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ABSTRACT non-convex in the dual MAC, we have to resort to alternative
Since the downlink has a difficult algebraic structure, itquantities to be optimized. We choose the MSE, since the
is more convenient to switch to the dual uplink problemMSE gives a lower bound to the sum rate and the most popu-
which has better algebraic properties. We consider the ugar MSE problems either turn out to be convex (minimization
link/downlink duality with respect to thenean square er- of the sum MSE, [8, 9]) or can be solved via the KKT condi-
ror (MSE), where our system model is as general as pogions which are sufficient (balancing of the MSEs, [9]) in the
sible, i.e., we allow not only for correlations of the symbolsdual MAC.
and noise, but also model the precoders, the channels, and We aim at a duality which is as general as possible. To
the equalizers as compact linear operators. We show th#tis end, we consider aN ,--dimensional Kl ,» is possibly
a duality with respect to the MSE per user is preferable tanfinite) Hilbert space” with the inner productdenoted by
the state-of-the-art stream-wise MSE duality, since the upte,e) and restrict ourselves neither to uncorrelated symbols
link/downlink transformation of the user-wise MSE duality and uncorrelated noise processes nor to finite operators, i.e.,
has a considerably lower complexity than the one of thematrix operators. We only have to impose the assumptions
stream-wise MSE duality. Interestingly, the uplink/downlinkthat the channel operators and the filter operators (precoder
transformation for the total MSE duality is trivial, i.e., a sim- and equalizer) are bounded, that is, any input with finite norm
ple weighting with a scalar common for all filters has to beis transformed to a bounded output. Together with the as-
computed. We apply the uplink/downlink duality to derive sumption that the correlation operators of the symbols and
the operator form of the well-knowtmansmit Wiener filter the noise are nuclear, i.e., the sum of their singular values is
(TXWF). finite, the combination of any correlation operator with some

precoding operator, channel operator, and/or equalization op-
1. INTRODUCTION erator is element of the trace class [13].

In the broadcast setup [1], e.g., the downlink of a cellular, We present the MSE uplink/downlink duality per data

system, one transmitter communicates with several receiver%’mboh per user, and for the total MSE in Section 3. Al-
If the broadcast channeBC) is non-degraded [1], e.g., the ough the uplink/downlink duality can be used to find algo-

: : (T . rithmic solutions to problems without closed form solutions,
downlink with multiple-input multiple outpuMIMO) chan- e il apply the duality to obtain an expression for the well

nels to the multiple users, optimizing the system, e.9., Maxigy oy TY\WF [14] as an operator in Section 4. Thereby, we
mizing the sum rate, is difficult in general, since Most probyji| see the advantage of our duality especially for sum MSE

Iemifor thefBICtartla tnon.-convex.  the difficulties with the Mnimizations, i.e., the uplink/downlink transformation is a
powertul tool to circumvent the diiculties with In€ gy 5)1e weighting with a common scalar.

BC is the uplink/downlink duality, i.e., the achievable region
of a suitably defined duahultiple access channéMAC)

is the same as the achievable region of the original BC un- 2. SYSTEM MODEL

der the same total transmit power constraint. Such a duAs depicted in Fig. 1, we consider a BC, whétaisers are
ality was reported for the vector Gaussian BC capacity reserved by one centralized transmitter. The data signal

gion in [2, 3] (with non-lineadirty paper codingDPC [4]),

for the MIMO Gaussian BC capacity region in [5] (with Nz

DPC), for thesignal-to-interference-and-noise rat{SINR) (t) = lek,iak,i(t) 1)
region with linear beamforming in [2, 6] (vector BC) and i=

[7]1 (MIMO BC with fixed receivers), and recently, for the for the k-th user is transformed by the respective precoder

MIMO BC MSE region with linear precoding and with DPC : _ e )
in [8, 9] and [10, 11], respectively. The aforementioned du-Pk at the transmitter, Whefe[ﬁﬁi,ﬂ = lkij- The formula

alities enabled efficient algorithmic solutions to non-convexion of ¢(t) in (1) confirms the fundamental concept of digi-

BC optimizations, because the dual MAC problems are cont@ communications (i.e., communication by means of wave-
vex, e.g., sum rate maximization [12]. forms), if thes,;’s are elements of a finite alphabet. The sum

To reach the whole capacity region of the MIMO BC, of the precoded signals is transmitted over the chaHpb
the non-linear DPC has to be applied [5]. However, we reUserk whose received signal is perturbed by the najgg)
strict ourselves to linear precoding to avoid the complexity of — , . _

DPC. Since the rate related problems (e.g., maximization ofnq 22,0;&,?0330?(;)% ?g;l ngréheﬁenilrs%rﬂiﬂgtmﬁj$§ - ?q<;¢¢§ﬂ>
the sum rate and rate balancing) for linear precoding are alshere(s)* denotes complex conjugation.
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Figure 1: Broadcast Channel Model

Figure 2: Multiple Access Channel Model

e.g., frequency-selective channels, FIR precoders/equalizers,
and transformed by the equaliz@yto get the estimation sig- and IIR precoders/equalizers. Note however that we have to

nal assume that the chain of any precoder, channel, and equalizer
A K has to be nuclear. Therefore, we restrict the channel opera-
&(t) = GkHk ZlPiS (t) + Gk (t). (2)  torsto be nuclear and the filter operators to be bounded.
i=
The estimate for theth data symbod; of userk is obtained 3. UPLINK/DOWNLINK DUALITY

by following inner product:
In the BC (see Fig. 1), the MSE for thi¢h data symbol of

Si = (S byii)- (3)  userk can be written as
Besides the assumptions that both, tig(t)’'s and the BC_Ellg. — 4 |2
bii(t)’s, are linearly independent, we do not impose any spe- &i = DS“' — &l }
cial constraints on the signaturag(t) andby;(t), e.g., we Ny
do not assume that they form orthonormal base#0o6r that =Tyji— Z 2 Re(rk,j,i (GkHkPrax j, bk,i>)
they are the same. Popular examplesdgi(t) andby;(t) =1 (4)

are pulse shaping and its matched filter, the spreading se-

K
guences of CDMA signals, and canonical unit vectors for + (GkaPstfzﬁkabki,bm
MIMO sytems. _ /Zl T
The correlation operator for a random proce@s is de- i <GkRnkabk,i i)

noted byRy, whereRy is defined by Ex(¢,x)] = Rx¢ for any

. As we restri nuclear for any pr w . .
9(t). As we restricRy to be nuclear for any procestt), we By definition, the correlation operator for tketh data signal

get ) Ny <Ny
fulfills Re.¢ = 524 57 Twijai (@, a ) forany @ (t).
o . We will show in the next subsections that the MAC de-
E[(AX,x)] = Z(AE[XOQ ¢i)"], ¢i) = Tr(ARx) picted in Fig. 2 is dual to the BC in Fig. 1 with respect to the

= MSE for the same sum transmit power. The transmit filter
of userk for the dual MAC is denoted by, thek-th user’s
channel isCy, and the respective receive filterfig. Similar

to the BC, the data signal can be written as

for any orthonormal basig; (t),i = 1,...,N,» of % and for

any bounded operatdr. We use the abbreviation (%) for

the sumziNj{ (A¢i, ¢i) which is independent of the choice

for the orthonormal basigi(t) and is called the trace of N,

an operator [13, 15]. Note that the correlation operator Sr;/IAC (t) = Sibii (1), (5)

Rx is positive definite by definition. Therefore, we always i; T

have that TfARxA) > 0, whereA denotes the adjoint op-

erator ofA. Furthermore, we assume that the naiR€l)  The corresponding correlation operator fulfilR{/A°¢ =

of userk is uncorrelated with any data signslt), i.e., Ny <Ny

E[Nk(6.S)] = Ro.s® = O withi,k=1,....K for any ¢ (t).  Zi=1 2j=1"ki,ibki(®,bki), where Bsqis ;] = ri, and the

Symbols of different users are assumed to be uncorrelatedstimate for thé-th symbol of usek is s}z‘iAc = (§MC a).

thatis, Bscjs; ;] = 0 fork # £. With above definitions, the MSE of thieth data symbol for
Our general system model comprises many popular spesserk in the dual MAC reads as

cial cases, e.qg., flat-fading MIMO channels (the channels can

be described by a matrix operator, [8, 9]) and frequency- MAC _ Ellg, . ac|?

selective MIMO channels (possibly IIR). We'd like to stress &i = ‘Ska' ! ‘

that only the case of matrix operators has been considered in N,y

the literature on uplink/downlink duality up to now. Due to I o 4

our general formulation, we can show in the next section that = Mk 1;2 Re(ricj. (FCiTibij ai))

the uplink/downlink duality also holds for many other cases,

(6)
< MACT - E

2Note that Tte) has following properties. First, itis linear, i.e.,(BA + + /Z (FkCe TRy ™ ToCoFraxi, aki)

bB) =aTr(A)+bTr(B). Second, the operators can be rotated inside)Tr =1

thatis, T(AB) = Tr(BA). For finite dimensional operators, it is equal to the oo )
trace of a matrix, i.e., the sum of the diagonal elements. + <FkR'7 Fkak.,l ’ ak.,l>'




3.1 Duality per Data Symbol Here, we introducedl ¢ ; = |<G5H5Pkak7i,bg,j>|2 for nota-

As their MSE duality is based on the SINR duality (e.g., [6]), ional brevity. Multiplying above equation witfi?; and col-
which was naturally shown for each data symbol separateljecting all equations fok =1,... K andi = 1,..., N, we
Schubert et al. presented the MSE duality per data symbol i@nd up with the equation system

[8]. We prove that the symbol-wise duality also holds for in-

finite dimensional operators without using any SINR result. WeéE=p (12)
Note that we need the assumption for the symbol-wise du-

ality that the symbols are uncorrelateq;(;j = O fori # j).  where the MAC power control parameters are put into
Substituting this assumption into (4) and (6), we can infer

thatitis usefulforek,I & that following equality holds: €= [gfl, .. .,EfN%,Ezz,l, o -,ff,Nﬂ]

Re (1 (GkHiPicii, bii)) = Re (ricii (FiCic bk i) and(e)T denotes transposition. Let= (k— 1)N,» +i and

v = ({—1)N,+ j. Then, theu-th element of the right-hand

Fulfilling this first condition means that the desired symbol ide of (12) is

S experiences the same (or complex conjugate) total weig
in the BC and the dual MAC. As we will see later, the noise
power of the BC plays the same role as the transmit power [plu = rii(Praki; Paki)

of the dual MAC and vice versa. Therefore, we set the noise )
power of the BC (MAC) equal to the transmit power of the and theu-th element of the-th column of W' is
MAC (BC), where we allow for a different power control in

the MAC (expressed by the scaldig < R): i iWi,£,i, u#v
) _ [Wluy = { $8-1 3024 TmanWinkni — Mo Wik, U,
&ii (GkRiy Grbxi, bii) = ricii (Tkbki, Tkbki) (8) +(GkRn, Gibx, bii) '

’ _
((FkRpFraxi,axi) = rki.i{Pkaxi, Pkaki)- 9 , . . o
63 FiRn P, i) = i (Pieder, Pidic) ®) Clearly,W is (column) diagonal dominant for non-vanishing

. ; noise inthe BC, i.e [Wyy > 3 |[W]uy| for anyv. Thus,
i-[lhtiree ;nglmlxgegurgs ?}l cgglie:“}‘!%thvekoipeljgvﬂgéi? \F/\I/(e the matri>_<W is _a_Iways inve%ilfle. Moreove®V has a di-

' i ki oo T ' agonal with positive entries and all other elements are non-
choose the operators for the dual MAC such that they havggsitive. Consequently, all entries B —1 are non-negative.
a close relationship to the operators in the BC and such tha{ice the right-hand sigeonly contains non-negative num-
the conditions (7)—(9) are fulfilled in order to end up with @pers the resulting has always non-negative elements. This

simple proof for the duality. observation shows that we can always find a dual MAC with

An obvious choice for the MAC precoders and the MAC the operators in (10) and (11) which lead to the same MSE

equalizers fulfilling (8) and (9) are for all users and data symbols by applying the appropriate
N power controky; in the dual MAC.

Tk= R%ﬁszek When summing up the scalar equations of (12), the re-

(10) sulting right-hand side is the total transmit power in the BC,

=5 p-1/2
Fie= TkPkRn ie., ZE:l Z|N:j§|/_ Iki.i <P|(ak’i7 Pkak’i>. Due to

respectively. Here, we have introduced the oper&gr

whosei-th eigenvalue isy;/,/fki; with the eigenfunction Wi+ ) Wiy = (GkRp, Giby . bici)
bii(t). Likewise,ay;(t) is the eigenfunction corresponding UAV

to the eigenvalug/Tyji/éki of Tk. For (7), it suffices to set
g i/ & « " and (8), the resulting left-hand side is the total transmit power

120 o-1/2 in the dual MAC. Thus, the dual MAC leads to the same
Ck =Ry "HkRp "~ (11)  MSEs as the BC for the same total transmit power.
) ) " With similar steps, it can be shown that the BC in Fig. 1
We denote the ‘square root’ operator of the positive correfeags to the same MSEs for the same total transmit power as
lation operatoRy as RY? which is also an adjoint operator, the dual MAC in Fig. 2, if the BC operators fulfill (7)—(9) and

whereRy$ = Ry ?RY/?¢ for arbitrary ¢ (t). Clearly, phys- are chosento be
ically meaningful noise operator must be invertible and so

their square root operators are invertible. Py = Rﬁ/ZFka‘l
With the dual MAC operators in (10) and (11), the equal-  STI= 12
ity e2° = &g can be rewritten as = O TRy (13)
Hk = RF 2GR, 2.
K Ny _
/Z D e iWek i+ (GkRi Grbii, bii) = Therefore, we have proven that some MSEs for every
==t user and data symbol can be achieved in the BC for a given
K Ny Egzj Mii total transmit power, iff the same MSEs can be achieved in
= /Z E_érk,i,iWk,é,i,j + ?<Pkak,iapkak,i>~ the dual MAC for the same transmit power, i.e., the BC and
=1j=1 ki ki the dual MAC have the same MSE region.



3.2 Duality per User Note that above conditions and the operatorsin (14) only en-

Obviously, the duality of the BC and the MAC per data sym-aglce auser-wise power control (thek=1,...,K). Setting
bol proven in the previous subsection implies that the BC anﬂg =g~ leads to an equation system as in (12). Again,
the MAC are also dual per user, i.e., a set of user MSEs (suf€ Properties of the resulting equation system ensure the ex-
of the MSEs of every user’s data symbols) can be achievegtence of a vahg:l solution, summing up the equations shows
in the BC for some transmit power, iff the same user MSE¢hat the transmit powers of the BC and the dual MAC are
are possible in the dual MAC. However, the transformatioridentical, and similar steps are possible for the transforma-
between the dual MAC and the BC presented in the last suion from the dual MAC to the BC. Therefore, a duality with
section is very complex, since we need to solve an equatidigSPect to the users’ MSEs is possible with a dramatically re-
system inKN_, variables [see (12]}. As we will see in the duced number of duallty parameters compareq to the duality
following, this high complexity can be avoided, if we use per data symbol shown in the previous subsection. More pre-

the duality per user instead, since the dimensionality of th&/S€ly; we need to compute instead ofN,,~ parameters for
equation Zypstem reducesko y e transformation from the BC to the dual MAC and vice

Contrary to the previous subsection, it is not necessary t4¢"Sa:
restrict thek-th user’'s data symbols to be uncorrelated. For, :
notational brevity, we use the operatdtsandl, which map 3.3 Duality for Total MSE
some orthonormal basif (t),i = 1,...,N, of 57 to thek-  With similar steps as in the previous two subsections, it can
th user’s signatures ; = Vi ¢; andby; = '« $;, respectively. be shown that a duality with respect to the total sum MSE
Thus, we have thaRs, = \IJka!jka and RS'V'kAC = rkRg(Fk, £ = 3K, & can be achieved with following operators
whereRﬁKy = ZiNj{ z:-\':f”i rei,j @iy, ¢j) for anyy(t) € 7.

_ pl/2E $,-1/21
With above definitions, the sum over the data symbol in- Tk= &Ry GelRs 77Ty

dexi in the total MSES for the BCs£© = 317 £8C) and for Fo = W REYAG, PR, Y2 (15)
the dual MAC gMAC — 51U eMAC) \which follow respec- C = RYZAR-Y/2
tively from (4) and (6), leads to traces (®) of operators. 1 M
The total MSE of usek in the BC can be expressed as where we sef, = £, k=1,...,K compared to (14). Conse-
Ny quently, the original BC problem can be solved in the dual
skBC _ < EUS“ — & ﬂ MAC and the transformation of the solution to the BC is just
i; ' ' a weighting of the operators with a scalar which follows from
_ — the transmit power constraint.
=Tr(Rg) — 2 Re(Tr (FkaHkPkRSK\U; ))
K 4. APPLICATION OF DUALITY TO TXWF
+ /Z Tr (M GkHKP(Rs, PeHKGKI k) The TXWF (see [14]) minimizes the total MSE of the BC un-
=1 . der a total transmit power constraint, where the equalization
+Tr(rkaRnkark) operators are constrained to be weighted identity operators

whereas we get for the total MSE in the MAC: and the weights have the same vadueR for all receivers:

4 2 oSN BC
£IL\/IAC _ E ‘Sk.i _ IAC‘ ] {PWEJ_7 RN PWF,K7gWF} = argmin Z ziek’i
= ' ’ {P1,,PK. G} K=1 1=
MAC T MACT—1 K (16)
=Tr (Rsk ) - ZRG(TF (kakaTkRsk e )) st: 3 Tr(PRgPk) <Pt  Ge=l, vk
=1

Unfortunately, the cost function of above TXWF optimization
_ — is non-convex. However, a closed form expression for finite
+Tr (WiFkRp FeW) dimensional operators has been given in [14] by solving the
The three conditions (7)—(9) can be rewritten as original BC problem. With the duality for the total MSE, the
_ _ solution is obtained much easier than shown in [14].
Re(Tr(rkaHkPkkag)) =Re(Tr (\UkaCka\IJkR?k)) Clearly, the dual MAC problem has precoddf con-

szTr (Fk GkRnkark) T (TkaRﬁK Fka) strained to be [see (15)]:
E2Tr (WiFiRnFWi) = Tr (PkWicRE WiPy) T = TREZMRE 2T (17)

respectively. These conditions are fulfilled by

K
+ /z Tr (WkaCngRgACTgEngWk)
=

with T = gé € R. Thus, the total transmit power constraint
Te=§ RY2G.r R—V/2r-1 (which can easily be shown to be always active) for the dual

k= SkBm =kE ks k MAC can be fulfilled by the appropriate choice for the com-
Fo = & W, IREYAG, PR, /2 (14)  mon scalar MAC weight

_ l/20 p-1/2
C = RY2HR, 2. B ™ .
T Sk Tr (18)

3Note that we do not restridl, to be finite. (FkR,,krk) '



With this result, the dual MAC optimization corresponding
to (16) transforms into an unconstrained minimization of the
total MSE with respect to the equalizéfg Fortunately, the
problem falls apart intd& separate problems, one for each
Fk, which can be solved using the orthogonality principle:

EK% —5 JAC)*XMAC} =0 i

wherexMAC (t) denotes the received signal for the dual MAC [3]
(see Fig. 2). Since we have that

(1]
(2]

1,... Ny (29)

E[Sfi,iXMAC} = G T RYACT, 19,

K o _ (4]
E[Q(“{'f‘c’*xMAC} - /Z CoTRYACT  C,FicWiedi + Ry Wi

=1
and the orthogonality condition (19) must hold for ialthe (5]
dual MAC equalizer reads as

-1
1—3 - AS 1 -
Fie= 20, REY Ty (; H (T oH, + §|> R, 2.
=1

0) [6]
Here, we took the expressions for the precoding operators
T, from (17) and the channel operatdts from (15). By
employing (15) again, we can find the BC precoders:
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