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Chapter 1

Introduction

Integrated circuits (ICs) are part of our daily live as they are the hearts of MP3 players, cell
phones, personal digital assistants (PDAs), laptops, and even cars have a high number of
integrated circuits. Also the industry mainly depends on integrated circuits in different appli-
cations, ranging from simulations of complex processes on main-frame computers to ef�cient
control of production lines.

The history of integrated circuits started around 1960, when analog components were
integrated on a piece of silicon for the �rst time. In 1971, Intel presented the 4004, the �rst
microprocessor of the world with about 2300 transistors. Atthe time this thesis was written,
integrated circuits can have billions of transistors. Hence, integrated circuits are today mostly
called VLSI circuits, with VLSI standing for very large scale integration. This enormous
complexity of integrated circuits can only be handled if thecircuits are designed not by hand,
but by algorithms, executed on computers. The usage of such computer algorithms in order
to design integrated circuits is called electronic design automation (EDA).

In the year 1965, Gordon Moore [Moo65] detected that the numbers of transistors in
an integrated circuit is doubling every 18 months (approximately). Still today, Moore's law
is valid [SEM], which means that the complexity of integrated circuit is steadily growing.
Therefore, fast and ef�cient algorithms are necessary for the EDA of future circuits.

1.1 Electronic Design Automation

Starting from the idea of a circuit, electronic design automation is done in several steps [SY95,
Lie06], as shown in Figure 1.1. In each step, the descriptionof the circuit is re�ned. After all
steps, the circuit can be fabricated.

The �rst step of EDA is to specify the circuit. Here, the main features like performance,
functionality, and physical dimensions are de�ned. Amongst others, also decisions on the
architecture have be done, e.g., which type of processor, orwhich kind of memory the circuit
should use. After this, the circuit is described as a behavior modeled at system level using a
hardware description language like VHDL or Verilog. The next step is logic synthesis, which
�rst transforms the behavior description of the circuit into a register transfer description. At
register transfer level, the circuit mainly consists of a control unit and a data path. The data

1
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wait until clock'event and clock='1'

variable x,y,u,x1,y1,u1: fixpnt := 0;

wait until start'event and start='1';

architecture BEHAVIOR of DIFFEQ is
begin
process

variable c: bit := false;

x:=x0; y:=y0; u:=u0;
loop

x1:=x+dx;
y1:=y+u * dx;

begin

u1:=u-3 * x* u* dy - 3 * y* dx;
c:=x1 < xe;

x:=x1; y:=y1; u:=u1;
end loop;
y out <= y;

end process;
end BEHAVIOR;

exit when not c

Figure 1.1: Design Flow of Integrated Circuits
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path includes registers and functional blocks like arithmetic logic units. Moreover, the data are
described as bit vectors. Based on the register transfer model of the circuit, the logic synthesis
constructs the gate level description then. At gate level, the circuit consists of gates like
inverters, and-gates, or-gates, �ip-�ops, etc. The gates themselves consists of transistors. The
data are described as single bits. After logic synthesis, the gate level description of the circuit
is simulated, and different speci�cations are veri�ed, e.g., the maximal clock frequency. If the
speci�cations are not met, the logic synthesis is done again. If the circuit is working correctly
at gate-level, layout synthesis is done next. The main stepsof layout synthesis is placement of
the gates, and routing of the nets, which interconnect the gates. However, prior to placement,
�oorplanning is invoked to determine the positions of the I/O pins, the dimensions of big
gates, and the dimensions of the chip. Due to the high numbersof gates, placement itself
is done in two steps: global placement and �nal placement. During global placement, the
gates are roughly spread on the chip. Final placement then removes the remaining overlap,
aligns the gates to a given row/grid structure. There, different design rules are considered,
like minimal distances between the gates. This thesis presents novel approaches for global
and �nal placement. After the gates are placed, the nets, which interconnect the gates, are
routed. After routing, the polygon level of the circuit is reached, i.e., the circuit is described
only by polygons now. At polygon level, the circuit is simulated again, and it is checked if all
given speci�cations are met. If not, the EDA is started from previous steps, and if necessary,
it is even started again with logic synthesis. At the end of EDA, the lithography masks are
created, and the circuit is fabricated using these masks.

1.2 Types of Integrated Circuits

Figure 1.2 displays different types of integrated circuitsused today. Each circuit type re�ect
one design style. The differences between them is mainly thetype of gates, and how they
are implemented on the “die”. “Die” here means the piece of silicon which implements the
circuit.

1. Mask-Programmable Gate-Arrays/Sea-of-Gates
The dies of mask-programmable gate-arrays and the dies of sea-of-gates have prefab-
ricated transistors, aligned in a regular pattern. To implement circuits with such dies,
the gates of the circuit are broken down to transistors �rst.Then, the gates as groups of
transistors are assigned (placed) to the prefabricated transistors of the die. The routing
is done in metal layers, either in channels between the transistors (mask-programmable
gate-arrays), or above the transistors (sea-of-gates).

2. Field-Programmable Gate-Arrays (FPGA)
The die of a FPGA is completely prefabricated, and consists of a regular matrix of pro-
grammable logic blocks and interconnect blocks. Placementof FPGAs means to assign
gates of the circuit to the logic blocks of the FPGA. Routing is done by con�guring the
interconnect blocks.

3. Standard Cell Circuits
The die of a standard cell circuit is not prefabricated. The circuit is implemented with
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(a) Sea-of-Gates (b) FPGA (c) Standard Cell

(d) Macro Cell (e) Mixed-Size

Figure 1.2: Different circuit types

gates all having the same height but different widths. Such gates are called standard
cells. Placement of standard cell circuits means to align the cells to a row structure.
Today, routing of standard cell circuits is done mostly above the standard cells using
various routing layers.

4. Macro Cell Circuits
Similar to standard cell circuits, the dies of macro cell circuits are not prefabricated.
Macro cell circuits consists of a few, but complex macro blocks, e.g., memory blocks,
arithmetic units, or even processor cores. Today, these macros are often so called intel-
lectual property (IP) cores. IP cores are purchased and are available at different descrip-
tion levels: system level (in VHDL or Verilog), at gate-level, or even at polygon level.
Considering placement, there are two types of macros. Soft macros have a �xed area
but are free in the aspect ratio (relation between width and height). Hard macros have
�xed widths and heights. Therefore, placement of circuits with soft macros means not
only determining the position of the macros, but also the aspect ratio.

5. Mixed-Size Circuits
Mixed-size circuits consist of a few macros and a high numberof standard cells. This
circuit type is mostly used today.

Figure 1.3 shows two modern design styles based on state-of-the-art circuits: (a) mixed-
size, and (b) macro cells. Due to the high number of standard cells, these cells are represented
as “black clouds” around the gray macros in Figure 1.3 (a). The macro cell circuit depicted
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in Figure 1.3 (b) represents the widely used System-on-Chip(SoC) design style. There, each
macro can represent one system, e.g., processor core, cacheblock, or network stack.

(a) Mixed-Size (b) Macros (SoC)

Figure 1.3: Two modern design styles.

1.3 Placement

Placement is one important step of the EDA �ow (see Figure 1.1), which highly affects the
quality of a circuit. The input of placement is the circuit described at gate-level. This means
that the circuit consists of gates, and the gates are interconnected by nets. In the rest of the
paper, the gates are called modules. Placement is to determine the positions of the modules,
while considering different objectives and constraints. The fundamental constraints are that
the modules do not overlap, and that all modules are located within the chip area. Here, it
should be noted that today, the chip area is mostly given by �oorplanning. An additional
constraint of placement is for example to align the modules to rows or to a grid structure. The
main objective of placement is to minimize the total wirelength, i.e., to minimize the sum of
the lengths of all nets. This objective is used because with aminimal wirelength, the circuit
is easy to route, the maximal clock frequency is high, and thepower consumption is low. In
summary, placement can be formulated as to solve the following problem.

Placement Problem:

Place all modules such that
all relevant objectives (e.g., total wirelength) are optimal and
all constraints (e.g., no overlap) are met.
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Chapter 2

State of the Art

Although the placement problem proposed in the previous section sounds easy, it is a combi-
natorial problem, which is known to be a NP-complete problem[GJ79, Don80, SB80, Len88,
Len90]. This means, there exists no algorithm up to date, which solves the problem optimal
with polynomial runtime complexity. In the extreme case, all feasible placements have to
be inspected, in order to �nd the optimal placement. With millions of modules (which is the
number of modules in modern VLSI circuits), the number of feasible placements is quite high,
i.e., the runtime is not practicable.

Hence, to get good solutions in polynomial runtime, the placement problem is solved by
heuristics. One traditional method is to use two steps for placement: global and �nal place-
ment. In global placement, the modules are spread roughly onthe chip, with few overlap
remaining. In �nal placement, the overlap is removed, and the modules are aligned to the
grid/row structure. This thesis covers novel solutions forboth placement steps. In the fol-
lowing, the state-of-the-art in global placement is described �rst, including different aspects
as net models and routability optimization. Second, the state-of-the-art in �nal placement is
presented.

2.1 Global Placement

Global placement means to spread the modules roughly on the chip, resulting in a placement
with few overlaps. In the previous decades, different algorithms for global placement were
developed. They differ mainly in the way how the wirelength is minimized, and how the
modules are spread on the chip. Figure 2.1 categorizes different techniques, and lists the
names of different state-of-the-art placers. Some of thesetechniques are able to spread the
modules without any overlap on the chip. However, they are mostly stopped if there is only
little overlap remaining. This overlap is removed in �nal placement then.

2.1.1 Greedy Placement

Placers based on greedy methods have in common to modify a given start placement over a
sequence of iterations, and accept only better placements according to their cost. Here, the

7
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Timberwolf

Algorithm
Simulated
Annealing

Genetic
Capo
Dragon
FengShui

Min-Cut

Partitioning

BonnPlace
hATP

Gordian
PROUD

Quadratic

Force-Directed

RQL
FDP

FAR
mFAR
Fastplace
Kraftwerk

mPL
APlace

NTUPlace
Vaastu

Nonlinear

Global Placement Technique

StochasticGreedy Cluster
Growth

Analytical

Linear

Eigenvalues

Warping

WARP

Figure 2.1: Different placement techniques and names of various placers.

start placement can be random, and the cost is mainly a combination of wirelength and over-
lap. Due to the fact that only better placements are accepted, greedy placers are likely to
get stuck in a local minimum, i.e., they will probably not �ndthe optimal solution. In prin-
ciple, greedy placers modify the placement by permuting modules, either just two modules
[HK72, Shu75, Sch76, Bla85a, Bla85b, CP80, IKB83, KP77, HWA76], or three and more
modules [HWA76, Got79, Got81]. However, only for circuits with just a few modules, all
possible modi�cations can be tested. For bigger circuits, only neighboring modules can be
permuted in practicable runtime. Therefore, heuristics were developed to decide which mod-
ules are best to permute [Qui75, HWA76, Got79, Got81]. The main drawback of greedy
placers is that they only do a local optimization of the placement. Thus, they highly depend
on the start placement.

2.1.2 Cluster-Growth

Placers based on cluster-growth iteratively cluster new modules around already placed mod-
ules. Here, the �rst placed modules can be random. The strategy of cluster-growth placers
can be viewed as bottom-up: starting from some placed modules, more and more modules
are placed, until all modules are placed. The decision, which modules are clustered, is done
based on a cost function representing the wirelength and themodule overlap. Placers using
this method are for example [SU72, HK72, Shu75, Sch76, HWA76, KP77, Got79, Got81,
DK87, LM90, Mül90, YK92, KK92, Lee93, SSL93]. These approaches have good results for
small circuits, but degrade with increasing numbers of modules per circuit. This problem is
due to the local view of the method, and due to the high dependence on the start placement.

2.1.3 Min-Cut Placement

In contrast to the bottom-up strategy of cluster-growth placers, placers based on min-cut
are following a top-down technique. Here, the placement area and the circuit are recur-
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sively partitioned. In doing so, parts of the circuit are assigned to parts of the placement
area. The recursive process is done until each module is assigned to a unique part of the
placement area, which results in a placement with no or just little overlap. The partition-
ing of the circuit is driven by minimizing the wirelength. Inprinciple, this is achieved
by minimizing the number of nets cut () min-cut) by a partition. However, partitioning
a circuit is a NP-hard problem [SH86]. Therefore, differentheuristics were developed for
this task [KL70, SK72, FM82, GB83, Kri84, Saa93, LLLC96, DD96b, DD96a, KAKS97,
AHK97, CLL+ 97, ACH+ 97]. Beside the improvement in partitioning the circuit, the par-
titioning of the placement area was also improved. The �rst min-cut placers divided the
placement area in two parts (bi-partitioning) in each step of the recursive placement process.
[Bre77a, Bre77b, Cor79, Lau79, SH80, BH83, DK83, DK85, LD86, Zim88, SC88]. Later
on, four parts [SK87, SK88, Apt90, HK97], and even eight parts [San89, Vij89, ML90] were
used. Modern min-cut placers are for example Capo [RPA+ 05], Dragon [TYC05], and Feng-
Shui [AOL+ 05].

2.1.4 Stochastic Placement

Stochastic placers combine the wirelength and the module overlap in one cost function, and
minimize this cost function with stochastic methods. Stochastic methods means to create
randomly sets of placements in a sequence of iterations. In the end, the placement with the
lowest cost function is chosen as the result. Stochastic placers can easily extend the cost
function in order to consider different objectives or various constraints. Moreover, stochastic
placers are able to escape from local minima, and are even able to �nd the optimal solution for
the placement problem. However, stochastic optimization in general needs a lot of samples
(placements), and thus, stochastic placers are only practicable for circuits with a low number
of modules. In principle, there are two main methods of stochastic optimization: simulated
annealing and evolutionary algorithms.

Simulated Annealing

Simulated Annealing [KGV83] follows the annealing processin metallurgy: a hot metal is
cooled (over time) such that in the end, it is most perfect (one crystal, no defects). As an
optimization method, Simulated Annealing starts with an arbitrary start con�guration (place-
ment). Over the iterations, new con�gurations are created randomly by so called “moves”. A
move for a placement can be to choose randomly a module, and tochange randomly its loca-
tion. Each new con�guration is given a cost, and a decision ismade if the new con�guration
is accepted, and thus replaces the best-so-far con�guration. This decision is done based on the
cost of both con�gurations, and based on the current temperature. The temperature is high at
the start, and is decreasing over the iterations. As a result, worse con�gurations are accepted
at the start of the optimization process, in order to escape from local minima. At the end, only
better con�gurations are accepted. The method of decreasing the temperature affects highly
the quality of the solution [Whi84, HRSV86, LD88, BKT93].

The authors of [RSV85, vLA87, Sec88, OvG89, AK89] showed that simulated anneal-
ing is able to �nd the global optimum. Moreover, the basic operations of the optimization
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techniques are easy to implement. Hence, this technique wasvery popular for placement in
the past [SSV85, NSS85, SSV86, WL86, Sec88, WLL88, MFNK96, NFMK96]. However,
the number of con�gurations necessary to �nd the optimum increases dramatically with the
complexity, i.e., the number of modules per circuit. Therefore, different heuristics were used
along with simulated annealing to cope with the increasing number of modules per circuit
[MG88, HCC92, SKK+ 93, SS95, SW97]. A typical representative of a stochastic placer is
Timberwolf [SS93]. Today, simulated annealing is rarely used to place circuits with millions
of modules.

Evolutionary Algorithms

Evolutionary algorithms use mechanisms inspired by biological evolution: heredity, mutation,
selection, and survival of the �ttest. In placement, evolutionary algorithms start by creating a
set of random placements. In an iterative process, new placements are created based on current
placements (heredity), and based on random changes (mutation). Then, the new placement
are selected according to their cost. Over the iterations, the better placements survive, and
at the end, a good placement is found. In principle, the basicoperations of evolutionary
algorithms are simple, and the optimization can be run in parallel using numbers of computers.
However, the runtime is still high for modern circuits. Evolutionary algorithms for placement
are presented in [CP86, CP87, KB89, SM90, KB91, RR96, EK97].

2.1.5 Analytical Placement

Analytical placers are based on an analytical cost function, which is continuous and in most
cases differentiable. The minimum of the analytical cost function is determined by numerical
optimization. Mostly, the cost function represents the wirelength, and sometimes it is a com-
bination of wirelength and overlap. Depending on the cost function, analytical placers can be
subdivided in linear, quadratic and non-linear placers.

Linear Placement

Linear placers are using a linear cost function, and remove the module overlap by linear
constraints between the modules. This gives a linear program. However, such programs have
a high computational complexity. Hence, linear placers like [WM87, HWM86, WM88, JK89,
RC06] can only be used for circuits with a low number of modules. The analytical cost
function in linear placement can be non differential (e.g.,using the absolute value function).
In all other analytical placement approaches, the cost function is differentiable.

Quadratic Placement

All quadratic placers represent the wirelength in a quadratic cost function� :

� =
1
2

X

i;j

wx;ij (x i � x j )2 + wy;ij (yi � yj )2 (2.1)
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p i = ( x i ; yi ) is the position of modulei . � is the sum of the weighted quadratic Euclidean
distances between pairs of modules (i andj ). The pairwise connections are called two-pin
connections. To represent the wirelength by two-pin connections in � , a net model is neces-
sary in quadratic placement. Next Section 2.3 gives an overview on net models in general, and
on state-of-the-art net models for quadratic placement. Amongst others, this thesis presents a
novel net model for quadratic placement.

Representing the positions of allN movable modules in vectorp =
(x1; x2; :::; xN ; y1; y2; :::yN )T , the sum notation of the quadratic cost function (2.1) can be
represented in a matrix-vector notation:

� =
1
2

pT Cp + pT d + const (2.2)

Matrix C represents the connections between movable modules, and vector d re�ects the
connections between movable and �xed modules. Fixed modules are for example I/O pins
(input/output pins). By minimizing� , quadratic placers obtain the module positionsp with
minimal netlength, which is the optimal placement. Since minimizing just the netlength re-
sults in a lot of module overlap, quadratic placers need a method to reduce the overlap. De-
pending on this method, quadratic placers can be subdividedinto three categories: based on
eigenvalues, based on partitioning, and based on forces.

Eigenvalue-Based Quadratic Placement

Quadratic placers based on Eigenvalues assume that all modules are movable, i.e.,d = 0 in
(2.2). To reduce the module overlap, and to spread the modules on the placement area, these
placers are using the constraintpT p = const. Combining this constraint with the quadratic
cost function� by Lagrangian relaxation gives a new function, whose minimum is found by
setting its derivative (with respect tox i andyi ) to zero. This results inCp � � p = 0, which
is similar to determining the Eigenvalues and Eigenvectorsof C. Then, the module positions
are given by the Eigenvectors with the lowest Eigenvalues. Eigenvalue quadratic placers are
for example [Hal70, Ott82a, Ott82b, FYSK83, Bla85a, Bla85b, FK86]. Since computing
Eigenvalues and Eigenvectors is complex, quadratic placers based on this technique are rarely
used to place state-of-the-art circuits with millions of modules.

Partitioning-Based Quadratic Placement

In order to reduce the module overlap, partitioning-based quadratic placers divide recursively
the circuit and the placement area, and assign parts of the circuit to parts of the placement area.
In contrast to min-cut placers, which use a similar technique for placement, partitioning-based
quadratic placers minimize a quadratic cost function in each step of the recursive placement
process. In quadratic placement based on partitioning, different techniques are used to par-
tition the placement area, to partition the circuit, and to hold the modules in the placement
region to which they are assigned.

The authors of [WWM82, Wip85] presented a placer, which �rstplaces the modules by
minimizing the quadratic cost function, and then assigns modules to placement regions us-
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ing a technique similar to min-cut. In [CK83, CK84], a methodis described, which recur-
sively partitions the placement area in two regions. In eachiteration of recursion, the posi-
tions of the modules are used to partition the circuit, and toassign the modules to placement
regions. To place the modules in one region, the modules of the other regions are �xed,
and linear constraints (center-of-mass constraints) are used to spread the modules. PROUD
[TKH88a, TKH88c, TKH88b] is similar to this technique, but does not utilize linear con-
straints. To spread the modules in one region, the �xed modules of the other regions are
projected to the border of the current region. With the recursion, the placement regions, and
the number of modules assigned to them are continuously decreasing. By placing only the
modules in one region, and �xing all other modules, the placement problem is solved more
and more locally. This will decrease the quality of the solution. In contrast to this, Gor-
dian [KSJ88, KSJ89, Kle89, KSJA91] places all modules concurrently in all iterations of
the recursive partitioning process. The partitioning is driven by the module positions. To
hold the modules, which are assigned to one placement region, in this region, Gordian uses
center-of-mass constraints. GordianL [SDJ91, Sig92] improves the method for partitioning
the placement area, and introduces weights in the quadraticcost function, which are used for
linearization the quadratic wirelength.

BonnPlace [Vyg97, BS05], and hATP [NRA+ 06] partition the placement area in four re-
gions in each step of recursive placement process. A min-cost-max-�ow is used to partition
the circuit, and to assign modules to placement regions. To hold the modules in their place-
ment regions, BonnPlace and hATP use center-of-mass constraints, and so called “terminals”.
These terminals arise while cutting the nets by partitioning. In other words, the terminals con-
nect two nets of two partitions, which where formerly one netin one partition. The terminals
are located at the border between two partitions, are treated as �xed modules, and results in
that the modules in each placement partition stay within itspartition. In addition, with the
�xed terminals, each placement partition can be placed concurrently using different CPUs.
This improves runtime, but advanced methods for positioning the terminals are necessary in
order to prevent a decline in the placement quality.

In general, partitioning quadratic placers are able to place modern circuits in reasonable
runtime. Since they reduce the module overlap by partitioning, and mostly ignore the module
dimension here, they are problematic if the modules are of different dimension like in mixed-
size circuits.

Force-Directed Quadratic Placement

The two-pin connections used in (2.1) for the quadratic costfunction � can be viewed as
elastic springs. This creates a spring system, and� represents the total energy of the spring
system. The derivative of� is the “net” force, created by the springs:Fnet = Cp + d. Setting
this force to zero gives the module positions with minimal wirelength, which equals the equi-
librium state of the spring system. In other words, the springs, i.e., the two-pin connections,
of quadratic placement create a force, which attracts the modules. Force-directed quadratic
placers utilize an additional forceFadd to spread the modules on the placement area. This
spreading is done in a sequence of placement iterations. Each iteration starts with a given
placement. Then, an additional force is determined. Setting the sum of the net force and the
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additional force to zero results in a system of linear equations. This system can be solved
ef�ciently with respect top. At the end of each placement iteration, the modules are placed
to the positions described byp.

Different approaches exist for the additional forces. In [FCW67], the additional force is
modeled in that all modules are repelling each other. However, this results in a high number of
additional forces. To reduce the computational complexity, other approaches utilize repelling
forces only between unconnected modules. In [Sca71, Qui75,QB79, AJK82, JJA83, Kir84,
For87, Jus87], the repelling force is constant over the distance between the not connected
modules. In [FCW67, QB79, Kir82, Waw88], the repelling force is reciprocal to the distance.
Another modi�cation is to model the overlaps between the modules rather than the modules
themselves as the source for the repelling force. In [Sca71,Shu75, Rob83, SD85, SB87,
AA88, KKM91] overlaps between modules are repelling each other. The overlap between
modules and the border of the placement region is modeled in [FCW67, Shu75, KKM91] as
the source for the repelling force. In [Joh87], the triangulation of the placement area based on
the module positions is used to determine a force, which spreads the modules on the placement
area.

Modern force-directed quadratic placers like Eisenmann'sapproach [EJ98, Eis99, Obe05],
FDP [VKV04, VK05a, VK05b, KV06], FAR [HMS02b], mFAR [HMS05], FastPlace [VC05,
VPC06, VPC07], and RQL [VNA+ 07], have in common to use the distribution of the modules
on the placement area to determine one additional force per module. This force drives the
modules away from high density regions towards low density regions. The above mentioned
modern force-directed placers differ in the way how the additional force is implemented, i.e.,
in the way how the force is determined and modeled. Since thisthesis presents a force-directed
placer, details and differences of modern force-directed placers are described in the following;
Figure 2.2 gives an overview.

Spreading/Perturbing Force
Move Force

approach, FDP�

FastPlace, RQL

FAR

mFAR

Kraftwerk

Controlling Force
Hold Force

Fixed Points

Const. Force

Fixed Points

Const. Force, Potential

Fixed Points, Bin Utilization

Placer

Fixed Points, Bin Utilization

Target Points, Potential

Const. Force, Potential

Eisenmann's

Figure 2.2: Implementation of the additional force in modern force-directed quadratic placers.� FDP
uses two more forces, but they are not necessary to spread themodules on the chip. A dark gray box
means that heuristics are necessary. A light gray box means low controllability.

Eisenmann's approach is based on the idea that modules are positively charged, the place-
ment area is negatively charged. Thus, the modules repel each other, and the modules are
attracted by the placement area. The distribution of the charges on the placement area is used
to determine an electrostatic potential. For each modulei , the gradient of the potential is
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determined, and the gradients are accumulated in the additional force over the placement it-
erations. The additional force in Eisenmann's approach is modeled as constant force, i.e., the
force does not depend onp.

Using a constant force is one way to model a force. Another wayto model a force is to
use �xed points (each located at�pi ), and connect each module to its �xed point by an elastic
spring having the strengthsi . This spring creates the force then.

Fspring
i = si (p i � �p i ) (2.3)

The authors of [HMS02b] showed that using �xed points are a generalization of using a
constant force, and they showed that �xed points control theplacement better than constant
forces do. In principle, the controllability is improved because each module is moved at most
to its �xed point in each placement iteration. Using a constant force, the movement is not
limited.

FDP is similar to Eisenmann's approach in that the gradientsof the potential are accumu-
lated in a constant force to spread the modules on the chip. Inaddition, FDP used two forces
to stabilize the placement algorithm, and to improve the netlength. These two forces are mod-
eled by �xed points in FDP. Similar to Eisenmann's approach,FAR utilizes an electrostatic
potential to determine a force, which spreads the modules onthe chip. This additional force is
modeled as a constant force. Instead of accumulating the spreading force over the iterations,
FAR uses a second additional force for each module to controlthe placement process. This
force is modeled by �xed points and is determined by achieving force equilibrium at the start
of each placement iteration. The main difference between FAR and mFAR is that mFAR uses
a local bin utilization to determine the spreading force, and the spreading force is modeled by
�xed points. Using a local bin utilization, the spreading force has a local view, as the force
of one module depends only on the surrounding modules. In contrast to this, the (spreading)
force in Eisenmanns' approach, FAR, and FDP has a global view, i.e., the force of one module
depends on all modules. This is because the force is based on potential formulation there, and
the potential represents all modules.

Instead of accumulating one additional force over the placement iterations, or using two
additional forces, FastPlace and RQL are using a different method to spread the modules. In
each placement iteration, a local bin utilization is determined similar to mFAR. The addi-
tional force for one modulei is then determined as follows. Modulei is temporary placed to
the position determined by the local bin utilization. This can be viewed as a local diffusion
process. Then, the force is determined, which holds modulei at its temporary position. After
that, modulei is put back to its original position. After determining the additional force for
all modules, the new positions for all modules are obtained by setting the sum of the net force
and the additional force to zero. The additional force is modeled by �xed points. In FastPlace,
the �xed points are located at the border of the placement regions. RQL uses a location be-
tween the border and the module position. In addition, RQL modulates the additional force,
which means that for some modules, the additional force is ignored. With this, the modules
are reordered during placement, which can improve the netlength. On the other hand, the
convergence of the placement algorithm can be harmed.

In summary, �xed points are widely used in modern force-directed quadratic placers. The
locations of the �xed points are all determined in that a force is given. This force is to be
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represented by the spring connection between each module and its �xed point. In this case,
where the force is given, a good heuristic is necessary to obtain suitable locations of the
�xed points. This is a well-known critical problem of using �xed points [HMS02b, HMS05,
VNA+ 07].

Fspring
i

�
�
�
p i = p0

i

= ei , �p i = p0
i �

1
si

ei (2.4)

In (2.4), the forceei of modulei is given, and the module is located atp0
i , i.e., p i = p0

i .
If the strengthsi of the spring is too low, the �xed point�p i is too far away from the module
positionp0

i , and the force is modeled like a constant force, resulting inlow controllability. If
the strengthsi is too high, the �xed point is too near to the module, and the module movement
is highly limited. Thus, all modern force-directed placers, using �xed points, rely on heuristics
for good values ofsi . The force-directed quadratic placer Kraftwerk, as presented in this
thesis, also uses �xed points (called “target points”), butdoes not depend on critical heuristics.
Rather, the locations of the target points are directly given by the gradients of an electrostatic
potential. In other words, not the force is given, but the location of the target points. In
Kraftwerk, two forces are used: a moving force, modeled by target points, and a hold force,
modeled as a constant force. The constant hold force does notreduce controllability of the
placement process, but enforces the convergence.

Nonlinear Placement

Nonlinear placers are based on a nonlinear cost function, which is even not quadratic. Plac-
ers based on nonlinear cost functions have appeared in the recent years, after developing an
ef�cient representation of the wirelength by a log-sum-expfunction [NDS01]. The major
drawback of nonlinear placers is that nonlinear numerical optimization takes high runtimes.
Nonlinear placers differ mainly in the way how the module overlap is removed.

Density-Driven Nonlinear Placement
Density-driven nonlinear placers are using the distribution of the modules on the placement
area (i.e., the module density at various points) to determine a nonlinear function, which
represents the module overlap, and which is continuous and differentiable. This function is
combined with the wirelength function in a total cost function, and the total cost function
is minimized by nonlinear numerical optimization. In this way, the modules are iteratively
spread over the placement area. Examples for density-driven nonlinear placers are APlace
[KW05a, KRW05], mPL [CCS05], and NTUPlace [CJH+ 06].

Nonlinear Placement Based on Pseudo Nets
Nonlinear placers based on pseudo nets are using additional“pseudo” nets (one for each mod-
ule). This is similar to the �xed point approach used in force-directed quadratic placement.
Minimizing the wirelength of the nets and the pseudo nets, the modules are spread iteratively
over the placement area. In each placement iteration, Vaastu [AM07] is using a min-cost-
max-�ow to assign modules to placement regions. Then, the pseudo nets are created between
each module and the center position of the placement region to which the module is assigned.
In other words, and considering force-directed quadratic placement, the �xed points of the
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pseudo nets are determined by a min-cost-max-�ow approach in Vaastu. Other nonlinear
placers using pseudo nets are not known up to now.

2.1.6 Warping Placement

Placers based on warping start with an initial placement, and are using approaches of com-
putational geometry to deform the placement area, and thus moving the modules indirectly.
The deformation of the placement area is driven by minimizing the wirelength and the mod-
ule overlap. Placers based on warping are for example [XMFR04, XR07, CS07]. To obtain
the initial placement, warping placers usually follow quadratic placement and minimize the
quadratic wirelength.

2.2 Multilevel Approach

To place “large” circuits, i.e., circuits with a high numberof modules, some placement ap-
proaches are following a hierarchical approach. Min-cut placers, placers based on cluster-
growth, and some partitioning placers are per se hierarchical, because not all modules of the
circuit are placed simultaneously in all placement iterations.

A general hierarchical approach to cope with “large” circuits is the multilevel approach,
which can be used for all placement techniques. Starting from the “�at” circuit, which consists
of all modules, the modules are clustered over a few levels during the coarsening phase. Then,
the coarsest circuit is placed. In the re�nement phase, the placement of the previous level
is used as input, the clusters are declustered, and the new “re�ned” circuit is placed. The
re�nement is done until the �at circuit is placed. Since onlysome placement iterations are
spent in each level of re�nement, and in particular only someiterations for the �at circuit,
the runtime decreases with the multilevel approach. However, the major drawback of the
multilevel approach, and of all hierarchical approaches ingeneral, is that a good heuristic is
necessary to partition or cluster the circuit. This is because optimal partitioning is an NP-
hard problem [SH86]. In addition, using a hierarchical approach, the placement problem is
solved more locally then using a �at approach, where all modules are placed concurrently in
all placement iterations.

2.3 Net Models

The previous sections described different techniques to solve the placement problem. The
general objective of the placement problem is to minimize the total length of all nets. This
objective is used because a placement with minimal netlength is usually optimal also in other
objectives like area consumption, routability, timing (length of the critical path), etc. This
section describes how to measure the length of one net. There, the net is represented by
graphs, different net metrics are shown, and net models necessary for quadratic placement are
presented.
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2.3.1 Graphs and Metrics

In principle, one arbitrary net consists ofN pins, and each pini = 1; 2; :::; N is located
at (x i ; yi ). The property of a net is that all its pins must have the same electric potential.
Consequently, all pins of one net must be connected by a wire.Using graph theory, the pins
are nodes, and the connections between the nodes are represented by edges (each connecting
two nodes), or by a hyperedge (each connecting two or more nodes).

(a) Hyperedge (b) Clique (c) Minimum Spanning Tree

(d) Star (e) Steiner Tree

Width

H
ei

gh
t

(f) Half perimeter wirelength
(HPWL)

Figure 2.3: Different net models.

Figure 2.3 shows different net models. The hyperedge net model, as displayed in Figure
2.3(a), consists of one hyperedge, connecting all pins of the net. All other net models are
using two-pin connections to represent the net. There, eachtwo-pin connection, i.e., each edge
e = ( i; j ) between two pinsi andj , is associated a cost, and the cost represents the distance
between both pins. Using the Manhattan norm, which is based on just using horizontal and
vertical wires, the distance between both pins isjx i � x j j + jyi � yj j. In the quadratic Euclidean
norm, the distance is(x i � x j )2 + ( yi � yj )2. This quadratic norm is used in the next section
addressing net models for quadratic placement.

The clique net model (see Figure 2.3(b)) uses all possible two-pin connections of one net.
The number of two-pin connections is0:5 � N � (N � 1). The minimum spanning tree model
[Pri57], which is displayed in Figure 2.3(c), is driven by using a minimal set of edges, whose
total cost is minimal. Here, there areN � 1 number of edges. However, the construction of the
minimum spanning tree needs some runtime, and the runtime complexity is more thanO(N )
[Eis97]. The star net model (see Figure 2.3(d)) uses one additional star pin, which is located
in the center of the net, and connects each pin with the star pin. This results inN edges,
and the runtime complexity isO(N ). The Steiner tree net model, as shown in Figure 2.3(e),
uses several additional pins, and is driven by connecting all pins by horizontal or vertical



18 CHAPTER 2. STATE OF THE ART

edges only. In the minimal Steiner tree, the edges are chosensuch that the total cost of all
edges is minimal. Finding such an optimal Steiner tree is known to be a NP-hard problem
[GJ77]. However, there exist numbers of algorithms, which �nd a near-optimal Steiner tree
in practicable runtime [Han66, Hwa79, Ser81, CRS88, HVW90,GRSZ94, Chu04]. Since
routing of a net is similar to constructing the minimal Steiner tree, the routed wirelength,
i.e., the wirelength after routing, is best approximated bylength of the minimal Steiner tree.
However, routing is more complex than just constructing theminimal Steiner tree, as more
things have to taken into account in routing. For example, there is only a limited number
of routing tracks available in a chip, which limits the resources for routing. Or not only the
wirelength is to be minimized in routing, but also the numberof vias.

The half-perimeter wirelength (HPWL), as illustrated in Figure 2.3(f), is rather a metric
for the netlength, than a net model. Here, “half-perimeter”means the half-perimeter of the
smallest rectangle enclosing all pins of the net. The width of this rectangle is given byw =
maxx i � min x i , and the height is given byh = max yi � min yi . Then, the HPWL is
w + h. The HPWL equals the length of the minimal Steiner tree for nets with two or three
pins [Han66]. For nets with four and more pins, the HPWL is a lower bound. Since most
of the nets of a circuit are two and three pin nets, the HPWL is an ef�cient estimation of
the length of the minimal Steiner tree [Chu04], and consequently, it is an ef�cient estimation
of the routed wirelength [Ser81, SKAS88]. Here, ef�cient means that the HPWL offers low
runtime and good approximation.

2.3.2 Net Models for Quadratic Placement

Quadratic placement is based on two-pin connections, and minimizing a quadratic cost func-
tion (2.1), which represents the sum of the quadratic lengths of the two-pin connections.
Since the runtime complexity of determining suitable two-pin connections is practicable in
the clique and the star net model, these net models are used widely in quadratic placement.
Traditionally, the weights of the two-pin connections are used to linearize the quadratic length,
and to approximate the quadratic cost function to the HPWL metric.

Considering one net withN pins, a weight of1=N in the clique net model adapts its
quadratic costs to the cost of the corresponding star net model [Sig92, VC05]. Hence, clique
and star net model can be used interchangeably. The authors of [Vyg97, BS05] use an addi-
tional weight of1=N � 1 for each net, in order to prevent that nets with a high number of pins
are dominating the quadratic cost function. In [SDJ91, Sig92], the additional weight for each
net is2=N, and a linearization weight for each two-pin connection is used, in order to adapt
the quadratic cost to the HPWL.

Since the clique and the star net models have different characteristics, and both can be
used concurrently, there is a trade-off between both net models [EJ98, Eis99, VC05]. The
clique net model has no additional star pin, but a complexityof O(N 2) in the number of two-
pin connections. The star net model introduces one additional star pin per net, but has only
O(N ) two-pin connections. To minimize the quadratic cost function in short runtime, the
number of two-pin connections, and the number of pins shouldbe as low as possible. In an
average circuit, most of the nets have two or three pins, and nets with a high number of pins
are rare. Hence, the clique model is used for small nets, i.e., for nets with a about six or less
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pins, as the number of two-pin connections is reasonable here. For big nets, the star net model
is used, as the number of two-pin connection is low here, and the number of additional star
pins is reasonable. Using clique and star net models concurrently in a circuit gives the hybrid
clique/star net model.

The authors of [BS05] propose a net model suitable for partitioning quadratic placers,
which is based on the star net model, but introduces additional pins (so called “terminals”) for
those nets, which cross the border of two placement partitions. In [OJ04a, Obe05], a method
is described, which integrates the minimal Steiner tree in the quadratic cost function. This is
used to obtain better timing-driven placements. However, determining a minimal Steiner tree
is time consuming.

This thesis presents a new net model, which accurately represents the HPWL in the
quadratic cost function. Compared to a hybrid clique/star net model, the new net model offers
better placements in lower runtime.

2.4 Routability-Driven Placement

In the layout synthesis of an integrated circuit, the modules are placed �rst, and the nets are
routed then. These are two separate steps, mostly done by twodifferent computer programs.
Placement traditionally targets to minimize the total wirelength, which in general improves
routability. However, the placed circuit may not be routable, because there are so called
“congested regions” on the chip, where too many wires are necessary to route the nets than
routing tracks are available. In other words, the routing demand, created by the nets, exceeds
the routing supply, given by the routing layers. Due to such congested regions, the circuit
has a high routed wirelength, or is even not routable. Therefore, besides minimizing the total
wirelength, placement has to be driven by routability, which means to remove the congestions
during placement. To do routability-driven placement, twoproblems have to be solved. First,
a fast and accurate method to estimate the congestions is necessary. This is because the exact
informations about congested regions would be given after routing, but routing itself takes
enormous runtime. Second, the congestion estimation has tointegrated effectively in the
placer. This thesis presents novel solutions for both problems. Therefore, the state-of-the art
in congestion estimation and in the integration in placement is described next.

2.4.1 Congestion Estimation

Assuming a constant routing supply, congestion estimationmeans to estimate the routing
demand. Most published methods to estimate the routing demand are using a grid structure to
divide the chip area into a number of bins, and estimate the routing demand in each bin.

Based on the bounding box of one net, i.e., the smallest rectangle enclosing all pins of one
net, the authors of [lEC94] presented a simple method to estimate the routing demand in one
bin: the routing demand of one net in one bin depends on the overlap between the bounding
box of the net and the bin. Another simple technique to estimate the routing demand in one
bin is to use the pin density within this bin [BR02, ZD02]. A widely applied technique to
estimate the routing demand is to use a routing model, which models possible routes of each
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net. The number of possible routes crossing the border of a bin re�ects the routing demand
in the bin. In most approaches based on routing models, multi-pin nets are broken down into
two-pin connections by using a minimum spanning tree. Then,for each two-pin connection,
different routes with different number of bends are modeled. The authors of [LKS02] use
all possible routes for each two-pin connection. This probabilistic routing model is improved
in [KX03, SZJ06] by adjusting its result to the result obtained by routing. The authors of
[WBG04] state that one- and two-bend routes are enough to model the routing demand. In
[PC06], a fast global router is proposed, which uses different Steiner Trees to model the
possible routes of each net. In [YKS01, YKS02, HMS02a], the maximal routing demand of a
circuit is estimated based on Rent's Rule [LR71]. Another technique to estimate the routing
demand is the analysis of the distribution of the number of nets per bin [WYES00].

2.4.2 Integration in Placement

Estimating the routing demand in an ef�cient way is the �rst step to optimize routability dur-
ing placement. The second step is to integrate the estimation of the routing demand in the
placement algorithm, in order to remove the congestions andto improve routability. Since
the congested regions are characterized that the routing demand of the nets is higher than the
supply by the routing layers, there exist two main approaches to optimize routability. The
direct approach reduces the routing demand in congested regions, and the indirect approach
increases the routing supply in congested regions. The routing supply can be increased, be-
cause modules block some routing layers, and with a lower module density, more free space
is available in the routing layers. The routing demand can bedecreased by replacing modules,
such that the nets connected to the modules are moved out of the congested regions. The direct
approach is often used as a post-process to tune an already placed circuit for routability. A
post-process utilizing Simulated Annealing is described in [lEC94, HMS02a, WS99]. A �ow-
based method is presented in [WYS00, WS00]. Linear programming is used in [LWH03].

The indirect approach to optimize routability is mostly used during placement. In [HYH+ 01,
BR02], a quadratic placer is described, which in�ates modules in congested regions. The
authors of [PBS98] present a quadratic placer, which reduces module density in congested
regions by growing these regions. In [YCS03], a min-cut placer is shown, which allocates
white space, i.e., reduces module density, in congested regions during top-down placement.

In the following, routability optimization in state-of-the-art placers is described. mPL
[LXK + 04, LXK+ 07] is a multilevel analytical placer based on non-linear optimization. mPL
estimates the routing demand based on a two-pin connection routing model developed in
[CCPY02]. Routability is optimized in global placement by moving certain modules out of
congested regions in order to reduce the routing demand there. In �nal placement, a white
space allocation (WSA) method is used, which is based on recursively partitioning the place-
ment area, and shifting the cut lines according to the routing demand. Thus, mPL utilizes
the direct approach during global placement, and the indirect approach after wards in detailed
placement.

ROOSTER [RLM06], as a feature of Capo 10, is a min-cut placer.The placer models
nets by Steiner trees [Chu04], and estimates the routing demand by a probabilistic routing
model [WBG04]. The cut lines are shifted during global placement based on the routing de-
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mand. During �nal placement, the WSA method of [LXK+ 04] is used. Therefore, ROOSTER
applies the indirect approach to optimize routability.

APlace [KW05b] is a multilevel analytical placer based on non-linear optimization. APlace
estimates the routing demand by a probabilistic routing model [KX03]. Routability is opti-
mized during global placement by decreasing module densityin congested areas, i.e., by the
indirect approach.

2.5 Final Placement

The global placement approaches proposed in Section 2.1 spread the modules roughly on the
chip, while considering different objectives like total wirelength and routability. After global
placement, �nal placement is done. Final placement itself consists mostly of two consecutive
steps: legalization and detailed placement. In legalization, the remaining overlap of the global
placement is removed, and the modules are aligned to a row or grid structure if necessary.
In detailed placement, the legal placement is improved suchthat the total wirelength is fur-
ther reduced, or more complex objectives like design for manufacturing (DFM) [GKP05] or
design for yield (DFY) [ABD+ 07] are considered. The common approach in detailed place-
ment is to use small sliding windows in order to capture a low number of modules (about
10 modules), and to do different transformations on this setof modules. For example, single
modules are rotated, pairs of modules are exchanged, or all modules in the set are permuted
[CKM00, CX06, LXK+ 07, PVC05, RPA+ 07]. In [KTZ99, BV00], a detailed placement ap-
proach suitable for standard cell circuits is described. There, the modules in each row are
placed such that their total HPWL netlength is minimized. The ordering of the modules is not
changed here.

Since this thesis describes new approaches for legalization, this section focuses on the
state-of-the-art techniques for legalizing a global placement. To preserve the global placement
as far as possible, the common objective of legalization is to move the modules as little as
possible. While most global placement approaches can deal with different circuit types like
standard cell circuits, macro cell circuits, and mixed sizecircuits, legalization approaches
differ in the circuit type for which they are applicable. This difference in legalization is
because of the different “design rules” for each circuit type. So, the modules of FPGA circuits,
and the modules of sea-of-gates circuit have to aligned to a grid structure. The modules of
standard cell circuits have to be aligned to rows. And the modules of macro cell circuits have
not to be aligned to rows. These design rules are mostly ignored during global placement as
the modules are spread just roughly on the placement area. Because of the difference in the
application of the legalization approaches, the modules ofglobal placement are now called
standard cells, or macros. In the following, state-of-the-art approaches for legalizing standard
cell circuits are proposed. Most of the approaches are also applicable for FPGA circuits, and
for sea-of-gates circuits. In addition, modern methods forlegalizing macros are described. In
Chapter 7, novel approaches for legalizing these two circuit types are presented.
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Figure 2.4: Global and legal placement of standard cells.

2.5.1 Legalization of Standard Cell Circuits

Figure 2.4 displays a global and legal placement of a (very small) standard cell circuit. Various
approaches exists for legalizing standard cell circuits. Domino [DJA94] is based on network
�ow, shreds cells into subcells and rows into places. Here, all subcells and all places have the
same height and width. The subcells are placed, i.e., assigned, to places by solving a min-cost-
max-�ow. The authors of [BV04, BPV04] present a similar method as Domino, but assign
sets of modules to row regions by a min-cost-max-�ow. Fractional Cut [YKM+ 03] is a two
stage approach: �rst the cells are assigned to rows by dynamic programming, then the cells
of each row are packed from left to right. The authors of [KMR04] also present a two stage
approach: �rst the cells are assigned to the rows by heuristical cell juggling, then the cells
of each row are placed by �nding a shortest path in a graph. Mongrel [HL00] uses a greedy
heuristic to move cells from over�owed bins to under capacity bins in a ripple fashion based
on total wire length gain. Diffusion based placement migration is presented in [RPAV05] to
remove cell overlap. In [LRAP07], computational geometry is used to spread the cells, and to
align them to rows. NRG [SW97] uses simulated annealing for legalization.

Tetris [Hil02] is a fast greedy heuristic, which is used widely [LXK + 07, KW05a, KLA+ 04],
for example. In [LK03] a similar approach to Tetris is described. Tetris sorts the cells �rst,
and legalizes one cell at a time then. Legalizing one cell is done by moving the cell over the
rows, and within the rows by moving the cell over free places.This movement is done until
the nearest free place is found. Once a cell has been legalized, it will not be moved anymore.
This results in a high total cell movement during legalization.

2.5.2 Legalization of Macros in Mixed-Size Circuits

In pure macro circuits, which consist only of macros, legalizing can be driven by minimiz-
ing the area consumption, rather than the macro movement. Such legalization of macro cir-
cuits can be done for example with shape-functions [Ott83, SS91], sequence-pairs [MFNK95,
MFNK96], or B*-trees [CCWW00, WC04, cCYc+ 07].

However, mixed-size circuits consist of a few macros, and millions of standard cells. Fig-
ure 2.5 displays a global and a legal placement of such a mixed-size circuit. To respect the
standard cells, the macros of mixed-size circuit have to be legalized such that their total move-
ment in minimized. In Figure 2.5(b), the macros are legalized in this way.

Different approaches exist for legalizing macros in mixed-size circuits. The authors of



2.5. FINAL PLACEMENT 23

(a) Global Placement (b) Legal Placement for Macros

Figure 2.5: Legalization of macros in mixed-size circuits.Gray rectangles represent macros, black
clouds represent the standard cells.

[CCY03, VPC06] are using a low-temperature Simulated Annealing approach in combination
with sequence-pairs. Although Tetris was introduced in theprevious section as a legalization
approach for standard cell circuits, it can also be used for legalizing macros [KLA+ 04, CX06].
A direct approach to minimize the movement of the macros during legalization is to use linear
programming (LP) [Vyg97, CX06, RC06]. Here, the objective is the total movement, and
linear constraints between all (or almost all) pairs of macros assure that the macros do not
overlap. In detail, two macros are not overlapping, if the distance between the center posi-
tions of both macros is large enough, either in x-direction,or in y-direction. Consequently,
one constraint per macro pair in the LP is enough to assure that both macros do not overlap.
However, the direction (x or y) of the constraint in�uences the objective of minimal move-
ment. Different approaches exist to optimize the directionof the constraints. The authors
of [Vyg97] utilize a branch-and-bound optimization approach. In [CX06], the initial direc-
tions of the constraints are determined based on the global placement. Then, a min-cut like
technique is used to change some constraints from x- to y-direction, or vice versa.
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Chapter 3

This Thesis

This thesis presents novel approaches for quadratic placement, both for global placement and
for legalization1. All these approaches are driven by minimizing a quadratic cost function,
which results in low runtime. In global placement, the totalwirelength is minimized, while in
legalization the total movement is minimized. In the following, different enhancements of the
new quadratic placement approaches are summarized.

3.1 “Kraftwerk”: Force-Directed Quadratic Placement

The force-directed quadratic (global) placer “Kraftwerk”, as presented in this thesis, is char-
acterized by the following enhancements over other force-directed quadratic placement ap-
proaches:

� The placement is represented in a general demand-and-supply system. Therefore, dif-
ferent circuit types are supported, e.g., standard cell circuits, macro cell circuits, mixed-
size circuits, and circuits with �xed modules. In addition,the demand-and-supply sys-
tem is used to optimize the routability of a placement.

� The additional force is separated into a hold force and a moveforce. This is new com-
pared to Eisenmann's approach, FDP, FastPlace, and RQL, butsomewhat similar to
FAR and mFAR.

� Both additional forces are implemented in a novel and systematic way. The move force
is modeled by target points, and the locations of the target points are directly determined
by the gradient of the potential of the demand-and-supply system. The hold force is
modeled as a constant force, and decouples each placement iteration from its preceding
iteration.

� Compared to other placement approaches, no heuristics are necessary in Kraftwerk to
determine the locations of the target points. In addition, the target points enforce the
control of the module movement. Since the potential represents all modules, and the

1Some content of this thesis is pre-published in [SJ06, SJ07a, SJ07b, SSJ08a, SSJ08b].
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potential gives the target points of the move force, the moveforce has a global view.
This means that the move force of one module depends on all modules. Furthermore,
the constant hold force does not reduce controllability, but enforces convergence.

� As a result of the systematic force implementation, Kraftwerk converges such that the
demand is adapted further to the supply in each placement iteration. This in principle
means that the module overlap is reduced in each iteration. The consequence of the
convergence is a fast, robust, and stable placement algorithm. In this thesis, the conver-
gence is analyzed in theory and demonstrated by experimental results. In addition, the
stability is shown by experimental results.

� A �at placement approach is followed, which means that the complete circuit is consid-
ered in each placement iteration. Compared to a multilevel approach, no heuristic for
partitioning or clustering the circuit is necessary in the �at placement approach, and the
solution space is not narrowed.

3.2 “Bound2Bound” Net Model

Besides a force-directed quadratic placer, this thesis also presents the new “Bound2Bound”
net model, which can be used universally in all quadratic placers. The advantages of the
Bound2Bound net model are:

� Exact representation of the half-perimeter wire length (HPWL) in the quadratic cost
function. Based on experimental result in routability-driven benchmark suites, the
HPWL is an ef�cient metric for the routed wire length.

� Compared to the clique net model, the number of two-pin connections is lower.

� Compared to the star net model, no additional star pins are introduced.

� Based on experimental results, the Bound2Bound net model offers lower runtime and
better netlength than a hybrid clique/star net model.

3.3 Routability-Driven Placement

An important objective for global placement is to optimize routability. For this, two problems
have to be solved. First, an ef�cient estimation of the congestions based on routing demand
is necessary. Second, an effective integration of the congestion estimation in the placer is
needed. Solutions for both problems are presented in this thesis.

3.3.1 “RUDY”: Routing Demand Estimation

The advantages of the routing demand estimation called “RUDY” is as follows:

� No grid structure is necessary, which means the placement area is not divided into bins.
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� No routing model is used, which means the estimation is independent of the router.

� The estimation is accurate.

� The runtime is low.

3.3.2 Integration in Placement

The enhancements of the presented integration of RUDY in Kraftwerk are:

� Straight-forward integration by extending the demand-and-supply system of Kraftwerk.

� Concurrent reduction of the routing demand and increment ofthe routing supply in
congested regions.

� One parameter models the characteristics of the router.

3.4 “Abacus” and “Puzzle”: Legalization

In addition to novel global placement techniques, including a net model and routability opti-
mization, this thesis also addresses new approaches for legalizing standard cell circuits, and
for legalizing macros in mixed-size circuits. The enhancements over other legalization ap-
proaches are as follows:

� The total quadratic movement is minimized. Other approaches are targeting the linear
movement. Using the quadratic norm, the placement with minimal movement is found
in low runtime.

� The relative order of the macros/standard cells is preserved. This means that considering
two macros/standard cellsa andb, with a left of b in the legal placement, thena was
left of b in the global placement.

� “Abacus” determines the legal placement of standard cells by using ef�cient dynamic
programming.

� “Puzzle” determines the legal placement of macros by quadratic programming. In ad-
dition, Tabu Search approach is used to determine if two macros are made overlap-free
in x-direction, or in y-direction.
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Figure 4.1: Circuit with hyperedges (a) and two-pin connections (b).

Chapter 4

Bound2Bound Net Model

Placement in general is based on the gate-level descriptionof the circuit. This means, the
circuit consists of modules (setM ), the modules have pins (setP), and the pins are connected
by nets (setN ). Each pinp 2 P is located at

�
xpin

p ; ypin
p

�
. Representing each net by one

hyperedge gives the circuit as shown in Figure 4.1(a). In quadratic global placement, the nets
are modeled by two-pin connections. This modeling is done bya net model, and results in
that each netn 2 N is represented by a setEn of two-pin connections, as displayed in Figure
4.1(b). One two-pin connectione = ( p; q) connects pinp andq. The sum of the weighted
quadratic Euclidean lengths of all two-pin connections gives the quadratic cost function� :

� =
1
2

X

n2N

X

e=( p;q)2En

wx;p q(xpin
p � xpin

q )2 + wy;p q(ypin
p � ypin

q )2 (4.1)

=
X

n2N

� n;x + � n;y (4.2)

This cost function� can be separated in x and y-direction and in single nets, i.e., the cost� n;x

is the cost of netn in x-direction. In the following, the focus is on� n;x .
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4.1 Clique/Star Net Model

Traditionally, the clique net model, or the star net model isused in quadratic placement.
The clique net model utilizes all possible two-pin connections of a net. The star net model
introduces an additional star pin per net, and connects eachpin of the net to the star pin. With
P pins in netn, the clique is equivalent to the star in the quadratic cost, if the clique cost is
scaled with1=P [LO73, Sig92, VC05]. Due to this equivalence of both net models, the focus
is on the clique net model in the following. The quadratic cost of the clique net is:

� n;x =
1
2

PX

p=1

PX

q= p+1

wx;pq(xpin
p � xpin

q )2 (4.3)

Different approaches exist for the connection weightwx;pq. GordianL [SDJ91, Sig92] uses the
following technique:

wGordianL
x;pq =

1
P

2
P

4

jxpin
p � xpin

q j
(4.4)

The �rst factor1=P adapts the clique model to the star model. The second factor2=P adjusts
the number of connections of the clique to the number of connections in the corresponding
spanning tree. With the factor1=jxp � xqj, the quadratic distance between both pinsp andq
is linearized.

The (quadratic) clique length (4.3) is just one metric for the netlength. The ideal metric
for the netlength would be the routed wire length, as determined after �nal routing. However,
placement is done iteratively, and in each iteration, the circuit would have to be �nal routed,
which would take enormous CPU time. Experiments for routability-driven placement (see
Section 6) reveal that the half-perimeter wire length (HPWL) is a very ef�cient metric for the
netlength. The HPWL� HPWL

n of the netn is de�ned by the widthwn and heighthn of the
smallest rectangle, which encloses allp = 1; :::; P pins of the net:

wn = max( xpin
p ) � min(xpin

p ) hn = max( ypin
p ) � min(ypin

p ) (4.5)

� HPWL
n = wn + hn (4.6)

Using GordianL's connection weight (4.4), the approximation error between the quadratic
clique length� n;x and � HPWL

n;x is displayed in Figure 4.2. For two-pin nets, GordianL's ap-
proach results in no approximation error. This is due to the factor 4 in the last enumerator in
(4.4). However, with increasing pins per net, the approximation error increases. On average,
the approximation error is about 30%, and is too high to re�ect the HPWL precisely in the
quadratic cost function� .

An unpublished approach of Eisenmann uses the following two-pin connection weight:

wEisenmann
x;pq =

1
P

2
P

10
10 + wn

(4.7)

Figure 4.2 shows that the average approximation error of this approach also depends on the
pins per net, and is increasing with the number of pins per net. In addition, Eisenmann's
approach has a higher approximation error than GordianL's approach.
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Figure 4.2: Approximation error between the quadratic costfunction and HPWL, depending on the
number of pins per net, and using different approaches for the connection weightwx;pq. The statistic
is based on 5.6 million nets of the ISPD 2005 contest benchmark suite.

In summary, there is a high approximation error between the length of the clique net model
and the HPWL, independently of different approaches for theconnection weightswx;pq. The
basic problem of the clique model is that there are connections between inner pins, which
contribute to the clique length but which are ignored in the HPWL metric; the HPWL is just
the distance between the boundary pins. This problem of the clique net model is demonstrated
in Figure 4.3(a). Here, boundary pins are those with the highest or lowest coordinate; all other
pins are inner pins. The star net model suffers from the same basic problem as the clique net
model: there are two-pin connections, which contribute to the length of the star net, but which
are ignored in the HPWL metric.

wn0 Inner pin
x

Inner pins

connections

Boundary pins

(a) Clique

wn0
x

connections to the boundary pins.
No inner two-pin connections, just

(b) Bound2Bound

Figure 4.3: Traditional clique net model and the new Bound2Bound net model.
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4.2 Bound2Bound Net Model

The new Bound2Bound net model is based on the idea to remove all inner two-pin connec-
tions, and to utilize only connections to the boundary pins.An example of a Bound2Bound
net model is displayed in Figure 4.3(b). The new net model canbe derived from the clique
net model. However, its connection weightwB2B

x;pq for one two-pin connection is different:

wB2B
x;pq =

8
<

:

0 if pin p and pinq are inner pins
2

P � 1
1

jxpin
p � xpin

q j
else

(4.8)

With this connection weight, the quadratic cost function (4.3) of the net is exactly the HPWL
in x-direction:

� n;x =
1
2

PX

p=1

PX

q= p+1

wB2B
x;pq(xpin

p � xpin
q )2 (4.9)

=
1
2

2
P � 1

h�
�
�xpin

1 � xpin
2

�
�
� +

PX

q=3

�
�
�xpin

1 � xpin
q

�
�
� +

PX

q=3

�
�
�xpin

2 � xpin
q

�
�
�
i

(4.10)

=
1

P � 1
[wn + ( P � 2) wn ] (4.11)

= wn (4.12)

In (4.10), the linearization1=jxpin
p � xpin

q j is multiplied with the quadratic distance(xpin
p � xpin

q )2,
which gives the linear distancejxpin

p � xpin
q j. Furthermore, all possible two-pin connections are

separated in a connection between the two boundary pins (p = 1; q = 2), in connections
between the “left” boundary pin 1 and inner pins (p = 1; q � 3), and in connections between
the “right” boundary pin 2 and inner pins (p = 2; q � 3). The inner two-pin connections
(p � 3; q > 3) are not considered as they have a connection weight of zero (4.8). Withwn =�
�
�xpin

1 � xpin
2

�
�
� , (4.11) is given. At last, (4.12) expresses that the quadratic cost function is exactly

the HPWL in x-directionwn . Using similar operations for the y-direction, in can be shown
that the Bound2Bound net model represents exactly the HPWL in the cost function� n of each
net. Thus, the approximation error is zero in the Bound2Bound net model (independently of
the number of pins per net), which is shown in Figure 4.2.

4.3 Comparison

With P the number of pins in one net, the clique net model results in0:5� P � (P � 1) two-pin
connections. In the star net model, there areP two-pin connections. The new Bound2Bound
net model gives2 � (P � 2) + 1 two-pin connections. Hence, for a two-pin net, the star net
model has the most two-pin connections, and the clique net model has the same number of
two-pin connections as the Bound2Bound net model. In a three-pin net, all three net models
are equivalent in the number of two-pin connections. For allother nets, the clique net model
has the most two-pin connections — with a complexity ofO(P2). The Bound2Bound net
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model has a linear complexity in the number of two-pin connections, and has more two-pin
connections than the star net model.

In an average circuit, most of the nets have two or three pins,and nets with lots of pins
are rare. Based on such a circuit, the number of two-pin connections is about 75% lower
in the Bound2Bound net model than in the clique net model. Theruntime for minimizing
the quadratic cost function� depends mainly on the numbers of two-pin connections and the
numbers of pins. Considering the characteristics of the clique and the star net model, there is
a trade-off between both net models in an average circuit [Eis99]. For small nets (nets with a
small number of pins), the clique net model is better, as no additional star pins are necessary
here. For big nets, the star net model is better, as the numberof two-pin connections is
lower here. The disadvantage of increasing the number of pins with the additional star pins is
accepted here, because there are just a few big nets in an average circuit. Compared to such a
hybrid usage of the clique model and the star net model, the number of two-pin connections
is about the same as in the Bound2Bound net model. However, noadditional star pins are
introduced in the Bound2Bound net model.

Table 4.1 shows experimental results comparing the Bound2Bound net model with the
hybrid clique/star net model. The results represent legal placements, and are obtained with
placer “Kraftwerk”. Kraftwerk is described in the next chapters. In the hybrid clique/star net
model, GordianL's (4.4) and Eisenmann's (4.7) approach forthe two-pin connection weights
are used. To obtain the best CPU times for the hybrid clique/star net model, all nets with
up to six pins are modeled as cliques; the remaining nets are modeled as stars. The new
Bound2Bound net model offers the best results in HPWL and CPUtime. Eisenmann's ap-
proach increases the HPWL by about 8%, and the CPU time by about 10%. Using GordianL's
approach, the HPWL is increased by about 7%, and the CPU time is increased by about 17%.
The Bound2Bound net model has the best HPWL, because it models accurately the HPWL in
the quadratic cost function. The Bound2Bound net model has the lowest CPU time, because
no additional star pins are used here.

Bound2Bound GordianL Eisenmann
Circuit HPWL CPU HPWL CPU HPWL CPU
adaptec1 82.43 262 87.96 303 87.63 321
adaptec2 92.85 349 99.63 403 98.54 385
adaptec3 227.22 713 239.97 852 239.05 745
adaptec4 199.43 709 212.31 829 213.32 721
bigblue1 97.67 407 104.81 484 107.23 441
bigblue2 154.74 559 165.27 590 165.60 606
bigblue3 343.32 2070 370.00 2367 389.58 2220
bigblue4 852.40 4147 942.06 5491 958.44 4758
Average 1.000 1.00 1.073 1.17 1.084 1.10

Table 4.1: Comparison between the new Bound2Bound net modeland two approaches (GordianL
and Eisenmann) for the connection weights in a clique/star net model. Results are normalized to the
Bound2Bound net model.
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4.4 Approximation Error depending on Module Movement

In quadratic placement, a net model is used at the start of each placement iteration to represent
the netlength in the quadratic cost function� . To linearize the quadratic length, the net model
utilizes the connection weightswx;pq. There,wx;pq depends on the pin positions, and thus on
the module positions. After the connection weights are determined, the quadratic cost function
is minimized by numerical optimization, and the modules aremoved to the minimum. During
minimization, i.e., during the module movement, the connection weights are not changed.
Consequently, there is an inherent approximation error�̂ between the quadratic cost function
� and the HPWL at the end of each placement iteration.� is the approximation error at the
start of the placement iteration, i.e., right at the point where the net model is applied. Based
on the statements in the previous section,� = 0 in the Bound2Bound net model.

Figure 4.4 shows the change in the approximation error� � = j� � �̂ j depending on the
average module movement� , and three approaches: the Bound2Bound net model, and using
the hybrid clique/star net model with GordianL's and Eisenmann's approach for the connec-
tion weights. An exact de�nition of� is given with (5.25) in the next chapter. Figure 4.4
demonstrates that in general,� � increases with the module movement. Moreover, there is no
essential difference in the three approaches. Hence, the Bound2Bound net model, which sepa-
rates the pins in inner pins and in boundary pins based on the pin positions before minimizing
the quadratic cost function, does not run into signi�cant problems after the pin positions are
changed. In addition, Figure 4.4 demonstrates that the lowest � � , and consequently the best
placements, are achieved if the modules are moved as little as possible during each placement
iteration. This is of interest in Section 5.8 addressing thequality control.
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are based on the bigblue1 circuit of the ISPD 2005 contest benchmark suite. Module movement is
normalized to the those movement, which gives a good trade-off between runtime and quality (see
Section 5.8).
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Chapter 5

Kraftwerk: Force-Directed Quadratic
Placement

Before describing the details of Kraftwerk, the basics of quadratic placement are presented
�rst in the chapter.

5.1 Quadratic Placement

Placement in general is based on a gate-level description ofthe circuit, and quadratic place-
ment in particular is based on that each net is represented bytwo-pin connections. Figure 5.1
displays a circuit description applicable for quadratic placement. In other words, in quadratic
placement, the circuit consists of a setM of modules, a setP of pins, and a setE of two-pin
connections. One two-pin connectione = ( p; q) 2 E connects pinp with pin q. The setE of
two-pin connections represent the nets, and is obtained by applying a net model to each net of
the circuit. Compared to Figure 4(b) of previous section describing net models for quadratic

35
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placement, the �gure above displays additional geometric information necessary for place-
ment. So, modulem 2 M is characterized by its widthwm , its heighthm , and its center
position(xm ; ym ). The placement area, i.e., the chip area, is described by itswidth wchip and
its heighthchip. Similar to previous section, pinp 2 P is located at position(xpin

p ; ypin
p ).

In quadratic placement, the length of all nets is represented in the quadratic cost function
� , the sum of the weighted quadratic Euclidean lengths of all two-pin connections:

� =
1
2

X

e=( p;q)2E

wx;pq(xpin
p � xpin

q )2 + wy;pq(ypin
p � ypin

q )2 (5.1)

Placement determines the positions of all modules, such that the netlength is minimal.
In quadratic placement, the quadratic cost function� is minimized. However,� depends in
(5.1) on the pin positions, and not on the module positions. Hence, a transformation from pin
position to module position is necessary. To do this transformation, the function� (p) = m
maps the pinp 2 P to the modulem 2 M , according to the relation between modulem and
pin p:

� : P ! M � (p) = m: pin p 2 P belongs to modulem 2 M (5.2)

The pin offset(xoff
p ; yoff

p ) (see Figure 5.1) describes the difference between the module position
and the pin position:

xoff
p = xpin

p � xm yoff
p = ypin

p � ym (5.3)

Using (5.2) and (5.3), the pin position is described by the pin offset and the corresponding
module position:

xpin
p = x � (p) � xoff

p ypin
p = y� (p) � yoff

p (5.4)

Placement also separates the modules in movable and �xed ones, because only the positions
of the movable modules have to be determined by placement. The positions of theM movable
modules are represented in vectorx for x-direction, and in vectory for y-direction:

x = ( x1; x2; x3; :::; xM )T (5.5)

y = ( y1; y2; y3; :::; yM )T (5.6)

Using (5.2), (5.4), (5.5), and (5.6), the quadratic cost function� represented as a sum in (5.1),
can be transformed in a matrix-vector notation:

� =
1
2

xT Cx x + xT dx +
1
2

yT Cy y + yT dy + const (5.7)

MatricesCx andCy represent the connectivity between movable modules, and vectorsdx
anddy re�ect the connections between movable and �xed modules. Detailed steps to create
the matrices and the vectors are described later on. If thereare no modules �xed, matricesCx

andCy are positive semide�nite [Hal70]. With some modules �xed, the matrices are positive
de�nite [KV06]. In both cases,� is convex, and its minimum is obtained by setting its �rst
derivative to zero. The �rst derivatives in x- and in y-direction are described by the nabla
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operatorsr x andr y :

r x =
�

@
@x1

;
@

@x2
; :::;

@
@xM

� T

(5.8)

r y =
�

@
@y1

;
@

@y2
; :::;

@
@yM

� T

(5.9)

Using these nabla operators, the derivatives of� in x- and y-direction are given:

r x � = Cx x + dx (5.10)

r y � = Cy y + dy (5.11)

Setting these derivatives to zero gives two systems of linear equations:

Cx x + dx = 0 (5.12)

Cy y + dy = 0 (5.13)

Solving these systems with respect tox andy gives the module positionsx andy with min-
imal netlength. (5.12) and (5.13) demonstrate thatx andy are determined separately. More-
over, both directions (x and y) or obtained similarly. Hence, the focus is on the x-direction in
the following. The y-direction is obtained analogously.

5.2 Creation of Matrix Cx and Vector dx

This section describes how matrixCx and vectordx of the quadratic cost function� (5.7)
are created. Using (5.2) and (5.3), the cost function in x-direction� x can be written in sum
notation, depending on the module positionsx i , i = 1; 2; :::; M + F . M is the number of
movable modules, andF the number of �xed modules.

� x =
1
2

X

e=( p;q)2E

wx;pq(x � (p) � xoff
p � x � (q) + xoff

q )2 (5.14)

The cost of one two-pin connection is given by:

� x;pq =
wx;pq

2

�
x � (p) � xoff

p � x � (q) + xoff
q

� 2
(5.15)

With this cost, the sum notation of (5.14) can be rewritten:

� x =
X

e=( p;q)2E

� x;pq (5.16)

The matrix-vector notation of� x is:

� x =
1
2

xT Cx x + xT dx + const: (5.17)



38 CHAPTER 5. KRAFTWERK: FORCE-DIRECTED QUADRATIC PLACEMENT

Vectorx represents the x-position of theM movable modules (5.5). MatrixCx = [ cx;ij ] is a
two-dimensional matrix withM rows andM columns.cx;ij is the entry ofCx in row i and
columnj . Vectordx = [ dx;i ] is a column vector withM entries.dx;i is the entry ofdx in row
i .

The creation ofCx and vectordx is described at best by using the derivative of� x :

r x � x = Cx x + dx (5.18)

A small part of the system of linear equation (5.18) looks like:
0

B
B
B
B
B
B
@

...
@

@xi
...
@

@xj
...

1

C
C
C
C
C
C
A

� x =

0

B
B
B
B
B
B
@

...
...

...
...

...
: : : cx;ii : : : cx;ij : : :
...

...
...

...
...

: : : cx;ji : : : cx;jj : : :
...

...
...

...
...

1

C
C
C
C
C
C
A

0

B
B
B
B
B
B
@

...
x i
...

x j
...

1

C
C
C
C
C
C
A

+

0

B
B
B
B
B
B
@

...
dx;i

...
dx;j

...

1

C
C
C
C
C
C
A

(5.19)

The i-th row in this system of linear equations (5.19) represents the derivative of� x with
respect tox i . In the sum notation (5.16), this derivative is:

@
@xi

� x =
X

e=( p;q)2E

@
@xi

� x;pq (5.20)

Depending oni , p, andq, the derivative of the cost of� x;pq of one two-pin connectione =
(p; q) is:

@
@xi

� x;pq =

8
><

>:

wx;pq(x i � xoff
p � x � (q) + xoff

q ) if i = � (p)

� wx;pq(x � (q) � xoff
p � x i + xoff

q ) if i = � (q)

0 else

(5.21)

Using all of this, the contribution of one two-pin connection e = ( p; q) to the matrixCx and
vectordx is as follows (with the substitutioni = � (p) andj = � (q)):

1. i; j � M , which means that both modulesi andj are movable.
The diagonal entriescx;ii andcx;jj of the matrix are increased bywx;pq, and the off-
diagonal entriescx;ij andcx;ji are decreased bywx;pq. The entrydx;i of vectordx is
increased bywx;pq(� xoff

p + xoff
q ), and the entrydx;j is decreased bywx;pq(� xoff

p + xoff
q ).

2. i � M ^ j > M , which means that modulei is movable andj is �xed.
The entrycx;ii of the matrixCx is increased bywx;pq. In the vectordx , the entrydx;i is
increased bywx;pq(� xoff

p � x � (q) + xoff
q ).

3. i > M ^ j � M , which means that modulei is �xed andj is movable.
The entrycx;jj of the matrixCx is increased bywx;pq. In the vectordx , the entrydx;j is
decreased bywx;pq(x � (p) � xoff

p + xoff
q ).

4. i > M ^ j > M , which means that both modulesi andj are �xed.
Matrix Cx and vectordx do not change.
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To create matrixCx and vectordx , both are initialized with zeros �rst. Then, the contri-
bution of each two-pin connectione 2 E, as described above, is considered inCx anddx .
This gives the matrixCx and the vectordx .

Based on the creation of the matrixCx , different properties ofCx can be deduced:

1. The matrixCx is symmetric.

2. The diagonal entries of matrixCx are all non-zeros, and are all positive.

3. The off-diagonal entries of matrixCx are mostly zeros, and if not, they are negative.

4. The matrix is weak diagonal dominant, i.e., for alli = 1; :::; N :
NP

j =1 ^ j 6= i
jcx;ij j � j cx;ii j.

5. Using the Bound2Bound net model, the number of non-zeros depends about linearly
on the number of movable modulesN . Hence, the matrixCx is highly sparse. This
property was analyzed using different circuits of various benchmark suites.

Because of these properties, the system of linear equation (5.12) can be solved very ef�-
ciently by numerical approaches, e.g., with the conjugate-gradient approach [You03]. Thus,
the module positions are determined in low runtime, which isa main advantage of quadratic
placement, compared to other placement approaches like non-linear placement or min-cut
placement. Details of solving a system of linear equations are presented in Section 5.12.2.

5.3 Force-directed Quadratic Placement

In quadratic placement, the cost� x;pq (5.15) of one two-pin connectione = ( p; q) can be
interpreted as the energy of an elastic spring, which is spanned between both pinsp andq. In
other words, each two-pin connection corresponds to one spring. All two-pin connections of
one circuit create a spring system, whose total energy is thequadratic cost function� x (5.16).
Since the derivative of the energy with respect to x (or y) is the force in x (or y) direction, the
derivative of� x is called the “net” force:

Fnet
x = r x � x = Cx x + dx (5.22)

The name “net” force is because this force is created by the two-pin connections, and the
two-pin connections represent the nets. The net force is setto zero in (5.12) and (5.23), to
obtain the equilibrium state of the spring system, i.e., thestate with minimal energy. This
corresponds to the placement with minimal netlength.

Fnet
x = 0 (5.23)

With just the net force acting on the modules, the modules arestrongly attracted, which
results in a lot of module overlap. Mostly, the modules are concentrated in the center of the
chip. This is displayed in Figure 5.2 (a). Force-directed quadratic placers utilize an additional
force to spread the modules on the chip, and this is done in a sequence of placement iterations.
Two placement iterations are shown in Figure 5.2 (b) and (c).
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(a) Initial placement with minimal
netlength

(b) After iteration 5 (c) After iteration 10

Figure 5.2: Placement with minimal netlength (a), and placements at certain placement iterations (b)
and (c). In each placement iteration, forces are applied to move the modules and to reduce the overlap.

Previous sections described quadratic placement in general. The following sections presents
the novel force-directed quadratic placement approach called “Kraftwerk”. Kraftwerk is based
on separating the additional force into two fundamental forces, and both forces are imple-
mented in a systematic way. The result of Kraftwerk's systematic force implementation is
an advanced convergence for various circuits, even for hardinstances of macro cell circuits,
where the placement area provides only few free space. In other words, Kraftwerk can place
many different, and sometimes challenging circuits. Thus,it is a robust placer. Later on, the
convergence will be analyzed in theory and based on experimental results. Since Kraftwerk
needs only a few placement iterations to spread the modules on the placement area, Kraftwerk
is a fast placer.

5.4 Geometry

Before going into details on Kraftwerk's force implementation, some geometric properties are
described now. They are of interest, because they are used frequently in the remaining thesis.
The geometric properties of onei module is shown in Table 5.1.

(x0
i ; y0

i ) Position at the start of a placement iteration
(x i ; yi ) Position at the end of a placement iteration
(� x i ; � yi ) Change of the position� x i = x i � x0

i � yi = yi � y0
i

wi ; hi Width, height
Amod,i = wi � hi Area
dmod,i Individual density, used in the module demand

Table 5.1: Properties of one modulei . Position means the center position of the module.
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The total module areaAmod,tot is the sum of the areas of allM movable andF �xed modules.

Amod,tot =
M + FX

i =1

Amod,i (5.24)

The average module movement� is:

� =
1

M

MX

i =1

�
�(� x i ; � yi )T

�
� (5.25)

Here,j � j means the Euclidean norm.
Table 5.2 summarizes the geometric properties of the chip. Here, it should be noted that

the term “chip” and “placement area” are used interchangeably in this thesis.

(xchip; ychip) Position of the lower left corner
wchip; hchip Width, height
Achip = wchip � hchip Area

Table 5.2: Properties of the chip.

In the tables above, it is assumed implicitly that the modules and the chip are rectangular.
This is done for simplicity. However, in Kraftwerk, the modules and the chip can have any
shape, even circles are possible. Assuming rectangular structure, a rectangle functionR is
suitable to represent the modules and the chip in the two-dimensional space x-y.R is one for
all points(x; y) within a rectangle, and zero outside. The rectangle is de�ned by its lower left
corner(x ll ; yll ), its widthw, and its heighth.

R(x; y; x ll ; yll ; w; h) =

(
1 if 0 � x � x ll � w ^ 0 � y � yll � h

0 else
(5.26)

The rectangle functionR can be used to compute different geometrical properties. So, a
module distributionV(x; y) is de�ned by:

V(x; y) =
M + FX

i =1

R
�
x; y; x0

i � wi
2 ; y0

i � h i
2 ; wi ; hi

�
(5.27)

V re�ects at point(x; y) the number of module rectangles covering this point. Hence,V(x; y)
is the “local module density” at point(x; y). In contrast to this, the term “module density”
means the ratio between the total module areaAmod,totand the placement areaAchip. The term
“module overlap”
 represents the areaA [ of the union of all modules, normalized to the
total areaAmod,totof all modules:


 = 1 �
A [

Amod,tot
(5.28)
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A [ is determined similar to Klee's measure problem in two dimensions [Kle77]. Based on
V(x; y), the areaA [ of the unions of all modules is calculated by:

A [ =

1Z

�1

1Z

�1

! (x; y) dx dy with ! (x; y) =

(
1 if V (x; y) � 1

0 else
(5.29)

If there is no overlap between the modules, thenA [ = Amod,tot, and
 = 0 . If the circuit
consists of a high number of modules, all of which are small indimension and are concentrated
somewhere on the chip, thenA [ � Amod,tot, and
 � 1.

5.5 One Placement Iteration

Based on one placement iteration, the systematic force implementation of Kraftwerk is de-
scribed in the following. First, a formal description is given, and then an illustration of the
forces is presented. The module positions in each placementiteration are denoted as follows:
the vectorx0 represents the starting positions, the vectorx represents the new positions, and
the vector�x is the change of position:

�x = x � x0 (5.30)

5.5.1 Move Force

The move force moves the modules in the current placement iteration, in order to reduce the
module overlap, and to spread the modules over the chip. To determine the move force, the
placement is represented in generic demand-and-supply systemD. In principle, the modules
create the demandD dem, and the placement area creates the supplyD sup.

D(x; y) = D dem(x; y) � D sup(x; y) (5.31)

The demand-and-supply system has to be balanced, i.e., the integral over the demand has to
equal the integral over the supply. This is necessary to adapt the demand completely to the
supply.

1Z

�1

1Z

�1

D dem(x; y) dx dy =

1Z

�1

1Z

�1

D sup(x; y) dx dy (5.32)

Using the rectangle functionR (5.26), the demand of one modulei is:

D dem
mod,i(x; y) = dmod,i � R

�
x; y; x0

i � wi
2 ; y0

i � h i
2 ; wi ; hi

�
(5.33)

The module demandD dem
mod for all M movable andF �xed modules is the sum of all single

module demandsD dem
mod,i:

D dem
mod (x; y) =

M + FX

i =1

D dem
mod,i(x; y) (5.34)
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For simplicity, the individual module densitydmod,i is set to one here. Hence, there is no dif-
ference between the module demandD dem

mod (x; y) and the module distributionV(x; y) (5.27).
Section 5.10 presents an advanced approach for scalingdmod,i, in order to remove unwanted
halos around large each modules. Here, “halo” means free space (see Figure 5.7). In the
module demand (5.34), there is no fundamental difference between small or large modules,
or between �xed or movable modules. Thus, it can be used to place various circuit types like
standard-cell circuits with millions of small modules, mixed-size circuits with small and big
modules, and circuits with �xed modules.

Besides a module demand, a module supplyD sup
mod is necessary for the demand-and-supply

system. In the simplest case, the whole placement area provides supply for the modules:

D sup
mod(x; y) = dsup � R(x; y; xchip; ychip; wchip; hchip) (5.35)

The module supply densitydsup is determined by (5.34) and (5.32):

dsup =

M + FP

i =1
dmod,i Amod,i

Achip
(5.36)

Using (5.35), the modules are spread over the whole placement area. Section 5.11 presents
an advanced approach for the module supply, in order to spread the modules according to a
user-given module density. With this, the modules are not spread over the whole placement
area, but can be placed tightly, which reduces the netlength.

The module demand-and-supply systemDmod is the module demandD dem
mod minus the mod-

ule supplyD sup
mod:

Dmod(x; y) = D dem
mod (x; y) � D sup

mod(x; y) = D(x; y) (5.37)

To place the modules overlap-free on the chip, the module demand-and-supply system is used
for D. However, the generic demand-and-supply systemD can be extended by additional
demand-and-supply systems. For example, it can be extendedby the routing demand-and-
supply system, in order to optimize routability during placement. This is described in Section
6.4.D can also be used to optimize the temperature pro�le of a chip [OJ04b, Obe05].

The generic demand-and-supply systemD (5.31), and thus the module demand-and-
supply systemDmod (5.37), is interpreted as a charge distribution, and the charge distribution
creates an electrostatic potential� by Poisson's equation:

�
@2

@x2
+

@2

@y2

�
�( x; y) = � D(x; y) (5.38)

Section 5.12.1 gives details on computing the potential� . The usage of a potential is similar to
Eisenmann's placement approach [EJ98, Eis99, Obe05]. However, there, a “constant” force is
used, and the force is accumulated over the placement iterations. In contrast to this, Kraftwerk,
as presented in this thesis, models the move force with target points and spring connections.
Consequently, the move force depends onx, and is not a constant force. In addition, a hold
force is used in Kraftwerk, in order to decouple each placement iteration from the previous
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one. Consequently, no force accumulation is necessary. As aresult of this new force modeling,
the placement algorithm has an advanced convergence. Section 5.9 analyzes the convergence
of Kraftwerk in theory and based on experimental results.

Back to the move force. For modulei , this forceF move
x;i is created by a spring connection

between the module and its target point�x i .

F move
x;i = �wi (x i � �x i ) (5.39)

The target point�x i is determined by the starting module positionx0
i and the negative gradient

of the potential� .

�x i = x0
i �

@
@x

�( x; y)
�
�
�
(x0

i ;y
0
i )

(5.40)

Based on the move force, which depends via the target point onthe potential� (5.39) and
(5.40), and the potential represents the demand-and-supply systemD (5.38), Kraftwerk is
driven by adapting the demand-and-supply systemD. �wi in (5.39) is the spring constant of
the move force, and is denoted also as the weight of the move force. �wi affects the distance a
modulei is moved during one placement iteration: with a high�wi , the move force of module
i pulls a lot on its module, and the module will be moved a long distance. The opposite is true
for a small�wi . Using target points for the move force, the modules can be moved at most up
to their target point during one placement iteration. Hence, the module movement is limited.
Moreover, the movement limit is decreasing continuously over the placement iterations. All of
this enforces Kraftwerk's convergence. To represent the move force (5.39) in a matrix-vector
notation, the weights of the move force are collected in the diagonal matrix�Cx :

�Cx = diag(�wi ) (5.41)

The gradients of the potential are collected in the vector� x :

� x =
�

@
@x

�
�
�
�
(x0

1 ;y0
1)

;
@

@x
�

�
�
�
(x0

2 ;y0
2)

; :::;
@

@x
�

�
�
�
(x0

M ;y0
M )

� T

(5.42)

All target points are represented in the vector�x = x0 � � x . Therefore, the move forceFmove
x

in matrix-vector notation is:
Fmove

x = �Cx (x � �x ) (5.43)

5.5.2 Hold Force

To spread the modules iteratively on the chip, the move forceis used. However, besides the
move force, the net force is acting on the modules to minimizethe netlength. Thus, the net
force has to be compensated at the start of each placement iteration. Otherwise, the modules
collapse back to the initial placement, where the netlengthis minimal, but the modules overlap
a lot. The compensation of the net force is done by the hold force, and the hold forceFhold

x
equals the negative net force:

Fhold
x = � (Cx x0+ dx ) (5.44)



5.5. ONE PLACEMENT ITERATION 45

Using only the hold force as one additional force, the modules will not collapse back, but
stay at their position in the current placement iteration. In other words, the change in module
position�x is zero. This can be shown by:Fnet

x + Fhold
x = 0 , Cx �x = 0 , �x = 0. It

should be noted here that the hold force equals the net force only at the start of the placement
iteration, where the modules are located atx0. Moreover, the hold force is a constant force, as
it does not depend onx.

The result of the hold force is that each placement iterationis decoupled from the previous
one. Therefore, the placement algorithm can be restarted atany iteration, and the engineering
change order (ECO) is supported best. For example, after gate sizing the circuit, and thus
introducing module overlap, the placement process can be restarted from the last placement,
in order to remove the introduced module overlap. Hence, theplacement process needs not be
started from scratch, which saves a lot of runtime. Section 8.2 presents experimental results
of the ECO feature of Kraftwerk.

(e) Potential� (f) Target points, move force(d) Demand-and-systemD

2

(a) Starting placement (b) Hold force

1 5

5

3 4

(c) Resulting placement

Figure 5.3: Illustration of one placement iteration. The numbers in the big arrows represent the se-
quence of the steps, taken in each placement iteration. (a) Given placement with modules and nets.
(b) Hold force to preserve the placement of (a). (d) Demand-and-supply system. (e) Potential. (d) and
(e) are density plots with white color representing low density and black color high density. (f) Move
force, created by springs between the modules and their target points. (c) Resulting placement (sum of
the net, move, and hold force is zero). The target points are represented by crosses in (c) and (f).
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5.5.3 Illustration

Previous sections described in a formal way how the move force and the hold force are de-
termined, and how they are modeled. This section presents anillustration of one placement
iteration, particularly of the forces.

The placement iteration starts with a given placement, where each modulei is located at
(x0

i ; y0
i ). Figure 5.3 (a) displays such a placement. Ignoring the moveforce, only the net force

is acting on the modules and attracts them together. To compensate for this, the hold force is
used, which preserves the given placement. The hold forces are displayed as arrows in Figure
5.3(b).

Based on the module positions, the demand-and-supplyD system is created, which repre-
sents the local module density. Figure 5.3 (d) showsD of the given placement.D is treated as
a charge distribution, which creates an electrostatic potential � via Poisson's equation. Such
a potential is displayed in Figure 5.3(e). ComparingD in Figure 5.3 (d) with the potential�
in Figure 5.3 (e) reveals that the potential� can be viewed as a smoothed representation of
the demand-and-supply systemD. Moreover, in regions whereD is low, the potential� is
low, and vice versa.

The gradients of the potential, evaluated at the positions of the modules, determine the
target points. The target points are displayed as crosses inFigure 5.3(e). The move force is
created by spring connections between the modules and theirtarget points. With the springs
to the target points, the modules are moved away from high density regions (black regions in
5.3(d) and (e)) towards low density regions (white regions in 5.3(d) and (e)).

Hence, three forces are acting on the modules in each placement iteration: the net force,
the hold force, and the move force. These forces move the modules, until the sum of the forces
is zero. The placement, where the sum of all three forces is zero, is the resulting placement
of one placement iteration. Figure 5.3(f) displays the resulting placement. Comparing Figure
5.3(c) with (f) shows that the modules are moved towards the target points. In addition, the
modules are spread more over the placement area, and the module overlap is reduced.

5.6 Core of Kraftwerk

In summary, three forces are used by Kraftwerk in each placement iteration: the net force
Fnet

x , and two additional forces: the move forceFmove
x and the hold forceFhold

x . Setting the
sum of the three forces to zero (5.45) gives the core system oflinear equations (5.46) used in
Kraftwerk's iterative placement process.

Fnet
x + Fmove

x + Fhold
x = 0 (5.45)

�
Cx + �Cx

�
�x = � �Cx � x (5.46)

Solving (5.46) with respect to�x , and updatingx0 by �x gives the new module positionsx
in the current placement iteration. Details on solving (5.46) are described in Section 5.12.2.
Based on (5.46), Kraftwerk has three degrees of freedom. First, the cost function� , rep-
resented inCx . Second, the demand-and-supply systemD, represented in� x . Third, the
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weights of the move force�wi , represented in�Cx . Kraftwerk is very �exible and utilizes the
degrees of freedom to optimize different objectives (like HPWL netlength and routability),
and to control the quality of placement.

5.7 Overview of the Placement Algorithm

Algorithm 1 : Global placement algorithm “Kraftwerk”.

// Start with given placement
while Module overlap
 � 20%do1

Determine demand-and-supply systemD(x; y);2

Calculate potential�( x; y) based onD(x; y) and Poisson's equation (5.38);3

Apply net model;4

// In x-direction (similarly in y-direction):
begin5

CreateCx , �Cx , and� x ;6

Solve
�

Cx + �Cx

�
�x = � �Cx � x w.r.t. �x ;7

Update module positionsx by �x ;8

end9

Call quality control;10

end11

// Next step: �nal placement (legalization and detailed placement)

Algorithm 1 displays the iterative global placement algorithm of Kraftwerk. The global
placement starts with a given placement. This can be a placement of a previous run of
Kraftwerk, but with additional module overlap introduced,e.g., after gate sizing the placed
circuit. Or, the placement is run from scratch, i.e., it is started with the initial placement. For
the initial placement, all modules are placed at the center of the chip, and the quadratic cost
function� (5.7) is minimized over a few iterations (about �ve). In eachiteration, a net model
is applied to represent the netlength in� .

In global placement, the modules are spread iteratively on the chip. Each placement iter-
ation starts with determining the demand-and-supply system D (line 2), and computing the
potential� (line 3). Then a net model is applied to determine the weightsof the two-pin
connections and to represent the netlength in the quadraticcost function� (line 4). After that,
all elements of the core system of linear equations (5.46) are determined (line 6). Then, (5.46)
is solved with respect to�x (line 7), and the module positions are updated (line 8). These
three steps (line 6-8) are done for x- and y-direction. At theend of each placement iteration,
a quality control procedure is called, in order to adjust theweights of the move force. The
global placement is stopped if the module overlap
 (5.28) is below a certain limit, e.g., below
20%.

After global placement, �nal placement is done. Here, the modules are legalized �rst,
which means that the remaining overlap is removed, and the modules are aligned to rows/grid
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structure if necessary. Considering the remaining overlapof about 20%, the legal placement
is obtained quickly (about 5% of the runtime of global placement), and the netlength increase
by about 1%. Chapter 7 presents new approaches for legalization. After legalization, detailed
placement can be used to improve the legal placement.

5.8 Quality Control

The weights�wi (i = 1; 2; 3; :::; M ) of the move force (5.41) are one degree of freedom of
Kraftwerk. They are utilized to control the iterative global placement process, and to control
the quality of placement. The weight�wi of modulei is initialized at the beginning of the
global placement process according to:

�wi =
Amod,i

Aavg
�

1
M

(5.47)

Aavg represents the average module area, andM is the number of movable modules. With
the factorAmod,i=Aavg, the move force (5.39) of modulei is proportional to its module area
Amod,i. Consequently, the big modules are moved faster/further than small modules, and the
small modules have to be moved less to obtain an overlap free placement. This improves the
netlength, particularly in mixed-size placements, where most of the modules are small, and
where most of the nets interconnect small modules.

Based on Rent's rule [LR71], with increasingM , there are more connections between
movable modules than connections to �xed modules (e.g., �xed I/O pins). Hence, by mini-
mizing the netlength, the movable modules are more contracted with increasingM . Thus, in
the initial placement, the module overlap is higher, and consequently the gradients of the po-
tential� are higher. Consequently, the target points (5.40) are farther away from the modules.
To preserve the same move force as with smallM , the weights of the move force are scaled
with 1=M in (5.47).

To control the quality during the placement process, the characteristics presented in Sec-
tion 4.4, and demonstrated in Figure 4.4 are used. There,� � , which is the inherent change in
the approximation error between the quadratic cost function � and the real objective, depends
mainly on the module movement� . To obtain a high quality placement, i.e., a placement with
good netlength,� � should be as low as possible. Hence, good placements are achieved with
a low� . To control� , the weights�wi of the move force are used. This is done because with a
low �wi , the target points attract the modules less, resulting in a low module movement� . The
opposite is true for a high�wi . However, with a low� , a high number of placement iterations
are necessary to spread the modules over the chip. Consequently, high quality placements
need a high CPU time, and vice versa. Thus, there is a trade-off between quality and run-
time, and this trade-off is controlled by the user in settinga target module movement� T . The
regulation of the module movement� according to the target movement� T is done by the
quality control procedure then. This procedure is called atthe end of each placement itera-
tion (see Algorithm 1), and is implemented as follows. First, the average movement� of all
modules is calculated. Then, a scale factor� is determined based on� and� T : if � < � T ,
then � > 1; if � > � T , then � < 1; else� = 1. Figure 5.4 shows a suitable function
� (� ) = 1 + tanh(ln( � T =� )) .
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Figure 5.4: Scale factor� depending on module movement� and the target module movement� T .

After the scale factor� is determined based on� and� T , the weights�wi of the move force
are multiplied with� :

�wi  �wi � � (5.48)
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Figure 5.5: Trade-off between runtime and quality based on� T . Numbers in brackets represent the
number of placement iterations.� T is normalized to the average module dimension. Results are based
on six circuits of the ISPD 2005 contest benchmark suite.

Figure 5.5 displays the trade-off between runtime (CPU time) and quality (netlength in
HPWL). The trade-off is achieved with the presented qualitycontrol, and is determined by
the user parameter� T . With a low � T , the number of iterations is high, which results in a
high CPU time. Though, the netlength is low then, i.e., the quality is good. With a high� T ,
the CPU time is low, but the netlength is high. To choose a suitable target movement� T , the
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average module dimension is a good reference. The experimental results presented in Section
8 are obtained with� T being around this reference.

5.9 Convergence

Kraftwerk is driven by adapting the demand-and-supply system D. Due to the systematic
force implementation, the placement algorithm converges such that the demand is adapted
further to the supply in each placement iteration. In principle, this means that the module
overlap is reduced in each iteration. This section addresses the convergence of Kraftwerk.
First, the convergence is analyzed in theory. Then, the convergence is demonstrated by exper-
imental results.

5.9.1 Theory

The following theoretical analysis of the convergence is based on various assumptions. It is
intended as a motivation for the presented force implementation. To analyze the convergence
in theory, an approximation of the position change� x i of modulei during one placement it-
eration is needed �rst. Since the matrixCx is diagonal dominant, it can be approximated with
a diagonal matrixA x = diag(� x;i ). Using the Frobenius matrix normjjE jj 2

F =
P N

i;j =1 e2
ij

and different circuits, the relative error betweenCx and its approximationA x is on average
about 12%. Hence, the approximation is valid, and thei -th equation of the system of linear
equations (5.46) is approximated by:

(� x;i + �wi ) � x i = � �wi
@

@x
�

�
�
�
(x0

i ;y0
i )

(5.49)

With � x;i = �wi
� x;i +�wi

, (5.49) becomes:

� x i = � � x;i
@
@x

�
�
�
�
(x0

i ;y
0
i )

0 < � x;i � 1 (5.50)

Analogous results are obtained for the y-direction. To makethe following formulas simple, it
is assumed that� x;i = 1 and� y;i = 1. Later on it is described that both variables can have any
values of (5.50). The position change�p i of modulei during one placement iteration is:

�p i =
�

� x i

� yi

�
= � r �

�
�
�
(x0

i ;y
0
i )

= � r � i (5.51)

r represents the two-dimensional nabla operator
�

@
@x;

@
@y

� T
.

Now, it is assumed that the demand is created by small elements (e.g., by the modules), the
demand elements are moved by the move force, and the change ofposition of thei -th element
is �p i . The supply is not moved during one placement iteration. Based on these assumptions,
the change of demand� D dem

R in one regionR during one placement iteration is determined
next. Like in charge conservation, there is no creation or loss of demand. Thus, the change
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of demand� D dem
R in regionR is the �ow of the demand across and inside the boundary@R

during one iteration:

� D dem
R =

tn +1Z

tn

D dem
@R(t) dt (5.52)

Each placement iteration can be assigned a certain time step, and the current placement itera-
tion starts at timet = tn and ends at timet = tn+1 . The �ow of the demandD dem

@R(t) at timet
is created by the demand elements moving inside the regionR at timet.

D dem
@R(t) = �

X

i 2 @R

A i di �p i n i (5.53)

The demand elementi is de�ned by the areaA i and the densitydi , and both properties have
positive values. According to (5.51), the position change�p i of the demand elementi is
� r � i . The vectorn i points outside the regionR, has a length of one, and is normal to the
boundary@R. Thus, the product�p i n i represents the normal component of the position
change, and is positive if the vector�p i points outside the regionR. Since the �ow inside the
region is needed in (5.52), there is a negative sign before the sum in (5.53). Assuming that all
vectorsr � crossing the boundary@Rpoint outside (or inside) in the regionR, then (5.53) is
�nally transformed to:

D dem
@R(t) = 
 (t)

I

@R

r � dn with 
 (t) � 0 (5.54)

If some vectorsr � , which are crossing the boundary@R, point outside of the regionR and
some inside, then further statements on the convergence canonly be made if the demand
elements are moved an in�nite small distance. This would mean that an ini�nite high number
of placement iterations is necessary to spread the demand over the supply, which results in
impracticable runtime. However, in all performed experiments, the demand elements are not
moved an in�nite small distance, and the convergence to an almost adapted demand-and-
supply system is given in about 25 placement iterations. Hence, the assumption about the
vectorsr � crossing@R, made to obtain (5.54), is valid. To obtain�p i in (5.51), it was
assumed that� x;i = 1 and� y;i = 1. If 0 < � x;i < 1 and0 < � y;i < 1, then
 (t) in (5.54) will
be smaller, but still non-negative.

Using Poisson's equation (5.38) in the regionR with
R

R rr � dx dy = �
R

R D dx dy, and
Gauss' integral theorem

H
@Rf dn =

R
R r f dx dy, (5.54) yields:

D dem
@R(t) = � 
 (t)

Z

R

D dx dy with 
 (t) � 0 (5.55)

Inserting (5.55) in (5.52) gives the main equation of the convergence analysis:

� D dem
R = � 
̂

Z

R

D dx dy with 
̂ =

tn +1Z

tn


 (t) dt � 0 (5.56)
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The extreme case, where
̂ is zero, and hence the demand in one regionR does not change, is
given for example if the regionR is too large. This extreme case is neglected in the following.
The main equation of the convergence analysis (5.56) describes that the demand in the region
R will decrease during one placement iteration (� D dem

R < 0), if the integral of the demand-
and-supply in the region is positive (

R
R D dx dy > 0). According to (5.31), this integral is

positive, if the demand is greater than the supply. Therefore, (5.56) describes that the demand
will decrease in the regionR, if the demand is greater than the supply there. Similarly, the
demand in the region will increase, if the demand is smaller than the supply. Consequently,
(5.56) expresses that the demand is adapted further to the supply in an (arbitrary) regionR
during each placement iteration. If the whole placement area is the union of such regions, then
the demand of the whole placement is adapted further to the supply during each placement
iteration.

Therefore, Kraftwerk converges such that the demand is adapted further to the supply in
each iteration. And this convergence is based on using a Poisson potential� (5.38), target
points (5.40), and a constant hold force (5.44).

5.9.2 Experimental Results

The previous section analyzed the convergence based on different assumption. However,
these assumptions may not always be ful�lled in reality. Butnumerous experiments on sets
of different benchmark suites revealed that Kraftwerk converges also in practice. Hence,
Kraftwerk is robust and it can place various circuits. Figure 5.6 represents the results of one
typical experiment. Here, a circuit with 0.2 million small movable modules and some big
�xed modules is placed over a few placement iterations.

The standard deviation� D of the demand-and-supply systemD, as displayed in Figure
5.6(a), is a suitable metric for the convergence:

� 2
D =

1
Achip

+ 1Z

�1

+ 1Z

�1

(D(x; y) � � D)2 dx dy (5.57)

The lower� D is, the better is the adaption of the demand to the supply. Since Kraftwerk adapts
the demand further to the supply in each iteration,� D should decrease continuously over the
iterations. Exactly this effect is illustrated in Figure 5.6(a). Achip in (5.57) represents the area
of the chip. The average� D of the demand-and-supply system is by de�nition (5.32) zero.

Figure 5.6(a) shows also that� D is bound from below, and this lower bound is almost
reached at iteration 25. This means, the demand-and-supplysystem is almost adapted there.
The lower bound of� D can be computed by assuming that all modules are placed overlap-free
on the chip. If the densitiesdi of all modules equal the supply density, then the lower bound
is zero. Otherwise, the lower bound of� D is greater than zero. The circuit represented in
Figure 5.6 (a) has a supply density of about 0.45, and almost all modules have a density of
1. This results in a lower bound of� D of about 0.45. If the module demand-and-supply is
represented inD, then with a decrease of� D, the module overlap
 (5.28) is also decreasing
continuously. This behavior of
 is demonstrated in Figure 5.6(a). Moreover,
 is about 2%
at the last iteration.
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Figure 5.6: Demonstration of Kraftwerk's convergence based on the smooth and continuous progress
of some characteristic parameters. Circuit: adaptec1 of the ISPD 2005 contest benchmark suite.

The parameter� , displayed in Figure 5.6(b), represents the average lengthof the potential's
gradient� . There,j � j means the Euclidean norm.

� =
1

M

MX

i =1

�
�r �( x; y) j(x0

i ;y
0
i )

�
� (5.58)

The continuously decreasing standard deviation� D of the demand-and-supply systemD re-
�ects that the peaks inD are reduced more and more. As the potential� representsD by
Poisson's equation (5.38), the average length� of the potential's gradient is also decreasing
continuously, as displayed in Figure 5.6(b).

Using (5.50), the module movement of modulei in x-direction is limited by the gradient
of the potential in x-direction:

j� x i j �

�
�
�
�

@
@x

�( x; y)
�
�
�
(x0

i ;y0
i )

�
�
�
� (5.59)
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Thus, the average module movement� is limited by� :

� =
1

M

MX

i =1

�
�
�(� x i ; � yi )

T
�
�
� � � (5.60)

This relation between� and� is demonstrated in Figure 5.6(b). Moreover, the progress of�
has three characteristics.� is small in the �rst placement iteration as the weights of thetarget
points �wi are initialized with a small value (5.47). Then,� is increasing and is around the
target movement� T because of the quality control described in Section 5.8. After placement
iteration 20,� is continuously decreasing as it reached its upper limit� and� is continuously
decreasing over all placement iterations.

Figure 5.6(c) shows that the netlengthL is continuously and steadily increasing up to
around placement iteration 20. This is because the module movement� is almost constant
around� T in these iterations. Then,L increases with a lower rate and is almost not changing
after iteration 30. This is also due to the module movement� , which is decreasing after
iteration 20 and has a very low value after iteration 30.

In summary, Figures 5.6(a), (b), and (c) demonstrate the convergence of Kraftwerk based
on the the smooth and continuous progress of some characteristic parameters. Particularly,
the parameter� D, as a suitable metric for the convergence, is continuously decreasing. In
addition, the global placement, as represented in these �gures, is stopped at around iteration
25, because the module overlap
 is below 20% there. Another useful termination criterion is
the value of� D.

5.9.3 Limitations

Some limitations of the convergence of Kraftwerk should be noted here. First, if two modules
are exactly on top of each other, i.e., their module positions (x i ; yi ) are identical, then they
must have different adjacent modules. Otherwise, these critically stacked modules are moved
always in the same way, and the overlap between them will not be removed. However, in all
of the experiments, such critically stacked modules were not detected. Another limitation of
Kraftwerk is the number of placement iterations necessary to obtain the completely adapted
placement. Such a placement is described by� D being equal to its lower bound, which means
there is no module overlap. In theory, this number of iterations is in�nite. This is because
each modulei has to move a certain distance� i in the whole placement process, in order to
remove all module overlap. Though, the module movement is decreasing over the placement
iterations (execept the �rst ones). Hence, the required distance� i is only reached in an in�nite
number of iterations. However, Kraftwerk is a global placer, and it is stopped if the placement
is almost adapted, e.g., if the module overlap is below 20%. These almost adapted placements
are obtained in about 25 placement iterations.

5.10 Advanced Module Demand

In Section 5.5.1, the individual module densitydmod,i of the module demand is set to one for
simplicity. Usingdmod,i = 1 results in a halo, i.e., free space, around each module. Figure
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5.7(a) demonstrate such halos, particularly around the large module at the center. This halo
is not wanted, because the small modules are “pushed away” form the large module, which
increases the netlength. A better placement with no halo around the large module is shown
in Figure 5.7(b). This placement is achieved by scalingdmod,i down for large modules. This
section describes details about this approach for preventing unwanted halos.

(a) Withdmod,i = 1 : halo around the large module. (b) With scaling downdmod,i: no halo.

Figure 5.7: Impact of scaling down the module densitydmod,i for large modules. Global placements
are displayed here.

The reason for the halos is the potential� , and thus the demand-and-supply systemD.
Section 5.9.1 demonstrates with (5.56) that the demand in a regionR will change until the
demand equals the supply in this region. Hence, after the global placement iterations, each
modulei is in an “exclusive” regionRi , and in this region, the demand is balanced by the
supply. With a module supply density ofdsup, an individual module densitydmod,i, and a
module areaAmod,i, the exclusive regionRi of modulei has the areaAR;i :

AR;i =
dmod,i

dsup
Amod,i (5.61)

In Figure 5.7(a),dsup = 0:5 anddmod,i = 1. Thus,AR;i = 2 � Amod,i, and the exclusive region
for the large module in the center is quite big. Consequently, there is a halo around the large
module. To prevent the halo,dmod,i has to be scaled down depending on the module areaAmod,i.
A good approach fordmod,i is:

dmod,i =

(
1 if Amod,i < A largeq

A large

A mod,i
(1 � dsup) + dsup else

(5.62)

There, the individual module densitydmod,i stays one for small modules (Amod,i < A large). This
conserves the halos around small modules, as these halos arenecessary to spread the small
modules on the placement area. For large modules (Amod,i � A large), dmod,i is scaled down
with increasing module areaAmod,i. In addition,dmod,i is bound from below by the supply
densitydsup. Otherwise, the placement algorithm would not convergenceto an overlap-free
placement. A good value for the reference areaA large used in (5.62) is50Aavg, with Aavg

denoting the average module area. Figure 5.7(b) demonstrates the result of scaling down the
individual module densitydmod,i by (5.62). Here, the halo around the large module is removed.
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5.11 Advanced Module Supply

In Section 5.5.1, the whole placement area provides supply for the modules. This results in
that the modules are spread on the whole placement area, as shown in Figure 5.8 (a). The
module density equals the chip utilizationu then.

u =
Amods,mov

Achip � Amods,�xed
(5.63)

Amods,movis the total area of all movable modules,Amods,�xed is the total area of all �xed mod-
ules, andAchip is the chip area. Prior to placement, the chip area is determined by �oorplan-
ning. Thus, the chip area is �xed during placement. To lower the netlength, it may be allowed
to pack the modules with a higher density thanu. Figure 5.8 (c) demonstrates the effect that
with increasing module density, the netlength decreases. This section presents an approach to
control the module density.
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Figure 5.8: Control of the module density. Module density plots (a), (b), and (d) represent a low
density with white color and high density with black color. The big black rectangles represent �xed
big modules. Based on a circuit with 0.2 million small movable modules and some big �xed modules.

Since Kraftwerk adapts the demand to the supply, and the modules are represented in the
demand, the supply can be used to control the module density.Based on an user given module
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target densitytd, the creation of the module supply is done in two steps (see Figure 5.9). First,
an initial module supplyD sup

mod,init(x; y) with the valuetd is created at each point(x; y) where
the module demand is greater zeroD dem

mod (x; y) > 0. Second, an additional module supply
D sup

mod,add(x; y) with the valuetd is created around the initial module supply. The additional
module supply is needed to get a balanced demand-and-supplysystem (5.32). The sum of the
initial and additional module supply gives the module supply: D sup

mod = D sup
mod,init + D sup

mod,add. If
(5.62) is used for the module demand, thendsup = td.

y

x

D dem
mod (x; y) > 0

(a) Module demandD dem
mod

y

x

D sup
mod,init(x; y) = td

D sup
mod,add(x; y) = td

(b) Module supplyD sup
mod

Figure 5.9: Creation of the module supplyD sup
mod = D sup

mod,init + D sup
mod,addbased on the module demand

D dem
mod. This controls the module density to betd.

Since the potential is solved numerically, the potential iscalculated on a grid structure.
The demand-and-supply system is also represented by a grid structure. The grid structure
divides the placement area in a number of bins. Hence, the twosteps described above to
create the module supply can be done by using the bins. First,the initial module supply is
created in each bin where the module demand is greater zero. Second, the additional module
supply is created iteratively around the bins, where the initial module supply was deposited.

5.12 Implementation Details

This section covers different implementation details about computing the electrostatic poten-
tial �( x; y) and how to solve the core system of linear equations (5.46) ef�ciently.

5.12.1 Calculation of the Potential

The target points (5.40) of the move force are determined by the gradient of the potential
�( x; y). The potential�( x; y) itself is given by the demand-and-supply systemD(x; y) and
Poisson's equation (5.38):

�
@2

@x2
+

@2

@y2

�
�( x; y) = � D(x; y) (5.64)
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One approach to calculate the potential�( x; y) is to use a Greens functionG(x; y) = ln ( x2 + y2)
in combination with a convolution:

�( x; y) = k � D(x; y) ? G(x; y) with k = const (5.65)

The convolution can be solved by the Fourier Transformation[Wil80]. For a computer algo-
rithm using numerics, the Discrete Fourier Transformation(DFT) is applicable. This means
that the demand-and-supply systemD has to be discretized. The discretization is done by
overlaying the placement area with a grid structure, resulting in a number of bins. The av-
erage value ofD in a bin gives the discrete value in this bin. Based on Nyquist-Shannon
sampling theorem [Nyq28], the maximal bin dimension has to be half of the minimal module
dimension. However, withN the number of modules, the number of bins would beO(N 2),
which results in an impracticable computational complexity. Based on experimental results,
the bin dimension can be reduced to about the average module dimension, without loss in
quality. With this, the number of bins isO(N ), thus the computational complexity is practi-
cable, and depends linearly on the numberN of modules.

Since the DFT results in periodic functions, the grid structure for discretization needs to
be twice as big as the placement area in each direction (x and y). This increases the number of
bins, and thus increases the runtime to calculate the potential. A faster numeric approach to

compute the potential is to transform the Laplace operator
�

@2

@x2 + @2

@y2

�
into �nite differences

[HW76]. Here, the demand-and-supply system has to discretized as described above, too.
However, the grid structure needs not be enlarged in each direction. Hence, the runtime is
lower compared to the DFT approach. Using �nite differences, the potential is determined by
solving a system of linear equations. There, the system matrix is of special kind, namely it has
a band structure. This means that all entries of the matrix are near the diagonal. Such a system
of linear equations is solved ef�ciently by a geometric multigrid method like DiMEPACK
[KW01].

5.12.2 Solving the System of Linear Equations

The core of Kraftwerk is to solve the system of linear equations (5.46) with respect to�x
in each placement iteration. Adding�x to x0 gives the new module positionsx in each
placement iteration. By substitutingCx + �Cx = A and� �Cx � x = b, the system of linear
equation is:

A � �x = b (5.66)

The matrixA has similar properties as the matrixCx (see Section 5.2):A is symmetric,
positive de�nite, and highly sparse. Compared to the matrix, which is used in solving Pois-
son's differential equation (see previous Section 5.12.1), A has no band structure, i.e., the
off-diagonal entries are not always near the diagonal. Therefore, geometric multigrid meth-
ods like DiMEPACK are not applicable to solve the system of linear equations (5.66). An
ef�cient method to solve (5.66) is the conjugate-gradient (CG) approach [You03]. This is an
iterative approach, and in each solving iteration, a matrix-vector multiplicationA � r is exe-
cuted. The runtime of the CG approach depends mainly on this matrix-vector multiplication,
and on the number of solving iterations. The number of solving iterations can be lowered



5.12. IMPLEMENTATION DETAILS 59

by using preconditioning matrices. An ef�cient precondition matrix is based on the diagonal
entries ofA . The runtime of the matrix-vector multiplication depends,amongst others, on the
arithmetic precision (single or double precision). Since (5.66) is solved for the change�x
in the module positions, single precision is suf�cient. This decreases the runtime of solving
(5.66) by a factor of two, compared to double precision, which would be necessary if (5.66) is
solved for the absolute module positionsx. Amongst others, this single precision arithmetic
gives the fast runtimes of Kraftwerk.
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Chapter 6

Routability-Driven Placement

(a) RUDY of a circuit (b) Exact routing demand (c) Module density

Figure 6.1: Routing demand estimation RUDY (a), exact routing demand (b), and module distribution
after routability-driven placement (c). White color represents low density, and black color high density.
Results are based on the circuit ibm12e of IBM-PLACE 2.0 benchmark suite.

The layout synthesis of a circuit means to place the modules on the chip, and to route the
nets, which connect the modules. These two steps (placementand routing) are done consec-
utively, mostly by different computer algorithms. To obtain the best results, routing must be
considered during placement. This is called “routability-driven placement”, and this chapter
presents new approaches for it. In detail, a circuit may havea high routed wirelength, i.e., a
high wirelength after routing, or the circuit may even not beroutable, because of “congested
regions”. Congested regions are regions on the chip, where too much wires are necessary to
route the nets, than routing tracks are available there. In other words, in congested regions,
the routing demand, created by the nets, exceeds the routingsupply, given by the routing
layers. Consequently, routability-driven placement means to remove the congestions during
placement. To do this, two problems have to be solved. First,an accurate and fast estimation
of the routing demand is necessary. The most precise information about the routing demand
would be given by routing, but routing can not be performed during the iterative placement
process, because of the enormous runtime of routing. Second, the routing demand estimation
must be integrated in the placer to optimize routability. This chapter addresses both problems.
First, the ef�cient routing demand estimation called “RUDY” is presented. After that, the
integration of the routing demand in the placer Kraftwerk isdescribed.
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6.1 RUDY: Ef�cient Routing Demand Estimation

This section presents RUDY, which is a novel and ef�cient estimation of the routing demand.
First, the routing demand of one netn 2 N is described, and then the routing demand of a
complete circuit is presented. In general, one netn consists of several pins. The positions
of the pins determine the “net rectangle”, which is the smallest rectangle enclosing all pins.
Amongst others, Table 6.1 describes the geometric properties of the net rectangle. This rect-
angle has the lower left corner located at(xnet;n ; ynet;n ), a width ofwnet;n , and a height ofhnet;n .
The product of width and height gives the areaAnet,n. Independent of the net rectangle, net
n has the wirelengthLn . Ln can be the routed wirelength, i.e., the wirelength after routing.
However, routing takes some runtime. To estimate the routing demand in low runtime, it
is better to use an estimation of the routed wirelength forLn . A suitable estimation is the
half-perimeter wirelength (HPWL), which is the widthwnet;n plus the heighthnet;n of the net
rectangle.

(xnet;n ; ynet;n ) Position of the lower left corner
wnet;n ; hnet;n Width, height
Anet,n = wnet;n � hnet;n Area
Ln Wirelength

Table 6.1: Properties of one netn, and in particular of its “net rectangle”.

The routing demand estimation technique RUDY is based on theidea to assume a uniform
wire densitydwire,n within the net rectangle of each net. There, the acronym RUDYstands
for RectangularUniform wire DensitY. The RUDY of one net is displayed in Figure 6.2. In
principle, the wire densitydwire,n of netn is the ratio between the wire areaAwire,n and the net
areaAnet,n. The wire area is the product of the wirelengthLn and the wire widthp. The wire
width p is the average wire-to-wire pitch of process technology, used to fabricate the circuit.

dwire,n =
Awire,n

Anet,n
=

Ln � p
wnet;n � hnet;n

(6.1)

The routing demandD dem
rout,n of one netn using RUDY is the wire densitydwire,n inside its

net rectangle, and zero outside. Using the rectangle function (5.26), the RUDY of one net is:

D dem
rout,n (x; y) = dwire,n � R(x; y; xnet;n ; ynet;n ; wnet;n ; hnet;n ) (6.2)

The routing demandD dem
rout of all N nets, i.e., the RUDY of a circuit, is the sum of all net

routing demandsD dem
rout,n:

D dem
rout (x; y) =

NX

n=1

D dem
rout,n (x; y) (6.3)

6.2 Characteristics of RUDY

Figure 6.1 shows different density plots. The exact routingdemand, displayed in Figure
6.1(b), is given after routing, and describes at point(x; y) the number of wires, covering
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Net rectangle with uniform wire density dwire,n:

wnet;n

hnet;n

(xnet;n ; ynet;n )
Wire width p

Wire lengthLn

dwire,n =
Wire area
Net area

Figure 6.2: Routing demand estimation RUDY of one netn.

this point. The comparison between the estimated routing demand using RUDY (see Figure
6.1(a)) and the exact routing demand (see Figure 6.1(b)) demonstrates that RUDY estimated
very precisely regions with high routing demand (high wire density), as well as regions with
low routing demand (low wire density).

Figures 6.1 (a) and (b) give a graphic comparison between RUDY and the exact routing
demand. In the following, a more precise comparison based onsome characteristic parameters
is given. Moreover, not only RUDY is compared with the exact routing demand, but also the
quality of two other estimation techniques is analyzed, namely the approach called “RISA”
[lEC94], and the approach of Westra et al. [WBG04]. To do the comparison, the chip is
overlayed with a �ne grid structure, which results in a number of bins. In each bini , the exact
routing demand, and the three estimated routing demands aredetermined. These four routing
demands in bini are represented inrexact[i ], rRUDY[i ], rRISA[i], andrWestra[i ], respectively. For
each routing demand, the average� <dem> over allN bins is computed:

� <dem> =
1
N

NX

i =1

r<dem> [i ] with dem= exact, RUDY, RISA, or Westra (6.4)

The average error� Error for each estimation technique is then given by:

� Error(est) = � <est> � � exact with est= RUDY, RISA, or Westra (6.5)

Table 6.2 shows that RUDY has the best average error, Westra's approach has a higher average
error, and the average error of RISA is far too high.

To obtain the standard deviation of the error� Error, the routing demand of each estimation
technique is scaled such that the average error is zero:

r<est> [i ]  r<est> [i ]
� exact

� <est>
with est= RUDY, RISA, or Westra (6.6)
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The standard deviation of the error� Error is:

� 2
Error(est) =

1
N � 1

NX

i =1

(r<est> [i ] � rexact[i ])
2 with est= RUDY, RISA, or Westra

(6.7)
In (6.7), the factor1=(N � 1) is used instead of1=N, in order to address the unbiasedness
[And74]. However, in the evaluated circuits, the numberN of bins is hundred and above,
hence there is no big difference between1=N and1=(N � 1).

In Table 6.2, the standard deviation of the error� Error of the three estimation techniques
are all about the same. Westra's approach is the best, RISA isthe worst, and RUDY in the
middle between them. In the runtime necessary to obtain the routing demand, RUDY is as fast
as RISA. Westra's approach needs about 10 times more runtime. To obtain the exact routing
demand, i.e., to route the circuit, takes about factor 4000 more runtime.

RUDY RISA Westra et al. Exact
� Error 0.013 200653 0.939 —
� Error 0.144 0.153 0.130 —
CPU 1.00 1.00 10.66 3800.00

Table 6.2: Comparison of RUDY and other approaches to estimate the routing demand. The exact
routing demand, as given by routing the circuit, is used as a reference for� Error and� Error. Statistic is
based on all circuits of the IBM-PLACE 2.0 benchmark suite.

In summary, RUDY is a fast and accurate routing demand estimation approach. In con-
trast to other approaches, RUDY needs no grid structure. Thegrid structure used above to
determine the estimation error is because RISA and Westra'sapproach rely on it, and because
of numerical reasons: the continuous routing demand of RUDYmust be discretized by bins
in order to compute the estimation error on a computer. In addition, RUDY does not use a
routing model to describe possible routes of each net. Otherapproaches like Westra's tech-
nique are using such routing models, and are �tting the possibilities of the routes to the results
obtained by routing. Using such routing models results in a dependency between the routing
demand estimation technique and the router. RUDY is not based on a routing model, and thus
RUDY estimates the routing demand independently of the router.

6.3 Routing Supply

Besides the routing demand, there is also a routing supply. The routing supply is given by the
routing layers of the chip. Based on the rectangle function (5.26), the routing supply is:

D sup
rout (x; y) = dsup

rout � R(x; y; xchip; ychip; wchip; hchip) (6.8)

Routing obstacles (e.g., �xed macros) are excluded from therouting supply. The routing sup-
ply densitydsup

rout is determined by considering a balanced demand-and-supplysystem (5.32).
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If there are no routing obstacles, the routing supply density is:

dsup
rout =

P N
n=1 dwire,n � Anet,n

Achip
(6.9)

6.4 Integration in Kraftwerk

The routing demandD dem
rout (6.3) and the routing supplyD sup

rout (6.8) give the routing demand-
and-supply systemD rout:

D rout (x; y) = D dem
rout (x; y) � D sup

rout (x; y) (6.10)

To drive placement by routability in Kraftwerk, its demand-and-supply systemD (5.38) has
to be a combination of the module demand-and-supplyDmod (5.37) and the routing demand-
and-supplyD rout:

D(x; y) = (1 � wrout)Dmod(x; y) + wroutD rout (x; y) (6.11)

In Kraftwerk, the demand, which is created by the modules andthe nets in (6.11) now, is
adapted to the supply, which is given by the chip. Therefore,Kraftwerk's approach for
routability-driven placement can be viewed as placing the modules and the net rectangles
concurrently on the chip.

The routing weightwrout in (6.11) represents the degree of routability optimization: with
wrout = 0, routability is ignored, and withwrout = 1, just routability is optimized, ignoring
the placement of the modules. The optimalw�

rout, which gives the lowest routed wirelength,
depends on the circuit and the router. For one circuit and onegiven router,w�

rout is determined
by the golden section search method [Kie53]. This is a numerical optimization method, which
evaluates the routed wirelengthrWL for certain values ofwrout, and iteratively re�nes the
interval, in which the minimum ofrWL is located. The interval is re�ned by using the golden
ratio (1 +

p
5)=2, in order to have best convergence speed. To evaluaterWL for one value of

wrout, the circuit is placed withwrout, and the resulting placement is routed.
Figure 6.3 displays the dependency of some parameters on therouting weightwrout. One

parameter is the standard deviation of the routing demand� rout, which is calculated by:

� 2
rout =

1
Achip

Z 1

�1

Z 1

�1

�
D dem

rout (x; y) � � rout

� 2
dx dy (6.12)

� rout is the average value ofD dem
rout (x; y). Other parameters are the netlength and the routed

wirelength. The dependency of these parameters onwrout are as follows:

1. � rout decreases with increasing routing weightwrout. This means that the peaks in the
routing demand are reduced more and more. Thus, also the routing demand in congested
regions is reduced.

2. The netlength measured in HPWL or RSMT (rectilinear Steiner minimal tree) increases
with increasing routing weightwrout.
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Figure 6.3: Dependency of some parameters on the routing weight wrout. Results are based on ibm01e
of the IBM-PLACE 2.0 benchmark suite.

3. There is a trade-off between netlength and� rout, resulting in an optimal routed wire-
length. For the circuit used in Figure 6.3, the optimalw�

rout is 0:28.

Based on these characteristics, which are demonstrated in Figure 6.1, some statements can be
derived:

1. Kraftwerk reduces the routing demand in congested regions. This is demonstrated by a
decrease of� rout with increasingwrout.

2. Kraftwerk increases the routing supply in congested regions. This can be shown by
comparing the wire density plot in Figure 6.1(b) with the module density plot in Figure
6.1(c). In congested regions, where the wire density is high, the module density is low.
Since modules block some routing layers, a low module density in congested region
means more routing supply there.

3. The HPWL is an ef�cient estimation of the routed wire length. This is because the
HPWL correlates to the routed wire length as good as the RSMT length does. However,
the HPWL is much faster determined than the RSMT [Chu04].

To validate the statement that the HPWL is an ef�cient estimation of the routed wire
length, four estimation techniques for the routed wirelength were tested: HPWL, RSMT
(length of rectilinear Steiner tree), RMST (length of minimum spanning tree), and RISA
[lEC94] (estimating the length of one net by a function depending on the HPWL and the
number of pins). The four different estimation techniques were integrated in RUDY and in
the quadratic cost function� . The integration in RUDY was done by using the estimated
wirelength inLn . The integration in� was done by using the Bound2Bound net model, and
scaling the connection weights of each net by the ratio between the estimated wirelength and
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the HPWL. The results of the four estimation techniques are summarized in Table 6.3, and
are based on all circuits of the IBM-PLACE 2.0 benchmark suite. All four techniques do not
differ much in the routed wirelength and the number of vias: the difference is below 0.2%.
However, HPWL has the lowest runtime for placement, and therefore is an ef�cient estimation
of the routed wire length.

HPWL RSMT RMST RISA
rWL 1.0000 0.9989 0.9988 1.0005
Vias 1.0000 0.9993 0.9984 1.0005

CPU Place 1.00 1.29 1.08 1.00
CPU Route 1.00 1.02 0.98 1.00

Table 6.3: Results of different techniques to estimate the routed wirelength (rWL) during placement.
“CPU” is the runtime, either for placement, or for routing. The routing demand is estimated with
RUDY, placement is done with Kraftwerk. Results are normalized to the results of HPWL. Based on
all circuits of the IBM-PLACE 2.0 benchmark suite.

Two principle problems of estimating the routed wirelengthshould be pointed out. First,
almost all estimation techniques represent each pin as a point in the x-y plane. In routing,
each pin is represented by a rectangle, called “pin site”. This difference can result in that the
estimation of the routed wirelength is higher than the exactrouted wirelength. For example,
imagine a two-pin net, where both pin sites almost touch eachother. Hence, connecting both
pins sites needs almost no wire. In contrast to this, connecting both pin points, which are
located typically in the center of each pin sites, needs morewirelength. A second problem
of estimating the routed wirelength is that routing considers the interaction (overlapping) be-
tween the nets. In contrast to this, traditional estimationtechniques consider one net at a time,
and ignore the interaction between the nets. This results inthat the estimation of the routed
wirelength is lower than the exact routed wirelength.

At last, the results presented in this chapter (see Table 6.2and Table 6.3) can be sum-
marized as follows: it is suf�cient to use RUDY for estimating the routing demand, and it is
suf�cient to use the HPWL for estimating the routed wirelength. Other techniques may be
a bit better, but consume much more runtime. Considering routability-driven placement, the
placement with optimal routed wirelength is obtained in Kraftwerk by adjusting one parame-
ter: wrout.
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Chapter 7

Legalization

Placement of circuits is done in two consecutive steps: global and �nal placement. In global
placement, the modules are spread roughly on the chip, whileconsidering different objec-
tives like wirelength and routability. The previous chapters describe Kraftwerk, which is a
fast global placer based on force-directed quadratic placement. Final placement itself consists
also of two steps: legalization and detailed placement. Legalization means to remove the re-
maining module overlap of a global placement, and to align the modules to rows if necessary.
Detailed placement is performed after legalization, and isthe second step of �nal placement.
In detailed placement, different objectives are further improved, for example total wirelength,
or more complex objectives like design for yield (DFY), or design for manufacturing (DFM).

This chapter presents novel approaches for legalization. Detailed placement is not ad-
dressed in the following. To preserve the global placement as far as possible, the common
objective of legalization is to minimize the module movement. In the following, two legal-
ization approaches based on minimizing the quadratic movement are presented. With the
quadratic norm, the minimum is found quickly. The �rst legalization approach “Puzzle” deals
with legalizing macros. “Abacus” is the second legalization approach, which focuses on le-
galization standard cells. The separation between macros and standard cells is necessary here,
because standard cells must be aligned to rows, and macros not. Moreover, there are mil-
lions of standard cells in a modern circuit, while there are just a few (about hundreds) macros.
Thus, legalizing macros can be done with exhaustive approaches. In contrast to this, legalizing
standard cells must be done quickly, concerning the runtimeper standard cell.

Table 7.1 summarizes some properties of one modulei (macro or standard cell). Both
legalization approaches (Puzzle and Abacus) refer to theseproperties. The properties are
similar to those shown in Table 5.1, which is used in global placement. However,(x0

i ; y0
i )

is the position of modulei in the global placement now, and(x i ; yi ) the position in the legal
placement. In detail, there are two meanings of “position”:for macros, it refers to the center of
the macro, and for standard cells, it refers to the lower leftcorner of the cell. This difference
is made because it simpli�es the later given problem formulations. wi andhi presented in
Table 7.1 are the dimensions (with and height) of modulei . The weightei of a module is for
example the area of the module, or the number of pins located at the module.

In the next sections, the term “movement” is used with several norms: (7.1) is the quadratic
Euclidean movement, (7.3) is the Euclidean movement, (7.2)is the Manhattan movement.
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Property Explanation
(x0

i ; y0
i ) Position in global placement

(x i ; yi ) Position in legal placement
wi ; hi Width, height
ei Weight (e.g. number of pins)

Table 7.1: Properties of modulei (macro or standard cell).

Moreover, these are total movements, i.e., they are the sum of the movements of all mod-
ules. In addition, the movement of each module is weighted bye�;i . The proposed quadratic
programs optimize (7.1), or (7.2) in combination with linearization weights. The quality of
a legal placement is measured by (7.3). These differences inthe norms are made, because
the quality is best measured in the Euclidean norm (7.3), butboth other norms are best to
minimize with numerical optimization.

� Quad;Euclid =
NX

i =1

e�;i

�
[x i � x0

i ]
2 + [ yi � y0

i ]
2
�

(7.1)

� Manhattan =
NX

i =1

e�;i (jx i � x0
i j + jyi � y0

i j) (7.2)

� Euclid =
NX

i =1

e�;i

p
(x i � x0

i )2 + ( yi � y0
i )2 (7.3)
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7.1 Puzzle: Macro Legalization

This section presents “Puzzle”, which is a fast legalization approach for macros. Macros are
modules with various dimensions. Figure 7.1 (a) displays a global placement of macros. Two
legal placements are shown in Figure 7.1 (b) and (c).

2

3

1 4

5

(a) Global Placement

1 2

3

4

5

(b) Legal Placement (constraint direction based on place-
ment)

1

2
3

4

5

(c) Legal Placement (with constraint
direction optimization)

Figure 7.1: Global placement of macros (a), and two legal placements of macros (b) and (c). The
movement of each macro is displayed by an arrow. The start of the arrow re�ects the position in the
global placement, and the end of the arrow re�ects the position in the legal placement. There, position
refers to the position of the center of the macro. The total movement in (c) is about 25% lower than in
(b).

The legalization of macros can be formulated by the following quadratic program (QP):

min
NP

i =1
ei

�
wx;i [x i � x0

i ]
2 + wy;i [yi � y0

i ]
2�

(7.4)
QP:

s.t. Ap � b (7.5)

The objective (7.4) is similar to (7.1), and represents the sum of the weighted quadratic Eu-
clidean movements of allN macros.wx;i andwy;i are used to linearize the quadratic move-
ment. Since all weights (ei , wx;i , andwx;i ) are positive, the objective is convex. The constraint
(7.5) assures that there is no overlap between the macros. The vectorp re�ects the legal posi-
tions of all macros, separated in x and y-direction:

p = ( x1; x2; :::; xn ; y1; y2; :::; yN )T (7.6)

In general, two macrosi and j do not overlap, if either the distance in x-direction, or the
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distance in y-direction is large enough. This constraint isdescribed by:

jx i � x j j �
1
2

(wi + wj ) _ j yi � yj j �
1
2

(hi + hj ) (7.7)

In the rest of this section about Puzzle, the following is assumed for two indecesi andj : if
the macrosi andj are located at(x0

i ; y0
i ) and(x0

j ; y0
j ) in the global placement, theni andj are

chosen such thatx0
i � x0

j andy0
i � y0

j . Based on this, (7.7) is transformed to:

x i � x j �
1
2

(wi + wj ) _ yi � yj �
1
2

(hi + hj ) (7.8)

With this, the relative order of the macros is preserved. In other words, if macroi is right of
(above of) macroj in the global placement, then the ordering between both macros is the same
in the legal placement. The constraints shown in (7.8) can bedescribed by the matrix-vector
notationAp � b for all macros. However, there is a “_” between the x- and y-constraint,
which means that two macros must be overlap freeeitherin x or in y-direction. In other words,
a decision on the constraint direction (x or y) must be made here, and the decision in�uences
highly the movement of the macros during legalization. In Figure 7.1 (a), the decision is done
based on the global placement. In Figure 7.1 (b), the initialdecisions are re�ned (optimized)
by Tabu Search [GL97]. Comparing 7.1 (a) with 7.1 (b) demonstrates that this “constraint
direction optimization” results in a lower total movement of the macros. In the following,
some general aspects are described �rst, and then details ofconstraint direction optimization
are presented.

7.1.1 Construction of Matrix A and Vector b

The matrix-vector notationAp � b, used in (7.5), represents in each row one constraint (7.8).
In the following, the construction of matrixA and vectorb is described. MatrixA has entry
akl in row k and columnl. Vectorb has entrybk in row k. First,A andb are initialized with
zeros, and an index variablek is initialized with1. Then, all pairs of macros are considered.
One pair(i; j ) contributes toA andb as follows:

1. If the constraint direction is x, thenA andb are updated by:
aki  aki + 1, akj  akj � 1, andbk  bk + 1

2 (wi + wj ).

2. If the constraint direction is y, thenA andb are updated by:
ak i + N  ak i + N + 1, ak j + N  ak j + N � 1, andbk  bk + 1

2 (hi + hj ).

3. The index variablek is increased by one:
k  k + 1.

7.1.2 Initial Legalization

Algorithm 2 shows how the initial legal placement is obtained. First, the macros are placed
to the positions(x0

i ; y0
i ) of the global placement (line 1). Then, some iterations are done (line

2-8). In each iteration, the direction (x or y) of the constraints is determined based on the
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placement (line 3). Next section describes this important step of Puzzle. With the determi-
nation of the constraint direction, the matrix-vector notation of the overlap-free constraint
Ap � b is given. Then, the quadratic program (7.4) s.t. (7.5) is solved using some lineariza-
tion iterations (line 4-7). With the linearization, the Manhattan movement (7.2) is optimized.
At the end, a new placement with no overlap is obtained. Basedon experimental results, about
3 linearization iterations are enough.

Since the constraint direction is decided based on a placement, and the constraint direction
gives a new placement (via the quadratic program), both steps (determination of constraint
direction and solving the quadratic program) are executed consecutively for some iterations.
This is done in the “for” loop in line 2-8 in Algorithm 2. The loop is done until convergence,
which means, the loop is executed until the quadratic program does not change the positions
of the macros anymore. Based on experimental results, about5 cycles for the loop are enough.

Algorithm 2 : Initial macro legalization

Initialize (x i ; yi )  (x0
i ; y0

i );1

for some iterationsdo2

Create constraints based on placement(x i ; yi ) ) Matrix A and vectorb;3

for some linearization iterationsdo4

wx;i  1=jx i � x0
i j, wy;i  1=jyi � y0

i j;5

Solve QP (7.4) s.t. (7.5)) new positions(x i ; yi );6

end7

end8

7.1.3 Constraint Direction based on Placement

One important step of Puzzle is to determine the direction (xor y) of each constraint. In the
following, it is described how the direction of the constraint between two macrosi andj is
decided based on a placement. There, the decision is driven by moving both macros as little
as possible. The two macros are located at(x i ; yi ) and(x j ; yj ). Two properties� x;ij and� y;ij

can be computed:

� x;ij = x i � x j �
1
2

(wi + wj ) (7.9)

� y;ij = yi � yj �
1
2

(hi + hj ) (7.10)

These properties re�ect the distance between both macros, and the dimensions of both macros.
In detail, if � x;ij < 0, the macros are overlapping in x-direction; if� y;ij < 0, they are overlap-
ping in y-direction. In both cases,� � x;ij and� � y;ij is the amount of overlap in each direction.
Consequently, if� x;ij > � y;ij , then the movement for both macros to an overlap-free placement
is lower in x-direction, than in y-direction. This exactly gives the decision of the constraint
direction: if � x;ij > � y;ij , then the constraint direction is x, otherwise it is y. This decision
is not made for overlapping macros only, but for all pairs of macros. In other words, there
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will be constraints between all pairs of macros. This is necessary for the convergence of Al-
gorithm 2. Otherwise, macros, which were made overlap free in one iteration (see line 2-8 in
Algorithm 2), have no constraint in the next iteration. Consequently, they will collapse back
and will overlap again, which is not wanted.

Determining the constraint direction as described above minimizes just the movement
between two macros. It does not minimize the total movement of all macros. Hence, the
initial constraint direction can be good, but need not to be optimal.

7.1.4 Optimization of Constraint Direction

This Section describes the complete approach called “Puzzle”, which is a novel method for
macro legalization. The total movement is minimized by quadratic programming. The initial
constraint directions are determined by the placement. Tabu Search is used to optimize the
constraint directions, in order to minimize the total movement.

Before presenting Puzzle, some aspects are to be noted �rst.Algorithm 2, describing the
determination of the initial legal placement, converges such that the QP solved in line 4 does
not change the placement anymore. In such a placement, thereare “essential” constraints,
where two macros are abutting, i.e., there is no free space between the macros. These essential
constraints have “= ” instead of “� ” in (7.8). All other constraints with “> ” are not active.
Hence, the legal placement, obtained by Algorithm 2, is characterized by essential constraints.
The set of essential constraints, in combination with theirdirections, is called “con�guration”,
and describes a legal placement; Tabu Search acts on these con�gurations. In the following,
the terms “con�guration” and “legal placement” are used interchangeably.

Algorithm 3 describes Puzzle, and the application of Tabu Search. The algorithm starts
with an initial con�guration (line 1), and optimizes iteratively the con�guration (line 4-28). In
each iteration, the neighboring con�gurations of the current con�guration are evaluated (line
9-17). Each neighboring con�guration is created by changing the direction of one essential
constraint (line 10). Neighboring con�gurations, which are in the tabu-list, are ignored (line
18). Two special neighboring con�gurations are saved: the one with the best cost (line 20),
and the one with the worst cost (line 21). After evaluating all neighboring con�gurations,
the current con�guration is compared with both saved neighboring con�gurations. If the best
neighboring con�guration has a better cost than the currentcon�guration, then this neighbor-
ing con�guration is used as the new current con�guration (line 25). With this approach, Tabu
Search is a greedy optimization method. However, if all neighboring con�gurations have a
worse cost than the current con�guration, then the worst con�guration is used as the new cur-
rent con�guration (line 26). With this technique, Tabu Search has a “hill-climbing” ability,
and local minima can be escaped. At the end of each optimization iteration, the new current
con�guration is appended in the tabu-list (line 27). With this method, con�gurations are only
visited once.

The optimization iterations are done until a stopping criterion is triggered (line 28). Suit-
able stopping criterions are for example a maximal number ofiterations, or a maximal increase
in the cost, i.e., a maximal difference in the best cost so farand the current cost. At the end of
Tabu Search, the best con�guration is found in the tabu-listas the con�guration with the low-
est cost (line 29). This best con�guration represents the best legal placement with a minimal
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total movement (line 30).

Algorithm 3 : Puzzle: macro legalization with constraint direction optimization.

Do initial macro legalization (see Algorithm 2);1

Initialize tabu-list;2

Determine costccur;3

repeat4

Save positions:(x̂ i ; ŷi )  (x i ; yi );5

cbest  1 ;6

cworst  �1 ;7

foreachessential constraintdo8

Change direction;9

Restore positions(x i ; yi )  (x̂ i ; ŷi );10

for some placement iterationsdo11

Create constraints based on placement(x i ; yi ), consider direction of the12

changed essential constraint) Matrix A and vectorb;
for some linearization iterationsdo13

wx;i  1=jx i � x0
i j, wy;i  1=jyi � y0

i j;14

Solve QP (7.4) s.t. (7.5)) new positions(x i ; yi );15

end16

end17

if new con�guration is not in tabu-listthen18

Determine costc;19

if c < cbest then Save this con�guration and positions as best,cbest  c ;20

if c > cworst then Save this con�guration and positions as worst,cworst  c;21

end22

Change direction;23

end24

if cbest < ccur then Restore best positions and con�guration,ccur  cbest;25

elseRestore worst positions and con�guration,ccur  cworst;26

Append costccur, con�guration, and positions in tabu-list;27

until stopping criterion triggered ;28

Scan tabu-list for best cost) Best positions;29

Put macros to best positions;30

Two details of Tabu Search about the constraint direction optimization are left to cover.
First, the determination of the cost of one con�guration, i.e., of one legal placement. A suit-
able cost is the total weighted Euclidean movement of all macros between the global place-
ment and the legal placement, as described by (7.3) withe�;i = ei . The second and more
interesting detail is how a neighboring con�guration is created. This is done in line 9-17 of
Algorithm 3. Starting from the current con�guration, the direction of one essential constraint
is changed (line 9). All macros are put back to the positions of the current con�guration (line
10). In line 11-17, the neighboring con�guration (i.e., theneighboring legal placement) is
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determined similar to the initial legal placement, as described in Algorithm 2. However, the
constraint directions are created based on the placement now, andconsidering the direction of
the changed essential constraint (line 12). If the changed essential constraint is between the
macrosi andj , then the constraint direction is not chosen based on� x;ij (7.9) and� y;ij (7.9)
(see Section 7.1.3). Rather, the direction is the same as thedirection of the changed essential
constraint. The constraint direction between all other macros is chosen based on� x;ij and� y;ij .

Figure 7.2 demonstrates the hill-climbing abilities of Tabu Search. Here, the cost of the
current con�guration in each optimization iteration is displayed. The cost represents the total
movement of all macros between the global placement and the legal placement, as formulated
in (7.3). Each con�guration is a legal placement. In Figure 7.2, the cost of the initial con�g-
uration is rather high. Then, Tabu Search starts to change the constraint directions. Hence,
the cost sinks over two optimization iterations. In iteration three, the cost increases. Hence, a
“hill” in the cost function is climbed. After the hill, the cost in iteration four is lower. At the
end, the cost increases, and the Tabu Search is stopped. Iteration four represents the best legal
placement.
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Figure 7.2: Minimization of the movement by optimizing the constraint directions with Tabu-Search.

7.1.5 Comparison

Using the linearization weightswx;i andwy;i in combination with some linearization iterations
(see Algorithm 2 and 3), the quadratic program (7.4) s.t. (7.5) minimizes the total linear
movement, i.e., the Manhattan movement (7.2). The quadratic program can be solved for
example with OOQP [GW03]. Instead of using the quadratic program and some linearization
iterations, a similar result (placement) is obtained by thefollowing linear program (LP):

min
NP

i =1
ei (jx i � x0

i j + jyi � y0
i j) (7.11)

LP:
s.t. Ap � b (7.12)
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Here, only the objective (7.11) changed. The constraint (7.12) is similar to (7.5). The linear
program can be solved for example with GLPK [GGL]. This section presents some exper-
imental results demonstrating that using the quadratic program with linearization iteration
gives similar placements, but in lower runtime than using a linear program. The problem with
linear programming is that the absolute movementjx i � x0

i j can not be minimized directly.
Moreover, two auxiliary variablesx i , x i , and four additional constraints are necessary:

min jx i � x0
i j ) min x i � x i s.t. x i � x i x i � x0

i x i � x i x i � x0
i (7.13)

This increases the numbers of variables and constraints in the LP compared to the QP. Thus,
the LP needs more runtime to solve the same problem. Figure 7.3 displays the complexity of
both approaches. Here, a global placement of a circuit with up to thousand macros is legal-
ized. Different numbersN of macros are selected to be legalized, and all the selected macros
are overlapping each other in the global placement. Except some minor glitches for small
N , the quadratic program is always faster (lower runtime) than the linear program. More-
over, the computational complexity of the quadratic program is better than those of the linear
program. Considering the quadratic program, the average-case computational complexity is
�( N 2) for the initial placement. Applying the Tabu Search for optimizing the constraint di-
rections, the complexity is�( N 2:88). Using linear programming, the complexity is�( N 2:55),
and�( N 3:71), respectively.
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Figure 7.3: Runtime versus number of macros. QP: quadratic program, LP: linear program, init:
initial placement, TS: applying Tabu Search for constraintdirection optimization. Based on one global
placement of a circuit with up to 911 macros.

Table 7.2 summarizes detailed results of Puzzle using quadratic programming and using
linear programming. The results are based on the same globalplacement and the same cir-
cuit as used in Figure 7.3, which describes the computational complexity. In the following,
the term “movement” means the total weighted Euclidean movement of all macros between
the global placement and the legal placement, as described by (7.3) with e�;i = ei . Using
quadratic programming, and based on the initial legal placement, Puzzle improves with Tabu
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Search the movement by about 30%. Moreover, the improvementdoes not decline with in-
creasing numbers of macrosN . Hence, the Tabu Search approach is successful. Replacing
the quadratic program and the linearization iteration withthe equivalent linear program gives
about the same results in the movement. However, the runtimeis about factor four higher
then.

Quadratic Program Linear Program
Initial Tabu Search Initial Tabu Search

N CPU Avg CPU Avg Impr CPU Avg CPU Avg
# Macros [s] Mov [s] Mov [%] [s] Mov [s] Mov
20 0.01 25421 1.86 20446 19.57 0.01 25387 1.51 20664
50 0.06 39219 39.04 28207 28.08 0.09 39215 37.63 28811
100 0.22 57541 302.43 39030 32.17 0.48 58175 588.29 39914
150 0.48 64321 926.49 42352 34.16 1.36 64372 3142.14 41022
200 0.72 72653 2063.36 47585 34.50 3.65 73790 6479.32 49644
300 1.88 79369 6791.02 49145 38.08 11.00 83860 32497.50 55960
500 6.77 113492 27044.40 71326 37.15 28.52 120090 timeout n.a.
911 20.29 238151 114673.00 173397 27.19 167.09 232337 timeout n.a.
Average: 1.00 1.00 1.00 1.00 3.86 1.01 2.51 1.03

Table 7.2: Results of Puzzle (with quadratic programming) legalizing one global placement of a circuit
with up to 911 macros. “Avg Mov” means the average Euclidean movementjj � jj2=N (7.3). “Impr” is
the improvement in the movement between initial placement and after applying Tabu Search.

In summary, the results shown in Figure 7.3 and in Table 7.2 demonstrate that using
quadratic programming in combination with some linearization iteration is better than using
the equivalent linear program. Better means the runtime is lower and the total linear move-
ment is equivalent. For circuits with some macros, Tabu Search can be used to improve the
macro movement signi�cantly. However, for circuits with hundred or more macros, Table
7.2 shows that Tabu search is not applicable due to the high runtime. To cope with this, two
approaches can be used. First, not all macros are legalized with Puzzle, but only big macros.
This decreases the numberN of macros, for which Puzzle is applied to. The remaining macros
can be legalized with Tetris [Hil02] (see Section 7.3). The second approach is to stop global
placement when the module overlap is rather low (e.g., 5%), and not at 20% overlap. Based
on such a global placement, the initial decisions for the constraint direction, which are made
based on the global placement, are quite good. Tabu Search will not improve the movement
much here. Thus, Tabu Search needs not be applied, and the initial legal placement is suf�-
cient. However, with more iterations spent in the global placement, global placement takes
more runtime. In addition, in mixed-size circuits, the standard cells are moved farther during
global placement, resulting in a higher netlength. Hence, the second approach in applying
global placement longer is only applicable for circuits, which consist only of macros.
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7.2 Abacus: Standard Cell Legalization

Previous Section 7.1 described Puzzle, a novel approach based on quadratic programming
and Tabu Search to legalize macros. This section describes Abacus, a new method based on
quadratic programming and dynamic programming to legalizestandard cells. In contrast to
macros, standard cells all have the same height, and have to be aligned to the rows of the chip.
In addition, in modern circuits, the number of standard cells is some decades greater than the
number of macros. In Figure 7.4 (a), a global placement of standard cells is displayed. Figure
7.4 (b) shows the legal placement obtained by Abacus.
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Figure 7.4: Global and legal placement for standard cells. The movement of each cell is displayed by
an arrow. The start of the arrow re�ects the position in the global placement, and the end of the arrow
re�ects the position in the legal placement.

In case that the circuit has standard cells and macros, it is assumed that the macros are
legalized �rst, for example by using Puzzle. Furthermore, rows, which are blocked (e.g., by
macros) have to be sliced into new rows, such that all new rowsare not blocked anymore.

Algorithm 4 : Abacus: legalization of standard cells.

Sort cells according to x-position;1

foreach cell i do2

cbest  1 ;3

foreach row r do4

Insert celli into row r ;5

PlaceRowr (trial);6

Determine costc;7

if c < cbest then cbest = c, rbest = r ;8

Remove celli from row r ;9

end10

Insert Celli to row rbest;11

PlaceRowrbest (�nal);12

end13

Algorithm 4 describes Abacus. First, the cells are sorted according to their x-position
(line 1). Then, the cells are legalized one at a time (line 2-13). The legalization of one cell
i is done by moving it over the rows (line 4-10). In each row, thecell is inserted according
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to its x-position in the global placement (line 5). Then, “PlaceRow” (line 6) places all cells
of the row such that their total movement is minimal and they are not overlapping. PlaceRow
is described in the next section. After PlaceRow is called, the cost of the new position of
cell i is determined (line 7), e.g., by the movement of celli between its position in the global
placement and its new position in the current row. At last, the cell i is removed from the
current row (line 9). After the celli is moved over the rows, it is inserted into the best row
(line 11). The best row is the row with the lowest cost (line 8). During the movement of the
cell i over the rows (line 4-10), i.e., during the trial mode, the results of PlaceRow are treated
as temporary positions, which means that the cells are not really moved to these positions.
Hence, the best row needs to be placed again (line 12), and theresults of PlaceRow are treated
as the �nal legal positions. This means, the cells are actually placed to these positions. Since
one cell at a time is legalized, and the cell is placed to the best row, Abacus is a greedy
algorithm. However, already legalized cells within the rows are moved (by PlaceRow), which
improves the total movement.

Different issues should be noted here. First, the sorting ofthe cells according to their x-
position can be done either in increasing order or in decreasing order. Both directions should
be tested because the results of each direction can be different and the best result should
be used. Experiments showed that the difference in the totalmovement between both sort
directions is about0:5%. Another issue is that each cell need not be moved over all rows
of the chip (line 4-10). Rather, each cell is �rst moved to thenearest row (according to the
global position) and then moved above and below this row. Foreach row, a lower bound of
the cost is computed by assuming that the cell is only moved vertically. If the lower bound
exceeds the minimal cost of an already found legal position,then the movement of the cell
over the rows can be stopped. This method limits the movementonly to some rows and
improves the CPU time of legalization drastically. At last,it should be noted that the cells
are inserted into the rows in order of their x-position in theglobal placement. Since the cells
are processed according to their global x-position (line 1,2), inserting a cell into a row means
either to append the cell as the last cell in the row (if sortedin increasing order), or as the �rst
cell (if sorted in decreasing order).

7.2.1 PlaceRow

The core of Abacus is to optimize the total quadratic movement of all cells within one row.
This optimization is called PlaceRow, and it is used severaltimes for each cell during legal-
ization (see Algorithm 4). In the following, PlaceRow is described.

In PlaceRow, it is assumed that the row hasNr standard cells, indexed from1 to Nr . Table
7.1 shows the different properties of one celli . Given is the position (of the lower left corner
of the cell) in the global placement(x0

i ; y0
i ), the widthwi , and the weightei . The weight can

be for example one, the area of the cell, or the number of pins of the cell. The cells in the row
are sorted according to their global x-position, i.e.,x0

i � x0
i � 1. PlaceRow determines the legal

x-positionx i of each cell. The legal y-positionyi is obtained beyond PlaceRow by moving
the cell over the rows (see line 4-10 in Algorithm 4). Based onthese de�nitions, PlaceRow is
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described by the following quadratic program:

min
N rP

i =1
ei [x i � x0

i ]
2 (7.14)

QP:
s.t. x i � x i � 1 � wi � 1 i = 2; :::; Nr (7.15)

The objective (7.14) describes the total, weighted, and squared movement of all cells between
the global positionx0

i and the legal positionx i . Moreover, the objective is convex, since all
weightsei are positive. Furthermore, the objective is similar to (7.1) with N = Nr , e�;i = ei ,
and since all cells in the row have the same y-position,yi = y0

i . The constraint (7.15) assures
that there is no overlap between the cells. In addition, the constraint preserves the relative
order of the cells, i.e., cella is placed left of cellb if a is left of b in the global placement.

The quadratic program of PlaceRow (7.14) s.t. (7.15) is similar to the quadratic program
of Puzzle (7.4) s.t. (7.5). However, PlaceRow does not utilize linearization weights, because
it is called several times for each cell, and using linearization weights would mean to increase
the number of calls. In addition, PlaceRow does not optimizethe constraint direction, but all
constraints between the cells in one row have to be in x-direction.

Similar to the quadratic program of Puzzle, the quadratic program of PlaceRow (7.14)
s.t. (7.15) can be solved with OOQP [GW03] for example. However, solving quadratic pro-
grams with “� ” constraints is time consuming in general. If the same solution of the quadratic
program (i.e., the same legal placement) is found by equality constraints, then the quadratic
program is solved quite fast by solving one linear equation.The situation that equality con-
straints are suf�cient is given if all cells of one row are abutting in the legal placement. There,
two cells are “abutting” if there is no free space between them in the legal placement. With
only equality constraints, (7.15) is transformed to:

x i = x1 +
i � 1X

k=1

wk i = 2; :::; Nr (7.16)

Inserting (7.16) in the objective of (7.14) gives a quadratic function, only depending onx1.
The minimum of this function is obtained by setting its derivative with respect tox1 to zero,
which gives:

N rX

i =1

ei

| {z }
ê

x1 �

"

e1x0
1 +

N rX

i =2

ei

"

x0
i �

i � 1X

k=1

wk

##

| {z }
q̂

= 0 (7.17)

Table 7.3 shows the iterative calculation ofê, ŵ, and q̂, which depends only on given
properties of the cells:x0

i , wi , andei . Executing the iterations up toi = Nr , ê is the total
weight of allNr cells, andŵ is the total width of allNr cells. q̂ is used in (7.17), and gives
the optimal positionx1 of cell i = 1:

ê x1 � q̂ = 0 , x1 =
q̂
ê

(7.18)

Using (7.16), the optimal positionsx i of the remaining cells (i = 2; :::; Nr ) in the row are
determined. At this point, the quadratic program, and thus PlaceRow, is solved based on one
linear equation (7.18) — assuming equality constraints.
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Init Iteration ( i = 1; 2; :::; Nr )

ê = 0 ê  ê+ ei

q̂ = 0 q̂  q̂ + ei [ x0
i � ŵ]

ŵ = 0 ŵ  ĉ + wi

Table 7.3: Iterative calculation.

7.2.2 Implementation by Dynamic Programming

However, the equality constraints, which are used to obtain(7.18), are just allowed for abutting
cells, and not in general for all cells in one row. Therefore,a method is necessary to detect
clusters of cells, where all cells in the clusters are abutting, and the clusters themselves do not
abut. The optimal position of a cluster is found then by solving (7.18) for this cluster. Here it
should be noted that (7.18) is obtained by assuming that all cells i = 1; :::; Nr in the row are
in one cluster. The clustering method, and solving PlaceRowby dynamic programming are
shown in this section. The properties of one clusterc are summarized in Table 7.4.n�rst ;c is
the �rst cell in the clusterc, andnlast;c is the last cell in the clusterc. Nclus;c is the number of
cells in clusterc. xclus;c is the left x-position of clusterc, eclus;c represents the total weight of
the cells in the clusterc, andwclus;c is the total width of the clusterc.

Property Explanation
n�rst ;c First cell of the cluster
nlast;c Last cell of the cluster
Nclus;c Number of cells in the cluster,

Nclus;c = nlast;c � n�rst ;c + 1
xclus;c Optimal position (lower left corner)
eclus;c; wclus;c; qclus;c Values similar to Table 7.3.

eclus;c Total weight
wclus;c Total width
qclus;c=eclus;c Optimal position

Table 7.4: Properties of clusterc.

Algorithm 5 shows the implementation of PlaceRow by dynamicprogramming. The al-
gorithm starts in line 1-13 with iteratively clustering thecells, and determining the optimal
position of each cluster. Here, the cellsi = 1; :::; Nr are processed in increasing order (line 1)
according to their global x-positionx0

i , i.e.,x0
i � x0

i � 1. In other words, the cells are processed
from “left” to “right”. If cell i is the �rst cell, or if it does not overlap with the last cluster (line
3), then a new cluster is created containing the celli (line 4-8). Otherwise, the celli is added
to the last cluster (line 10), and the last cluster is recursively collapsed with its predecessor
cluster (the next left cluster) as long as the clusters are overlapping (line 11, and line 27-36,
respectively). During the clustering, the iterative calculation ofeclus;c, wclus;c, andqclus;c is done
in line 24-26, which is similar to Table 7.3. The optimal position xclus;c of clusterc is deter-
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Algorithm 5 : PlaceRow: places all cells in one row optimally, i.e., with minimal total movement. Solves
(7.14) s.t. (7.15).

// Determine clusters and their optimal positionsxclus;c :
for i = 1 ; :::; N r do1

c  Last cluster;2

// First cell or cell i does not overlap with last cluster:
if i = 1 or xclus;c + wclus;c � x0

i then3

Create new clusterc;4

Init eclus;c ; wclus;c ; qclus;c to zero;5

xclus;c  x0
i ;6

n�rst ;c  i ;7

AddCell(c; i);8

else9

AddCell(c; i);10

Collapse(c);11

end12

end13

// Transform cluster positionsxclus;c to cell positionsx i :
i  1;14

for all clustersc do15

x = xc(c);16

for i � nlast;c do17

x i  x;18

x  x + wi ;19

end20

end21

Function AddCell(c; i):22

nlast;c  i ;23

eclus;c  eclus;c + ei ;24

qclus;c  qclus;c + ei � (x0
i � wclus;c );25

wclus;c  wclus;c + wi ;26

Function Collapse(c):27

// Place clusterc:
xclus;c  qclus;c=eclus;c ;28

// Limit position betweenxmin andxmax � wclus;c

if xclus;c < x min then xclus;c = xmin;29

if xclus;c > x max � wclus;c then xclus;c = xmax � wclus;c ;30

// Overlap betweenc and its predecessorc0?:
c0  Predecessor ofc;31

if c0 existsand xclus;c0 + wclus;c0 > x clus;c then32

// Merge clusterc to c0:
for i = n�rst ;c to nlast;c do AddCell(c0; i );33

Remove clusterc;34

Collapse(c0);35

end36

mined in line 28. This is similar to (7.18). In line 29 and 30, the position of a cluster is limited
such that the left cornerxclus;c is right of the starting positionxmin of the row, and the right
cornerxclus;c + wclus;c is left of the ending positionxmax of the row. In line 14-21 of Algorithm
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5, the optimal positionsx i of all cells are determined based on the optimal positionsxclus;c of
the clusters to which the cells belong. After that, PlaceRow, and the quadratic program (7.14)
s.t. (7.15) are solved.

The described dynamic programming approach for PlaceRow isoptimal in the result, be-
cause the clusters, which are formed during the algorithm, are placed to their optimal posi-
tions (see line 28). Moreover, each cluster consists only ofabutting cells, because a cell (or
a cluster) is clustered with its left neighbor, only if they are overlapping (line 32-35). As a
consequence, the clusters themselves do not abut.

7.2.3 Worst-Case Computational Complexity

The worst-case complexity of PlaceRow is given by the numberof calls to function “AddCell”
(line 22-26). AddCell is called once for each cell (line 8 and10). During recursive collapsing,
AddCell is called overall at mosti � 1 times for cell i (line 33). This extreme situation
represents that all cells are in one cluster at the end. Thus,AddCell is called maximali
times for cell i . AddCell itself has constant runtime. WithNr the number of cells in one
row, the worst-case complexity of PlaceRow is

P N r
i =1 i = O(N 2

r ). Another critical part for
the complexity of PlaceRow is line 18-19. However, this partis executed only once per cell,
which alone would give onlyO(Nr ) for PlaceRow.

Based on the complexity ofO(N 2
r ) for PlaceRow, the worst-case computational complex-

ity of Abacus (Algorithm 4) can be analyzed. WithN the number of cells in the circuit, the
“foreach loop” in line 4-10 of Algorithm 4 is calledN times. WithR the number of rows,
one “foreach loop” hasR cycles. In each cycle, PlaceRow is called. With at mostN̂r cells in
one row, the complexity of PlaceRow is limited byO(N̂ 2

r ). Since all of this is executed in a
nested way, the worst case complexity of Abacus isO(N R N̂ 2

r ).
To obtain a complexity of Abacus, which just depends onN , approximations forR andN̂

are necessary. Assuming that the standard cells are quadratic (same width and height), and the
chip area is also quadratic, the number of rows isR �

p
N . The upper bound for the number

of cells in one row is the samêNr �
p

N . This gives the complexity of Abacus byO(N 2:5).

7.2.4 Average-Case Computational Complexity

Figure 7.5 displays the runtimes of legalizing various circuits with Abacus. N represents
the numbers of standard cells per circuit. The results withN < 106 are based on the IBM-
PLACE 2.0 benchmark suite [YCS02], the other results are based on the ISPD 2005 contest
benchmark suite [NAV+ 05] and on the ISPD 2006 contest benchmark suite [DES]. With the
almost linear average-case computational complexity of�( N 1:19), Abacus can easily cope
with future circuits having an increasingN . Moreover, the worst-case complexity ofO(N 2:5)
shown in the previous section is not reached by experiments.

7.2.5 Comparison

Tetris [Hil02] is similar to Abacus in that the cells are sorted according to their position �rst,
and then legalized one at a time then. Next Section 7.3 presents Tetris. The main difference
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Figure 7.5: Average computational complexity of Abacus.

between Tetris and Abacus is that cells, which are legalizedonce, are not moved anymore in
Tetris. In contrast to this, Abacus applies PlaceRow whenever a cell is moved to a row, and
PlaceRow places all cells within a row such that there total quadratic movement is minimal.
Consequently, Abacus moves already legalized cells duringlegalization. Therefore, the total
movement of the cells during legalization is supposed to be lower in Abacus than in Tetris.
Here, and in the following, movement is determined by (7.3) with e�;i = 1, which means
the movement is the (unweighted) Euclidean movement of the cells between global and legal
placement. Figure 7.6 shows the histogram of the movement. The perfect histogram would be
a peak with a relative frequency of one at a movement of zero, representing that all cells are not
moved. However, the cells in the global placement are overlapping and are not aligned to the
rows. Therefore, the cells are moved during legalization. Compared to Tetris, the histogram
of the movement using Abacus is better, the cells are moved less and the peak is nearer to zero
movement. The average movement is about 30% lower in Abacus than in Tetris.
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7.3 Tetris

In this thesis, there are some references to the legalization approach Tetris [Hil02]. Therefore,
this approach is presented shortly in the following. As Tetris can be used for macros and
for standard cells, the term “module” is used below instead of “macro” or “cell”. Based on
design rules, Tetris assumes that a grid structure exists, which gives a set of available x- and
y-positions. For example, the available y-positions are given by rows, and the available x-
positions are given by the minimum feature size of the technology, which is used to fabricate
the circuit. Algorithm 6 describes Tetris. First, the modules are sorted according to theirx
positions (line 1). Then, the modules are legalized one at a time (line 2-13). The legalization
of one modulei is done by moving the module over the chip according to the available x and y
positions (line 4 and 5). If modulei �ts at the current position(x; y), i.e., the module does not
overlap with already legalized modules, then the cost of this position is determined (line 7).
For example, the cost is the movement of modulei between global placement and the current
position(x; y). Or the cost is the length of the nets adjacent to modulei . After the movement
of modulei over the chip, the module is placed to the best legal position(line 12). The best
legal position is the one with the lowest cost (line 8).

One advantage of Tetris is the simple implementation. One feature of Tetris that can be
viewed as an advantage or as an disadvantage, is that the relative order of the modules is not
preserved. This means, if modulea is left of (or above of)b in the legal placement, then
modulea could have been right of (or below of)bin the global placement. As a consequence,
the legal placement obtained with Tetris can have a lower HPWL netlength than the legal
placements obtained with the previous presented approaches Abacus and Puzzle. However,
both latter approaches preserve the relative order of the modules, and thus preserve the global
placement better than Tetris. The main disadvantage of Tetris is that once a module is le-
galized, it will not be moved anymore. Compared to Abacus, this results in a higher total
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Algorithm 6 : Tetris: greedy legalization.

Sort modules according to x-position;1

foreach modulei do2

cbest  1 ;3

foreachx do4

foreach y do5

if modulei �ts at (x; y) then6

Determine costc;7

if c < cbest then cbest = c, xbest = x, ybest = y;8

end9

end10

end11

Place modulei to (xbest; ybest);12

end13

movement of all modules during legalization (see Section 7.2.5). This, in combination with
not preserving the relative order, results in that the global placement is not very well pre-
served in Tetris. Consequently, the legal placements obtained with Tetris have a higher routed
wirelength than the legal placement obtained with Abacus (see Section 8.3).
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Chapter 8

Experimental Results

This chapter demonstrates the high quality and extremely low runtime of the presented ap-
proaches for global placement, including routability-optimization, and for legalization. The
results of various benchmark suites are shown. All results are legal placements, and all run-
times report the total runtime of the complete placement �ow. To obtain the results, the
following placement �ow is used:

1. Global placements are obtained by “Kraftwerk”.

2. Nets are modeled in global placement by the “Bound2Bound”net model.

3. Routability is optimized during global placement by integrating the routing demand
estimation approach “RUDY” in Kraftwerk.

4. Legalization of global placement is done depending on thecircuit type and on the ob-
jective of placement:

(a) Standard cells in routability-optimized placements are legalized with “Abacus”.

(b) Big macros in mixed-size circuits are legalized with “Puzzle” using Tabu Search.

(c) All macros in the �oorplacement circuits are legalized with “Puzzle” without Tabu
Search. There, �oorplacement means there are about thousands of modules with
various dimensions, the dimensions are all �xed, and the modules have to be
placed overlap-free within a given placement region.

(d) In benchmark suites, where the quality is measured in HPWL netlength and not
in routed wirelength, standard cells are legalized with Tetris [Hil02]. This is done
because Tetris can optimize the HPWL netlength during legalization. However,
the movement of the standard cells is much higher then. Hence, Tetris is not used
for legalization a routability-optimized global placement.

(e) The remaining small macros in mixed-size circuits are legalized with Tetris. This
is done because Puzzle in combination with Tabu Search wouldconsume too much
runtime. Tetris is much faster here, however, the movement of the macros in-
creases.

89
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5. Detailed placement is used to improve the netlength of thelegal placement. A simple
and greedy approach is used here: single modules are rotated, or pairs of neighboring
modules are exchanged. In addition, the modules in each row are placed such their total
HPWL netlength is minimal by using an approach similar to [KTZ99, BV00]. There,
the alignment of the modules to the rows, and the ordering of the modules within the
rows is not modi�ed.

Since global placement is the �rst step in the placement �ow,and determines mainly the
result, the complete placement �ow as presented above will be denoted as “Kraftwerk” in the
rest of this chapter.

All benchmark suites are placed on an AMD Opteron 248 machinewith 8 GB RAM
running at 2.2 GHz. The memory usage of the biggest benchmarkis below 4 GB. On average,
about 80% of the total runtime is spent in global placement. The remaining 20% are spent in
legalization and detailed placement. Moreover, most runtime of global placement is used to
solve the systems of linear equations: (5.46) for x-direction, and a similar one for y-direction.
Since both directions can be solved concurrently, the two CPU cores of the AMD Opteron
could be used, which would give a speedup of almost two. However, to have comparable
runtime, this was not done.

To compare the runtimes with other published runtimes, the runtimes are scaled according
to the SPEC CPU2000 benchmark [Cor]. This scaling factor will be noted as “CPU scaling”
in the following. All HPWL netlengths, and all routed wirelengths are expressed in meters.
The runtimes are denoted by “CPU” and are in seconds.

In all benchmark suites, the chip area of the circuits, and the metrics to measure the qual-
ity of a placer are given. Mostly, the HPWL netlength or the routed wirelength are used as
quality metrics. However, the ISPD 2006 contest benchmark suite [ISP06] uses various qual-
ity metrics, and the most important one considers routability and runtime. Most benchmark
suites were introduced in publications. However, two of them, namely the ISPD 2005 and
2006 contest benchmark suites [ISP05, ISP06], were introduced in two international place-
ment contests, and various academic teams attended these contests. The circuits of the contest
benchmark suites were given by the IBM corporation and represent modern integrated cir-
cuits.

In the following, two key features of Kraftwerk are demonstrated �rst: stability and sup-
port of the engineering change order. After that, results ofvarious benchmark suites are
presented.

8.1 Stability

One important feature of Kraftwerk is the stability of the placement algorithm. A placement
algorithm is stable, if for a small change in the input (i.e.,in the circuit), the output (i.e.,
the placement) changes also just a bit [ANVY05]. Today, small changes in the circuit arise
frequently during the design �ow. After running the whole design process for the �rst time,
important speci�cations like maximal clock frequency are evaluated based on the placed and
routed circuit. Mostly, the speci�cations are not met, and the circuit is modi�ed, for example
by sizing some gates [BJ90], or by inserting buffers [vG90].After these small changes in
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the circuit the design process is restarted and placement isperformed again. These cycles
in the design �ow are executed until all speci�cations are met. To have convergence in the
design �ow, the placement algorithm must be stable and the changes in the placement must
be low. Therefore, stability is as important for a placementalgorithm as giving high quality
placements [ANVY05].

In [ANVY05], different stability metrics are presented. Amongst others, the stability is
measured by the change of the pin positions between two placements A and B. Placement A
is obtained based on the original circuit, and placement B isobtained based on the gate-sized
circuit, i.e., based on the changed circuit. Let(xA

i ; yA
i ) be the position of pini in placement

A, and(xB
i ; yB

i ) be the position of pini in placement B. For each netn 2 N , the geometric
center position is also given,(xA

cn; xA
cn) and(xB

cn; yB
cn), respectively. For one netn with P pins,

indexed from1 to P, the perturbationDn is determined as follows [CS07]:

Dn =
PX

i =1

�
�
�
�xA

i � xA
cn

�
� �

�
�xB

i � xB
cn

�
�
�
� + jjyA

i � yA
cnj � j yB

i � yB
cnjj (8.1)

The perturbationDn is zero, if the pin positions are the same in A and B.Dn is also zero, if
the relative position between the pins and the geometric centers of each net do not change,
i.e.,

�
�xA

i � xA
cn

�
� =

�
�xB

i � xB
cn

�
� . Hence, the lowerDn is, the smaller are the changes in the

placements, and the more stable is the placement algorithm.Considering all nets of a circuit,
the average ofDn can be considered, the root mean square (RMS) ofDn , or the maximum
of Dn . In Table 8.1, these metrics for one test case, and using different placers are presented.
The test case is based on the circuit bigblue1 of the ISPD 2005contest benchmark suite. The
circuit is changed by doubling the width of randomly chosen modules, either of 10% of all
modules, or of 20% of all modules. The results of Morph and Capo are taken from [CS07].
The results in Table 8.1 demonstrate that Kraftwerk is stable, because the perturbation inDn

is very low compared to other placers. Both other placers (Morph and Capo) have a higher
perturbation, which ranges between factor two higher, up tofactor seven higher. Here, it
should be noted that in particular, the placer Morph targetsstability [CS07]. Moreover, other
results than presented in the table below are not available in [CS07].

With the excellent stability of Kraftwerk, this placement approach is suitable to be used
in the everyday design process, and supports best the convergence of the design process and
achieving timing closure.

Change in Kraftwerk Morph Capo
input HPWL Avg RMS Max HPWL Avg RMS Max HPWL Avg RMS Max
10% 101.01 175 1047 413,610 106 634 3590 1,010,000 116 1190 9870 3,490,000
20% 104.02 183 1577 701,873 109 645 3740 1,180,000 120 1200 9080 2,880,000
Average 1.00 1.00 1.00 1.00 1.05 3.57 2.90 2.06 1.14 6.68 7.59 6.27

Table 8.1: Results representing stability. The values in the columns “Avg”, “RMS”, and “Max” repre-
sent the average, root mean square, and maximum in net perturbationDn .
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8.2 Engineering Change Order

The previous section describes that changes in the circuit are part of the everyday design
�ow. The changes arise, because a placed circuit does not meet all speci�cations like max-
imal clock frequency or area consumption. To meet the speci�cation, the circuit is changed
slightly, which is called Engineering Change Order (ECO) inthis section. After ECO, the
circuit needs to be placed again. To speed up the design process, placement is not executed
from scratch, but from a previous given placement. This section evaluates the ECO feature
of Kraftwerk. The experiments are based on the circuit bigblue1 of the ISPD 2005 contest
benchmark suite. In the �rst run, the original circuit is placed, and global placements at dif-
ferent placement iterations are saved. In the second run, the circuit is modi�ed and placed
again, either from scratch, or starting with the saved global placements of the �rst run. The
circuit is modi�ed by randomly choosing 10% of all moduels, and by doubling the width
of these modules. Table 8.2 displays the results of the second run. There, the placement
quality, measured in HPWL netlength, does not change signi�cantly. However, the runtime
(CPU) is decreasing drastically. For example, the runtime is more than 80% lower, if the
modi�ed circuit is not placed from scratch, but from the lastgiven global placement of the
�rst run (given at iteration 25). Thereby, the placement quality changes only by about 0.5%.
Therefore, Kraftwerk supports ECO best, mainly because of the hold force, which decouples
each placement iteration from the previous one. Consequently, the placement process can be
restarted easily at any placement iteration.

Mode HPWL CPU

From scratch 101.01 435
With iteration 5 0.17% -40%
With iteration 10 0.28% -51%
With iteration 15 0.26% -69%
With iteration 20 0.28% -78%
With iteration 25 0.49% -82%

Table 8.2: ECO feature of Kraftwerk. After gate sizing a circuit, the placement process is restarted,
either from scratch, or with a placement of the previous placement run.

8.3 IBM-PLACE 2.0 Benchmark Suite

The IBM-PLACE 2.0 benchmark suite [YCS02] consists of sixteen circuits (ibm03e/h-ibm06e/h
do not exist) with up to 68k modules and 68k nets. The quality of placement is measured in
the routed wirelength and in the number of vias. Hence, this is a routability-driven benchmark
suite. The routing is done with Cadence WarpRoute 2.3.33, and includes �nal routing.

Table 8.3 shows the results of Kraftwerk and of other state-of-the-art placement approaches.
The results of ROOSTER, mPL, and APlace are taken from [RM07], using a CPU scaling of
0.91. Compared to other placement approaches, Kraftwerk offers results with the lowest
routed wirelength and the lowest number of vias. The difference to the other placement ap-



8.3. IBM-PLACE 2.0 BENCHMARK SUITE 93

proaches ranges from 0.4% to 11%. In addition, Kraftwerk is 14 times faster for placement
than ROOSTER. Runtimes of other placers are not available. Moreover, the placements of
Kraftwerk are routed in the lowest runtime. The routing of other placements needs between
40% and 300% more runtime. In addition, all placements of Kraftwerk are routable, i.e., there
are no routing violations. In summary, the results of Table 8.3 demonstrate the ef�ciency of
Kraftwerk using RUDY for estimating the routing demand during global placement, and using
Abacus for legalization.

In Table 8.4, a comparison between Abacus and Tetris for legalization is given. The re-
maining placement �ow of Kraftwerk is not changed. The results shown in the columns “Aba-
cus” are the same as the result shown in the columns “Kraftwerk” in Table 8.3. Compared to
Tetris, Abacus reduces the average movement of the cells during legalization by about 30%,
demonstrating that the global placement is better preserved in Abacus. Consequently, the
routed wirelength, and the number of vias are decreased by about 1% if Abacus is used. Us-
ing Abacus, the runtime of the complete placement process isincreased on average by about
6.6%; with Tetris, the runtime is increased by 0.5%. In summary, Abacus gives better results
than Tetris and increases the runtime not signi�cantly.

Kraftwerk ROOSTER mPL APlace2
CPU CPU

rWL # Vias
CPU CPU

rWL # Vias
CPU

rWL # Vias
CPU

rWL # Vias
Circuit PlaceRout Place Rout Rout Rout
ibm01e 16 297 0.678 118482 246 382 0.718 122873 600 0.718 1230647207 0.790� 158646
ibm01h 15 354 0.673 119710 242 546 0.725 124063 600 0.691 2131626606 0.732� 161717
ibm02e 39 364 1.840 253027 672 546 2.000 256155 600 1.821 250527 491 1.846 254713
ibm02h 32 387 1.977 265587 660 600 1.978 262022 710 1.897 260455 764 1.973 268259
ibm07e 105 551 3.559 469384 1347 710 3.953 4701041147 4.129 492947 928 3.975 500574
ibm07h 102 591 3.601 483191 1314 1037 4.091 4890671420 4.240 5169291255 4.141 518089
ibm08e 132 844 3.993 559984 2096 873 4.231 5590101256 4.372 579926 983 3.960 595528
ibm08h 141 715 3.926 567249 2063 1037 4.240 5778791420 4.280 599467 983 3.960 595528
ibm09e 140 582 2.877 484327 1455 600 3.200 473605 938 3.319 488697 600 3.095 502455
ibm09h 127 493 2.890 487189 1424 600 3.205 4809611037 3.454 502742 655 3.102 512764
ibm10e 175 871 5.660 759409 2312 1146 6.420 7556731638 6.553 7773891256 6.178 782942
ibm10h 169 890 5.692 761935 2292 1419 6.544 7818971801 6.474 7995441529 6.169 801605
ibm11e 172 670 4.319 629705 1920 819 4.746 6134371201 4.917 633640 983 4.755 648044
ibm11h 177 650 4.281 629790 1878 873 4.716 6256541365 4.912 6609851310 4.818 677455
ibm12e 189 1371 8.344 923900 2745 1638 9.333 9303973112 10.1859959211747 8.599 921454
ibm12h 191 1516 8.351 941797 2691 2129 9.282 9425512730 9.724 9769932730 8.814 961296
Average 1.00 1.00 1.000 1.000 14.04 1.36 1.097 1.004 1.92 1.117 1.080 4.04 1.072 1.078

Table 8.3: Results in the IBM-PLACE 2.0 benchmark suite.� means there are some routing violations.
“rWL” is the routed wirelength. “# Vias” means the number of vias.
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Abacus Tetris
CPU Move CPU

rWL # Vias
CPU Move CPU

rWL # Vias
Circuit Leg Route Leg Route
ibm01e 0.79 0.913 297 0.678 118482 0.12 1.073 292 0.680 120198
ibm01h 0.88 1.175 354 0.673 119710 0.21 1.707 361 0.679 121424
ibm02e 2.43 0.721 364 1.840 253027 0.17 0.888 311 1.859 253170
ibm02h 2.06 0.854 387 1.977 265587 0.27 1.296 472 2.056 271696
ibm07e 6.44 0.542 551 3.559 469384 0.46 0.753 584 3.595 473695
ibm07h 8.66 1.000 591 3.601 483191 1.08 1.488 681 3.705 491398
ibm08e 8.75 0.569 844 3.993 559984 0.45 0.752 640 4.038 568458
ibm08h 9.57 0.579 715 3.926 567249 0.52 0.927 732 3.989 573271
ibm09e 9.80 0.618 582 2.877 484327 0.47 0.956 488 2.901 488415
ibm09h 8.73 0.620 493 2.890 487189 0.65 1.009 510 2.932 490594
ibm10e 11.23 0.543 871 5.660 759409 0.65 0.808 898 5.715 764847
ibm10h 11.35 0.542 890 5.692 761935 0.67 0.823 919 5.738 768437
ibm11e 12.52 0.536 670 4.319 629705 0.58 0.794 680 4.348 633766
ibm11h 13.07 0.554 650 4.281 629790 0.73 0.879 723 4.323 633421
ibm12e 11.16 0.535 1371 8.344 923900 0.64 0.748 1211 8.409 930654
ibm12h 11.36 0.541 1516 8.351 941797 0.66 0.794 1371 8.384 941651
Average 6.6%+ 1.000 1.00 1.000 1.000 0.5%+ 1.456 0.995 1.012 1.010

Table 8.4: Results in the IBM-PLACE 2.0 benchmark suite. Comparison between Abacus and Tetris
for legalization. “CPU Leg” is the runtime of legalization.+ means the ratio between the runtime of
legalization and the runtime of the complete placement process. “Move” is the average cell movement
during legalization, normalized to the average cell dimension of each circuit. “rWL” is the routed
wirelength. “# Vias” means the number of vias.

8.4 ISPD 2006 Contest Benchmark Suite

The ISPD 2006 contest benchmark suite was introduced in an international placement contest
[ISP06] and consists of eight circuits with up to 2.5 millionmovable modules. The quality of a
placer is measured based on three parameters: the netlengthin HPWL, the CPU factor and an
over�ow factor. The over�ow factor is zero if the given upperlimit dup for the module density
is respected everywhere on the chip. Thus, the over�ow factor, in combination with a low
dup, should assure routability. The CPU factor is derived from the logarithmic ratio between
the placer's CPU time and the median over the CPU times of all placers, which completed
this benchmark suite. For example, a CPU factor of –4% (+4%) represents that the placer's
CPU time is two times smaller (greater) than the median CPU time. The three parameters are
combined in three quality metrics: HPWL, HPWL+Over�ow, andHPWL+Over�ow+CPU.
The last quality metric considers routability and runtime and was deciding in the placement
contest. In the following, all three quality metrics are normalized to the best values published
in [ISP06].

Table 8.5 shows the detailed results of Kraftwerk. The low over�ow factor of 1.87%
demonstrates that Kraftwerk respects the upper limitdup of the module density very well.
Therefore, the control of the module density (withtd = dup), described in Section 5.11, is
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very effective. The very low CPU factor of –9.35% reveals that runtimes of Kraftwerk are
more than four times smaller than the median runtime. To obtain the CPU factor, the runtimes
of Kraftwerk are scaled in Table 8.6 (a) with 0.86, since the results of [DES] (which are used
for normalization) are based on a different machine.

Table 8.6 summarizes the results of Kraftwerk and of other state-of-the-art placers. The
results of NTUPlace3 are taken from [CJH+ 06], using a CPU scaling of 1.1. The results of
FastPlace3 are taken from [VPC07], and the CPU scaling is 1.2. The results of RQL are taken
from [VNA + 07] with a CPU scaling of 1.2. For other placers, the originalresults [ISP06]
of the placement contest are used. Unfortunately, there areno runtimes available of RQL.
Based on the CPU factor, Kraftwerk is the fastest placer. According to the main quality
metric HPWL+Over�ow+CPU, Kraftwerk is the best placer. NTUPlace3 is the second best
and has a 3.9% higher value in this quality metric. Ignoring the CPU factor and using the
quality metric HPWL+Over�ow, Kraftwerk is the fourth best.NTUPlace3, RQL, and mPL6
are 4.1%, 3.0%, and 2.9% better, respectively. Unfortunately, there are no recent results of
FastPlace3 in HPWL and HPWL+Over�ow available. The same holds true for recent results
of RQL in HPWL+Over�ow+CPU.

In summary, Table 8.6 reveals that Kraftwerk offers excellent results in extreme low run-
time. The same holds true for the original results of Kraftwerk in the placement contest.
The presented results demonstrate the ef�ciency of variousfeatures of Kraftwerk. For ex-
ample, using the Bound2Bound net model to express the HPWL netlength accurately in the
cost function, or using the advanced methods for the module demand and module supply to
prevent halos around large modules and to control the moduledensity.

Score

HPWL
HPWL+
Over�ow

HPWL+
Over�ow+
CPU

Circuit HPWL
Over�ow
factor

CPU
CPU
factor

adaptec5 433.84 3.606% 1618 – 9.35% 1.071 1.032 0.939
newblue1 65.92 0.415% 603 – 8.38% 1.057 1.043 0.956
newblue2 203.91 1.286% 508 – 10.00%� 1.033 1.082 0.975
newblue3 278.51 0.382% 526 – 10.00%� 1.018 1.067 0.961
newblue4 304.24 1.709% 1553 – 8.63% 1.068 1.033 0.945
newblue5 548.38 2.694% 2622 – 9.50% 1.109 1.054 0.957
newblue6 528.59 1.702% 2579 – 9.89% 1.048 1.036 0.936
newblue7 1126.58 3.155% 4828 – 9.06% 1.053 1.051 0.958
Average 1.869% – 9.35% 1.057 1.050 0.953

Table 8.5: Results of Kraftwerk in the ISPD 2006 contest benchmark suite. � As required in this
benchmark suite, the CPU factor is limited to� 10%. The “raw” CPU-factors are –13.50% and –
10.98%, respectively.
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Score

HPWL
HPWL+
Over�ow

HPWL+
Over�ow+
CPU

Placer
Over�ow
factor

CPU
factor

Kraftwerk 1.87 % – 9.35 % 1.057 1.050 0.953
NTUPlace3 6.26 % – 2.61 % 0.976 1.007 0.990

RQL 6.80 % n.a. % 0.981 1.018 n.a.
Fastplace3 n.a. – 8.17 % n.a. n.a. 1.040

mPL6 1.36 % 1.58 % 1.035 1.020 1.040
mFAR 2.71 % – 0.12 % 1.108 1.107 1.108

APlace3 3.83 % 5.31 % 1.097 1.107 1.165
Dragon 0.12 % – 5.90 % 1.331 1.300 1.232
DPlace 9.32 % – 4.54 % 1.343 1.414 1.364
Capo 0.32 % 2.69 % 1.375 1.344 1.385

Table 8.6: Results of various placers in the ISPD 2006 contest benchmark suite.

8.5 ISPD 2005 Contest Benchmark Suite

Similar to the previous presented benchmark suite, the ISPD2005 contest benchmark suite
[ISP05, NAV+ 05] was also introduced in an international placement contest. The suite con-
sists of eight circuits with up to 2.2 million movable modules. The quality of placement is
measured by the HPWL netlength. Routability is ignored completely in this benchmark suite.
Table 8.7 depicts the results of Kraftwerk and other state-of-the-art placers. The results of
NTUPlace3 are taken from [CJH+ 06], using a CPU scaling of 1.1. The results of FastPlace3
are taken from [VPC07], and the CPU scaling is 1.2. The results of RQL are taken from
[VNA + 07] with a CPU scaling of 1.2. The results of other placers aretaken from [KRW05].
Unfortunately, in [KRW05], there are no detailed runtimes published, and no results for the
circuits adaptec1 and adaptec3 are published. On average, Kraftwerk is as good as Fast-
Place3 in netlength, but two times faster. Compared with RQL, Kraftwerk has a 5.38% higher
netlength, but is more than three times faster. Compared with NTUPlace3, Kraftwerk has a
2.2% higher netlength, but is more than three times faster. Relative to APlace2, Kraftwerk has
a 3.5% higher netlength, but is almost fourty times faster. According to the netlength of the
remaining other placers, Kraftwerk is between 2.7% and 30% better. Hence, the results in the
ISPD 2005 contest benchmark suite benchmark show that Kraftwerk is a fast placer, which
offers comparable results in the HPWL netlength. The open question here is how relevant a
low HPWL netlength is, if routability is not considered. In the ISPD 2006 contest benchmark
suite, which is successor of the ISPD 2005 contest benchmarksuite, routability is considered
by setting an upper limit for the module density. Results of the ISPD 2006 contest benchmark
suite are presented in the previous section.
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Kraftwerk FastPlace3 RQL NTUPlace3 APlace2mFAR Dragon mPL5 Capo
Circuit HPWL CPUHPWL CPUHPWL CPUHPWL CPU HPWL HPWL HPWL HPWL HPWL

adaptec1 82.43 262 79.38 353 77.82 751 80.93 883 n.a. n.a. n.a. n.a. n.a.
adaptec2 92.85 349 93.08 559 88.51 1247 89.85 906 87.31 91.53 94.72 97.11 99.71
adaptec3227.22 713 217.802275210.96 2405214.20 1944 n.a. n.a. n.a. n.a. n.a.
adaptec4199.43 709 201.361411188.86 2096193.74 2325 187.65190.84 200.88200.94 211.25
bigblue1 97.67 407 95.68 604 94.98 1160 97.28 1675 94.64 97.70 102.39 98.31 108.21
bigblue2 154.74 559 155.101380150.03 2261152.20 3352 143.82168.70 159.71173.22 172.30
bigblue3 343.322070379.884642323.09 4864348.48 6256 357.89379.95 380.45369.66 382.63
bigblue4 852.404147832.886862797.6612410829.1611308 833.21876.28 903.96904.191098.76

Average 1.000 1.00 1.000 2.00 0.959 3.12 0.979 3.48 0.967 1.028 1.046 1.053 1.126

Table 8.7: Results in the ISPD 2005 contest benchmark suite.

8.6 ICCAD 2004 Mixed-Size Benchmark Suite

The ICCAD 2004 mixed size benchmark suite [ACaR+ 04] consists of eighteen circuits with
up to 200k movable modules. The number of macros is about 400 per circuit. Table 8.8
summarizes the results of Kraftwerk and of other placers in this benchmark suite. Results
of FDP are taken from [VK05b] with a CPU scaling of 1.1. Results of APlace2 and mPL5
are taken from [CJH+ 06] with a CPU scaling of 1.1. Results of NTUPlace3 are taken from
[CJH+ 06], using a CPU scaling of 1.1. Kraftwerk is the fastest placer, ranging from 3.52 faster
than NTUPlace3 up to 24 times faster than APlace2. In the HPWLnetlength, Kraftwerk
is 1.0%, and 5.3% better than mPL5, and FDP, respectively. Compared to APlace2, and
NTUPlace3, Kraftwerk has a 0.5%, and 1.8% higher netlength,respectively. The results in the
ICCAD 2004 mixed size benchmark suite demonstrates that Kraftwerk is a fast placer, which
offers good results. With these results, also the ef�ciencyof different features of Kraftwerk
are shown. Amongst others, using a move force proportional to the module area, the macros
are moved away from the standard cells, and standard cells are moved a small distance during
global placement, which improves the netlength. Using Puzzle with Tabu Search, big macros
are legalized with minimal total movement.

8.7 IBM-HB + Floorplacement Benchmark Suite

The IBM-HB+ �oorplacement benchmark suite [NARM06] consists of seventeen circuits,
and is derived from the same benchmark suite (IBM/ISPD'98) as the ICCAD 2004 mixed
size benchmark suite. However, the IBM-HB+ circuits do not have standard cells, but consist
of about 1000 macros with various dimensions. The dimensions of the macros are �xed,
and the placement area is given. Therefore, this benchmark suite is called “�oorplacement”
in [NARM06, RAPM06]. Since a big part of the placement area isoccupied by just a few
macros, and there is little free space in the placement area,the circuits are considered as hard
instances in [NARM06]. In addition, only results of SCAMPI are available in [NARM06].
Other placers produce invalid placements, in which some macros overlap, or not all macros
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Circuit
Kraftwerk FDP NTUPlace3 APlace2 mPL5

HPWL CPU HPWL CPU HPWL CPU HPWL CPU HPWL CPU
ibm01 2.24 11 2.42 145 2.17 33 2.14 381 2.22 91
ibm02 4.90 27 5.11 284 4.63 63 4.65 872 4.68 264
ibm03 6.61 24 7.08 337 6.65 72 6.71 1015 6.86 300
ibm04 7.63 29 7.69 317 7.21 89 7.57 977 7.69 261
ibm05 9.79 33 n.a. n.a. 9.66 160 9.69 766 10.09 130
ibm06 6.11 40 6.20 389 5.94 95 6.02 967 6.16 520
ibm07 10.42 52 10.57 607 9.90 219 10.00 1296 9.96 692
ibm08 12.97 85 13.30 719 12.29 235 12.50 1484 11.92 1133
ibm09 11.98 71 13.30 713 12.00 213 12.13 1837 13.15 1363
ibm10 30.15 232 30.70 924 28.49 351 28.83 2649 29.36 1654
ibm11 17.59 107 18.41 950 17.54 336 18.67 3814 17.87 1071
ibm12 31.42 124 36.46 1472 32.07 332 33.42 3663 33.43 1419
ibm13 22.48 147 23.60 1175 22.16 536 22.80 3845 22.52 1079
ibm14 35.13 308 37.84 2185 35.36 1274 35.92 4723 34.99 1588
ibm15 47.58 468 47.69 2468 45.38 1251 46.81 5419 50.88 4989
ibm16 54.17 527 61.27 2792 57.59 1595 54.53 6109 55.21 6200
ibm17 66.63 474 69.45 3577 66.73 2123 65.67 6635 66.96 2131
ibm18 42.36 609 44.88 4369 41.58 2874 41.99 10925 43.99 2477

Average 1.000 1.00 1.056 9.02 0.982 3.25 0.995 23.93 1.010 9.67

Table 8.8: Results in ICCAD 2004 mixed size benchmark suite.

are within the placement region. In contrast to this, all placements of Kraftwerk (and of
SCAMPI) are valid. Compared to SCAMPI, Kraftwerk has a 14% better HPWL netlength,
and is about eight times faster. In Kraftwerk, the legalization is done with Puzzle (without
using Tabu Search). Hence, the excellent results of Kraftwerk in this benchmark suite reveals,
amongst others, the ef�ciency of Puzzle. In addition, the results demonstrate that Kraftwerk
is a robust placer, which can even place such hard instances.

8.8 Average-Case Computational Complexity

Figure 8.1 displays the runtimes of Kraftwerk versus the numberN of movable modules. The
results are obtained by placing the ISPD 2005/2006 contest benchmark suites. The average-
case computations complexity is�( N 1:18), and thus nearly linear. Hence, Kraftwerk can
easily cope with future circuits having an increasement inN .
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Circuit
Kraftwerk SCAMPI

HPWL CPU HPWL CPU
ibm-HB+ 01 2.83 10 3.4 68
ibm-HB+ 02 5.88 25 8.0 154
ibm-HB+ 03 9.23 16 9.5 115
ibm-HB+ 04 10.02 18 12.3 158
ibm-HB+ 06 10.76 12 11.0 187
ibm-HB+ 07 14.93 16 15.7 110
ibm-HB+ 08 21.01 22 20.5 207
ibm-HB+ 09 17.50 18 22.2 200
ibm-HB+ 10 45.71 53 55.2 351
ibm-HB+ 11 25.77 23 27.8 159
ibm-HB+ 12 51.29 43 67.6 447
ibm-HB+ 13 34.85 23 42.2 231
ibm-HB+ 14 63.08 42 66.4 295
ibm-HB+ 15 92.36 46 88.2 414
ibm-HB+ 16 95.62 54 106.2 337
ibm-HB+ 17 148.16 99 152.7 424
ibm-HB+ 18 74.44 53 77.8 211

Average 1.000 1.00 1.140 7.99

Table 8.9: Results in IBM-HB+ �oorplacement benchmark suite.
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Figure 8.1: Average-case computational complexity of Kraftwerk.
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Chapter 9

Conclusion

Integrated circuits play an important role in industry, andin our daily life. To cope with
the complexity, and to lower the design time, integrated circuits are designed by computer
algorithms today. This design process is called EDA (electronic design automation), and
consists of several consecutive steps. One key step is the layout synthesis, as it highly affects
the quality of the circuit. Starting from a gate level description, layout synthesis means to
place the modules (placement) and to route the nets (routing). After this, the polygon level is
reached, and the circuit can be fabricated.

This thesis presents novel approaches for all main steps of placement. Each step is driven
by expressing the objective in a quadratic cost function, which can be minimized ef�ciently.
During global placement, netlength and routability are optimized. Legalization then removes
the remaining module overlap of global placement and targets the module movement. The
key features of the placement approaches presented in this thesis are as follows:

� Kraftwerk is a global placer. It is driven by a generic demand-and-supply system, and
utilizes two forces to spread the modules over the placementarea. Both forces are
determined and modeled in a systematic way. As a consequence, Kraftwerk converges
such that the demand is adapted further to the supply in each placement iteration, which
in principle means that the module overlap is reduced in eachplacement iteration.

� Due to the generic demand-and-supply system and the systematic force modeling,
Kraftwerk is versatile, robust, stable, and fast. Versatile, because of the demand-and-
supply system, different placement types are supported (e.g., standard cell circuits,
macro cell circuits, mixed-size circuits, and circuits with �xed modules). Furthermore,
various objectives (e.g., routability) can be considered in addition to minimal netlength.
Kraftwerk is robust, because it successfully places even hard instances of placement,
e.g., placing some big modules in a narrow placement area. Kraftwerk is stable, be-
cause for small changes in the circuit, the changes in the placement are also small.
Kraftwerk is fast, because the runtime is extremely low.

� The Bound2Bound net model enables the accurate representation of the HPWL netlength
in the quadratic cost function. Consequently, the obtainedplacements are excellent in
the HPWL netlength. In addition, experiments on routability-driven placement reveal
that the HPWL metric is a suf�cient estimation of the routed wirelength.
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� RUDY is fast and accurate routing demand estimation approach. It is integrated in the
demand-and-supply system of Kraftwerk, in order to optimize routability of a circuit
during global placement.

� Puzzle is a legalization approach, suitable for macro cell circuits. For each overlapping
macro pair, the overlap is removed either in x or y direction.Initially, the directions are
determined based on a given placement. In addition, Tabu Search is used to optimize
the directions, and thus to reduce the movement of the macrosduring legalization.

� Abacus is a fast and greedy legalization approach, applicable to align standard cells
to a given row structure. Cells within one row are placed by dynamic programming.
Already legalized cells are moved, which reduces the total movement of all cells.

The presented experimental results demonstrate that the described placement approaches
give high quality placements in extremely low runtime. Withan almost linear average-case
computational complexity, the approaches are applicable for future circuits with an increasing
complexity.
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