraph with vertex set Vi of cardinality |Vg| = n
and Vg = {a1, ...,an} a numeration of the elements of V. The matriz A € M(n x n; Ng) whose
entries are defined as

A;ij = number of edges a; — a; contained in FEg
fori,7 =1,...,n is called adjacency matrix of G with the numeration a.

Theorem 71 Let G = (Vi, Eg, ma) be a digraph with vertex set Vi of cardinality |Vg| = n and
Vo = {a1,...,an} a numeration of the elements of V. Furthermore, let A € M(n x n; Ng) be its
adjacency matriz (with the numeration a), m € N a natural number and B := A™ € M (n xn; Np)
the mth power of A. Then V i,j € {1,...,n} the entry B;; of B is equal to the number of different
sequences a; ~m aj of length m.

Proof. We prove the claim using induction on m. For m = 1 the claim holds due to the definition
of adjacency matrix. Now assume the claim holds for mth power of A and consider the (m + 1)th
power of A :

C:= A" = AA™

Since the entry Cjj, 4,5 € {1, ...,n} is computed as
n
Cij =Y AuBy; (2.7)
k=1

and every sequence a; ~»m,+1 a; necessarily uses as the first edge an edge connecting a; with one
of its neighbors ay, the expression (2.7) indeed counts all possible different sequences a; ~>m, 11 a;
of length m+1. m

Remark 72 Let f € MF](Fg) be a monomial dynamical system. Furthermore, let Gy = (Vy, Ey,
w¢) the dependency graph of f and Vi = {a1,...,a,} the associated numeration of the elements
of Vy. Then, according to the definition of dependency graph, F := U=L(f) (the corresponding
matriz of f) is precisely the adjacency matriz of G ¢ with the numeration a. Now, by Remarks 59

and 47 we can conclude
L™ = mred,(F™) (2.8)

2.3 Characterization of fixed point systems

The results proved in the previous section allow us to link topological properties of the depen-
dency graph with the dynamics of f. We will exploit this feature in this subsection to prove some
characterizations of fixed point systems stated in terms of connectedness properties of the depen-
dency graph. In the course of these investigations we will identify a class of monomial dynamical
systems, namely the (¢ — 1)-fold redundant monomial systems (to be defined below), that allows
for a very satisfying characterization of fixed point systems inside the class. A trivial example of
(¢ — 1)-fold redundant systems are the Boolean systems, (i.e. monomial systems f € MFE"(F5)).

Theorem 73 Let F, be a finite field and f € MF}(F;) a monomial dynamical system. Then
f is a fized point system with (1,...,1)t € Fy as its only fired point if and only if its dependency
graph only contains trivial strongly connected components .

Proof. By Remark 72, F := ¥~1(f) is the adjacency matrix of the dependency graph of f. If the
dependency graph does not contain any nontrivial strongly connected components, every sequence
a ~s b between two arbitrary vertices can be at most of length n — 1. (A sequence that revisits a
vertex would contain a closed sequence, which is strongly connected.) Therefore, by theorem 71
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3 m € N with m < n such that F™ = 0 (the zero matrix in M (n x n; Npy)). Now, according to

equation (2.8) we have
(™) = mred,(F™) = mred,(0) = 0

and consequently
MY =0Yr>m

Thus
ff=1vVr>m

If, on the other hand, there is an m € N such that
frA=fm—1vXeN
applying the isomorphism ¥~! (see Remark 59) we obtain
Fm) = pm =0V XeN
and (see equation (2.8))
mred,(F™ ) = mred,(F™) =0V A €N

It follows from equation (2.6) of Remark 47

F"re — 0V aeN

Now by theorem 71 there are no sequences a ~»5; b between any two arbitrary vertices a,b of
length larger than m — 1. As a consequence, there cannot be any nontrivial strongly connected
components in the dependency graph of f. m

Definition 74 A monomial dynamical system f € MF}(F,) whose dependency graph contains
nontrivial strongly connected components is called coupled monomial dynamical system.

Definition 75 Let G = (Vg, Eg, mg) be a digraph, m € N a natural number and a,b € Vg two
vertices. The number of different sequences of length m from a to b is denoted by sy,(a,b) € Ny .

Remark 76 Let G = (Vig, Eg, mg) be a digraph with vertex set Vi of cardinality n := |Vg| and
Ve ={a1,...,an} a numeration of the elements of V. Furthermore, let m € N be a natural number
and A € M(n x n; Ng) the adjacency matriz of G with the numeration a. Then by Theorem 71
we have

sm(ai,aj) = (A™)i

Theorem 77 Let Fy be a finite field, f € MF](F,) a coupled monomial dynamical system and
Gy = (Vy, Ey, my) its dependency graph. Then f is a fized point system if and only if there is an
m € N such that the following two conditions hold

1. For every pair of nodes a,b € V; with a ~y, b there exists for every A € N an ay € Z such
that spmya(a,b) = sm(a,b) +ax(g—1) #0.

2. For every pair of nodes a,b € Vi with spy(a,b) =0 it holds symix(a,b) =0V A € N.

Proof. Let V; = {a1,...,a,} be the numeration of the vertices. If f is a fixed point system,
3 m € N such that
A= fmyxeN

By applying the homomorphism ¥~! we get (see Remark 59)

FH) — pmy N eN (2.9)
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2.3. Characterization of fixed point systems

By Remark 72 it follows
mredy(F™ ) = mred,(F™) ¥ A\ € N

Let i,j € {1,...,n}. If, on the one hand, (F"™);; = 0 then by (2.9) we would have (F("V);; =0
vV A € N. Consequently, by 2. of Lemma 39 we have

(Fm+a)ij =0VaeNy

Now, by theorem 71 there are no sequences a; ~+5 a; of length larger than m —1. In other words, 2.
follows. If, on the other hand, (F'™);; # 0 then by (2.9) we would have (F (™). = (F™);; # 0
V¥ A € N. Consequently, by 2. and 4. of Lemma 39 3 a) € Z such that

(F™ )i = (F™)ij +ax(g—1) VAEN

In other words, 1. follows. To show the converse we start from the following fact: Given 1. and
2. and according to Theorem 71 and Remark 72

If (F™);; = 0, then (F™™);; = (F™);; VA €N

and
if (Fm)ij #£0, then day €Z: (Fm+)‘)ij = (Fm)w +ax(g—1)#0VAeN

Now by 2. and 4. of Lemma 39 we have

mred,(F™) = mred,(F™) ¥ A\ € N

and by 72
Ftd) — pmy e N

Thus, after applying the isomorphism ¥
[T =My AeN

|
The following parameter for digraphs was introduced by [23]:

Definition 78 Let G = (Vg, Eq, 7g) be a digraph and a € Vi one of its vertices. The number
La(a) = a%iya lu — o]
a~~,a

uFv

is called the loop number of a. If there is no sequence of positive length from a to a, then Lg(a) is
set to zero.

Remark 79 Note that the loop number Lgs(a) of the vertex a in a graph G' = (Vg, Ef, mg) may
have a different value.

Lemma 80 (and Definition) Let G = (Vg, Eq, 7a) be a digraph and a € Vi one of its vertices.
If “a’ is nontrivial then for every b € @’ it holds

La(b) = La(a)
Therefore, we introduce the loop number of strongly connected components as

Lo(T) = La(a)
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2.3. Characterization of fixed point systems

Proof. Let Lg(a) = t. Therefore there are sequences a ~», a and a ~»5 a such that |r — s| = ¢.
Since ‘@’ is strongly connected, there are sequences a ~+, b and b ~+, a and we can construct the
following sequences

b~ v+r+ub:bwva“"'}rawub

b~ v+s+ub:bwva“""sa’wub
Now from

lv+r+u—(v+s+u)|=|r—s|

we have due to the minimality of the loop number

ﬁg(b) < ﬁg(a)

By symmetry the claim follows. m

Remark 81 The loop number of any trivial strongly connected component is equal to zero, due
to the convention made in the definition of loop number.

Corollary 82 Let Fy be a finite field, f € MF(F,) a coupled monomial dynamical system and
Gy = (Vy, Ef, my) its dependency graph. If f is a fived point system then the loop number of each
of its montrivial strongly connected components is equal to 1.

Proof. Let m € N be as in the statement of the previous theorem. Let ‘@ C Vy be a nontrivial
strongly connected component. For every b € ‘@ we have that b is strongly connected with itself.
Therefore, for every s € N there is a t > s such that b ~»; b. In particular, there must be a u € N
with w > m such that b ~, b, i.e. su(b,b) > 1. By 2. of the previous theorem we know that
Sm/(b,b) # 0, otherwise s,(b,b) = 0. Now from 1. of the previous theorem we know

Jax €Z: spmia(b,b) = s (b,0) +ax(¢g—1) #0V A eN

and in particular
Smaa(byb) 0V A €N

Therefore, V A € N there are sequences b~y b. Thus Lg,(a’) = Lg,(b)=1. m

Definition 83 Let G = (Vg, Eg, 7g) be a digraph and a,b € Vg two vertices. The vertex a is
called recurrently connected to b, if for every s € N there is a uw > s such that a ~», b.

Lemma 84 Let G = (Vg, Eg, 7¢) be a digraph with vertex set Vi of cardinality n := |Vg|. Two
vertices a,b € Vi are connected through a sequence a ~>; b of length t > n — 1 if and only if a is
recurrently connected to b.

Proof. If there is a sequence a ~»; b of length ¢ > n — 1, then it necessarily revisits one of its
vertices, in other words, there is a ¢ € V(g such that

a~1b=a—..—wc—..—c—..—b

Now a sequence a ~+y b can be constructed that repeats the loop around ¢ as many times as
desired. The converse follows immediately from the definition of recurrent connectedness. m

Remark 85 Let G = (Vig, Eg, mq) be a digraph with vertex set Vi of cardinality n := |Vg|. Then
for any two vertices a,b € Vg it holds: FEither a is recurrently connected to b or there is an m € N
with m < n such that no sequence a ~+ b of length t > m exists.
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Lemma 86 Let G = (Vig, Eq, mqg) be a digraph and U C Vg a nontrivial strongly connected
component. Furthermore, let t := Lz (U) be the loop number of U. Then for each a,b € U there is
an m € N such that the graph G contains sequences a ~p1x b of length m + AtV A € N.

Proof. See the proof of Proposition 4.5 in [23]. This is an interesting and not straightforward
proof! m

Theorem 87 Let G = (Vg, Eg, mg) be a digraph containing nontrivial strongly connected com-
ponents. If the loop number of every nontrivial strongly connected component is equal to 1 then
there is an m € N such that any pair of vertices a;,a; € Vg with a; recurrently connected to a;
satisfies

sm+)\(ai,a]~) >0V AeN

Proof. Let Vi = {ay, ..., an} be the numeration of the vertices and a;, a; € V. If a; is recurrently
connected to a;, then necessarily there is a sequence a; ~~, a; that visits a vertex contained in a
nontrivial strongly connected component. In other words, 3 ay € Vy and a sequence a; ~~5 a;
such that @z is nontrivial and

aiwsaj:ai—>...—>ak—>...—>aj

By Lemma 86 there is a mj € N such that there are sequences aj ~p,, 4+ ar V A € Ng. Now
VvV X € Ny we can construct a sequence

Qi ~2sy A = Af = oo = Qf ~mp ) A — o0 — Q5

Now, if we consider among all pairs 4, j € {1,...,n} such that a; € Vi is recurrently connected to
a; € Vg the maximum m of all values my, we can state: 3 m € N such that any pair of recurrently
connected vertices a;,a; € Vg satisfies

Ser)\(ai,aj) >0V AeNg
|

Theorem 88 Let Fy be the finite field with two elements, f € MF](F2) a Boolean coupled
monomial dynamical system and Gy = (Vy, Ey, my) its dependency graph. f is a fived point
system if and only if the loop number of each nontrivial strongly connected component of Gy is
equal to 1.

Proof. The necessity follows from Corollary 82. Now assume that each nontrivial strongly
connected component of Gy has loop number 1 and let V; = {a1,...,a,} be the numeration of
the vertices. Furthermore let F' := W~1(f) be the corresponding matrix and consider vertices
a;,aj € Vy. By Remark 85, either a; is recurrently connected to a; or there is an uy € N with
up < n such that no sequence a; ~+; a; of length ¢ > ug exists. If the latter is the case, then

(F“O+/\)ij =0V eNy

On the other hand, if a; is recurrently connected to a;, then by Theorem 87 there is an mg € N
such that
(F™otA), £ 0V A€ Ny

Therefore, we have for m := max(mop, ug) that
(F™) #0Y A eNgor (F™);, =0V A e Ny
Summarizing we have by 2. of Lemma 39

mredy,(F™) = mred,(F™) ¥ A\ € N
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2.3. Characterization of fixed point systems

and by 72
FmHN — pmy A eN

Thus, after applying the isomorphism W
A= fmy xeN
| |

Remark 89 The statements of the previous theorems together with the Remark 31 about zero
functions as components constitute the statement of Theorem 6.1 in [23].

In the following two corollaries we provide alternative proofs to the claims made in Corollary
6.3 and Theorem 6.5 of [23]:

Corollary 90 (and Definition) Let Fy the finite field with two elements and f € M F}'(F2) the
coupled monomial dynamical system defined by

filz) = ai"
i—1

fi(z) = (Ha:j”)a:?”, i=2,.,1n
j=1

where a;; € Bq, i =1,...,n, j=1,...,9 — 1. Such a system is called a Boolean triangular system.
Boolean triangular systems are always fixzed point systems.

Proof. From the structure of f it is easy to see that every strongly connected component of the
dependency graph of f is either trivial or has loop number 1. m

Corollary 91 Let Fy the finite field with two elements, f € MFE"(F2) a fized point system and
j,i € {1,...,n}. Consider the system g € MF}(F2) defined as gx(z) = fr(z) V k € {1,...,n}\j
and g;(xz) = x;fj(x) ¥V x € Fy. Then g is a fived point system if there is no sequence a; ~»s a;
from a; to a; or if ‘a; or <a_j> are nontrivial.

Proof. Let G, = (V,, E,, m4) be the dependency graph of g. If i = j then E, contains the self
loop a; — a; and ‘a; becomes nontrivial (if it wasn’t already) with loop number 1. If i # j then
we have two cases: If there is no sequence a; ~+4 a;, then adding the edge a; — a; (which might
be already there) doesn’t affect ‘a; # <a_j>. If there is a sequence a; ~>5 a; then adding the edge
a; — a; (which might be already there) forces w = <a_j>. Now since by hypothesis ‘a; or <a_j> are
nontrivial and f is a fixed point system, then

Le,(a) = Lg,(aj) =1
]

Definition 92 Let F, be a finite field, f € ME}(F,) a monomial dynamical system and
Gy = (Vy, Ef, my) its dependency graph. f is called a (¢ — 1)-fold redundant monomial sys-
tem if there is an N € N such that for any pair a,b € V; with a recurrently connected to b, the
following holds:

Vm >N 3 agm € No: Sm(a’a b) = Oéabm(q - 1)

Remark 93 Note that any Boolean monomial dynamical system f € MF}(Fq) is (2 — 1)-fold
redundant.
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Lemma 94 Let F, be a finite field, f € MF](F,) a coupled (q — 1)-fold redundant monomial
dynamical system and Gy = (Vy, Ey, my) its dependency graph. Then f is a fived point system if
the loop number of each nontrivial strongly connected component of Gy is equal to 1.

Proof. Let V; = {a1,...,an} be the numeration of the vertices and F := U~1(f) be the cor-
responding matrix of f. Consider two arbitrary vertices a;,a; € Vy. By Remark 85, either a; is
recurrently connected to a; or there is an mg € N with mp < n such that no sequence a ~»; b of
length t > mg exists. If the latter is the case, then

(Fm0+>\)ij =0VAIeNy

On the other hand, if a; is recurrently connected to a;, then by Theorem 87 there is an m; € N
such that
Smi4~y(ai,a;) >0V v €Ny (2.10)

Consider now mgy := max(n, my). Due to the universality of m; in the expression (2.10), for any
pair of vertices a;,a; € Vg with a; recurrently connected to a; there is a sequence a; ~+y,,4~ a; of
length mg +7, in particular s(,,,4)(ai, a;) >0V v € No. Now, let NV be the constant in Definition
92 and m3 := max(N,ma). Now, by hypothesis, 3 a;;, € N such that

S(ms1y) (@15 a7) = aijy(¢ — 1) ¥ v € No
Thus
S(ms1) (@i ;) = ijy(q—1) = aijo(q — 1) + (qijy — @ijo)(g — 1)
= Smy(ai,a;) + (ijy — ijo)(@g—1) Vy €N

Summarizing, since mo < n < mg < mg, we can say V i,j € {1,...,n}, depending on whether a;
and a; are recurrently connected or not,

(Fm3+>‘)ij =0VAIeNy

or

day€Z: (Fmer)‘)ij = (Fm‘"’)i]‘ —i—a>\(q— 1) 0V AeNy
Now, by 2. and 4. of Lemma 39 it follows
mred,(F™ ) = mred,(F™) V A € N

and by 72
Fmstd) — pms y \ ¢ N

Thus, after applying the isomorphism ¥
[t ="y AeN
[

Theorem 95 Let Fy be a finite field, f € MF](F,) a coupled (¢ — 1)-fold redundant monomial
dynamical system and Gy = (Vy, Ey, m¢) its dependency graph. Then f is a fived point system if
and only if the loop number of each nontrivial strongly connected component of G is equal to 1.

Proof. The claim follows immediately from Lemma 94 and Corollary 82. m
Theorem 96 Let Fy be a finite field, f € MF](F,) a coupled monomial dynamical system and

Gy = (Vy, By, my) its dependency graph. Then f is a fized point system if the following properties
hold
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2.3. Characterization of fixed point systems

1. The loop number of each nontrivial strongly connected component of Gy is equal to 1.
2. For each nontrivial strongly connected component ‘@ C Vi and arbitrary b, c € @,

s1(b,c) #0 = s1(b,c) =q—1

Proof. Let Vy = {a1,...,a,} be the numeration of the vertices. Consider two vertices a;,a; € Vf
such that a; is recurrently connected to a;. Then by Theorem 87 there is an m1 € N such that

8m1+7(ai,aj) >0V ~vyeNy (2.11)

Consider now mg := max(n, mj). Due to the universality of m; in the expression (2.11), for any
pair of vertices a;,a; € Vg with a; recurrently connected to a; there is a sequence a; ~+y,,+~ a; of
length mg + . Since mga + v > n — 1, necessarily 3 ay_,a;, € m such that cm is nontrivial and

Ui~ (mgtry) A = Qi = oo = Qe ~¢ A, = o = A (2.12)

(t depends on 7, j and 7). Now, by hypothesis, every two directly connected vertices a,b € m
are directly connected by exactly ¢ — 1 directed edges. Therefore, for any sequence ay., ~ ar,
of length t € N there are (¢ — 1) different copies of it and we can conclude 3 o € N such that
s¢(ak,,ar,) = a(g—1). As a consequence, there are a(q— 1) different copies of the sequence (2.12).
Since we are dealing with an arbitrary sequence a; ~(;,4~) @; of fixed length my +~, v € Ng we
can conclude that 3 a;;, € N such that

S(ma+y) (@i, aj) = aijy (g —1) Vv € Ny

Thus f is a coupled (¢ — 1)-fold redundant monomial dynamical system and the claim follows
from Lemma 94. m

Corollary 97 Let Fy be the finite field with two elements, f € MF;'(F3) a Boolean monomial
dynamical system and F := U~1(f) € M(n x n; Ey) its corresponding matriz. Furthermore, let

F, be a finite field and g € M F}}(F,) the monomial dynamical system whose corresponding matriz
G :=V"1(g) € M(n x n; E,) satisfiesV i,5 € {1,...,n}

. _[a-1ifF;=1
i 0 if Fij =0

If f is a fixed point system then g is a fized point system too.

Proof. Let Gy = (V¢, E¢, mf) be the dependency graph of f. By the definition of g, one can
easily see that the dependency graph Gy = (Vy, Ey, my) of g can be generated from Gy by adding
q — 2 identical parallel edges for every existing edge. Obviously Gy and G, have the same strongly
connected components. If Gy doesn’t contain any nontrivial strongly connected components, then
G4 wouldn’t contain any either and by Theorem 73 g would be a fixed point system. If, on the
other hand, GGy does contain nontrivial strongly connected components, then by Theorem 88 each
of those components would have loop number 1. From the definition of g it also follows for any
pair of vertices a,b € E,
s1(a,b) #0 = s1(a,b) =q—1

By the previous theorem g would be a fixed point system. m

Example 98 (and Corollary) Let F, be a finite field and f € MF}(F,) the coupled monomial
dynamical system defined by

filz) = af!
i—1

filz) = (Hz?”)x;}_l,z:Q, N
j=1
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where a;; € Eq, t = 1,...,n, j = 1,...,1 — 1 are not further specified exponents. Such a system is
called triangular. It is easy to see that the dependency graph of f contains n one vertex nontrivial
strongly connected components. Each of them has a (q—1)-fold self loop. Therefore, by the previous
Theorem, f must be a fized point system.

Theorem 99 Let F, be a finite field, f € MF}'(F,) a coupled monomial dynamical system and
Gy = (Vy, Ey, my) its dependency graph. Then f is a fived point system if for every vertex a € Vy
that is recurrently connected to some other vertex b € Vy the edge a — a appears evactly ¢ — 1
times in Ey, 1.e.

7 (@) =g -1

Proof. Let V; = {ay,...,a,} be the numeration of the vertices and F := ¥~1(f) be the corre-
sponding matrix of f. Consider two vertices a;,a; € Vy such that a; is recurrently connected to
a;. Then by Theorem 87 there is an m1 € N such that

Smi4~y(ai,a) >0V v €Ny (2.13)

Consider now mg := max(n, mj). Due to the universality of m; in the expression (2.13), for any
pair of vertices a;,a; € Vg with a; recurrently connected to a; there is a sequence a; ~>m,1~ a;j
of length mgo + . Consider one particular sequence a; ~»m,4~ @; of length mo 4 « and call it
Wy = Q; ~*myt~ G;. By hypothesis there are exactly ¢ — 1 directed edges a; — a;. Therefore, there
are ¢ — 1 copies of the sequence w.,. Since we are dealing with an arbitrary sequence a; ~>(,,+) @;
of fixed length ma + v, v € Ng we can conclude that 3 a;;, € N such that

S(maty) (@i, aj) = ijy (g —1) Vv € Ny

Thus f is a coupled (¢ — 1)-fold redundant monomial dynamical system and the claim follows
from Lemma 94. m

Example 100 (and Corollary) Let F, be a finite field and f € MF}}(F,) a monomial dynam-
ical system such that the diagonal entries of its corresponding matriz F := U=L(f) satisfy

Fi=q—-1Vie{l,..,n}

Since every vertexr satisfies the requirement of the previous theorem, f must be a fixed point sys-
tem. This result generalizes our previous result about triangular monomial dynamical systems
g€ MFE}(F,) defined as

gl@) = 2"
i—1

gi(zr) = (Haz?“)azg_l, i=2,...,n
j=1

Lemma 101 Letn € N be a natural number and A € M(n x n; R) a real matriz. In addition, let
A be diagonalizable over C. Then A™ = A Y m € N if and only if the characteristic polynomial
charpoly(A) of A can be written as

charpoly(A) = a(A — 1)5\!
where a € R\{0}.
Proof. Since A is diagonalizable, there is an invertible matrix S € M(n x n; C) such that
A=S8DS™! (2.14)
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where D € M(n x n; C) is a diagonal matrix. As a consequence,

charpoly(A) = det(A— A) =det(SDS™! —ASS™1) (2.15)
det(S(D — AI)S™1)
= det(S)det(D — M) det(S71)

= det(D — \) = ﬁ(Dii —\)

Now assume A™ = AV m € N.Then it follows V m € N
SDmSt=Am=A=5SDS!
and therefore
D"=DVmeN

from which it follows
D?Z =Dy VmeN, i€ {1,...,71}

and thus D;; =0or Dy =1V i € {1,...,n}. From equation (2.15) we can conclude, charpoly(A) =
a(A—1)*A" with @ € {—1,1}. On the other hand, if charpoly(A) = a(\ — 1)*\’, the eigenvalues of
A are 0 or 1 and therefore the zeros of equation (2.15) must be 0 or 1. In other words, D;; = 0 or
D;; =1V ie{l,..,n}. Therefore, by equation (2.14) we have ¥V m € N

Fm=8Spms—1l=9gps—l=F
| ]

Theorem 102 Let F, be a finite field, f € MF}}(F,) a coupled monomial dynamical system and
F:=V7Y(f) € M(n x n; E,) its corresponding matriz. If the matriz F (viewed as a real matriz
F e M(nxn; N)C M(n xn; R)) has the characteristic polynomial

charpoly(F) = a(A — 1)*\! (2.16)

where a € Z\{0}, and the geometric multiplicity of the eigenvalues 0 and 1 is equal to the corre-
sponding algebraic multiplicity, then f is a fixed point system.

Proof. It is a well-known linear algebraic result that if there is a basis of eigenvectors of a matrix,
the matrix is diagonalizable. By the hypothesis this is the case for F'. Therefore, by the previous
Lemma

F"=FVmeN

Now, by Remarks 59 and 47 we consequently have V m € N
TL(f™) = F™ = mred,(F™) = mredy(F) = F
After applying the isomorphism ¥ we get
fMm=f VmeN
|

Remark 103 Let F, be a finite field, f € ME}(F,) a coupled monomial dynamical system and
F = VU~1(f) € M(n x n; E,) its corresponding matriz. The matriz F viewed as the adjacency
matriz of the dependency graph Gy = (Vy, Ey, w¢) of f satisfies

F"=FVmeN

if and only if for each pair of vertices a,b € Vy the value sp(a,b) is constant for all m € N. In
other words, a and b are either disconnected or for every length m € N they are connected with
the same degree of redundancy.
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Example 104 Consider the monomial system g € MF2(F3) defined by the matrix

11000
01100
G=10 0100
00 001
00 00O

It is easy to show that
charpoly(G) = (A — 1)3)\?2

However, g is not a fized point system. This shows that the condition (2.16) alone is not sufficient.

2.4 An algorithm of polynomial complexity to identify fixed point
systems

According to our definition of monomial dynamical system f € MFE}}(F,), the possibility that
one of the functions f; is equal to the zero function is excluded (see Definition 30 and Remark
31). Therefore, the following algorithm is designed for such systems. However, in this algorithmic
framework it would be convenient to include the more general case (as defined in [22] and [23]),
i.e. the case when some of the functions f; can indeed be equal to the zero function. In the vein
of Remark 31 this actually only requires some type of preprocessing. The preprocessing algorithm
will be described and analyzed in the Appendix.

Our algorithm is based on the following observation made by Dr. Michael Shapiro about gen-
eral time discrete finite dynamical systems: By Remark 2, a chain of transient states in the
phase space of a time discrete finite dynamical system f : X™ — X" can contain at most
s = |X" —1 = |X|" — 1 transient elements. Therefore, to determine whether a system is a
fixed point system, it is sufficient to establish whether the mappings f” and f"+! are identical
for any r > s. In the case of a monomial system f € MFE}(F,), due to Theorem 57, we only
need to look at the corresponding matrices F'", F" 1 € M(n x n; E;). Computationally it is more
convenient to generate the following sequence of powers

F-z’ (F-z)a _ F'4, (F'4)'2 _ F-s’ (F-s)-z _ F'16,...,F'(2t)
To achieve the "safe" number of iterations }FZ‘ —1=¢" — 1 we need to make sure
2 >g"—1

This is equivalent to
t > logy(g" — 1)

To obtain a natural number we use the ceil function
t := ceil(logy(q" — 1)) (2.17)
Thus we have, due to the monotonicity of the log function,
t <logy(q" — 1)+ 1 <logy(q") +1=mnlogy(q) +1

The algorithm is fairly simple: Given a monomial system f € MFE}(F,) and its corresponding
matrix F = W) € M(n x n; E,)

t
1. With ¢ as defined above (2.17), calculate the matrices A := F2%7 and B := FA. This step
requires t + 1 matrix multiplications.
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2. Compare the n? entries A;; and B;;. This step requires at most n? comparisons (this maximal
value is needed in the case that f is a fixed point system).

3. f is a fixed point system if and only if the matrices A and B are equal.

It is well known that matrix multiplication requires 2n® — n? addition or multiplication oper-
ations. Since ¢t + 1 < nlogy(q) + 2, the number of operations required in step 1 is bounded above
by

(2n° —n?)(nlogy(g) + 2)

Summarizing, we have the following upper bound N(n, q) for the number of operations in steps 1
and 2
N(n,q) == (2n3 — n?)(nlogy(q) + 2) + n?

For a fixed size g of the finite field F; used it holds

. N(n,q
lim (4 ) = 2logy(q)

n—oo n

and we can conclude N (n,q) € O( n*) for a fixed g. The asymptotic behavior for a growing number
of variables and growing number of field elements is described by

N(n,q)

=20 ntlogy(q)

=2

Thus, N(n,q) € O( n*logs(q)) for n,q — oc.

It is pertinent to comment on the arithmetic operations performed during the matrix multipli-
cations. Since the matrices are elements of the matrix monoid M(n x n; E,), the arithmetic
operations are operations in the semiring F,. By the Lemmas 42 and 41 the addition resp. the
multiplication operation on E,; requires an integer number addition” resp. multiplication and a
reduction as defined in Lemma 39. The reduction redy(a) of an integer number a € Ny, a > ¢ is
obtained as the degree of the remainder of the polynomial division 7* = ( 79 — 7). According to
4.6.5 of [53] this division requires

O(2(deg(7?) — deg(7? — 7))) = O(2(a — q))

integer number operations. However, we know that the reductions red,(.) are applied to the result
of (regular integer) addition or multiplication of elements of £, and therefore

20q—1)—qg=q—2
—g <
¢ q_{(q—1)2—q=q2—q+1

As a consequence, in the worst case scenario, one addition resp. multiplication in the monoid £,
requires O(q) resp. O(g?) regular integer number operations.

Since Ej is a finite set and only the results of n? pairwise additions and n? pairwise multiplications
are needed, while the algorithm is running, these numbers are of course stored in a table after the
first time they are calculated.

2.5 The cycle structure of monomial systems with strongly con-
nected dependency graph

We start this section with a review and a detailed exposition of the definitions and results
obtained by [23] on strongly connected graphs:

"See Chapter 4 of [53] for a detailed description of integer number representation and arithmetic in typical
computer algebra systems.
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2.5. The cycle structure of monomial systems with strongly connected dependency graph

2.5.1 Strongly connected graphs and the loop number

The most general setting for the following definitions and statements would include the case
of trivial strongly connected graphs, i.e. a graph containing only one vertex and no edges. Such
a graph, seen as dependency graph, corresponds to a univariate monomial dynamical system
f : Fqy — F, such that f = 1. In other words, not an interesting system. Therefore, we will
consider only nontrivial strongly connected graphs.

Lemma 105 Let G = (Vig, Eg, mg) be a strongly connected digraph.  Furthermore, let
t .= Le(Vg) > 0 be its loop number and a,b € Vg arbitrary vertices. Then for any pair of
sequences a ~»;, b and a ~+,, b contained in G there is an o € Ny such that

}m — m'! =at
Proof. See the proof of Lemma 4.3 in [23]. m

Corollary 106 Let G = (Vg, Eg, wg) be a strongly connected digraph. Furthermore, let
t := La(Vg) > 0 be its loop number and a € Vg an arbitrary vertex. Then for any closed
sequence a ~+, a there is a o € Ny such that

m = ot
Proof. See the proof of Corollary 4.4 in [23]. m

Lemma 107 (and Definition) Let G = (Vg, Eq, mq) be a strongly connected digraph such that
Ve is nontrivial. Furthermore, let t := Lo(Vg) > 0 be its loop number. For any a,b € Vg the
relation =~ defined by

a~b:< 3 a sequence a ~q b with a € Ny

18 an equivalence relation called loop equivalence. The loop equivalence class of an arbitrary vertex
a € Vg is denoted by a.

Proof. See the proof of Lemma 4.6 in [23]. m

Lemma 108 Let G = (Vig, Eg, mg) be a strongly connected digraph such that Vi is nontrivial.
Furthermore, let t :== Lg(Vg) > 0 be its loop number. Then the partition of Vi defined by the loop
equivalence =~ contains exactly t loop equivalence classes.

Proof. See the proof of Lemma 4.7 in [23]. m

Definition 109 Let G = (Vg, Eq, 7g) be a digraph, a € Vg an arbitrary vertexr and m € N a
natural number. Then the set

Np(a) :=={be Vg :3 a~y, b}
18 called the set of neighbors of order m.

Remark 110 From the definitions it is clear that

a= U Nat(a)

aeNg

Theorem 111 Let G = (Vig, Eq, mg) be a strongly connected digraph such that Vg is nontrivial.
Furthermore, let t := La(Vg) > 0 be its loop number and a C Vg an arbitrary loop equivalence
class of V. Then for any b,b' € @ the following holds
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2.5. The cycle structure of monomial systems with strongly connected dependency graph

1. Np(b) N Ny (b') = 0 for mym’ € N such that 1 < m,m’ <t and m #m'.
2. Nyp(b)Nna =10 form €N such that 1 <m < t.

3. For every fited m € N such that 1 <m <t 3Jce Vg: |J Nn(b) =c.
bea
Proof. Assume there was a vertex ¢ € Vg and paths b ~+,, c and b’ ~~,,» ¢, where m, m’ € N such
that 1 < m,m’ <t and m # m/. Since b,b’ € a, there is a sequence b ~»); b’ with A € Ny. Now
consider the sequence b ~y; b’ ~,,,» c. By Lemma 105, there would be an o € Ny such that

|\t +m—m/| = ot
Wilog assume m > m/. As a consequence we would have
m=m'+ (a— A\t

and thus m = m’ or m > t, a contradiction. This shows 1.

Let ¢ € a. Then, by the definition of the class a, there is a sequence b ~~,; ¢ with a € Np.
Now, if there was a sequence b ~~,, ¢ with m € N such that 1 < m < t then by Lemma 105 there
would be a 8 € Ny such that

|m — at| = Bt

and thus m = 0 or m > t, a contradiction. This shows 2.
To show 3. consider an arbitrary pair of vertices b, b’ € a and vertices ¢, ¢’ € Vi such that there are
sequences b ~, ¢ and b’ ~,, ¢ of length m € N with 1 < m < ¢. Since G is strongly connected,
there is a sequence ¢ ~-, b of length p € Ny. Now, by Corollary 106, the length m + p of the
sequence

b~ cop b

satisfies
m+p=at with a € N (2.18)

We also know that since b,b' € @, there is a sequence b ~»y; b’ with A € Ny. Again, since G is
strongly connected, there is a sequence ¢ ~-4 ¢ of length ¢ € Ng. Now we consider the closed
sequence
cwpbW)\tb'wmc'wqc
of length p + At + m + ¢. Again, by Corollary 106, this length satisfies
p+AM+m+q=n~t with y € Ny
and with equation (2.18) we have
qg=(y—a-At
Therefore ¢ &~ ¢’. This shows N,,(b) C ¢ and thus |J N,,(b) C ¢. Now consider an arbitrary vertex
bea
d € ¢. Since G is strongly connected, there is a sequence b ~»4 d of length s € Ny. In addition,
from ¢ € ¢ we know that there is a sequence d ~~4; ¢ with § € Ng. Now we consider the closed

sequence
b~ssd~sspcapb

of length s + &t + p. As before, by Corollary 106, this length satisfies
s+ 0t +p = wt with w € Ny
and with equation (2.18) we have

s=(w—-0—a)t+m
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2.5. The cycle structure of monomial systems with strongly connected dependency graph

From this equation we can follow that the sequence b ~ d visits a vertex e € Vi after a distance
of (w— 3§ — a)t edges, i.e. e € b =a. Then the sequence continues in form of a sequence e ~, d.

In other words, 3 e € a: d € Ny,(e). Therefore, ¢ C |J Ny(b). m
bea

Remark 112 [t is worth mentioning that since Vg is strongly connected and mnontrivial,
Nin(b) #0 Y m €N, b € V. Moreover, from 1. it follows easily

(U Nm(b)) N (U Nmr(b)> =0 for mym’ € N such that 1 <m,m’ <t and m # m’

bea bea

and because of 2. of course
a=J M)
bea
Given one loop equivalence class a C Vg, the set of all the t loop equivalence classes can be ordered
in the following manner

@ =0, Qi1 = | Ni(b), @iy = | Nj(0), e = | Nea(b) (2.19)

bea; bea; bea;

For any ¢ € |J N¢—1(b) it must hold Ni(c) C a; (if Ni(c) Na; # 0 with j # i, then a; = a;).
bea;
Thus, the graph G can be visualized as

a; = Qit1 =+ = Qi = A4 j+1)modt = +++ = Aitt—1 = Q(it) mod ¢

Due to the fact a = |J N¢(b) ¥ a € Vg, we can conclude that the claims of the previous lemma
bea

still hold if the sequence lengths m and m' are replaced by the more general lengths Mt + m and

Nt +m/. In other words, it holds for any b,/ € a and \,\' € Ny

1. Nxtim(b) W Nyrg o (0) = 0 for m,m’ € N such that 1 <m,m' <t and m #m/'.
2. Nyprm(b)Na =0 form € N such that 1 <m < t.

3. 3eceVg: U Natam(b) =¢ for m € N such that 1 <m < t.
bea

and consequently

(U N,\Hm(b)) N (U N)\/Hm,(b)) =0 for m,m’ € N such that 1 <m,m’ <t and m # m’

bea bea
and

a=J N

bea

Corollary 113 Let G = (Vg, Eg, g) be a strongly connected digraph such that Vg is nontrivial.
Furthermore, let t := Lg(Vg) > 0 be its loop number and Vg = {ai,...,an} a numeration of
the vertices. In addition, let ag,...,a;—1 C Vg be the t loop equivalence classes ordered according
to (2.19) and Cy,...,Ci—1 C {1,...,n} the partition of the set {1,...,n} induced by the partition
ag, ...,ar—1 C Vg of Vg, i.e. ¥ k € {0,....,t — 1} |Cy| = |ag| and a; € a, ¥ j € Ci. Then for any
natural number s € N such that s <t and each i € {0,...,t — 1} the following holds

U N>\t+s(aj) = a(i—f—s) modt VA EN
J€C;
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2.5. The cycle structure of monomial systems with strongly connected dependency graph

Proof. This follows immediately from a = |J Nx:(b) and the definition of the order (2.19). m
beay

Remark 114 If lem(s,t) < st, i.e. 3 7 € N with r < t such that lem(s,t) = rs, then the sets
ag, .-, ag—1 can be arranged in q = t/r families with no repetitions except for the first and last
class
2iOinL<;>Zi2s’ ---aarsmodt
al; al—&—s: al—i—?s; ceey a(1+rs) mod ¢

QAq—1; Gg—1+s; Ag—142s5 -++s B(g—14rs) mod t
where the vertices in ajyks and a;q (x41)s are connected by sequences of length At +s. Moreover, no

shorter family of this type can be constructed. To see this, assume that there is a shortest family
containing 0 < r < t loop-classes where the vertices are connected by sequences of length At + s

aQ, sy A2sy -++y Arsmodt = A0

Then it follows
rsmodt=0<3dAeN:rs= Xt

and since T is minimal we have lem(s,t) = rs < ts. Of course, every of the classes ag, ay, ..., as—1
yields such a family, though, not necessarily a different one. The number of different families is

given by the quotient

t t t
_:_S:—SeN

= T s lem(s, t)

(For any class aj & {ao, as, Gzs, -+, (r—1)s}, the family

aj, O(j4s)mod tr A(j+2s) modts +++s Aj+rsmodt = Aj

cannot contain any of the classes ag,as, ags, ..., a(r—1)s Since this would yield the contradiction
Zig+rsmodt = a; € {ag,as,ags,... agr_1 s} The same argument can be mow applied to a class
ag & {00, s, G2s, -+, Q(r—1)s> Aj Q(jts) mod t» A(j+2s) mod ts - Tj+(r—1)smodt - 1 Nis process can be con-
tinued till no more classes outside a family are left. As a consequence, the number o of different
families satisfies t = ar, thus o = t/r) For the converse, if there is an r € N with r < t such that
lem(s,t) = rs, then for every i € {0,...s — 1} it holds

i+rs=1+ At =imodt

Therefore, each of the s classes ag,ai, ..., as—1 yields a family

Qis A(i+s)mod ts A(i+2s) modts +++» A(i4rs)modt — Gi

where the vertices in aj+s and ajios are connected by sequences of length At + s. Were there a
shorter family

Qi Q(i+s)modts A(i+2s) mod ts -++» A(i4r's) modt — @i
with v < r then it would follow
(i +7's)modt =i
which is equivalent to r's = At and thus r's < lem(s,t), a contradiction. Again, the number of
different families is given by the quotient q :=t/r.
If, on the other hand, lem(s,t) = ts, then any family where the vertices in a;yys and Qjt(kt1)s OTE
connected by sequences of length A\t + s must contain all the t classes. Were there a shorter family

Qi Q(i+s)modts A(i+2s) mod ts -++» A(i4r's) modt — @i
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2.5. The cycle structure of monomial systems with strongly connected dependency graph

with v < t then it would follow
(i +7's)modt =i

which is equivalent to r's = A\t and thus r's < lem(s,t), a contradiction. Consequently, the only
family that can be constructed is
60,537523,...,at5m0dt

From the results presented in Remark 112 we may ask whether the properties listed there
already characterize a strongly connected digraph G = (Viz, Eg, 7g) with a certain loop number
Lz(Ve) > 0. In other words, the question arises whether a strongly connected digraph whose
vertex set Vg can be partitioned in ¢ (nonempty) classes such that the properties listed in Remark
112 are satisfied, automatically satisfies L5 (V) = t. It turns out, that this is not sufficient as the
following example shows

Example 115 Let G = (Vg, Eg, mg) be a hexagon, i.e. Vg = {ap,...,a5}, Eg = {eo,...,e5} and
my(ei) = (@is A(it1)mod) ¥V 7 € {0,...,5}. Then Lo(Vg) = 6. Now define the following classes

aop :={ao, a3}, a1 :={a1,a4}, a2 :={az,as}

It is easy to verify that each class a;, i € {0, ..,2} satisfies the following properties for any bt € a;
and \,\ € Ny

1. Nx34m(b) N Nyrg (V) =0 for m,m' € N such that 1 < m,m' <3 and m # m/.
2. Nysim(b)Na; =0 for m € N such that 1 < m < 3.

3. 37€{0,.2}: U Nagym(b) =a; for m € N such that 1 <m < 3.

bea;

Moreover, we have ¥V X € Ny

@ = ) Nas(b)
bea;
This could suggest that L (V) = 3 which is, as we know, not the case. The missing property that
would force Lo(Vg) = 3 is provided by the following theorem concerning closed paths on the graph
G:

Theorem 116 Let G = (Vg, Eg, 7g) be a strongly connected digraph such that Vi is nontrivial
and Vg = {a1,...,an} a numeration of the vertices. Furthermore, let U = {a;,,...,a; } C Vg be
the subset of vertices such that there is a closed path a;; ~;y ai; contained in the graph G. Then
the loop number Lo(Vg) satisfies

Lo(Va) = ged(l(1), ..., (k)
Proof. See the proof of Theorem 4.13 in [23]. =

Remark 117 Let G = (Vg, Eq, mg) be a strongly connected digraph such that Vg is nontrivial.
Assume that the vertex set Vi can be partitioned into t (nonempty) classes

ap, at, ..., at—1 € Vg

such that each class a;, i € {0,..,t — 1} satisfies the following properties for any b,b' € a; and
AN €N

1. Nxt4m(D) W Nyt (V) = 0 for m,m' € N such that 1 <m,m’ <t and m # m/'.

2. Nytym(b) Na; =0 for m € N such that 1 <m < t.
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2.5. The cycle structure of monomial systems with strongly connected dependency graph

3.35€{0,.t =1} : U Natgm(b) =a; for m € N such that 1 <m < t.
bea;

Moreover, we assume that ¥ X € Ny

@ = | Na(d)

bea;
Then it follows that the length | of any closed path must satisfy
da eN:l=aopt

Now letU := {a;,, ...,a;, } C Vi be the subset of vertices such that there is a closed path Qi; ~(5) @i
contained in the graph G. Then by the previous Theorem we have

Le(Ve) = ged(1(1), ..., U(k)) = ged(aqyt, -, quyt) = tged(ayy, - Qury)

As a consequence, for Lo(Va) =t to hold, the condition

ged(ay(rys - oqry) =1

must be fulfilled. This is precisely the additional property needed in the previous Example, which
failed to be satisfied since in the Example the length of any closed path was 6 = 2-3. The condition
ged(ayys - qqiy) = 1, i.e. the numbers Qy(1), - k) € N are relatively prime, is in particular
always fulfilled if one of the oy is equal to 1.

We finish this Subsection reviewing one Theorem proved by [23]:

Theorem 118 Let G = (Vg, Eg, 7g) be a strongly connected digraph such that Vi is nontrivial
and Vg = {aa, ...,an} a numeration of its vertices. Furthermore, let t := L;(Vg) > 0 be its loop
number and a = {ai,, ..., a;, } € Vg an arbitrary loop equivalence class of Vi with cardinality r =
la|. Then for any vertex a;, € a there is an m € N such that there is a sequence @i, ~>(mix) @i
of length (m+ M)tV j € {l,...,r} and A € N.

Proof. See the proof of Corollary 4.8 in [23]. =

2.5.2 The cycle structure of Boolean monomial systems with strongly con-
nected dependency graph

We start this subsection with two statements about general (not only Boolean) monomial sys-
tems over Fy. These two simple results have interesting consequences for Boolean and (g —1)-fold
redundant monomial systems. For pedagogic reasons we devote the rest of this subsection to the
analysis of the cycle structure of Boolean monomial systems with strongly connected dependency
graph. In particular, we show that for Boolean monomial systems with strongly connected depen-
dency graph, the loop number and the period number coincide. Moreover, we provide alternative
proofs of results presented in [23] and complement those results with a theorem on the number of
cyclic trajectories of a given length (Theorem 132). In the next subsection we perform the more
general analysis of (¢ — 1)-fold redundant monomial systems with strongly connected dependency
graph, obtaining analogical results. Since Boolean systems are trivial examples of (¢ — 1)-fold
redundant systems, the results of this subsection are actually a consequence of the more general
theorems proved in the next subsection.

Lemma 119 Let Fy be a finite field, f € MFE}}(Fy) a coupled monomial dynamical system and
Gy = (Vy, Ef, my) its dependency graph. Furthermore, let Gy be strongly connected with loop
number t := Lg,(Vy) > 1. Then there is an o € N such that the period number T of f satisfies

T = Oz,CGf(Vf)
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2.5. The cycle structure of monomial systems with strongly connected dependency graph

Proof. Let V; = {a1,...,a,} be the numeration of the vertices and F := ¥~!(f) be the corre-
sponding matrix of f. According to the definition of period number, there is an m € N such that

for every s > m it holds
fer)\T:fsv)\eN

Now, applying the isomorphism ¥~! we have by Remark 59
FERT) — )y )\ ¢ N,s >m

In particular we have
FED) = pG) vy g >m

which is equivalent to (see Remark 47)
mredy(F*T1) = mred,(F*) ¥ s > m
By Remark 72 and 2. of Lemma 39 we can conclude that for every sequence of length s > m
a; ~s aj

contained in the graph Gy, (and there is certainly one such sequence for some s > m, since F*
cannot be the zero matrix), there must be a sequence

A; ~ 54T G
of length s + T as well. Now, by Lemma 105, we have
T =alg,(Vy) with o € N
[ ]
Example 120 Let f € MF5(F5) be the monomial system defined by

f : Fi-F}

.f —> f(f) = ($2,$1$3,x1)

It is easy to verify that the dependency graph of f is strongly connected with loop number equal
to 1. However, the phase space of f displays closed paths of length 7 and 14, therefore, the period
number T is equal to 14.

Definition 121 Let F, be a finite field, f € MF}}(F,) a monomial dynamical system and s € N a
natural number. We denote the set of solutions in ¥y of the equation f*(z) = = by Vg, (f*(z) — ).

Definition 122 Let m € N be a natural number. We denote with
D(m) :={d € N: d divides m}
the set of all positive divisors of m.

Corollary 123 Let Fy be a finite field, f € ME}(F,) a coupled monomial dynamical system and
Gy = (Vy, Ef, my) its dependency graph. Furthermore, let Gy be strongly connected with loop
number t := L, (Vy) > 1. In addition, let T' be the period number of f, s € D(T) and « as in the
previous Lemma. Then it holds

Ve, (f*(z) — 2) € W, (f*(2) — @)
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2.5. The cycle structure of monomial systems with strongly connected dependency graph

Proof. Since s € D(T), 3 8 € N: T = fs. Thus,
fﬁs — fT — fat
As a consequence, we have
Ve, (f*(x) — ) € Vi, (f7(2) — 2) = Vi, (£ () — )
[ ]

Lemma 124 Let Fo be the finite field with two elements, f € MF(F3) a Boolean coupled
monomial dynamical system and Gy = (Vy, Ey, my) its dependency graph. Furthermore, let G ¢
be strongly connected with loop number t := L, (Vy) > 1 and Vy = {ay, ...,an} the numeration of
the vertices. In addition, let ap,...,a;—1 C Vy be the t loop equivalence classes ordered according
to (2.19) and Cy,...,Ci—1 C {1,...,n} the partition of the set {1,...,n} induced by the partition
ag, ..., a—1 C Vy of V¢, d.e. VE€{0,....,t =1} |Cy| = |ax| and aj € ay, ¥ j € Cy. Then there is an
m € N such that V A\ € N

fi(m_'_)\)t(l‘) = H x; Ve Cig, k=0,...,t—1
JECK
Proof. Let F := ¥~1(f) be the corresponding matrix of f. Let k € {0,...,t — 1}. By Remark 112
it holds V A € N
ar = [ Na(b)
beay,

In addition, by Theorem 118 3 my, € N such that for any pair of vertices a;,a; € ar and V A € N
there is a sequence a; ~>(;, +a) @; of length (my + A)t. Let m := max(mo, ...,my—1). From these
facts we can conclude, that the matrix F(™+2? has the following properties Vi € Cy, k = 1,...,t—1

and VA e N
(F(m+>\)t)ij =0Vje{l, ., n}\Cyk

and
(PN, £0Y 1 e Oy
By Remark 72 and 2. of Lemma 39 it follows Vi e C;, k=1,...,t —land VA €N

(FmHh, =0V j e {1,..,n}\Cy

and
(F N, =1V 1 e Gy

Now, applying the isomorphism ¥ we have (see Remark 59)

(f(er)\)t)Z(x) _ H x; Vie Ck:

JECK

Theorem 125 Let Fy be the finite field with two elements, f € MFE(F2) a Boolean coupled
monomial dynamical system and Gy = (Vy, Ey, 7y) its dependency graph. Furthermore, let G ¢
be strongly connected with loop number t == LG, (Vy) > 1 and s € N a natural number. In
addition, let ag,...,a;—1 C V} be the t loop equivalence classes ordered according to (2.19) and
Co, ..., Ci—1 C {1,...,n} the partition of the set {1,...,n} induced by the partition ag, ...,a,—1 C Vf
of Vi. Then any point § € F§ showing s-periodicity under f, i.e. f*(§) =&, satisfies the following
property
§i=&Vi,j€C, k=0,..,t—-1
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Proof. Let m € N be as in Lemma 124 and u,v € N such that ut = vs. (This is always possible
due to the existence of the lem(s,t).) Now choose @ € N such that au > m. Then we have
fout = fovs and by Lemma 124

feo@)= [ 2 vi€Cr k=0,..,t—1
JECK
In particular, for the s-periodic point & it holds for each k € {0,...,t — 1}
=@ ==& vie
JEC
As a consequence

Theorem 126 Let Fy be the finite field with two elements, f € MF(F2) a Boolean coupled
monomial dynamical system and Gy = (Vy, Ey, 7y) its dependency graph. Furthermore, let Gy be
strongly connected with loop number t := Lg,(Vy) > 1. Then there is an m € N such thatV A € N

Vi, (fi(x) — 2) = Vi, (f ™M (2) — z)

Proof. Let V; = {ay,...,a,} be the numeration of the vertices and F := ¥~1(f) be the corre-
sponding matrix of f. In addition, let ao,...,a;—1 C V be the t loop equivalence classes ordered
according to (2.19) and Cy, ...,Cy—1 C {1,...,n} the partition of the set {1,...,n} induced by the
partition ao,...,a;—1 C Vy of Vy,ie. V k€ {0,....,t — 1} |Cx| = |ax| and a; € a3, V j € Cj. By
Remark 112 it holds

ar = | M)

From this fact we can conclude, that the matrix F! has the following properties V i € Cf, k =
1,..,t—1
(Ft)ij =0V jE {1, ,n}\Ck

and
dle C&;:(l?ﬁil7é0

By Remark 72 and 2. of Lemma 39 it follows Vi€ Cr, k=1,...,t — 1
(F't)ij =0 V] € {1, ,n}\C’k
and
JleCy: (Fhy=1

As before, we can conclude

(i) = [ 2§V vieo

JE€CK

where ¢; are nonzero functions

€:Cr—{0,1} CN
Now let m € N be as in Lemma 124. Then by Lemma 124 we have V A € N

@y = [ ey VieCr k=0t -1
JECy
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From the structure of the functions f(+* and f! and Theorem 125 it is clear that any solution
¢ € F§ of the equation V(1) = 2 also solves the equation f!(x) = z. In other words

Vi, (f" V! (@) — 2) C Ve, (f'(2) — @)

The inclusion
Vi, (f'(2) = 2) € Vie, (F" V! (@) — )
follows from the fact f(m+Vt = (f1)(m+A)_ The claim follows. m

Corollary 127 Let Fy be the finite field with two elements, f € MEF)}(F2) a Boolean coupled
monomial dynamical system and Gy = (Vy, Ey, my) its dependency graph. Furthermore, let Gy be
strongly connected with loop number ¢ := L, (V¢) > 1. In addition, let T be the period number of
f and s € D(T). If the phase space of f contains a cycle of length s, then s must divide Lg, (V7).

Proof. By Corollary 123 there is an o € N such that
Ve, (f*(2) — 2) C Vi, (' (2) — ) (2.20)

Now let m € N be as in the previous Theorem. If o > m set 8 := 1 otherwise choose § € N such
that a8 > m. Then we have

Vi, (f*(2) — ) C Vi, (f*7 () — ) (2.21)
and from (2.20) and (2.21) and by the previous Theorem it follows
Ve, (f(2) — @) C Vi, (f'(2) — @)

If the phase space of f contains a cycle of length s, i.e. if there are s different points &g, ..., ,_; €
F3 with

f(&) = f(z’+1)mods
then from &, ...,&,_1 € Vi, (f*(x) — z) C Vi, (f(x) — z) it follows that s < ¢ and s divides t. ®

Lemma 128 Let Fo be the finite field with two elements, f € MF(F3) a Boolean coupled
monomial dynamical system and Gy = (Vy, Ey, my) its dependency graph. Furthermore, let G ¢
be strongly connected with loop number t := EGf(Vf) > 1 and s € N a natural number such that
s < t. In addition, let v € N be such that lem(s,t) = rs. Then the equation f*(x) = x has exactly
27 solutions in F3.

Proof. Let V; = {ay,...,a,} be the numeration of the vertices and F := ¥~1(f) be the corre-
sponding matrix of f. In addition, let ao,...,a;—1 C Vy be the t loop equivalence classes ordered
according to (2.19) and Cy, ...,Ci—1 C {1,...,n} the partition of the set {1,...,n} induced by the
partition ao, ...,a;—1 C Vy of V. We consider two cases. First, assume lem(s,t) < st,i.e. 3r € N
with 7 < ¢ such that lem(s,t) = rs. Then, by Remark 114 the sets ag, ..., a;—1 can be arranged in
q := t/r families
5075875287 ~--aarsmodt
ai, al+sa al+285 e a(1+rs) modt

QAg—1; Gg—1+s;, Ag—1+42s5 --+s &(g—14rs) mod t

where the vertices in a;4s and aj425 are connected by sequences of length At 4 s. Moreover, no
shorter family of this type can be constructed. From these facts we can conclude, that the matrix
F* has the following properties Vi € Cy, k = u,u+ s,u+2s,....,u+ (r —1)s,u=0,...,q — 1

(Fs)ij =0Vje {17 ‘--7n}\C(k+s)modt
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2.5. The cycle structure of monomial systems with strongly connected dependency graph

and
31 € Cligsymodr : (F)a # 0
By Remark 72 and 2. of Lemma 39 it follows Vi€ Cy, k=1,...,t — 1

(F'S)ij =0Vje {1, ,n}\C’(k+s) mod #

and
1€ Cligsymodt : (FF)a =1

Now, applying the isomorphism ¥ we have (see Remark 59)

@ = ] 9 vica

jec(kJrs) mod t

where €; are nonzero functions
€ : C(k—i—s) modt — {07 1} CN

As a consequence, for every fixed u € {0,...,q — 1} and k = u,u + s,u + 2s,...,u + (r — 1)s any
solution £ € Fy of the equation f*(z) = z satisfies

&= |1 QM)VieCk (2.22)

jGC(kJrs) mod t

By Theorem 125 we also know that
=& Vi,leCy, k=u,u+s,u+2s,...,u+ (r—1)s (2.23)

Now, if §; = 1V i € Cy, by (2.22) and (2.23), it must follow, that § = 1V 1 € C(y45)mod¢- The same
argument applied 7 — 1 times lets us conclude {; =1V i € Ck, k = u,u+s,u+2s,...,u+ (r—1)s.
If, on the other hand, §; = 0 V i € C, by (2.22) we have that 3 v € C(y4 5 mod¢ : § = 0 and by
(2.23) § = 0V I € Cryys)mod¢- The same argument applied r — 1 times lets us conclude §; = 0
ViéeCk k=uu+s,u+2s,...,u+ (r—1)s. Summarizing, since every u € {0, ...,q — 1} represents
one of the above ¢ families, there are exactly 29 = 92+ solutions of ff(z) =z in F3.

The second case is when lem(s, t) = ts. Here, by Remark 114 the sets ay, ..., a;—1 can be arranged
in one single family

6075875287 ---aatsmodt

The same argument as used above for a fixed value of u yields that, in this case, the only solutions

of fé(z) = z in F§ are (1,...,1),(0,...,0) € F5. Therefore, the number of solutions is equal to
t

2=2t. m

Corollary 129 Let Fy be the finite field with two elements, f € MF}(F3) a Boolean coupled
monomial dynamical system and Gy = (Vy, Ey, my) its dependency graph. Furthermore, let G ¢
be strongly connected with loop number t := Lg, (V¥) > 1 and s € N a natural number such that
s € D(t). Then the equation f*(x) = x has exactly 2° solutions in F3.

Proof. Since s divides ¢, 3 r € N: ¢t = rs. Thus lem(¢,s) =t = rs and ¢/r = s. The claim follows
from the previous Lemma. m

Remark 130 In particular, if {1,dy,...,dy,t} C N is the set of divisors of t in ascending or-
der, then the number of solutions of f*(z) = z in F§ grows monotonically from 2! to 2t for
s =1,d1,...,dy,t. More generally, if s < t, then lcm(s,t) > s and thus lem(s,t) = rs with r > 2.
As a consequence of the previous Lemma, for s € {1,...,t} the number of solutions in ¥4y of the
equation f*(x) = x takes its maximal value for s = t.
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2.5. The cycle structure of monomial systems with strongly connected dependency graph

The next theorem shows that in the Boolean case, period number and loop number coincide,
provided the dependency graph is strongly connected:

Theorem 131 Let Fy be the finite field with two elements, f € MF](Fz2) a Boolean coupled
monomial dynamical system and Gy = (Vy, Ey, my) its dependency graph. Furthermore, let Gy
be strongly connected with loop number t := Lg,(Vy) > 1. Then the period number T of f satisfies

T = EGf (Vf)
Moreover, the phase space of f contains cycles of all lengths s € D(T).

Proof. By Corollary 127 the length s of any cycle displayed in the phase space of f divides %, in
particular, it holds s < ¢. Now let {dg := 1,dy, ..., dy,dyt1 := t} C N be the set of divisors of ¢ in
ascending order. By Remark 130 we know that

Voo (F() = )| > |Via (f(2) = )| Vi € {Lyut 1} 0>

Therefore, the phase space of f indeed contains cycles of length d; Vi € {1, ...,u+1}. Summarizing
we can say that the the phase space of f only contains cycles of length d; Vi € {1,...,u+1}. From
the definition we know 7" = lem(1,dy, ..., dy, t) and thus

T= EGf(Vf)
|

Theorem 132 (and Definition) Let Fy be the finite field with two elements, f € MFE}(F2)
a Boolean coupled monomial dynamical system and Gy = (Vy, Ey, my) its dependency graph.
Furthermore, let Gy be strongly connected with loop number t := Lg, (V¢) > 1. In addition, let
s € N be a natural number and denote by Zs the number of cycles of length s displayed by the
phase space of f. Then it holds for any d € N

29— ¥z
Zg={ —E—ifde D)
0 ifd ¢ D(t)

Proof. The claim follows immediately from Theorem 131 and Corollary 129. m

Remark 133 In particular, if the loop number t = Lg, (V¥) is a prime number, then the phase
space of f only displays cycles of length t and 1 (fized points). More precisely

2t —2
Zy = ;

and
71 =2

2.5.3 The cycle structure of (¢ — 1)-fold redundant monomial systems

In this subsection we study the cycle structure of (¢ — 1)-fold redundant monomial systems
with strongly connected dependency graph. For this purpose, let’s recall the definition:

Definition 134 Let ¥y be a finite field, f € MEF}}(F,) a monomial dynamical system and
Gy = (Vy, Ef, my) its dependency graph. f is called a (¢ — 1)-fold redundant monomial sys-
tem if there is an N € N such that for any pair a,b € V; with a recurrently connected to b, the
following holds:

Vm >N 3 agm € Ny : Sm(a’a b) = Oéabm(q - 1)
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2.5. The cycle structure of monomial systems with strongly connected dependency graph

Remark 135 Note that any Boolean monomial dynamical system f € MFE"(F3) is (2 — 1)-fold
redundant.

Lemma 136 Let F, be a finite field, f € MF}(Fy) a (¢ — 1)-fold redundant coupled monomial
dynamical system and Gy = (Vy, Ey, m¢) its dependency graph. Furthermore, let G be strongly
connected with loop number t := Lg,(Vy) > 1 and Vi = {ax, ...,an} the numeration of the vertices.
In addition, let ay,...,ai—1 C V be the t loop equivalence classes ordered according to (2.19) and
Co, ...,Ci—1 C {1,...,n} the partition of the set {1,...,n} induced by the partition ag, ...,a;—1 C Vf
of Vy. Then there is an m € N such that V A € N

fi(m+k)t(:c) = H x?_l VieCy, k=0,..,t—1

J€CkK
Proof. Let F := U~!(f) be the corresponding matrix of f. Let k € {0, ..., — 1}. By Remark 112
it holds V A ¢ N

ar = | Nau(d)
beay
In addition, by Theorem 118 3 m;, € N such that for any pair of vertices a;,a; € ar and V A € N
there is a sequence a; ~(m, 1) a; of length (my + \)t. Let m’ := max(mo,...,m¢—1) and N € N
as in the previous Definition. Now choose v € N such that (m' + )t > N and set m :=m’ + .
From this information we can conclude, that the matrix F(™tM)t has the following properties
VieC,k=1,..,t—land VA €N

(F(m+)\)t)ij =0 V] S {1, ceey n}\C’k

and
3 Qigminy € Nt (FU VY0 = agy iy (@ — 1)V L€ Cy

By Remark 72 and 2. and 4. of Lemma 39 it follows Vi€ Cy, k=1,...,t —l and VA € N

(F N, =0V j € {1,..,n}\Ck
and

(Fmth =g -1V 1€y

Now, applying the isomorphism ¥ we have (see Remark 59)

(f @) = J] 27 Vie G

JeCk

Theorem 137 Let F, be a finite field, f € ME}}(F,) a (q— 1)-fold redundant coupled monomial
dynamical system and Gy = (Vy, Ey, m¢) its dependency graph. Furthermore, let G be strongly
connected with loop number t := Lg,(Vy) > 1 and s € N a natural number. In addition, let
ag, .., at—1 C Vy be the t loop equivalence classes ordered according to (2.19) and Cy, ...,Ci—1 C
{1,...,n} the partition of the set {1,...,n} induced by the partition ay,...,a;—1 C Vy of Vy. Then
any point § € Fy showing s-periodicity under f, i.e. f5(&) =&, satisfies the following property

& =1VielCporé;=0VieCy

Proof. Let m € N be as in Lemma 136 and u,v € N such that ut = vs. (This is always possible
due to the existence of the lem(s,t).) Now choose a € N such that au > m. Then we have
aut — favs and by Lemma 136

ws(p) =[] 24" VieCr, k=0,.,t—1
J€Ck
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2.5. The cycle structure of monomial systems with strongly connected dependency graph

In particular, for the s-periodic point ¢ it holds for each k € {0,...,t — 1}
PO =@ == [ Viet
JECk

In addition, according to eq. (2.3), 247! = 1V z € F,\{0}. Therefore, it holds for each fixed
ke{0,..,t—1}
&=1VieCrorg,=0v1ieCy

|
Theorem 138 Let F, be a finite field, f € ME}}(F,) a (¢ — 1)-fold redundant coupled monomial

dynamical system and Gy = (Vy, Ey, m¢) its dependency graph. Furthermore, let G be strongly
connected with loop number t := L, (Vy) > 1. Then there is an m € N such that V A € N

Ve, (fi(z) — 2) = Vi, (f" ™M (2) — 2)

Proof. Let V; = {ay,...,a,} be the numeration of the vertices and F := ¥~1(f) be the corre-
sponding matrix of f. In addition, let ao,...,a;—1 C Vy be the t loop equivalence classes ordered
according to (2.19) and Cy, ...,Ci—1 C {1,...,n} the partition of the set {1,...,n} induced by the
partition ao, ...,a;—1 C Vy of Vy. By Remark 112 it holds

ar = | Ni(b)

beay,

From this fact we can conclude, that the matrix F* has the following properties V i € Cy, k =
Lt —1
(F");j =0V je{l,..,n}\Ck

and
HZGCkI(Ft)il#O

By Remark 72 and 2. of Lemma 39 it follows Vie C,, k=1,...,t — 1
(F;; =0V j€{l,...,n}\Cy

and
J1eCy: (FYg#0

As before, we can conclude '
(i) = J[ o5V viec

JECK

where €; are nonzero functions
€:Cr—{0,1,..¢ —1} CN
Now let m € N be as in Lemma 136. Then by Lemma 136 we have V A € N

@y = [T et vieCy, k=0,.,t—1
jeC

By Theorem 137 any solution £ € Fy of the equation f (MmNt () = z satisfies

g =1VicChor&=0YieCy
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2.5. The cycle structure of monomial systems with strongly connected dependency graph

Now, from the structure of the function f* it is clear that any solution & € Fy of the equation
fmHNE (1) = 2 also solves the equation f!(x) = z. In other words

Vi, (f™ VN (2) — 2) C Ve, (fi(2) — o)

The inclusion
Ve, (fi(z) — 2) C Vi, (f'" ™M (2) — 2)

follows from the fact f(m+Vt = (f1)(m+A)_ The claim follows. m

Corollary 139 Let F, be a finite field, f € MF}(F,) a (q—1)-fold redundant coupled monomial
dynamical system and Gy = (Vy, Ey, wy) its dependency graph. Furthermore, let Gy be strongly
connected with loop number t := Lg, (V) > 1. In addition, let T' be the period number of f and
s € D(T). If the phase space of f contains a cycle of length s, then s must divide L, (Vy).

Proof. By Corollary 123 there is an « € N such that
Ve, (f*(z) —2) € Vg, (f*(2) - 2) (2.24)

Now let m € N be as in the previous Theorem. If oo > m set 8 := 1 otherwise choose § € N such
that a8 > m. Then we have

Ve, (/@) — ) € Vi, (" (2) — ) (2.25)

and from (2.24) and (2.25) and by the previous Theorem it follows

Ve, (f*(z) —z) € Vr, (f'(z) — )

If the phase space of f contains a cycle of length s, i.e. if there are s different points &g, ..., ,_; €
Fy with

f(&) = £(i+1) mod s
then from &g, ...,¢, 1 € Vg, (f*(z) — ) C Vg, (f'(z) — x) it follows that s < ¢ and s divides ¢t. m

Lemma 140 Let F, be a finite field, f € MF}(F,) a (¢ — 1)-fold redundant coupled monomial
dynamical system and Gy = (Vy, Ey, wy) its dependency graph. Furthermore, let Gy be strongly
connected with loop number t == Lg,(Vy) > 1 and s € N a natural number such that s < t.
In addition, let r € N be such that lem(s,t) = rs. Then the equation f%(x) = x has exactly 27
solutions in F5.

Proof. Let V; = {ay,...,a,} be the numeration of the vertices and F := ¥~1(f) be the corre-
sponding matrix of f. In addition, let ao,...,a;—1 C V be the t loop equivalence classes ordered
according to (2.19) and Cy, ...,Ci—1 C {1,...,n} the partition of the set {1,...,n} induced by the
partition ao, ...,a;—1 C Vy of V. We consider two cases. First, assume lem(s,t) < st, i.e. 3r €N
with r < t such that lem(s,t) = rs. Then, by Remark 114 the sets ay, ..., a;—1 can be arranged in
v = t/r families
60,63,625, '--aarsmodt
ai, al+sa al+285 e a(1+rs) modt

Ay—1, Ay—1+4s, Av—142s5 -++) A(y—1+rs) mod ¢

where the vertices in a;4s and @425 are connected by sequences of length At 4+ s. Moreover, no
shorter family of this type can be constructed. From these facts we can conclude, that the matrix
F* has the following properties V i € Ci, k = u,u + s,u+2s,...,u+ (r —1)s, u =0,...,v — 1

(Fs)ij =0Vje {17 ‘--7n}\C(k+s)modt
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2.5. The cycle structure of monomial systems with strongly connected dependency graph

and
31 € Cligsymodr : (F)a # 0
By Remark 72 and 2. of Lemma 39 it follows Vi€ Cp, k=1,...,t — 1

(F.s)ij =0Vje {17 7n}\C(k+s) mod ¢

and
31 € Cligsymodr * (F%)i #0
Now, applying the isomorphism ¥ we have (see Remark 59)

()= ]I a:j-i(j) Viedl

jEC(k+s) mod t

where €; are nonzero functions
€ - C(k—l—s)modt —{0,1,..¢g =1} CN

As a consequence, for every fixed u € {0,...,v — 1} and k = u,u + s,u + 2s,...,u + (r — 1)s any
solution £ € F¥ of the equation f*(z) = z satisfies

&= ] &YVviea (2.26)

jGC(kJrs) mod t

By Theorem 137 we also know that
&=1VieCror§;=0VieCy, k=u,u+s,u+2s,...,u+(r—1)s (2.27)

Now, if §; = 1V i € Cy, by (2.26) and (2.27), it must follow, that §; = 1V € C(y45) moa+- The same
argument applied 7 — 1 times lets us conclude {; =1V i € Ck, k = u,u+s,u+2s,...,u+ (r—1)s.
If, on the other hand, §; = 0 V i € C, by (2.26) we have that 3 v € C(y45)mod¢ : § = 0 and by
(2.27) §, =0V I € Clyqs)modt- The same argument applied r — 1 times lets us conclude §; =0V
i€ Ck, k=u,u+s,u+2s,..,u+ (r—1)s. Summarizing, since every u € {0,...,v — 1} represents
one of the above v families, there are exactly 2¥ = 2+ solutions of f*(x) =z in Fy.

The second case is when lem(s, t) = ts. Here, by Remark 114 the sets ay, ..., a;—1 can be arranged
in one single family

aQ, sy A2sy -++y Atsmod t

The same argument as used above for a fixed value of u yields that, in this case, the only solutions
of f*(z) = x in Fy are (1,...,1),(0,...,0) € Fy. Therefore, the number of solutions is equal to

2=92 m

Corollary 141 Let F, be a finite field, f € MF}(F,) a (¢ —1)-fold redundant coupled monomial
dynamical system and Gy = (Vy, Ey, m¢) its dependency graph. Furthermore, let G be strongly
connected with loop number t == Lg,(Vy) > 1 and s € N a natural number such that s € D(t).
Then the equation f°(x) = x has evactly 2° solutions in Fy.

Proof. Since s divides ¢, 37 € N: ¢t = rs. Thus lem(¢,s) =t = rs and t/r = s. The claim follows
from the previous Lemma. m

Remark 142 In particular, if {1,dy,...,dy,t} C N is the set of divisors of t in ascending or-
der, then the number of solutions of f*(x) = = in Fy grows monotonically from 21 to 2t for
s =1,d1,...,dy,t. More generally, if s < t, then lcm(s,t) > s and thus lem(s,t) = rs with r > 2.
As a consequence of the previous Lemma, for s € {1,...,t} the number of solutions in Fy of the
equation f*(x) = x takes its maximal value for s = t.
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2.5. The cycle structure of monomial systems with strongly connected dependency graph

The next theorem shows that in the case of a (¢ —1)-fold redundant coupled monomial dynam-
ical system, period number and loop number coincide, provided the dependency graph is strongly
connected:

Theorem 143 Let ¥, be a finite field, f € ME}}(F,) a (¢ — 1)-fold redundant coupled monomial
dynamical system and Gy = (Vy, Ey, wy) its dependency graph. Furthermore, let Gy be strongly
connected with loop number t := L, (V) > 1. Then the period number T' of f satisfies

T= EGf (Vf)
Moreover, the phase space of f contains cycles of all lengths s € D(T).

Proof. By Corollary 139 the length s of any cycle displayed in the phase space of f divides %, in
particular, it holds s < ¢. Now let {dy := 1,d}, ..., dy, dy+1 := t} C N be the set of divisors of ¢ in
ascending order. By Remark 142 we know that

Vi, (f%(x) —:n)‘ > ‘VFQ(fdj(SB) —z)| Vi, je{l,..,u+1}:i>j

Therefore, the phase space of f indeed contains cycles of length d; Vi € {1, ...,u+1}. Summarizing
we can say that the the phase space of f only contains cycles of length d; Vi € {1,...,u+1}. From
the definition we know T = lem(1,dy, ..., d,, t) and thus

T = EG’f(Vf)
|

Theorem 144 (and Definition) Let F be a finite field, f € MF}'(F,) a (¢ —1)-fold redundant
coupled monomial dynamical system and Gy = (Vy, Ey, my) its dependency graph. Furthermore,
let Gy be strongly connected with loop number t := EGf(Vf) > 1. In addition, let s € N be a
natural number and denote by Zs the number of cycles of length s displayed by the phase space of
f. Then it holds for any d € N

29— ¥z
Zy={ —Z°ifde D)
0 ifd ¢ D(t)

Proof. The claim follows immediately from Theorem 143 and Corollary 141. m

Remark 145 In particular, if the loop number t = Lg, (Vy) is a prime number, then the phase
space of f only displays cycles of length t and 1 (fized points). More precisely

t_
Zt:2 2
t

and
71 =2

Example 146 Consider the system f € MF$(F5) defined as

fi(z) = T2
fa(z) T3
f3(z) 4
fa(z) :
fs(z) 5
f6(33) 1
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2.5. The cycle structure of monomial systems with strongly connected dependency graph

It can be easily shown, that the dependency graph Gy = (Vy, Ef, m¢) of f is strongly connected
with loop number Lg, (V§) = 6. It is also clear that f is 4-fold redundant. As a consequence and
by Theorem 144, the period number of f is equal to 6 and the phase space of f displays 9 cycles
of length 6, 2 cycles of length 3, 1 cycle of length 2 and 2 fixed points.

Theorem 147 Let Fy be a finite field, f € MF]'(Fy) a coupled monomial dynamical system and
Gy = (Vy, Ey, my) its dependency graph. Furthermore, let Gy be strongly connected with loop
number t := L, (Vy) > 1. If for arbitrary b, c € Vy it holds

s1(b,c) #0 = s1(b,c) =q—1
Then the period number T of f satisfies
T =L, (V)
and the phase space of f contains cycles of all lengths s € D(T).

Proof. Let Vy = {ai,...,a,} be the numeration of the vertices. Consider two vertices a;,a; € Vf
(a; is recurrently connected to aj). Then, for any r € N such that there is a sequence a; ~+, a;
there are (¢ — 1)" different copies of it and we can conclude 3 o, € N such that

sr(ai,a;) = agjr(q — 1)

Consequently, f is a (¢ — 1)-fold redundant coupled monomial dynamical system and the claim
follows from Theorem 143. m

Example 148 Let F be a finite field and consider the system f € MF77(Fq) defined as

A+ =af"
fox) © =aft
f3() =]
falw) © =af!
f5(x) vy !
folw) + =af!
frl@) =i taf !

It can be easily shown, that the dependency graph Gy = (Vy, Ef, mf) of f is strongly connected
with loop number Lg,(Vy) = 3. Moreover, f satisfies the condition of the previous theorem. As a
consequence and by Theorem 144, the period number of f is equal to 3 and the phase space of f
displays two cycles of length 3 and two fixed points.

Remark 149 The result of the previous theorem is not surprising, since such a monomial system
immediately maps any point § € Fy into a point f(§) € Fy.

The study of the cycle structure of more general classes of monomial systems (with or without
strongly connected dependency graph) remains the subject of mathematical research. Now, we
leave this exciting area to turn our attention to the study of monomial control systems in the next
chapter.
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Chapter 3

Monomial control systems over a

finite field

In the previous chapter, for monomial dynamical systems over a finite field, criteria were
presented by means of which the period number as well as the cycle structure of the phase space
can be determined. As commonly in mathematics, concessions have to be made in order to
obtain strong propositions. Our concessions affect the cardinality of the finite field used and/or
the topology of the dependency graph. Therefore, the class of monomial control systems (to be
defined below) that we will study in depth will be constrained regarding the underlying finite field
and/or the topology of the dependency graph.

When dealing with non-autonomous control systems, control inputs are at one’s disposal which
can be used for controlling the state evolution. Furthermore, equipped with knowledge about
the current state — provided by measurement, for example — the input can be related to an
appropriate function of the state, a so-called (static) control law, in order to synthesize desired
system properties in a feedback control loop. By virtue of a control law the closed-loop system is
rendered autonomous.

Due to the fact that a monomial control system remains monomial under monomial state feed-
back, the resulting autonomous closed-loop system can be analyzed with the methods presented
in the previous Chapter. If the purpose of control is to guarantee certain closed-loop properties
then a natural question is to ask for criteria about the existence of a suitable state feedback, and
subsequently, how this suitable control law can be chosen.

Throughout this chapter, and in contrast to Chapter 1 and Part II of this thesis, we will denote
the elements of the Cartesian product Fy as x € Fy, neglecting the vector arrow.

3.1 General definitions and control theoretic questions studied

Definition 150 Let F; be a finite field, n € N a natural number and m € Ny a nonnegative
integer. A mapping
g:Fy xF'—Fy

is called time invariant monomial control system over Fy if for every i € {1,...,n} there exist two
tuples (Ait, ..., Ain) € Ey and (Bi1, ..., Bim) € E such that

gi(z,u) = 2t gAmy By Bim vy (z ) e F; < F}
Remark 151 In the case m = 0, we have F)' = F) = {()} (the set containing the empty tuple)
and thus Fy x F" = Fp x F) = FI' x {()} = F}. In other words, g is a monomial dynamical
system over Fy. From now on we will refer to a time invariant monomial control system over F,
as monomial control system over Fy.
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3.1. General definitions and control theoretic questions studied

Definition 152 Let X be a nonempty finite set and n,l € N natural numbers. The set of all
functions
foxt— xn

is denoted with F{*(X).

Definition 153 Let F; be a finite field and [,m,n € N natural numbers. Furthermore, let E,
be the exponents semiring of ¥y and M(n x l; E,) the set of n x | matrices with entries in E,.
Consider the map

I i FL(F,) x M(nx ;) — Fj(F,)
(f,A) = Ta(f)

where ' A(f) is defined for every x € Fi' and i € {1,...,n} by

Ta(f)(@)i == f(x) ... fiz)
We denote the mapping I'a(f) € F},(F,) simply Af.

Remark 154 Letl =m, id € F]J'(F,) be the identity map (i.e. idj(x) = x; Vi € {1,...,m}) and
A € M(n x m; Ey) Then the following relationship between the mapping Aid € F}}(F,) and any
f e FJ(F,) holds

Aid(f(r)) = Af(x) Vz € F

Remark 155 Consider the case | = m = mn. For every monomial dynamical system
f € MF*(F,) C F*(F,) with corresponding matriz F := V=1(f) € M(n x n; E,) it holds

Fid = f
On the other hand, given a matriz F' € M(n x n; E,;) we have
“YFid) =

Moreover, the map I' : FJ'(Fy) x M (n xn; Ey) — F'(Fy) is an action of the multiplicative monoid
M(n x n; E;) on the set F}'(F,). It holds namely, that If = fV f € F}'(F,) (which is trivial)
and (A-B)f =A(Bf)Y fe F}(F,), A, B € M(n xn;E,). To see this consider

((A-B)f)i(z) = fl( Y AP f () A Bim

_ H fj (Aj10B1;®..BA;n0By;)

(Azdo Bid);(f(x))
= (Aid)i(Bid(f(z)))
(Aid)i(fB(x))
(A(Bf))i(x)
where id € F}}(F,) is the identity map (i.e. idi(x) = z; Vi € {1,...,n}). (cf. with the proof

of Theorem 57). As a consequence, MF}(Fg) is the orbit in F}}(F,) of id under the monoid
M(n x n; Eq). In particular (see Theorem 57), we have

(F-G)id=F(Gid) = fog

where g € MF}(F,) is another monomial dynamical system with corresponding matric
G :=U"Y(g) € M(n x n; E;). This means that the set MF"(F,) is also an M(n x n; E,)—set.
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3.1. General definitions and control theoretic questions studied

Lemma 156 (and Definition) Let F, be a finite field, n € N a natural number and m € Ny

a nonnegative integer. Furthermore, let id € F((::nnz)) (Fy) be the identity map (i.e. id;(x) = z;

Vie{l,.,n+m})and g: Fy x F' — Fy a monomial control system over Fy. Then there are
matrices A € M(n x n; E;) and B € M(n x m; E;) such that

((A|B)id)(z,u) = g(z,u) V (z,u) € Fy x F"

Where (A|B) € M(n x (n+m); Ey) is the matriz that results by writing A and B side by side.
In this sense we denote g as the monomial control system (A, B) with n state variables and m
control inputs.

Proof. This follows immediately from the previous Definitions. m

Remark 157 (and Definition) If the matrix B € M(n x m; E;) is equal to the zero matriz,
then g is called a control system with no controls. In contrast to linear control systems (see, for
instance, [106], and in the framework of finite fields, [92]), when the input vector u € F* satisfies

u=T1:=(1,..,1)" e F
then no control input is being applied on the system, i.e. the monomial dynamical system over F
o : F;—Fy
z = g(z,T)

satisfies
o(z) = ((A|0)id)(w,u) V (z,u) € Fy x F"

where 0 € M(n x m; E,) stands for the zero matriz.

Definition 158 Let F, be a finite field and n,m € N natural numbers. A monomial feedback
controller is a mapping
f:F; —=F

such that for every i € {1,...,m} there exists a tuple (I, ..., Fin) € E} such that
filx) =at aln vz e Fy

Remark 159 We exclude in the definition of monomial feedback controller the possibility that
one of the functions f; is equal to the zero function. The reason for this is that we want to be able
to use the same formalism developed for monomial dynamical systems in the previous Chapter
(see Remark 31). This convention does not represent an impediment for our goals.

Now we are able to formulate the first control theoretic problem to be addressed in this thesis:

Problem 160 Let F, be a finite field and n,m € N natural numbers. Given a monomial control
system g : Fy x Fi' — Fy with measurable state, design a monomial state feedback controller
[ Fy — Fi' such that the closed-loop system

h FZ—>FZ}

z = gz, f(z))

has a desired period number and cycle structure of its phase space. What properties has g to fulfill
for this task to be accomplished?
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3.2. Controller design for Boolean monomial control systems

Remark 161 Note that every component
hi : Fy—Fgi=1,..n
z = gi(z, f(z))

is a nonzero monic monomial function, i.e. the mapping h : ¥y — ¥y is a monomial dynamical
system over Fy. As a consequence, the results achieved in the previous Chapter can be used to
analyze the dynamical properties of h. Moreover, the following identity holds

h=(A+B-F)id

where F' € M(mxn; E,) is the corresponding matriz of f (see Remark 51), (A, B) are the matrices
in Lemma 156 and id € F}}(F,) (see Corollary 58). To see this, consider the mapping

po F'—Fy

U = g(f, u)

where 1 € Fy. From the definition of g it follows that p € MF} (Fy). Now, since f € MF(Fy),
by Remark 51 we have for the composition po f: Fy — Fy

wo f=(B-F)id

Now its easy to see
h=(A+B-F)id

Besides the results about (¢ — 1)-fold redundant systems, the most significant results proved
in the previous Chapter concern Boolean monomial dynamical systems with a strongly connected
dependency graph. Therefore, in the next Section we will focus on the solution of Problem 160
for Boolean monomial control systems ¢ : F§ x F5* — F4 with the property that the mapping

o : Fy—Fy
z — glz,1)

has a strongly connected dependency graph. Although the above representation
h=(A+B-F)id

of the closed loop system displays a striking structural similarity with linear control systems and
linear feedback laws, our approach will completely differ from the well known "Pole-Assignment"
method, (see, for instance, [106]).

3.2 Controller design for Boolean monomial control systems

3.2.1 The principle of loop number assignment and first general results

One of the most important results of the previous Chapter is Theorem 131, which states that
the loop number of the (strongly connected) dependency graph of a Boolean monomial dynamical
system completely determines the period number of the system and its cycle structure. In light

of the representation
h=(A+B-F)id

of the closed loop system
hi : Fy—Fgi=1..,n
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3.2. Controller design for Boolean monomial control systems

(and assuming that the dependency graph of h is strongly connected) the question arises as to
how the loop number of the dependency graph of A can be modified by different choices of the
matrix F' corresponding to the monomial feedback controller f used. In other words, Theorem
131 tells us that the dynamical properties of h could be engineered through a proper loop number
assignment by means of choosing a suitable matrix F. Of course, the ability to find such an F
will be restricted by the shape of the matrices A and B, as illustrated by the example B = 0, for
which obviously no such F' exists. In order to establish which properties A and B must fulfill to
make the loop number assignment possible via a suitable choice of F, we will start investigating
the variation of the loop number of a strongly connected graph when new directed edges are added
to it:

Lemma 162 Let G = (Vg, Eg, mq) be a strongly connected digraph such that Vg is nontrivial and
t:= La(Vg) > 0 its loop number. Furthermore, let G' = (Vgr, Eqr, ) be a strongly connected
digraph such that Vg = Vg, Eqr 2 Eg and mgr(e) = wg(e) V e € Eg. Then the loop number
t' =L (Ver) = Lo (V) of G must divide the loop number Lo(Va) of G.

Proof. From the definition of loop number it follows immediately
t <t

Let Vg = {ai,...,an} be a numeration of the vertices of G. Furthermore, let U := {a;,, ..., a;, }
Vi be the subset of vertices of Vi such that there is a closed path a;; ~;) a;; contained in the
graph G. By Theorem 116 it holds

Lo(Va) = ged(l(1), ..., (k)
Since the graph G is a subgraph of G’, by Corollary 106 for each j € {1,...,k} 3 o; € N such that
1(5) = ayt’
and thus
t =ged(ant', ..., axt’) =t ged(au, ..., ak)

|
From the representation h = (A + B - F)id it is easy to see that the dependency graph
Gy = (Vy, Ey, m,) of the system (see Remark 157)

o : F;—Fy

z — gz, 1)
is isomorphic to a subgraph Gj of the dependency graph Gj, = (V4, Ep, 7p) of the system h
containing all vertices V},. Moreover, the bijective correspondence between the sets V, and Vj
defines pairs of vertices that correspond to the same variable. In what follows, we won’t make any
distinction between the vertices V, and Vi, and we will see G, as a subgraph of Gj with V, = Vj,.

Having stated that, we are able to clarify what is feasible when it comes to solutions of Problem
160 in view of the available mathematical results and tools:

Theorem 163 Let Fy be the finite field with two elements, n,m € N natural numbers and g :
Fy xF3y' — F5  a Boolean monomial control system such that the dependency graph of the system

o : Fy—Fy

z gz, 1)
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3.2. Controller design for Boolean monomial control systems

is strongly connected. Furthermore, let f : Fiy — F5* be an arbitrary (Boolean) monomial feedback
controller, G, = (V,, Ey, ) the dependency graph of the system o and Gy = (Vi, En, 7) the
dependency graph of the closed loop system

h : Fy—Fy
z = gz, f(z))
Then the loop number Lg, (V) divides the loop number Lg, (Vs ).
Proof. By Lemma 156 there are matrices A € M(n x n; E3) and B € M(n x m; Es) such that
((A|B)id)(z,u) = g(z,u) V (z,u) € Fy x Fy'

Let F € M(m x n; Ey) be the corresponding matrix of f (see Remark 51). By Remark 161 we
know
h=(A+B-F)id

Therefore, the dependency graph G, = (V,, E,, 7,) of the system o is isomorphic to a subgraph

,, of the dependency graph G, = (V},, Ej, mp,) of the system h containing all vertices V3. Since
isomorphic strongly connected graphs must have the same loop number, the claim follows from
the previous Lemma 162. =

Remark 164 The question as to how the loop number of the dependency graph of h can be
modified by different choices of the matriz F (corresponding to the monomial feedback controller
f used) can now be partially answered: It can be only modified to values contained in the set
D(L¢q,(Vy)) (see Definition 122). In particular, if La, (V) is a prime number, it is only possible
to stabilize the system o by making h a fized point system via a suitable choice of a monomial
feedback law. If Lo, (Vy) =1 then Lg, (Vi) = 1 no matter what feedback law is chosen. In the
next section we will formulate one necessary and sufficient conditions on the matrix B for the loop
number Lg, (V) of h to be modified among the possible set of values D(Lq, (Vs)).

3.2.2 Controllability of Boolean strongly dependent monomial control systems

Definition 165 Let F be a finite field and n, m € N natural numbers. A monomial control system
g:Fy xFi — F such that the dependency graph of the system

. n n
o  F;—-F;
z — gz, 1)
is strongly connected is called a strongly dependent monomial control system.

Definition 166 Let ¥, be a finite field, n,m € N natural numbers and g : ¥y x Fi* — Fg a
strongly dependent monomial control system such that the dependency graph G, = (Vy, Es, 75)
of the system

o : F;—Fy
z — g(x,1)
has loop number t := Lg,(Vy) > 1. Furthermore, let f : Fy — F* be an arbitrary monomial

feedback controller and G, (Vhf, Ep,, 7rhf) the dependency graph of the closed loop system

hy FZ—>FZL
r = g(z, f(x))

and t' € D(La,(Vo))\{La, (Vs)} be a divisor of L, (Vy) with t' < Lg,(Vy). The system g is
called controllable to loop number t’ if the loop number £th (W, f) of hy can be forced to take the

value t' (see Theorem 163) by means of choosing a suitable monomial feedback controller f.
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3.2. Controller design for Boolean monomial control systems

Definition 167 Let F; be a finite field, n,m € N natural numbers and g : ¥y x Fi' — Fy a
strongly dependent monomial control system such that the dependency graph G, = (Vy, Ey, 75)
of the system

o FZ — FZ
x — gz, T)
has loop number t := Lg, (Vy) > 1. Furthermore, let f : Fy — FJ' be an arbitrary monomial

feedback controller. The system g is called completely loop number controllable if it is controllable
to loop number t' for any t' € D(Lq, (Vo)) \{La, (Vs)}.

Now we introduce some technical definitions that will help us formulate our theorems about
loop number controllability:

Definition 168 Let G = (Vg, Eg, 7g) be a strongly connected digraph such that Vi is nontrivial.
Furthermore, let a € Vg be a fixed but arbitrary vertex. The directed distance

d(a ~ b) € Ny

from a to any other arbitrary vertex b € Vi is defined as the length of the shortest path connecting
a tob. We set d(a~a):=0V a € Vg. Note that the directed distance is not symmetric.

Definition 169 Let G = (Vi, Eg, 7g) be a strongly connected digraph such that Vi is nontriv-
ial. Furthermore, let t .= Lg(Vg) > 0 be its loop number. Consider a fized but arbitrary loop
equivalence class ¢ C V. The upstream distance from a to any other loop equivalence class d C Vg
is defined as

d(c~d):= I;leiIEl(d(a ~ b))
bed

Note that the upstream distance is not symmetric.
Remark 170 By Remark 112 it holds for every loop equivalence class ¢ C Vg
d(c~1¢)=0
and for two different loop classes E,g Cc Vg
d(@~b) +d(b~ @) = La(Va)

Lemma 171 Let G = (Vg, Eq, mg) be a strongly connected digraph such that Vi is nontrivial.
Furthermore, let t :== La(Va) > 0 be its loop number. Consider three arbitrary loop equivalence
classes a,b,c C Va. Then there is a A € Ny such that

d(@ ~» b) 4+ d(b~ &) + d(E ~ @) = M

Proof. If only two of the three classes are equal we have d(a ~~ b) + d(b ~ &) +d(¢ ~ a) = t,

if all three are equal we have d(@ ~ b) 4+ d(b ~ ¢) + d(¢ ~ a) = 0. Now assume all three are

different. We distinguish between two cases: d(b ~ ¢) < d(b ~ @) and d(b ~ ¢) > d(b ~ a) (if
d(b ~ €) = d(b ~ @), then by Remark 112 it would follow @ = ¢) In the first case we have

(@~ b) + d(b~» &) + d(¢ ~a) =t
In the second case it holds d(b ~» &) = d(b ~ @) + d(@ ~ ¢) and we have

d(@ ~ b)+d(b~ 2 +d(@~ a)
= d(@~b)+d(b~a)+d(@~ ¢) +d(¢~ a)
= 2t
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3.2. Controller design for Boolean monomial control systems

Lemma 172 Let G = (Vg, Eq, mg) be a strongly connected digraph such that Vg is nontrivial.
Furthermore, let t :== La(Va) > 0 be its loop number. Consider three arbitrary loop equivalence
classes a,b,¢c C Vg. Then there is a o € Ny such that

d(a~b)+d(b~¢)=d(a~ c)+at
Proof. By Remark 170 we have
—d(a~¢c)=d(c~a)—t

and thus

A(@ ~ b) + d(b ~ &) — d(@~ &) = d(@~ b) + d(b ~ ) + d(@~ @) — t

Now the claim follows by the previous lemma. m

Definition 173 Let Fy be the finite field with two elements, n € N a natural number and v € Fy
a tuple. The one set of v is defined as

Ew)={ie{l,...,n}:v;, =1} C{l,...,n}

We will refer to the problem of controllability to loop number 1 as the stabilization problem
and treat it separately (see below).

Theorem 174 Let Fo be the finite field with two elements, n,m € N natural numbers and
g : Fy x FJ' — F5 a Boolean strongly dependent monomial control system such that the de-
pendency graph G, = (Vy, Es, 7s) of the system

o Fg — Fg
T g(w,f)

has loop number t := Lg, (V) > 1. Furthermore, let A € M(n x n; E3) and B € M(n x m; Es)
be the matrices such that

((A|B)id)(z,u) = g(z,u) ¥V (z,u) € F§ x F§'

(see Lemma 156) and t' € D(Lq,(Vy))\{1, La, (Vy)} a divisor of La,(Vy) with 1 <t' < Lg, (V).
In addition, let V, = {a1,...,an} be the numeration of the vertices and ay,...,a, C V, their
corresponding loop equivalence classes. If g is controllable to loop number t' then B contains a
column Bj different from zero with the property that there is a loop equivalence class ai, C La, (Vs)
such thatV s € E(B;) 3 as € N with

1+ d(ay ~ as) = ast’

Proof. If g is controllable to loop number #', there is a monomial feedback controller f* : F§ — FJ
such that the dependency graph G, o= (Vh, sor Ehpes Th f*) of the corresponding closed loop system

hp @ Fy —Fy
z = gz, f(2))

has loop number Eth* (Vhf*) =t'. Let F* € M(m X n; E2) be the corresponding matrix of f*

(see Remark 51). From the representation
hp = (A4 B - F*)id

and the fact EGh,f* (Vi) =t < L, (Vo) it follows that at least one entry (B - '), of the matrix

B - F* must be nonzero. If (B - F*); # 0, from the definition of matrix product we can conclude
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3.2. Controller design for Boolean monomial control systems

that 3 j € {1,...,m} such that B;j; = 1 and F}; = 1. As a consequence, f/(z) = kHQ xzp Vx eFy
€
with () # Q C {1,...,n}. Now, consider the column Bj; of B. For every s € E(B;j) the expression

(hs)s(x) contains the factor f}(z) = kl;[ﬂ zp ¥V x € Fy. This means that the graph Gj,. contains
the edges as — ag, k € Q. (However, since t' > 1, no self loop as — as can exist in the graph

G ). Furthermore, consider in the graph G, the loop equivalence classes as, a C V,, s € E(B;),
k € Q. From the cyclic loop equivalence classes structure of this graph (see Remark 112) we know
that for every s € E(B;) we can construct a closed path as ~+,, as in the graph th* of length

us = 1+ At + d(ag, ~ as)
where Ay € Ny. Now, since ¢’ divides ¢, 3 ¢ € N: t = ct’. Thus
us = Asct' + 1+ d(ag, ~ as)

Moreover, since ug is the length of a closed path in the graph G, o by Theorem 116 ¢’ must divide
us and therefore ¢’ must divide 1+ d(ay ~> a5) Vs € E(Bj) andVke€ Q. m

Remark 175 The previous theorem also holds in the case q > 2, if the definition of E(v) is
modified accordingly. However, the control theoretic analysis of non-Boolean control systems would
go beyond the scope of this dissertation.

Theorem 176 Let Fo be the finite field with two elements, n,m € N natural numbers and
g : Fiy x Fy' — F3 a Boolean strongly dependent monomial control system such that the de-
pendency graph G, = (Vy, Es, 7s) of the system

o Fg — FS
Tz — g(x,f)

has loop number t := Lq, (Vy) > 1. Furthermore, let A € M(n x n; E3) and B € M(n x m; E»)
be the matrices such that

((A|B)id)(z,u) = g(z,u) ¥V (z,u) € Fy x Fy"

(see Lemma 156) and t' € D(Lq, (Vy))\{1, La, (Vs)} a divisor of La, (Vy) with 1 <t < Lg, (V).
In addition, let V, = {a1,...,an} be the numeration of the vertices and ay,...,a, C V, their
corresponding loop equivalence classes. Assume that B contains a column B; different from zero
with the property that there is a loop equivalence class a C Lg, (V) such that ¥V s € E(Bj)
d as € N with
1+ d(ag ~ as) = ast’

and, additionally, that among all elements of D(Lq, (Vy)) the biggest one that divides the numbers
1+ d(ay ~ as), s € E(By) ist'. Then g is controllable to loop number t'.

Proof. Consider the column B; and the set E(B;). We define the following monomial feedback
controller f: F§ — F3

2on . Jopiti=j no-
fz(a:){ 1if i ] VeeF, i=1,..m
Due to the representation g = (A|B)id we can conclude V s € FE(Bj) that the function

gs : F§ x F§' — F3 depends on the control variable u;. As a consequence and due to the structure
of f, the closed loop system

hy - Fy — FY

v = gz, f(z))
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3.2. Controller design for Boolean monomial control systems

has the following properties V x € F§

o(x)zy if i € E(B; .
gte) = { ST =1

Therefore, the dependency graph thA = (Vhf, Ehf, 7rth) is identical to G, = (V,, E,, ms) except
for the additional edges as — ax, s € E(Bj). It is easy to see that the only closed paths in the
graph th are the closed paths in G, and the paths as ~+,, as, s € E(B;) that actually make use

of the edges a; — ay, s € F(Bj). A path that makes use of one of the edges as — ax, s € E(B;)
can only contain one such edge, otherwise the vertex a; would be visited more than once. As a
consequence, the length of such a path satisfies

vy = (@ ~ @) + But + 1+ (G ~ G5) + 75t
where s’ € E(B;) and f,.,7, € No. Now, by Lemma 172 3 o, € Ng such that
vy = d(d@ ~ @5) + st + Bogt + 147,
Summarizing, the length of each of those paths satisfies
vy =14+ At +d(ag ~ ay)

whereas the lengths of the paths in G, are multiples of ¢t. Now, since t’ divides t, 3c € N: t = ct’.
Thus, we have
vs = Asct’ + 1+ d(ay ~ ay)

By hypothesis, ¢’ divides all 1 + d(a;, ~ as), s € E(Bj). Therefore, by Theorem 116 3 a € N such
that
Eth(Vhf) = Oét,
Were o > 1, then by Theorem 163, EGhA(Vhf) would be a divisor t € D(Lg, (V,)) with t > t'.
f ~
Moreover, by Corollary 106 EGhA(Vhf) would divide vy = As¢t + 1 + d(a ~ ay) and therefore
7
1+ d(ay, ~ ay) as well, a contradiction. m
Example 177 (and Theorem) Let Fy be the finite field with two elements, n,m € N natural
numbers and g : F§ x F§* — F4 a Boolean strongly dependent monomial control system such
that the dependency graph G, = (V5, Es, s) of the system
o : Fy—Fy
z = glz,1)
has loop number t := Lqg,(V,) > 1. In addition, let V, = {ai,...,an} be the numeration of

the vertices and ay,...,a, C V, their corresponding loop equivalence classes. Furthermore, let
A e M(n xn; Ez2) and B € M(n x m; E3) be the matrices such that

((A|B)id)(z,u) = g(z,u) ¥V (z,u) € Fy x Fy"
and assume 3 s € {1,...,n}, r € {1,...,m} such that

lifi=sandj=r
Oifi#tsorj#r

Then g is completely loop number controllable. To see this, let t' € D(La, (Vy))\{La, (Vs)} be a
divisor of Lg,(Vy) with 1 < t' < Lg,(Vy). Due to the cyclic loop equivalence classes structure of
the graph G, (see Remark 112) it is always possible to find a loop equivalence class aj such that

Bij =
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1+ d(ay ~ as) =t'. As a consequence, the jth column B; of B satisfies the requirements of the
previous theorem. Thus, g is controllable to loop number t'. If we pick a vertex a; € ay, such that
d(a; ~ ax) = d(ay ~> as), a suitable monomial feedback controller f : Fy — F5' can be

. _Joxifi=r no.
fi(x) .—{ L ifitr VeeFy, i=1,...m

To force the loop number Eth (Vhf) to be equal to one, we could use the monomial feedback

controller f : FY — FJ defined as

F.(z) = { 9”1 i;{;;e : VeeF?, i=1,..,m
Remark 178 From the previous example we can see that a single control variable (u,) can be
used to completely control the system g. It also becomes apparent from the previous theorems that
the use of too many control variables, (i.e. to many entries of the matriz B are equal to 1) actually
reduces the controllability of the system. This represents a surprising counterintuitive result. As
a consequence, we will develop a loop number assignment algorithm for control systems with one
single control variable appearing in only one equation, i.e. the matriz satisfies B € M(n x 1; F3)
and it contains exactly one nonzero entry.

3.2.3 Control synthesis algorithm for Boolean systems with one single control
variable

Let F2 be the finite field with two elements, n € N a natural number and g : F§ x Fo — F%§
a Boolean monomial control system. Furthermore, let A € M(n x n; Es) and B € M(n x 1; Es)
be the matrices such that

((A|B)id)(z,u) = g(x,u) V (z,u) € Fy x Fa

and assume that the matrix B contains exactly one nonzero entry, say Bii. We will assume that
the system is given and stored using the matrices A and B. The steps of the algorithm are as
follows:

1. Calculate the matrices
A2 AT

2. Establish whether the dependency graph G, = (V,, E,, m,) of the system

c : Fy;—Fy
z — gz, 1)
is strongly connected. This can be accomplished by calculating the reachability matrix (see,

for instance, [44])
R:i=(I+A+A?+ . +A™Y

and the value .
(R*)11 = ZleRm
k=1

The graph is strongly connected if and only if (R?)1; = n (see corollary 5.7a and theorem
5.9 in chapter 5 of [44]). If the graph is strongly connected, proceed to step 3, otherwise
this algorithm is not applicable.
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3. Calculate the loop number Lg, (V) of the graph G, = (V,, E,, 7). According to the
algorithm described in [23], Lg, (V5) is the greatest common divisor of the numbers i with
1 < i < n, such that A has at least one non- zero diagonal entry. If Lo, (V,) > 1 proceed
to step 4, otherwise the system g is not controllable.

4. Calculate the set D(Lq, (V)). For every element ¢ € D(Lq,(Vs)), by Theorem 177, the
system g is controllable to loop number ¢'.

5. Once a desirable ¢ > 1 has been picked (we will treat the case t' = 1 separately), in the
matrix A=Y (which was calculated in step 1) we look at the kth column. Any nonzero
entry of the kth column provides a candidate variable for the monomial feedback controller
f:F3 — Fy. If, for instance, (A1), # 0, we can set u = f(z) == ;.

6. The closed loop system
hy : Fy—Fy
z = gz, f(z))

has the desired phase space structure dictated by the loop number #'.

Step 1 requires (n — 1)(2n3 — n?) addition or multiplication operations'. In Step 2, the
calculation of R takes (n — 1)n? addition operations. Moreover, the calculation of (R?)1; requires
n multiplications and n — 1 additions. In step 3, to determine the numbers involved, at most n?
comparisons are needed. The complexity of the greatest common divisor calculation is polynomial
in the S—length or size of the computer representation of the numbers involved (see section 4.1.5
of [53] for the details). These sizes are bounded above by the fact that the numbers involved are
smaller than n + 1. In step 4, the divisors of Lg, (V,) are determined. This step requires integer
number factorization algorithms that are not of polynomial complexity. However, if Lg_ (Vy) is
small, the heuristics used by most computer algebra systems can keep the calculation time in a
reasonable frame. It would go beyond the scope of this dissertation to discuss here integer number
factorization methods. We refer to chapter 5 of [53]. In step 5, at most n comparisons are needed.

Summarizing, if we put aside the factorization step required in Step 4, the complexity of the
algorithm is dominated by the multiple matrix multiplications of Step 1, which is O( n#).

3.2.4 Stabilization of Boolean monomial control systems

In this subsection we provide a characterization of Boolean control systems (not necessarily
strongly dependent) that are stabilizable.

Definition 179 Let ¥, be a finite field, n,m € N natural numbers and g : ¥y x Fi* — Fy a
monomial control system. Furthermore, let f : Fy — Fi* be an arbitrary monomial feedback
controller. The system g is called stabilizable if the closed loop system

hy FZ—>FZL

z = g, f(z))
can be forced to be a fixed point system by means of choosing a suitable monomial feedback controller

f.

Definition 180 Let F be a finite field, n,m € N natural numbers and g : Fy x Fi* — Fi a
monomial control system. Furthermore, let G, = (V,, Ey, m,) be the dependency graph of the
system

. n n
o Fq—>Fq

x — g(z, f)

!See also the analysis of the arithmetic operations in the semiring E, in Section 2.4.
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3.2. Controller design for Boolean monomial control systems

and V, = {ai,...,an} be the numeration of its vertices. Now we label every vertex a; € V,
(corresponding to the variable x; and its update function o;) as critical vertex, if g; depends on
some control variable uj. The resulting graph G, is called the labeled state dependency graph of

g.

Theorem 181 Let Fo be the finite field with two elements, n,m € N natural numbers and
g:Fy x Fy' — F5 a Boolean monomial control system such that

o : Fy—Fy

r — g(z, T)

is not a fived point system. Then g is stabilizable if and only if for every strongly connected
component C of the labeled state dependency graph G, of g with loop number bigger than one
either of the following conditions holds:

o C has a critical vertexz.

e (' is connected by a sequence to a strongly connected component D, which contains a critical
vertez.

Proof. Let G, = (V,, E,, m,) be the dependency graph of ¢ and V, = {aq,...,a,} be the
numeration of its vertices. Since by hypothesis, ¢ is not a fixed point system, by Theorem 73 the
dependency graph G, = (V,, E,, 7,) of o as well as the labeled state dependency graph of g must
contain nontrivial strongly connected components.

In order to prove that g is stabilizable, we have to prove that we can find a feedback controller
f:F§ — F3', such that the closed loop system

hy : Fy—TFy
z = gz, f(z))

is a fixed point system. The construction of a suitable f is straightforward if we look at the labeled
state dependency graph of g : If C' is a strongly connected component with loop number bigger
than 1 of G, according to the hypothesis, it either contains a critical vertex or it is connected by
a path to a strongly connected component, which contains a critical vertex. In the former case, let
a; be the critical vertex and x; its corresponding variable. The definition of critical vertex tells us
that the function g; actually depends on 4, i.e. thereisa j € {1,...,m} such that g; depends on u;.
Now we can add the edge a; — a; to the labeled state dependency graph of g. This modification
corresponds to setting the function f;(Z) = ;.

Now we will consider the case where C' is connected by a path to a strongly connected component,
say D, which contains a critical vertex. Let ag be the critical vertex contained in D and xj its
corresponding variable. Following the same argument as above, we know there is an [ € {1, ..., m}
such that g depends on u;. Now we can add two edges to the labeled state dependency graph of
g, namely, the edge ar — ai and an edge that starts at ap and points to a vertex contained in
the component C, say the vertex as (which corresponds to the variable x5). The edge ar — ag
is not strictly necessary if the component D already has loop number equal to 1. Again, this
modifications correspond to setting the function f;(¥) := zpxs.

We continue this procedure with every strongly connected component of the labeled state depen-
dency graph of g, that has loop number bigger than one. At the end of this process, for some non
empty subset J C {1,...,m} the functions f;, ¢ € J will be defined. For the remaining indices in
the set [ :={1,...,m}\J we simply set fy =1Vt eI

With the obtained feedback controller f we construct the function hy. The dependency graph of
hy obviously only differs from the labeled state dependency graph of F' by the edges that were
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3.2. Controller design for Boolean monomial control systems

added to critical vertices. It is clear that the edges added pursuit the following purposes: Ei-
ther to merge two or more strongly connected components into a bigger one or to force the loop
number of a strongly connected component to be equal to 1. Therefore, every nontrivial strongly
connected component of hy has loop number one and thus, by Theorem 88, hy is a fixed point
system. This shows that the conditions stated in the theorem are sufficient for the control system
g to be stabilized.

To show that the conditions are also necessary, assume that they do not hold. As a consequence,
there is a strongly connected component U of the labeled state dependency graph of g, such that

1. U has loop number bigger than 1.
2. U does not contain a critical vertex.

3. U is not connected by a path to a strongly connected component that contains a critical
vertex.

Let a;,,...a;, be all the vertices contained in U and consider the corresponding variables
Ziy,...%;, and their update functions o;,,...04,. Since U does not contain any critical vertices,
the functions g, , ..., 9;, cannot depend on any of the control variables uy, ..., t,,. Therefore, for
any feedback controller f : F3 — F3* the function h; has the property

(hf)iq = Giq Vaqge {17 7t}

Now, assume that by the choice of f the arrows added to the labeled state dependency graph
of g create a strong connection between U and additional vertices outside of U. The sequences
that make that strong connection possible must contain at least one of the new arrows. As a
consequence, a critical vertex c is part of the sequences. Thus, there must be a path from a vertex
in u € U to c. Since, by hypothesis 3, no such path exists in the labeled state dependency graph
of g, there must be a new arrow involved in the path from u to ¢. Consequently, there is a critical
vertex ¢’ contained in the path such that there is a shorter path from u to ¢. If we repeat this
argument, the path becomes shorter and shorter and eventually we are forced to claim that u is a
critical vertex. This contradicts 2. Summarizing, the dependency graph of the system hy contains
the strongly connected component U which has loop number bigger than 1. By Theorem 88, hy
cannot be a fixed point system. m

Remark 182 The proof of this theorem suggests an algorithm to design a feedback controller that
would stabilize a given Boolean monomial control systems, provided the conditions of the theorem
are satisfied. However, we won’t elaborate on the algorithmic aspects of this verification and the
controller design.

69



Part 11

Reverse engineering time discrete
dynamical systems over a finite field
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Introductory remarks

Since the development of multiple and simultaneous measurement techniques such as microar-
ray technologies, reverse engineering of biochemical and, in particular, gene regulatory networks
has become a more important problem in systems biology . One well-known reverse engineering
approach are the top-down methods, which try to infer network properties based on the observed
global input-output-response. The observed input-output-response is usually only partially de-
scribed by available experimental data.

Depending on the type of mathematical model used to describe a biochemical process, a vari-
ety of top-down reverse engineering algorithms have been proposed [28], [34], [42]. Each modeling
paradigm presents different requirements relative to quality and amount of the experimental data
needed. Moreover, for each type of model, a suitable mathematical framework has to be devel-
oped in order to study the performance and limitations of reverse engineering methods. For any
given modeling paradigm and reverse engineering method it is important to answer the following
questions:

1. What are the minimal requirements on data sets?

2. Can data sets be characterized in such a way that "optimal" data sets can be identified?
(Optimality meaning that the algorithm performs better using such a data set compared to
its performance using other data sets.)

The second question is related to the design of experiments and optimality is characterized in
terms of quantity and quality of the data sets.

[65] developed a top-down reverse engineering algorithm for the modeling paradigm of time
discrete finite dynamical systems. Herein, we will refer to it as the LS-algorithm. They apply
their method to biochemical networks by modeling the network as a time discrete finite dynamical
system, obtained by discretizing the concentration levels of the interacting chemicals to elements
of a finite field. One of the key steps of the LS-algorithm includes the choice of a term order. The
modeling paradigm of time discrete finite dynamical systems generalizes the Boolean approach
[55] (where the field only contains the elements 0 and 1). Moreover, it is a special case of the
paradigm described in [110].

Some aspects of the performance of the LS-algorithm were studied by [52] in a probabilistic
framework.

In this part of the work we investigate the two questions stated above in the particular case
of the LS-algorithm. For this purpose, we developed a mathematical framework? that allows
us to study the LS-algorithm in depth. Having expressed the steps of the LS-algorithm in our
framework, we were able to provide concrete answers to both questions: First, we found minimal
requirements on a data set based on how many terms the functions to be reverse engineered
display. Second, we identified optimal data sets, which we characterize using a geometric property
called "general position". Moreover, we developed a constructive method to generate optimal
data sets, provided a codimensional condition is fulfilled.

2This framework is described in the next chapter. Since it contains a pure algebraic subject, the reader more
interested in mathematical modelling may skip it without any loss.
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In addition, we present a generalization of the LS-algorithm that does not depend on the choice
of a term order. We call this generalization the term-order-free reverse engineering method. For
this method we derive a formula for the probability of finding the correct model®, provided the
data set used satisfies an optimality criterion. Furthermore, we analyze the asymptotic behavior
of the probability formula for a growing number of variables n (i.e. interacting chemicals). Unfor-
tunately, this formula converges to zero as fast as r?", where ¢ € N and 0 < r < 1. Consequently,
we conclude that even if an optimal data set is used and the restrictions imposed by the use of
term orders are overcome, the reverse engineering problem remains unfeasible, unless experimen-
tally impracticable amounts of data are available. This result discouraged us from including in
this thesis any computational and algorithmic aspects of the term-order-free reverse engineering
method.

In contrast to [52], we focus here on providing possible criteria for the design of specific
experiments instead of assuming that the data sets are generated randomly. Moreover, we do not
necessarily assume that information about the actual number of interactions in the biochemical
network is available.

3We will give a precise definition of "correct model".
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Chapter 4

Excursus: Canonical representatives
for residue classes of a polynomial
ideal and orthogonality

4.1 Some introductory statements

A well known result of B. Buchberger is the existence of the normal form of a polynomial with
respect to a polynomial ideal I in the ring of multivariate polynomials over a field K. This result
follows from the existence of so called Grébner bases for polynomial ideals. For a given fixed
term ordering, this normal form is unique [66], [15], [14]. In this chapter we present a new way to
calculate this normal form, provided the field K is finite and the ideal [ is a vanishing ideal, i.e.
I is equal to the set of polynomials which vanish in a given set of points X. Our method doesn’t
pursue establishing a new, especially efficient, algorithm for the computation of such a normal
form. Rather, the aim of this chapter is to unveil an interesting way to look at this issue based
on the concept of orthogonality.

For orthogonality to apply, we introduce a symmetric bilinear form on a vector space (see, for
instance, [98]). A symmetric bilinear form can be seen as a generalized inner product. Some au-
thors have explored vector spaces endowed with generalized forms of inner products. For example,
we refer to the following papers: [69],6],[29], [30], [74], [54], [113].

Having defined a symmetric bilinear form, we are able to introduce the notion of orthogonality
and orthonormality. Then we consider the orthogonal solution of a solvable inhomogeneous under-
determined linear operator equation. If one thinks of an inhomogeneous under-determined system
of linear equations in an Euclidean space, the orthogonal solution is simply the solution that is
perpendicular to the affine subspace associated with the system. After going through existence
and uniqueness considerations, we come to the main statement of this chapter, namely, that the
above mentioned normal form can be obtained as the orthogonal solution of a system of linear
equations. That system of equations arises as a linear formulation of the multivariate polynomial
interpolation problem.

Based on our literature research, we believe that the study of polynomial algebras in the
framework of symmetric bilinear spaces (vector spaces endowed with a symmetric bilinear form)
represents a novel approach. Suitable extensions of our method to more general fields (i.e. infinite
fields) could open new possibilities for studying problems in the areas of polynomial algebra, com-
putational algebra and algebraic geometry using functional analytic or linear algebraic techniques.

The concept of orthogonal solution is not limited by monomial orders, as it is the case for
Grobner bases calculations. In this sense, our method reveals a wider class of normal forms (with
respect to vanishing ideals) in which the normal forms & la Buchberger appear as special cases.

Another application that we will describe in detail in Chapter 5 is the problem of choosing
a particular interpolant among all possible solutions of a highly under-determined multivariate
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4.2. Symmetric bilinear vector spaces and orthogonal solutions of linear equations

interpolation problem. This is related to the study of the performance of the "reverse engineering"
algorithm presented in [65].

The organization of this chapter is the following:

Section 4.2 is devoted to the general definition of symmetric bilinear spaces and orthogonal
solutions of an inhomogeneous linear operator equation. Subsection 4.2.1 covers basic definitions
and properties of symmetric bilinear spaces, in particular, the concepts of orthogonality and
orthonormality are introduced. Subsection 4.2.2 introduces the notion of orthogonal solution of
a solvable under-determined linear operator equation. Existence and uniqueness of orthogonal
solutions are proved and some issues regarding the existence of orthonormal bases are discussed.

Section 4.3 introduces a linear operator called evaluation epimorphism and formulates the
multivariate polynomial interpolation problem in a linear algebraic fashion.

Section 4.4 covers the more technical aspect of constructing special symmetric bilinear forms.
Using that type of symmetric bilinear form will allow us to prove the main result of this chapter
in section 4.5.

Section 4.5 is devoted to the statement and proof of our main result. Namely, that the canonical
normal form of an arbitrary polynomial f with respect to a vanishing ideal I(X) in the ring of
multivariate polynomials over a finite field K can be calculated as the orthogonal solution of a
linear operator equation involving the evaluation epimorphism.

For standard terminology, notation and well known results in computational algebraic geom-
etry and commutative algebra we refer to [25] and [8].

4.2 Symmetric bilinear vector spaces and orthogonal solutions of
inhomogeneous systems of linear equations

4.2.1 Basic definitions

In this subsection we will introduce the concept of a symmetric bilinear form in a vector space.
With this concept it will be possible to define symmetric bilinear vector spaces and orthonormality.
Furthermore, some basic properties are briefly reviewed (cf. [98])

Definition 183 Let V' be a vector space over a field K. A symmetric bilinear form on V is a
mapping
(,):VxV =K
that fulfills the following properties
1. Bilinearity: For all w € V' the mappings
(bw)y : VoK
v = (v,w)
(w,) + VoK
v o= (w,v)
are linear.

2. Symmetry: For all v,w € V holds

(v,w) = (w,v)
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4.2. Symmetric bilinear vector spaces and orthogonal solutions of linear equations

Remark 184 (and Definition) Let V' be a finite dimensional vector space over a field K en-
dowed with a bilinear form
s:VxV—-K

Further let d :== dim(V'). Due to the bilinearity, s is uniquely defined by its values on all possible
pairs (u;, u;) of a given basis (u1,...,uq) of V. Indeed, after introducing coordinates with respect to
the basis (u1, ...,uq), the value s(v,w) of s on two arbitrary vectors

d
V= Xy
i=1
and
d
W= Yl
i=1

with coordinate vectors T, € K?, can be simply calculated as
s (v,w) = 7Sy

where S is the d X d matriz
Sij =S (ui,u]‘) , 4,] € {1, ,d}

with entries in K. If the bilinear form s is symmetric, so the matriz S. The matriz S is called the
representing matrix of s with respect to the basis (u1, ..., uq). After fixing a basis (u1, ..., uq) of V, it
is easy to show, that there is a one-to-one correspondence between the set of all symmetric bilinear
forms on V and the set of all d x d symmetric matrices with entries in K seen as representing
matrices with respect to the basis (uy, ..., uq).

Definition 185 A wvector space V' over a field K endowed with a symmetric bilinear form
(,):VxV oK
is called a symmetric bilinear space.

Example 186 FEuvery (real) Euclidean space is due to the positive definiteness of its inner product
a symmetric bilinear space.

Definition 187 Let V' be a symmetric bilinear space. Two vectors v,w € V are called orthogonal
if
(w,v) =0

In this situation we write w L v.

Theorem 188 (and Definition) Let V' be a symmetric bilinear space and W C V' a subspace.
The set
Wh={weV|viwYweW}

is a subspace of V' and is called the orthogonal complement of W.
Proof. The easy proof is left to the reader. m

Remark 189 (and Example) Contrary to the case of Fuclidean or unitary vector spaces,
WL NW is not always equal to the zero vector space {0}. For instance, consider any finite field
K of characteristic 2 and the finite dimensional vector space K?. Let U be the one dimensional

subspace
U := span( <1>)
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4.2. Symmetric bilinear vector spaces and orthogonal solutions of linear equations

Now let the matrix

11
-
define the following generalized inner product
(7,9) = T AF

Then for any vector & € U we have

= 0)) = {0 G)p=en () ()

This means

The well known result
V=wtew
for an Euclidean or unitary vector space V(@ stands for the direct sum) depends on the existence

of orthonormal bases for V. As the above example shows, such bases don’t always exist in the case
of symmetric bilinear spaces.

Definition 190 Let d € N be a natural number and V' a d-dimensional symmetric bilinear space
over a field K. A basis (w1, ...wq) of V is called orthonormal if it holds fori,j € {1,...,d}

(wi, wj) = 045 = { Lifi=j

0 otherwise

Remark 191 This definition can be extended to symmetric bilinear spaces with countable dimen-
sion, but such spaces are not the object of study in this treatise.

Example 192 Let d € N be a natural number and V a d-dimensional vector space over a field
K. Furthermore let (u1,...uq) be a basis of V. Then one can construct a symmetric bilinear form
on V by setting

<ui,uj> = 5ij Vi,j€ {1, ,d}

(see also Remark 184.) Here the basis (uy,...uq) is obviously orthonormal.

Lemma 193 (and Definition) Letd € N be a natural number and V' a d-dimensional symmetric
bilinear space over a field K. Furthermore let (wy,...wq) be an orthonormal basis of V. Then for

every vector v € V' holds
d

V= Z <ank> Wy
k=1

The field elements (v, w;) € K, i =1,...,d are the so called Fourier coefficients.

Proof. Since (wy,...wy) is a basis for V, every vector v € V' can be written uniquely in the form
d
v = Z )\kwk
k=1
with unique coefficients \; € K, i = 1,...,d. Now for every j € {1,...,d} we have
d

d d
k=1 k=1 k=1
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4.2.2 Orthogonal solutions of inhomogeneous linear operator equations

Definition 194 Let d € N be a natural number and V a d-dimensional symmetric bilinear space
over a field K. Furthermore, let W be an arbitrary vector space over the field K, T : V — W a
not injective linear operator and w € W a vector with the property

weT(V)
Now let m :=nullity(T) € N be the dimension of the kernel of T. A solution v* € V' of the equation
Tv=w

is called orthogonal solution, if for an arbitrary basis (u1, ..., un) of ker(T') the following orthog-
onality conditions hold
(uj, vy =0V ie{l,..,m}

Remark 195 Let (u1,...,un) be a basis of ker(T'). Then each arbitrary vector u € ker(T') can be
written in the form

u = Z )\Zuz
i=1
with suitable field elements \; € K. If the orthogonality conditions
(uj,v*) =0V ie{l,..,m}

hold for the basis (u1, ..., un,), then we have
m m
(u,v*) = <Z )\iui,v*> => Ai(uj,v*) =0
i=1 i=1

and that means
v* € ker(T)*

In particular, for any other different basis (w1, ..., wy,) of ker(T) it holds
(wj,v*) =0V j e {1,...,m}

Theorem 196 Let d € N be a natural number and V a d-dimensional symmetric bilinear space
over a field K. Furthermore, let W be an arbitrary vector space over the field K, T : V — W a
not injective linear operator and w € W a vector with the property

weT(V)
If ker(T) has an orthonormal basis, then the equation
Tv=w
has always a unique orthogonal solution v* € V.

Proof. Let m :=nullity(T) = dim(ker(T")) € N be the dimension of the null space of T" and
(u1, ..., up) an orthonormal basis of ker(7"). Since w € T'(V'), there must exist a solution £ € V' of
Tv = w. For any other solution £ € V' we have

and therefore
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That means that all solutions £ € V' of T'v = w can be written in the form
,\ m
E=E+ > Niuy
i=1

with the A\; € K, ¢ = 1,...,m running over all K. In particular, we can construct a very specific
solution by choosing the parameters \; € K, i = 1, ..., m in the following manner

Ai = — <ui,g>, i=1,...m

For this solution .
U* = g Z <ula > U;

and for every j € {1,...,m} it holds
(uj,v*) = <uj,§ + g:l <uz,A> uz> = <uj,g> + i — <u1,2> (uj, us)

(184§ (12) 8= (1) - (.8) =0

This shows the existence of an orthogonal solution of Tv = w. Now let v € V be another orthogonal
solution of Tv = w. Again, since

we can write

with suitable «; € K. From the orthogonality conditions for v* and v we have V j € {1,...,m}

0 = (u,v") = <u’ﬁ+ 3 au> — (uj,7) + <uj, 3 au>

i=1 i=1
m m

= Y ailujui) = ) aibji =
=1 =1

and that means v* =v. ®

Remark 197 The existence of an orthonormal basis of ker(T') is crucial for the proof of this
theorem. It is important to notice that in a symmetric bilinear space over a general field K, the
Gram-Schmidt orthonormalization only works if the norm

[l := /{v,v)

of the vectors used in the Gram-Schmidt process exists in the field K and is not equal to the
zero element. In general terms, the existence of square roots would be assured in a field K which
satisfies

VacK Iyec K such that y* = x (4.1)

Now, if K is finite, then (4.1) holds if and only if Char(K) = 2. To see this, consider

¢ : K—K
z — ¢x) =z

Since K is finite, ¢ is surjective if and only if ¢ is injective. If ¢ is injective, then 1 = —1 since
¢(1) = ¢(—1); that is Char(K) = 2. The converse follows from the fact that if Char(K) = 2,

78
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then ¢ is the Frobenius homomorphism, which is - as is generally known - an automorphism.
After fizing a basis (uq, ..., uq) for the vector space V, the question whether (v,v) =0 for v # 0 is
equivalent to the nontrivial solvability in K% of the following quadratic form

T AT =0 (4.2)

where A is the representing matriz of (.,.) with respect to the basis (u,...,uq) (see Remark 184).
In chapter 3, §2 of [67] explicit formulas for the exact number of solutions in K™ of equations of
the type (4.2), where A is a n X n symmetric matrix with entries in a finite field K, can be found.
In accordance with Remark 189, the facts stated above show that in the case of a gemeral finite
field K, orthonormal bases might not exist.

Corollary 198 Let d € N be a natural number and V' a d-dimensional symmetric bilinear space
over a field K. Furthermore, let W be an arbitrary vector space over the field K and T : V — W
a not injective linear operator. If ker(T') has an orthonormal basis, then the equation

Tv=0
has always the unique orthogonal solution 0 € V.
Proof. The zero vector 0 € V satisfies trivially the equation
Tv=20
and for any basis (u1, ..., uy,) of ker(T) it follows from the bilinearity of the inner product
(u;, 0) =0V ie{l,..,m}

Now the claim follows from the uniqueness of the orthogonal solution. m

4.3 Solving the polynomial interpolation problem in PF,(F,)

In this section we define the evaluation epimorphism of a tuple (1, ..., %) € (Fy)™ of points
in the space Fj. The evaluation epimorphism allows for a linear algebraic formulation of the
multivariate polynomial interpolation problem. For this section, recall Definitions 21 and 20 and
Corollary 28.

Theorem 199 (and Definition) Let Fy be a finite field and n,m € N natural numbers with
m < q". Further let .
X = (71, ., Tm) € (F)™

be a tuple of m different n-tuples with entries in the field F,. Then the mapping
Dy o Fu(Fy) —FF
o= @g(f) = (f(@1), s [(@m))

is a surjective linear operator. ® ; is called the evaluation epimorphism of the tuple X.

Proof. The proof of the linearity is left to the reader. Now let be F7' be an arbitrary vector.
Since m < ¢" we can construct a function

g € F,(Fy)

with the property
g(fl) =bVie {1, ,m}

and that means exactly
P3(g) =0
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Remark 200 (and Corollary) Since a basis of Fy,(Fy) is given by the fundamental monomial
functions (ana)aeM(y, the matrix

A= (P 5(gnga))acmp € M(m x ¢";Fy)

representing the evaluation epimorphism ® ¢ of the tuple X with respect to the basis (Gnga)ac My of
Fn(Fy) and the canonical basis of Fy' has always the full rank m = min(m, ¢"). That also means,
that the dimension of the ker(® ) is

dim(ker(® ¢)) = dim(F,(Fy)) —m =¢" —m

Corollary 201 Let Fy be a finite field and n,m € N natural numbers with m < q". Further let
X = (21, ... Fm) € (F)™

be a tuple of m different n-tuples with entries in the field Fy and b e FJ' a vector. Then the

interpolation problem of finding a polynomial function f € PF,(F,) with the property
f@)=bVie{l,..,m}

can be solved by solving the system of linear equations

A7 =10 (4.3)
where
A= ((I))Z(gnqa))aeMg
is the matriz representing the evaluation epimorphism ® ¢ of the tuple X with respect to the basis
(gnqa)aeMg of Fn(Fg) and the canonical basis of Fy'. The entries of a solution vector of the
equations (4.3) are the coefficients of the solution with respect to the basis (gnqa)aeM;.

Proof. Since F,(F,) = PF,(F,), a solution of the interpolation problem can be found by solving
the equation

for g, where @  is the surjective linear operator
Dy o Fa(Fg) - F

[ @g(f) = (f(@1), s f(@m))
of the above theorem. After fixing the basis (gnga)ac My of F,,(F,) and the canonical basis of F,
equation (4.4) implies the following system of linear equations for the coefficients of the solutions
with respect to the basis (gnga)ac My
Aj=0
where
A= ((I))Z(gnqa))aeMgl

is the matrix representing the map ® ¢ with respect to the basis (gnga)ac My of F,(F,) and the
canonical basis of F'. According to Remark 200, the matrix A has full rank and therefore a

solution of Ay = b always exists. m

Remark 202 In the case m < q"™ where m is strictly smaller than " we have
dim(ker(® ¢)) = dim(F,(Fy)) —m =¢" —m >0

and the solution of the interpolation problem is not unique. Only in the case m = q", that means,
when for all elements of Fy the corresponding interpolation values are given, the solution is unique.
In the most common case m < q", one meaningful way to choose one particular solution among
the affine subspace of all solutions is to look for an orthogonal solution, that is a solution that
doesn’t contain any linear combinations of vectors lying in ker(® ). For this purpose we need to
define a useful generalized inner product on the vector space Fy,(Fq). In the next section we will
explore this issue.
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4.4 Construction of special purpose symmetric bilinear forms

Let Fy be a finite field and n, m € N natural numbers with m < ¢". Further let
X = (Z1,...,3m) € (F2)"

be a tuple of m different n-tuples with entries in the field F, and d := dim(F,(F,)). Now consider
the evaluation epimorphism ® ¢ of the tuple X. By Remark 200 and due to the fact m < ¢", the
nullity of @ ¢ is given by

s := dim(ker(® ¢)) = dim(F,(Fy)) —m=¢"—m >0

Now let (u1, ..., us) be a basis of ker(® i) C F,(F,). By the basis extension theorem, we can extend
the basis (u1, ..., us) to a basis

(UL eey Uy Ug g1y oeey Ug)

of the whole space F,(Fy). As in example 192, we can construct a symmetric bilinear form on
F,(F,) by setting
(ui,uj> = (Sij Vi, g€ {1, vy d}

Here the basis (u1, ...u4) is orthonormal and the vectors (us41, ..., ug) are a basis of the orthogonal
complement ker(® X»)L of ker(® ). Indeed, according to Lemma 193, every vector v € F;,(Fy) can

be written as
d

v= > (v,ug) ug

k=1

Ifve ker(fb)?)J-, then in particular

vilu Vie{l,..s}< (vyu) =0Vie{l,..s}

and that means .

v= > (v,ug)ug

k=s+1
In other words, the set (ust1,...,uq) generates ker(® ¢)*. The vectors (us41, ..., ug) are as subset

of the basis (u1, ..., Us, Ust1, .., ug) of course linearly independent. In particular, this shows that
for the above constructed generalized inner product we have

ker(® ¢) N ker(@X)L = {0} (4.5)
In general, the way we extend the basis (uz, ..., us) of ker(® ¢) to a basis

(Ul eeey Ugy Usg 1y ey Ug)

of the whole space F,(F,) determines crucially the symmetric bilinear form we get by setting
(ui,uj) := ;5 ¥V i,5 € {1,...,d}. Consequently, the orthogonal solution of ®;(g) = b may vary
according to the chosen extension us41, ..., uq € Fy,(Fy). One systematic way to get a basis of the
whole space F,(F,) starting with a basis (u1, ..., us) of ker(® ) is the following: let

(gly --wgs)t (46)

be the matrix whose rows are the coordinate vectors 71, ..., s € K of (uy, ..., us) with respect to
the basis (gnga)acmy of F(Fq). Now we perform Gauss-Jordan elimination on the matrix (4.6),
obtaining the matrix R. Now consider the set B := {é},...,€4} of canonical unit vectors of the
space Fg. For every pivot element 7;; used during the Gauss-Jordan elimination performed on
(4.6), eliminate the canonical unit vector &; from the set B. This yields the set B. The coordinate
vectors for a basis for the whole space F),(F,) are now given by the the rows of R and the vectors
in the set B. We call this way of construction of the orthonormal basis for the space F,(F,) the
standard orthonormalization. We illustrate the algorithm using an example:
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Example 203 Suppose ¢ = 3, F3 = Z3, m =4, d = 3% =9, s = 5 and that after performing
Gauss-Jordan elimination on (4.6) we get the following matrix

1 0 21,3 0 0 21,6 0 21,8 %1,9

01 223 0 0 22,6 0 228 229

R:=100 0 1 0 236 0 238 239 (4.7)
0 0 0 01 24.6 0 248 24,9
00 0 00 0 1 zg 209

(The z; j € Fy stand for unspecified field elements). Then for the extension of the basis we choose
the following canonical basis vectors

.o oo 9
€3, €g, €8, €9 € Z?,

Now we substitute coordinate vectors (4, ...,ys) of the basis (uq, ..., us) by the rows in the reduced
matriz 4.7 (this step is not strictly necessary, but it will be needed to prove the theorems below)
and get the following coordinate vectors for a basis for the whole space Fa(Z3)

(:1717 ey g& gs-f—l? ey gd) = (Rt7 é3’)7 é’67 é’87 éZ))
In this specific example we use the standard lexicographic ordering on (NO)2 and so we have

M3 ={(2,2),(2,1),(2,0),(1,2),(1,1),(1,0),(0,2),(0,1), (0,0)}

and
(92306(5))0[6]\43? = (x%af%,w%x1,x%,x2$%,$2$l,$2,x%,xl, 1)

Thus the orthonormal basis (U1, ..., Us, Ust1, -, Ua) of Fa(Z3) evaluated at the point T € Z% would
be
.’E%.’L‘% + 21’31}% + 21,672 + 21,8%1 + 21,9
$2$% -+ 2:273$% + 22,672 + 22,81 + 22,9
.’L'Q.ﬁv% + 23,672 + 23.8%1 + 239
Tox1 + 24,6T2 + 24,8%1 + 24,9
x% + 25,8T1 + 25,9
3
T2
T
1

and the orthogonal solution of ® ¢(g) = b is a vector in Span(z2 , xy , z1 , 1).

In the next section, we will establish the exact relationship between the orthogonal solution of
® ;(g) = b (using the symmetric bilinear form defined above) and the normal form with respect
to the vanishing ideal I(X). This relationship can be established if the order relation > used to

order the n-tuples in the set M;' is a monomial ordering. 1f, more generally, total orderings on

(Np)™ are used to order the set M, the set of possible orthogonal solutions of ® ;(g) = b can be
seen as a wider class of normal forms (with respect to vanishing ideals) in which the "classical"
normal forms (attached to monomial orderings) appear as special cases.

4.5 Orthogonal solutions of ®(g) = b and the normal form with
respect to [(X)

In this section we will show the main result of this chapter: Given a set of points X C K",
an arbitrary polynomial f € K|[rq,...,7,] and a monomial order >, the normal form of f with
respect to the vanishing ideal I(X) C K|[r1, ..., 7] can be calculated as the orthogonal solution of

Dy(g)=1b
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where b is given by

bi::: f(jZ), 1= 1,.”,7n

The yet undefined notation fsuggests that a mapping between the ring K[71, ..., 7] of polynomials
and the vector space of functions F,(Fy) is needed. That mapping will be defined and characterized
in the first lemma and theorem of this section. After introducing some notation we arrive at an
important preliminary result in Theorem 208, which states how a (particular) basis of ker(® )
can be extended to a Grobner basis of I(X). With that result our goal can be easily reached.
Please note that through this section a more technical result stated and proved in the appendix
is used.

Lemma 204 (and Definition) Let K be a field, n,q € N natural numbers and K|T1, ..., Ty] the
polynomial Ting in n indeterminates over K. Then the set of all polynomials of the form

with coefficients ao € K is a vector space over K. We denote this set with P} (K) C K[r1, ..., Tn).
Proof. The easy proof is left to the reader. m

Theorem 205 Let Fy be a finite field and n € N a natural number. Then the vector spaces
P} (Fy) and F,(Fy) are isomorphic.

Proof. After defining the linear mapping
p o B(Fg) — Fu(Fy)
g = Z aa T Ty = p(9)(Z) == Z aq T

acMy aeMpP

the claim follows easily. m

Remark 206 (and Definition) The mapping ¢ is defined on the set Py(K) C K[71,...,Tp], but
of course it can naturally be extended to K[r1,...,y] as

¢ ¢ KT1,.., ] = Fu(Fy)
g = D et = e(g)@) =) e T

ael ael

where I' is a finite set of multi indexes. We denote the image under ¢ : K[T1,...,75] — F,,(Fq) of
a polynomial g € K71, ..., 7] with

g9:=¢(g) € Fu(Fy)

Definition 207 Let d € N be a natural number, V a d-dimensional vector space over a field
K and F a basis of V. Furthermore, let U C V' be an arbitrary proper subspace of V. Now let
s:=dim(U) € N. A4 basis (u1, ..., us) of U is called a cleaned kernel basis with respect to the basis
F if the matriz (1, ..., Js)" whose rows are the coordinate vectors 71, ..., s € K% of (uy, ..., us) with
respect to the basis F' is in reduced row echelon form.

For a tuple & = (21, ...,x,) we write z := {1, ..., 2, } for the set containing all the entries in
the tuple Z.
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Theorem 208 Let F,; be a finite field, n,m € N natural numbers with m < ¢" and > a fived

monomial order. Further let
X = (&1, ... %) € (F))"

be a tuple of m different n-tuples with entries in the field F and s := dim(ker(® ¢)). In addition,
let (u1, ..., us) be a cleaned kernel basis of ker(® ¢) C F,(Fg) with respect to the basis (gnga)aeny -
Then the family of polynomials

(7'({ —T1, T = Toy ey TL — Ty, go_l(ul), ey go_l(us))

is a Grobner basis of the vanishing ideal I(X) C Fy[T1, ..., Ty] with respect to the monomial order
> .

Proof. The idea of the proof is to show that

U = (7’? — 7’1,7’% — T2, ...,7—% - T'rw(pil(ul% "'7(1071(1[/3))

generates the ideal I(X) and that for any polynomial g € I(X) the remainder on division of g by
U is zero. According to a well known fact about Grobner bases (see proposition 5.38 of [8]) this is
equivalent to U being a Grobner basis for I(X). For this proof, remember that the fundamental
monomial functions (gnga)ae My are ordered decreasingly with respect to the order > .

Now let g € I(X) C Fy[r1,..., 7] be an arbitrary polynomial in the vanishing ideal of X. Since

q q
(19 = 71,78 — T2, o0, TE — 71)

is a universal Grobner basis for I(Fy) (see Theorem 241 in the appendix), there is a unique
r € Fy[r1,..., 7] with the properties

1. No term of 7 is divisible by any of LT (7§ —71) = 71, LT (4 —12) = 74, .., LT (7%, — 1) = 3.
That means in particular r € P (Fy).

2. There is a ¢ € I(Fy) such that g = q+r

This means that when we start to divide g by the (ordered) family U we get the intermediate
result
g=q+r

where the remainder r € P;(Fy) and q € (7] — 71,75 — 72, ..., 7h — 7p) = I(F}). If 7 = 0, then
we are done and the remainder gV on division of g by U is zero. If r # 0, then we know from

r=g-—q
that r € I(X) (¢ € I(Fy) € I(X)) and this is equivalent to
T(Z) = (r)(Z) =0V T € F &7 € ker(®g)

Since (u1, ..., us) is a basis for ker(® ¢), there are unique \; € Fy, i = 1,..., s with

s
i=1

Applying the vector space isomorphism ¢! : F,(F,) — P} (Fy) to this equation yields

s
r= Z )\igo_l(ui)
i=1
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From the requirement on (u1, ..., us) to be a cleaned kernel basis of ker(® ¢) now follows for each
j €{1,...,s}, that the leading term

LT (¢~ (uy))

doesn’t appear in the polynomials =1 (u;), i € {1,...,5}\{j}. Consequently, in the expression

> A (ua)
i=1

no cancellation of the leading terms LT (¢~ '(u;)), i = 1,...,5 can occur. Therefore, the division
of r =371 Nio t(u;) by (cpfl(ul), s cpfl(us)) must yield

r= Z)\igo_l(ui) +0
i=1

and the remainder gV on division of g by U is zero. As a consequence,

ge(rl—ri, 78— 79,78 — Tna(P_l(ul)v~--a‘P_1(us)>

and since g € I(X) was arbitrary

I(X) - <7-? - 7—177-% — T2, '-'77—(711 - Tn,@_l(ul), "'7§0_1(u8)>

The inclusion
<7-(f - 7—177—% — T2, "'77—% — Tn,y gp_l(ul), ) QO_I(US)> - I(X)

is given by the fact ug, ..., us € ker(®¢) and Theorem 241. Summarizing we can say

<7-(f - 7—177_% — T2, ---,T% — Tn,@_l(ul), ...,go_l(us)> = I(X)

and for every g € I(X) the remainder gV on division of g by U is zero. Now proposition 5.38 of
[8] (see also the remarks after corollary 2, chapter 2, § 6 of [25]) proves the claim. m

Theorem 209 Let F, be a finite field, n,m € N natural numbers with m < ¢" and > a fived
monomial order. Further let
X = (T4, ..., Tm) € (F)™

be a tuple of m different n-tuples with entries in the field F, be Fy' a vector, d := dim(F,(F,))
and s := dim(ker(® ¢)). In addition, let (u1, ...,us) be a cleaned kernel basis of ker(® ¢) C F,(Fy)
with respect to the basis (gnqa)aeMgz, (U1, ...y Us, Usy1, ..., Ug) an orthonormal basis of F,(Fy) con-
structed using the standard orthonormalization and f € F[r1,...,7y] a polynomial satisfying the
wnterpolation conditions

f(&@;) =0b;Vje{l,...,m}

Furthermore, let U C I(X) be an arbitrary Grobner basis of the vanishing ideal T (X) with respect
to the monomial order > and v* the orthogonal solution of ® ¢(g) =b. Then

Proof. If ¢=!(v*) = 0 then v* = 0 and

b=0y(v*) =

>

—~
(s}

N—
I
(e

In this case we also have
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and therefore _
e i) =T
Assume ¢! (v*) # 0. Since the remainder on division by a Grobner basis is independent of which

Grobner basis we use (for a fixed monomial order), the idea of the proof is to show that ¢=1(v*)
is the unique remainder on division by the Grébner basis

(7'({ —T1, T = Ty ey TL — Ty, o (u), ..., go_l(us))
(see Theorem 208). Now, since ¢~ *(v*) € PJ(F,), no term of ¢~ *(v*) is divisible by any of the
LTt —7) =74 LT(rd — 1) =74, ., LT (7L — 7,,) = 72
If terms of ¢~ (v*) would be divisible by
LT (o™ (1)), .o, LT (0™ (us))
then after division by the family
(T‘f — T, Th = T2y ey TS — Ty, o (uy), ..., gofl(us))
we would have )
e W) =D hip M (wi) +r (4.8)
i=1
where hj,r € Fy[r1,...,7p], t = 1,..., s and either » = 0 or no term of r is divisible by the
LT(t¢ —71), .0, LT (7% — 7,,), LT (¢ (1)), .o, LT (07 (us))
If » =0, then .
T ") =) hip ™ (w)
i=1
and the polynomial ¢ ~!(v*) vanishes on the set X, that is
Pl W))(@) =v* (@) =0V T e X

Consequently .
b=®¢(v") =0

and due to the uniqueness of the orthogonal solution
v* =0

But this is a contradiction to our assumption =1 (v*) # 0.
Now if 7 # 0, since no term of r is divisible by LT(7{ — 71), ..., LT (7% — 74,), then in particular
r € P}(Fy). Due to the fact, that (u1, ..., Us, Ust1, ..., uq) is a basis for F,(Fy), we can write

d
F=pr) =Y A
j=1

with unique \; € Fy, j = 1,...,d. Applying the vector space isomorphism ¢ =1 : F,,(F,) — P(F,)
to this equation yields

d
r= Ao ()
j=1
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From the requirement on (uy, ...,us) to be a cleaned kernel basis of ker(® ) with respect to the
basis (gnga)ac My and since the basis extension (Upy eey Usy Ugy1, -, Ug) has been constructed using
the standard orthonormalization, in the expression

d
> e (uy)
j=1

no cancellation of the leading terms LT (¢~ !(ug)), k = 1,..., s can occur. But r is not divisible by
LT(¢ Y (u1)), ..., LT (o~ (us)) and that forces

M =0, VEke {1, ...,S}
In other words
d d
r= Z )\jgo_l(uj) er=p(r)= Z Ajuj
j=s+1 Jj=s+1
which is equivalent to
s ker(@X)J‘ (4.9)

From the equation (4.8) we know that

and that means

In other words

This together with (4.9) says that 7 is an orthogonal solution of ® 3(g) = b. From the uniqueness

now follows

v =T ) =r
Consequently, no term of the polynomial ¢~!(v*) is divisible by any of the leading terms of the
elements of the Grobner basis (see Theorem 208)

G o= (78— 71— 2y = T ) o )

for the vanishing ideal I(X). Now we define the polynomial
hi=f—¢ '(v")

Since v* is a solution of ® ¢(g) = b and f satisfies the interpolation conditions

f(Zj) = b; ¥V je{l,..,m}
we have B B
hMZ) = f(&) —v* (@) =0Vie X & hellX)
So we have a polynomial h € I(X) such that
f=h+e (v

By proposition 1, chapter 2, §6 in [25], ¢~ !(v*) is the unique remainder on division by the Grébner
basis G. It is a well known fact, that the remainder on division by a Grobner basis is independent
of which Grobner basis we use, as long as we use one fixed particular monomial order. Therefore
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Remark 210 (and main theorem) Let Fy be a finite field, n,m € N natural numbers with
m < q" and > a fired monomial order. Further let

—

X = (&1, Tn) € (FI)™

be a tuple of m different n-tuples with entries in the field ¥y, U C I(X) an arbitrary Grébner
basis of the vanishing ideal 1(X) and f € Fy[71,...,7n] an arbitrary polynomial. Then

—-U

=)
where v* is the orthogonal solution of ® ¢(g) = b and b is given by
bi = f(fl), 1= 1, .,

Remark 211 Let
A= ((I)X'(gnqa))aeMgl € M(m x q"; Fq)

be the matriz representing the evaluation epimorphism ® ¢ of the tuple X with respect to the basis
(gnqa)aeMg of Fn(Fy) and the canonical basis of F' and S the matriz

Sij = (Gnqai» Gngay ) » 4 € {1,...,q"}

representing the symmetric bilinear form with respect to the basis (gnqa)aeM;. Further let
T, .r s € Ffli be the coordinate vectors of (u1, ..., us) with respect to the basis (gnqa)aeMgz. Then

the above result states that the normal form 7U of f with respect to the Grobner basis U C I(X)
can be calculated by solving the following system of inhomogeneous linear equations

AZ =

7Sz —

o o

1=1,..,s

In some publications about applications of Grobner bases (see, for instance, [97]) the so called
set of standard monomials (see Definition 212) is introduced. Therefore, we finish this chapter
including the relationship between the basis of ker(® X)J- and the set of standard monomials:

Definition 212 Let K be a field, n € N a natural number and K|11,...,Ty] the polynomial ring
in n indeterminates over K. Further let < be a monomial ordering and I C K|r1,...,Ty] an ideal.
Then (LT(I)) denotes the monomial ideal in K|T1,...,T,] generated by the leading terms of I and
O((LT(I))) the set of all monomials not lying in the monomial ideal (LT(I)) . The set O((LT(I)))
is called the set of standard monomials associated to < and I.

Remark 213 Note that the set O((LT(I))) has the property that all divisors of an element of
O((LT(I))) are also in O((LT(I))).

Theorem 214 Let F, be a finite field, n,m € N natural numbers with m < ¢" and > a fived
monomial order. Further let

X = (Z1, ... Tm) € (F)™

be a tuple of m different n-tuples with entries in the field Fy, d := dim(F,(F;)) and
s = dim(ker(® ¢)). In addition, let (u1,...,us) be a cleaned kernel basis of ker(® ) C F,(F,)
with respect to the basis (gnqa)aeM;, (U1, .oy Ug, Us1, ..o, Ug) an orthonormal basis of F,(Fy) con-
structed using the standard orthonormalization and I(X) the vanishing ideal of the set X. Then
it holds

OULT(I(X)) = {¢™ (us41), -, 0™ (ua) }
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Proof. It is important to notice that since the ideal I(X) is a vanishing ideal, it contains the
polynomials 7§ — 71,74 — 72,..., 7% — 7, (see Theorem 241) and therefore

O((LTI(X)))) C B} (K)

Now consider a monomial m € O((LT(I1(X)))). If we assume ¢(m) € ker(® ), then it follows
m € I(X) and therefore m € (LT(I(X))), which is a contradiction to the fact m € O((LT(I(X)))).
Now the relationship (4.5) forces

p(m) € ker(® )+ (4.10)

Since the standard orthonormalization chooses the vectors wus41, ..., g among all canonical unit
vectors, the only monomial functions in ker(® X)J- are exactly ugy1, ..., ug and it follows from (4.10)
p(m) € {8071(U5+1)7 -~-,9071(Ud)}

and in general
O((LT(I(X)))) C {¢  (uss1), ¢ (ua) }

For the other inclusion, consider any ¢~ !(u;) € {¢ ' (ust1), ..., o H(ug)}. Assuming o~ (u;) €
(LT(I1(X))) would mean

Fje{l,..,s}st. o u) =hLT(p (uy))

with an appropriate monomial i € P;'(K). The reason for this is that, according to Theorem 208,

(7—({ - 7—177—% — T2, "'77—(711 — Tn, (10_1(“1)7 ) so_l(us))

is a Grobner basis for I(X) and ¢~ (u;) € P} (K). As a consequence, the (according to >)
descending ordered polynomial

w:= (e (uy)) = ¢ () + R
where
R:=h(p™(u;) = LT(¢™ (1))
would have the property
o(u) = p(h)u; € ker(® ) (4.11)

Since u; arises during the standard orthonormalization process as a canonical unit vector which
is linearly independent from wy, ..., us, the fact (4.11) would mean dim(ker(®¢)) > s. Therefore
¢ Y(u;) € (LT(I(X))) can not hold and we have

v~ (w) € O(LT(I(X))))
ie.
{07 (Wst1), - 07 (wa) } C OULT(I(X))))
|
Remark 215 Since the dimension dim(ker(® ¢)) of ker(® i) doesn’t depend on the chosen mono-
mial order >, the previous result shows that the number of elements in the set O((LT(I1(X)))) is
an invariant among all monomial orderings. More generally, this statement is true for arbitrary

fields K and arbitrary polynomial ideals I C K|[r1, ..., 7] with the property |O((LT(I)))| < oo (see
§3 of chapter 5 in [25]).
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Chapter 5

Reverse engineering of time discrete
finite dynamical systems

5.1 Reverse engineering time discrete dynamical systems over a
finite field

5.1.1 Definition of the reverse engineering problem

Reverse engineering is the attempt to infer the law governing a deterministic dynamical system
based on successive observation or measurement of the system’s evolution in time. Generally, if
a real (physical or biological) system is being studied and measured, a modeling paradigm (i.e.,
type of mathematical model used to describe the system studied) has to be chosen by the modeler
([68]) before reverse engineering can be performed.

One well-known reverse engineering approach are the top-down methods, which try to infer net-
work properties based on the observed global input-output-response. The observed input-output-
response is usually only partially described by available experimental data. When the general
structure of the law governing a deterministic dynamical system is known and only parameters of
this law are undetermined, reverse engineering is also called parameter or system identification.
Several methods for parameter identification have been developed, see, for instance, [68].

In the context of deterministic time discrete finite dynamical systems, the reverse engineering
problem can be stated as follows: Given a time discrete finite dynamical system in n variables
F: X" — X™and a data set Y C X" generated by iterating the function F' starting at one or
more initial values, can the function F' be reconstructed from the observed time series Y7

[65] developed a top-down reverse engineering algorithm for deterministic time discrete dy-
namical systems over a finite field. Herein, we will refer to it as the LS-algorithm. The next
subsection describes this specific type of reverse engineering problem and the LS-algorithm.

5.1.2 A short description of the LS-algorithm

In the modeling paradigm described by [65], a biological or biochemical system described by
n varying quantities is studied by taking m consecutive measurements of each of the interacting
quantities. This yields one time series

81 = (511,512 s 81n)s -+, Sm. = (Sm1, Sm2; s Smn)

Such series of consecutive measurements are repeated t times starting from different initial con-
ditions, where the length m; of the series may vary. At the end of this experimental procedure,
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several time series are obtained:
sly,...,sly,

RN
ski,...,skm,

—_—
stq,..., sty

Each point in a time series is a vector in R™. Time series are then discretized using a discretization
algorithm that can be expressed as a map

D:R" — S (5.1)

where the set S is a finite field of cardinality p := |S| (the cardinality of the field used is determined
during the discretization process). The discretized time series can be written as

— — — —
dk; := D(sky), ...,dKp, = D(skp,), k=1, ...t

One fundamental assumption made in their paper is that the evolution in time of the discretized
vectors obeys a simple rule, namely, that there is a function

F.S" - 5"

such that
— —
dk;;; = F(dk;) for i =1,...,mi — 1, k=1,...,t (5.2)

[65] call F' the transition function of the system. One key ingredient in the LS-algorithm is the fact
that the set S is endowed with the algebraic structure of a finite field. Under this assumption, the
rule (5.2) reduces to a polynomial interpolation problem (see Corollary 28) in each component,
i.e. for each j € {1,...,n}

dk(l-l—l)] = Fj(dki) for k = 1, ...,t, 1= 1, ey M — 1 (53)

The information provided by the equations (5.3) usually underdetermines the function
F; : 8" — S, unless for all possible vectors & € S™, the values F(Z) are established by (5.3).
Indeed, any non-zero polynomial function that vanishes on all the data inputs

.
X:={dk; | k=1,..,t,i=1,...,mp — 1}

could be added to a function satisfying the conditions (5.3) and yield a different function that also
satisfies (5.3). Among all those possible solutions, the LS-algorithm chooses the most parsimonious
interpolating polynomial function Fj : S™ — S according to some chosen term order. To generate
the most parsimonious function the algorithm first takes as input the discretized time series
and generates functions f;, 7 = 1,...,n that satisfy (5.3) for each j € {1,...,n} correspondingly.
Secondly, it takes a monomial order <; as input and generates the normal form of f; with respect
to the vanishing ideal I(X) and the given order < . For every j € {1,...,n}, this normal form is
the output F} of the algorithm.

We also refer to 2.1 in [52] for another rigorous description of the LS-algorithm.

5.2 Orthogonality and the reverse engineering algorithm

The mathematical framework presented here is based on a general result stated in Chapter 4.
This framework will allow us to study the LS-algorithm as well as a generalized algorithm that
does not depend on the choice of term orders.
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We start with the original problem: Given a time-discrete dynamical system over a finite field S
in n variables
F:.S5"— 8"

and a data set X C S™ generated by iterating the function F' starting at one or more initial values,
what are the chances of reconstructing the function F' if the LS-algorithm or a similar algorithm
is applied using X as input time series?! Since the algorithms studied here generate an output
model G : 8" — S" by calculating every single coordinate function G; : S™ — S separately, we
will focus on the reconstruction of a single coordinate function F; which we will simply call f. We
will use the notation F, for a finite field of cardinality ¢ € N. In what follows, we briefly review
the main definitions and results stated and proved in Chapter 4:

We denote the ¢"-dimensional vector space of functions g : Fy — F, with F,.(Fy). A basis for
F,.(F,) is given by all the monomial functions 7' := z{* - ... - 2]" where the exponents «; are
non-negative integers satisfying «; < q. The set of all those monomial functions is denoted with
(gnga)aemy, where Mg == {a € (No)" | a; < ¢V j € {1,...,;n}}. We call those monomial functions
fundamental monomial functions.

Theorem 216 (and Definition) Let F, be a finite field and n,m € N natural numbers with
m < q". Further let
X = (T4, ..., Tm) € (F)™

be a tuple of m different n-tuples with entries in the field F,. Then the mapping
Dy o Fu(Fy) —FJ
o= @g(f) = (f(@1), s [(Zm))

is a surjective linear operator. ® ; is called the evaluation epimorphism of the tuple X.

For a given set X C Fy of data points, the interpolation problem of finding a function
g € F,,(F,) with the property

g(fz) =bVie {1, ...,m}, z; € X

can be expressed using the evaluation epimorphism as: Find a function g € F,(F;) with the
property
D3(g) =0 (5.4)

Since a basis of F;,(Fq) is given by the fundamental monomial functions (gnga)aenry, the matrix
A= (‘I))Z(gnqa))aeMgl € M(m x q";Fy)

representing the evaluation epimorphism ® ¢ of the tuple X with respect to the basis (gnga)ac My
of F;,(F,) and the canonical basis of Fy* has always the full rank m = min(m,q"). That also
means, that the dimension of the ker(®¢) is

dim(ker(® ¢)) = dim(F,(Fy)) —m =¢" —m (5.5)

In the case m < ¢™ where m is strictly smaller than ¢" = {Fg‘ we have dim(ker(®¢)) > 0 and

the solution of the interpolation problem is not unique. There are exactly ¢@™ker(®%)) different
solutions which constitute an affine subspace of F;,(F;). Only in the case m = ¢", that means,

'From an experimental point of view the following question arises: What is the function F in an experimental
setting? Contrary to the situation when models with an infinite number of possible states are reverse engineered
(see 1.2 in [68]), there is a finite number of experiments that could be, at least theoretically, performed to completely
characterize the system studied. In this sense, even in an experimental setting, there is an underlying function F.
The components of this function is what [52] called htrye.
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when for all elements of Fjj the corresponding interpolation values are given, the solution is unique.
If the problem is underdetermined and no additional information about properties of the possible
solutions is given, any algorithm attempting to solve the problem has to provide a selection
criterion to pick a solution among the affine space of possible solutions. The LS-algorithm chooses
the most parsimonious interpolating polynomial function according to some chosen term order. A
more geometric approach to pick one solution would be to select the solution that is perpendicular
(or orthogonal) to the affine space of solutions. As stated in Remark and Theorem 210, the
solution selected by the LS-algorithm is precisely the orthogonal solution. For orthogonality to
apply, a generalized inner product has to be defined on the space F},(F,). We finish this subsection
reviewing this concepts (cf. Chapter 4).

The space F,,(F,) is endowed with a symmetric bilinear form (-,-) : F;,(Fq) x F,(Fy) — Fy, ie.
a generalized inner product. Orthogonality and orthonormality are defined as in an Euclidean
vector space.

For a given set X C Fp of data points, consider the evaluation epimorphism ® ¢ of the tuple X
and its kernel ker(® ). Now, let (u1, ..., us) be a basis of ker(® ¢) C F,(Fy). By the basis extension
theorem, we can extend the basis (u1, ..., us) to a basis

(Upy eeey Ugy Ug g1y ey Ug)

of the whole space F},(F;). (There are many possible ways this extension can be performed. See
more details below). As in Example 192, we can construct a generalized inner product on F,(Fy)
by setting

<ui,uj> = (51‘]‘ Vi, g€ {1, ceey d}
The orthogonal solution of (5.4) is the solution v* € F,(F,) that is orthogonal to ker(® ), i.e.
it holds ® ;(v*) = b and for an arbitrary basis (w1, ..., ws) of ker(T) the following orthogonality

conditions hold
(wi,v* )y =0V ie{l,..,s}

The way we extend the basis (uy, ..., us) of ker(® ;) to a basis
(Upy eeey Ugy Ust 1y ey Ug)
of the whole space F,(F,) determines crucially the generalized inner product we get by setting
(ui,uj) :=09;; Vi, j € {1,...,d} (5.6)

Consequently, the orthogonal solution of ® ¢(g) = b may vary according to the chosen extension
Ust1, - Ud € F(Fg). In Chapter 4 a systematic way to extend the basis (u1,...,us) to a basis
for the whole space is introduced. With the basis obtained, the process of defining a generalized
inner product according to (5.6) is called the standard orthonormalization. This is because the
basis (U1, ..., Us, Ust+1, .., Ug) is orthonormal with respect to the generalized inner product defined
by (5.6).

As shown in Section 4.5 of Chapter 4, using the generalized inner product obtained by applying
the standard orthonormalization, the functions generated by the LS-algorithm are orthogonal
solutions of the polynomial interpolation problem as formulated in (5.4). Under these assumptions
the orthogonal solution is also unique (see Theorem 196).

The standard orthonormalization process depends on the way the elements of the basis (gnga)ac My
of fundamental monomial functions are ordered. If they are ordered according to a term order,
the calculation of the orthogonal solution of (5.4) yields the same result as the LS-algorithm. If
more general linear orders are allowed, a more general algorithm emerges that is not restricted
to the use of term orders. This algorithm can be seen as a generalization of the LS-algorithm.
We call it the term-order-free reverse engineering method. The precise definition of the standard
orthonormalization procedure is stated in Section 4.4 of Chapter 4. In the appendix we summarize
the steps of the term-order-free reverse engineering method.
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5.3 Performance of the reverse engineering method

5.3.1 Questions studied

The mathematical framework developed in the previous subsection will allow us to answer the
following questions regarding the LS-algorithm and its generalization, the term-order-free reverse
engineering method:

Problem 217 Given a function f € F,(F,), what are the minimal requirements on a set
X C Fy, such that the LS-algorithm reverse engineers f based on the knowledge of the values
that it takes on every point in the set X ?

Problem 218 Are there sets X C Fy that make the LS-algorithm more likely to succeed in reverse
engineering a function f € F,(F,) based only on the knowledge of the values that it takes on every
point in the set X 7>

Problem 219 Given a function f € F,(F,) and an optimal set X C Fy (in the sense of the
previous problem). If the term order used by the LS-algorithm is chosen randomly, can the prob-
ability of success be calculated? If the linear order used by the term-order-free method is chosen
randomly, can the probability of success be calculated?

Problem 220 What is the asymptotic behavior of the probability for a growing number of variables
n?

It is pertinent to emphasize that, contrary to the scenario studied in [52], we do not necessarily
assume that information about the number of variables actually affecting f is available. We will
give further comments on this issue at the end of the conclusions.

5.3.2 Results

Basic definitions and facts

For what follows recall that M = {a € (No)" | aj < ¢V j € {1,...,n}}. The easy proof of the
following two propositions is left to the reader.

Lemma 221 (and Definition) Let K be a field, n,q € N natural numbers and K|r1,...,Ty] the
polynomial Ting in n indeterminates over K. Then the set of all polynomials of the form

with coefficients ao, € K is a wector space over K. We denote this set with
P}MK) C K[T1,...; Tn].

Theorem 222 Let Fy be a finite field and n € N a natural number. Then the vector spaces
P} (Fy) and F,(Fy) are isomorphic via the mapping

p o B(Fg) — Fu(Fy)
g = Y aari Tyt = p(g)(@) = ) a7

acMy aEMy

2 A solution to this problem would provide criteria for the design of experiments.
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Definition 223 Let K be a field, n,m € N natural numbers and K|[r1, ..., 7y] the polynomial ring
in n indeterminates over K. Furthermore, let g1, ..., gm € K[T1,...,Tn] be polynomials. The set

<gl7 ‘-~7gm> = {hlgl + o Gm | hi, .oy hm € K[Tla --‘77—n]}
1s called the ideal generated by g1, ..., Gm.

For a tuple ¥ = (x1, ..., x,) we write x := {x1,...,z,} for the set containing all the entries in
the tuple 2.

Conditions on the data set

Definition 224 Let f € F,(Fy) be a polynomial function. The subset of Fy containing all values
on which the polynomial function f vanishes is denoted by

V(e (f))
where @ s the mapping defined in Theorem 222.

The following result tells us that if we are using the LS-algorithm to reverse engineer a nonzero
function we necessarily have to use a data set X containing points where the function does not
vanish.

Theorem 225 Let f € F,,(F,)\{0} be a nonzero polynomial function. Furthermore let
X = (T, ., Tm) € (F)™
be a tuple of m different n-tuples with entries in the field F, be Fy' be the vector defined by
bi = f(Z;), i=1,..m
and v*the orthogonal solution of ® ¢(g) = b. Then if v* = f it follows®
Ve ()N X £0

Proof. If V(o= 1(f))N X = () then by definition of V(o= 1(f)), the vector b would be equal to
the zero vector 0. From Corollary 198 we know that the orthogonal solution v*of ® ¢(9) = 0is the
zero function, thus v* # f. =

Theorem 226 Let f € F,,(F,)\{0} be a nonzero polynomial function. Furthermore let

—

X = (T1, ..., Tm) € (F)™
be a tuple of m different n-tuples with entries in the field F, be Fy" be the vector defined by
bi = f(Z;), i=1,...m

and v*the orthogonal solution of ® ¢(g) = b. In addition, assume V(o™ 1(f))°N X # 0. Then it
holds

vt = f & f € span(ugii, s ug)

Proof. The claim follows directly from the definition of orthogonal solution and its uniqueness.
|

3If A is a set, A® denotes its complement
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Remark 227 From the necessary and sufficient condition

f € span(usyi, ..., uq) (5.7)

it becomes apparent, that if the function f is a linear combination of more than d — s = m funda-
mental monomial functions, f can not be found as an orthogonal solution v* of
Dy(g9) = b. In particular, if f is a linear combination containing all d fundamental monomial
functions in (ana)aeM;, no proper subset X C ¥y of Fy will allow us to find f as orthogonal

solution of ® 4(g) = b (where b; := f(Z;), T; € X).

Remark 228 It follows from condition (5.7), that it is necessary that a monomial function ap-
pearing in f is linearly independent of the basis vectors u, ..., us of ker(®¢). For this reason, the
set X should be chosen in such a way that no fundamental monomial function (gnqa)aeMg 18 lin-
early dependent on the basis vectors uy, ..., us of ker(® ¢). Otherwise, some of the terms appearing
in f might vanish on the set X and wouldn’t be detectable by any reverse engineering method,
(as stated in [65]). This problem introduces a more general question about the existence of vector
subspaces in “general position”:

Definition 229 Let W be a finite dimensional vector space over a finite field F, with
dim(W) = d > 0. Furthermore, let (w1, ...,wq) be a fized basis of W and s € N a natural number
with s < d. A wvector subspace U C W with dim(U) = s is said to be in general position with
respect to the basis (wi, ..., wq) if for any basis (vi,...,vs) of U and any injective mapping

7 {Ll o (d—s)} — {1,...d}
the vectors
ULy +ees Usy Wr(1)y - Wrr(d—s)

are linearly independent.

It can be shown, that if the cardinality g of the finite field F, is sufficiently large, proper
subspaces in general position of any positive dimension always exist. The proof is provided in the
appendix.

Now assume that ker(® ) is in general position with respect to the basis (gnga)ac My of Fy (Fy).
Following the basis extension theorem and due to the general position of ker(® ), we can extend

the basis (u1, ..., us) of ker(® ¢) to a basis

(ULy ey Ugy Usg 1y oeey Ug)

of the whole space F;,(F;), where {us11,...,uq} C {gnqa}aeMg is any subset with d — s elements
of {gngatacmy. Now we can construct a generalized inner product on F,(F,) by setting

(ui,uj) :=09;; Vi, j € {1,...,d}

The advantage in this situation is that there is no bias imposed by the data on the monomial
functions that can be used to extend the basis (u,...,us) to a basis of F;,(Fy), i.e. there are no
restrictions on the structure of ker(® X)J-. In addition, having this degree of freedom, it is possible
to calculate the exact probability of success of the method based on the number of fundamental
monomial functions actually contained in f. We will give an explicit probability formula in the
next Subsection. For our further analysis we need the following intermediate result, whose proof
is left to the reader:

Lemma 230 (and Definition) Let ¥, be a finite field, n,s € N natural numbers with
s < dim(Fy,(Fy)). Furthermore, let U C F,,(F,) be an s-dimensional subspace. Then the set

V({U) = V(<3071(u1)7 ey 9071(u5)>) < FZ}

where (uq, ..., us) is any basis of U is independent on the choice of basis and it’s called the variety
of the subspace U.
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Now the following question arises: How should the set X be chosen in order to have ker(® ¢)
in general position with respect to the basis (gnga)ac Mgz? For a given natural number s < d :=
dim(F,(F,)) the idea is to start from a basis (u1,...,us) of a vector subspace U C F,(F,) in
general position with respect to the basis (gnga)ac My The next step is to calculate the variety

Y = V({¢Hw), o0 Hus))) C FP

We assume Y # ) and order its elements arbitrarily to a tuple Y = (1, -, Um) € (Fy)™, where
m := |Y|. We know from Remark 200 that dim(ker(®y)) = dim(F,(Fy)) — Y| = d —m. Now, in
general, for the kernel ker(®;) of the corresponding evaluation epimorphism @ it holds

U C ker(®y)

and therefore s < dim(ker(®y)) = d —m, i.e. m < d —s. Now, the ideal scenario would be the
case ker(®y) = U, i.e. m = d — 5. A less optimistic scenario is given when U C ker(®y) is a
proper subspace of ker(®y;). In such a situation, ideally we would wish for ker(®y:) to be itself in
general position with respect to the basis (gnga)ac My This issues raise the following question:

When does there exist a subspace U C F,(F,) in general position with respect to the basis

(gnga)aeny with dim(U) < dim(£;,(F)) that in addition satisfies

‘V(<cp*1(u1), e ap*l(us)>)‘ = dim(F;,(Fy)) — dim(U) (5.8)

This is an interesting question that requires further research. It is related to whether the subspace
U is an ideal of F},(F,), when F,(F,) is seen as an algebra with the multiplication of polynomial
functions as the multiplicative operation. In the Appendix we provide examples in which two
subspaces, both in general position, show a different behavior regarding the condition (5.8). We
formalize this property:

Definition 231 Let U C F,(F,) be a subspace and (u1, ..., us) an arbitrary basis of U. U is said
to satisfy the codimension condition if it holds

codim(U) = |V ({¢™ ! (w), ~--7<P71(Us)>)|
where codim(U) = dim(F,(F,)) — dim(U).

A subspace U C F,(F,) in general position with respect to the basis (gnga)ac My that satisfies
the codimension condition allows for the construction of an optimal set for use with the LS-
algorithm. The set Y := V({¢o ™ (u1), ..., 0" H(us))) (where uy,...,us is a basis of U) has namely
the property ker(®y) = U, i.e. ker(®y) is in general position with respect to the basis (gnqa)aeMg.
In other words, subspaces in general position that satisfy the codimension condition provide a basic
component for a constructive method for generating optimal data sets. More generally we define:

Definition 232 A set X C Fy such that ker(® ¢) is in general position with respect to the basis
(gnqa)ae My 1s referred to as optimal.

Remark 233 (and Definition) Additional study is required to prove whether optimal data sets
exist in general. (See the Appendix for concrete examples.) However, if no optimal sets can be de-
termined, it s still advantageous to work with a data set X that was obtained as
V({e Hur), ..., 0" Hus))), where (u1,...,us) is a basis for a subspace U in general position with
respect to the basis (gnqa)aeM(y. In this case, at least U C ker(®y) still holds and it might be that
the dimensional difference between U and ker(®y) is small. We call such data sets pseudo-optimal.
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Probabilities of finding the original function as the orthogonal solution

Theorem 234 Let F,; be a finite field, n,m € N natural numbers with m < dim(F,(F,)) =: d.
Furthermore, let f € F,(Fq)\{0} be a nonzero function consisting of a linear combination of
exactly t fundamental monomial functions and

—

X = (&1, 0, ) € (F)™

a tuple of m different n-tuples with entries in the field Fy such that X is optimal. Now let be Fy
be the vector defined as

bi = f(g;), 7= 1,...,m

s = dim(ker(®g)) = d — m (cf. (5.5)), (u1,..,us) a basis for ker(®g) and
{ts+1, s ud} C {gngatacmy an arbitrary subset containing d — s elements. Then the probability
P that the orthogonal solution g* of ® ¢(g) = b with respect to the generalized inner product

<ui,u]'> = 5@' Vi je {1, ,d}
gt —t
p_ N —m)
qn
m

P=0ift>m

fulfills f = g* is given by

ift<m (5.9)
and

Proof. Due to the definition of general position, there are exactly

- () ) = o () = - (1)

different ways to extend a basis (u1, ..., us) of U to a basis of F;,(F;) using m = d — s fundamental
monomial functions. If ¢ < m, among such extensions, only

(d— s)! <di;i t) = (d—s)! <q”s_ t> = (d—s)! <qqn”__;)

use the ¢ fundamental monomial functions appearing in f. Now (5.9) follows immediately. If, on
the other hand, ¢ > m, the number of fundamental monomial functions usable to extend a basis
(u1, ..., us) of ker(® ) to a basis of F;,(F,) is too small and ker(® ¢)* is not big enough to generate
fom

Remark 235 If the elements in the basis (gnga)ac My are ordered in a decreasing way according
to a term order (the biggest element is at the left end, the smallest at the right end and position t
means counting t elements from the right to the left) an analogous probability formula would be

p_ Number of arrangements that place the mon. functions in f after position s

5.10

Total number of arrangements ( )
where an arrangement is an order of the elements of (gnqa)aeMgL that obeys a term order. (Two dif-
ferent term orders could generate the same arrangement of the elements in the finite set {gnqa}aeM;
So, forinstance, if f contains a term involving the monomial function xqfl-..n:z:%*l, then the above
probability (5.10) would be equal to zero, since every arrangement of the elements in {gnga tacry
that obeys a term order would make that monomial function biggest. (It is inherent to term orders
to make some monomial functions always biggest). In more general terms, it is difficult to make
estimates about the numbers involved in (5.10). This shows some of the disadvantages of using
term orders.
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Remark 236 Since for relatively small n and q the number d := q" is already very large, it
is obvious that one should calculate the asymptotic behavior of the probability formula (5.9) for
d — o0. Indeed, we have with t <m

(i-n) _ Ty

O

(d—t)lm! _ (d—b)m!
(m—td = d

m!
S dd-Dod—trn Vfrd—ee

If we write the amount of data used in proportion to the size d = q" of the space ¥y, and the
number of terms displayed by f relative to the size ¢" of the basis (gnga)ac My it becomes apparent
how quickly the probability formula converges to 0 for d — oo. So let r := m/d and v := d —t.
Then we would have

P S R
rd rd<d> ~ rd(m - t)ld!

m

_ m(m—1)...(m—t+1) _ rd(rd —1)...(rd —t +1)

rld(d—1)..(d—t+1) rldd—1)..(d—t+1)

_ rdrd(1— L).rd(1 - 52) _rld'(1— L)..1-51)
Pad(1 = )= B (= ) (- G
g0t
rd(1-3)..(1-&
-7(1 — L _ =1
S (- 591 = ) — 17 for d — o

In particular, it holds

t .
-2 =~ for big d
g for big

rd
This expression shows in a straightforward way how big the proportional amount of data should
be in order to have an acceptable confidence in the obtained result. It also shows that for t close
to d the probability is very low and the reverse engineering not feasible. Usually no information

about t is available, so it is advisable to work with the maximal t, namely d — 1 or with an average
value for t.

5.3.3 Conclusions

The results we have obtained in the previous section provide guidelines on how to design ex-
periments to generate data to be used with the LS-algorithm for the purpose of reverse engineering
a biochemical network.

The following are minimal requirements on a set X C Fy, such that the LS-algorithm reverse
engineers f based on the knowledge of the values that it takes on every point in the set X :
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1. If the LS-algorithm is used to reverse engineer a nonzero function f € F,(F,;)\{0}, neces-
sarily the data set X used must contain points were the function does not vanish. In other
words, not all the interpolation conditions must be of the type &; — 0 (Theorem 225).

2. If the LS-algorithm is used to reverse engineer a function f € F,(F,)\{0} displaying ¢
different terms, it requires at least ¢ different data points to completely reverse engineer f
(Remark 227).

3. If f € F,,(F,)\{0} is a polynomial function containing all p™ possible fundamental monomial
functions, no proper subset X C Fy of Fy will allow the LS-algorithm to find f (Remark
227).

Our results also make possible the identification of optimal sets X C Fy that make the LS-
algorithm more likely to succeed in reverse engineering a function f € F,,(F,) based only on the
knowledge of the values that it takes on every point in the set X. Optimal data sets X C Fy
are characterized by the property that ker(® ) is in general position with respect to the basis
(gnga)aemy (see Definitions 232 and 229). Their advantage is given by the fact that they do
not impose constraints on the set of candidate terms that can be used to construct a solution.

Summarizing we can say:

1. Even though such sets can be constructed in particular examples (see Appendix), further
research is required to prove their existence in general terms.

2. If no optimal sets can be determined, it is still advantageous to work with pseudo-optimal
data sets (see Remark and Definition 233).

Since the identified optimal data sets are sets X C Fy of discretized vectors, in a real appli-

cation, the optimal data set X has to be transformed back to a corresponding set X C R" of real
vectors. This transformation can be performed using an "inverse" function of the discretization
mapping (5.1). This "inverse" function has to be defined by the user, given the fact that dis-
cretization mappings are highly non-injective and by definition map entire subsets Z C R"” into a
single value z € Fy.

Having characterized optimal data sets, the next step in our approach was to provide an exact
formula for the probability that the LS-algorithm will find the correct model under the assumption
that an optimal data set is used as input. As stated in Remark 235, we weren’t able to find such
a formula for the LS-algorithm. The biggest difficulty we face is related to the use of term orders
inherent to the LS-algorithm. We overcome this problem by considering a generalization of the
LS-algorithm which we call the term-order-free reverse engineering method (see Appendix). This
method not only allows for the calculation of the success probability but it also eliminates the
issues and arbitrariness linked to the use of term orders (see Remark 235). In conclusion, our
results on this issue are:

1. It is still an open problem how to derive a formula for the success probability of the LS-
algorithm when optimal data sets are used as an input and the term order is chosen randomly.
As stated in Remark 235, one of the main problems here is related to the use of term orders
inherent to the LS-algorithm.

2. Let f € F,,(F;)\{0} be a nonzero function consisting of the linear combination of exactly ¢
fundamental monomial functions. If the linear order used by the term-order-free method is
chosen randomly, the probability of successfully retrieving f using an optimal data set X of
cardinality | X| = m is given by (see Theorem 234)

(7

ift <m (5.11)
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and
P=0ift>m

3. Let d = ¢" be the cardinality of the space Fy. Furthermore, let X be an optimal data set
with cardinality |X| = m and r := m/d (note that 0 < r < 1). Then the asymptotic
behavior of the probability formula (5.11) for d — oo (i.e. for n — oc0) satisfies (see Remark

236)
(i)
(va)

As a consequence of the latter, we conclude that even if an optimal data set is used and the
restrictions imposed by the use of term orders are overcome, the reverse engineering problem
remains unfeasible, unless experimentally impracticable amounts of data are available.

Finally, we comment on one scenario identified in [52]. Specifically, in Conclusion 4(a), [52]
makes the assumption that the wiring diagram of each of the underlying functions is known, i.e.
the variables that actually affect the function f are known. Under this assumption, let & be
the number of variables affecting f. If one could perform specific experiments such that for all
possible values that the k variables can take the response of the network is measured, the function
f would be uniquely determined. In this situation, reverse engineering f wouldn’t imply making
any choices among possible solutions. This raises the question of how many measurements are
needed and how big this data set would be in proportion to the size ¢" of the space Fy of all

~ r' for big d

possible states the network can theoretically display. The number of measurements needed is ¢*
and therefore the proportion is equal to

If k£ is small compared to n (which is generally assumed by [52]), then the proportion would
be conveniently small. In other words, in relative terms, it is worth performing the ¢* specific
experiments. However, performing ¢* measurements might still be beyond experimental feasibility.

5.4 Issues related to the discretization of time series

It would go beyond the scope of this thesis to study all the critical issues related to the
discretization® of real valued time series (see equation (5.1)). However, we finish this chapter
with a short study of the effects of a finer discretization on the output of the LS-algorithm.
We start providing a rigorous analytical one-dimensional (one variable case) counterexample to
the statement, "It follows from results in Green (2003) that for p large enough the result of our
reverse-engineering algorithm does not depend on p; in the sense that the terms in the polynomials
remain the same, possibly with different coefficients." made by [65]. Since the polynomial ring in
one indeterminate differs from polynomial rings in more than one indeterminate in some algebraic
properties, we performed Monte Carlo simulations in the two variable case. These simulations
showed no type of stabilization of the LS-algorithm’s output as the number p of possible states
increases. In reality, the total degree of the polynomial functions seems to grow unrestrainedly.
In the one variable case we begin with a realistic looking source of data: A continuous quantity
that grows monotonically and then stabilizes after a certain period of time (a phenomenon widely
observed in chemical and biochemical reactions). The time series is obtained by periodic sampling
over a time interval, that is sufficiently large to allow for stabilization. In order to simulate an

*Also called quantization, see 1-3 in [83].
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hypothetical substance

time

Figure 5.1: The continuous entity and 5 sampled points.

increasing number of possible states, we progressively shorten the sampling period. The period
of the sampling is also chosen in a way such that the total number of sampled points is a prime
number. (If the set of possible states contains a prime number p of elements, it can be endowed
with the algebraic structure of the finite field F), which is required by the LS-algorithm). For
any given prime number p the corresponding sampled points can be labeled increasingly from 0
to p — 1. (See Figure 5.1.)

The interpolation conditions for the transition function

F:F,—F,
are very simple in this situation, characterized by the transitions
O—1—2—.—p—1—p-1

Since no transition is missing, the interpolating function is uniquely determined (see also the
Lagrange Interpolation Formula, Theorem 1.71 in [67]). As the reader can easily verify,

F(z)=(p-1) (H((p—l)—k:)_l(x—k:)> +z+1VzeF,

k=0

and obviously
deg(F)=p—1

Now, the LS-algorithm must return F, given the fact that there is a unique interpolating function.
This shows that, in general, the output of the LS-algorithm does indeed depend on p, no matter
how large p is.

In the two variables case, we use the example of a two dimensional flow converging to a point
in the plane. We attempt to capture the dynamics using the LS-algorithm. The surface

2= h(z,y) = —el~ 2V’ H2ua?—at—ga?)

has a local minimum at (0,0). We chose this surface because it is reasonably simple without being
overly symmetric. We modelled flow on this surface using the map (z,y) — f(z,y), where®

f : R2-R?

1
(See left part of figure 5.2.) To use the LS-algorithm we consider the closed square [—1, 1] x [—1, 1]
and an equidistant rectangular grid of p x p squares on it. Now, the evolution of a square in the
grid is defined by the square which contains the image under f of the middle point of the square
in question (See figure 5.2).
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Figure 5.2: Left: Arrow field representing the flow towards the origin. Center: Discretization grid
for p = 17. Right: Discretization grid for p = 29. In both, 10% of the squares display an arrow
pointing to the square to which it is mapped by the flow.
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Figure 5.3: Dependency of the output functions’ total degree on the cardinality p of the finite
field used.

For a given prime number p and the corresponding equidistant grid, we ran the LS-algorithm
allowing for a random sampling of 10% of the squares, i.e. the transition of 10% of the squares
is used as time series for the algorithm. Iterating this process for an increasing prime number
p shows that the total degree of the polynomial functions in two variables generated by the LS-
algorithm keeps growing, showing that the terms in the polynomials do not remain the same (see
figure 5.3). This behavior is also observed if a lower percentage of sampled squares is used as
input time series. The highest prime number p considered (p = 191) was dictated by the value at
which the actual run time for the LS-algorithm becomes too large for any practical application.
As with any mathematical algorithmic method based on discretization, some type of convergence
as the discretization gets finer and finer (i.e. the step size gets smaller) is highly desirable, in
the sense that after a certain degree of resolution, the method is capable of catching essential
properties which won’t vary significantly if the resolution is further increased. Contrary to their
claim, the LS-algorithm doesn’t generally show convergence at the level of the polynomial functions
generated. It might show convergence at the level of the qualitative dynamic properties of the
systems generated, but we have not explored this feature, neither was it scrutinized in [65].

®Vh is the gradient of h, therefore
m27 2 m2712
Vh(z,y) = — <(4(y — 2z — g)e T’ E) (L3 4 21’2)6(*(%902)2*%))
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The biological backstory of this thesis
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Introductory remarks

PathSim is a stochastic agent-based model and computer simulation that attempts to model the
interaction between the Epstein-Barr virus (EBV) and the human immune system. As mentioned
in the introduction, in order to better analyze and understand the dynamics of the output of
PathSim, Dr. Laubenbacher suggested to use the average output of PathSim as data to reverse
engineer a deterministic, time discrete dynamical system over a suitable finite field. To this end,
he and some of his graduate students developed the reverse engineering method that we described
and analyzed in Chapter 5. The results obtained after analyzing the reverse engineering method
(see Chapter 5) discouraged the PathSim team from using it. However, in the era of exponentially
growing computer power this is of course not the end of the story. Indeed, multiple computer
simulations of the model and statistical analysis of their output represent a common and powerful
method in scientific research. This type of use of computational tools is not expected to change in
the future, although the rigorous analytical study to assess the dynamical properties of the model
is certainly more reliable than the results of simulations.

Given that this dissertation was written within the academic framework of the PathSim project,
we consider it pertinent to present a brief description of it here. Chapter 6 is devoted to this
description. The author wants to emphasize that the biological model, as well as the agent-based
model described in Chapter 6, were already developed when he joined the PathSim team.

Moreover, since the author was directly involved in the parameter space exploration of Path-
Sim, its resulting biological interpretations and potential biologically relevant insights are also pre-
sented. These results and their discussion constitute Chapter 7. This represents a co-contribution
of this thesis to both the biological and biomedical sciences. However, the author emphatically
acknowledges that the material presented in Chapter 7 is the result of a joint effort within the
PathSim team.

The exposition of this material is intentionally brief and we refer the reader to our publications
[36] and [104] for further details. For the understanding of Part III of this thesis, some basic
knowledge about immunology is required. The interested reader can find an excellent introduction
to this fascinating field in [105].
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Chapter 6

The agent-based model /simulation
PathSim

6.1 A brief description of the biological model of Epstein-Barr
virus infection

Epstein-Barr virus (EBV) is a common human pathogen which infects greater than 90% of
all people by the time they are adults [96],[111]. It is associated with several important diseases,
including cancer. EBV is most commonly transmitted by saliva [48]. After accessing the pharynx,
it starts the infection process on the surface of Waldeyer’s ring, which consists of the tonsils and
the adenoid. Here EBV infects the epithelium and is consequently amplified. It then infects naive
B cells in the underlying lymphoid tissue. EBV uses a series of distinct latent gene transcription
programs, which mimic a normal B cell response to antigen, to drive the differentiation of the
newly infected B cells. During this stage, the infected cells are vulnerable to attack by cytotoxic
T cells (CTLs) [57]. The differentiation process takes place within so called germinal centers that
are formed inside tiny ellipsoidal structures called follicles. Follicles are numerous and distributed
more or less uniformly throughout the tonsils and the adenoid. (For a more detailed anatomical
description of Waldeyer’s ring, see [2], [89].) Eventually, the latently infected B cells enter the
peripheral circulation, the site of viral persistence, as resting memory cells that express no viral
proteins [49] and thus are invisible to the immune response. The latently infected memory cells
circulate between the periphery and the lymphoid tissue [62]. When they return to Waldeyer’s
ring, they are occasionally triggered to terminally differentiate into plasma cells. This is the signal
for the virus to start the lytic program and virus replication [63]. These lytically infected B cells
are again vulnerable to CTL attack [57]. Newly released virions may infect new B cells or be shed
into saliva to infect new hosts, but are also the target of neutralizing antibody.

Primary EBV infection in adults and adolescents is usually symptomatic and referred to as
infectious mononucleosis (AIM). It is associated with an initial acute phase in which a large
fraction (up to 50%) of circulating memory B cells may be latently infected [50]. This induces the
broad T lymphocyte immune response characteristic of acute EBV infection. Curiously, primary
infection prior to adolescence is usually asymptomatic. In immunocompetent hosts, infection
resolves over a period of months into a lifelong persistent phase in which ~ 1 in 10° B cells carry
the virus [56]. Exactly how persistent infection is sustained is unclear. It is even unclear whether
the virus actually establishes a steady state during persistence or continues to decay, albeit at an
ever slower rate [50]. A diagrammatic version of the biological model is presented in the left panel
of Figure 6.1.
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Figure 6.1: Comparison of the EBV Biological Model and the Computational Model. EBV co-
opts normal B-cell biology to drive infected B-cells into the resting memory state in the peripheral
circulation where they are not subject to immunosurveillance. This process is simplified in the
model by omission of the germinal center differentiation. Upon return to Waldeyer’s ring, infected
memory B-cells may become lytic cells actively producing infectious virus that can either infect
new B cells or be shed into saliva to infect new hosts. The immune system attacks latently
infected lymphoblasts, lyticaly infected B-cells and free virus. In the model, Byats are the target
of "immune" response whenever they sojourn in the "lymphoid tissue". Virs and By y¢s are also
engaged. Reproduced from [36] with permission.
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6.2 A brief description of the stochastic agent-based model Path-
Sim

The stochastic agent-based model and computer simulation (PathSim) is a representation of
the biological model described in the previous section. This model omits many features of the
immune system and simplifies those it does contain. A schematic version of both is shown in
Figure 6.1.

PathSim consists of a simulation engine together with user friendly interface that allows for
two- and three-dimensional data display and analysis. The simulation is performed on a graph
that represents the anatomy of Waldeyer’s ring together with abstract compartments for blood
and lymph. Each vertex of this graph represents a small volume of tissue and is connected by
edges to neighboring vertices. Agents can only interact when they are located at the same vertex.
See Figure 6.2.

The graph is three dimensional and models the tissue within Waldeyer’s ring as well as the
geometry of the ring. For ease of construction and manipulation the graph was constructed with
a repeating unit. This repeating unit represents one follicle (see above) and the germinal center
with adjacent interfollicular tissue contained inside it. The unit is made of concentric ellipsoids
(with hexagonal cross-section) covered by hexagonal layers representing the histologic structure.
Additionally, in each unit, there is one vertex representing the high endothelial venule and one
vertex representing the efferent lymph. These are the connections to the "circulatory" and the
"lymphatic" system, respectively. Figure 6.3B provides a three dimensional magnification of this
unit compared to a cross-section of the tissue it represents.

“Lymphoid
Tissue”

“Lymph”

Figure 6.2: Schematic representation of the grid that models the lymphoid tissue and the two
virtual compartments of blood and lymph. The arrows represent the possible flow directions for
virtual B lymphocites.

Each "tonsil" and the "adenoid" is built on a roughly elliptical floor plan, which is tessellated
with the base units representing the follicles (Figure 6.3A, right). The "tonsils" and the "adenoid"
are interconnected according to their position in the ring.

The anatomical micro-structure of Waldeyer’s ring, i.e. the follicles, is modeled very accurately
in PathSim. However, this level of detail seems disproportionate, since the functional character-
istics of follicles, namely, antigen presentation, T cell help and the subsequent germinal center
maturation are omitted in PathSim.

PathSim’s agent types are Vir, Bnaive, Brats Bryts TNaive, Trat and Try¢, corresponding to
virus, naive B cells, latently infected B cells, lytically infected B cells, naive T cells, and two types
of activated cytotoxic T lymphocytes (CTLs), one directed against each kind of infected B cell
(CTL latent and CTL lytic). The vertices act as containers for these agents. In the course of a
simulation, these agents undergo creation, aging, interaction, motion, and death.
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At startup, population of Byaives and Tnaives are created and used to populate the underlying
graph. These "cells" are distributed randomly throughout the entire "ring". Whenever an agent
is created, it becomes a stochastic individual lifespan. (The numbers of agents created and their
lifespans are governed by parameters which are set at initialization. These and other controlling
parameters are discussed in detail in [104].) A virtual infection is started by creating a population
of Vir and distributing these only on the surface of the "Waldeyer’s ring". The simulation then
advances in discrete time steps. At each step, agents age, interact, move to neighboring vertices,
and undergo certain life cycle events that may be triggered by aging, interaction, or motion. The
population of Byaives in the blood is also replenished whenever it drops. The time step represents
six minutes of real time to accurately reflect interaction and motion rates.

One of the life cycle events induced by aging is death, which happens to Virs and Byaives at
the end of their life-spans. The life cycles of virtual T cells are handled using a simplifying heuris-
tic. TNaives are immortal. These may become virtual CTLs if they are appropriately triggered
(discussed below). Virtual CTLs become again Tyaives at the end of their life-spans.

The life cycle of the By, is slightly more complicated. Its possible fates are to die due to
passage of time, be killed by a Ty ¢, or to become a Bry¢. (As described below, they are not subject
to "CTL" regulation while in the "blood" compartment.) The biological signal responsible for
turning latently infected B cells lytic is unknown [63]. PathSim provides three methods by which
Brats may become Bpy¢s. Given the lack of viremia, all three of these methods are associated with
presence in "Waldeyer’s ring" and do not operate while the By, is in the "blood". One method
is based on the passage of time and is the default setting. The other two (which are similar) are
based on return from the "blood" to "Waldeyer’s ring". These two methods are optional.

When Bpyts reach the end of their cycle, they die and burst Virs. The number of Virs
in this burst is determined stochastically within a pre-set range based on laboratory estimates of
burst size. In vivo, virus can also enter the cells of the epithelium and reproduce within them
[84]. While this has not been a major focus of the simulation, the PathSim team has allowed for
continuing production of Vir in the epithelium for some runs. This turns out to have very little
effect on the course of the simulation [36].

The "blood" compartment contains both Bnaives and BratS. Byaives are continually supplied
to the "blood" to maintain homeostasis. The infected B cells in the blood compartment in vivo
are resting memory B cells [5], [75] that do not express antigenic proteins [49] and thus escape
immune surveillance. Accordingly, virtual T cells are excluded from the "blood" compartment.
In sum, therefore, aging, "CTL" predation, and initiation of lytic replication for Byt occur in the
"Waldeyer’s ring"; they are not allowed to proceed in the "blood" compartment.

Interactions take place between agents located at the same vertex. Only certain pairs of agents
interact. Vir and Byaives can interact, resulting in replacement of both with one or more Bya¢s.
(More than one new infected Br,s would arise as a consequence of proliferation of the freshly
infected B cell post-infection. This proliferation feature is optional and not part of the default
run.) Any infected virtual B cell (Brat or Bryt) and a virtual naive T cell (Tnaive) can interact,
thereby converting the Txaive into a virtual CTL (a Tra; or Try¢, respectively). Virtual CTLs
can interact with their cognate infected virtual B cells by killing them. T cell memory, antigen
presentation and explicit virus neutralization by antibody are not modeled in PathSim, although
the relatively short lifespan assigned to Virs implicitly reflects the action of neutralizing antibody.
See [104] for more details concerning lifespans.

Each interaction is stochastically governed by two probabilities: the probability that these
two agents encounter each other and the probability that they then interact. The probability that
a Vir infects a Bya¢ is near certainty. On the other hand, there is a rather low probability that
a B, will activate a Tnaive- The encounter probabilities depend on the motion of the agents
within the small volume represented by the vertex at which they reside. These probabilities were
calculated with the help of Monte Carlo simulations based on Brownian motion and neglecting
any chemotaxis effects. See [104] for more details on encounter and interaction probabilities.
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6.2. A brief description of the stochastic agent-based model PathSim

Motion takes place between adjacent vertices in the graph and is carried out stochastically.
The probabilities depend on tissue locations, agent types, and populations. Some of them are zero,
thus preventing certain movements entirely. These probabilities are also used to mimic short-range
effects of chemotaxis. In the absence of chemotaxis, a baseline probability governs the likelihood
of motion to an adjacent vertex. These probabilities were computed by a similar Monte Carlo
simulation to the one used for encounter probabilities.

There is a one-way flow of Bxaives and Brats from "lymphatic tissue" to the "efferent lymph" to
the "lymphatic system" to the "blood" compartment to "high endothelial venule" (HEV) and back
to the "tonsil tissue". In particular, the "blood" and the "lymph" are adjacent to, and therefore,
accessible from every section; (see Figure 6.2.) Motion probabilities are used to restrict Vir to
the surface and epithelial layer. Virtual T cells may move through "Waldeyer’s ring" freely, but
are given an incentive to move towards higher concentrations of virtual B cells in a neighboring
vertex. Infected virtual B cells may enter the germinal centers, but Byaives may not. A more
detailed description of allowed motions and their corresponding probabilities is given in [104].
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Figure 6.3: Panel A: Left: Anatomical structure of Waldeyer’s ring. Right: Geometric represen-
tation with hexagonal grid structure of the tonsils and adenoid. Panel B: Left: Three dimensional
magnification of the base unit (with hexagonal cross-section) modelling the follicle and germinal
center. Right: Histologic cross-section of two follicles and germinal centers. Panel A partially
taken from [89]. Panel B reproduced from [104] with permission.
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Chapter 7

Parameter space exploration of
PathSim and its biological
interpretations

7.1 Results of the parameter space exploration

The results presented below were obtained with a default set of parameters (which is described
in detail in [104]) or with certain variations of it. Additional biological implications of these
outcomes and, in particular, the validation of PathSim are discussed in [36]. Here we exhibit the
results of varying either the random seed controlling the stochastic choices during the simulation
or values of the parameters themselves. Figures 7.2-7.6 at the end of this section display graphs
of times series resulting from running the simulation. Figure 7.2, which examines stability with
respect to stochasticity, is the only graph displaying multiple runs for a single parameter set. In
all other figures a single line represents a single simulation run.

7.1.1 Stability and overall behavior

In PathSim, stochastic choices are made by referring to the successive values produced by a
pseudo-random number generator. We claim that a minimum requirement for a simulation such
as PathSim is that it should exhibit stability with respect to stochastic variation in most regimes.
This kind of dependence should only show up in the case where the system is finely balanced
between two differing outcomes. Thus, when the generic situation is simulated, we expect the
overall course of the simulated infection to be independent of initial random seed.

Here we show the results of running PathSim with the default parameter set and twenty
different random seeds. Figure 7.2 illustrates the total population for six of the seven agent types
in multiple runs. (While the total population of Tnaives is not shown, the pattern is identical to
the other agents.) The runs are virtually superimposable for all seeds and show the characteristic
biphasic behavior expected of a primary EBV infection with a peak of acute infection followed by
long term low level persistence. Clearly, in the regime which we think best represents the course of
infection, there are no critical dependencies on stochastic variation. In subsequent runs analyzing
sensitivity to parameter variation we assumed that this stability would hold through the range of
parameters tested.

7.1.2 Parameter variation and parameter sensitivity

Our sensitivity analysis focused around variations in the input parameters. We varied these
parameters individually or in related pairs, (e.g., minimum and maximum viral burst size). We
have not explored the parameter space in any systematic way. Our main goal was to bracket
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physiologically reasonable parameter values and to extend them in either direction to test their
effects on the virtual host-virus system. Our choices were dictated by curiosity about how the
viral burst size, the strength and speed of the adaptive immune response, the roles (if any) of
initial viral dose or ongoing epithelial re-infection and the rate and manner of lytic activation
affect outcomes in EBV infection. We were particularly interested in those factors that contribute
to long-term persistence. Here we focus specifically on burst size, viral response, and activation
of naive cells by lytically infected B-cells.

Burst size

Burst size is controlled by a pair of parameters giving the minimum and maximum number
of Virs produced, with the average burst size found at the mid-point in the range. When a
Byt bursts, the number of Virs it produces is determined stochastically according to a uniform
distribution on the interval between minimum and maximum burst size. As the average burst
size increases, peak levels of Virs (Figure 7.3A) and Bpas (Figure 7.3B) both increase. Above
a certain burst size, the persistent phase after the peak is virtually unchanged except for an
amplification of stochastic effects. Only at very low burst sizes (8 to 10 Virs per bursting cell)
clearance is observed. A burst size of 40 to 60 Virs seems very near the level at which stochastic
effects could make the difference between Virs clearance and persistence. In contrast to By .s, the
peak numbers of Byy¢s decrease with increasing Virs burst size (See Figure 7.3C). This result is
consistent with the notion that increasing numbers of Brass engender a more aggressive "immune
response", thereby shortening their lifespan. Fewer By,¢s live long enough to become B y¢s.

The default parameter set uses a minimum value of 600 and a maximum value of 1,000.

Proliferation of newly infected B-cells

The biological model described in the previous chapter posits that newly infected naive
B-cells enter the germinal centers of Waldeyer’s ring where they differentiate into resting memory
B-cells and exit into the peripheral circulation (See Figure 6.1 and [111], [112]). It is not known to
what extent they undergo cell division while in the germinal center, but we believe any proliferation
must be quite limited. Extensive proliferation would likely be detrimental to the survival of the
host. This sort of uncontrolled proliferation is seen in X-linked proliferative disease (XLP), an
X chromosome linked predisposition to fatal acute EBV infection [99] and in patients who are
immunosuppressed who are susceptible to tumors arising from the unregulated proliferation of
EBYV infected B cells. That these tumors are rare suggests that uncontrolled proliferation is a
rare event, even in the immunosuppressed. (For a more detailed discussion of this issue see [111],
[112].) To examine the implications of allowing newly infected By cells to proliferate, we tested
three different amplification factors for newly infected "cells" in the simulation (1, 2 or 3 rounds
of cell division, resulting in 2, 4 or 8 daughters) before allowing them to exit "Waldeyer’s ring"
and enter the "blood" compartment. There were some changes in the pattern of resolution of
the acute phase (small oscillations, especially at the highest amplification), but qualitatively the
overall dynamics were not different from those of the default case where there is no amplification
of newly infected "cells". As the degree of proliferation increased, not surprisingly, we observed
higher numbers of By s throughout the simulation and a shift in the peak of the By ,ts population
to later times, likely resulting from a delay in the ability of "CTLs" to catch up with the more
rapidly expanding Brats (Figure 7.4A and 7.4B). Not surprisingly perhaps, the overall trend
suggested that more extensive proliferation would overwhelm the virtual host consistent with our
idea, expressed above, that extensive proliferation could not be tolerated. This is a particularly
interesting area to investigate in the context of EBV associated cancers.
As the degree of proliferation of newly infected Brs rises, the number of Byy¢s drops (Fig-
ure 7.4C). Trys follow an identical pattern of dropping as proliferation increases (Figure 7.4D).
Again, this result is consistent with the notion that increasing numbers of By,,ts engender a more
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aggressive "immune response", thereby shortening their lifespan. Fewer By s live long enough to
become By y¢s and the lower numbers of Byy¢s lead to the creation of few Trpys.

Immune response to infected B-cells

PathSim uses a very simplified model of T-cell activation. When a Tyaive encounters either a
Brat or a Bry¢ there is a chance that it is activated to become a Tp,¢ or a Tpry¢ respectively. The
probability governing this outcome is the activation rate. Clearly, this process subsumes a large
number of actual biological events, all of which have their own kinetics. The default activation
rates are 0.015 for Tp,; and 0.035 for Trys. When a Tpy or a Try¢ encounters its cognate infected
"B-cell", there is a probability that this encounter results in killing that infected "cell". We refer
to this probability as its kill rate. The activation and kill rates are set separately for latents and
lytics. Default values for the kill rate are 0.3 and 0.6, respectively. Varying either the activation
rate for Tpas (Figure 7.5A) or the kill rate for Tprais (Figure 7.5B) results in a monotonic change
in peak infection, with maximal peak infection corresponding to minimal activation or kill rate.
At very high levels of either activation or kill, clearance is observed. At the lowest level of each,
the populations of virtual infected cells do not appear to go down to low level persistence observed
in the default setting. This state of the simulation can be interpreted as long lasting acute illness
that normally would cause the patient’s death. Figure 7.5 illustrates trends when these rates are
varied independently.

In contrast to Tp.¢s, varying the activation and kill rates for Tpyts has no appreciable effect on
either Bras (Figures 7.5C and 7.5D) or Brys (not shown). Perhaps this is because the numbers
of Bryts are generally so small that few of them are actually killed by Tpry¢s before they disappear
at burst.

Lytic reactivation of By s

Little is known about the signal which causes latently infected B-cells to exit the memory state
and become lytic [63],[11]. In PathSim’s default parameter set, this state change occurs due to the
passage of time in the latent state, i.e., at the end of its life, there is a 60% probability that a Byt
simply dies but a 40% probability that it will initiate lytic replication of Virs. However, we have
experimented with two additional methods of triggering lytic replication of Vir designed to mimic
this unknown biological signal and applied them to a small fraction of the returning Br.s. In
the simplest version, returning from the blood to Waldeyer’s ring causes a small, user-determined
fraction of By,a¢ cells to automatically turn into Byy¢s. This fraction is termed the alpha parameter.
The second version is inspired by Thorley-Lawson’s application of Lanzavecchia’s ideas about
homeostasis of the memory compartment to EBV [63],[11]. In this case, a small, user-defined
fraction of returning Bp,s spontaneously divides, each one in this fraction producing one By u
and one Bryi. We term this fraction the Lanzavecchia parameter. (In the default run, both the
alpha parameter and the Lanzavecchia parameter are set to zero.) When either simulated signal
is “received” by as few as 0.15% of returning Br.ss, a significant change emerges in simulated
disease progression. Both panels in Figure 7.6 illustrate that at values above 0.050% (red), the
number of virtual infected B cells in the low level persistence phase begins to increase steadily. By
0.16% (orange), the initial peak phase does not resolve normally. Increasing this value to as little
as 0.26% causes the virtual infected cells to overwhelm the virtual uninfected B-cell population.

We also observe that these two simulated signals produce indistinguishable results (Figure
7.6). The equivalence of these two parameters is not unexpected, given that the critical factor
is the sharp rise in By,¢ numbers, while the small increase in Byy¢s is negligible. This behavior
could provide insight into rare fatal EBV infections.
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7.2 Discussion

PathSim is the first simulation of EBV infection that is accurate enough to describe many
aspects of the infection. Implemented at the level of cells and lymphoepithelial tissue, it contains
sufficient detail to generate new biological insights and allow further investigation of the mechanism
of infection [36]. Moreover, it sharpens the understanding of specific issues and suggests new
experimental investigations.

The exploration of the parameter space of PathSim helps us understand what features of the
simulation are critical for the observed outcome. Consequently, we can identify features that are
very robust and features that are actually fine-tuned. If the real biological counterpart of such
a feature is also robust (as suggested by the simulation), this robustness could contribute to the
homeostasis observed in many biological systems. On the other hand, if the biological counterpart
of such a feature is also fine-tuned, the simulation could be unveiling a very powerful intervention
mechanism.

The homeostasis observed in biological systems protects them from (bounded) random per-
turbation, at least in physiological regimes. PathSim is a stochastic simulation and thus also
experiences random fluctuation. The exact course of each simulation depends on the values pro-
duced by a random number generator. For this to be a usable simulation of living processes, it
should also be stable in most regimes. Figure 7.2 demonstrates that this sort of stability is indeed
observed in the simulation. However, it is not hard to imagine unstable situations, both in vivo
and in silico. For example, when there are very few infected cells, small random fluctuations may
mean the difference between persistence and clearance. Such a state lives on or near a stochastic
border between differing outcomes. In a deterministic system one can find a well-defined border
between the basins of attraction for different outcomes. In the presence of random fluctuations,
this border may become a region in which different outcomes are likely and unpredictable. We
consider these boundaries interesting from a therapeutic viewpoint since they represent the states
in which a small intervention could produce a large change in outcome.

We have identified one parameter whose value has a very dramatic impact on outcome,
namely the fraction of By ,ts which are turned lytic immediately upon return from the "blood" to
"Waldeyer’s ring" (alpha parameter, Figure 7.6). The simulation suggests that the value of this
fraction in vivo is a fine-tuned constant. One possible explanation of this fine-tuned value could
be of evolutionary nature: Consider what happens if a mutation in the EBV virus arises in which
this rate drops. A virion with this mutation produces fewer copies of itself within the infected
individual and thereby decreases its opportunities for transmission. This will act to take the mu-
tant gene out of the gene pool. On the other hand, a mutation which raises this rate might result
in host death, removing both that EBV genome and the host from further procreation. While
it has been suggested that this strategy may be quite effective for an acutely replicating virus
that jumps quickly from host-to-host [40], it would be counter productive for a virus like EBV
that uses persistence as a way to maximize infectious spread. Thus, overall, there is evolutionary
pressure on the virus to prevent this rate from either rising or falling, and there is pressure on the
host to keep it from rising. In this way, selection acts as a fine calibration mechanism of this rate.

We would like PathSim to give us insight into therapeutic targets for drug development.
Consider a drug which suppresses viral replication. How effective would such a drug need to be to
induce clearance? Our investigation of the effects of Virs burst size may provide some guidance
about the drug efficacy required for complete clearance. Interpretation of these results, however,
depends on information about EBV which we do not yet possess. Figure 7.3B shows persistence
at a burst size around 40 and clearance at a burst size around 10. At some value between 40 and
10, we should see runs on the stochastic boundary described above. Let us assume this occurs
at a burst size of 25. Now let y be the average number of viral particles that a lytically infected
B-cell produces. Not every virus produced is a working virus. In addition, some of the viruses
are likely to be neutralized by circulating antibodies. So, from each viral burst, only an average
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effective number z < y of viruses is viable. The drug’s job is to reduce the number of viable
virions produced to a maximum of 25 per burst. Therefore, the proportion D,y of the effective
viral burst that the drug must actually kill to reduce the value z to 25 obeys the inequality
25
Dorr>1— —
efrf 21—
The plot of this formula (see Figure 7.1) reveals that D.¢s grows very quickly and that for values
of z > 350, the drug must already be more than 90% effective.

Required antiviral drug effectivity
CooooO000
sabheamoNen

200 400 600 800 1000
Average effective viral burst z

Figure 7.1: Dependency of the required antiviral drug effectivity on the average effective viral
burst. It has been estimated that a lytically infected B-cell produces approximately 1,000 viral
particles [1]. Thus, the plot range is 25 < z < 1000.

These numbers are not conclusive. We have set the burst size at the beginning of each run.
In reality, the drug would be administered after onset of symptoms, say, around day 50 (see [36]).
It is hard to know whether this fact makes it easier to achieve clearance because the immune
system has already mounted a response, or harder because the virus has established itself in the
peripheral circulation.

We doubt that PathSim represents an optimal balance of the opposing quests for simplicity
and accuracy that any scientific model faces. Nevertheless, as we have argued in [36], PathSim
models many clinically observed features. Given PathSim’s simplifications, this resemblance is
striking and invites the question of what factors are responsible. We believe it is generic features
of the rule set that produce the overall dynamics.

At the simplest level, PathSim exhibits a mix of positive and negative feedback between the
different agent populations. We have a two-step process (latents and lytics) in which the infected
virtual B-cells act to increase the populations of virtual CTLs and the virtual CTLs then act to
decrease the populations of infected B-cells. Linked to this process are the mechanisms by which
the Vir acts to increase its own population by going through the Vir- By, - Byt —Vir cycle with
amplification at the last step.

We regard this dynamic as a sort of generalized predator-prey system: The agents Vir, Byt
and Byt can be seen as three different developmental forms of one prey. The Byaives can be seen
as another prey, that the Virs need to feed on in order to grow into the "adolescent" form of a
Brat. The Bry¢s are the mature individuals capable of producing offspring. The Tnaives are the
predators. A Tyaive determines its life-long "eating habits" according to its first successful "tast-
ing" of a Brat or a Bry¢. In this view, PathSim is a spatially distributed, stochastic predator-prey
system with the blood compartment acting to conceal part of the prey population. (This analogy
is not exact. For example, production of “predators” is not proportional to their population.)

Mathematical study of predator-prey systems goes back to Lotka and Volterra [47]. Their
model is a mean field model, that is, it does not take into account spatial distribution and those
effects can be profound, as has been demonstrated in systems that are literally composed of
predators and prey that modify their behaviors in response to various prevailing conditions [90].
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Mobilia et al. [76][72] have studied spatially distributed, stochastic predator-prey systems. This
rich area of study provides a general context for understanding some of the features of PathSim.

In summary, we do not believe that PathSim has yet evolved to the point where it reliably
produces answers, but it is already quite effective at framing questions. Its major contribution is
its ability to generate global insights and motivate further experimentation, while suggesting new
avenues for future development.
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Figure 7.2: PathSim Stability with Respect to Stochastic Variation. Here we illustrate that
multiple values of the random seed (here n = 20) yield nearly identical results in terms of total
agent numbers. Six of the seven agent types are plotted. Virtual Naive T-cells (omitted) exhibit
the same behavior. Reproduced from [104] with permission.
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Figure 7.3: Effects of Variation of Viral Burst Size. (A) Peak levels of free Virs rise in response to
increases in Virs burst size. Each line represents a single run for each parameter value. The range
shown in the legend indicates the minimum and maximum Virs burst size, with the average burst
size at the mid-point. The initial Virs dose was the same for all runs. (B) The number of By s
rises in response to increasing the Virs burst size. Only with the lowest burst size (8-10 viruses,
red) is actual clearance observed. Above about 120 Virs per burst, the low level persistence
phase is virtually identical except for random fluctuations. (C) In contrast, Br,ss numbers drop
in response to increases in Virs burst size, likely due to fewer Bp.s surviving to become lytic.
Reproduced from [104] with permission.
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Figure 7.4: Effects of Cell Division after Initial Infection. Panels A and C illustrate the effects
of allowing 1 (red), 2 (green), or 3 (blue) rounds of "cell" division immediately following initial
infection on the numbers of Bra; and Bry¢, respectively. While By, populations grow, Bryt
populations actually shrink. Cognate virtual CTLs show parallel behavior. Reproduced from

[104] with permission.
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Figure 7.5: Responses of Brys to Changes in "CTL" Parameters. Varying Tr,s activation rate
(A) or kill rate (B) or Tr,; activation rate (C) or kill rate (D) results in the changes illustrated
above in By, populations. Increasing either the activation or kill rate of T'1,4;S decreases the Brgs
ultimately resulting in clearance at the highest values of either of the two parameters, while for
Tr,y:s increasing these two parameters has no significant effect on the Byq; population. The legend
indicates the probability of the event (activation or kill, respectively), where 1.0 corresponds to
100%. The default values for activation are Tr,;=0.015 and Tr,,=0.035, while those for killing
are Tr,=0.30 and Tr,;=0.60. Reproduced from [104] with permission.
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Figure 7.6: Lytic Reactivation Rate Strongly Determines Infection Outcomes. Very small changes
in the reactivation rate lead to profoundly different outcomes. Panel A shows the effect of varying
the alpha parameter which controls the fraction of Brqs that commence lytic replication im-
mediately upon return to the tonsils. Panel B depicts the results of changing the Lanzavecchia
parameter which determines what fraction of Br.s divide upon return to the tonsils, thereby
producing one Br,; and one Br,. These two parameters produce nearly identical results and
are the most sensitive in PathSim. Each curve is labeled with the value of the parameter that
produced it and represents a single run. Reproduced from [104] with permission.
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Appendix A

Appendix for Section 2.2

A.0.1 The Grothendieck group G((E,, ®)) of the commutative monoid (E,, )

The following construction appears in §7 of [64]. The idea is to construct an Abelian group
G(M) in the concisest possible way out of a commutative monoid M. According to §7 of [64], the
so called group! G((E,, ®)) of the commutative monoid (E,, ®) is defined as the set of congruence
classes of E,; x E, with respect to the following equivalence relation

(zyy)~ () IteExdy dt=0"®ydt

This set is endowed with the binary operation

(z,9) + (2,9) = (@ 2,y ©Y) (A.1)

For the sake of completeness, we provide here the proof that G((E,, @)) is indeed an Abelian
group. The proof is written for the specific monoid G((Ey, ®)), although the arguments of course
apply to any commutative monoid.

The operation (A.1) is well defined. To see this, consider («/,y) € (z,y) and (#,7) € (Z,7).
By the definition of ~ we have 3t € E, : 2@y ©t =2’ ®ydtand It € E,: 507 dt = ¥ @ jot.
Consequently,

le

roOyStei ojot=cay oteiey ot

which is equivalent to
o owepoted) =010y 7)o (tdl)

implying
(o yey)~(zoiyey)

Then it follows

(@ )+ @) =@ oy ey)=(rdT,yd7)

Moreover, it is easy to see that (0,0) is the neutral element and it holds

(0,0) = (z,z) Vz € By

Consequently, the inverse element of any (z,y) is (y, z). Now we prove particular properties of the
group G((Eq, ®)) :
It holds
(070) ~ (07 q— 1) and (07 0) ~ (q - 17 0) (AQ)

'"Many authors refer to this group G(M) as the Grothendieck group of a commutative monoid M. [64] defines
the Grothendieck group using generators and relations within the free abelian group generated by M. It can be
shown that both constructions are isomorphic.
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To see this, consider any ¢t € £,\{0}. By 4. of Lemma 39 we have
redqg(q — 1 +1t) = redy(t)
and by definition
(g—1)@et=t

which is equivalent to
0B (g—1)@t=000dt

and to
0a0at=(¢g—1)a0at

Furthermore, it is simple to verify that

(L,0) ~ (2,1)~(3,2) ~...~(¢g—1,g—2)
(2,0) ~ 3,1)~(4,2)~...~(¢g—1,q—3)
(3,0) ~ (4,1)~(5,2)~...~(qg—1,q—4)

(q_270) ~ (q_171)

and
, ~ ,3) ~(2,4) ~ ...~ (qg—3,g—1)
,3) o~ 4) ~(2,5) ~ ...~ (g—4,9—1)
0,¢g-2) ~ (Lg—1)
as well as

(k,0) o (4,0) for k,j €{1,...,q— 1} with k # j
(0,k) o (0,9) for k,je{l,....q—1} with k # 5

Now consider a monoid homomorphism

h:(Ey,®) — G((Eq,®))

If (1) = (0, 0) then h is noninjective, since h(0) = (0,0) (by definition). If we assume h(1) # (0,0),
then from the above considerations we can follow 3 k € {1, ...,q — 2} such that

h(1) = (k,0) or h(1) = (0, k)
Thus, since h is a homomorphism, we have
h(z) = (redy(zk),0) or h(z) = (0,redy(zk)) V z € {2,...,q — 1}

Consequently, if red,(zk) # ¢ — 1V = € {2,...,¢ — 1}, h maps the set {1,...,¢ — 1} into a set
of cardinality [{1,...,q — 2}| = ¢ — 2, in other words, h is not injective. On the other hand, if
redy(yk) = ¢ — 1 for some y € {2,...,q — 1}, then by equation (A.2) we have

h(y) = (0,0)

Summarizing, we can state that any monoid homomorphism h : (E,, &) — G((E,, ®)) must be
noninjective.
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Appendix B

Appendix for Section 2.4

B.0.2 The preprocessing algorithm

We start with the definition of monomial dynamical system according to [23] and [23]:

Definition 237 Let F, be a finite field. A map f : ¥y — Fy is called a monomial dynamical
system over ¥y if for every i € {1,...,n} there exists a tuple (Fi1, ..., Fin) € E} and an element
a; € {0,1} C Fy such that

filx) = aizzzf“...:vf’?” VzeFy

In order to use the algorithm described in Section 2.4 to determine whether such a monomial
dynamical system is a fixed point system we need to preprocess the system in the sense of Remark
31. To accomplish this task algorithmically, we add an element —oo to our exponents semiring
E,. (See Definition 29 and Theorem 43.):

E, = E;U{—00}
The arithmetic with this new element is as follows
ad—o0 = —coda=-ooVackE

ae—00 = —ooea=—o0Vac E)\{0}
Oea = ae0=0Vack,

The addition is due to the additive "absorption property" of —oo obviously associative. The same
holds for the multiplication, since both 0 and —oo show the multiplicative "absorption property"
(although 0 wins over —oo). With this rules we are already able to multiply pairs of matrices
with entries in Fq. With this extended exponents set we can represent the monomial dynamical
systems defined above as follows:

Definition 238 Let Fy be a finite field. A map f : ¥y — Fy is called a monomial dynami-
cal system over ¥, if for every i € {1,...,n} there exists a tuple (Fi, ..., Fin) € Ej or a tupel
(Fi1,y .y Fipy) € {—00}™ such that

file) =zt aln v 2 e Fy

Now we describe the preprocessing algorithm: Given a monomial system f € MF](Fy) and its
representing matric F' € M(n x n; Ey)

1. Initialize L1 := 0 and Lo := 0 and an array v of length n to zero.

2. For k from 1 to n do Lg := Ly + 1 and v[k] := 1 if and only if Fj; = —oc.
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3. Compare L1 and Lo. If L1 = Ly or Ly = n, construct the matrix
F € M((’I’L—Lz) X (TL—LQ);Eq)

by deleting the kth row and the kth column of F for all k s.t. v[k] = 1. Then return F’ and
stop. If Ly < Ly and Ly < m, calculate the product F2, set F := F'? as well as L := Ly
and go to step 2.

4. TIf the returned matrix F” is the empty matrix (Ly = n) we can conclude that the system f
is a fixed point system with (0,...,0)! € F7 as its unique fixed point (see Remark 31). If F’
is not the empty matrix, the corresponding lower dimensional system f’ := W(F”) needs to
be analyzed with the algorithm described in Section 2.4.

Step 1 implies n + 2 initializations. Step 2 of the algorithm requires n comparisons, at most
n additions and at most n assignments. There are 2 comparisons in step 3. Each matrix mul-
tiplication in step 3 takes 2n® — n? addition or multiplication operations' in Fq. There is one
initialization after each matrix multiplication. The worst case scenario is given when every time
the algorithm performs step 3, the set L1 grows by one element, forcing the algorithm to perform
n — 1 matrix multiplications. The construction of the matrix F’ requires a number of comparisons
and assignments that is obviously bounded above by 2n?. Summarizing, the worst case complexity
of the algorithm is bounded above by

B(n):=Mn+2)+nBn)+n2+n—-1)02n% —n?+1)+2n> =2n* —3n3 + 6n> +4n+1

Since B
lim ()

n—00 n4

=2

we can conclude B(n) € O( n?).

It is pertinent to emphasize that this preprocessing algorithm represents a primitive first attempt.
Since the matrix multiplications dominate the complexity of the algorithm, it seems meaningful
to try to reduce the complexity of the multiplication. Indeed, the rows with entries —oo are
preserved during the multiplication, i.e. those rows do not need to be calculated. In addition, if
the first element of a row in the product matrix is equal to —oo we know that all the remaining
elements of that row are going to be equal to —oo as well. As we can see, there are possibilities
of improvement. However, for the purposes of this thesis, we are satisfied with a first working
algorithm of polynomial complexity.

!See also the analysis of the arithmetic operations in the semiring E, in Section 2.4.
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Appendix for Section 4.5

Lemma 239 Let K be a field, n € N a natural number, K[r1,...,7y] the polynomial ring in n
indeterminates over K and > an arbitrary monomial order. Then for each natural number m € N

and each i € {1,...,n} it holds

-1

D D N (C.1)

Proof. For each possible monomial order > and for each i € {1,...,n} it holds

T > T? =1
Now, applying the translation invariance of the order > we get that for each natural number
meN

m—1

m
T; >Ti

Therefore using the transitivity of > we conclude

sl s VmeN, ie{l,..,n}

i
|

Theorem 240 Let Fy be a finite field and n € N a natural number. Then the family of polyno-
maals
(Y — 71,7 — 79, 0y 7L — 73)

s a basis for the vanishing ideal
I(FZ) CFy[r1,...7n)

Proof. The inclusion
(t{— 71,74 — 719, ., 7d — 7)) C I(Fy) (C.2)

is given by the fact that in the finite field F; we always have
a’=aVackF,

Now let f el (FZ}) be a polynomial in the vanishing ideal of Fjj and > any monomial order. From
the inequalities C.1 it follows for >

LT(T? — 7'1-) = ’T? Vie {17 ,'I’Z}

After division of f by (7 — 71,74 — 79,..., 7h — T,) we can write f as

f= ihi(ﬂq—ﬁ)ﬂ”
=1

(2

127



where h; € Fy[r1,..7p], 4 = 1,...,n and r € Fy[r1,...7,] is the remainder. Assume r # 0. We
know that no term in r is divisible by (7{,74,...,7%). As a consequence, each term of r must be
of the form

ar{t..rym with a; < ¢V je{l,..,n} and a € Fy

n
r= g anTyt T

aceMy

and we can write r as

with suitable a, € Fy, o € M. Now, since f € I(F}) and 7 = f — Y7L, hi(1] — 7;) we have

r € I(Fy)
This means the polynomial function
r . Fy—F,
Z — 7(@):= Z a6 T
aeMp

vanishes on all points of Fy. Since the fundamental monomial functions (gnga)ac My are linearly
independent (see Lemma 26), it follows

ao =0V a e M

Therefore, the polynomial » must be zero and we have

f= Xn:hz‘(Tg—Ti)

i=1

As a consequence
n q q
I(Fy) C(7] —T1,79 — T2, .., T — Tn)

This result together with the inclusion (C.2) proofs the theorem. m
Theorem 241 Let Fy be a finite field and n € N a natural number. Then the family of polyno-

mials
(9 — 71,78 — 7 T —Tp)
1 1,79 2y eyl n

is a universal Grobner basis for the vanishing ideal
I(Fy) CFy[r1,...7n]
Proof. It follows from the inequalities C.1 for all possible monomial orders
LM(t! =) =7IVie{l,..,n}

As a consequence, for the least common multiple (lem) of LM (T? —7j) and LM (74 — 1), i # j
it holds
lem(LM (7§ — 7;), LM (7{ — 7)) = lem(7§,7{) = 7i7{ V i,j € {1,...,n} with i # j

4 YRR
and for the S-polynomial of 7';]- —7jand 7§ — 74, i # j we have

S(T? - Tj,Tg —T) = T?(T? —Tj)— T?(T? —T;) = T?Ti — T?Tj Vi,je{l,...,n} withi#j
Let’s divide S(T‘} — 75T —71) = 7';1-7'2‘ — 7l by (71— 71,78 — 79, ..., Th — 70) . Let without loss
of generality

7';1-7'1- > ’7’;-17']' P2 LT(T?TZ‘ — 7';-17']-) = T?TZ'
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Then we get after the first division step the remainder
—T?Tj + TiTj
Now we know from the inequalities (C.1) after translation by 7;
tir; > 1 = LT (=7t + 7i7j) = =77
so we can continue the division process and we get the remainder
—riri+ 1ty — (=) = 1) =0

By the previous theorem
I(Fy) = (11— 71,78 — 79, .., 7L — 7))

And so, by Buchberger’s S-pair criterion (see Theorem 6 of chapter 2, §6 in [25]),
(1Y — 711,74 — 79, o0, TE — 73)

is a universal Grobner Basis for I(Fy). m
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Appendix D

Appendix for Sections 5.2 and 5.3

D.0.3 Examples of vector spaces in general position and the codimension con-

dition
Example 242 Let n = 2, ¢ = 2 and consider the vector space Fy(F3) an its basis
(ggga)aeMzz = (z122,21,%2,1) ordered according to the lexicographic order with x1 > xo. Fur-

thermore let U = span(xi1xa + x1 + x2 + 1). The basis vector uy := x1x2 + x1 + x2 + 1 has the
coordinates (1,1,1,1)" with respect to the basis (ggga)aeMQz. Therefore, U is in general position
with respect to (ggga)aeMQQ. It is easy to verify

Ve (w))] = H(z,y) €F3|ay+z+y+1=0 mod2}|
= [{(0,1),(1,0),(1, 1)} =3
= 22 1= codim(U)

As a consequence, the set X := {(0,1),(1,0),(1,1)} constitutes an optimal data set to reverse
engineer any function f € F5(F3) displaying no more than 3 terms. If the term-order-free reverse
engineering method is used, the probability of successfully retrieving a nonzero function displaying

1 term would be
22 -1 3
-s) () s
P = 5 N=1°- 0.75
G) )

For a function displaying 2 terms P = 0.5 and 3 terms P = 0.25.

Example 243 Let n = 2, ¢ = 3 and consider the wvector space Fy(F3) an its basis
(923a)aeM§ = (2222, 2239, 2123, 22, 2172, 73, 71, 72, 1) ordered according to a total degree term or-
der with ©1 > xa. Furthermore let U be the 8-dimensional subspace of F5(F3) generated by

2,2 2 2 2 2, .2 .2 2 2
U := span(ziz; + 2122, ¥ + 2125, 123 + T1, 21 + 122, T182 + @3, 25 + &1, 21 + T2, T2 + 1)

The coordinate vectors of the generating vectors are
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By calculating the determinant of the matrices

Aj = : , 7=1,...,9

(where e;j is the jth canonical unit vector of F?9), one can easily show that U is in general position
with respect to (g23a)acrsz- To determine the set V({o Hur), ..., 0" Hug))), we start solving the
three last equations given by

a3+ 31 =0 23 =—1
r1t+20=0 & zx1=1
zo+1=0 To = —1

This system of equations has no solution in the set F3. Therefore

V(e H(ur), o (ug))) =0

Consequently, U does not satisfy the codimension condition and thus does not yield an optimal
data set.

D.0.4 Existence of vector subspaces in general position

The basic idea of the proof is to treat the problem over the real numbers and then construct
a solution over finite fields based on the existence of a solution over the real numbers. This last
step takes advantage of the density of the rational numbers in the set of real numbers.

We recall the definition of general position for vector spaces over a finite field:

Definition 244 Let W be a finite dimensional vector space over a finite field ¥, with
dim(W) = d > 0. Furthermore, let (w1, ..., wq) be a fized basis of W and s € N a natural number
with s < d. A vector subspace U C W with dim(U) = s is said to be in general position with
respect to the basis (w1, ..., wq) if for any basis (v1,...,vs) of U and any injective mapping

m:{l,...,(d—s)} —{1,...,d}

the vectors
1)1,...,'l)s,wﬂ.(l),...,wﬂ(d,s) (Dl)

are linearly independent.

It can be easily shown that if the linear independence condition (D.1) holds for one basis of
U, it holds for every other basis of U.

Now we will construct an s-dimensional subspace U C W in general position with respect to a
given basis of W, where s is an arbitrary natural number with s < d. For this purpose we will find
the coordinates with respect to the basis (ws, ...,wq) of a basis of U. We denote the coordinates
sought as follows
1 Ld+1 L(s—1)d+1

752 = )T 7£s - :

Zd T2d Tsd

A
I

The next step is to count all different injective mappings = : {1,...,(d — s)} — {1,...,d} as
T1,...,TN. For each m; we consider the coordinate vectors &, ..., {5, €x,(1), -+ €x;(d—s) With respect
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to the basis (w1, ..., wq) , where €; is the jth canonical unit vector of Fg. Now, for i =1,..., N we
define the determinant functions

Dy : RY-R

r = 517"-7537671'1-(1)7"’7e7ri(dfs)

where €} is seen as the jth canonical unit vector of RY. The linear independence condition (D.1)
is equivalent to
Dy (T) # 0

Due to the structure of (El, ...,Es,é’m(l), ...,é’m(d,s)) and by the Leibniz determinant formula
we know that D, are nonzero polynomial functions in the variables zi,...,z54 and therefore
nonzero analytic functions in R%¢ with an infinite radius of convergence, (in particular, continuous
functions). Consequently, no D, can be identical to zero on any open subset of R*!. By the
continuity of Dy, we know that there is a non-empty open subset O; C R*? such that Dy, |0, # 0.
Using the same argument we know that there is a non-empty set Oy C O open in R*? such that
Dy, |o, # 0. After applying this argument N times we identify a non-empty open subset On C R34
such that Dy, oy # 0V i € {1,..., N}. Since the set Q*? is a dense subset of R*?, there is a point
y € On with rational entries, i.e. y; € Q V1 € {1,...,sd}. Let

o ai Asd ¢

7 (b1 ey bsd)
and ¢ := Hidzl bi. Since ¥ € On, we know Dy () # 0V i € {1,..., N}. By the rules of determinants
we also know

Dy (cy) #0Vie{l,..,N}

Moreover, ci/ has integer entries, i.e. cy; € ZV 1 € {1, ..., sd}. For a sufficiently large prime number
p, the entries cy; can be seen as elements of the finite field F, of integers modulo p. Therefore, the
values cy; € Fp, [ =1,...,sd can be used as the coordinates with respect to the basis (w1, ..., wq)
of a basis for an s-dimensional subspace U C W in general position with respect to the basis
(w1, ...,wq) of W, a vector space over the finite field F),. m

D.0.5 The term-order-free reverse engineering algorithm

The input of the term-order-free reverse engineering algorithm is a set X C Fj of m < ¢"
different data points, a list of m interpolation conditions

.’fi*—>bi, T, € X

and a linear order > for the elements of the basis (gnga)acmy of F,(Fqg), (i.e. the elements of the
basis are ordered decreasingly according to > ). The steps of the algorithm are as follows:

1. Calculate the entries of the matrix
A= (qJ)?(gnqa))aeM; € M(m x q"; Fq)

representing the evaluation epimorphism @ of the tuple X with respect to the basis
(Gnga)ac Mp of F;,(F,) and the canonical basis of F}".

2. Calculate a basis 41, ..., Js € Ffll of ker(A).

3. Extend the basis ¥, ..., §s of ker(A) to a basis (¥1, ..., Us, Ys+15 ---» Ya) Of Fg using the standard
orthonormalization procedure. (See Section 4.4 in Chapter 4).
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4. Define a generalized inner product (.,.) : Fg — F, by setting

(Ui, ¥j) =045 ¥V 1,5 € {1,...,d}

and calculate the entries of the matrix S defined by

Sij = <€Z,é'j>, i,j c {1, ...,qn}

where € is the jth canonical unit vector of Fg.
5. The coordinate vector with respect to the basis (gnga)ac My of the output function is obtained
by solving the following system of inhomogeneous linear equations

AZ b
7Sz = 0,i=1,..,s

The steps described above represent an intelligible description of the algorithm and are not

optimized for an actual computational implementation.
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