
Floating Point Operations in Matrix-Vector Calculus
(Version 1.3)

Raphael Hunger

Technical Report
2007

Technische Universität München
Associate Institute for Signal Processing

Univ.-Prof. Dr.-Ing. Wolfgang Utschick

History

Version 1.00: October 2005
- Initial version

Version 1.01: 2006
- Rewrite of sesquilinear form with a reduced amount of FLOPs
- Several Typos fixed concerning the number of FLOPS required for the Cholesky decompo-

sition
Version 1.2: November 2006

- Conditions for the existence of the standard LLH Cholesky decomposition specified (pos-
itive definiteness)

- Outer product version of LLH Cholesky decomposition removed
- FLOPs required in Gaxpy version of LLH Cholesky decomposition updated
- L1DL

H
1 Cholesky decomposition added

- Matrix-matrix product LC added with L triangular
- Matrix-matrix product L−1C added with L triangular and L−1 not known a priori
- Inverse L−1

1 of a lower triangular matrix with ones on the main diagonal added
Version 1.3: September 2007

- First globally accessible document version
ToDo: (unknown when)

- QR-Decomposition
- LR-Decomposition

Please report any bug and suggestion to hunger@tum.de

2

Contents

1. Introduction 4

2. Flop Counting 5
2.1 Matrix Products . 5

2.1.1 Scalar-Vector Multiplication αa . 5
2.1.2 Scalar-Matrix Multiplication αA . 5
2.1.3 Inner Product aHb of Two Vectors . 5
2.1.4 Outer Product acH of Two Vectors . 5
2.1.5 Matrix-Vector ProductAb . 6
2.1.6 Matrix-Matrix ProductAC . 6
2.1.7 Matrix Diagonal Matrix ProductAD . 6
2.1.8 Matrix-Matrix Product LD . 6
2.1.9 Matrix-Matrix Product L1D . 6
2.1.10 Matrix-Matrix Product LC with L Lower Triangular 6
2.1.11 GramAHA ofA . 6
2.1.12 Squared Frobenius Norm ‖A‖2

F = tr(AHA) 7
2.1.13 Sesquilinear Form cHAb . 7
2.1.14 Hermitian Form aHRa . 7
2.1.15 Gram LHL of a Lower Triangular Matrix L 7

2.2 Decompositions . 8
2.2.1 Cholesky DecompositionR = LLH (Gaxpy Version) 8
2.2.2 Cholesky DecompositionR = L1DL

H
1 10

2.3 Inverses of Matrices . 11
2.3.1 Inverse L−1 of a Lower Triangular Matrix L 11
2.3.2 Inverse L−1

1 of a Lower Triangular Matrix L1 with Ones on the Main Di-
agonal . 12

2.3.3 InverseR−1 of a Positive Definite MatrixR 13
2.4 Solving Systems of Equations . 13

2.4.1 Product L−1C with L−1 not known a priori. 13

3. Overview 14

Appendix 15

Bibliography 16

3

1. Introduction

For the design of efficient und low-complexity algorithms in many signal-processing tasks, a de-
tailed analysis of the required number of floating-point operations (FLOPs) is often inevitable.
Most frequently, matrix operations are involved, such as matrix-matrix products and inverses of
matrices. Structures like Hermiteness or triangularity for example can be exploited to reduce the
number of needed FLOPs and will be discussed here. In this technical report, we derive expressions
for the number of multiplications and summations that a majority of signal processing algorithms
in mobile communications bring with them.

Acknowledgments:
The author would like to thank Dipl.-Ing. David A. Schmidt and Dipl.-Ing. Guido Dietl for the

fruitful discussions on this topic.

4

2. Flop Counting

In this chapter, we offer expressions for the number of complex multiplications and summations
required for several matrix-vector operations. A floating-point operation (FLOP) is assumed to be
either a complex multiplication or a complex summation here, despite the fact that a complex mul-
tiplication requires 4 real multiplications and 2 real summations whereas a complex summations
constists of only 2 real summations, making a multiplication more expensive than a summation.
However, we count each operation as one FLOP.

Throughout this report, we assume α ∈ C to be a scalar, the vectors a ∈ CN , b ∈ CN , and
c ∈ CM to have dimension N , N , and M , respectively. The matrices A ∈ CM×N , B ∈ CN×N ,
andC ∈ CN×L are assumed to have no special structure, whereasR = RH ∈ CN×N is Hermitian
and D = diag{d`}N`=1 ∈ CN×N is diagonal. L is a lower triangular N × N matrix, en denotes
the unit vector with a 1 in the n-th row and zeros elsewhere. Its dimensionality is chosen such that
the respective matrix-vector product exists. Finally, [A]a,b denotes the element in the a-th row and
b-th column of A, [A]a:b,c:d selects the submatrix ofA consisting of rows a to b and columns c to
d. 0a×b is the a × b zero matrix. Transposition, Hermitian transposition, conjugate, and real-part
operator are denoted by (·)T, (·)H, (·)∗, and <{·}, respectively, and require no FLOP.

2.1 Matrix Products

Frequently arising matrix products and the amount of FLOPs required for their computation will
be discussed in this section.

2.1.1 Scalar-Vector Multiplication αa

A simple multiplication αa of a vector a with a scalar α requires N multiplications and no sum-
mation.

2.1.2 Scalar-Matrix Multiplication αA

Extending the result from Subsection 2.1.1 to a scalar matrix multiplication αA requires NM
multiplications and again no summation.

2.1.3 Inner Product aHb of Two Vectors

An inner product aHb requires N multiplications and N − 1 summations, i.e., 2N − 1 FLOPs.

2.1.4 Outer Product acH of Two Vectors

An outer product acH requires NM multiplications and no summation.

5

6 2. Flop Counting

2.1.5 Matrix-Vector ProductAb

ComputingAb corresponds to applying the inner product rule aH
i b from Subsection 2.1.3M times.

Obviously, 1 ≤ i ≤ M and aH
i represents the i-th row of A. Hence, its computation costs MN

multiplications andM(N − 1) summations, i.e., 2MN −M FLOPs.

2.1.6 Matrix-Matrix ProductAC

Repeated application of the matrix-vector rule Aci from Subsection 2.1.5 with ci being the i-th
column of C yields the overall matrix-matrix product AC. Since 1 ≤ i ≤ L, the matrix-matrix
product has the L-fold complexity of the matrix-vector product. Thus, it needsMNL multiplica-
tions andML(N − 1) summations, altogether 2MNL−ML FLOPs.

2.1.7 Matrix Diagonal Matrix ProductAD

If the right hand side matrix D of the matrix product AD is diagonal, the computational load
reduces to M multiplications for each of the N columns of A, since the n-th column of A is
scaled by the n-th main diagonal element ofD. Thus,MN multiplications in total are required for
the computation ofAD, no summations are needed.

2.1.8 Matrix-Matrix Product LD

When multiplying a lower triangular matrix L by a diagonal matrix D, column n of the matrix
product requires N − n + 1 multiplications and no summations. With n = 1, . . . , N , we get
1
2
N2 + 1

2
N multiplications.

2.1.9 Matrix-Matrix Product L1D

When multiplying a lower triangular matrix L1 with ones on the main diagonal by a diagonal
matrix D, column n of the matrix product requires N − n multiplications and no summations.
With n = 1, . . . , N , we get 1

2
N2 − 1

2
N multiplications.

2.1.10 Matrix-Matrix Product LC with L Lower Triangular

Computing the product of a lower triangular matrix L ∈ CN×N and C ∈ CN×L is done column-
wise. The nth element in each column of LC requires n multiplications and n − 1 summations,
so the complete column needs

∑N
n=1 n = N2

2
+ N

2
multiplications and

∑N
n=1(n − 1) = N2

2
− N

2

summations. The complete matrix-matrix product is obtained from computingL columns. We have
N2L

2
+ NL

2
multiplications and N

2L
2
− NL

2
summations, yielding a total amount of N 2L FLOPs.

2.1.11 GramAHA ofA

In contrast to the general matrix product from Subsection 2.1.6, we can make use of the Hermitian
structure of the product AHA ∈ CN×N . Hence, the strictly lower triangular part of AHA need
not be computed, since it corresponds to the Hermitian of the strictly upper triangular part. For
this reason, we have to compute only the N main diagonal entries of AHA and the N

2
−N
2

upper
off-diagonal elements, so only N

2+N
2

different entries have to be evaluated. Each element requires
an inner product step from Subsection 2.1.3 costing M multiplications and M − 1 summations.
Therefore, 1

2
MN(N +1) multiplications and 1

2
(M−1)N(N +1) summations are needed, making

up a total amount ofMN 2 +MN − N2

2
− N

2
FLOPs.

2.1 Matrix Products 7

2.1.12 Squared Frobenius Norm ‖A‖2
F = tr(AHA)

The squared Hilbert-Schmidt norm ‖A‖2
F follows from summing up theMN squared entries from

A. We therefore haveMN multiplications andMN −1 summations, yielding a total of 2MN −1
FLOPs.

2.1.13 Sesquilinear Form cHAb

The sesquilinear form cHAb should be evaluated by computing the matrix-vector productAb in a
first step and then multiplying with the row vector cH from the left hand side. The matrix vector
product requiresMN multiplications andM(N−1) summations, whereas the inner product needs
M multiplications and M − 1 summations. Altogether,M(N + 1) multiplications andMN − 1
summations have to be computed for the sesquilinear form cHAb, yielding a total number of
2MN +M − 1 flops.

2.1.14 Hermitian Form aHRa

With the Hermitian matrixR = RH, the product aHRa can be expressed as

aHRa =

N∑

m=1

N∑

n=1

aHeme
T
mRene

T
na

=
N∑

m=1

N∑

n=1

a∗manrm,n

=

N∑

m=1

|am|2rm,m + 2

N−1∑

m=1

N∑

n=m+1

<{a∗manrm,n},

(2.1)

with am = [a]m,1, and rm,n = [R]m,n. The first sum accumulates the weighted main diagonal
entries and requires 2N multiplications andN − 1 summations.1 The second part of (2.1) accumu-
lates all weighted off-diagonal entries from A. The last two summations sum up N(N−1)

2
terms2.

Consequently, the second part of (2.1) requires N(N−1)
2
− 1 summations and N(N − 1) products3.

Finally, the two parts have to be added accounting for an additional summation and yielding an
overall amount ofN 2+N products and 1

2
N2+ 1

2
N−1 summations, corresponding to 3

2
N2+ 3

2
N−1

FLOPs4.

2.1.15 Gram LHL of a Lower Triangular Matrix L

During the computation of the inverse of a positive definite matrix, the Gram matrix of a lower
triangular matrix occurs when Cholesky decomposition is applied. Again, we make use of the
Hermitian structure of the Gram LHL, so only the main diagonal entries and the upper right off-
diagonal entries of the product have to be evaluated. The a-th main-diagonal entry can be expressed

1We do not exploit the fact that only real-valued summands are accumulated as we only account for complex flops.
2∑N−1
m=1

∑
N

n=m+1 1 =
∑
N−1
m=1(N −m) = N(N − 1)−∑N−1

m=1m = N(N − 1)− N(N−1)
2 = N(N−1)

2 . We made
use of (A1) in the Appendix for the computation of the last sum accumulating subsequent integers.

3The scaling with the factor 2 does not require a FLOP, as it can be implemented by a simple bit shift.
4Clearly, ifN = 1, we have to subtract one summation from the calculation since no off-diagonal entries exist.

8 2. Flop Counting

as

[LHL]a,a =

N∑

n=a

|`n,a|2, (2.2)

with `n,a = [L]n,a, requiring N − a + 1 multiplications and N − a summations. Hence, all main
diagonal elements need

∑N
n=1(N − n + 1) = 1

2
N2 + 1

2
N multiplications and

∑N
n=1(N − n) =

1
2
N2 − 1

2
N summations.

The upper right off-diagonal entry [LHL]a,b in row a and column b with a < b reads as

[LHL]a,b =

N∑

n=b

`∗n,a`n,b, (2.3)

again accounting for N − b + 1 multiplications and N − b summations. These two expressions
have to be summed up over all 1 ≤ a ≤ N − 1 and a + 1 ≤ b ≤ N , and for the number of
multiplications, we find

N−1∑

a=1

N∑

b=a+1

(N − b + 1) =

N−1∑

a=1

[

(N − a)(N + 1)−
N∑

b=a+1

b

]

=
N−1∑

a=1

[

N2 +N − a(N + 1)− N(N + 1)− a(a+ 1)

2

]

=

N−1∑

a=1

[
N2 +N

2
+
a2

2
− a
(

N +
1

2

)]

=
(N − 1)(N + 1)N

2
+

(N − 1)N(2N − 1)

2 · 6 −
(

N +
1

2

)
N(N − 1)

2

=
1

6
N3 − 1

6
N.

(2.4)
Again, we made use of (A1) for the sum of subsequent integers and (A2) for the sum of subsequent
squared integers. For the number of summations, we evaluate

N−1∑

a=1

N∑

b=a+1

(N − b) =
1

6
N3 − 1

2
N2 +

1

3
N. (2.5)

Computing all necessary elements of the Gram LHL thereby requires 1
6
N3 + 1

2
N2 + 1

3
N multipli-

cations and 1
6
N3− 1

6
N summations. Altogether, 1

3
N3 + 1

2
N2 + 1

6
N FLOPs result. The same result

of course holds for the Gram of two upper triangular matrices.

2.2 Decompositions

2.2.1 Cholesky DecompositionR = LLH (Gaxpy Version)

Instead of computing the inverse of a positive definite matrix R directly, it is more efficient to
start with the Cholesky decomposition R = LLH and then invert the lower triangular matrix L
and compute its Gram. In this section, we count the number of FLOPs necessary for the Cholesky
decomposition.

2.2 Decompositions 9

The implementation of the Generalized Ax plus y (Gaxpy) version of the Cholesky decom-
position, which overwrites the lower triangular part of the positive definite matrix R is listed in
Algorithm 2.1, see [1]. Note thatR needs to be positive definite for the LLH decomposition!

Algorithm 2.1 Algorithm for the Gaxpy version of the Cholesky decomposition.

1: [R]1:N,1 =

∈C
N

︷ ︸︸ ︷

[R]1:N,1√
[R]1,1

2: for n = 2 to N do
3: [R]n:N,n = [R]n:N,n

︸ ︷︷ ︸

∈CN−n+1

− [R]n:N,1:n−1
︸ ︷︷ ︸

∈C(N−n+1)×(n−1)

[R]Hn,1:n−1
︸ ︷︷ ︸

∈C(n−1)

4: [R]n:N,n =

∈C
N−n+1

︷ ︸︸ ︷

[R]n:N,n√
[R]n,n

5: end for
6: L = tril(R) {lower triangular part of overwrittenR}

The computation of the first column of L in Line 1 of Algorithm 2.1 requires N − 1 multiplica-
tions5, a single square-root operation, and no summations. Column n > 1 takes a matrix vector
product of dimension (N − n + 1) × (n − 1) which is subtracted from another (N − n + 1)-
dimensional vector involvingN − n+ 1 summations, see Line 3. Finally, N − n multiplications6

and a single square-root operation are necessary in Line 4. In short, row n with 1 < n ≤ N needs
−n2 + n(N + 1) − 1 multiplications, −n2 + n(N + 2) − N − 1 summations (see Subsection
2.1.5), and one square root operation, which we classify as an additional FLOP. Summing up the
multiplications for rows 2 ≤ n ≤ N , we obtain

N∑

n=2

(−n2 + n(N + 1)− 1) = (N + 1)
N(N + 1)− 2

2
− N(N + 1)(2N + 1)− 6

6
− (N − 1)

=
N3 + 2N2 −N

2
− 2N3 + 3N2 +N

6
− (N − 1)

=
1

6
N3 +

1

2
N2 − 5

3
N + 1.

(2.6)
The number of summations for rows 2 ≤ n ≤ N reads as

N∑

n=2

(−n2 + n(N + 2)−N − 1) = −(N + 1)(N − 1) + (N + 2)
N(N + 1)− 2

2

− N(N + 1)(2N + 1)− 6

6

= −N2 + 1 +
N3 + 3N2 − 4

2
− 2N3 + 3N2 +N − 6

6

=
1

6
N3 − 1

6
N,

(2.7)

5The first element need not be computed twice, since the result of the division is the square root of the denominator.
6Again, the first element need not be computed twice, since the result of the division is the square root of the

denominator.

10 2. Flop Counting

Algorithm 2.2 Algorithm for the Cholesky decomposition LDLH.

1: [R]2:N,1 =

∈CN−1

︷ ︸︸ ︷

[R]2:N,1

[R]1,1
2: for n = 2 to N do
3: for i = 1 to n− 1 do

4: [v]i =

{
[R]1,n if i = 1

[R]i,i[R]∗n,i if i 6= 1
5: end for
6: [v]n = [R]n,n − [R]n,1:n−1

︸ ︷︷ ︸

∈C1×n−1

[v]1:n−1
︸ ︷︷ ︸

∈Cn−1

7: [R]n,n = [v]n

8: [R]n+1:N,n =

∈CN−n

︷ ︸︸ ︷

[R]n+1:N,n−
∈C(N−n)×(n−1)

︷ ︸︸ ︷

[R]n+1:N,1:n−1

∈Cn−1

︷ ︸︸ ︷

[v]1:n−1

[v]n
9: end for

10: D = diag(diag(R)) (return diagonalD)
11: L1 = tril(R) with ones on the main diagonal

and finally, N − 1 square-root operations are needed for the N − 1 rows. Including the N − 1
multiplications for column n = 1 and the additional square root operation, 1

6
N3 + 1

2
N2 − 2

3
N

multiplications, 1
6
N3 − 1

6
N summations, and N square-root operations occur, 1

3
N3 + 1

2
N2 + 1

6
N

FLOPs in total.

2.2.2 Cholesky DecompositionR = L1DL
H
1

The main advantage of the L1DL
H
1 decomposition compared to the standard LLH decomposition

is that no square root operations are needed, which may require more than one FLOP depending
on the given hardware platform. Another benefit of the L1DL

H
1 decomposition is that it does not

require a positive definite matrixR, the only two conditions for the unique existence are thatR is
Hermitian and all but the last principle minor (i.e., the determinant) ofR need to be different from
zero [2]. Hence,R may also be rank deficient to a certain degree. IfR is not positive semidefinite,
thenD may contain negative main diagonal entries.

The outcome of the decomposition is a lower triangular matrix L1 with ones on the main
diagonal and a diagonal matrixD.

Algorithm 2.2 overwrites the strictly lower left part of the matrixR with the strictly lower part
of L1 (i.e., without the ones on the main diagonal) and overwrites the main diagonal of R with
the main diagonal of D. It is taken from [1] and slightly modified, such that is also applicable to
complex matrices (see the conjugate in Line 4) and no existing scalar should be re-computed (see
case distinction in Line 4 for i = 1).

Line 1 needs N − 1 multiplications. Lines 3 to 5 require n − 2 multiplications and are exe-
cuted for n = 2, . . . , N , yielding

∑N
n=2(n − 2) = N2

−3N+2
2

multiplications. Line 6 takes n − 1

multiplications and n− 1 summations, again with n = 2, . . . , N , yielding
∑N
n=2(n− 1) = N2

−N
2

multiplications and the same amount of summations. Line 7 does not require any FLOP. In Line 8,
the matrix-vector product needs (N − n)(n− 1) multiplications, and additionalN − n multiplica-

2.3 Inverses of Matrices 11

tions arise when the complete numerator is divided by the denominator. Hence, we have Nn− n2

multiplications. For n = 2, . . . , N , we get
∑N
n=2(Nn − n2) = 1

6
N3 − 7

6
N + 1 multiplications.

The number of summations in Line 8 is (N − n)(n− 2) for the matrix vector product and N − n
for the subtraction in the numerator. Together, we have −n2 + n(N + 1) − N summations. With
n = 2, . . . , N , we get

∑N
n=2[−n2 + n(N + 1)−N)] = 1

6
N3 − 1

2
N2 + 1

3
N summations.

Summing up, this algorithm requires 1
6
N3 + N2 − 13

6
N + 1 multiplications, and 1

6
N3 − 1

6
N

summations, yielding a total amount of 1
3
N3 + N2 − 7

3
N + 1 FLOPs. (Note that this formula is

also valid for N = 1.)

2.3 Inverses of Matrices

2.3.1 Inverse L−1 of a Lower Triangular Matrix L

LetX = [x1, . . . ,xN] = L−1 denote the inverse of a lower triangular matrix L. Then,X is again
lower triangular which means that [X]b,n = 0 for b < n. The following equation holds:

Lxn = en. (2.8)

Via forward substitution, above system can easily be solved. Row b (n ≤ b ≤ N) from (2.8) can
be expressed as

b∑

a=n

`b,axa,n = δb,n, (2.9)

with δb,n denoting the Kronecker delta which vanishes for b 6= n, and xa,n = [X]a,n = [xn]a,1.
Starting from b = 1, the xb,n are computed successively, and we find

xb,n = − 1

`b,b

[
b−1∑

a=n

`b,axa,n − δb,n
]

, (2.10)

with all xa,n, n ≤ a ≤ b − 1 having been computed in previous steps. Hence, if n = b, xn,n =
1
`n,n

and a single multiplication7 is required, no summations are needed. For b > n, b − n + 1

multiplications and b− n− 1 summations are required, as the Kronecker-delta vanishes. All main
diagonal entries can be computed by means ofN multiplications The lower left off-diagonal entries

7Actually, it is a division rather than a multiplication.

12 2. Flop Counting

require
N−1∑

n=1

N∑

b=n+1

(b− n + 1) =
N−1∑

n=1

[

(1− n)(N − n) +
N∑

b=n+1

b

]

=

N−1∑

n=1

[

N + n2 − n(N + 1) +
N2 +N − n2 − n

2

]

=

N−1∑

n=1

[
N2

2
+

3N

2
+
n2

2
− n(N +

3

2
)

]

= (N − 1)
N

2
(N + 3) +

(N − 1)N(2N − 1)

2 · 6
− (N +

3

2
)
(N − 1)N

2

=
1

6
N3 +

1

2
N2 − 2

3
N

(2.11)

multiplications, and
N−1∑

n=1

N∑

b=n+1

(b− n− 1) =
1

6
N3 − 1

2
N2 +

1

3
N (2.12)

summations. Including the N multiplications for the main-diagonal entries, 1
6
N3 + 1

2
N2 + 1

3
N

multiplications and 1
6
N3− 1

2
N2 + 1

3
N summations have to be implemented, yielding a total amount

of 1
3
N3 + 2

3
N FLOPs.

2.3.2 Inverse L−1
1 of a Lower Triangular Matrix L1 with Ones on the Main Diagonal

The inverse of a lower triangular matrix L1 turns out to require N 2 FLOPs less than the inverse
of L with arbitrary nonzero diagonal elements. Let X denote the inverse of L1. Clearly, X is
again a lower triangular matrix with ones on the main diagonal. We can exploit this fact in order
to compute only the unknown entries.

Themth row and nth column of the system of equationsL1X = IN withm ≥ n+ 1 reads as8

lm,n +

m−1∑

i=n+1
i≥m−1

lm,ixi,n + xm,n = 0,

or, equivalently,

xm,n = −

lm,n +

m−1∑

i=n+1
i≥m−1

lm,ixi,n

 .

Hence, X is computed via forward substitution. To compute xm,n, we need m − n − 1 multipli-
cations and m − n − 1 summations. Remember that m ≥ n + 1. The total number of multiplica-
tions/summations is obtained from

N−1∑

n=1

N∑

m=n+1

(m− n− 1) =
1

6
N3 − 1

2
N2 +

1

3
N. (2.13)

8We only have to consider m ≥ n + 1, since the equations resulting from m < n + 1 are automatically fulfilled
due to the structure of L1 andX.

2.4 Solving Systems of Equations 13

Summing up, 1
3
N3 −N2 + 2

3
N FLOPs are needed.

2.3.3 InverseR−1 of a Positive Definite MatrixR

The inverse of a matrix can for example be computed via Gaussian-elimination [1]. However, this
approach is computationally expensive and does not exploit the Hermitian structure ofR. Instead,
it is more efficient to start with the Cholesky decomposition ofR = LLH (see Subsection 2.2.1),
invert the lower triangular matrix L (see Subsection 2.3.1), and then build the Gram L−HL−1

of L−1 (see Subsection 2.1.15). Summing up the respective number of operations, this procedure
requires 1

2
N3+ 3

2
N2 multiplications, 1

2
N3− 1

2
N2 summations, andN square-root operations, which

yields a total amount of N 3 +N2 +N FLOPs.

2.4 Solving Systems of Equations

2.4.1 Product L−1C with L−1 not known a priori.

A naive way of computing the solutionX = L−1C of the equation LX = C is to find L−1 first
and afterwards multiply it by C. This approach needs N 2(L + 1

3
N) + 2

3
N FLOPs as shown in

Sections 2.3.1 and 2.1.10. However, doing so is very expensive since we are not interested in the
inverse of L in general. Hence, there must be a computationally cheaper variant. Again, forward
substitution plays a key role.

It is easy to see, that X can be computed column-wise. Let xb,a = [X]b,a, `b,a = [L]b,a, and
cb,c = [C]b,a. Then, from LX = C, we get for the element xb,a in row b and column a ofX:

xb,a = − 1

`b,b

[
b−1∑

i=1

`b,ixi,a − cb,a
]

. (2.14)

Its computation requires b multiplications and b − 1 summations. A complete column of X can
therefore the computed with

∑N
b=1 b = N2

2
+ N

2
multiplications and

∑N
b=1(b−1) = N2

2
− N

2
summa-

tions. The complete matrixX with L columns thus needsN 2L FLOPs, so the forward substitution
saves 1

3
N3 + 2

3
N FLOPs compared to the direction inversion of L and a subsequent matrix matrix

product. Interestingly, computingL−1C withL−1 unknown is as expensive as computingLC , see
Section 2.1.10.

3. Overview

A ∈ CM×N ,B ∈ CN×N , andC ∈ CN×L are arbitrary matrices.D ∈ CN×N is a diagonal matrix,
L ∈ CN×N is lower triangular, L1 ∈ CN×N is lower triangular with ones on the main diagonal,
a, b ∈ CN , c ∈ CM , andR ∈ CN×N is positive definite.

Expression Description products summations FLOPs

αa Vector Scaling N N

αA Matrix Scaling MN MN

aHb Inner Product N N−1 2N−1

acH Outer Product MN MN

Ab Matrix Vector Prod. MN M(N−1) 2MN−M
AC Matrix Matrix Prod. MNL ML(N−1) 2MNL−ML
AD Diagonal Matrix Prod. MN MN

LD Matrix-Matrix Prod. 1
2
N2 + 1

2
N 0 1

2
N2 + 1

2
N

L1D Matrix-Matrix Prod. 1
2
N2 − 1

2
N 0 1

2
N2 − 1

2
N

LC Matrix Product N2L
2

+ NL
2

N2L
2
− NL

2
N2L

AHA Gram MN(N+1)
2

(M−1)N(N+1)
2

MN2 +N(M−N
2

)−N
2

‖A‖2F Frobenius Norm MN MN−1 2MN−1

cHAb Sesquilinear Form M(N+1) MN−1 2MN+M−1

aHRa Hermitian Form N 2+N N2

2
+N

2
−1 3

2
N2+ 3

2
N−1

LHL Gram of Triangular N3

6
+N

2

2
+N

3
N3

6
−N

6
1
3
N3+ 1

2
N2+ 1

6
N

L CholeskyR = LLH N3

6
+N

2

2
− 2

3
N N3

6
−N

6
1
3
N3+ 1

2
N2+ 1

6
N

(Gaxpy version) (N roots included)
L,D CholeskyR = LDLH N3

6
+N2− 13N

6
+1 N3

6
−N

6
1
3
N3+N2− 7

3
N+1

L−1 Inverse of Triangular N3

6
+N

2

2
+N

3
N3

6
−N2

2
+N

3
1
3
N3+ 2

3
N

L−1
1 Inverse of Triangular N3

6
−N2

2
+N

3
N3

6
−N2

2
+N

3
1
3
N3−N2+ 2

3
N

with ones on main diag.

R−1 Inverse of Pos. Definite N3

2
+ 3N2

2
N3

2
−N2

2
N3+N2 +N

(N roots included)
L−1C L−1 unknown N2L

2
+ NL

2
N2L

2
− NL

2
N2L

14

Appendix

A frequently occurring summation in FLOP counting is the sum of subsequent integers. By com-
plete induction, we find

N∑

n=1

n =
N(N + 1)

2
. (A1)

Above result can easily be verified by recognizing that the sum of the n-th and the (N − n)-th
summand is equal to N + 1, and we have N

2
such pairs.

Another sum of relevance is the sum of subsequent squared integers. Again, via complete
induction, we find

N∑

n=1

n2 =
N(N + 1)(2N + 1)

6
. (A2)

15

Bibliography

[1] G. H. Golub and C.F. Van Loan, Matrix Computations, Johns Hopkins University Press, 1991.
[2] Kh.D. Ikramov and N.V. Savel’eva, “Conditionally Definite Matrices,” Journal of Mathemat-

ical Sciences, vol. 98, no. 1, pp. 1–50, 2000.

16

