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Abstract— The problem of sending channel state information
from the receiver to the transmitter of a wireless link is
investigated in this paper. If the channel state is Gaussian
distributed, this problem is equivalent to that of transmission
of a Gaussian source over a noisy channel. We focus on a
model in which the source outputs are statistically independent
and the feedback channel is either AWGN or Rayleigh fading.
Due to the strict delay constraints, information theoretic results
are hardly applicable to the analysis of such a setting. As a
consequence, despite its simplicity, little is known about its fun-
damental performance limits. Here, two different delay limited
digital transmission approaches and a linear analog transmission
approach are discussed and compared. IfD channel uses per
source output are allowed, it is shown that for the AWGN
feedback channel delay limited digital approaches can achieve
a distortion decay of at leastD/2 dB per dB of SNR. This
decay rate is 1 for the linear analog approach regardlessD.
For Rayleigh feedback channels the distortion decay rate is
shown to be upper bounded by1 for digital approaches and is
asymptotically 1 for the analog approach. This fact and simplicity
are good reasons for the use of analog transmission for feedback
purposes over fading channels.

I. I NTRODUCTION

Channel state information at the transmitter of a wireless
link permits the application of adaptivity techniques in order to
either boost transmission rate, reliability or decrease transmit
power required to achieve certain performance. Channel state
information can be obtained at the transmitter exploiting
reciprocity in time division duplex schemes. By contrast, in
frequency division duplex schemes a feedback channel is
typically needed to convey channel state information (CSI)
from the receiver to the transmitter. Of late, in the context
of multiple-input multiple-output (MIMO) wireless channels,
several authors have proposed analog transmission for feed-
back of CSI [1]–[3]. The main reasons are claimed to be
simplicity and mathematical tractability. However, no precise
statements are made that justify analog transmission on the
grounds of performance. A primary goal of the present work
is to analyze and compare performance of digital and analog
approaches in order to better understand the basic difference
between both techniques and their suitability for feedback
purposes.

When studying transmission of CSI over a feedback link,
CSI can be thought of as the output of a source. The goal is
the reconstruction of the source at the other end of the link
with minimum distortion. If high delay and complexity can be
tolerated, the optimum performance theoretically achievable

(OPTA) can be approximated by a digital approach that first
performs an optimum coding (quantization) of the source at
a rate close to the capacity of the channel and then performs
an almost error free transmission of code vectors by means
of a powerful channel coding scheme [4]. That is, always
when high delay and complexity can be tolerated a digital
approach achieves optimum performance. Unfortunately, feed-
back of CSI imposes taugh delay constraints in order to avoid
outdating. As a result, error free transmission is impossible.
Furthermore, given a particular channel state, this must be
transmitted before the next channel state becomes available.
This forces a causal coding of the source. Under these con-
straints optimality of digital transmission is not guaranteed and
simple analog approaches may be an interesting alternative.

A theoretical framework for the analysis of digital systems
under delay, complexity or causality constraints is so far
missing. An attempt to elaborate a general framework in
[5] ended up with more questions than responses despite
the simplifying assumption of a noiseless transmission chan-
nel. This lack of theoretical foundation has given rise to a
heterogeneous landscape of approaches specifically taylored
for particular settings and applications that are commonly
referred to as joint source and channel coding schemes [6]
[7]. In the setting considered here the source outputs are
statistically independent, Gaussian distributed scalar values.
Each of these values is transmitted overD channel uses in
the feedback link. Both AWGN and Rayleigh fading feedback
channels are investigated. As distortion measure mean square
error is considered. In the next section, we shall see that this
setting describes a number of practically interesting feedback
approaches.

Optimum transmission of Gaussian sources over AWGN
channels has been investigated in [8] under the assumption of
linear receivers. In [9] an algorithm is proposed that jointly op-
timizes the receiver, joint source and channel encoder and the
signal constellation. An extension of this algorithm to Rayleigh
fading channels is presented in [10]. Specially the two last
algorithms are numerically very complex and do not provide
any insight regarding performance of delay constrained digital
approaches. Here, the focus is on analysis rather than design.
Two simple digital approaches are investigated. The first maps
quantizer outputs to a set of signals that is chosen aiming at a
maximization of the minimum distance between elements of
the set. This scheme is referred to as non topological approach
for reasons that will become clear later. The second maps



quatizer outputs so that neighborhood relations in the domain
are preserved in the range. For this reason we call this scheme
topological approach.

For the AWGN feedback link, a general analysis based on
high resolution quantizers and random codes shows thatD/2
is a lower bound on the distortion decay in dBs that can be
expected from delay constrained digital approaches when the
channelSNR increases1 dB in the highSNR region. This rate
of decay isD for OPTA. This is in contrast with the distortion
decay rate of the optimum linear analog approach which is1
regardlessD. It turns out that the non topological scheme
behaves as expected from the bounds for digital approaches.
On the contrary, performance of the linear analog scheme
seems to tightly upper bound performance of the topological
scheme.

The picture changes significantly for Rayleigh fading feed-
back channels. Distortion decay rate of digital approaches
is shown to be limited to 1 regardlessD. This rate is also
achieved by the analog approach at asymptotically largeSNR
values. Therefore, neither digital approaches nor the analog
scheme significantly profit from an increase inD. Simula-
tion results show that analog transmission may deliver better
performance than both digital approaches and the topological
scheme may outperform the non topological approach. This
fact offers a rationale for the use of analog transmission for
feedback over fading channels or application of simple digital
approaches based on repetition codes as, for instance, the
topological scheme considered here.

The remainder of the paper is structured as follows. In
Section II the system model is introduced and motivated.
In Section III the topological and non topological digital
approaches are introduced and briefly discussed. In Section
IV performance bounds are derived for the AWGN feedback
link. The same is done for the Rayleigh fading feedback link
in Section V. Simulation results are shown and commented in
Section VI. Finally, conclusions are drawn in Section VII.

II. SYSTEM MODEL

The system model is illustrated in Fig. 1. The transmitter
sends pilots to the receiver that make possible an estimation
of the channel state, which in the general case is represented
by a matrixH. We assume that this estimate is perfect and
constitutes the CSI that is sent back to the transmitter over the
feedback link. The feedback link is visualized in Fig. 2. On
this link one valuez ∈ C is transmitted at a time. These values
may be regarded as the outputs of a source. For transmission
of each source output the channel can be usedD times. The
encoder is a map of source values onto the set of transmit
signalssi ∈ CD, i ∈ {1, . . . ,M}. The signals are supposed
to satisfy a power constraint,

1
D

M∑
i=1
‖si‖2P (si) ≤ SNR (1)

whereP (si) is the probability that signalsi is transmitted.
The channel is modeled by a channel gaing ∈ C and

an additive noisew ∈ C, w ∼ CN (0, 1). We consider
two classes of channels: an AWGN channel and a Rayleigh
fading channel. For the AWGN channelg = 1. For the
Rayleigh fading channelg ∼ CN (0, 1) and is constant during
transmission of a source value, i.e., a block fading model is
assumed with block length ofD channel uses. The decoder,
estimates the transmitted source value based on the received
signal y ∈ CD. Distortion is defined asε = E|z − ẑ|2. A
minimum variance estimator is employed at the decoder, which
is optimum for this distortion measure. For analysis purposes
the source outputs are assumed to be statistically independent
z ∼ CN (0, 1).

Wireless channel

Feedback link

H n

Tx Rx

Figure 1. System model.
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Figure 2. Feedback link.

This model directly applies if the wireless channel is
flat fading single input single output (SISO) and successive
channel states are uncorrelated. In this case channel states
are the source outputs. If correlations exist the model also
applies if only innovations are fed back, which are statistically
independent [1]. In this case innovations are the output of the
source. For the general case of MIMO wireless channels with
arbitrary correlation in time, frequency or space the model
applies if, for the sake of simplicity, each entry of the channel
matrix is independently fed back and the decoder does not
make use of correlations. In such case the source outputs are
the entries of the channel matrix.

III. D ELAY CONSTRAINED DIGITAL APPROACHES

Without loss of optimality the encoder may have the
structure indicated in Fig. 3. It consists of the concatena-
tion of a quantizer and a mapping of reproduction values
to transmit signals. Two different approaches are considered
here. Both approaches use quadrature amplitude modulation
(QAM) constellation signals for transmission and a quantizer
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Figure 3. Encoder.

optimized according to the generalized Lloyd algorithm (GLA)
[11]. Given a numberM = 22b of reproduction values the
starting points for the GLA are chosen to correspond to an
optimum uniform scalar quantization of real and imaginary
parts separately, i.e., the initial values are elements of the set

{r+α(n+ jm) : n,m ∈ Z ∧ −
√
M

2 ≤ n,m ≤
√
M

2 − 1}

wherer = α/2+jα/2 andα is the optimum distance between
reproduction values for a uniform scalar quantizer [12]. The
two approaches differ in the mapping block. The first scheme
uses a mapping that tries to maximize the distances between
any two points of the image. This scheme is called non
topological approach. The second scheme uses a mapping that
nearly preserves the distance relations between the points of
the original set. This scheme will be referred to as topological
approach.

Assume thatqi is a final quantizer output that corresponds
to the reproduction valuer+α(n+jm) at the beginning of the
GLA algorithm. To this point the topological scheme assigns
the signalsi = si1D wheresi = (1/2 + n + j(1/2 + m))
and 1D is a D dimensional vector with unit entries. The
map of the non topological scheme is a composition of three
mappings. First, to eachqi a sequence of2b bits is assigned
according to a Gray mapping, i.e., neighboring points differ at
most in one bit. Then, these bits are encoded with a block
code of rateR = 1/2. Finally, the sequence formed by
the 4b resulting bits is fragmented in subsequences of4b/D
bits and each of these subsequences is Gray mapped to a
symbol of a QAM constellation of size24b/D. Each of the
D resulting symbols is transmitted in a different channel use.
If binary codes with good distance properties are chosen the
vectors of QAM symbols selected for transmission by the non
topological scheme will be conveniently far apart. However,
this convenient placement of transmit signals will in general
not preserve neighborhood relations. Prior to transmission,
signalssi are normalized so that the power constraint in (1)
is satisfied.

Preserving neighborhood relations is convenient since in
that case signals likely to be mutually mistaken do represent
close values of the source, leading to mild distortion. On the
other hand, maximizing minimum distance between transmit
signals makes communication more reliable. Ideally both goals
should be combined in order to obtain an optimum map.
However, fully reconciliation of both paradigms appear to be
impossible [13].

IV. AWGN FEEDBACK LINK

A. Analog Transmission

The basic difference between analog and digital transmis-
sion resides in the nature of the map performed by the encoder
in Fig. 2. In case of analog transmission this map is injective,
i.e., the range is uncountable. In case of digital transmission
the range is typically a finite countable set. Here, the focus is
on simple linear maps.1 Correspondingly, the transmitted and
received signals depend linearly on the source output. The
received signal can be written as

y = φ
√

SNRz +w (2)

whereφ ∈ CD is an arbitrary vector of norm
√
D in order

to fulfil the power constraint. For this model, distortion is
minimized by estimatingz with an MMSE estimator. The
resulting distortion is given by

ε = 1
1 +DSNR . (3)

It is interesting to observe that distortion does not depend on
φ. In particular, using the channel only once and transmitting
with powerDSNR is equivalent to using the channelD times
transmitting each time with powerSNR. Expressingε and
SNR in dBs we obtain

ε(dB) = −SNR(dB) +O(1), SNR→∞,
that is, in the high SNR region distortion decays at a rate of
1 with respect to SNR regardlessD.

B. OPTA

For an i.i.d. circularly symmetric Gaussian source of unit
variance the rate distortion function is easily computed [16]
as

R(ε) =
{

log
(
σ2

h

ε

)
if ε < σ2

h

0 if ε ≥ σ2
h

. (4)

The maximum number of bits that can be transmitted over the
channel per source output is given by

C = D log(1 + SNR). (5)

According to the joint source and channel coding theorem with
a fidelity criterion [4] the minimum achivable distortion can
be computed by equating (4) and (5) and solving forε. Doing
that, we obtain

ε = 1
(1 + SNR)D . (6)

Note that forD = 1 (6) and (3) are equal. That is, the
analog scheme performs optimally without the infinity delay
and complexity required by the optimum digital approach (cf.
[17], [18]). Note also that the analog scheme needs not know
the channelSNR while the optimum digital scheme needs that
knowledge. Expressingε andSNR in dBs, we observe

ε(dB) = −DSNR(dB) +O(1), SNR→∞,
1Some work on non linear mappings has been done in [14] [15].



i.e., forD > 1 the gap between OPTA and the linear analog
scheme becomes arbitrarily large for increasingSNR. An
interesting question is to know whether this statement also
holds if delay incurred by the digital approach is constrained.
The answer is positive. In the next section we prove thatD/2
is a lower bound for the decay rate in distortion at highSNR
that can be achieved by delay constrained digital approaches.

C. Lower Bound on Asymptotic Distortion Decay

In order to derive this bound an encoder is assumed as
that in Fig. 3. The quantizer consists of two optimum scalar
quantizers separately quantizing real and imaginary parts of
each source output with a resolution ofb bits. Let q(n,m) =
αn+jβm denote the reproduction values of the quantizer with
(n,m) ∈ {1, . . . , 2b} × {1, . . . , 2b}. For each transmission a
set ofM = 22b signalssi ∈ CD is randomly generated.
Each component of the signal vectors is independently drawn
according to a circularly symmetric Gaussian distribution
CN (0, SNR). Index pairs representing quantization levels are
randomly mapped to indexesi ∈ {1, . . . ,M} representing
transmit signals. The decoder performs maximum likelihood
detection and reverses the random mapping in order to retrieve
the transmitted quantizer outputs. Let(n̂, m̂) be the pair of
indexes obtained at the receiver upon detection and mapping
reversal.

If no transmission errors occur distortion is entirely caused
by the quantizer. At high resolution, i.e., highb, distortion is
well approximated by [11]

εne = 2π33/2

12M . (7)

If transmission errors occur, we distinguish three different
cases:e1) n̂ 6= n and m̂ 6= m, e2) n̂ = n and m̂ 6= m, e3)
n̂ 6= n andm̂ = m. Let Pe1, Pe2 andPe3 be the probabilities
of occurrence of each of these types of errors andεe1, εe2 and
εe3 the average distortions conditioned on the occurrence of
e1, e2ande3, respectively. Using these definitions, the average
distortion of the system can be written as

ε = εne(1− Pe) +
3∑
i=1
Peiεei (8)

wherePe is the probability of transmission error. Obviously,
Pe =

∑3
i=1 Pei. Furthermore,

Pe1 = (
√
M − 1)2

M − 1 Pe, Pe2 = Pe3 =
√
M − 1
M − 1 Pe.

Substituting these expressions in (8) we obtain

ε = εne(1− Pe) + ε̄ePe (9)

whereε̄e = (
√
M−1)2

M−1 εe1 +
√
M−1
M−1 (εe1 + εe2).

The probability of transmission error obtained by using an
ensemble of random code books withM = 2DR = 22b code
words is upper bounded by

Pe ≤ 2−DEr(R) (10)

whereEr(R) is the random coding exponent [19]. For the
AWGN channel and the Gaussian input distribution considered
here this exponent can be written as

Er(R) = max
0≤ρ≤1

ρ

(
log2

(
1 + SNR

1 + ρ

)
−R
)
.

Choosingρ = 1 a looser and simpler upper bound is obtained
as

Pe ≤ 2−D(R0−R) (11)

whereR0 = log2(1+SNR/2) is the so-called cut-off rate [20].
Using (7) and (11), distortion in (9) can be upper bounded as

ε ≤ K1(1− Pe)2−DR + ε̄e2−D(R0−R)

whereK1 is a constant independent ofR. Now, choosingR =
2bDR0(SNR)/4c/D and noting(1 − Pe) ≤ 1 the following
upperbound results

ε ≤ (K1 + ε̄e)2−2bDR0/4c. (12)

Assume that the average distortion conditioned on transmis-
sion errorsε̄e is bounded. In that case from (12) it is easily
shown that

ε(dB) = −D2 SNR(dB) +O(1), SNR→∞,

i.e., distortion of the optimum delay constrained digital ap-
proach decays at least at a rateD/2 in the highSNR region.

The boundedness assumption onε̄e is key for the validity of
this result.̄εe is bounded if all threeεei are bounded. Here, for
reasons of space, we only sketch the proof for the boundedness
of εe1. The proofs for the other two cases are similar. LetIn
andIm be the intervals of the scalar quantizers corresponding
to the reproduction valueq(n,m) and z = α + jβ with real
and imaginary parts in these intervals. If this source value is
transmitted the distortion at the receiver conditioned on the
occurrence ofe1 is given by

εe1,z = 1√
M − 1



√
M∑
n̂=1
n̂6=n

|α− αn̂|2 +

√
M∑
m̂=1
m̂ 6=m

|β − βm̂|2

 (13)

Note that due to the random mapping the probability of
detecting a certain pair of indexes conditioned one1 is uni-
formly distributed over the set{1, . . . ,√M}×{1, . . . ,√M}\
{(n,m)}. Averaging over all possible outputs of the source we
obtain

εe1 = 2√
M − 1

√
M∑
n=1

∫
In

√
M∑
n̂=1
n̂6=n

|α− αn̂|2p(α)dα (14)

where the fact has been used that both terms in (13) are
identically distributed. Expanding the square in (14) and after



some simple manipulations we obtain,

εe1,z = 1 + 2
√
M√
M − 1

1√
M

√
M∑
n=1
α2
n+

+ 2√
M − 1


2

√
M∑
n=1

∫
In

αnαp(α)dα −
√
M∑
n=1

∫
In

α2
np(α)dα


 .

The third term is clearly bounded. As for the second term,
boundedness is proved by observing

1√
M

√
M∑
n=1
α2
n →
∫
α2λ(α)dα, M →∞,

whereλ(α) is the point density function of the optimum scalar
quantizer at high resolution [11].

V. RAYLEIGH FADING FEEDBACK LINK

A. Analog Transmission

If the linear analog scheme described in Section IV-A is
used for transmission over a Rayleigh fading channel (2)
becomes

y = gφ
√

SNRz +w.

Conditioned on a fixed channel gaing the distortion at the
output of the MMSE estimator can be written as

εg = 1
1 +D|g|2SNR

and computing the mean over all possible channel states the
resulting average distortion is given by

ε = 1
DSNRE1

(
1

DSNR

)
exp
(

1
DSNR

)
(15)

whereE1(·) is the exponential integral function.2 An asymp-
totic analysis of this expression at highSNR yields [21]

ε(dB) = −SNR(dB) +O(log(SNR(dB))), SNR→∞,
i.e., asymptotically distortion decays 1 dB for an increment of
1 dB in SNR. This behavior is independent ofD.

B. OPTA

In the Rayleigh fading feedback link the maximum number
of bits that can be transmitted without error per source value
is given by

C = DEg
{

log(1 + |g|2SNR)
}
.

Computation of this expected value yields

C = D

loge 2E1

(
1

SNR

)
exp
(

1
SNR

)
. (16)

Now, equating (16) and (4) and solving forε we obtain

ε = exp
(
−DE1

(
1

SNR

)
exp
(

1
SNR

))
.

2E1(x) =
R∞
x
e−t
t
dt

An asymptotic analysis of this expression reveals

ε(dB) = −ηDSNR(dB) +O(1), SNR→∞,
with 1/2 ≤ η ≤ 1. That is, the asymptotic distortion decay rate
improves withD as in the AWGN feedback link. However,
now there is fundamental difference between the optimum
digital approach with unconstrained delay and delay con-
strained approaches. The former exploits diversity in the fading
channel. The latter are unable to profit from diversity as they
only see one channel gain during transmission. A tighter upper
bound can be derived if this limitation of delay constrained
approaches is considered. For a given fixed channel gaing the
minimum achievable distortion is given by the OPTA over an
AWGN link with signal to noise ratio|g|2SNR, i.e.,

εg = 1
(1 + |g|2SNR)D . (17)

Obviously, distortion obtained by averaging (17) overg repre-
sents an upper bound on the average performance of delay
constrained schemes. Computation of this expected value
yields

ε =
D−1∑
i=1

(−1)i−1(D − i− 1)!
(D − 1)!SNRi

+
(−1)D−1E1

( 1
SNR
)

e1/SNR

(D − 1)!SNRD
.

ForD = 1 this bound is achieved by the analog approach (cf.
(15)). ForD > 1

ε(dB) = −SNR(dB) +O(1), SNR→∞,
that is, for fading channels, if diversity can not be exploited,
digital approaches are uncapable to benefit from the higher
dimensionality of the signal space in the way they do over
AWGN channels.

VI. SIMULATION RESULTS

Fig. 4 shows simulation results of both digital approaches
discussed in Section III for the AWGN feedback link. The
horizontal axis represents channelSNR. The vertical axis
represents outputSNR defined asSNRout = −ε(dB). The
variableb indicates the number of bits per real dimension used
for the quantization of the source.D = 4 uses of the channel
are made for each source value. In addition to the curves of
the delay constrained digital schemes, curves corresponding to
the analog approach and OPTA are also plotted. Consistently
with the dicussion in Section IV OPTA increases 4 dBs per dB
of channelSNR at highSNR values. The slope of the analog
approach is1. The non topological scheme seems to follow the
growth rate of OPTA. By contrast, the non topological scheme
seems to be upper bounded by the analog approach, i.e.,
even random codes have the potential to perform much better
than this scheme at highSNR. At low SNR, the topological
approach benefits from the neighborhood preserving mapping
and performs better than the non topological approach that
suffers from the well known threshold effect and the fact that
mutually mistaken signals are likely to correspond to very
distant source values [13]. Performance of the non topological
approach critically depends on the choice of resolution bits.



For the topological approach more bits provide a uniform
performance improvement over the entireSNR range.

Fig. 5 shows performance over a Rayleigh fading link. The
additional curve corresponds to the second bound derived in
Section V-B. The growth rates of the analog scheme and both
information theoretical bounds are consistent with the analysis
performed in the preceding section. Now, analog transmission
uniformly outperforms the delay constrained digital schemes.
The topological scheme also shows better performance than
the non topological scheme over the whole range of SNR
values.
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Figure 4. AWGN feeback link.D = 4.
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Figure 5. Rayleigh feeback link.D = 4.

VII. C ONCLUSION

On an AWGN feedback link, delay constrained digital
approaches have the potential to use the higher dimensionality

of the signal space in order to make performance gain with
respect to a linear analog approach arbitrarily large for increas-
ing SNR. Only in the low SNR region or if only a channel use
is made per source value performance of the analog approach
is optimum. On a Rayleigh feedback link, digital approaches
do not significantly benefit from the higher dimensionality of
the signal space if diversity can not be exploited due to delay
constraints. In such case a simple linear analog approach or
a digital approach preserving neighborhood relations of the
source in the signal space may clearly outperform performance
achieved by the classical paradigm of using signal sets with
large minimum distance.
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