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Pilot-Assisted Channel Estimation Based on
Second-Order Statistics

Frank A. Dietrich, Student Member, IEEE, and Wolfgang Utschick

Abstract—A survey about linear channel estimation exploiting
slowly varying channel properties is given for receivers with mul-
tiple antenna elements. The slowly varying channel properties are
described by the channel’s second-order statistics. First, a detailed
comparison of classical linear pilot-based channel estimators, a
novel matched filter, and reduced-rank (RR) approaches is made in
a common framework with respect to the model they assume for the
channel, their performance (MSE), and complexity. The matched
filter channel estimator is introduced, which exploits second-order
statistics with quadratic order of complexity. For flat correlated
Rayleigh fading channels, an analytical performance comparison
of all estimators in terms of the uncoded bit error probability is
provided. It is a generalization of previous results and shows that
the matched filter is a low complexity alternative with good per-
formance at an interesting signal-to-noise ratio (SNR) range. The
effects of these approaches on linear equalization are briefly dis-
cussed in the context of direct-sequence code division multiple ac-
cess (DS-CDMA), where the focus is on a generalization of the rake
receiver in space and time, which reduces the channel rank based
on its second-order statistics, resulting in a complexity reduction
of the equalizer. For this discussion, a new notation for the gen-
eralized rake is presented, which allows for its interpretation in
the context of channel estimation and reveals alternatives for im-
plementation. We conclude that exploiting second-order channel
statistics results in significant performance gains, and RR channel
estimation should only be used together with equalization in the
reduced signal subspace.

Index Terms—CDMA, channel estimation, multiple antennas,
rake receiver, rank reduction.

1. INTRODUCTION

OR the Universal Mobile Telecommunications System

(UMTS), a direct-sequence code division multiple access
(DS-CDMA) based system, base stations with multiple an-
tenna elements (antenna array) are envisioned for the future to
increase system capacity, reduce the number of base stations
in cities, or decrease the transmitted power [1]. With multiple
antennas, more degrees of freedom are available to improve
separation of the users (equalization) as the spatial channel
structure can be exploited by adaptive spatial-temporal signal
processing. To utilize the additional degrees of freedom in the
receiver design, i.e., more parameters in the design criterion,
more parameters have to be estimated. Moreover, the design
is more sensitive to errors in the parameter estimates. This
problem is particularly severe in a cellular system with mobile

Manuscript received August 25, 2003; revised March 31, 2004. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Dr. Martin Haardt.

The authors are with the Institute for Circuit Theory and Signal Pro-
cessing, Munich University of Technology, 80290 Munich, Germany (e-mail:
Dietrich@nws.ei.tum.de).

Digital Object Identifier 10.1109/TSP.2004.842176

TABLE 1
OVERVIEW OF LINEAR CHANNEL ESTIMATORS INTRODUCED IN SECTION IIT
AND THEIR UNDERLYING CHANNEL MODEL (RR = REDUCED RANK)

Channel estimator Deterministic Stochastic Section
channel model | channel model
Wiener Filter X I-A.1
Maximum Likelihood X 1I-A.2
Matched Filter X 1I-A.3
Correlator X I1-A.4
RR Max. Likelihood X X) I11-B.1
RR Correlator X X) 11I-B.2

users, which may travel at rather high speed. In this scenario,
only pilot symbols from one slot can be used to estimate the
channel due to the fast-varying channel. Although the coeffi-
cients of the channel model vary on a high rate, this is not true
for all parameters in a more detailed model: Angles of arrivals,
delays, and average power of the arriving waves change much
more slowly (long-term parameters). These slowly varying
channel properties can be described using second-order statis-
tics of the channel coefficients, i.e., with a stochastic channel
model. This property needs to be exploited for channel estima-
tion.

First, we give a survey of well-known and new channel es-
timation algorithms and discuss to what extent they are able
to exploit slowly varying channel parameters (see Table I and
Section III). Classical approaches are the Wiener filter (WF),
maximum likelihood (ML) [2], and correlator. Starting with the
ML principle, Nicoli et al. recently derived a reduced-rank (RR)
ML (RML) estimator, which relies on the time invariance of
long-term channel parameters [3]-[5]. Their work is based on
the RML from Stoica et al. [6] and presents a generalization of
results from [7]. We give a derivation of their approach fitting
a common framework to compare it with the RR correlator and
classical estimators. Jelitto ef al. [8], [9] also use the principle
of rank reduction for equalization. Their arguments follow those
of Scharf [10] about RR representation of a random vector. This
point of view has been completed for RR channel estimation
in [11]. It is applied to multi-input multi-output (MIMO) sys-
tems in [12]. From Section III, it will become clear that these
RR approaches have a worse performance and higher compu-
tational complexity (due to rank optimization and RR approxi-
mation) than the Wiener estimator for known second-order sta-
tistics. This comparison with its important conclusions has not
been made in the literature. Other RR estimators are known for
orthogoanl frequency division multiplexing (OFDM) [13] or as
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a low-rank Wiener filter [10], whose primary goal is to reduce
complexity of the estimator.

Note that the RR estimators are based on a deterministic
channel model in their core, as they rely on the ML principle
(RML—Section III-B1) or use the correlator as a first stage (RR
correlator—Section III-B2). However, implicitly, they exploit
the long-term channel properties given by the channel correla-
tion matrix, i.e., they exploit the stationary stochastic nature of
the channel from its second-order statistics (see Table I).

The known estimation approaches exploiting second-order
channel statistics are rather complex (cubic order of com-
plexity). We derive a novel channel estimator from the matched
filter (MF) principle (Section III-A), which takes advantage of
the long-term properties with quadratic order of complexity.

For now, the focus is on pilot sequence-based estimators,
which estimate a block-wise constant channel. They may be
used as a basis or a good initialization for the following valu-
able extension, which are beyond the scope of this paper: inter-
polation of channel estimates [14], tracking of the channel co-
efficients, blind techniques [15], decision-directed channel esti-
mation, joint channel estimation and equalization [16], and ap-
plications of the turbo principle to estimation and equalization
[17].

To investigate the impact of channel estimation on equal-
ization, RR equalizers are particularly interesting as they are
known to be less sensitive to channel estimation errors [18].
Most of them exploit properties of the currently available
channel realization for equalization, e.g., the multistage Wiener
filter [18]. Our focus is on a class of receivers, which reduces
complexity and sensitivity based on the slowly varying channel
parameters mentioned above. The most famous representative
is the temporal rake [1], [19], [20], which selects temporal
channel taps based on estimates of the average power-delay
profile. It was extended to space and time by Brunner et al.
[21]-[24] based on results from Naguib [25]. Some aspects
related to the number of fingers (optimum channel rank) rele-
vant for the generalized space-time rake receiver are discussed
in [11] and [26]. It was shown to be an efficient and simple
single-user detector based on a linear minimum mean square
error (LMMSE) or matched filter equalizer using channel
estimates from a correlator. To reduce computations and avoid
an eigenvalue decomposition, which is necessary for gener-
alizing the rake to space and time, a low-cost approximation
of eigenvectors was proposed in [27]. The architecture was
further explored together with a nonlinear equalizer in [28].
These rake receiver structures have been described rather
intuitively in the references and treated in special cases only.
We further generalize the rake concept and present a novel
notation as a finite impulse response (FIR) structure, revealing
alternatives for implementation. Furthermore, we work out the
relation of the (generalized) rake concept to general channel
estimation methods (the RR correlator in particular) that ex-
ploit second-order statistics (see Section V). Here, we follow
the classical approach of a separate optimization of channel
estimation and equalization with a discussion of the impact of
RR channel estimation on equalization.

In Section II, the channel and DS-CDMA signal model
for data and pilot channel are introduced in matrix vector
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notation, where the focus is on a physical interpretation of
the second-order channel statistics. The full-rank and RR
channel estimators are described and compared w.r.t. mean
square error (MSE), complexity, and sensitivity to estimation
of the second-order statistics in Section III (see Table I for a
summary). A detailed analysis of their bit error probability
(BEP) and MSE in an equivalent flat fading wireless channel is
presented in Section IV, for which the estimators and the MSE
of the channel estimates have a simple and transparent form.
The temporal rake is generalized to spatial-temporal processing
in Section V. The LMMSE equalizer and generalized rake are
compared in terms of uncoded bit error rate (BER) using dif-
ferent channel estimates in Section VI. Our survey is concluded
in Section VII. More detailed derivations for the matched
filter, RML channel estimator, RR correlator, and the BEP for
imperfect channel knowledge are given in the Appendixes.
The following notation is used.

1) Special matrices: We define the M x M identity
matrix Ips, the canonical basis vector e, as nth
column of an identity matrix, an M x N matrix
O xn of zeros, the M x (M + N) selection ma-
trix Je vy = [Onarxes Ing, Onrs(v—p))s a (block)
diagonal matrix diag(a)(diag({Ay,...,Ax})) with
elements of a (matrices A, ) on its diagonal, and the
vector of N ones oy . Vectors are always arranged in
a column.

2)  Matrix operations: We define the Kronecker product
®, vec-operator vec(A) stacking the columns of ma-
trix A, trace tr(A), and the complex conjugate trans-
pose A, transpose AT and complex conjugate A* of
a matrix. The relation [29]
vec(ADBT) = (B® A)vec(D) = (B® A)d (1)
is needed for some derivations, where the second
equality is true if D is a diagonal matrix with di-
agonal d. The Khatri-Rao product is defined as
AOB=1a;®by,...,a, ®b,] (a; and b; are the ith
column of A and B).

3) Others: We define convolution *, Dirac distribution
6(t), Kronecker function 6[n], expectation operator
E[A], a circular symmetric complex Gauss distri-
bution of a complex random variable N.(p, R), [a]
the smallest integer greater or equal than a, and the
weighted vector norm ||a||} = a Aa with A positive
semidefinite.

II. SIGNAL AND CHANNEL MODEL

We consider a wireless DS-CDMA! link with a single antenna
at the transmitter and M antennas at the receiver. All signals and
channel impulse responses are given in their equivalent base-
band representation.

I As the generalized rake (Section V) is generally associated with DS-CDMA
systems and its generalization from a system without spreading is not straight-
forward, we introduce the DS-CDMA signal model. Note that it is not a neces-
sary assumption for the derivations and comparison of channel estimation con-
cepts.
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1) Transmit Signal: Pilot and data symbols are time-multi-
plexed and separated by a prefix (see below). The data sym-
bols sq[i] of the user of interest with power Py = E[|sq[i]|?]
are spread with a short spreading sequence c|[q] of length @
(spreading factor or processing gain) and chip period 7. The
resulting signal

Q-1
za(t) =Y salil Y clalp(t—iQT. — qT.)  (2)
i q=0

is bandlimited by an impulse shape p’(t), e.g., a root-raised co-
sine. A discrete-time representation with sampling-period T, as
needed later, is z4[n] = z4(nT.). Equivalently, N, pilot sym-
bols at chip level are transmitted as?

Np
op(t) =Y splalp'(t — qTe) 3)
q=1

with symbol power P, = E[|s,[4][?].

2) Channel Model: The time-invariant channel impulse re-
sponse is modeled by a tapped delay line with L temporal taps
and delays 7:

L
(1) = Ak5(t — )
=1

The spatial channel structure of each tap is represented by the
array steering vectors of W discrete wavefronts impinging
from different azimuth directions ¢,, ¢, which are collected in
A = [0.1 Z(§b1 g) ..... , AW, [(qbv[ [)] € CM*W . The random
vector £, € CW ~ N,(O P, (7¢)Iyw ) describes a slot-wise
independent fading (Rayleigh fading, i.e., no line of sight, is
assumed for simplicity). P-(7,) is the power-delay profile of
the channel [20]. Asynchronous signals can be modeled by
distinct minimum channel delays min,{7,} among the users.
3) Receive Signal: The received data signal from 1 user is

e CcM, 4)

ya(t) = za(t) * ' () +ma(t) € CV o)

disturbed by additive noise n,(t) ~ Nc(0, R, )—equivalently,
n,(t) ~ Nc(0, Ry ) for the pilot channel—with a regular spa-
tial covariance matrix R, € CM*M,

The receive filter matched to the chip waveform and the im-
pulse shape p’(t) are included in p(t), which is assumed to be
a raised cosine impulse. Sampling at the chip rate 1/T yields
discrete-time approximations for the receive data and pilot sig-
nals

Q-1 L
Yyaln] = ZSd [1] Z clq] ZA/Q

x p(nT. —iQT. — qTc — 70) + na[n] (6)

2In practice, pilot symbols are also spread for reasons of implementation in
a multiuser system. In order to simplify notation, we consider pilot symbols
(“chips”) at the chip level as used for channel estimation, i.e., they include the
spreading sequence.
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Ny L
yplnl =D splal ) A,
q=1 =1

x p(nTe. — qlc — 7)) + "lp[n]' (7

4) Channel Characteristics of Two Time Scales: The im-
pulse shape and receive filter p(¢) are now considered as part
of the channel resulting in the discrete-time channel model of

R(t) = K (1) * p(t)

L
h[n] = h(nT.) = ZA£§1P(”Tc ) ecM.  @®

(=1
The largest channel delay is Tmax = maxe{7¢}. The non-

causal raised-cosine waveform p(t) with infinite support
is modeled by the receiver using a truncated (windowed)
FIR approximation p, = [p(—fT. — 7¢),p(Tc — BT —
70)s ooy P([(Tmax) [ (T)1Te + BTe — 70)]T € RE< of length
Lo =14 [(Tmax)/(Tc)] + 26, where (3 describes the window
size. Now, the channel matrix is given as

H =[h[0],...,A[L. — 1]
L W
= Z Z Ay lf’w,lplT
(=1 w=1
= AEP ¢ CM*L- )

where E = diag(vec([£y, - . -, &L])), the matrix of array steering

vectors A = [Ay,...,Ayr], and
ow ®pr

P= : € CWExLe, (10)
ow ®PE

We distinguish two time scales: Amplitudes and phases in
&, vary on the scale of a carrier-wavelength (short-term or
small-scale), whereas delays 7, ¢, angles of arrival ¢,, ¢, and
average receive power change on a much larger scale (long-term
or large-scale channel properties) [3], [21], [30]-[32]. Whether
the notion of time or spatial scale is preferred depends on the
context as both are linked via the velocity of the movement,
e.g., of the transmitter or receiver. The first- and second-order
moments of complex Gaussian-distributed channel coefficients
describe all long-term, i.e., slowly varying, channel properties.
This dependency is also true for other channel distributions,
where these moments do not contain all information. We see
this fact explicitly for the correlation matrix of

h =vec(H) =

(PT®A)vec(E) = (PT 0 A)¢ € CME- (11)

which is

Ry, = E[vec(H)vec(H)"] = (PT © A)E[Ee")(PT © A)H
applying (1) with &€ = [£],...,&.]T € CW and E[¢¢"] =
diag({ P-(7¢) }eeqa,...,y) @ Iw [3]. Its eigenvalue decomposi-

tion (EVD) is R = UAU™, where A is a diagonal matrix with
eigenvalues A,,,,m € {1,...,ML.} and \,, > Aj41. The
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System model for the pilot channel (Matrix-vector notation).

Fig. 1.

correlations are determined only by the power-delay distribu-
tion in the current environment, the spatial and temporal channel
structure, and the impulse shape. Thus, channel estimation and
receiver processing based on long-term channel properties have
to be based on the channel’s first- and second-order moments.
In the sequel, we assume wide-sense stationarity of the channel
h, i.e., within the observation time for channel estimation and
data detection, the long-term channel properties do not change.
Generally, Ry, is of full algebraic rank but with eigenvalues A,
decaying quickly [31].

5) Matrix-Vector Notation: For the description and deriva-
tion of channel estimation algorithms, we introduce a more com-
pact notation. As we focus on single-user channel estimation
and detection algorithms,? only one user of interest is consid-
ered in the following models, and the multiuser interference is
modeled as part of the noise 7,,[n] and n4[n]. Note that all de-
scribed channel estimators and linear equalizers can be general-
ized to multiple users except for the generalized rake, which is
intended as a single-user receiver only.

The pilot signal can be written as (Fig. 1)

y, =H™s, +n,=S,h+q,eCM (12
with channel coefficients h = vec(H), pilot symbols s, =
[sp[2 = Le], -, sp[Np]]T € CNoFtlelin S, = 8T @ Iy €
CMNexMLe and Toeplitz matrix

sp(l] sp[2 = Le]
S, = : : e CNeXLe (13)

$p[Np] sp[Np — Le + 1]

The block Toeplitz channel matrix is

Lo—1
H(N) = Z J(Z,N,Lc—l) ® h[LC —/ — 1] S CA'[NXN-FL“_I

=0

h[L. —1] h[0]
= (14)
h[L. — 1] h[0]

Here, a prefix of L. — 1 additional pilot symbols is inserted
to avoid interference between pilot and data signal. The noise
and receive signal vector are i, = [n1,[1]T, ..., 7,[Np]T]T and
y, = [y,[1]",...,y,[Np]"]", respectively. The noise is dis-
tributed as n,, ~ Nc(0, R,). For the simplifying assumption
of temporally white noise processes, the covariance matrix is
R, = Iy, ® R, with variance 02 = trace(Ry)/(MNyp).

31t is well known that single-user detection approaches are suboptimum for
multiuser CDMA systems but aim at solutions of low-complexity typically con-
sidering each user separately.
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The receive data signal is (see Fig. 2)

y$ ) = H2M ] + 0V e MY as)
where 40" = [yy[n]T,...,yq[n + N — 1]7]. Spreading
the symbols s4[i] by ¢ = [c[0],...,c[Q — 1]]T yields the
chip-level signal at the transmitter a:ElN)[n] = [zq[n — L. +
1],...,xa[n],...,za[n + N — 1]]T € CN+Le=1l Index N
is introduced to adjust notation to the equalizer length (see
Section V).

III. CHANNEL ESTIMATION METHODS

We restrict our survey to linear channel estimators based on
pilot symbols, estimating the block-wise constant channel coef-
ficients h by

h =Wy, € CMLe, (16)

Linear estimators can be classified according to the channel
model they assume, i.e., stochastic or deterministic, and whether
they consider the channel to be full rank or low rank.* Reduced-
rank or low-rank estimators assume a more detailed model of
h = vec(H) € CMLe or Ry, e.g., its eigenvalues or rank.
If the model is more accurate, it results in a performance ben-
efit compared with full-rank estimators, which are based on the
same signal model as the corresponding low-rank approach. An
overview of the approaches introduced in this section and the
underlying channel models is given in Table 1.

A. Full-Rank Channel Estimation

1) Bayesian Approach: The linear full rank estimator mini-

mizing the mean square error is’
Wwr = argmin K [Hiz — h||%} . 17

w
This LMMSE estimator is often referred to as the Wiener filter.
It is a Bayesian approach with a quadratic risk function, i.e., a
conditional mean estimator, if channel coefficients and noise are
jointly Gaussian distributed [33], [34]. The well-known solution
(for zero mean channels) is
_ -1 _

Wwr = (Inr. + RhSER,, 'Sp) R;,S}},IR,7 g
It depends on the noise covariance matrix, the pilot sequence,
and the channel correlation matrix, i.e., long-term channel prop-

erties (see Fig. 3). The Wiener filter finds the best tradeoff be-
tween bias and variance of the estimate for every signal to noise

4If Ry, is of rank R, every realization of the channel k is an element of the
R-dimensional subspace spanned by the I? eigenvectors of Rj belonging to
nonzero eigenvalues.

5The expectation is taken with respect to the channel & and noise n,-
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Fig. 3. Full-rank channel estimators rely on different amount of information
about the channel parameters.

ratio (SNR). If the channel covariance matrix Ry, is of rank R,
the Wiener filter (18) is of rank R as well. The following channel
estimation concepts can be viewed as suboptimum approxima-
tions of the Wiener filter.

2) Maximum Likelihood (Zero Forcing): For complex
Gaussian noise and interference the maximum likelihood prin-
ciple [2] yields the following cost function and solution:

hy = arg;nin ||yp — Sph||§2;1. (19)
The estimate is unbiased and minimum variance and, thus,
achieves the Cramér—Rao bound [34]. The Wiener filter (18)
converges to the ML solution for 2 — 0, which is also known
as zero forcing or weighted least squares. It is given by

~ _ -1 _
huL = (SyR,'S,) SpR;'y, =h+e

. 20)

with covariance matrix of the estimation error R, = Elee!] =
(SER; '8,)~". The corresponding ML estimator is (see Fig. 3)

_ -1 _
WL = (SpR,'S,) SHR;" @21)
3) Matched Filter: The simplest estimation approach is to
optimize for the filter with maximum cross-correlation and
small noise amplification (see Fig. 3) [35]

[E[R"A]> o2

= R,SER!.
E|[Wql3] NP, TP

Wyr = argmax (22)
w

The criterion presents the generalization of the standard
matched filter criterion used for estimating scalar random
variables, e.g., data detection [20] to random vectors [35]. Its
solution is derived in Appendix A. The arbitrary scalar factor
in the solution is chosen as a = (02)/(N,P,) to be consistent
with the ML approach for flat uncorrelated channels. Although
the MF principle is often used for channel equalization or
signal detection, it has apparently been ignored for channel
estimation. In Sections IV and VI, we show that it offers a sig-
nificant performance gain for low SNR compared to maximum
likelihood.

The estimator does not cancel intersymbol interference in
the channel estimates. After noise whitening, it correlates the
received signal with the pilot sequence. This estimate is then
weighted with the channel correlation matrix. The Wiener filter
(18) scaled by 2 converges to the matched filter for low SNR.

4) Correlator: For uncorrelated channel coefficients Ry, =
Iysr. and white noise Ry, = 0[21[ MN, > the matched filter (22)
yields the correlator

L s (23)

We =
¢ NPPP P
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Fig. 4. RML channel estimation.

which is the standard channel estimator in most CDMA systems
due to its simplicity. It does not take into account channel cor-
relation properties (see Fig. 3).

B. Reduced-Rank Channel Estimation

Channel estimators based on a deterministic signal model like
the ML-estimator or correlator do not exploit correlations in
the channel coefficients. Particularly, their variance tends to in-
finity for low SNR (high noise) [2]. The principle of reducing
the number of parameters to be estimated using a new signal
model is common to the following two methods. Thus, estima-
tion variance [2] is reduced at the expense of introducing a bias.
It is also known from the mathematical literature as “ridge re-
gression” (see [36] and references therein).

1) Reduced-Rank Maximum Likelihood: The ML estimate
provides a sufficient statistic for the channel coefficients [34]
with respect to model (12), i.e., no information about the
channel is lost. Therefore, it can be used to improve the channel
estimate by means of post-processing based on a more detailed
model [3], [5]. It is assumed that the channel correlation matrix
Ry, has rank R or can be approximated by its best rank R
approximation truncating its (M L. — R) smallest eigenvalues
[30]. The channel is modeled by a slot-dependent (time-variant
or short-term) parameter vector ¢’ e CE of slot® f and a
constant matrix Usy € CML<*R of rank R describing the
R-dimensional subspace, which contains the channel coeffi-
cients

R =Usp¢!, Usp e CML*Band¢f e CR. (24)

This model is identical to (11) if the rank of PY ® A is R. Only R
slot-dependent parameters have to be estimated compared with
ML, in (9) or LW elements of ¢ in (11). We will see below
that Ugt depends only on channel and noise statistics, which
are assumed perfectly known asymptotically.

The estimates [Ust, ¢’ | are obtained from

. . 1 a ~f f 2
which is equivalent to maximizing the likelihood func-
tion for estimation of the parameters in (24) based on the
full-rank ML estimate in (20) with error covariance matrix
R. = (SER; '8,)~"'. We assume that the spatial-temporal
channel structure in PT ® A (11) is time-invariant, and an
infinite number of slots ' — oo are available for estimating
Usr.
The RML estimate is (see Fig. 4)

. N s
hgye = Ust( = Prvvrhyyr.

SFor the derivations in this section, we denote the slot dependency of the
channel parameters, e.g., k, explicitly as &7

(26)
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It is obtained by post-processing with

PryL = RFY2V RVERY? 27)
where Vp = R_ 1/2gr g are the R eigenvectors associated with
R_l/ 2R R_l/ 2, 1e the correlation matrix of the whitened
channel estimates hML The transformation V R, 172 into
the R-dimensional subspace decorrelates the whitened ML
channel estimates. The derivation is similar to [3] and given in
Appendix B.
The RML estimator Wy 1, can be written as (see Fig. 4)
WraL = PrvrWoL- (28)
Simeone et al. [5] also derived spatial, temporal, and separate
spatial/temporal RML estimators for complexity reduction, as
well as this joint spatial-temporal RR modeling and estimation
approach.

The performance advantage of the RML is due to a bias-
variance tradeoff, which is controlled by its rank R (see Sec-
tions III-D and IV). It is important to note that the optimal (MSE
minimizing) post-processing of the full-rank ML estimate ex-
ploiting second-order statistics, i.e., long-term channel proper-
ties, is a Wiener filter Py

Pwr = argmin E [||sz,ML _ h||§] . (29)
P
It achieves the optimum bias-variance tradeoff. The cascade
of an ML estimator and a Wiener post-processing yields the
Wiener estimator Wy (18), as the ML estimator provides a
sufficient statistic
Wwr = PwrWyL. (30)
With the eigenvalue decomposition Ry, = U AU (29) can be
written as

-1
Pwr=U (UH (SUR,'S,) UA ' + IMLC> Ut

(D
assuming that Rj is nonsingular. It performs the optimum
weighting of the decorrelated channel coefficients in the basis
of the eigenvectors U of R and can be considered a “soft”
weighting compared with the RR approaches, which are con-
strained to be of rank R and simply “switch off” subspaces of
the channel.

The RML estimator also requires the determination of the op-
timum channel rank R, as explained in Subsection III-C, which
is not needed for the Wiener filter inherently determining the
best bias-variance tradeoff.

Remarks on the Relation to Other RR Estimation Ap-
proaches: The ML criterion (25) with the RR model (24) is
a special case of the criterion for RR estimation in [37] at
high SNR with weighting matrix R, given by the ML problem
(25) for finite as well as for infinite F', which corresponds to
time and ensemble averages for ergodic channel processes.
It can also be recast as a weighted low-rank approximation

A F
,hyi] by the rank R
matrix [Agys .- -, hRML] with weighting matrix Ir ® R_ .

N1
problem [38] of the matrlx 1T
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The advantage of the derivation in [38] based on the concept
of Grassman manifolds is that a factorization as in (24) is not
needed. This would also allow the use of the iterative algorithm
presented in [38] to track the solution (another approach for
tracking is [39] and references therein).

2) Reduced-Rank Correlator: The RR correlator is part of
the generalized rake receiver architecture, which was originally
motivated as an efficient extension to standard DS-CDMA re-
ceivers with a simple despreading and correlator (cf. Section V),
[21], [22]. The improvement of the channel estimates from a cor-
relator by pre- or post-processing the received pilot signal based
on long-term channel properties is described in the sequel. Its
impact on equalizer design is discussed in Section V.

The key idea is to provide an RR approximation hg € C%
for the channel h from its estimate h:

hr = M3h e CFand Mg € CMLXE, (32)
For an appropriate choice of M g and rank R (see Section III-C)
post-processing of hi improves the MSE of the estimate, e.g., if h
is obtained from a correlator (23). The vector hp € C® isan ap-
proximation of h € C*Z< in an R-dimensional subspace. This
notation is used for the rake implementations in Section V-B,
whereas M rhp, is the RR approximation in the original space.

With (12), (23), and (32), the RR estimate based on the cor-
relator is

iLR SHyp (33)

NPR

Equivalently to (post-) processing the estimate itself, the re-
ceived signal y,, can be reduced in rank followed by channel

estimation with a correlator (Y, = [y,[1],...,y,[Np]] €
CMxNp).
hr=MY (I, ®Y,) ! vec(SL*). (34)
A= kh " P NP,
preprocessing %/_/
correlator

Which version is preferable depends on implementation aspects
[21]. The equivalence of (32) and (34) is shown in Appendix C.

We still must find criteria for designing the block FIR filter
coefficients M g[/]

MR: [MR[O]T, Ecl\/ILCxR.

,Mg[L. —1]"]* (35)
For a given rank R, we search for the best low-rank approxi-
mation of the channel. The spatial-temporal wireless channel in
typical urban and rural scenarios consists of only a few main di-
rections of arrival. Thus, the channel correlation matrix R, =
E[hh"] has a fast-decreasing eigenvalue spectrum {\,, }. There
exist subspaces of the channel containing only a small amount
of information about the signal. Reduced-rank processing is de-
signed based on second-order moments of the channel repre-
senting the slowly varying channel properties. The second-order
statistics are exploited to minimize the loss in signal power, pos-
sibly reduce interference, and maximize the gain in channel es-
timation by reduction of the number of channel coefficients to
be estimated.
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Fig. 5. Reduced-rank estimation with correlator for M = Ug
(36)—alternatively M r = U, r (38).

The generalized Rayleigh quotient [38], [40] is the appro-
priate optimization criterion for finding a good approximation
of the channel

-1
U R = argmax trace (RhU’R (URU%) U’,?)
Uk
st: Ul € CMLXE SR — span(UY;) € €M<, (36)
It measures the channel contribution in an R-dimensional sub-
space S%. Its solutions are the R eigenvectors associated with
largest eigenvalues of Ry,
UR:U[el,...,CR]. (37)
They can be used as filter coefficients M p = Uy (see Fig. 5).
An alternative approach is to find the filter for best channel
approximation and interference reduction maximizing the
signal-to-interference-plus-noise ratio (SINR):

trace (U'y RpUR)
U, r = argmax H /
v, trace (Uz (Rist + Ry)U%R)

st U € CMEXB - SE — span(U',) c CMl<. (38)

Ris1 is the channel correlation matrix of the ISI. It can also be
formulated as the min—max problem [41]

uH Rpu
SE = in ———. 39
B W (Rist + Ry)u (39)
The solution is given as the subspace Sé?' = span(Ug r)

spanned by the R generalized eigenvectors Ugr =
Ugler, ..., er] associated with the largest generalized eigen-
values of the generalized eigenvalue problem

RnUg g = (Rist + Ry)Ug rA,. (40)
A, is adiagonal matrix with decreasing SINR values on its diag-
onal. In multiuser scenarios, the multiaccess interference (MAI)
is reduced by applying the correlation matrix of the MAI instead
of RISI [21]

Application of the eigenvectors (or Karhunen—Loéve decom-
position) for efficient signal representation is well known and
widely used in other fields such as feature extraction, image
compression [42], or classification. The application of both ap-
proaches to signal processing is covered in [41, p. 209] with the
concept of oriented energy and oriented SNRs.

Instead of considering signal/channel dimensions jointly in
space and time based on the spatial-temporal correlations in Rp,
(=M %ST) = UR), other less complex variations of the same
principle have been developed [21].
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a) Space-Time (Eigen-) Rake: If the columns of
H are uncorrelated,” then Ry is block diagonal with
Ry = E[R[(A[0)"], £ € {0,..., L. — 1} on its diagonal. The
conditions for uncorrelated columns in H will generally not be
satisfied, but it can serve as a good approximation of Ry, (see
Section III-F). The advantage is a reduced complexity due to
only L. EVDs of M x M matrices.

b) Spatial Rake: Rank reduction is performed based on
the spatial channel properties captured in RS = E[HHY],
which can be written as R = KL;O_I E[h[/]h[¢]!]. The cor-
responding transformation is

MEQS) — ILC ® ngs) c G:MLCXRLC (41)

with U g) € CMXE_defined as in (37), performing a pure (spa-
tial) beamforming. It applies R beams to capture a significant
portion of the signal.

c) Temporal Rake (Conventional Rake): To reduce tem-
poral channel dimensions, we consider the channel correlations
in the delay domain R™") = E[H™ H]. Generally, we obtain the
transformation

M) U @ Iy € CMEXME (42)

with the eigenvectors U g) € CL<*E_ The channel is un-
correlated in delay/time for the same assumptions as before,
ie, RT = AT = M diag({P,(r1),...,Pr(r2)}), where
the last equality is true if the power delay profile is the same
for all antenna elements (i.e., a sufficiently small antenna
spacing). In this case, the eigenvectors U SRR § L. are canon-
ical basis vectors, and the power delay profile is given as
Py(7¢) = (1/M)E[||hfr/T]|3). For U = [ey, .., er], the
temporal rake simply selects the strongest R delayed signals,
i.e., places R temporal fingers on the most significant temporal
diversity paths.

C. Optimum Rank

The MSE of the channel estimates for RR approaches varies
significantly with the rank R. Usually, the channel correlation
matrix Ry, is not of low rank algebraically, but the dimensions
associated with small eigenvalues J,, may be neglected based
on an optimum bias variance tradeoff [5], [11]. Traditionally,
information-theoretic criteria are used for estimating the rank,
e.g., the Akaike information criterion (AIC) or minimum de-
scription length (MDL) approach [43], but tackle a problem
different from this one: They estimate the rank of algebraically
rank-deficient channels based on an estimate of their correlation
matrix. Here, we assume that the correlation matrix is known
perfectly and of full rank. Still, these criteria may be good
enough in some cases [44].

Determination of the rank can be based on the MSE, which
can be computed explicitly and describes the bias-variance
tradeoff (see Section IV). The optimum rank for the RML
(equivalently for the RR correlator) is defined as

Ropt = argmin MSEgur,(R) = argmin E [HizRML — h||§} .
R R
(43)

7Sufficient assumptions are uncorrelated scattering and channel delays on the
sampling grid of period 7.
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TABLE 1I
OPTIMUM RANK w.r.t. MSE FOR RR CHANNEL ESTIMATORS N, € {10, 50}

SNR ~10dB || o0dB 10dB || 20dB
Np 10 [ 50 [| 10 [ 50 [| 10 [ 50 || 10 | 50
RML 5 |5 [[7 Jwof[1a]16] 16]19
RRCom. BVD) || 5 |6 [[7 |8 [[1a |15 14| 17

Most of the terms in the MSE of the RML have to be computed
for the estimator anyway, i.e., additional computations are ma-
trix multiplications and additions based on a full EVD. An alter-
native definition based on a more relevant criterion for a commu-
nication link, e.g., BEP, would be advantageous but is difficult
to compute in general.

The optimum rank also depends largely on the definition of
the MSE: either as in (43) or alternatively defined w.r.t. the
estimate scaled by a scalar Wiener filter. The second defini-
tion seems to be preferable since it ensures a fair comparison.
The optimum rank for different SNR in the scenario from Sec-
tion III-D is summarized in Table II for this definition. In gen-
eral, a small rank is selected for low SNR, as the variance needs
to be decreased at the price of an increased bias, and for high
SNR, full-rank estimation is optimum. Furthermore, the ISI is
decreased in case of the RR correlator. The optimum rank in-
creases with the number of pilot symbols and the SNR. The
correlator based on the EVD chooses a smaller rank to further
suppress interference.

The simulation results for the BER in Section VI show that
the optimum rank is directly depending on the type of equalizer
used and the sensitivity of the equalizer to errors in the channel
estimates. Thus, optimum rank determination must always be
performed for a specific equalizer and receiver architecture in
frequency-selective channels.

D. MSE Performance

To discuss channel estimation performance independently
from the equalizer, we use the MSE of the channel estimates.
The estimates are scaled by a scalar Wiener filter to allow for a
comparison of the different approaches.

The channel correlation matrix is determined for an urban en-
vironment with channels of length I = 5 and exponential power
delay profile with delay spread 1 us. Waves on one delay tap ar-
rive from a uniformly distributed angle of arrival with Laplace
distributed angular spread (azimuth spread: 10°) [45]. The re-
ceiver is equipped with M = 8 antennas in a uniform linear
array. For the MSE computation, we assume uncorrelated scat-
tering and channel delays on the sampling grid of the receiver
(chip period is T, = 1/3.86 - 1078 s, as in UMTS), i.e., the
correlation matrix Ry, is block diagonal. The noise is white in
space and time. Pilot symbols (including the prefix) are chosen
from a quaternary (QPSK) pseudo random sequence.

As known from its optimization criterion, the WF achieves
the minimum MSE. The gains of the WF are twofold: On the one
hand, it does not enhance the noise as the ML approach, which is
characteristic for zero forcing, and on the other hand, it exploits
correlations of the channel coefficients (long-term properties).
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Fig. 6. MSE of channel estimators for a frequency selective channel of (full)
rank equal to 40 for R € {1,5,10,40} and N, = 10. All estimates are scaled
by a scalar Wiener filter.
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Fig. 7. MSE of full rank estimators for a frequency-selected channel (N, =
50).

For example, in a fully correlated channel with only one direc-
tion of arrival and one tap (Rank(Rjy) = 1), it uses this knowl-
edge and inherently estimates just one coefficient knowing the
eigenvector of the associated subspace. For IV, = 10 pilot sym-
bols, the loss of the ML method is significant, and it is clearly
outperformed by the MF for low SNR, which saturates at high
level due to its bias (see Fig. 6). The correlator is worse than the
MF as it does not exploit channel correlations. It outperforms
the ML for low SNR and V;, = 10 (noise enhancement of the
ML) but not for N;, = 50 (see Fig. 7). For high SNR, the WF
converges to the ML, as shown in Fig. 7. Moreover, MF and the
correlator have a crossover point as the bias of the correlator is
generally smaller at high SNR.

The MSE of the RML is decreased considerably for R €
{5,10} compared to the full rank ML (R = 40) (Fig. 6). For a
given rank the MSE saturates with the bias of the RML estimate.
The RML with optimum rank, i.e., the rank is optimized w.r.t.
the MSE, merges in the full rank ML estimator for high SNR.
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Fig. 8. MSE of RR correlator for a frequency selective channel of (full) rank
equal to 40 for R € {1,5,10,40} and N, = 10.

TABLE III
COMPUTATIONAL COMPLEXITY OF CHANNEL ESTIMATORS
Channel Estimator Matrix inversion EVD R, 1
O(M3L2) O(M3L2)
Wiener Filter 1x — 1x
Max. Likelihood 1x — 1x
Reduced rank ML 1x 1x 1x
Matched Filter — — 1x
Correlator — — —
Reduced Rank Correlator — 1x —

Note that any rank reduction for the Wiener or matched filter
would increase their MSE.

Rank reduction based on the EVD (36) for the correlator im-
proves the MSE over the whole range of SNR (R = 10), as it
decreases errors due to intersymbol interference, which is rather
large for N, = 10, as well as the variance due to the noise
(Fig. 8). Rank R = 1 would not be sufficient as a major fraction
of the channel is neglected.

E. Complexity

Evaluating and comparing the computational complexity for
the design of these channel estimators, we assume that a con-
stant rank R is assigned to the RR versions. For the RR versions,
we also require computation of all eigenvectors as their knowl-
edge is necessary for estimating the rank. If only few eigenvec-
tors are needed, less-complex numerical methods for the EVD,
e.g., power iterations, exist [46].

Table III lists the order of the most complex operations
needed to compute the channel estimators: The powerful ML
and WF are of comparable complexity. The cheapest esti-
mators are the correlator and matched filter. Incorporating
second-order statistics into the MF results in a quadratic order
of complexity, which is also the complexity order of the whole
MF in case of white noise.
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As the RML requires additional computations on the same
order as the full rank ML and does not achieve a better perfor-
mance than the WF (see Fig. 6), this effort is wasted. In case of
the RR correlator, which performs better than the MF for an ap-
propriate choice of R, the additional computations for the EVD
result in a complexity similar to the WF. Here, we have to keep
in mind that the RR correlator is used together with the general-
ized rake in the receiver, which relies on the same rank reduction
(see Section V) and reduces the complexity of a linear MMSE
equalizer. Thus, the overall computational requirements depend
on the rate of change of R}, and are decreased for rare updates
of Rh.

The computations can be reduced further approximating Ry,
by a block-diagonal matrix (Space-time eigenrake; Section I1I-
B2), which reduces the cost to L. EVDs of order O(M?) but
also decreases performance due to a larger amount of neglected
signal power for fixed R. The inversion of R, can be imple-
mented with N, inversions of order of O(M?) for temporally
white noise.

The final choice of the channel estimation method depends
on the sensitivity of the the equalizer and the point of operation:
For low SNR, i.e., bad channel estimates, the matched filter is
sufficient, or an RR correlator might be used together with the
generalized rake; for higher SNRs, a Wiener filter is superior,
and it should be worth spending the additional computational
power.

F. Estimation of Second-Order Channel Statistics Ry,

Up to now, the channel correlation matrix Rj was assumed
to be known perfectly. In practice, it has to be estimated, e.g.,
by temporal averaging of F' channel estimates h,:

F
~F 1 o fofH
Ry, =% fz_:lh,h, : (44)

. . ~f
For nonstationary channels, the estimate Rj; based on f
channel estimates can be performed recursively by

o f o f-1 S fefH

Ri). =P Rfu,. + (1 - p) hoho (45)
with an exponential forgetting factor p (see [41p. 277]), which
is set according to the degree of nonstationarity of the channel.

For the RML estimator (26), the optimum estimate of Rp, is
obtained substituting the full-rank ML estimate hyy, from (20)

for ﬂf [cf. (67)] [§]. For the Wiener filter (18), one may also use
the ML estimate hy g, to estimate Ry,. It can be obtained before
applying Pwr in (30), resulting in an increased complexity due
to the factorization of Wyp. Thus, it loses its complexity ad-
vantage compared with the RML (see Table III) for fixed rank.
For the matched filter (22) or the RR correlator (33), only the
channel estimate izc from the correlator (23), which is the first
stage in both estimators, is available without increasing com-
plexity. Using this estimate in (44) leads to a significant bias
due to the remaining interference of the correlator estimate. In
[47], a technique to compensate the interference correlation ma-
trix Ry is proposed based on the system of linear equations
= Elhe[0hc[0"] = Rage + —— R
= FlIIA ) = Ry + - B
Ry 1 = Ely,[n]y,[n]"] = PRy + R

Riuc t4

(46)
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Fig. 9. MSE of channel estimators for a frequency-selective channel of (full)
rank equal to 40 for N, = 10, where second-order channel statistics Rp

were estimated from F' = 50 independent channel estimates, as described in
Section III-F and are assumed to have block diagonal structure.

which can be used to compute Ry}, V£ € {1,..., L.}

1
=———(N,P,R; ., — R,
P,(N, — 1) ( PLPh (] p["])

yielding a block diagonal approximation of Rp,.
Channel measurements in [32] showed that approximately
120 independent channel realizations are available for estima-

Ry 47)

tion in a suburban environment. Thus, the MSE based on R;I:.
with F' = 50 and the scenario as in Section III-D (R} block di-
agonal) is shown in Fig. 9 for given SNR. It can be seen that the
conclusions from Section III-D still hold with the restriction that
the WF is more sensitive to errors than the RML. The matched
filter and RR correlator outperform the latter approaches due to
their low sensitivity to errors in R,;. . This will no longer be true
if the impact of channel estimation on LMMSE equalization and
the BER are considered, as in Section VI.

IV. ANALYSIS FOR EQUIVALENT FLAT-FADING CHANNELS

An analysis of the presented channel estimation methods in
Section Il for equivalent flat fading channels provides sufficient
insights to understand the differences and performance tradeoffs
involved in parameterization of the estimators and selection of
the optimal method.

We assume that all M L spatial-temporal diversity branches
can be separated perfectly, e.g., due to perfect autocorrelation
properties of the spreading sequence. With these assumptions,
the resulting space-time channel can be described by the equiv-
alent flat (nondispersive) Rayleigh fading channel model below
(e.g., [48]). The receiver performs maximum ratio combining
(MRC) of the branches using the estimated channel coefficients
(see Fig. 10) h, which maximizes the SNR. BPSK symbols s4]i]
are transmitted, i.e.,

cME (48)

(49)

Yqli] = hsali] ';”ld[i] €
$ali] = Real(h yyli]).
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Fig. 10. Equivalent flat-fading channel with ML diversity paths and maximum
ratio combining (MRC) receiver.

For channel estimation N}, pilot symbols are arranged in S, =
sp®@Inr with s, = [sp[1],. .., sp[Np]]T, and we assume white
noise Ry) = UEIJ\/INP .

For flat-fading channels, the correlator and ML estimator are
identical as no ISI is present. Consequently, RML (28) and the
RR correlator (33) are equivalent.

From Table IV, we see that for flat channels, all estimators can
be written as an ML estimator followed by an appropriate post-
processing stage weighting the channel subspaces: The Wiener
filter performs an optimum weighting using the eigenvectors U
of Ry, (30). Clearly, a truncation of signal subspaces as for the
RML estimator is suboptimum w.r.t. MSE.

The MSE of all channel estimates can be written as

MSE, = E [||i;. - h||§]
=E [“Wosph —h+ W.an%]
= trace(W R, W)
+ trace (Rp, + WoS, RS W

-2 Real(W.SpR;.)) (50)
since h and 7, are uncorrelated. The bias [second term in (50)]
represents a systematic estimation error independent of the
noise U whereas the variance (first term) describes the error
due to the noise. These two contributions to the MSE allow a
more detailed analysis of the estimators’ behavior. The MSE of
the considered channel estimators split into bias and variance
contribution is given in Table I'V.

In case of few pilot symbols and high noise, the bias dom-
inates the performance of the WF as the estimator does not
“trust” the received pilot signal. It relies more on the a priori
information, i.e., the second-order moment of the channel h.
For large IV, and high SNR, the WF “trusts” the estimates it
obtains from the ML estimator, i.e., no weighting of the sub-
space is needed. Remember, that for low rank channels, i.e.,
Rank(Rp) < ML, the Wiener method inherently drops the
channel dimensions containing noise only.

The MSE of the (unbiased) ML estimate is equivalent to the
estimation variance (see Table IV) linearly increasing with the
number of coefficients ML to be estimated as known from clas-
sical estimation theory [34]. It is unbounded in low SNR situ-
ations: The MSE exceeds the power of the channel trace(Rp),
which is avoided by the Wiener approach due to the a priori
knowledge of the channel statistics.

To compute its MSE, the matched filter is scaled® by a =
a2 /\1: Generally, anlil (Am/A1)? < ML holds, i.e., the vari-
ance of the matched filter is smaller than for the ML estimator.
The more correlated the channel, the larger the variance gain,
but a bias independent of the noise variance remains for high

8Scaling with a scalar Wiener filter would be less heuristic and show similar
results but would be less obvious to interpret.
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TABLE 1V
FuLL AND RR CHANNEL ESTIMATORS AND THEIR BIAS/VARIANCE FOR EQUIVALENT FLAT CHANNELS

Channel Estimator Bias Variance
ML/Correlator Wy = We = Fplﬁ;sg R Iy 0 ML P_Zi’—n
MF Wur = L UAURW A (*—7&—1)2 bl (éﬂ)2 o
MF = 37 ML =™ A =\ Py Np
WF w o2 0\ ' m ML 1 | e 1 ol
wr =U (IML + PprA ) UWyL mzzl Am | —— -1 > 3 )7 Py N,

Optimal weighting of subspaces

RR Correlator

Wrre = UWy

ML o2
E )\m _In__
P, Np
m=R+1

RML

WerML = URUEW L

00000000

MSE

“@' RML (R=1)
O RML (R=5)
-®- RML (R=10)
-0~ ML (R=40)
- MF

SNR

Fig. 11. MSE of channel estimators for equivalent flat-fading channel (ML =
40, N, = 10). All estimates are scaled with a scalar Wiener filter.

SNR (see Table IV). Thus, a crossover point in performance ex-
ists between the MF and ML estimator.

In addition, the RML and correlator introduce a bias to de-
crease estimation variance finding the best frade-off between
bias and variance. Their MSE is defined as

MSEru, = MSErrc = B [[Urhr — hl3] . (5D

The bias is proportional to the received power in the neglected
signal/channel dimensions. To find the best performance, it is
necessary to optimize R, which is very cheap for flat-fading
channels, but more involved in the general case (cf. Sec-
tion III-C)

In the sequel, the same scenario is considered as in Sec-
tion III-D, but the spatial-temporal paths are considered as
noninterfering diversity branches (48).

As in Section III-D the channel estimates are scaled by a
scalar Wiener filter preserving their structure but allowing for a
comparison w.r.t. the MSE.® The MSE for the scaled estimates
is shown in Fig. 11 for N, = 10. As in the frequency-selective
case, the MF and RML/ML have a crossover point since the MF
saturates at its bias (see Table IV). This point approximately oc-
curs at the same SNR w.r.t. the BEP (see Fig. 12). All results

9For flat fading channels and BPSK, the real-valued scaling factor does not
affect the BEP.
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Fig. 12. Bit error probability of MRC with different channel estimators for
equivalent flat-fading channel (ML = 40, N, = 10) and BPSK modulation.

in Fig. 12 are obtained by evaluating the analytical BEP expres-
sion, which is given in Appendix D with a brief derivation. For
a BEP of 10~1, the ML estimator loses about 4.5 dB due to er-
rors in the channel estimates. For the Wiener filter, the loss is
about 2 dB. The MF is as close as 0.3 dB to the WF. Above 2.5
dB, the MF is outperformed by the RML with R = 10, which is
considerably more complex due to the EVD. At low SNR and
for small IV, the MF should be the preferred channel estimator.

V. APPLICATION TO EQUALIZATION

Considering the classical separate design of channel estima-
tion and equalization, we briefly introduce two equalization con-
cepts to illustrate the consequences of different channel estima-
tors on their design and performance (see Section VI). The gen-
eralized rake in particular can be well understood from the con-
cept of the RR correlator (see Section III-B2).

1) Joint Equalization and Despreading: For short spreading
codes, the data symbols s4[¢] can be directly estimated from the
received chip sequence (joint equalization and despreading; see
Fig. 13)

sali] = ¢"y V], n = Qi (52)
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yg‘v)[7z]3 gl = 34[i]

Fig. 13. Joint equalization and despreading.

where all contributions from symbol s4[i] in y,4[n] are captured
for N = Q+ L. — 1. An LMMSE FIR equalizer [18] g € CM¥
as solution of the Wiener—Hopf equation

Ry g = rys, i) (53)
with covariance matrix of R, = E[yEiN) [n]ygN) [n]"] and cross-
correlation vector Ty, i+ = E[y((iN) [n]sq[i]*] is used. It has
MN degrees of freedom, yielding a better performance at the
expense of a large complexity, which is O(M?3N?), assuming
that the matrix structure is not exploited, compared with chip-
level equalization in the next subsection. It also requires knowl-
edge about the spreading sequence c.

2) Generalized Rake Receiver: For long spreading se-
quences, the approach in (52) is far too complex, as the
spreading sequence changes from symbol to symbol. LMMSE
equalization at the chip level [49] estimates the transmitted
chip sequence zq4[n], i.e., is independent of the spreading code.
Its design is based on (15) with N = L.:

] = HEIz ) + g ln] € CMEe. (54
The generalized rake receiver architecture was developed to
further reduce the computational complexity of the chip-level
equalizer at the price of a small loss in signal power employing
the notion of low-rank approximation from Section ITII-B2 [11],
[21]-[23]:
za[n] = M3yl ] € CR. (55)
The LMMSE filter ¢ = R;'r.,,(niz.- € C¥ estimates
#a[n] = glza[n] with parameters

R, = MOHEOHEI M+ MER, M (56)
Tovainir) = MaHE)er = Mih =hg € C* (57

where the correlation matrix R, = E[zq[n]z4[n]"] can be di-
rectly estimated as a time average from the received data or in-
directly estimating the coefficients in H"<) with a correlator
before despreading. The cross-correlation vector 7., (ny1.)- =
E[z4[n]za[n + L¢]*] = hgr can be obtained as an RR (32) esti-
mate from the RR correlator (see Section III-B2). Alternatively,
g is often chosen as an MRC with g = hg.

Considering the received signal (15) for N = Q + L. — 1, as
before, its RR version is

zarln] = Try{[n] € CF9, 1< R<ML.  (58)
using the block FIR filter (block-Toeplitz)
Lo—1
Tr= Y Jrqgr.—1 ®Mg[(]" € CROMN_ (59)

£=0
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Fig. 14. Generalized rake receiver: Chip-level equalization.

The block coefficient M g[¢] in M g (35) maximizing signal en-
ergy is the £th M x R submatrix of Ug for ¢ € {0,..., L. —1}.
Possible implementations are (see Fig. 14)

3alil = "GTryy In] = ¢" DTryyn]  (60)
with G = I ® g™ and despreading matrix D = ¢! @ Iy €
CExRQ_For example, with Mg[f] = U ® I (42), it is the
conventional temporal rake receiver with LMMSE combining
of the rake fingers.

The LMMSE equalizer together with a generalized rake has
a complexity of order O(R?) compared with the full-rank chip
equalizer O(M?3L?), which results in a considerable gain for
typical suburban or rural environments.

Besides using the RR correlator for estimating hg in (57), the
conclusions drawn for it w.r.t. channel estimation performance
also apply to the generalized rake, which uses the same transfor-
mation M r. Thus, application of the generalized rake as CDMA
receiver has the following advantages.

1) It presents an add-on to existing CDMA receiver archi-
tectures, which use a simple correlator for channel esti-
mation, as an extension to space-time processing.

2) It improves the quality of the channel estimates by rank
reduction.

3) It reduces complexity of the equalizer design by rank
reduction. (On the complexity of the EVD, see Sec-
tion III-E.)

4) Ttexploits the slowly varying spatial and temporal channel
properties.

On the other hand, it reduces the degrees of freedom available
for equalization to R. Thus, the performance gain is largest at
low SNR, where the channel estimate is improved, and the BER
is dominated by the noise and not the ISI.

VI. SIMULATION

Simulation Scenario: The same environment is chosen as
in Section III-D with M = 8, but now, the L. = 5 channel
delays are uniformly distributed in [0, 47,] and not quantized
by the sampling period. A root-raised cosine impulse shape
with roll-off factor 0.2 is used and truncated for comparison
such that L, = 11 [ = 3, (9)]. Furthermore, we assume a
Rayleigh fading channel and that 300 independent random
realizations of the environment are considered for Monte Carlo
simulation of the uncoded BER. In each realization, a block
of 500 QPSK symbols is transmitted. The number of pilot
symbols is IV, = 20, which are chosen to illustrate the differ-
ence among the channel estimation approaches. We consider
a single user with spreading factor () = 4 and (short) random
spreading sequence of length 4. All MAI is modeled as noise
114[n] for simplicity as we restrict our evaluation in this context
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Fig. 15. BER of LMMSE equalizer (joint equalization and despreading) with
different channel estimators (Section III) for frequency-selective channel R €
{1,4,8}(N, = 20).

to the sensitivity of linear single-user equalizers (LMMSE and
generalized rake) to channel estimation errors.

Results: Atfirst, we evaluate the sensitivity of joint equaliza-
tion and despreading as given in (52) and (53) to estimation er-
rors for full-rank channel estimators and the RML (see Fig. 15).
At a BER of 101, the loss of the ML estimator is about 7.5 dB
due to the short pilot sequence. We gained 4.4 dB with the MF
and WF. We conclude that second-order statistics for channel
estimation results in a significant improvement: The cheapest
version is the MF performing as well as the WF at the consid-
ered uncoded BER of 10~!, which is a typical point of opera-
tion for speech services in UMTS. The RML estimator (R = 8)
achieves a similar performance as the WF (Fig. 15), but the rank
R needs to be optimized or chosen a priori according to the en-
vironment of the base station (e.g., the loss for R = 4 is con-
siderable).

For chip-level equalization with the generalized rake (60)
and a RR correlator (33), we have a gain of 4.4 dB for rank
R = 8 (33 dB for R = 4) compared with full rank (see
Fig. 16). The BER of the MF is comparable with the RR cor-
relator for R = 4. For low SNR, the RR correlator provides
estimates with the quality of the WF, whereas the equalizer
is significantly less complex using the same rank reduction as
the generalized rake. Thus, it improves performance and, at the
same time, reduces complexity, exploiting the two time-scales
of channel variations. The sensitivity of chip-level equaliza-
tion to estimation errors of the different channel estimators (see
Fig. 16) differs considerably from joint equalization and de-
spreading (see Fig. 15).

Channel measurements show that the RR subspace is stable
over a period much longer than the channel coherence time [32],
e.g., ' = 120 independent stationary channel realization are
available for estimating Rj, in an urban environment. Evaluating
the impact of Ry, we choose a considerably smaller number
of F' = 20 (see Section III-F). The methods described in Sec-
tion III-F are employed for the estimation of Ry. The MF and
RR correlator (generalized rake) lose most in performance (see
Figs. 17 and 18). This is mainly due to the fact that only the

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 3, MARCH 2005

-1

10

«P RR correlator (R=1)
- RR correlator (R=4)
102 L | -B- RR correlator (R=8) |
—- Correlator |
—*— Matched Filter

+@' RML (R=1)

O RML (R=4)

-©- RML (R=8)

-6~ Max. Likelihood

—&- Wiener filter

3 1 1 L
10 -10 -5 0 5 10 15

SNRin dB

uncoded BER

Fig. 16. BER of LMMSE equalizer (chip-level equalization) with generalized
rake (EVD) and RR correlator in comparison with other estimators for
frequency-selective channel R € {1,4,8}(N, = 20).
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Fig. 17. BER of LMMSE equalizer (joint equalization and despreading)
with different channel estimators (Section III) for frequency-selective
channel R € {1,4,8}(N, = 20). Correlation matrix R estimated from
F' = 20 channel realizations as described in Section III-F. Only spatial
channel correlations were estimated for matched filter, i.e., channel assumed
uncorrelated for distinct delays.

spatial correlations are exploited in the estimate of Ry, (see Sec-
tion III-F). All other channel estimators still achieve comparable
BER performance gains, as in case of perfect knowledge of Ry,.

VII. CONCLUSION

The channel estimation quality for space-time wireless com-
munication channels improves significantly when the different
time-scales of channel parameter variation are exploited. It was
shown in the examples that second-order statistics, which de-
scribe the slowly changing spatial and temporal channel char-
acteristics, can be estimated with sufficient accuracy to realize
the performance gains in practice.

Based on the comparison of linear channel estimators w.r.t.
the underlying channel model (stochastic/deterministic/RR),
performance (analysis for correlated flat fading and simulation),
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Fig. 18. BER of LMMSE equalizer (chip-level equalization) with generalized
rake (EVD) and RR correlator in comparison with other estimators for
frequency-selective channel R € {1,4,8}(N, = 20). Correlation matrix Ry
estimated from £ = 20 channel realizations, as described in Section III-F.
Only spatial channel correlations were estimated for matched filter and RR
correlator, i.e., channel assumed uncorrelated for distinct delays.

and complexity, we conclude the following: The ML approach
and correlator do not take into account second-order statistics
at all, resulting in a considerable performance loss compared
with the Wiener approach. Considering channel estimation
only, the Wiener estimator optimally exploits the second-order
statistics with similar complexity as the RR correlator and
ML. The presented matched filter is a novel low-complexity
channel estimator with good performance for low SNR and
short training sequences. Recent approaches like the RML are
shown to be more complex and perform worse than the Wiener
filter in case of perfectly known second-order statistics. Hence,
RR techniques for channel estimation based on second-order
statistics can only be recommended if the equalizer is designed
in the subspace of the RR channel estimate, as for the general-
ized rake receiver, and if this subspace changes on a low rate,
since the sum complexity will be reduced.

APPENDIX A
DERIVATION OF MATCHED FILTER CHANNEL ESTIMATION

From criterion (22) with (16), it follows that

2
W = argmasx |trace(WSpRhIZ|
w  trace(WR,W")

(61)

which can be solved setting the complex derivative [2] to zero
(note that (9tr(A"B))/(0A*) = B, (dtr(AB))/(0A*) = 0):

tr (RaSyW")  w(WS,Ry)
u(WR,W™) — (w(WR,W™))2
x (f(WRy,W™R,S, — tr (RWS,W")WR,) = 0.

S (W SpRa)

As expected, from (22), the solution is unique up to a complex
scalar a:

Wur = aRyS R, (62)
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APPENDIX B
DERIVATION OF RR ML CHANNEL ESTIMATION

To derive the RML channel estimator, we first assume that a
finite number of blocks F' are available. The proof is based on
the work of Nicoli et al. [3], [5].

As in (25), maximizing the likelihood function is equivalent
to minimizing (63).

OUst. {¢'}: F)

1 & f 2
_ 7 f
~F fzﬂ [CORLERS

= LS (s - 0 ?) " R (i - vsnt?) 69
=1

First, we search for the optimum slot-dependent parameters { 7,
evaluating the complex derivative [2]

0
——OUst, {¢'}; F) = 0w

64
G (64)

which yields

~f -1 _ ~f
¢ = (V%VR) VAR ?hyy (65)

with Vi = R, 2y sT. These parameters are substituted in
(63), resulting in a modified cost function. Minimizing this func-
tion gives the same solution as maximizing

O(Vg; F) = trace (RFVR (Vive) ™ V%) (66)
. ~f ~fH

with R = R;Y2((1/F)SF_ gy b )R: /2. Now we
take the limit O(Vg) = limp_ o O(Vg;F). For (mean-
square) ergodic processes, the time average converges to the
ensemble average, and the estimate of the correlation matrix in
(66) is equivalent to

lim RF =R+ I]\JLC-

F—o00o

With R = RZ'/2R, R-'/?, (66) can be written in the limit as

(67)

O(Vg) = trace (RVR (Vive) ™ V%) (68)

which is the generalized Rayleigh quotient [40]. The projector
on the subspace spanned by the R leading eigenvectors of R
maximizes ©(V ). The projector on the subspace is unique
but not its basis V' . For convenience, we choose the unitary
basis V' i given by the R eigenvectors associated with the largest
eigenvalues of R. This leads to the RML estimator in (26). Note
the similarity to the independently motivated optimization of the
RR correlator (36), which does not include information about
the noise statistics.

APPENDIX C
EQUIVALENCE OF PRE- AND POSTPROCESSING
FOR THE RR CORRELATOR

First, we observe that the following formulations for the
model of the received pilot (12) are equivalent [cf. (1)]:
y, = (S, @ Ing)vec(H) +n, = vec (HS}") + 17,

Y,=HS;" +N, (69)
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R R
Pu({Am} 7 7a) =

m=1 |i=1

R
<1
i=1
itm

- (W
> |11 (Wm

(1 + Md))
)

_ (10 55) (1 %))
B Am (1 - \/(1 + Amlwp) (1 T Avnlw))

(75)

where H is defined as in (9), y, = vec(Y,), and Y, =
[y,[1],. ...y, [Np]] € CM* Mo (equlvalently for N ).

In the sequel, we show the equivalence of (32) and (34). From
(32), it follows, with (69) that

hp = , P —— Mvec(Y,55%) (70)
Rearranging, we obtain (34) with (1):
N 1
hr=ML(I, ®Y,) vec(8%%). (71)
" "IN, P, P
APPENDIX D

BEP FOR COMBINING CORRELATED SIGNALS BASED ON
CHANNEL ESTIMATES

An analytical expression for the BEP in the case of ML cor-
related (space-time) diversity branches is of particular interest
in channel estimation for space-time receivers (see Section IV).
It is derived under the following assumptions: BPSK data sym-
bols sq[i] € {—1,+1} are transmitted, channel coefficients are
distributed as h ~ N.(0, Rp), and maximum ratio combining
based on noisy channel coefficients from linear channel estima-
tors at the receiver. Moreover, IV, P, # P4 is needed for the re-
sults below. We generalize the results in [50] for ML channel es-
timation to general linear estimators. The derivations are mainly
based on the results in [51].

Equation (49) can be written as a quadratic form

1 /- R
Salil = 5 (B Unyalil + b Upgalil”) — (72)
R
=Y vlQuv,, = vQypv (73)
m=1

with v, = [W R, yam [1]]T = [P Yam [i]]T hm=ullh, v =
[vi,..., o5, and Q.5 = 1/2(Ig @ [e2, €1]). uyy, is the mth

column of U g. v is distributed as (0, L) with correlation ma-

trix L = E[vv"] = diag({Ly,...,Lg}), and
I — { Efl o ] E[fbmyii,m['i]]}
" LERyamlid]  Ellyam(@P]

/67271 ()\m + At;In)P) VPd )\m, /Bm
VPdAM/Bm f)dArn'i'O_?1

if s4[i] = ++/Pa is the transmitted symbol.
Based on the distribution of the quadratic form in complex
circular symmetric Gaussian random variables wv, the average

(74)

BEP in (75), shown at the top of the page, can be derived [50],
[51]. The parameter [3,, characterizing the channel estimation
scheme is (3,, = 1 for ML and correlator, 3,, = A, for the
MF, and 3, = Am/(Am + (1)/(7p))) for the WE. For R =
ML, we have the case of full-rank channel estimation, and R <
ML describes RR schemes and the generalized rake receiver.
The ratio of transmit power to noise at the receiver in the data
channel is 74 = (P4)/(c2), and the effective SNR in the pilot
channel is v, = (N, Pp)/(02), where we have (75).
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