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ABSTRACT

We derive the minimum mean square error solution to
Tomlinson-Harashima precoding in frequency selective
multiuser scenarios with a centralized multi-antenna trans-
mitter. This solution depends on the ordering of the pre-
coded symbols as well as the delay between transmission
and detection of a symbol (latency time). We present
an algorithm for jointly optimizing these two parameters
in a computational complexity that grows with the third
power—instead of the fourth power—of the system param-
eters. In the course of this complexity reduction, we prove
that latency times less than the order of the FIR feedforward
filter do not need to be considered. We then use simulations
to show that optimization of the latency time can be omitted
altogether without performance degradation for most prac-
tical channel models.

1. INTRODUCTION

Most wireless communications scenarios feature a base sta-
tion (BS) with high computational power and mobile sta-
tions (MSs) which should be inexpensive and consume as
little power as possible, mandating that the computationally
complex channel equalization is performed at the BS in the
downlink as well as the uplink [1]. Pre-equalization for the
downlink can be performed linearly (e. g. [2, 3, 4, 5, 6, 7])
or nonlinearly. In this work we focus on Tomlinson-
Harashima precoding (THP), a nonlinear extension of lin-
ear precoding schemes, which is computationally much less
expensive than more general nonlinear techniques, such as
those proposed in [8, 9, 10]. THP requires full channel state
information; in [11], the influence of imperfect channel state
information was investigated and robust THP introduced.

THP was originally proposed to combat intersymbol
interference in frequency selective channels [12, 13] by
adding a feedback filter at the transmitter that cancels the
temporal interference of already transmitted symbols, and a
nonlinear modulo operation at both transmitter and receiver,
in order to limit the signal amplitude. However, THP has
also been applied to the problem of multiuser separation in

frequency flat multiple input multiple output (MIMO) chan-
nels, e. g. in [14, 15, 16, 17]. Here the symbols for the dif-
ferent users are precoded in a certain order; the spatial in-
terference of an already precoded symbol is removed by the
feedback loop for all successively precoded symbols. Obvi-
ously, the performance of spatial THP depends on the order
in which the symbols are precoded.

In [17, 18], these approaches were combined and spatio-
temporal Tomlinson-Harashima precoding (ST-THP) was
derived. In contrast to [19], where an IIR feedforward fil-
ter was obtained, all filters were assumed to be FIR. The
use of adaptive IIR filters entails several implementation is-
sues, such as quantization limit cycles due to the finite word
length of digital signal processors, and is therefore not ap-
plied in this paper either. The order in which the symbols
are precoded affects the performance of ST-THP, as does the
latency time, i. e. the delay between transmission and detec-
tion of a symbol. It was noted in [17, 18] that jointly opti-
mizing latency time and ordering is computationally infea-
sible. Instead, a suboptimum method was proposed, which
first finds the best latency time for the assumption of inac-
tive spatial feedback filter and then optimizes the ordering.

In this paper, we will present several approaches to over-
come the prohibitive complexity of joint latency time and
ordering optimization. In Sections 2 and 3 we will intro-
duce the system model and derive the Wiener Filter (WF)
solution for ST-THP, respectively. In the next two sections,
we will present ways of reducing the complexity order of
ordering optimization and latency time optimization. Fi-
nally, in Section 6, we will use simulations to show that in
realistic scenarios latency time optimization can be omitted
altogether, without a degradation of performance.

1.1. Notation

Throughout the paper, we will denote vectors and matrices
by lower case bold and upper case bold letters, respectively.
We use E[•], ‘∗’, ‘⊗’, (•)T, (•)H, tr(•), and Re(•) for
expectation, convolution, the Kronecker product, transpo-
sition, conjugate transposition, the trace of a matrix, and the
real part, respectively. The N × M zero matrix is 0N×M ,



the M -dimensional zero vector is 0M , and the N ×N iden-
tity matrix is 1N . δ[n] is the unit impulse function, which
evaluates to one for n = 0 and to zero otherwise. All ran-
dom sequences are assumed to be zero-mean and stationary.
When describing algorithms, we use the notation A(i, j)
for the element in row i and column j of matrix A and
A(k : l, m : n) for the block consisting of rows k to l
of the columns m to n of matrix A.

2. SYSTEM MODEL

We consider a system with B non-cooperative single an-
tenna receivers, Na antennas at the transmitter, and an FIR-
channel of order Q with the impulse response

H [n] =

Q
∑

q=0

Hqδ[n − q] ∈ C
B×Na ,

as depicted in Fig. 1.
The B data streams are collected in the vector signal

s[n] = [s1[n], . . . , sB [n]]
T
∈ C

B ,

which is reordered by the permutation matrix

Π(O) =

B
∑

i=1

eie
T
bi
∈ {0, 1}B×B,

where the vector ei is the i-th column of the identity matrix
1B . Here we introduced the B-tupel O = (b1, b2, . . . , bB),
with bi ∈ {1, . . . , B} \ {b1, . . . , bi−1}. The data symbol
for the b1-th user is precoded first, the data symbol for the
bB-th user last. Note that Π (O),TΠ(O) = 1B .

The precoder, which processes the permuted data signal,
consists of a spatial feedback filter, a temporal feedback fil-
ter, and a feedforward filter. The FIR feedforward filter of
order L has the impulse response

P [n] =

L
∑

`=0

P`δ[n − `] ∈ C
Na×B .

In order to be realizable without zero-delay feedback loops,
the spatial feedback filter F ∈ CB×B must have lower tri-
angular structure with zero main diagonal. The FIR tempo-
ral feedback filter

T [n] =

Q+L−ν
∑

j=1

Tjδ[n − j] ∈ C
B×B (1)

is strictly causal and needs Q+L−ν coefficients to remove
temporal interference following the detection of the symbol
at the receivers. Here, ν is the latency time, i. e. the delay
between transmission and detection of a symbol.

In order to be able to analyze the system, we replace
the modulo operators M(•) with the summation of auxiliary
signals a[n] and −ã[n], as can be seen in Fig. 2. For a
detailed description of the modulo operator as well as its
linear representation, see [17, 18].

While the statistics of the signal d[n] are unknown, we
can assume that the modulo operator outputs are temporally
and spatially uncorrelated, i. e.

E
[

v[n]vH[n + k]
]

= σ2
v1Bδ[k], (2)

(cf. [20, Theorem 3.1]).
The additive noise at the receivers has the spatial covari-

ance matrix E
[

η[n]ηH[n]
]

= Rη .

3. MMSE FILTER SOLUTION

Using (1) we can express the desired signal as

d[n] = Π(O),T

(

(1B−F )v[n]−

Q+L−ν
∑

j=1

Tjv[n−j]

)

. (3)

The estimate of the desired signal at the receivers calculates
to

d̃[n] = β−1H [n] ∗ P [n] ∗ v[n] + β−1η[n]

= β−1Π(O),T

Q+L
∑

j=0

S(j)H̃(O)Pv[n − j] + β−1η[n],

(4)

where we defined

H̃(O) =

Q
∑

q=0

ST
(q,L+1,Q) ⊗ (Π(O)Hq),

P =
[

P T
0 , . . . , P T

L

]T
∈ C

Na(L+1)×B ,

S(q,L+1,Q) = [0L+1×q,1L+1,0L+1×Q−q]

∈ {0, 1}L+1×Q+L+1,

S(j) = eT
j+1 ⊗ 1B ∈ {0, 1}B×B(Q+L+1),

and ej+1 is the j + 1-th column of the identity matrix
1Q+L+1. H̃(O) is a B(Q + L + 1) × Na(L + 1) ma-
trix with block Toeplitz structure, which contains the per-
muted coefficients of the channel impulse response. Note
that even though the permutation is not necessary at this
point, this definition of the channel matrix will prove useful
later on. P is obtained by stacking the coefficients of P [n].
The selection matrix S(j), when multiplied from the left,
returns the Bj + 1-th to B(j + 1)-th rows of a matrix with
B(Q + L + 1) rows.

Consequently, we can write the mean square error
(MSE) of the estimate of the desired signal d̃[n] with regard
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to the delayed desired signal d[n − ν] for a given ordering
O and latency time ν as

ε(O)(ν) = E
[

‖d[n − ν] − d̃[n]‖2
2

]

= σ2
v

(

B + tr
(

FF H
)

+

Q+L−ν
∑

j=1

tr
(

TjT
H
j

)

− 2β−1 Re
(

tr
(

S(ν)H̃(O)P (1B − F )H
))

+ 2β−1

Q+L−ν
∑

j=1

Re
(

tr
(

S(ν+j)H̃(O)PT H
j

))

+ β−2 tr
(

H̃(O)PP HH̃(O),H
)

)

+ β−2 tr(Rη),

where we used (2), (3), and (4).
Due to (2), the average transmit power evaluates to

E
[

‖y[n]‖2
2

]

= σ2
v tr

(

PP H
)

.

The minimum mean square error (MMSE) filter solu-
tion minimizes the MSE for a given average transmit power
Etr. The lower triangular, zero main diagonal structure of
the spatial feedback filter F is an additional constraint in
our optimization:

{PWF, FWF, TWF,1, . . . , βWF} = arg min
{P ,F ,T1,...,β}

ε(O)(ν)

s. t.: σ2
v tr

(

PP H
)

= Etr and

SiFei = 0i, i = 1, . . . , B,
(5)

with
Si = [1i,0i×B−i] ∈ {0, 1}i×B.

Note that the selection matrix Si, when multiplied from the
left, returns the first i out of B rows of a matrix or vector.

The solution to (5) can be found with the method of La-
grangian multipliers and, after applying the matrix inversion
lemma (e. g. [21, Section 2.9]), reads as

PWF = βWFH̃(O),H
B

∑

i=1

ST
(ν,i)C

(O),−1
(ν,i) S(ν,i)e(ν,i)e

T
i ,

FWF = −β−1
WF

B
∑

i=1

B
∑

k=i+1

ekeT
k S(ν)H̃(O)PWFeie

T
i , and

TWF,j = −β−1
WFS(ν+j)H̃(O)PWF,

(6)

with

C
(O)
(ν,i) = S(ν,i)H̃

(O)H̃(O),HST
(ν,i) + ξWF1Bν+i

∈ C
Bν+i×Bν+i,

S(ν,i) =
[

1Bν+i,0Bν+i×B(Q+L+1−ν)−i

]

∈ {0, 1}Bν+i×B(Q+L+1),

e(ν,i) = eν+1 ⊗ ei ∈ {0, 1}B(Q+L+1), and

ξWF =
tr(Rη)

Etr
.

(7)

The selection matrix S(ν,i), when multiplied from the left,
selects the first Bν + i out of B(Q+L+1) rows of a matrix
or vector. The gain factor βWF is chosen so that the transmit
power constraint is fulfilled. We can see that computing
the filter solution according to (6) involves inverting the B

matrices C
(O)
(ν,i) with i = 1, . . . , B.

When the MMSE filter solution is employed, the MSE
simplifies to

ε(O)(ν) = σ2
vξWF

B
∑

i=1

eT
(ν,i)S

T
(ν,i)C

(O),−1
(ν,i) S(ν,i)e(ν,i).

(8)
Note that each summand is the bottom right element of the
inverse of C

(O)
(ν,i).



Table 1. Standard Computation of Optimum Permutation
Matrix Π(O)

Π(O)
← 1B

ε(O)(ν)← 0

for i = B, . . . , 1:

G← bottom right i × i-block of C
(O),−1
(ν,i)

q ← arg min
q′∈{1,...,i}

G(q′, q′)

Πi ← 1B with rows q and i exchanged

Π(O)
←ΠiΠ

(O)

ε(O)(ν)← ε(O)(ν) + σ2
vξWFG(q, q)

4. EFFICIENT ORDERING COMPUTATION

Computation of the optimum orderingO for a given latency
time ν would require trying out all B! possibilities forO and
choosing the one with the lowest MSE. Since this quickly
becomes too complex with an increasing number of users,
the standard suboptimum approach is to successively mini-
mize the summands of ε(O)(ν), starting with the contribu-
tion of the data stream precoded last, i. e. the one with index
bB , since it does not depend on the ordering of the previ-
ously precoded symbols. We will refer to the result of this
procedure as ‘optimum’ for the remainder of the paper. The
algorithm involves inverting the matrices C

(O)
(ν,i) and sym-

metrically permuting the result, so that the lowest diagonal
element is in the bottom right position, for i = B, . . . , 1
(cf. Table 1). The resulting complexity is O

(

B4ν3
)

, or
O

(

B4(Q + L)4
)

in combination with trying out all possi-
ble latency times ν ∈ {0, . . . , Q + L}.

Now let us assume a given ordering O and latency time
ν. Furthermore, assume that the Cholesky factorization of

C
(O),−1
(ν,B) = LHDL (9)

is known, where L is lower triangular with unit main di-
agonal and D is diagonal with real-valued, positive entries.
Note that we decomposed into the product of an upper trian-
gular and a lower triangular matrix, instead of a lower and
an upper triangular matrix.

The MSE in (8) then simplifies to

ε(O)(ν) = σ2
vξWF

B
∑

i=1

dBν+i,Bν+i,

where dBν+i,Bν+i is the Bν + i-th diagonal element of D.1

1This result is obtained by plugging (9) into (8) and making use of the
properties of triangular matrices to simplify the result, among them the fact
that inverting an upper left square block of a triangular matrix is equivalent
to taking the upper left block of the inverse, as well as the fact that the
inverse of a triangular matrix with unit main diagonal is itself triangular
with unit main diagonal.

Table 2. Efficient Computation of Optimum Permutation
Matrix Π(O)

Π(O)
← 1B

G← bottom right B ×B-block of C
(O),−1

(ν,B)
for Π(O) = 1B

D← 0B×B

for i = B, . . . , 1:

q ← arg min
q′∈{1,...,i}

G(q′, q′)

Πi ← 1B with rows q and i exchanged

Π(O)
←ΠiΠ

(O)

G←ΠiGΠT
i

D(i, i)← G(i, i)

G(i, 1 : i)← G(i, 1 : i)/D(i, i)

G(1 : i− 1, 1 : i− 1)← G(1 : i− 1, 1 : i− 1)−

−G(i, 1 : i − 1)HG(i, 1 : i− 1)D(i, i)

ε(O)(ν)← σ2
vξWF tr(D)

The idea of the proposed efficient ordering algorithm,
which was introduced for spatial THP in [22], is to incorpo-
rate the successive minimization of the MSE contributions
into the Cholesky factorization algorithm (cf. [23]). Note
that since the first factor is to be upper triangular, the factor-
ization must begin with the bottom right element and con-
tinue upward and to the left. When an element of D is to
be computed, we now insert a symmetric permutation, such
that the respective element is minimized. The complete al-
gorithm is shown in Table 2. It takes the matrix C

(O)
(ν,B) with

no permutation as input and returns the same ‘optimum’ or-
dering yielded by the standard procedure in Table 1.

For determining the ordering, only the bottom right B×

B block of the matrix C
(O),−1
(ν,B) is relevant. However, if the

Cholesky factorization is computed for the complete matrix,
the filter solutions can be significantly simplified as well, in
particular

PWF = βWFH̃(O),HST
(ν,B)L

HDS(ν,B)S
(ν),T and

FWF = −
(

S(ν)ST
(ν,B)LS(ν,B)S

(ν),T
)−1

+ 1B ,

i. e. only one further inversion of a B ×B triangular matrix
is necessary, resulting in a complexity for finding the best
ordering and computing the filters for a given latency time
ν of O

(

B3ν3
)

. The fact that the lower triangular part of the
matrix G returned by the algorithm in Table 2 is the bottom
right block of L in (9) can be used to save several operations
when factorizing the complete matrix.

4.1. Simulation Results

In order to show the effect of optimized ordering on the
performance of ST-THP, we carried out numerical simula-



tions in different scenarios. For the results in Fig. 3 and
Fig. 4, we assumed Na = 4 transmit antennas, configured
as a uniform linear array with λ/2 spacing, and B = 3
receivers, located at random angles around the transmitter,
with Laplacian angular spread of 10◦. We assumed no tem-
poral correlations, i. e. uncorrelated angles of departure for
the different taps. We used ‘Pedestrian A’ and ‘Vehicu-
lar A’ power delay profiles (cf. [24]), normalized so that
∑Q

q=0 E
[

‖Hq‖
2
F

]

= NaB, where ‖•‖F denotes the Frobe-
nius norm of a matrix. Furthermore, the transmitter had
perfect channel state information and employed a feedfor-
ward filter of order L = 4. 100 16QAM symbols were
transmitted to each receiver per channel realization, with
optimized ordering (cf. Table 2) and with no ordering, i. e.
Π(O) = 1B . The bit error rate was obtained by averaging
over 10000 channel realizations.
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In Fig. 3 we can measure a gain of the ordering op-
timization of about 1.5dB at an uncoded bit error rate of
10−2, and about 2.5dB at 10−3. In Fig. 4 the gain is signif-
icantly lower. Further simulations have led us to conclude
that the performance gain that can be achieved by employ-
ing the optimum ordering depends highly on the power de-
lay profile of the channel model. The more average energy
the first path of the channel has, the more important the spa-
tial feedback component becomes, which benefits from op-
timum ordering.

5. EFFICIENT LATENCY TIME OPTIMIZATION

So far, we were able to reduce the complexity order of com-
puting the optimum ordering; however, in order to deter-
mine the best combination of latency time and ordering, the
MSE with optimum ordering must be calculated for all pos-
sible latency times 0 ≤ ν ≤ Q + L.

In this section, we will introduce two approaches for re-
ducing the computational effort of this process. First, we
will prove that not all latency times must be considered, as
certain ones cannot outperform other latency times in terms
of MSE. Second, we will show how the block matrix inver-
sion properties can be exploited, making it unnecessary to
perform a complete matrix inversion for each new latency
time.

Theorem 1 For latency times less than or equal to the
length of the FIR feedforward filter L and for any given or-
dering O, the MSE is non-increasing in ν, i. e.

ε(O)(ν) ≤ ε(O)(ν − 1), 1 ≤ ν ≤ L.

Proof. In the following, we always assume that 1 ≤
ν ≤ L. We recall that H̃(O) has block Toeplitz structure
and that S(ν,i), when multiplied from the left, selects the
first Bν + i out of B(Q + L + 1) rows of a matrix. We
furthermore introduce the selection matrix

S̃ = [0NaL×Na
,1NaL] ∈ {0, 1}NaL×Na(L+1),

which, when transposed and multiplied from the right, cuts
off the first Na out of Na(L + 1) columns of a matrix. The
structure of H̃(O) with different selection matrices applied
to it can be illustrated as follows:

���������������
������
���

���������������
���������������

������
�����
�����
���
���

	�	
�
������������������ ������
���
������
���

���������������
������
���
�����
�����
�����
����� ������

���������
���

������
������
������
������

���
���
���

���
���
���

������ ������ � � !�!�!

PSfrag replacements

S(ν,i)H̃
(O) = S(ν−1,i)H̃

(O) = ,,

"�"�""�"�""�"�""�"�"
#�#�##�#�##�#�##�#�#

$�$�$$�$�$%�%�%%�%�%&�&�&
&�&�&
'�'
'�'

(�(�((�(�()�)�))�)�)*�*�**�*�**�*�*
+�++�+
+�+

,�,�,
,�,�,
-�-�-
-�-�-

PSfrag replacements

S(ν,i)H̃
(O) =

S(ν−1,i)H̃
(O) =

,

S(ν,i)H̃
(O)S̃T =and .



Obviously, due to the special structure of the channel ma-
trix, the following holds true:

S(ν,i)H̃
(O)S̃TS̃H̃(O),HST

(ν,i) + ξWF1Bν+i =

=

[

ξWF1B 0B×B(ν−1)+i

0B(ν−1)+i×B C
(O)
(ν−1,i)

]

,

and furthermore

(

S(ν,i)H̃
(O)S̃TS̃H̃(O),HST

(ν,i) + ξWF1Bν+i

)−1

=

=

[

ξ−1
WF1B 0B×B(ν−1)+i

0B(ν−1)+i×B C
(O),−1
(ν−1,i)

]

.

Thus, we can express the MSE for latency time ν − 1 as

ε(O)(ν − 1) =

= σ2
vξWF

B
∑

i=1

eT
(ν−1,i)S

T
(ν−1,i)C

(O),−1
(ν−1,i)S(ν−1,i)e(ν−1,i)

= σ2
vξWF

B
∑

i=1

eT
(ν,i)S

T
(ν,i)

(

S(ν,i)H̃
(O)S̃TS̃H̃(O),HST

(ν,i)

+ ξWF1Bν+i

)−1

S(ν,i)e(ν,i).

Let

S

([

A′ b

bH c

])

= c − bHA′,−1b

denote the scalar Schur complement of a Hermitian matrix.
It is known (e. g. [21, Section 2.9]) that the bottom right
element of the inverse of a Hermitian matrix is the inverse
of its scalar Schur complement. We can therefore write

ε(O)(ν) = σ2
vξWF

·

B
∑

i=1

S−1
(

S(ν,i)H̃
(O)H̃(O),HST

(ν,i) + ξWF1Bν+i

)

,

and

ε(O)(ν − 1) = σ2
vξWF

·

B
∑

i=1

S−1
(

S(ν,i)H̃
(O)S̃TS̃H̃(O),HST

(ν,i) + ξWF1Bν+i

)

.

It can easily be seen that the following inequality holds
true for every vector x ∈ C

Bν+i:

‖H̃(O),HST
(ν,i)x‖

2
2 ≥ ‖S̃H̃(O),HST

(ν,i)x‖
2
2.

Therefore the matrix

S(ν,i)H̃
(O)H̃(O),HST

(ν,i) − S(ν,i)H̃
(O)S̃TS̃H̃(O),HST

(ν,i)

is positive semidefinite.

It has been shown (e. g. [25]) that if the matrices A, B,
and A − B are positive semidefinite, then S(A) ≥ S(B).
Thus, every summand of ε(O)(ν) is less than or equal to the
according summand of ε(O)(ν − 1). �

Remark: For the special case of a frequency flat chan-
nel the matrix H̃(O) is block diagonal, and the MSE be-
comes independent of the latency time. In this case equality
holds in Theorem 1.

We can conclude from Theorem 1 that we only need to
consider latency times L ≤ ν ≤ Q+ L, since lower latency
times cannot perform better. Nonetheless, computing the
best ordering as described in Section 4 for each latency time
would require Q + 1 inversions of C

(O)
(ν,B). Here we can

make use of the relationship between C
(O)
(ν,B) and C

(O)
(ν−1,B)

discussed in the following.
As can be seen from (7), C(O)

(ν−1,B) is the upper left block

of C
(O)
(ν,B). According to e. g. [21, Section 2.9], when the

inverse of the upper left block of a matrix is known, the
inverse of the complete matrix can be computed with several
matrix multiplications and the inversion of a matrix the size
of the bottom right block:

[

A B

BH C

]−1

=

=

[

A−1 + A−1BS−1
A BHA−1 −A−1BS−1

A

−S−1
A BHA−1 S−1

A

]

,

(10)

where
SA = C − BHA−1B.

When jointly optimizing latency time and ordering, we
therefore only have to invert the full B(ν + 1) × B(ν + 1)
matrix for ν = L. For all subsequent latency times, only
a B × B matrix must be inverted. The algorithm for
joint optimization can be seen in Table 3, its complexity is
O(B3(Q + L)3).

Special attention however must be paid to the problem
of numerical error propagation. Simulations have indicated
that the successive inversion of a matrix of increasing size
using (10) is only suitable for a small number of iterations.

6. FIXED LATENCY TIME

Simulations have shown that for most channel models the
algorithm in Table 3 returns νWF = L in the overwhelming
majority of channel realizations. We therefore investigated
the effect of using a fixed latency time through extensive
simulations.

The simulation results indicate that as long as the power
delay profile of the channel model is decaying, or even con-
stant or ‘U-shaped’, ST-THP with fixed latency time ν = L



Table 3. Joint Optimization of Latency Time and Ordering

ν ← L

compute C
(O),−1
(ν,B) for Π(O) = 1B

compute Π(O) and ε(O)(ν) using Table 2

Π(OWF)
←Π(O)

εmin ← ε(O)(ν)

νWF ← L

for ν = L + 1, . . . , L + Q:

compute C
(O),−1

(ν,B)
for Π(O) = 1B using C

(O),−1

(ν−1,B)
and (10)

compute Π(O) and ε(O)(ν) using Table 2

if ε(O)(ν) < εmin:

Π(OWF)
←Π(O)

εmin ← ε(O)(ν)

νWF ← ν
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Fig. 5. Channel Order Q = 3, ‘Pedestrian A’ Power Delay
Profile, Filter Order L = 2

performs nearly exactly as well as ST-THP with joint la-
tency time and ordering optimization, regardless of all other
system parameters. This can be seen in Fig. 5 and Fig. 6,
where we used the same channel model and simulation pa-
rameters as in Section 4.1, unless noted otherwise in the
caption. For channel models with increasing power delay
profiles however, we found that setting the latency time to
a fixed value can indeed result in significant degradation of
the performance (cf. Fig. 7). In such scenarios the order of
the feedforward filter L plays a crucial role: the larger L
is chosen, the smaller the performance penalty of omitting
the latency time optimization becomes. In our simulations,
when L was larger than Q, the difference between fully op-
timized ST-THP and ST-THP with fixed latency time ν = L
became unnoticable, regardless of the power delay profile.
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Fig. 6. Channel Order Q = 5, ‘Vehicular A’ Power Delay
Profile, Filter Order L = 3
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Fig. 7. Channel Order Q = 5, Exponentially Increasing
Power Delay Profile (3dB per Tap), Filter Order L = 3

7. SUMMARY

In this paper, we derived the MMSE filter solutions for
ST-THP in a simple notation that allows us to investigate
the issues of ordering and latency time. We presented a
procedure for jointly optimizing latency time and order-
ing in O(B3(Q + L)3) floating point operations. This was
achieved on the one hand by using an efficient ordering al-
gorithm based on the Cholesky factorization, on the other
hand by utilizing the inversion properties of partitioned ma-
trices for the latency time. It was also shown that the
Cholesky factorization can be employed to reduce the com-
plexity order of computing the filter solutions.

Furthermore, we proved that for THP with FIR feed-
forward filter, latency times smaller than the order of the
feedforward filter do not need to be considered. This result



of course is also significant for single input single output
(SISO) systems.

Finally, in Section 6 we showed that for practical chan-
nel models with decaying power delay profiles, latency time
optimization may be omitted altogether without a penalty in
performance. Even for increasing power delay profiles, we
can avoid the need for latency time optimization by a priori
choosing a sufficiently large order of the feedforward filter.
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