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Abstract—This paper covers the consideration of an iterative or
turbo receiver where the nonlinear trellis-based detection of the in-
terleaved and coded data bits is replaced by linear detection using
the Wiener filter (WF), i.e., the optimal linear filter based on the
mean-square error (MSE) criterion. The equalization of channels
with multiple antennas at the receiver as well as frequency-se-
lective transfer functions requires high-dimensional observation
vectors which involve computationally intense detectors. We
extend an optimal but computationally efficient algorithm, orig-
inally derived for single receive antenna systems, to single-input
multiple-output (SIMO) channels. To further reduce computa-
tional complexity, we apply the suboptimal low-rank multistage
WF (MSWF), i.e., the WF approximation in the low-dimensional
Krylov subspace, and replace additionally second-order statistics
of nonstationary random processes by their time-invariant aver-
ages. Complexity investigations reveal the enormous capability of
the proposed algorithms to decrease computational effort. More-
over, the analysis based on extrinsic information transfer (EXIT)
charts as well as Monte Carlo simulations show that compared
with reduced-rank detection methods based on eigensubspaces,
the reduced-rank MSWF behaves near optimum although the
rank is drastically reduced to two or even one.

Index Terms—Decoding, equalizers, intersymbol interference
(ISI), iterative methods, multistage Wiener filter.

I. INTRODUCTION

COMPENSATING intersymbol interference (ISI) caused
by channels with frequency-selective transfer functions is

a fundamental task of practical communication systems. Unfor-
tunately, the optimal receiver which meets this requirement by
performing jointly symbol detection and decoding is computa-
tionally not feasible. Thus, we investigate a receiver structure
performing symbol detection and decoding alternating in an
iterative process. This so-called turbo equalizer was introduced
by Douillard et al. [1] and consists of an optimal maximum
a posteriori (MAP) detector and a MAP decoder exchanging
iteratively soft information about the coded data bits. Simu-
lation results have shown that this procedure eliminates ISI
after several iteration steps such that the bit error rate (BER)
of coded transmission over the corresponding additive white
Gaussian noise (AWGN) channel can be achieved. Note that
the proposed turbo system can be interpreted as an iterative
decoding scheme for serial concatenated codes [2] where the
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inner code is the channel and the inner decoder is the detector.
Although the computational complexity of the iterative receiver
is tremendously smaller than the one of the optimal receiver,
the complexity is still very high for practical implementations.
Therefore, Glavieux et al. [3] approximated the optimal non-
linear detector using the Wiener filter (WF), i.e., the linear filter
with the minimum mean-square error (MMSE). Later, Wang
and Poor [4] exploited this idea to reduce the complexity in a
coded multiuser CDMA system. Since then, several methods
have been proposed for further decreasing computational com-
plexity such as channel-shortening filters [5], equalizer design
based on the fast Fourier transformation [6], or sequential
Monte Carlo sampling techniques [7].

This paper presents an alternative complexity reduction ap-
proach based on [4] which we apply to a single-user uplink
scenario for mobile communications over a frequency-selective
channel with multiple antennas at the receiver, i.e., a time-dis-
persive single-input multiple-output (SIMO) channel. In a first
step, we reduce the high computational effort for the calculation
of the WF weights [4] by extending the reduced-complexity al-
gorithm introduced by Tüchler et al. [8] to the proposed SIMO
channel. This method exploits the time dependency of the auto-
covariance matrix of the observation vector in order to decrease
the computational complexity of its inversion by one order but
is still optimal in the MMSE sense, i.e., it achieves the perfor-
mance of the turbo equalizer proposed by [4]. Compared with
adaptive stochastic-gradient-type algorithms [9] and methods
based on maximum-likelihood estimation of statistics [10], all
algorithms proposed in this paper compute statistics using a
channel model. Although we assume perfect channel state in-
formation at the receiver, the presented methods can be applied
straightforwardly to systems where the channel is estimated.

To further reduce computational complexity, we introduce
suboptimal solutions using reduced-rank equalization. The mul-
tistage WF (MSWF) developed by Goldstein et al. [11] is a com-
putationally cheap approximation of the WF. It has been shown
by Honig et al. [12], [13] that the application of the MSWF is
equivalent to Wiener filtering in the Krylov subspace of the au-
tocovariance matrix of the observation vector and the cross-co-
variance vector between the observation and the desired signal.
Therefore, the iterative Lanczos algorithm [14], [15], [13] can
be used to compute efficiently the reduced-rank filter weights
which converge very fast to the optimal solution.

Moreover, the approximation of second-order statistics of
nonstationary random processes by their time-invariant av-
erages yields suboptimal implementations with dramatically
reduced computational effort although the performance de-
crease is tolerable. This idea was developed for full-rank WFs
[8] but can also be applied to the reduced-rank MSWF. A
comparison of the floating-point operations (FLOPs) needed to
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calculate the filter coefficients gives an impression for the capa-
bility of the proposed linear detectors to reduce computational
complexity.

Finally, the analysis of extrinsic information transfer (EXIT)
charts and Monte Carlo simulations show close to optimal be-
havior of the proposed solutions despite of their tremendously
reduced computational complexity. Especially, the rank-one
MSWF, which is an easy-to-implement normalized matched
filter (MF) followed by a scalar WF, turns out to have only a
slightly smaller performance than the optimal WF. Besides, a
comparison of the MSWF to approaches based on the approx-
imation of the WF in an eigensubspace of the autocovariance
matrix of the observation, i.e., the principal component (PC)
[16] and the cross-spectral (CS) [17] method, reveals the
superiority of Krylov-subspace-based algorithms.

Notation

Throughout the paper, vectors and matrices are denoted
by lower and upper case bold letters, respectively. Random
variables are written using sans serif font and their realiza-
tions with the corresponding font with serifs. The matrix

is the identity matrix, its th column,1
the zero matrix, and the -dimensional zero
vector. The operation “ ” denotes the Kronecker product,

expectation, conjugate complex, transpose,
Hermitian, i.e., conjugate transpose, the Eu-

clidean norm, and the Landau symbol. The matrix

is used to select rows of a matrix beginning from the
( )th row by applying it to the matrix from the left-hand
side. Analogous, if its transpose is applied to a matrix from
the right-hand side, columns are selected beginning from
the ( )th column. Besides, the matrix can be
used to describe a convolutional matrix. The probability

denotes the likelihood that a realization of the
random variable is equal to and is the probability
density function of . The soft information of a binary random
variable is represented by the log-likelihood ratio
(LLR) [18] . The autocorrelation
matrix of the complex-valued vector random process at
time index is . The power of the
complex-valued scalar random process at time index
is the second-order moment .
The cross-correlation vector between and is

where denotes the latency
time, e.g., introduced by an equalizer.2 The mean of and

is and , respectively.
denotes the autocovari-

ance matrix of . The autocovariance or variance of
computes as ,
where is the standard deviation of . The cross-co-
variance vector between and is represented by

. Omitting the argument
“ ” signalizes that the respective statistical moments are not
time-variant, which is the case for stationary random processes.

1The dimension of the unit vector eee is defined implicitly by the context.
2Note that the cross-correlation vector rrr [k] is a function of the index k and

the shift �. Since we choose a fixed � in the following sections, the dependence
on � is omitted in the given notation.

Fig. 1. Transmitter and channel model.

II. SYSTEM MODEL

A. Transmitter and Channel Model

The model of the transmitter and SIMO channel is depicted
in Fig. 1, based on the receiver’s point of view, i.e., all signals
are assumed to be random processes since they are obviously
not known at the receiver.

The binary data block , where denotes the data
block length, is encoded with code rate . Then, the
coded data block of length is interleaved using
the permutation matrix , i.e.,

, and mapped to the complex symbol block
using the modulation alphabet whose cardinality is . Here,

denotes the symbol block length and is the number of bits
used to represent one symbol. The mapper can be described
by the bijective function ,

, mapping the bits in to
the symbol , . The mapper
used throughout this paper is based on the Gray code (see, e.g.,
[19]), i.e., the bit codes corresponding to nearby symbols differ
only in one binary digit. Afterwards, the symbol sequence
is transmitted over the multipath SIMO channel of order with
the coefficients , , received by
antennas and perturbed by stationary AWGN with
the circular complex normal distribution , i.e.,

is zero-mean, spatially white, and each of its elements has
the variance . The channel is assumed to be constant during
one block, i.e., for the transmission of symbols, but varies
from block to block. The received signal vector can
finally be written as

(1)

For the derivation of the optimal linear equalizer filter with
taps in Section III-A, we introduce the matrix-vector model

(2)

with the observation vector , , the noise
vector , the symbol vector , and the
time-invariant channel convolutional matrix
defined as follows:

(3)

(4)

(5)

(6)

The observation vector represents an -dimensional sub-
block of the received signal block comprising all
the received signal vectors , , of
one block. Throughout the paper, we assume that the transmitted
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Fig. 2. Receiver structure.

symbols are uncorrelated to the noise, i.e.,
, and that the noise is also temporally white, i.e.,

. Note that is also zero-mean, i.e.,
.

B. Receiver Structure

The aim of the receiver structure given in Fig. 2 is to process
the observation signal block such that its output is best pos-
sible equal to the transmitted data block . Note that the observa-
tion vector block is seen as a realization of the vector random
variable at the output of the transmitter and channel model in
Fig. 1, as well as the data block as a realization of at the
input of the model. Besides, we assume throughout the paper
that the receiver has perfect channel state information. However,
the proposed methods can be easily applied to systems where the
channel is estimated.

The aim of best possible detection is approximately achieved
by exchanging soft information about the coded data bits be-
tween the linear detector and the decoder in an iterative process.
As will be discussed more detailed in Section III-B, the linear
detector calculates the extrinsic information about
the interleaved and coded data block using the observation
signal block and the a priori information about

obtained by interleaving of the extrinsic information
about the coded data block computed by the decoder at

the previous iteration step, i.e., .
Further, the MAP decoder computes the extrinsic informa-

tion about the coded data block from its a posteriori LLR
vector using its a priori information

which is the deinterleaved extrinsic information about the
interleaved and coded data block at the output of the detector
at the previous iteration step, i.e., . Let

be the vector composed by the LLRs ,
, which can be either a posteriori, a priori,

or extrinsic information. Clearly, these informations depend on
the number of the current iteration. Nevertheless, an additional
index is omitted due to simplicity. Then, the th element of the
a posteriori LLR vector computes as [4]

(7)

using Bayes’ theorem and the assumption that the a priori
LLR vector is a realization of the vector random vari-
able .3 Using the fact that the coded data bits ,

, in are statistically independent due to the
interleaver, it holds and finally
[4]

(8)

Thus, the extrinsic information can be obtained by sub-
tracting the a priori information computed by the detector
at the previous iteration step from the a posteriori LLR vector

offered by the decoder at the current iteration step.

During the iterative process, the a priori LLRs ,
, of the coded data bits improve from iteration

to iteration. The asymptotic values are or depending
on the detected coded data bits , i.e., if

and if . In other words, the probability
converges to one. Note that does not

mean that was actually transmitted, but the receiver assumes
that is the transmitted coded data bit .

After the last iteration, the MAP decoder provides the de-
coded data bits ( ) [4]

(9)

III. LINEAR DETECTION

A. A Priori Based Linear Equalizer

For the derivation of the linear equalizer in Fig. 2, we use the
channel model in (2) based on random processes. As can be seen
at the end of this subsection, the mean and the variance

of the symbol sequence is a function of the a priori in-
formation about the interleaved and coded data bits. Thus, if we
obtain a priori information from the decoder which is unequal
to zero and varies with time index , the random process
must be assumed to be nonzero-mean and nonstationary. The
estimate of the transmitted symbol sequence is obtained by
linear filtering of the nonstationary vector random process ,
i.e.,

(10)

3The modeling of the a priori LLR by a random variable is necessary to design
the decoder based on the MAP criterion. Certainly, this model is reasonable
since the actual a priori knowledge is estimated via the deinterleaved extrinsic
information offered by the linear detector.



1038 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 3, MARCH 2007

where and are linear time-variant (TV)
filter coefficients. The scalar is necessary due to the mean

of the symbol sequence . The WF [20], [4] is the so-
lution of the optimization

(11)

where is the mean-square
error (MSE) at time index between the symbol and
its estimate4 , i.e.,

(12)

Note that we assume the latency time to be fixed and not
optimized with respect to the cost function in (12), although
this would improve the performance (cf., e.g., [21] and [22]).
Finding the optimum given by (11) is equal to solving jointly the
equations and . Using
the definitions of the autocovariance matrices and the cross-co-
variance vectors given at the end of Section I, the solution of the
optimization given in (11) computes as

(13)

(14)

In order to ensure the adherence of the turbo principle [23], we
choose the filter coefficients such that they do not depend on the
a priori information corresponding to the symbol . Pre-
cisely speaking, we assume to be uniformly distributed
with zero-mean, i.e., and

. In Section III-C, we will explain in more
detail why this assumption is necessary. If we recall addition-
ally the transmission model defined in (2), (13) and (14) may be
rewritten as

(15)

(16)

Here, the matrix

(17)

in the following denoted as the adjusted autocovariance matrix
of the symbol vector , is the diagonal

4The optimal estimate [k] is obtained by applying the optimal filter coef-
ficients www[k] and a[k], whereas denotes the estimate obtained by applying
arbitrary filter coefficients www and a.

autocovariance matrix , where the ( )th diagonal ele-
ment is replaced by , and the vector

(18)

denoted as the adjusted mean of , is the mean , where
the ( )th element is set to zero. Nondiagonal elements in

and vanish because the symbols are temporally
uncorrelated due to the interleaver. Both and are
computed using the a priori information . We define

to be the vector composed by the LLRs ,
, , of the interleaved and

coded data bits which can be either a priori
or extrinsic information (cf. Fig. 2). We have to find expressions
for and in order to get finally and . Re-
member that . It holds [8]

(19)

and

(20)

with

(21)
where , is the inverse
function of the mapper , i.e., , and the
elements of are statistically independent due to the inter-
leaver. Finally, the probability can be ex-

pressed using the a priori information in the following
way5:

(22)

Thus, and and after all, the filter coefficients
and can be computed using .

For quadriphase shift keying (QPSK) modulation with

used in the simulations of Section V, we get the simplified ex-
pressions [8], [24]

(23)

(24)

5It holds for the LLR l of the binary random variable 2 f0; 1g:
tanh(l=2) = 2P( = 0)� 1 = 1� 2P( = 1).
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B. Soft Demapping

The ( )th element of the extrinsic information vector
delivered by the linear detector is generated by soft demap-

ping of the estimated symbol sequence . By definition, we
get (cf. (8))

(25)

where , , and . From
(22), we know that

(26)

The remaining part in calculating (cf. (25)) is the
unknown probability density function ,
which we approximate assuming a Gaussian distribution, i.e.,

(27)

with [8]

(28)

(29)

Here, we used with the filter coeffi-
cient from (16) and the channel model defined in (2). Note
that with ,

and

For QPSK modulation used in Section V, the elements of the
extrinsic information can be easily simplified to

(30)

Fig. 3. Block diagram of linear equalizer.

C. Interpretation

In this subsection, we rewrite the estimate
such that it no longer depends on . We will see that the

result gives an interesting interpretation of the linear detector.
Using (16), we get the expression

(31)

which is depicted in the block diagram of Fig. 3.
It can be seen that the adjusted mean vector , based on

the a priori information in the way described by (19), (21), and
(22), is used to subtract its influence after the transmission over
the channel from the observation vector to increase the
degrees of freedom and therefore, the performance of the fol-
lowing linear filter . This procedure is strongly related to the
decision feedback equalizer [25], [26] or interference canceler
[27], [28], where it is not the adjusted mean vector that is used
to construct the interference, but the already decided symbols.
Based on this analogy, the elements of the adjusted mean vector

, defined via (19), can be interpreted as soft decisions or
soft symbols. Note that the soft symbol is no soft information in
terms of LLRs but a nonlinear transformation thereof (cf. (19),
(21), and (22)).

The linear detector can also be derived by assuming the inter-
ference cancellation structure of Fig. 3 from the first (cf., e.g.,
[4], [29], and [10]). Moreover, this relationship between linear
equalization and interference cancellation gives a good expla-
nation why the mean must be assumed to be zero in
order to ensure the adherence of the turbo principle as stated in
Section III-A. This assumption guarantees that we do not sub-
tract the proportion of the signal of interest in the observation
signal from it. However, the linear filter still depends
on the available a priori information.

IV. REDUCED-COMPLEXITY LINEAR DETECTION

Due to the inversion of the matrix
in (15) at each time index

, the computational complexity of the
filter calculation is , . This results in a
computationally intense equalizer if the number of antennas

, the number of filter taps to cover the order channel,
and/or the symbol block length is high. In the following,
we consider different strategies to reduce the computational
complexity of the linear detector in such cases.

A. Optimal Reduced-Complexity Solution

At each time index , the computational complexity can be
reduced by one order if we exploit the time dependency of the
diagonal matrix in (15). From (17), we know that the last

diagonal elements of are equal to the first
diagonal elements of . If we partition the

adjusted autocovariance matrices at time indexes 6

6Note that the given definitions for i 2 fk; k�1g are a compact notation for
two types of decompositions with matrices of different sizes.
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(32)

and their inverses

(33)

such that , , , and are matrices,
, , , and are matrices,

and , , , and are
matrices, and recall the structure of the channel matrix given in
(6), it follows: .

The fundamental idea of the reduced-complexity (RC) imple-
mentation [8] is to exploit the fact that in order
to compute , viz., , , and , using the block
elements of and the blocks of the already computed in-
verse from the previous time index. Finally, using
the inversion lemma for partitioned matrices [20] and the matrix
inversion lemma [20] yields the solution7

(34)

(35)

(36)

where the inverse of can be expressed by the Schur com-
plement [20] of in , i.e.,

(37)

The enormous reduction in computational complexity is de-
tailed investigated in Section IV-D. Note that the proposed RC
algorithm is still optimal in the MMSE sense. The next subsec-
tions discuss suboptimal solutions.

B. Suboptimal Reduced-Rank Implementations

The reduced-rank WF denotes a rank
approximation of the WF in a subspace spanned by

the columns of the prefilter matrix , i.e.,
, where denotes a

reduced-dimension WF obtained from the optimization

(38)

with the MSE function from (12). The solution easily com-
putes as

(39)

(40)

7The solution can easily be derived by rewriting the identities��� [i]��� [i] =
III , i 2 fk; k � 1g, into eight equations using the block structures defined in
(32) and (33).

Again, the filters and , finally used in the linear
detector of Fig. 2, are obtained by assuming and

, i.e.,

(41)

(42)

with the adjusted autocovariance matrix
of the observation vector and the adjusted cross-co-

variance vector between the observation
and the desired signal (cf. (15)), and where we

used the channel model given in (2).
One category of reduced-rank methods is based on eigensub-

spaces. Consider the eigenvalue decomposition of the Hermitian
and positive definite adjusted autocovariance matrix

, where
is the diagonal matrix of the eigenvalues

and is the matrix
composed by the eigenvectors , .
The PC [16] method chooses the columns of the prefilter matrix

to be the eigenvectors , , corre-
sponding to the largest eigenvalues , , of

, i.e., . The motivation
for this selection is to design the prefilter such that the signal
power loss due to the dimension reduction from to
is as small as possible. Nevertheless, the PC algorithm does not
differentiate if the signal power is due to the signal of interest or
due to an interference signal. Thus, in systems with strong inter-
ferers, the PC method suffers from severe performance degra-
dation. The more recently introduced CS [17] algorithm com-
bats this lack of the PC method by selecting the columns of

to be the eigenvectors yielding the smallest MSE,
hence, being the optimal eigensubspace method in the MMSE
sense. Unfortunately, the CS method requires the computation
of all eigenvectors. Thus, it has the same order of computational
complexity as the full-rank approach. Since we are interested in
computationally cheap implementations, the CS method is only
presented as a performance bound for eigensubspace methods.
More detailed derivations and investigations of the CS algorithm
can be found in [30].

An alternative to eigensubspace methods, the so-called
MSWF, has been introduced by Goldstein et al. in [11]. The
MSWF is a stage-wise decomposition of the WF consisting of
MFs, so-called blocking matrices, and scalar WFs.

Although this blocking-matrix-based derivation of the
MSWF is more general, we concentrate on the version of the
MSWF introduced by Joham et al. [13] depicted in Fig. 4.
There, the first column of the prefilter matrix

is chosen to be the normal-
ized MF . Thus, its output is maximal
correlated to the desired signal . The th column

, , maximizes the real part of the
correlation between its output and the output of the
previous prefilter vector , i.e., it fulfills the optimization

s.t.

and (43)
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if we restrict the prefilter vectors to be orthonormal. The
solution is identical to the well-known Lanczos algorithm [14],
[15], [13]

(44)

with the projection matrices ,
, projecting onto the nullspace of . Note

that the autocovariance matrix of the transformed observation
vector is tridiagonal due the
Lanczos-based prefilter matrix [15]. The following reduced-di-
mension WF can be decomposed [11] into the
scalar WFs , , estimating the output
signal of the previous prefilter based on the observation

in the MMSE sense. Note that we define
and . With the cross-covariance

, the solution
of the optimization computes as

and can be computed recursively be-
ginning with (cf., e.g., [11]). Finally, Algorithm I summa-
rizes the Lanczos-based computation of the MSWF8 coefficients

, where we assume again , i.e., and
have to be replaced by and , respectively.

In addition, the backward recursion is adjusted according to the
Lanczos-based prefilter computation [13]. It remains to com-
pute according to (42).

Algorithm I: Lanczos-based computation of

,

2: ,

4: for do

6:

8:

10:

12: end for

14:

With the knowledge that the prefilter vectors can be generated
using the Lanczos procedure, it was shown [12], [13] that the

8Note that in the following, the term MSWF as well as WF denotes the filter
coefficients computed using the adjusted auto-covariance matrix and the ad-
justed cross-covariance vector although this is not explicitly mentioned.

Fig. 4. MSWF as filter bank.

columns of the prefilter matrix are basis vectors of the
-dimensional Krylov subspace [15]

(45)

Therefore, the MSWF can be seen as an MSE optimal approx-
imation of the WF in the subspace , which
is not equal to the eigensubspace.

C. Suboptimal Time-Invariant Approach

To avoid the calculation of the TV filter coefficients at each
time index , they can be set time-invariant (TI) by approxi-
mating the TV adjusted autocovariance matrix by its time
average [8]

(46)

for each symbol block of length . This method can be applied
to either the optimal WF implementation (cf. Section IV-A)
or the suboptimal reduced-rank solutions of Section IV-B.
However, it is not applicable to the RC implementation of
Section IV-A since the RC approach strongly depends on the
time variance of .

D. Complexity Investigations

Table I shows the number of real-valued FLOPs needed for
the filter computations of one block and one turbo iteration
where only the important terms with and are presented.
As defined in numerical linear algebra (cf., e.g., [31]), one
real-valued FLOP is a real-valued multiplication, division,
addition, subtraction, or square root.

The optimal method without any complexity reduction is
based on a Cholesky factorization together with a forward and
backward recursion [32] whereas the optimal RC approach
applies the ideas of Section IV-A. For each block, the latter one
needs one inversion of a matrix, i.e., the inversion of

, in order to initialize the recursion given by (33) to (37).
Note that the highest order term of the inversion of a
matrix is , which is three times larger than the highest order
term of solving the corresponding equation system with

equations and unknowns. However, the inversion in the
RC algorithm has to be performed only once per block whereas
the optimal approach without any complexity reduction solves
the equation system at each time index , i.e., times. Thus,
the computational complexity of the one matrix inversion per
block can be neglected if and the RC enhancement
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TABLE I
NUMBER OF FLOPS FOR FILTER COMPUTATIONS

reduces the computational effort of the optimal approach by one
order.

Table I presents the computational complexity of the MSWF
summarized in Algorithm I only for ranks since the
simulations in Section V will show that the rank MSWF
already achieves quasi-optimal performance. It can be seen that,
compared to the RC approach, the computational effort needed
to compute the MSWF coefficients has no third order term since
no matrix inversion is implied. The highest order term
arises from the matrix-vector multiplication (cf. Lines 2,
5, and 8 of Algorithm I) which has to be performed times for
each symbol . Note that the multiplication
of the matrix by the vector requires
complex-valued multiplications and complex-valued
additions. Thus, the number of real-valued FLOPs9 needed to
perform the given matrix-vector product once, is .
The computational complexity of the remaining operations in
Algorithm I can be neglected since their complexity order is at
most linear. The number of FLOPs of the eigensubspace-based
PC and CS method is not shown in Table I since their perfor-
mance is much worse than the one of the MSWF as will be seen
in Section V. Nevertheless, the order of computational effort to
compute the PC filter weights is the same as for the MSWF, i.e.,

, since algorithms which compute eigenvectors of
a Hermitian matrix are also based on the Lanczos algorithm.
There, the Lanczos method is used to tridiagonalize the ma-
trix before performing the eigenvalue decomposition. Note that
computing the eigenvectors of a tridiagonal matrix has a neg-
ligible order of computational complexity (cf., e.g., [31]). As
mentioned above, the CS method is only presented as a per-
formance bound for eigensubspace methods since its compu-
tational complexity is the same as the one of the full-rank WF,
i.e., .

Up to the optimal RC approach, the effort to compute the
TV filters is times larger than the one for the TI methods.
This is due to the fact that the TI filter coefficients have to be
computed only once per each block instead of times since
the time-varying adjusted autocovariance matrix is replaced by
its time average. However, also the TI filters have to be recom-
puted from block to block because the channel is assumed to be
block varying. Nevertheless, the TI approaches achieve an ad-
ditional tremendous reduction in computational complexity, es-
pecially if whereas the resulting performance degrada-
tion is negligible as we will see in the simulations of Section V.
Moreover, for , the TI approximation of the optimal WF

9One complex-valued multiplication is treated as four real-valued multiplica-
tions and two real-valued additions, and one complex-valued addition is treated
as two real-valued additions.

Fig. 5. FLOPs for computation of TV filter coefficients.

without any complexity reduction should be preferred to the RC
approach since the number of FLOPs is smaller. If one is in-
terested in very computationally cheap implementations, the TI
MSWF is finally the adequate algorithm.

This statement is also approved by Fig. 5, which shows the
exact number of FLOPs of the proposed TV filters for
receive antennas and a symbol block length of . The
figure demonstrates the computational efficiency of the subop-
timal MSWFs with ranks compared to the optimal
solutions. Again, the MSWFs with ranks are not consid-
ered here since the simulation results of Section V will show that
the rank MSWF achieves already near optimal perfor-
mance in the given turbo scenario. Note that only for ,
the RC approach needs less FLOPs than the optimal one due
to the higher prefactor of the second-order term (cf. Table I).
Again, the exact number of FLOPs to compute the TI filters are

times smaller than the one to compute the TV filter coeffi-
cients presented in Fig. 5.

V. SIMULATION RESULTS

In the sequel of this paper, we consider bits per
data block which are encoded with a (7, 5)-convolutional code,
i.e., , and randomly interleaved. The interleaved and
coded bits are QPSK modulated, i.e., , before the trans-
mission over the frequency-selective channel with an impulse
response of order (cf. Section II-A). The channel is as-
sumed to be known at the receiver and the signal-to-noise ratio
(SNR) is defined as with the bit
energy and the noise power density . The length of the
linear equalizer filter is and the latency time is chosen
fixed to . Besides, the decoder is implemented using
the Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm [33]. The fol-
lowing subsections present simulation results for two different
channel types.

A. Fixed Channel Simulations

All simulations of this subsection assume antenna at
the receiver, i.e., the observation vector has dimension

, and TV filter coefficients. Hence, the computational
complexity arises from the fact that the statistics is time-varying
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Fig. 6. EXIT chart for Porat channel at 10 log (E =N ) = 5 dB.

although the channel is fixed (cf. Section IV-D). First, we in-
vestigate the performance of the proposed algorithms when ap-
plied to equalize a complex-valued channel defined by Porat et
al. in [34] which behaves well in terms of interference. With
the vector of channel coefficients, the
norm-one Porat channel is given by

(47)

For the Porat channel, the EXIT chart [35] with the proposed
algorithms at 5 dB is depicted in Fig. 6,
where the mutual information between
the interleaved and coded bits at the transmitter and the ex-
trinsic information at the output of the linear detector, is
plotted over the mutual information be-
tween and the a priori information at the input of the
linear detector. Besides, Fig. 6 includes the transfer character-
istic of the decoder, i.e., the dependence of the mutual informa-
tion between the coded bits at the transmitter
and the extrinsic information at the output of the decoder,
on the mutual information between and the
a priori information at the input of the decoder.10 Note that

and due to the iterative structure of
the receiver (cf. Fig. 2) such that we can use the EXIT chart to
analyze the convergence behavior of the turbo system [36].

In Fig. 6, it can be seen that all investigated algorithms
achieve the same mutual information in case of full
a priori knowledge, i.e., . Thus, for a sufficient
high number of iterations, they perform equally if the SNR
is high enough such that their EXIT curves do not intersect
the one of the decoder. Nevertheless, the number of iterations,
necessary to achieve the optimum, depends on the curvature of
the corresponding EXIT graph and on the mutual information

at (no a priori information available) which
corresponds to a coded system with a receiver performing no

10The index i used in Section II-B to refer to the position of , , ,

and , in the vectors , , , , respectively, is omitted here
since the mutual information is assumed to be equal for all elements of the cor-
responding vectors.

Fig. 7. BER plot for Porat channel.

iterations. Consequently, the WF with the highest for
all needs the lowest number of iterations. The proposed
MSWF with rank has only a small performance
degradation compared to the WF although the computa-
tional complexity is reduced tremendously (cf. Section IV-D).
Contrary to the Krylov-subspace-based MSWF, the eigensub-
space-based PC or CS method with rank behave even
worse than the rank-one MSWF. Thus, in the given scenario,
Krylov-subspace-based approximations of the WF should be
preferred to WF approximations in eigensubspaces.

The observations made in Fig. 6 can be verified in the BER
plot of Fig. 7 where the receiver iterated ten times. The lower
bound in Fig. 7 is given by interference free transmission (coded
AWGN). It can be seen that the optimal linear WF achieves
the BER of the coded AWGN channel for
5 dB. The MSWF with rank performs identically to the
WF and even the rank-one MSWF has only a slightly higher
BER for low SNR values. Recall that the MSWF with is
equal to a normalized MF followed by a scalar WF. Thus, and
because of the fact that the normalized MF has
by definition TI filter coefficients, its computational complexity
is reduced drastically compared with the full-rank WF. Note that
contrary to the proposed rank-one MSWF which is used in any
turbo iteration, the MF approaches introduced in [23] or [37]
have a higher computational complexity since they are applied
in a hybrid manner, i.e., the first iteration still applies a full-rank
WF whereas only the following iterations are based on MF ap-
proximations. Contrary to the MSWF, the PC and CS method
with achieve the performance of the WF in Fig. 7 only at
very high SNRs. Moreover, compared to the full-rank WF and
the reduced-rank MSWFs, the eigensubspace-based algorithms
still improve their performance if the number of iterations is fur-
ther increased. This is due to the bottleneck between their and
the decoder’s EXIT curve which can be seen in Fig. 6, impli-
cating a very high number of iterations in order to achieve the
optimum at .

Finally, Fig. 8 depicts the EXIT chart at
5 dB if we assume the real-valued Proakis channel [19]

(48)
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Fig. 8. EXIT chart for Proakis channel at 10 log (E =N ) = 5 dB.

Due to its symmetric structure, the transfer function of the
Proakis channel has zeros leading to severe ISI. Again, the
norm of is one. Due to the severe ISI, the EXIT curves of
all algorithms start at a lower compared to the curves
of Fig. 6 and their curvatures are positive, i.e., the number
of iterations needed for convergence is higher compared to a
nonpositive curved graph. Again, the optimum can only be
reached for high SNR values, e.g., at the investigated log-SNR
of 5 dB, only the WF and the MSWF
with rank do not intersect the decoder curve, thus,
achieving optimal performance after several iterations. In case
of the Proakis channel, the rank CS method as the MSE
optimal eigensubspace algorithm is better than the rank-one
MSWF but performs still worse than the MSWF with rank

. Remember that the CS filter is only considered as
a performance bound for eigensubspace methods since its
computational complexity has the same order than the com-
putational intense WF (cf. Section IV-D). Again, the EXIT
curve of the computationally cheap MSWF with rank is
almost equal to the one of the full-rank WF.

B. Random Channel Simulations

In this subsection, we consider a random block-varying
channel where each coefficient is taken from a circular complex
normal distribution with variance and held constant
during one block. Note that such channels with a uniform
power delay profile can be seen as worst case scenarios since
they produce more ISI than channels with exponential power
delay profiles. Fig. 9 plots the BER versus SNR averaged over
several channel realizations if we assume antenna at the
receiver, i.e., , and TV filter coefficients. Note
that the averaged BER of the WF does not further improve
after three iterations. The BER curves achieve no longer the
BER of a coded AWGN channel, even for an infinite number of
iterations. Besides, in case of random channels with , the
computationally cheap rank-one MSWF no longer reaches the
WF performance. Nevertheless, the MSWF with rank is
still very close to the optimal linear filter.

In the sequel of this paper, we consider antennas at
the receiver. With a filter length of for each antenna, we

Fig. 9. BER for random channel (R = 1) and TV filter coefficients.

Fig. 10. BER for random channel (R = 4) and TV filter coefficients.

get an observation vector with dimension .
Figs. 10 and 11 show the BERs of TV and TI filters, respec-
tively, again averaged over several channel realizations. Com-
pared with the one-antenna case, the optimal linear equalizer
achieves no further improvement after only one iteration. Due
to the antenna gain, the BERs of the investigated algorithms are
shifted about 6 dB to the left. The MSWF solution with
one iteration and a significant reduced complexity is only 0.5 dB
away from the optimal curve. Performing an additional iteration
leads to the performance of the WF at the cost of a higher com-
putational complexity. Anyway, the 2 MSWF solution has
already the same performance as the optimal solution after one
iteration (cf. Fig. 12).

In Fig. 11, it can be seen that despite of their enormous com-
putational efficiency, the performance of the TI filter coefficients
is almost equal to the one of the corresponding TV implemen-
tation. Especially, in systems with large block sizes, it is rec-
ommended to first replace the TV filter coefficients by their TI
approximations before applying alternative reduced-complexity
methods. Note that the performance of the TI rank-one MSWF
is not shown since the complexity reduction compared to its TV
implementation is negligible because the time variance of the
statistics affects only the scalar WF and not the normalized MF.
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Fig. 11. Comparison to TI filter coefficients for random channel (R = 4).

Fig. 12. Comparison to eigensubspace-based methods for random channel
(R = 4).

Finally, Fig. 12 depicts an averaged BER comparison of
the Krylov-subspace-based MSWF to eigensubspace-based
methods performing only one turbo iteration. Again, Fig. 12
shows the superiority of the Krylov-subspace-based MSWF
compared with the eigensubspace-based PC and CS method.
Moreover, it can be seen that the MSWF with rank has
the same performance as the full-rank WF.

VI. CONCLUSION

In this paper, we have applied the reduced-rank MSWF to
the linear detector of an iterative receiver. The analysis based
on EXIT charts as well as Monte Carlo simulations of coded
transmission over frequency-selective channels have shown that
the reduced-rank MSWF achieves near optimal performance de-
spite of a tremendous reduction in computational complexity
compared with optimal reduced-complexity implementations.
Even if the rank of the MSWF is reduced to one which results
in an easy-to-compute normalized MF followed by a scalar WF,
the performance of the turbo receiver is close to optimum if we
assume several antennas at the receiver. Moreover, the MSWF
outperforms eigensubspace methods with the same rank.
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