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Prüfer der Dissertation:
1. Univ.-Prof. Dr.-Ing, Dr.-Ing. habil. R. Friedrich, i.R.
2. Univ.-Prof. Dr.-Ing. habil. N. A. Adams

Die Dissertation wurde am 13.11.2007 bei der Technischen Universität München eingere-
icht und durch die Fakultät für Maschinenwesen am 14.03.2008 angenommen.





Abstract

This thesis reports results from high order accurate direct and large-eddy simulations of
supersonic turbulent flow in pipes, nozzles and diffusers with circular cross-section and
isothermal walls. The focus is on compressibility effects.

In the first part of this thesis, we investigate compressibility effects in turbulent pipe
flows by means of direct and large-eddy simulations at Mach numbers 0.3 and 1.5 and
friction Reynolds numbers 214 and 245 respectively. The supersonic flow produces high
dissipation rates in the near-wall region which results in a large temperature gradient in
this region. Because of the isothermal wall, the mean temperature increases from the
wall towards the core. There is a corresponding reduction in mean density because radial
pressure gradients are negligible in this flow. The near-wall structures in the supersonic
flow show increased streamwise coherence which is a result of an increase in the ratio of
turbulence time scale to that of the mean shear because of the higher density gradients.
Reynolds stress anisotropy is increased in the supersonic case. Streamwise stresses increase
and the other components decrease. This is due to decreased pressure-strain correlations
in the supersonic flow which has been shown in previous studies of supersonic channel
flows to be an effect of reduced mean density.

In the second part of this study, effects of weak mean dilatation on the turbulence
structure are explored with the help of DNS/LES by subjecting a supersonic turbulent
pipe flow to weak favourable/adverse pressure gradients in a nozzle/diffuser. Expansion of
the flow leads to dramatic reduction of turbulence intensities. An analysis of production
terms in the Reynolds stress equations shows that although mean dilatation and extra
strain rates have small sink effects, the mechanism of production due to shear is sub-
stantially affected by acceleration. The reason for this is the reduction of pressure-strain
correlations due to acceleration. Analogous effects are observed in the flow through a
diffuser. Here, the turbulence intensities are amplified. The increase in pressure-strain
correlations is again the major cause of increase of turbulence production. The results
form an extensive database suitable for turbulence modeling.
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Chapter 1

Introduction

Compressible turbulence occurs in nature and in engineering applications. Recent evi-
dences show that supersonic turbulence is important in star formation processes (Low &
Klessen (2004)). In engineering applications, compressible turbulent flows occur in high
speed flight as external flows over the fuselage or as internal flows in jet engines.

Kovasznay (1953) examined the linearized equations for compressible turbulence (at
low rms Mach number) and showed the existence of three basic modes: acoustic, vorticity
and entropy. In the absence of viscous effects and mean shear these modes are independent
of each other. If viscous effects are taken into account, then coupling exists between the
acoustics and entropy modes. If only mean shear is considered, then the vorticity and
acoustic modes are coupled. In the presence of both mean shear and viscous effects, the
three modes are coupled to each other (Blaisdell et al., 1993). The coupling between
the vorticity and acoustic modes in homogeneous shear flows makes them independent of
initial conditions.

Sarkar et al. (1991) studied isotropic turbulence at low turbulent Mach numbers, Mt

and showed that the acoustic mode can be effectively isolated. In such flows, the effects
of compressibility on vorticity is much smaller than that on acoustics (dilatation). The
analysis given in Sarkar et al. (1991) yields a parameter which represents the partition
of internal and kinetic energy of the acoustic mode. It was shown that this parameter
evolves to a constant value of unity which denotes a state of acoustic equilibrium i.e. the
equipartition of kinetic and potential energies of the acoustic mode.

Homogeneous shear flows show inhibited shear layer growth rate (suppression of tur-
bulence) at higher convective Mach numbers. Sarkar (1995) pointed out that the gradient
Mach number, Mg (which is the ratio of an acoustic timescale to that of the mean shear) is
a more important parameter than the turbulent Mach number, Mt (ratio of acoustic time
scale to a turbulence time scale) as an indicator of compressibility effects. The lower value
of Mg in supersonic turbulent boundary layers is responsible for lower intrinsic compress-
ibility effects in such flows than in free shear layers. In this study it was also found that
the reduced growth rate is due to reduced turbulence production and not due to effects
of dilatation fluctuations. In case of high speed shear layers, Pantano & Sarkar (2002)
relate this reduced production to reduced pressure-strain correlations as Mg increases. Re-
duced pressure-strain, reduced pressure fluctuations and suppression of turbulence levels
with increasing Mach numbers have been observed before in plane mixing layers (Vreman
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et al., 1996) and annular mixing layers (Freund et al., 1997). The analysis of a wave
equation for the pressure fluctuations by Pantano & Sarkar (2002) shows both Mg and
Mt to be important parameters determining compressibility. The increase in the ratio of
an acoustic time scale to a turbulent time scale at increasing Mach number inhibits the
pressure-strain correlations by causing a time delay in the passage of pressure signals.

Based on experimental results, Morkovin (1964) concluded that the pressure fluctu-
ations are negligible and the total temperature fluctuations are small in non-hypersonic
boundary layers with adiabatic walls. He derived the following form of strong Reynolds
analogy (SRA) for such flows:

T ′

T̄
= −(γ − 1)M2u′

ū

Since the pressure fluctuations are negligible,

ρ′

ρ̄
≈ −T ′

T̄
= (γ − 1)M2u′

ū

which means that density fluctuations are negligible as long as (γ − 1)M2 remains small
(non-hypersonic flow). These findings are known as ‘Morkovin’s hypothesis’ in the lit-
erature (Bradshaw, 1977). This means that the turbulence structure of non-hypersonic
boundary layers is expected to follow closely that of low-speed boundary layers. In super-
sonic boundary layers as also in supersonic channel flows with heat transfer at the wall,
total temperature fluctuations are not negligible and the SRA relation does not hold. The
pressure fluctuations, however, remain negligible. Simulations of supersonic channel flows
with isothermal walls show increased streamwise coherence (Coleman et al., 1995) and
increased Reynolds stress anisotropy at high Mach numbers Foysi et al. (2004). Dilata-
tion fluctuations are found to be negligible up to M = 3.5. The increased coherence of
streaky structures at higher Mach numbers was found (from the simulations of Coleman
et al. (1995)) to be an effect of mean density variation. Foysi et al. (2004) found that the
pressure-strain correlations are reduced at supersonic speeds leading to higher Reynolds
stress anisotropy. Moreover, solving a Poisson equation for pressure fluctuations using
Green’s functions (and not the wave equation as in shear layers) was found to be suffi-
cient to match the DNS pressure-strain profiles. The observed change in pressure-strain
correlations is attributed to changes in mean density. We expect similar effects in our
supersonic pipe flow simulations.

However, Morkovin’s hypothesis does not cover flows which are under the influence of
favourable and adverse longitudinal pressure gradients. It has been shown in experimental
studies (Spina et al., 1994) of supersonic boundary layers that acceleration/deceleration
leads to decrease/increase of turbulence intensities. These changes in turbulence structure
are far greater than those expected from the extra production terms in the Reynolds stress
equations for such flows. The pressure-strain correlations might also play an important
role in these flows. In this study, we intend to examine these effects by means of direct
and large eddy simulations of supersonic nozzle and diffuser flows with fully developed
supersonic pipe flow at inlet. The nozzle and the diffuser are designed in such a way as
to produce weak, gradual acceleration and deceleration effects respectively.
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Coleman & Mansour (1993) study effects of rapid spherical compression on compress-
ible isotropic turbulence and observe high pressure-dilatation correlation at large compres-
sion rates. Effects of rapid axial compression on compressible, homogeneous turbulence
have been studied by Cambon et al. (1993) using DNS. They found increased pressure-
dilatation correlation at large compression speeds. However, its relative importance com-
pared to the TKE production was found to become smaller with increasing compressibility
(i.e. with increasing Mt). On the other hand, the pressure-strain correlation, which mod-
ifies the Reynolds stress anisotropy and hence TKE production, was found to be larger
than the pressure-dilatation correlation over a wide range of Mach numbers and large com-
pression speeds. Using DNS, Mahesh et al. (1996) study shock/shear flow interactions and
show that the TKE evolution across the shock depends on the upstream anisotropy and
the velocity-temperature correlations. Large amplification of TKE was observed when the
upstream velocity-temperature correlation was negative. All the above-mentioned studies
provide comparisons of DNS with rapid distortion theory (RDT).

However, we did not come across systematic studies of the effects of weak, distributed
pressure gradients on compressible, turbulent boundary layers. Hence, it is our aim to
contribute new findings about effects of weak, distributed dilatation on the turbulence
structure in supersonic nozzles and diffusers using well-established and accurate numerical
methods. The geometry is chosen in such a way as to ensure that an extended region of
constant acceleration/deceleration exists.

We intend to find answers to the following questions in this study of nozzle and diffuser
flows with weak, gradual expansion/compression:

- In what way is turbulence production modified in flows with weak mean dilatation?

- How important is the role of pressure-strain correlations in such flows?

Shock-turbulent boundary layer interaction is another important area of research in
compressible boundary layers. These flows exhibit substantial effects of dilatation fluctu-
ations at high shock intensities. For example, in the DNS of compressible ramp flow by
Adams (2000) at incoming M = 3 the pressure-dilatation correlation at the shock-foot
region is larger than the TKE production by a factor of 2. The oscillatory nature of the
shock wave incursions into the boundary layer is of interest in such flows and investigations
focus on the causes of such oscillations.

Shock trains in supersonic diffusers have been studied experimentally and using RANS
in the past (Matsuo et al., 1999). According to these studies, when the incoming Mach
number exceeds 1.5, a series of weak shocks is produced instead of a single normal shock
because of the presence of the near-wall viscous layer. Thus, the pressure rise in these
flows occurs over a finite length of the diffuser. Time accurate data for such flows are
necessary to study the oscillatory nature of the shock system and compressibility effects,
in general.

We perform LES of a diffuser flow with incoming M = 1.5 where the flow is decelerated
through a weak shock system. This flow shows intrinsic compressibility effects in the form
of dilatation fluctuations. Effects on turbulence production are looked into in proper
detail.



4 CHAPTER 1. INTRODUCTION

The present thesis is organised as follows:
Chapter 2 gives an overview of the numerical method used in this study. DNS and LES
results of compressible turbulent pipe flow are presented in chapter 3 where the focus is
on compressibility effects. In chapter 4, effects of weak mean expansion on turbulence
structure in a supersonic nozzle are looked into. In the first part of Chapter 5, effects
of weak mean compression in supersonic diffusers which in some sense are opposite to
those of expansion in a nozzle are examined. The second part of chapter 5 investigates
the dynamics of weak shock trains in a diffuser.



Chapter 2

Mathematical and numerical
considerations

2.1 Governing Equations

Compressible flows up to low hypersonic Mach numbers, and sufficiently high Reynolds
numbers so that the Knudsen numbers remain smaller than 10−2, are known to obey laws
of continuum mechanics. It is thus possible to describe such flows using conservation of
mass, momentum and energy. A form of such equations in terms of primitive variables such
as pressure, velocity and entropy in generalized non-orthogonal curvilinear coordinates as
proposed by Sesterhenn (2001), are given below.

pt = −ρc

2

[
X+ + X− + Y + + Y − + Z+ + Z−

]
+

p

Cv

[st + Xs + Y s + Zs],

ut = −
√

g11

2

[
X+ −X−]− Y u − g21

2
√

g22
[Y + − Y −]− Zu − g31

2
√

g33
[Z+ − Z−]

+
ξ1
,iξ

l
,j

ρ

∂τij

∂ξl
,

vt = −Xv −
√

g22

2

[
Y + − Y −]− Zv − g12

2
√

g11
[X+ −X−]− g32

2
√

g33
[Z+ − Z−]

+
ξ2
,iξ

l
,j

ρ

∂τij

∂ξl
,

wt = −Xw −
√

g33

2

[
Z+ − Z−]− Y w − g23

2
√

g22
[Y + − Y −]− g13

2
√

g11
[X+ −X−]

+
ξ3
,iξ

l
,j

ρ

∂τij

∂ξl
,

st = −Xs − Y s − Zs +
1

ρT

(
− ξl

i

∂

∂ξl

(
− λξl

i

∂T

∂ξl

)
+ Ψ

)
. (2.1)

The above equations for the evolution of p, u, v, w and s, in which subscripts ’t’ denote
partial derivatives with respect to time, can be solved along with an ideal gas equation

5
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of state, p = ρRT , with constant Cp, Cv and Prandtl number for simplest canonical com-
pressible flows. The dynamic viscosity is assumed to vary with temperature according to
Sutherland’s law: µ ∝ T 0.7. X±, Y ±, Z± can be interpreted as acoustic waves propagat-
ing with velocities u ±

√
g11c, v ±

√
g22c, and w ±

√
g33c; Xs, Y s, Zs are entropy waves

travelling with velocities u, v and w; and Xv,w, Y u,w, Zu,v are vorticity waves propagating
with velocities u, v, w according as the superscripts:

X± ≡ (u±
√

g11c)
[pξ

ρc
± uξ√

g11

]
, Xs ≡ usξ, Xv ≡ u

(
vξ −

g12

g11
uξ

)
,

Xw ≡ u
(
wξ −

g13

g11
uξ

)
, Y ± ≡ (v ±

√
g22c)

[pη

ρc
± vη√

g22

]
, Y s ≡ vsη,

Y u ≡ v
(
uη −

g21

g22
vη

)
, Y w ≡ v

(
wη −

g23

g22
vη

)
, Z± ≡ (w ±

√
g33c)

[pζ

ρc
± wζ√

g33

]
,

Zs ≡ wsζ , Zu ≡ w
(
uζ −

g31

g33
wζ

)
, Zv ≡ w

(
vζ −

g32

g33
wζ

)
.

Although, three dimensional Euler equations do not admit simple wave solutions, a
decomposition of the convective terms as shown above, provides ease of upwinding and
implementation of boundary conditions in the corresponding coordinate directions. u, v, w
are the velocities along coordinates ξ1 ≡ ξ, ξ2 ≡ η, ξ3 ≡ ζ. The viscous stress tensor and
the dissipation rate read:

τij = 2µ
(
sij −

1

3
skkδij

)
, sij =

1

2

(∂ui

∂xj

+
∂uj

∂xi

)
, Ψ = τijsij.

Here, bulk viscosity effects have been neglected.

glm = ξl
,iξ

m
,i and ξl

,i are shorthands for ∂ξl

∂xi
such that ∂

∂xi
= ∂ξl

∂xi

∂
∂ξl where xi are cartesian

coordinates.
Similarly, the contravariant velocities u1 ≡ u, u2 ≡ v, u3 ≡ w can be connected to the

cartesian components through ul = ξl
,iui. From now on, we will denote ξl

,i by kli.
The temporal changes of the cartesian velocity components can be written as:

∂ui

∂t
=

∂xi

∂ξl

∂ul

∂t
.

2.1.1 Cylindrical coordinates

We introduce cylindrical coordinates for a domain of length Lx in the axial direction and
of radius R as follows with the wall-normal tanh stretching taken into account:

x1 = ξLx, x2 =
tanh κζ

tanh κ
R cos 2πη, x3 =

tanh κζ

tanh κ
R sin 2πη.

This is an orthogonal coordinate system where ξ, ζ, η vary uniformly from 0 to 1. Now,
we just need the following connection coefficients between the cylindrical and cartesian
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L = 5D
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x3
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Figure 2.1: Sketch of the computational domain for the pipe flow.

coordinate systems.

k11 =
1

Lx

, k22 = −sin 2πη

2πr
, k23 =

cos 2πη

2πr
,

k32 =
cos 2πη tanh κ cosh2 κζ

κR
, k33 =

sin 2πη tanh κ cosh2 κζ

κR
.

where r = tanh κζ
tanh κ

R.
All other kij are zero and hence only gii, i=1,2,3 are non-zero i.e. this coordinate

system is orthogonal.

2.1.2 Coordinates for nozzle/diffuser simulations

The nozzle/diffuser configuration is computed in a nonorthogonal, quasi-cylindrical co-
ordinate system where the radius is a function of the longitudinal coordinate as written
below :

x1 = ξLx, x2 =
tanh κζ

tanh κ
f(ξ) cos 2πη, x3 =

tanh κζ

tanh κ
f(ξ) sin 2πη.

The connection coefficients are

k11 =
1

Lx

, k22 = −sin 2πη

2πr
, k23 =

cos 2πη

2πr
, k31 = −tanh κζf ′(ξ) cosh2 κζ

Lxκf(ξ)
,

k32 =
cos 2πη tanh κ cosh2 κζ

κf(ξ)
, k33 =

sin 2πη tanh κ cosh2 κζ

κf(ξ)
.
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D = 2R

L = 5D

x2

x3

x1

Figure 2.2: Sketch of the computational domain for the nozzle flow.

where r = tanh κζ
tanh κ

f(ξ) and f(ξ) is function defining the axial radius distribution. Such a
system is nonorthogonal since g13 is nonzero along with gii, i=1,2,3.

f(ξ) is determined in our flow cases using isentropic streamtube equations and spec-
ifying a pressure distribution ensuring that the flow goes through a region of constant
pressure gradient.

2.2 Spatial and temporal discretization

The DNS results are obtained using 5th order compact upwind schemes (CULD, Adams
& Shariff (1996)) for the convective terms and 6th order central schemes (Lele, 1992) for
the molecular terms. Time advancement is done using the 3-stage, 3rd order low-storage
Runge-Kutta algorithm of Williamson (1980). These schemes were used by Foysi et al.
(2004) for supersonic channel simulations as well.

The LES results are obtained using 6th order central schemes (Lele, 1992) for both
convective and molecular transport terms.

2.2.1 LES method

An explicit filtering variant (Mathew et al., 2003) of the Approximate Deconvolution
Method (Stolz et al., 2001) is used for modelling the subgrid scale terms.

The method is explained below with the help of a 1-d nonlinear transport equation:

∂u

∂t
+

∂f(u)

∂x
= 0.

LES implies low-pass filtering:

ū = G ∗ u =

∫
G(x− x

′

)u(x
′

)dx
′

, (2.2)
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which leads to the filtered transport equation:

∂ū

∂t
+

∂f(ū)

∂x
=

∂f(ū)

∂x
−G ∗ ∂f(u)

∂x
. (2.3)

The approximate deconvolution procedure u∗ = QN ∗ ū uses the approximate inverse
QN ≈ G−1 computed using the Van Cittert series (Stolz et al., 2001) truncated at N = 6:

QN =
N∑

n=0

(I −G)n.

I being the identity operator. Equation (2.3) can now be written as,

∂ū

∂t
+

∂f(ū)

∂x
=

∂f(ū)

∂x
−G ∗ ∂f(u∗)

∂x
+ G ∗

[
∂f(u∗)

∂x
− ∂f(u)

∂x

]
, (2.4)

where the last term in the bracket is unknown in an LES and has to be modeled. For a
useful LES, the low wavenumber content of the deconvolved velocity field u∗ should be
close to that of u:

G ∗ u∗ ≈ G ∗ u = ū.

The model u = u∗ gives the LES equation,

∂ū

∂t
+ G ∗ ∂f(u∗)

∂x
= 0.

The integration of this equation involves the following 3 steps:
deconvolution: u∗(n) = QN ∗ ūn

integration: u∗(n+1) ← u∗(n)

filtering: ū(n+1) = G ∗ u∗(n+1)

In a simulation, step 1 follows step 3, so that both steps can be combined:

u∗(n) ← QN ∗G ∗ u∗(n).

Regularization by addition of artificial dissipation is seen to be necessary since the
model problem (LES) does not include the dissipation scales. It is done in the ADM
formulation of Adams & Leonard (1999) and subsequently by Stolz et al. (2001) by adding
a term of the form χ(I −QN ∗G) ∗ ū to the filtered equation. This can be interpreted as
an additional filtering step and approximated by the filter QN ∗G (Mathew et al., 2003).
Thus the procedure of deconvolution and regularization can be combined into a single
step filtering with the filter (QN ∗G)2.

Filters used

In the periodic directions, a one-parameter filter with the following transfer function (see
Mathew et al. (2003)) is used as a primary filter(G),

Ĝ(ω) = (α +
1

2
)

1 + cos ω

1 + 2α cos ω
.
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Figure 2.3: Filter transfer functions for α = 0.2: — G, - - - QN , .. .. QN ∗ G, -.-.-
(QN ∗G)2 with α = 0.2 and N = 6.

Figure 2.3 shows the transfer functions of the primary filter G, its approximate inverse
QN and those of QN ∗G and (QN ∗G)2. QN ∗G and (QN ∗G)2 both decay smoothly to
zero at high wavenumbers which is, of course, what we desire.

In the non-periodic directions explicit filters in physical space following Stolz (2000)
are used for G. For symmetric filters (i.e. for interior points), G has a cutoff wavenumber
ωc ≈ 0.63π on uniform meshes. It should be noted here that we use QN ∗ G in the non-
periodic directions instead of (QN ∗G)2 to avoid extra computation costs. (QN ∗G)2 can
always be interpreted as a filter F which has the desired transfer function.

2.2.2 Axis singularity treatment

The quality of high order accurate finite difference computations in cylindrical coordinates
depends on the treatment of the singularity at the centerline. The axis singularity arises
due to the presence of terms with 1/r factors in the governing equations. To avoid solving
the governing equations at the axis, boundary conditions could be specified there, but this
is not a recommended approach in computing turbulent flows. Freund et al. (1997) solved
the equations at the centerline in cartesian coordinates in order to avoid the singularity.
Another approach is to solve a modified set of governing equations which are not singular
at the axis. One such approach has been recently proposed by Constantinescu & Lele
(2002) which has been applied to study jet acoustics by LES. Careful implementation
of this approach for compressible, fully developed, turbulent pipe flows by the author
of this thesis led to stable DNS computations but there were non-physical grid-to-grid
oscillations (two-delta or sawtooth waves) which called for the use of a high wavenumber
cutoff filter which is not desirable in a DNS.

Instead, we refrain from solving the governing equations at the axis and stagger the
grid points as in Mohseni & Colonius (2000) so that no grid point lies directly on the axis.

A new radial coordinate r1 is defined such that
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Figure 2.4: Physical and computational domains

r1(r, φ) =

{
r if 0 ≤ φ ≤ π
−r if π < φ < 2π

where 0 ≤ r ≤ R. r1 is discretized on a set of nodes rn = (2n+1)∆r
2

, n = 0, 1, 2.....
which avoids placing a grid-point on the axis. The radial derivative is now computed
across a diameter. The sign of this derivative has to be carefully chosen depending on the
azimuthal coordinate φ. An illustration of the physical and computational domains used
for the radial derivative is shown in figure 2.4.

In order to get rid of the artificial time step constraint near the axis which arises due
to the higher grid-point density there in the cylindrical coordinate system, spatial filtering
is applied in this region (0 < r/R < 0.05) in the DNS using a QN ∗G filter similar to that
in figure 2.3 but with a higher cutoff wavenumber ωc ≈ 0.85π.

2.2.3 Parallelisation

The code uses MPI routines for communication between processors. A pipelined Thomas
algorithm involving the use of ’ghost’ cells is used applied, for example, to solve tridiagonal
systems in the periodic direction. Similar ’chained’ algorithms are used for pentadiagonal
systems as well. For the pipe flow simulations, the periodic streamwise and azimuthal
directions are parallelised as described above. For the nozzle flow simulations, a transpose
algorithm is used for computing the derivative in the non-periodic streamwise direction
and the periodic direction is parallelised as in the pipe flow.

In all the computations, no parallelization is used in the radial direction. However,
since we compute the radial derivative along a diameter we must also communicate be-
tween processors which are not neighbours. As illustrated on the right of figure 2.4, the
domain for example is split into 4 processors in the azimuthal direction. So, to compute
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a derivative along r1 one must solve a tri- or penta- diagonal system which spreads across
processor pairs 1,3 and 2,4. To reduce processor idle times, a two-way parallel parti-
tion algorithm for two-processors (Walshaw & Farr, 1993) is used, which is now briefly
explained.

The following linear system needs to be solved.

Ax = d,

where,

A =




b1 c1 h1

a2 b2 c2 h2

f3 a3 . . . 0
. . . . .

. . . . .
. . . . .

. . . . .
0 . . . . hn−2

. . . cn−1

fn an bn




, x =




x1

x2
...

xn


 , d =




d1

d2
...

dn


 .

Now, matrix A is split into two parts i.e. A = TW where

T =




u1 0 0
s2 u2 0 0
f3 . . . . 0

. . . . .
fq sq uq 0 0

0 0 uq+1 sq+1 hq+1

. . . . .
0 . . . . hn−2

. . . sn−1

0 0 un




and

W =




1 v1 w1

0 1 v2 w2

0 . . . . 0
. . . vq−1 wq−1

0 0 1 vq wq

wq+1 vq+1 1 0 0
wq+2 vq+2 1 . .

0 . . . . 0
. . 1 0

wn vn 1




The solution of Ax = d requires now the solution of TWx = d which proceeds as
follows:
Compute ui, si, vi, wi in each processor using A = TW which gives,
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u1 = b1, v1 = c1/u1, w1 = h1/u1,
s2 = a2, u2 = b2 − s2v1,

v2 = (c2 − s2w1)/u2, w2 = h2/u2

and so on....

un = bn, vn = an/un, wn = fn/un,
sn−1 = cn−1, un−1 = bn−1 − sn−1vn,

vn−1 = (an−1 − sn−1wn)/un−1, wn−1 = fn−1/un−1

and so on....
Then, a forward sweep is carried out in each processor starting from the periphery

towards the center in the following way. Compute z from

Tz = d,

z1 = d1/u1, z2 = (d2 − s2z1)/u2,
zi = (di − sizi−1 − fizi−2)/ui, i = 3, 4, ...., q

and

zn = dn/un, zn−1 = (dn−1 − sn−1zn)/un−1,
zi = (di − sizi−1 − fizi−2)/ui, i = n− 2, n− 3, ...., q + 1.

Backward substitution starts using Wx = z in each processor at the first few points
near the center in the following way

xq−1 + vq−1xq + wq−1xq+1 = zq−1,
xq + vqxq+1 + wqxq+2 = zq,

wq+1xq−1 + vq+1xq + xq+1 = zq+1,
wq+2xq + vq+1xq+1 + xq+2 = zq+2.

The above set of linear equations are solved using Cramer’s rule.
Processor pairs 1,3 and 2,4 now exchange the following information which is stored in
’ghost’ cells:

zq−1, zq

zq+1, zq+2.

Backward substitution continues in each processor away from the centerline towards
the periphery:

xi = zi − vixi+1 − wixi+2, i = q − 2, q − 3, .....1
xi = zi − vixi−1 − wixi−2, i = q + 3, q + 4, .....n

Thus there is virtually no idle time for any processor except during the exchange of a
small amount of data near the centerline.

This algorithm has proved to be accurate, efficient and stable in our DNS computa-
tions. The DNS code now performs at nearly 576 Mflops/core on the ALTIX 4700 at the
Leibniz Rechenzentrum in Munich.
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2.2.4 Code coupling for nozzle/diffuser simulation

The nozzle and diffuser simulations are performed using real-time DNS/LES data of fully
developed supersonic pipe flow as inflow . This calls for a coupling of two different versions
of the existing flow solver - one computing the pipe flow and the other computing the
nozzle/diffuser flow, using basic MPI routines. Although coupling of two widely different
existing CFD solvers is still challenging, the problem is simplified in our case by the fact
that the two flow solvers to be coupled are very similar to each other. Thus addition of
a few lines in each code is all we did to achieve our goal. The procedure is similar (but
much simpler in our case) to that described in Schlueter et al. (2002).

The message passing between two separate flow solvers (peer-to-peer message passing)
is very similar to the information exchange between processors in a parallel computation.
MPI COMM WORLD is the communicator which is associated with all the processors
in a computation started with: mpirun N1 ./a.out : N2 ./b.out where N1, N2 are the
number of processors used by the two solver executables a.out and b.out respectively.
Using this communicator for message passing between flow solvers would result in con-
fusion between the two codes. To avoid this, separate communicators should be used
which will be associated with processors dedicated to each solver. This is done in our
case using MPI COMM SPLIT on MPI COMM WORLD to group the processors of each
solver and associate them with a new communicator (intra-communicator). Then message
passing is possible between the processors in the intra-communicator and the remaining
processors of MPI COMM WORLD which belong to the other flow solver. A special
inter-communicator has to be constructed now, which achieves this. This is done using
MPI INTERCOMM CREATE which is a communicator which facilitates message passing
between the intra-communicator and MPI COMM WORLD. So, we see that two similar
solvers can be connected easily by use of only two MPI functions, MPI COMM SPLIT
and MPI INTERCOMM CREATE.

2.2.5 Boundary Conditions

Isothermal, no-slip Wall

The no-slip condition implies ∂ui

∂t
= 0. The isothermal condition implies that ∂T

∂t
= 0

which is interpreted for the primitive variables p and ρ in the following manner.
Starting from a differential form of the Gibbs fundamental relation:

dh = CpdT = Tds +
1

ρ
dp,

and introducing the thermal boundary condition gives:

∂T

∂t
= 0 =

T

Cp

∂s

∂t
+

1

Cpρ

∂p

∂t

or,
∂p

∂t
= − p

R

∂s

∂t
.

Now, from the first of eqn. (2.1) at the wall,
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∂p

∂t
= −ρc

2

[
Z+ + Z−

]
+

p

Cv

∂s

∂t
,

where Z± are the ’waves’ normal to the wall, the expressions of which have been given
before in this chapter.

Solving for ∂p
∂t

and ∂s
∂t

gives,

∂p

∂t
= − ρc

2γ

[
Z+ + Z−

]
,

∂s

∂t
= −R

2c

[
Z+ + Z−

]
.

Z± are computed values and the use of these results in a small temporal drift in wall
temperature. To prevent this, the entropy at the wall is fixed at the beginning of every
time integration sub-step according to:

sw = Cvln(
(RTw)γ

pγ−1
).

Inflow and Outflow conditions

Accuracy of DNS and LES of compressible flows strongly depends on the way the inflow
and outflow are treated. Of particular importance is the treatment of acoustic waves
which should have a possibility to exit the computational domain. For compressible wall-
bounded flows, special treatments are needed for the viscous and heat conduction effects
in the near-wall region.

Since the aim of our nozzle/diffuser simulations is to look at effects of accelera-
tion/retardation on supersonic, fully-developed pipe flow we chose to simulate the su-
personic pipe flow as a separate simulation using streamwise periodicity and to use the
information from this simulation at the inflow of the nozzle/diffuser simulation at every
time step i.e. the two simulations run simultaneously and use a global minimum time
step. The coupling procedure described above is used.

Now, the inflow information could be the primitive variables p, u, v, w, s with either
p or s unspecified to make the inflow transparent to the acoustics. This procedure,
however, leads to instabilities since there is no distinction between boundary conditions
on convective and viscous terms.

Instead, we choose to specify the inflow in terms of characteristics in the same spirit as
Poinsot & Lele (1992) which leads to stable computations with physically plausible results.
In the supersonic region of the nozzle/diffuser inflow plane, we specify the incoming
acoustic, vorticity and entropy waves X+, X−, Xv, Xw, Xs computed from the pipe flow
simulation. In the subsonic region of the inflow, however, the outgoing acoustic wave X−

is not specified and this information comes from the region downstream of the inflow and
thus facilitates removal of acoustics from the computational domain.

The transfer of the characteristics from the pipe flow to the nozzle/diffuser computa-
tions is, however, not enough for the Navier-Stokes equations. For the viscous terms, we
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compute the second derivative in the streamwise direction using the primitive variables
from both the computations, using ghost layers in the nozzle/diffuser computation at the
inflow.

Outflow conditions are only required in the subsonic part of the outflow where informa-
tion can travel upstream. Supersonic regions of the outflow get all the information from
upstream and hence need no boundary condition. The subsonic partially nonreflecting
outflow condition as in Poinsot & Lele (1992) is used here. It consists in weakly specifying
the pressure at the outflow by adding an extra forcing in the axial momentum equation.
The extra information is the acoustic wave which enters the computational domain at the
outflow and brings in information about the ambient pressure pinf .

X− = K(p− pinf )

Poinsot & Lele (1992) provide a way to evaluate the constant K such that the imposed
condition has only a weak influence on the flow,

K = σ(1−M2)c/L

where M is the maximum Mach number in the flow, L is a characteristic domain size, c is
the speed of sound and σ is a constant. In our flow cases, M and c were taken as average
quantities, L as the streamwise domain size and σ = 0.25. pinf is taken to be constant
along the radius in the subsonic regions. This is indeed close to the physics since we will
see that in our nozzle and diffuser flows, the radial variation of pressure in the near-wall
region is negligible. Extra conditions for the viscous terms are specified by setting to zero
the axial derivatives of the transverse shear stresses and the heat flux through the outflow
plane.

∂τ12

∂x1

= 0,
∂τ13

∂x1

= 0,
∂q1

∂x1

= 0

where x1 is a coordinate normal to the outflow plane.
We did not find it necessary to use absorbing layers (Hu (2004)) at the outflow which

provide a mechanism to damp out acoustic waves and prevent spurious reflections back
to the inflow. Since, we have an inflow which is partially transparent to acoustics waves,
we do not need absorbing layers anywhere in the flow.

2.2.6 Some definitions concerning statistics

Its useful at this point to have a look at the definitions of certain statistical quantities in
cylindrical coordinates. Any bulk quantity fb (i.e. bulk velocity) is defined as:

fb =
2

R2

∫ R

0

frdr

where f(r) is the velocity at radius r averaged over the homogeneous directions.
A displacement thickness (δ∗) which is a measure of the mass defect in the viscous

sublayer is defined as:

δ∗(2R− δ∗) = 2

∫ R

0

r(1− u

ucl

)dr
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Similarly a momentum thickness (θ) which is a measure of the momentum defect in
the viscous sublayer is defined as:

θ(2R− θ) = 2

∫ R

0

r
u

ucl

(1− u

ucl

)dr

Here u(r) and ucl are velocities at a radius r and at the centerline respectively, averaged
over homogeneous directions.



Chapter 3

Supersonic turbulent pipe flow

3.1 Introduction

Turbulent flow through pipes with circular cross-section is common in numerous industrial
applications. It is well-known that such flows through circular cross-sections show effects
different from those through rectangular cross-sections. For example, experimental data
(Zaman, 1999) indicate that a round jet spreads less rapidly than a plane jet. In case
of internal flows, Patel & Head (1969) demonstrated that in an incompressible pipe flow,
the mean velocity profile fails to conform to the accepted law of the wall although the
channel flow profiles match the law at nearly the same Reynolds numbers based on the
pipe radius and channel half-width, respectively. This was confirmed by two independent
DNS of incompressible pipe flow (Eggels et al., 1994). They compared their results with
those from DNS of channel flow by Kim et al. (1987) and noted that the turbulence
statistics appear to be less affected by the axisymmetric flow geometry. The wall-normal
fluctuations in the pipe are altered due to a different ’splatting’ mechanism close to the
curved wall.

Besides the incompressible pipe flow with constant density, low Mach number pipe
flows with strong heat transfer have been the focus of a number of studies by Satake et al.
(2000), Xu et al. (2004) and Bae et al. (2006). These studies show that strong heating
of the flow through heat transfer at the wall causes all turbulence intensities to decrease
and lead to laminarization if the heating is strong enough.

Supersonic turbulent pipe flow is a canonical flow case which facilitates the investi-
gation of compressibility effects in wall-bounded flows with circular cross-section since
this flow is statistically steady when the wall is kept at a constant temperature. Com-
plicating effects of shocks can be avoided by maintaining a balance between the mean
pressure gradient driving the flow and the wall shear stress. This flow can be driven by a
homogeneous body force instead of a weak pressure gradient (as in reality) balancing the
friction at the wall, which enables the use of periodicity in the streamwise direction and
hence avoids uncertainties caused by low order effects of inflow and outflow conditions in
a compressible flow.

Supersonic plane channel flows have been studied by several groups in the recent
past in order to ascertain compressibility effects in a wall-bounded flow (see Coleman
et al. (1995), Foysi et al. (2004)). Coleman et al. (1995) were the first to report the

18
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validity of Morkovin’s hypothesis (as formulated in the introduction of this thesis) in a
supersonic channel flow with isothermal wall based on DNS up to a Mach number of 3.
They note enhanced streamwise coherence of streaky structures in the near-wall region
with increasing Mach number which was found to be due to mean property variations.
Lechner et al. (2001) and Foysi et al. (2004) found an appreciable increase in anisotropy in
their supersonic channel flow simulations compared to the incompressible case. This was
shown to be an effect of mean property variations in the supersonic case, which modified
the pressure-strain correlations (Foysi et al., 2004) which are responsible for redistribution
of fluctuating energy among the momentum components.

Now, flow through supersonic pipes with circular cross-section has never been simu-
lated in the past because of uncertainties arising from the treatment of the axis singularity
in a high accuracy, finite difference cylindrical coordinate framework as well as the general
high computational costs involved in simulating a wall-bounded compressible flow using
the full compressible Navier-Stokes equations.

In this study, fully converged statistics from DNS and LES of compressible turbulent
pipe flow with isothermal wall are presented. While the DNS data may be used to test
existing RANS models and develop more elaborate, second order models for compressible
wall-bounded flows as well as a reference dataset for future LES computations, the LES
results show the applicability of explicit filtering as a SGS modelling strategy. Since
the LES have been carried out at sufficient resolution, the results may be used with
confidence to validate SGS models and to develop reliable wall models for compressible
LES simulations.

3.2 Computational Details

The flow and computational parameters are shown in Table 3.1. For the DNS, 256×128×
91 points were used in the streamwise, azimuthal and radial directions while the LES was
carried out with 64× 64× 50 points. Thus the LES uses 16 times coarser resolution than
the DNS. The computational domain is 10R× 2πR×R where R is the pipe radius.

While the DNS computations are carried out at Mach numbers (ratio of bulk velocity
to the speed of sound at wall temperature) of 0.3 and 1.5 in order to assess compress-
ibility effects, LES computations correspond to the supersonic DNS in order to facilitate
validation of the LES methodology. All computations are at constant Prandtl number,
Pr = 0.7; specific heat ratio, γ = 1.4 and viscosity exponent, n = 0.7 (Sutherland’s law,
µ ∼ T n).

The starting field for the subsonic DNS was an incompressible fully-developed pipe
flow field at Reτ = 180. Its use resulted in a shorter transient before the flow converged
to the state M = 0.3 and Reτ = 214.

The DNS code performs at 576 Mflops/core on the SGI Altix 4700 at LRZ, Munich.

3.3 DNS results

In this section we present DNS results from the subsonic and supersonic flow cases which
enables us to ascertain compressibility effects in turbulent pipe flows up to a low supersonic
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Table 3.1: Flow and computation parameters

Case ∆x+ r∆φ+
max ∆r+

min ∆r+
max M Reτ Tw

DNSM0.3 8.3 10.5 1.18 3.26 0.3 214 250
DNSM1.5 9.5 12.0 1.3 3.73 1.5 245 220
LESM1.5 38 21.2 2.5 6.79 1.5 244 220

 210
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 0  5  10  15  20
tuτ/R

Reτ

Figure 3.1: Time history of Reτ for DNS M = 0.3

limit (M = 1.5). We did not perform simulations with higher Mach numbers because
of the huge computational effort involved. Since, near-wall statistics of pipe flow are
qualitatively (and to a large extent, quantitatively) similar to those of channel flow, we
expect to draw analogous conclusions as Coleman et al. (1995), Foysi et al. (2004) who
did simulations up to M = 3.5.

3.3.1 Time history

The time development of Reτ in the DNS of the subsonic flow is shown in figure 3.1 where
the statistics are collected from tuτ/R = 6 onwards.

3.3.2 Energy spectra and two-point correlations

The turbulent kinetic energy spectra and the two-point correlations (TPC) are means to
verify that the resolution and the domain sizes of the computations are properly chosen.
The proper decay of the spectra at high wavenumbers indicates that the resolution is
sufficient to resolve the small scales which arise as a consequence of the nonlinearity of
the governing equations. The proper decay of the TPC indicates that the computational
domain is big enough to capture the large scale flow structures.

Figure 3.2 shows the streamwise energy spectra of the individual velocity components
in the near-wall as well as in the core region of the pipe. The spectra and the wavenumbers
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are normalized using the semi-local friction velocity u∗

τ and the local kinematic viscosity
ν̄ i.e. E∗

u′

iu
′

i
= Eu′

iu
′

i
/(u∗2

τ ) and k∗

x = kxν̄/u∗

τ , where u∗

τ =
√
|τw|/ρ̄. All the spectra decay

satisfactorily by several orders of magnitude, although the low Reynolds number of the
flow leads to deviations from the Kolmogorov −5/3 inertial subrange behaviour even in
the core region where the turbulence is nearly isotropic. The highly anisotropic behaviour
in the near-wall region compared to the core flow is clearly indicated in the spectra. In the
near-wall region the spectra in the supersonic flow decay more rapidly compared to the
subsonic flow i.e. the turbulence structure in the supersonic flow is altered and a different
energy cascade results. Such effects are not seen in the core region. Obviously, the scaling
used, works fine in the core region, but not in the near-wall region where viscous effects
come into play besides mean density effects (mean property variations).

Due to the typical geometry of the flow and due to the cylindrical coordinate system,
it makes little sense to look at the spectra in the azimuthal direction in the core region.
Hence, only the spectra in the near-wall layer are shown (Figure 3.3) for this direction
which again confirms the high degree of anisotropy in this layer and the role of mean
property variations.

Two-point correlations of streamwise velocity fluctuations Ru′

xu′

x
(Figure 3.4) in the

streamwise direction show a slower decay in the supersonic case in the near-wall region
compared to the subsonic case. This indicates increased streamwise length scale associated
with ux in the streamwise direction and hence increased streamwise coherence in this
region as has been observed in the previous studies by Coleman et al. (1995) and Foysi
(2005). A similar slower decay of streamwise correlations is also observed for the azimuthal
and radial components (Figures 3.5(a), 3.6(a)) which again confirms the increased near-
wall streamwise coherence in the streamwise direction for the higher Mach number case.
The fact that figures 3.5(b) and 3.6(b) show nearly identical results is not due to a mistake.
In fact, incompressible DNS of pipe flow by Unger (1994) reveals the same result (fig. 5.40,
page 101).
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Streamwise elongated structures known as ’streaks’ are a universal feature in the near-
wall region of wall-bounded turbulent flows. They occur due to the high shear rate in
this region and consist of alternate high-speed and low-speed regions. The high-speed
regions are formed due to fluid from the outer layers coming into the wall layer leading
to local acceleration, called a ’sweep’ event. Low speed fluid from the near-wall layer is
being constantly ejected into the layers above forming an ’ejection’ event. These sweeps
and ejections are primarily responsible for the radial transport of fluctuating streamwise
momentum and hence the production of turbulent kinetic energy. Similar streaky struc-
tures have also been observed in homogeneous shear layers at shear rates comparable to
those in the near-wall region of a channel flow (Lee et al. (1990)).

The location of the first minimum of the two-point correlation profiles of streamwise
velocity fluctuations in the azimuthal direction indicates half the azimuthal spacing of the
streaks. As shown in Figure 3.7, the first minimum of Ru′

xu′

x
in the supersonic case shows

an appreciable shift towards the right. From this figure, we find that the non-dimensional
streak spacing (normalized with u∗

τ/ν̄) increases from 100 in the subsonic flow to a value
of 140 in the supersonic case. Foysi et al. (2004) observed a similar behaviour in their
supersonic channel simulations. Similar behaviour is also observed in the Ru′

φ
u′

φ
profiles,

but not in the Ru′

ru′

r
profiles (Figure 3.8).

Another consequence of the increased streamwise coherence in the supersonic pipe flow
is the increased anisotropy in the buffer layer (to be shown later in this chapter) which
leads to increased concentration of turbulent kinetic energy in the streamwise component.

3.3.3 Instantaneous fields

A look at the instantaneous fields, especially in the near-wall region is necessary in order
to gain insight into the effects of mean property variation on the turbulence structure in
this region and hence on the turbulence production mechanism.
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We first look at contours of velocity fluctuations at y∗ = 5 (where y∗ = yu∗

τ/ν̄) in a
surface parallel to the wall. Since we use a cylindrical coordinate system, surfaces parallel
to the wall are ’rolled out’ for visualisation purposes. We see the expected ’streaky
structures’ in the streamwise velocity fluctuations with regions of ’high-speed’ fluid (red
contours) coming from a layer further away from the wall (sweep) and ’low-speed’ fluid
(blue contours) coming from a layer close to the wall (ejection). As seen from figures 3.9
and 3.11, the streamwise fluctuations definitely show more organisation in the supersonic
case and the streak spacing is increased. The radial velocity fluctuations (figures 3.9, 3.11)
have the spotty character also known from pressure fluctuations, show more organisation
at the supersonic Mach number. The azimuthal velocity (figures 3.10, 3.12) fluctuations
are also somewhat more organized in the supersonic case.

The elongation of the streamwise streaks can also be observed in a plane normal to
the wall through the axis (Figures 3.13, 3.14). Here, the streamwise fluctuation plots
indicate longer near-wall coherent structures. The inclination of the near-wall structures
with respect to the wall depends on the mean shear rate. The azimuthal fluctuations in
both cases show a preferred orientation (roughly 45 degrees). This was also noticed in
incompressible pipe flow DNS of Unger (1994).

The abovementioned streak modification in the supersonic flow was shown to be an
effect of mean property (density, viscosity) variations by Coleman et al. (1995). They
performed simulations with artificial forcing of the energy equation such that the super-
sonic channel had a constant wall-normal mean temperature (and density) profile. This
flow showed no streak modification in spite of the high Mach number. The variations of
mean property lead to an increase in the ratio of the turbulence time scale to that of the
mean shear and hence to enhancement of the streaky structures.

In the radial fluctuation plots (figures 3.13, 3.14), the blue regions indicate motion to-
wards the center and red regions indicate motion towards the wall. Exact correspondence
can be noticed between the streamwise and radial fluctuations, the low speed regions
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in the streamwise plot correspond to motion away from the wall in the radial plots. It
should be noted that in a cylindrical coordinate system, the azimuthal and radial velocity
component switch signs across the centerline (Unger (1994)). This is clearly evident in
the figures and is not an irregularity due to the axis singularity treatment.

A look at contours of streamwise and radial fluctuations in a plane normal to the axis
and the wall ((φ, r)-plane) is now shown (figure 3.15). Here again we see the alternate
high-speed and low-speed regions in the streamwise fluctuations and the corresponding
regions in the radial component showing sweeps and ejections. The radial fluctuations
underline definitive motions of the fluid from the core towards the wall and vice versa.

The azimuthal component (figure 3.16) in this plane should be viewed together with
the radial and axial components which reveals the ’splatting’ effect (Moin & Kim (1982))
close to the wall. The ’splatting’ effect refers to the net energy transfer from the radial
component to the wall-parallel components much like the impingement of a jet on a
wall. Although, energy is also transferred from the azimuthal component to the radial
component in the near-wall region, the net energy transfer is from the radial to the other
components since the high speed fluid coming to the wall is more energetic than that
leaving the viscous region near the wall towards the pipe center.

Both the plots of azimuthal and radial component in the (φ, r)-plane show the sign
changes across the axis, resulting from the definition of these velocities in the cylindrical
coordinate system. A plot of pressure fluctuations (fig. 3.16) is additionally shown in
order to clarify that we do not have any problems whatsoever with the axis.

3.3.4 Mean profiles

The assumption of constant viscosity and density which holds in channel and pipe flows
(without heat transfer at the walls) in the incompressible limit fails as the Mach number
approaches the supersonic regime. Increased viscous dissipation in the near-wall region
leads to strong gradients in mean temperature (and mean viscosity) - and hence in mean
density since the mean pressure remains almost constant in the wall-normal direction
(Figure 3.17) - which is obvious from averaged continuity and radial momentum equations
after applying streamwise and azimuthal homogeneity. The use of an isothermal boundary
condition at the wall in supersonic pipe flow in order to prevent ’choking’ and to reach
a statistically steady state thus leads to steep gradients in density and temperature close
to the wall. Thus, instead of occurring near the wall as in the adiabatic wall case , the
maxima of temperature and the minima of density occur at the centerline, (Figure 3.17).
This variation in mean density has to be taken into account for near-wall scalings of
turbulence intensities as suggested by Huang et al. (1995), although in the outer layer,
scaling with wall values still holds. In the light of strong mean property variations, we
should now look at local Mach and Reynolds numbers instead of global ones. Figure
3.18 shows M̄ and Re∗τ = ρ̄u∗

τR/µ̄, where u∗

τ =
√

τw/ρ̄. We see that the local Reynolds
number decreases in the supersonic case away from the wall. Near the wall it is higher
than that in the subsonic flow. Thus the increased coherence in the near-wall structures
is a Mach number effect and is not due to reduced domain size measured in terms of wall
units (Coleman et al. (1995)).

As noted in previous studies, mean property variations are the only ’compressibility



3.3. DNS RESULTS 27

Figure 3.9: Instantaneous axial (top), radial (bottom) velocity fluctuations in a (x, φ)-
surface for M = 0.3 at y∗ = 5. Red lines show positive fluctuations.
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Figure 3.10: Instantaneous azimuthal velocity fluctuations in a (x, φ)-surface for M = 0.3
at y∗ = 5. Red lines show positive fluctuations.

effects’ to be taken into account in supersonic flows up to M = 5, where the turbulent
Mach number, Mt and the gradient Mach number, Mg remain subsonic. In the supersonic
pipe flow case at M = 1.5, both Mt and Mg remain in the low subsonic range (Figure 3.19),
so that intrinsic compressibility effects arising from dilatation fluctuations are expected to
be negligible. This can be seen in the magnitudes of compressible dissipation rate (ǫd =
4/3µ̄u′

l,lu
′

k,k) and pressure dilatation correlation, p′u′

l,l (Figure 3.21) which are less than

0.06% and 1% of the solenoidal dissipation rate (ǫs = 1/2µ̄ω′

kω
′

k) respectively along the
pipe radius. However, the mean dilatation plot (Figure 3.20) shows a region of compression
near the wall and a weak expansion over most of the pipe radius. Thus weak non-solenoidal
effects exist in this flow case which was also observed in supersonic channel flows by
Coleman et al. (1995).

The mean streamwise momentum equation in cylindrical coordinates after applying
streamwise and azimuthal homogeneity reads:

−r
∂p̄

∂x
+

∂r(µ̄∂ūx

∂r
)

∂r
− ∂rρu′′

xu
′′

r

∂r
= 0. (3.1)

Integration of (3.1) from 0 to R results in:

∂p̄

∂x
=

2

R
µw

∂ūx

∂r
=

2

R
(−τw).

Integration of (3.1) from 0 to r gives:
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Figure 3.11: Instantaneous axial (top), radial (bottom) velocity fluctuations in a (x, φ)-
surface, for M = 1.5 at y∗ = 5. Red lines show positive fluctuations.
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Figure 3.12: Instantaneous azimuthal velocity fluctuations in (x, φ)-surface for M = 1.5
at y∗ = 5. Red lines show positive fluctuations

Figure 3.13: Instantaneous axial, azimuthal and radial (top to bottom) velocity fluctua-
tions in a (x, r)-plane for M = 0.3. Red lines show positive fluctuations.
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Figure 3.14: Instantaneous axial, azimuthal and radial (top to bottom) velocity fluctua-
tions in a (x, r)-plane for M = 1.5. Red lines show positive fluctuations.

Figure 3.15: Instantaneous axial (left) and radial (right) velocity fluctuations in (φ, r)-
plane at x/Lx = 0.5 for M = 1.5. Red lines show positive fluctuations



32 CHAPTER 3. SUPERSONIC TURBULENT PIPE FLOW

Figure 3.16: Instantaneous azimuthal (left) velocity and pressure (right) fluctuations in
(φ, r)-plane at x/Lx = 0.5 for M = 1.5. Red lines show positive fluctuations.
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−ρu′′

xu
′′

r + µ̄
∂ūx

∂r
=

r

2

∂p̄

∂x
=

r

R
(−τw).

Introducing a coordinate y = (R− r) results in:

ρu′′

xu
′′

r + µ̄
∂ūx

∂y
= (1− y

R
)τw. (3.2)

This is the same form of mean momentum equation as in a channel flow with the pipe
radius R replacing the channel half-width. It describes the linear relation between the
sum of the Reynolds and viscous stresses and the radial (or wall-normal) coordinate.

Equation (3.2) shows that τw is a proper scaling parameter for the Reynolds stress
ρu′′

xu
′′

r away from the wall where the viscous effects are small.

Viscous sublayer

This is the region very close to the wall (i.e. y/R << 1 and y+ < 5) where only viscous
effects are important and the Reynolds stress ρu′′

xu
′′

r is negligibly small. Thus equation
(3.2) now becomes:

µ̄
∂ũx

∂y
= τw

i.e.
µ̄

µw

∂ū+
x

∂y+
= 1 (3.3)

Integration gives the following scaled velocity for the viscous sublayer:

U+
µ :

∫ ūx
+

0

µ̄

µw

dūx
+ = y+ (3.4)

As seen Figure 3.22, this scaling, which takes into account the mean viscosity distri-
bution, collapses the mean velocity profiles in the viscous sublayer (y+ < 5).

Fully turbulent region

Around y+ > 25, the viscous stress becomes negligible in comparison to the Reynolds
stress in equation (3.2).

Using mixing length arguments in the buffer layer (y+ >> 1, y/R << 1) where
Prandtl’s linear law and the outer law are usually matched, we can write,

ρu′′

xu
′′

r = ρ̄(κy)2∂ūx

∂y

∂ūx

∂y
= τw = ρwu2

τ
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Figure 3.22: Viscosity transformed mean velocity, U+
µ for the two Mach numbers. Line

types as in fig. 3.17

and obtain,
√

ρ̄

ρw

dūx
+ =

1

ky+
dy+. (3.5)

Integration gives the Van Driest transformed velocity profile for the buffer layer,

U+
V D :

∫ ūx
+

0

√
ρ̄

ρ̄w

dūx
+ =

1

κ
lny+ + C. (3.6)

Morkovin’s hypothesis is implied in deriving the Van Driest transformed velocity since
supersonic boundary layers are assumed to have a similar length scale distribution in the
wall-normal direction as subsonic ones. As shown in Figure 3.23 this transform brings the
supersonic and subsonic mean velocity profiles closer to each other in the fully turbulent
region.

Brun et al. (2008) have defined an integral wall-normal coordinate based on equation
(3.3) :

yc+ =

∫ y+

0

µw

µ̄
dy+.

This coordinate thus includes only near-wall mean viscosity variation and not the
mean density variation. In the near-wall region, we can now write:

ūx
+ = yc+.
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Figure 3.23: Van Driest transformed mean velocity, U+
V D. Solid line: M=1.5; dashed line:

M=0.3. -.-.-, U+
x at M=1.5. Straight line: u+ = 2.5lny+ + 5.5

In the buffer region, equation (3.5) can be rewritten in the following form which takes
into account viscosity variations,

dūx
+ =

yc+

y+

µ̄

µw

√
ρw

ρ̄

1

κyc+
dyc+.

On integration, we get,

U c+ :

∫ ūx
+

0

y+

yc+

µw

µ̄

√
ρ̄

ρw

dūx
+ =

1

κ
lnyc+ + C1. (3.7)

As seen in Figure 3.24, this transformation works better than the Van Driest trans-
formation in the fully turbulent region.

3.3.5 Turbulence statistics

Rms profiles and Reynolds stresses

Strong gradients in mean temperature and mean density in supersonic pipe flow act as
explicit source terms in temperature and density variance transport equations (Hamba,
1999) and lead to increased density and temperature fluctuations in the buffer layer (Fig-
ure 3.25). Correlation coefficients between a and b are defined as

Rab = a′b′/(armsbrms). (3.8)
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Figure 3.24: Mean velocity using scaling proposed by Brun et al. (2008). Solid line:
M=1.5; dashed line: M=0.3. Straight line: u+ = 2.5lny+ + 5.5

Near the wall, density and temperature show strong negative correlation (≈ −1) which
indicates severe non-isentropic effects (in line with the large viscous effects and heat
transfer in this region) (Figure 3.27). In the core region there are no mean density
and temperature gradients and the positive density-temperature correlation means that
acoustic (isentropic) effects are important here (since isentropic conditions imply T ′ ≈
(γ − 1)ρ′ , which means RρT would be positive). This is also confirmed by strong (≈ 1)
pressure-density correlations in the core and near-zero values near the wall (fig. 3.27).
The subsequent increase of Rpρ as we approach the wall is a consequence of the isothermal
wall boundary condition which suppresses temperature fluctuations and hence gives the
pressure-density correlation more weight.

As seen in Figure 3.25 the fluctuations of density and temperature, normalized with
the corresponding mean values, are small (< 5% of the mean values) which is well within
the limit of Morkovin’s hypothesis. But as discussed in Coleman et al. (1995) and Brad-
shaw (1977), in flows with strong heat transfer at the walls, the ρ

′

criterion for Morkovin’s
hypothesis does not hold. Instead, one should revert back to Morkovin’s original conjec-
ture, that at non-hypersonic Mach numbers, acoustic pressure fluctuations and variations
of total temperature are negligible. Figure 3.26 shows that prms/p̄ << 1 holds, and To,rms

is about 10% of the mean total temperature. The higher total temperature fluctuations
due to strong heat transfer at the wall mean that the ’strong Reynolds analogy (SRA)’
relations suggested by Morkovin based on negligible total temperature fluctuations do
not hold in these cases. Gaviglio (1987), Rubesin (1990) and Huang et al. (1995) have
independently derived a ’modified strong Reynolds analogy (MSRA)’ for non-adiabatic
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Figure 3.25: Rms density and temperature fluctuations. Line types as in fig. 3.24

cases which has the form:

T ′/T̄

(γ − 1)M2u′/ū
≈ 1

c(∂T̄o

∂T̄
− 1)

. (3.9)

Gaviglio chose c = 1 and Rubesin c = 1.34. Using mixing length arguments and assum-
ing equivalence between Reynolds and Favre averaging, Huang et al. (1995) showed that

c ≈ Prt, where Prt is the turbulent Prandtl number defined as Prt = ρu′′
xu

′′
r

∂ eT
∂y

/(ρu′′
rT

′′ ∂eu
∂y

)
Using c = 1 already gives a similar trend as the DNS data in the buffer layer where a
MSRA is expected to perform well, Figure 3.28 (right). Similar results were also reported
by Huang et al. (1995). This means that temperature behaves like a passive scalar near
the wall, with the temperature fluctuations being strongly correlated with those of stream-
wise velocity which is confirmed by high values of velocity-temperature correlations in the
near-wall region, Figure 3.28 (left).

Mean property variations near the wall lead to increased inner layer thickness at higher
Mach numbers. This has to be taken into account while scaling rms velocity fluctuations
near the wall. Huang et al. (1995) have introduced a ’semi-local’ coordinate y∗ = yu∗

τ/ν̄,
where u∗

τ =
√

τw/ρ̄, to do this.

We can relate y∗ and y+ as follows,

y∗ = y+

√
ρ̄

ρ̄w

µw

µ̄
.

Thus this coordinate includes both near-wall density and viscosity variations unlike
yc+ used by Brun et al. (2008) which only includes viscosity variations.

Huang et al. (1995) used u∗

τ to scale rms velocity fluctuations which gives:

u∗

rms =

√
ρ̄

ρ̄w

u+
rms.
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Figure 3.26: Pressure and total temperature fluctuations. Line types as in fig. 3.24
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Figure 3.29 shows u∗

i,rms vs y∗ where the peaks of the supersonic profiles are close to
those of the subsonic ones because of the scaling. However, the peaks themselves show
no such collapse. This means that compressibility affects turbulence anisotropy in such a
way that streamwise velocity fluctuations increase, while azimuthal and radial fluctuations
decrease.

Brun et al. (2008) have used the following scaling of the fluctuations analogous to their
mean velocity scaling,

uc+
rms =

y+

yc+

µw

µ̄

√
ρ̄

ρ̄w

u+
rms.

Figure 3.30 shows uc+
i,rms vs yc+ nearly collapses the streamwise fluctuations, but not

the other components. Moreover, as yc+ does not include near-wall density variations, it
is unsuitable as a coordinate for inner scaling. Instead we choose to use y∗ as an inner
scaling coordinate for the Reynolds stresses.

In figures 3.31- 3.34, we combine outer scaling of the Reynolds stresses with the inner
scaling of the wall-normal coordinate to show the importance of correcting for the higher
viscous layer thickness in the supersonic flow.

As discussed in the previous section, τw continues to be the proper ’outer’ scaling
parameter for the Reynolds stresses away from the wall, where mean property variations
are negligible. This is shown by the perfect collapse of the Reynolds stress profiles in the
outer layer, i.e. y > 0.3, (Figures 3.35 - 3.38).

3.3.6 Reynolds stress budgets

The transport equations of the Reynolds stresses provide a means to understand mech-
anisms which lead to changes in the turbulence structure. Fully resolved, statistically
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Figure 3.31: Streamwise Reynolds stress plotted against the ’semi-local’ wall-normal co-
ordinate. Line types as in fig. 3.24
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Figure 3.33: Radial Reynolds stress, plotted against the ’semi-local’ wall-normal coordi-
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Figure 3.35: Streamwise Reynolds stress, outer scaling. Line types as in fig. 3.24
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Figure 3.36: Azimuthal Reynolds stress, outer scaling. Line types as in fig. 3.24
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Figure 3.37: Radial Reynolds stress, outer scaling. Line types as in fig. 3.24
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converged DNS data enables estimation of individual terms in these equations which can
be used to develop accurate second order turbulence models and more importantly, to
learn new physics. A conservative form of the governing equations in cylindrical coordi-
nates is given below :

∂ρ

∂t
= −

(
∂ρux

∂x
+

1

r

∂rρur

∂r
+

1

r

∂ρuθ

∂θ

)
,

∂ρux

∂t
= −

(
∂ρuxux

∂x
+

1

r

∂rρuxur

∂r
+

1

r

∂ρuxuθ

∂θ

)
− ∂p

∂x
+ Vx,

∂ρur

∂t
= −

(
∂ρurux

∂x
+

1

r

∂rρurur

∂r
+

1

r

∂ρuruθ

∂θ
− ρu2

θ

r

)
− ∂p

∂r
+ Vr,

∂ρuθ

∂t
= −

(
∂ρuθux

∂x
+

1

r

∂rρuθur

∂r
+

1

r

∂ρuθuθ

∂θ
+

ρuruθ

r

)
− 1

r

∂p

∂θ
+ Vθ,

∂e

∂t
= −

(
∂(e + p)ux

∂x
+

1

r

∂r(e + p)ur

∂r
+

1

r

∂(e + p)uθ

∂θ

)

−∂qx

∂x
− 1

r

∂rqr

∂r
− 1

r

∂qθ

∂θ
+uxVx + urVr + uθVθ + Ψ (3.10)

where the symbols have their usual meanings. e is the total energy per unit volume
i.e. the sum of internal and kinetic energies.

Here Vx, Vr, Vθ are the viscous terms in the respective momentum equations given by:

Vx =
∂τxx

∂x
+

1

r

∂rτxr

∂r
+

1

r

∂τxθ

∂θ

Vr =
∂τxr

∂x
+

1

r

∂rτrr

∂r
+

1

r

∂τrθ

∂θ
− τθθ

r

Vθ =
∂τxθ

∂x
+

1

r

∂rτrθ

∂r
+

1

r

∂τθθ

∂θ
+

τrθ

r

qx, qr, qθ are the heat fluxes in the respective directions according to Fourier’s law. Ψ
is the viscous dissipation rate.

The following decomposition of variables into mean and fluctuating parts is used:

u = ũ + u
′′

ρ = ρ̄ + ρ
′

p = p̄ + p
′

τ = τ̄ + τ
′

where f̄ represents Reynolds averaged quantities and the average is taken over homoge-
neous directions x and θ and time (assuming ergodicity). f̃ represents Favre averaged
quantities defined as

ρ̄f̃ = ρf
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The transport equations for the normal and shear Reynolds stress are given below
for fully-developed, non-swirling flow. The following symbols are used: P: Production,
TD: Turbulent diffusion, VD: Viscous diffusion, DS: Viscous dissipation, PS: Pressure-
strain correlations, M: Mass flux variation (Pressure and viscous work), CR: Cylindrical
coordinate redistribution, PD: Pressure diffusion.

∂ρ̄ũ′′

xu
′′

x

∂t
= −2ρ̄ũ′′

xu
′′

r

∂ũx

∂r
P

−1

r

∂rρu′′

ru
′′

xu
′′

x

∂r
TD

+
2

r

∂rτ ′

xru
′′

x

∂r
V D

−2τ ′

xx

∂u′′

x

∂x
− 2τ ′

xr

∂u′′

x

∂r
− 2τ

′

xθ

1

r

∂u′′

x

∂θ
DS

+2p′
∂u′′

x

∂x
PS

+2ū′′

x(
1

r

∂rτ̄xr

∂r
− ∂p̄

∂x
) M (3.11)

∂ρ̄ũ
′′

θu
′′

θ

∂t
= −1

r

∂rρu′′
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′′

θu
′′

θ

∂r
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+
2

r

∂rτ
′

rθu
′′

θ

∂r
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θ
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θ
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θ
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r
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r (
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) M (3.13)
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x(
1

r

∂rτ̄rr

∂r
− ∂p̄

∂r
) M (3.14)

We now look at the individual terms of the Reynolds stress balance equations in
order to find out the reasons for the observed changes in Reynolds stress anisotropy at
the supersonic Mach number. Away from the viscous sublayer, ρu′′

xu
′′

r = (1 − y
R
)τw and

∂fux

∂y
≈ u∗

τ/(κy), so that the production term, P , in the streamwise momentum equation
can be written as

P =
τ 2
w

µ̄κ

(
1

y∗
− 1

R∗

)

This shows that τ 2
w/µ̄ is an appropriate ’inner’ scaling parameter for the terms in the

Reynolds stress transport equation and that y∗ is the proper wall-normal coordinate. This
scaling was used by Foysi et al. (2004) in the case of a channel flow.

Huang et al. (1995) used τwum/R as an ’outer’ scaling for the Reynolds stress budgets.
They found that qw could be used as a scaling for the heat flux term in the k budget and
since an overall energy balance in the channel requires that qw = τwum (i.e. the heat
transfer through the walls is equal to the total pressure work done across the channel.),
they applied this scaling. Figures 3.39- 3.42 show the streamwise, azimuthal, radial and
shear stress budgets, respectively, for the supersonic case in ’outer’ scaling.

Before we discuss the individual terms in the budgets, we should note the differences
between these equations in cartesian and cylindrical coordinates. One of these differences
stems from the centrifugal and coriolis terms in the uφ and ur equations which lead to

extra redistributive terms in the budgets of ρu′′

ru
′′

r , ρu
′′

φu
′′

φ, and ρu′′

xu
′′

r . These are marked

as CR (cylindrical coordinate redistribution terms). They are well behaved in the ρu′′

ru
′′

r

and ρu
′′

φu
′′

φ equations, but in the shear stress equation this term asymptotically increases
near the centerline. This is compensated in this equation by the turbulent diffusion term
(Figure 3.42) which is also not well-behaved near the axis. Similarly, the pressure-strain
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and pressure diffusion terms in the shear stress equation are not well-behaved near the
axis but their sum which is the velocity pressure gradient is well-behaved and plotted
instead. These observations are consistent with those made by Freund et al. (1997) in the
DNS of a compressible, annular mixing layer using cylindrical coordinates.

In the streamwise balance (figure 3.39), the major source term in the buffer layer
(5 < y+ < 60) is the production due to mean shear and the major sink terms are viscous
dissipation and pressure-strain correlation. Near the wall, however, viscous effects are
dominant as shown by a balance between viscous diffusion and dissipation. The pressure-
strain term is redistributive as it acts as a source in both azimuthal and radial equations.
Turbulent diffusion, expectedly plays a role only in the buffer layer. The compressible
mass flux variation term has a small contribution in a region very close to the wall. It
should be noted that the diffusion terms cannot act as a net source or sink since they
integrate to zero over the whole domain.

In the azimuthal balance (figure 3.40), there is no explicit production term. The
pressure-strain term acts as a source in the buffer layer and the only significant sink term
here is the viscous dissipation. Again very close to the wall, viscous diffusion balances
viscous dissipation. The cylindrical coordinate redistribution term (CR) is found to be
negligible.

The radial budget (figure 3.41) shows the velocity-pressure-gradient (VPG) term,
which is the sum of pressure-strain and pressure diffusion terms. The pressure-strain
correlation is the only net source here since the pressure diffusion term integrates to zero
over the volume. The viscous dissipation term is the only major sink. There is no explicit
production due to shear. The turbulent diffusion term has small contributions in the
buffer layer and also in the core region. Again, the cylindrical redistribution term (CR)
has a negligible contribution.

The shear stress budget (figure 3.42) shows explicit production due to shear which is
balanced in the buffer layer by the velocity-pressure gradient term. Turbulent diffusion
contributes again primarily in the buffer layer.

Figures 3.43, 3.44 show the streamwise Reynolds stress budget in ’inner’ scaling with
τ 2
w/µ̄. It is evident that this scaling collapses the production and viscous dissipation

terms for the two Mach numbers, but not the pressure-strain correlation. This means
that the observed increase of streamwise Reynolds stress at the supersonic Mach number
is a consequence of a decreased pressure-strain correlation Πxx, which leads to decreased
redistribution, meaning lower production of the azimuthal and radial stresses. Foysi et al.
(2004) solved a Poisson equation for the pressure fluctuations, neglecting the acoustic
contributions, and using a Green’s function approach. Their results show that the changes
in pressure-strain correlation at higher Mach number can be properly predicted by taking
into account mean density variations.

Figure 3.45 compares the pressure-strain correlations in the streamwise, azimuthal and
radial balances. As expected, in the fully turbulent region, Πxx is balanced by Πφφ and
Πrr. Of particular interest is the region very close to the wall where Πrr acts as a sink in
the radial budget, redistributing energy to the azimuthal component which has a positive
Πφφ in this region. This is due to the ’splatting’ or ’impingement’ effect which produces
a flow pattern similar to a jet impinging on a wall (Moin & Kim, 1982).

The profiles of rms vorticity fluctuations also exhibit this effect, since the wall-normal
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Figure 3.39: Streamwise Reynolds stress balance scaled with τwum/R at M=1.5

vorticity goes to zero near the wall and the wall-parallel components increase in magni-
tude, Figure 3.46. Away from the wall, reasonable isotropy is observed. Also note that
the radial pressure diffusion term balances the negative Πrr in the radial stress budget
close to the wall and hence leads to nearly zero velocity-pressure-gradient term (as shown
in the radial budget).
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Figure 3.40: Azimuthal Reynolds stress balance scaled with τwum/R at M=1.5. Line
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3.4 LES of supersonic turbulent pipe flow

LES of compressible flows with implicit SGS models is particularly attractive because
there is no need to model the unknown SGS terms separately in the filtered governing
equations.

One way of doing this is to use a Leray-type formulation which consists of convection
by a smoothed velocity field. For example, Geurts & Holm (2003) have derived such a
form of LES equation which is closed by a similarity type model using an explicit filter
and its inverse without using eddy viscosity type models.

Explicit filtering is also central to approximate deconvolution approaches applied to
shock capturing by Stolz (2000), Loginov et al. (2006). Here, the subgrid scales are recon-
structed from the resolved fields (like in a scale similarity model) using an approximate
inverse of the explicit filter. The approximate inverse is computed using a Van Cittert
series expansion approach which gives a linear deconvolution operator. It is to be noted
here that the deconvolved variables can only contain scales up to the limit which can
be resolved by an LES grid and it is not meant to account for the dissipation scales.
The effect of the dissipation scales on the resolved ones has to accounted for. Additional
regularization terms were used to provide extra dissipation to mimic the effects of energy
transfer across the cutoff (Stolz, 2000).

A single step explicit filtering variant of the deconvolution approach has been recently
used to simulate compressible channel flows (Mathew et al., 2003). Here, the additional
regularization is provided by an extra filtering step. This approach is used to obtain
the results shown in this section and is detailed in chapter 2. Similar explicit filtering
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approaches have been used to predict noise radiated from a round jet by Bogey & Bailly
(2006).

Another way to dampen the energy at high wavenumbers is to use the dissipation of
numerical schemes. Such approaches originally known as MILES have been applied to
high Reynolds number flows by adjusting dissipative, shock capturing schemes (Fureby
& Grinstein, 2002) and thereby exploiting the interference between truncation error of a
discretization scheme and the SGS stress. Recently, Hickel et al. (2006) adapted the linear
deconvolution approach of Stolz (2000) in the spirit of MILES to a nonlinear deconvolution
procedure using local polynomials for interpolation. However, uncertainties still persist
regarding the dampening effects on the resolved scales when shock capturing schemes are
used, Garnier et al. (1999).

In this section the unfiltered DNS results of the supersonic pipe flow simulations are
compared to the corresponding LES data.

Figure 3.50 compares the streamwise and azimuthal spectra of LES and DNS data.
The streamwise spectra are shown for all the velocity components and are averaged over
the azimuthal and wall normal directions. The azimuthal spectra are shown only for
the streamwise velocity component at y∗ = 10 and are averaged over the streamwise
direction. Remarkable agreement between the DNS and LES results are noticed in the
resolved wavenumber range for all the velocity components (and hence TKE) for the
streamwise spectra. Similar good agreement is also shown by the azimuthal spectra of
the streamwise component.

The instantaneous streamwise velocity fluctuations (fig. 3.47) in a plane parallel to
the wall at y∗ = 5 show alternate high and low speed streaks. Thus, physical near-wall
dynamics are reflected in the LES data. However, compared with the DNS data only
the large structures are found, which is expected, given the general low resolution of an
LES. The wall-normal fluctuations show more organisation than in the DNS data which
indicates that the LES is not able to predict the anisotropy correctly in this region. Similar
observations are made of axial and radial velocity fluctuations in (x, r)- and (φ, r)-planes,
see figures 3.48 and 3.49.

Mean temperature and density profiles (Figure 3.51) show marginal differences with
the DNS data. The LES predicts a lower mean temperature. Mathew et al. (2006)
presented improved results using no secondary filtering for regularization but a computa-
tionally expensive model of the terms in the bracket of equation (2.4). Such a procedure
has not been used here because of its computational overhead. The rms temperature and
density fluctuations, however, show good agreement with DNS results, Figure 3.52.

A look at the rms velocity fluctuations shows marginal differences between the LES
and the DNS data in the buffer layer, Figure 3.53. The streamwise fluctuations are higher
than the DNS data and the azimuthal and radial fluctuations are lower. This is also
evident in the Reynolds stress profiles, Figure 3.54, 3.55. Here, only the streamwise and
shear stresses are compared in outer scaling. Evidently, a form of SGS modelling which
automatically takes care of local anisotropy of the flow is required.

The LES provides good predictions of terms in the Reynolds stress budgets, as seen in
Figures 3.56, 3.57 for the streamwise component in semi-local, inner scaling. Terms like
production due to shear and the pressure-strain correlations, which are largely governed by
large-scales, follow the DNS curves closely. This confirms that the large scale flow features
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of the LES mimic the DNS properly. Differences are seen only in viscous dissipation,
viscous diffusion and turbulent diffusion terms which are controlled by small scales.

3.5 Conclusions

Compressible fully developed flow through a pipe with circular cross-section and with an
isothermal wall has been studied in a cylindrical coordinate system by means of DNS and
LES using high order finite difference schemes. The Mach numbers for the flows studied
are 0.3 and 1.5. These flows thus provide an opportunity to investigate compressibility
effects in the absence of complicating effects like those due to shock waves.

Compressibility effects in a pipe flow manifest themselves as changes in turbulence
anisotropy. Similar to a plane, compressible channel flow such effects originate from mean
property variations caused by increased dissipation in the supersonic flow. Intrinsic com-
pressibility effects are negligible. Morkovin’s hypothesis holds for most statistics of the
flow and hence the Van Driest transform can be used for the mean velocity. A scaling using
local mean density and viscosity nearly collapses the peak locations of the velocity fluctua-
tions but not their peak magnitudes. The supersonic pipe flow shows increased coherence
of streaky structures in the near-wall region compared to incompressible flow which has
been shown to be an effect of density variations resulting in an increase in turbulence
time scales compared to that of the mean shear. Reynolds stress anisotropy is increased
in the supersonic pipe flow, which is a result of decreased pressure-strain correlations. As
was shown in previous studies on supersonic channel flows, mean density decrease with
increasing Mach numbers leads to the decrease of pressure-strain correlations and thus
leads to increased Reynolds stress anisotropy.

A further conclusion from this study is the applicability of explicit filtering to com-
pressible pipe flows as has been demonstrated by the good agreement of the LES statistics
with those from the DNS. This LES procedure does not properly take into account local
anisotropy of the velocity field which is reflected in the streamwise Reynolds stress over-
shooting the corresponding DNS result. However, terms in the Reynolds stress transport
equations like production and pressure-strain which are governed mainly by large scales
are predicted properly in the LES. It should also be kept in mind that this LES procedure
mimics the effects of unresolved scales by means of regularization by an extra filtering step
and hence we see differences in prediction of terms like viscous dissipation and turbulent
transport by the LES when compared to DNS data.
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Figure 3.47: Instantaneous axial (top) and radial (bottom) velocity fluctuations in (x, r)
plane for M = 1.5 at y∗ = 5. Red lines show positive fluctuations
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Figure 3.48: Instantaneous axial and radial velocity fluctuations in (x, r)-plane for M =
1.5. Red lines show positive fluctuations

Figure 3.49: Instantaneous axial and radial velocity fluctuations in (φ, r)- plane for M =
1.5. Red lines show positive fluctuations
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Chapter 4

Supersonic turbulent nozzle flow

4.1 Introduction

Compressibility effects in supersonic parallel, wall-bounded flows manifest themselves
essentially as strong variations in mean density and temperature (and hence viscosity)
normal to the walls, as long as the turbulence intensities remain small compared to the
speed of sound. This means that in flows in which Mt is low, Morkovin’s hypothesis holds
and these flows could be treated like incompressible flows with heat transfer. Intrinsic
compressibility effects due to dilatation fluctuations and pressure fluctuations remain
negligible in these cases.

However, compressible wall-bounded flows with significant favourable and adverse
pressure gradients and extra strain rates are not covered in Morkovin’s hypothesis. Mean
dilatation or compression in these flows are known to cause effects greater than expected
from the magnitude of extra production terms which appear in Reynolds stress equations,
as was noted by Bradshaw (1974), who appropriately considered such flows to be complex
flows. Particularly interesting in such flows is the role of the pressure-strain correlations
which, besides turbulence production due to shear, mean dilatation and extra rate of
strain, constitutes another important source/sink mechanism. A recent review of mainly
experimental results of supersonic boundary layers under the influence of pressure gradi-
ents can be found in Spina et al. (1994), where these authors note that favourable pressure
gradients cause a decay in turbulence intensities, while adverse pressure gradients cause
an increase. They also observe that these kinds of supersonic flows exhibit counterintu-
itive behaviour when compared to their subsonic counterparts. Changes in density in the
longitudinal direction result in variations of skin friction and boundary layer thickness
which cannot be predicted based on similar subsonic flows.

Although, bulk expansion leads to decrease in turbulence intensities, the importance of
these effects does, of course, depend on the magnitude and rate of expansion. Dussauge &
Gaviglio (1987) study a supersonic boundary layer subjected to a rapid expansion and find
that the rapid parts of the pressure-strain correlations are modified. The Reynolds stress
evolution in the expansion zone is mainly affected by bulk dilatation production terms (i.e.
part of kinetic production) and to a lesser extent by mean pressure gradient production
terms (enthalpic production). They show that in the case of a rapid distortion with mean

dilatation only, the variable ũ′′

i u
′′

j /ρ̄
2/3 remains constant along a mean streamline.

64
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We are, here, interested in flows which are under the influence of nearly constant,
weak distributed pressure gradients where the effects of streamline curvature are negligi-
ble. These flows which may not fall under the rapid expansion category, however, occur
frequently in nature and industry.

Incompressible boundary layers and channel flows also laminarize under the influence
of strong, favourable pressure gradients (Narasimha & Sreenivasan, 1973), (Greenblatt
& Moss, 2004). However, strictly incompressible flows with no heat transfer do not have
density variations and hence no mean dilatation. The decrease in turbulence intensities in
this case is due to extra sink terms in the Reynolds stress transport equation containing the
acceleration. The vortex stretching mechanism exclusively controls the levels of vorticity
in such flows.

High Mach number, accelerated flows will contain explicit mean dilatation effects and
mean dilatation and baroclinic terms can become important sources/sinks of vorticity, as
already noted in Spina et al. (1994). Such flows are analogous to strongly heated low-
speed pipe flows which also show mean dilatation effects because of density variation (Bae
et al. (2006)).

While examining the literature, we noted a lack of time-accurate, high resolution nu-
merical data of compressible channel/pipe flows under the influence of pressure gradients.
Hence, it is our aim to report new, useful results from high-order, time accurate simula-
tions of this kind of flows. The flow configurations chosen to achieve this are smoothly
contoured nozzles and diffusers with small total divergence and convergence angles.

4.2 Computational details

In this chapter, results are presented from DNS and LES of a fully-developed supersonic
pipe flow subjected to a weak, favourable pressure gradient in a nozzle. The incoming
flow is at M = 1.5 and Reτ = 245 inside a pipe of constant radius R and length 10R.
The nozzle flow has the same inlet radius as the incoming pipe flow and a length of
10R. The wall is kept at the same temperature (as the upstream pipe) throughout the
expansion in order to focus only on the effects of expansion on the turbulence structure.
The resolution used for the DNS is 256×128×91 and for the LES 64×64×50 points in the
axial (x), azimuthal (φ) and radial (r) directions, respectively. The area distribution of
the nozzle is generated using isentropic streamtube equations ensuring a region of nearly
constant, weak favourable pressure gradient and negligible streamline curvature effects.
The maximum divergence angle at the exit of the nozzle is 10 degrees.

The continuity and momentum equations for an isentropic streamtube can be written
as:

ρV A = constant,

ρV
dV

dx
= −1

ρ

dp

dx
.

We specify a static pressure distribution such that dp
dx

is constant. Then, using the
stagnation conditions at the inflow and assuming isentropic flow, we can get the density
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Figure 4.1: Axial velocity fluctuations (DNS), normalized with uτ (x/L = 0), in a (x, r)-
plane of the nozzle.

distribution. The momentum equation is then solved using a forward Euler finite differ-
ence approximation. Finally, the continuity equation is used to get the area distribution.

4.3 Instantaneous fields

Plots of the instantaneous axial velocity fluctuations clearly indicate the reduction in
turbulence activity as we go downstream along the nozzle axis. Particularly, in figure
4.1, the near-wall ejection activity is dramatically reduced after about 70% of the nozzle
length (L). This plot clearly indicates that the acceleration is gradual which is desired.
The plots in a plane normal to the axis, emphasize the changes in the near-wall structure
as we move downstream. For example, between x/L = 0.1 and x/L = 0.5 (figure 4.2) we
notice a significant reduction of small-scale activity near the wall. This trend continues
at x/L = 0.88 (fig. 4.3) where we see only large-scale turbulence activity. Please note
that even at x/L = 0.88, the flow is not laminar- it shows a state of strongly attenuated
turbulence.

4.4 Azimuthal spectra

The spectra of axial velocity fluctuations in the azimuthal direction (Figure 4.4) in the
near-wall region show reduced energy at all wavenumbers in the DNS (as we move down-
stream) which indicates reduced turbulent activity in the buffer layer during the ex-
pansion in the nozzle. It should be noted that local density and viscosity are used to
non-dimensionalize the spectra and wavenumbers.

4.5 Mean Profiles

The magnitude of acceleration can be judged from the value of the Clauser parameter
β = δ∗

τw

dp̄
dx

which becomes relatively steady at a value of −1.6 after an initial transient



4.5. MEAN PROFILES 67

Figure 4.2: Axial velocity fluctuations (DNS), normalized with uτ (x/L = 0), in a (r, φ)-
plane of the nozzle. Left: x/L = 0.1, right: x/L = 0.5

Figure 4.3: Axial velocity fluctuations (DNS), normalized with uτ (x/L = 0), in a (r, φ)-
plane at x/L = 0.88
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(Figure 4.5). This weak acceleration leads to a gradual increase of bulk velocity up to
about 40% of the incoming value.

Centerline distributions of mean pressure, local Mach number, mean density and tem-
perature show close agreement with the solutions of isentropic streamtube equations (Fig-
ure 4.6). This means that as expected from one dimensional, inviscid analysis of flows
dominated by expansion, non-isentropic effects are negligible in regions where frictional
effects are small, like in the core region of this flow. The flow accelerates from a local
Mach number of 1.5 to around 2.3 (at the end of the nearly constant acceleration region).
Figure 4.6 also shows the axial variation of the nozzle cross-section.

Radial pressure gradients remain small in this flow as in the incoming supersonic pipe
flow. This is clearly evident from the plots of wall and centerline pressure, in which
the wall pressure profile follows closely that of the centerline (figure 4.7). The weak
oscillations which appear in the centerline pressure profile when the flow first encounters
the expansion are damped in the near-wall region. The wall shear stress first increases
at the beginning of the acceleration and then shows a slow decrease (figure 4.7). The
displacement thickness δ∗ increases in the region where the wall shear decreases (figure
4.8). Such behaviour has also been reported in supersonic boundary layers by Spina et al.
(1994). They attribute this counterintuitive behaviour to the axial variation of near-wall
density. The momentum thickness θ remains more or less unaltered which means that the
shape factor H = δ∗/θ follows the behaviour of δ∗. These quantities clearly bring out the
non-equilibrium nature of the flow.

Figure 4.9 shows radial profiles of mean density and temperature. It is clear that
acceleration leads to nearly isentropic cooling of the flow in the core region, where effects
of viscous dissipation by the mean flow are negligibly small. Since the radial pressure
gradient is small, the decrease in T leads to an increase in the mean density ratio, ρ̄/ρ̄w. In
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the near-wall region, heating due to viscous dissipation causes an increase in temperature
and a corresponding decrease in density and hence typical peaks appear in these profiles
near the wall in the later stages of expansion. Figure 4.9 also shows good agreement
between DNS (symbols) and LES data (lines) for mean density and temperature profiles
for this flow case.

Due to acceleration, dissipation of the mean flow goes down marginally (figure 4.9), but
the effect on turbulent dissipation is more spectacular as seen in the profiles of solenoidal
dissipation rate in the TKE equation (figure 4.10). Nevertheless, the reduction in mean
temperature in the near-wall region of the nozzle is largely due to reduced dissipation of
the mean flow. It is to be noted here that we did not notice substantial baroclinic effects
in the solenoidal dissipation rate equation, when we checked our DNS data. Such effects
have been investigated and modelled by Kreuzinger et al. (2006). So, the reduction of
solenoidal dissipation is an effect of mean dilatation in accelerated flow, which appears in
production terms in the solenoidal dissipation rate equation.

The mean dilatation produced in this nozzle is seen in figure 4.10, where it increases
strongly in the wall layer. The effects of mean dilatation on turbulence structure will be
shown when we analyse the production terms in the individual Reynolds stress equations
(Section 4.9).

The extra strain rate ∂fux

∂x
in this flow case is still limited to about 6% of the wall shear

rate ∂fux

∂r
|w in the peak production zone y/R = 0.1 (figure 4.11).

The radial Mach number profiles show the gradual acceleration occurring in the flow
and also that the mean sonic line shifts towards the wall (figure 4.11) as we move down-
stream.

The strong mean density variation in the axial direction coupled with the variation
in wall shear stress leads to the failure of the Van Driest transformation for mean axial
velocity in the fully turbulent region (figure 4.12). The profiles show a collapse in the
near-wall region since we used local values of density and viscosity for the scaling. Similar
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Figure 4.8: Displacement (solid line), momentum thickness (dashed line) and Shape factor

effects have been observed in DNS of strongly heated, accelerated incompressible pipe
flows by Bae et al. (2006).

4.6 Rms profiles

The acceleration in the nozzle also causes a strong decrease in density and temperature
and a weaker decrease in pressure fluctuations (figures 4.12, 4.13). The decay in tem-
perature fluctuations is a result of the reduced mean temperature gradient. The reduced
density fluctuations could be due to the reduced mean density gradient and due to the
mean dilatation which appear as explicit source terms in the density variance equation
(Hamba, 1999). The reduction in pressure fluctuations is difficult to analyse, since pres-
sure fluctuations cannot be unambiguously split into thermodynamic and hydrodynamic
parts, where the latter is due to velocity fluctuations. A clear answer can only be given
based on an equation for the pressure fluctuations, derived from the divergence of the mo-
mentum equation and the continuity equation. Further studies in this direction involving
the analysis of a Poisson equation for the pressure fluctuations are part of future work.

The near wall density-temperature correlation is weakly affected (figure 4.14) by the
expansion. RρT now shows marginally lower negative values than in the supersonic pipe
flow. However, the pressure-density correlation, Rpρ, shows higher positive values in the
near-wall region. This means that near-wall non-isentropic effects are somewhat lower
under acceleration, as already confirmed by the reduced turbulent dissipation rate.

An interesting feature is noticed in the profiles of velocity-temperature correlation, RuT

which show a strong decay in the near-wall region during the later stages of acceleration
(figure 4.15). This is expected from the mean temperature profiles in the near-wall region.
Thus modified strong Reynolds analogies (MSRA) which have been shown to work for
isothermal channel and pipe flows would not work in this case. It will be shown in the
next chapter on diffusers, that near-wall temperature and velocity fluctuations continue
to be correlated in that case and MSRAs might be used there.
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The turbulent Mach number, Mt, decreases in this flow case which is due to the lower
turbulence activity as a result of acceleration of the flow (figure 4.15). Now, since Mt has a
low subsonic value, effects due to dilatational fluctuations are negligible. This is confirmed
by the peak values of the dilatational dissipation rate (ǫd) which is limited to 0.2% of
the solenoidal dissipation rate (ǫs) in the peak production region. ǫd, normalized with
τ 2
w/µ̄ (figure 4.16), decays consistently along the nozzle, reflecting the decaying velocity

fluctuations. The pressure dilatation correlation (p′u′

i,i) is limited to less than 4% of ǫs in
the near-wall region and remains less than 0.01% of τ 2

w/µ̄ at x/L = 0.45 and 0.8. Hence,
intrinsic compressibility effects due to dilatational fluctuations can be neglected in this
flow case.

Acceleration of the flow results in a reduction of fluctuations of all velocity components.
The ’inner’, semi-local scaling which was shown to work well for the supersonic pipe flow,
fails in this case as can be seen in figures 4.17 and 4.18 since the scaling does not take care
of acceleration effects. The peak locations show a collapse, but their magnitudes differ
widely. Thus the effects of mean dilatation (or a negative pressure gradient) are indeed
substantial on the turbulence structure near the wall.

4.7 Reynolds stresses

The normal and shear components of the Reynolds stress tensor are now shown in ’outer
scaling’ where the stresses are normalized using wall shear stress (figures 4.19-4.22). Such
a scaling is justified in case of incompressible and compressible parallel flows, as was shown
using the streamwise momentum equation in Chapter 3. In flows where axial pressure
gradients exist, such a scaling cannot work, even if the axial inhomogeneity is small. This
is verified here for the Reynolds stress profiles. All components show strong decay in the
nozzle flow, both in near-wall and core regions. The overshoot of the LES profiles for
ρu′′

xu
′′
x over those of DNS in the near-wall region is a result of the LES procedure applied
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here which has no provision to take care of local strong anisotropies in the flow.
We now analyse the Reynolds stress transport equations to find out the reasons which

lead to such strong decay of all components of the Reynolds stress tensor.
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4.8 Reynolds stress budgets

The Reynolds stress transport equations are now written in a cylindrical coordinate sys-
tem, allowing for axial inhomogeneity of the flow. This coordinate system differs weakly
from our computational coordinate system which is non-orthogonal. Since the angle of
divergence is small (max 10 degrees near the nozzle outlet), a discussion of transport
mechanisms in an (x, φ, r)-coordinate system makes sense. The equations for the normal
and shear Reynolds stress components are:
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∂ũr

∂x
− ρ̄ũ′′
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∂rũrρu′′

xu
′′

r

∂r
MT

−1

r

∂rp′u′′

x

∂r
− ∂p′u′′

r

∂x
PD

+
∂(τ ′

xxu
′′

r + τ ′

xru
′′

x)

∂x
+

1

r

∂(rτ ′

xru
′′

r + rτ ′

rru
′′

x)

∂r
V D

−τ ′

xx

∂u′′

r

∂x
− τ ′

xr

∂u′′

r

∂r
− τ

′

xθ

1

r

∂u′′

r

∂θ

−τ ′

rx

∂u′′

x

∂x
− τ ′

rr

∂u′′

x

∂r
− τ

′

rθ

1

r

∂u′′

x

∂θ
− u′′

xτθθ

r
DS

+p′

(
∂u′′

r

∂x
+

1

r

∂ru′′

x

∂r

)
PS

+
1

r
(ρu

′′

θu
′′

θu
′′

x) CR

+ū′′
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The following abbreviations have been used to name the terms on the right hand side.

P : Production
TD: Turbulent diffusion
MT : Mean convection
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V D: Viscous diffusion
PD: Pressure diffusion

PS: Pressure-strain correlations
CR: Cylindrical coordinate redistribution

DS: Viscous dissipation
M : Mass flux variation

Figures 4.23- 4.26 show the individual terms in the axial stress transport equation using
local τ 2

w/µ̄ as a scaling at four locations along the nozzle. We notice a strong decrease in
the production term in the near-wall region. This is accompanied by decays in viscous
dissipation and the pressure-strain correlations. The viscous diffusion terms naturally
balance the dissipation at the wall. At all locations we notice reasonable balance between
the major source and sink terms, except beyond x/L = 0.8. The mean convection term
(MT) which was absent in the fully developed pipe flow is small but non-negligible in
this flow case. Its magnitude increases marginally during the beginning of expansion and
then gradually decreases from its increased upstream levels. It might be noted that the
production term in the core region becomes negative during the later stages of expansion.
We will explain this later in this chapter (Section 4.9).

A look at major source/sink contributions in the turbulent kinetic energy (TKE) bud-
get at two axial locations x/L = 0.4, 0.65 reveals a lack of local equilibrium of the flow
at these locations, in the sense that the production terms are not balanced by the corre-
sponding dissipation terms (figures 4.27, 4.28). This is a consequence of the acceleration.
The pressure-dilatation correlations and compressible dissipation rates are negligible at
all positions.

4.9 Analysis of production terms

In the nozzle flow under investigation, enthalpic production u′′ ∂p̄
∂x

which appears in the
axial Reynolds stress budget, is found to be negligible (not shown) when compared to
kinetic production. We now analyse the kinetic production term in order to explain the
reduction of turbulence in this flow. The production term of the axial Reynolds stress
budget which is also the dominant production term in the TKE budget, is now shown in
the local τ 2

w/µ̄ scaling (figure 4.29). A large, abrupt decrease can be seen at the beginning
of the expansion and then the profiles show a continuous reduction. One reason for the
abrupt decrease at the beginning is the scaling using local τw which increases sharply in
that region. This has been noted by Coleman et al. (2003) in their study of decelerated
channel flow where they use the values at the channel inlet for the scaling. Another reason
is the sudden decrease in Reynolds stresses when flow acceleration sets in. The production
terms in the axial, radial and shear stress transport equations are now decomposed into
parts showing explicit contributions of shear, extra rate of strain and mean dilatation:
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Figure 4.23: Axial Reynolds stress budget (LES) at x/L = 0.1, scaled with local τ 2
w/µ̄.
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Figure 4.24: Axial Reynolds stress budget at x/L = 0.4, scaled with local τ 2
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Figure 4.25: Axial Reynolds stress budget (LES) at x/L = 0.65, scaled with local τ 2
w/µ̄.
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Figure 4.26: Axial Reynolds stress budget (LES) at x/L = 0.8, scaled with local τ 2
w/µ̄.

Line types as in fig. 4.23



4.9. ANALYSIS OF PRODUCTION TERMS 85

-0.05
-0.04
-0.03
-0.02
-0.01

 0
 0.01
 0.02
 0.03
 0.04
 0.05

 0  50  100  150  200
y∗

Figure 4.27: Terms in the TKE budget (LES) at x/L = 0.4, scaled with local τ 2
w/µ̄. All

line types as in fig. 4.23 except that for pressure-strain which here denotes pressure-
dilatation correlations.
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Figure 4.28: Terms in the TKE budget (LES) at x/L = 0.65, scaled with local τ 2
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types as in fig. 4.27.
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As seen in figure 4.30 where we have plotted the contributions to Pxx at x/L = 0
and 0.45, the shear part is the dominant axial stress production mechanism, which is
counteracted in the nozzle flow by the parts containing extra rate of strain and mean
dilatation. The extra rate of strain has a larger negative contribution at x/L = 0.45 than
the mean dilatation part. It is clear that the large changes in the shear part is primarily
responsible for the changes in the axial production term.

In figures 4.32 and 4.33, we show the decomposition of the axial production term at
x/L = 0.65, 0.8 to clarify that the small negative values of the total production term in
the core region, seen in the axial stress budgets, is due to the dilatation part since in the
core the extra strain and shear parts nearly balance each other. This effect is larger at
x/L = 0.8 since the mean dilatation is larger there.

A detailed look at the shear part of Pxx is now necessary because of its dominant
effect on production of the axial Reynolds stress. As seen in figure 4.34, changes in the
normalized mean shear ∂fux

∂r
in the axial direction are negligible. So, the changes in ρu′′

xu
′′

r

are clearly responsible for the changes in the shear part of Pxx.
The decomposition of the production term in the shear stress transport equation (figure

4.31) shows that the first part (shear1,sh1) is dominant. The changes of this term affect
the evolution of ρu′′

xu
′′

r . Now, this term is controlled only by changes in ρu′′

ru
′′

r since the
mean shear was shown to remain nearly unchanged.

The dominant source mechanism in the radial stress budget is the redistributive
pressure-strain correlation term. The production terms appearing in this equation re-
main negligible compared to the pressure-strain term. As seen in figures 4.35 and 4.36,
the decrease in axial and hence, in radial pressure-strain correlations is drastic which
brings about the decay in the radial stress and hence in the shear stress and ultimately in
the axial stress. Thus, the pressure-strain term is clearly identified as the dominant agent
which causes such drastic changes in the Reynolds stresses. Large decays are observed
both in pressure fluctuations and velocity gradient fluctuations. It remains to be shown
whether the pressure fluctuations are affected by the longitudinal density gradient, the
mean dilatation or both.
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Figure 4.29: Production term of the axial Reynolds stress budget at x/L = 0.1, 0.15,
0.45, 0.65, 0.8 (from top to bottom of the figure) scaled by local τ 2

w/µ̄ (LES)
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Figure 4.30: Contributions to the production of the axial Reynolds stress in the nozzle
at stations x/L = 0.0 (dashed line) and 0.45 (solid line). sh : mean shear, dil: mean
dilatation, es: extra rate of strain. Lines: LES, symbols: DNS. All terms are normalized
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Figure 4.31: Contributions to the production of the Reynolds shear stress in the nozzle
at stations x/L = 0.0 (dashed line), 0.45 (solid line). sh1: mean shear (shear1), dil: mean
dilatation. Lines: LES, symbols: DNS. All terms are normalized by τ 2
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Figure 4.32: Decomposition of the axial production terms at x/L = 0.65, ... ... mean
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Figure 4.33: Decomposition of the axial production terms at x/L = 0.8, ... ... mean shear;
— mean dilatation; -.-.- extra strain rate (LES). All terms are normalized by τ 2
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Figure 4.35: Pressure-strain correlation Πxx in the nozzle, x/L stations as in Figure 4.9.
Lines: LES. Symbols: DNS. Terms are normalized by τ 2
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4.10 Conclusions

DNS and LES of supersonic turbulent flow through a weakly diverging axisymmetric noz-
zle with fully developed supersonic pipe flow as inflow reveals interesting effects of mean
dilatation and extra rates of strain on the turbulence structure. The effects are dramatic
even though the effective acceleration is small. The flow remains nearly isentropic in the
core. Dilatation fluctuations in this flow are negligible as in the incoming pipe flow. Weak
mean expansion of the flow leads to a drastic decay of all turbulence intensities. Turbu-
lence production is reduced significantly. A decomposition of the production terms in the
transport equations of the Reynolds stresses into mean shear, extra strain rate and mean
dilatation contributions shows their individual importance. While mean dilatation and
extra strain rates reduce streamwise production to some extent, the decay of production
due to shear is the most significant effect. This decay of shear production is shown to
be due to the reduced Reynolds shear stress, the mean shear remaining nearly constant.
Decay of pressure-strain correlations leads to the decay in radial stress and hence in shear
stress. There is a decrease in pressure fluctuations as well as in strain rate fluctuations.
The decay in pressure fluctuations could be due to the axial density gradient,the mean
dilatation or both. Further studies in this direction will be undertaken.

Thus this study provides adequate support that effects of mean dilatation on the
turbulent structure are indeed indirect. They cannot be solely estimated from the extra
production terms in the Reynolds stress transport equations. This large indirect effect
had already been mentioned by Bradshaw (1974).



Chapter 5

Supersonic turbulent diffuser flow

5.1 Introduction

A supersonic diffuser is a device which reduces the incoming supersonic flow velocity
to a lower supersonic or a subsonic value and thereby achieves static pressure recovery.
The aim of design of such a device is to keep stagnation pressure losses to a minimum.
The deceleration of a supersonic flow in industrial diffuser configurations mostly occurs
through a shock train which consists of a series of weak shocks instead of a single strong
normal shock. The shape and number of individual shocks in a shock train depends on
the incoming flow Mach number and a flow confinement parameter defined as the ratio
of upstream boundary layer thickness to the radius (for a pipe). This phenomenon has
been confirmed by numerous experiments and RANS computations, see Matsuo et al.
(1999). However, RANS is not the most suitable tool to predict such complex flows with
complicated shock-wall layer interaction.

To the best of the author’s knowledge, no time-accurate simulation data are available
for flows with shock trains. Thus, as a compromise between computational cost and more
complete knowledge of the flow physics, LES of such flows (rather than DNS) seems to
be logical.

Supersonic flows can be decelerated without shocks when the incoming viscous layer
is relatively thin (i.e. at higher Reynolds and Mach numbers) and the APG is weak so
that the flow near the wall has high momentum relative to the APG. In such cases, the
thickness of the viscous region will not be sufficiently enhanced so as to cause shocks
to appear. Such a flow case is of interest for us, since effects opposite to the nozzle flow
case (detailed in the previous chapter) on the turbulence structure are expected. However,
flows undergoing deceleration show more complicating flow features than those undergoing
acceleration as we will show below. For example, when the incoming Mach number is at
a low supersonic value, (as in one of our flow cases with Min = 1.8), substantial transonic
regions can develop during the later stages of deceleration and can lead to local flow
acceleration.

Here, we would like to refer to the review of Spina et al. (1994) on experimental studies
of supersonic boundary layers subjected to adverse pressure gradients. In particular,
Fernando & Smits (1990) study the effects of APGs on such flows and find that turbulence
intensities are amplified due to deceleration. Incompressible, temporal APG channel flow

92
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DNS of Coleman et al. (2003) explore different inner and outer layer characteristics of
these flows. Using LES of incompressible flow in a planar diffuser, Wu et al. (2006) report
on internal layers in flows subjected to strong APG. Although in our flow cases, we have
strong mean axial density gradients due to compression, the incompressible flow results
should provide some pointers to interprete our results.

Coleman & Mansour (1993) study effects of rapid spherical compression on compress-
ible isotropic turbulence and observe high pressure-dilatation correlation at large com-
pression rates. Effects of rapid, axial compression on compressible, homogeneous tur-
bulence have been studied by Cambon et al. (1993) using DNS. They found increased
pressure-dilatation correlation at large compression speeds. However, its relative im-
portance compared to TKE production was reduced with increasing compressibility (i.e.
with increasing Mt). On the other hand, the pressure-strain correlation, which modifies
the Reynolds stress anisotropy and hence TKE production, was found to be larger than
the pressure-dilatation correlation. Both studies provide comparisons of DNS with rapid
distortion theory (RDT).

5.2 Flow cases

We study the effects of weak, distributed APGs on an incoming fully developed super-
sonic turbulent pipe flow retarded in a diffuser using LES. The wall is kept at constant
temperature to avoid further complications due to modified thermal boundary conditions.

Two flow cases without shocks are computed with incoming flow conditions, M =
1.8, 2.5 and Reτ = 280, 550, respectively. These flows have relatively high momentum
in the near-wall region and hence no shocks appear and the deceleration occurs through
non-isentropic compression waves. For the lower Mach number case we found a noticeable
transonic region after about 2/3 of the diffuser length which results in marginal accelera-
tion of the flow and this has an effect on the turbulence structure in that region. Hence,
we decided to simulate a higher incoming Mach number case to more convincingly isolate
the effects of bulk compression on the turbulence structure.

Additionally, one flow case with incoming M = 1.5 and Reτ = 245 is reported here
where the interaction of the marginally thicker viscous layer with the APG leads to the
formation of shock trains. This flow thus shows intrinsic compressibility effects due to
increased dilatation fluctuations.

For all the computations the length of the domain in the axial direction is 10R where
R is the radius of the incoming pipe flow. 64× 64× 50 points are used for the LES with
Reτ = 214, 280 and 128 × 64 × 60 points are used for the LES with Reτ = 550 in the
axial, azimuthal and radial directions, respectively.

5.3 Supersonic diffuser without shock train (Min =

1.8)

The incoming Mach and Reynolds numbers for this case are M = 1.8 and Reτ = 280
where shocks do not occur because of the low incoming viscous layer thickness. The
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Figure 5.1: Axial velocity fluctuations (LES), normalized with uτ (x/L = 0), in a (x, r)-
plane. Flow is from left to right.

non-dimensional pressure gradient expressed as the Clauser parameter β = δ∗

τw

dp̄
dx

is nearly
constant at 1.6 after an initial smooth transient (figure 5.3). This flow thus shows the
effects of mean compression which are in many ways exactly opposite to those of mean
dilatation in a nozzle as described in the previous chapter. An instantaneous plot of
axial velocity fluctuations (figure 5.1) shows increased turbulence activity in the near-
wall region when the flow is decelerated.

5.3.1 Azimuthal spectra

The spectra of axial velocity fluctuations in the azimuthal direction (figure 5.2) in the near-
wall region show increased energy content at all resolved wavenumbers which indicates
enhanced turbulence activity in the buffer layer during the compression in the diffuser.
The small changes in non-dimensional wavenumber are due to changes in the local friction
Reynolds number in the flow which is used for normalization.

5.3.2 Mean flow features

This flow, however, shows noticeable non-isentropic effects in the core region as compared
to the flow in the nozzle which was found to follow the isentropic streamtube predictions
very closely. This is seen in centerline pressure, density and temperature profiles which are
compared to the isentropic profiles in figure 5.4. The centerline Mach number is reduced
from 1.8 to nearly 1.45. The bulk velocity, ub, is reduced to about 80% of its incoming
value, ub,o. The short region of acceleration near the end of the diffuser is the consequence
of a growing transonic region as the flow decelerates. Alternate regions of compression
and expansion could be noticed at the beginning of compression near x/L = 0.2 in all
the profiles which lead to steeper static pressure (as well as density and temperature)
rise compared to an isentropic compression. These regions of alternate compression and
expansion waves are localized only in the core region, since near the wall these waves are
damped due to viscosity. The result is a smoother static pressure profile near the wall as
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Figure 5.2: Energy spectra (LES) of axial velocity fluctuations in the near-wall region
(y∗ = 10) in the azimuthal direction. x/L = ... ... 0.0; — 0.25; −−− 0.5; -.-.- 0.65

compared to that in the core (figure 5.5). This figure also shows that the radial variation
of mean pressure remains negligible in this diffuser flow case.

The wall shear stress (figure 5.5) decreases substantially at the beginning of com-
pression, reaches a minimum, and then increases monotonically throughout the region of
nearly constant adverse pressure gradient. This is the combined effect of density increase,
velocity decrease and weak area decrease which leads to changes in the viscous layer
thickness. The displacement thickness δ∗ (fig. 5.6) first increases in the region where the
wall shear stress decreases and then shows a slow decrease with a corresponding increase
in wall shear stress. The momentum thickness θ increases continuously throughout the
adverse pressure gradient region. The relative variations of δ∗ and θ lead to an initial
increase and a subsequent decrease in the shape factor H (figure 5.6).

Marginally increased mean dissipation and substantially increased turbulent dissipa-
tion rates produce higher temperature levels (figure 5.7 (left)) in the diffuser compared
to the incoming supersonic pipe. Figure 5.7 (right) shows an increase in mean dissipation
levels of the order of 20%, while the increase in turbulent dissipation, the solenoidal part
of which is shown in figure 5.8, is comparatively large, namely a factor of nearly three
larger than the upstream value. The turbulent dissipation rate is increased primarily by
mean compression acting as a source term in the solenoidal dissipation rate transport
equation. Baroclinic effects in this transport equation are found to be negligible in the
present flow case since the axial pressure gradient is still sufficiently weak not to cause
significant source effects when coupled with the wall-normal density gradient.

Fig. 5.8 shows the mean compression in the diffuser along with that in the upstream
pipe flow normalized with local radius and local bulk velocity. The compression increases
abruptly, especially in the core region, near x/L = 0.22 where the flow experiences the
first effects of the adverse pressure gradient, and then settles to lower values further



96 CHAPTER 5. SUPERSONIC TURBULENT DIFFUSER FLOW

-10

-8

-6

-4

-2

 0

 2

 4

 0  0.2  0.4  0.6  0.8  1
 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  0.2  0.4  0.6  0.8  1

β
=

δ
∗

τ w

d
p̄

d
x

u
b
/u

b,
o

x/L x/L

Figure 5.3: Axial variation of Clauser parameter (β) and bulk velocity. ub,o: bulk velocity
at x/L = 0.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0  0.2  0.4  0.6  0.8  1
 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0  0.2  0.4  0.6  0.8  1

Mc

pc/po

A/Ao

Tc/To

ρc/ρo

x/L x/L

Figure 5.4: Left: Centerline pressure, local Mach number, and area distribution; Right:
centerline density and temperature. Dashed lines are the solutions of isentropic stream-
tube equations. Subscript ’o’ denotes values at x/L = 0.



5.3. SUPERSONIC DIFFUSER WITHOUT SHOCK TRAIN (MIN = 1.8) 97

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0  0.2  0.4  0.6  0.8  1
 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0  0.2  0.4  0.6  0.8  1

p c
/p

c,
o
,p

w
/p

w
,o

τ w
/τ

w
,o

x/L x/L

Figure 5.5: Left: Centerline (solid line) and wall (dashed line) pressure distribution.
Right: Wall shear stress

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0  0.2  0.4  0.6  0.8  1
 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 0  0.2  0.4  0.6  0.8  1

δ∗
/R

,θ
/R

H
=

δ∗
/θ

x/L x/L

Figure 5.6: Left: Displacement (solid line) and momentum thickness (dashed line). Right:
Shape factor



98 CHAPTER 5. SUPERSONIC TURBULENT DIFFUSER FLOW

 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6

 0  0.2  0.4  0.6  0.8  1
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1

ρ̄
/ρ

w
T̄

/T
w

τ̄ i
j
s̄ i

j
/(

τ
2 w
/µ̄

)

y/R(x) = 1− r/R(x) y/R(x)

Figure 5.7: Left: Mean density, temperature profiles. Right: Dissipation of the mean
flow. x/L = ... ... 0.0; — 0.25; −−− 0.5; -.-.- 0.65

downstream. In a small region near the exit, after x/L = 0.8 positive values of dilatation
are noticed (not shown) where the flow becomes transonic. This region is thus subjected
to weak acceleration as evident from the plots of centerline pressure and Mach number,
fig. 5.4.

The relative magnitude of the extra strain rate ∂fux

∂x
in the buffer layer where Reynolds

stresses have their maxima, is less than 0.5% of the wall shear rate, figure 5.9. The effect
of such a small magnitude of extra strain on the turbulence structure (to be discussed
later) is, however, found to be dramatic.

The local Mach number profiles (fig. 5.9) reflect the growing transonic region in the
diffuser as seen by the shift of the sonic line away from the wall. At around x/L = 0.7 the
peak production region is already in the subsonic region which has direct consequences
on the turbulence structure to be shown below.

Variations in wall shear stress in the axial direction and the increase in density due
to compression lead to failure of the Van Driest transform for the mean velocity. As
seen in fig. 5.10, the profiles in the fully turbulent region are always above that of the
fully-developed pipe flow. Only in the viscous region very close to the wall, we see some
sort of a collapse of the profiles because we use local values of the friction velocity as a
scale for the mean velocity.

5.3.3 Rms profiles

The increase in mean density and temperature gradients in the diffuser leads to stronger
density and temperature fluctuations. But, these rms values are less than 10% of their
corresponding mean values, fig. 5.10, 5.11. The rms pressure fluctuations still remain
negligible in this flow case, although there is an increase when compared to the levels in
fully-developed pipe flow.

Acoustics are still important in the core region where mean density and temperature
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as in fig. 5.7. Dashed line in left figure: u+ = 2.5lny+ + 5.5

gradients are negligible. This is indicated by the positive density- temperature correlations
and the strong pressure-density correlations in the core, fig. 5.12.

The values of these correlations near the wall reflect the strong heat transfer because
of the cooled wall. Indeed, RρT is close to -1 and naturally, Rpρ drops nearly to zero in
this region.

The velocity-temperature correlations do not show any major changes in this diffuser
(fig. 5.12) compared to the incoming pipe flow. They remain very close to unity in the
near-wall viscous region, unlike in the nozzle (in previous chapter) where they show large
reductions. This might indicate that modified SRAs which have been shown by Huang
et al. (1995) and in this work to be suitable for supersonic channel and pipe flows may
also be applicable in this case. In this context, it is also of interest to note that the
behaviour of the single-point correlation coefficients RρT , Rρp is practically the same as
that in fully-developed pipe flow, as a result of weak mean compression.

Intrinsic compressibility effects are expected to be negligible, since the turbulent Mach
number Mt was found to increase only weakly from around 0.27 to about 0.33, fig. 5.12.
It is to be noted that beyond x/L = 0.65 there is a decrease in the turbulence intensities
in the inner viscous layer, and an increase in the outer layer. This difference in effects
of adverse pressure gradients on inner and outer layers has been observed in incompress-
ible, APG channel flow by Coleman et al. (2003). Evidence of different inner and outer
layer dynamics in incompressible, APG flows has been found in studies of incompressible
diffusers (see Wu et al. (2006)).

Although we expect appreciable dilatation fluctuations when the flow is compressed,
the rate of compression in this flow case is too small to cause significant intrinsic compress-
ibility effects (|D|q2/ǫ = 0.7 in the buffer layer, where D = ∂ū

∂x
is the mean deformation

rate, q2/ǫ is the ’eddy-turnover’ time). The compressible dissipation rate is limited to
less than 0.1% of the solenoidal dissipation rate in the near-wall region. It is a negligible
fraction of τ 2

w/µ̄ as seen in figure 5.14 where we also notice a marginal increase of ǫd from
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Figure 5.13: Velocity-temperature correlations, Turbulent Mach number. Line types as
in fig. 5.7

its incoming pipe flow levels. This is caused by higher velocity fluctuations. The pressure-
dilatation correlation also rises to about 1% of τ 2

w/µ̄ and approximately to 10% of the
solenoidal dissipation rate in the peak production region. Coleman & Mansour (1993),
from their studies of homogeneous turbulence subjected to rapid spherical compression,
show that p′u′

i,i strongly increases with the rate of compression. Their results show that

p′u′

i,i rises to about 6 times the TKE dissipation rate when the initial spherical compres-
sion rate, Soq

2/ǫ (So denotes spherical compression) has a magnitude of 47, which is more
than a factor of 50 larger than our compression rate.

Rms velocity fluctuations are presented in semi-local, inner scaling with local u∗

τ and
ν̄ in figures 5.15 and 5.16. The axial velocity fluctuations show a monotonic increase in
the axial direction up to about x/L = 0.6 at all radial locations. Then there is a drop in
intensity in the inner, viscous layer although the intensities in the outer layer continue to
increase. This phenomenon has been noted in incompressible APG channel flow studies of
Coleman et al. (1995), where they attribute the near-wall decrease to a decrease in axial
production caused by reduced mean shear only. We will look into this while analysing the
production terms. Although, the axial rms profiles show distinct inner and outer layer
behaviour, the azimuthal and radial intensities do not reflect this. These components
reveal a monotonic increase all along the axis. Distinct differences in inner and outer
layer dynamics would be expected only when the APG is high and rapid changes in skin
friction occurs leading to flow separation. Wu et al. (2006) have investigated such effects
in a planar diffuser and we refer to that paper for other references.

5.3.4 Reynolds stresses

The normal components of the Reynolds stress tensor are shown in figures 5.17- 5.19 using
the outer scaling τw which is valid for channel and pipe flows with streamwise mean flow
homogeneity. The deceleration of the flow is clearly evident from the failure of this outer
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Figure 5.16: Rms velocity fluctuations, inner scaling. Line types as in fig. 5.15

scaling. Distinct inner and outer layer behaviour of the axial component after x/L = 0.6
is observed. No such effects are seen in azimuthal and radial components. The Reynolds
shear stress profiles increase monotonically in axial direction at all radial locations, figure
5.20. The peaks of the profiles shift away from the wall throughout the region of adverse
pressure gradient. The increase in the radial Reynolds stress and the Reynolds shear
stress are primarily responsible for the increased axial production.

5.3.5 Reynolds stress budgets

The terms in the axial Reynolds stress transport equation are shown in figures 5.21- 5.23
at three axial locations, using semi-local, inner scaling τ 2

w/µ̄.

At x/L = 0.25, i.e. just after the beginning of compression, the production term
increases sharply from its value in fully-developed pipe flow. This is accompanied by
an increase in viscous dissipation. In the wall layer, where the production term peaks,
production is balanced by the viscous dissipation, viscous diffusion, turbulent diffusion,
pressure-strain correlation and mean transport terms. The mean transport term only
appears in these flow cases with axial inhomogeneity and is non-negligible at all axial
positions. The pressure diffusion term is negligibly small.

At x/L = 0.5, there is a further increase in production, viscous dissipation and the
pressure-strain correlations. There is a balance between the various terms of the budget,
which is maintained further downstream at x/L = 0.75. At this location, however, a
small decrease in production from its high upstream levels is observed. Unfortunately,
the balance of terms is not perfectly achieved in the diffuser core region. This is due to
the lack of statistical samples. It is also seen in the following TKE budgets. In contrast
to this, the turbulence statistics are much more stable close to the wall.

Figures 5.24, 5.25 and 5.26 show the production, viscous diffusion, pressure diffusion,
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viscous dissipation and the pressure-dilatation correlation terms in the TKE budget at
x/L = 0.25, 0.5 and 0.75. As expected in this flow without shocks and at low turbulent
Mach number, the pressure-dilatation term is negligible at all locations compared to the
viscous dissipation and, of course, to the production term.

Figure 5.27 compares the axial production term which increases in the inner layer at
the beginning of compression up to about x/L = 0.6 and then starts decreasing. This
accounts for the similar behaviour of the axial intensities.

The individual production terms are now decomposed into shear, dilatation and extra
rate of strain parts in the same way as discussed in the case of nozzle flow so that the
influence of each part on the evolution of the turbulence structure under compression can
be ascertained.

In the axial production (figure 5.28), shear contributions are dominant and mean
dilatation and extra rates of strain act as small source terms. The shear component first
increases drastically and then shows a decrease in the inner layer, while in the outer layer it
still shows a marginal increase. The mean dilatation part has a small positive contribution
in the inner layer and does not vary appreciably along the diffuser. The extra strain rate
term in the near-wall viscous layer first increases and then decreases remarkably to the
levels of the mean dilatation term. Thus, the large variations of the shear part combined
with the variations of the extra strain parts contribute to the changes in production of
axial stresses. Now, the increase in the shear production term ρu′′

xu
′′
r

∂eu
∂r

up to x/L = 0.6 is
mainly due to changes in ρu′′

ru
′′
r since the change in the mean shear in the buffer layer is
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Figure 5.24: Terms in the TKE budget at x/L = 0.25 scaled with local τ 2
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comparatively small, figure 5.29. But interestingly, after this region, the decrease in shear
production is due to decrease in mean shear since the Reynolds shear stress in this region
keeps on increasing. This phenomenon of decreasing production due to decrease in mean
shear has been observed in some studies of incompressible boundary layers subjected to
adverse pressure gradients, Coleman et al. (2003). The marginal increase of the shear
production term in the outer layer is due to an increase in Reynolds shear stresses since
in this region the mean shear rate does not play any role.

The production terms in the shear stress transport equation are now decomposed into
terms containing mean dilatation, extra rates of strain and mean shear, figure 5.30. The
major shear contribution (term sh1) increases drastically from its value in the pipe flow
and then does not change in the region between x/L = 0.5 to x/L = 0.75. In this region,
there is a decrease of the second shear part which had a small negative contribution at
x/L = 0.5. At x/L = 0.75 this negative contribution is even smaller. And, hence this
explains the small increase in the shear stress in this zone. The contributions of the mean
dilatation and extra strain rates in this production term are negligible. The change in the
sh1 term is brought about by changes in the stress ρu′′

ru
′′
r .

The transport equation (4.3) for ρu′′
ru

′′
r contains production terms for this flow case

with axial inhomogeneity. Although they could be decomposed in the same manner
as the axial and shear components, their contribution remains negligible compared to
the pressure-strain correlation term which is the major source for this stress, figure 5.31.
Finally, the pressure-strain-correlations increase drastically in the diffuser during the early
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stages of compression to bring about increase in the radial stresses, which in turn causes
the increase in shear stress and hence, the increase in axial intensities in this region, figures
5.33 and 5.34. The strong increase in pressure fluctuations is demonstrated in figure 5.32.

So, the increase in axial Reynolds stress during the compression up to x/L = 0.6
is exclusively controlled by the redistributive pressure-strain correlations, which increase
rapidly in this region thereby increasing the radial and shear stresses. Although the radial
stress continues to increase after this region owing to the increasing pressure-strain term,
the axial stress decreases in the inner layer due to a reduction of mean shear. The shear
stress in the region after x/L = 0.6 continues to increase slowly due to the combined
effects of increasing radial stresses and decreasing mean shear in its production term.
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5.4 Supersonic diffuser without shock train (Min =

2.5)

The objective of this section is to report results from the higher incoming Mach and
Reynolds number LES. The incoming flow has a centerline Mach number of 2.5 and a
Reynolds number, Reτ = 550. The area distribution is kept identical to the lower Mach
number case which leads to β = 0.5. This low deceleration along with the high incoming
Mach number avoids the appearance of transonic regions near the outflow.

5.4.1 Mean flow features

The flow uniformly decelerates from a Mach number of 2.5 at inflow to 2.25 at exit, figure
5.35. As in the low Mach number diffuser flow, the relative axial increase of pressure and
density is stronger than that of the temperature. We do not see local acceleration of the
flow near the outflow because of the higher incoming Mach number so that no substantial
transonic region appears near the outflow. The wall shear stress shows a decrease at the
beginning of deceleration and then a slow increase (fig. 5.36). The displacement thickness
shows a corresponding increase, and then a slow decrease.
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Figure 5.35: Centerline pressure, local Mach number and area; centerline density and
temperature.

It must be noted that the relative deceleration is lower in this flow case than in the
diffuser at the lower Mach number. The extra strain ∂fux

∂x
is about 2% of the mean shear, ∂fux

∂r

(the principal strain) in the peak production zone. Thus, the increase in mean temperature
is lower in this case as seen in figure 5.37. In fact, the density profiles normalized with
their local wall values show nearly no change at the various axial locations. The small rise
in temperature is a result of increased turbulent dissipation, the solenoidal part of which
is shown here, fig. 5.37. The dissipation of the mean flow remains nearly unchanged
in axial direction. The local Mach number profiles (fig. 5.38) further confirm the weak
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decelaration of the flow. The Van Driest tranformed mean velocity profiles (fig. 5.38)
show an overshoot above the incoming pipe flow profile in the fully-turbulent region.

5.4.2 Turbulence statistics

The fluctuations of density and temperature which are dictated by the gradients of their
mean values, show small increase, figure 5.39. Effects due to dilatation fluctuations are
negligible in this diffuser. The axial Reynolds stress is amplified almost uniformly through-
out the region of deceleration, figure 5.40. The increase in the axial production is shown in
figure 5.41. The decomposition of the axial production term (fig. 5.43) reveals the strong
increase of the shear part. The extra strain rate part also shows an increase. The mean
dilatation part has a small positive contribution. The axial pressure-strain correlation
(and hence the radial pressure-strain correlation) steadily increases in the diffuser (Figure
5.42), which leads to the steady increase in shear production of axial stresses as discussed
before.
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Figure 5.39: Rms temperature and density fluctuations. Line types as in fig. 5.37
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5.5 Supersonic diffuser with shock train (Min = 1.5)

The expression ’shock train’ refers to a series of shocks which appear when a supersonic
flow in a duct is decelerated. The deceleration from supersonic to subsonic flow mostly
occurs through a complex pattern of shock-viscous layer interactions and the overall pres-
sure rise occurs over a finite length of the duct. Such a region is called a “pseudo shock”
as opposed to a single normal shock. The pseudo shock is generally composed of a “shock
train” region consisting of a series of shocks and a “mixing region” without shocks. The
occurrence of the mixing region where static pressure rise occurs without shocks depends
on the length of the duct. These phenomena are very important in flow devices operating
at supersonic speeds. Although, there have been many experimental and RANS inves-
tigations of these phenomena, (see Matsuo et al. (1999) for an extensive review) time
accurate computations have not been extensively performed. To the best of the author’s
knowledge, there is no high order accurate LES data of flows in which shock trains oc-
cur. Such computations are expected to provide more insight into the details of this kind
of shock-viscous layer interactions, in which mean dilatation and dilatation fluctuations
affect the turbulence structure.

LES of shock-boundary layer interaction studies in case of a compression corner and
a compression-expansion corner have been performed by Stolz (2000) and Loginov et al.
(2006), respectively, using explicit filtering and additional regularization which provides
sufficient dissipation to capture the shock and the shocklets that arise.
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However, shock-viscous layer interactions in internal flows have not received much
attention in the past, mainly because compressible duct flows are expensive to compute
even as an LES, especially when one wishes to achieve high Reynolds numbers for com-
parison with experimental results. This section aims to report new, interesting results
regarding shock trains, albeit at low Reynolds numbers. We investigate the effects of a
distributed adverse pressure gradient on an incoming fully-developed supersonic pipe flow
with M = 1.5 and Reτ = 245 in a diffuser. The shocks that arise in such a case are weak
in nature, but the flow features are still expected to be analogous to cases with strong
shocks. The resolution for the LES is 64× 64× 50 which was found to be sufficient (each
shock peak region spans over 6 gridpoints in the axial direction) to capture these weak
shocks using explicit filtering.

5.5.1 Instantaneous fields

The structure of the pseudo-shock is clearly visible in the instantaneous pressure field
(figure 5.44). Alternate peaks and valleys can be noticed within the shock train indicating
regions of alternate expansion and compression. The strength of each individual shock
decreases in the direction of the flow. After approximately 65% of the domain length, the
flow in the core region becomes transonic and hence no shocks appear there. The shock
system shows no appreciable translatory motion.

sho
ck-

tra
in

reg
ion

mixi
ng

reg
ion

Figure 5.44: Instantaneous pressure in an (x, r)-plane containing the axis. Flow is from
left to right.

Time traces of azimuthally averaged wall pressure, instantaneous centerline pressure
and centerline Mach number are shown in figures 5.45- 5.47 after the first shock (at x/L =
0.2) and in the mixing region (x/L = 0.75). The objective is to detect translatory motion
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Figure 5.45: Time trace of centerline and wall pressure at x/L = 0.2, downstream of the
first shock. uτ,o is the friction velocity at inlet to the diffuser, R is the radius at inlet.

of the shock or its oscillatory nature in the core region. The oscillatory incursions of the
shock into the viscous layer near the wall are well-known and have been studied extensively
in the past (Adams (2000)). This, however, is beyond the scope of the present work. At
this low Reynolds number and due to the APG, the viscous sublayer is thick enough so
that the effects of the shock train are small in the wall pressure trace at x/L = 0.2, fig.
5.45. Downstream of the first shock (x/L = 0.2), strong expansion waves having a time
period (in terms of tuτ,o/R, where uτ,o, R are the friction velocity and radius at inlet) of 30
appear in the centerline pressure and Mach number profiles. The quasi-periodic downward
excursions of the centerline pressure in Fig. 5.45 (left) must be due to expansion waves,
since as seen in fig. 5.48 (left), the position x/L = 0.2 corresponds to a low-pressure
zone (close to 1 bar) between two pressure peaks and this zone undergoes expansions to
pressures below 0.6 bar. These expansion waves demonstrate the low frequency, oscillatory
nature of the shock train. It is clear that no major translatory motion occurs since we do
not see shocks in these time traces. The centerline pressure trace (and the wall pressure)
in the mixing region (fig. 5.46) is close to that of a flow without shock and expansion
waves although we can still detect some large oscillations. They could be due to the
presence of shocklets. The Mach number trace in the mixing region (x/L = 0.75) shows
the flow to be transonic (fig. 5.47).

5.5.2 Mean Profiles

The pressure rise, p2/p1, across a normal shock with incoming M = 1.5 is estimated
to be around 2.45 from one-dimensional equations without friction. The actual pressure
rise is lower where pseudo shocks instead of a single normal shock occur as seen from
the centerline pressure distribution, figure 5.48. This was also observed in experiments
(Matsuo et al. (1999)). Alternate compression and expansion zones are visible. The
overall pressure rise which is lower than that caused by a single discontinuity occurs over
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nearly 70% of the diffuser length in our flow case. The pressure distribution at the wall
is predictably smooth, as no shocks can occur in the viscous sublayer. It is interesting to
note that the mean centerline pressure fluctuates around values which are nearly equal to
the wall pressure. These fluctuations confirm the presence of alternate compression and
expansion zones within the shock train.

The local mean centerline Mach number profile (figure 5.49) shows that the shocks are
weak since M never reaches subsonic values. However, away from the centerline, where
the incoming Mach number is lower, alternate regions of subsonic and supersonic flows
are observed.

The axial profile of the centerline density closely resembles that of the centerline
pressure. The increase in density is of the same order as that of the pressure. The overall
increase in the centerline temperature is found to be lower than that of the density, figure
5.49.

The profiles of mean pressure and density reveal a region where the flow is accelerated
in this diffuser after the deceleration through the shock train. This occurs after x/L = 0.6
in this transonic flow where the cross-sectional area continues to decrease. The centerline
Mach number profile also shows this acceleration region.

The wall shear stress profile along the axial direction (figure 5.48) indicates a region of
local flow separation below the first shock (x/L = 0.15) which is the strongest of all the
shocks in the shock train. The thickening of the incoming viscous layer under the influence
of the APG is the reason why a shock train occurs. Whether or not local separation occurs
depends on the strength of the shock relative to the momentum of the incoming viscous
layer. Control techniques like boundary layer suction and vortex generators have been
employed to prevent pseudo-shock occurrence or to restrict it to a single normal shock
by decreasing the viscous layer thickness or by injecting more momentum into this layer,
Matsuo et al. (1999).

The higher incoming displacement and momentum thicknesses in this flow case relative
to the case with no shocks at the incoming Mach number 1.8 are shown in figure 5.50.
The higher mass and momentum defects in the near-wall viscous region are the reasons for
the occurrence of the pseudo shock phenomenon due to further thickening of this region
under the influence of the adverse pressure gradient.

We now investigate the evolution of mean flow quantities along the diffuser. Radial
distributions of mean density and temperature show that the shocks not only affect the
local dissipation near the centerline but also have significant influence in the buffer layer,
figure 5.51. This follows from the effects seen in the wall shear stress profiles, fig. 5.48.
The local Mach number profiles again show the regions of compression and expansion
that characterize this flow. One notices a large transonic region in the profiles after about
x/L = 0.7.

We now look at Van Driest transformed mean velocity profiles, where the friction
velocity uτ at the entrance is used as a velocity scale, instead of the local value which
vanishes in the regions of separation. The profiles show no collapse even very close to the
wall, figure 5.52 because we do not use the local quantities for the scaling. After about
x/L = 0.45, the mean velocity profile shows two different slopes in the logarithmic region.
This has also been observed by Wu et al. (2006) in their strong APG plane diffuser flow
and is interpreted as the signature of an internal layer emerging when the flow is subjected
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to strong pressure gradient perturbations. Although we observed distinct inner and outer
layer dynamics in the flow case with no shocks (section 5.3), such effects are much more
dominant in this flow case with stronger effective APG. We will see further evidences of
different inner and outer layer behaviour when we look at the Reynolds stress profiles.

5.5.3 Rms profiles

Turbulent Mach numbers in this flow never increase beyond levels at which intrinsic
compressibility effects due to dilatational fluctuations could be expected, figure 5.53. The
levels are locally increased near the centerline where the shocks lead to increased turbulent
fluctuations. Near x/L = 0.6, a second peak in the profile is seen which is a characteristic
of an emerging internal layer in flows subjected to large adverse pressure gradients.

The rms pressure fluctuations reach about 25% of the mean pressure in the core near
the shocks, which means that this flow is not covered by Morkovin’s hypothesis, even
though the turbulent Mach number is not significantly high, fig. 5.53. From this point of
view we might expect intrinsic compressibility effects due to dilatation fluctuations.

Non-negligible mean temperature and density gradients in the core region lead to
significant density fluctuations there, the levels of which are nearly equal and even higher
than the peak which occurs in the buffer region. These fluctuations, however, remain
within 10% of their respective mean values.

Significant intrinsic compressibility effects are observed in this flow case which is re-
flected in the peak values of the normalized pressure-dilation correlation in the core region
which are nearly 3 to 4 times the solenoidal dissipation rate in the buffer layer (figure
5.56). Typical non-dimensional deformation rates (|D|q2/ǫ) estimated in the vicinity of
the first and second shocks of this weak shock system lie between 3 to 4 which are much
smaller than those in the studies of Cambon et al. (1993) and Coleman & Mansour (1993).
We used the values of q2/ǫ in the buffer layer to calculate the deformation rates.
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The solenoidal dissipation rate itself shows an increase in the buffer layer (fig. 5.55). It
is to be noted that we used the value of τw at the inlet and the local µ̄ to non-dimensionalize
ǫs. So, only changes in dynamic viscosity is taken into account in the scaling.

From the results, it is evident that the pressure-dilatation correlation plays a significant
role in the TKE budget, because turbulence interacts with shocks or zones of strong
compression.

5.5.4 Reynolds stresses

The Reynolds stresses are now shown using τw at the inlet as a scaling. A look at the
individual components reveals a fairly complicated behaviour which needs careful analysis.

The axial component (figure 5.57) shows a drastic increase in the inner viscous layer
near the entrance to the diffuser where the first shock occurs. The peaks in the inner layer
then go down as we move further downstream. A clear signature of the emergence of an
internal layer is shown by the second peak in the stress profiles after around x/L = 0.4.
This was also observed in the axial mean velocity profiles. The drastic changes in skin
friction caused by the shock train results in a new internal layer emerging near the wall
after reattachment occurs and the flow outside this layer develops differently. A recent
study by Wu et al. (2006) reports similar findings for the flow in an incompressible diffuser.

The behaviour of the axial stress in the core region reveals the significant effects of
the individual shocks on the turbulence structure. Peaks occur in the profiles near the
axial locations where the compression due to shocks takes place. The alternate expansion
and compression regions in the shock train result in increase and decrease in the levels of
these peaks in the core region. Concerning the amplification of turbulence due to shocks,
the reader is referred to the work of Lee et al. (1993) and Hannappel & Friedrich (1995).
The situation here is more complex since zones of compression (amplification of TKE)
are followed by zones of expansion (damping of TKE).

The azimuthal stress profiles (figure 5.58) reveal the internal layer characteristics once
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Figure 5.56: Pressure-dilatation correlation and compressible dissipation rate. Line types
as in fig. 5.51

again. But the effect of shocks on this component is not as strong as that on the axial
component. Only at the location of the first shock we can see a peak in the profile in
the core region. The peak levels in the viscous layer increase monotonically up to about
x/L = 0.6 and then we find a marginal decrease. The two-layer behaviour is especially
evident downstream of this location as seen by the increase in stress levels in the outer
layer and the simultaneous decrease in the inner layer.

The radial stress (figure 5.59) increases monotonically in the viscous, inner layer up
to an axial location of about x/L = 0.6. Although, we do not see appreciable evidence
of a two-layer behaviour for this stress component, we certainly observe the effects of the
shocks on the stress levels in the core region.

5.5.5 Aspects of TKE and Reynolds stress budgets

We finally investigate the production, viscous dissipation and pressure-dilatation corre-
lation terms. The latter act as major source/sink terms in the TKE transport equation
in this flow case. The terms are scaled with τ 2

w,o/µ̄, where τw,o is the wall shear stress at
inlet.

The levels of TKE in the inner, viscous layer are exclusively controlled by the pro-
duction term, more specifically the axial production term, the peak magnitude of which
changes radically in the compression and expansion regions as seen in the figures 5.60-
5.63.

In the core region, the pressure-dilatation correlation term is the most important
source/sink (for compression/expansion respectively), whose magnitude becomes compa-
rable to that of peak production in the buffer layer. Thus, intrinsic compressibility effects
are dominant in this flow case, as was expected. The production term also contributes
appreciably in the core region at some axial locations.

Distinct internal layer characteristics, manifested as second peaks in the production
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Figure 5.59: Radial Reynolds stress. Line types as in fig. 5.57

profiles, appear after x/L = 0.5.
A detailed look at the axial production term which is the dominant term in TKE

production is necessary now. The profiles of the term at different axial locations are
shown in figure 5.64. The peaks in the inner layer show an initial increase in the region
near the first shock (around x/L = 0.15). The peak magnitudes then show a decrease
as we go downstream. The levels in the core region increase and decrease in the axial
direction as the flow experiences alternate compression and expansion regions.

The axial production term is now decomposed into mean shear, extra rate of strain
and mean dilatation parts (as in the previous chapters), so as to determine the causes
leading to its changes, figures 5.65- 5.67. The extra strain rate term is the dominant
source near the first shock location (x/L = 0.15) both in the core region as well as in the
buffer layer, where production due to shear is expected to be dominant. The source effect
of this term in the buffer layer however decreases as we move downstream. The effect
in the core region diminishes after the second shock (x/L = 0.25). The mean dilatation
term has a small source effect in the buffer layer near both the first and second shocks
and a much enhanced source effect in the core region at these axial locations. We notice
opposing effects of mean dilatation and extra strain rate in the inner, viscous layer after
x/L = 0.25. The mean shear production term increases up to around x/L = 0.45 and then
begins to decay as we approach the transonic region. The two-peak behaviour indicating
emergence of an internal layer is also observed. These changes are dictated primarily by
the changes in Reynolds shear stress i.e. by the redistributive pressure-strain correlation
term, fig. 5.68. Changes in mean shear in the peak production region (fig. 5.67) are seen
to be a minor contribution to the changes in production due to mean shear.
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5.6 Conclusions

Supersonic turbulent flow in weakly converging axisymmetric diffusers with fully-developed
supersonic pipe flow at inlet is investigated by means of LES. Although the deceleration
is not strong, its effects on the flow depend on the characteristics of the incoming flow
when the same diffuser geometry is used.

At incoming Mach numbers 1.8 and 2.5, the flow shows effects of mean compression
on the turbulence structure, which are qualitatively opposite to those of mean expansion.
However, the degree and spatial variation of these effects on the turbulence structure
are dictated by the incoming flow. These flows show considerable nonisentropic effects
in the core region. The turbulence intensities are amplified substantially especially in
the near-wall region as the flow is compressed. However, in the M = 1.8 case, the
flow becomes transonic in a substantial region near the outflow which leads to local
acceleration and partial decay of turbulence intensities in the buffer layer from their
upstream amplified values. This is not the case when the incoming Mach number is 2.5.
Here, the turbulence intensities are amplified throughout the length of the diffuser. The
effects of weak compression on the turbulence structure appear to be dramatic. Turbulence
production is strongly enhanced throughout the region of compression. Extra rates of
strain and mean dilatation have small source effects on turbulence production. The major
effect of mean compression appear as enhancement of pressure-strain correlations which
leads to increased turbulence production by shear. Thus the effects of mean compression
on the turbulence structure appear indirectly through the variations of the pressure-strain
correlations, as was observed by Bradshaw (1974).

An additional interesting effect is found in the flow with incoming Mach number 1.8.
The increase in the thickness of the subsonic region after approximately 65% of the diffuser
length leads to distinct inner and outer layer effects as in incompressible APG boundary
layers of Coleman et al. (2003). Here, the decrease of the mean shear in the inner layer
is greater than the increase in shear stress and hence the production by shear goes down
marginally from its increased levels. In the flow through the same diffuser geometry at the
higher incoming Mach number of 2.5, no transonic zone appears and we find no distinct
inner and outer layer behaviour in the turbulence statistics. This again confirms that
relatively high APG is required for internal layers to emerge.

When the inflow Mach number is 1.5 (same as the nozzle inflow) and the diffuser
geometry is kept the same, shock trains appear in the flow because this flow has a relatively
thick viscous layer which thickens further under the APG (the flow locally separates below
the first shock). At this Mach number, the shocks are weak, and oscillate about their
mean positions at a low frequency. After approximately 50% of the diffuser length, the
mean axial velocity profile shows two different slopes in the logarithmic region which is an
indication of an internal layer emerging due to strong, local APG in this flow. This is also
indicated by second peaks in the axial Reynolds stress profiles and in the axial production
term. Intrinsic compressibility effects in the form of high pressure-dilatation correlation
in the vicinity of the shock waves act as major source/sink terms in TKE production in
the core region. Mean dilatation, extra rates of strain also play a role in the core region
as a source/sink of turbulence. The source effect of extra strain rate in the buffer layer
at the beginning of compression is large. Mean dilatation causes small source effects in
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the buffer region. The production due to shear (and the pressure-strain correlation) is
drastically increased throughout the compression region. Large transonic regions after
about 50% of the diffuser length lead to partial decrease of turbulence intensities through
mechanisms discussed earlier.

The complicated nature of compressible wall-bounded flows subjected to deceleration
is obvious from this study and all the abovementioned effects provide sufficient motivation
for future work.



Chapter 6

Summary and outlook

With increasing supercomputing power it is now possible to simulate compressible wall-
bounded flows at reasonable Reynolds numbers directly. Flow cases simulated in the past
are mostly boundary layers and plane channel flows in the supersonic Mach number range.
These studies provided sufficient evidence that Morkovin’s hypothesis formulated in his
strong Reynolds analogy and referring to nearly negligible total temperature variations,
holds only in flows with adiabatic walls. Internal supersonic flows, however need wall
cooling to avoid choking. However even in these flows pressure fluctuations are negligible
and do not affect the turbulence structure. In channel flows with cooled walls, for example,
increasing Mach numbers lead to increased viscous dissipation and finally produce strong
temperature (and density, viscosity) gradients in the near-wall region. These variations
in mean properties are the only “compressibility effects” found in these flows and need to
be taken into account for modelling purposes.

The first part of this thesis examines these effects in the context of supersonic pipe
flows. DNS and LES of these flows with isothermal wall at a subsonic (M = 0.3) and
a supersonic Mach number (M = 1.5) have been performed to assess compressibility
effects. The computations are performed in cylindrical coordinates using high order com-
pact schemes in a finite difference mode. The axis singularity is removed by placing no
gridpoint on the axis by means of suitable staggering (Mohseni & Colonius (2000)) which
provides physical instantaneous fields and statistics. As in plane channel flows, the “com-
pressibility” effects in supersonic pipe flows originate from the mean property variations
in the near-wall region which change the structure of turbulence. A Van Driest transfor-
mation involving a mean density scaling brings the supersonic streamwise mean velocity
profile close to the subsonic one. A new scaling proposed by Brun et al. (2008) which
modifies the Van Driest transform by taking into account near-wall viscosity variations
works better in the fully turbulent region. The rms velocity fluctuations, however, show a
better collapse with their nearly incompressible counterparts in the near-wall region when
semi-local scaling (Huang et al. (1995)) involving local mean density is used instead of
the wall values. Although their near-wall peaks appear in the same radial locations their
magnitudes do not collapse. We also used the scalings proposed by Brun et al. (2008) and
found that there is no appreciable improvement over the scalings of Huang et al. (1995).
The outer scaling of the Reynolds stresses using τw works away from the wall where vis-
cous effects are small. In this scaling the increased anisotropy in the supersonic pipe flow
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is distinctly visible in the near-wall region. The streamwise stresses are increased and ra-
dial, azimuthal and shear stresses are decreased. The reason for this increased anisotropy
is the reduction in the redistributive pressure-strain term in the supersonic case. This is
seen when the streamwise budget terms are scaled using τ 2

w/µ̄. Among the net source and
sink terms, production and dissipation show a collapse but the pressure-strain correlations
do not. The observed reduction in pressure-strain correlations results in the increase of
streamwise stress and decrease in the other components. In channel flows it was shown by
Foysi et al. (2004) that the reduction in pressure-strain correlations is due to the reduced
density in the supersonic flow. Similar arguments also apply for supersonic pipe flows.

Large-eddy simulations (LES) have also been performed to predict supersonic pipe flow
using a single-step explicit filtering version of the Approximate Deconvolution Method.
The LES provides proper prediction of the production and pressure strain terms which
are governed mainly by large scales. Predictions of terms governed by small scales like
turbulent dissipation have to be handled with caution. At least the trends provided by
the LES results of turbulent dissipation e.g. due to increasing Mach number can be used
with confidence.

The second part of the thesis contains DNS and LES results of supersonic nozzle
and diffuser flows with incoming fully-developed supersonic pipe flow. Here we intend to
observe the effects of weak acceleration or deceleration on the turbulence structure. Such
flows are not covered by Morkovin’s hypothesis and their behaviour cannot be predicted
from knowledge of their incompressible counterparts. The area distribution in these flow
cases is such that there is a substantial region of constant weak, mean axial pressure
gradient.

First we focus on the flow features in the nozzle with incoming pipe flow at M = 1.5
based on DNS and LES data. The extra strain rate in the peak production region is
about 15% of the mean shear. The expansion in the core of the nozzle is essentially
isentropic as seen in the centerline pressure and density profiles. Radial pressure gradients
are small and the mean temperature and density remain coupled radially. The strong
axial density variation leads to a failure of the Van Driest transformation for the axial
velocity in the fully turbulent region. This effect was also noticed in strongly heated low-
speed pipe flows (Bae et al. (2006)). Dilatation fluctuations are negligible in this case.
The weak acceleration in the nozzle leads to strong decay in all turbulence intensities.
Decomposition of the production terms in the individual Reynolds stress equations is
performed in order to explain the decay of turbulence in this flow case. It is found that
both extra rates of strain and mean dilatation act as small sinks in the axial production
but the major cause of decay in axial production is due to the reduction of production due
to shear. Since the mean shear remains essentially constant along the nozzle, the reduced
Reynolds shear stress is the cause of reduced production due to shear. Production of the
Reynolds shear stress is again found to decrease due to reduction in production due to
shear. This is caused by the decay of the radial stress which is primarily produced by the
redistributive pressure-strain term. So, finally, the decay in turbulence in this nozzle is
essentially due to a decay in pressure-strain correlations. Both pressure fluctuations and
strain rate fluctuations decay.

Decelerated wall-bounded flows show more complicating features as compared to the
accelerated ones. Strong adverse pressure gradients are known to cause appearance of



143

internal layers as already reported for incompressible diffuser flows (Wu et al. (2006)). If
the flow is compressible additional complications due to appearance of shocks may occur.
We report LES results of two flow cases, one in which only mean compression effects
appear and the other where we have strong dilatation fluctuations due to shocks.

We have looked at two diffuser flow cases having incoming Mach numbers 1.8 and
2.5 where only mean compression effects are important and dilatation fluctuations are
negligible. The higher incoming Mach numbers at the inlet are required to avoid large
transonic regions near the diffuser outflow. These flows show deviations from the isen-
tropic streamtube equations in the core. The turbulence intensities are strongly amplified
throughout the region of compression. Decomposition of the production terms as in the
nozzle flow case show that although extra rates of strain and mean dilatation act as small
sources, the main reason for the increased turbulence production is the amplification of
pressure-strain correlations. Distinct inner and outer layer behaviour (as in Coleman et al.
(2003)) is observed for the flow with incoming M = 1.8 in the Reynolds stress profiles
during the final stages of compression after about 65% of the diffuser length. It should
be noted that the flow is transonic in this region.

Thus, our DNS and LES of nozzle and diffuser flows with weak mean dilatation provide
support to the observations of Bradshaw (1974) that the effects of mean dilatation on the
Reynolds stresses are far greater than those predicted by the extra production terms in
their transport equations. Indeed, the modification of pressure-strain correlations plays
the most significant role in modifying the turbulence structure in these flows.

As an appropriate closure to this work, LES of a diffuser flow at incoming M = 1.5 has
been performed where shock trains appear. This is because at this Mach (and Reynolds)
number, the APG resulting from the geometry of the diffuser is strong enough to cause
substantial thickening of the viscous layer. The pressure rise in such a flow occurs through
a region of weak shocks instead of a single normal shock. This is the direct consequence of a
thickened viscous region. Alternating regions of strong compression and expansion appear
and the flow is highly nonisentropic. These weak shocks subsequently bring the flow to
a transonic state. The overall pressure rise occurs in a distributed manner as opposed to
that through a single discontinuity. The region over which the pressure rise occurs is called
a “pseudo-shock region” in the literature (Matsuo et al., 1999). The individual shocks
oscillate about their mean positions, but no translatory motion is observed. Appreciable
values of pressure-dilatation correlations are observed in the core region in the vicinity of
the shocks. The turbulence production here is also increased directly by mean dilatation
and extra strain rates. Near the wall extra strain rates now have a larger effect on
turbulence production compared to the no-shock case. Emergence of an internal layer
indicated by the dual slope behaviour in the log-region of mean axial velocity and the
second peaks in the Reynolds stress profiles is noticed in this flow. Further research is
aimed at investigating the causes of the oscillatory shock motion and the detailed effects
of shock trains including flow separation on the turbulence structure.

The flows investigated in this study form a generic class of internal, compressible flows
with circular cross-section. Especially, the spatially developing nozzle and diffuser flows
provide interesting canonical test cases for modelling purposes. Future work should focus
on flow cases with longer sections where the pipe radius is constant before it increases
or decreases downstream and on longer nozzles and diffusers in order to minimize inflow
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and outflow effects. There is also a strong interest in performing direct simulations of
supersonic diffusers operating in the shock-train mode, since they will allow for a detailed
and unambiguous study of all flow phenomena.
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