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Abstract—Focusing on systems with simple non-cooperating
receivers, we present an approach to reduce the complex-
ity of multi-user precoding schemes for frequency-selective
MIMO channels. The transmit Wiener filter (IxWF) and Wiener
Tomlinson-Harashima precoding (THP) both provide attractive
performance, but the complexity involved in their computation
may be prohibitive. We develop the reduced-complexity multi-
user multi-stage TxWF (MSTxWF) by applying the multi-stage
decomposition known from receive processing to the TxWF. We
show that the block-Lanczos algorithm can be used for efficiently
computing the reduced rank MSTxWF. Moreover, we extend
the MSTxWF approach to Wiener temporal THP, resulting in
a reduced-complexity nonlinear precoding scheme. Simulation
results demonstrate that both schemes can provide close to
optimum performance at significantly reduced complexity.

I. INTRODUCTION

We consider a point-to-multipoint wireless communication
system with a multi-antenna transmitter and low-complexity
single-antenna receivers. In such a system, precoding (or pre-
equalization) represents the adequate transmission strategy if
(at least partial) channel state information (CSI) is available
to the transmitter. The general case of a frequency-selective
channel is investigated. Compared to frequency-flat scenarios,
the frequency-selectivity of the channel leads to a substantial
increase in the dimension of the precoding problem. However,
in practical scenarios, the computational resources available at
the transmitter are limited. Thus, not only the performance but
also the complexity of the chosen precoding scheme deserves
careful examination.

Among linear precoding schemes for frequency-selective
channels, the FIR transmit Wiener filter (TxWE, [1]) provides
an attractive trade-off between performance and complexity.
Its performance is optimum in a sum of mean squared error
(MSE) sense. Concerning complexity, its main advantage lies
in the existence of a closed-form solution, resulting in a
considerably lower complexity than linear precoding schemes
based on SINR criteria, which usually only provide an iterative
solution (e.g., [2], [3]). Still, even the complexity involved in
the computation of the TxWF may be too high in practical
applications, motivating the work presented in this paper.

In receive Wiener filtering, reduced rank processing is
a well-known approach to complexity reduction. The basic
idea is to reduce complexity by approximating the optimum
Wiener solution in a lower dimensional subspace. Clearly, we
desire a subspace basis that can be computed efficiently while

providing good performance at low rank. Among the reduced
rank techniques known from single-user receive processing,
the multi-stage Wiener filter MSWF) introduced by Goldstein
et. al. [4] is one of the most promising. In [5], we developed
the single-user (or vector) MSTxWF by applying the multi-
stage concept to the single-user TxXWE. Although the derivation
in [5] is based on the single-user case, it can be applied to
multi-user scenarios by employing multiple vector MSTxWFs
in parallel. However, this setting is clearly sub-optimum. The
first contribution of this work is the generalization of the
concepts from [5] to the multi-user case, resulting in the
development of the multi-user (or matrix) MSTxWF. First,
we apply the multi-stage concept to find an algorithm for
iteratively computing a basis that has good properties. It turns
out that this basis can be computed with the block-Lanczos
algorithm, showing the relationship between the MSTxWT and
block-Krylov methods. In a second step, the reduced rank
solution is computed in the subspace spanned by this basis.
Finally, we derive an algorithm which efficiently combines the
computation of subspace and reduced rank solution.

Nonlinear Tomlinson-Harashima precoding (THP, [6], [7],
[8], [9]) can be considered as an extension to linear pre-
coding by adding a feedback filter at the transmitter and
modulo operators at both the transmitter and the receivers.
In frequency-selective multi-user scenarios, three variants of
THP can be distinguished [10]: THP can be employed to
mitigate interference from symbols sent at an earlier time
instant (temporal THP), to combat multi-user interference
(spatial THP), or in its most general form to mitigate both
types of interference (spatio-temporal THP). We show that
the MSTxWF approach can also be applied to MSE-optimum
temporal THP (Wiener T-THP). In highly loaded scenarios,
the resulting nonlinear precoding scheme provides optimum
performance at low complexity.

Throughout this work, we assume the transmitter to have
full CSI, a valid assumption in time division duplex systems
if the coherence time of the channel is large enough.

The remainder of this paper is organized as follows: In
Section II we present our system model. The TxWF and
Wiener T-THP are briefly reviewed in Section III. The reduced
rank MSTxWF is developed in Section IV. In Section V,
we discuss the application of the MSTxWF approach to
Wiener T-THP. Simulation results are presented in Section VI,
conclusions are provided in Section VII.

3684



0-7803-8521-7/04/$20.00 © 2004 IEEE

A. Notation
Vectors and matrices are denoted by lower case bold and

capital bold letters, respectively. We use E [o], || o||r, ‘@’, (o)*,
(o)1, and (@) for expectation, Frobenius norm, Kronecker
product, complex conjugation, transposition, and conjugate
transposition, respectively. All random processes are assumed
to be zero-mean and stationary. Let 02 = E [|z[n]|?] and
02 = E[|lz[n]||3] denote the variance of a scalar process
z[n] and a vector process x[n], respectively. The N x M zero
matrix is Oy« a7, the M x 1 zero vector is Oz, and the N x N

identity matrix is 1, whose n-th column is e,.

II. SYSTEM MODEL

The system under consideration consists of a [V,-antenna
transmitter, a FIR MIMO channel

Q
Hin| = Zﬁqé[n —ql, I:Iq € Crxle,
q=0

and K non-cooperating single-antenna receivers. The general
model depicted in Fig. 1 is applicable to both linear precoding
and THP. The feedforward filter P[n] is constrained to be FIR:

L
Pln] =) Pd[n—1{, P,eCNrK
£=0

For linear precoding, the feedback filter is inactive, F[n] =
Ox«x. Moreover, a[n] = a[n] = Ox. For temporal THP,

R
F[n] =) F.i[n—r], F,eCK*X
r=1

while a[n] and a[n] are chosen such that »[n| and §[n] lie
within the feasible region of the THP modulo operation (see,
e.g., [9], [10]).

The received signal is scaled by a factor 3~ at each receiver
(gain control). Note that all receivers employ the same scaling
factor. This simplification ensures the existence of a closed
form-solution for the TxWF.

After defining

P =[P, ... Pl e CcE>NA) " and
vg[n] = [egv[nL ervn—Q— L]]T e QR+
the estimate d[n] can be written as
. K
din]=p~' Y exel PHywiln] + 3 'nln].

The block-Toeplitz matrix Hy, is constructed from the coeffi-
cients of the channel to the k-th receiver:

H,—[H],,. . H, . ] echirixeii
where Hj,, € CNe*Q@TLFL g given by
H, = {ONaxbth:IoTelw . ~7ﬁ56k70N3><L7b71 .
For compactness, the matrices Hy, are collected in a matrix
H =[H,,... Hg]e CNLA)xKQFLFL)

Assuming that E [v[n]v®[n +m]] = 021xd[m] [10], the
average transmit power is given by E, = 02| P||3.

Fig. 1.

Frequency-Selective MIMO System

III. TXWF AND WIENER T-THP
We define the MSE as o2 = E[||d[n — v] — d[n]||2], with
a fixed latency time v that is chosen a priori. Recall that for
linear precoding, v[n] = d[n] = s[n] and d[n] = [n].
The TxWF minimizes the MSE under an average transmit
power constraint [1]:

{ Pwr, Bwr} = argminag s.t. a?HPHi <FE. @
{P,3

’

The TxWF solution is given by Pwr = Bwr Py, with

P =VIR;', PBwr=v Etr/USQHPOH;17
Ry = HH" + &yrlyy 41y, and 2

K T
Vo = E - Hie, e,

where &wr = 0,27 /E.. The computation of Pwr requires
the inversion of an N x N matrix, with N = N,(L + 1).
Accordingly, the full-rank solution has complexity O(N 3).
For large N, the complexity involved in the computation
of the TxWF may be prohibitive. Thus, it is desirable to
develop reduced rank methods that reduce complexity without
sacrificing performance.

Note that in the limit 0,27 — 00, the TXWF converges to
the transmit matched filter (TXMF) Pyr = BurVy! [1]. The
TxMF is simple to compute, but does not take into account
interference.

In Wiener T-THP, the feedback filter is active and of order
R=0Q+ L —v. Accordingly,

. 2
{PWTHP7 FWTHP76WTHP} = argmin Uz S.t. UiHPHF < Etr~

F}

After introducing the matrix
H = [H,,...  Hy] e CNErxKE)

where H . contains the first v+1 columns of Hp, the optimum
feedforward filter Pwryp is given by Pwrup = Swrup Py, with

P, = VHR;', and 3)
Ry = HH" + &wrl 11y

The computation of the optimum feedback filter is simple
as soon as the feedforward filter is known [10]. Thus, the
main complexity of Wiener T-THP lies in the computation of
the optimum feedforward filter Pyrgp. In terms of Eq. (3),
the feedforward filter solution is again of complexity O (N?3).
After applying the matrix inversion lemma (see, e.g., [11]),
we can also write

. - - - —1 -
Py=E] | (H'H +¢wrlgs)) HY, 4)
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with B, 1 = 1x @ e, € CEKVHDE 1p this case, a M x
M matrix has to be inverted, with M = K (v + 1). In the
following, it is assumed that

No(L+1)<K(v+1). )

If Eq. (5) does not hold, complexity can already be reduced
by solving Eq. (4) instead of Eq. (3).

IV. REDUCED RANK MSTXWF

The complexity involved in the computation of the TxWF
can be reduced by approximating each row of the full-rank
solution Pwr in a lower-dimensional subspace of CV. First,
we aim at finding a subspace basis that provides a good
trade-off between complexity of computation and quality of
approximation.

A. Krylov Subspace Basis

Motivated by the receive MSWF [4], we apply a generalized
stage-wise decomposition to Py: Given P; € CKXN—iK
expand P; into

131‘ - Ai+1 (Qi+1 - R+1Bi+1) ’ (6)

CKXNfiK

with two linearly independent bases Q;+1 € and

Bi+1 c CNf(iqu)KfoiK’ ie.,

span(B ) = null(Q},,). )

Eq. (6) can be understood as the expansion of P, in terms of
the bases Q41 and B;11. In the next stage, P, is expanded
in the same manner. Assuming that N is an integer multiple of
K, the full decomposition is obtained after the N/K-th stage:

N/K i

= Y (-1 (H A’f) K

i=1 k=1

with T7 = @4 and for i > 1,

1
T.=Qi |] BreCH ®)
k=i—1

A basis of a DK -dimensional subspace of CV can be found
by stopping the decomposition after D stages and stacking
T1,...,Tp in a matrix

TP = [T, T3]" e cPExN,

Up to this point, the decomposition is completely generic. The
properties of the MSTxWF result from a particular choice of
the matrices @;. At the first stage, we choose the matrix Q4
such that

span(QT) = span(Vy).

With this choice, it is ensured that the reduced rank MSTxWF
performs as least as good as the TxMF. Given Py = V(')HRO,
@ and a matrix B that satisfies Eq. (7), the matrices A,
and P, can be found by solving

Vi'Ry = A, (Q: — P.By)

for A; and P;. It turns out that the above choice for @,
decouples the computation of A; and P, yielding a P, that
can be written as P, = VlHRfl, with V] = BlRoQIf and
R, = B, Ry B}'. Based on this observation, in the following
stages ;11 is chosen such that

span(Q{;,) = span(V;'), ©
yielding Py = VL R}, where

Viji = BiaRiQjL,, and (10)
R\ =B 1 R;BY . (11
From Eq. (11) follows immediately
1 i
R, = (H Bk> R, (H B}j) . (12)
k=i k=1
The resulting T; have the important property
TiRT =0k, |j—il>1. (13)

Eqg. (13) can be proved by first plugging Eq. (8) into Eq. (13)
and then using Egs. (12), (10), (9) and (7).
Moreover, plugging Eq. (12) into Eq. (10) yields

1
V= (H Bk> R,TH.
k=i

According to Eq. (9), Q; = L; 'VH  with a non-singular
matrix L;. Thus, by combining Egs. (8) and (14),

1
11 Bk> . (5)

k=i—1

(14)

i—1

T,=L;'T;_ 1Ry (H Bl?) (

k=1

The rows of 77) are in general not orthogonal. For orthonor-
mality,

T,T}" = 1x6]i — §] (16)

has to hold. Plugging Eq. (8) into Eq. (16), we find that for
orthonormality, Q;Q} = 1x and B;B}l'! = 1yx_;x. Now,
both 1 — QI'Q; and B}'B; define an orthogonal projector
onto null(@;). From the uniqueness of projectors it can be
concluded that BEB; = 1 — Q!'Q;. Plugging this result
into Eq. (15), using Eq. (8) and finally Eq. (13), we find that
Eq. (15) turns into the block-Lanczos algorithm [12], [13]:

i—1
T, = LT = L (T Ro— Y T RoTET),
k—i—2
with 7y = V! and a matrix L; ' that orthonormalizes
T;. An obvious way to obtain T} and L; from T is to
compute the reduced LQ-factorization of T,. With the block-
Lanczos algorithm, we have found a very efficient way for
computing a subspace basis. Moreover, from the fact that
the Lanczos algorithm is a method for computing a Krylov-
subspace basis of a Hermitian matrix, it follows that if the
filters T are orthonormal, the reduced rank D-stage MSTxWF
is the approximation of the TxWF in the Krylov subspace

span <[VO*7R’5VO*7 . .7R5"D’1VO*D .
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1:  Choose maximum dimension D

To = O0gxn, Ti=orth(V{)
U=TRy
Ry =UTE, Ryg=0g«x
s alb - lel cl =V
A=
for ¢ = 2, :
if | T3] 7 = O then break
10: T; = orth (T;)
U=TRy
R“:UTI'H, R, 1 =UTZ
O, = K3 RLZ 16— 1Rz7. 1
C]Si) —e; 1[ R C(z 1) 1x
15: C}gi) _ [Clgi—l) OKXK] S; C(Z 1), HR?Z L (75)
A=1
T(D) [T, ..., TX)

Bwr = \/Eu/U ||PWF||F
20:  Pyr = BwrPur
R R

TABLE I
BLrock-LaNczos MSTXWF

B. Reduced Rank Solution

The D-stage MSTxWF of rank DK is found by plugging
P = PT®) into (1) and minimizing over P e CKxDK,

{PWF7 6wp} = argmin o’

(P.A} P=PT(D)
o | TP < B
with R{? = TOIRTIH and VP) = T(DV;, the

solution is given by
pWF _ BWF‘/()(D)7HR§)D)7717
~ 11
By = /B2 VPR
Note that only the first K rows of V(')(D) are non-zero. Thus,
only the first K rows of the inverse of RéD) are actually
needed for the computation of the solution. Due to Eq. (13),

the matrix R(()D) is tri-diagonal and can be constructed from
R(()Dfl) in the following way:

D1 Op—
R(()D) = Ré ) (lgpgjf;K
Oxw(p-2)K R%—l,D | Rpp

with R; ; = TiRoTjH. Now define the matrices CéD) and
CéD), where CIED) and CéD) contain the first K and the last
K rows of RéD)’fl, respectively. Using the inversion lemma
for partitioned matrices [11], we find that C§D> and CéD) can
be computed iteratively:

o~ oy [Ry 0" 1],

CIgD) _ {C(Dfl)

F OKXK} —5pC" Ry pCt?,

with ©p = Rpp — R | ,;©p_1Rp_; p and a selec-
tion matrix Sp = [1x Oxxx(p_2]. With this iterative

101 \!\!\

2 =

/m W

B \

o

o

102 %0\

= © —%— TxWF L\
- —e— MS, D=3 NN
—a— MS, D=4 s\\ .

—8— MS, D=8
1073 L L Kx

-10 -5 0 5 10 15 20
Etr/ai in dB

Fig. 2. MSTxWE K =2, N, =4, L =14

algorithm we can efficiently compute the relevant first K
rows of RéD)’fl. Under the assumption that NV >»> K, the
complexity of each iteration is governed by the matrix-matrix
multiplication T; Ry, which is of complexity O(K N 2). As
a result, the D-stage solution results in a complexity of
O(DKN?). Recall that the terms T; Ry are also needed in the
Lanczos algorithm for iteratively computing the basis 177,
As a result, the computation of TP) and the computation
of Pyr can be efficiently combined in a single algorithm of
overall complexity O (DK N?), see Table I. Compared to the
full rank solution with O(N?), complexity is reduced if a
close-enough approximation is achieved for D < N/K.

V. REDUCED RANK WIENER T-THP

In contrast to spatial THP and spatio-temporal THP, in
Wiener T-THP the matrix Ro, which is needed in the com-
putation of the feedforward filter, is user-independent [10].
Based on this property, the results from Section IV are directly
applicable to Wiener T-THP, i.e. the complexity of Wiener T-
THP is reduced by computing a reduced rank approximation of
the optimum feedforward filter Pywryp. According to Eq. (3), it
suffices to replace Ry by Ro in the derivation of the MSTxWF.

Eq. (5) defines a lower bound for the latency time v. An
upper bound follows from the fact that in order to collect the
desired symbol’s energy from all channel taps, it is necessary
to choose L > @ and @@ < v < L. Tt follows that Eq. (5)
restricts our considerations to systerns with N,/ K < 1, where
equality can be achieved for v = L. Note that the case
N,/K =1 already corresponds o a highly loaded scenario.

VI. SIMULATION RESULTS

In TD-CDMA cellular systems, high-data rates require a
small spreading factor (SF). Here, the special case of SF =1
is considered. In this case, user separation has to be ac-
complished by space-time processing at the transmitter. We
present uncoded bit error rate (uncoded BER) results for
QPSK modulation and a system with N, = 4 antennas at the
transmitter and a variable number of receivers. We assume a
chip rate of f. = 3.84Mcps. The channel has an exponential
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power delay profile with 6 paths and maximum delay spread
Tp = 3.9ps. This is incorporated in our system model by
seting @+ 1 = [3.84%3.9] = 15. We assume temporally and
spatially uncorrelated Rayleigh fading.

Fig. 2 shows the uncoded BER performance of the linear
MSTxWF in a scenario with K = 2 receivers and a feed-
forward filter of order L. = 14. The latency time is set to
v = 14. Note that N/K = 60/2, i.e., the TxWF is equivalent
to a MSTxWF with 30 stages. The MSTxWF can achieve a
significant reduction in complexity: For a target BER of 1072,
D = 4 stages provide optimum performance; D = 6 stages
are needed at a target BER of 1073,

In the second scenario, the number of receivers is increased
to K = 4. Note that this corresponds to a highly loaded
scenario, as K = N,. In order to provide the linear precoder
with additional degrees of freedom, the filter order is set to
L = 28. As can be observed from Fig. 2, even the BER curve
of the optimum TxWF saturates. Due to K = N,, the data
streams cannot be completely separated by a linear precoder,
resulting in an error floor. In this scenario, N/K = 29.
Again, the MSTXxWF can provide a significant reduction in
complexity, depending on the target BER. However, it can
also be noticed that the number of stages required to obtain a

close to optimum solution increases with the system load.

Fig. 4 demonstrates the superiority of nonlinear Wiener
T-THP (WT-THP) over the linear TxWF in highly loaded
scenarios. The order of the feedforward filter is set to L = 14,
i.e. the complexity required to compute the optimum feedfor-
ward filter solution is the same as in Fig. 2, although twice
the number of users is served. The overall number of filter
coefficients (including the feedback filter) is approximately
equal to the linear TxXWF with L = 28. The latency time is
again chosen as v = 14. With the given parameters, N/ K =
15 for the WT-THP system. Considering the performance
of reduced rank multi-stage WT-THP, the results in Fig. 4
show that 6 to 8 stages are sufficient to get almost optimum
performance in the BER range under consideration. Compared
to WT-THP, again a considerable reduction in complexity.

VII. CONCLUSIONS

We derived the multi-user MSTxWF, showed its relationship
to block-Krylov methods and provided an efficient algorithm
for computing a low complexity reduced rank solution. More-
over, we extended our results to nonlinear precoding by devel-
oping reduced-complexity multi-stage Wiener T-THP. Simula-
tion results demonstrate that the presented MSTxWF approach
can achieve a substantial complexity reduction for both linear
and nonlinear MSE-optimum precoding in frequency-selective
multi-user scenarios.
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