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PAS - Photoacoustic Spectroscopy 
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PRESS - Prediction Error Sum of Squares  
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SDRAM - Synchronous Dynamic Random Access Memory  
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SEP - Standard Error of Prediction 
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ABSTRACT 

 

 

The determination of the blood glucose level is a necessary procedure in diabetes 

therapy, where the most common technique involves finger-prick capillary measurements, 

which is invasive, uncomfortable and causes skin injury. Painless glycemic control would 

improve the quality of life of patients by increasing compliance to monitoring blood glucose 

levels and thus hyper- and hypoglycaemic episodes. Although research groups have been 

trying for decades to separate non-invasive glucose information from interference compounds, 

none of the available commercial devices offers enough precision to replace lancetderived 

readings. This thesis describes the technologies of bioimpedance and absorption spectroscopy 

applied simultaneously to transcutaneous glycemic measurement. 

Initially, basic electrical and optic theories were studied systematically and, as a result, 

glucose characteristics were obtained in deionized water and blood. Light spectroscopy 

studies were done in UV, visible, NIR (1�m to 5 �m) and MIR ranges (5 �m to 40 �m). 

Complex bioimpedance measurements were scaned from 100 Hz until 30 MHz in Solartron 

spectrometer, and from 20 kHz until 8 GHz in the network analyzer. 

In sequence Femlab simulations helped the design of the concentric electrodes for skin 

tests. The optimal transcutaneous spectra was found between 3200 nm and 3400 nm. It was 

measured with a dark chamber adapted to the ATR module, thus avoiding background noises 

and keeping pressure constant in the target site. In conjuction with the above parameters, 

information of epidermis temperature (conductance and IR radiation) was also collected with 

the aim to improve prediction quality. Nevertheless, transcutaneous assays showed correlation 

of 0.43 for impedance and 0.46 for optic spectroscopy alone. After data was processed 

through PLS and neural networks method in Matlab, the multiparameter analysis allowed the 

improvement of correlation to 0.57. Although the sensibility of the transcutaneous method is 

lower than standard invasive devices, there is still a chance of improvement through laser 

technology, development of customized circuits and the addition of extra monitoring 

parameters.  

 

Keywords: Blood glucose monitoring, diabetes mellitus, non-invasive measurement, 

transcutaneous sensor, bioimpedance, light spectroscopy, multivariable analysis. 



 

 

 

 

xxiv 

 

 

 



 

 

1

 

CHAPTER 1 

 

1 INTRODUCTION 

 

 

1.1 OBJECTIVE AND MOTIVATION 

 

World wide 150 million people suffer from diabetes which is a disease characterized 

by disturbances in the endocrine metabolic regulation. Approximately 10 % of the cases result 

from insulin deficiency (diabetes type 1), which often starts during childhood and requires the 

administration of this hormone usually many times a day. Insulin resistance (diabetes type 2) 

happens in 90 % of patients, occurring mostly in people over 40 years old. Additional cases 

occur during pregnancy, where 2 % of women have gestational diabetes. Any kind of diabetes 

can be dangerous since long-term excess of glucose (hyperglycemia) can cause blindness, 

damage to the nerves and kidneys (renal failure) or even increase the risk for heart disease, 

stroke, and birth defects. As well, low levels (hypoglycemia) can result in confusion, coma 

and even death (HEISE, 2000). 

Type 1 diabetes can be controlled by pancreas transplantation, which has been known 

since 1960 and allows insulin independence in 80% of cases 1 year after surgery. The 

transplantation of only of islet cells is another alternative that offers less complex surgical 

interventions. In both therapies the limited number of donors, risks of immunosuppression 

and complications in medical procedures are major disadvantages. Hybrid systems like bio-

artificial pancreas could provide a solution by supplying an unlimited source of islets for 

transplantation. This technique allows the application of islets from animals or insulin-

producing cells engineered from stem cells. Unfortunately these systems still have problems 

related to biocompatibility, stability of insulin secretion, and a relatively short duration of 

operation (WOJCICKI and LADYZYNSKI, 2003).  

To avoid hyperglycemia or hypoglycaemia, adhering to a diet composed mostly of 

carbohydrate and monounsaturated fats with limited amounts of sucrose, associated with 

medicament administration, which is mostly insulin. In order to know the correct medicine 

volume, a constant monitoring of blood glycemic levels is required, where standard procedure 

analyzes blood samples from the finger tip. This procedure is uncomfortable and causes low 

compliance by patients, reason why during the last decades a great number of non-invasive 
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research has been investigated, unfortunately, without any satisfactory precision (TURA, 

MARAN and PACINI, 2006).  

Although impedance spectroscopy is a simple principle, this technique offers many 

possibilities of utilisation. One can associate this approach to civil engineering, analyzing the 

state of construction materials and detecting the existence of failures in the structure. In food 

industry it is possible to control the validation of products (REN, WANG, AN et al, 1998). 

The impedance analysis also has special importance in the medical field, as it is used for 

determination of total body water (TBW), fat free mass (FFM), tissue characterisation, apnea 

monitoring, venous thrombus detection, tomography, cardiography, pneumography and the 

analysis of compounds in the blood (JOSSINET and TRILLAUD, 1992). Bio-electrical 

impedance analysis (BIA) uses electrodes to apply low intensity currents to physiological 

fluids or tissues. The resulting voltage reflects changes in dielectric or dimensions of the 

target, thus being able to monitor chemical compositions or even physiological events in the 

organism. The most important features of BIA are low cost, fast response, simple 

implementation and safety. Due to the development of fast electronic technology, such 

parameter is a promising tool for tissue characterization and compound quantification, 

especially by dielectric spectroscopy in high frequencies. 

Photonics involves a wide range of applications in fields such as brain research, 

intensive care, biopsy, dermatology, surgery, etc... Optical coherence tomography (OCT) and 

pulse oximetry are examples of the potential of such measurements. This approach uses light 

sources which work as modulating agents that irradiate parts of the body, and a photodetector 

for processing the resulting signal. Like in bioimpedance, optical measurements are attractive 

because of simple principle, low cost, safety and real-time assessment. The field of 

biomedical photonics is continuously expanding and new applications are envisioned, 

especially because of the availability of laser technologies (GEDDES e BAKER, 1989; 

BRONZINO, 2000). 

Few published works describe the non-invasive multivariate monitoring of blood 

glucose, and between all promising methods, complex impedance and optic spectroscopy 

show appealing technological advantages. Therefore the aim of this thesis is to apply both 

approaches simultaneously in prediction of glycemic level. Besides the analysis of sensors, 

classifying algorithms are also described which may improve transcutaneous results. 

 

 



 

 

3

 

1.2 OVERVIEW 

 

Chapter 2 reviews the properties of glucose in blood and describes measurement 

methods with emphasis in non-invasive technologies. First of all, chemical properties of 

glucose and its concentration in the human body are explained. Next, the chapter shows a 

theory of traditional glucose oxidation methods and minimally-invasive aproches. Non-

invasive methods will be described with emphasis in optical and electrical spectroscopy, 

including a list of commercial transcutaneous meters. More datailed characteristics of 

bioimpedance and light methods will be described in independent sections. 

In chapter 3 impedance spectroscopy theory is provided. After historical background, 

basic dielectric definition with enphasis on capacitive-resistive circuits is discussed due to 

similar characteristics with biological tissues.  The next part describes advantages and 

drawbacks of BIA measurement principles, which can be bipolar or tetrapolar. Other 

important topics are multifrequential comportament of RC circuits and safety. 

A similar analysis of optical methods is discussed in chapter 4. Therefore, historical 

background, basic optical definition, photo transducers, type of spectrometers and safety are 

described.  

Because one desires to predict the blood glucose concentration in skin, composition 

and structure of both tissues are described in chapter 5, as well as their physical and optical 

parameters. 

The emphasis in Chapter 6 is the presentation of prediction algorithms, with an 

explanation of partial least squares (PLS) and artificial neural network (ANN). In both cases, 

principles of calculation, as well as advantages and limitations are listed. 

Impedance transducers, optical sensors and instruments used in the research are 

analyzed in the chapter 7. The aim of this section is to justify the methodology chosen and to 

show measurement procedures. Impedance electrodes differ between liquid and tissue assays, 

been measured through complex impedance spectrometer Solartron 1260 and network 

analyzer ZVCE. The light tests also used two devices depending on the wavelength range of 

interest. Ultra-violet, visible and near-infrared investigations were done with Specord 210 

spectrometer. Near-infrared and mid-infrared spectra were also measured with FTIR 

equipment. The PLS and ANN scripts chosen for Matlab are also described.  

Experimental results are finally found in chapter 8, which analyzes aqueous assays for 

impedance and optic approaches, and then it is followed by the blood samples. Moreover, one 
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measures the characteristics of the skin using both non-invasive methods in association with 

pressure and temperature control in the finger.  

The last chapter discusses the results of the experiment and compares data treatment 

algorithms, finally, suggesting future corrections and application of this work.  
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CHAPTER 2 

 

2 TECHNIQUES FOR BLOOD GLUCOSE MONITORING 

  

 

2.1 INTRODUCTION 

 

Due to the gravity of diabetes, many efforts have been made to produce precision 

blood glucometers. There are 3 methods of glucose monitoring: invasive, minimally-invasive 

and non-invasive. In the present section a general discussion of blood glycemic levels and 

measurement technologies is presented. Although invasive and minimally-invasive techniques 

are described, non-invasive approaches are the focus of this work. Impedance and light 

absorption spectroscopy are the methods chosen for this research and, therefore, they are more 

detailed explained in more detail in separate chapters. 

 

 

2.2 PHYSIOLOGICAL ASPECTS 

  

Glucose is the most abundant hematologic monosaccharide and is also the main 

energy carrier in the human organism. Recommended goals for this carbohydrate levels 

preceding a meal (preprandial) are less than 100 mg/dL (5.5 mmol/L) in plasma and 89 mg/dL 

(4.9 mmol/L) in whole blood or capillary. After eating (postprandial) those values should not 

exceed 140 mg/dL (7.8 mmol/L) in plasma and 125 mg/dL (6.9 mmol/L) in whole blood or 

capillary, as shown in Table 1 (RENARD, 2005). D-Glucose can be found in two different 

stereoisomers, i.e. the �- and the �-anomeric form, whose structure can be seen in Figure 1 

(HEISE, 2000). 

The sugar concentration in blood is controlled by the pancreas. In this entire organ 

there are clusters of cells called islets of Langerhans, which are formed by alpha or beta types. 

Alpha clusters produce the hormone glucagon, which raises the level of blood sugar. Beta 

cells produce insulin, which is responsible for helping the body to transform glucose in to 

energy. Islets not only produce these metabolic hormones but also continuously monitor 

glycemic changes with a delay of seconds. This is possible because glucose is quickly 

transferred from blood to these cells via interstitial fluid surrounding the clusters. The 



 

 

6 

 

response from organism not only depends on the absolute magnitude of glucose level, but also 

on the rate of change (O'CONNELL, HAWTHORNE, HOLMES-WALKER et al, 2006). 

 

Table 1 - Glucose level consequences in whole blood. 

mmol/l mg/dL Interpretation 

2.0 35 extremely low, danger of unconsciousness 

3.0 55 low, marginal insulin reaction 

4.0 -6.0 70-100 normal preprandial in nondiabetic 

8.0 150 normal postprandial in nondiabetic 

10.0 180 maximum postprandial in nondiabetic 

15.0 270 a little high to very high depending on patient 

16.5 -20.0 300 -360 danger 

22 400 max mg/dL for some metres and strips 

33 600 high danger of severe electrolyte imbalance 

 

 
Figure 1 – Glucose molecule structure (HEISE, 2000). 

 

 

2.3 INVASIVE GLYCEMIC MONITORING 

 

Fully invasive systems can be either bedside clinical devices or self-monitoring 

meters. Bedside monitors are suitable for intensive care units and use implantable sensors 

with approximately 1 % precision. These systems allow continuous monitoring, therefore 

increasing the amount of clinical information such as direction, magnitude, duration, 

frequency, and causes of fluctuations in blood glucose levels (CLARKE, ANDERSON, 

FARHY et al, 2005). The bio-artificial pancreas uses similar implantable technology to 

control insulin pumps.  

Home monitors, like the equipment in Figure 2,   usually have a relative accuracy 

between 6 – 7 % and read glucose concentrations from blood samples taken from the 

fingertip. Although disposable test strips for finger-prick capillary measurements normally 

use reagents associated with electrochemical detectors, optical sensors can also be used for 

this application.  
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Figure 2 – “Accu-chek Sensor” from the firm Roche, invasive device (a) to control glucose 

concentrations in finger blood through disposable strips (b). 

 

Electrochemical (Enzyme) tests are based on amperometric and potentiometric 

principles. Amperometric electrodes are covered with the enzyme glucose oxidase (GOD) in 

order to increase the sensor sensitivity (WILKINS and ATANASOV, 1996). Glucose 

solutions with oxygen produce gluconic acid and oxygenated water as illustrated in Equation 

1. In Equation 2 when a 700 mV potential is applied in the solution, glucose concentration can 

be measured through special semi permeable membranes that control the passage of oxygen to 

the electrode contact (ABEL and VON WOEDTKE, 2002).  

 
                                              GOD 

GLUCOSE + O2                 GLUCONIC ACID + H2O2 

 
(1) 

 
     700 mV 

H2O2                  O2 + 2H+ + 2é (2) 
 

 

Enzyme glucose sensors normally use 3 electrodes, as seen in Figure 3. The contact 

where the measurement occurs is called the work electrode (Platinum - Pt). A reference 

electrode (Ag/AgCl) is also used to avoid system oscillations, having a constant voltage in its 

contact (normally - 700 mV). The terminal called counter or auxiliary electrode (Pt) is used to 

apply a current in the work electrode. Another possibility is to measure the changes in local 

pH due to the hydrogen produced at the sensor in Equation 2, usually a coated wire pH-

selective electrode. Such selective membrane when used with a field effect transistor (ISFET) 

produces a potentiometric sensor which also reflects glucose changes (ZIMMERMANN, 

FIENBORK, FLOUNDERS et al, 2004).  

 

(a) 

(b) 
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Figure 3 - Schematic diagram of an enzyme-based electrochemical glucose sensor 

(ZIMMERMANN, FIENBORK, FLOUNDERS et al, 2004). 

 

Optical glucose sensors can use a substrate (lectin concanavalin A) with a fluorescent 

indicator (fluorescein isothiocyanate-dextran) to detect the different analyte concentrations, as 

illustrated in Figure 4. Excitation light passes through the fiber and into the solution, 

fluorescing the unbound indicator, and the fluorescent light passes back along the same fiber 

to a measuring system (MENDELSON, 1995).  
 

 
Figure 4 – Schematic diagram of an optic sensor for glucose measurement (MENDELSON, 

1995). 

 

Although the invasive result’s accuracy can be affected by factors like calibration, 

ambient temperature, size of blood sample, drugs in blood, hematocrit concentration, 

humidity and aging of strips, lancet systems are still standard techniques for home monitoring 

of patients with diabetes. Efforts have been made in order to reduce the level of invasiveness 

by decreasing blood sample volume to a few microlitters and by measuring areas of the body 

less sensitive to pain than fingertips, such as the forearm, upper arm, or thigh (KLONOFF, 

2005). Most concerning of the drawbacks of such systems are the lack of control during 

sleeping or manual activities, loss of tracking hyper- or hypoglycaemia episodes, risks of 
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infection, nerve damage and the discomfort of pricking the finger several times a day, which 

often leads to non-compliance (PICKUP, HUSSAIN, EVANS et al, 2005). 

 

 

2.4 MINIMALLY-INVASIVE GLYCEMIC MONITORING 

 

Minimally invasive measurements sample the interstitial fluid (ISF) with 

subcutaneous sensors (GROSS, BODE and EINHORN, 2000). These glucometers also can be 

bedside units or wearable modules, as illustrated in Figure 5. Even in this method the 

discomfort causes impediments to patient’s therapy, therefore research groups are working to 

develop a non-invasive glucose control device (KOSCHINSKY and HEINEMANN, 2001). 

Unfortunately, there are no published reports or patents which show that non-invasive 

methods have the same accuracy as invasive procedures.  

 
Figure 5 - CGMS System Gold minimally-invasive glucose meter from Medtronic MiniMed. 

The sensor is inserted under the skin on the abdomen and can monitor interstitial glucose up 

to 72 hours (GROSS, BODE and EINHORN, 2000). 

 

 

2.5 NON-INVASIVE GLYCEMIC MONITORING TECHNIQUES 

 

Non-invasive sensors measure either by a direct approach, based on the chemical 

structure of the glucose molecule, or indirectly by measuring blood sugar effects on a 

secondary process such as temperature or pH changes (ARNOLD and SMALL, 2005). One 

option to painless intermittent glucose control is the substitution of blood with others fluids 

that contain glucose, such as saliva, urine, sweat or tears (SRINIVASAN, PAMULA, 

POLLACK et al, 2003; PARK, LEE, YOON et al, 2005). Unfortunately, continuous 

measurements can only be accomplished through body tissues such as skin, cornea, oral 
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mucosa, tongue or tympanic membrane (BABA, CAMERON and COTÉ, 2002; 

ROHRSCHEIB, ROBINSON and EATON, 2003). 

Research in this field includes the selection of the measuring principle, choice of 

measurement site, sensor development, in-vitro evaluation and refinement, in vivo 

performance tests in laboratory animals and, finally, human trials. The development of such 

transducers is difficult since it should have a high sensitivity, be capable to detect weak blood 

signals that lose energy through intervening tissues (bone, fat, skin, etc.), and separate 

information on glucose from that of other overlapping constituents of higher concentration 

(proteins, urea, uric acid, hemoglobin, water, etc…) (SIEG, GUY and DELGADO-CHARRO, 

2005; KHALIL, 2004).  

Recent improvements in technology and treatment algorithms may still enable new 

works to improve accuracy of the predictions. Figure 6 shows different classifications of 

blood glucose measurements. Investigations have been published using technologies such as 

reverse iontophoresis, polarimetry, metabolic heat conformation, ultrasound, thermal 

emission, electromagnetic, photoacoustic, Raman, light absorption and bioimpedance 

spectroscopy. Together with the choice of technique and sample region, one should also give 

attention to factors of the measurement environment. For example, in case of transdermal 

monitoring, parameters such as sweating, skin color, surface roughness, tissue thickness, 

breathing artifacts, blood flow, body movements, ambient temperature, pressure, and sample 

duration also influence the results (BURMEISTER and ARNOLD, 1999; Chen, Liu, Xu, et al, 

2005). Table 2 shows an update of non-invasive groups with their technique and the target 

site. 

Glucose
measurement

Minimally
invasive:

interstitial fluid
Non-invasiveInvasive:

blood

Wearable
(continuous)

Bedside monitors
(continuous)

Finger-pricking
(intermittent)

Implantable
(continuous)

Tissues (continuous): skin, aqueous
humor of the eye, transbucal mucosa,

tongue and tympanic membrane

Fluids (intermittent):
sweat, urine, salive and tears

 
Figure 6 - Overview of technologies for blood glucose control. 
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Table 2 – Recent non-invasive blood glucose research companies. 

Company - Product Technology - Parameter Target 
tissue  

URL 

- Biocontrol Technology:   
Diasensor 1000 

optic spectroscopy: 
NIR light 1640 nm, 1670 nm 

forearm skin http://www.mendosa.com/painless.h
tm 

- Biopeak Corporation:   
Glucotrack 

- VIS and NIR light (660 nm, 810 nm, 970 nm, 1054 nm) 
- ECG 
- bioimpedance: 
current  (< 1 mA: 1 Hz  - 100 kHz) (< 10 mA: 100 kHz - 1 MHz) 

wrist skin http://www.biopeak.com 

- Calisto Medical: 
Glucoband 

bio-electromagnetic resonance: 
current 

wrist skin http://www.calistomedical.com 
 

- Ciba Vision optic spectroscopy: 
VIS light (465, 520 nm, 590 nm) 

contact lens - 
tears 

 http://www.devicelink.com/ivdt/arc
hive/03/05/008.html 

- Cygnus (Animas): 
Glucowatch 

interstitial fluid extraction: 
- current (extraction mA, detection nA) 
- GOD (hydrogel) 

wrist skin http://www.glucowatch.com 

- Fovioptics optic spectroscopy: 
VIS light (500 nm - 640 nm) 

retinal http://www.diabetesnet.com/diabete
s_technology/fovioptics.php 

- GlucoLight 
Corporation 

optical coherence tomography  not available http://www.glucolight.com 
 

- Glucon: 
Aprise 

photoacoustic: 
NIR light (800 nm, 960 nm, 1300 nm, 1440 nm,) 

forearm skin http://www.glucon.com 

- Infratec thermal emission spectroscopy: 
MIR light (4.2 µm – 12.2 �m) 

tympanic 
membrane 

http://www.diabetesmonitor.com/m
etres.htm 

- Inlight Solutions optic spectroscopy:  
NIR light (1.2 �m - 2.5 �m) 

skin http://www.inlightsolutions.com 

- Integrity Applications: 
GlucoTrack 

- ultrasound 
- complex bioimpedance 
- temperature 

ear lobe skin http://www.integrity-app.com 

- Instrumentation 
Metrics 

optic spectroscopy: 
VIS and NIR light (700-2500 nm) 

skin www.instrumentationmetrics.com 

- LifeTrac:  
Sugartrac 

optic spectroscopy: 
VIS NIR light (650, 880, 940, 1300 nm) 

finger skin  http://www.sugartrac.com 

- NIR Diagnostics: 
GlucoNIR 

optic spectroscopy: 
NIR light (600 nm - 1050 nm) 

skin http://www.nirdiagnostics.com 

- Optiscan Biomedical 
Corporation 

thermal emission spectroscopy:  
MIR light (9.8 µm, 10.9 µm 11.9 µm). 

skin http://www.farir.com 
 

- Orsense occlusion optic spectroscopy: 
- VIS light (610 nm, 810 nm) 
- pressure 

finger tip skin http://www.orsense.com 
 

- Pindi radiomolecular magnetism (RMM): 
magnitude of electromagnetic wave (2.48 GHz) 

finger tip skin http://www.pindi.com 

- PreciSense fluorescence resonance energy transfer skin http://www.precisense.dk 
- Q Step Technologies polarized light: 

VIS and NIR light (532 nm, 635 nm, 904 nm) 
eye iris http://www.qstep.com 

- Samsung fine 
Chemicals Company 

radiomolecular magnetism: 
electromagnetic wave (42.58 MHz) 

finger skin www.sfc.samsung.co.kr/en 
 

- Sensys Medical: 
Sensys GTS 

optic spectroscopy 
NIR light (1300 nm - 1360 nm, 1670 nm 1690 nm, 1930 nm - 1950 
nm, 2120 nm - 2280 nm) 

skin http://www.sensysmedical.com/ho
me.html 
 

- Sentek Group: 
Glucoview 

crystalline colloidal array eye http://www.diabetesnet.com/diabete
s_technology/sentek.php 
 

- Solianis Monitoring 
(Pendragon): 
Pendra 

bioimpedance: 
current (1 MHz - 200 MHz) 

wrist skin  http://www.solianis.com 
 

- Sontra Medical  
(Bayer Diagnostics): 
SonoPrep 

- ultrasonic: 
electromagnetic wave (20 kHz) 
- electrochemical 

skin  http://www.sontra.com 
 

- Heinz Nixdorf-Chair 
for Medical Electronics 
(TUM) 

- optic spectroscopy:  
MIR light (8 �m – 10.5 �m) 
- bioimpedance: current (100 kHz – 3 GHz) 

finger tip skin http://www.lme.ei.tum.de 
 

- VeraLight fluorescence spectroscopy: 
VIS light (250 nm - 850 nm) 

forearm skin http://www.veralight.com 
 

- Visual Pathways: 
GlucoScope 

visual pigment bleaching: 
VIS and NIR light (500 to 950 nm) 

anterior 
chamber of 
the eye 

http://vispath.com 
 

- VivoMedical electrochemical sweat measurement finger tip skin http://www.vivomedical.com 
 

 - Hitachi metabolic heat conformation: 
- VIS and NIR light (470 nm, 535 nm, 660 nm, 810 nm, 880 nm, and 
950 nm) 
- temperature (skin surface, ambient room, and background radiation) 

finger tip skin http://www.hitachi.com/New/cnews
/040223.html 
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Optimal non-invasive blood sugar meters should be able to detect change in glucose 

concentrations within l-5 minutes in ranges from 18 to 540 md/dL with approximately 5 % 

error (WILKINS and ATANASOV, 1996; BOYD and BRUNS, 2001). If the meter does not 

fit these specifications, the Clarke error grid shown in Figure 7 is another possibility to 

analyse accuracy of readings. This method classifies the instrument response in five zones 

from A through E. Zone A represents values that are clinically accurate, zone B values are 

benign, and values in the C, D, and E zones might lead to an inappropriate treatment 

(KOVATCHEV, GONDER-FREDERICK, COX CLARKE et al, 2004). 

 
Figure 7 – Clarke error grid for analysis of predicting glucose measurements (FUNAKI, 

MATSUURA and TANAKA, 2000). 

 

2.5.1 Reverse Iontophoresis 

 

The method of iontophoresis has been used for many decades and utilizes electrical 

current to deliver charged drug compounds through the skin. Non-invasive monitoring, 

however, uses transport of glucose in the opposite direction (from the skin outward), 

therefore, this process has been called ‘reverse iontophoresis’ (LEBOULANGER, GUY and 

DELGADO-CHARRO, 2004). The GlucoWatch monitor, shown in Figure 8, is a wrist-watch 

glucose control device manufactured by Animas Technologies that utilizes this technique with 

two independent potentiostat circuits (POTTS, TAMADA and TIERNEY, 2002). This 

measurement is possible because neutral molecules, such as glucose, are extracted through the 

epidermis surface via this electro-osmotic flow to the iontophoretic cathode, along with Na+ 

ions.  
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Figure 8 - GlucoWatch wrist-watch blood glucose monitor from the company Cygnus. 

Glucose is extracted through reverse iontophoresis, and measured by amperometric biosensor 

(POTTS, TAMADA and TIERNEY, 2002). 

 

Glucose concentrations extracted through the skin with mA currents are in µmolar 

ranges, therefore the amperometric circuit needs to detect glucose from 0.9 mg/dL to 3.6 

mg/dL. In this electrode, blood sugar is collected in hydrogel discs containing the enzyme 

glucose oxidase (GOD). These hydrogels, which need to be replaced often, constitute the 

electrolyte of an amperometric biosensor, working with nA currents to detect H2O2 generated 

by the glucose oxidase-catalyzed reaction (TIERNEY, JAYALAKSHMI, PARRIS et al, 

1999). After the solute extraction and measurement phases, mathematical algorithms predict 

the glucose level in the display. This processing not only uses the biosensor response, but also 

skin temperature and respiration fluctuations, through thermo transducers and conductivity 

sensors available in the device (TIERNEY, TAMADA, POTTS et al, 2001). 

The system is able to read glucose values every 10 minutes for up to 13 hours. 

Correlation coefficient between the biosensor and finger-stick measurement is about 0.865, 

and therefore was approved by the U.S. Food and Drug Administration (FDA) for an auxiliary 

method, without replacing invasive control. Some disadvantages of this technology are the 

delay of some minutes compared with blood values, skin irritation, inaccuracies of results, 

long calibration procedures and a two to three hour warm-up period (PANCHAGULA, 

PILLAI, NAIR et al 2000; PARK, LEE, YOON et al, 2005]. Another reverse iontophoresis 

device available is the GluCall from KMH Company, which requires 70 minutes to warm-up 

and measures glucose values every 20 minutes for up to 6 hours. 
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2.5.2 Light absorption spectroscopy 

 

Chapter 4 will describe optical absorptions in more details. When light meets 

biological tissues it can suffer reflection, scattering and transmission proportional to the 

structure and chemical components of the sample. The possibility of molecular differentiation 

is, therefore, the reason why the majority of continuous glycemic monitoring efforts are 

focused in the optical signature spectrum of glucose.  

Many spectroscopic investigations have been done in visible and near infrared (NIR) 

range, namely around 590 nm – 950 nm (YEH, HANNA and KHALIL, 2003), 1212 nm – 

1850 nm (MARUO, TSURUGI, CHIN et al, 2003; SCHRADER, MEUER, POPP et al, 2005; 

KASEMSUMRAN, DU, MARUO et al, 2006) and 2120 nm – 2380 nm (OLESBERG, LIU, 

VAN ZEE, et al, 2004). Such spectra are chosen since the water absorbance is weak, the 

measuring signal has high energy and there is a wide number of commercial light transducers 

available. In addition, these wavelengths are found in the therapeutic window (600 nm to 

2500 nm) allowing the use of reflectance for superficial layers analysis and transmittance in 

deep tissues measurements (WEBSTER, 1997).  A recent work describes a technology 

applied to glucose prediction similar to pulse oximetry (detailed in chapter 4). In order to 

determine the optimal spectra, a fast spectrophotometer was developed, capable of deriving 

100 spectra per second (900 nm to 1700 nm), which allowed the analysis of blood volume 

pulsations in the finger. In Figure 9, initial correlations between predicted (optical) and 

reference laboratory assays are illustrated and since the results are in regions A and B, it is 

acceptable for clinical use (YAMAKOSHI and YAMAKOSHI, 2006). 

 
Figure 9 - Comparison of the predicted and measured blood glucose level by error-grid 

analysis, values in regions A and B are acceptable for clinical use (YAMAKOSHI and 

YAMAKOSHI, 2006). 
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On the other hand, the use of middle infrared (MIR) spectra (mostly between 8382 nm 

and 9708 nm) (MALCHOFF, SHOUKRI, LANDAU et al, 2002; MARTIN, MIROV and 

VENUGOPALAN, 2002; SHEN, DAVIES, LINFIELD et al, 2003) gives more distinct 

glucose peaks. Unfortunaly these spectra have limited light penetration, which exclude their 

use in transmittance tests. An alternative to increase optic penetration is the measurement with 

attenuated total reflection (ATR) (HARVEY and MCNEIL, 2006), which uses a light beam 

guided through a crystal by total reflection and is explained in more detail in chapter 4. If the 

crystal surface is placed in contact with the skin, the electromagnetic field created by the 

reflected light reaches the dermis, where the interstitial fluid contains most of the skin’s 

glucose (Thennadil, Rennert, Wenzel et al, 2001). Therefore changes in the beam absorption 

should reflect the optics characteristic of the blood sugar. The use of squalane oil in the 

crystal interface seems to improve quantitative prediction (TAMURA, FUJITA, KANEKO et 

al, 2004). Table 3 shows a review of optic spectroscopy targets and wavelengths.  

 

Table 3 – Researches in non-invasive glucose documentation by light spectroscopy 

Research group - year Target site Wavelength (nm) 

Cho et al.  2004 Finger skin 470 to 950  

Baba et al. 2003 Eye 532 and 635 

Cote et al. 1992 Eye 633 

Gabriely et al.1999 Finger skin 780 to 2500 

Saratov et al. 2004 Skin 590, 750 and 950 

Yeh et al. 2003 Forearm skin 590, 660, 890 and 935 

Heinemann - et al. 1998 Skin 800 

Zhao et al. 2002  Finger skin 905 

Robinson et al.1992 Finger skin.  870 to 1300 

Fischbacher et al.1997 Skin 950 to 1200 

tenhunen et al.1998 Finger skin 1500 to 1850 

Maruo et al. 2003 Forearm skin 1600 

Kasemsumran et al. 2006 Forearm skin 1212 to 1805 

Burmeister et al.1999 Tongue 1612, 1689 and 1731 

Schrader et al. 2004 Eye  1859 to 1528 and 1394 to 909 

Olesberg et al. 2006 Skin  2040 and 2380  

Malchoff et al. 2002 Tympanic membrane 8500 and 9600 

Kajiwara et al. 1993 Oral mucosa 3424,  9259 and 9708  

 

In order to compensate the high absorbance by the tissue, some groups have chosen to 

measure with laser diodes. The SugarTrack (with 650 nm, 880 nm, 940 nm and 1300 nm) or 

Sensys (750nm-2500nm) are examples of optical equipment for continuous glucose 

monitoring. Another alternative to improve measurements is occlusion spectroscopy, reported 
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by the company Orsense. This technique uses a temporary cessation of the tissue blood flow 

at the finger with the projection of light at 610 nm and 810 nm (COHEN, FINE, 

MONASHKIN et al, 2003). 

 

 

2.5.3 Photoacoustic spectroscopy 

 

Photoacoustic spectroscopy (PAS) is based on ultrasonic waves created by tissue 

absorption of pulsating light (WICKRAMASINGHE, YANG and SPENCER, 2004). When 

laser beams meet cells, heat is generated, causing pressure variations in the sample. These 

acoustic signals can be detected through a piezoelectric transducer and with the specific 

incident wavelengths, reflect optical properties of glucose in blood (ALLEN, COX and 

BEARD, 2005). PAS non-invasive glycemic monitoring devices, like the Aprise from the 

Glucon company, are already available in the market (GLUCON, 2006). Although this 

method was shown to correlate with blood sugar levels, it is still necessary to improve the 

reproducibility and sensitivity in order to decrease interferences from other substances.  

 

 

2.5.4 Polarimetry 

 

The linear polarization vector of light can be rotated by the path characteristics such as 

thickness, temperature and concentrations of the crossed sample. Therefore polarimetry has 

been used for a long time in pharmaceutical and nutritional industries to measure the level of 

compounds including glucose. Many studies are trying to apply this technique in non-invasive 

glycemic assays. However, skin is not the optimal target, since high scattering coefficients 

produce complete depolarization of the beam. Therefore, most investigators focus their 

attention on the aqueous humor of the eye, which offers a clear optical medium with a 

reasonable path length and has a lag time of no more than 5 minutes in relation to blood 

glucose concentrations (CAMERON, BABA and COTÉ, 2004). The average width of the 

anterior chamber of a human eye is 1 cm, which gives an expected rotation of 4.562 milli 

degrees for a normal glucose level (5.55 mmol/L) at a wavelength of 633 nm (COTE, 2001).   
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There are two possible optical paths for polarimetric tests in the eye, as shown in 

Figure 10. The first uses transmittance configuration where the polarized light passes laterally 

through the cornea (MCNICHOLS and COTÉ, 2000). In the second approach, the incident 

beam on the cornea travels into the eyeball, reflecting on the retina, and returning with 

information on glucose concentration in the aqueous humor (JANG and FOX, 1997). 

 
 

vitreous
humor

cornea

aqueous
humor

retina

transmittance
path

reflectance
path

irislens

 
Figure 10 - Transmittance and reflectance optical paths for polarimetric tests in the eye. 

 

Although polarimetry methods suffer negligible influence from temperature and pH 

drifts, it is still necessary to address these problems in order to successfully quantify 

concentrations in vivo (BABA, CAMERON, THERU et al, 2002). Limitations include safety 

regulations on light exposure to the eye, motion artifacts, optical noises of other substances 

and the development of techniques to measure small angles. Recent studies used a Faraday 

rotator with a single-mode flint glass fibre to improve optic sensitivity of the system, which 

showed a resolution of 9.9 mg/dL for glucose (YOKOTA, SATO, YYAMAGUCHI et al, 

2004). Finally, a modified intraocular lens and a liquid-crystal polarization modulator driven 

by a sinusoidal signal were also proposed to allow in vivo measurements of the human eye 

(RAWER, STORK and KREINER, 2004; LO and YU, 2006). 

 

 

2.5.5 Fluorescence 

 

It is known that glucose levels in tears reflect concentrations similar to those in blood, 

therefore, fluorescence is also a sensing technology for painless monitoring (PICKUP, 

HUSSAIN, EVANS et al, 2005). This system can track blood glucose with an approximate 30 

minutes lag time and does not suffer interference from fluctuations in the light intensity of the 
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ambient surrounding. The photonic sensing is done with polymerized crystalline colloidal 

arrays which respond to different concentrations through diffraction of visible light 

(KHALIL, 2004). 

The sensor is comprised of disposable colorless contact lenses, which require 

excitation and detection devices. Figure 11 shows recent results of in-vivo assays with these 

transparent lenses excited in 488 nm. Although the results correlate with control glucose 

levels, long-term studies addressing confort and toxicity still need to be performed (MARCH, 

LAZZARO, RASTOGI, 2006). Some of the equipment could be  discarded by using colored 

contact lenses. By changing color in response to the concentration of glucose in the tears, 

patients could look into a mirror and compare the sensor color to a precalibrated color strip 

(BADUGU, LAKOWICZ and GEDDES, 2005). Some limitations still need to be solved in 

colorimetric assays, such as resolution, short lifetimes and biocompatibility (MOSCHOU, 

SHARMA, DEO et al, 2004). 

 

 
Figure 11 - In-vivo contact lenses data versus standard invasive glucose level control 

(MARCH, LAZZARO, RASTOGI, 2006). 

 

 

2.5.6 Raman spectroscopy 

 

The process where a small fraction of scattered light shows wavelengths different 

from that of the exciting beam is known as the Raman effect. This type of spectroscopy uses 

laser radiation sources from visible to the MIR range (5 �m to 40 �m) and measures very 

weak signals in the transparent samples. The measured photons normally have higher 

wavelengths and lower intensities (10-3 times) than the original light, therefore requiring 

longer collection periods than other optical methods (ELLIS and GOODACRE 2006). Water 
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has weak scattering indexes, which is the reason why Raman assays are not affected by 

interference from this substance. Another advantage is that the resulting bands are narrow and 

have distinct peaks, easing the task of separating signals, in contrast to absorption 

spectroscopy (BERGER, ITZKAN and FELD, 1997). A recent study reports measurements of 

glucose in aqueous humor with a 785 nm laser source. An optical fiber was used to focus the 

beam on the anterior chamber of porcine eyes and also to receive the resulting spectrum. 

Results suggest that Raman signals from glucose in MIR range can be detectable with this 

system, nevertheless one should still analyse photothermal damage danger in non-invasive 

ocular measurements (ERGIN, and THOMAS, 2005). 

 

 

2.5.7 Metabolic heat conformation 

 

The metabolic heat conformation (MHC) method involves measurements of 

physiologic indices related to thermal generation, blood flow rate, hemoglobin, and 

oxyhemoglobin concentrations, all of which should correspond to the glucose levels in the 

blood (CHO, KIM, MITSUMAKI et al, 2004). The first tests used three different temperature 

measurements (surface finger, ambient room, and background radiation) derived from the 

fingertip during 10 seconds. In addition, multiwavelength spectroscopy with six wavelengths 

(470 nm, 535 nm, 660 nm, 810 nm, 880 nm, and 950 nm) was performed, helping to improve 

glucose signals, as illustrated in Figure 12 (a). The MHC prototype, shown in Figure 12 (b) 

has a correlation coefficient of 0.91 in laboratory conditions, but the company Hitachi intends 

to improve its performance in order to obtain sale approval (KO, CHO, KIM et al, 2004). 

 

  
                   (a)                                                (b) 

Figure 12 - Metabolic heat conformation blood sugar monitoring device from Hitachi (KO, 

CHO, KIM et al, 2004). 
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2.5.8 Thermal emission spectroscopy 

 

Thermal emission spectroscopy measures IR signals generated in the human body as a 

result of glucose concentration changes. One promising application of this technology uses a 

similar concept used in standard clinical tympanic membrane thermometers, with the addition 

of specific wavelengths for glucose fingerprint (9.8 µm and 10.9 µm). This membrane 

information is important, because it shares the blood supply with the center of temperature 

regulation in the hypothalamus. In addition, signals from blood vessels in this organ have to 

cross a smaller path length than in skin or oral mucosa sites. A prototype was calibrated and 

tested in patients demonstrating reproducibility and predicting glucose concentrations with a 

mean error of 12 mg/dL (MALCHOFF, SHOUKRI, LANDAU et al, 2002). 

 

 

2.5.9 Bioimpedance spectroscopy 

 

A detailed description of the impedance mechanisms and techniques will be provided 

in Chapter 3. Bioimpedance basicly consists of measuring the electrical properties of 

biological tissues of the whole organism. The first study of a non-invasive continuous glucose 

monitoring system involving impedance spectroscopy was published by Caduff’s group in 

2003, as illustrated in Figure 13. As a result of this research, the company Pendragon 

developed a wrist glucose monitor called Pendra. The equipment gathers information of an 

LC resonance circuit from 1 MHz until 200 MHz, with the skin working as the dielectric from 

the capacitor. One limitation of this research is that it requires an equilibration process, where 

the patient must rest 60 minutes before starting measurements (CADUFF, HIRT, FELDMAN 

et al, 2003).  

Pendra was approved in May 2003 in the Conformité Européenne (CE) and for a short 

time it was available on the market for approximately 3000 €. A post-marketing reliability 

study showed a difference of 52% (4.3% of the readings in the dangerous zone E from Clarke 

error grid) when compared with a blood capillary glucometer (WENTHOLT, HOEKSTRA 

and ZWART, 2005). Therefore, this equipment is suitable only for a small group of patients, 

whose local dielectric skin characteristics show a minimum resonance frequency 

(PFÜTZNER, CADUFF, LARBIG et al 2004). In 2005 Pendragon was closed, but Caduff’s 
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impedance work has still been investigated through the company Solianis Monitoring 

(CADUFF, DEWARRAT, TALARY et al, 2006). 
 

 
Figure 13 – Impedance sensor signal compared to blood glucose and interstitial fluid glucose 

levels during glucose clamps with glucose administered intravenously. ISF glucose levels 

measured by means of the CMA-60 microdialysis, blood glucose continuously measured by 

the Biostator (CADUFF, HIRT, FELDMAN et al, 2003). 

 

2.5.10 Ultrasound based assays 

 

Reverse iontophoresis is not the only method to extract non-invasive glucose 

molecules from skin. Sonophoresis, which usually enhances transdermal delivery of drugs, 

can also serve this purpose (KOST, MITRAGOTRI, GABBAY et al, 2000). This technique 

uses a piezoelectric transducer to create 20 kHz ultrasound (US) which increases cutaneous 

permittivity to interstitial fluid, enabling glucose transport to the epidermis surface. Analyte 

concentrations can therefore be determined with standard electrochemical glucose sensors. 

Initial in vivo laboratory results have been described predicting glycemic values in rat skins 

through US (LEE, NAYAK, DODDS et al, 2005). 

 

 

2.5.11 Electromagnetic  based assays 

 

Electromagnetic sensors based on eddy currents have been able to detect variation of 

the dielectric parameters of the blood, which can also be caused by glucose concentration 
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changes (ALAVI, GOURZI, ROUANE et al, 2001). Conductivity detection of blood inside a 

plastic tube was possible at a resonant frequency of 2.664 MHz in static and moving samples, 

showing a glycemic sensitivity of 80 mg/dL (GOURZI, ROUANE, GUELAZ et al, 2005). 

Studies from Öz group also described magnetic glucose assays. This work reported that even 

localized nuclear magnetic resonance (NMR) performed well in detecting glycogen 

metabolism in the human brain (OZ, HENRY, SEAQUIST et al, 2003). 
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CHAPTER 3 

 

3 IMPEDANCE SPECTROSCOPY 

  

 

3.1 INTRODUCTION 

 

Although impedanciometry is relatively simple method, there are many possibilities 

for application. These include the analysis of materials, detecting of failures in structures, 

controlling the product to validation, and especially obtaining of physiological parameters in 

medicine. 

In pure metals, the current value comes from the electrons movement and in solutions 

like acid, bases and salts, the electrical charge’s transport is done through free ions. However, 

in such substances, factors like temperature and concentration can influence the ionic 

dissociation quantity, changing its conductor properties (HUANG, CHENG, PENG et al, 

2000). The current in organisms is mostly ionic for both inside and outside the cells 

(GEDDES and BAKER, 1989). One can call bioimpedance the opposition that biological 

tissues present for the electricity. Applying a direct current in these solutions, there will be a 

polarisation effect, where an ionic layer is formed in which electrode, impeding the current 

flow. Therefore, only alternating current (AC) can be used in bioimpedanciometry 

(GRIMNES and MARTINSEN, 2000). Although studies with electric impulses have been 

already realized (NEVES, LEITE and SOUZA, 2000), sinus waves are still mostly used in 

this type of measurement, since it is easy to create and treat these waves. 

Besides the signal characteristics, other factors can also influence this technique. The 

organism has tissues with different substances, compositions and shapes, resulting in different 

resistivities for each organ. While muscles and blood are good conductors, skin, fat and bones 

act mostly as isolators (N. I. H., 1994; LIEDTKE, 1997). Due these properties, one possible 

application of bioimpedance is tissue characterisation. However, even in isolated tissues, the 

electric characteristics can change with electrode position because different shapes of cells 

change the current density (GRIMNES and MARTINSEN, 2000). In Figure 14, in the same 

organ, there is a lower resistance between electrodes 3 and 4 than between electrodes 1 and 2. 
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Figure 14 – Asymmetric measurement with bioimpedance, there is a lower resistance between 

electrodes 3 and 4 than between electrodes 1 and 2 (GRIMNES and MARTINSEN, 2000). 

 

This section shows the basic principles of complex impedance, describing sensors and 

measurement techniques. Finally, concepts involving patient safety and applications are 

described. 

 

 

3.2 HISTORICAL BACKGROUND 

 

Electrical impedance has been studied in medical applications for a long time. 

Grimnes and Martinsen reviewed some important research: in 1911 Hoeber discovered the 

current dispersion �, which corresponds to the electric comportment of tissues in medium 

frequencies. In 1930 this dispersion was explained by Fricke, Cole and Curtis. Nyober 

introduced in 1940 the blood resistivity definition (�.m). The dispersion � (low frequency 

analyze) was studied by Schwan in 1957. The relation between bioimpedance and Total Body 

Water was discovered in 1962 by Thomasset (GEDDES and BAKER, 1989). In 1966 

Kubicek developed a study with NASA astronauts to create the first cardiac monitor applied 

in medicine with bioimpedance (N. I. H., 1994). The idea of tissue imaging was introduced by 

Pullen in 1970. The first image was realized in 1978 by Henderson with 144 electrodes. 

Barber and Brown realized the first in vivo impedance image test in 1983 and simultanesly 

applied the principle of volumetric electrical resistivity of Kubicek to measure the total body 

water. In 1985 Sramek, Bernsein and Quail developed a method to measure cardiac debit 

through impedance. Improvements in the cardiac impedance analysis were made in 1986 by 

Bernstein, allowing to determine the stroke volume, cardiac output, systemic vascular 

resistance (SVR) and left cardiac work (LCW). 

 

 



 

 

25

 

3.3 PHYSICAL PRINCIPLES 

 

Electrical resistance is the opposition to the current flow, which depends on the 

dimensions and resistivity (�) of the object, as seen in Equation 1.  

 

A
L

R
�

�  
(1) 

 

where: 

� R is the component resistance, � (Ohm); 

� A is the cross-sectional area, m2 (square metres); 

� � is the resistivity, �.m (Ohm metres); 

� L is the length of the object, m (metres). 

 

Elements that are purely resistive do not accumulate energy and therefore have a 

constant resistance independent of the applied signal frequency. However, in inductors and 

capacitors, there is an opposition to the electrical current called reactance, whose intensity 

varies with the signal frequency, shown in Equation 2 and Equation 3. 

 

fC
Xc

�2
1

�  
(2) 

 

 

where: 

� Xc is the capacitive reactance, � (Ohm); 

� f is the frequency, Hz (Hertz); 

� C is the capacitance, F (Farad). 

 

fLXl �2�  (3) 

 

where: 

� Xl is the inductive reactance, � (Ohm); 

� f is the frequency, Hz (Hertz); 

� L is the inductance, H (Henry).  
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The complex result of resistive and reactive vectors is called impedance (Z), where the 

resistive component (R) is located in the real axis and its reactive components (Xc ou Xl) in 

the imaginary axis. The modulus (|Z|) and phase (	) of the impedance in Figure 15 can be 

calculated through Equations 4 and 5. 

 

                                

 

 

 

 

                            

Figure 15 – Example of impedance in its rectangular and polar modes. 

 
222|| XcRZ 
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where: 

� |Z| is the impedance modulus, � (Ohm); 

� Xc is the capacitive reactance, � (Ohm); 

� R is the resistance, � (Ohm); 

� 	 is the phase angle, o (Degree). 

 

The Ohm law defines impedance as the result of the division between the measured 

voltage and the applied current, as seen in Equation 6. 

 

ZIV �  (6) 

 

where: 

� V is the voltage, V (Volt); 

� Z is the impedance, � (Ohm); 

� I is the electric current, A (Ampère). 
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3.4 TRANSDUCERS 

 

Bioimpedance sensors are basically electrodes, which, in contrast with most of the 

transductors, are not affected significantly by pressure and temperature variations.Due to its 

reduced size, these devices do not interfere in the physiological events, reason why 

bioimpedance has been widely accepted in the medical community. 

It is desirable to use materials with constant characteristics in a large frequency 

spectrum. The Silver-Silver Chloride electrode (Ag/AgCl) is commonly used in our days. 

This component with a diameter of 1.5 cm has approximately 200 � in 30 Hz, and after 10 

kHz this value decreases to 150 � (WEBSTER, 1998). Other materials which can also be 

used to contact with the skin are aluminium and steel. An electrode with this composition and 

area of 0,94 cm2 in 1 kHz offers a resistance of 37 � in serie with a capacitance of 4 �F 

(TORRENTS and PALLÀS-ARENY, 2002). Platinum electrodes (Pt) are commonly used as 

well in chemometric assays, but low frequency utilization should be avoided due to highly 

polarizable characteristics (BRONZINO, 2000). 

The cable that connects the electrode with the measurement circuit is also observed. In 

high frequencies it is important to use coaxial cables in order to reduce eventual noises. 

Another component that should be chosen carefully is the gel used to improve the signal 

propagation in the epithelial surface. This occurs because the electrolytes fill empty spaces 

between the electrode surface and the tissue, therefore decreasing the electrode-skin 

impedance. Hydrogels (gels with a higher concentration of water) cause higher variations of 

impedance as gels with higher density (MC ADAMS, JOSSINET, LACKERMERMAIER et 

al, 1993). 

 

 

3.5 MEASUREMENT 

 

BIA measurements normally use either two electrodes (bipolar) or four electrodes 

(tetrapolar). With two electrodes, the current carrying electrodes and signal pick-up electrodes 

are the same. In this case, the contact interface of the electrode with the skin can have a 

parasite resistance that causes errors in the read impedance. The lower the measurement 

frequency, the higher is the value of such error (TORRENTS and PALLÀS-ARENY, 2002). 

This additional impedance depends upon the contact area in the electrode, the type of material 
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used as the dielectric, hair concentration and skin moisture (OLDHAM, 1996). In 1884 Bouty 

introduced the method of measurement with four electrodes shown in Figure 16.  
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Figure 16– Tetrapolar measurement method, which can eliminate most part of patient-

electrode errors (GEDDES and BAKER, 1989). 

 

Thetrapolar measurement is the most commonly technique because most of the errors 

from patient-electrode impedance is eliminated. The constant current is applied in the person 

through electrodes 1 and 4. The output voltage, which depends on the corporal impedance, is 

read in electrodes 2 and 3. The greater the distance between these reading electrodes, the more 

uniform is the current in the tissue (GEDDES and BAKER, 1989). 

The majority of the available impedance devices have some common blocks, seen in 

Figure 17. The excitation circuit normally uses an oscillator, which can be analog, or a Direct-

Digital Synthesizer (DDS), and a current source, to avoid harming the patient. The signal 

acquisition is made through amplifiers (differential and instrumentation types) with high input 

impedance and fast response. In case of analog impedance measurement, a voltmeter block is 

required, which can have different levels of complexity, depending on the signal frequency 

and amplitude. The resulting signal is then digitalized by A/D converters, which allow the 

application of algorithms and digital filters. The central processing unit (CPU) interprets the 

results, controls computer interfaces, reads keyboard commands and shows the results in 

graphic displays. In order to measure a wide spectrum of frequencies, the circuits should have 

variable oscillators, amplifiers with fast response and wide bandwidth, A/D converters with 

high sample rate and short processing time. 
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Figure 17 - Basic block diagram of a tetrapolar impedance circuit, if contact 1 is connected to 

2, and 3 to 4, it is possible to have a bipolar measurement. 

 

 

3.6 SPECTRAL ANALYSIS 

 

Tissues are composed of many similar cells covered with an electrolytic fluid. Each 

cell can be defined as a variety of structures responsible for metabolism, reproduction and 

maintenance, revested by a membrane. This membrane, whose thickness is about 7 nm, is 

composed of lipids with isolating characteristics and proteins, responsible for the transport of 

water, ions and others chemical substances that cross its structure by osmosis (GEDDES and 

BAKER, 1989).  The electric comportment from the cellular membrane is equivalent to a 

capacitor, which is mostly around 20 �F/cm2. In all organs the resistive and capacitive 

components are higher as the inductive component and therefore it is not considered 

(GRIMNES and MARTINSEN, 2000). 

Cells present high capacitance reactance for low frequency currents (until 5 kHz). In 

cases where higher frequencies are applied, this parameter decreases, and in 1 MHz the 

current crosses the whole cytoplasm (GRIMNES and MARTINSEN, 2000). Tissues also have 

similar comportment to the cells. In high frequencies current can cross the cellular membrane, 

flowing through both extra cellular and intra cellular fluids. Therefore in lower frequencies, 

tissues with greater cellular density will show higher impedance than tissues with more of 

extracellular fluid. Figure 18 shows a graph of the impedance modulus variation with 

frequency for biological tissues (THOMASSET, 1997). 
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Figure 18 – Impedance modulus of biological tissue with the frequency (THOMASSET, 

1997). 

 

The permissibility comportment of a biological tissue depending on the frequency of 

the crossing signal is called dispersion. There are three fundamental types: �, � and � (BLAD 

and BALDETORP, 1996). The dispersion � happens in low frequencies and is due to the 

diffusion phenomenon of free ions outside the cells. The dispersion �, also called structural 

relationship, comes from the charge and discharge of the cellular membrane capacitance 

through intra and extra-cellular liquids. This type of dispersion is found in the frequencies 

from 100 kHz until 30 MHz. The dispersion � is caused by the bipolar relationship of the free 

water molecules in the medium. It occurs in the range from 10 GHz until 100 GHz (LÓPEZ, 

MADRID and FELICE, 2001). 

Figure 19 illustrates the electric current in tissues: for low frequencies (LF) the ions 

flow outside the cells, in high frequencies (HF), the signal crosses both intra-cellular fluid 

(ICF) and extra-cellular fluid (ECF). Figure 20 represents one equivalent circuit for the tissue 

comportment with frequencies. The value of the resistance Ro corresponds to the extra-

cellular fluid and the value Rp to the intra-cellular fluid. For low frequencies the total 

impedance is only given by Ro. In high frequencies, over 1 MHz, the capacitor Cp decreases 

its reactance and the total impedance can be calculated by the parallel between Rp and Ro 

(THOMASSET, 1997). 
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Figure 19 – Tissue currents for low and high frequencies (THOMASSET, 1997). 
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Figure 20 – Tissue equivalent circuit. 

 

The relationship between the total impedance in high frequencies (Z1MHz) and the 

resistances Ro and Rp is shown in the Equation 7. 

 

poMHz RRZ
111

1


�  
(7) 

 

where: 

� Z1MHz is the impedance in high frequencies, � (Ohm); 

� Ro is the extra-cellular resistance, � (Ohm); 

� Rp is the intra-cellular resistance, � (Ohm). 

 

The characteristic frequency is the value where the impedance presents the maximum 

capacitive reactance value, shown for the circuit above in Equation 8. 
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where: 

� fc is the characteristic frequency, Hz (Hertz); 

� Ro is the extra-cellular resistance, � (Ohm); 

� Rp is the intra-cellular resistance, � (Ohm); 

� Cp is the typical capacitance for each tissue, F (Farad). 
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In the majority of tissues the characteristic frequency is found between 10 kHz and 

200 kHz, while for blood this value is around 2 and 3 MHz (BLAD and BALDETORP, 

1996). Table 4 shows characteristic frequencies measured in swines. Tissues with high water 

concentration, like tumors, also show high characteristic frequencies (ORSYPKA and 

GERSING, 1995). 

 

Table 4 – Characteristic frequency in swines (CINCA, WARREN, RODRÍGUEZ-SINOVAS 

et al, 1998).  

Organ Chracteristic frequency (kHz) 

Liver 0.39 

Pancreas 123 

Lung 0.46 

Musses 0.2 

Blood 2020 

                                            

 

Cole represented the resistive R and capacitive Xc comportment of tissue impedance 

with the frequency. In the ideal circuit of Figure 21 (a), the impedance changes with 

frequency as shown in curve |Z| with extremities always in the axis origin. The curve drawn 

by the modulus is centered in ((Ro – Ro//Rp)/2 + Ro//Rp). For a DC signal the impedance 

would have value Ro.  With the frequency, increasing this parameter decreases anti-clockwise 

until it reaches Ro//Rp. When measuring biological tissues, the circumference centre is found 

under the resistance axis, as illustrated in Figure 21 (b). The value of � is empiric, and should 

therefore be chosen in order to match both graphs (GEDDES and BAKER, 1929). 
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Figure 21 – Teoretical (a) and real (b) Cole–Cole graph. 

 



 

 

33

 

One important data in the Cole graph is the phase angle (	 ), which in theory can 

change between 0o and 90o and in most people is found between 3o to 10o. For medium 

frequencies, a small 	 means a decrease in the capacitive reactance, corresponding to cellular 

death. A high phase angle means an increase in the capacitance, which means that there is a 

great number of cellular membranes (RIGAUD, HAMZAOUI, CHAVEUAU et al, 1994). 

Each tissue has one specific curve in the Cole diagram, and the sum of different organs results 

in a typical graph for total body impedance as shown in Figure 22 from 10 kHz until 800 kHz. 

The muscles impedance is responsible for most of the measured values (THOMAS, WAR and 

CORNISH, 1998).  

 
 

Figure 22 – Total body impedance measured by tetrapolar configuration measured between 

the right hand and left foot (THOMAS, WARD and CORNISH, 1998). 

 

 

3.7 SAFETY  

 

Because the impedanciometry measures the voltage created by applying an external 

current in the body, special care should be taken in order to avoid physical harm to the 

measured person. The current value should be small enough to be undetectable by the patient, 

not stimulate nerves and muscles and induce warming in tissues. If someone with wet skin 

holds conductors in each hand, an alternated current of only 0.5 mA already can be noted. For 

constant currents, those values are from 2 to 10 mA. In some cases a current of only 6 mA is 

able to excite muscle tissues. However, the magnitude of current used in impedanciometry 

should be higher than biological noises as mioelectric signals or interference of equipments in 
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hospital, such as heaters, infrared lamps or motors. In order to decrease disturbances caused 

by bioelectric signals, between 10 and 100 Hz, frequencies over 1 kHz are adopted. The 

smaller the wave length, the higher the current intensity that can be used. Figure 23 represents 

the limit current (let-go) that one person can support without exciting muscles. This value 

tends to be stable in the region with higher sensibility and outside of these limits increases 

quickly (WEBSTER, 1998). The diameter of the electrode is another important factor, the 

smaller the area of the electrode, the fewer parasite capacitances will result, but the pain limit 

is also reduced. 

 

Figure 23 – Let-go current versus frequency, with higher values for up 1 kHz (WEBSTER, 

1998).  

 

The American Health Institute suggests a current maximum value of 800 �A to be 

used in impedanciometry, with a frequency of 50 kHz (N. I. H., 1994). In practice, one uses 

currents around 50 �A, for frequencies under 1 kHz. Over 100 kHz it is possible to use 
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currents in miliamperes. Special attention is also required for the measurement voltage, Boone 

and Holder suggest values between 25 �V and 160 mV (GRIMNES and MARTINSEN, 

2000). The placement of the electrodes influences the decision of electric values as well. 

When the current crosses the body, it can flow through muscles, bones, nerves, glands, organs 

and corporal fluids. Some of these elements, such as vocal chords, can be easily damaged by 

only a few miliamperes of current. Therefore in more sensitive regions one should reduce the 

maximum intensity of applied signals. 

One option to decrease the chance of stimulating a patient is the use of short duration 

waves. The higher the time of applied signal, the lower the current that can be applied 

(WEBSTER, 1998). In organisms, the most excitable nervous fibers require a minimum 

duration of 0.2 ms. Therefore, the use of current pulses in impedanciometry should have 

frequencies higher than 5 kHz. 

Another necessary procedure to prevent the compromise of the health of patients is to 

replace the electric network alimentation by low tension batteries, thus avoiding electric 

shocks in case of system failure. For people with implanted pacemakers bioimpedance 

measurements are not recommended because the BIA current can affect the functionality of 

the equipment. 

 

 

3.8 APPLICATIONS 

 

When changes in dimensions or conductivity of the organism happens, it is possible to 

monitor the many physiological events through BIA. Because this technique does not require 

any special transductor, but only electrodes, it is possible to non-invasively detect blood flow, 

cardiac activity, respiratory frequency, renal volume, bladder state, uterus contractions, 

nervous activity, arterial pressure and salivation. Therefore this method can be found in areas 

like cardiology, anaesthesia, surgery, emergency rooms, obstetrics, genecology and internal 

medicine. Although the modulus |Z| is mostly analyzed alone in physiological events, 

sometimes others components (Xc, R and 	) can present important alterations (GEDDES and 

BAKER, 1989). 

It is known that in some disorders, changes in electric parameters from organisms 

happens before appearing as clinical and organic symptoms. Therefore, a possible application 

of this method is the detection of pathological agents even in the incubation period, which 

could help the prevention and treatment of diseases (REN, WANG, AN et al, 1998).  
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The impedanciometry is a fast technique to measure the erythrocytes in blood, this is 

possible because the red cell impedance is almost 9 times greater than plasma. The 

coagulation time is also a parameter that can be monitored by BIA, because clotting changes 

the plasma quantity and therefore its electrical conductivity. Finally, it is also possible to 

determine the volume of solid cells in blood by such technology, with only the patient 

immersing his finger in a prepared solution (ÜLGEN and SEZDI, 1998). 

When electrodes are positioned in the thoracic area, values reflecting cardiac activities 

are easily obtained, since blood impedance decreases with the increase of the circulation 

speed. Respiratory frequency can also be modulated by cardiac impedance signals, this 

approach is widely used especially in neonatal ICU, where premature children are monitored 

to avoid apnea or heart infarct (HUANG, HONG, CHENG et al, 1998). 

The utilisation of BIA for image measurement and has the advantage of not harming 

the organism, in opposition to X rays whose excess use can cause cellular modification. The 

visualisation of impedance distribution inside the human body is done through a conductivity 

matrix. In order to map one region, one should connect the sensors around the local of interest 

(BAYOD, HERMANT and FARGES, 1999). 

One common application of bioelectric impedance is the determination of total body 

water (TBW) in its distribution both intra and extracellular, which helps the determination of 

the fat-free mass (FFM) or lean mass (LM) and the total boy fat (TBF), requiring only the age, 

size and sex of the patient (GRIMNES and MARTINSEN, 2000).  
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CHAPTER 4 

 

4 LIGHT ABSORPTION SPECTROSCOPY 

 

 

4.1 INTRODUCTION 

 

Spectroscopy measurement can be done basically through absorption, scattering and 

emission approaches. Scattering spectroscopy, such as Raman spectroscopy, measures 

physical electromagnetic properties by analyzing the amount of light that a substance scatters 

at certain wavelengths, incident angles, and polarization angles. Emission spectroscopy reads 

light spectra radiated by the substance, whose energy can result from sources, such as 

temperatures or chemical reactions. Absorption spectroscopy quantifies the concentrations of 

substances through the detection of transmitted or reflected photons, which have the same 

wavelength as the incident beam. In this chapter only absorption effect is described since all 

assays were done based on this phenomenon.  

 

 

4.2 HISTORICAL BACKGROUND 

 

Optical methods are among the oldest and best-established techniques for measuring 

biochemical analytes and are at the core of medical and biological research. The microscope, 

created in the 16th century, represents the first technology in medical light spectroscopy. Isaac 

Newton's publication in 1704 unleashed the scientific pursuit of today’s science of 

spectroscopy. Carl Scheele formulated the concept of radiant heat in 1777 (GÜNZLER and 

GREMLICH, 2002). 

In the year 1800, Sir William Herschel discovered the existence of infrared radiation. 

The first IR spectrometer was constructed by Melloni in 1850. The second major event of 

importance to medical image was the discovery of X-rays by Wilhelm Röntgen in 1895. 

Another important step t is the discovery of Raman scattering in 1928 by Chandrasekhara 

Venkata Raman. In addition, research like the mathematic study of Fourier to process spectra, 

the development of interferometry by Michelson and the invention of the laser by Schawlow 

and Townes in 1960 had great relevance to biomedical optics (JACKSON, 2004). 
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4.3 PHYSICAL PRINCIPLES 

 

The Beer-Lambert Law describes the attenuation of incident light (I0) crossing a 

material with absorbing properties, as seen in Figure 24. When an incident beam (I0) enters 

the sample, the intensity of transmitted light (I) decreases exponentially as shown in Equation 

3. 

  Lc
o eII .).(. �
��

 
Figure 24 - Beer-Lambert Law, relationship that relates the absorption of light to the 

properties of the material penetrated (WEBSTER, 1997). 
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where: 

� I is the intensity of transmission light; 

� I0 is the intensity of incident light; 

� � is the absorptivity (extinction coefficient) of the substance at a specific wavelength, 

mol-1 cm-1 (1/mol centimetres); 

� c is the concentration of absorbent, mol (mol); 

� L is the optical path length in the medium, cm (centimetres). 

 

The transmittance (T) of light crossing a medium with an absorbance substance is the 

ratio of transmitted light (I) to the incident light (I0), and absorbance is the negative natural 

logarithm of the transmittance, as shown in Equation 10 (HOF, 2003). 
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where: 

� A is the absorbance, AU (absorbance unit); 

� T is the transmittance, no units; 

� I is the intensity of transmission light; 

� I0 is the intensity of incident light; 

� � is the absorptivity (extinction coefficient) of the substance at a specific wavelength, 

mol-1 cm-1 (1/mol centimetres); 

� c is the concentration of absorbent, mol (mol); 

� L is the optical path length in the medium, cm (centimetres). 

 

Even if more than one substance absorbs light in a medium, the Beer-Lambert Law is 

still valid (Equation 11). 
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where: 

� A is the absorbance, AU (absorbance unit); 

� � is the absorptivity (extinction coefficient) of the substance at a specific wavelength, 

mol-1 cm-1 (1/mol centimetres); 

� c is the concentration of absorbent, mol (mol); 

� L is the optical path length in the medium, cm (centimetres). 

 

 

4.4 TRANSDUCERS 

 

Instrumentation for optical measurements generally consists of light sources, optical 

components to generate a light beam with specific characteristics and to direct this light to 

some modulating agent, and photodetectors for processing the optical signal (MENDELSON, 

1995). 
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There are many possible light sources available, such as highly coherent gas 

semiconductor diode lasers, broad spectral band incandescent lamps, and light-emitting 

diodes (LEDs). The advantages of LEDs are the small size, selective wavelengths, low cost 

and energy consumption. On the other hand, tungsten lamps provide a broader range of 

wavelengths, higher intensity, and better stability, but require a strong power supply and 

produce heat (ALLEN, COX and BEARD, 2005). 

Optical elements also offer a variety of alternatives and are used to manipulate 

radiation in optical instrumentation. Some examples are lenses, mirrors, light choppers, beam 

splitters, and couplers for directing the light from the source into the small aperture of a fiber 

optic or a specific area on a waveguide surface and collect the light from the sensor. Optical 

filters, prisms, and diffraction gratings are the most common components used to provide a 

narrow bandwidth of excitation when a broadwidth light source is utilized (MENDELSON, 

1995). 

Factors such as sensitivity, noise, spectral, and response time must be considered in 

the choice of photodetectors. Normally either photomultipliers or semiconductor quantum 

photodetectors, such as photoconductors and photodiodes are used. The compactness and 

simplicity of the circuitry involved with photodiodes make these components more attractive 

(YOTTER and WILSON, 2003). 

 

 

4.5 MEASUREMENT 

 

Body optical properties can be measured either with transmittance or reflectance 

approaches. Reflection configuration measures lower light intensities than transmission, as the 

amount of radiation crossing the tissue is greater than the amount reflected. On the other hand, 

refelectance probes, shown in Figure 25 (a), allow the sensors to be placed on locations such 

as the chest, cheek, or forehead (ZHAO, 2002).  

In transmission mode in Figure 25 (b), the detector is placed in line with the light 

source reading the maximum amount of the transmitted light. The photodiode should be 

placed as close as possible to the target. A disadvantage of transmission mode is the limited 

measurement sites, such as fingertip, nasal septum, cheek, tongue, and ear (WEBSTER, 

1997). 
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      (a)         (b) 

Figure 25 - Reflectance (a) and transmittance (b) models (ZHAO, 2002). 

 

The signal obtained from a photodetector provides a voltage or a current proportional 

to the measured light intensity. The output from a photodetector can be applied to a 

preamplifier before the measurement stage, which can be analog or digital (MENDELSON, 

1995). 

The optic analysis with a wide spectral range requires special devices called 

spectrophotometers, which can be built by a variety of techniques. Common radiation sources 

for the IR spectrometer are Nernst glower (constructed of rare-earth oxides), Globar 

(constructed of silicon carbide), and tungsten lamps tungsten lamps. Such components 

produce continuous radiation, but with different radiation energy profiles (SHERMAN, 

1997).  

Dispersive light spectrometers consist of three basic components: radiation source, 

monochromator, and detector, as illustrated in the schematic diagram of Figure 26 (THERMO 

NICOLET, 2002). After photom production, the light is split in two beams, and through a set 

of mirrors, is directed to a sample and to a reference chamber (double-beam principle). After 

passing the sample chamber, both signals are combined into one common path by means of a 

rotating chopper mirror. The control of the measurement wavelength is done through a 

mechanical filter called monochromator, this diffraction prisms or grating focuses a narrow 

band of frequencies on a mechanical slit (ANALYTIK JENA 2004). Each wavelength is 

measured one at a time, with the slit monitoring the spectral bandwidth and the grating 

moving to select the wavelength being measured. After crossing the slit, the detector measures 

the magnitude of the resulting radiation (SABLINSKAS, 2003). 
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Figure 26 - Dispersive spectrometers measurement principle (THERMO NICOLET, 2002). 

 

Fourier transform (FT) spectrometers have replaced dispersive instruments for most 

applications due to their superior speed and sensitivity. Unlike dispersive instruments, FT 

spectrometers acquire single channel spectra of sample and reference, as seen in Figure 27. 

This equipment has source, interferometer, sample, and detector blocks. The same types of 

radiation sources are used for both types of spectrometers, however, the source is often water-

cooled in FTIR instruments to provide better power and stability (SABLINSKAS, 2003).  

 
 

 
Figure 27 - Interferometer Diagram (THERMO NICOLET, 2002). 

 

The interferometer consists of a beamsplitter, a moving mirror, and a fixed mirror. 

The beamsplitter transmits about 50% and reflects about 50% of the incident radiation. After 

the divided beams are reflected from the two mirrors, they are rejoined at the beamsplitter, 

which results in obtained an interference pattern as the optical path difference is varied by the 

moving mirror (SHERMAN, 1997). The resulting beam then passes through the sample 



 

 

43

 

chamber and is measured on the detector. The spectrum of a given sample is generated by 

calculating the ratio of the background signal, obtained by the first scanning and stored in 

memory, to the signal obtained by scanning the sample (THERMO NICOLET, 2002). 

Many FTIR spectrometers offer the possibility to measure with ATR technique, which 

involves placing a little sample preparation on top of a crystal with a high refractive index. 

This is a great advantage, since only a small amount of sample without special preparation is 

required. Attenuated total reflectance occurs when a beam of radiation enters from a more-

dense into a less-dense medium. Such phenomenon is shown in Figure 28, where an infrared 

beam from the instrument is passed into the accessory and up into the crystal. It is then 

reflected at its surface, penetrating 0.5 �m to 2 �m into the sample, and back towards the 

detector. Therefore, the reflectance behaviour depends on the refractive indexes of the crystal 

and of the sample lying on its top (SHAW and MANTSCH, 2000).  

 

 

 
Figure 28 - Schematic representation of multiple internal reflection effect in Attenuated Total 

Reflectance module (SHAW and MANTSCH, 2000). 

 

 

4.6 SPECTRAL ANALYSIS 

 

Spectroscopy is used in physical and analytical chemistry for the identification of  a 

substance’s concentration through its optic spectrum. Figure 29 shows the electromagnetic 

spectra and its effects in biological tissues. 
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Figure 29 – Electromagnetic spectra (ZAMANIAN and HARDIMAN, 2005) 

 

The range of frequencies covered by radiation in the infrared region of the 

electromagnetic spectrum is comparable to the natural frequencies at which atoms or 

molecules will vibrate in the absence of an applied field, as seen in Figure 30. Thus when IR 

is incident on a system of matter, resonance will occur around the natural frequencies, 

whereby energy is transferred from the incident field to the system and its amplitude of 

vibration is increased (HOLLIS, 2002). 

 

 
 

Figure 30 - Molecular vibrations in MIR range (HOLLIS, 2002). 

 

Water constitutes 70% of hydrated tissues, followed by the connective tissue proteins 

and lipids. Photons are absorbed by water at wavelengths longer than the middle infrared 

(MIR) range, while proteins are strongly absorbing in the ultraviolet (UV) region. 

Fortunately, the optical absorption capacity of water, proteins and lipids is small in the red 

and near-infrared region, as seen in Figure 31. Therefore, ranges from 600 nm to 2300 nm, 

which allow light to penetrate from a few hundred micrometers to a few millimeters into 

tissues, can be exploited for purposes of diagnosis, imaging or therapy (KHALIL, 2004). 
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Figure 31 – Typical water absorption spectra (KINNUNEN, 2006). 

 

Glucose NIR spectral range has overtone bands that are broad and weak, on the other 

hand, bands in the MIR are sharp and have a higher absorption coefficient, as illustrated in 

Figure 32 (cm-1 = 10000000/nm) and Figure 33. These spectral bands are dominated by C-C, 

C-H, and OH stretching and bending vibrations. The 8.3 �m – 12.5 �m fingerprint region of 

the IR spectrum of glucose has bands at 11.961 �m, 10.976 �m, 9.891 �m, 9.551 �m, 9.293 

�m, and 8 �m that have been assigned to C-H bending vibrations. A 9.746 �m band 

corresponds to C-O-H bend vibration. Spectral measurements in this frequency interval were 

used to determine glucose in serum and blood (KHALIL, 2004). 
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Figure 32 – Typical NIR glucose absorption spectra (KANG, KASEMSUMRAN, WOO et al, 

2006). 

 
 

Figure 33 - Typical MIR glucose transmittance spectra (MENDELSON, CLERMONT, 

PEURA et al, 1990.) 

 

4.7 SAFETY  

 

The human organism is constantly exposed to sources of optical radiation such as 

sunlight, electrical lamps, lasers and oher incandescent sources. Light absorption in the tissue 

varies depending on the wavelength of the light radiated. The energy of intense optical 

radiations can be absorbed by water electrons in tissue near the body’s surface causing 

heating, redness and even burning. Optical radiations are not very penetrating, therefore, eye 

and skin are the organs of greatest concern. Normally, the eye is well adapted to protect itself 

against light radiation from the natural environment, as seen in Figure 34. In addition, 

biological protective measures are also known, such as clothing to shield against the harmful 
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effects of skin exposure. However, high levels of electromagnetic radiation or overexposure 

may be harmful, therefore, many standards and regulations for optical equipments are 

implemented to protect the tissues (SLINEY, 1997).   

 
Figure 34 - Absorption of light in the Ocular System (INDIANA UNIVERSITY, 2006). 

 

The visible frequencies of the electromagnetic spectrum (Figure 35) are interpreted by 

our eyes as different colors (MENDELSON, 1995). Radiation with wavelengths in the ocular 

focus region (0.4 �m – 1.4 �m) is transmitted through the cornea and focused by the lens on 

the retina with a magnification of up to 100,000 times.  Strong light intensity with 

wavelengths in this range, such as lasers, have the greatest potential for seriously damaging 

the eye, and are able to form permanent lesions on the retina (INDIANA UNIVERSITY, 

2006). 

 
 

 
Figure 35 - Visible light spectrum (ZAMANIAN and HARDIMAN, 2005). 

 

IR radiation is usually emitted by flash lamps, furnaces, molten metal or glass, 

fireplace embers and hot objects, invisible to the human eye. Visible light energy is emitted 

by objects only at a high temperature, where as infrared energy is emitted by all objects at 

normal temperatures. Some studies have shown that infrared energy can have therapeutic 
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effects on the organism, helping to rebuild connective tissue. Visible and infrared high-

powered laser radiation can cause depigmentation, ulceration, and scarring of the skin as well 

as damage to underlying organs.  Laser radiation, with frequencies outside the ocular focus 

region, are absorbed by the cornea and do not harm the retina.  In the infrared frequencies, 

excessive exposure causes a loss of transparency or surface irregularities in the cornea.  As an 

example, 10 mW/cm2 is the occupational ocular exposure limit from 780 nm to 1400 nm 

(BOZKURT and ONARAL, 2004). 

The ultraviolet (UV) radiation has a high photon energy range and can also be found 

in normal conditions, especially in sunlight, black lights and welding arcs. These wavelengths 

produce photochemical changes and may have both positive and negative consequences, 

depending on the level of exposure, duration and differences in the susceptibility to the light. 

The benefits of UV are warmth, photosynthesis in plants, and vitamin D synthesis in the 

human body. This radiation usually does not have immediate negative symptoms, however, 

when an organism is overexposed, it produces ionizing effects which may damage genetic 

information, causing skin cancer, immune system suppression, and premature aging.  UV 

negative effects to eyes produce intolerance to light, tearing, removal of the surface in scales 

and cloudiness in the connective tissue or main body of the cornea. For this reason, certain 

medical germicidal lamps (� = 254 nm) have limits as low as 0.1 �W/cm2 for a 24-hour 

period and 0.5 �W/cm2 for a seven-hour period (ZAMANIAN and HARDIMAN, 2005). 

Strong lights such as lasers also require attention to the radiation period, and are 

divided in to continuous and pulsed mechanisms. Continuous wave lasers produce thermal 

processes whereby a steady stream of photons is absorbed by the target until the natural 

cooling ability of the tissue is overwhelmed and its temperature rises to damaging levels.  

Pulsed laser mechanism is one of acoustical blast or shock damage. Table 5 corresponds to 

the laser intensity limits from the American National Standards Institute - ANSI Z136.1. 

Class 1 low-power lasers have no risk to the skin or eyes, class 2 pose no risk to the skin and 

minimal risk to the eyes. Class 3b are medium-power lasers whose direct beam and reflections 

pose potential risks to the skin and immediate risks to the eyes. Class 4 high-power lasers 

have a primary beam and reflection that have immediate risks to the skin and eyes (INDIANA 

UNIVERSITY, 2006).  
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Table 5 – Laser safety standard (American National Standards Institute - ANSI Z136.1) 

 
 

 

4.8 APPLICATIONS 

 

New laser sources, detectors and measurement techniques are powerful methods for 

the study of diseases on all scales, from single molecules, to specific tissues and whole 

organs. Optic technology is widely utilized in the biological and medical specialtys fields 

such as ophthalmology, dermatology, oncology, radiology, anaesthesiology, gynaecology, 

neurosurgery, gastroenterology, cardiology, cardiothoracic surgery, neonatology, immunology 

and clinical chemistry. 

The cancer therapy photosensitizing drugs activated by specific wavelengths are 

absorbed by tumors. The light-excited drug interacts with molecular oxygen to produce a 

toxic oxygen species, known as singlet oxygen, which mediates cellular death (WANG, 

HEBDEN and TUCHIN, 2004). 
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Hyperbilirubinemia is one of the most common problems encountered in term 

newborns and if not treated may cause seizures and brain damage. When infants are exposed 

to blue light (410 nm to 460 nm), a photochemical reaction occurs in the skin, changing 

unconjugated bilirubin into more soluble metabolites which are then excreted into the bile and 

the urine. The effectiveness of phototherapy depends upon the irradiance delivered by the 

light source, and the amount of skin exposed to the light (ROSEN, ROSEN, HIS et al, 2004). 

Optical coherence tomography allows non-invasive visualization of specific tissues 

and organs. The algorithms applied to optical imaging are similar to x-ray tomography 

methods. A source and detector are scanned around the surface of the tissue volume of 

interest, and the measurements are inverted to reconstruct the optical properties within the 

tissue volume as a function of position (HEBDEN, BOAS, GEORGE et al, 2003). Laser 

spectroscopic microscopes are able to obtain high resolution images and 3-D reconstructions, 

and may have enough resolution to measure single protein molecules. In addition this 

technology is able to manipulate samples, moving or rotating probes and even cutting specific 

parts of cells, such as membranes (SATO, ISHIGURE and INABA, 1991). 

Intravascular catheters also use light in fiber optics to determine concentration of 

gases such as oxygen, carbon dioxide and pH, which is essential for clinical diagnosis and 

management of respiratory and metabolic problems (MENDELSON, 1995). Oxygen 

saturation of arterial blood can also be measured through non-invasive assays. The basis of 

this technology is to measure red (660 nm) and infrared (950 nm) light effects in the tissue. 

Pulse oximeter beams radiate though fingers or ears, where most of the energy is absorbed by 

tissue, bone and venous blood, however, these values of absorption are relatively constant. 

Arterial blood however is pulsatile, and therefore can be distinguished from other artifacts. 

The basic pulse oximetry system is shown in Figure 36  (WEBSTER, 1997). 

 

 
Figure 36 – Measurement of oxygen saturation of arterial blood through pulse oximetry 

(WEBSTER, 1997).
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CHAPTER 5 

 

5 PROPERTIES FROM BIOLOGICAL TISSUES 

 

  

5.1 INTRODUCTION 

 

Optical and electrical non-invasive diagnostics of the human body depend strongly on 

the composition and morphology of tissues in the measurement site. Blood glucose changes 

these complex properties in almost all of the organism’s parts. The first obstacle to light and 

current penetration is the skin, which can also contain glycemic information from blood due 

the dermal microcirculation, therefore optic and electrical properties of both tissues are 

analyzed in this section.  

 

 

5.2 SKIN  

 

5.2.1 Composition 

 

 The skin is a barrier that protects from excessive water loss, entry of potentially 

hazardous substances and cell damage due to ultraviolet radiation. The epithelial tissue 

consists of epidermis, dermis, and subcutaneous layers, which is composed mainly of fatty  

tissue and provides no blood information. The epidermis illustrated in Figure 37 changes its 

thickness depending on the body part, for example, 50 �m in eyelids, 176 �m in fingertips 

and even 1 mm in palms and soles (ZHAO, 2002; WHITTON and EVERALL, 1973). It can 

be subdivided into stratum corneum (most external), stratum granulosum, stratum spinosum, 

and stratum basale. The cells from the stratum corneum are constantly being shed from the 

body, forming a lipid matrix surface of approximately 10–20 �m thick. The density of the 

stratum corneum is the principal obstacle to non-invasively measuring the underlying tissue 

(MAGNENAT-THALMANN, KALRA, LÉVÊQUE et al, 2002).  The other sublayers of 

epidermis are made of keratinocytes and melanocytes, which are pigment cells responsible for 

skin color. Correlation from epidermis readings with blood levels may be wrong, since this 

layer is avascular and receives all nutrients via diffusion from the dermis (ZHAO, 2002). 
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The dermis thickness varies from 0.3 mm in the eyelids to about 3 mm in the palm and 

soles. One-half of its volume is made of collagen and elastic fibers, ISF accounts for about 

45%, and the rest corresponds to blood vessels, nerves, hair follicles and sweat glands. Its 

upper layer is the papillary dermis and contains the vascular network and sensory nerve 

endings. The reticular dermis, which is the deeper layer, consists of loose connective and 

epithelial-derived structures such as glands and follicles (ZHAO, 2002). Standard home 

monitoring techniques take samples from dermal capillary blood, whose vessels change its 

diameter with stress, temperature, aging and disease state (SIEG, GUY and DELGADO-

CHARRO, 2005). 

 

 
Figure 37 – Human skin model with epidermis, dermis, and subcutaneous layers (SIEG, GUY 

and DELGADO-CHARRO, 2005). 

 

5.2.2 Electrical properties 

 

The skin electric comportment is similar to a capacitor, for DC currents it has high 

impedance, but for alternated signals this value decreases proportionally to the applied 

frequency. This effect is mainly caused by the stratum corneum, which in 10 kHz accounts for 

about 50 % of the total epithelial impedance with a concentric electrode (GRIMNES and 

MARTINSEN, 2000). On the other hand, at 100 kHz, such values decrease 10 %. The 

epithelial impedance has modulus between 300 � and 1 M� per square centimetre and a 
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phase angle approximately 71.5o in the kHz range, therefore the smaller the electrode surface, 

the lower the impedance value (GEDDES and BAKER, 1989).  

Many factors such as sweat, measurement site, gland activity and ambient humidity 

can reflect large influences in the electrical parameters of cutaneous tissue. The surface 

temperature, which has glucose influence, also changes bioimpedance measurement, Cornish, 

Thomas and Ward analyzed between 10 kHz and 100 kHz got a resistance of 110 � and a 

reactance of 130 � in 20o C. With the skin in 40o C, the values decreased to 70 � of resistance 

and 110 � of reactance (GEDDES and BAKER, 1989). Another factor that should be taken in 

consideration during BIA experiments is that the epithelial impedance variation is not linear 

with the applied signal. For values higher than 10 �A/cm2, increasing the signal amplitude 

causes the impedance magnitude to decrease (LACKERMEIER, PIRKE, MC ADAMS et al, 

1996). Beside the signal frequency and surface characteristics, the distance between the 

electrodes also changes the depth penetration of electrical current, as seen in Figure 38, where 

high frequency signals reach approximately half of the distance L. 

 

 
Figure 38 – The depth penetration of high current lines in the skin is approximately half of the 

distance between electrodes (ABERG, GELADI, NICANDER et al, 2002). 

 

 

5.2.3 Optic properties 

 

The epidermis is a light-absorbing layer, where melanin and other specific pigments 

are present for ultraviolet photo protection. However, at near-infrared wavelengths, the 

transmittance of light through the stratum corneum and epidermis is 90–95%, independent of 

skin pigmentation. In the dermis, light scattering is more important, being principally 

responsible for light absorption at wavelengths less than 600 nm (SIEG, GUY and 

DELGADO-CHARRO, 2005). Beyond this threshold, a sharp decrease in absorption by 

hemoglobin and skin pigment allows significant penetration of red light and NIR radiation. 
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The most penetrating optical wavelength is 1150 nm, at which about one-quarter of the 

incident radiation traverses the entire dermis. Thereafter, absorption by water becomes 

considerable and is the reason for the 600 nm to1300 nm region being called the “optical 

window” of the skin (KHALIL, 1999). Between 1520 nm and 1850 nm, scattering 

predominates, and absorptions by water and fat is already significant (Figure 39). Between 

2000 nm and 2500 nm, absorption dominates, with water, fat, and protein as the primary 

absorbers (SIEG, GUY and DELGADO-CHARRO, 2005). Chemical, structural, and 

physiological variations, such as skin temperature, hydration state, or local skin blood flow, 

affect the tissue’s optical properties and the depth of light penetration. For example, light 

penetration depth in skin is increased by lowering its temperature (KHALIL, 2004). 

 
 

 
Figure 39 - Principal light-absorbing molecules in the skin (SIEG, GUY and DELGADO-

CHARRO, 2005). 

 

The MIR spectrum of the skin, as determined by ATR accessories, showed overlap 

between bands of glucose and those in skin components. Table 6 summarizes the low 

frequency vibrations in such frequencies for water, glucose, and human skin. Although bands 

in the 10 �m range are specific to glucose in aqueous solutions, there is a high probability of 

having C-C, C-H, and C-O bending vibrations from other skin components coinciding with 

them. The C-C bands in the spectrum of skin do not relate only to glucose, as it is a minor 

component compared with proteins and fats (KHALIL, 2004). 

 

Table 6 - Vibrations in the MIR band frequencies of water, glucose, and human skin 

(KHALIL, 2004). 
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Water (nm) Glucose (nm) Skin (nm) 

 11961  

  11737 

 10976 10905 

 9891  

 9746 9661 

 9551  

 9293 9285 

  8944 

8695  8591 

 8000 8032 

 

 

5.3 BLOOD 

 

5.3.1 Composition 

 

Blood is a specialized circulating tissue responsible for immunological functions, 

waste removal, transport of hormones, regulation of pH in the organism, control of body 

temperature, clotting, supplying of oxygen and nutrients. Failures in any of these processes 

can result in serious damage to the organism, therefore, whole blood monitoring is an 

important tool in clinical diagnostics. This tissue can be divided into a liquid part, called 

plasma, and a solid component (hematocytes) formed by erythrocytes for respiration, white 

corps (leukocytes), which defend the body against infections and diseases and platelets 

(thrombocytes) that act in clotting, as shown in Figure 40. The plasma is comprised of 90% 

water and forms more then 55% of blood volume (Table 7). The rest of the volume is almost 

all occupied by red blood cells (Table 8), since its size (10 �m of diameter) and number are 

much higher than the other substances (GEDDES and BAKER, 1989).  

Generally, about 70% of the total blood volume is related to the venous vasculature, 

20% is arterial and about 5% is capillary blood. The arterio-venous glucose difference also 

plays a role in integral tissue probing within spectroscopic assays. Under physiological 

conditions, the difference can vary considerably as a result of nutritional and metabolic 

activities (HEISE, 2000). 
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Figure 40 – Liquid and cellular components of human blood (ZHAO, 2002). 

 

Table 7 – Concentration of plasma components (SCHNECK, 1995) 
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Table 8 - Concentration of hematocytes (SCHNECK, 1995) 

 
 

 

5.3.2 Electrical properties 

 

Characterization of blood bioimpedance properties is important for the development 

of methods estimating clinical indices such as haematocrit, glucose level and hydration. The 

electrical impedance of blood is dependent on the plasma, the cell interior (mostly red cells), 

the cell membrane, volume fraction and the temperature (ZHAO, 1993). Therefore 

erythrocyte volume and shape also changes dielectric parameters from this tissue, especially 

at 3 MHz. The plasma and cell interior consist of conducting fluids with electrical 

resistivities, while cell membranes consist of phospholipids and proteins with dielectric 

properties that can be simulated by capacitors around 0.8 �F cm-2. The blood plasma, which 

transports glucose, has conductivity about three times higher than for the cell cytoplasm 

(BEVING, ERIKSSON, DAVEY et al, 1994). Figure 41 shows the characteristic spectra of 

blood samples using a parallel bipolar electrode structure with 10 mV signal. 
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Figure 41 – Characteristic spectra of blood samples measured with a parallel bipolar electrode 

structure with 10 mV signal (SOSA, BERNAL-ALVARADO and JIMENEZ-MORENO, 

2005). 

 

5.3.3 Optic properties 

 

The optical properties of blood especially depend especially on erythrocyte 

concentration, shape, velocity, aggregation, osmolarity and sedimentation.  Hemoglobin is the 

protein that forms these cells, and it is responsible for delivering oxygen from the lungs to the 

body tissues and returning waste gases to the lungs to be exhaled. The oxygenated state 

haemoglobin is known as oxyhemoglobin (HbO2), while the de-oxygenated form is known as 

deoxyhemoglobin (Hb). Arterial blood, which in adults is usually about 98% oxygen 

saturated, is bright red, whereas venous blood, which is approximately 75% saturated, appears 

dark red to purple in colour (BOZKURT and ONARAL, 2004). 

Wavelengths longer than 950 nm are strongly absorbed by water and in its window of 

transparency (700nm – 900 nm) the most dominant absorption of NIR light is haemoglobin 

(Figure 39). From 4.6 �m to 5.4-�m, the attenuation is mainly due to of the water contents of 

the blood.  In the 7-10 �m regions, hemoglobin again has a stronger absorption than water, 

contributing to a larger total attenuation coefficient (GUO, WANG, PENG et al, 2004). 
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In principle, serum or blood glucose may be quantified either by using MIR 

spectroscopy or by exploiring sets of NIR absorptions, corresponding to vibrational 

combination bands (2000 nm – 2500 nm), the first overtone absorptions (1400 nm – 1800 

nm), or the second overtone bands (950 nm – 1250 nm) (SHAW and MANTSCH, 2000). 

MIR glucose characteristic frequencies in the MIR are 8.68 �m, 9.017 �m, 9.259 �m, 

and 9.66 �m (Figure 42). Only the 9.66 �m peak is limited to glucose in the context of other 

blood constituents. For example, the 7.326 �m peak is identified in albumin, hemoglobin, and 

other constituents. The 9.259 �m peak is identified in albumin and hemoglobin; and the 9.017 

�m peak is identified in hemoglobin. However, if interstitial fluid is used for glucose 

detection, thus eliminating the effects of hemoglobin, then the 9.017 �m peak may be used. In 

addition, the presence of large peaks near a characteristic peak may mask its appearance. For 

example, a strong urea peak at 8.620 �m masked the characteristic glucose peak at 8.680 �m. 

While albumin will still cause added absorption at the 9.259 �m peak, the frequency is 

potentially usable because changes in albumin concentration have little effect on the 

absorption spectra (MARTIN, MIROV and VENUGOPALAN, 2002). Table 9 shows 

examples of research with glucose characteristic frequencies and target site. 

 

 

 
Figure 42 - MIR absorption spectra for serum constituents (SHAW and MANTSCH, 2000). 
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Table 9 – Research with glucose characteristic frequencies and target site. 

Research group - year Target site Wavelength (nm) 

Cho - Noninvasive measurement of glucose by metabolic heat conformation - 2004 
 

Finger skin 470, 535, 660, 810, 880, 950  

Baba – The use of polarized light for biomedical applications - 2003 Eye 532, 635  
 

Cote - Noninvasive Optical Polarimetric Glucose Sensing  using a True  Phase 
Measurement Technique - 1992 
 

Eye 633  

Gabriely - Transcutaneous Glucose Measurement using near-infrared spectroscopy - 
1999 
 

Finger skin 780 – 2500  

Yeh - Temperature-modulated Localized Reflectance Measurements - 2003 
 

Forearm skin 590, 660, 890, 935 

Heinemann - Non-invasive continuous glucose monitoring in Type I diabetic 
patients - 1998 
 

Skin 800 

Zhao - Pulsed photoacoustic techniques and glucose determination in human - 
theses - 2002  
 

Finger  905 

Robinson - Noninvasive glucose monitoring in diabetic patients - a preliminary 
evaluation  - 1992 

Finger skin 870 - 1300  

Fischbacher - Enhancing calibration models for non-invasive near-infrared - 1997 
 

Skin 950 - 1200 

Tenhunen - Non-invasive glucose measurement based on selective near infrared- 
1998 
 

Finger skin 1500 - 1850 

Maruo - Noninvasive Blood Glucose Assay Using a newly developed Near-Infrared 
System - 2003 
 

Forearm skin 1600 

Kasemsumran - Improvement of partial least squares models for in vitro and in vivo 
glucose  - 2006 
 

Forearm skin 1373–1429, 1495–1545,  
1565–1696, 1790–1805 

Niessner - New concept for the non-invasive determination - 1996 
 

- 1554, 1304 (reference) 

Burmeister - Evaluation of Measurement Sites for Noninvasive - 1999 
 

Tongue 1612, 1689, 1731 

Schrader - Non-invasive glucose determination in the human eye - 2004 Eye  1859 – 1528  
1394 – 909  

Olesberg - Tunable Laser Diode System for Noninvasive Blood Glucose 
Measurements - 2005 
 

Blood 2325 –2212  

Olesberg - Noninvasive Blood Glucose Monitoring in the 2.0-2.5 micrometer 
Wavelengh Range - 2001 
 

Skin 2120, 2270, 2320  

Toumi - Noninvasive Blood Glucose Analysis using Near Infrared Absorption 
spectroscopy - 2000 
 

Blood 2257  

Olesberg - In Vivo Near-Infrared Spectroscopy of Rat Skin - 2006 Skin 2040  
2380  
 

Toumi - Noninvasive Blood Glucose Analysis using Near Infrared Absorption – 
1999 
 

Liquids 
measurement 

1686  
2257  

Kanukurthy – Wireless NIR glucose sensor controller 
 

Arm skin  2120, 2270, 2320  

Malchoff - A Novel Noninvasive Blood Glucose Monitor – 2002 Tympanic 
membrane  

8500 (reference), 9600 

Kajiwara - Noninvasive measurement of blood glucose concentrations by analysing 
fourier transform infra-red absorbance spectra through oral mucosa - 1993 
 

Oral mucosa 3424 (reference), 9259, 
9708 

Martin - Using two discrete frequencies within the middle infrared - 2002 Serum 8382 (reference) 9661, 9259, 
9017 

Shen - The use of Fourier-transform infrared spectroscopy - 2003 
 

Blood 9242, 9149 

Lilienfeld-Toal - A novel approach to non-invasive glucose measurement by mid-
infrared spectroscopy - 2005 

Forearm skin  
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CHAPTER 6 

 

6 SPECTRA PREPROCESSING AND CALIBRATION MODELS 

 

 

6.1 INTRODUCTION 

 

As already seen, blood is a complex fluid consisting of many compounds with spectra 

overlapping in a wide range of measurements. In this case there are a great number of 

variables, which makes it difficult to find a model that relates them all. Baseline 

preprocessing can eliminate undesired substances overlapping as well as decrease errors 

caused by instrumentation and temperature instabilities (RANDALL, 1995). After the choice 

of one or more correction techniques, attention must be given to the data treatment, which is 

explained in this chapter. The derivation of a model to recover quantitative information of 

complex mixtures spectra requires calibration procedures, which are able to predict analyte 

specific information without knowing the relationship between the variables (HAM, COHEN, 

KOSTANIC et al, 1996).  

Dimension reduction can be achieved by treating spectral data in a partial least 

squares (PLS) system. The resulting factors can be used as input in artificial neural networks 

(ANN), which are ideal to treat multisensor information and to monitor of data with noises 

and perturbations that introduce non-linearity into the model. (NYSTROM, LINDHOLM-

SETHSON, STENBERG et al, 2003; LISZKA-HACKZELL, 1999). 

 

 

6.2 PREPROCESSING 

 

In chemometrics it is recommended to preprocess any data in order to remove slopes 

from the original spectrum, caused by instrumentation instability, overlapping bands, and 

environment influence. This procedure is useful especially when comparing curves or 

measuring peak intensities, and can be implemented by either physical or mathematical 

means. Physical methods such as chemical treatments of the sample may be helpful, but they 

contaminate the probe and can slow down the analysis. Manual estimation, polynomial fitting, 

frequency filtering, and derivative processing can be classified as processing methods for 

sloping removal (LEGER and RYDER, 2006). 
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6.2.1 Visual inspection 

 

The baseline can be manually estimated by visual inspection, which has been done 

extensively in many fields and requires the choice of explicit points in the graphic. A basic 

whole spectrum processing corresponds to a linear baseline, which draws a line through 2 

points and turns it into the horizontal axis. Drawbacks from this treatment are that the process 

is very slow, as each spectrum must be carefully inspected, and the quality of the correction 

will be greatly dependent on the experience of the user (GÜNZLER and GREMLICH, 2002). 

 

 

6.2.2 Polynomial fitting 

 

Polynomial fitting is the estimation of the baseline as a mathematical equation in order 

to subtract it from the original spectrum, such as in Figure 43. The baseline can be assumed to 

be a sloping line, or a function resulting from the selection of many points. It is also possible 

to assume that the baseline would have an exponential, logarithmic, or power dependence 

(VICKERS, WAMBLES, MANN, 2001). 
 

 
Figure 43 – Example of baseline processing, which removes slopes (b) from the original curve 

(a) to improve peaks analysis in (c) (WILLIAMS, MAIER and POTOCKY-PACAY, 2001). 

 

The simplest polynomial is an offset, where a constant is subtracted from each 

channel. This is interesting when only two different signal frequencies are significant to a 

specific measurement. In this case, one wavelength is sensitive to changes in the species being 

measured, and the other wavelength is unaffected by changes in the analyte concentration, 

a 

 

b 

 

c 
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being a reference to compensate fluctuations. Therefore, when many spectrums are collected, 

the elimination of offsets in the reference improves the quantification of solutes through a 

more accurate and stable measurement (MENDELSON, 1995). Figure 44 compares spectra of 

blood samples with different glucose concentrations before (a) and after (b) baseline 

correction in 8.47 µm. As a result the peaks of glucose concentration at 9.66 µm can be better 

distinguished. 

 

 

 

 

 

 

 

 

 

       

(a)                                                                    (b) 

Figure 44 – Example of blood spectra before (a) and after (b) baseline correction in 8.47 µm 

in order to increase analyte information in 9.6 µm. 

 

6.2.3 Filtering 

 

Digital fitering is a signal processing method used to remove specific frequency 

components from measured data. Low frequency errors in signal spectrum are mostly due 

temperature and instrument drifts, while high frequency noises are produced by substances 

overlapping and by measurement problems (HAM, COHEN, KOSTANIC et al, 1996; 

SMALL, ARNOLD, and MARQUARDT, 1993). Filters are appealing treatment, since this 

tool allows the control of the centre frequency and bandwidth, separating analyte information 

(DING, SMALL and ARNOLD, 1999). In Figure 45 a blood spectra with 181 points is 

processed by a 1st Order Butterworth bandpass filter with 25f and 0.25f  cutoff frequencies. 

As a result the amplitude differences due to each glucose concentration can be better 

investigated in 9.79 µm. 
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        (a)                                                                      (b) 

Figure 45– Bandpass Butterworth digital filtering, the result curves (b) show better signal-to-

noise ratio as the original (a). 

 

 

6.2.4 Second Derivative 

 

A derivative is the instantaneous rate of quantity change of a function, which can be 

used to characterize increasing or decreasing rate and maximum or minimum values. Figure 

46 (b) shows the second derivate of the filtered signal (a), which decreases the amplitude and 

is very sensitive to signal variations. 

        (a)                                                                      (b) 

Figure 46– Second derivative (b) of the filtered data (a), signal amplitude is decreased but 

signal variations are better observed. 
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The derivative spectrum retains proportionality to the analyte concentration, and 

therefore can still be used for quantification. Calculating the first derivative of the spectrum 

should lead to the removal of constant offsets, while the second derivative should solve both 

constant offsets and linear drifts in the spectrum. One disadvantage of this process is that the 

interpretation of the signal is difficult since the resulting spectrum is different from the 

original and can not return to the first characteristic (LEGER and RYDER, 2006). 

 

 

6.3 PARTIAL LEAST SQUARES REGRESSION 

 

6.3.1 Definition 

 

Partial Least Squares regression is a bilinear calibration method which uses the 

concentration active during the decomposition of the spectrum in (Figure 47) in order to 

maximise the significance of the factors (latent variables) T and Q, which are included in the 

model and replace large unrelated input variations.  The resulting model has few relevant 

dimensions (typically 5–15 loading vectors), which are enough to provide quantitation 

(SHAW and MANTSCH, 2000). Therefore, such regression is useful in cases where there are 

many variables available with redundancy and unknown relationship to the responses 

(SMALL, ARNOLD, and MARQUARDT, 1993).  

 

 
Figure 47 – PLS calibration matrix decomposition T and Q, which replaces large unrelated 

input variations (RANDALL, 1995).  
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Although numerous algorithms have been developed for calculating PLS parameters, 

all of them define the concentration of any analyte Y as result of the spectra matrix X 

multiplied by the regression coefficients matrix B, as seen in Equation 12. 

 

EXBY 
�  (12) 

                                           

where: 

� Y  is the concentration matrix; 

� X is the spectra matrix; 

� B  is set of regression coefficients; 

� E is the error matrix. 

 

Usually, X and Y are centered by subtracting their means and scaled by dividing by 

their standard deviations. Then the algorithm decomposes each variable into the score of 

latent variables T and Q (Equations 13 and 14), chosen so that the relationship between 

successive pairs of scores is strongly correlated (SONG, JANG, CHO et al, 2004). 

 
1�� TWX  (13) 

 

where: 

� X is the spectra matrix;  

� T  is the X score matrix; 

� W is the X loading (weight) matrix. 

 

ETQY 
�  (14) 

                                           

where: 

� Y  is the concentration matrix; 

� T  is the X score matrix; 

� Q is the Y loading matrix. 

 

In Figure 48 a data set with two strongly correlated variables x1 and x2 can be 

changed to two orthogonal factors (latent variables) t1 and t2 that are linear combinations of 
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original descriptors. As a result, a single-factor model can be obtained that relates activity y to 

the first latent variable t1. This principle is the reason why the column size of the scores is 

much smaller than that of the original variables, therefore allowing dimension reduction 

(HAALAND and THOMAS, 1988). 

 
Figure 48 – Example of PLS dimension reduction where t1 replaces x1 and x2 since they are  

strongly correlated (RANDALL, 1995).  

 

Prediction is possible through a set of regression coefficients B that directly relates the 

centred/scaled X with the centred/scaled Y, as shown in Equation 15. 

 

QWB .�  (15) 

                                           

where: 

� B  is set of regression coefficients; 

� W is the X loading (weight) matrix; 

� Q is the Y loading matrix. 

 

Therefore, for a new sample XTEST will predict YPRED concentrations as in Equation 16. 

 

BXY TESTPRED �  (16) 

                                           

where: 

� YPRED is the prediction concentration matrix; 

� XTEST is a spectra matrix; 

� B is a set of regression coefficients. 
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6.3.2 Calibration 

 

To obtain a reliable model, the quantification process is usually subdivided into 

training and prediction phases. In the training step a large dataset of random order, which 

covers as much of the concentration ranges possible, is loaded in the system input and the 

algorithm automaticly extracts the necessary characteristics to represent the given information 

(WANG, YAN, LIU et al, 2005). In this process, spectra and concentration measurements 

that do not fit with the rest of the dataset, called outlines, can be identified. These values may 

arise from different kinds of errors and may affect the future predictions. Once detected, the 

wrong data must be corrected or removed from the set. However, whenever possible one 

should try to understand the reason for every discrepancy. The validation of the prediction 

capacity of the PLS is important to determine the precision of the model, it is suggested that 

the size of the independent validation data should be at least a quarter of the training set, 

whith the difference being that the order of the information does not have influence in the 

response (FAUSETT, 1994). 

 

 

6.3.3 Topology 

 

The selection of an optimal number of factors (variables that change the spectrum 

such as glucose, temperature, etc…) is an important point in PLS. If the number of factors 

becomes too large the model will fit the samples perfectly, but will fail to predict new data 

(over-fitting), on the other hand under-fitting may lead to systematic errors. Only a few latent 

factors account for most of the variation in the response, therefore the root mean square error 

of cross validation (RMSECV), represented by Equation 17, can be calculated, allowing the 

analysis of the performance as a function of the number of scores (KANG, 

KASEMSUMRAN, WOO et al, 2006). 
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where: 

� RMSECV  is the root mean square error of cross validation; 

� YTEST  is the original concentration matrix; 

� YPRED is the prediction concentration matrix. 

 

 

6.4 ARTIFICIAL NEURAL NETWORKS 

 

6.4.1 Definition 

 

ANN is a non-linear statistical data modelling of biological neural systems that 

simulate mathematical functions such as complex relationships between inputs and outputs or 

data patterns. This adaptive system is divided in layers and interconnected through a great 

number of neurons or nodes, as shown in Figure 49 (DESPAGNE, and MASSART, 1998).  

 
 

 
Figure 49 – Example of neural network topology with four inputs, one intern layer and one 

output node (DESPAGNE, and MASSART, 1998). 

 

Each node is associated with a computational device that receives a number of input 

signals, associated with weights to represent stimulating or inhibiting influences. The 

projection of this sum is applied to a transfer function to produce activation of the neurons 

that is forwarded towards the nodes until it reaches the network output, as shown in Equation 

18 (TRAJANOSKI, REGITTNIG and WACH, 1998).  
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where: 

� y is the output signal; 

� x is the input signal; 

� w is the connection weight; 

� fo is the output transfer function; 

� fh is the hidden layer transfer function; 

� 	’’ is the output bias; 

� 	’ is the input bias. 

 

The most important feature of the neural network approach is that any continuous 

function defined on a compact domain can be fitted with a pre-defined arbitrary degree of 

accuracy. In addition, the flexibility and ability to maintain a decent performance even in the 

presence of significant amounts of noise in the input increases the use of this tool in 

prediction, classification and control problems (WANG, YAN, LIU et al, 2005). 

 

 

6.4.2 Calibration 

 

ANNs require sets of training and validation data similar to PLS. Backpropagation is 

the most commonly used training algorithm because it improves the response of the network 

by adjusting the parameters by gradient-descent minimization of an error function, teaching 

the system to associate specific outputs with each of inputs. Adjustable parameters are the 

weights and biases that act as offset terms by shifting the transfer functions horizontally 

(FAUSETT, 1994). These values are first randomized between –1 and +1.  The training starts 

by processing forward a set of samples of known response. At the end, the magnitude of the 

error between experimental and predicted responses is calculated and used to adjust all 

variables of the system, in a reverse step that finalizes an iteration or epoch. The repetition of 

this sequence with a large number of spectra of random order and wide concentration ranges 

will improve the relationship between x and y, enabling the ANN to produce reasonable 

output for unknown input. On the other hand, unnecessary interactions can lead to overfitting, 

therefore a stop criterion should be used. The decision rule can be either a maximal number of 
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epochs or a standard error of prediction (SEC), with a formula similar to RMSECV (LIN, 

HSIAO, ZENG et al, 1998). 

 

 

6.4.3 Topology 

 

Like biological neurons, a single neuron is not sufficient enough to perform a specific 

task. Therefore, the nodes have to be connected to another. The most widely architecture used 

is a multilayer perceptron (MLP), which requires a thorough understanding in order to 

achieve a satisfactory ability to generalize. There are numerous rules that give an indication of 

how large a neural network should be, most of them are based on the size of the train data set 

or the number of input and output nodes. If the total number of neurons is too small, the 

resulting neural network will not be able to accurately represent the train data and errors will 

be significant. On the other hand, a large number of nodes could lead to redundant paths, 

heavy processing algorithms and overfitting (LOBANOV, BORISOV, GORDON et al, 

2001).  

The number of input nodes are chosen by starting with a small number of variables 

and than adding new neurons one at a time until the prediction performance of the system 

does not improve any more. It is recommended that one response be evaluated for each model 

at a time and therefore a single output cell should be used. The only exception to this rule is 

for situations where one wants to predict several correlated responses, such as the 

concentrations of different constituents of a mixture in a closed system (DESPAGNE, and 

MASSART, 1998). 

A neural network with only one hidden layer can approximate any function with any 

desired accuracy, as long as there are enough neurons in the hidden layer and that the 

activation functions are non-linear. One important advantage in this case is that the model 

obtained with one hidden layer is quasi-independent from the set of initial weights. However, 

for some functions the number of neurons needed between input and output can be very large. 

For this situation, a neural network with two hidden layers might have better performance. 

The disadvantage of more hidden nodes is that different sets of initial random weights can 

lead to different combinations of transfer functions to build empirical models. Therefore it is 

recommended to systematically reduce the number of hidden neurons as much as possible, in 

order to achieve simpler and more robust models (FAUSETT, 1994). 
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6.4.4 Transfer functions 

 

The most commonly used nonlinear transfer functions in the hidden layer are the 

sigmoid or hyperbolic tangent (Figure 50) that are bounded, easily differentiable and exhibit a 

linear portion in their centre, so that data sets that are only slightly non-linear can also be 

modelled (DESPAGNE, and MASSART, 1998). 
 

 
Figure 50 - Standard sigmoid transfer function of neuron. 

 

 

6.5 EXAMPLES OF GLUCOSE QUANTIFICATION  

 

There is a wide application range of calibration models in glucose assays, some of the 

important works with serum, whole blood and skin in ascending order of error are 

summarized in Table 10.  

 

Table 10 - MIR and NIR spectroscopic determination of blood glucose. 

Sample Path 
length 
(mm) 

Spectral 
regions (nm) 

Pretreatment/Calibration SEP (mg/dL) 

Plasma - 2000– 2500  Gaussian Bandpass filter  (0.052f  +-0.013f) 
PLS - 9 factors 7.27 

Serum 0.39 1477 - 2498 Butterworth bandpass Filter (first-order ) (0.15f  +-0.1271f) 
PLS - 14 factors 

13.2 

Whole 
blood ATR 8333 - 10526 PLS - 11factors 14.55 

Whole 
blood ATR 6666 - 13333 PLS 14 factors 

ANN - 1 hidden layer sigmoidal, output linear 15.6 

Whole 
blood 

ATR 6666 - 13333 ANN 16.36 

Skin arm - 1616–1733 PLS - 4 factors 17.19 
Serum ATR 2500 - 22222 PLS - 7 factors 

ANN – 1 hidden layer sigmoidal, output linear 
18.7 

Skin back 
of ear lobe ATR 6666 - 10526 PLS - 6 factors 19.12 

Whole 
blood ATR 6666 - 13333 PLS - 16 factors 20 

Serum 

1 

1373–1429, 
1495–1545 , 
1565–1696, 
1790–1805 

PLS - 8 factors 25.31 

Whole 
blood 1 1515 -1818,  

2062 - 2353 PLS - 8 factors 38..18 
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The parallel monitoring of more than one parameter can improve the sensibility of 

measurements in both invasive and non-invasive assays. Initial bloodless glycemic studies 

have already been reported with simultaneous measurement of bioimpedance and near-

infrared spectroscopy in the skin (DING, SMALL and ARNOLD, 1999). Another example is 

the Glucotrack device from the company Integrity Applications, which is a commercial 

multiparameter monitoring device, where glucose is predicted with ultrasound, conductivity, 

and heat capacity. Therefore the following chapters study the parallel measurement of 

impedance and optic spectroscopy associated with PLS and ANN methods. 
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CHAPTER 7 

 

7 MATERIALS AND METHODS 

 

 

7.1 INTRODUCTION 

 

In order to achieve significant results for impedance and light spectroscopy in non-

invasive blood glucose detection, it is important to investigate which signal characteristics are 

optimal for this application and, at the same time, do not harm the patient. In the case of 

bioimpedance, the shape and material of the electrode may have significant influence over the 

results. Therefore, simulations of signal penetration in skin are performed, helping the choice 

of the transductor characteristics. The biomedical department from the Technical University 

of Munich has spectrometers available for measuring with electrical and optical technologies. 

The knowledge of the limitations from each device, also explained in this section, is essential 

to determine the confidence range of the read data. In addition, fast performance algorithms 

for treatment of the multivariate information are also found in this text. 

Before explaining procedures for transcutaneous assays, the setup of glucose 

measurements in water and blood are described, which helps the analysis of skin tests, and 

also gives information for the improvement of invasive diagnostics. It is known that 

parameters like sweating, skin colour, surface roughness, tissue thickness, breathing artifacts, 

blood flow, body movements, ambient temperature, pressure and sample time all have 

influence in the results of transdermal monitoring analysis. Thus, the last part of this chapter 

corresponds to the description of in vivo investigations, taking in consideration the equipment 

limitations and safety, as well as variable factors of the measurement environment.  

 

 

7.2 ELECTRODES 

 

7.2.1 Liquid electrodes 

 

Many layouts and sizes of electrodes are available to measure impedance of fluid and 

tissue. Interdigitated electrodes (IDES) offer high sensibility and wide surface scanning, and 
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are often applied in cell culture analysis to detect number, morphology and adhesion changes 

(EHRET, BAUMANN, BRISCHWEIN, et al, 1998). Due to the insulating behaviour of the 

lipid membranes, living cells increase the impedance of the system, especially the capacitive 

component. Some disadvantages of such structures are that the resulting impedance is 

sensitive to room temperature variations and therefore no tetrapolar assays can be performed. 

Figure 51 shows the design of platinum IDES in a glass base developed at the Technical 

University of Munich.  

 

  50µm

0.5µm

 
 

 

 

(a)      (b) 

Figure 51 – IDES (a) manufactured in the Heinz Nixdorf-Chair for Medical Electronics, the 

small dimensions of the electrodes (b) allows measuring cell proliferation rate. 

 

The electrode configuration of Figure 52 is manufactured from a glass substract in 

order to investigate four point impedances. Like in IDES, the distance between each finger is 

50 �m. The small size of the sensor and tracks produces low parasite capacitance, and allows 

the measurement of high frequencies. 

 

 

 

 

 

Figure 52 – Tetrapolar layout for liquids tests, the size of the sensor as well as tracks were 

designed in order to have low reactance in high frequencies.  
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7.2.2 Skin electrodes 

 

Since the epidermis does not contain strong glucose information, superficial current 

densities produced by IDES are not distributed enough to allow non-invasive measurements, 

therefore a greater distance between the electrodes is required. Many applications of skin 

impedance use concentric electrodes approaches, such as in Figure 53. This configuration is 

less sensitive to interferences from temperature variations and produces symmetric electric 

fields between the contacts, avoiding the accumulation of high electric gradients due to corner 

effects.    

 

 
 

Figure 53 – Concentric tetrapolar configuration used for skin tests. The symmetric electric 

fields avoid the accumulation of high electric gradients due to corner effects. 

 

A computer simulation of a circular layout in Femlab with 5 millimetres diameter and 

gold contacts is shown in Figure 54. The potential distribution when applying a 100 mV (250 

kHz) signal proves that the electrical current crosses the subcutaneous layer and reaches high 

vascularized tissues, and thus allows for monitoring of blood analytes. 
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Figure 54 - Distribution of the potential difference in cross section of skin with 100 mV (250 

kHz) signal applied through a bipolar sensor. Electrical current is able to cross superficial 

layers and penetrate in deep tissues with higher glucose concentration. 

 

 

7.3 IMPEDANCE INSTRUMETATION 

 

The Heinz Nixdorf-Chair for Medical Electronics supported this project with two 

complex impedance devices that cover the range from �Hz up to GHz. The specifications of 

both equipments are resumed in the following section. 

 

 

7.3.1 Solartron 1260 

 

The Solartron 1260A impedance/phase analyzer, seen in Figure 55, is able to perform 

measurements from m� until M� of modulus, phase, resistance and reactance in bipolar or 

tetrapolar approaches. Although this device allows the control of current levels, experimental 
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results showed instability in this configuration. Therefore all tests were done monitoring the 

voltage amplitude, which can variate from 20 mV until 3 V in frequencies from 10�Hz to 

32MHz.  

 

 
Figure 55 – Solartron 1260A analyzer, able to measure complex impedance from 10�Hz to 

32MHz (SOLARTRON ANALYTICAL, 2004). 

 

The control of this instrument can be performed either through the front panel or 

remotely with the supervision software ZPlot, illustrated in Figure 56. It is important to note 

that, whenever only alternated signals are desired, the field DC Potential should be “0” and 

coupling “AC”. Tetrapolar investigations require the setting of the field Input to 

“Differential”.  

 

  
                                   (a)     (b) 

Figure 56 – Zplot main window (a) and typical instrument setup (b), whenever only alternated 

signals are desired the field DC Potential should be “0” and coupling “AC”. 

 

The measurement results can be seen and processed in the program ZView, which 

besides showing the curves of the impedance, dielectric and permittivity, can also calculate 

equivalent circuits that fit the read data. Whenever high frequency assays are desired, the 
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calibration of the equipment must be done through a nulling procedure (SOLARTRON 

ANALYTICAL, 2004).  

The instrument performance in high frequencies suffers strong influence from the 

cabling, which should have coaxial characteristics and preferentially short lengths. The 

Solartron requires that all cable outer wires are connected to each other, as close as possible to 

the sample, avoiding noises in MHz ranges. 

 

 

7.3.2 Network analyzer 

Figure 57 shows the vector network analyzer ZVCE from Rohde and Schwarz, this 

impedance spectrometer is able to measure complex transmission and reflection 

characteristics of two-port devices in the frequency domain from 20 kHz until 8 GHz. The 

device can simultaneously display up to four traces with independent parameters, which can 

be scanned in rates of up to 25 sweeps per second from 1 mV to 250 mV. The measurements 

can be saved on floppy disks or transmitted to the computer via the network cable. Similar to 

the Solartron, the ZVCE requires a calibration process in order to read the correct parameters 

from the device undergoing the testing (ROHDE & SCHWARZ, 2004). Some drawbacks of 

this instrument are the low input impedance and limitation of measuring only two point loads. 

 

 
Figure 57 - Vector network analyzer ZVCE from Rohde and Schwarz, able to measure bipolar 

samples from 20 kHz until 8 GHz (ROHDE & SCHWARZ, 2004). 
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7.4 OPTIC INSTRUMENTATION 

 

Many research works have focussed on glucose measurement in ranges from the 

visible up to middle-infrared wavelengths. In order to investigate these spectrums two optic 

devices of the Central Institute of Medical Engineering (IMETUM) at the Technical 

University of Munich were used.  

 

 

7.4.1 The UV/VIS/NIR Spectrometer 

 

The Specord 210 from Analytik Jena (Figure 58) is a dispersive device that can 

measure ultraviolet (UV), visible (VIS) and the beginning of infrared (IR) through two light 

sources. The spectrometer requires a remote control powered by the software Winaspect, 

which is able to calculate baseline correction, curves subtraction, convolution, etc… The 

supervision computer is connected to the measurement instrument through an USB cable. 

 

 
Figure 58 – UV/VIS/NIR Spectrometer Specord 210 from Analytik Jena, which uses 

dispersive principle to scan samples in quartz cells (ANALYTIK JENA, 2004). 

 

As shown in Figure 59, a beam of light is separated into its component wavelengths 

by a prism or a diffraction grating. Each double monochromatic wavelength passes through a 

small transparent cell of quartz Suprasil. One cell contains a solution of the compound being 

studied in a transparent solvent (1 mL), the other reference beam crosses an identical bottle 

containing only the solvent. The intensities of these lights are then measured by electronic 

detectors and compared. The Specord 210 spectrometer is able to measure spectra of samples 

in the range from 190 nm up to 1100 nm with resolution of 1 nm (ANALYTIK JENA, 2004).  
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Figure 59 - Measurement principle of UV/VIS/NIR spectrometer, which compares the signal 

intensities of the sample and the reference cell (ANALYTIK JENA, 2004). 

 

 

7.4.2 FTIR spectrometer 

 

Most of the infrared information was collected with the Spectrum One FT-IR 

Spectrometer from the company Perkin-Elmer Instruments, shown in Figure 60. This 

equipment is built with a deuterated triglycine sulphate detector and measures probes with an 

ATR accessory, which simplifies the analysis of solids, powders, pastes, gels and liquids. This 

instrument can measure with 1 cm-1 (cm-1 = 10000000/nm) resolution from 1282 nm to 28571 

nm, but due to the ATR module, the spectrum decreases from 2000 nm to 28571 nm 

(PERKIN-ELMER, 1998). Before each sampling a background measurement should be done 

in order to eliminate interference from the local light. The setup of the Spectrum One and the 

visualisation of the optic spectra are done in the program Spectrum V5.0, which also offers 

tools for baseline correction and is installed in the same PC as Winaspect. 

 

 
Figure 60 – FTIR spectrometer and supervision computer, this device does not require the use 

of reference, since it can collect background spectra of the ambient light (PERKIN-ELMER, 

1998). 
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7.5 DESCRIPTION OF MEASUREMENTS 

 

Despite the great number of publications concerning glucose spectral characteristics, 

there seems to be a disagreement among researchers concerning the optimal site and 

wavelength/frequency for non-invasive monitoring. Therefore, before transcutaneous 

measurements are made it is necessary to investigate optical and electrical characteristics of 

this substance. Liquid samples (volume of 1 mL for Specord 210 and 20 �L for the other 

devices) were placed in the sensors with a pipette after having their temperature equilibrated 

to the room conditions. In all fluid assays, each sample scan was only repeated after all other 

available concentrations had been measured. This allowed the monitoring of possible time 

drifts in the instrument response. In order to remove any possible residue from the previous 

series, after measuring the sample with maximal concentration, the test cell, ATR plate and 

electrodes were washed several times with distilled water. 

First, the experiments were carried out using distilled water mixed to different glucose 

concentrations with the purpose of identifying the relevant bands for analysis, as well as 

examining the sensitivity of the instruments. After studying aqueous solutions spectra, the 

best wavelengths and frequencies were compared to blood tests. In addition to correlation 

results, the choice of best spectral range was also done taking in consideration light 

penetration depth in biological tissues. Finally non-invasive data were collected using the 

FTIR spectrometer and impedance devices.  

The focus of the research was to demonstrate the technique at constant temperature, 

thus all measurements took place at 21.5 (+-0.5) degrees Celsius in the laboratory of 

IMETUM. The Solartron spectrometer requires one minute scanning the range from 100 Hz 

to 30 MHz (5 points per decade) with 50mV AC for liquids and 500 mV AC to skin. On the 

other hand, the network analyzer sweeps 101 logarithm frequencies between 20 kHz and 8 

GHz in 2 seconds, applying a voltage of 50 mV AC for liquids and 250 mV AC to skin. The 

Specord 210 range reached from 300 nm to 1100 nm, recording each spectrum 19 times in 

one and half minutes with a resolution of 1 nm. All light spectra of probes in FTIR were 

scanned 16 times each, in order to decrease measurement error, and with a resolution of 1 cm-

1, taking approximately one minute for measuring from 2000 nm to 28571 nm. Another 

important procedure to improve Spectrum One experiments was the use of dark covers in the 

ATR during background and scans, this addition significantly decreases noises due to room 

light fluctuations. 
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7.5.1 Preparation of aqueous samples 

 

Distilled water in bottles of 50 mL was mixed with D-glucose powder 30 minutes 

before starting the measurements at room temperature. The solute was purchased from the 

company Merck, and its concentration was controlled through a sartorius microbalance with 

4µg precision. Since the sugar quantity does not change significantly in aqueous solutions 

with time, no extra control was realized. 

 

 

7.5.2 Preparation of blood samples 

The assays used heparinized whole blood samples that were collected several hours 

before measurements from a healthy male subject 29 years old. The samples were first mixed 

to have the same concentration of anticoagulant, and then distributed in bottles of 5 mL. 

Distilled water (100 �L) containing different quantities of D-Glucose were added to each 

probe, and for 30 minutes before starting of measurements, were kept in movement at room 

temperature. The direct addition of glucose in blood was avoided since this powder dissolves 

slower in the plasma than in aqueous form. Due to the small volume of water added, one can 

assume that blood characteristics were not significantly affected, resulting only in variations 

in the concentration of the analyte of interest. Nevertheless, these values were not constant 

during assays for blood cells consume glucose continuously due to their metabolism. 

Therefore it was necessary to control sample concentrations before each scan with a standard 

blood glucose meter (Accu-Check Sensor from the company Roche Diagnostics). 

Whenever blood is not in movement, the cells aggregate in the bottle of the container 

and only plasma remains in the superficial layers, to avoid this effect, during the whole 

assays, the probes were slowly mixed. In order to eliminate any contamination, after the end 

of the experiment, all contact surfaces were disinfected with 70 % alcohol, aqueous solution 

of 1 % mucocit and finally water. 
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7.5.3 Impedance assays with fluids 

 

Initial tests with glucose aqueous solutions showed that the impedance spectroscopy 

has low sensibility to detect variations in the solute concentration when there is no cell 

metabolism present. In order to determine the spectral correlation of glycemic solutions, 

samples of distilled water without glucose and with concentrations of 0mg/dL, 25 mg/dL, 50 

mg/dL, 100 mg/dL, 200 mg/dL, 400 mg/dL and 800 mg/dL were measured 9 times each in 

the tetrapolar electrode, connected to the Solartron with 4 centimeter coaxial cables. 

Impedance assays with blood probes are important since it is expected that blood cells 

use glucose as a source of energy, increasing the metabolism and concentration of ions in the 

liquid. The scans should be done as fast as possible to avoid the effect of cells accumulating 

on the electrode surface. The samples were measured 16 times each in both spectrometers. 

The tetrapolar electrode was connected to the Solartron with 4 centimeter coaxial cables and 

the IDES was connected with port 1 of the network analyzer through similar wires, as well. 

Short connections were used in order to avoid cable capacitance in high frequency signals. 

Whole blood concentrations of 77 mg/dL, 150 mg/dL, 200 mg/dL, 300 mg/dL, 400 

mg/dL and 1000 mg/dL were investigated. 

 

 

7.5.4 Optic assays with fluids 

 

Two aqueous glucose measurements with light were done, the first one with high 

glycemic concentrations and the second one with physiological levels. Due to the wide path 

deep of quartz cells it was not possible to measure high glucose samples in the Specord 210, 

but in only FTIR. Reference probes were prepared with 5000 mg/dL of glucose. The solute 

spectrum could than be obtained in Spectrum One by subtracting this data from pure water 

results. The probe preparation is similar to the impedance tests, differing only in 

concentrations from 25 mg/dL to 800 mg/dL for UV/VIS/NIR Spectrometer and to 400 

mg/dL for FT-IR spectrometer. The measurements in the Specord 210 were done in a quartz 

Suprasil cell. After taking the background spectrum, six solutions with glucose concentrations 

of 25 mg/dL, 50 mg/dL, 100 mg/dL, 200 mg/dL, 400 mg/dL and 800 mg/dL were scanned in 

the UV/VIS/NIR spectrometer. Similar probes were analyzed in the ATR spectrometer, with 
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the difference that this instrument requires a background calibration with a dark cover before 

each sample scan. Glucose concentrations from 25 mg/dL, 50 mg/dL, 100 mg/dL, 150 mg/dL, 

200 mg/dL, 250 mg/dL, 300 mg/dL, 350 mg/dL and 400 mg/dL were scanned in this device, 

in the region between 2000 nm and 28571 nm with Spectrum One.  

Blood assays were also realized with concentrations of 50 mg/dL, 75 mg/dL, 100 

mg/dL, 125 mg/dL, 150 mg/dL, 200 mg/dL, 250 mg/dL, 300 mg/dL, 350 mg/dL, 400 mg/dL 

and 700 mg/dL. Based on the previous results from water experiments, the spectrum range 

from blood tests was focused between 3333 nm and 9600 nm. 

 

 

7.5.5 Non-invasive assays 

 

Transcutaneous assays were realized with Solartron and the network analyzer for 

impedance and the FTIR for IR scanning. Measurements took place in the laboratory of 

IMETUM as well, with controlled humidity (31 % - 32 %). A total of 132 impedance and 

optical spectra were obtained in a 15 hour period. Procedures were repeated with a 7 minute 

interval in order to avoid strong changes in skin temperature due to contact with the optic 

plate.  

The volunteer, a healthy 29 years old individual, fasted 10 hours before the procedure 

and, during the test drank water with 75 g glucose at 11:42 AM, 05:25 PM and 10:12 PM 

(measurement indexes 16, 65 and 106). Glycemic levels ranged between 58 mg/dL and 115 

mg/dL, been controlled through a lancing device Accu-Check Sensor from Roche. All fingers 

were alternately used to obtain glucose levels with the exception of the thumbs and non-

invasive test sites.  

Optical spectra from 2500 nm until 15384 nm were scanned with 16 repetitions during 

one and half minutes in the ATR module of Spectrum One. Before each reading, a 

background spectrum was collected, avoiding errors due to long term light fluctuations. Chen 

group in 2005 wrote that changes in the optical properties of tissue could be caused by 

variable contact pressure between the probe and skin. This is confirmed in Figure 61, where 

the higher the pressure in the sample, the stronger the absorbance. In order to avoid errors due 

to changes in pressure and room illumination, a dark chamber with a mechanical arm was 

added to the ATR module, as shown in Figure 62. In addition to light spectrum, cutaneous 

temperature was also monitored with contact and infrared thermometers. 
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Figure 61 – Pressure effect in finger absorbance spectra, the higher the pressure in the sample, 

the stronger the absorbance. 

 

 
Figure 62 - Dark chamber for transcutaneous measurement of fingertip with pressure arm. 

 

The concentric skin electrode was connected through 4 centimeter coaxial cables in 

port 2 of the network analyzer. Because this equipment can only measure bipolar loads, the 

electrodes 1 and 2 were connected to the external contact of the coaxial cable, while 3 and 4 

conducted the internal signal. Complex impedance spectra were collected with this instrument 

in the range from 20 kHz to 8 GHz, with a signal of 250 mV.  
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Tetrapolar measurements were done in the Solartron 1260, with frequencies from 100 

Hz to 30 MHz and amplitude of 500 mV. The current flowed between the external and 

internal electrode, while the resulting potential was measured in the contacts 2 and 3. Coaxial 

cables 10 cm long were used to connect the transducer to the measurement device. As in 

optical assays, pressure arms were used to maintain constant measurement conditions in both 

impedance instruments. Metal pieces next to the electrodes were avoided since high 

frequencies can produce parasite currents in such objects. Since the impedance equipment 

required short cables, as shown in Figure 63, the scanning of impedance and light 

simultaneously was not possible. Therefore, each spectrometer had to be used in different 

turns during a 4 minute interval, as shown in the sequences of Table 11. Such delay did not 

result in significant errors since glucose levels change slowly and can be corrected through 

algorithms. The change in measurement site also helped the normalization of blood 

circulation in the finger extremities. 

 

 

 

 

 

 

 

Figure 63 – Measurement setup, each spectrometer had to be used in different turns during a 4 

minute interval. 

 

Table 11 – Non-invasive measurement steps, with target site, procedures and duration. 

Sequence Site Procedure Duration (s) 

1 ring finger  

(right hand) 
IR temperature control 10 

2 ring finger  

(right hand) 
impedance spectrum measurement in Solartron 40 

2 middle finger 

(right hand) 

conductance temperature control (parallel to impedance 

in Solartron) 
40 

3 - background in FTIR 90 

4 ring finger  

(right hand) 
impedance spectrum measurement in network analyzer 15 

5 others fingers  

(except thumbs) 
reference glucose level control  30 

6 ring finger 

(left hand) 
absorbance spectrum measurement in FTIR 90 
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7.6 DATA TREATMENT  

 

Both Spectrum V5.0 and Winaspect limited the number of measurements that could 

be analyzed simultaneously, and therefore the matrices with glucose, wavelength, time and 

absorbance data were imported in Matlab v 7.0 (The MathWorks, USA), where all the pre-

processing, PLS, neural network and statistical analysis were done. With the exception of PLS 

scripts, obtained from Professor Lars Nørgaard from the Department of Food Science at the 

Royal Veterinary and Agricultural University in Copenhagen, all the other treatments were 

done with the available toolboxes from the MathWorks packet on a computer with Duo 1.66 

GHz CPU (Intel, USA)  and 1 Gigabyte SDRAM, running Windows XP. 

 

 

7.6.1 Baseline correction 

Algorithms for polynomial fitting were written to allow baseline correction in one or 

two points (line). In addition, procedures for normalization were implemented in order to 

reduce temperature and pressure effects. Although the shifting of offset level is easily 

implemented, the analysis of the optimal point requires the calculation of all possible 

combinations, therefore, spectra with 3500 wavelengths can take approximately 30 minutes of 

processing in the computer. The visualization of the results is also one important task that 

consumes memory and time. 

 

 

7.6.2 PLS 

 

Partial least squares were used to select relevant spectral regions of optical 

measurements and to compress it into a smaller number of principal components, used either 

to predict the analyte directly or as input to the ANN. The models were created through the 

iToolbox for Matlab, whose main methods are interval PLS, backward interval PLS, moving 

window PLS and synergy interval PLS (LEARDI and NØRGAARD, 2004). To obtain the 

optimal number of latent variables, each possible factor was analyzed separately with a 
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resolution of 5 wavelengths. The models with the lower SEP were then chosen to predict a 

test set of 32 samples. The test set was selected from all the measurement ranges, avoiding 

errors produced by time and temperature fluctuations. 

 

 

 

7.6.3 Neural networks 

 

The neural network structure was a one hidden layer backpropagation ANN with a 

sigmoidal activation function and the Levenberg–Marquardt update algorithm. The number of 

nodes in the hidden layer was varied between 1 and 15. The minimum error gradient was also 

analyzed, with an interval from 0.1 to 10 E-6, and the maximal number of epochs was 100. 

The dataset was scaled between 0 and 1 together and then separated into training and test 

components, with the same distribution as the PLS treatment.  Feed forward neural networks 

were trained randomly to model the blood glucose as output, using functions from the Neural 

Networks Toolbox for Matlab.  
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CHAPTER 8 

 

 

8 RESULTS 

 

 

8.1 INTRODUCTION 

 

The following chapter describes measurements of the tested fluids and transcutaneous 

assays with statistical analysis and regression methods. Glucose aqueous assays were required 

in order to determine the best fingerprint range of this substance. After analysis of this 

spectrum, blood tests helped to confirm whether other confounding substances could interfere 

in the efficiency of the methods. Finally non-invasive experiments showed that, although 

there is difficulty in crossing the skin barrier, the frequencies chosen could still give 

promising results. 

 

 

8.2 IMPEDANCE ASSAYS WITH FLUIDS 

 

8.2.1 Solartron spectrum of glucose in water 

 

The use of pretreatment methods does not significantly improve the impedance 

quantification since the spectra of all four complex components do not have strong peaks. The 

first analysis of the electrical results compares the correlation influence with signal frequency 

in aqueous glucose. In Figure 64, the frequency of 15.84 kHz shows higher correlation for the 

impedance phase (0.55) than the remaining parameters. Figure 65 compares the phase spectra 

of water with different glucose levels, as a function of the scanning frequency in the 

Solartron. The signal oscillation, especially at high frequencies, may be one reason for the 

lack of stability in the performance of this system. Based on the best correlation for 	, 

predicted glucose concentration is compared with the reference value in Figure 66. This test 

performance results in a high SEP of 387 mg/dL and standard deviation of 516 mg/dL. 
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Figure 64 - Correlation spectrum between impedance and glucose of aqueous samples 

measured in Solartron with a tetrapolar electrode, the highest module is found for the phase in 

15.84 kHz. Due to the oscillating response it is difficult to determine a pattern.  

 

10
3

10
4

10
5

10
6

10
7

10
8

-120

-100

-80

-60

-40

-20

0

Frequency (Hz)

P
ha

se
 (

de
gr

ee
s)

0 mg/dL
100 mg/dL
5500 mg/dL

 
Figure 65 – Phase spectra of water with glucose in the tetrapolar electrode (Solartron), the 

lack of ions in the sample causes mostly the measurement of electrode characteristics. 
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Figure 66 – Glucose prediction with phase information in 15.84 kHz versus reference 

concentration in water-glucose solutions. 

 

 

8.2.2 Solartron spectrum of glucose in blood 

 

Blood samples with different glucose concentrations were analyzed in both impedance 

spectrometers as well. The maximal correlation for the spectrum without treatment is 0.67, 

which uses the reactance data at 10 MHz (Figure 67). In Figure 68, the higher the frequency, 

the greater the difference between each spectra of Xc. After 10 MHz this effect seems to 

decrease, also reflecting low values for the correlation. Based on the best result for the 

imaginary component, predicted glucose concentration is calculated, resulting in the graph in 

Figure 69. Such performance shows that blood samples in tetrapolar electrodes could reflect 

glycemic changes better than water, with a SEP of 249 mg/dL and a standard deviation of 156 

mg/dL. 
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Figure 67 - Impedance correlation spectrum of blood samples measured in Solartron with a 

tetrapolar electrode, the highest value is found at 10 MHz for the reactance. 
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Figure 68 – Reactance spectra of blood with glucose in tetrapolar electrode (Solartron), 

significant differences between the samples are observed in the interval from 100 kHz to 10 

MHz. 
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Figure 69 – Glucose prediction with Xc data in 10 MHz versus reference values in blood 

samples. 

 

 

8.2.3 Network analyzer spectrum of glucose in blood 

 

Measuring blood with IDES in the network analyzer, the maximal correlation in the 

raw data is 0.43, observed for the modulus at 166.9 MHz (Figure 70). For frequencies higher 

than 500 MHz the prediction response decreases. In Figure 71 the spectrum of the impedance 

modulus is shown, where for higher frequencies the signal suffers strong interference from 

noises. Based on the best correlation result for the imaginary component, predicted glucose 

concentrations can be calculated resulting in the graphic shown in Figure 72, whose 

performance has 474 mg/dL of SEP and 300 mg/dL of standard deviation. 
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Figure 70 - Impedance correlation spectrum of blood samples measured in the network 

analyzer through IDES, in the first four decades, the magnitude of all parameters seems to 

increase with the signal frequency. The highest value is found for|Z| component at 166 MHz. 
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Figure 71 - Modulus spectra of blood with different glucose concentrations in IDES 

connected to the network analyzer. High frequency noise can be seen after 300 MHz. 
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Figure 72 - Glucose prediction with |Z| component at 166 MHz compared with reference 

levels in blood samples. 

 

 

8.3 OPTICAL ASSAYS WITH FLUIDS 

 

8.3.1 Specord 210 spectrum of glucose in water 

 

The first analysis of the results tried to reduce temperature and instrument 

fluctuations, through the elimination of offset differences in one specific wavelength (baseline 

correction). This calculation was repeated for all available points, which required 

approximately 30 minutes of processing in a computer with a Duo 1.66 GHz CPU and 1 

Gigabyte SDRAM. In Figure 73, the Specord measurements of glucose in water showed an 

optimal wavelength for baseline correction in 972 nm. After treating all spectra, 960 nm was 

the wavelength with higher correlation (0.91), as seen in Figure 74. In Figure 75 one can see 

the absorbance spectrums that result when all samples are normalized in 972 nm. The best 

correlation absorbance predicts the glucose concentration as shown in Figure 76, with a SEP 

of 125.57 mg/dL and a standard deviation of 66.32 mg/dL. 
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Figure 73 - 3D analysis of optimal value for baseline correction of water samples in Specord 

210. The highest peak in the baseline axis corresponds to 972 nm, while 960 nm shows the 

best prediction performance. 
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Figure 74 - Correlation spectrum of aqueous samples after baseline correction in 972 nm. The 

proximity between the prediction wavelength and the value of offset correction causes great 

variations of the magnitude around this range. 

Best correlation 



 

 

99

 

 

300 400 500 600 700 800 900 1000 1100
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

Wavelength (nm)

A
bs

or
ba

nc
e 

(A
U

)

 
Figure 75 - Absorbance spectrums of water with glucose after baseline correction in 972 nm. 

Negative absorbance values are probably caused by instrumentation drifts. 
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Figure 76 - Comparison of absorbance prediction in 960 nm and known glucose 

concentrations in water samples. 
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8.3.2 FTIR spectrum of glucose in water 

 

The middle infrared range is known as the spectrum where glucose has distinct 

absorption peaks. This can be verified around 3380 nm and especially in the interval between 

8333 nm and 10526 nm as shown in Figure 77. Therefore, 20 �L aqueous samples with 

different glucose concentrations were analyzed in the FT-IR spectrometer as well. 
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Figure 77 - MIR spectrum of powder glucose and water in the Spectrum One. The range 

between 8333 nm and 10526 nm shows the most significant glycemic peaks. Nevertheless, 

the region in 3380 nm also shows glucose characteristics, with lower water absorbance. 

 

Figure 78 shows the baseline analysis of glucose aqueous solutions measured in 

Spectrum One. The best wavelength for baseline correction is located in 8453 nm, allowing a 

correlation of 0.983 for measurements in 9259 nm, as seen in Figure 79. The signal in 3380 

nm also reflects signal elevation in the 3D graphic, with magnitude of 0.56. Figure 80 

illustrates the water-glucose absorbance spectra after all samples are normalized. In Figure 81, 

the best predicted glucose concentrations are plotted as a function of the reference data, 
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resulting in a prediction error of 25.04 mg/dL and standard deviation of 15.18 mg/dL, which 

has much better precision than the Specord 210 measurements. 

 
Figure 78 - 3D analysis of optimal value for baseline correction of water samples in FTIR, 

prediction around 9259 nm offers good results independent of the baseline point. 
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Figure 79 - Correlation spectrum of aqueous samples after baseline correction in 8453 nm. 

The glucose finger print can be easily detected in the intervals from 8333 nm to 10526 nm. 
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Figure 80 - Absorbance spectra of water with glucose, after baseline correction in 8453 nm. 

Physiological glycemic concentrations are attenuated by this solvent and, therefore, cannot be 

easily distinguished. 
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Figure 81 - Absorbance prediction in 9259 nm, versus glucose concentration in aqueous 

solutions. The correlation between both values corresponds to 0.983 
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8.3.3 FTIR spectrum of glucose in blood 

 

In Figure 82 one can observe the difference between blood spectra with glucose 

concentrations of 77 mg/dL and 8000 mg/dL. Again, the strongest analyte fingerprint is 

between 8333 nm and 10526 nm. Nevertheless it is already possible to detect changes from 

3300 nm to 3650 nm and 6500 nm to 11500 nm.  
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Figure 82 – MIR spectra of blood samples with glucose concentrations of 77 mg/dL and 8000 

mg/dL. The strongest analyte characteristic is found between 8333 nm and 10526 nm. 

Nevertheless, glucose characteristics can be seen in the region around 3380 nm. 

 

Blood probes with different glucose concentrations were analyzed in both optical 

spectrometers as well. Like water assays, the best results were also found in the MIR range, 

therefore, only such wavelengths are described in this section. Although wavelengths around 

3380 nm also show elevations (0.62), the best offset correction point in Figure 83 is 8347 nm, 

located in the same region as water tests. The maximal correlation after baseline correction is 

0.992 at 9680 nm, as shown in Figure 84. Figure 85 shows the blood spectra after the 

normalization procedure. Based on the best correlation result, predicted glucose 

concentrations were calculated resulting in the graph in Figure 86.  
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Figure 83 – Offset analysis for blood samples in the FTIR spectrometer. The highest peak in 

the baseline axis corresponds to 8347 nm, while 9680 nm shows the best prediction 

performance. 
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Figure 84 - Correlation spectrum of blood samples after baseline correction in 8347 nm. 
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Figure 85 - Absorbance spectra of blood with different glucose values, after baseline 

correction in 8347 nm. 

 

0 100 200 300 400 500 600 700 800
-100

0

100

200

300

400

500

600

700

800

Reference glucose concentration (mg/dL)

P
re

di
ct

ed
 g

lu
co

se
 c

on
ce

nt
ra

tio
n 

(m
g/

dL
)

data
fitted curve
prediction bounds

 
Figure 86 - Absorbance prediction (9680 nm) versus glucose concentration in blood samples, 

with 27.75 mg/dL SEP and 16.78 SD. 
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This test resulted in a prediction error of 27.75 mg/dL and a standard deviation of 

16.78 mg/dL. The glucose range of 700 mg/dL did not have any variation in the x-axis 

because the glucometer was not able to reach high concentrations. Nevertheless, the blood 

cells consumption is not supposed to significantly change this value. Even the variation in 400 

mg/dL range is probably caused by imprecision of instrumentation. 

 

 

8.4 NON-INVASIVE ASSAYS 

 

8.4.1 Solartron non-invasive spectrum 

 

The last assay realized in our work was the transcutaneous measurement of glucose in 

the finger site. Although this technique is still in the process of improvement, initial results 

indicate that there is a possibility to monitor glycemic variations in the organism without 

invasive approaches. The impedance method does not change its performance when compared 

with blood tests. Figure 87 shows the correlations for the spectra in the Solartron without any 

pretreatment, the maximum is 0.33, again for the reactance component at high frequencies (1 

MHz).  

In Figure 88, the spectra of Xc in the finger are shown, the greater variations can be 

observed at lower frequencies, probably due to pressure and temperature changes. The graph 

from Figure 89 shows the predicted blood glucose of skin for the imaginary component at 1 

MHz, with a SEP of 35.95 mg/dL and standard deviation of 20.99 mg/dL. Figure 90 compares 

both values with the index of measurement, with each point corresponding to 7 minute 

intervals. 
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Figure 87 - Correlation spectrum of finger skin samples in Solartron with a tetrapolar 

electrode. The maximal magnitudes is found for Xc at 1 MHz. 
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Figure 88 – Reactance spectra of transcutaneous measurements in Solartron. Variations at 

lower frequencies are probably due to pressure and temperature changes. 

 

Best correlation 



 

 

108 

 

-20 0 20 40 60 80 100 120 140 160 180

-20

0

20

40

60

80

100

120

140

160

180

AB

B

C

D

Reference glucose concentration (mg/dL)

P
re

di
ct

ed
 g

lu
co

se
 c

on
ce

nt
ra

tio
n 

(m
g/

dL
)

 
Figure 89 – Transcutaneous prediction (Xc, 1 MHz) as a function of the reference glucose 

controlled with a finger-stick device. 
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Figure 90 - Xc skin prediction at 1 MHz compared with reference glucose for each 

measurement point (7 minutes). 
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8.4.2 Network analyzer non-invasive spectrum 

 

The maximal correlation of the transcutaneous raw data in the network analyzer is 

0.46 for phase at 4.5 MHz, as shown in Figure 91. In Figure 92 the spectra of the impedance 

phase are shown, where above 70 MHz the signal noise is increased. Figure 93 shows the 

glucose prediction with phase at 4.5 MHz, which has an error of 23.93 mg/dL and standard 

deviation of 14.02 mg/dL. Figure 94 compares skin phase and invasive data with the index of 

measurement, where each point corresponds to 7 minutes interval. 
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Figure 91 - Correlation spectrum of non-invasive measurements in network analyzer. Values 

above 70 MHz should be avoided due to the high levels of instability. The impedance phase 

shows best prediction at 4.5 MHz. 
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Figure 92 – Phase spectra of fingertip skin in the network analyzer, frequencies above 70 

MHz show a high signal noise. 
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Figure 93 – Phase prediction (4.5 MHz) versus reference glucose in non-invasive samples, 

with 23.93 mg/dL SEP and 14.02 mg/dL SD.  
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Figure 94 – Phase prediction (4.5 MHz) and reference glucose versus measurement index. 

 

 

8.4.3 FTIR non-invasive spectrum 

 

The optical correlation showed similar performance as impedance in transcutaneous 

approaches, especially when correcting the spectrum baseline in 3328 nm, seen in the 

correlation peak of Figure 95. Although the great number of wavelengths allows the use of 

filtering and derivative techniques, none of these treatments reached the same prediction as 

baseline correction, therefore only these results will be described. The maximal correlation 

after such procedure is 0.46, located in 3335 nm, as seen in Figure 96. Figure 97 shows the 

absorbance spectrums when all samples are normalized in 3328 nm. In Figure 98, the 

predicted glucose concentration based on the best correlation result for absorbance (3335 nm) 

is compared with the reference value. This graph has a prediction error of 24.18 mg/dL and 

standard deviation of 14.34 mg/dL. Finally, in Figure 99, one can observe skin and invasive 

data with the index of measurement, where each point corresponds to 7 minute intervals. 

 

 

 



 

 

112 

 

 
Figure 95 - 3D analysis of optimal value for baseline correction of non-invasive optic assays, 

the best offset result corresponds to 3328 nm, while the best prediction is found in 3335 nm. 

 

2000 4000 6000 8000 10000 12000 14000 16000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Wavelength (nm)

|C
or

re
la

tio
n|

 

 
 

Figure 96 - Correlation spectrum of cutaneous tests after baseline correction in 3328 nm. The 

proximity between the prediction wavelength and the value of offset results in variations of 

the magnitude around this range. 
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Figure 97 - Transcutaneous absorbance spectra with baseline correction. Pressure changes are 

probably the cause of levels shifting between the samples. 
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Figure 98 - Invasive reference and non-invasive absorbance prediction (3335 nm) after 

baseline correction.   
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Figure 99 – Absorbance prediction (3335 nm) and reference glucose versus measurement 

index. 

 

In Figure 95 one can see that the interval where water and blood showed better results 

also has correlation peaks in non-invasive assays, therefore a second spectrum processing 

between 8333 nm and 10000 nm was done. In this approach, the best wavelength for baseline 

is found in 9746 nm and for prediction in 9990 nm, reaching a correlation of 0.34, SEP of 

34.42 mg/dL and standard deviation of 20.67. Predicted glucose concentrations in relation to 

the reference values can be seen in Figure 100, and Figure 101 shows both parameters with 

the measurement index, where each point corresponds to a 7 minute period. 
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Figure 100 – Error grid with absorbance prediction at 9990 nm and reference glucose 

concentration, controlled by finger stick device. 
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Figure 101 - Absorbance prediction (9990 nm) and reference glucose versus measurement 

index. 
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8.5 CALIBRATION MODELS 

 

8.5.1 PLS applied to optical spectra 

 

The first step in PLS regression is the analysis of the error, as a function of the number 

of components (factors that may have influence in the glucose prediction), shown in Figure 

102. Three components were chosen since they seem to be the valley of the error curve. 
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Figure 102 – Prediction error performance with the number of components, three factors are 

found in a performance valley and, therefore, are chosen for regression. 

 

The most significant ranges of the spectrum are seen in Figure 103, despite the low 

errors in intervals 2 and 10, the fourth segment is chosen because it contains the wavelengths 

with the best correlation. 
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Figure 103 – Low error versus interval of prediction, the fourth range corresponds to the best 

result in the baseline analysis, therefore this spectrum was chosen to factor calculation. 

 

The 3 components PLS model for the spectrum between 3160 nm and 3466 nm was 

trained with 94 samples. After the learning phase, 32 test values were analyzed, resulting in a 

correlation of 0.4, and a SEP of 12.86 mg/dL as shown in Figure 104. 
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Figure 104 – Prediction values for test set with 32 samples, the correlation corresponds to 0.4, 

with a SEP of 12.86 mg/dL. 
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The same test data was analyzed without any regression algorithm, resulting in the 

distribution of Figure 105. The concentrations calculated seem to fit better than the glucose 

values of the PLS model. In this case the same correlation (0.46) of all the 126 samples is 

reached, nevertheless the SEP (17.35 mg/dL) and SD (9.13 mg/dL) show values much lower 

than the original set. 
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Figure 105 – Optical Prediction (3335 nm) for a test set of 32 samples with baseline 

correction 

 

 

8.5.2 ANN prediction of non-invasive assays with best correlation data 

 

In order to improve the performance of the transcutaneous tests, finger conductance 

and IR temperature were also controlled (Figure 106), which together with the predicted 

results by impedance (Solartron and network analyzer) and optical assays (FTIR), serve as 

input for artificial neural networks.  
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Figure 106 – Conductance and infrared temperatures from skin compared with blood glucose. 

 

Again the training set of 94 samples is used with a goal of 0.01 mg/dL, while 32 

points are separated for testing the algorithm. The choice of the optimal number of hidden 

nodes is based on Figure 107, which shows the mean error as a function of the cells in the 

intermediary layer. Although 4 neurons have lower error, the control of the results showed 

overfitting. The system only becomes stable above 9 nodes, and this value also gives 

satisfactory performance. Figure 108 shows the results after training the net with optic, 

impedance and temperature values. The error of this prediction model is 15.31 mg/dL, with a 

standard deviation of 9.92 mg/dL. 
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Figure 107 – Mean error analysis of neural network with different number of hidden nodes, 

the lower value was found for 4 neurons, but 9 values showed better correlation. 
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Figure 108 – Predicted glucose values for neural network with 9 hidden layers, trained with 

temperature, impedance and optic data. 



 

 

121

 

 

8.5.3 ANN prediction of non-invasive assays with PLS factors 

 

One alternative to improve the ANN prediction is to replace the absorbance data for 

the PLS factors already calculated. Such values, together with the impedance (Solartron and 

network analyzer) and temperature, improve the performance of the network (0.01 mg/dL 

goal), as illustrated in Figure 109. At this time, 5 nodes in the hidden layer were enough to 

determine a satisfactory prediction of 14.43 mg/dL SEP and SD of 8.04 mg/dL. 
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Figure 109 – Predicted glucose values for neural network with 5 hidden layers, trained with 

temperature, impedance and PLS factors from light spectra. 
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CHAPTER 9 

 

9 DISCUSSION AND CONCLUSIONS 

 

 

9.1 INTRODUCTION 

 

Due to the great amount of data available, it is necessary to interpret the results 

carefully in order to avoid wrong conclusions. The first important task is the elimination of 

outlines, from a set of 132 non-invasive points measured, only 6 samples are incorrect, been 

therefore excluded. 

Tests with the preprocessing of the impedance show low performance and lack of 

reproducibility, which does not encourage the use of such algorithms. However, significant 

improvements for optical spectrum were seen through these techniques, probably due to the 

strong absorbance peaks of glucose. 

The aim of this section is to compare the prediction efficiency of the measurements 

and regression methods. Besides the individual analysis of each procedure, the comparison 

between invasive and non-invasive tests encourages further investigations on this theme, 

which corresponds to the last section. 

 

 

9.1.1 IMPEDANCE ASSAYS WITH FLUIDS 

 

9.1.2 Impedance spectrum of glucose in water 

 

The correlation spectrum from aqueous glucose in the tetrapolar electrode connected 

to Solartron (Figure 64) shows that simple glucose solutions do not offer enough information 

for dielectric investigations. The location of the best prediction in the low frequency range can 

be observed in Figure 65, which shows higher phase differences from 500 Hz until 100 kHz. 

It is also interesting to note that all four components showed similar performance for 

prediction. 
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9.1.3 Impedance spectrum of glucose in blood 

 

In Figure 67 one can observe that the tetrapolar measurement of blood in the Solartron 

tends to increase correlation of glucose concentration with the frequency. The valley of the 

phase around 100 kHz can be explained since in this range there is an inversion of inclination 

in this curve, observed in the Xc spectrum of Figure 68. Nevertheless, the glucose prediction, 

seen in Figure 69, requires an improvement of sensitivity that can only be accomplished 

through covering the electrode surface with enzymes, such as glucose oxidase. 

The correlation spectrum of blood in IDES for the network analyzer (Figure 70) also 

shows the same comportment as the results with the Solartron, with the difference that the 

impedance modulus reflects the glycemic concentrations with lower error. This effect is 

probably caused by the high capacitance of the electrode that decreases the phase component 

in the � dispersion region. In Figure 71 one can see that above 500 MHz there is a strong 

oscillation in the modulus value. In such frequencies the electrical signal suffers reflection 

depending on the connection characteristics and, therefore, does not detect changes in the 

transducer’s surface. The lack of clusters in Figure 72 confirms the need of additional 

substances in invasive glucose sensing. 

 

 

9.1.4 OPTICAL ASSAYS WITH FLUIDS 

 

9.1.5 UV/VIS/NIR spectrum of glucose in water 

 

Although ultraviolet light has higher energy than visible and infrared, no data from 

glucose was noted in this area. Figure 73 and Figure 74 show 0.91 as the best correlation in 

Specord 210, which was observed in near infrared range (960 nm for prediction and 972 nm 

for baseline correction). Many research works have already been done in this interval, 

especially because of the large number of optical components available in the market and the 

penetration depth. However, one did not detect any prominent peak of the analyte in this 
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region, even with concentrations of 8000 mg/dL. The lack of strong spectrum differentiation 

may be one reason why NIR scans of aqueous solutions showed a prediction error of 125.57 

mg/dL, which is approximately 20 times higher than standard home glucose devices.  

Measurements of low concentrations can also be influenced by sample cell optic 

properties (which can be changed after cleaning procedures), drifts in the equipment response 

with time and temperature or even non-compliance of reference calibration. These factors 

could be the cause of negative absorbance values (transmittance higher than 100 %) of the 

UV/VIS/NIR tests in Figure 75, as well as the cause of the glucose variation in Figure 76. It is 

known that glucose concentrations decrease with time due to the metabolism by micro 

organisms in the medium. Nevertheless, this phenomenon can be ignored in our research since 

some of the last measurements showed higher predictions values. In addition, glucose 

concentrations in distilled water should not change significantly during the 3 hours of testing. 

Time fluctuations in the instrument response can also be discarded because each reference 

point in Figure 76 showed a different prediction comportment. Therefore the most likely 

causes of low signal-to-noise ratio in this experiment are the low energy light source available 

and the limited sensibility of photo detectors to low concentrations of analyte. 

  

 

9.1.6 MIR spectrum of glucose in water 

 

Spectrums with the FT-IR spectrometer showed better results than the UV/VIS/NIR 

instrument as shown by the strong glucose differences in Figure 77, especially in the interval 

between 8333 nm and 10526 nm. This spectrum has good correlations as seen in Figure 78 

and Figure 79, and it is interesting to note in Figure 78 that this value stays almost constant 

independent of wavelength chosen for baseline correction. In this case, the elimination of the 

offset in 8453 nm improves the correlation in 9259 nm only from 0.973 to 0.983. In all 

spectra of Figure 80, one can observe that water absorption curves are much more intense 

than glucose changes. Nevertheless Figure 81 shows that it is possible to measure this element 

with a SEP of 25.04 mg/dL. 
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9.1.7 MIR spectrum of glucose in blood 

 

Blood contains many substances that may interfere with the glucose signal, it is 

important to note that the MIR spectrum of glucose in this fluid (Figure 82) shows similar 

characteristics to the samples of aqueous glucose. Figure 83 and Figure 84 confirm that the 

maximal correlation interval is located from 8333 nm to 10526 nm.  At this time, baseline 

subtraction in 8347 nm resulted in correlation improvement from 0.976 to 0.992. One can see 

in Figure 85 that peaks of complex blood elements appear especially in the wavelength of 

9680 nm. This is also confirmed by the error of 27.75 in Figure 86. The source of reference 

values in this case was the invasive equipment with a precision of 7 %. Therefore it is 

possible that MIR results could have even a lower error than measured. 

 

 

9.2 NON-INVASIVE ASSAYS 

 

9.2.1 Impedance of skin 

 

Although the non-invasive glucose range did not show great variations in the 

concentration (58 mg/dL to 115 mg/dL), it was expected that dielectric changes of living cells 

could respond better to shifts in the metabolism level. Figure 87 shows that all four 

impedance parameters have approximately the same performance of correlation (R – 0.31, Xc 

– 0.33, |Z| - 0.3 and 	 - 0.31), while resistance and modulus peaks are found around 15 kHz, 

phase and reactance require higher frequencies to reach the same result. It is interesting to 

note that, although bloods tests and non-invasive assays used different transducer shapes, the 

correlation spectrum of the tetrapolar approaches from Solartron in the finger surface 

maintains the same characteristics as solution tests. One difference between both cases is that 

the skin phase has an additional valley located in 15 MHz, due to an inversion of its 

inclination. Another important effect is that, the resistance, reactance and modulus show a 

significant increase of correlation from several kHz until approximately 100 kHz. The main 

cause of this comportment is the polarization in low frequencies, and the high sensibility to 

extracellular fluids in biological tissues, resulting in variations in this range (Figure 88). The 

prediction performance in Figure 89 contains 3.17 % of the samples in the D zone 
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(inaccurate) on the Clarke error grid analysis (EGA), with the remaining data in A (35.71 %) 

and B (61.11 %) ranges.  Negative glucose concentrations of three samples also reflect the 

weakness of this model alone, which can be observed through the high SEP of 35.95 mg/dL 

and standard deviation of 20.99 mg/dL. The time analysis of Figure 90 shows that impedance 

requires approximately 2 hours to equilibrate, which is in agreement with previous non-

invasive research. After this period the reactance component starts to change in proportion to 

the glycemic rates. 

In Figure 91, although the dielectric characteristics of the cutaneous tissue in the 

network analyzer showed noises at high frequencies, similarity with correlation of blood 

measurements can be observed, especially for R and |Z|. In this case, the modulus (0.39) and 

resistance (0.4) peaks are not as significant as phase (0.46) and reactance (0.45) contributions, 

both of which are located at 4.5 MHz. Figure 92 shows that the transducer tends to have the 

phase increasing with the frequency, and above 30 MHz suffers effects of signal reflection. 

The use of bipolar transcutaneous electrode in the network analyzer showed lower SEP of 

23.93 mg/dL and SD of 14.02 mg/dL than Solartron results (Figure 93). Although 3.17 % of 

samples are also found in the D region of the EGA, there are no negative value is predicted 

and the number of points in the A zone increased to 42 %, with the remaining 53 % in the B 

area. Figure 94 helps the visualization of the prediction improvement, where the equilibration 

phase is reduced to one and half hours and the phase mean value seems to have a better 

response to blood glucose levels. 

 

 

9.2.2 Optical absorbance of skin 

 

It is already known that MIR light can penetrate the skin surface deep enough to 

reflect glucose levels in interstitial fluid. Due to the large number of interference factors it 

was expected that the last experiment involving non-invasive procedures would not show 

results as good as liquid assays. In Figure 95 and Figure 96 one can observe that correlation 

values did not gather in a specific area as in water and blood tests. Nevertheless it is 

interesting to observe that, using 3328 nm to correct offset changes, light beams of 3335 nm 

result in a correlation peak of 0.46, much higher than the other wavelength values (0.37 and 

0.38). The different offset levels in Figure 97, which can be caused by fluctuations in contact 

pressure or temperature, could be a cause of imprecision of the skin absorbance. In addition, 
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strong noise peaks can be seen in the glucose fingerprint region, therefore the best results 

were found in other ranges with small peaks in the glycemic absorbance. Figure 98 has a 

prediction error of 24.18 mg/dL and standard deviation of 14.34 mg/dL, with EGA 

distributions of 3.96 % (D), 50 % (A) and 46.03 % (B). The visual control of the prediction 

shows a reduction in the number of errors at higher ranges and an increase in the lower 

values. Even after losing the sensibility for fast changes of blood glucose levels in Figure 99, 

the regression model for such analyte seems to answer with a lower signal noise ratio than 

impedance data. Figure 100 helps to compare the efficiency of 3335 nm versus 9746 nm, 

which resulted in a correlation of 0.34, SEP of 34.42 mg/dL and standard deviation of 20.67. 

While the EGA concentration for this wavelength still contains 4 samples (3.17 %) in the 

region D, A zone decreases to 36.5 % and B region increases to 60.31 %. Therefore, lower 

wavelengths can predict blood glucose with better precision. 

 

 

9.3 CALIBRATION MODELS 

 

In contrast to previous literature, Figure 102 shows that 3 significant factors were 

optimal for the PLS model in non-invasive assays, which is also confirmed through Figure 

103. The fact that PLS detected high correlation in the spectrum between 3160 nm and 3466 

nm confirms the confiability of the baseline method. The reduction of the error in the 

calibration methods compared to the total raw data readings is result of the test set being 

reduced to 32 samples, with the rest being used as training. Despite the prediction distribution 

in Figure 104 gives a SEP of 12.86 mg/dL, the correlation of 0.4 and the visual control of  

Figure 105 shows that using PLS alone may not improve the results, since the same data 

reaches correlation of 0.46 with baseline correction in one wavelength. This fast processing 

has 64.28 % in the A zone, 33.33 % in B zone and 2.38 in D zone. 

 Although the conductance temperature in Figure 106 does not reflect the glycemic 

variations, the IR thermometer seems to be more sensitive to this factor. It is interesting to 

note that both parameters require approximately one and half hours to stabilize, which may be 

the main cause for the impedance imprecision in the same samples. Therefore, it is important 

to use the room and skin temperatures as input in the ANN systems. Also significant to the 

regression model are all the four impedance parameters, which were chosen based on the 

peaks of the correlation spectra. The last loaded data is the best reading by the optic method. 

The analysis of hidden nodes for the 12 input network showed a low error and good 
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distribution for 9 elements, avoiding the overfitting between 4 and 7 components of Figure 

107. The error grid analysis after the network training showed 3.13 % of data in zone D (one 

sample), 18.75% in B and 78.13 % in the A area of Figure 108, which is an appealing result 

for the use of multiparameter techniques. 

The best performance was finally obtained when 3 factors from the PLS models 

replaced the absorbance data in the input of the net. Again an analysis of hidden nodes was 

required resulting in an optimal value of 5 elements, which corresponds to 0.57 correlation, 

14.43 mg/dL SEP and SD of 8.04 mg/dL as shown in Figure 109. Finally, in this last model, 

only regions A (84.38 %) and B (15.63 %) contain predicted data, which is the expected 

performance of non-invasive blood glucose devices. 

 

 

9.4 CONCLUSION 

 

Table 12 lists the results of optical and impedance experiments to quantify glucose 

concentration in 126 samples. The low performance of impedance applied to aqueous glucose 

is probably caused by the weak quantities of ions available in this solution. Therefore most of 

the read spectra reflect only the electrode characteristic. On the other hand, biological fluids 

such as blood, are rich in ions, and can be easily studied by BIA. The correlation spectra of 

impedance for blood samples and skin showed similar curves in Figure 67, Figure 70 and 

Figure 91, with peaks in the high frequency ranges, therefore, confirming Caduff‘s 

affirmation  that glucose causes significant dielectric changes in this area.  One reason may be 

the fact that the majority of the blood glucose is found in the extracellular fluid (plasma), 

which is only crossed by currents with high frequency. It is also interesting to note that the 

better performance was found in non-invasive experiments, but does not occur in optical 

cases. Because of the wide peak in almost all impedance correlations, the choice of the 

measurement interval of impedance will have good flexibility. Another important 

phenomenon is that, the best results were mostly related to capacitance changes, which can be 

seen either in phase or in reactance sensibility. 

There is still a lack of agreement in scientific publications about the optimal 

wavelengths for non-invasive glucose investigation. In Table 2 one can see that much 

research has been done in visible and near infrared (NIR) range, around 590 nm – 950 nm, 

1500 nm – 1850 nm and 2120 nm – 2380 nm. These spectra are chosen because water 

absorbance is weak, the measuring signal has higher energy and there are many commercial 
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light transducers available. Water measurements in the UV/VIS/NIR Spectrometer confirm 

the importance of this region demonstrated by the good baseline correction in 972 nm and 

prediction in 960 nm. Middle infrared research, mostly conducted between 8382 nm and 9708 

nm, also measured glucose and validated the results with Spectrum One. The importance of 

baseline correction in blood was also observed, improving the results of the measurement in 

9680 nm. The efficiency of optic assays in the skin is decreased due to the great absorbance of 

the light in biological tissue. The error value does not only depend on the prediction 

efficiency, but also in the glucose range available for the measurements. Therefore, although 

non-invasive measurements in the FTIR show lower SEPs and SDs than water and blood 

tests, their correlation reflect that the performance still needs to be improved. The fact that the 

better prediction range for transcutaneous assays is found around 3400 nm reflects that, 

although such beams have smaller glucose peaks than higher wavelengths, the lower water 

absorbance and the greater signal energy, allow a higher penetration power in this tissue. 

 

Table 12 – Performance of glucose assays with impedance and light methods. 

Experiment Reference 

(mg/dL) 

 Wavelength/ 

frequency 

Correlation SEP 

(mg/dL) 

SD 

(mg/dL) 

Impedance of aqueous solutions in Solartron 0 to 800 Phase 15.84 kHz 0.55 516 387 

Absorbance of aqueous solutions in Specord 210 0 to 800 960 nm (972 nm) 0.91 125.57 66.32 

Absorbance of aqueous solutions in FTIR 0 to 400 9259 nm (8453 nm) 0.983 25.04 15.18 

Impedance of blood samples in Solartron 5 to 700 Xc 10 MHz  0.67 249 156 

Impedance of blood samples in network analyzer 5 to 700 Modulus 166.9 MHz 0.43 474 300 

Absorbance of blood samples in FTIR 5 to 700 9680 nm (8347 nm) 0.992 27.75 16.78 

Impedance of skin in Solartron 58 bis 115 Xc 1MHz  0.33 35.95 20.99 

Impedance of skin in network analyzer 58 bis 115 Phase 4.5 MHz 0.46 23.93 14.02 

Absorbance of skin in FTIR 58 bis 115 3335 nm (3328 nm) 0.46 24.18 14.34 

 

The difference in the efficiency of optical and impedance technologies in the fluid 

measurement occurs because light can detect characteristics of the chemical structure from the 

glucose molecule, whereas electrical current is sensible to changes in the ionic concentration 

in the sample. Therefore transcutaneous BIA should only monitor blood glucose through 

secondary phenomenons such as metabolism, temperature or pH changes. Although both non-

invasive methods showed the same correlation (0.46), optic sensing does not require a long 

equilibration process. In addition, this approach seems to fit the mean value of the glucose 

curve better. 

Both algorithms analyzed allow the quick training of the model, nevertheless, the 

choice of the number of hidden layers and components required careful analysis. In Table 13 
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the statistical and EGA results of the different methods can be observed. Although the 

network analyzer response did not contain any data in the D zone, its correlation is lower than 

using PLS techniques. Nevertheless, Clarke error grid help the differentiation between feeding 

the network with absorbance raw data or 3 partial least squares factors. Besides eliminating 

occurrences in the D region, the principal components also condensed the data between the A 

limits, and therefore is the best alternative for non-invasive prediction. 

 

Table 13 – Prediction performance for non-invasive assays with test set of 32 samples. 

Prediction method  Correlation SEP 

(mg/dL) 

SD 

(mg/dL) 

EGA 

A (%) 

EGA 

B (%) 

EGA 

D (%) 

Xc: 1 MHz (Solartron) 
0.37 37.47 22.9 31.25 65.62 3.13 

phase: 4.5 MHz (Network analyzer) 
0.43 24.1 15.59 53.12 46.87 0 

light: 3335 nm - baseline correction 

 in 3328 nm (FTIR) 
0.46 17.34 9.13 64.28 33.33 2.38 

neural network input: temperature, 

impedance and optic absorbance 
0.6 15.31 9.92 78.13 18.75 3.13 

neural network input: temperature, 

impedance and PLS factors 
0.57 14.43 8.04 84.38 15.63 0 

 

 

9.5 FUTURE WORKS 

 

Although there are some products commercially available for in vivo non-invasive 

glucose monitoring, many improvements are still needed in order to have the same precision 

as standard methods with blood samples. In controlled conditions of research laboratories it is 

relatively simple to find correlation between transcutaneous data and blood glucose levels. 

The challenge is to establish stable regression models able to measure in normal day-to-day 

activities of a patient’s life. In order to accomplish this goal many techniques and procedures 

still need to be studied.  

Despite the good reproducibility of the tests described, the addition of more training 

and test sets will help the validation of the calibration algorithms. Future experiments should 

try to improve glucose readings, which besides the error of 6%, due to the Accu-chek 

limitation, also depends on the blood circulation in the target site. In our case, lancing was 

repeated every 30 minutes in each finger, and although the sample site was alternated 

(fingertip left, right and centre), vasoconstriction could be observed after several hours of 
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measurement. The use of the Biostator artificial pancreas in Figure 110 may be an interesting 

alternative, since this device is able to continuously monitor venous blood glucose 

(CLEMENS, HOUGH and D'ORAZIO, 1982). Due to the wide range of data available, 

further study of the classification analysis algorithms can improve this technology by 

researching the optimal ranges in the PLS models or the addition of extra relevant 

frequencies/wavelengths as input in the ANN. 

 
Figure 110 – Biostator artificial pancreas which is able to continuously monitor venous blood 

glucose. 

 

The aim of this work is to validate the parallel use of temperature, impedance and 

light in the non-invasive prediction of blood glucose. Both spectral techniques offer many 

alternatives for further investigation, and while few publications describe glucose research 

associated with skin permittivity, no transcutaneous report is known on monitoring with light 

in the 3335 nm range. These factors, in addition to the successful performance of the error 

grid analysis in the initial tests, appeals to the development of a more accurate multiparameter 

prototype. 

In this case, improvements in the transducers, hardware and calibration methods are 

still possible. Although other layouts of the sensor contacts can be used for skin measurement, 

the actual concentric electrode was chosen in consideration of the placement of light, 

temperature and pressure sensors, without changing the symmetry of the electrical current in 

the target site.  The parallel monitoring of all parameters can improve the efficiency of this 

approach, since the actual dataset has several minutes delay between each different spectra. 

Significant improvements of the MIR correlation were observed when measuring the fingertip 

inside of dark chamber, which needs to maintain the mechanical arm in order to apply a 

constant pressure in this site. 
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Optical and impedance circuits with few sensors can be easily implemented, however, 

if an increase in the performance from non-invasive testing is desired, PLS association with 

ANN is strongly recommended, and requires the acquisition of a wide spectrum to build the 

models. Fast sampling rates (100 spectra/s) in the impedance and optical circuits should allow 

the separation of pulsatile blood signal from interference factors (YAMAKOSHI, 2006). The 

development of vector impedance circuits with these characteristics is a complex task and 

requires a good knowledge of high frequencies techniques to avoid external sources of 

electromagnetic noise. 

Photo-spectrometers with a fast response also require a carefully approach. The fact 

that the optimal wavelength for detection is in the proximity of the baseline reference also 

increases the difficulty of the prototype manufacturing since the detector element, probably a 

charge coupled device (CCD), should have narrow band ranges. One requisite to improve the 

optical SNR is the increase of light energy, without crossing secure limits. This can be 

accomplished with acquisition of laser diodes (Figure 111), whose actual price is around 50 €. 

If laser diodes are not available in the frequency of interest, another possibility is the use of 

high energy LEDs in association with interference filters, which cost approximately 400 €. 

 

 
Figure 111 – Spectrum of laser diode signal, the measurement wavelength can be controlled 

changing the voltage applied to its terminals. 
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Figure 112 shows the block diagram from the prototype that should be made for non-

invasive measurement of blood glucose through the parallel acquisition of impedance, light, 

temperature and moistness of skin. As a result of all the non-invasive research completed to 

date, it is expected that in a few years, a new generation of non-invasive glucose instruments 

could be available in the market. These devices should have low cost, fast response simple 

calibration procedures, and improve the patients comfort. This in turn, will increase 

compliance to monitoring blood glucose levels, thus decreasing the long-term complications 

of diabetes. 

 

 

    

 

 

 

 

   

 
Figure 112 – Block diagram from prototype for parallel measurement of impedance, light, 

temperature and humidity, the calibration algotiyhms and the display fuction can be 

performanced through a cell phone, which also sends the results to a data server. 
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