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Abstract

This thesis addresses techniques for wireless communication systems to transmit high data rates
with high reliability. The investigations are focused on the bit-interleaved coded modulation
(BICM) system that is the serial concatenation of a channel encoder, an interleaver and a sym-
bol mapper for high order modulation. The performance of BICM can be greatly improved
through iterative information exchange between the demapper and the decoder at the receiver.
This system is usually referred to as BICM with iterative decoding (BICM-ID). The major con-
tributions of this work are the study of the iterative BICM receiver and the investigation of
modulation techniques to improve the adaptability and performance of the system: First, prop-
erties of decoder and demapper EXIT functions are derived to gain additional insights on the
convergence of the iterative BICM receiver. Then, the focus is on mapping techniques, i.e. on
the assignment of bit sequences to signal points of a high order signal constellation. Methods
to characterize and optimize mappings for a variety of applications are investigated. In partic-
ular, mappings optimized for iterative receivers are proposed. Along the same line of thought,
the combination of different signal constellations and mappings within one code word, non-
unique mappings and superimposed mappings are investigated to improve the adaptability and
performance of the system using modulation techniques.



Zusammenfassung

In der vorliegenden Dissertation werden Methoden für drahtlose Kommunikationssysteme un-
tersucht, die es ermöglichen Information sowohl mit hohen Datenraten als auch mit einer ho-
hen Zuverlässigkeit zu übertragen. Es wird insbesondere das Bit-Interleaved Coded Mod-
ulation (BICM)-System betrachtet, das aus einer seriellen Verkettung eines Kanalencoders,
eines Interleavers sowie einer Abbildung der Bits auf Symbole einer höherstufigen Signal-
raumkonstellation (sog. Mapping) besteht. Die Leistungsfähigkeit von BICM kann durch it-
erativen Informationsaustausch zwischen dem Demapper und dem Decoder stark verbessert
werden. Dieses System wird üblicherweise als BICM mit iterativer Decodierung bezeich-
net (BICM-ID). Die Hauptbeiträge dieser Arbeit sind die Untersuchung des iterativen BICM
Empfängers und die Entwicklung von Modulationstechniken, um die Anpassungs- und Leis-
tungsfähigkeit des Systems zu verbessern: Zuerst werden Eigenschaften der Decoder- und
Demapper EXIT-Funktionen abgeleitet, wodurch zusätzliche Einblicke in das Konvergenzver-
halten des iterativen BICM Empfängers erlangt werden. Anschließend liegt der Schwerpunkt
auf Mapping-Techniken. Methoden um Mappings für eine Vielzahl von Anwendungen zu
Beschreiben und zu Optimieren werden untersucht. Insbesondere werden optimierte Mappings
für iterative Empfänger hergeleitet. Weiterhin werden die Kombination von verschiedenen
Signalraumkonstellationen und Mappings innerhalb eines Codewortes, mehrdeutige Mappings
sowie überlagerte Mappings untersucht, die eine verbesserte Anpassungs- und Leistungsfähigkeit
des Systems mit Hilfe von Modulationstechniken ermöglichen.



1
Introduction

The vision of being able to communicate and access data anywhere and anytime has driven the
research and development of powerful communication systems forward at a remarkable speed.
Today, digital communication systems have become an integral part of our everyday life. The
wireless communication standards GSM1, UMTS2 and WLAN3, as well as DAB4, DVB4 and
Internet applications are only few examples.

The next generation wireless communication systems (namely, 3GPP long term evolution (LTE)
and fourth generation (4G) communications systems) will be used for a large variety of ad-
vanced applications and should be able to support widely varying user needs, service require-
ments and radio environments (home, office, vehicular, cellular/mobile, satellite, etc). Never-
theless, the unambiguous trend is the need of very high data transmission rates to cope with
the increasing demand of multimedia communication services such as video teleconferencing,
network gaming, and high quality audio/video streaming.

The technical challenge is to enable high data transmission rates with a high power and band-
width efficiency. Power efficiency describes the minimum ratio of signal to noise power re-
quired to achieve a desired quality of service. Bandwidth efficiency describes the minimum
bandwidth required to transmit at the desired data rate. Further aims in the design of communi-
cation systems include manageable computational complexity and low end-to-end delay.

The theoretical limits of data transmission have been derived by Claude Shannon in his land-
mark paper in 1948 [Sha48]. Shannon showed that information can be transmitted with an
arbitrary small probability of error as long as the data transmission rate is below the so-called
channel capacity. To approach this capacity, high order modulation and powerful channel cod-
ing schemes are required. High order modulation improves the bandwidth efficiency by trans-
mitting several bits per channel use through a signal point of a given signal constellation. Chan-
nel coding techniques introduce redundancy to improve the power efficiency. The redundancy

1GSM: Global System for Mobile Communications
2UMTS: Universal Mobile Telecommunications System
3WLAN: Wireless Local Area Network (802.11 standards)
4DAB: digital audio broadcast; DVB: digital video broadcast
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is used to protect the transmitted data against channel impairments and enable the receiver to
correct transmission errors. The breakthrough towards capacity approaching channel codes
was the idea of iterative decoding of concatenated codes, the so-called turbo codes by Berrou,
Glavieux, and Thitimajshima in 1993 [BGT93]. The turbo decoder consists of the component
decoders that exchange soft extrinsic information in an iterative fashion. The idea of iterative
decoding has been shown to be valid in a more general sense and the turbo principle [Hag97]
can be applied at the receiver of a communication system with serial and parallel concatenated
components.

Massey proposed in 1974 to jointly design coding and modulation to optimize the perfor-
mance of digital transmission schemes and introduced the field of coded modulation [Mas74].
Powerful coded modulation schemes include trellis-coded modulation (TCM) [Ung82], multi-
level codes (MLC) [IH97] [WFH99] and bit-interleaved coded modulation (BICM) [Zeh92]
[CTB98]. BICM is the serial concatenation of a channel code, interleaver and mapper and is
used in most recent wireless standards due to its simplicity, flexibility and performance. At the
receiver, the signal is consecutively demapped, deinterleaved and decoded. The performance
of this standard BICM receiver can be greatly improved through iterative information exchange
between the demapper and the decoder according to the turbo principle. This system, introduced
in [LR97] [tBSY98a], is usually referred to as BICM with iterative decoding (BICM-ID).

It was soon recognized that the choice of the mapping, i.e. the assignment of bit sequences
to signal points of a high order signal constellation, is a crucial design parameter in coded
modulation schemes. Probably the most famous mappings are Gray mapping [Gra53] for BICM
and Ungerböcks set partitioning mapping [Ung82] for TCM.

The present thesis describes the characterization and optimization of mappings for a wide range
of advanced applications. We design mappings for BICM systems with iterative demapping and
decoding, for automatic repeat request (ARQ) and multi-antenna (MIMO) systems, irregular
(hybrid) mappings for increased system flexibility, non-unique mappings to shape the probabil-
ity distribution of the transmitted signal and mappings constructed by signal superposition.

The motivation for several approaches within this thesis stem from advances in channel coding.
Channel codes are described by their Hamming distance spectrum, we describe mappings by
an Euclidean distance spectrum; Channel codes with an optimum Hamming distance spectrum
have been proposed, we derive mappings with an optimum Euclidean distance spectrum; Irreg-
ular codes have been proposed to optimize the iterative receiver, we propose irregular (hybrid)
mappings and signal constellations to optimize the iterative receiver, just to mention three ex-
amples. Actually, a fundamental approach within this thesis is to consider the mapping as a
code that introduces dependencies between the bits mapped to one signal point.
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This thesis is organized as follows:

Chapter 2 introduces the general framework and tools that will be used throughout the thesis.
This chapter defines the discrete time channel model, derives information theoretical limits on
data transmission, reviews channel coding schemes and describes three major coded modulation
schemes, namely trellis-coded modulation (TCM), multi-level codes (MLC) and bit-interleaved
coded modulation (BICM) without and with iterative demapping and decoding.

Chapter 3 investigates the EXIT chart proposed by ten Brink [tB01b] as a tool to analyze and
optimize iterative receivers. In particular EXIT functions of the decoder and the demapper
for the BICM system with iterative demapping and decoding are considered. A bit-level and
symbol-level analysis is introduced. Furthermore, an analytic and numeric computation of the
EXIT functions of the decoder and demapper is proposed that circumvent the need of Monte-
Carlo simulations.

In Chapter 4, an Euclidean distance spectrum (EDS) for BICM based systems is proposed to
characterize mappings for arbitrary signal constellations. The Euclidean distance spectrum pro-
vides an universal framework to analyze mappings for a variety of applications. Then, the
Euclidean distance spectrum and a binary switching algorithm are used to find new optimized
mappings. Finally, we discuss the use of an additional inner encoder to reduce the error rate at
high SNR.

Chapter 5 introduces bit-interleaved coded irregular modulation (BICIM), where different sig-
nal constellations and mappings may be used within one code word for channel adaptation and
to optimize iterative receivers.

Chapter 6 investigates a simple method to shape the probability distribution of the transmit-
ted signal to approach Shannon’s channel capacity. The idea is to use non-unique mappings,
where multiple bit sequences may be assigned to the same signal point. More bit sequences are
assigned to signal points with low energy, less bit sequences to signal points with high energy.

In Chapter 7, signal constellations and bit-to-symbol mappings that arise from the linear su-
perposition of several signal layers are considered. We define a mapping by superposition for
multi-level codes and bit-interleaved coded modulation. Advantages of this approach are dis-
cussed and EXIT charts are used to optimize the power allocation to the superimposed signal
layers.

Chapter 8 finally summarizes the results and states possible directions for future research.

Parts of the work presented in this thesis has been published in the following conference pro-
ceedings [SGHB03b], [SB04a], [SB04b], [SHGB05], [SB05], [BSS05a], [BSS05b], [SH05],
[Sch06], [SSRS06], [SSRS07] and journal papers [SGHB03a], [SB06], [BSHA07].
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Fundamentals

This Chapter introduces the general framework and specific techniques that will be used through-
out this work. We start by defining the considered discrete time channel model in Section 2.1
and the resulting fundamental limitations on the performance in Section 2.2. Optimal decision
rules and channel coding techniques are reviewed in Section 2.3 and 2.4, respectively. Finally,
we investigate different approaches to combine channel coding and high order modulation in
Section 2.5.

2.1 Channel Model

2.1.1 Mobile Radio Channel

The physical mechanisms of electromagnetic wave propagation are diverse. Three basic propa-
gation mechanisms are usually considered for wireless communication systems: reflection from
large objects, diffraction at sharp edges, and scattering from rough surfaces [Rap02]. Therefore,
the electromagnetic waves may travel from the transmitter to the receiver on the direct line-of-
sight path or may reach the receiver after being reflected, diffracted and/or scattered. A strong
signal from the line-of-sight path is usually received with satellite or microwave point-to-point
links. In mobile communication systems, the line-of-sight path is rarely available. The vari-
ous propagation paths have different length and cause the corresponding signals to arrive at the
receiver with different delays, amplitudes and phases. The different phases yield to situations
of constructive and destructive interference of the electromagnetic waves superimposed at the
receiver antenna.

Since besides the free space propagation loss, a detailed deterministic computation of the chan-
nel characteristics is in general not possible, a variety of statistical propagation models based
on empiric observations have been proposed. We distinguish between propagation models that
predict the average received signal power (large scale propagation models) and propagation
models that predict the variations of the received signal power over small distances or time
periods (small scale propagation models).
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The large scale path loss is determined by the distance between transmitter and receiver, the
transmitted power, the transmitter and receiver antenna gains, the wavelength, and the propaga-
tion environment (line-of-sight path, rural or urban environment).

The small scale fading results from multipath propagation. Since the phases of the waves su-
perimposed at the receiver change rapidly with the traveled distance or with moving reflection
and scattering objects, the situation may change between constructive and destructive signal
superposition within a short time period or traveled distance (in the order of a wavelength).

The multipath channel is assumed to be a bandlimited bandpass channel and can be modeled
as a linear filter with time varying impulse response hBP (t, τ). The variable t represents the
time variations and τ the channel multipath delay for a fixed value of t. hBP (t, τ) may be
equivalently described by a complex lowpass impulse response hLP (t, τ) in the baseband with
the relation [Pro01]:

hBP (t, τ) = 2Re{hLP (t, τ)ej2πfct}, (2.1)

where fc is the considered carrier frequency. The factor 2 stems from the convenient definition
of the Fourier transform of hBP (t, τ) in [Pro01]. If we assume a large number of propagation
paths and that the waves arrive at the receiver with random amplitude and phase distribution,
hLP (t, τ) may be modeled as a complex random variable with uncorrelated and Gaussian dis-
tributed real and imaginary part according to the wide-sense stationary uncorrelated scattering
(WSSUS) channel model [Bel63]. Without line-of-sight path, hLP (t, τ) has zero mean and the
magnitude |hLP (t, τ)| follows a Rayleigh distribution shown in Fig. 2.1a). With a line-of-sight
path, a real valued constant is added and |hLP (t, τ)| is Rician distributed with the so-called Rice
factor K [Rap02].
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Figure 2.1: Qualitative characteristics of the equivalent lowpass channel impulse response
hLP (t, τ).

A common approach to model the time and spectral characteristics of hLP (t, τ) is to assume that
the phases and angles of arrival of the received signals are uniformly distributed, the average
amplitudes of the received signals are equal (no line-of-sight path), and the Doppler shift of the
received signals is set according to the motion of the receiver [Rap02]. Then, a typical time
characteristic of the Rayleigh distributed |hLP (t, τ)| is illustrated in Fig. 2.1b) and its power
density spectrum is the so-called Jakes spectrum.
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A useful parameter in this context is the coherence time Tcoh defined as the time for a mobile
receiver required to travel a wavelength λ at velocity v:

Tcoh =
λ

v
. (2.2)

Tcoh is a measure of the time duration over which the channel impulse response is essentially
invariant. The Doppler shift is the change in frequency due to the motion of the mobile. The
maximum Doppler shift fd,max and the coherence time are inversely proportional to each other:

fd,max =
1

Tcoh
=

v

λ
. (2.3)

A further important parameter of a multipath channel is the time delay at the receiver between
the waves traveling along the different paths. The inverse of the time delays is proportional to
the bandwidth of the channel. The coherence bandwidth Bcoh is a measure of the bandwidth over
which the channel has a constant gain and phase shift. If the bandwidth B of the transmitted
signal is larger than the coherence bandwidth Bcoh, the received signal is distorted and we have
a frequency selective channel. Otherwise, the channel is frequency non-selective or flat.

Independent of the impairments of the mobile radio channel, the received signal contains addi-
tive noise due to the thermal noise of the receiver front end and interference from other users.
We will not consider the interference in this work.

2.1.2 Discrete Time Channel Model

The standard discrete time channel model is introduced. This model comprises pulse shaping,
modulation to carrier frequency, physical transmission, and at the receiver perfect time and fre-
quency synchronization, demodulation, matched filtering, and sampling, as shown in Fig. 2.2.
A few basics and the main assumptions are highlighted in the following.

The complex data symbols xn from the symbol alphabet X are processed at the transmitter
as shown in Fig. 2.2. The pulse shaping filter with impulse response gT (t) together with the
modulation interval T determine the spectral characteristics of the transmitted signal that have
to match the restrictions imposed by the communication system and the given communication
channel.

The pulse shaped signals are modulated by a carrier with frequency fc. Quadrature amplitude
modulation (QAM) uses the in-phase and quadrature carriers cos(2πfct) and − sin(2πfct), re-
spectively. The transmitted bandpass signal is given by:

xBP (t) = cos(2πfct) ·
Ns∑
n=1

Re{xn} · gT (t− nT )− sin(2πfct) ·
Ns∑
n=1

Im{xn} · gT (t− nT )

= Re{xLP (t)ej2πfct}, (2.4)

with the equivalent complex lowpass signal

xLP (t) =
Ns∑
n=1

xn · gT (t− nT ), (2.5)
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and the complex symbol xn at time nT , n = 1, . . . , Ns. The signal xBP (t) is transmitted over a
channel modeled by a linear system with impulse response hBP (t, τ) and additive white Gaus-
sian noise (AWGN) nBP (t). The received signal is the convolution of xBP (t) and hBP (t, τ):

yBP (t) =

∫ t

τ=t−τmax

xBP (τ) · hBP (t, t− τ) dτ + nBP (t) = xBP (t) ? hBP (t, τ) + nBP (t), (2.6)

where τmax is the maximum delay experienced by any of the arriving signal components.

The AWGN nBP (t) is defined to have a constant power spectral density N0/2 over the entire
frequency range. It is mathematically convenient to postulate that the signals and noise at the
receiver have passed through an ideal bandpass filter with a bandwidth B large enough to not
distort the signals. The equivalent lowpass noise nLP (t) has then a power spectral density N0

for |f | ≤ 1
2
B and 0 otherwise.

At the receiver, the demodulation is done by multiplying the received signal with the two
quadrature carriers cos(2πfct) and − sin(2πfct). Signal parts at twice the carrier frequency
are removed by a low pass filter and we obtain the lowpass in-phase and quadrature signal com-
ponents. The relation in equation (2.6) can be directly applied to the equivalent lowpass signals
[Pro01]:

yLP (t) = xLP (t) ? hLP (t, τ) + nLP (t) with yBP (t) = Re{yLP (t)ej2πfct}. (2.7)

We omit in the following the subscript LP since only equivalent lowpass signals will be con-
sidered in this work.

Discrete time memoryless
channel model

cos(2πfct)

-sin(2πfct)

-sin(2πfct)

cos(2πfct)

Re{ · }

Im{ · }

xn

yn

nT + τch

Low Pass

Low Pass

nBP (t)

hBP (t)

yBP (t)

xBP (t)

gR(t)

gR(t)

gT (t)

gT (t)

nLP,n

hLP,n

nT + τchj

xn

yn

∑∞
n=−∞ δ(t − nT )

∑∞
n=−∞ δ(t − nT )

Figure 2.2: Bandpass and discrete time baseband channel model.
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The receiver filter gR(t) = c · g∗T (T − t) with a scaling factor c is matched to the pulse shaping
filter at the transmitter to maximize the signal-to-noise ratio. The output of the matched filter is
sampled at time nT + τch, n = 1, . . . , Ns, to obtain the signal yn from the alphabet Y of infinite
size. The delay τch from the channel is neglected in the following.

We arrive at the time discrete channel model used in this work that describes the relation be-
tween the transmitted time discrete samples xn and the received samples yn. We consider only
frequency non-selective channels where the channel is memoryless: The received signal yn de-
pends only on the values of the transmitted signal xn, the channel coefficient hn and the noise
nn at the same time nT . Then we have:

yn = hn · xn + nn. (2.8)

The channel model is adapted such that Es = E{|xn|2} is the average energy per symbol,
Ps = Es/T is the average power of the symbols and E{|nn|2} = N0 is the variance σ2

n of the
complex noise after matched filtering and sampling. Then, both the real and the imaginary part
of nn have zero mean and variance N0/2.

The channel coefficients are normalized to E{|hn|2} = 1 such that 10 · log10(Es/N0) is the
signal-to-noise ratio (SNR) at the receiver in dB. By setting the fading coefficient hn = 1,∀n,
in (2.8), we obtain the AWGN channel model. To simulate a mobile environment, the values
hn should be samples of a curve as given in Fig. 2.1b). For the design and simulation of
communication systems, the two marginal cases of block fading and symbol fading are often
considered for convenience, where hn changes independently after each transmitted data block
or symbol, respectively. The fading coefficients are complex Gaussian distributed and both
the real and the imaginary part of hn have zero mean and variance 1/2; |hn| is then Rayleigh
distributed.

We focus on the scenario where the samples hn and σ2
n are ideally known for all n at the receiver,

i.e. that the receiver has ideal channel state information.

Fig. 2.3 summarizes the main parameters of the discrete time memoryless channel. The channel
input is from the alphabet X , the channel output from the alphabet Y . The probability distri-
bution of x and y is given by p(x) and p(y), respectively. The channel is further specified by
the transition probabilities p(y|x). If the alphabets are of finite size, we have the probabilities
P (x), P (y) and P (y|x).

p(y|x)
x ∈ X

p(x) p(y)

y ∈ Y

Figure 2.3: Discrete time memoryless channel.

With an AWGN or fading channel model as described in equation (2.8), X is often assumed
continuous for theoretical investigations. In practice, the set X comprises discrete symbols of
a signal constellation. The channel output alphabet Y has a continuous distribution. For real
valued signals, the channel transition probability is given by the Gaussian distribution:

p(y|x, h) =
1√
2πσ2

n

e−|y−h·x|2/2σ2
n . (2.9)
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Two other channel models will be of importance in this work: The binary symmetric channel
(BSC) has a binary channel input and output alphabet X = Y = {0; 1}. The channel transi-
tion probabilities P (y|x) for an error probability p are given in Fig. 2.4a). The binary erasure
channel (BEC) has two possible channel input values X = {+1;−1} and three output values
Y = {+1; 0;−1}. With the erasure probability ε, the channel transition probabilities are given
in Fig. 2.4b).

P (0|1) = p

0

P (1|0) = p

11

0

P (1|1) = 1 − p

P (0|0) = 1 − p +1

−1

0 = erasure

P (0| + 1) = ε

P (+1|+ 1) = 1 − ε

P (−1| − 1) = 1 − ε

−1

+1

P (0| − 1) = ε

a) Binary symmetric channel (BSC) b) Binary erasure channel (BEC)

Figure 2.4: BSC and BEC channel models.

2.2 Information Theory
Information theory uses the entropy as a statistical measure to determine the amount of informa-
tion contained in a given amount of data. In this work, information theoretic results are applied
to analyze and derive performance limits for the investigated communication systems. We refer
to [CT91] [Gal68] for a detailed overview about this topic.

2.2.1 Entropy and Mutual Information

The notions of entropy, differential entropy, conditional entropy and mutual information are
briefly reviewed. Let X be a random variable from the alphabet X with realizations x and let
Y be a random variable from the alphabet Y with realizations y. The entropy of X for a finite
size alphabet X is defined as follows:

H(X) =
∑
x∈X

P (x) log2

1

P (x)
= −E{log2 P (x)}. (2.10)

With the logarithm to the base of 2, the entropy can be thought of as the number of bits which
are on average necessary to represent a realization x of X , or as the amount of information
contained in x. The entropy H(X) is maximized if all values of X are equally likely:

max
P (X)

{H(X)} = log2(|X |). (2.11)

For an alphabet X of infinite size, the so-called differential entropy is given by:

h(X) =

∫

X
p(x) log2

1

p(x)
dx = −E{log2 p(x)}. (2.12)

For a real valued X , the differential entropy is bounded by

h(X) ≤ 1

2
log2(2πeVar{X}), (2.13)
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and maximized when X is a zero mean and Gaussian distributed variable with variance σ2
x:

X ∼ NR(0, σ2
x). Then, the maximum differential entropy is

max
p(X)

{h(X)} =
1

2
log2(2πeσ2

x). (2.14)

For a circularly symmetric complex Gaussian distributed variable X with X ∼ NC(0, σ2
x), the

variance of the real and imaginary part is σ2
x/2. Then, the differential entropy is equal to the

sum of the differential entropies of the real and imaginary part. With equation (2.14) we have:

max
p(X)

{h(X)} = log2(πeσ2
x). (2.15)

The conditional entropies of X given Y are defined as follows:

H(Y |X) =
∑
y∈Y

∑
x∈X

P (y, x) log2

1

P (y|x)
= −EXY {log2 P (y|x)},

h(Y |X) =

∫

Y

∫

X
p(y, x) log2

1

p(y|x)
dx dy = −EXY {log2 p(y|x)}.

(2.16)

If X and Y are independent, the amount of information H(Y |X) contained in the realization
y is equal to H(Y ), since x does not have any information about y. On the other hand, the
conditional entropy H(Y |X) is zero if X = Y holds.

The mutual information (MI) between X and Y is defined as:

I(X; Y ) =
∑
y∈Y

∑
x∈X

P (y, x) log2

P (y, x)

P (y)P (x)
= EXY

{
log2

P (y, x)

P (y)P (x)

}
,

I(X; Y ) =

∫

Y

∫

X
p(y, x) log2

p(y, x)

p(y)p(x)
dx dy = EXY

{
log2

p(y, x)

p(y)p(x)

}
.

(2.17)

The mutual information I(X; Y ) is the amount of information y provides about x and vice
versa. If X and Y are independent, the mutual information is zero. I(X; Y ) is upper bounded
by the minimum of H(X) and H(Y ). The mutual information is related to the entropy and
conditional entropy (and in a similar way to the differential entropy) as follows:

I(X; Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X). (2.18)

Note that in this work, we will often compute the conditional entropy and mutual information
for an alphabet X of finite size and an alphabet Y of infinite size in equations (2.16) and (2.17).

2.2.2 Limits on Data Transmission

Shannon’s famous channel coding theorem states that there is a fundamental limit on the data
transmission rate Rt for a given channel [Sha48]. Rt has the unit of information bit per sym-
bol and is the amount of information measured in bit contained in a transmitted channel input
symbol x ∈ X . The channel coding theorem states that Rt is upper bounded by the channel
capacity: Rt < C [Sha48]. For a memoryless channel, the channel capacity C is equal to the
maximum mutual information over all input distributions p(X) between the channel input X
and channel output Y :

C = max
p(x)

I(X; Y ). (2.19)
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We use the term capacity in a wide sense and investigate the maximum achievable data transmis-
sion rate for different constraints. We consider the constraints of a maximum transmitted power
(power constrained capacity), a finite size channel input alphabet (constellation constrained ca-
pacity), different probability distributions of the channel input alphabet, and different receiver
architectures and components (receiver constrained capacity).

Power constrained capacity

If no constraint on the power of the channel input signal X is set, there is no capacity limit
and C → ∞. Therefore, we always consider the capacity for a limited power. The power
constrained capacity CR of a real-valued AWGN channel Y = X + N with N ∼ NR(0, σ2

n)
is obtained from equation (2.19) by determining the distribution p(x) that maximizes I(X; Y ).
Since N and X are independent, with equation (2.14) and a zero mean X with variance σ2

x we
write:

I(X; Y ) = H(Y )−H(Y |X) = H(Y )−H(X + N |X) = H(Y )−H(N)

≤ 1

2
log2(2πeVar{Y })− 1

2
log2(2πeσ2

n)

=
1

2
log2(2πe(σ2

x + σ2
n))− 1

2
log2(2πeσ2

n)

=
1

2
log2

(
1 +

σ2
x

σ2
n

)
=

1

2
log2

(
1 +

2Es

N0

)
= CR. (2.20)

We have equality if the received signal Y is Gaussian distributed with Y ∼ NR(0, σ2
x + σ2

n).
With a zero mean Gaussian noise N , this implies that the pdf of the transmitted signal should
be Gaussian too: X ∼ NR(0, σ2

x). The units of the capacity given in equation (2.20) are bits
per channel use. Since the discrete time channel can be used any T = 1/(2B) seconds with an
appropriate pulse shaping filter, B is the bandwidth, the capacity C′R in bits per second is

C′R = B log2

(
1 +

2Es

N0

)
. (2.21)

The complex AWGN channel with X ∼ NC(0, σ2
x) and N ∼ NC(0, σ2

n) can be considered as
two independent, parallel, real AWGN channels due to the circular symmetry of the complex
channel noise. Then, the capacity in bits per channel use is computed with equation (2.15) to:

CC = log2

(
1 +

σ2
x

σ2
n

)
= log2

(
1 +

Es

N0

)
. (2.22)

The power constrained capacities of a real and complex AWGN channel are shown in Fig. 2.6.
The figure illustrates that we aim at operating close to the channel capacity to either reduce the
transmitted power at a given data rate or increase the data rate at a given transmitted power.

A symbol wise flat fading channel can be interpreted as an AWGN channel with a transmitted
power attenuated or amplified by the fading value h. If h is known at the receiver, the capacity
is obtained by averaging over the fading states:

CR,f = Eh

{
1

2
log2

(
1 +

h · σ2
x

σ2
n

)}
and CC,f = Eh

{
log2

(
1 +

h · σ2
x

σ2
n

)}
, (2.23)

for real and complex channel inputs, respectively.
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The capacity of a BSC channel with error probability p is [CT91]

C = max
p(x)

H(Y )−H(p) = 1−H(p), (2.24)

with uniformly distributed binary random variables X and Y . The capacity of a BEC channel
with erasure probability ε is likewise achieved with a uniformly distributed X [CT91]:

C = max
p(x)

H(Y )−H(ε) = 1− ε. (2.25)

Constellation constrained capacity

An infinite size channel input alphabet X is not of practical relevance for digital communica-
tions. Therefore, we constrain the input alphabet to signal points x taken from a signal alphabet
X of finite size |X |; M bits are associated to each signal point from the signal constellation of
size |X | = 2M . The placement of the signal points in the real or complex plane strongly affects
the capacity. For the moment, we apply the additional constraint of a uniform probability dis-
tribution of the signal points. The optimization of the signal point probabilities is investigated
in Chapter 6.

A combined phase and amplitude modulation with equally probable signal points on concentric
rings was proposed in [Cah60]. Based on this work, a quadrature amplitude modulation (QAM)
signal constellation was first introduced in [CG62]. Foschini et al. investigated in [FGW74]
signal constellations optimized for Gaussian channels. Recent wireless standards use standard
signal constellations including amplitude shift keying (ASK), phase shift keying (PSK) and
QAM schemes. Fig. 2.5 depicts some common signal alphabets. As example, the GSM ex-
tension EDGE (enhanced data for GSM evolution [3GPP01]) has the option to use 8PSK mod-
ulation, the UMTS extension HSDPA (high speed downlink packet access [3GPP06a]) allows
16QAM for high data rates, IEEE 802.11 WLAN [IEEE99] (wireless local area network) and
IEEE 802.16 WiMAX [IEEE04] (worldwide interoperability for microwave access) standards
allow up to 64QAM signal constellations.

QPSKBPSK 8PSK

64QAM32QAM16QAM

Figure 2.5: Signal constellations.
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The constellation constrained capacity with equally probable signal points is obtained directly
from equation (2.17). For the signal constellation X we write using Bayes’ rule:

C = I(X; Y ) = EX,Y

{
log2

p(y|x)

p(y)

}
. (2.26)

p(y|x) is the channel transition probability and

p(y) =
∑
x∈X

P (x) · p(y|x). (2.27)

Fig. 2.6 depicts the numerically obtained constellation constrained capacity with an AWGN
channel and different signal constellations X . The important fact to note is that if we want to
achieve a high bandwidth efficiency at large SNR, it is essential to apply high order modulation
schemes with a large number of signal points.
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Figure 2.6: Capacity with AWGN channel and different channel input alphabets X ; δ is the
gain at Rt = 1.8 bits per channel use for using 16QAM instead of QPSK modulation.

Receiver constrained capacity

The considered channel can be defined to include receiver elements, i.e. Y is not the physical
channel output but the output of e.g. a detector at the receiver. If the detector does not use the
optimal decision rules described in the next Section 2.3, information is lost and the receiver con-
strained capacity is reduced. An example is the receiver constrained capacity of bit-interleaved
coded modulation (BICM) without iterative demapping and decoding shown in Fig. 2.21.
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2.3 Optimal Decision Rules

Optimal decision rules for the receiver in a communication system are discussed in this Section.
In general, the receiver has the observation vector y and would like to find the corresponding
most probable bit sequence v̂ or specific bit value v̂i at time index i. Then, the sequence error
rate or the bit error rate is minimized, respectively.

The receiver has to exploit the dependencies between the elements in y and v to output the
optimal solution. Table 2.1 summarizes for some wide spread applications the values of y and
v that should be considered for optimal decoding and detection.

Application Observation vector y Estimated bit vector v̂

Channel decoder N coded bits K information bits
Demapper, 2M -ary signal constellation 1 complex symbol M bits
Equalizer, channel with L taps and ter-
minating sequence

N + L complex symbols M ·N bits

MIMO detection, nR receive antennas,
rate-1 space time mapper

nR complex symbols M · nR bits

CDMA multiuser detection, K users,
spreading code of length R

R complex symbols M ·K bits

Table 2.1: Values of the observation vector y and estimated bit vector v̂ for optimal detection
and for different applications.

The most probable sequence v̂ is in general obtained by

v̂ = argmax
∀v

P (v|y) = argmax
∀v

P (y|v)P (v), (2.28)

assuming that the probability p(y) is independent of the investigated v. The bit error probability
is minimized if the bit estimate v̂i is computed with symbol-by-symbol decoding:

v̂i = argmax
v∈{0,1}

P (vi = v|y) = argmax
v∈{0,1}

∑

∀v:vi=v

P (y|v)P (v). (2.29)

In this work, we focus on symbol-by-symbol decision rules.

The probabilities P (v|y) and P (vi|y) are called a posteriori probabilities (APP) and P (v) a
priori probabilities in this context. Therefore, the algorithms implementing the equations above
perform maximum a posteriori probability (MAP) decoding. If the a priori probabilities are not
considered, we have maximum likelihood (ML) decoding.

We distinguish between hard and soft decision decoding. With hard decision decoding, the size
of the considered channel output alphabet Y is equal to the size of the input alphabet X . With
soft decision decoding, the channel state information is incorporated in the decoding process.
Then, the channel output alphabet is larger than the channel input alphabet and the reliability of
the received values is taken into account to improve the performance. In this work, we focus on
soft decision decoding.
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Log-Likelihood Algebra

Instead of probabilities, it is often convenient to use log-likelihood ratios (LLRs) defined as
[HOP93]

L(vi) = log
P (vi = 0)

P (vi = 1)
. (2.30)

The sign of L(vi) corresponds to its hard decided binary value and the magnitude |L(vi)| repre-
sents a measure for the reliability of the hard decision. The bit probabilities are obtained from
the LLRs by evaluating

P (vi) =
1

1 + e−L(vi)
· e−vi·L(vi) (2.31)

or

P (vi) =
e−L(vi)/2

1 + e−L(vi)
· eṽi·L(vi)/2 with ṽi =

{
+1, vi = 0,
−1, vi = 1.

(2.32)

The so-called soft-bit is the expected value of the bit vi and is given by

E{vi} =
eL(vi) − 1

eL(vi) + 1
= tanh

(
L(vi)

2

)
. (2.33)

The error probability of the hard decisions can be evaluated from the magnitude |L(v̂i)| as
follows:

P (v̂i 6= vi) =
1

1 + e|L(v̂i)| . (2.34)

Optimal Decision Rules using LLRs

For symbol-by-symbol decoding, the optimum decision principle using LLRs can be written as

v̂i =

{
0, L(v̂i) ≥ 0,
1, L(v̂i) < 0.

(2.35)

The LLR L(v̂i) for a given channel observation y is computed as follows:

L(v̂i) = L(vi|y) = log
P (vi = 0|y)

P (vi = 1|y)
= log

∑
∀v:vi=0 P (y|v)P (v)∑
∀v:vi=1 P (y|v)P (v)

. (2.36)

It is convenient to define a metric Λ(v) to write

L(v̂i) = log

∑
∀v:vi=0 eΛ(v)

∑
∀v:vi=1 eΛ(v)

with Λ(v) = log P (y|v)P (v). (2.37)

A low complexity approximation of the MAP estimation is the max-log MAP approach. Using
the approximation log(

∑
j exj) ≈ maxj(xj), we have:

L(v̂i) ≈ max
∀v:vi=0

(Λ(v))− max
∀v:vi=1

(Λ(v)) . (2.38)

We obtain the optimum log-MAP by adding a correction term as described in [RVH95]. This
correction term can be efficiently pre-computed and stored in a look-up table.
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Channel Decoder

As described in detail in the next Section 2.4, the channel encoder adds redundancy to protect
the information bits against channel impairments by mapping a length K information bit se-
quence to a length N code word, N ≥ K. Consider a memoryless channel and binary BPSK
modulation where the code bits cn ∈ {0; 1} are mapped to the transmitted symbols xn ∈ {±1}
according to the mapping rule 0 → +1 and 1 → −1. The channel decoder uses the chan-
nel observations y = (y1, . . . , yNs) corresponding to the code bits c = (c1, . . . , cN), Ns = N
for BPSK, to obtain estimates about the information bits u = (u1, . . . , uK). The LLR for the
information bit estimate ûi is:

L(ûi) = log

∑
∀u:ui=0 eΛ(u)

∑
∀u:ui=1 eΛ(u)

, (2.39)

with the metric

Λ(u) =
N∑

n=1

log p(yn|xn) +
K∑

j=1

log P (uj). (2.40)

Using equation (2.31) and omitting the terms that are independent of the investigated sequence
u, we rewrite the metric using LLRs:

Λ(u) = −
N∑

n=1

cnL(yn|xn)−
K∑

j=1

ujL(uj). (2.41)

For iterative decoding, it is of interest to separate the information into a priori, channel and
extrinsic information. For a systematic code where ci = ui for i = 1, . . . , K, we have:

L(ûi) = log

∑
∀u:ui=0(

∏N
n=1 p(yn|xn))(

∏K
j=1 P (uj))∑

∀u:ui=1(
∏N

n=1 p(yn|xn))(
∏K

j=1 P (uj))

= log

∑
∀u:ui=0(

∏N
n=1:n6=i p(yn|xn))(

∏K
j=1:j 6=i P (uj))∑

∀u:ui=1(
∏N

n=1:n6=i p(yn|xn))(
∏K

j=1:j 6=i P (uj))
+

log
p(yi|xi = +1)

p(yi|xi = −1)
+ log

P (ui = 0)

P (ui = 1)

= Le(ui)︸ ︷︷ ︸
extrinsic inform.

+ Lc(ui)︸ ︷︷ ︸
channel inform.

+ La(ui)︸ ︷︷ ︸
a priori inform.

(2.42)
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Demapper

The demapper uses the received value yn of the transmitted symbol xn from a 2M -ary signal
constellation to obtain estimates about the corresponding bits cn,m, m = 1, . . . , M . The LLR
for the bit estimate ĉn,m is

L(ĉn,m) = log

∑
∀cn:cn,m=0 eΛ(cn)

∑
∀cn:cn,m=1 eΛ(cn)

, (2.43)

with the metric

Λ(cn) = log p(yn|xn) +
M∑

m=1

log P (cn,m), (2.44)

where the bit sequence cn is mapped to the symbol xn = µ(cn) according to the bit-to-symbol
mapping µ. Using equation (2.9) for the channel transition probability p(yn|xn), equation (2.31)
and omitting the terms that are independent of the investigated sequence cn, we rewrite the
metric using LLRs:

Λ(cn) = −|yn − hnxn|2
2σ2

n

−
M∑

m=1

cn,m · L(cn,m). (2.45)

To separate the information into extrinsic and a priori information, we rewrite:

L(ĉn,m) = log

∑
∀cn:cn,m=0 p(yn|xn)

∏M
j=1 P (cn,j))∑

∀cn:cn,m=1 p(yn|xn)
∏M

j=1 P (cn,j))
(2.46)

= log

∑
∀cn:cn,m=0 p(yn|xn)

∏M
j=1:j 6=m P (cn,j))∑

∀cn:cn,m=1 p(yn|xn)
∏M

j=1:j 6=m P (cn,j))
+ log

P (cn,m = 0)

P (cn,m = 1)
. (2.47)

= Le(cn,m)︸ ︷︷ ︸
extrinsic inform.

+ La(cn,m)︸ ︷︷ ︸
a priori inform.

(2.48)

2.4 Error Control Coding

When data is transmitted over unreliable channels, error-free reception of the transmitted sym-
bols is not guaranteed. To detect and correct symbols falsified by the channel, we should intro-
duce redundancy in the transmitted data using forward error correction (FEC) techniques. We
proceed as follows: The data stream of information bits is partitioned into information words
of fixed length K. Each information word is mapped to a code word of length N . Since redun-
dancy is added, we have N ≥ K and out of the 2N possible bit sequences of length N , there
are only 2K valid code words. The set C of valid code words is called channel code. The code
rate is defined by

R =
K

N
. (2.49)

The coding redundancy is 1−R. In combination with a signal constellation with M bits associ-
ated to each symbol, the data transmission rate is Rt = R ·M . Then, the energy per information
bit is given by

Eb = Es/(R ·M). (2.50)



18 Chapter 2 ¥ Fundamentals

We consider first BPSK modulation with M = 1 and Rt = R. The combination of channel
coding and high order modulation is investigated in Section 2.5.

We reviewed the channel coding theorem in Section 2.2 that states, that arbitrary small trans-
mission error rates are possible for a large code word length N as long as the data transmission
rate Rt is smaller than the capacity C. However, this theorem does not say anything about how
to design a set of code words C that achieves this performance with feasible encoding and de-
coding complexity. The code C can be constructed by randomly selecting 2K binary codewords
out of the 2N possible length N bit sequences. This approach yields a so-called random code.
However, the complexity and storage requirements of a random code grow exponentially with
the information word length and are impractical for real communication systems.

The aim of forward error coding (FEC) techniques is to introduce structures in the code that
enable a good trade-off between feasible complexity and strong error protection. Other aims
include good performance for small and medium block length, efficient implementation possi-
bilities, and high adaptability through a variable code rate support.

We refer to [LC04] [JZ99] [Fri95] [Bos98] for an extensive coverage of FEC techniques. In this
thesis, we focus on convolutional codes and concatenations of these codes.

2.4.1 Convolutional Codes

Convolutional codes were introduced by Elias [Eli55] and are now widely used in wireless
communications. These codes are highly structured, allowing a simple implementation and a
good performance with short block length, but they are still far away from reaching the capacity
limit predicted by Shannon.

Convolutional codes are a specific class of binary linear codes. A code is linear if the sum c+c′

of any two length N code words c, c′ ∈ C is again a code word in C. It follows that the code C
is a K dimensional subspace of the vector space of all 2N binary length N vectors. K linearly
independent code words in C form the basis of the subspace C, i.e. any code word c ∈ C can
be uniquely expressed as a linear combination of these K linearly independent vectors. These
K base vectors entirely define the code and are commonly arranged as the rows of a K × N
generator matrix G. This offers a convenient linear encoding rule from the set of information
words to the set of code words:

c = u ·G. (2.51)

The columns of G correspond to the code word positions, the rows to the information word
positions. The encoding mapping is systematic if the K information bits are contained in the
code word c.

Alternatively, the code C may be defined as the null space of a (N−K)×N parity check matrix
H:

c ·HT = 01×(N−K), (2.52)

where 01×(N−K) is the all-zero vector of length N − K. The columns in H correspond to the
code word positions, the rows to the parity check equations fulfilled by a valid code word.

The code words of a convolutional code are the output sequence of a linear encoder circuit fed
by the information bits. This code construction sets additional constraints on the characteristics
of the corresponding G and H matrices.
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Consider as example the convolutional encoder depicted in Fig. 2.7. At any given time i, an
information bit ui is shifted into the circuit and two coded bits ci = (ci,1, ci,2) are generated
from ui and the two previous input bits ui−1 and ui−2.

ui

ci,1

ci,2

Figure 2.7: Rate 1/2 convolutional encoder.

We only consider convolutional codes with one encoder input and Nc decoder outputs, resulting
in a code rate of R = 1/Nc. Convolutional codes of rate kc/Nc are conveniently constructed
by periodically puncturing a low rate mother code. The puncturing pattern is usually defined
through a Nc × pc puncturing matrix P for a the puncturing period pc.

Example 1 For the encoder given in Fig. 2.7, we apply as example the puncturing matrix

P =

(
1 1 1 0
1 0 1 1

)
. (2.53)

Then, the 4th bit of the first decoder output and the 2nd bit of the second output are deleted. This
puncturing pattern of length pc = 4 is periodically repeated. The code rate of the punctured
code is R = 2/3.

The semi-infinite sequence u = (u1, u2, . . . ) is most conveniently described by the series

u(D) =
∞∑
i=1

ui ·Di−1. (2.54)

Then, the jth output of a rate R = 1/Nc convolutional encoder is given by the series

cj(D) = u(D) · gj(D), j = 1, . . . , Nc, (2.55)

where gj(D) are the transfer functions characterizing the convolutional code. The encoding
equation can be compactly described by

c(D) = u(D) ·G(D), (2.56)

with c(D) = (c1(D), . . . , cNc(D)) and the generator matrix G(D) = (g1(D), . . . , gNc(D)).

Example 2 For the encoder given in Fig. 2.7, we have g1(D) = 1+D+D2, g2(D) = 1+D2,
and G(D) = (1 + D + D2, 1 + D2).

In general, the transfer function gj(D) may be rational:

gj(D) =
fj(D)

qj(D)
=

fj,0 + fj,1D + . . . fj,mDm

1 + qj,1D + · · ·+ qj,mDm
. (2.57)
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The code memory Mc is the largest degree of fj(D) and qj(D):

Mc = max
j=1,...,Nc

{deg fj(D), deg qj(D)}. (2.58)

The encoding circuit of the single-input, single-output linear system with transfer function
gj(D) in its controller canonical form is depicted in Fig. 2.8 [JZ99].

ui

ci

f0 f1 f2

q1 q2 qm

fm

Figure 2.8: Controller canonical form of a rational transfer function.

If the encoder does not contain a feedback path, we have a feedforward encoder, otherwise we
have a feedback or recursive encoder. A non-systematic feedforward encoder with generator
matrix G(D) = (g1(D), g2(D)) has an equivalent systematic recursive encoder. The rational
transfer functions

g̃1(D) = 1,

g̃2(D) = g2(D)/g1(D), (2.59)

yield the same set of codewords and thus, the same convolutional code. However, the mapping
of information bits to code words differs. The recursive systematic encoder corresponding to
the code generated by the encoder given in Fig. 2.7 is depicted in Fig. 2.9.

ui

ci,1

ci,2

Figure 2.9: Rate 1/2 convolutional recursive systematic encoder.

Example 3 For the encoder given in Fig. 2.9, we have g̃1(D) = 1, g̃2(D) = 1+D2/(1+D+

D2), and G(D) = (1, 1 + D2/(1 + D + D2)). The code memory is Mc = 2.

Convolutional codes are compactly described in the widely used octal notation. Then, the coef-
ficients of the polynomials fj(D) and qj(D) from equation (2.57) are expressed in octal form,
where fj,0 is the most significant bit (MSB).
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Example 4 In the example of Fig. 2.7, the coefficients of the generator matrix G(D) = (1 +

D + D2, 1 + D2) are given in octal notation by (7, 5). The recursive code in Fig. 2.9 is denoted
by (1, 5/7). A code rate R = 1/2, memory Mc = 3 code with g1(D) = 1 and g2(D) =
1 + D + D3/(1 + D2 + D3) is compactly described by (1, 15/13) in octal notation.

Since convolutional codes are linear codes, the encoding can be described with the binary gen-
erator matrix G:

c = (c1, c2, . . . ) = (u1, u2, . . . ) ·G = u ·G, (2.60)

with, for a feedforward encoder, a banded generator matrix of the type:

G =




G0 G1 G2 · · · GMc

G0 G1 G2 · · · GMc

G0 G1 G2 · · · GMc

. . . . . . . . .


 . (2.61)

The 1×Nc submatrix Gl governs how the input ui−l affects the output ci = (ci,1, ci,2, . . . , ci,Nc):

ci =
Mc∑

l=0

ui−l ·Gl. (2.62)

One column in the generator matrix corresponds to the impulse response of the encoder shift
register. Note that the encoding operation in equation (2.62) is essentially a convolution of
the impulse response Gl, l = 0, . . . , Mc of the encoder with the information sequence, which
illuminates the name convolutional codes.

With a recursive encoder, the impulse response is infinite and the generator matrix has the
following structure:

G =




G0 G1 G2 G3 G4 · · ·
G0 G1 G2 G3 · · ·

G0 G1 G2 · · ·
. . . . . . . . .


 . (2.63)

Example 5 For the encoder given in Fig. 2.7, we have G0 = (1, 1), G1 = (1, 0), and
G2 = (1, 1) resulting in:

G =




11 10 11
11 10 11

11 10 11
. . . . . . . . .


 . (2.64)

With the recursive encoder of Fig. 2.9, the impulse response of the first output (systematic part)
is 1, 0, 0, . . . and the impulse response of the second output (parity part) is the infinite repetition
of the sequence 1, 1, 1, 0, 1, resulting in the generator matrix:

G =




11 01 01 00 01 · · ·
11 01 01 00 · · ·

11 01 01 · · ·
11 01 · · ·

11 · · ·
. . .




. (2.65)
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We described the encoder output as a function of the present and previous encoder input bits.
The encoder output can also be given as a function of the present input and the content of
the memory elements defined as the encoder state at time index i. A widely used graphical
representation of the sequence of states traversed by the encoder for a given input sequence is
the trellis. The trellis depicts the 2Mc possible states for time i and i+1 and the state transitions
through the 2K branches leaving and entering each state. A trellis section for the encoder of
Fig. 2.9 is shown in Fig. 2.10.
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Figure 2.10: Trellis section of the rate R = 1/2, memory Mc = 2, (1, 5/7) convolutional code.

The trellis need to be terminated to the zero state at the end of a code word by appending Mc

deterministic bits to the information bits, resulting in a slightly decreased code rate. For a large
code word length, this rate decrease is negligible. With an input sequence

u = (u1, . . . , uK), (2.66)

the coded bits are multiplexed to the sequence

c = (c1, . . . , cN). (2.67)

The code rate of the terminated code is then

R =
K

N
=

K

Nc(K + Mc)
≈ 1

Nc

(2.68)

for a large block length K À Mc. For a short block length, tail-biting convolutional codes may
be used to avoid the termination, see [Wei01] and references therein for an extensive coverage.

The Viterbi algorithm [Vit67] is an efficient implementation of the optimum ML word based
decoding for convolutional codes. The basic concept is the sequential computation of the metric
and the tracking of survivor pathes in the trellis. The algorithm was extended in [HH89b] for
soft-outputs (SOVA algorithm).

We use in this work the BCJR algorithm, an abbreviation due to the initials of the inventors
Bahl, Cocke, Jelinek, and Raviv [BCJR74]. The BCJR algorithm performs MAP symbol based
decoding using a recursive forward and backward calculation of state probabilities over the
trellis.

A low complexity approximation of the BCJR algorithm is the max-log BCJR algorithm [RVH95]
[KB90] that uses the principle given in equation (2.38). Only one path is tracked in the forward
and backward recursion of the BCJR algorithm. We can interpret the max-log BCJR as two
Viterbi algorithms, one running in the forward direction, one in the backward direction. The



2.4 Error Control Coding 23

hard decisions are identical to the standard Viterbi algorithm with a maximum decision delay.
The addition of a correction term in the max-log BCJR algorithm [RVH95] yields the perfor-
mance of the optimal BCJR and is convenient to implement in a real communication system.
The correction term can be efficiently implemented with a look-up table.

The error probability performance of a convolutional code is directly related to its distance
spectrum. The distance spectrum {ad} specifies the number of code bit sequences of Hamming
weight d that leave the all zero state of the trellis at time i = 1 and end in the all zero state
for some i > 1. The first non-zero ad, d = 2, 3, . . . specifies the so-called free distance df

of the code. The cumulated Hamming weight of the ad information bit sequences generating
weight d code bit sequences is denoted by cd. Note that for a terminated convolutional code, the
free distance df does not depend on the block length and that the bit error probability is nearly
independent of the block length.

2.4.2 Parallel and Serial Concatenated Convolutional Codes

Instead of using a single code, several codes may be concatenated and sequentially decoded
[For66]. The main advantage is that the computational demanding task of decoding the strong
overall code is broken into simpler computationally feasible sequential decoding steps. An at-
tractive solution first implemented for space communications was the concatenation of a Reed-
Solomon code as outer code with a convolutional code as inner code. The Viterbi decoder
will occasionally output bursts of errors and therefore, the Reed-Solomon code is well suited as
outer code to reduce the error rate. A further improvement is to insert an interleaver between
the two codes and to introduce a feedback from the Reed-Solomon code to the convolutional
code (”reiterated-decoding” [HOP93]).

The breakthrough towards capacity approaching codes was the invention of the so-called turbo
codes that comprise iterative decoding of parallel concatenated convolutional codes (PCCC)
[BGT93]. The astonishing performance of 0.5dB from to the Shannon limit was presented for
a code of rate R = 1/2 transmitted over an AWGN channel. The main concept of the proposed
system is to iteratively exchange extrinsic information between the constituent soft-in/soft-out
decoders of concatenated codes separated by interleavers. Iterative decoding of serial concate-
nated convolutional codes (SCCC) was investigated in [BDMP98]. The successive exchange of
extrinsic information is now commonly understood as an instance of the sum-product algorithm
[KFL01].

Parallel Concatenated Codes

Fig. 2.11 depicts the encoder of a rate R = 1/3 parallel concatenated turbo code. The infor-
mation bits are encoded by a first systematic R = 1/2 encoder. An interleaved version of the
information sequence is encoded by a second systematic R = 1/2 encoder. Finally, the code
word is formed by the information bits and the two parity sequences of both encoders. The
interleaver aims at generating independent parity sequences.

The originally proposed turbo code employed two identical systematic convolutional encoders
[BGT93]. Several other parallel code constructions have been proposed, including multiple
concatenated turbo codes [DP95], asymmetric turbo codes [TCMC99] or non-systematic turbo
codes [CTC00] [Brä04].
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Encoder 2
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u
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Π
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Figure 2.11: Encoding circuit of a parallel concatenated code.

A decoding circuit for a parallel concatenated code is shown in Fig. 2.12. The two constituent
codes are decoded alternatively using soft-in/soft-out symbol based MAP decoding, e.g. the
BCJR algorithm for convolutional codes. Each decoder uses the extrinsic information on the
information bits of the other decoder as a priori information. After a decent number of iterations,
usually less than 15, no improvement by further iterations is achieved, the decoder converges
and outputs the computed a posteriori estimate.

Decoder 1 Decoder 2
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Π
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Π
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Figure 2.12: Decoding circuit for a parallel concatenated code; L(û), Lc(u), La(u), and
Le(u) denote the a posteriori, channel, a priori and extrinsic information, respectively;
Le(u) = L(û)− Lc(u)− La(u), see equation (2.42).

The turbo code proposed in [BGM98] and used in the UMTS physical layer standard [3GPP06b]
has two systematic constituent convolutional codes of memory 3 with generator matrix
G(D) = (g1(D), g2(D)) and

g1(D) = 1; g2(D) =
1 + D + D3

1 + D2 + D3
. (2.69)

As mentioned in Example 4, this corresponds to (1, 15/13) in octal notation.

To highlight the relation to general linear codes, the generator matrix G of the overall PCCC is
derived. We start by constructing the following equivalent PCCC matrix:

G′ = (IK , G1, Π ·G2) , (2.70)

where IK is the K ×K identity matrix, G1 and G2 are the K ×K generator matrices for the
rate R = 1 parity part with the upper triangular structure given in equation (2.63), and Π is
a K × K matrix defining the interleaving. The code termination is not considered here. By
rearranging the columns of G′ according to the multiplexing of the systematic and parity bits
of the two encoders, we obtain the generator matrix G of the overall PCCC.
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Serial Concatenated Codes

The encoder of a serially concatenated code is depicted in Fig. 2.13. The coded bits of the outer
encoder are interleaved and fed as information bits to the inner encoder.

Outer Encoder Inner Encoder
Π

c(o) u(i) c(i)u(o)

Figure 2.13: Encoding circuit of a serial concatenated code.

The decoding algorithm shown in Fig. 2.14 has several differences to the one for parallel con-
catenated codes: the outer decoder receives no direct channel information, the inner decoder
therefore forwards the extrinsic information Le(u

(i)) = L(û(i)) − La(u
(i)) that includes the

channel information, see equation (2.42). The extrinsic information on the inner information
bits is the a priori information of the outer coded bits. The outer decoder feed back the extrinsic
information on the outer coded bits to the inner decoder.

The inner code needs to be recursive in order to achieve the so-called interleaver gain
[BDMP98]. Then, the decrease of the error rate with the code word length is unbounded. The
outer code should have a large free distance and a good distance spectrum.

Inner Decoder Outer Decoder
Lc(c

(i)
)

Π−1

Le(c
(o)

)La(u
(i)

)

L(û(o)
)

Le(u
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) La(c
(o)

)

Π

Figure 2.14: Decoding circuit for a serial concatenated code. L(û), Lc(c), La(u), and
Le(u) denote the a posteriori, channel, a priori and extrinsic information, respectively;
Le(u) = L(û)− La(u).

As for the PCCC, we can easily give the generator matrix of the overall code:

G =
(
G(o) ·Π ·G(i)) , (2.71)

where Π is a square matrix defining the interleaving and G(o) and G(i) are the generator matrices
of the outer and inner encoder, respectively.

The overall serial or parallel concatenated code has less structure and more randomness than
the simple convolutional code. The convolutional code has a satisfactory performance for short
block length, the concatenated code approaches the capacity for large block length.

There is a trade-off between a code with a random-like structure for capacity approaching per-
formance with large block length and high complexity decoding vs. a well structured code for
good performance with short block length and low complexity decoding. Random codes are the
marginal example for codes without any structure that approach capacity for very large block
length, but with impractical complexity. Low-density parity check (LDPC) codes [Gal62] have
attracted great attention in recent research and standardization work and can be classified as
more random than concatenated convolutional codes with in general a better performance for
very large block length.
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2.4.3 Iterative Decoding in Communication Systems

The concept of iterative decoding has proven to be valid for a large variety of decoding and
detection problems in communication systems [Hag97]. Table 2.2 gives an overview of some
applications of the so-called turbo principle for serial concatenated systems.

application inner code outer code
serial code concatenation FEC en-/decoder FEC en-/decoder

turbo equalization FEC en-/decoder Multipath channel / equalizer
Turbo BICM FEC en-/decoder Mapper/demapper
Turbo MIMO FEC en-/decoder Mapper/MIMO detector

Turbo multiuser detection FEC en-/decoder Multiuser channel / detector
Turbo source channel coding source en-/decoder FEC en-/decoder

LDPC code check nodes variable nodes
Joint network channel coding network code FEC en-/decoder

Table 2.2: Some applications of the turbo-principle [Hag04].

2.5 Coded Modulation

Recall that the data transmission rate is Rt = R · M , where R is the code rate and M is the
number of bits associated to one transmitted symbol. To achieve high data rates at good channel
conditions, we have to use large signal constellations since the code rate is reasonably limited
to R < 1.

Furthermore, from an information theoretical point of view, it is preferable to use large signal
constellations with low rate channel codes than small signal constellations with a high rate
code to transmit at a specific data rate Rt. In the example of Fig. 2.6 and for a data rate of
Rt = M ·R = 1.8 bits per channel use, it would be better to use 16QAM (M = 4) with a rate
R = 9/20 code instead of QPSK (M = 2) with a rate R = 9/10 code. In practice, smaller
signal constellations with code rates larger than R = 1/4 are often used due to complexity
issues, synchronization problems or sensitivity to non-linear distortions.

For a good overall performance, we have to efficiently combine high order modulation for high
data rates with strong channel coding schemes for high reliability. The success of the first
attempts to directly combine binary codes with high order modulation has been decent, and
for increasing spectral efficiency, only slight coding gains over uncoded schemes with smaller
signal constellations were possible to achieve.

To overcome this unsatisfactory performance, Massey proposed in 1974 to jointly design cod-
ing and modulation [Mas74] and thus founded the field of coded modulation. In 1976/77,
Ungerböck presented trellis coded modulation (TCM) [Ung76] [Ung82] and Imai proposed
multilevel coding (MLC) [IH97] [WFH99] as powerful and applicable coded modulation
schemes. In both approaches, an Euclidean distance measure was optimized instead of the com-
monly used Hamming distance in channel coding. In 1992, Zehavi introduced bit-interleaved
coded modulation (BICM) [Zeh92], that is nothing else than a serial concatenation of a code,
an interleaver and a mapper. A thorough analysis performed by Caire, Taricco and Biglieri in
[CTB98] revealed that very close to capacity performance is possible with BICM and Gray map-
ping. Iterative decoding of BICM, so-called BICM-ID was introduced in [LR97] and [tBSY98a]
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to achieve a good performance with simple codes in combination with carefully chosen map-
pings different from Gray.

Obviously, BICM is nothing else but the traditional approach used before Massey introduced the
field of coded modulation. The question arises what were the reasons for the poor performance
of the traditional approach in the past? As remarked in [HWF98], the poor overall performance
is due to the weak binary channel coding schemes and not to an improper combining of coding
and modulation. The distance to capacity limits with the traditional schemes is approximately
similar for different bandwidth efficiencies. However, the gap between uncoded transmission
and capacity is smaller for high bandwidth efficiency, resulting in a smaller coding gain.

Nevertheless, for the innovative iterative schemes like BICM-ID, it is once again crucial to
jointly design coding and modulation.

The design guidelines for all coded modulation schemes result from the following Chernoff
upper bounds on the pairwise error probability resulting from the equations (B.16), (B.5) and
(B.6) derived in Appendix B. The pairwise error probability is the probability that a symbol
sequence x is chosen instead of the sequence x̂ that differs in d positions. Assume x and x̂
differ in the first d positions. Using equation (B.7) we have for an AWGN channel

P (x → x̂) ≤ exp

(
− Es

4N0

d∑
n=1

|xn − x̂n|2
)

. (2.72)

The cumulated squared Euclidean distance
∑d

n=1 |xn − x̂n|2 between x and x̂ is decisive and
not the number d of symbols that differ. For a fading channel at high SNR, the pairwise error
probability is with equation (B.8)

P (x → x̂) ≤
d∏

n=1

1

1 + Es

4N0
|xn − x̂n|2

. (2.73)

We observe that at high SNR, the error probability behaves as:

P (x → x̂) ∼
(

Es

N0

)−d

. (2.74)

This relation is similar to what is normally achieved with time diversity techniques [Pro01].
Because of this similarity, the parameter d is usually called time or code diversity in this context.
The time diversity and the squared product distance

∏d
n=1 |xn − x̂n|2 are the design parameters

for fading channels. Therefore the value of d has a major influence on the error probability
with fading channels in contrast to AWGN channels. This corresponds to the intuitive guess,
stating that valid symbol sequences should differ in several positions with fading channels since
transmitted symbols may be erased through deep fades.

In this Section, we review the main aspects of the three coded modulation schemes TCM, MLC
and in particular BICM without and with iterative demapping and decoding.

2.5.1 Trellis Coded Modulation (TCM)

Trellis coded modulation (TCM) was proposed by Ungerböck [Ung76] [Ung82] as a coding
scheme that improves the error rate performance without sacrificing data rate or requiring more
bandwidth. This was achieved by constellation expansion and carefully designed combination
of coding and modulation.
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TCM is the serial concatenation of a rate R = (M−1)/M convolutional code and a mapper for
a 2M -ary signal constellation. Each state transition in the convolutional code then corresponds
to one transmitted symbol. If 2M−1 exceeds the number of states, it is unavoidable that the trellis
has parallel state transitions and the encoder leaves some information bits uncoded. Fig. 2.15
depicts the encoder, where M − M̃ information bits remain uncoded.

point
Signal

Convolutional

encoder

Mapping

bits
Uncoded

X , µ
M̃ − 1

M − 1 M

M̃

Rate (M̃ − 1)/M̃

Figure 2.15: General structure of a TCM encoder.

For each trellis time step, M bits are mapped to a complex symbol chosen from the 2M -ary
signal constellation X (e.g. 16QAM for M = 4) according to a mapping µ : {0, 1}M → X that
defines the assignment of the binary bit sequences to the signal points. The decoding is done on
the joint trellis using e.g. the Viterbi algorithm.

TCM was first designed for AWGN channels and according to equation (2.72), the aim was to
maximize the free Euclidean distance. The free Euclidean distance is defined as the minimum
cumulated Euclidean distance between symbol sequences corresponding to different pathes in
the trellis. Ungerböck proposed a mapping by set partitioning well suited for this application.
Set partitioning is described in detail in Section 4.2. The basic idea is to divide the signal
constellation recursively into subsets of signal points such that the minimum Euclidean distance
between two signal points within a subset is maximized at each stage. Ungerböck formulated
the following heuristic design rules for AWGN channels [Ung82]: First, the parallel trellis
transitions should be associated to signal points from the subset with the maximum inter-symbol
Euclidean distance; Second, trellis transitions that originate or join the same state should be
associated to signal points from a subset with large inter-symbol Euclidean distance.

TCM codes designed for AWGN channels have usually a poor performance in fading channels.
The minimum time diversity d in equation (2.73), i.e. the minimum number of symbols that
differ along different trellis pathes may be reduced to one due to the uncoded bits and the
parallel trellis transitions. TCM codes designed for fading channels have been proposed in
[DS88] [SC89].

The parallel concatenation of two TCM encoder with iterative decoding at the receiver was
proposed in [RW98] under the name of Turbo Trellis Coded Modulation (TTCM). The symbols
from the two TCM encoders separated by symbol-wise interleavers are punctured so that all
information bits are send exactly once and the partity bits are provided alternatively by the two
encoders.

A drawback of TCM is that it is not straightforward to implement adaptive modulation and
coding to cope with time varying channels since the channel code and the modulation are tightly
linked together.
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2.5.2 Multilevel Codes (MLC)

Imai’s multilevel encoder [IH97] is depicted in Fig. 2.16. A sequence of information bits is
demultiplexed to M layers or levels that correspond to the M bit positions in the binary label
of the signal points. Each layer is separately encoded by a binary code and interleaved by a
different interleaver Πm, m = 1, . . . , M . The interleavers are included for a better performance
in fading channels and for iterative decoding. At time index n, one bit from each coded and
interleaved level is grouped to the sequence

cn = (cn,1, . . . , cn,m, . . . , cn,M) (2.75)

and mapped to the complex symbol xn = µ(cn) chosen from the 2M -ary signal constellation X
according to the bit-to-symbol mapping µ : {0, 1}M → X (e.g. Gray mapping).

Π
1

ΠM

De-

mux X , µ

Mapping xn

cn,m

Encoder 1

Encoder M

ui

Figure 2.16: Multi-level coding (MLC): encoder.

The optimum receiver would be the joint overall ML decoder. The ML algorithm implements
equation (2.29) and the most probable information bit value ui is selected given the received
complex sequence y. However, a joint ML demapper and decoder of all layers has an impracti-
cal complexity. Therefore, we separate the demapping and decoding task.

Commonly used approaches to decode MLC include multistage decoding (MSD), parallel de-
coding of the individual levels (PDL), and iterative decoding [WFH99][Wör96]. For symbol-
by-symbol MAP soft demapping and decoding, we use the demapper described in equation
(2.48) and the BCJR algorithm for the decoder.

The multistage decoding (MSD) receiver is a direct interpretation of the chain rule for mutual in-
formation. Let Y and X be the random variables for the channel output and input, respectively,
and C = (C1, . . . , Cm, . . . , CM) the vector of random variables for the coded bits associated to
one channel input symbol. Applying the chain rule for mutual information leads to:

I(Y ; X) = I(Y ;C) = I(Y ; C1, . . . , CM)

=
M∑

m=1

I(Y ; Cm|C1, . . . , Cm−1). (2.76)

Equation (2.76) reveals that we should decode each layer m = 1, . . . , M individually, taking
decisions of prior decoding stages into account. The MSD circuit is depicted in Fig. 2.17. MSD
is closely related to multiple-access or multiple-antenna receivers with serial interference can-
celation (also called stripping or onion peeling receivers). Instead of subtracting the interference
from other users or antennas, we reduce the number of possible signal points with each decod-
ing stage to improve the reliability of the decisions. After e.g. a first ideal or genie decoding
stage, the signal constellation is reduced from 2M to 2M−1 signal points since the first position
in the binary label of length M is a priori known.
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Figure 2.17: Multi-level coding (MLC): multistage decoding (MSD).

From equation (2.76) we can define M equivalent channels [WFH99] with capacity

C(m) = I(Y ; Cm|C1, . . . , Cm−1), m = 1, . . . ,M. (2.77)

Then, the transmission over the physical channel can be virtually separated into the parallel
transmission of the individual bits over these M equivalent channels. If the code rates R(m)

of the individual codes are chosen according to the capacity of the equivalent channels of the
corresponding bit position (R(m) = C(m)), MSD is sufficient to achieve the constellation con-
strained capacity and in theory no additional gain is obtained with overall joint ML demapping
and decoding of all levels.

Beside this capacity rule, we should mention the balanced design rule and the coding exponent
rule described in [WFH99] for assigning the individual channel codes to the M levels with
MSD.

Parallel decoding of the individual levels (PDL) has been proposed as a further decoding scheme
for MLC. With PDL, all decoders are operating in parallel and do not use the decisions of other
decoders [WFH99] [Sch97]. From equation (2.76), the receiver constrained capacity C(m) of
the equivalent channel m with PDL is

C(m) = I(Y ; Cm). (2.78)

The overall receiver constrained PDL capacity C is then

C =
M∑

m=1

C(m) =
M∑

m=1

I(Y ; Cm) ≤
M∑

m=1

I(Y ; Cm|C1, . . . , Cm−1) = I(Y ;C). (2.79)

The PDL capacity strongly depends on the particular mapping. We have equality if the bit
positions are independent to each other. Gray mapping closely approaches this scenario.

Finally, Fig. 2.18 shows the receiver circuit for MLC with iterative decoding [WH92] [II01].
All decoders are working in parallel as with PDL, but the decisions of the decoder are fed back
as a priori information to the demapper. The extrinsic LLRs of the demapper and decoder are
iteratively exchanged, similar to the decoding of a serial concatenated code in Fig. 2.14.
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Figure 2.18: Multi-level coding (MLC): Iterative decoding.

2.5.3 Bit-Interleaved Coded Modulation (BICM and BICM-ID)

Bit-interleaved coded modulation (BICM) is the serial concatenation of a code, interleaver and
mapper, as depicted in Fig. 2.19. Zehavi proposed this scheme in [Zeh92] and a thorough
investigation was done by Caire, Taricco and Biglieri in [CTB98].

The information bits are processed by a single encoder and random interleaver Π. The coded
and interleaved bit sequence c is partitioned in Ns subsequences cn of length M :

c = (c1, . . . , cn, . . . , cNs), with cn = (cn,1, . . . , cn,m, . . . , cn,M). (2.80)

The bits cn are mapped at time index n to a symbol xn chosen from the 2M -ary signal constel-
lation X according to the binary labeling map µ : {0, 1}M → X .

X , µ

xn

cn,m

De-
mux

Encoder Π Mapping
ui

Figure 2.19: Bit-interleaved coded modulation (BICM) encoder.

Similar to MLC, the optimum BICM receiver would be the overall ML decoder. However, the
complexity of a joint ML demapper and decoder is not manageable. Therefore, we separate
the demapping and decoding task and consider a BICM receiver without and with iterative
demapping and decoding. For symbol-by-symbol MAP soft demapping and decoding, we use
the demapper described in equation (2.48) and the BCJR algorithm for the decoder.

With the standard BICM receiver without iterative demapping and decoding shown in
Fig. 2.20, the demapper uses the received complex signals yn and output the LLRs Ldem(cn,m),
m = 1, . . . , M of the corresponding coded bits. These LLRs are deinterleaved and decoded to
obtain estimates about the information bits. Both the decoder and the demapper may use ML
algorithms, but the overall BICM detector is no more ML.

L
dem

(cn,m)yn

DecoderDemapper Π−1

L(ûi)

Figure 2.20: Bit-interleaved coded modulation (BICM) decoder.
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The BICM receiver in Fig. 2.20 is closely related to MLC with PDL. We can also define equiva-
lent channels for each bit position m = 1, . . . , M in the binary label with the bit-wise capacities
C(m) given in equation (2.78). Similar to MLC with PDL, the demapper in the standard BICM
scheme has no a priori information and makes no use of previous decoder decisions. However,
in contrast to MLC, the equivalent channels are not used in parallel, they are rather time multi-
plexed. If we assume ideal interleaving, the equivalent channels are selected randomly and the
capacity of the BICM channel is the average over the equivalent channels of the bit positions.
The overall capacity constrained by the BICM receiver is then identical to the PDL capacity
given in equation (2.79).

Similar to PDL, the BICM capacity strongly depends on the applied mapping. We can approach
the performance of the overall ML receiver if the bit positions in the symbol labels are indepen-
dent. Gray mapping closely approaches this scenario [CTB98]. Fig. 2.21 depicts the receiver
constrained capacity with a standard BICM receiver using different mappings. The values can
be computed with equation (3.4) without a priori information at the demapper. A significant
loss is obtained for mappings different from Gray.

−10 0 10 20 30
0

1

2

3

4

5

6

E
s
/N

0
 in dB

C
ap

ac
ity

 in
 b

its
 p

er
 c

ha
nn

el
 u

se

16QAM capacity

Gray

Set Partitioning

M16a

complex
Gaussian
input

Figure 2.21: Receiver constrained capacity for bit-interleaved coded modulation (BICM) with-
out iterative demapping and decoding. Mappings defined in Appendix A.

Li and Ritcey [LR97] [LR98] and ten Brink, Speidel and Yan [tBSY98a][tBSY98b] proposed
the receiver with iterative demapping and decoding depicted in Fig. 2.22. The BICM system is
considered as a serial concatenated code with the channel code as outer code and the mapper
as inner code. The mapper can be truly considered as code that may introduce dependencies
between the M bits associated to one symbol. The iterative receiver works as described in
Fig. 2.14. The extrinsic LLRs Ldec(cn,m) fed back from the decoder to the demapper may
improve the reliability of the demapper decisions. During the initial demapping step, the a
priori LLRs are equal to zero.



2.5 Coded Modulation 33

L
dec

(cn,m)

DecoderDemapper Π−1

Π

yn L(ûi)
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Figure 2.22: Bit-interleaved coded modulation decoder with iterative demapping and decoding
(BICM-ID).

With this so-called BICM-ID scheme, large gains over the iterations are achieved in practical
systems with carefully chosen mappings different from Gray. Which mappings are well suited
for BICM-ID and how to optimize mappings for arbitrary signal constellations will be investi-
gated in detail in Chapter 4.

With BICM-ID, the overall ML decoding performance and the constellation constrained capac-
ity I(Y ; X) can be approached for all mappings, as shown in the following: Let IL denote the
average mutual information conditioned on the number 0 ≤ L ≤ M − 1 of a priori known bits.
We obtain IL by averaging over the M bit positions and the

(
M−1

L

)
possibilities to choose L a

priori known bit positions:

IL =
1

M

M∑
m=1

1(
M−1

L

)
(M−1

L )∑
j=1

I(Y ; Cm|CL), (2.81)

where CL denotes the vector of L a priori known bits Cj , j 6= m and 1 ≤ j ≤ M . For the
example of a 23-ary signal constellation (e.g. 8PSK) with a label length of M = 3, we have:

IL =
1

3
· ( I(Y ; C1) + 1

2
(I(Y ; C1|C2) + I(Y ; C1|C3)) + I(Y ; C1|C2C3) +

I(Y ; C2) + 1
2
(I(Y ; C2|C1) + I(Y ; C2|C3)) + I(Y ; C2|C1C3) +

I(Y ; C3)︸ ︷︷ ︸
L=0

+
1

2
(I(Y ; C3|C1) + I(Y ; C3|C2))

︸ ︷︷ ︸
L=1

+ I(Y ; C3|C1C2)︸ ︷︷ ︸
L=2

) (2.82)

By reordering the terms from the example in equation (2.82) according to the chain rule of
mutual information given in equation (2.76) and since the ordering of the arguments of the
mutual information is irrelevant, i.e. I(Y ; C1, C2, C3) = I(Y ; C2, C1, C3) = . . . , we deduce
that

I(Y ; X) =
M−1∑
L=0

IL. (2.83)

For the EXIT chart analysis in Section 3.3 and for the design of mappings in Chapter 4, we will
often consider the two marginal scenarios with no a priori information and with ideal a priori
information at the demapper. No a priori information is available during the initial demapping
step or if the feedback from the channel decoder to the demapper is not implemented. The case
of ideal a priori information (so-called genie or error free feedback case) is a lower bound on
the performance at high SNR after several demapper and decoder iterations. With ideal a priori
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information, the demapper knows exactly M − 1 bits of the label but not the bit cn,m to be
detected, since only extrinsic information is exchanged. Thus, the demapper has only to decide
between the two symbols with bit labels differing solely in the a priori unknown mth bit and the
2M -ary signal constellation is reduced to a symbol pair.

Fig. 2.23 illustrates for the example of 16QAM signal constellation and Ungerböck’s set par-
titioning the reduction of the number of possible signal points for the very specific case where
the symbol with label (0000) is transmitted and the last 0, 1, 2, 3 bits are a priori known. This
corresponds to a BEC a priori information where we have either ideal or no a priori knowledge
on a bit position.

Q
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0100 0001 0000 0101

0011 0110 0111 0010

Q

I

1000 1100

1010 1110

0100 0000

0110 0010

Q

I

1000 1100

0100 0000

Q

I

1000

0000

a) no a priori b) last bit c) last two bits d) last three bits

Figure 2.23: 16QAM signal constellation with set partitioning mapping. Symbol with label
(0000) transmitted, remaining signal constellation if the last 0, 1, 2, 3 bits are a priori known.

Similar to the definition of a soft-bit in equation (2.33), we define the soft-symbol x̄n as the
expectation of the symbol xn = µ(cn). Assuming that the bit estimates corresponding to one
symbol are independent through ideal interleaving, we have

x̄n = E{xn|L(cn)} =
∑

xn∈X
xn · P (xn|L(cn)) =

∑
xn∈X

xn ·
M∏

m=1

P (cn,m|L(cn,m)). (2.84)

P (xn|L(cn)) is the a priori probability of the signal point xn computed using the a priori LLRs
L(cn) = (L(cn,1), . . . , L(cn,M)) with equation (2.31).

Fig. 2.24 depicts the received signals yn and the soft symbols from the a posteriori LLRs at
the output of the demapper after 2, 4, 6 demapping operations. The symbol with label (0000)
is transmitted and Ungerböck’s set partitioning mapping from Fig. 2.23 is applied. We observe
that after 6 iterations, no more errors are made after the demapper. Furthermore, it is interesting
to note that with a decent a priori information after 4 iterations, most soft symbols lie between
the signal points with labels differing in only one bit.

A further concept to improve the performance of BICM not treated in this work but worth
mentioning is the modulation or signal space diversity for fading channels [BV98]. There, the
in-phase and quadrature components of the transmitted symbol are independently interleaved.
The aim is to have in-phase and quadrature components that fade independently to improve
the diversity. To maximize the diversity, the constellation should be properly rotated such that
all distinct signal points are separable on every coordinate. A simple signal space diversity
scheme for standard non-rotated signal constellations is to introduce a time delay larger than
the coherence time of the fading process between in-phase and quadrature component [CR01].
Optimized mappings for a signal space diversity scheme with iterative demapping and decoding
and independent in-phase and quadrature component interleaving are given in [CGV06].
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Figure 2.24: Received symbols and soft symbols after the demapper, 16QAM signal constel-
lation with set partitioning mapping from Fig. 2.23. Symbol with label (0000) transmitted,
AWGN channel, rate 1/2 (1, 5/7) convolutional code, 10 log10(Es/N0)dB = 6dB.



3
EXIT Chart Analysis

Extrinsic information transfer (EXIT) charts were proposed by ten Brink [tB01b] to analyze,
design and optimize concatenated schemes with iterative decoding described in Section 2.4.2
and 2.4.3.

The error rate performance of these schemes has three characteristic SNR regions: First, at
low SNR, no gain over the iterations is attained and the error rate is high. The amount of
information exchanged between the soft-in/soft-out receiver components is negligible. Then, in
the so-called turbo cliff or waterfall region, the iterative system starts to converge and the error
rate curve drops within a small SNR range. Finally, at high SNR, the error rate curve flattens
out, resulting in a sometimes negligible error floor. Each receiver component has close to ideal
a priori information from the other receiver components.

To analyze and optimize the convergence behavior of iterative receivers in the SNR range of
the waterfall region, density evolution techniques have been proposed in [RU01] [RSU01]. The
main idea is to track the pdfs of the information messages exchanged in the iterative decoding
algorithm. To simplify the analysis, we can assume Gaussian pdfs [CRU01] or use a single pa-
rameter to describe the pdfs [DDP00a] [GH01] [AGR98] [RS98] [Nar01]. EXIT charts [tB01b]
visualize the density evolution of the extrinsic LLRs over the iterations using as single param-
eter the average mutual information between the coded bits at the transmitter and the LLRs at
the receiver.

To predict the evolution of the investigated parameter, the soft-in/soft-out components of the
iterative receiver are interpreted as non-linear filters and characterized by their input/output
function. For the EXIT chart analysis, we construct the characteristic EXIT functions.

We focus on the bit-interleaved coded modulation scheme with iterative demapping and de-
coding (BICM-ID) introduced in Section 2.5.3 and depicted in Fig. 3.1. In this Chapter, EXIT
functions of the two receiver components, namely the demapper and the decoder, are thor-
oughly analyzed for a variety of parameters. A bit-level and symbol-level analysis is introduced.
Furthermore, an analytic and numeric computation of the EXIT functions of the decoder and
demapper is investigated that circumvent the need of Monte-Carlo simulations.
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Figure 3.1: BICM-ID system model for EXIT chart analysis.

3.1 EXIT Chart Construction and Properties
Fig. 3.2 depicts the general model introduced in [AKtB04] to construct characteristic in-
put/output functions for any receiver component of Table 2.2 in Section 2.4.3. The channel
and a priori inputs of the considered decoder are the outputs of the communication channel
and the virtual extrinsic or a priori channel, respectively. For a given communication channel,
we vary the a priori channel quality and observe the extrinsic output of the decoder. Different
channel and a priori information should be considered for the decoder, depending on the sys-
tem architecture and on the position of the decoder in the receiver. We have to differentiate
between serial and parallel concatenated schemes and between the inner and outer code in a
serial concatenated scheme as described in Section 2.4.2.

l

wv

u c y
Encoder

Comm.
Channel

Extrinsic
Channel

Decoder

Figure 3.2: System model for the measurement of a decoder input/ouput function.

The crucial step to obtain a characteristic decoder function is to determine a single parameter
that describes the extrinsic a priori input and the output of the decoder.

The extrinsic channel output and the decoder output are usually modeled as the output of
AWGN, BEC or BSC channels. The BEC and BSC channels are directly characterized by a
single parameter, namely the erasure probability ε and error probability p, respectively. For
the AWGN channel, the channel output soft values – we consider the LLRs values – can be
precisely described through their pdfs. To derive the characteristics of these pdfs, consider first
the conditional LLRs L(y|x) for BPSK modulation with x ∈ {±1} and an AWGN channel
y = x + n with n ∼ N (0, σ2

n). Then, the LLRs are given by:

L(y|x) =
2

σ2
n

· y. (3.1)

Alternatively, we can write
L(y|x) = µL · x + nL, (3.2)

with a mean µL = 2/σ2
n and a Gaussian distributed nL with variance σ2

L = 4/σ2
n for x = 1

fixed. The mean and the variance are related by:

µL =
σ2

L

2
. (3.3)
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Therefore, we have Gaussian distributed LLRs L(y|x) ∼ N (σ2
L/2, σ2

L) that are characterized
by the single statistic σ2

L or µL. The assumption on an AWGN extrinsic channel and uncor-
related information turns out to be appropriate for large interleavers, for all optimal and most
suboptimal receiver elements.

The mean µL and variance σ2
L have been used in [DDP00a] and [tB01b] to describe the LLR pdfs

in iterative receivers, respectively. An early attempt to visualize the behavior of a soft-in/soft-
out decoder used a similar measure based on the SNR [HH89a]. Other choices include the error
rate [GH01], the mutual information [tB01b], and the fidelity or closely related measures based
on ”soft bits” [AGR98] [RS98] [Nar01] [Hag04]. An extensive comparison of these parameters
for the analysis of iterative receivers is given in [TtBH02].

The two receiver components of a concatenated scheme iteratively exchange extrinsic infor-
mation to improve the performance. The output of one component is the input of the other.
Therefore, we can plot both characteristic functions in a single figure. We expect that the ef-
fective measured evolution of the considered parameter follows a staircase trajectory between
the characteristic functions of the two components, i.e. that the possible deviations from the
assumptions made while constructing the characteristic function – namely the Gaussian distri-
bution and the uncorrelated a priori information – do not have a significant impact.

Out of the above mentioned parameters, the mutual information and the fidelity provide the
most accurate prediction [TtBH02], mainly because the assumption of a Gaussian distribution
is only made on the input pdf and not on the output as for the other measures. Using the
mutual information gives the EXIT chart, using the fidelity gives the soft bit transfer (SOBIT)
[Hag04] or fidelity chart. The advantage of the EXIT chart is that the mutual information has an
information theoretical meaning, resulting in several interesting properties. A circuit to generate
EXIT functions with AWGN channels is presented in [Hag04]. An example of an EXIT chart
for a serially concatenated system is shown in Fig. 3.6.

Mutual Information Measure for EXIT Chart

For the EXIT chart, the mutual information (MI) between the coded bits Ci at the transmitter
and the LLRs Li at the receiver is used as the single parameter to characterize the pdf of the
LLRs. We consider the average mutual information defined for a codeword of length N as
follows [AKtB04]:

I =
1

N

N∑
i=1

I(Ci; Li). (3.4)

Three promising approaches have been proposed to compute the mutual information for EXIT
charts.

First, we can use the general equation (2.17) of the mutual information and simplify it using the
following assumptions:

p(l, c) = p(l|c) · p(c); p(y) =
1

2
(p(l|c = 0) + p(l|c = 1)); p(c) =

1

2
, (3.5)

where c and l are realizations of the random variables C and L of the coded bits and the LLRs,
respectively. Then, for a continuous distribution of the LLRs, we have

I =
1

2
·
∑
c=0,1

∫ ∞

−∞
p(l|c) · log2

2 · p(l|c)
p(l|c = 0) + p(l|c = 1)

dl. (3.6)
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This expression is most conveniently computed using Monte Carlo simulation and histogram
measurements. With a BSC or BEC channel, the LLRs adopt only a finite number of possible
values and the integral in equation (3.6) is replaced by the sum over these values; Or we deter-
mine the error or erasure probability and use directly equation (2.24) and (2.25) for BSC and
BEC channels, respectively.

Second, if we apply additional assumptions on the distributions p(l|c), we can compute the
mutual information as time average and avoid the numerical integration. We assume symmetric
distributions p(l|c = 0) = p(−l|c = 1), consistent distributions p(l|c = 0) = p(−l|c = 1) · el,
and therefore

p(l|c = 0) = p(l|c = 1) · el. (3.7)

The distributions are consistent if the LLRs are ”correct”, i.e. if they reflect the true reliability
[HSL00][RSU01][GH01]. Often, distributions are not exactly consistent, e.g. due to suboptimal
detectors. However, it turns out that we can mostly assume consistency and still obtain accurate
results. Combining the new constraints with equation (3.6) leads to:

I = 1−
∫ ∞

−∞
p(l|c = 0) · log2(1 + e−l)dl (3.8)

= 1− E{log2(1 + e−l)|c = 0}. (3.9)

By invoking the ergodicity theorem, namely that the expectation can be replaced by the time
average, we can approximate the mutual information for a large number N of samples as follows
[TH02]:

I ≈ 1− 1

N

N∑
i=1

log2(1 + e−c̃i·li), where c̃i =

{
+1, ci = 0,
−1, ci = 1.

(3.10)

This equation is conveniently used for LLRs with AWGN, BSC and BEC channels.

Finally, it was shown in [Lan05] that the knowledge of the values ci is not required to compute
the mutual information for the EXIT charts. The bit error probability pi of ci is obtained from the
magnitude of the LLRs li by evaluating equation (2.34). Then, the average mutual information
is computed for a BSC channel using equation (2.24):

I = 1− 1

N

N∑
i=1

H(pi). (3.11)

Fidelity Measure

Beside of the mutual information, the fidelity or measures based on the soft bits as defined in
equation (2.33) provide an accurate prediction of the convergence behavior.

The fidelity is the expectation of the soft bits and it can be approximated by the time average
without knowledge of the corresponding code bits [Nar01] [SBR06]:

M = E
{

c̃ · tanh
(

l

2

)}
= E

{
tanh2

(
l

2

)}
≈ 1

N

N∑
i=1

tanh2

(
li
2

)
. (3.12)

The fidelity or soft bit transfer (SOBIT) chart and the EXIT chart are closely related. This
fact is clarified if we compare equations (3.10) and (3.12) for c̃ = +1 using the following
relation [Hag04]:

1− log2(1 + e−l) = log2(1 + tanh(l/2)) ≈ tanh(l/2). (3.13)
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Some Useful Functions

The relationship between mutual information, variance of LLRs and fidelity can be formally
described by the so-called J , S and T functions using the Gaussian approximation, as illustrated
in Fig. 3.3. These functions can either be pre-computed and stored in a look-up table, or they
can be closely approximated by analytical expressions obtained using curve fitting techniques.
We will use these functions extensively in Chapter 7.

Mutual Information

J(σ) T (M)

S(σ)

Variance MFidelityσ2

I

Figure 3.3: Relationship between mutual information, variance of LLRs and fidelity using the
J , S, and T functions.

The J function introduced in [tB01b] and depicted in Fig. 3.4 relates the mutual information to
the variance σ2

L of the LLRs:
J(σ) = I(σL = σ). (3.14)
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Figure 3.4: J and S functions over the standard deviation σ of the LLRs.

A good analytical approximation of the J function is derived in [BRG05]:

J(σ) =
(
1− 2−H1σ2H2

)H3

and J−1(I) =

(
− 1

H1

log2

(
1− I

1
H3

)) 1
2H2

, (3.15)

with H1 = 0.3073, H2 = 0.8935 and H3 = 1.1064. An application of the J function is to
estimate the error rate from the EXIT chart: From the mutual information at the output of the
receiver component, we compute the variance of the soft LLRs through the inverse J function
as described in [tB01b] for a parallel concatenation and in [tB01a] for a serial concatenation.
Assuming that the distribution p(l|c) of the LLRs is Gaussian, the bit error rate is easily derived
from the variance using the Q(·) or erfc(·) function. We obtain accurate results down to medium
BER, i.e. down to approximately 10−4.
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The S function defines the relationship between the fidelity M from equation (3.12) and the
variance σ2

L of the LLRs [SBR06]:

S(σ) = M(σL = σ). (3.16)

According to equation (3.13), the fidelity is closely related to the mutual information. Therefore,
it is not surprising that the J and S functions are quite similar, as shown in Fig. 3.4. The S
function can be approximated with the expression from equation (3.15) and the values H1 =
0.4282, H2 = 0.8130 and H3 = 1.1699 [SBR06].

The T function combines the J and S function and relates the mutual information I to the
fidelity M [SBR06]:

I = T (M) = J(S−1(M)). (3.17)

EXIT Chart Properties

We highlight one important property of the EXIT chart, namely the area theorem that relates
the area under EXIT functions to the code rate and capacity. We assume linear codes and inde-
pendent and identically distributed (i.i.d.) sources. General expressions for non-i.i.d. sources
have been derived in [AKtB04] and [Düt05]. We consider the area A under the EXIT function
f(I):

A =

∫ 1

0

f(I)dI. (3.18)

With the notation from the model of Fig. 3.2, the following relationship was proven in [AKtB04]
for BEC a priori information:

A = 1− 1

Nv

H(V|Y), (3.19)

where Nv is the length of V. If we assume an encoder with a one-to-one (invertible) mapping
H(V) = H(C) = H(U) and H(V|Y) = H(C|Y) = H(U|Y). Furthermore, we assume an
optimal MAP detector and therefore H(C|Y) = H(C|L). The analysis of the outer and inner
decoder in a serial concatenated system is considered.

The outer decoder receives a priori information on the coded bits but no information from the
communication channel. Therefore, V = C and H(V|Y) = H(V). The length of C is N and
the length of the i.i.d. information bit sequence U is K. Then, equation (3.19) becomes

Aout = 1− 1

N
H(V) = 1− K

N
= 1−Rout. (3.20)

The inner decoder in a serial concatenated system receives channel information and a priori
information on the information bits, which correspond to the code bits of outer code. We have
V = U and equation (3.19) becomes

Ain = 1− 1

K
H(U|Y) = 1− 1

K
(H(U)− I(U;Y)) =

I(U;Y)

K
=

I(U;Y)/N

Rin
. (3.21)

The value of I(U;Y)/N is upper bounded by the capacity C. We have equality if N ≤ K and
Rin ≥ 1. With Rin = 1, we obtain the remarkable property that the area Ain is equal to the
capacity C. With Rin > 1, the encoder mapping is no more invertible but we have no capacity
loss.
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Fig. 3.5 depicts the fraction (Ain · Rin)/C = I(U;Y)/(N · C) obtained from EXIT chart mea-
surements for different code rates Rin ≤ 1. We observe that I(U;Y)/N approaches the ca-
pacity only at low SNR and with strong codes. However, low-complexity codes are usually
applied in iterative decoding schemes and these codes will inevitably leave significant gaps be-
tween I(U;Y)/N and C. For large SNR, I(U;Y)/N is bounded by Rin since the area Ain

approaches one.
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Figure 3.5: Fraction (Ain · Rin)/C as a function of the inner code rate Rin, BPSK modulation;
a) repetition code and convolutional codes of different memory, 10 log10(Es/N0)dB = 0dB;
b) (1, 7/5) memory 2 convolutional code and different Es/N0 in dB.

For successful decoding, the inner code EXIT function must lie above the outer code EXIT
function and we must have

1−Aout < Ain, (3.22)

or, using (3.20) and (3.21):
RoutRin < I(U;Y)/N ≤ C. (3.23)

The overall rate should be smaller than the capacity, as stated by Shannon’s famous theorem.
The inner code causes an inherent capacity loss if Rin < 1, since then I(U;Y)/N < C. For
Rin = 1, the area between the two curvesAin− (1−Aout) corresponds to the rate loss C−Rout.
These relations are illustrated in Fig. 3.6.

If we do not apply optimal MAP decoding, we have I(U;L) ≤ I(U;Y). Then, for Rin = 1,
the area Ain corresponds to the receiver-constrained capacity, that is the maximum achievable
rate with the not necessarily optimum detector.

These facts have important consequences for the system design, as further discussed in
Section 3.4.
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Figure 3.6: EXIT chart example of a serially concatenated system with Rin = 1 and Rout = 1/2.
The area properties of the inner and outer code are illustrated.

3.2 EXIT Functions of Channel Codes

3.2.1 Examples for Various Scenarios

EXIT functions fdec(I) of different channel codes and for different communication and a priori
channel models are investigated. Interesting observations are made and interpreted.

Different channel models

We first compare the EXIT functions for AWGN, BEC, and BSC a priori channel models for
the example of an outer channel code in a serial concatenated system.

In [Lan05], upper and lower bounds on the information combined by the decoder (keyword
information combining) are derived for repetition codes, single parity check codes and accumu-
lators. For the single parity check code, the performance with a BEC a priori channel provides
a lower bound and with BSC an upper bound. With a repetition code, the relations are re-
versed: the lower bound is achieved with BSC, the upper bound with BEC. The bounds for the
accumulator are given in [Lan05].

Fig. 3.7 depicts EXIT functions for the three investigated a priori channels models AWGN,
BEC, and BSC, and for a repetition code and a convolutional code. We observe the following:
As expected from the bounds derived in [Lan05], the EXIT function for the repetition code with
BEC information upperbounds the EXIT function with information from a BSC. The EXIT
function with an AWGN channel lies in between. The EXIT function of the convolutional
code with BEC information corresponds to a ”stronger” convolutional code than with BSC
information, i.e. with a higher memory and a slightly lower rate. The EXIT function for AWGN
a priori information lies in between.
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Figure 3.7: EXIT functions of outer codes in a serially concatenated system; BSC, BEC and
AWGN decoder input information.

Convolutional codes with different rate and memory

EXIT functions of convolutional codes as outer codes in a serial concatenated scheme with dif-
ferent code parameters are investigated in Fig. 3.8. Convolutional codes with a higher memory
have a lower extrinsic information output with low a priori information, but a steeper EXIT
function and perform better with more a priori information. The crossover point between the
EXIT functions of codes with different memory is around the mutual information correspond-
ing to the code rate. The shape of the EXIT functions is restricted through the code rate since
the area under the curves should be equal to Aout = 1−Rout according to equation (3.20).
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convolutional codes with different memory.
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Parallel concatenated convolutional codes

The EXIT function of the rate 1/3 parallel concatenated UMTS turbo code defined by the
generators in equation (2.69) is investigated in Fig. 3.9. The performance after a different
number of iterations is depicted in Fig. 3.9a). The area under the EXIT function is smaller than
1− Rout since we use iterative decoding and not the optimum ML decoding. An ideal capacity
achieving code would have an EXIT function that is 0 for I < R and 1 for I > R, as depicted
in Fig. 3.9a) for a rate R = 1/3.

Fig. 3.9b) shows the EXIT functions of the constituent codes of the turbo code and the internal
iterations. Since both decoders receive channel information, both curves do not start from 0 and
both curves dependent on the channel quality.
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Figure 3.9: EXIT functions of the rate R = 1/3 parallel concatenated UMTS turbo code,
information word length of 50000 bits.

Different rate-1 inner codes

Fig. 3.10 depicts rate R = 1 inner codes of different memory with recursive and non-recursive
structures. The two questions of main relevance that arise are: When does the EXIT function of
these codes start from 0 without a priori information and prevent the iterative process to start?
When does the EXIT function reach the point [1; 1] in the EXIT chart for low error rates after
convergence of the iterative process?

Without a priori information, some rate R = 1 codes suffer from catastrophic error propaga-
tion: a finite number of channel errors may result in an unbounded number of errors on the
estimated information bits. A code is catastrophic if the generator matrix does not have a feed-
forward inverse G−1(D) with G(D)G−1(D) = Di · IK , for some i ≥ 0, where IK is the
K × K identity matrix [LC04]. For a rate-1 code, we have G(D) = f(D)/q(D). Then, for
a non-catastrophic code, Di · q(D) must divide f(D) for at least one value of i to obtain a
feedforward inverse G−1(D) = Di · q(D)/f(D).

Examples of non-catastrophic rate-1 codes include the (4/7) code

G(D) =
D2

1 + D + D2
; G−1(D) = 1 + D + D2; G(D)G−1(D) = D2, (3.24)
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and the (20/35) code

G(D) =
D4

1 + D2 + D3 + D4
; G−1(D) = 1+D2 +D3 +D4; G(D)G−1(D) = D4. (3.25)

A systematic code is always non-catastrophic. The rate-1 codes can be interpreted as rate 1/2
systematic codes where the systematic bit is punctured. With the a priori information on the
information bits, the catastrophic rate-1 codes become non-catastrophic, yielding in an extrinsic
output information different from zero and an ascending EXIT function. Fig. 3.10 illustrates
these facts. Note that non-recursive or feedforward rate-1 codes are non-catastrophic only if
G(D) = Di for some i ≥ 0. Then, the encoder output is simply a delayed version of the
encoder input and a priori information has no influence on the extrinsic decoder output. A
method to let the EXIT function of a catastrophic rate-1 code start at a value above zero is the
insertion (”doping”) of information bits at a certain ratio to the coded bits.
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Figure 3.10: EXIT functions of different rate R = 1 inner codes; 10 log10(Es/N0)dB = 1dB,
BPSK modulation.

With ideal a priori information, it was shown in [BDMP98] that only recursive inner codes
achieve a so called interleaver gain, where the error rate at high SNR tends towards zero for an
interleaver length going towards infinity. Then, the LLRs are unbounded and the EXIT function
will approach the point [1; 1] in the EXIT chart [tB01a].
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This fact can be intuitively explained as follows: Assume without loss of generality that the all
zero information word u = (0, . . . , 0) is transmitted. With ideal extrinsic a priori information,
all information bits but the bit to be detected at discrete time i are a priori known. Therefore, the
decoder has to decide only between the two remaining code words corresponding to ui = 0 and
ui = 1. With a non-recursive rate-1 code, the information bit ui influences only Mc + 1 code
bits, where Mc is the code memory. For a recursive code, the value of ui influences all remaining
code bits of the codeword. Therefore, the Hamming distance between the two remaining code
words with ideal a priori information is limited by the code memory for non-recursive codes and
by the code word length for recursive codes. For sufficiently large block length, the Hamming
distance with a recursive code becomes large enough to output a mutual information close to
one. Comparing Fig. 3.10a), b) and c), we observe as expected that the EXIT functions of the
recursive codes reach the point [1; 1] and that the value f(1) with non-recursive codes depends
on the code memory.

3.2.2 Bit-Level EXIT Functions

The idea of bit-level EXIT functions of channel codes is to generate a separate EXIT function
for each characteristic bit position. Three examples are shown in Fig. 3.11.
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Figure 3.11: Bit-level decoder EXIT functions: rate R = 1/3 UMTS turbo code, 10 iterations;
R = 1/2 convolutional code (1, 5/7); R = 2/3 convolutional code punctured from (1, 5/7)
code with periodic puncturing pattern (1110), i.e. every second parity bit is punctured.

First, with the rate R = 1/3 parallel concatenated turbo code, we observe that the systematic bit
has a higher reliability than the two parity bits, especially with low input mutual information.
We explain this by the fact that in contrast to the parity bits, both constituent decoders receive
the channel information on the systematic bits.

Then, with the systematic rate R = 1/2, (1, 5/7) convolutional code, the systematic bit is less
reliable than the parity bit. By considering the trellis of the code in Fig. 2.10, we find out that for
the two most probable error paths of Hamming weight 5, 3 bit errors are made on the systematic
bits and 2 on the parity bits, resulting in the respective reliability. For the two error paths of
weight 6, the systematic and parity bit encounter on average the same number of bit errors.

Finally, we consider the (1, 5/7) convolutional code punctured to rate R = 2/3 and observe the
lower reliability of the systematic bit of which the corresponding parity bit is punctured.
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This additional information on the reliability of the characteristic bit positions can be exploited
when the code is combined with other components that expect a certain reliability on specific
bit positions.

3.2.3 Analytical Computation

We are highly interested in closed form expressions of decoder EXIT functions to avoid simu-
lations, obtain exact decoding thresholds, and derive new design guidelines. Analytical expres-
sions of decoder EXIT functions for simple block codes have been derived for BEC and BSC
channels in [AKtB04] [LHH04].

We derived closed form expressions of decoder EXIT functions of convolutional codes with
BEC channels in [SB04a] using a similar approach than proposed in [MU02][Méa06]. The re-
sults are based on work done to determine polynomial expressions for the exact erasure and error
probability of convolutional codes for asymptotically large code word length on BEC and BSC
channels. Results for BSC channels and Viterbi decoding are derived in [BBL+95][LTZ04].
We consider BEC channels and symbol-by-symbol MAP decoding as investigated in [KSW03].
The key observation in these papers is that the number of possible state probability vectors in
the decoding algorithm is finite and reasonably small.

Example 6 Consider the rate R = 1/2, memory 2, (1, 5/7) systematic convolutional code
with the trellis depicted in Fig. 2.10 as constituent code of a PCCC. Assuming that the all zero
word is transmitted over a BEC, the five possible state probability vectors are

S =

{
(1, 0, 0, 0), (

1

2
,
1

2
, 0, 0), (

1

2
, 0,

1

2
, 0), (

1

2
, 0, 0,

1

2
), (

1

4
,
1

4
,
1

4
,
1

4
)

}
.

Here, the state probability vector (1/2, 1/2, 0, 0) means that the encoder has the probability
1/2 of being in the trellis state 00 or 01.

We construct a Markov chain with the distinct state probability vectors as Markov states. The
erasure probabilities given in the system model of Fig. 3.12 for a systematic rate R = 1/2 con-
volutional code are used to determine in the following the Markov state transition probabilities.

Encoder Punct. εp εc

δc

Channel

ε

u

Figure 3.12: Rate R = 1/2 convolutional code model for EXIT chart computation with BEC
channels.

- δc: channel erasure probability of systematic bits

- δa: a priori erasure probability of systematic bits

- εc: channel erasure probability of parity bits

- εp: erasure probability of parity bits from random puncturing
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The erasure probability of the parity bits after puncturing and the channel is ε = εp +(1− εp)εc.
The probabilities of the four possible erasure events are:

- systematic and parity bit erased: p(00) = δaδcε

- systematic bit erased, parity bit received p(01) = δaδc(1− ε)

- systematic bit received, parity bit erased p(10) = (1− δaδc)ε

- systematic and parity bit received p(11) = (1− δaδc)(1− ε)

To obtain the EXIT function of a constituent code of a PCCC, we fix δc and ε and compute the
decoder output for different δa. For an outer code of a SCCC, we set δa = 1 and compute the
decoder output for different δc = εc. Code rates between 1/2 ≤ R ≤ 1 are obtained by setting
εp. For the special case of a rate Rin = 1 inner code of a SCCC, we set δc = 1, εp = 0, fix εc

and compute the decoder output for different δa.

For the forward and backward recursions of the BCJR symbol-by-symbol MAP algorithm, we
determine the Markov transition probability matrices P(α) and P(β), respectively. The i, j ma-
trix element represents the probability of making the transition from the ith to the jth Markov
state.

Example 7 For the investigated example with a constituent code of a PCCC, the forward
transition probability matrix is with the probabilities given above:

P(α) =




1− p(00) p(00) 0 0 0
p(11) 0 p(01) p(10) p(00)

0 1 0 0 0
p(11) 0 p(10) p(01) p(00)

0 p(11) 0 0 1− p(11)




. (3.26)

The steady-state distribution π(α) of the Markov chain for the forward recursion is the solution to

π(α) = P(α)T · π(α) with
|S|∑
i

π
(α)
i = 1, (3.27)

where π
(α)
i represents the ith element of the row vector π(α); π(β) for the backward recursion is

computed similarly.

The transition matrix P(γ) with elements P
(γ)
i,j determines whether an information bit is erased

depending on the knowledge of the code bit and for the transition from the ith to the jth Markov
state. We distinguish between three scenarios: the information bit is always erased (P (γ)

i,j = 1),
never erased (P (γ)

i,j = 0), or erased only if the code bit is erased (P (γ)
i,j = ε).

Example 8 For the investigated example, the transition matrix is

P(γ) =




0 ε 0 0 ε
0 ε 1 0 1
ε ε ε ε ε
0 ε 0 1 1
ε ε 1 1 1




.
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Finally the erasure probability after the decoder is

pe = π(α) ·P(γ) · π(β).

and the mutual information I = 1− pe.

Example 9 For the investigated example with δa = 1 and ε = εc = δc (outer code of a SCCC),
the extrinsic erasure probability is:

pe =
3ε4 − 18ε5 + 56ε6 − 107ε7 + 132ε8 − 101ε9 + 42ε10 − 3ε11 − 4ε12 + ε13

(1− 4ε + 7ε2 − 5ε3 + 3ε5 − ε6)2
.

The polynomial degree increases rapidly with the code memory but the results are manageable
up to memory 4 convolutional codes for BEC channels.

Fig. 3.13 depicts computed and simulated decoder EXIT functions for different scenarios. The
EXIT function of the overall turbo code is obtained by determining the crossing point of the
analytical constituent codes. The curves for R = 3/4 codes obtained by random puncturing
the rate R = 1/2 mother code (εp = 2/3) match exactly the simulated curves, but the perfor-
mance is definitely lower than with regular puncturing. The other analytical curves correspond
precisely to the simulated curves.
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Figure 3.13: Analytical (markers) and simulated (lines) EXIT functions for BEC channels;
dashed lines correspond to regular puncturing; a) outer codes in a SCCC: R = 1/2 and R =
3/4, (1, 15/17) convolutional code and R = 1/3 UMTS turbo code defined in equation (2.69);
b) R = 1/2 (δc = εc = 0.45) and R = 3/4 (δc = εc = 0.25) memory 2 constituent code of a
PCCC; R = 1, (4/7) and (5/7) inner code of a SCCC (εc = 0.4), cp. to Fig. 3.10.

The analytical computation of EXIT charts with similar methods is also possible for BSC chan-
nels. However, the number of Markov states is much larger than with BEC channels. For a
memory 4 encoder, the number of Markov states becomes as large as 25641 with BSC channels
[LTZ04], while this number is 67 for an example given in [KSW03].
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3.3 EXIT Functions of Mappings

We consider the EXIT function fdem(I) of the demapper integrated in a bit-interleaved
coded modulation scheme with iterative demapping and decoding (BICM-ID) as described in
Fig. 2.22. The major parameters that affect fdem(I) are the channel characteristics, the signal
constellation and the bit-to-symbol mapping. The characterization with an Euclidean distance
spectrum and the optimization with a binary switching algorithm of mappings for different
signal constellations will be investigated in detail in Chapter 4. In this Section, we focus on
the characteristics and the computation of average, bit-level and symbol-level demapper EXIT
functions for different scenarios.

The demapper can be truly considered as a rate-1 inner code in the serial concatenation of a
channel code, interleaver and mapper in the BICM scheme since it may introduce dependencies
between the M bits associated to one symbol.

Three characteristic values of the demapper EXIT function fdem(I) are of interest: First, a
large value of fdem(0) without a priori information is desired to avoid an early crossing with
the decoder EXIT function which would cause the iterative process to stop. Second, the value
of fdem(1) with ideal a priori information (genie or error free feedback case) determines the
gain over the iterations, i.e. the performance at high SNR after several iterations. Finally, the
area Adem under the demapper EXIT function is of interest since it is related to the capacity as
follows: In equation (3.19), V is the length Nv = M sequence of bits associated to the complex
symbol X and Y is the received complex symbol. The invertible one-to-one mapping does
not introduce a loss of information and we consider an optimal MAP demapper. Following the
derivation of equation (3.21), the area under the rate Rin = 1 demapper EXIT function is:

Adem = I(V, Y )/M = I(X,Y )/M ∈ [0, 1]. (3.28)

I(X, Y ) is the constellation constrained capacity. The important fact to note is that the capacity
and the area under the EXIT function depend only on the signal constellation, but are indepen-
dent on the applied mapping. This restricts the shape of the EXIT function for a given signal
constellation and we have a trade-off between the value fdem(0) without a priori information
and fdem(1) with ideal a priori information. For different mappings, we expect to have either
a good performance at low SNR with a high fdem(0) or a low error bound with a high fdem(1)
at high SNR and after several demapping and decoding iterations. Note that the mapping as
inner code does not have a recursive structure. Therefore, no interleaver gain is possible and the
EXIT function will not reach the point [1, 1] in the EXIT chart.

These facts are illustrated in the following examples. All investigated mappings are defined in
the tables of Appendix A.

3.3.1 Examples for Various Scenarios

We analyze the demapper EXIT function fdem(I) for different mappings, signal constellations
and channel models.
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Fig. 3.14 shows demapper EXIT functions with 16QAM and Gray mapping, Ungerböcks set
partitioning (SP) mapping [Ung82] and the turbo optimized mapping M16a that maximizes
the value fdem(1), see Chapter 4. With Gray mapping, the value fdem(0) is maximized, but
the a priori information has only a negligible influence on the demapper performance and the
slope of the EXIT function is very low. The best performance with large a priori information is
expected with the turbo optimized M16a mapping. Set partitioning mapping is not well suited
for iterative demapping and decoding because of the convex shape of the EXIT function that
results in both a low fdem(0) and a low fdem(1). Note again that the area Adem is independent of
the applied mapping.
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Figure 3.14: EXIT functions of 16QAM with different mappings, AWGN channel,
10 log10(Es/N0)dB = 7dB. Solid lines: simulation, dashed lines: numerical computation with
BEC a priori information.

For different SNR values, the capacity and therefore the area under the demapper EXIT function
varies, as illustrated for the Gray and turbo-optimized M16a mapping in Fig. 3.15.
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Figure 3.15: EXIT functions with 16QAM, AWGN channel, different values of Es/N0 in dB.
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Fig. 3.16 depicts demapper EXIT functions with Gray mapping and different signal constel-
lations. The crossing point between the curves of the demapper and the decoder are shifted
towards the point [1, 1] for smaller signal constellations, resulting in an increased reliability of
the transmission with the cost of a reduced throughput.
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Figure 3.16: EXIT functions of different signal constellations with Gray mapping, AWGN
channel, 10 log10(Es/N0)dB = 4dB.

In Fig. 3.17, we compare demapper EXIT functions for an AWGN channel and a Rayleigh
fading channel with independent fading coefficients for every symbol. 16QAM with Gray and
the turbo-optimized M16a mapping are considered. The different SNRs are set to have a similar
capacity with the Rayleigh fading and AWGN channel in order to obtain the same area under
the EXIT function for a better comparison. We observe that with the M16a mapping, the
EXIT function is not very robust against channel model variations: the slope of the function is
lower with the Rayleigh than with the AWGN channel, requiring a different channel code for
optimized iterative decoding.
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Figure 3.17: EXIT functions of Gray and M16a 16QAM mappings for a Rayleigh channel
(10 log10(Es/N0)dB = 9.1dB) and AWGN channel (10 log10(Es/N0)dB = 7dB) with rate
1/2 code. Solid lines: simulation, dashed lines: numerical computation with BEC a priori
information.
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A symbol-level fading channel model is given only if we assume a large interleaver, a channel
changing with the symbol rate, or with ideal frequency hopping. Otherwise, we have to consider
the coherence time Tcoh that describes the time duration over which the fading coefficient is
essentially invariant, as defined in equation (2.2). For a large coherence time, we approach
a block fading channel model, where we assume that the fading coefficient is constant over
the duration of one interleaver frame. Fig. 3.18 shows sets of EXIT functions for qualitative
investigations with different values of the coherence time. The variance of the EXIT functions
is larger for a large coherence time. The EXIT function of the symbol-level fading model is
approached for a short coherence time. When the coherence time is large, we can either set the
code rate for a worst case scenario, which is really a waste of bandwidth, or we accept a certain
error rate and use ARQ techniques to enable reliable transmission.
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Figure 3.18: Demapper EXIT functions of 16QAM, M16a mapping, fading channel with dif-
ferent coherence time Tcoh; 10 log10(Es/N0)dB = 6dB.

3.3.2 Bit- and Symbol-Level EXIT Functions

The bit-level demapper EXIT function reflects the average EXIT characteristics of a single bit
position m = 1, . . . , M in the binary label. Fig. 3.19a) and 3.19b) depict the EXIT functions and
the decoding trajectory split up in the four bit positions of a Gray and M16a 16QAM mapping,
respectively. These plots illustrate the different reliability of the bit positions. The trajectories
reveal that the output of the decoder corresponding to the a priori input of the demapper is
similar for all bit positions. This fact results from the averaging over the different bit position
reliabilities through the interleaver and decoder.

A symbol-level description of mappings is obtained if we fix the transmitted signal point and
observe the LLRs at the output of the demapper as a function of the a priori information. To
compute the symbol-level mutual information, we should use equation (3.10) to get rid of the
problems that arise with a fixed transmitted bit sequence. In Fig. 3.20a) and 3.20b), we observe
that the 16 symbols of the 16QAM Gray and M16a mappings are grouped in three and four
groups with similar characteristics, respectively. These plots illustrate the different reliability
of the symbols.

Note that the full characterization of a signal constellation would include the reliabilities of all
M · 2M bit positions: With e.g. 16QAM, we would have to consider separately 4 · 16 = 64 bits
positions.
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Figure 3.19: Bit-level demapper EXIT functions with trajectory; 10 log10(Es/N0)dB = 7dB.
Solid lines: simulation, dashed lines: numerical computation with BEC a priori information.
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Figure 3.20: Symbol-level demapper EXIT functions with trajectory; 10 log10(Es/N0)dB =
7dB.

3.3.3 Numerical Computation

We derive a numerical solution for demapper EXIT functions without Monte Carlo simulations.
The derivation is useful for a better understanding and to verify the results. We consider a
AWGN and symbol-level fading channel with BEC a priori information at the demapper. The
approach is based on the capacity considerations of Section 2.5 and the ideas presented in
[tB01c].

We start from equation (2.81) and (2.83) and average over the 2L possible a priori known bit val-
ues cL to obtain the average mutual information IL conditioned on the number 0 ≤ L ≤ M − 1
of a priori known bits:

I(X, Y ) =
M−1∑
L=0

IL =
M−1∑
L=0

1

M

1(
M−1

L

) 1

2L

M∑
m=1

(M−1
L )∑

j=1

∑

∀cL

I(Y, Cm|cL). (3.29)
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If no a priori information is available (L = 0), we only cumulate over the M bit positions:

I(X; Y ) ≥
M∑

m=1

I(Y ; Cm). (3.30)

I(Y ; Cm|cL) describes the information that can be gained by the demapper on the transmitted
bit Cm by observing the received symbol Y and using the a priori known bits cL. I(Y ; Cm|cL)
is evaluated by numerical integration over the complex signal space and by averaging over the
two possible values {0; 1} of Cm. We start from the general definition of the mutual information
given in equation (2.17), use Bayes’ rule and the following facts for simplification, similar as
done in equation (3.6):

p(y, cm|cL) = p(y|cm, cL) · p(cm); p(cm) =
1

2
; p(y|cL) =

1

2

(
p(y|0, cL) + p(y|1, cL)

)
.

(3.31)
Then we have

I(Y ; Cm|cL) = Ecm,h,y

(
log2

p(y|cm, cL)

p(y|cL)

)
(3.32)

=
1

2
·

∑

cm={0,1}

∫

C
p(h)

∫

C
p(y|cm, cL) · log2

2 · p(y|cm, cL)

p(y|0, cL) + p(y|1, cL)
dy dh,

with
p(y|cm, cL)) =

1

2M−(L+1)
·

∑

x∈X cm,cL
m

p(y|x), (3.33)

where X cm,cL

m denotes the subset of symbols x of the signal constellation X whose bit labels
have the a priori known values cL in L positions and the value cm in position m ∈ {1, . . . , M}.
|X cm,cL

m | = 2M−(L+1) since there are M − (L + 1) undetermined bit values. p(y|x) is given by
the two-dimensional Gaussian distribution:

p(y|x, h) =
1

2πσ2
n

exp

(
−|y − h · x|2

σ2
n

)
, (3.34)

where σ2
n is the noise variance per dimension. For an AWGN channel, the integration in equa-

tion (3.32) over the fading coefficient h can be omitted.

In the special case of ideal a priori information, where L = M − 1 bits are a priori known,
the set X cm,cL

m is reduced to one symbol. Since the signal constellation is then reduced to
a one-dimensional BPSK constellation, the corresponding LLRs are easy to obtain and the
mutual information can be obtained through numerical integration over the LLR distributions
as described in [Muh04] [MS05].

Recall that IL from equation (3.29) is the average conditional mutual information given that L
bits out of a maximum of M − 1 bits are a priori known at the demapper, 0 ≤ L ≤ M − 1. This
corresponds to BEC a priori information with erasure probability ε = 1 − L/(M − 1). With
the mutual information of the BEC channel given in equation (2.25), we obtain the following
values of the demapper EXIT function:

fdem(L/(M − 1)) = IL. (3.35)
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For a transition to continuous a priori knowledge, we consider a sequence of k symbols and
associated bits to obtain a smaller granularity 1/(kM − 1) of a priori known bits [tB01c].
Then, we have the EXIT function values fdem(L′/(kM −1)) for the a priori mutual information
1− ε = L′/(kM − 1) and obtain a continuous function for k →∞.

Numerically computed EXIT functions with AWGN and Rayleigh channel are compared to the
simulation results in Fig. 3.14 and 3.17. The results coincide well, even though a BEC a priori
information was assumed for the numerical computation.

The numerically computed bit-level EXIT functions are obtained if we omit the averaging over
the M bit positions in equation (3.29). The simulated and numerically computed EXIT func-
tions are compared in Fig. 3.19 and we observe again a good match.

An other approach to compute the EXIT functions of mappings has been presented in
[QZZW05]. To avoid the numerical integration over the signal space, a hard decision virtual
communication channel is defined that has the same capacity than the real AWGN or Rayleigh
fading channel. This approach leads to a good approximation of the demapper EXIT functions.

3.4 Design of Communication Systems Using EXIT Charts

According to the area properties given in equations (3.20) and (3.21) in Section 3.1, we would
approach capacity with iterative decoding of a serially concatenated system if the EXIT func-
tions of the receiver components precisely match without crossing since the area between the
curves is the distance to capacity and an early crossing would result in a high error rate. The
design of capacity approaching iterative systems is therefore reduced to a curve-fitting problem
[AKtB04][TH02] where we have to carefully shape the EXIT functions. Furthermore, we have
observed in Section 3.1 that an inner code with a rate Rin less than one implies an inherent
capacity loss. Therefore, Rin should be larger or equal to one.

For the considered BICM-ID scheme with iterative demapping and decoding, we have to match
the curve of the demapper to the curve of the decoder to optimize the performance. The main
parameters of the demapper EXIT function are the signal constellation and the mapping. With
a convolutional code, the code rate and the code memory are most relevant. With a given signal
constellation and code rate, the shape of the EXIT functions is restricted since the area under
the curves does not change with e.g. the mapping or the code memory.

The decoder curve can be further shaped if we apply an irregular puncturing [Tüc04]. Then,
different puncturing rates are applied within a code word and the overall decoder EXIT func-
tion is the linear combination of the EXIT functions of the punctured codes of different rate.
Similarly, we can use irregular or hybrid signal constellations and mappings to shape the EXIT
function of the demapper [SB06], as investigated in detail in Chapter 5. A further possibility
to adapt EXIT functions would be a non-uniform power distribution of the transmitted symbols
within one code word.

From the observations made in Section 3.2 and 3.3, we state that the steeper the EXIT function
of the demapper is, the less powerful the channel code has to be and the more iterations between
the decoder and demapper are required. With Gray mapping as example, iterations between
decoder and demapper are not necessary but a powerful capacity approaching code is required.
The pragmatic approach described in [GGB94] combines a powerful turbo code with Gray
mapping.
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We can generalize these observations to the following trade-off: if we use low complexity com-
ponents in iterative schemes, a large number of iterations is required. With more complex and
powerful components, a reduced number of iterations is required to achieve a similar perfor-
mance.

For low-density parity check (LDPC) codes [Gal62] as example, the constituent codes can be in-
terpreted as repetition and single parity check codes with very low decoding complexity. How-
ever, the number of required iterations is higher than with concatenated convolutional codes.
Another example is the use of irregular codes to optimize the iterative receiver. With irregular
codes, we deliberately lower the performance of the code itself but make it better suited for the
iterative receiver. However, optimized irregular codes require more iterations than regular ones.

Another issue is the trade-off between low complexity receivers and low achievable error rate,
illustrated in Fig. 3.21. In practical systems, we may set this trade-off according to the available
resources and the varying quality of service (QoS) requirements. The complexity is affected by
the number of required decoding iterations and the complexity of the components. As already
mentioned, an early crossing of the EXIT functions would result in a higher error rate. In the
considered BICM system, we can use only Gray mapping and implement a ”strong” or ”weak”
code for low error rates or low complexity, respectively. Or we only use a ”weak” channel code
and vary the mapping. The advantage of the second approach is that the change of the mapping
characteristic is easier to implement than different channel codes. The disadvantage is that we
need the feedback from the decoder to the demapper and that the performance might be lower
than with ”strong” channel codes.

Beside the analysis and optimization of iterative receivers, the EXIT chart provides the possi-
bility to easily measure e.g. the receiver-constrained capacity. We generate the EXIT function
of the considered receiver component that may use a sub-optimal estimation algorithm. The
area under the EXIT function then approximates the receiver-constrained capacity as long as
the LLR pdf does not strongly differs from the assumed distributions given by equation (3.2)
and (3.3).
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Figure 3.21: EXIT chart: combinations of Gray and turbo optimized (M16a) mapping with
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3.5 Summary

The EXIT chart was investigated as a tool to analyze the convergence properties of iterative
receivers and in particular of bit-interleaved coded modulation with iterative demapping and
decoding (BICM-ID).

We reviewed the EXIT chart construction and area properties. The capacity loss of rate Rin < 1
inner codes in serially concatenated schemes, properties of catastrophic and non-catastrophic
rate Rin = 1 inner codes and the impact of different channel models (BSC, BEC, and AWGN)
on the EXIT functions were studied. We derived analytic decoder EXIT functions of convolu-
tional codes and turbo codes for BEC channels. A random puncturing approach was proposed
to obtain a closed form solution for codes of different rates. Demapper EXIT functions for
different system parameters and in particular for different channel models were investigated.
We considered a bit-level and symbol-level analysis and the numerical computation of demap-
per EXIT functions. Using these findings, design guidelines were elucidated for BICM with
iterative demapping and decoding.



4
Mappings for Coded
Modulation

High order modulation schemes are required to transmit high data rates over a limited band-
width, as emphasized in Section 2.2. For a given number of bits that should be transmitted
within one complex symbol, the signal constellation and the bit-to-symbol mapping need to be
specified.

We use standard ASK, PSK and QAM signal constellations described in Section 2.2 and focus
on the mapping, i.e. the assignment of bit sequences of length M to the complex symbols of
a 2M -ary signal constellation. Different mappings have been proposed for a variety of appli-
cations. Probably the most famous ones are Gray mapping [Gra53] for bit-interleaved coded
modulation (BICM) and set partitioning mapping [Ung82] for trellis coded modulation (TCM).
The degree of freedom in the design of mappings grows rapidly with the size of the signal con-
stellation. With a 16QAM signal constellation, we can already select one out of 16! ≈ 2 · 1013

possible mappings. Note that several mappings may have similar properties and are just mir-
rored or rotated versions of other mappings, but the number of mappings with different charac-
teristics is still very large.

In the EXIT chart analysis in Section 3.3 we already considered the mapping as a true coding
entity. The memoryless mapper has a single state and generates encoded complex symbols cor-
responding to its input binary sequence; M consecutive bits determine which complex symbol
is transmitted. Therefore, each bit influences the transmission of M − 1 other bits. The single
state trellis of the mapper with 2M parallel transitions is depicted in Fig. 4.1. A state transition
is characterized by the Hamming weight of the binary label and the Euclidean distance to the
symbols corresponding to the other state transitions.

Similar to a channel code, we are interested in characterizing and optimizing the mapping. We
characterize the mappings by introducing a suitable Euclidean distance spectrum (EDS) for
BICM based systems in Section 4.1. In Section 4.2 we discuss the design of mappings for
different applications using the EDS, including the standard Gray and set partitioning map-
pings, mappings for equal and unequal error protection, mappings for iterative receivers, multi-
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Figure 4.1: Trellis of a memoryless, single state 16QAM mapping [Ung82].

dimensional mappings and mappings for ARQ. In Section 4.3 we optimize mappings for differ-
ent applications by casting the optimization to a quadratic assignment problem (QAP) and by
solving it using a binary switching algorithm (BSA). The use of an additional inner encoder is
finally discussed in Section 4.4.

All mappings considered in this Chapter are defined in the tables of Appendix A.

4.1 Euclidean Distance Spectrum

The term Euclidean distance spectrum or Euclidean distance profile is often used in the litera-
ture in the context of coded modulation and especially trellis coded modulation (TCM), where
coding and modulation are considered as a single entity on a joint trellis. The Euclidean dis-
tance spectrum is then defined as the number of error events with a certain cumulated Euclidean
distance along the wrong path in the trellis. The minimum Euclidean distance is denoted as the
free Euclidean distance.

However, we consider the memoryless, single-state mapper as a stand-alone coding entity and
focus on applications to BICM without and with iterative decoding. We define an Euclidean
distance spectrum (EDS) [SGHB03a] to characterize and analyze mappings and to easily derive
precise error bounds. The properties of the signal constellation are inherently included in the
EDS. Roughly speaking, the EDS is the average or cumulated Hamming distance between bit
labels at a specific Euclidean distance. The Hamming distance is equivalent to the number of
bit errors made while choosing the wrong signal point.

We derive the EDS from a bit-wise and a symbol-wise point of view. These descriptions cor-
respond to the bit-wise and symbol-wise EXIT charts introduced in Section 3.3, where the bit
reliabilities are averaged over one bit position or one bit label, respectively. Note that the full
characterization of a signal constellation would include the reliabilities of all M · 2M bit posi-
tions.

Furthermore, the EDS depends on the amount of available a priori information. Similar to the
EXIT chart analysis in Section 3.3, we assume BEC a priori information and characterize the
mappings with the EDS depending on the number of a priori known bits. The EDS provides
an exact characterization of the mapping with ideal a priori information. For the other scenar-
ios, we introduce an expurgated EDS to obtain a satisfactory approximation of the mapping
characteristics.

Other approaches to characterize signal constellation and mapping properties have been pro-
posed in the literature. Brännström considered in [Brä04] a distance spectrum for PSK mod-
ulation for no and ideal a priori information. In [TS05a], a description of the mappings by a
transfer function is proposed. A so-called average distance spectrum is defined in [LSAO03a]
[LSAO03b] [ALSO04] for PSK and ASK signal constellations without a priori information.
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Furthermore, Wachsmann presented in [Wac98] a distance profile in the context of multilevel
coding (MLC) with multistage decoding (MSD). The EDS proposed in this section can be used
for arbitrary signal constellations, any number of a priori known bits, and for a bit-wise and
symbol-wise mapping description.

4.1.1 Bit-Wise Definition

We separately investigate the M bit positions in the binary label to obtain a bit-wise EDS.
For each bit position, we define decision regions in the complex plane and list the Euclidean
distances between signal points belonging to different decision regions. The results are in direct
relation to the bit-wise EXIT charts investigated in Section 3.3.

Consider the example of 16QAM with set partitioning mapping shown in Fig. 4.2. The shaded
regions correspond to the regions for the received signal where the optimal MAP demapper
would decide for the investigated bit to be equal to 0. Large decision regions around the symbols
provide a high protection for the corresponding bits. Note that the decision regions for each bit
position may have different size and therefore the bit estimates may have different reliability.
As example, we observe in Fig. 4.2 that the decision regions for the first bit are larger than for
the last bit, resulting in a different reliability of the demapper soft output values.
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Figure 4.2: 16QAM with set partitioning mapping. Decision regions for bit m = 1, 2, 3, 4 with
no a priori information. Shaded region: bit m is equal to 0.

With BEC a priori information, the number of possible signal points is reduced as described in
Section 2.5. This a priori information may result in an enlargement of the decision regions and
therefore in an improvement of the reliability of the soft demapper outputs.

The effect of a priori information on the decision regions is illustrated in Fig. 4.3 for the example
of 16QAM with set partitioning mapping and if the signal point with label (0000) is transmit-
ted. The decision on the last bit is considered and we observe the remaining signal points and
decision regions if the first 0, 1, 2 and 3 bits are a priori known. For that specific example, the
knowledge of the third bit does not increase the decision region for the last bit. To determine
the reliability of a specific bit position m in a BICM based scheme after the demapper, we have
to average over all possible a priori known bit positions and a priori known bit values, as done
in the EXIT chart computation in equation (3.29). Note that this reasoning is valid for the per-
spective of BICM with iterative demapping and decoding and does not correspond to the basic
idea of set partitioning mapping, where the Euclidean distances within subsets of signal points
are considered. These subsets correspond to the remaining signal points if the last 1, 2, and
3 bit are known in this example. A more comprehensive study of set partitioning mapping is
given in Section 4.2.
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Figure 4.3: 16QAM with set partitioning mapping. Symbol with label (0000) transmitted,
remaining signal points and decision regions for the last bit m = 4 if 0, 1, 2, 3 bits are a priori
known.

With ideal a priori information (genie or error free feedback case), all bits except the bit to be
detected are a priori known and the signal constellation is reduced to a binary constellation.
Depending on the actual a priori information, different symbol pairs remain. The labels of
the two remaining signal points differ only in the bit to be detected. The decision regions
with ideal a priori information then correspond to the decision regions with BPSK modulation.
Fig. 4.4 depicts the possible binary signal constellations for a 16QAM signal constellation with
set partitioning mapping for the bit positions m = 1, . . . , 4 to be detected. We achieve a good
performance if the Euclidean distance between the corresponding signal points is maximized.
Therefore, the first bit has the highest and the fourth bit the lowest reliability in this example.
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Figure 4.4: 16QAM with set partitioning mapping. Detection of bit m = 1, . . . , 4 with ideal a
priori information.

From the investigations done so far we have seen that signal constellations and mappings are
precisely characterized by their decision regions for each bit position. The aim of the Euclidean
distance spectrum (EDS) is to retrieve and list the relevant Euclidean distances between the
decision regions. With ideal a priori information, we obtain a precise characterization of the
mapping if we enumerate the distances between all possible remaining symbol pairs. Without
a priori information, the EDS cannot reflect in general the details of the two dimensional deci-
sion regions, at least for signal constellations that are not based on ASK and PSK modulation
schemes. However, we can obtain a good and helpful approximation.

To formally derive the EDS from a bit-wise perspective, we define the three sets Dex, D and Λ:

The set Dex = {dex,1, . . . , dex,v, . . . , dex,V } is defined as the set of all possible distinct
(expurgated) Euclidean distances between any two distinct signal points of the signal set X .
For example, the possible Euclidean distances for a 16QAM signal constellation are shown in
Fig. 4.5, where ∆ denotes the minimum squared Euclidean distance between any two signal
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points:
∆ = min

∀xi,xj∈X
|xi − xj|2. (4.1)

In this example, we have V = 9 distinct Euclidean distances and

D2
ex = {∆, 2∆, 4∆, 5∆, 8∆, 9∆, 10∆, 13∆, 18∆}. (4.2)

In general, an ASK signal constellation has V = 2M − 1 distinct Euclidean distances, square
QAM V = 2M−1 + 2M/2−1 − 1, and PSK V = 2M/2.
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Figure 4.5: Possible Euclidean distances in the set D2
ex with 16QAM.

Furthermore, we enumerate for each bit position m = 1, . . . , M all not necessarily distinct Eu-
clidean distances between symbols that belong to different decision regions, where two symbols
xi and xj belong to different decision regions for bit position m if the bit label of xi differs in
the mth bit position from the bit-label of xj . These Euclidean distances are grouped in the set
D = {d1, . . . , dV ′} ⊇ Dex.

With L a priori known bits, the reduced signal constellation has 2M−L signal points and we
cumulate the distances over the M bit positions and 2L · (M−1

L

)
possible reduced signal constel-

lations. The cardinality of the set D is then:

V ′ = |D| = M · 2L ·
(

M − 1

L

)
· 2M−L · 2M−L−1

2
= M · 22M−L−2 ·

(
M − 1

L

)
. (4.3)

Finally, let λv denote the frequency of the distance dex,v in the set D and Λ = {λ1, . . . , λV }.
Dex depends only on the signal constellation, whereas D and Λ characterize the bit mapping.
The Euclidean distance spectrum lists the frequencies λv of the Euclidean distances dex,v.

To illustrate these definitions, we consider the basic example of QPSK modulation. The set
Dex of possible distinct Euclidean distances includes the two distances Dex = {dex,1, dex,2} =
{√∆,

√
2∆}. Fig. 4.6(a) depicts the distances from the set D between the decision regions

for Gray mapping and for the two bit positions. With ideal a priori information, the distances
marked with dashed lines are eliminated. The corresponding EDS lists all possible distances
sketched in Fig. 4.6(a) and is given in the Tables of Fig. 4.6(b) for no and ideal a priori informa-
tion. The distances in brackets are omitted in the expurgated EDS described later on. Fig. 4.7
shows the results for QPSK Anti-Gray mapping.
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frequencies λ1 and λ2 of distances dex,1 =

√
∆ and dex,2 =

√
2∆, respectively.

10

1100

01 01

00 11

10

D2
ex ∆ 2∆

Λ λ1 λ2

1st bit 2 (2)
2nd bit 4 (0)
Overall 6 (2)

D2
ex ∆ 2∆

Λ λ1 λ2

1st bit 0 2
2nd bit 2 0
Overall 2 2

a) 1st bit (m = 1), 2nd bit (m = 2). b) no a priori, ideal a priori
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For a good performance, the minimum Euclidean distance should be maximized and the num-
ber of minimum Euclidean distances minimized. In other words, the minimum index v of dex,v

where λv 6= 0 should be maximized and the corresponding value of λv minimized. As a conse-
quence of the area theorem of the demapper EXIT chart, we stated in Section 3.4 that there is
a strong trade-off in the design of mappings between the performance with no a priori informa-
tion and with ideal a priori information. A Gray mapping optimized for no a priori information
will take little advantage of this a priori information, as illustrated in Fig. 4.6 where the overall
value λ1 = 4 is independent of the a priori information. With Anti-Gray mapping, the number
of distances at minimum Euclidean distance is reduced from λ1 = 6 to λ1 = 2 by a priori infor-
mation, see Fig. 4.7. Therefore, we expect with Anti-Gray mapping a performance that is lower
than the one with Gray mapping with no a priori information, but higher for the assumption of
ideal a priori information.

Furthermore, we consider in Fig. 4.6 and 4.7 the distances for each bit separately. With QPSK
Gray mapping, the 2 bit positions are equally reliable, whereas with QPSK Anti-Gray mapping,
the first bit is more reliable than the second one, both for no and ideal a priori information.

The relations in the EDS are directly reflected in the corresponding EXIT chart shown in
Fig. 4.8. With Gray mapping, both bit positions are equally reliable and the a priori infor-
mation has no influence on the performance. With Anti-Gray mapping, the two bit positions
have different reliability and the a priori information improves the performance. The EXIT
chart results correspond directly to the EDS in Fig. 4.6 and 4.7, where with Anti-Gray mapping
the value of λ1 = 2 of the first bit without a priori information and of the second bit with ideal
a priori information is equal to the value of λ1 = 2 with Gray mapping.

In addition to the marginal cases of no a priori information and ideal a priori information, an
EDS can be given for signal constellations with M ≥ 3 for any number 1, . . . , M −2 of a priori
known bits.
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Figure 4.8: Average and bit-wise EXIT functions with QPSK Gray and Anti-Gray mapping.
AWGN channel, 10 log10(Es/N0)dB = 1dB.

A comprehensive example is given in Table 4.1. The EDS for 16QAM with set partitioning
mapping as depicted in Fig. 4.2 and 4.4 is given for a different number of a priori known bits and
for the different bit positions. We observe that the EDS is improved with a priori information
and the different reliabilities of the bit positions.

4.1.2 Symbol-Wise Definition

Instead of processing each bit position 1, . . . , M for the EDS, the symbol-wise approach inves-
tigates the relevant Euclidean and Hamming distances for each symbol 1, . . . , 2M separately.
The cumulated overall distances of the bit-wise and symbol-wise approach are identical.

The symbol-wise investigation gives the reliability of a specific symbol and is useful for the
optimization of mappings, where symbols with a large contribution to a bad performance need
to be determined, see Section 4.3. The results are consistent with the symbol-wise EXIT charts
introduced in Section 3.3.

To obtain the symbol-wise EDS, we proceed as follows: We cumulate and sort the Hamming
distances (or number of bit errors) for each of the 2M symbols to the other 2M − 1 symbols
according to the Euclidean distance between the respective symbols. A mapping has a uniform
symbol-wise EDS if the EDS is identical for each symbol.

Consider again the example of QPSK modulation with Gray and Anti-Gray mapping shown in
Fig. 4.6 and 4.7, respectively. With Gray mapping and no a priori information, the cumulated
Hamming distance for symbols at squared Euclidean distance d2

ex,1 = ∆ and d2
ex,2 = 2∆ is 2 for

all symbols. With Anti-Gray mapping, we have 3 cumulated bit errors at d2
ex,1 = ∆ and 1 bit

error at d2
ex,2 = 2∆ for all symbols. Therefore, these mappings are uniform and we obtain the

overall EDS as given in Fig. 4.6(b) and 4.7(b) with the factor of two. With a priori information,
the procedure is similar but we consider the reduced signal constellations.

A further example for 16QAM with set partitioning mapping and for the symbol labeled with
(0000) is given in Fig. 4.9. No a priori information is assumed.
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Figure 4.9: 16QAM with set partitioning mapping. Symbol with label (0000) transmitted,
enumerate cumulated Hamming distances to symbols at different Euclidean distances.

4.1.3 Expurgated Definition

So far, we have considered all possible Euclidean distances between the decision regions. How-
ever, not all of these distances are relevant. Therefore, we define an expurgated EDS that
contains only the most significant distances. The idea is similar to the approach presented in
[CTB98], where relevant distances for BICM with Gray mapping have been determined to ob-
tain tighter error bounds.

With ideal a priori information, the EDS as described above accurately characterizes the map-
ping. Otherwise, we use the bit-wise definition of the EDS to approximate the properties of
the decision regions as follows: For each symbol, we include in the set D only the Euclidean
distances to the nearest symbols from the other decision region. With Gray mapping, each sym-
bol has only one so called nearest neighbor from the other decision region. In general, several
nearest neighbors are possible.

For the example of QPSK modulation, the expurgated EDS does not consider the values of λ2 in
brackets in Fig. 4.6(b) and 4.7(b). Consider in particular QPSK Gray mapping without a priori
information as shown in Fig. 4.6(a). Then, if we investigate e.g. the decision on the first bit
of the signal point labeled with (00), only the Euclidean distance to its nearest neighbor (10)
should be taken into account. If we reduce the problem of identifying regions contributing to
the probability of error to a single dimensional problem, the Euclidean distance to the point
labeled with (11) has no influence on the performance and we should ignore it in that case. If
non-Gray mappings are used, a signal point may have several nearest neighbors, as it is the case
for the second bit of the anti-Gray mapping in Fig. 4.7(a).

As a further example, the Euclidean distances for the expurgated EDS without a priori informa-
tion with 16QAM and set partitioning mapping are depicted in Fig. 4.10.

Table 4.1 summarizes the EDS for different setups for the example of 16QAM and set partition-
ing mapping. The given values should be considered in relation with the Figures mentioned in
the table.

Fig. 4.11 depicts the bit-wise EXIT chart corresponding to the EDS in Table 4.1. We readily
observe that the 3rd bit is more reliable than the 2nd and 4th bit without a priori information,
and that its performance is just slightly better than the 4th bit with ideal a priori information.
This corresponds to the relations in the EDS.
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D2
ex (Fig. 4.5) d2

ex,1 = ∆ d2
ex,2 = 2∆ d2

ex,3 = 4∆ 5∆ 8∆ 9∆ 10∆ 13∆ 18∆

Λ λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

Number of a priori known bits: L = 0 (No a priori, Fig. 4.2)
1st bit 4 6 8 16 8 4 8 8 2
2nd bit 16 8 16 8 0 0 8 8 0
3rd bit 12 18 0 12 0 4 12 4 2
4th bit 24 0 0 24 0 8 0 8 0
Overall 56 32 24 60 8 16 28 28 4

Number of a priori known bits: L = 0 (No a priori), expurgated (Fig. 4.10)
1st bit 4 0 4 0 0 0 0 0 0
2nd bit 16 0 0 0 0 0 0 0 0
3rd bit 12 0 0 0 0 0 0 0 0
4th bit 24 0 0 0 0 0 0 0 0

Expurgated 56 0 4 0 0 0 0 0 0
Number of a priori known bits: L = 1
Expurgated 26.7 12 5.4 2.7 0 0 0 0 0

Number of a priori known bits: L = 2
Expurgated 9.4 12 9.4 5.4 2 0 0 0 0

Number of a priori known bits: L = 3 (Ideal a priori, Fig. 4.4)
1st bit 0 0 0 0 8 0 0 0 0
2nd bit 0 0 8 0 0 0 0 0 0
3rd bit 0 8 0 0 0 0 0 0 0
4th bit 4 0 0 0 0 4 0 0 0
Overall 4 8 8 0 8 4 0 0 0

Table 4.1: Euclidean distance spectrum (EDS) for 16QAM with set partitioning mapping. The
values are normalized by

(
M−1

L

)
.
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Figure 4.10: 16QAM with set partitioning mapping. Euclidean distances for expurgated EDS
for bit m = 1, . . . , 4 and no a priori information.
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Figure 4.11: Average and bit-wise EXIT function of 16QAM with set partitioning mapping,
AWGN channel, 10 log10(Es/N0)dB = 8dB.

4.1.4 Graphical Representation

The description of the EDS like in Table 4.1 can become cumbersome. As an alternative, we can
describe the EDS as coefficients of a polynomial or using a graphical representation. A possible
graphical representation is shown in Fig. 4.12 for QPSK and 16QAM with set partitioning
mapping, corresponding to the tables in Fig. 4.6, 4.7 and to Table 4.1, respectively. We plot the
cumulated values of the frequencies λv normalized by the number of signal points 2M over the
Euclidean distances dex,v, v = 1, . . . , V .

4.2 Mapping Strategies

Mappings can be designed and optimized for a variety of applications. Before discussing op-
timization algorithms for mappings, it is worth examining the most important design aims and
some corresponding mappings. Furthermore, we show how to apply the EXIT chart and the
Euclidean distance spectrum (EDS) as powerful tools to describe the specific properties of the
different mappings.
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Figure 4.12: Graphical representation of expurgated EDS. Normalized frequencies: λv/2
M ,

Euclidean distances from the set Dex with normalized signal constellations and minimum Eu-
clidean distances

√
∆ =

√
2 and

√
∆ =

√
0.4 for QPSK and 16QAM, respectively.

4.2.1 Gray Mapping

Gray mapping was proposed by Frank Gray in a patent from 1953 as a means of reducing
the error rate in a pulse code communication system [Gra53]. With Gray mapping, the binary
labels of signal points at minimum Euclidean distance differ in only one bit, thus minimizing
the error probability for the most probable symbol error event at minimum Euclidean distance.
This commonly used definition of a Gray mapping does not say anything about the Hamming
distance between binary labels of signal points at distances larger than the minimum Euclidean
distance. The error events at minimum Euclidean distance are the most relevant, but error events
at other small Euclidean distances may also be taken into account.

Gray proposed a recursive construction method that generates the mapping by binary reflexion
as follows: If we start from a Gray labeling of order m − 1, we append a sequence of 2m−1

binary vectors formed by repeating the labels in reverse order. To this new sequence of binary
labels, an extra bit is added from the left, where this extra bit is 0 for the first half of the 2m

labels and 1 for the second half. The example in Fig. 4.13 illustrates this procedure.

00, 01, 11, 10

00, 01, 11, 10, 10, 11, 01, 00

000, 001, 011, 010, 110, 111, 101, 100

reflect

append 0 append 1

Figure 4.13: Construction of a binary reflected Gray code.
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A binary reflected Gray code of order M is obtained by M −1 recursive reflexions of the trivial
Gray labeling (01). Through the direct product of two one-dimensional Gray mappings con-
structed by reflection, we obtain the corresponding Gray mapping for two-dimensional QAM
signal constellations.

It is shown in [ALSO04] that this construction method leads to the best Gray mappings with
optimal performance without a priori information at the demapper.

Consider as example the EDS in Table 4.2 and the EXIT functions in Fig. 4.14 of two Gray
mappings for 16PSK modulation obtained by different construction methods. We observe that
the Gray mapping constructed by reflection has a slightly better performance without a priori
information. The value λ1 = 16 is identical for all Gray mappings. In general, λ1 = 2M for
all PSK signal constellations with Gray mapping. However, λ2 and then λ3, λ4, . . . are mini-
mized with Gray mapping constructed by binary reflexion. Since the area under the demapper
EXIT function is identical for all mappings, the performance of the Gray mapping constructed
by reflection is slightly lower with ideal a priori information than with other Gray mappings.
However, this is not the scenario Gray mapping was designed for.

Λ λ1 λ2 λ3 λ4 λ5 . . .

No a priori information (Expurgated)
Binary reflected 16 8 4 4 0 . . .

Balanced 16 11 7 0 0 . . .

Ideal a priori information
Binary reflected 16 0 8 0 4 . . .

Balanced 16 0 5 0 0 . . .

Table 4.2: EDS, 16PSK with different Gray mappings.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

MI at input of demapper

M
I a

t o
ut

pu
t o

f d
em

ap
pe

r

binary reflected Gray mapping

balanced Gray mapping

Figure 4.14: EXIT function, 16PSK with different Gray mappings, 10 log10(Es/N0)dB = 6dB.
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4.2.2 Mapping by Set Partitioning

Mapping by set partitioning was introduced by Ungerböck in [Ung82] [Ung87a] [Ung87b]
for trellis coded modulation (TCM) described in Section 2.5. The mapping is designed in
conjunction with the code to increase the minimum Euclidean distance between pairs of coded
signal sequences.

The mapping by set partitioning is constructed by successive partitioning of the signal con-
stellation into disjoint subsets with increasing minimum Euclidean distance between the signal
points of these subsets, as illustrated for the example of 8ASK modulation in Fig. 4.15.

000 001 010 011 100 101 110 111

0

0

0

0

00 0

1

1

111

1

1

∆

Figure 4.15: Construction of a set partitioning mapping for 8ASK.

At each partitioning level, the intra-set Euclidean distance is maximized. For one-dimensional
ASK signal constellations, the minimum Euclidean distance at a certain partition level is twice
the minimum Euclidean distance of the previous partition level. For two dimensional QAM sig-
nal constellations, the minimum squared Euclidean distance at a certain partition level is twice
the minimum squared Euclidean distance of the previous partition level. Note that this approach
does not lead to optimized Euclidean distances for the last partitioning level, as required for iter-
ative demapping and decoding. It is more a greedy approach, where the next partition is chosen
to achieve the best improvement at that level without considering the next levels. Each bit posi-
tion in the binary label specifies a subset at a certain partition level. If e.g. the bit corresponding
to the first partition level is known, the mapping is optimized for the second partition level and
a certain minimum Euclidean distance between the signal points is guaranteed. This important
property is used when the mapping is combined with a code in a TCM scheme.

This explains in part the convex shape of the average EXIT function fdem(I) in Fig. 4.11: Start-
ing from a low value fdem(0) without a priori information, the improvement is large with low a
priori information but there is no more potential to reach high values fdem(1) with ideal a priori
information. Set partitioning is therefore not well suited for iterative demapping and decoding
schemes, where both the values fdem(0) and fdem(1) should be large for an early start of the
iterative process and low error rates at high SNR, respectively.

The properties of set partitioning are not directly reflected by the EDS since we average over
all combinations of a priori known bit positions. Nevertheless, with ideal a priori information,
symbol pairs that differ in a bit position corresponding to the first partition level have a smaller
minimum Euclidean distance than symbol pairs that differ in a bit position corresponding to last
partition level: In the example of Fig. 4.15, the Euclidean distance between the signal points
labeled with (000) and (100) is ∆, between (000) and (010) 2∆, and between (000) and (001)
4∆, where ∆ is the minimum Euclidean distance between any two signal points. A similar
observation can be made for 16QAM with set partitioning in the EDS of Table 4.1 with ideal a
priori information.
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In contrast to set partitioning, block partitioning mapping proposed in [WFH99] for multilevel
coding (MLC) has the aim to keep the minimum intra-set Euclidean distance as constant as
possible for all partitioning levels. For iterative demapping and decoding, the characteristics
are however similar to set partitioning and we will not further address this mapping.

4.2.3 Mappings for Equal and Unequal Error Protection

The individual bit positions in the binary label may have a different reliability, as observed in
bit-wise EXIT charts and bit-wise EDS. It is often desirable to design mappings with specific
bit-wise performance characteristics. The aim is to achieve either a uniform or non-uniform
reliability distribution of the bit positions, resulting in an equal or unequal error protection,
respectively.

Consider the example of a multiplexing system in which each bit position carries the data of an
independent source. The mapping can be optimized to provide equal or unequal error protection
for the different sources. Equal error protection is of interest if all sources provide information
of same relevance. Unequal error protection is of interest for e.g. hierarchical transmission in
a broadcast scenario. The more reliable bit positions carry crucial information that should be
received by all users whereas the less reliable bit positions carry enhancement information. By
selecting a specific mapping, we do not change the capacity. To improve the overall capacity
for hierarchical broadcast transmission, we should shift the signal points and choose a signal
constellation where the signal points are grouped to clusters, as proposed and investigated in
[Cov72] [ROUV93] [See99].

The BICM system is another example where the reliability of the individual bit positions is of
relevance. A convolutional code has the best performance if all channel values have a similar
reliability.

Mappings with similar properties for each bit position are usually denoted as balanced map-
pings. The class of balanced Gray mappings is investigated in [Sav97] and references therein.

The bit-wise expurgated EDS without a priori information is given in Table 4.3 for the example
of the two 16PSK Gray mappings already investigated in Table 4.2 and Fig. 4.14. The cumulated
EDS is slightly better with the binary reflected Gray mapping, with smaller values of λ2 and
λ3. However, the single bit positions in the binary reflected Gray mapping have quite different
values of λ1, resulting in different protection levels. The balanced mapping has identical values
of λ1 = 8 and similar values of λ2 for all bit positions.

These facts are reflected in the bit-wise EXIT chart in Fig. 4.16, where we clearly observe the
different reliability of the bit positions with the binary reflected Gray mapping.

4.2.4 Mappings for Iterative Receivers

The binary reflected Gray mapping is optimal without a priori information at the demapper.
With a receiver performing iterative demapping and decoding, close to ideal a priori information
may be available at the demapper at high SNR after several iterations. But what is the ”optimal”
mapping with ideal a priori information? With QPSK modulation, only two distinct mappings
are possible. We denoted them as Gray and Anti-Gray mapping in Fig. 4.6 and 4.7, respectively.
But what is in general the definition of an ”Anti-Gray” mapping? What are the mappings that
provide the best performance with ideal a priori information for high order signal constellations?
How can we find them, how can we construct them?
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Λ λ1 λ2 λ3 λ4 . . .

1st bit 4 4 4 4 . . .
2nd bit 4 4 4 4 . . .
3rd bit 8 8 0 0 . . .
4th bit 16 0 0 0 . . .
Overall 16 8 4 4 . . .

Λ λ1 λ2 λ3 λ4 . . .

1st bit 8 6 4 0 . . .
2nd bit 8 6 4 0 . . .
3rd bit 8 6 2 0 . . .
4th bit 8 4 4 0 . . .
Overall 16 11 7 0 . . .

a) Binary reflected b) Balanced

Table 4.3: Bit-wise expurgated EDS without a priori information, 16PSK with different Gray
mappings.
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Figure 4.16: Average and bit-wise EXIT functions, 16PSK with different Gray mappings;
10 log10(Es/N0)dB = 7dB.

With ideal a priori information, the signal constellation is reduced to two signal points whose
labels differ only in the bit to be detected. To maximize the gain over the iterations and to
optimize the performance at high SNR, the aim is to maximize the minimum Euclidean distance
between symbols whose bit label differ in one bit. This is in contrast to the design rules for
Gray mapping, where the aim is to minimize the Euclidean distance between symbols whose bit
label have Hamming distance one.

Several mappings for iterative receivers have been investigated in [tB00] [CR01] [CR02] [TS02]
[ZLH03] [SWK03] [CGV04] [TN04] [TS05a]. We propose in Section 4.3 the general approach
published in [SGHB03b] [SGHB03a] to optimize mappings.

As example, we consider in Fig. 4.17 the modified set partitioning (MSP) mapping from [CR01]
and the maximum squared Euclidean weight (MSEW) mapping from [TS02]. The correspond-
ing EDS are given in Table A.3 in Appendix A. We observe the strong performance improve-
ment with ideal a priori information compared to Gray mapping.

It is interesting that, if the binary bit labels are converted to decimal numbers, the MSEW
mapping is a perfect magic square, since the sum of all rows, columns, diagonals, 2 × 2 sub-
squares and 2× 2 cyclic sub-squares is equal to 30. We also observed that every perfect magic
square has the distance spectrum of the MSEW mapping.
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Figure 4.17: EXIT functions, 16QAM with different mappings, AWGN, 10 log10(Es/N0)dB =
7dB.

4.2.5 Multi-Dimensional Mappings

Instead of mapping a bit sequence of length M to one symbol, we can jointly map a bit sequence
c of length MNd to a vector x of Nd symbols. These multi-dimensional mappings provide
further design and optimization possibilities. The Nd jointly mapped symbols can be transmitted
sequentially in time or in parallel through Nd transmit antennas. Fig. 4.18 depicts an example
for two-dimensional QPSK with Nd = 2 and M = 2. The joint mapping implies that there may
be no one-to-one relationship between the first M bits of the label and the first symbol.

Symbol 2

Symbol 1

0000 0001 1111

Figure 4.18: Example of two-dimensional QPSK mapping.

According to equation (2.43), the APP LLR for the bit estimate ĉm with multi-dimensional
mapping is

L(ĉm) = log

∑
∀c:cm=0 eΛ(c)

∑
∀c:cm=1 eΛ(c)

. (4.4)

Similar to equation (2.45), the metric Λ(c) is computed for the AWGN channel as follows:

Λ(c) = −
Nd∑
n=1

|yn − xn|2
2σ2

n

−
MNd∑
m=1

cm · L(cm), (4.5)

where the bit sequence c with elements cm is jointly mapped to the symbol sequence x with
elements xn.
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Multi-dimensional mappings have been extensively studied in the 80’s for trellis coded mod-
ulation (TCM) [CS87] [Ung87b] [Wei87]. The application of multi-dimensional mappings to
multi-antenna systems has been investigated in [Hon03] [Bär04] [GBB05] [MS06] and to BICM
in [SWM05] [TN06].

With BICM, standard Gray mapping is the best choice for all symbols if no a priori infor-
mation is available at the demapper. Then, multi-dimensional mappings provide no benefits.
The advantages of multi-dimensional mappings arise when mappings are designed for iterative
receivers with a priori information at the demapper.

Consider the example of two-dimensional QPSK mappings. Then, the possible squared Eu-
clidean distances are D2

ex = {∆, 2∆, 3∆, 4∆}, where ∆ is the minimum squared Euclidean
distance between two signal points in a QPSK signal constellation. Table 4.4 gives the EDS
of different two-dimensional QPSK mappings. As expected, Gray mapping is optimal with-
out a priori information. With ideal a priori information however, the turbo optimized two-
dimensional mapping yields a large gain over the one-dimensional QPSK Gray and Anti-Gray
mappings.

D2
ex d2

ex,1 = ∆ d2
ex,2 = 2∆ d2

ex,3 = 3∆ d2
ex,4 = 4∆

Λ λ1 λ2 λ3 λ4

No a priori information (Expurgated)
Gray 32 0 0 0

1-D Anti-Gray 48 0 0 0
2-D Turbo opt. 72 0 0 0
Ideal a priori information

Gray 32 0 0 0
1-D Anti-Gray 16 16 0 0
2-D Turbo opt. 0 0 24 8

Table 4.4: EDS, two-dimensional QPSK mappings (M = 2, Nd = 2), mappings defined in
Table A.8.

4.2.6 Mapping Rearrangement and Mapping Diversity for ARQ

Balanced Gray mappings with equal reliabilities of all bits do not exist for all signal constel-
lations, in particular not for 16QAM. Then, the receiver performance is lower than with a ho-
mogeneous bit reliability distribution. To overcome this fact in ARQ schemes - and in general
transmit diversity schemes - with maximum ratio combining (or Chase combining), each di-
versity branch may use a different Gray mapping [WES04]. With 16QAM Gray mapping, the
M · 2M = 41̇6 possible bit positions have four different reliabilities. With carefully chosen
Gray mappings for each retransmission, the bit reliabilities are homogeneous after four retrans-
missions. This approach was adopted for hybrid ARQ operation in high speed downlink packet
access (HSDPA) [3GPP06b].

The idea of symbol mapping diversity for ARQ is more general: A different mapping is selected
for each retransmission and mappings different from Gray may be used for the retransmissions.
In [SDH05], optimized mappings for each retransmission have been proposed for BICM with-
out iterative demapping and decoding. The mapping for the ith retransmission is chosen to
maximize the performance after the ith retransmission. It is interesting to note that even though
no feedback to the demapper is implemented, a Gray mapping is selected only for the first initial
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transmission. We derived optimized sequences of mappings for BICM with iterative demapping
and decoding in [Vu05].

The MAP demapper with mapping diversity and Nt retransmissions is given by equation (2.43)
with the new metric implementing maximum ratio combining:

Λ(cn) = −
Nt∑
i=1

|y(i)
n − x

(i)
n |2

2σ2
n

−
M∑

m=1

cn,m · L(cn,m), (4.6)

for the AWGN channel and where x
(i)
n and y

(i)
n are the transmitted and received signals of the

ith retransmission, respectively.

Assume as example QPSK modulation with the distinct squared Euclidean distances D2
ex =

{∆, 2∆} and up to three retransmissions in an ARQ scheme. Then, the possible cumulated
distances over three transmissions are D2

ex = {∆, 2∆, 3∆, 4∆, 5∆, 6∆}. The EDS for three
retransmissions of QPSK Gray mapping is given in Table 4.5a). A significant improvement is
achieved if different QPSK mappings are applied for the retransmissions, as observed in the
EDS in Fig. 4.5b). Anti-Gray QPSK mappings are used in the 2nd and 3rd retransmission and
the performance is better than with only Gray mapping, even without a priori information.

D2
ex ∆ 2∆ 3∆ 4∆ 5∆

Λ λ1 λ2 λ3 λ4 λ5

No a priori information (Expurgated)
1st tx 4 0 0 0 0
2nd tx 0 4 0 0 0
3rd tx 0 0 4 0 0
Ideal a priori information
1st tx 4 0 0 0 0
2nd tx 0 4 0 0 0
3rd tx 0 0 4 0 0

D2
ex ∆ 2∆ 3∆ 4∆ 5∆

Λ λ1 λ2 λ3 λ4 λ5

No a priori information (Expurgated)
1st tx 4 0 0 0 0
2nd tx 0 1 4 0 0
3rd tx 0 0 0 7 0
Ideal a priori information
1st tx 4 0 0 0 0
2nd tx 0 1 2 0 0
3rd tx 0 0 0 3 1

a) QPSK Gray. b) QPSK mixed.

Table 4.5: EDS, symbol mapping diversity, QPSK mappings defined in Table A.9.

4.3 Optimization of Mappings

Mappings for specific applications can be either constructed according to specific rules, e.g.
Gray mapping for no a priori information or set partitioning for TCM, or we have to use ap-
propriate optimization algorithms. An exhaustive search becomes impracticable for high order
signal constellations (2M ≥ 8) since a maximum of 2M ! different mappings have to be checked.

No construction methods are known for mappings optimized for ideal a priori information or
mappings with an optimized trade-off between the performance without and with a priori infor-
mation. The optimization of mappings in general can be formulated as a quadratic assignment
problem (QAP) [SHGB05] [HR05] which is NP-hard (non-deterministic polynomial-time hard)
and therefore not solvable in polynomial time. However, several efficient algorithms have been
proposed to solve quadratic assignment problems.
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A binary switching algorithm as introduced in [ZG90] to optimize the index assignment for
vector quantization and applied in [SGHB03a] to optimize mappings of high order signal con-
stellations is a promising method to overcome the complexity problems of the brute-force ap-
proach. This algorithm finds through systematic switches of label positions a local optimum on
a given cost function. If the algorithm is executed several times with different random initial-
izations, the global optimum may be found with high probability. With an appropriate choice
of the cost function, optimized mappings for no a priori information, ideal a priori information
or any trade-off may be found. Further heuristic approaches to solve the optimization problem
include greedy algorithms and a tabu search algorithm.

Note that these mapping optimization approaches can be extended to optimize signal constel-
lations: we define a large grid where only a few positions are occupied by actual signal points.
In the binary switching algorithm, either two labels are switched or a label is placed on an
unoccupied grid position.

4.3.1 Optimization Criteria and Cost Functions

The first step in the optimization procedure is to define a cost function for the mapping to
be optimized. Values from the Euclidean distance spectrum (EDS), error bounds or mutual
information measures are promising candidates to serve as cost function.

First, we consider Chernoff error bounds obtained from the EDS as derived in Appendix B
as cost function for the optimization algorithms. Our main goal is not to use very tight error
bounds but to have a reliable qualitative measure to define costs of different mappings. We use
only the relevant term ωv that characterizes the influence of the Euclidean distance dex,v from
the EDS in the Chernoff error bound:

ωv = exp

(
− Es

4N0

d2
ex,v

)
(4.7)

for the AWGN channel and
ωv =

1

d2
ex,v

(4.8)

for the fully interleaved Rayleigh fading channel from equation (B.7) and (B.8), respectively.
Using the frequencies λv from the EDS, the optimization of the mapping µ is done by minimiz-
ing the total cost Ω as follows:

min
µ

(Ω) = min
µ

(
V∑

v=1

λv · ωv

)
. (4.9)

Remember that the frequencies λv depend on the applied mapping µ and the number of a priori
known bits. Therefore, the mapping µ can be optimized for any number of a priori known bit
positions by using the corresponding λv values. We can also optimize a trade-off between e.g.
the performance without and with ideal a priori information if we define the cost function as

Ω = w0 · Ω0 + w1 · Ω1, (4.10)

where Ω0 and Ω1 are the overall cost functions without and with ideal a priori information,
respectively; w0 and w1 are weighting factors.

Instead of error bounds, we can use as cost function Ω mutual information values from the
EXIT function fdem(I). The mutual information is a robust performance measure but expen-
sive Monte-Carlo simulations or numerical integration are required. An approximation of the
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mutual information can be obtained from the error bounds: Either by simulation or, according
to [tB01b] or [tB01a], using the inverse erfc(·) or Q(·) function together with the J function
given in equation (3.15), we can construct a look-up table that gives the relationship between
the error rate and the mutual information. This look-up table may be used to map the results
from the error bounds to the mutual information measure. The advantage of this approach is
the straightforward weighting of the EXIT chart values to obtain the desired shape of the EXIT
function:

Ω = w0 · fdem(0) + w1 · fdem(1), (4.11)

with the negative weighting factors w0 and w1. The negative sign is necessary to use the cost
function for the minimization problem in equation (4.9).

In addition to the overall cost Ω, we need the cost of the single symbols for the optimization to
know the contribution of a specific symbol to a good or bad overall performance. We use the
values λv from the symbol-wise EDS for the error bounds or the symbol-wise EXIT functions.

Furthermore, we can optimize single bit positions to obtain mappings for equal or unequal error
protection. As overall cost Ω, we use the bit-wise EDS for the error bounds or the bit-wise
EXIT functions.

4.3.2 Quadratic Assignment Problem and Algorithms

The optimization of mappings can be formulated as a quadratic assignment problem (QAP)
[Cel98]. The QAP was introduced by Koopmans and Beckmann in 1957 [KB57]. The QAP
can best be described as the problem of assigning a set of facilities to a set of locations with
given distances between the locations and given flows between the facilities. The aim is to place
the facilities on locations in such a way that the sum of the product between flows and distances
is minimal. Beside the facility location problems, the QAP has applications in scheduling,
wiring problems in electronics, statistical data analysis, design of control panels and typewriter
keyboards, archeology and even sports [Cel98].

The formal description of the QAP is as follows. Given are N facilities and N locations. Let
us define the two N ×N matrices A and B with elements ak,l and bi,j , respectively. ak,l is the
distance between locations k and l and bi,j is the flow between facilities i and j. The quadratic
assignment problem is then stated as:

min
π∈SN

N∑
i=1

N∑
j=1

aπ(i),π(j) · bi,j, (4.12)

where SN is the set of permutations of the set of integers {1, 2, . . . , N} and aπ(i),π(j) are the
elements of a matrix obtained by permuting the rows and columns of A according to the per-
mutation π. Here, aπ(i),π(j) · bi,j describes the cost contribution of simultaneously assigning
facility i to location π(i) and facility j to location π(j). For the optimization of mappings, the
facilities are the binary bit labels that have to be assigned to the signal points as locations.

The QAP is of interest in the research in various fields, both because of its wide applicability
and its difficulty to provide a reliable computer solution. The QAP belongs to the class of NP-
complete problems, i.e. the run time to optimally solve this problem cannot be bounded by a
polynomial that is a function of the problem size. Exact algorithms and heuristic approaches
have been proposed to solve quadratic assignment problems.

Among the exact algorithms used to solve QAPs, branch-and-bound has been the most success-
ful. As the name already reveals, the two steps of this approach is branching and bounding.
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Branching is used to split the overall problem in less complex subproblems. Through recursive
execution of branching, we obtain a tree structure. The task of bounding is to eliminate some
branches of the tree. This reduces the complexity since the eliminated subproblems are no more
considered in the subsequent computations. A subregion from the search tree may be safely
discarded from the search if, for a minimization task, its lower bound is greater than the upper
bound for any other previously examined subregion. Any node whose lower bound is greater
than the global minimum upper bound seen among all subregions so far can be discarded. The
algorithm stops if ideally all nodes are pruned or solved, i.e. when the upper bound matches the
lower bound of a node. The lack of a sharp lower bound is one of the major difficulties. Indeed,
either the bound is too loose, or the time needed to compute the bound is prohibitive. Subprob-
lems are often solved with the Simplex method not further discussed here. A software solving
quadratic assignment problems using branch-and-bound techniques is available at [BCKR].

Heuristic approaches often provide less reliable optimization results but are easier to implement
and fast to compute. We focus on three interesting heuristic approaches, a Greedy algorithm, a
tabu search, and the binary switching algorithm.

The greedy algorithm makes at each stage a locally optimum decision, without regard on future
consequences. Applying the greedy strategy to the mapping optimization problem yields the
following algorithm: ”Assign the 2M binary labels one by one to the signal points in an optimal
way at each stage”. The total costs after the placement of the first few labels would be very
low. However, this strategy does not guarantee to find the global optimal solution when the
algorithm is terminated, i.e. when all labels are assigned to signal points. Intuitively, the lack
of options when most labels are assigned and most points are occupied inflate the costs. The
greedy algorithm is simple to implement and require minimal amount of resources, but often it
is not powerful enough to provide satisfactory results.

Another heuristic approach is the tabu search algorithm [BT94][GL02]. The basic idea is to start
with a random mapping of the 2M binary labels and to switch the labels between all possible
pairs of signal points. The switch that results in the best overall cost function is finally done.
M(M − 1)/2 switches are tested in the first stage. Then, the actually performed switch is set
on a tabu list. The tabu list contains switches performed in the past and that are not allowed to
be repeated in subsequent switches to avoid cycles. By selecting the best switch that is not in
the tabu list, it may happen that a switch increases the costs, i.e. we may accept new inferior
solutions in order to avoid paths already investigated. This allows to investigate new regions in
the problem solution space with the goal of avoiding local minima and ultimately finding the
desired solution. The tabu list has usually a limited size. Old entries are erased to continue the
search. A software for the tabu search algorithm is available at [BB].

The binary switching algorithm (BSA) is based on a similar idea than the tabu search and
was proposed in [ZG90] and [GL03] to optimize the index assignment in the context of vector
quantization. We used this simple and yet efficient method in [SGHB03a] [SGHB03b] [SB04a]
[SHGB05] to optimize mappings according to a given cost function.

The binary switching algorithm is started with a random initial mapping. Using one of the cost
functions, the cost of each symbol and the total cost are calculated. An ordered list of symbols,
sorted by decreasing costs, is generated. The idea is to pick the symbol with the highest cost
in the list (which has the strongest contribution to a ”bad” performance), and to try to switch
the label of this symbol with the label of another symbol. The latter is selected such that the
decrease of the total cost due to the switch is as large as possible. However, it is not verified if
the switch of two other labels with lower costs would result in a larger decrease of the overall
cost. If no switch partner can be found for the symbol with the highest cost, the label with
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the second-highest cost will be tried to switch next. This process continues for symbols in
the list with decreasing costs until a symbol is found that allows a switch that lowers the total
cost. After an accepted switch, a new ordered list of symbols is generated, and the algorithm
continues as described above until no further reduction of the total cost is possible. The BSA
finds a local optimum. Several algorithm executions with random initial mappings may yield to
the presumed global optimum.

Fig. 4.19a) depicts the histogram of the costs obtained by the BSA after different random initial-
izations. The example of 16QAM modulation, AWGN channel and the optimization for ideal a
priori information at the demapper is investigated. The presumed optimal solution is obtained
for approximately 1/4 of the trials, which is a satisfactory result. For larger signal constel-
lations, where the optimization procedure is more complex, the presumed optimal solution is
obtained less frequently, but the runtime for a reliable result is still manageable. The number
of switches required to reach a local optimum for this example is depicted in Fig. 4.19b). The
average number of switches is approximately 10.

Optimized mappings for different signal constellations are listed in Appendix A. With 16QAM,
the mappings M16a and M16r are optimized for ideal a priori information and for the AWGN
and Rayleigh fading channel, respectively. The I16 mapping has an optimized trade-off be-
tween the performance with ideal a priori information and without a priori information to enable
low error rates at high SNR and an early convergence of the iterative process, respectively.
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Figure 4.19: Analysis of the binary switching algorithm (BSA) for 16QAM, ideal a priori
information, AWGN, 10 log10(Es/N0)dB = 10dB; Cost function from equation (4.7) and (4.9),
20000 trials with random initialization: a) Histogram of cost values after one execution of the
BSA algorithm; minimum cost: 0.003417. b) Histogram of number of switches until the BSA
converges to a local optimum.
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4.3.3 Simulation Results

Fig. 4.20-4.24 depict the bit error rate (BER) performance of BICM with iterative demapping
and decoding (BICM-ID) for different scenarios. A different random interleaver is applied
for each transmitted block (so-called uniform interleaver). The information block length is
K = 5000. The other parameters are given in the figure labels.

From Fig. 4.20 and 4.21 we observe that even though the error rate with the Gray and set
partitioning mapping is lower at low SNR, significant gains can be achieved at high SNR with
other, well chosen mappings. The error bound at high SNR is minimized with the optimized
mapping M16a. The mapping I16 with an optimized trade-off between the performance with
and without a priori information is particularly interesting: the difference to the error bound of
the M16a mapping is negligible but we achieve a slightly earlier convergence. The error rate
performance over the iterations with the M16a mapping is shown in Fig. 4.22.

According to the EXIT chart in Fig. 3.17, the error bound at high SNR is higher with a Rayleigh
fading channel than with an AWGN channel. We clearly observe this fact if we compare the
error bounds in Fig. 4.21 and 4.23 for the same memory 2 code. Furthermore, Fig. 4.23 illus-
trates the impact of the choice of the convolutional code: we have a trade-off between an early
convergence with a low memory code and a low error bound at high SNR with a high memory
code. This fact results from the different shapes of the decoder EXIT functions depicted in
Fig. 3.8.

Finally, the impact of the interleaver length is shown in Fig. 4.24. The performance degrades
severely with small block length.
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Figure 4.20: BICM-ID, AWGN channel, 16QAM, (1, 7/5) rate R = 1/2 conv. code, 25
demapping and decoding iterations; dashed lines: analytical bounds for ideal a priori informa-
tion from Appendix B; comparison of different previously proposed mappings: Gray, set par-
titioning (SP) [Ung82], modified set partitioning (MSP) [CR01], maximum squared Euclidean
weight (MSEW) [TS02]; compare to the EXIT chart of Fig. 4.17.
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Figure 4.21: BICM-ID, AWGN channel, 16QAM, (1, 7/5) rate R = 1/2 conv. code, 25
demapping and decoding iterations, dashed lines: analytical bounds for ideal a priori informa-
tion from Appendix B, optimized mappings compared to Gray and modified set partitioning
(MSP) [CR01].
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Figure 4.22: BICM-ID, AWGN channel, 16QAM, M16a mapping, (1, 7/5) rate R = 1/2 conv.
code, performance over the demapping and decoding iterations.
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Figure 4.23: BICM-ID, Rayleigh fading channel (symbol-wise fading or fully interleaved fad-
ing), 16QAM, Gray and M16a mappings, (1, 7/5) and (1, 15/17), rate R = 1/2 conv. codes,
25 demapping and decoding iterations.
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Figure 4.24: BICM-ID, AWGN channel, 16QAM, M16a mapping, (1, 7/5) rate R = 1/2 conv.
code, 25 demapping and decoding iterations, different information word length K.
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4.4 Additional Inner Encoder
To further decrease the error probability with iterative demapping and decoding at high SNR,
an additional recursive inner encoder should be used. The encoder should have rate R ≥ 1
in order not to waste capacity, see Section 3.1. This code adds no redundancy and thus has
no error correcting capabilities at all. Nevertheless, due to its recursive structure, it introduces
dependencies between all bits in a code sequence, whereas a mapping introduces dependencies
only between the M bits associated to one symbol. These dependencies allow arbitrary low
error rates with an interleaver length going to infinity (so-called interleaver gain) [BDMP98].
Additional inner encoder were used in [TS05b] [DDP00b] [SSS01] [Tüc04] [BMS05] to reduce
the error floor in iterative schemes based on BICM. Note that some modulation schemes, e.g.
continuous phase modulation scheme (CPM) or differential PSK (DPSK), have an inherent
recursive structure and are therefore well suited to serve as inner code for iterative decoding
[MA01] [NS99].

We focus on a rate one and memory one inner encoder for complexity reasons. Thus, the
straightforward solution would be to use a standard accumulator as inner encoder, since it has
a recursive structure and memory one. The recursive rate-1 inner encoder inevitably leads to a
performance loss if no a priori information is available. We focus on two promising ideas that
have been proposed to increase the performance of the standard accumulator without a priori
information:

In [Tüc04], an accumulator operating on all the M bits corresponding to one complex symbol
is proposed. If all bits contribute to the accumulator but only one bit-label per symbol is af-
fected by the output of the accumulator, as shown in Fig. 4.25, the performance without a priori
information is increased without degrading the performance with ideal a priori information.

Serial /
Parallel

Mapping

D

c x

Figure 4.25: Accumulator operating on M = 3 bits corresponding to e.g. a 8PSK symbol.

The effect of the structure proposed in [SSS01] and depicted in Fig. 4.26 is similar. Most
of the bits at the output of the encoder are systematic bits. Only every Dth systematic bit is
replaced (”doped”) with a parity bit. Thus, since all bits influence the accumulator state but
only every Dth bit is affected by the output of the accumulator, the performance without a
priori information is increased for a large doping period D without loosing in performance for
ideal a priori information. Note that the system in Fig. 4.25 is only a special case of the system
depicted in Fig. 4.26 with D = 3 in this example.

The outer channel code, the inner recursive encoder and the mapper form a double serially
concatenated system. This structure requires an additional inner detection loop, i.e. iterations
between the demapper and the inner decoder. An alternative would be to perform the demap-
ping and the decoding of the inner code on the same trellis. The latter has two states and 2M

incoming/outgoing edges per state. It was shown in [tBK03] that the joint trellis detection is
more robust against code parameter mismatches. A receiver without inner detection loop pro-
posed in [SSS01] for the system of Fig. 4.26 is depicted in Fig. 4.27. The a priori information
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Figure 4.26: Doped accumulator with doping period D.

on the doped parity bits of the inner code is directed to the inner decoder, while the a priori
information on the un-doped information bits of the inner code is fed to the demapper. The
demapper has no a priori information on every Dth bit, while the inner decoder combines all
the available a priori information. This receiver performs well if the doping period is quite high
(D > 10) or if a mapping is chosen that is less sensitive to a priori information.

With Gray mapping, the feedback to the demapper can be omitted. If e.g. iterative equalization
or iterative MIMO detection is done and the demapper is extended to an equalizer or MIMO
detector, the receiver depicted in Fig. 4.27 with feedback to the detector should be used even
with Gray mapping.

De-
mapping Inner 

Decoder

y

Ldem(c)

Ldec(c)

Figure 4.27: Decoder for doped accumulator [SSS01].

The doped inner encoder of Fig. 4.26 can be generalized to the encoder depicted in Fig. 4.28.
The doped inner code can be interpreted as punctured rate 1/2 recursive systematic code. The
puncturing ratio of the systematic and coded bits correspond to the doping ratio. The inner code
should have rate Rin ≥ 1 to avoid an inherent capacity loss as explained in Section 3.1. With an
outer code of fixed low code rate Rout, the rate adaptation can be done by puncturing the inner
code to rates larger than one. The characteristics of the inner code are adjusted by carefully
choosing the ratio of inner systematic and coded bits. The puncturing matrix

P1 =

(
1 1 0
0 0 1

)
(4.13)

with puncturing period 3 results in the rate-1 inner code with doping period D = 3 as depicted
in Fig. 4.26. With the puncturing matrix

P2 =

(
1 1 0 0
0 0 1 0

)
, (4.14)

we obtain a rate Rin = 4/3 inner code. A similar approach for serially concatenated codes using
systematic doping of the inner code has been proposed in [tB01a], but only for rate Rin = 1.
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Figure 4.28: Serial concatenated convolutional code with doped inner code of rate Rin ≥ 1 for
rate adaptation.

The elaborated code designs proposed in [BGM+05] and [BMV04] are also based on similar
ideas.

Fig. 4.29 depicts EXIT functions fdem(I) with an inner encoder and decoder according to
Fig. 4.26 and 4.27. All curves reach the point (1, 1) in the EXIT chart. The values of fdem(0)
without a priori information are higher with a large doping period D and Gray mapping. Map-
pings different from Gray may be of interest if further shapes the EXIT function fdem(I) are
required to optimize the receiver. Then, we should take care to use a large doping period D to
ensure that the demapper receives most a priori information. In Fig. 4.29b) we observe that the
area under the EXIT function with the M16a mapping is lower with D = 4 than with D = 20.
This corresponds to the reduction of the receiver constrained capacity of the considered sub-
optimal receiver for the combination of low doping periods and mappings sensitive to a priori
information.
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Figure 4.29: EXIT functions with 16QAM, AWGN channel, 10 log10(Es/N0)dB = 7dB, re-
cursive inner encoder with different doping periods D, joint demapping and decoding (d&d) on
a single trellis, successive d&d with the receiver of Fig. 4.27, rate R = 1/2 convolutional codes.
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Fig. 4.30 depicts the bit error rate for different convolutional codes and doping periods D with
an inner encoder and decoder according to Fig. 4.26 and 4.27, respectively. With the inner
encoder, the mapping is set to Gray. The performance without inner encoder with Gray and
I16 mapping is given for comparison. The channel is AWGN, the information block length is
K = 5000.

The results correspond to the expectations from the EXIT chart in Fig. 4.29: An early conver-
gence is achieved for the combination of a memory-1 convolutional code and an inner code
with doping period D = 1 and for a memory-4 code and a doping period D = 4. The perfor-
mance of a memory 2 code with D = 1 is similar to the performance without inner code and
the optimized I16 mapping.

1 2 3 4 5 6 7
10

−8

10
−6

10
−4

10
−2

10
0

E
b
/N

0
 in dB

B
E

R

D=1, mem. 1

D=1, mem. 2

D=4, mem. 4

Gray

I16

Figure 4.30: BICM-ID, AWGN channel, 16QAM, with and without recursive inner code,
(1, 2/3), (1, 7/5) and (1, 23/35) rate R = 1/2 conv. codes, 20 iterations, different doping
periods D.

4.5 Summary

An Euclidean distance spectrum (EDS) for BICM schemes was derived to characterize map-
pings for arbitrary signal constellations and any number of a priori known bits. A bit-wise,
symbol-wise, expurgated and graphical representation of the Euclidean distance spectrum is
introduced. The Euclidean distance spectrum is shown to provide an universal framework to
characterize mappings for a wide range of applications.

Then, we showed how the optimization of mappings can be cast to a quadratic assignment
problem and a simple binary switching algorithm is used to find new optimized mappings.
Cost functions based on the Euclidean distance spectrum, error bounds and mutual information
measures were proposed. The main result are mappings optimized for iterative receivers in
contrast to Gray mapping optimized for systems without iterative demapping and decoding.
The optimization approach can be used to derive optimized mappings for further applications,
e.g. equal or unequal error protection, multi-dimensional mappings or mappings for ARQ.

Finally, the use of an additional inner encoder to reduce the error rate at high SNR is discussed.



5
Adaptive Bit-Interleaved Coded
Irregular Modulation

A simple method to improve the adaptiveness and flexibility of bit-interleaved coded modulation
(BICM) is proposed in this Chapter. The basic idea is to apply different signal constellations
and mappings within one code word. We call this approach bit-interleaved coded irregular
modulation (BICIM) [SB06].

We focus on two advantages of BICIM: First, the combination of different signal constellations
allows a fine adaptation of the data rate to the channel characteristics with the modulation.
Given knowledge of the average channel quality at the transmitter, we can determine for which
fraction of the code word we should use a certain signal constellation. Then, a fractional average
number of bits per complex symbol may be obtained on average and we can adapt the data
rate very accurately and with fine grid to the channel state. Second, for a receiver performing
iterative demapping and decoding, the mixture of different mappings enables an optimization of
the iterative decoding process according to the system requirements. Instead of a cumbersome
design of new mappings for different applications, a large variety of mapping characteristics is
obtained by the combination of a few mappings.

5.1 Adaptive Modulation

The two main applications for bit-interleaved coded irregular modulation (BICIM) are further
discussed in this Section, namely the improved adaptation of the communication system to the
channel characteristics and to the iterative receiver.

5.1.1 Adaptation to Channel Characteristics

In most wireless mobile communication systems, the propagation environment and thus the
channel characteristics are changing over the time. To maximize the achievable data rate over a
time varying channel, two basic approaches are usually considered:
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First, we can adapt the transmission scheme using channel estimates available at the transmitter.
The adaptation may be done by varying the transmitted power level, the size of the signal
constellation or the code rate, as discussed in [GC97] and references therein. However, if the
channel estimate at the transmitter is unreliable or not available, the system should tolerate a
significant outage rate, or the transmission parameters should be set for a worst case scenario,
resulting in an inefficient use of the channel capacity due to an unnecessary overhead for good
channel conditions.

To avoid these drawbacks, automatic repeat request (ARQ) schemes have been proposed. There,
we start by assuming good channel characteristics. If the decoding at the receiver fails, the data
is retransmitted. The performance is further improved if we do not simply retransmit the data,
but if additional redundancy for the same information data is transmitted. This incremental re-
dundancy approach is usually realized with rate-compatible punctured codes (RCPC) [Hag88].
With a fine granularity, the channel capacity is well exploited, but the signaling overhead and
the delay may be significant when multiple retransmissions are required.

A reasonable approach is to combine channel adaptation to reduce the delay and ARQ schemes
to maximize the throughput.

We focus on the task of channel adaptation with the signal constellation and with the knowl-
edge of only the average channel quality at the transmitter. With state-of-the-art adaptive mod-
ulation and coding (AMC), as e.g. included in the recent EDGE [3GPP01] (enhanced data
for GSM evolution), HSDPA [3GPP06a] (high speed downlink packet access), IEEE 802.11
WLAN [IEEE99] (wireless local area network) and IEEE 802.16 WiMAX [IEEE04] (world-
wide interoperability for microwave access) standards, the channel code rate can be varied in
small steps using appropriate puncturing patterns. However, the choice of the signal constella-
tion allows only a very raw adaptation to the channel quality since the granularity is at least one
bit per symbol.

If we extend these systems to bit-interleaved coded irregular modulation (BICIM), where dif-
ferent signal constellations may be used within one code word, a fractional average number of
bits per complex symbol may be obtained. Thus, a highly flexible adaptation to the channel
quality is now possible with the modulation. Only a few system extensions are required to ap-
ply BICIM. The system should be able to switch the signal constellation within one code word
and to support the increased switch rate. However, already one or two switches within a code
word are often enough to exploit the advantages of BICIM, as discussed later on. Furthermore,
the signalling should be adapted to be able to specify several signal constellations within one
code word and to specify the positions within the code word when the switches take place.

Different signal constellations within one code word have already been widely investigated for
fading channels [GC97][ÖLGW01] and OFDM systems [CCB95][FH96], where according to
the channel quality of a sub-carrier, a corresponding signal constellation is chosen. Then, the
instantaneous channel state should be available at the transmitter. However, we focus on the
scenario where only the average channel quality of one code word is known at the transmitter.
We may assign different signal constellations within one code word to maximize the achievable
rate even if the channel quality is constant over that code word.

Note that the combination of different signal constellations may also help in carrier
recovery [HS89].
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5.1.2 Adaptation to Iterative Receiver

In addition of using different signal constellations, we may assign different bit-to-symbol map-
pings within one code word. This approach is useful in a system where the demapper is part of
the iterative process at the receiver. As mentioned in Section 3.4, we would stick to Gray map-
ping if a capacity approaching ”strong” channel code is used. However, if we apply a ”weak”
convolutional code, a carefully chosen mapping different from Gray should be used. Then, we
can select the mapping to optimize the convergence of the iterative demapping and decoding
procedure, to set the number of required iterations, or to minimize the error bound at high SNR.

The combination of different mappings within one code word offers advanced optimization
possibilities since a large number of mapping characteristics can be derived out of a small set
of underlying mappings, as also investigated recently in [SCH05].

Note that the basic idea is similar to irregular channel codes, where the combination of differ-
ent code rates within one code word offers advanced optimization possibilities of the iterative
decoding of concatenated codes. Irregular channel codes have been proposed in [FM00] and
[TH02] for parallel and serial concatenated convolutional codes, respectively, and in [LMS+97]
[RU01] for LDPC codes.

5.2 System Structure with Irregular Modulation

The bit-interleaved coded modulation (BICM) system with optional iterative demapping and
decoding (BICM-ID) was introduced in Section 2.5. This system is extended to bit-interleaved
coded irregular modulation (BICIM) as depicted in Fig. 5.1, where different signal constella-
tions Xp and mappings µp may be used within one code word.
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Figure 5.1: BICIM system model with optional iterative demapping and decoding.

The transmitter operates as follows: A sequence of information bits is encoded and bit-
interleaved by a random interleaver Π. The interleaved sequence of N code bits is divided in
P subblocks of length αpN , as illustrated in Fig. 5.2, where αp is the ratio of the pth subblock,
p = 1, . . . , P .

Mp consecutive bits of the subblock p are grouped to form the subsequence
cn = (cn,1, . . . , cn,Mp). Each subsequence cn is mapped to a complex symbol xn = µp(cn)
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Figure 5.2: Construction of irregular modulation schemes.

chosen from the 2Mp-ary signal constellation Xp according to the binary labeling map µp :
{0, 1}Mp → Xp. An inner recursive rate-1 encoder may be used in conjunction with the map-
ping as described in Section 4.4. A different signal constellation Xp and/or mapping µp is used
in each subblock. Then, an average of MIR ∈ R+ coded bits per symbol is obtained.

The ratios αp are chosen according to the information available at the transmitter. This infor-
mation may include the knowledge of the average channel quality obtained through a feedback
channel from the receiver or quality of service (QoS) requirements of the transmitted data. The
ratios αp ∈ [0, 1] must satisfy the conditions

P∑
p=1

αp = 1 and
P∑

p=1

αp/Mp = 1/MIR. (5.1)

The second condition follows from the computation of the symbol block length N/MIR =∑P
p=1 N · αp/Mp. The ratios γp = αp · MIR/Mp may be used instead of the ratios αp to

determine the segmentation of the code block on a symbol level instead of on a bit level, as
illustrated in Fig. 5.2. Then, with γp ∈ [0, 1], the following conditions should be satisfied:

P∑
p=1

γp = 1 and
P∑

p=1

γpMp = MIR. (5.2)

The following discussion includes the AWGN and Rayleigh fading channel models as intro-
duced in equation (2.8). We focus on the scenario where the instantaneous channel state is
available at the receiver but only the average channel state is known at the transmitter.

The receiver is similar to the BICM receiver described in Section 2.5 with optional iterative
demapping and decoding. The only modification is that the demapper must be able to switch
the signal constellation and/or mapping within one code word.

5.3 EXIT Chart Analysis and Optimization

EXIT charts have been investigated in Chapter 3 as a tool to analyze and optimize the conver-
gence of iterative systems. We use EXIT charts and linear programming methods to optimize
and efficiently use irregular modulation schemes.

With equation (3.10) or by using the results of [AKtB04], the average mutual information Idem

at the output of the demapper with irregular modulation is the linear combination of the average
mutual information Idem,p of the P subblocks of length αpN bits:

Idem =
P∑

p=1

αp ·
(

1

αpN

αpN∑
j=1

I(Cp,j; Lp,j)

)
=

P∑
p=1

αp · Idem,p, (5.3)
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where Cp,j and Lp,j are the jth bit after the encoder and LLR value after the demapper of
the pth subblock, respectively. Therefore, the demapper EXIT function fdem(I) is the linear
combination of the EXIT functions fdem,p(I) of the P subblocks:

fdem(I) =
P∑

p=1

αp · fdem,p(I). (5.4)

As stated in Section 3.4, we have to match the EXIT function of the demapper to the function of
the decoder to achieve close to capacity performance. With irregular modulation, we can obtain
a high number of possible demapper characteristics out of a small number of underlying signal
constellations and mappings. Both the data rate and the desired shape of the EXIT function
are adjusted by setting the ratios αp in equation (5.4) in an appropriate way. By combining
different signal constellations, we can shift the demapper curve upwards or downwards in the
EXIT chart. By combining different mappings, we can change the slope and in general the
shape of the demapper curve. A fine adjustment of the data rate and a precise design of the
shape of the demapper EXIT function is now easily possible.

Let f−1
dec (I) denote the inverse EXIT function of the channel decoder as plotted in Fig. 5.3, 5.4

and 5.5. Similar to the optimization of irregular convolutional codes [Tüc04], the optimization
of the ratios αp for a fixed channel code to maximize the data rate can be formulated as a linear
programming problem:

minimize 1/MIR =
∑P

p=1 αp/Mp,

subject to
∑P

p=1 αp · fdem,p(I) > f−1
dec (I),

∑P
p=1 αp = 1, αp ∈ [0, 1],∀p. (5.5)

The first constraint is to ensure that the EXIT function of the demapper is always above the
one of the decoder and that they do not intersect. Since the EXIT function of the demapper is
not reaching the point [1; 1] in the EXIT chart, a crossing with the function of the decoder is
unavoidable at a priori values I from the decoder close to 1. Thus, the first condition in equation
(5.5) should be relaxed to be valid up to a value of I close to 1.

Fig. 5.3 shows the result of the optimization for the combination of a turbo decoder with a mix-
ture of QPSK and 16QAM, both with Gray labeling. Note that if a more complex scenario than
in Fig. 5.3 is chosen, i.e. if more than two signal constellations and mappings are combined, the
proposed linear programming method will be more useful. Further examples of EXIT functions
of irregular modulation are shown in Fig. 5.4 and 5.5, where the ratios αp of the underlying
signal constellations and mappings are not optimized and only chosen according to illustrative
purposes: In Fig. 5.4, the combination of Gray and M16a 16QAM mappings results in an ear-
lier convergence and a lower number of iterations than if only M16a mapping would be used.
However, a higher error bound with ideal a priori information is expected. This will be con-
firmed in Section 5.5. EXIT functions for irregular modulation with an additional inner encoder
are depicted in Fig. 5.5. Gray and M16a 16QAM mappings are combined to shape the EXIT
function of the demapper to allow the trajectory to sneak through the open tunnel.

5.4 Capacity Analysis and Optimization
In the previous Section, we have optimized irregular modulation schemes with the EXIT chart
to achieve close to capacity performance. In the following, we investigate the information
theoretical limits and the actual capacity of irregular modulation.



94 Chapter 5 ¥ Adaptive Bit-Interleaved Coded Irregular Modulation

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

MI at input of demapper

M
I a

t o
ut

pu
t o

f d
em

ap
pe

r,
 I de

m

rate 1/2 UMTS
turbo code   

rate 1/2, mem. 2   
convolutional code 

QPSK

16QAM

63% QPSK, 37% 16QAM

Figure 5.3: EXIT functions with Gray mapping, AWGN channel, 10 log10(Es/N0)dB = 3dB.
Optimized combination of QPSK and 16QAM signal constellations with γ1 = 0.63 and
γ2 = 0.37, respectively. MIR = 2.74.
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Figure 5.4: EXIT functions with 16QAM, AWGN channel, 10 log10(Es/N0)dB = 7dB. Com-
bination of Gray and M16a mapping with γ1 = 0.25 and γ2 = 0.75, respectively.

The constellation constrained capacity C of the signal constellation X is given by the average
mutual information [CTB98]

C =
M

N

N/M∑
n=1

I(Xn, Yn), (5.6)

where Xn and Yn denote the random variables for the nth transmitted and received symbol,
respectively. Recall that the mapping has no influence on the capacity. The capacity CIR with
irregular modulation is the linear combination of the capacities Cp of the P subblocks of length
γpN/MIR symbols:

CIR =
P∑

p=1

γp ·

MIR

γpN

γpN/MIR∑
n=1

I(Xp,n, Yp,n)


 =

P∑
p=1

γp · Cp, (5.7)
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Figure 5.5: EXIT functions with 16QAM, AWGN channel, 10 log10(Es/N0)dB = 6dB, recur-
sive inner encoder with doping period D = 20 according to Fig. 4.26. Combination of Gray
and M16a mapping with γ1 = γ2 = 0.5.

where Xp,n and Yp,n are the nth values of the pth subblock.

As mentioned in Section 5.1, the power level, the size of the signal constellation and/or the
code rate should be adapted to the channel conditions to maximize the achievable data rate. If
the instantaneous channel quality is available at the transmitter, the power and the size of the
signal constellation may be adapted within one code word frame according to optimized power
loading and bit loading strategies. With an AWGN, block fading or symbol fading channel with
only average channel state information at the transmitter and equal power distribution, equal bit
loading within one frame would be optimal. For these scenarios irregular modulation schemes
may lead to a suboptimum solution since the bit loading within one frame may not be constant.
However, we will see that the loss is negligible for some system setups and that the advantages
of irregular modulation may predominate.

In the following we investigate with simple examples the performance of irregular modulation
schemes in terms of achievable data rates, i.e. in terms of achievable number of information bits
per channel use.

Arbitrary Code Rate, Constrained Modulation

First, we vary the channel code rate with the channel quality in arbitrarily small steps and fix
the modulation scheme. If irregular modulation schemes are used, the ratios γp, or equivalently,
the ratios αp are fixed and independent from the channel quality.

Fig. 5.6 and 5.7 show for this scenario the achievable rates of regular and irregular modulation
for an AWGN and fully interleaved Rayleigh fading channel, respectively.

From an information theoretical point of view, the best would be here to always use 16QAM
and just vary the code rate. However, this may not be desired in real world systems, because
of e.g. sensitivity to nonlinear distortions or complexity. Irregular modulation schemes offer
the possibility to achieve any maximum transmission rate between 2 (QPSK) and 4 (16QAM)
bits per channel use in this example with only small performance degradation, especially in
combination with low to moderate channel code rates.
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Figure 5.6: Capacity of regular and irregular modulation for an AWGN channel; irregular
modulation without and with optimized power distribution.
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Figure 5.7: Capacity of regular and irregular modulation over a fully interleaved fading chan-
nel, equal power distribution; irregular modulation without and with optimized placement of
symbols belonging to different signal constellations.

In Fig. 5.6 the effect of an optimized power assignment to the different signal constellations is
investigated for an AWGN channel with irregular modulation and γQPSK = γ16QAM = 0.5. In
general more power should be assigned to large signal constellations and less power to small
signal constellations. The gain is significant only for data rates of 2 bits per channel use and
more, i.e. for a channel code with rate R > 2/3 in this example.

With an AWGN or block fading channel, the placement of the symbols belonging to different
signal constellations is not relevant due to the subsequent interleaver. However, with a symbol
fading channel, symbols from high order signal constellations should be transmitted when the
channel quality is better and symbols from low order signal constellations when the channel
quality is worse, according to optimized bit loading strategies [GC97]. Fig. 5.7 depicts for
irregular modulation with γQPSK = γ16QAM = 0.5 and equal power distribution the achievable
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rates if the instantaneous instead of only the average channel state information is available
at the transmitter and if the symbols are placed accordingly. This scenario may be realistic
in an OFDM system, where the estimated quality of the subcarriers may be available at the
transmitter. The gain is quite substantial for data rates above 1.5 bits per channel use, i.e. for a
channel code with rate R > 1/2 in this example.

Constrained Code Rate, Arbitrary Modulation

Now we allow only a small number of code rates and use irregular modulation to adapt the data
rate to the channel characteristics. To maximize the average number of coded bits per symbol
MIR and thus the achievable data rate, the ratios γp should be optimized for every channel state.
If more than two signal constellations are combined, it is useful to describe the optimization as
a linear programming problem. The problem can be formulated as

maximize MIR =
∑P

p=1 γpMp,

subject to
∑P

p=1(Cp −RMp) · γp > 0,

∑P
p=1 γp = 1, γp ∈ [0, 1],∀p. (5.8)

The first condition follows from the constraint of a fixed channel code rate R, stating that

CIR =
P∑

p=1

Cpγp > R ·
P∑

p=1

Mpγp = R ·MIR. (5.9)

Fig. 5.8 depicts the achievable rates with regular and irregular modulation if the code rates
R = 1/4, 1/2 and 3/4 and the modulation schemes QPSK, 16QAM and 64QAM are used.
The code rates and signal constellations are chosen in an optimum way with respect to capacity.
The staircase trajectory indicates the maximum achievable rates with regular modulation. With
irregular modulation, we observe that close to optimum data rates may be achieved. The shaded
area is the rate gain of irregular over regular modulation.
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Figure 5.8: Achievable data rates of irregular modulation with AWGN channel, three channel
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5.5 Simulation Results

Fig. 5.9 and 5.10 depict the bit error rate (BER) performance with different irregular modulation
schemes. The channel is AWGN, the information word length is 5000 bits, and we use an
uniform (random) interleaver between the channel code and the mapping.

First, the BER performance for the combination of different signal constellations is investigated
in Fig. 5.9. We apply 16QAM and QPSK modulation with Gray mapping in combination with
the UMTS turbo code defined in equation (2.69), similar to the EXIT chart in Fig. 5.3. The
UMTS interleaver is used to reduce the error floor. 20 iterations between the constituent codes
of the turbo code but no iterations between the demapper and the decoder are performed. With
a fixed code rate of R = 1/2, we can adjust the data transmission rate to the SNR in an arbitrary
way by setting the ratios of 16QAM and QPSK.

Second, the BER performance with the combination of different mappings is shown in Fig. 5.10.
We use the same system parameters as in the EXIT chart example of Fig. 5.4, i.e. 16QAM mod-
ulation with Gray and M16a mapping and the (1, 7/5) convolutional code. The performance
after 20 demapping and decoding iterations is depicted. We can set the trade-off early conver-
gence and low number of required iterations vs. low error bound with ideal a priori information
by varying the ratios of the underlying mappings. As depicted in Fig. 5.10, Gray mapping has
the best performance at low SNR, M16a the best at high SNR. By mixing 25% of Gray mapping
with 75% of M16a mapping, we achieve an earlier convergence than with only M16a mapping
at the expense of a higher error bound at high SNR.

To obtain the analytical error bounds with irregular modulation, we have to extend equation
(B.9) given in Appendix B and average over the P subblocks to compute the average Laplace
transform Φ∆(s) of the probability density function f∆(∆) of the overall decision metric ∆:
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Φ∆(s) =

(
P∑

p=1

γp · 1∑V
v=1 λp,v

V∑
v=1

λp,v · Φ∆(dex,v)(s)

)d

. (5.10)

where λp,v is the frequency in the Euclidean distance spectrum (EDS) of the distance dex,v in
the pth subblock.

From the equations (B.7) and (B.8) related to the error rate, we expect that small Euclidean dis-
tances will be more harmful in an AWGN channel than in an fading channel. If e.g. a mapping
optimized for ideal a priori information is combined with a Gray mapping, the performance with
ideal a priori information at the demapper (i.e. with genie or error free feedback) is degraded
quite severely in an AWGN channel, as observed in Fig. 5.10.
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5.6 Summary

A bit-interleaved coded irregular modulation (BICIM) scheme was introduced, where different
signal constellations and mappings may be used within one code word, even if only the average
channel quality is available at the transmitter. The proposed system offers a promising pos-
sibility to adapt the transmission system to the channel quality, the complexity and error rate
requirements. The analysis included EXIT charts to analyze and optimize the convergence of
iterative demapping and decoding, capacity to determine the fundamental limits, error bounds
to predict the performance at high SNR and error rate simulations to validate the results. In
particular, we can state that:

• BICIM is promising if only a limited number of channel code rates are available or de-
sired. The fine adaptation of the data transmission rate to the channel quality could be
performed by combining different signal constellations.

• By combining different mappings, we optimize the convergence of the iterative decoding
and demapping procedure, similar to the effect of irregular codes. Instead of using a
large number of different mappings, the desired mapping characteristics can be obtained
by combining only two mappings, namely Gray mapping and a mapping optimized for
iterative demapping and decoding. The iterative decoding threshold, the required number
of iterations and the remaining error rate can be adjusted in a very flexible way.

• The additional complexity of BICIM is very low. The transmitter should support only a
small number of signal constellations and mappings. Furthermore, the rate at which the
transmitter has to change the signal constellation and mapping is not excessive if only the
average channel characteristics are considered.

• BICIM is well suited for the combination with bit loading and power loading schemes if
additional channel knowledge is available at the transmitter.



6
Combination of Signal Shaping
and Bit-Interleaved Coded
Modulation

In most state-of-the-art communication systems using high order modulation schemes, each
signal point of the selected signal constellation is equally likely to be transmitted. However,
for a continuous channel input alphabet, the pdf of the received signal should be Gaussian to
approach Shannon’s channel capacity, as derived in Section 2.2. Similarly, with a finite size
channel input alphabet, a so-called shaping gain is achieved if the standard uniform probability
distribution of the signal points is replaced by a Gaussian-like distribution.

Gains of more than 1dB may be achieved in practice and it is often easier to obtain a shaping
gain than to obtain a similar gain through more powerful coding. Furthermore, the adaptation
of the probability distribution of the signal points to the channel characteristics is an inherent
way of ”soft” adaptive modulation: using optimized probability distributions, the high energy
signal points become more probable with increasing SNR.

To obtain non-equiprobable signal points, we assign a non-uniform number of distinct bit labels
to the signal points. The proposed method is integrated in the bit-interleaved coded modulation
scheme with iterative demapping and decoding (BICM-ID). The channel code and the iterative
process resolve the ambiguities that arise when multiple bit labels are assigned to one signal
point. A greedy algorithm is derived to obtain a close to optimum probability distribution of the
signal points and we use the binary switching algorithm introduced in Section 4.3 to optimize
the bit-to-symbol mapping. At a rate of 3 bits per channel use, we obtain capacity gains over
1dB for a 16ASK signal constellation. In combination with irregular convolutional codes, we
achieve an iterative decoding threshold at 0.7dB below the capacity of the uniform distribution.

6.1 Introduction to Signal Shaping
The aim of signal shaping is to ”shape” the probability distribution of the transmitted signal to
achieve a capacity gain. Fig. 6.1 shows as example Shannon’s AWGN channel capacity given in
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equation (2.20) valid for a Gaussian distributed continuous channel input and the constellation-
constrained capacity for uniformly distributed ASK signal constellations [FU98]. We observe
that at high SNR, a gap to the AWGN capacity remains for all signal constellations. This gap
can be reduced through signal shaping methods.
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Figure 6.1: Channel capacity with ASK modulation schemes.

Two basic approaches have been proposed for signal shaping: Either the signal constellation is
non-uniformly spaced [SvT93] or the signal points have a non-uniform probability distribution
[CO90]. We use standard uniformly spaced signal constellations and adapt the probabilities of
the signal points.

The following quantities are of special interest throughout this Chapter: average energy, entropy
H(X) of transmitted symbols, and peak-to-average power ratio (PAPR). For a signal constella-
tion X with bit labels of length M , the average symbol energy is

E{|xi|2} =

|X |∑
i=1

P (xi) · |xi|2, (6.1)

where P (xi) is the probability of the signal point xi. The entropy H(X) of a signal constellation
is the average number of bits per signal point and is given from equation (2.10) by

H(X) = −
|X |∑
i=1

P (xi) · log2(P (xi)). (6.2)

For equiprobable signal points with P (xi) = 1/|X |, the entropy is maximized to H(X) =
log2(|X |). If |X | = 2M and P (xi) = 1/2M , ∀i, we have a standard uniformly distributed signal
constellation with a unique bit-to-symbol mapping and the maximum entropy is H(X) = M .
With signal shaping, the signal points with less energy are used more frequently than points
with high energy to reduce the average symbol energy. Such non-uniform signaling reduces the
entropy H(X) and thus the data rate. However, the energy savings may more than compensate
for this loss of data rate.
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Note the duality to source coding: With signal shaping, an equiprobable, redundancy free bit
sequence is converted to a non-equiprobable symbol sequence and a shaping redundancy rs =
M −H(X) is introduced. It is well known that source coding performs the reverse operation.

A drawback of signal shaping techniques is that the peak-to-average power ratio (PAPR) is
increased. For the signals points xi from the constellation X , the PAPR is defined as

PAPR =
max∀xi∈X (|xi|2)

E{|xi|2} . (6.3)

A large PAPR results in high energy peaks in the modulated signal and high demands on the
linear amplifier.

6.1.1 Optimized Probability Distribution

The probability distribution that minimizes the average energy for a given entropy H(X) or that
maximizes H(X) for a given average energy is the so-called Maxwell Boltzmann distribution
obtained through a Lagrange optimization [KP93] [Fis02]:

P (xi) = K(λ) · e−λ|xi|2 , λ ≥ 0. (6.4)

The probability distribution is therefore discrete Gaussian. The factor

K(λ) =




2M∑
m=1

e−λ|xi|2


−1

(6.5)

normalizes the distribution and the parameter λ governs the trade-off between average energy
and entropy of signal points. With λ = 0, we obtain a uniform distribution, whereas with
λ →∞, only the signal points closest to the origin remain.

However, when transmitting over an AWGN channel with a given average energy, the quantity
to optimize is not the entropy H(X) of the channel input but the mutual information I(X; Y ).
Instead of the mutual information, we can optimize the differential entropy h(Y ) of the channel
output since I(X; Y ) = h(Y ) − h(Y |X) = h(Y ) − h(N) and h(N) is independent of the
distribution of X . We have to distinguish between the energy gain achieved for a fixed H(X)
and the gain for a fixed I(X; Y ) or h(Y ). At low SNR, the energy gain with a fixed I(X; Y )
or h(Y ) is smaller [WFH99]. For large SNR, both gains are similar since then, h(Y ) ≈ H(X).
We focus on the energy gain with a fixed I(X; Y ) or h(Y ) and denote it as shaping gain.

A Gaussian distributed continuous channel input signal maximizes the mutual information
I(X; Y ) in an AWGN channel. However, a continuous signal is not of practical relevance in a
digital communication system and we transmit discrete signal points. Then, the task of finding
the probabilities P (xi) of the signal points that maximize the mutual information I(X; Y ) is
not trivial. Blahut and Arimoto independently introduced an iterative method to determine the
optimized probabilities P (xi) [Bla72][Ari72].

As shown in [WFH99], the performance of the optimum and not necessarily Gaussian distri-
bution from the Blahut-Arimoto algorithm is closely approached with the discrete Gaussian
distribution of equation (6.4). Therefore, we use the discrete Gaussian distribution with the
parameter λ adapted to the channel characteristics.
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6.1.2 Ultimate Shaping Gain

The question that arises is, what is the maximum shaping gain? How large is asymptotically the
gap between the capacity of a uniform ASK signal constellation and the AWGN capacity in the
example of Fig. 6.1? The maximum shaping gain is achieved for signal constellations with a
large number of signal points and high SNR where h(Y ) ≈ H(X). Then, we can approximate
the distribution of the signal points by a continuous pdf and compare the differential entropies
of the uniform pdf and the optimal Gaussian pdf.

For a uniform pdf with p(x) = 1/a for −a/2 ≤ x ≤ a/2 and 0 otherwise, the average energy
is Eu = a2/12. The differential entropy is therefore [CT91]:

h(X) =
1

2
· log2(12Eu). (6.6)

For a Gaussian pdf with average energy Eg, we have [CT91]

h(X) =
1

2
· log2(2πeEg). (6.7)

We consider the relation between the average energy for the same differential entropy. There-
fore, we set

1

2
· log2(12Eu) =

1

2
· log2(2πeEg) (6.8)

and obtain

G∞ =
Eu

Eg

=
πe

6
, and 10 log10

(πe

6

)
dB = 1.53 dB, (6.9)

which is the ultimate shaping gain [FGL+84] [FW89]. With signal constellations of practical
size, the ultimate shaping gain will never be achieved. The shaping gain is not overwhelming.
However, we can achieve these energy savings by simple means and, as already mentioned, it
is often easier to obtain a shaping gain than to obtain a similar gain through powerful coding.

6.1.3 Combined Coding and Shaping Techniques

Several techniques have been proposed to obtain a non-uniform probability distribution of the
signal points. A promising approach is to partition the signal constellation into several equal-
sized sub-constellations corresponding to different average energy levels [CO90]. A shaping
algorithm is then used to specify the sequence of sub-constellations so that low-energy signals
are transmitted more frequently than high-energy signals. Shell mapping ([Fis02] and refer-
ences therein) is part of the ITU recommendation V.34 [FBEM96] and uses a multi-dimensional
mapping to select sequences of low energy signal points. Forney introduced trellis shaping in
[For92], where the mapping of the bits to the transmitted symbol sequence is done via a search
through the trellis (e.g. with a Viterbi algorithm) of a shaping code. For BICM, a system using
a shaping block code to select the transmitted sequence has been proposed in [GSJ05].

Another approach to obtain non-equiprobable signal points is to design specific bit-to-symbol
mappings. A simple example of such a scheme is given in [FGL+84] and further analyzed in
[KP93]. The idea is to assign less bits to more frequent signal points and more bits to less
frequent ones. A promising solution is the use of a Huffman prefix code. The main drawback
of this method is that it requires a variable rate input, which results in buffering and synchro-
nization problems.
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To circumvent this problem, we proposed in [SH05] a practical method for signal shaping based
on the ideas of [RG04] and [CV04]: In [RG04], a bit-to-symbol mapping is proposed to obtain
binary prefix codes for signal shaping without buffer and synchronization problems. In [CV04],
the idea of non-unique mappings for iterative demapping and decoding has been proposed for
PSK modulation to reduce the error bound at high SNR.

We assign an arbitrary non-uniform number of bit labels to the signal points and the resulting
ambiguities are resolved by the channel code and through iterative demapping and decoding.
More bit-labels are assigned to signal points with low energy and less bit-labels to those with
high energy.

Note that shaping gains may also be achieved from superimposed signals, as further investigated
in Chapter 7.

6.2 Signal Shaping Using Non-Unique Mappings

6.2.1 Bit-Interleaved Coded Modulation with Non-Unique Mappings

We consider the bit-interleaved coded modulation (BICM) system depicted in Fig. 6.2 with
a feedback from the channel decoder to the demapper for iterative demapping and decoding
(BICM-ID). Extensions and modifications to the standard BICM-ID scheme as introduced in
Section 2.5 are mentioned in the following.
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Figure 6.2: BICM-ID system model for signal shaping.

A sequence of information bits is encoded by a binary code and multiplexed to M subsequences.
The interleaving is done separately over each subsequence m = 1, . . . ,M with distinct random
interleavers Πm. This interleaver design was proposed in [CR02] to ensure that the coded bits
with different protection due to their different positions in the symbol labels are distributed
uniformly along the trellis. In the considered non-uniform mapping scheme, this interleaver
should be used since the difference in the reliability of the bit positions may be significant.

At transmission time interval n, the bits cn = (cn,1, . . . , cn,M) from the M interleaved subse-
quences are mapped to a complex symbol xn = µ(cn) chosen from the signal constellation X
according to the binary labeling map µ : {0, 1}M → X . The number of possible bit labels 2M

may exceed the number of signal points |X | and multiple distinct bit sequences may be mapped
to the same signal point.
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An example for a non-unique mapping of bit sequences of length M = 6 to a 16ASK signal
constellation is given in Fig. 6.3. Without a priori information, a transmitted bit at position m in
the binary label of the ith signal point is deleted or punctured by the non-unique mapping only if
ni = 21, 22, 23, . . . labels are mapped to the signal point and if the number of ones and zeros at
position m in the labels is equal. In the example of Fig. 6.3, the last two bits of the signal point
with ni = 2 are punctured by the mapping. With ideal a priori information, the ambiguities can
be resolved provided that the sequences that are mapped to the same signal point differ in at
least two positions. In Fig. 6.3, all the depicted bit labels differ in two or more positions.

3 bit labels:
100110
101111
110100

86 7 78 6 443 23 1 1211

2 bit labels:
011010
011001

P (xi) = 3/26
P (xi) = 2/26

ni =

Figure 6.3: Non-unique mapping with 16ASK, 26 bit labels of length M = 6, given number
ni of bit labels per signal point. Entropy of the channel input signal: H(X) = 3.69 bits per
symbol.

We consider the transmission over an additive white Gaussian noise (AWGN) channel described
in equation (2.8) and an optimum MAP demapper according to equation (2.48). The demapper
considers the non-unique mapping as a 2M -ary signal constellation with superimposed signal
points. Note that we use the full available a priori information in contrast to the punctured one
in [RG04].

In all the following investigations, we consider a 16ASK signal constellation. The investigated
methods are applicable to any arbitrary one- or two-dimensional signal constellation. Note that
we are no more restricted to signal constellations with a number of signal points equal to a
power of two. Fig. 6.4 depicts an example of a 24QAM signal constellation with a non-uniform
number of bit labels of length M = 6 per signal point. The entropy H(X) = 4 corresponds to
the entropy of the uniform 16QAM signal constellation.
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Figure 6.4: Non-unique mapping with 24QAM, 26 bit labels of length M = 6, given number ni

of bit labels per signal point. Entropy of the channel input signal: H(X) = 4 bits per symbol.
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6.2.2 Optimization of Symbol Probabilities

To achieve a maximum possible shaping gain, the probabilities of the signal points should
closely reflect the probability distribution given in equation (6.4). We first determine the value
of λ in equation (6.4) that maximizes the resulting signal set capacity for a given channel quality
Es/N0 or data rate. The result for a 16ASK signal constellation is depicted in Fig. 6.5.
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Figure 6.5: Values of λ (equation (6.4)) that maximize the capacity of a 16ASK signal constel-
lation as a function of a) Es/N0 and of b) the data rate in bits per channel use.

To achieve a probability distribution close to the one given for an optimized value of λ, we
assign a non-uniform number of distinct bit labels to the signal points and optimize the number
of labels per signal point. For this purpose, the Huffman algorithm may be used [KP93]. Note
that we have to apply a modified suboptimal Huffman algorithm since we limit the length of
the binary label to a maximum value M . To construct a binary Huffman tree, we have to stick
to the restriction that the resulting probabilities of the signal points are given by P (xi) = 1/2li ,
with 1 ≤ li ≤ M , and that at least one label is assigned to each signal point. Then, the number
of labels ni per signal point is restricted to powers of two: ni = 2M−li .

To overcome these restrictions, we propose a label filling algorithm, where the 2M labels are
allocated to the signal points according to a greedy approach: The algorithm assigns two labels
at a time to signal points in a symmetric way to obtain a zero mean constellation. In each as-
signment, the signal point that results in the smallest Kullback-Leibler distance to the optimum
probabilities Popt(xi) is chosen, where the Kullback-Leibler distance is given by [CT91] :

D(Popt(xi)||P (xi)) =

|X |∑
i=1

Popt(xi) · log2

Popt(xi)

P (xi)
. (6.10)

A number ni of labels is assigned to a signal point xi and
∑|X |

i=1 ni = 2M . Then, P (xi) = ni/2
M

as illustrated in the examples in Fig. 6.3 and 6.4. Note that the problem of assigning a certain
number of bit labels to signal points can be in general formulated as a quadratic assignment
problem, similar to the mapping optimization problem discussed in Section 4.3.
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The probability distribution of the signal points resulting from the label filling algorithm is
shown in Fig. 6.6 for different SNR values. We clearly observe that by reducing the SNR, the
signal points close to the origin become more probable and therefore, the entropy H(X) of the
signal constellation is reduced. We can interpret this as ”soft” adaptive modulation with a soft
transition between 16ASK and 2ASK.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.1

0.2

0.3

0.4

16ASK signal points

pr
ob

ab
ili

ty
1 dB
5 dB
15 dB
30 dB

Figure 6.6: Probability distributions of signal points from the label filling algorithm for 16ASK,
different values of Es/N0 in dB.

Fig. 6.7 shows the Kullback-Leibler distance of some signal point probability distributions to
the optimum distribution as a function of the parameter λ and Es/N0. 16ASK and a label length
M = 6 are used. We observe that, as expected, the distributions obtained with the label filling
algorithm better approach the optimum distribution than the ones obtained with the Huffman
algorithm, especially for high values of λ and low values of Es/N0. Asymptotically, the uniform
distribution is optimum for very low λ, whereas for a high λ, only the two inner signal points
should be used.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

λ

K
ul

lb
ac

k 
di

st
an

ce
 to

 o
pt

im
um

 d
is

tr
ib

ut
io

n

16ASK

8ASK

4ASK

2ASK

Huffmann

Label filling

−10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

E
s
/N

0
 in dB

K
ul

lb
ac

k 
di

st
an

ce
 to

 o
pt

im
um

 d
is

tr
ib

ut
io

n

16ASK
8ASK
Huffmann
Label filling

a) b)

Figure 6.7: Kullback-Leibler distance as defined in equation (6.10) as a function of a) λ (equa-
tion (6.4)) and b) Es/N0. Label length M = 6, 16ASK signal constellation normalized for a
uniform probability distribution. 8ASK, 4ASK and 2ASK use only the inner points of the given
16ASK constellation.
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We expect a larger shaping gain with a probability distribution with a small Kullback distance
to the optimum distribution. This is confirmed in Fig. 6.8a), where the capacities with 16ASK
are depicted for the optimum probability distribution and the probability distributions obtained
using the label filling and the Huffman algorithm. We achieve a shaping gain up to 1.08dB,
1.04dB and 0.94dB with respect to the uniform probability distribution if we apply the optimum
distribution, the distribution obtained with label filling and the distribution obtained with the
Huffman algorithm, respectively (see Fig. 6.8b)).
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Figure 6.8: For a 16ASK constellation: a) Capacity in bits per channel use for different signal
point probability distributions. b) Corresponding shaping gain.

Fig. 6.9 illustrates the distribution of the overall redundancy M − C into coding redundancy
rc = H(X) − C and shaping redundancy rs = M − H(X), where C denotes the capacity as
given in Fig. 6.8a). The results show how much loss rs of data rate we should accept because of
the non-uniform probability distribution to optimize the capacity while reducing the amount of
redundancy rc from channel coding [WFH99]. For the considered 16ASK constellation with the
optimized probability distribution, it is quite interesting to observe that the coding redundancy
should be only slightly higher than the shaping redundancy.
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6.2.3 Optimization of Mapping

For capacity-optimized probabilities of the signal points, we have to determine the bit-to-symbol
mapping. In contrast to the signal point probabilities, the mapping does not change the capacity
if iterative demapping and decoding is applied at the receiver. However, the mapping has a
considerable influence on the system performance.

We use the methods introduced in Chapter 4 to characterize and optimize non-unique mappings:
We generate an Euclidean distance spectrum (EDS, see Section 4.1) for no and ideal a priori
information to characterize the mapping and use the cost functions of equation (4.9) and the
binary switching algorithm to optimize the mapping. With non-unique mappings, Euclidean
distances dex,1 = 0 between decision regions appear in the EDS due to superimposed labels.

Consider as example a 16ASK signal constellation and a label length of M = 6. For
a rate of 3 bits per channel use, the capacity limit is at 10 log10(Es/N0)dB = 15dB.
The optimum value of λ is then λ = 1.134. With the label filling algorithm, we assign
{ni} = {1, 1, 2, 3, 4, 6, 7, 8, 8, 7, 6, 4, 3, 2, 1, 1} labels to the 16 signal points to optimize the
constellation-constrained capacity. The resulting entropy is H(X) = 3.69 bits per symbol and
the shaping redundancy M −H(X) = 0.31 bits.

For this setup, we optimize the mapping with the binary switching algorithm for no and ideal
a priori information at the demapper. The resulting Gray-like and turbo optimized mapping are
defined in Table A.5 in Appendix A and the Euclidean distance spectra are given in Table 6.1.

Dex dex,1 = 0 dex,2 = ∆ dex,3 = 2∆ 3∆ 4∆ 5∆ 6∆ 7∆ . . .
Λ λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 . . .

No a priori information (Expurgated)
Gray 488 716 350 124 56 32 16 16 . . .

Turbo opt. 832 139 11 0 0 0 0 0 . . .
Ideal a priori information

Gray 70 56 8 16 6 6 14 8 . . .
Turbo opt. 0 0 0 43 58 44 26 11 . . .

Table 6.1: Euclidean distance spectrum (EDS) for 16ASK.

The corresponding demapper EXIT functions are shown in Fig. 6.10. The area under the demap-
per EXIT function is upper bounded at high SNR by Adem ≤ H(X)/M = 3.69/6 = 0.615 in
the considered example. The EXIT functions for an asymptotically large SNR are included
in Fig. 6.10. Recall that the area under the EXIT function of the outer decoder is equal to
Adec = Rout and that Adec < Adem to have a chance of successful decoding. Therefore, a code
rate smaller than 0.615 is always required in this example to resolve the ambiguities that arise
when multiple bit labels are assigned to one signal point.

6.2.4 Optimization of Iterative Receiver

The EXIT functions of the demapper and the channel decoder should be well matched to achieve
close to capacity performance, as discussed in Section 3.4.

For the example investigated in Section 6.2.3, we consider first the combination of a parallel
concatenated turbo code with the Gray-like mapping. We observe in Fig. 6.10a) that this setup
results in a good match of the EXIT functions.
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Figure 6.10: Average and bit-wise EXIT chart of 16ASK with different mappings,
10 log10(Es/N0)dB = 16.5dB and Es/N0 →∞.

Then, we use the turbo optimized mapping with a convolutional code and shape the decoder
EXIT function using the concept of irregular convolutional codes [TH02]. A code word of
an irregular code of length N and overall rate RIR consists of P subblocks of length αpN ,
p = 1, . . . , P . These subblocks may have different code rates Rp obtained by applying different
puncturing patters in each subblock. We deliberately reduce the performance of the convolu-
tional code by irregular puncturing to optimize it for the iterative scheme. The EXIT function
fdec(I) of the overall irregular code is the linear combination of the EXIT functions fdec,p(I) of
the P subcodes, similar to the EXIT functions of irregular modulation introduced in Chapter 5:

fdec(I) =
P∑

p=1

αp · fdec,p(I). (6.11)

The optimization of the ratios αp can be formulated as a linear programming problem. Similar
to equation (5.5) for irregular modulation, the optimization problem can be written as:

maximize RIR =
∑P

p=1 αp ·Rp,

subject to
∑P

p=1 αp · f−1
dec,p(I) < fdem(I),

∑P
p=1 αp = 1, αp ∈ [0, 1],∀p. (6.12)

For the considered example, we use a memory 3, rate R = 1/4 mother code with gen-
erator polynomial (1, 15/13, 15/13, 17/13) in octal notation. The possible rates of the
P = 14 subblocks obtained using the puncturing pattern given in [Tüc04] are Rp =
{0.25, 0.3, 0.35, . . . , 0.85, 0.9}. Fig. 6.11a) and 6.11b) show the EXIT functions of the subcodes
and of the two irregular codes optimized for an early convergence threshold for the reference
system without signal shaping and for the proposed system with signal shaping, respectively. In
both systems, we set the data rate to 3 bits per channel use.

In the reference system, we use a 16ASK signal constellation with label length M = 4 and the
optimized mapping given in Table A.5. The irregular code is punctured to rate R = 3/4 with
the optimized ratios {αp} = {0, 0, 0, 0, 0, 0.005, 0.004, 0, 0.43, 0.14, 0.03, 0.033, 0.041, 0.317}.
The decoder EXIT function is given in Fig. 6.11a).
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For the proposed system with signal shaping, we use a 16ASK constellation with a label length
M = 6, the optimized probability distribution and the non-unique turbo optimized mapping
defined in Table A.5. The irregular code is punctured to rate R = 1/2 with the optimized
ratios {αp} = {0.2, 0.18, 0.01, 0.03, 0.034, 0.118, 0.11, 0.022, 0.013, 0.116, 0.025, 0.026, 0.028,
0.088}. The resulting decoder EXIT function is depicted in Fig. 6.11b).

The iterative decoding threshold predicted by the EXIT chart with the optimized irregular codes
is at 10 log10(Es/N0)dB = 16.6dB and 10 log10(Es/N0)dB = 15.5dB for the considered sys-
tems without and with signal shaping, respectively. Using the values of Table 6.2, the EXIT
threshold with signal shaping is therefore 0.5dB above the capacity of the continuous Gaussian
input and 0.7dB below the capacity of the uniform distribution.
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Figure 6.11: EXIT functions of optimized mappings with different Es/N0 values in dB and of
optimized irregular codes for a) the reference system without signal shaping; b) the proposed
system with signal shaping. The data transmission rate is Rt = R ·M = 3 bits per channel use.

6.3 Simulation Results

Fig. 6.12 depicts the bit error rate (BER) performance of the optimized BICM-ID systems with-
out and with signal shaping. The channel is AWGN and the interleaver length is 100000 bits.
Table 6.2 summarizes the results.

Capacity EXIT threshold BER at 10−5

Gaussian input 15dB – –
Non-uniform distribution 15.1dB 15.5dB 16.2dB

Uniform distribution 16.2dB 16.6dB 16.9dB

Table 6.2: Characteristic Es/N0 values in dB (rounded) for 16ASK, data rate of Rt = 3 bits
per channel use.
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Figure 6.12: BER with AWGN channel, data rate of R ·M = 3 bits per channel use, 16ASK,
memory 3 irregular convolutional code. Optimized BICM-ID systems as derived in Section
6.2.4; Eb/N0 = Es/N0 / (R ·M); 50 iterations.

6.4 Summary

A shaping gain is obtained by assigning a non-uniform number of distinct bit labels to the
signal points in a BICM scheme with iterative demapping and decoding (BICM-ID). We apply
a greedy label filling method to optimize the probability distribution of the signal points and
a binary switching algorithm to optimize the bit-to-symbol mapping. EXIT charts are used
to optimize an irregular convolutional code and to achieve a performance close to Shannon’s
AWGN capacity. The results for the example of 16ASK and a data transmission rate of 3 bits
per channel use are summarized in Table 6.2. We achieve approximately a BER of 10−5 at
the capacity of the uniform distribution and an iterative decoding threshold 0.7dB below the
capacity of the uniform distribution.



7
Coded Modulation with
Mapping by Superposition

We consider signal constellations and bit-to-symbol mappings that arise from the linear super-
position of several signal layers. A mapping by superposition is defined that is applicable to
both multi-level coding (MLC) and bit-interleaved coded modulation (BICM). The approach
is based on the idea of superposition coding [CT91] and in particular on the system proposed
in [DRU97] and further developed in [Cro05] [MP04a] [TP06]. There, the superposition of
independent signals yields a Gaussian-like channel input, as required to approach Shannon’s
capacity.

Furthermore, mapping by superposition is closely related to general multiple-access (MA)
schemes and is in particular very similar to trellis coded multiple access (TCMA) [BAR02]
and interleave-division multiple-access (IDMA) [PLWL06]. However, we focus on the single
user system where the data of the superimposed layers all belong to one user. Then, the cooper-
ation among the layers at the transmitter is perfect. By adjusting the power and phase allocation
to the layers, we are able to design a large variety of overall signal constellations.

Advantages of mapping by superposition include that data from different sources can be easily
combined for bandwidth efficient transmission, that for some power allocations, the transmitted
signal is approximately Gaussian, as required to approach the AWGN capacity, and that low
complexity detectors like the investigated soft interference canceler may be used. As main
drawback we should mention the design constraints on the overall bit-to-symbol mapping.

In Section 7.2, we construct different overall signal constellations by the superposition of signals
from smaller signal constellations. We investigate their constellation-constrained capacity and
their peak-to-average power ratios (PAPR), similar to the investigations performed in [BAR01]
for TCMA. By setting the powers and phases of the layers, a large variety of overall signal
constellations is obtained, including standard QAM constellations and constellations with non-
unique signal points.

To analyze the iterative receiver, we derive in Section 7.3 analytic EXIT functions of a low
complexity interference canceler (IC) for the MLC and BICM systems. For the MLC scheme,
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we break down the multi-dimensional EXIT analysis to a one-dimensional problem by scaling
the output of the detector and decoder in an appropriate way. The approach used in [SS03] and
[SSRS06] for a large number of users or layers is extended to be applicable for the considered
system with a low number of superimposed layers. Different power allocations and bit-to-
symbol mappings of the layers are considered. The analytic IC EXIT functions are compared
to the simulated IC and MAP detector characteristics.

In Section 7.4, the mapping by superposition is optimized by adjusting the power allocation of
the layers. For successive interference cancelation, the power allocation for multi-user systems
has been optimized in [Mec03] using mutual information measures and assuming a capacity
approaching code. For iterative detection, the power allocation has been optimized in [CMT04]
using multiuser efficiency as performance measure and in [MP04b] using error rate simulations.
We use the results of the EXIT chart analysis in Section 7.3 to solve the optimization of the
power allocation to the layers for iterative detection using constrained nonlinear optimization
techniques [SSRS06]. The approach is similar to the optimization of irregular modulation in
Chapter 5 and irregular codes in Chapter 6: Instead of assigning different signal constellations,
mappings or different code rates within one code word, we assign here different powers to shape
the EXIT functions to obtain a good match of the detector and decoder EXIT functions.

Section 7.5 finally shows simulation results and analytical error bounds of the investigated sys-
tems.

7.1 System Structure with Mapping by Superposition

The MLC scheme with mapping by superposition is depicted in Fig. 7.1. A sequence of infor-
mation bits is de-multiplexed to K data layers. Each layer is separately encoded by a binary
code and interleaved by a different random interleaver Πk; M consecutive coded and interleaved
bits of each layer k = 1, . . . , K are grouped to ck = (ck,1, . . . , ck,m, . . . , ck,M).
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Figure 7.1: Multi-level coding (MLC) with mapping by superposition.
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The BICM approach is shown in Fig. 7.2. A single encoder and random interleaver Π is used;
M consecutive coded and interleaved bits are grouped to ck = (ck,1, . . . , ck,m, . . . , ck,M); K
consecutive subsequences ck, k = 1, . . . , K, are de-multiplexed to K layers.
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Figure 7.2: Bit-interleaved coded modulation (BICM) with mapping by superposition.

The mapping by superposition for both MLC and BICM is done as follows: The subsequences
ck of length M from the layers k = 1, . . . , K are mapped to the complex symbols xk = µk(ck)
chosen from the 2M -ary signal constellation Xk (e.g. QPSK for M = 2) according to the bit-to-
symbol mapping µk : {0, 1}M → Xk that defines the assignment of the binary bit sequences ck

to the signal points (e.g. Gray mapping). The transmitted signal x is the linear superposition of
the signals xk of the K layers:

x =
K∑

k=1

√
Pk eiθkxk, (7.1)

with a power Pk and phase θk associated to each layer. We omit the time index for x for ease of
presentation.

In other words, MK coded and interleaved bits from the K subsequences ck are grouped to the
sequence c = (c1, . . . , ck, . . . , cK) and mapped to a complex symbol x = µ(c) chosen from the
overall 2MK-ary signal constellation X according to the overall mapping µ : {0, 1}MK → X .
The signal constellation X and mapping µ depend on the signal constellation Xk and mapping
µk of the underlying layers and on the power Pk and phase θk used for the linear superposition.

In the following investigations, we set the signal constellation Xk to QPSK with M = 2, and the
mapping µk to Gray or Anti-Gray. The best performance in the first receiver iteration is achieved
with Gray mapping but the performance gain with the iterations is maximized with Anti-Gray
mapping, as described in Chapter 4. We use the same signal constellation and mapping for
each layer. The combination of different signal constellations and mappings would further
enhance the design and optimization possibilities, similar as with irregular or hybrid modulation
investigated in Chapter 5.

The superimposed signal x is transmitted over the basic AWGN channel y = x + n given in
equation (2.8).

At the receiver, the detector uses the received symbols y and the extrinsic a priori LLRs
Ldec(ck,m) fed back from the decoder to compute the extrinsic LLRs Ldet(ck,m), for k =
1, . . . , K and m = 1, . . . , M . The a priori knowledge reduces the number of interfering layers
as well as the number of possible received signal points in the underlying signal constellation
Xk of the layer k to be detected. The extrinsic LLRs of the detector and decoder are iteratively
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exchanged, similar to the decoding of a serial concatenated code shown in Fig. 2.14. We assume
that the receiver has perfect channel knowledge and knows through signalling the parameters
used at the transmitter, namely the applied signal constellation, mapping, number of layers,
power and phase allocation to the layers.

We consider two detectors: the optimum maximum a-posteriori (MAP) detector and a low
complexity interference canceler (IC). Note that other multi-user detectors not considered here
may also be a good choice, e.g. the list-sequential detector described in [HK06].

The optimum detector corresponds to the MAP demapper of the overall signal constellation X .
The MAP demapper is described in Section (2.3), where a metric Λ(c) is defined to compute
the LLRs according to equation (2.43). The metric for the extrinsic LLRs Ldet(ck,m) is

Λ(c) = −|y − µ(c)|2
2σ2

n

−
K∑

l=1

M∑
j=1

cl,j · Ldec(cl,j) + ck,m · Ldec(ck,m). (7.2)

The considered low complexity IC detector is shown in Fig. 7.3. It is composed of two func-
tional units which are soft interference cancelation and QPSK soft demapping to compute the
extrinsic LLRs of the coded bits.
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ŷk

Figure 7.3: Interference canceler (IC).

In the first stage of the IC, a soft estimate of the interference is subtracted from the received
signal y, that is often referred to as parallel interference cancelation (PIC).

The general definition of a soft-symbol x̄k with a priori knowledge is given in equation (2.84).
In the special case of QPSK with Gray mapping, the signal constellation is an orthogonal su-
perposition of two independent BPSK signals and we can compute x̄k using the definition of
soft-bits in equation (2.33):

x̄k = tanh(Ldec(ck,1)/2) + i · tanh(Ldec(ck,2)/2). (7.3)

The interference-reduced and rotated signal estimate ŷk is

ŷk = e−iθk · (y −
∑

l 6=k

√
Pleiθl x̄l). (7.4)

The QPSK demapper uses the log-MAP algorithm described in Section 2.3 to compute the
extrinsic LLRs out of ŷk and the a priori information fed back from the decoder; ŷk is assumed
to be Gaussian distributed with mean

√
Pk and variance Var(ŷk). For a QPSK signal with

|xk| = 1, ∀k, the variance of x̄k is

σ2
dec,k = E{|xk − x̄k|2|Ldec(ck)} = 1− |x̄k|2. (7.5)
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Then, if the variance of the real and imaginary part of x̄k are identical, or if θk = 0, ∀k, the
variance of ŷk is

Var(ŷk) =
∑

l 6=k

Plσ
2
dec,l + σ2

n. (7.6)

Otherwise, we proceed as described in [TP06].

In the special case of QPSK and Gray mapping, no a priori information needs to be passed to
the demapper after the interference cancelation stage. Then, if the bit ck,1 corresponds to the
decision on the real part of the QPSK signal constellation and with the Gaussian assumption,
the QPSK demapper output is similar to equation (3.1) and given by:

Ldet(ck,1) =
2
√

Pk

Var(Re(ŷk))
· Re(ŷ). (7.7)

The channel decoder uses the BCJR algorithm to compute extrinsic estimates about the coded
bits that are fed back and regarded as a priori information at the detector.

To ensure the stability of the iterative receiver, we apply a mask on the coded and interleaved
bits and flip every second bit at the transmitter and reverse this operation at the receiver by
flipping the sign of every second LLR [PLWL06].

7.2 Constellation-Constrained Capacity

We investigate the properties of the overall signal constellation X resulting from the superposi-
tion of smaller signal constellations Xk of the layers k = 1, . . . , K, as described in the previous
Section 7.1.

Fig. 7.4 depicts for three different power and phase allocations the overall signal constellations
X for K = 3 superimposed layers. With a uniform phase distribution and the power allocation
P(1) given in Fig. 7.4, we obtain a standard 64QAM signal constellation. With a uniform phase
and uniform power distribution P(2), the superposition of signals leads to non-unique signal
points. The distinct signal points with low energy are more probable than those with high
energy as required to achieve a shaping gain. Finally, we expect a shaping gain with the signal
constellation obtained with the power allocation P(3) due to the non-uniformly spaced signal
points.

The three signal constellations of Fig. 7.4 are examples of the large variety of signal constel-
lations we can design by setting the power and phase of the layers. The standard QAM signal
constellations, the signal shaping approach with non-uniform probability distribution of the sig-
nal points [RG04][SH05] and the signal shaping approach with non-uniformly spaced signal
points [SvT93] are only special cases of mapping by superposition. Note however that for a
given signal constellation constructed by superposition, only a small number of different over-
all mappings are possible. As example, it is not possible to design an overall Gray mapping if
we use the power allocation P(1) resulting in a 64QAM signal constellation.

Different power allocations imply a different peak-to-average power ratio (PAPR) defined in
equation (6.3). The PAPR of the investigated examples is PAPR= 2.33, 3.00, and 2.46 for the
signal constellations constructed with the power allocations P(1), P(2), and P(3), respectively.
For more layers, the PAPR will increase. The issue of reducing the PAPR by clipping for a
similar system has been investigated in [TP06].
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Figure 7.4: Signal constellations for 3 layers, QPSK modulation, different normalized power
allocations P = [P1, . . . , PK ] and phase distributions θk. a) Non-uniform power allocation
resulting in a 64QAM signal constellation with

√
Pk = 2 · √Pk−1 for k = 2, . . . , K; every

signal point is transmitted with equal probability. b) Uniform power allocation; each signal
point is labeled with the probability of being transmitted. c) Non-uniform power allocation;
every signal point is transmitted with equal probability.

Fig. 7.5 depicts the constellation-constrained capacity Ccc in bits per channel use of the signal
constellations investigated in Fig. 7.4. A gap to the AWGN capacity remains with the standard
64QAM signal constellation at medium and high SNR. The other two curves approach the
AWGN channel capacity at medium SNR. The capacity of the signal constellation resulting
from the uniform power allocation P(2) is limited by the number of distinct signal points. The
maximum achievable data rate is equal to the entropy H(X) of the transmitted signal:

H(X) = −
∑

i

P (xi) log2(P (xi)), (7.8)

where P (xi) is the probability of the ith distinct signal point. For the superposition of 3 layers
with the uniform power allocation P(2), we have H(X) = 3.66. With the power allocations
P(1) and P(3), the distinct signal points are equiprobable and H(X) = 4 (cf. Fig. 7.5).

7.3 EXIT Chart Analysis

We use the EXIT charts investigated in Chapter 3 to analyze and optimize the considered BICM
and MLC systems. We investigate the power allocation to the layers, compare QPSK Gray and
Anti-Gray mapping, and the MAP and IC detector.

Consider the average mutual information (MI) defined in equation (3.4) between the coded bits
at the transmitter and the extrinsic LLRs at the receiver. Let Idet denote the average extrinsic MI
at the output of the detector and the a priori MI at the input of the decoder; Idec is the average
extrinsic MI at the output of the decoder and the a priori MI at the input of the detector.

The detector is characterized by the EXIT function Idet = fdet(Idec) for a given SNR, power Pk

and phase θk of the layers k = 1, . . . , K. Monte-Carlo simulations or numerical integration are
used to obtain the EXIT function of the MAP detector, see Section 3.3. For the low complexity
IC detector, we derive in this Section the analytic EXIT functions for the BICM and MLC
schemes. The channel decoder is characterized by the EXIT function Idec = fdec(Idet), see
Section 3.2.
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For the case of non-uniform power allocation, we have to differentiate between the EXIT chart
analysis of the BICM and MLC schemes. With BICM, we consider the MI averaged over one
code word, i.e. we average over all layers since a single interleaver and channel code are used.
The analysis is a one-dimensional problem. With MLC, the analysis becomes a K-dimensional
problem since the output of the detector depends on the a priori MI of every single layer and
not just on the average MI.

To translate between the variance of the LLRs and the MI after the detector, we use the J
function defined in equation (3.14). To translate between the variance of the soft-bits or soft-
symbols and the MI after the decoder, we use the T function of equation (3.17). Both functions
assume Gaussian distributed values.

Bit-interleaved coded modulation scheme

We investigate the EXIT function of the IC detector in the BICM scheme. From the a priori MI
Idec, we compute the variance σ2

dec of the soft-bits used for interference cancelation:

σ2
dec = 1− T−1(Idec). (7.9)

For QPSK with Gray mapping and with equation (7.6) and (7.7), the variance σ2
det,k of the LLRs

of the kth layer after the QPSK demapper is given by:

σ2
det,k =

4Pk∑
l 6=k Plσ2

dec + σ2
n

. (7.10)

The MI Idet,k of the kth layer is then

Idet,k = J (σdet,k) . (7.11)
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With QPSK and Anti-Gray mapping, we use EXIT chart characteristics to derive the MI Idet,k.
We know that the QPSK signal constellation is reduced to two signal points with ideal a priori
information. If |xk| = 1,∀k, the Euclidean distance between the two remaining signal points
is either

√
2 or 2 with equal probability, as illustrated in Fig. 4.6. Therefore, the detector EXIT

function with QPSK and Anti-Gray mapping at Idec = 1 is

Idet,k
∣∣
Idec=1

=
1

2
J (σdet,k) +

1

2
J

(√
2σdet,k

)
. (7.12)

Furthermore, from the derivations performed in Section 3.3 and in particular from Fig. 4.8, we
know that the EXIT functions of QPSK without superposition are straight lines and that the
functions with Gray and Anti-Gray mapping intersect at an a priori information of Idec = 0.5.
Using basic geometry, equation (7.11) for Gray mapping and (7.12) for Anti-Gray mapping,
the detector EXIT function for the kth layer for superimposed QPSK and Anti-Gray mapping
is given by:

Idet,k =
[
J

(√
2σdet,k

)
− J (σdet,k)

]
Idec + 1.5J (σdet,k)− 0.5J

(√
2σdet,k

)
. (7.13)

For both Gray and Anti-Gray mapping, we average over the K layers to obtain:

Idet =
1

K

K∑

k=1

Idet,k. (7.14)

Three characteristic values of the EXIT function of the detector are of interest (see also
Chapter 3): First, a large value of Idet without a priori information (Idec = 0) is desired to
open the tunnel between the EXIT functions and to ensure the start of the iterative process at
low SNR. Second, the value of Idet with ideal a priori information (genie or error free feedback
case, Idec = 1) determines the gain over the iterations, i.e. the performance at high SNR after
several iterations. Finally, the areaAdet under the detector EXIT function fdet(Idec) is of interest.

We have defined in Section 2.2 the receiver-constrained capacity Crc as the maximum achievable
rate with the (not necessarily optimum) detector. Compared to the constellation-constrained
capacity Ccc, we have Crc ≤ Ccc with equality for the MAP detector. Then, the following
relation results from (3.28):

Adet = Crc/(MK), (7.15)

where MK is the number of bits associated to one symbol of the overall signal constellation.

The values Idet for no and ideal a priori information are given directly from the analytic EXIT
function of the IC detector. By integrating over this EXIT function, we obtain the areaAdet. We
are interested in optimizing the overall signal constellation X and mapping µ with respect to
the three considered values by setting the powers Pk. This optimization problem can be cast to
a constrained nonlinear optimization problem:

maximize Idet
∣∣
Idec=0

or Idet
∣∣
Idec=1

or Adet,

subject to
∑K

k=1 Pk = 1; Pmin ≤ Pk ≤ Pmax, ∀k. (7.16)

For the considered IC detector, the best performance without a priori information is achieved
with a single dominant layer with high power, whereas the best performance with ideal a priori
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information is reached with an equal power distribution. Note that without a priori information
(Idec = 0 and σ2

dec = 1) and for high SNR, the value σ2
det,k in equation (7.10) is bounded by:

σ2
det,k

∣∣
Idec=0,σ2

n=0
=

4Pk∑
l 6=k Pl

. (7.17)

Therefore, the value Idet at Idec = 0 is interference limited and will not reach the value of 1
at high SNR, both with Gray mapping in equation (7.11) and Anti-Gray mapping in equation
(7.13). With a MAP detector however, Idet will reach the value of 1 at Idec = 0 and high SNR
if the signal points in the signal constellation X are distinct, i.e. with a non-uniform power or
phase distribution.

If we consider the IC detector again, the areaAdet related to the receiver-constrained capacity Crc

is maximized with a uniform power distribution and minimized with a single dominant layer
with high power. Crc is compared to the constellation-constrained capacity Ccc with 3 layers
in Fig. 7.5. Recall that Ccc corresponds to the achievable rates with the MAP detector. The
difference between Ccc and Crc is large especially for a non-uniform power distribution at high
SNR, where Ccc reaches the maximum data rate of MK bits per channel use. Therefore, the use
of the IC detector in the BICM system is reasonable only for a uniform power distribution or in
combination with a low rate code. Note that this reasoning does not apply to the MLC system
where the constellation-constrained capacity can be theoretically achieved with the IC detector,
see e.g. [Mec03].

Fig. 7.6 depicts EXIT functions for 3 superimposed layers with BICM. As expected, the EXIT
function of the MAP detector upperbounds the function of the IC detector and both curves
merge at Idec = 1 where the interference from the other layers is eliminated. These observations
suggest a hybrid detection approach not further investigated here, where the MAP detector is
used for the first few iterations to start the iterative process and the IC detector is used for the
last iterations. Then, the performance of the MAP detector could be approached with lower
complexity.

We furthermore observe in Fig. 7.6 that the analytic IC function is an acceptable approximation
of the simulated curve, considering that the assumption of Gaussian signals is not really valid
with 3 layers. As expected from the optimization results, Idet is higher with the non-uniform
power distribution for low a priori information while the uniform power distribution performs
better for high a priori information. Similarly, the values Idet with Anti-Gray QPSK mapping
are lower at Idec = 0 and higher at Idec = 1 than with Gray QPSK mapping.

Multi-level coding scheme

In the MLC based scheme, an EXIT function of the detector cannot be defined in a straightfor-
ward way for the general case of unequal power allocation. For a given SNR, power Pk and
phase θk of the layers k = 1, . . . , K, the MI Idet,k = fdet(Idec,j,∀j) depends on the a priori MI
of every single layer, and not just on the average MI as it is the case with the BICM scheme.
The EXIT chart analysis becomes a K-dimensional problem, which would be intractable even
for a small number of layers. In the equal power case, i.e. Pk = P, ∀k, both the a priori MI
at the detector input and the extrinsic MI at the detector output are identical for all layers. For
that special case, we obtain a single EXIT function and the analysis is similar to the one with
BICM.

An approach to break down the multi-dimensional EXIT chart analysis of a multi-user detector
to a one-dimensional analysis has been proposed in [SS03]. The main idea is to scale the
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Figure 7.6: EXIT chart with BICM, 3 layers, QPSK with Gray and Anti-Gray mapping,
10 log10(Es/N0) = 8dB; simulated MAP, simulated IC, analytic IC; power allocations P(1)

(64QAM) and P(2) (uniform power) given in Fig. 7.4.

variance of the LLRs after the detector and the variance of the a priori soft symbols before
the detector in an appropriate way. The results in [SS03] are derived for a large number of
users. Therefore, it is assumed that the variance of the residual interference embedded in any
user’s signal is the same for all users (Lemma 1 in [SS03]). This assumption is not valid in the
considered system described in Fig. 7.1, where usually a small number of users or layers are
superimposed. That has two consequences: First, we have to generate a layer-specific a priori
information, and second, we will not obtain a single detector EXIT function for all layers. To
handle that, we generate the a priori information for the detector according to the channel code
characteristics and obtain a single detector EXIT function by averaging over all layers.

We consider first the EXIT function of the IC detector. With the knowledge of the layer specific
a priori MI Idec,k fed back from the decoder, we calculate the variance σ2

dec,k of the a priori
soft-bits (cf. equation (7.9)):

σ2
dec,k = 1− T−1(Idec,k). (7.18)

To obtain a layer independent a priori MI value Idec, we combine the values σ2
dec,k as follows:

σ2
dec =

1∑K
k=1 Pk

K∑

k=1

Pkσ
2
dec,k, (7.19)

and transfer the variance of the soft-bits to the MI Idec with

Idec = T (1− σ2
dec). (7.20)

For QPSK with Gray mapping, the variance σ2
det,k of the LLRs of the kth layer after the IC

detector is given by (cf. equation (7.10)):

σ2
det,k =

4Pk∑
l 6=k Plσ2

dec,l + σ2
n

. (7.21)
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Note that with a large number of layers, the sum in the denominator in equation (7.21) could
be performed over all layers and with equation (7.19), we would obtain a simple relation that is
independent of the specific distribution of the input variances σ2

dec,k:

σ2
det,k =

4Pk

σ2
dec ·

∑K
l=1 Pl + σ2

n

. (7.22)

To obtain a layer independent MI Idet for the extrinsic output of the detector for a low number
of layers, we scale the LLR variance to normalize the numerator in equation (7.21) and average
over all layers since the residual interference in the denominator of equation (7.21) is different
for each layer:

Idet =
1

K

K∑

k=1

J

(
σdet,k ·

√
Pref

Pk

)
, (7.23)

where Pref is a reference power and is set to the average power of the layers for convenience.
The prediction of the actual trajectory using the proposed approach is more accurate when the
differences between the powers Pk are small or with high a priori information when the values
σ2

dec,k are low, since then, the denominator in equation (7.21) is similar for each layer k.

For the EXIT function of the decoder, the LLR scaling done in equation (7.23) is reversed to
obtain a layer specific a priori MI Idet,k for the decoder out of the layer independent MI Idet:

Idet,k = J

(
J−1(Idet) ·

√
Pk

Pref

)
. (7.24)

Then, Idec,k = fdec(Idet,k) is the standard EXIT function of the channel code. To obtain a layer
independent MI value Idec, we scale the variance of the corresponding soft symbols according to
equations (7.18), (7.19) and (7.20). Fig. 7.7 depicts for K = 3 superimposed layers an example
of the layer specific decoder EXIT functions Idec,k = fk

dec(Idet), k = {1, 2, 3}, and the overall
decoder EXIT function Idec = f ∗dec(Idet).

Finally, we generate the layer specific a priori information Idec,k for the IC detector in equation
(7.18) according to the channel code characteristics: For different values of Idet, we use the set
of values Idec,k = fk

dec(Idet), k = 1, . . . , K, as shown in Fig. 7.7 for the example of Idet = 0.3.
The resulting IC detector EXIT function Idet = fdet(Idec) is included in Fig. 7.7. We observe
that the analytic IC detector curve matches quite well the simulated curve.

For the EXIT trajectory, the soft-bit output to the detector is processed according to equation
(7.23) and the MI output of the decoder is processed according to equations (7.19) and (7.20).
We observe in Fig. 7.7 that despite the weakness in the Gaussian assumption when only 3
layers are superimposed, the snapshot trajectory matches fairly well the prediction from the
EXIT functions. The EXIT functions with a uniform power allocation would be identical to the
BICM counterpart in Fig. 7.6.

Fig. 7.8 illustrates and summarizes the relations between the considered variables.
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7.4 Optimization of Power Allocation

To achieve close to optimum performance, the detector and decoder EXIT functions should be
well matched to avoid an early crossing and to approach capacity. For a fixed set of parameters
such as number of layers, signal constellation and mapping of the layers, code rate and code
polynomial, we shape these EXIT functions by adjusting the power allocation to the layers.
Note that in contrast to BICM, both the detector and the decoder EXIT function depend on the
power distribution in the MLC scheme.



126 Chapter 7 ¥ Coded Modulation with Mapping by Superposition

The optimization of the power allocation for both BICM and MLC can be cast to a constrained
nonlinear optimization problem [SSRS06]:

minimize
∑K

k=1 Pk,

subject to f−1
dec (Idec)− fdet(Idec) + δ < 0,

Pmin ≤ Pk ≤ Pmax,∀k, (7.25)

where δ is an arbitrary scalar that determines the minimum width of the tunnel between the
EXIT functions. The first constraint is to ensure that the EXIT function of the demapper is
always above the one of the decoder and that they do not intersect. Since the EXIT function of
the detector does not reach the point [1; 1] in the EXIT chart, a crossing with the function of the
decoder is unavoidable at values of Idec close to 1. Thus, the first condition in (7.25) should be
relaxed to be valid up to a value of Idec close to 1, depending on the target error rate.

With BICM, the power allocation mainly adjusts the slope of the detector EXIT function and
governs the trade-off convergence at low SNR vs. error rate at high SNR, as explained in Section
7.3 and shown in Fig. 7.6. We already optimized Idet with no a priori information for an early
convergence and with ideal a priori information for a low error rate at high SNR using equation
(7.16). With equation (7.25), we can now optimize the trade-off and find the power allocation
that optimizes the convergence threshold at low SNR for a desired target error rate at high SNR.

More design possibilities are given with MLC, where both the EXIT function of the detector
and decoder depend on the power allocation and the shape of these functions can be precisely
adjusted.

An optimized power allocation for MLC with 3 and 6 layers and IC detector is shown in Fig. 7.9.
We observe a good match of the curves.
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Dex dex,1 dex,2 dex,3 dex,4 . . .
Λ λ1 λ2 λ3 λ4 . . .

No a priori information (Expurgated)
Gray 0 176 0 32 . . .

Anti-Gray 0 264 0 32 . . .

Ideal a priori information
Gray 0 64 0 64 . . .

Anti-Gray 0 32 32 32 . . .

Dex dex,1 dex,2 dex,3 dex,4 . . .
Λ λ1 λ2 λ3 λ4 . . .

No a priori information (Expurgated)
Gray 480 120 0 0 . . .

Anti-Gray 538 72 0 0 . . .

Ideal a priori information
Gray 0 192 0 0 . . .

Anti-Gray 0 96 96 0 . . .

a) P(1) (64QAM) b) P(2) (uniform power)

Table 7.1: Euclidean distance spectrum (EDS) of the overall signal constellations with Gray
and Anti-Gray QPSK mapping and the power allocations P(1) (64QAM) and P(2) (uniform
power) given in Fig. 7.4. D2

ex = {0, ∆, 2∆, 4∆, 5∆, . . . } with the minimum squared Euclidean
distances ∆ = 2/21 and ∆ = 2/3 for the normalized signal constellations corresponding to
P(1) and P(2), respectively.

7.5 Simulation Results
In the following bit error rate (BER) simulations, we assume an AWGN channel and uniform
(random) interleavers.

Fig. 7.10 depicts the BER for BICM with Gray and Anti-Gray QPSK mapping, corresponding
to the EXIT chart in Fig. 7.6. The 3 layers are encoded with a R = 1/3 convolutional code with
generator polynomial (1, 33/25, 37/25) in octal notation. The information word size is 10000
bits. To compute the analytical error bounds with ideal a priori information at the detector
(error free feedback or genie case) shown in Fig. 7.10, we use the Euclidean distance spectrum
(EDS) defined in Section 4.1 of the overall signal constellation X and the error bound derived
in Appendix B. The EDS for the power allocations P(1) (64QAM) and P(2) (uniform power) as
well as for Gray and Anti-Gray QPSK mapping are given in Table 7.1. With a uniform power
allocation and no a priori information, we have distances at dex,1 = 0 due to the non-unique
overall mapping.

The EDS of Table 7.1 and the results in Fig. 7.10 confirm the expectations from the EXIT
chart analysis: we achieve a lower BER at high SNR but a later convergence to the genie
error bound with a uniform power allocation or Anti-Gray QPSK mapping than with a non-
uniform power allocation (64QAM) or Gray QPSK mapping. Any power allocation resulting
from the optimization in equation (7.25) will have a higher error bound at high SNR than with
the uniform power allocation but an earlier convergence. As already mentioned, a large number
of overall signal constellations but only a limited number of overall mappings can be constructed
with mapping by superposition. Unfortunately, the error bound at large SNR is quite high with
these mappings, especially for non-uniform power allocations. To reduce this error bound,
either a stronger channel code or an additional recursive inner code as described in Section
4.4 should be used. If the MAP detector is used instead of the IC detector, a gain of 0.4dB
is achieved at low SNR for the example with uniform power allocation and Gray mapping in
Fig. 7.10.

Fig. 7.11 shows the BER for MLC averaged over all layers for 3 layers with a convolutional
code of rate R = 1/3 and generator polynomial (1, 33/25, 37/25), and for 6 layers with a
convolutional code of rate 1/4 and generator polynomial (1, 27/25, 33/25, 37/25). The infor-
mation word size per layer is 10000 bits. The performance with a uniform power allocation is
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good with 3 layers, but no convergence is achieved with 6 layers. With an optimized power
allocation according to Fig. 7.9, the convergence threshold is optimized. However, the genie
error bounds in Fig. 7.11 are quite high and the earlier convergence of the power optimized
receiver may not be of practical relevance. To reduce this error bound, either a stronger channel
code or an additional recursive inner code should be used, similar to the approach proposed for
BICM with mapping by superposition.

The analytic genie bounds are computed in a slightly different way than with BICM: instead
of considering the overall signal constellation, we determine for each layer the EDS of the
mappings and signal constellations scaled by the respective allocated power and average over
the analytic error bounds of the single layers.
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Figure 7.10: BER with BICM, 3 layers, QPSK with Gray and Anti-Gray mapping; memory 4,
rate R = 1/3 convolutional code; 2 bits per channel use, AWGN channel, 50 iterations; power
allocations P(1) (64QAM) and P(2) (uniform power) as given in Fig. 7.4; cf. EXIT chart in
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7.6 Summary

Signal constellations and bit-to-symbol mappings that arise from the linear superposition of
several signal layers are investigated and a mapping by superposition is defined for multilevel
coding (MLC) and bit-interleaved coded modulation (BICM). By adjusting the power and phase
allocation to the layers, we can construct a large variety of signal constellations, including signal
constellations with approximately Gaussian distributed signal points as required to approach
the AWGN capacity, standard QAM constellations and QAM constellations with non-unique
mappings investigated in Chapter 6. However, only a limited number of overall mappings is
obtained. Therefore, a high error bound remains at large SNR and either a strong channel code
or an additional recursive inner code should be used.

Analytic EXIT charts are derived for a low complexity interference canceler (IC) and the dif-
ferences between the EXIT chart analysis of the BICM and MLC schemes with a non-uniform
power allocation are highlighted. The BICM approach requires only a single channel code and
a single interleaver and is easier to integrate in most recent wireless standards. However, the
performance of BICM with the interference canceler is limited by the low receiver-constrained
capacity at high SNR and the MLC approach offers better design possibilities.

Using the analytic EXIT charts, the power allocation to the superimposed layers is optimized
using constrained nonlinear optimization techniques. For BICM, the performance of the inter-
ference canceler without a priori information, the performance with ideal a priori information
(genie or error free feedback case) and the receiver-constrained capacity are optimized. For
MLC, power allocations are given that optimize the shape of the EXIT functions for capacity
approaching performance.



8
Conclusions and Outlook

In this work methods to characterize and optimize bit-to-symbol mappings for a wide range of
applications have been developed. The mapping was truly considered as a channel code and
integrated in bit-interleaved coded modulation schemes with iterative demapping and decod-
ing (BICM-ID). Using the approaches described in this thesis, additional possibilities arise to
design efficient communication systems through advanced modulation techniques. The main
contributions that have been achieved in the course of this work are summarized as follows:

• Properties and computation methods of EXIT charts were derived for improved anal-
ysis and optimization possibilities of iterative decoding. We focused on the demapper and
decoder EXIT functions for the BICM system with iterative demapping and decoding. A
bit-level and symbol-level EXIT analysis was introduced which reveals the different relia-
bility levels of the decoder and demapper outputs. The capacity loss of rate Rin < 1 inner
codes in serially concatenated schemes, properties of catastrophic and non-catastrophic
rate Rin = 1 inner codes and the impact of different channel models (BSC, BEC, and
AWGN) on the EXIT functions were studied. Analytic decoder EXIT functions are de-
rived for convolutional codes and turbo codes for BEC channels and different code rates.
Demapper EXIT functions are numerically computed. Design guidelines for BICM with
iterative demapping and decoding are elucidated to set the trade-off complexity vs. error
rate performance and low complexity components vs. number of required iterations.

• An Euclidean distance spectrum (EDS) was proposed for BICM based applications.
The Euclidean distance spectrum is shown to provide an universal framework to charac-
terize mappings for arbitrary signal constellations and any number of a priori known bits
at the demapper. A bit-wise, symbol-wise, expurgated and graphical representation of the
Euclidean distance spectrum was investigated.

• The optimization of mappings can be cast to a quadratic assignment problem and solved
using a simple binary switching algorithm. Cost functions based on the Euclidean dis-
tance spectrum, error bounds and mutual information measures were proposed. The main
result are mappings optimized for iterative receivers in contrast to Gray mapping opti-
mized for systems without iterative demapping and decoding. The optimization approach
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can be used to derive optimized mappings for further applications, e.g. equal or unequal
error protection, multi-dimensional mappings or mappings for ARQ.

• The bit-interleaved coded irregular modulation (BICIM) scheme was introduced, where
different signal constellations and mappings may be used within one code word, even if
only the average channel quality is available at the transmitter. The proposed system of-
fers a promising possibility to adapt the transmission system to the channel quality, the
complexity and error rate requirements: By combining different signal constellations, the
data transmission rate can be precisely adapted to the channel quality. By combining
different mappings, the convergence behavior of the iterative decoding and demapping
procedure can be optimized. Instead of a cumbersome design of new mappings for dif-
ferent applications, a large variety of mapping characteristics is obtained by the combina-
tion of only two mappings, namely Gray mapping and a mapping optimized for iterative
demapping and decoding.

• Non-unique mappings, where multiple bit labels may be mapped to the same signal
point, were used to shape the probability distribution of the signal points. The proposed
method is integrated in the BICM scheme with iterative demapping and decoding. The
channel code and the iterative process may resolve the ambiguities that arise when mul-
tiple bit labels are assigned to one signal point. A greedy label filling algorithm is intro-
duced to optimize the number of labels per signal point and the binary switching algo-
rithm is used to optimize the mapping. Shannon’s AWGN channel capacity is approached
at high data transmission rates with an optimized Gaussian-like probability distribution of
the transmitted signal. The adaptation of the probability distribution of the signal points
to the channel characteristics is an inherent way of ”soft” adaptive modulation: using
optimized probability distributions, the high energy signal points become more probable
with increasing SNR. Furthermore, it might be often easier in practical systems to obtain
a performance gain by signal shaping than to obtain a similar gain through more powerful
coding.

• Signal constellations and bit-to-symbol mappings that arise from the linear superposition
of several signal layers were investigated and a mapping by superposition was defined
for multilevel coding and bit-interleaved coded modulation. With different power and
phase allocations to the layers, a large variety of signal constellations can be constructed.
Advantages of mapping by superposition include that data from different sources can be
easily combined for bandwidth efficient transmission, that for some power allocations,
the transmitted signal is approximately Gaussian, as required to approach the AWGN
capacity, and that low complexity detectors like the investigated soft interference canceler
may be used. As main drawback we should mention the design constraints on the overall
bit-to-symbol mapping.

Analytic EXIT charts were derived for the low complexity interference canceler and for
a small number of superimposed layers. For the multilevel coding scheme, the multi-
dimensional EXIT analysis is reduced to an one-dimensional problem by scaling the out-
put of the detector and decoder in an appropriate way. Using the analytic EXIT charts, the
power allocation to the superimposed layers is optimized for an early convergence with
constrained nonlinear optimization techniques.
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In the course of this work, several interesting problems have appeared among which the follow-
ing are of particular interest:

• The EXIT chart analysis could be improved with further derivations of analytic EXIT
functions for convolutional codes. In particular, closed form EXIT functions for BSC
channels would be useful since from the observations in Section 3.2 and in combination
with the BEC results, we would obtain upper and lower bounds on the EXIT functions
with an AWGN channel.

• Characterization and optimization methods for mapping diversity techniques for ARQ
have been described in Section 4.2. Further interesting results could be derived, in par-
ticular a detailed capacity and EXIT chart analysis for mapping diversity techniques is
currently missing.

• In this work, the proposed mappings have been used in a BICM scheme with iterative
demapping and decoding. An interesting application of the new mappings would be to
integrate them in e.g. iterative equalization, iterative multi-user, iterative multi-antenna or
joint source/channel coding and modulation systems. Additional performance gains are
expected with mappings different from Gray. The mapping characteristics can be easily
adapted to the system requirements with irregular (hybrid) modulation.

• The optimization of mappings and the optimization of the number of non-unique bit labels
for signal shaping was cast to a quadratic assignment problem (QAP). Furthermore, linear
and non-linear programming methods have been used to optimize irregular modulation
and the power allocation, respectively. Further optimization and detection problems in
communications might be solved by casting them to these standard problems.

• For large signal constellations like 64QAM and with iterative demapping and decoding,
the optimal demapping rules are too complex to be implemented in low cost practical
systems. We only considered the optimal demapper and for mapping by superposition
a simple interference canceler. Further work is required to investigate well suited low-
complexity receivers.



A
Optimized Mappings for
Different Signal Constellations

This appendix defines the mappings investigated in this thesis for different signal constellations.
The expurgated Euclidean distance spectrum (EDS) for no a priori information and the EDS
with ideal a priori information are given as reference.

The mappings are defined as follows: the 2M binary indices of length M are enumerated in
ascending order and mapped to the respective signal points given in the tables. With e.g. 8PSK
Gray mapping defined in the table of Fig. A.2, the label (000) is mapped to signal point number
8, (001) is mapped to signal point number 7, (010) is mapped to signal point number 1, a.s.o.

QPSK

1 2

34

Gray 1,2,4,3
Anti-Gray 1,2,3,4

Dex dex,1 dex,2

Λ λ1 λ2

No a priori information
(Expurgated)

Gray 4 0
Anti-Gray 6 0
Ideal a priori information

Gray 4 0
Anti-Gray 2 2

Numeration of signal points Definition of mappings Euclidean distance spectrum (EDS)

Table A.1: QPSK mappings
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8PSK

SP: set partitioning mapping [Ung82]
SSP: semi set-partitioning mapping [CR02]

1

5
6

2

3

4

7

8
Gray 8,7,1,2,5,6,4,3
SP 3,2,1,8,7,6,5,4

SSP 3,6,1,4,7,2,5,8

Numeration of signal points Definition of mappings

Dex dex,1 dex,2 dex,3 dex,4

Λ λ1 λ2 λ3 λ4

No a priori information (Expurgated)
Gray 8 4 0 0
SP 14 2 0 0

SSP 18 0 0 0
Ideal a priori information
Gray 8 0 4 0
SP 4 4 0 4

SSP 0 4 4 4

Euclidean distance spectrum (EDS)

Table A.2: 8PSK mappings
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16QAM

SP: set partitioning mapping [Ung82]
MSP: modified set partitioning mapping [CR01]
Rand: [CR01]
MSEW: maximum squared Euclidean weight [TS02]
M16a, M16r: [SGHB03b] [SGHB03a]
I16: [SB04a]

4321

5 6 7 8

13 14 15 16

1211109

√

∆

Gray, HSPDA 7,3,8,4,11,15,12,16,6,2,5,1,10,14,9,13
SP 11,10,16,13,9,12,14,15,1,4,6,7,3,2,8,5

MSP 11,5,6,12,9,7,8,10,1,15,16,2,3,13,14,4
Rand 5,15,16,7,11,4,3,9,12,6,1,14,2,13,10,8

MSEW 11,2,5,16,13,8,3,10,4,9,14,7,6,15,12,1
M16a 13,6,7,16,3,12,14,5,8,15,9,2,10,1,4,11
M16r 5,12,15,2,7,13,1,11,4,10,6,16,14,3,8,9
I16 15,9,1,7,6,4,12,14,5,3,11,13,16,10,2,8

Numeration of signal points Definition of mappings

D2
ex d2

ex,1 = ∆ d2
ex,2 = 2∆ d2

ex,3 = 4∆ 5∆ 8∆ 9∆ 10∆ 13∆ 18∆

Λ λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

No a priori information (Expurgated)
Gray 24 0 8 0 0 0 0 0 0
SP 56 0 4 0 0 0 0 0 0

MSP 52 0 4 0 0 0 0 0 0
Rand 52 2 0 0 0 0 0 0 0

MSEW 72 0 0 0 0 0 0 0 0
M16a 56 0 4 0 0 0 0 0 0
M16r 56 2 0 0 0 0 0 0 0
I16 52 0 4 0 0 0 0 0 0

Ideal a priori information
Gray 24 0 0 0 0 8 0 0 0
SP 4 8 8 0 8 4 0 0 0

MSP 0 2 8 4 8 0 4 4 2
Rand 0 0 4 12 4 0 6 4 2

MSEW 0 0 0 24 0 0 0 8 0
M16a 0 0 0 16 4 0 4 8 0
M16r 0 0 4 8 8 0 8 4 0
I16 0 0 0 16 8 0 0 8 0

Euclidean distance spectrum (EDS)

Table A.3: 16QAM mappings
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16PSK

3
2

4

5

89

16

7

6

10
11

12

13

14

15

1

Numeration of signal points

Binary Reflected Gray 1,2,4,3,8,7,5,6,16,15,13,14,9,10,12,11
Balanced Gray 1,2,10,3,16,15,11,4,8,7,9,6,13,14,12,5
Turbo AWGN 14,8,9,2,3,12,13,7,6,16,1,10,11,4,5,15

Definition of mappings

Dex dex,1 dex,2 dex,3 dex,4 dex,5 dex,6 dex,7 dex,8

Λ λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

No a priori information (Expurgated)
Binary Reflected Gray 16 8 4 4 0 0 0 0

Balanced Gray 16 11 7 0 0 0 0 0
Turbo AWGN 38 36 42 26 30 14 22 4

Ideal a priori information
Binary Reflected Gray 16 0 8 0 4 0 4 0

Balanced Gray 16 0 5 0 4 0 7 0
Turbo AWGN 0 0 0 2 8 4 2 4

Euclidean distance spectrum (EDS)

Table A.4: 16PSK mappings
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16ASK

1 3 5 7 9 13 15

2 4 6 8 10
11

12 14 16

∆

Numeration of signal points

Gray 1,2,4,3,8,7,5,6,10,11,13,12,9,16,14,15
Turbo AWGN 5,16,10,6,13,8,2,14,11,7,1,12,3,15,9,4

Non-unique Gray 11,8,11,8,12,7,13,7,11,8,14,8,12,1,14,7,10,9,10,9,4,6,4,6,
10,9,10,9,4,2,3,3,11,8,11,8,12,7,13,7,11,8,15,8,12,7,13,7,
10,9,10,9,5,6,5,6,10,9,16,9,5,6,5,6

Non-unique Turbo AWGN 10,6,5,10,6,11,11,6,15,9,8,13,10,6,4,9,16,9,8,4,10,6,5,10,
7,12,11,7,3,9,8,14,1,9,8,3,10,6,5,10,7,12,11,7,2,9,8,14,7,
13,12,8,4,9,9,5,11,7,7,11,8,13,12,8

Definition of mappings

Dex dex,1 = 0 dex,2 = ∆ 2∆ 3∆ 4∆ 5∆ 6∆ 7∆ . . .
Λ λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 . . .

No a priori information (Expurgated)
Gray 0 15 9 4 1.5 1 1 1 . . .

Turbo AWGN 0 35 8 1 0 0 0 0 . . .
Non-unique Gray 488 716 350 124 56 32 16 16 . . .

Non-unique Turbo AWGN 832 139 11 0 0 0 0 0 . . .

Ideal a priori information
Gray 0 15 0 5 0 3 0 2 . . .

Turbo AWGN 0 0 0 0 2 4 4 2 . . .
Non-unique Gray 70 56 8 16 6 6 14 8 . . .

Non-unique Turbo AWGN 0 0 0 43 58 44 26 11 . . .

Euclidean distance spectrum (EDS)

Table A.5: 16ASK mappings
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32QAM

26 27

2120

14 15

28

22

10

16

43

98

3231

23

17

5

11

24

18

12

6

29

1

25

19

13

2

7

30

Numeration of signal points

Gray-like 18,12,24,6,17,11,23,5,21,15,27,9,22,16,32,4,19,13,25,7,29,
1,30,2,20,14,26,8,28,10,31,3

Turbo AWGN 27,2,23,20,12,31,9,11,1,26,14,5,16,6,30,15,18,32,8,17,10,
13,25,4,22,7,29,21,19,28,3,24

Definition of mappings

Dex dex,1 dex,2 dex,3 dex,4 dex,5 dex,6 dex,7 dex,8 . . .
Λ λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 . . .

No a priori information (Expurgated)
Gray-like 60 4 19 0 0 8 0 0 . . .

Turbo AWGN 126 8 4 0 0 0 0 0 . . .

Ideal a priori information
Gray-like 48 0 0 12 0 10 0 0 . . .

Turbo AWGN 0 0 0 0 4 2 16 16 . . .

Euclidean distance spectrum (EDS)

Table A.6: 32QAM mappings
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64QAM

45 46

3837

30

47

39

23

31

2221

5453 55

41

33

17

25

49

42

34

18

26

50

43

35

27

19

51

44

36

28

20

52

48

40

24

32

56

71 2 3 4 8

1413 159 10 11 12 16

6261 6357 58 59 60 64

5 6

29

Numeration of signal points

Gray 1,2,4,3,8,7,5,6,9,10,12,11,16,15,13,14,25,26,28,27,32,31,
29,30,17,18,20,19,24,23,21,22,57,58,60,59,64,63,61,62,49,
50,52,51,56,55,53,54,33,34,36,35,40,39,37,38,41,42,44,43,
48,47,45,46,

Turbo AWGN 31,43,41,5,34,15,30,60,50,4,21,48,22,62,57,27,42,3,13,55,
23,53,58,20,12,47,56,26,61,18,28,40,35,8,24,44,32,36,33,
16,6,45,59,10,49,2,29,63,7,37,52,9,51,1,14,54,46,17,19,39,
11,38,64,25

Definition of mappings

Dex dex,1 dex,2 dex,3 dex,4 dex,5 dex,6 dex,7 dex,8 dex,9 dex,10 . . .
Λ λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 . . .

No a priori information (Expurgated)
Gray 112 0 48 0 0 16 0 0 16 0 . . .

Turbo AWGN 304 24 5.5 2 0.5 0 0 0 0 0 . . .

Ideal a priori information
Gray 112 0 0 0 0 48 0 0 0 0 . . .

Turbo AWGN 0 0 0 0 0 0 0 0 0 9 . . .

Euclidean distance spectrum (EDS)

Table A.7: 64QAM mappings
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Two-Dimensional QPSK

1 2

34
Numeration of signal points

2-D Turbo opt (2,2), (3,4), (3,3), (2,1), (4,3), (1,1), (1,2), (4,4),
(1,3), (4,1), (4,2), (1,4), (3,2), (2,4), (2,3), (3,1)

Definition of mappings

Table A.8: Definition of two-dimensional QPSK mappings: the 2MNs = 16 bit labels of length
MNs = 4 are jointly mapped to the Ns = 2 QPSK symbols in brackets, respectively. The
Euclidean distance spectrum (EDS) given in Table 4.4.

Symbol Mapping Diversity with QPSK

Gray 1st tx:(1, 2, 4, 3), 2nd tx:(1, 2, 4, 3), 3rd tx:(1, 2, 4, 3)
Mixed 1st tx:(1, 2, 4, 3), 2nd tx:(1, 3, 4, 2), 3rd tx:(1, 4, 3, 2)

Table A.9: Definition of QPSK mappings with symbol mapping diversity for three retransmis-
sions: the 2M = 4 bit labels of length M = 2 are mapped to the QPSK symbols with eventually
different mappings for every retransmission or diversity branch. The Euclidean distance spec-
trum (EDS) given in Table 4.5.
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Error Probability Analysis

The union bound for the probability of bit error for convolutional codes of rate kc/Nc is given by

Pb ≤ 1

kc

∞∑

d=df

cdf(d, µ,X ), (B.1)

where df is the free distance of the code and cd is the cumulated Hamming weight of all in-
formation words generating weight d code words as defined in Section 2.4. Values of cd for
various non-systematic feedforward convolutional codes are tabulated in [FOO99]. The tables
in Appendix C give values of cd for systematic recursive convolutional codes used in this work.
f(d, µ,X ) is the pairwise error probability (PEP) that depends on the Hamming distance d, the
labeling map µ and the signal constellation X .

We derive in the following bounds on the pairwise error probability for bit-interleaved coded
modulation (BICM) without and with iterative demapping and decoding based on the ap-
proaches proposed in [BB99] [CTB98]. A new feature is to use the Euclidean distance spectrum
(EDS) as defined in Section 4.1 to determine these bounds.

The pairwise error probability is in general given by the tail probability of an average metric ∆:

f(d, µ,X ) = P (∆ ≤ 0). (B.2)

Consider the two encoded and interleaved bit sequences c and ĉ that differ in d bits. M consecu-
tive bits are grouped to form the subsequences cn and ĉn that are mapped to the symbols xn and
x̂n, n = 1, . . . , Ns, respectively. We assume ideal interleaving and that each subsequence cn

contains at most one bit that differs from the subsequence ĉn. Therefore, the symbol sequences
x and x̂ of length Ns differ in d symbols.

The sequence x is transmitted and y is received. From equation (2.28), the ML metric difference
of the two sequences is

∆(x, x̂) = log p(y|x)− log p(y|x̂). (B.3)
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If ∆(x, x̂) ≤ 0, the receiver would decide for the wrong sequence x̂. For a memoryless channel,
we write

∆(x, x̂) =
Ns∑
n=1

∆(xn, x̂n) =
Ns∑
n=1

(log p(yn|xn)− log p(yn|x̂n)) .

For the fading channel introduced in equation (2.8), the metric difference can be simplified to

∆(x, x̂) =
Ns∑
n=1

(−|yn − hn · xn|2 + |xn − hn · x̂n|2
)
. (B.4)

To ease the calculation of the average pairwise error probability f(d, µ,X ) = P (∆ ≤ 0), we
use the Laplace transform. The aim is to determine an expression for the Laplace transform
Φ∆(s) of the probability density function f∆(∆) of the average metric ∆.

We start by considering the metric ∆(x, x̂) and the Laplace transform Φ∆(x,x̂)(s) of
f∆(∆(x, x̂)) for two specific sequences x and x̂:

Φ∆(x,x̂)(s) = E∆{e−s∆(x,x̂)} =
Ns∏
n=1

E∆{e−s∆(xn,x̂n)} =
Ns∏
n=1

Φ∆(xn,x̂n)(s). (B.5)

For the symbol combination (xn, x̂n), Φ∆(xn,x̂n)(s) is given for the general case of a Rician
fading channel with Rice factor K [BB99] and Es = 1:

Φ∆(xn,x̂n)(s) =
1 + K

(1 + K)− s(N0s− 1)|xn − x̂n|2 · exp
(

Ks(N0s− 1)|xn − x̂n|2
(1 + K)− s(N0s− 1)|xn − x̂n|2

)
.

(B.6)
We set K →∞ for an AWGN channel to obtain

Φ∆(xn,x̂n)(s) = exp
(
s(N0s− 1)|xn − x̂n|2

)
, (B.7)

and K = 0 for a fully interleaved fading channel to obtain:

Φ∆(xn,x̂n)(s) =
1

1− s(N0s− 1)|xn − x̂n|2 . (B.8)

Then, we use the Euclidean distance spectrum (EDS) defined in Section 4.1 to obtain the
Laplace transform Φ∆(s) of the average metric ∆. Instead of averaging over all possible se-
quences x and x̂, we use the information from the EDS on the number λv of relevant distinct
Euclidean distances dex,v = |xn− x̂n|. With Φ∆(dex,v)(s) from equation (B.6) and using equation
(B.5) with sequences that differ in d symbols, we have

Φ∆(s) =

(
1∑V

v=1 λv

V∑
v=1

λv · Φ∆(dex,v)(s)

)d

. (B.9)

According to the selected Euclidean distance spectrum, the case of no a priori information and
ideal a priori information at the demapper is considered.

Using equations (B.6) and (B.9), we obtain the exact pairwise error probability through numer-
ical integration or an estimate of the pairwise error probability using the Chernoff bound as
described in the following.
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Numerical Integration

Recall that the Laplace transform Φ∆(s) derived in equation (B.9) of the pdf f∆(∆) of ∆ is

Φ∆(s) = E(e−s∆) =

∫ ∞

−∞
e−s∆f∆(∆)d∆. (B.10)

The inverse Laplace transform is

f∆(∆) =
1

2πj

∫ α+j∞

α−j∞
e−s∆Φ∆(s)d∆. (B.11)

Using the inverse Laplace formula and
∫ 0

−∞ e−s∆d∆ = 1/s, the exact value of P (∆ ≤ 0) is
calculated as follows:

P (∆ ≤ 0) =

∫ 0

−∞
f∆(∆)d∆ =

1

2πj

∫ α+j∞

α−j∞
Φ∆(s)

ds

s
. (B.12)

To evaluate this integral, we use the Gauss-Chebyshev quadrature [BB99]:

P (∆ ≤ 0) =
1

2ν

ν∑

l=1

Re(Φ∆(s)) + τl · Im(Φ∆(s)) + ε , (B.13)

where s = c + jcτl and τl = tan((2l − 1)π/ν). The error term ε vanishes as ν →∞. Note that
c affects only the value of ν which is necessary to achieve a prescribed accuracy. A reasonable
choice in this respect is the Chernoff bound parameter: c = 1/(2N0).

Chernoff bound

The Chernoff bound provides a simple, although frequently loose upper bound on the tail prob-
ability in the interval (δ,∞) of a pdf p(y). To derive this bound, we define the function f(y)
[Gal68][Pro01]:

f(y) =

{
1 y ≥ δ,
0 y < δ.

and Ey{f(y)} = P (y ≥ δ). (B.14)

This function is overbounded by

f(y) ≤ eλ(y−δ) and Ey{f(y)} = P (y ≥ δ) ≤ Ey{eλ(y−δ)}, (B.15)

where λ ≥ 0 is the parameter to be optimized. We set ∆ = −y + δ. With equation (B.9)
and the definition of the Laplace transform, we obtain the Chernoff bound on the pairwise error
probability:

P (∆ ≤ 0) ≤ min
λ≥0

E∆{e−λ∆} = min
λ≥0

Φ∆(λ). (B.16)

The optimum λ is 1/(2N0) [BB99].
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Optimum Systematic Recursive
Convolutional Codes

The generators are given in octal notation as described in Section 2.4. As example, 15 ≡
(1101) ≡ 1 + D + D3; Mc is the code memory, df is the free distance, ad is the number of
error paths in the trellis of Hamming weight d and cd is the cumulated Hamming weight of all
information words that are encoded to weight d code words. The tables extend the results of
[FOO99] to systematic recursive encoders.

Mc Generators df ad, cd with d = df , df + 1, . . . ,
2 5,7 5 (1,2,4,8,16,32,64,128,256,512)

(1,4,12,32,80,192,448,1024,2304,5120)
3 15,17 6 (1,3,5,11,25,55,121,267,589,1299)

(2,7,18,49,130,333,836,2069,5060,12255)
4 23,35 7 (2,3,4,16,37,68,176,432,925,2156)

(4,12,20,72,225,500,1324,3680,8967,22270)

Table C.1: Rate R = 1/2 optimum distance spectrum, feedforward non-systematic encoders.

Mc Generators df ad, cd with d = df , df + 1, . . . ,
2 1,7/5 5 (1,2,4,8,16,32,64,128,256,512)

(2,6,14,32,72,160,352,768,1664,3584)
3 1,15/17 6 (1,3,5,11,25,55,121,267,589,1299)

(2,12,20,48,126,302,724,1732,4112,9714)
4 1,23/35 7 (2,3,4,16,37,68,176,432,925,2156)

(6,12,20,76,194,410,1132,2944,6854,17124)

Table C.2: Rate R = 1/2 optimum distance spectrum, recursive systematic encoders.
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Mc Generators df ad, cd with d = df , df + 1, . . . ,
2 1,5/7, 5/7 8 (2,0,5,0,13,0,34,0,89,0) (5,0,15,0,46,0,139,0,413,0)
3 1,15/17,13/17 10 (3,0,2,0,15,0,24,0,87,0) (10,0,8,0,70,0,128,0,523,0)
4 1,33/25, 37/25 12 (5,0,3,0,13,0,62,0,108,0) (20,0,14,0,72,0,368,0,711,0)

Table C.3: Rate R = 1/3 optimum distance spectrum, recursive systematic encoders.

Mc Generators df ad, cd with d = df , df + 1, . . . ,
2 1,7/5,7/5,5/5 10 (1,0,2,0,4,0,8,0,16,0) (2,0,6,0,14,0,32,0,72,0)
3 1,15/13,15/13,17/13 13 (2,1,0,3,1,4,8,4,15,16) (6,4,0,10,3,16,36)
4 1,27/25,33/25,37/25 16 (4,0,2,0,4,0,15,0,30,0) (16,0,8,0,22,0,74,0)

Table C.4: Rate R = 1/4 optimum distance spectrum, recursive systematic encoders.
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Abbreviations and Notation

List of Abbreviations

AMC adaptive modulation and coding
APP a posteriori probability
ARQ automatic repeat request
ASK amplitude shift keying
AWGN additive white Gaussian noise
BCJR MAP algorithm by Bahl, Cocke, Jelinek, Raviv [BCJR74]
BEC binary erasure channel
BER bit error rate
BICM bit-interleaved coded modulation
BICM-ID bit-interleaved coded modulation with iterative demapping and decoding
BPSK binary phase shift keying
BSA binary switching algorithm
BSC binary symmetric channel
CDMA code division multiple access
EDGE enhanced data rates for GSM evolution
EDS Euclidean distance spectrum
FEC forward error correction
GSM global system for mobile communications
HSDPA high speed downlink packet access
i.i.d. independent and identically distributed
LLR log likelihood ratio
MAP maximum a posteriori probability
MI mutual information
MIMO multiple-input/multiple output
ML maximum likelihood
MLC multilevel coding
MSD multistage decoding of MLC
OFDM orthogonal frequency division multiplex



147

PAPR peak-to-average power ratio
PCCC parallel concatenated convolutional code
pdf probability density function
PDL parallel decoding of MLC
PSK phase shift keying
QAM quadrature amplitude modulation
QAP quadratic assignment problem
RCPC rate compatible punctured codes
SCCC serial concatenated convolutional code
SISO soft-in/soft-out
SNR signal-to-noise ratio
SOVA soft-output Viterbi algorithm
TCM trellis coded modulation
UMTS universal mobile telecommunication system
WiMAX worldwide interoperability for microwave access
WLAN wireless local area network

Mathematical Notation

(.)∗ conjugate of the argument
(.)−1 inverse of the argument
(.)T transpose of a vector or matrix
|.| absolute value or cardinality of the argument
(.) expectation of a random variable
0K K ×K matrix containing all zeros
arg operator that delivers the argument
C field of the complex numbers
E{.} expectation of a random variable
erfc(.) complementary error function
h(x) differential entropy of the random variable X
H(X) entropy of the random variable X
I(X; Y ) mutual information between the random variables X and Y
Im(.) imaginary part of argument
IK K ×K identity matrix
log(.) natural logarithm (to base e)
log2(.) binary logarithm (to base 2)
log10(.) decimal logarithm (to base 10)
max(.) maximum of arguments
min(.) minimum of arguments
NR(µ, σ2) real Gaussian pdf with mean µ and variance σ2

NC(µ, σ2) circularly symmetric complex Gaussian pdf where the real and imaginary part
are independent Gaussians of mean µ and variance σ2/2

p(x) probability density function of the random variable X , same as pX(x)
P (x) probability mass function of the random variable X , same as PX(x)
R field of the real numbers
Re(.) real part of argument
tanh(.) hyperbolic tangent
Var(.) variance of random variable
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List of Symbols

αp ratio for irregular modulation and irregular codes
ad Hamming weight distribution of a convolutional code
Bcoh coherence bandwidth
cd cumulated information weight distribution of a convolutional code
cn,m coded bits
c code bit sequence with elements cn,m

C channel capacity in bits per channel use
df free distance of a convolutional code
dex

v vth distinct Euclidean distance between signal points, for EDS
Dex set of distinct Euclidean distances, for EDS
D set of Euclidean distances between signal points that belong to different

decision regions, for EDS
ε erasure probability in a BEC channel
Es average symbol energy
Eb average energy per information bit
fc carrier frequency
fd,max maximum doppler shift
fdem(.) demapper EXIT function
fdec(.) decoder EXIT function
fdet(.) detector EXIT function
γp ratio for irregular modulation
gT (.) pulse shaping filter
gR(.) receiver matched filter
G binary generator matrix
G(D) generator matrix
hn fading coefficient
H binary parity check matrix
I average mutual information
IL average mutual information if L bits are a priori known
Idem average mutual information after the demapper
Idec average mutual information after the decoder
Idet average mutual information after the detector
λv frequency of the vth distinct Euclidean distance, for EDS
Λ set of frequencies of distinct Euclidean distances, for EDS
Λ(.) metric for MAP decoding
L number of a priori known bits of a symbol label
L(.) log-likelihood ratio (LLR) of binary random variable
La(.) a priori LLR
Le(.) extrinsic LLR
Lc(.) channel LLR
L(̂.) a posteriori LLR
Ldem(.) extrinsic LLR after demapper
Ldec(.) extrinsic LLR after decoder
Ldet(.) extrinsic LLR after detector
µ bit-to-symbol mapping
M bit label length
Mc memory of convolutional code
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nn noise sample
N0/2 power spectral density of white noise process per real dimension
N code word length
Nc number of outputs of the encoding circuit of a convolutional code
Nd number of dimensions in a multidimensional mapping
Ns symbol word length
Nt number of retransmissions in an ARQ scheme
Π interleaver
p error probability in a BSC channel
pc puncturing period
P puncturing matrix
Pk power of layer k
R code rate
Rt data transmission rate (R ·M )
Rout code rate of outer code in a serial concatenated system
Rin code rate of inner code in a serial concatenated system
σ2

n noise variance (real or complex)
σ2

L variance of LLRs
σ2

dec variance of the soft bits after the decoder
σ2

det variance of the LLRs after the detector
θk phase of layer k
T symbol duration
Tcoh coherence time
µL mean of LLRs
ui information bits
u information bit sequence with elements ui

xn transmitted complex symbols
x sequence of transmitted symbols with elements xn

X channel input alphabet, signal constellation
yn received symbols
y sequence of received symbols with elements yn

Y channel output alphabet
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