Auswirkungen der Extrakorporalen Stosswellentherapie auf die Knochendichte des humanen Kalkaneus

Martina Weber
Für meine Familie
Inhaltsverzeichnis

Abbildungsverzeichnis iii

Tabellenverzeichnis v

Abkürzungen vi

1 Einleitung

1.1 Allgemein ... 1
1.2 Grundlagen der Stosswellentherapie 4
1.3 Indikationen zur ESWT .. 7
1.4 Wirkungsmechanismus .. 7
 1.4.1 Wirkungen am Knochen 7
 1.4.2 Scher- und Zugkräfte 7
 1.4.3 Kavitationsblasen .. 8
 1.4.4 Jet-Streams .. 8
 1.4.5 Gate-Control .. 8
1.5 Osteodensitometrie ... 9

2 Fragestellung

3 Patienten, Material und Methoden

3.1 Patienten .. 12
 3.1.1 Therapiecompliance 13
3.2 Material ... 13
3.3 Methode ... 16
3.4 Statistik ... 18

4 Ergebnisse

4.1 Verteilung der Messwerte 19
4.2 Epidemiologische Daten der Studienteilnehmer 21
4.3 Ergebnisse der Osteodensitometrischen Untersuchung 23
 4.3.1 Nebenzielregionen 23
 4.3.2 Hauptzielkriterien 32
Inhaltsverzeichnis

4.4 Nebenwirkungen .. 35

5 Diskussion ... 36

6 Zusammenfassung ... 43

Literaturverzeichnis .. 44

A Anhang ... I

Danksagung ... VIII

Lebenslauf ... IX
Abbildungsverzeichnis

1.1 Schematische Darstellung einer Stosswelle ... 4
1.2 Schematische Darstellung der Elektrohydraulischen Stoswellenerzeugung ... 5
1.3 Schematische Darstellung der Piezoelektrischen Stoswellenerzeugung 6
1.4 Schematische Darstellung der Elektromagnetischen Stoswellenerzeugung ... 6
1.5 DEXA Lunar Prodigy Osteodensitometer .. 9
3.1 Lithotripter Epos Fluoro (Dornier Med. Tech.) ... 13
3.2 Messstrahleinrichtungen, schematisch: a) Punktstrahl- und Fächerstrahlvorrichtung; b) kombinierte Messstrahleinrichtung ... 16
3.3 Messfläche des Kalkaneus, Region of Interest (ROI) = 2cm², standardisiert ... 17
3.4 Allgemeiner Aufbau eines Boxplots .. 18
4.1 Q-Q-Diagramm, BMD-Gesamt (Baseline) .. 19
4.2 Q-Q-Diagramm, BMD-Gesamt (6 Wochen) ... 20
4.3 Q-Q-Diagramm, BMD-Gesamt (12 Wochen) ... 20
4.4 BMI der untersuchten Patientengruppe ... 22
4.5 Seitenverteilung des Fersenspornes nach Geschlecht 22
4.6 Verlauf der Knochendichte, Schädel ... 24
4.7 Verlauf der Knochendichte, Arme ... 25
4.8 Verlauf der Knochendichte, Beine ... 26
4.9 Verlauf der Knochendichte, Rumpf ... 27
4.10 Verlauf der Knochendichte, Rippen .. 28
4.11 Verlauf der Knochendichte, Becken .. 29
4.12 Verlauf der Knochendichte, Wirbelsäule ... 30
4.13 Verlauf der Knochendichte, Gesamt .. 31
4.14 Knochendichte des Kalkaneus, Kontrollgruppe und ESWT Gruppe 32
4.15 Differenzwerte: BMD Kalkaneus 6 Wochen vs. Baseline (links) und 12 Wochen vs. Baseline (rechts) ... 33
4.16 Knochenmineralgehalt des Kalkaneus, Kontrollgruppe und ESWT Gruppe 34
4.17 Differenzwerte: BMC Kalkaneus 6 Wochen vs. Baseline (links) und 12 Wochen vs. Baseline (rechts) 35
Tabellenverzeichnis

3.1 Ein- und Ausschlusskriterien ... 12
3.2 Gerätespezifische Parameter Lithotrpirter EPOS FLUORO 14
3.3 Gerätespezifische Parameter Lunar Prodigy 15

4.1 Epidemiologische Daten zur Baseline 21
4.2 Mittelwerte (± Standardabweichung) der Knochendichte i.B. der Nebenzielregionen zu allen 3 Messzeitpunkten 23

A.1 Messdaten zur Baseline, Pat. 1-20 II
A.2 Messdaten zur Baseline, Pat. 21-36 III
A.3 Messdaten 6 Wochen nach Therapie, Pat. 1-20 IV
A.4 Messdaten 6 Wochen nach Therapie, Pat. 21-36 V
A.5 Messdaten 12 Wochen nach Therapie, Pat. 1-20 VI
A.6 Messdaten 12 Wochen nach Therapie, Pat. 21-36 VII
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ap-WS</td>
<td>Anterior-Posterior Wirbelsäule</td>
</tr>
<tr>
<td>BMC</td>
<td>Bone Mineral Concentration</td>
</tr>
<tr>
<td>BMD</td>
<td>Bone Mineral Density</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>BMP</td>
<td>Bone Morphogenic Protein</td>
</tr>
<tr>
<td>DEXA</td>
<td>Dual-Energy-X-ray-Absorptiometry</td>
</tr>
<tr>
<td>DPA</td>
<td>Dual-Energy-Photon-Absorptiometry</td>
</tr>
<tr>
<td>ESWT</td>
<td>Extrakorporale Stosswellentherapie</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full-Width-Half-Maximum</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-aktivierte Proteinase</td>
</tr>
<tr>
<td>p38</td>
<td>Protein 38</td>
</tr>
<tr>
<td>QUS</td>
<td>Quantitative Ultraschalluntersuchung</td>
</tr>
<tr>
<td>QQ-Plot</td>
<td>Quantil-Quantil Diagramm</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of Interest</td>
</tr>
<tr>
<td>SEPA</td>
<td>Single-Energy-Photon-Absorptiometry</td>
</tr>
<tr>
<td>SPPS</td>
<td>kommerzielles Statistikprogramm</td>
</tr>
<tr>
<td>TGF-β1</td>
<td>Transforming Growth Factor Beta 1</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Allgemein

Nachdem die Stosswellentherapie schon in der Harnsteintherapie große Erfolge erzielte, wurde sie auch in anderen Anwendungsgebieten erprobt. Man konnte einen analgetischen Effekt nachweisen, der der Fersensporntherapie zu Nutze kommt. Mit der Extrakorporalen Stosswellentherapie (ESWT) wurde eine neue therapeutische Option gefunden, die bei therapieresistentem Fersensporn als letzte Möglichkeit vor einer Operation eingesetzt wird. Hierzu wird der Fuß so auf dem Therapiekopf fixiert, dass die Stosswellen entweder von lateral, plantar oder von medial auf den Sporn treffen. Das Übertragungsmedium ist von einer Kunststoffmembran umgeben, die mit Hilfe eines Kontaktgels (hier herkömmliches Ultraschallgel) ein verlustarmes Ankoppeln am Patienten ermöglicht. Ende der 80er Jahre wurde erkannt, dass Stosswellen Auswirkungen auf den Knochenstoffwechsel haben. Haupt bemerkte bei seinen Nie-
1.2 Grundlagen der Stoswellentherapie

Positiver Spitzendruck (P_+): P_+ ist definiert als die Differenz zwischen dem maximalen positiven Spitzendruck der Stosswelle und dem Umgebungsdruck. P_+ erreicht je nach Gerätetyp Werte zwischen 5 Megapascal (MPa) und 120 MPa.
Negativer Spitzendruck (P\(_{-}\)): \(P_\) ist definiert als der maximale negative Spitzendruck während der zweiten Phase der Stosswelle. \(P_\) erreicht Werte zwischen 10% und 20% von \(P_+\).

Anstiegszeit (T\(_r\)): \(T_r\) ist definiert als das Intervall, in dem der Druck von 10% von \(P_+\) auf 90% von \(P_+\) ansteigt. \(T_r\) kann je nach Gerätetyp Werte von wenigen Nanosekunden (ns) bis hin zu Millisekunden (ms) annehmen.

Pulsbreite (T\(_w\)): \(T_w\) ist definiert als das Zeitintervall zwischen dem Zeitpunkt, bei dem der Druck erstmals 50% von \(P_+\) übersteigt und dem Zeitpunkt, bei dem der Druck (während des exponentiellen Druckabfalls innerhalb der ersten Phase der Stosswelle) weniger als 50% von \(P_+\) beträgt. Die Dauer von \(T_w\) beträgt zwischen 200 ns und 500 ns. Für \(T_w\) wird synonym auch der Begriff “full-width-half-maximum” (FWHM) verwendet. Die Dauer von \(T_w\) beeinflusst direkt die Energieflussdichte extrakorporaler Stosswellen (Gerdesmeyer, 2004).

Um diese Wellen zu erzeugen, werden in der Extrakorporalen Stoswellentherapie verschiedene Verfahren angewandt:

Das **Elektrohydraulische**, oder auch **Elektropneumatische** System (siehe Abbildung 1.2) ist das älteste und beruht auf der Funkenexplosion einer Zündkerze (Spark Gap) innerhalb eines ellipsoidförmigen Reflektors. Die hohen Temperaturen durch die Funkenentladung führen zum Verdampfen der umgebenden Flüssigkeit, sodass eine Plasmablase entsteht. Der divergierende Druckimpuls wird, während er sich durch eine umgebende Flüssigkeit ausbreitet, mit Hilfe eines Parabolkollektors reflektiert und so im akustischen Fokus zentriert. Dieses Verfahren hat den Nachteil der Kurzlebigkeit der benötigten Zündkerzen, die ersetzt werden müssen (Bailey et al., 1999).

Abbildung 1.2: Schematische Darstellung der Elektrohydraulischen Stosswellenerzeugung
Beim **Piezoelektrischen** (siehe Abbildung 1.3) Verfahren werden Druckwellen durch Bestromung piezoelektrischer Quarzkristalle erzeugt, die in einem elektrischen Wechselfeld schwingen. Die einzelnen Piezokristalle, in einer Halbschale ausgelegt, emittieren je einen kleinen Druckpuls. Diese einzelnen gepulsten Druckwellen werden als Schallfront wie zuvor mit Hilfe dieser als Kollektor dienenden Halbschale in einem Fokus gebündelt (Tavakkoli et al., 1997).

Abbildung 1.3: Schematische Darstellung der Piezoelektrischen Stosswellenerzeugung

Das in dieser Studie verwendete **Elektromagnetische** System (Schematische Darstellung siehe Abbildung 1.3) beruht auf der explosionsartigen elektrischen Auslenkung einer Metallmembran und Fokussierung durch eine akustische Linse. Es werden mittels einer Flachspule Wirbelströme in einer dünnen Kupferfolie induziert, sodass die explosionsartige Auslenkung eine anliegende Wassersäule spannungsproportional beschleunigt.

Abbildung 1.4: Schematische Darstellung der Elektromagnetischen Stosswellenerzeugung
1.3 Indikationen zur ESWT

Die ESWT am Bewegungsapparat hat heute im Wesentlichen vier Einsatzgebiete: Epicondylopathia humeri lateralis, Ansatztendopathien an der Schulter und Tendinosis Calcarea, Fersensporn und Pseudarthrosen (Gerdesmeyer et al., 2003; Meier et al., 2000; Rompe et al., 1996). Seit kurzem wird die ESWT auch bei aseptischen Hüftkopfnekrosen eingesetzt. Einen spezifischen Wirksamkeitsmechanismus gibt es bislang nur für die Tendinosis calcarea der Schulter (Gerdesmeyer et al., 2003). Bei den anderen Indikationen sind die Ergebnisse zum Teil widersprüchlich, so dass hier ein Wirksamkeitsnachweis noch aussteht.

1.4 Wirkungsmechanismus

1.4.1 Wirkungen am Knochen

Der osteogenetische Effekt der ESWT ist bislang nur im Tiermodell nachgewiesen worden. Ob diese osteogenetische Wirkung allerdings auf die Absplitterung kleiner Knochenfragmente bzw. Trabekelfrakturen zurückzuführen ist, die eine erneute Gefäß einsprossung im Sinne einer Frakturheilung und somit verbesserten Sauerstoffgehalt induzieren, ist bis heute nicht geklärt (Delius et al., 1995; Vogel et al., 1997). Neuere Studien bestätigen die Induktion von Neovaskularisation mittels Anstieg von angiogenetischen Faktoren sowie den Anstieg von Knochenmarkszellen und die Entwicklung zu Knochenvorläuferzellen (Wang et al., 2003a, 2002b).

Da der frakturierte Knochen auf Stosswellen mit erhöhtem Umbau und Verdickung der Kortikalis reagiert (Delius et al., 1995), könnte es möglich sein, dass auch gesunder Knochen von Stosswellen derart beeinflusst wird. Klinisch wird der osteogenetische Effekt bereits genutzt. Im Rahmen der Pseudarthrosenbehandlung mit ESWT wurden bereits einige gute klinische Ergebnisse publiziert (Beutler et al., 1999). Trotz dieser Studien ist bis heute nicht nachgewiesen, ob sich der Frakturverlauf durch die ESWT positiv beeinflussen lässt (Vogel et al., 1997).

1.4.2 Scher- und Zugkräfte

Beim Auftreffen von Stosswellen auf Gewebe mit unterschiedlicher Impedanz kommt es zur asymmetrischen Auslenkung und Partialreflektion der Stosswelle. In Folge die-
ser impedanzabhängigen Effekte entstehen starke locale Druckgradienten und daraus resultierend starke Zug- und Scherkräfte (Brendel, 1981; Schaden, 2000).

1.4.3 Kavitationsblasen

1.4.4 Jet-Streams

1.4.5 Gate-Control

1.5 Osteodensitometrie

Abbildung 1.5: DEXA Lunar Prodigy Osteodensitometer

Knochen durch verschiedene lange Weichteilstrecken hindurch messen lassen. Als Energiequelle wird hier die \(\gamma \)-Strahlung von \(^{153}\text{Gadolinium} \) verwendet. Bei der Weiterentwicklung der DPA, der Zwei-Energien-Röntgenabsorptiometrie (DEXA) wurde seit 1988 die Isotopenquelle durch eine konstante Röntgenquelle ersetzt. Durch die so erreichte höhere Photonendichte erhöht sich die Auflösung der Bilder, wodurch man eine bessere Detailerkennung erzielt. Die Strahlenexposition des Patienten wird auf weniger als 0,1\% der natürlichen Strahlendosis pro Jahr verringert. Auch die zeitlich begrenzte Aktivität der Kernstrahlenquelle sowie der radioaktive Abfall, der bei DPA anfällt, wird vermieden. Mit der guten Reproduzierbarkeit dieser Methode hat man ein langlebiges, billiges und genaues Messinstrument besonders für Verlaufskontrollen von Osteoporosepatienten gefunden.

2 Fragestellung

3 Patienten, Material und Methoden

3.1 Patienten

Tabelle 3.1: Ein- und Ausschlusskriterien

<table>
<thead>
<tr>
<th>Einschlusskriterien</th>
<th>Ausschlusskriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anamnese länger als 6 Monate</td>
<td>Alter unter 18 Jahre</td>
</tr>
<tr>
<td>Erfolglose konservative Therapie</td>
<td>Dysfunktion im Sprunggelenk und Fußbereich</td>
</tr>
<tr>
<td>Klinisch relevanter Fersenspornschmerz</td>
<td>Lokale Arthrose/Arthritis; rheumatoide Arthritis</td>
</tr>
<tr>
<td></td>
<td>Pathologische neurologische und/oder vaskuläre Befunde</td>
</tr>
<tr>
<td></td>
<td>Tarsaltunnelsyndrom</td>
</tr>
<tr>
<td></td>
<td>Schwangerschaft</td>
</tr>
<tr>
<td></td>
<td>Gerinnungsstörungen</td>
</tr>
<tr>
<td></td>
<td>Infektionen</td>
</tr>
<tr>
<td></td>
<td>Tumorleiden</td>
</tr>
<tr>
<td></td>
<td>Vorangegangene Kortisoninjektion</td>
</tr>
</tbody>
</table>
3.1.1 Therapiecompliance

3.2 Material

Lithotripter

Abbildung 3.1: Lithotripter Epos Fluoro (Dornier Med. Tech.)
3 Patienten, Material und Methoden

Tabelle 3.2: Gerätespezifische Parameter Lithotripter EPOS FLUORO der Fa. Dornier
(Quelle: Webseite der DIGEST, www.DIGEST-ev.de)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P+</td>
<td>Mpa</td>
<td>6,7</td>
<td>21</td>
<td>52</td>
<td></td>
</tr>
</tbody>
</table>

-6dB Fokalausdehnung:

fx(-6dB)	mm	15	7,8	5,7
fy(-6dB)	mm	15	7,8	5,7
fz(-6dB)	mm	103	83	62

5 MPa Fokalausdehnung, lateral:

| fx(5MPa) | mm | 6 | 14 | 28 |
| fy(5MPa) | mm | 6 | 14 | 28 |

pos. Energieflussdichte:

| ED+ | mJ/mm² | 0,02 | 0,1 | 0,5 |

Gesamtenergieflussdichte:

| ED | mJ/mm² | 0,03 | 0,15 | 0,72 |

pos. Energie im -6 dB Fokus:

| E+(-6dB) | mJ | 2,2 | 3,7 | 9,5 |

Gesamtenergie im -6 dB Fokus:

| E(-6dB) | mJ | 3,7 | 5,5 | 13,5 |

pos. Energie im 5 MPa Fokus:

| E+(5MPa) | mJ | 0,2 | 9 | 61 |

Gesamtenergie im 5 MPa Fokus:

| E(5MPa) | mJ | 0,3 | 16 | 105 |

pos. Energie im 5 mm Fokus:

| E+(5mm) | mJ | 0,3 | 2 | 10 |

Gesamtenergie im 5 mm Fokus:

| E(5mm) | mJ | 0,4 | 3 | 13,5 |

Osteodensitometriemesseinheit

In unserer Studie wurden die Messungen mit einem Lunar Prodigy® (Madison, Wisconsin, vgl. Abbildung 1.5) durchgeführt. Dies ist ein Gerät, welches nach dem DEXA Prinzip misst.

Gemäß Herstelleranweisung wurden regelmäßige Konstanzprüfungen durchgeführt, sodass ein exaktes und reproduzierbares Ergebnis erreicht werden kann. Der Patient wurde zunächst in posterior-anteriorem Strahlengang, mit nach Innen rotierter Hüfte einer Ganzkörpermessung sowie einer Knochendichtemessung der Lendenwirbelsäule und der Trochanter majores unterzogen, danach erfolgte die Knochendichtemessung der Kalkanei rechts und links. Die Röntgenquelle befindet sich in der Messliege, die Strahlungsabschwächung wird im Gerätearm über dem Patienten ge-
messen. Die genauen Parameter des Geräts sind in Tabelle 3.3 aufgelistet.

Das Lunar Prodigy Osteodensitometer ist mit einer Kombination aus den herkömmlichen Messstrahlvorrichtungen – Punkstrahl und Fächerstrahl (siehe Abbildung 3.2) – ausgestattet. Der Punktstrahl hat eine hohe Präzision, ist aber sehr langsam, sodass die Messungen lange dauern und damit die Patientencompliance sinkt. Der Fächerstrahl hat umgekehrt eine hohe Geschwindigkeit, wobei die einzelnen Messeinheiten aber größer werden und so die Präzision gemindert wird. Mit dem kombinierten Messverfahren kann sich das Gerät nach jeder gemessenen Ebene neu kalibrieren und so eine hohe Präzision trotz kurzer Messzeit aufrechterhalten.

Tabelle 3.3: Gerätespezifische Parameter Lunar Prodigy

<table>
<thead>
<tr>
<th>Modus (76 kV)</th>
<th>Strom (mA)</th>
<th>Messbereich (cm×cm)</th>
<th>Bestrahlungszeiten (sec)</th>
<th>Hauteintrittsdosis (µSv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP-WS Dick >25cm</td>
<td>3</td>
<td>15,1×12</td>
<td>55</td>
<td>83</td>
</tr>
<tr>
<td>AP-WS Standard 13-25 cm</td>
<td>3</td>
<td>15,1×12</td>
<td>29</td>
<td>37</td>
</tr>
<tr>
<td>AP-WS Dünn <13 cm</td>
<td>0,75</td>
<td>15,1×12</td>
<td>29</td>
<td>9</td>
</tr>
<tr>
<td>Femur Dick</td>
<td>3</td>
<td>15,1×12</td>
<td>55</td>
<td>83</td>
</tr>
<tr>
<td>Femur Standard</td>
<td>3</td>
<td>15,1×12</td>
<td>29</td>
<td>37</td>
</tr>
<tr>
<td>Femur Dünn</td>
<td>0,75</td>
<td>15,1×12</td>
<td>29</td>
<td>9</td>
</tr>
<tr>
<td>DualFemur Dick</td>
<td>3</td>
<td>2×15,1×12</td>
<td>111</td>
<td>83</td>
</tr>
<tr>
<td>DualFemur Standard</td>
<td>3</td>
<td>2×15,1×12</td>
<td>58</td>
<td>37</td>
</tr>
<tr>
<td>DualFemur Dünn</td>
<td>0,75</td>
<td>2×15,1×12</td>
<td>58</td>
<td>9</td>
</tr>
<tr>
<td>Unterarm Standard</td>
<td>0,15</td>
<td>13,4×10,0</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>Ganzkörper Standard</td>
<td>0,15</td>
<td>150,8×60</td>
<td>294</td>
<td>0,4</td>
</tr>
<tr>
<td>Ganzkörper Dünn</td>
<td>0,15</td>
<td>150,8×60</td>
<td>294</td>
<td>0,4</td>
</tr>
</tbody>
</table>
Abbildung 3.2: Messstrahleinrichtungen, schematisch: a) Punktstrahl- und Fächerstrahlvorrichtung; b) kombinierte Messstrahleinrichtung

3.3 Methode

Abbildung 3.3: Messfläche des Kalkaneus, Region of Interest (ROI) = 2cm², standardisiert
3.4 Statistik

Abbildung 3.4: Allgemeiner Aufbau eines Boxplots
4 Ergebnisse

4.1 Verteilung der Messwerte

Die erhobenen Daten wurden auf Normalverteilung hin untersucht. Die Abbildungen 4.1 bis 4.3 zeigen exemplarisch die Q-Q-Diagramme der Gesamt Knochendichte vor der Therapie (Abb. 4.1) und nach 6 (Abb. 4.2) bzw. 12 (Abb. 4.3) Wochen. Die Streuung liegt um eine schräge Achse, sodass eine Normalverteilung angenommen werden kann. Da die Achsen etwa die gleiche Steigung aufweisen, sind die Untersuchungswerte miteinander vergleichbar und der gepaarte T-Test kann zur Beurteilung der Signifikanz herangezogen werden.

Abbildung 4.1: Q-Q-Diagramm, BMD-Gesamt (Baseline)
Abbildung 4.2: Q-Q-Diagramm, BMD-Gesamt (6 Wochen)

Abbildung 4.3: Q-Q-Diagramm, BMD-Gesamt (12 Wochen)
4.2 Epidemiologische Daten der Studienteilnehmer

Die Kenndaten der untersuchten Population bezüglich Alter, Geschlecht, Größe, Gewicht und Fersenspornseite sind in Tabelle 4.1 zusammengestellt.

Das Alter der Teilnehmer betrug zu Studienbeginn durchschnittlich 53 Jahre (28,6-80,1 Jahre). Die mittlere Größe betrug 170,4 cm (150-193 cm). Das Durchschnittsgewicht lag bei 80,7 kg (50,5-117 kg). Daraus ergibt sich ein medianer BMI von 27,5 (Frauen: 27,0; Männer 28,0) bei einem Mittelwert von 27,28 (Frauen: 27,32; Männer: 27,18). Bei den Frauen lagen die Werte zwischen 20,0 und 34,0; bei den Männern zwischen 23,0 und 32,0. Die Messergebnisse wurden in Abbildung 4.4 in Form von Boxplots zusammengestellt. Im 12-wöchigen Nachbeobachtungszeitraum kam es zu keinen signifikanten Änderungen von Größe und Gewicht der Studienteilnehmer.

<table>
<thead>
<tr>
<th>Epidemiologische Daten</th>
<th>Wert (\pm Standardabweichung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht</td>
<td>F: 33</td>
</tr>
<tr>
<td></td>
<td>M: 12</td>
</tr>
<tr>
<td>Seite</td>
<td>Rechts: 27</td>
</tr>
<tr>
<td></td>
<td>Links: 18</td>
</tr>
<tr>
<td>Alter [Jahre]</td>
<td>53,9 (\pm 26)</td>
</tr>
<tr>
<td>Größe [Meter]</td>
<td>168,0 (\pm 25)</td>
</tr>
<tr>
<td>Gewicht [Kilogramm]</td>
<td>81,0 (\pm 31)</td>
</tr>
</tbody>
</table>

Der Fersensporn befand sich bei den Teilnehmerinnen zu 69% rechts (18 rechts zu 8 links) und bei den Teilnehmern zu 40% rechts (4 rechts zu 6 links), insgesamt 61%, womit sich ein deutliches Überwiegen der rechten Seite zeigte (siehe Abbildung 4.5). Bei allen Patienten war der Fersensporn radiologisch nachweisbar.
Abbildung 4.4: BMI der untersuchten Patientengruppe

Abbildung 4.5: Seitenverteilung des Fersenspornes nach Geschlecht
4.3 Ergebnisse der Osteodensitometrischen Untersuchung

4.3.1 Nebenzielregionen

Tabelle 4.2: Mittelwerte (± Standardabweichung) der Knochendichte i.B. der Nebenzielregionen zu allen 3 Messzeitpunkten

<table>
<thead>
<tr>
<th>Region</th>
<th>Baseline</th>
<th>6 Wochen</th>
<th>12 Wochen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kopf [g/cm²]</td>
<td>2,12 (± 0,23)</td>
<td>2,09 (± 0,24)</td>
<td>2,09 (± 0,24)</td>
</tr>
<tr>
<td>Arme [g/cm²]</td>
<td>0,88 (± 0,16)</td>
<td>0,88 (± 0,10)</td>
<td>0,88 (± 0,10)</td>
</tr>
<tr>
<td>Trochanter [g/cm²]</td>
<td>1,29 (± 0,17)</td>
<td>1,28 (± 0,17)</td>
<td>1,29 (± 0,17)</td>
</tr>
<tr>
<td>Rumpf [g/cm²]</td>
<td>0,92 (± 0,08)</td>
<td>0,95 (± 0,09)</td>
<td>0,94 (± 0,10)</td>
</tr>
<tr>
<td>Rippen [g/cm²]</td>
<td>0,67 (± 0,67)</td>
<td>0,70 (± 0,20)</td>
<td>0,66 (± 0,07)</td>
</tr>
<tr>
<td>Becken [g/cm²]</td>
<td>1,11 (± 0,13)</td>
<td>1,15 (± 0,13)</td>
<td>1,15 (± 0,13)</td>
</tr>
<tr>
<td>LWK 5/ Wirbelsäule [g/cm²]</td>
<td>1,07 (± 0,12)</td>
<td>1,11 (± 0,13)</td>
<td>1,09 (± 0,23)</td>
</tr>
<tr>
<td>Gesamt [g/cm²]</td>
<td>1,17 (± 0,11)</td>
<td>1,17 (± 0,10)</td>
<td>1,17 (± 0,11)</td>
</tr>
</tbody>
</table>
BMD Schädel

Die mittlere BMD des Schädels betrug zur Baseline 2,10 g/cm² (± 0,24). Die Werte lagen zwischen 1,53 g/cm² und 2,41 g/cm². Der Median war 2,11 g/cm². Sechs Wochen nach letzter ESWT konnten Werte zwischen 1,53 g/cm² und 2,47 g/cm² (Mittelwert: 2,09 g/cm²; Median: 2,14 g/cm²; Standardabweichung: 0,24) gemessen werden. Nach weiteren 6 Wochen (12 Wochen nach letzter ESWT) betrug die BMD des Schädels im Mittel 2,09 g/cm² (± 0,24), die Werte lagen zwischen 1,50 g/cm² und 2,47 g/cm². Der Median war 2,13 g/cm². Es konnten keine signifikanten Unterschiede festgestellt werden. Abbildung 4.6 illustriert den Verlauf der Messdaten.

![BMD Schädel diagram](image-url)
BMD Arme

Die mittlere BMD der Arme betrug zur Baseline 0,87 g/cm² (± 0,16). Der Median war 0,88 g/cm². Die Werte lagen zwischen 0,19 g/cm² und 1,15 g/cm². Sechs Wochen nach letzter ESWT wurde ein mittlerer Wert von 0,88 g/cm² (± 0,10) gemessen (Median 0,89 g/cm²; Minimum: 0,65 g/cm²; Maximum: 1,08 g/cm²), nach weiteren sechs Wochen ein mittlerer Wert von 0,88 g/cm² (± 0,10). Der Median lag bei 0,88 g/cm², die Standardabweichung bei 0,10, die Werte lagen zwischen 0,65 g/cm² und 1,08 g/cm². Auch hier zeigte sich kein signifikanter Unterschied (Siehe Abbildung 4.7).

![Boxplot von BMD Arme](image)

Abbildung 4.7: Verlauf der Knochendichte, Arme
BMD Beine

Bei den Beinen betrug die mittlere BMD zur Baseline 1,28 g/cm² (± 0,17). Der Median war 1,29 g/cm², das Minimum 0,94 g/cm² und das Maximum 1,67 g/cm²). Nach sechs Wochen war der Mittelwert 1,29 g/cm² (± 0,17), der Median 1,30 g/cm² (Minimum: 0,90 g/cm²; Maximum: 1,73 g/cm². Zwölf Wochen nach letzter ESWT war der Mittelwert 1,29 g/cm² (± 0,17), der Median 1,29 g/cm², das Minimum 0,92 g/cm², das Maximum 1,65 g/cm². Abbildung 4.8 fasst die Messwerte zu allen 3 Zeitpunkten in Boxplots zusammen. Es zeigt sich wie bei den anderen Regionen kein signifikanter Unterschied.

Abbildung 4.8: Verlauf der Knochendichte, Beine
BMD Rumpf

Zur Baseline war die mittlere BMD des Rumpfes 0,95 g/cm² (± 0,08). Der Median war 0,96 g/cm² (Minimum: 0,73 g/cm²; Maximum 1,08 g/cm²). Sechs Wochen nach letzter ESWT betrug der Mittelwert 0,95 g/cm² (± 0,09), der Median 0,95 g/cm², das Minimum 0,72 g/cm² und das Maximum 1,12 g/cm². Nach weiteren sechs Wochen war der Mittelwert 0,94 g/cm² (± 0,10), der Median 0,95 g/cm². Die Werte lagen zwischen 0,70 g/cm² und 1,12 g/cm². Somit besteht kein signifikanter Unterschied (Siehe Abbildung 4.9).

![Abbildung 4.9: Verlauf der Knochendichte, Rumpf](image-url)
BMD Rippen

Bei den Rippen betrug die mittlere BMD zur Baseline 0,66 g/cm² (± 0,07), der Median war 0,67 g/cm², die Werte lagen zwischen 0,50 g/cm² und 0,75 g/cm². Nach sechs Wochen war der Mittelwert 0,69 g/cm² (± 0,20), der Median 0,67 g/cm², das Minimum 0,49 g/cm² und das Maximum 1,74 g/cm². Zwölf Wochen nach letzter ESWT war die mittlere BMD 0,66 g/cm² (± 0,07) der Median 0,66 g/cm², das Minimum 0,50 g/cm² und das Maximum 0,76 g/cm². Es bestehen somit auch hier keine signifikanten Unterschiede (Siehe Abbildung 4.10).

Abbildung 4.10: Verlauf der Knochendichte, Rippen
BMD Becken

Zum Zeitpunkt der Baseline war die mittlere BMD des Beckens 1,15 g/cm² (± 0,13). Der Median lag bei 1,16 g/cm², die Werte lagen zwischen 0,82 g/cm² und 1,48 g/cm². Nach sechs Wochen lag sie zwischen 0,82 g/cm² und 1,43 g/cm², im Mittel bei 1,15 g/cm² (± 0,13). Der Median war 1,14 g/cm². Nach weiteren sechs Wochen lag die mittlere BMD bei 1,15 g/cm² (± 0,13). Der Median war 1,16 g/cm², das Minimum 0,83 g/cm² und das Maximum 1,43 g/cm². Wie bei den anderen Regionen konnte man keinen signifikanten Unterschied feststellen (Siehe Abbildung 4.11).

Abbildung 4.11: Verlauf der Knochendichte, Becken
BMD Wirbelsäule

Zur Baseline lag die mittlere BMD der Wirbelsäule bei 1,10 g/cm² (± 0,14). Die Werte lagen im Median bei 1,14 g/cm², zwischen 0,84 g/cm² und 1,27 g/cm². Sechs Wochen nach letzter ESWT war der Mittelwert 1,11 g/cm² (± 0,13), der Median 1,12 g/cm², das Minimum 0,85 g/cm² und das Maximum 1,35 g/cm². Nach weiteren sechs Wochen war der Mittelwert 1,09 g/cm² (± 0,13) der Median 1,14 g/cm², das Minimum 0,76 g/cm² und das Maximum 1,30 g/cm². Auch hier ist keine Signifikanz in den Unterschieden zu erkennen (Siehe Abbildung 4.12).

Abbildung 4.12: Verlauf der Knochendichte, Wirbelsäule
BMD Gesamt

In der Gesamtheit der Regionen lässt sich zum Zeitpunkt der Baseline eine mittlere BMD von 1,17 g/cm² (± 0,11) feststellen. Der Median war 1,18 g/cm², die Werte lagen zwischen 0,88 g/cm² und 1,35 g/cm². Sechs Wochen nach letzter ESWT war der Mittelwert 1,17 g/cm² (± 0,10), der Median 1,18 g/cm², das Minimum 0,87 g/cm² und das Maximum 1,36 g/cm². Zwölf Wochen nach letzter ESWT lagen die Werte zwischen 0,88 g/cm² und 1,33 g/cm² im Mittel bei 1,17 g/cm² (± 0,11). Der Median war 1,18 g/cm². Es zeigt sich auch hier kein signifikanter Unterschied (Siehe Abbildung 4.13).

Abbildung 4.13: Verlauf der Knochendichte, Gesamt
4.3.2 Hauptzielkriterien

BMD

In Abbildung 4.14 sind die Mittelwerte der Knochendichte für Kontrollgruppe und ESWT-Gruppe im Zeitverlauf aufgetragen. Die BMD-Werte zur Baseline betrugen in der ESWT-Gruppe durchschnittlich 0,50 g/cm² (± 0,10), der Median lag bei 0,48 g/cm², das Minimum 0,30 g/cm² und das Maximum 0,69 g/cm². In der Kontrollgruppe war der Mittelwert 0,54 g/cm² (± 0,10), der Median 0,52 g/cm², die Werte lagen zwischen 0,36 g/cm² und 0,75 g/cm². 6 Wochen nach der zweiten ESWT lag die BMD in der ESWT Gruppe bei durchschnittlich 0,53 g/cm² (± 0,10), der Median bei 0,51 g/cm², das Minimum 0,34 g/cm² und das Maximum bei 0,75 g/cm². In der Kontrollgruppe war der Mittelwert 0,53 g/cm² (± 0,09), der Median 0,51 g/cm², das Minimum 0,35 g/cm² und das Maximum 0,71 g/cm². Nach weiteren 6 Wochen, also 12 Woche nach letzter ESWT wurden folgende Werte festgestellt: Mittelwert: 0,56 g/cm² (± 0,10), Median: 0,55 g/cm², Minimum: 0,35 g/cm² und Maximum: 0,75 g/cm² in der Therapiegruppe und Mittelwert: 0,52 g/cm² (± 0,09), Median: 0,51 g/cm², Minimum: 0,34 g/cm², Maximum: 0,71 g/cm² in der Kontrollgruppe. Es zeigt sich, dass der BMD-Anstieg auf der behandelten Seite nach 12 Wochen mit p<0,0001 hochsignifikant ist.
BMD-Differenz zur Baseline

Abbildung 4.15 illustriert die Differenzen der Knochendichtewerte nach 6 bzw. 12 Wochen zum Wert bei Therapiebeginn (Baseline). Die Differenz zur Baseline beträgt nach den ersten 6 Wochen nach Therapie auf der ESWT-Seite im Mittel 0,03 g/cm² (± 0,03), der Median war 0,02 g/cm², das Minimum -0,04 g/cm² und das Maximum 0,10 g/cm². Nach weiteren 6 Wochen war der Mittelwert 0,05 g/cm² (± 0,04), der Median 0,06 g/cm², die Werte lagen zwischen -0,06 g/cm² und 0,13 g/cm². In der Kontrollgruppe kann man im Mittel eine Reduktion um -0,01 g/cm² (± 0,03), Median -0,01, Minimum -0,09 g/cm², Maximum 0,03 g/cm² nach 6 Wochen und im Mittel um -0,02 g/cm² (± 0,04), Median -0,02 g/cm², Minimum -0,12 g/cm², Maximum 0,06 g/cm² nach 12 Wochen feststellen. Die Differenzen sind in der Therapiegruppe nach 12 Wochen mit p=0,001 signifikant.

Abbildung 4.15: Differenzwerte: BMD Kalkaneus 6 Wochen vs. Baseline (links) und 12 Wochen vs. Baseline (rechts)
RESULTATE

BMC

Die mittlere BMC der ESWT Seite ergab zur Baseline 2,03 g (± 0,38), der Median lag bei 2,00 g, die Werte lagen zwischen 1,30 g und 2,70 g. Der BMC der Kontrollgruppe lag bei 2,16 g (± 0,40), der Median bei 2,10 g, das Minimum bei 1,40 g und das Maximum bei 3,00 g. 6 Wochen nach letzter ESWT kam es bei der therapierten Seite zu einem mittleren Wert von 2,12 g (± 0,39), einem Median von 2,00 g, einem Minimum von 1,40 g und einem Maximum von 3,00 g. Bei der Kontrollseite lag der Mittelwert bei 2,14 g (± 0,37), der Median bei 2,10 g, das Minimum bei 1,40 g und das Maximum bei 2,90 g. Weitere 6 Wochen später, also 12 Wochen nach letzter ESWT war die mittlere BMC der Therapiegruppe bei 2,22 g (± 0,38), der Median bei 2,15 g, das Minimum bei 1,40 g und das Maximum bei 3,00 g und in der Kontrollgruppe bei 2,08 g (± 0,36). Hier lagen die Werte zwischen 1,30 g und 2,80 g, der Median war 2,00 g. Abbildung 4.16 illustriert die Mittelwerte der BMC beider Gruppen für alle 3 Messzeitpunkte. Die Werte der Therapiegruppe waren nach 12 Wochen bei jeder Messung mit p<0,0001 signifikant höher.

Abbildung 4.16: Knochenmineralgehalt des Kalkaneus, Kontrollgruppe und ESWT Gruppe
4 Ergebnisse

BMC-Differenz zur Baseline

Die mittlere Differenz der BMC lag auf der ESWT Seite nach 6 Wochen bei 0,09 g (± 0,12), der Median bei 0,10 g, das Minimum bei -0,50 g und das Maximum bei 0,30 g (Siehe Abbildung 4.17). Nach 12 Wochen lag der Mittelwert bei 0,19 g (± 0,17), der Median bei 0,20 g, die Werte lagen zwischen -0,20 g und 0,60 g. An der Kontrollseite konnte im Mittel eine Differenz von -0,02 g (± 0,16) mit Werte zwischen -0,40 g und 0,30 g und einem Median von 0,00 g nach 6 Wochen festgestellt werden und ein Mittel von -0,18 g (± 0,18), ein Median von 0,00 g, ein Minimum von -0,40 g und ein Maximum von 0,30 g nach 12 Wochen. Auch hier sind die Werte der Therapiegruppe mit p<0,0001 signifikant gestiegen. In der Kontrollgruppe war nach 12 Wochen eine signifikante Abnahme der BMC im Vergleich zum Ausgangswert nachweisbar (p= 0,005).

Abbildung 4.17: Differenzwerte: BMC Kalkaneus 6 Wochen vs. Baseline (links) und 12 Wochen vs. Baseline (rechts)

4.4 Nebenwirkungen

Es konnten keine klinisch relevanten Nebenwirkungen festgestellt werden. Die Patienten stellten nach der Stosswellentherapie eine auf wenige Tage begrenzte Schmerzsteigerung fest, sowie leichte Hämatome an der Applikationsstelle.
5 Diskussion

wodurch sie als mechanische Spitzenbelastung interpretiert werden können. Unter dem Einfluss hochenergetischer ESWT ist allerdings auch ein destruierender Mechanismus zu diskutieren, welcher über Mikrofrakturierung eine Gefäßinduktion und Kal-

Diskussion

5 Diskussion

Die Ergebnisse unserer Studie sind durch die kleine Fallzahl limitiert, so sind weitere Untersuchungen nötig, um die Ergebnisse zu verifizieren. Auch ist es jetzt noch schwer festzustellen, ob unsere Patienten als repräsentativ für das Patientengut weite-
6 Zusammenfassung

6 und 12 Wochen nach der Behandlung wurden die relevanten Parameter Knochenmineralgehalt (Bone Mineral Concentration, BMC) in Gramm und die Knochenmineraldichte (Bone Mineral Density, BMD) in g/cm\(^2\) als primäre Zielgrößen bestimmt. Nebenzielkriterien waren die Veränderungen von BMD und BMC im Schädel, Humerus (Arme), Trochanter major (Beine), Rumpf, Rippen, Becken und LWK 5 (Wirbelsäule). Die Knochendichte wurde nach der DEXA (Dual-Energy-X-ray-Absorptiometry) Methode bestimmt.

Die Ergebnisse zeigen, dass sich durch extrakorporale Stosswellen die Osteogenese auch an nicht pathologisch verändertem Knochen stimulieren lässt.

In wieweit dies klinische Relevanz hat, kann mit der vorliegenden Arbeit nicht beantwortet werden. Weitere Arbeiten werden zeigen müssen, ob eine Anwendung mittelenergetischer Stosswellen bei Vorliegen eines schwachen Knochenlagers, wie Osteoporose oder zur Verbesserung des Knochenlagers, wie z.B. im Rahmen der Implantation zementlos verankerter Implantate möglich und klinisch sinnvoll ist.
Literaturverzeichnis

and p38 kinase in shock wave-promoted bone formation of segmental defect in rats.

F. Crawford and M. Snaith. How effective is therapeutic ultrasound in the treatment of

H. W. Daniell. Osteoporosis of slender smoker. vertebral compression fractures and
loss of metacarpal cortex in relation to postmenopausal cigarette-smoking and lack

M. Delius, K. Draenert, Y. Aldiek, and Y. Draenert. Biological effects of shock-waves
in-vivo effect of high-energy pulses on rabbit bone. *Ultrasound Med Biol*, 21(9):

effects of shock-waves: lung hemorrhage by shock-waves in dogs – pressure

P. Diehl, J. Schauwecke, H. Gollwitzer, and L. Gerdesmeyer. Shock-wave treatment
of femoral head necrosis in adults.

M. H. H. Ensom, P. Y. Liu, and M. D. Stephenson. Effect of pregnancy on bone mineral

672–673, 1975.

L. Gerdesmeyer. *Extrakorporale Stosswellentherapie*, chapter Physikalische Grund-

L. Gerdesmeyer, S. Wagenpfeil, M. Haake, M. Maier, M. Loew, K. Wörtler, R. Lampe,
R. Seil, G. Handle, S. Gassel, and J. D. Rompe. Extracorporeal shock wave therapy
for the treatment of chronic calcifying tendinitis of the rotator cuff: a randomized

A Anhang
Tabelle A.1: Messdaten zur Baseline, Pat. 1-20

<table>
<thead>
<tr>
<th>Patient</th>
<th>Geschl.</th>
<th>FS Seite</th>
<th>Alter</th>
<th>Größe</th>
<th>Gewicht</th>
<th>Kopf</th>
<th>Arme</th>
<th>Beine</th>
<th>Rumpf</th>
<th>Rippen</th>
<th>Becken</th>
<th>WS</th>
<th>Gesamt re BMD</th>
<th>re BMC</th>
<th>ii BMD</th>
<th>ii BMC</th>
<th>ESWT BMD</th>
<th>Kontrollre BMD</th>
<th>Kontroll BMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>f</td>
<td>li</td>
<td>80,10</td>
<td>159,00</td>
<td>62,00</td>
<td>1,80</td>
<td>0,61</td>
<td>0,91</td>
<td>0,73</td>
<td>0,53</td>
<td>0,82</td>
<td>0,88</td>
<td>0,36</td>
<td>1,40</td>
<td>0,30</td>
<td>1,40</td>
<td>0,30</td>
<td>1,40</td>
<td>1,40</td>
</tr>
<tr>
<td>2</td>
<td>m</td>
<td>li</td>
<td>66,90</td>
<td>156,00</td>
<td>77,50</td>
<td>1,54</td>
<td>0,72</td>
<td>1,06</td>
<td>0,81</td>
<td>0,54</td>
<td>0,94</td>
<td>0,91</td>
<td>0,36</td>
<td>1,40</td>
<td>0,33</td>
<td>1,30</td>
<td>0,33</td>
<td>1,30</td>
<td>1,36</td>
</tr>
<tr>
<td>3</td>
<td>f</td>
<td>re</td>
<td>64,70</td>
<td>159,00</td>
<td>60,00</td>
<td>2,19</td>
<td>0,75</td>
<td>1,05</td>
<td>0,84</td>
<td>0,60</td>
<td>1,02</td>
<td>0,94</td>
<td>1,03</td>
<td>1,60</td>
<td>0,35</td>
<td>1,40</td>
<td>0,39</td>
<td>1,40</td>
<td>1,60</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>li</td>
<td>79,80</td>
<td>156,00</td>
<td>60,00</td>
<td>2,30</td>
<td>0,74</td>
<td>0,96</td>
<td>0,84</td>
<td>0,59</td>
<td>0,96</td>
<td>1,01</td>
<td>0,45</td>
<td>1,80</td>
<td>0,35</td>
<td>1,40</td>
<td>0,35</td>
<td>1,40</td>
<td>1,80</td>
</tr>
<tr>
<td>5</td>
<td>f</td>
<td>re</td>
<td>57,90</td>
<td>164,00</td>
<td>74,50</td>
<td>2,17</td>
<td>0,88</td>
<td>1,21</td>
<td>0,83</td>
<td>0,60</td>
<td>1,00</td>
<td>0,92</td>
<td>1,12</td>
<td>1,70</td>
<td>0,50</td>
<td>2,00</td>
<td>0,42</td>
<td>1,70</td>
<td>2,00</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>re</td>
<td>47,70</td>
<td>150,00</td>
<td>50,50</td>
<td>2,04</td>
<td>0,82</td>
<td>1,11</td>
<td>0,90</td>
<td>0,58</td>
<td>1,08</td>
<td>1,03</td>
<td>1,09</td>
<td>1,70</td>
<td>0,44</td>
<td>1,80</td>
<td>0,42</td>
<td>1,70</td>
<td>1,80</td>
</tr>
<tr>
<td>7</td>
<td>f</td>
<td>re</td>
<td>52,40</td>
<td>165,00</td>
<td>75,00</td>
<td>2,22</td>
<td>0,83</td>
<td>1,13</td>
<td>0,96</td>
<td>0,71</td>
<td>1,14</td>
<td>1,16</td>
<td>1,13</td>
<td>1,80</td>
<td>0,43</td>
<td>1,70</td>
<td>0,44</td>
<td>1,80</td>
<td>1,70</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>re</td>
<td>67,00</td>
<td>165,00</td>
<td>88,00</td>
<td>2,25</td>
<td>0,82</td>
<td>1,14</td>
<td>0,99</td>
<td>0,70</td>
<td>1,16</td>
<td>1,21</td>
<td>1,13</td>
<td>1,80</td>
<td>0,48</td>
<td>1,90</td>
<td>0,45</td>
<td>1,80</td>
<td>1,90</td>
</tr>
<tr>
<td>9</td>
<td>f</td>
<td>re</td>
<td>56,10</td>
<td>170,00</td>
<td>90,00</td>
<td>1,64</td>
<td>0,78</td>
<td>1,12</td>
<td>0,87</td>
<td>0,57</td>
<td>1,01</td>
<td>0,84</td>
<td>1,00</td>
<td>2,00</td>
<td>0,50</td>
<td>2,00</td>
<td>0,45</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>10</td>
<td>f</td>
<td>re</td>
<td>72,30</td>
<td>164,00</td>
<td>81,50</td>
<td>2,00</td>
<td>0,80</td>
<td>1,23</td>
<td>0,95</td>
<td>0,61</td>
<td>1,08</td>
<td>1,23</td>
<td>1,13</td>
<td>1,90</td>
<td>0,46</td>
<td>1,90</td>
<td>0,46</td>
<td>1,90</td>
<td>1,90</td>
</tr>
<tr>
<td>11</td>
<td>f</td>
<td>re</td>
<td>54,70</td>
<td>166,00</td>
<td>89,00</td>
<td>2,06</td>
<td>0,95</td>
<td>1,26</td>
<td>0,96</td>
<td>0,67</td>
<td>1,16</td>
<td>1,03</td>
<td>1,18</td>
<td>1,90</td>
<td>0,46</td>
<td>1,90</td>
<td>0,46</td>
<td>1,90</td>
<td>1,90</td>
</tr>
<tr>
<td>12</td>
<td>f</td>
<td>re</td>
<td>55,10</td>
<td>180,00</td>
<td>90,00</td>
<td>2,32</td>
<td>0,85</td>
<td>1,16</td>
<td>0,90</td>
<td>0,65</td>
<td>1,10</td>
<td>1,05</td>
<td>1,12</td>
<td>1,90</td>
<td>0,52</td>
<td>2,10</td>
<td>0,46</td>
<td>1,90</td>
<td>2,10</td>
</tr>
<tr>
<td>13</td>
<td>m</td>
<td>li</td>
<td>57,60</td>
<td>176,00</td>
<td>87,00</td>
<td>1,98</td>
<td>0,84</td>
<td>1,33</td>
<td>1,02</td>
<td>0,75</td>
<td>1,21</td>
<td>1,22</td>
<td>1,17</td>
<td>1,90</td>
<td>0,46</td>
<td>1,90</td>
<td>0,46</td>
<td>1,90</td>
<td>1,90</td>
</tr>
<tr>
<td>14</td>
<td>f</td>
<td>li</td>
<td>40,60</td>
<td>167,00</td>
<td>83,00</td>
<td>2,36</td>
<td>0,97</td>
<td>1,33</td>
<td>1,03</td>
<td>0,70</td>
<td>1,27</td>
<td>1,20</td>
<td>1,25</td>
<td>2,20</td>
<td>0,47</td>
<td>1,90</td>
<td>0,47</td>
<td>1,90</td>
<td>0,55</td>
</tr>
<tr>
<td>15</td>
<td>f</td>
<td>li</td>
<td>67,80</td>
<td>163,00</td>
<td>80,00</td>
<td>1,82</td>
<td>0,82</td>
<td>1,17</td>
<td>0,91</td>
<td>0,70</td>
<td>1,03</td>
<td>1,04</td>
<td>1,07</td>
<td>2,30</td>
<td>0,47</td>
<td>1,90</td>
<td>0,47</td>
<td>1,90</td>
<td>0,56</td>
</tr>
<tr>
<td>16</td>
<td>f</td>
<td>li</td>
<td>50,90</td>
<td>162,00</td>
<td>78,00</td>
<td>2,10</td>
<td>0,19</td>
<td>1,32</td>
<td>0,95</td>
<td>0,63</td>
<td>1,17</td>
<td>1,11</td>
<td>1,19</td>
<td>2,10</td>
<td>0,47</td>
<td>1,90</td>
<td>0,47</td>
<td>1,90</td>
<td>0,52</td>
</tr>
<tr>
<td>17</td>
<td>f</td>
<td>re</td>
<td>43,30</td>
<td>167,00</td>
<td>70,00</td>
<td>2,20</td>
<td>0,88</td>
<td>1,29</td>
<td>1,02</td>
<td>0,72</td>
<td>1,22</td>
<td>1,25</td>
<td>1,20</td>
<td>1,90</td>
<td>0,60</td>
<td>2,40</td>
<td>0,47</td>
<td>1,90</td>
<td>0,60</td>
</tr>
<tr>
<td>18</td>
<td>f</td>
<td>re</td>
<td>68,10</td>
<td>158,00</td>
<td>69,00</td>
<td>2,02</td>
<td>0,82</td>
<td>1,14</td>
<td>0,84</td>
<td>0,60</td>
<td>1,00</td>
<td>0,93</td>
<td>1,07</td>
<td>1,80</td>
<td>0,48</td>
<td>1,80</td>
<td>0,48</td>
<td>1,80</td>
<td>1,80</td>
</tr>
<tr>
<td>19</td>
<td>f</td>
<td>re</td>
<td>40,30</td>
<td>167,00</td>
<td>80,00</td>
<td>2,41</td>
<td>0,98</td>
<td>1,32</td>
<td>1,05</td>
<td>0,71</td>
<td>1,28</td>
<td>1,27</td>
<td>1,24</td>
<td>2,00</td>
<td>0,51</td>
<td>2,00</td>
<td>0,49</td>
<td>2,00</td>
<td>0,51</td>
</tr>
<tr>
<td>20</td>
<td>f</td>
<td>re</td>
<td>64,30</td>
<td>162,00</td>
<td>89,00</td>
<td>2,39</td>
<td>0,89</td>
<td>1,29</td>
<td>0,96</td>
<td>0,69</td>
<td>1,07</td>
<td>1,16</td>
<td>1,20</td>
<td>2,00</td>
<td>0,52</td>
<td>2,10</td>
<td>0,49</td>
<td>2,00</td>
<td>0,52</td>
</tr>
<tr>
<td>Alter</td>
<td>ESWT</td>
<td>BMC</td>
<td>BMD</td>
<td>FS</td>
<td>Selb</td>
<td>Gewicht</td>
<td>Arme</td>
<td>Brust</td>
<td>Rumpf</td>
<td>Beinen</td>
<td>Gesamt</td>
<td>Gen</td>
<td>Konz</td>
<td>Konz</td>
<td>Konz</td>
<td>Konz</td>
<td>Konz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>-------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>38</td>
<td>160</td>
<td>70</td>
<td>0,2</td>
<td>2,25</td>
<td>2,23</td>
<td>0,48</td>
<td>1,72</td>
<td>0,86</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,40</td>
<td>0,39</td>
<td>0,38</td>
<td>0,50</td>
<td>1,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>39</td>
<td>160</td>
<td>70</td>
<td>0,2</td>
<td>2,25</td>
<td>2,23</td>
<td>0,48</td>
<td>1,72</td>
<td>0,86</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,40</td>
<td>0,39</td>
<td>0,38</td>
<td>0,50</td>
<td>1,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>40</td>
<td>160</td>
<td>70</td>
<td>0,2</td>
<td>2,25</td>
<td>2,23</td>
<td>0,48</td>
<td>1,72</td>
<td>0,86</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,40</td>
<td>0,39</td>
<td>0,38</td>
<td>0,50</td>
<td>1,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>41</td>
<td>160</td>
<td>70</td>
<td>0,2</td>
<td>2,25</td>
<td>2,23</td>
<td>0,48</td>
<td>1,72</td>
<td>0,86</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,40</td>
<td>0,39</td>
<td>0,38</td>
<td>0,50</td>
<td>1,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>42</td>
<td>160</td>
<td>70</td>
<td>0,2</td>
<td>2,25</td>
<td>2,23</td>
<td>0,48</td>
<td>1,72</td>
<td>0,86</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,40</td>
<td>0,39</td>
<td>0,38</td>
<td>0,50</td>
<td>1,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>43</td>
<td>160</td>
<td>70</td>
<td>0,2</td>
<td>2,25</td>
<td>2,23</td>
<td>0,48</td>
<td>1,72</td>
<td>0,86</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,40</td>
<td>0,39</td>
<td>0,38</td>
<td>0,50</td>
<td>1,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>44</td>
<td>160</td>
<td>70</td>
<td>0,2</td>
<td>2,25</td>
<td>2,23</td>
<td>0,48</td>
<td>1,72</td>
<td>0,86</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,40</td>
<td>0,39</td>
<td>0,38</td>
<td>0,50</td>
<td>1,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>45</td>
<td>160</td>
<td>70</td>
<td>0,2</td>
<td>2,25</td>
<td>2,23</td>
<td>0,48</td>
<td>1,72</td>
<td>0,86</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,40</td>
<td>0,39</td>
<td>0,38</td>
<td>0,50</td>
<td>1,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>46</td>
<td>160</td>
<td>70</td>
<td>0,2</td>
<td>2,25</td>
<td>2,23</td>
<td>0,48</td>
<td>1,72</td>
<td>0,86</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,40</td>
<td>0,39</td>
<td>0,38</td>
<td>0,50</td>
<td>1,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>47</td>
<td>160</td>
<td>70</td>
<td>0,2</td>
<td>2,25</td>
<td>2,23</td>
<td>0,48</td>
<td>1,72</td>
<td>0,86</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,40</td>
<td>0,39</td>
<td>0,38</td>
<td>0,50</td>
<td>1,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>48</td>
<td>160</td>
<td>70</td>
<td>0,2</td>
<td>2,25</td>
<td>2,23</td>
<td>0,48</td>
<td>1,72</td>
<td>0,86</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,40</td>
<td>0,39</td>
<td>0,38</td>
<td>0,50</td>
<td>1,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>49</td>
<td>160</td>
<td>70</td>
<td>0,2</td>
<td>2,25</td>
<td>2,23</td>
<td>0,48</td>
<td>1,72</td>
<td>0,86</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,40</td>
<td>0,39</td>
<td>0,38</td>
<td>0,50</td>
<td>1,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>50</td>
<td>160</td>
<td>70</td>
<td>0,2</td>
<td>2,25</td>
<td>2,23</td>
<td>0,48</td>
<td>1,72</td>
<td>0,86</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,40</td>
<td>0,39</td>
<td>0,38</td>
<td>0,50</td>
<td>1,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>51</td>
<td>160</td>
<td>70</td>
<td>0,2</td>
<td>2,25</td>
<td>2,23</td>
<td>0,48</td>
<td>1,72</td>
<td>0,86</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,40</td>
<td>0,39</td>
<td>0,38</td>
<td>0,50</td>
<td>1,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>52</td>
<td>160</td>
<td>70</td>
<td>0,2</td>
<td>2,25</td>
<td>2,23</td>
<td>0,48</td>
<td>1,72</td>
<td>0,86</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,40</td>
<td>0,39</td>
<td>0,38</td>
<td>0,50</td>
<td>1,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>53</td>
<td>160</td>
<td>70</td>
<td>0,2</td>
<td>2,25</td>
<td>2,23</td>
<td>0,48</td>
<td>1,72</td>
<td>0,86</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,40</td>
<td>0,39</td>
<td>0,38</td>
<td>0,50</td>
<td>1,18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle A.2: Messdaten zur Baseline, Pat. 21-36
Tabelle A.3: Messdaten 6 Wochen nach Therapie, Pat. 1-20

<table>
<thead>
<tr>
<th>Patient</th>
<th>Geschl.</th>
<th>FS Seite</th>
<th>Alter</th>
<th>Größe</th>
<th>Gewicht</th>
<th>Kopf</th>
<th>Arme</th>
<th>Beine</th>
<th>Rumpf</th>
<th>Rippen</th>
<th>Becken</th>
<th>WS</th>
<th>Gesamt</th>
<th>BMI</th>
<th>BMD</th>
<th>BMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>f</td>
<td>li</td>
<td>80,20</td>
<td>159,00</td>
<td>59,00</td>
<td>1,66</td>
<td>0,65</td>
<td>0,90</td>
<td>0,72</td>
<td>0,52</td>
<td>0,62</td>
<td>0,87</td>
<td>0,87</td>
<td>0,36</td>
<td>1,40</td>
<td>0,34</td>
</tr>
<tr>
<td>2</td>
<td>m</td>
<td>li</td>
<td>67,00</td>
<td>156,00</td>
<td>77,50</td>
<td>1,62</td>
<td>0,73</td>
<td>1,06</td>
<td>0,86</td>
<td>0,54</td>
<td>1,00</td>
<td>1,03</td>
<td>1,00</td>
<td>0,35</td>
<td>1,40</td>
<td>0,43</td>
</tr>
<tr>
<td>3</td>
<td>f</td>
<td>re</td>
<td>64,90</td>
<td>159,00</td>
<td>60,00</td>
<td>2,20</td>
<td>0,76</td>
<td>1,12</td>
<td>0,83</td>
<td>0,59</td>
<td>0,99</td>
<td>0,94</td>
<td>1,07</td>
<td>0,40</td>
<td>1,60</td>
<td>0,39</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>li</td>
<td>79,90</td>
<td>156,00</td>
<td>60,00</td>
<td>2,38</td>
<td>0,71</td>
<td>0,98</td>
<td>0,86</td>
<td>0,63</td>
<td>0,95</td>
<td>1,10</td>
<td>1,04</td>
<td>0,44</td>
<td>1,80</td>
<td>0,35</td>
</tr>
<tr>
<td>5</td>
<td>f</td>
<td>re</td>
<td>58,00</td>
<td>164,00</td>
<td>74,50</td>
<td>2,15</td>
<td>0,89</td>
<td>1,21</td>
<td>0,82</td>
<td>0,60</td>
<td>1,00</td>
<td>0,95</td>
<td>1,12</td>
<td>0,45</td>
<td>1,80</td>
<td>0,46</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>re</td>
<td>47,80</td>
<td>150,00</td>
<td>50,00</td>
<td>2,05</td>
<td>0,78</td>
<td>1,14</td>
<td>0,92</td>
<td>0,63</td>
<td>1,14</td>
<td>1,07</td>
<td>1,11</td>
<td>0,45</td>
<td>1,80</td>
<td>0,44</td>
</tr>
<tr>
<td>7</td>
<td>f</td>
<td>re</td>
<td>52,50</td>
<td>165,00</td>
<td>75,00</td>
<td>2,19</td>
<td>0,84</td>
<td>1,11</td>
<td>0,97</td>
<td>0,69</td>
<td>1,17</td>
<td>1,18</td>
<td>1,12</td>
<td>0,46</td>
<td>1,80</td>
<td>0,46</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>re</td>
<td>67,10</td>
<td>165,00</td>
<td>88,00</td>
<td>2,26</td>
<td>0,83</td>
<td>1,21</td>
<td>0,98</td>
<td>0,65</td>
<td>1,17</td>
<td>1,21</td>
<td>1,14</td>
<td>0,46</td>
<td>1,80</td>
<td>0,46</td>
</tr>
<tr>
<td>9</td>
<td>f</td>
<td>re</td>
<td>56,20</td>
<td>170,00</td>
<td>90,00</td>
<td>1,62</td>
<td>0,78</td>
<td>1,09</td>
<td>0,77</td>
<td>0,56</td>
<td>0,98</td>
<td>0,85</td>
<td>0,98</td>
<td>0,50</td>
<td>2,00</td>
<td>0,51</td>
</tr>
<tr>
<td>10</td>
<td>f</td>
<td>re</td>
<td>72,50</td>
<td>164,00</td>
<td>81,50</td>
<td>1,99</td>
<td>0,79</td>
<td>1,21</td>
<td>0,95</td>
<td>0,62</td>
<td>1,10</td>
<td>1,10</td>
<td>1,12</td>
<td>0,52</td>
<td>2,10</td>
<td>0,49</td>
</tr>
<tr>
<td>11</td>
<td>f</td>
<td>re</td>
<td>54,80</td>
<td>166,00</td>
<td>89,00</td>
<td>2,11</td>
<td>0,88</td>
<td>1,28</td>
<td>0,95</td>
<td>0,70</td>
<td>1,14</td>
<td>1,06</td>
<td>1,16</td>
<td>0,49</td>
<td>1,80</td>
<td>0,51</td>
</tr>
<tr>
<td>12</td>
<td>f</td>
<td>re</td>
<td>55,30</td>
<td>180,00</td>
<td>90,00</td>
<td>2,42</td>
<td>0,83</td>
<td>1,17</td>
<td>0,90</td>
<td>0,65</td>
<td>1,09</td>
<td>1,00</td>
<td>1,14</td>
<td>0,52</td>
<td>2,10</td>
<td>0,54</td>
</tr>
<tr>
<td>13</td>
<td>m</td>
<td>li</td>
<td>57,70</td>
<td>177,00</td>
<td>88,00</td>
<td>1,92</td>
<td>0,84</td>
<td>1,35</td>
<td>1,00</td>
<td>0,65</td>
<td>1,28</td>
<td>1,16</td>
<td>1,18</td>
<td>0,47</td>
<td>1,90</td>
<td>0,47</td>
</tr>
<tr>
<td>14</td>
<td>f</td>
<td>li</td>
<td>40,70</td>
<td>167,00</td>
<td>83,00</td>
<td>2,47</td>
<td>0,97</td>
<td>1,33</td>
<td>1,08</td>
<td>0,81</td>
<td>1,28</td>
<td>1,35</td>
<td>1,27</td>
<td>0,51</td>
<td>2,00</td>
<td>0,50</td>
</tr>
<tr>
<td>15</td>
<td>f</td>
<td>li</td>
<td>67,90</td>
<td>163,00</td>
<td>80,00</td>
<td>1,96</td>
<td>0,85</td>
<td>1,19</td>
<td>0,91</td>
<td>0,71</td>
<td>1,02</td>
<td>1,07</td>
<td>1,10</td>
<td>0,57</td>
<td>2,30</td>
<td>0,47</td>
</tr>
<tr>
<td>16</td>
<td>f</td>
<td>li</td>
<td>51,00</td>
<td>162,00</td>
<td>78,00</td>
<td>2,07</td>
<td>0,92</td>
<td>1,32</td>
<td>0,95</td>
<td>0,68</td>
<td>1,11</td>
<td>1,12</td>
<td>1,18</td>
<td>0,52</td>
<td>2,10</td>
<td>0,51</td>
</tr>
<tr>
<td>17</td>
<td>f</td>
<td>re</td>
<td>43,40</td>
<td>167,00</td>
<td>70,00</td>
<td>2,23</td>
<td>0,87</td>
<td>1,33</td>
<td>1,01</td>
<td>0,73</td>
<td>1,24</td>
<td>1,23</td>
<td>1,20</td>
<td>0,54</td>
<td>2,20</td>
<td>0,53</td>
</tr>
<tr>
<td>18</td>
<td>f</td>
<td>re</td>
<td>68,20</td>
<td>158,00</td>
<td>69,00</td>
<td>2,34</td>
<td>0,89</td>
<td>1,32</td>
<td>0,96</td>
<td>0,68</td>
<td>1,08</td>
<td>1,24</td>
<td>1,22</td>
<td>0,50</td>
<td>2,00</td>
<td>0,53</td>
</tr>
<tr>
<td>19</td>
<td>f</td>
<td>re</td>
<td>40,40</td>
<td>167,00</td>
<td>82,00</td>
<td>2,37</td>
<td>0,98</td>
<td>1,32</td>
<td>1,06</td>
<td>0,76</td>
<td>1,27</td>
<td>1,31</td>
<td>1,24</td>
<td>0,50</td>
<td>2,00</td>
<td>0,50</td>
</tr>
<tr>
<td>20</td>
<td>f</td>
<td>re</td>
<td>64,40</td>
<td>162,00</td>
<td>89,00</td>
<td>2,34</td>
<td>0,89</td>
<td>1,32</td>
<td>0,96</td>
<td>0,68</td>
<td>1,08</td>
<td>1,24</td>
<td>1,22</td>
<td>0,50</td>
<td>2,00</td>
<td>0,53</td>
</tr>
</tbody>
</table>
Tabelle A.4: Messdaten 6 Wochen nach Therapie, Pat. 21-36

<table>
<thead>
<tr>
<th>Patient</th>
<th>Geschl.</th>
<th>FS Seite</th>
<th>Alter</th>
<th>Größe</th>
<th>Gewicht</th>
<th>Kopf</th>
<th>Arme</th>
<th>Beine</th>
<th>Rumpf</th>
<th>Rippen</th>
<th>Becken</th>
<th>WS</th>
<th>Gesamt</th>
<th>re BMD</th>
<th>re BMC</th>
<th>II BMD</th>
<th>II BMC</th>
<th>ESWT BMD</th>
<th>ESWT BMC</th>
<th>Kontroll</th>
<th>Kontroll</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>f</td>
<td>re</td>
<td>39,30</td>
<td>165,00</td>
<td>70,20</td>
<td>2,34</td>
<td>0,86</td>
<td>1,31</td>
<td>0,94</td>
<td>0,66</td>
<td>1,08</td>
<td>1,16</td>
<td>1,21</td>
<td>0,51</td>
<td>2,10</td>
<td>0,54</td>
<td>2,20</td>
<td>0,51</td>
<td>2,10</td>
<td>0,54</td>
<td>2,20</td>
</tr>
<tr>
<td>22</td>
<td>m</td>
<td>li</td>
<td>70,90</td>
<td>163,00</td>
<td>73,00</td>
<td>2,16</td>
<td>0,98</td>
<td>1,41</td>
<td>1,05</td>
<td>0,65</td>
<td>1,10</td>
<td>1,24</td>
<td>1,24</td>
<td>0,50</td>
<td>2,00</td>
<td>0,52</td>
<td>2,10</td>
<td>0,52</td>
<td>2,10</td>
<td>0,50</td>
<td>2,00</td>
</tr>
<tr>
<td>23</td>
<td>f</td>
<td>re</td>
<td>29,90</td>
<td>180,00</td>
<td>92,00</td>
<td>2,31</td>
<td>0,90</td>
<td>1,44</td>
<td>1,04</td>
<td>1,74</td>
<td>1,31</td>
<td>1,19</td>
<td>1,27</td>
<td>0,51</td>
<td>2,00</td>
<td>0,62</td>
<td>2,40</td>
<td>0,51</td>
<td>2,00</td>
<td>0,62</td>
<td>2,40</td>
</tr>
<tr>
<td>24</td>
<td>m</td>
<td>li</td>
<td>71,30</td>
<td>170,00</td>
<td>88,00</td>
<td>1,53</td>
<td>0,93</td>
<td>1,30</td>
<td>0,86</td>
<td>0,49</td>
<td>1,12</td>
<td>0,98</td>
<td>1,09</td>
<td>0,51</td>
<td>2,00</td>
<td>0,58</td>
<td>2,40</td>
<td>0,58</td>
<td>2,40</td>
<td>0,51</td>
<td>2,00</td>
</tr>
<tr>
<td>25</td>
<td>f</td>
<td>re</td>
<td>50,70</td>
<td>155,00</td>
<td>60,00</td>
<td>2,21</td>
<td>0,80</td>
<td>1,20</td>
<td>0,94</td>
<td>0,67</td>
<td>1,10</td>
<td>1,08</td>
<td>1,12</td>
<td>0,49</td>
<td>2,00</td>
<td>0,51</td>
<td>2,10</td>
<td>0,49</td>
<td>2,00</td>
<td>0,51</td>
<td>2,10</td>
</tr>
<tr>
<td>26</td>
<td>m</td>
<td>li</td>
<td>55,00</td>
<td>173,00</td>
<td>84,00</td>
<td>1,94</td>
<td>0,88</td>
<td>1,18</td>
<td>0,93</td>
<td>0,68</td>
<td>1,09</td>
<td>1,16</td>
<td>1,10</td>
<td>0,55</td>
<td>2,20</td>
<td>0,58</td>
<td>2,30</td>
<td>0,58</td>
<td>2,30</td>
<td>0,55</td>
<td>2,20</td>
</tr>
<tr>
<td>27</td>
<td>f</td>
<td>li</td>
<td>54,20</td>
<td>160,00</td>
<td>87,00</td>
<td>2,23</td>
<td>0,92</td>
<td>1,29</td>
<td>0,99</td>
<td>0,63</td>
<td>1,23</td>
<td>1,05</td>
<td>1,21</td>
<td>0,60</td>
<td>2,40</td>
<td>0,56</td>
<td>2,30</td>
<td>0,56</td>
<td>2,30</td>
<td>0,60</td>
<td>2,40</td>
</tr>
<tr>
<td>28</td>
<td>f</td>
<td>li</td>
<td>35,40</td>
<td>170,00</td>
<td>60,00</td>
<td>2,05</td>
<td>0,89</td>
<td>1,28</td>
<td>0,91</td>
<td>0,63</td>
<td>1,18</td>
<td>1,05</td>
<td>1,15</td>
<td>0,57</td>
<td>2,30</td>
<td>0,63</td>
<td>2,50</td>
<td>0,63</td>
<td>2,50</td>
<td>0,57</td>
<td>2,30</td>
</tr>
<tr>
<td>29</td>
<td>f</td>
<td>re</td>
<td>49,80</td>
<td>168,00</td>
<td>65,00</td>
<td>2,16</td>
<td>0,90</td>
<td>1,35</td>
<td>0,96</td>
<td>0,72</td>
<td>1,13</td>
<td>1,13</td>
<td>1,20</td>
<td>0,54</td>
<td>2,20</td>
<td>0,51</td>
<td>2,00</td>
<td>0,54</td>
<td>2,20</td>
<td>0,51</td>
<td>2,00</td>
</tr>
<tr>
<td>30</td>
<td>m</td>
<td>li</td>
<td>45,00</td>
<td>174,00</td>
<td>81,50</td>
<td>1,99</td>
<td>1,08</td>
<td>1,73</td>
<td>1,04</td>
<td>0,72</td>
<td>1,30</td>
<td>1,22</td>
<td>1,36</td>
<td>0,63</td>
<td>2,50</td>
<td>0,69</td>
<td>2,70</td>
<td>0,69</td>
<td>2,70</td>
<td>0,63</td>
<td>2,50</td>
</tr>
<tr>
<td>31</td>
<td>m</td>
<td>re</td>
<td>28,70</td>
<td>172,00</td>
<td>81,00</td>
<td>2,14</td>
<td>1,04</td>
<td>1,54</td>
<td>1,06</td>
<td>0,73</td>
<td>1,35</td>
<td>1,23</td>
<td>1,32</td>
<td>0,65</td>
<td>2,60</td>
<td>0,70</td>
<td>2,80</td>
<td>0,65</td>
<td>2,60</td>
<td>0,70</td>
<td>2,80</td>
</tr>
<tr>
<td>32</td>
<td>m</td>
<td>re</td>
<td>47,60</td>
<td>180,00</td>
<td>74,00</td>
<td>1,80</td>
<td>0,97</td>
<td>1,47</td>
<td>0,94</td>
<td>0,68</td>
<td>1,14</td>
<td>0,97</td>
<td>1,22</td>
<td>0,65</td>
<td>2,60</td>
<td>0,62</td>
<td>2,90</td>
<td>0,65</td>
<td>2,60</td>
<td>0,62</td>
<td>2,90</td>
</tr>
<tr>
<td>33</td>
<td>m</td>
<td>re</td>
<td>36,60</td>
<td>193,00</td>
<td>117,00</td>
<td>2,01</td>
<td>1,03</td>
<td>1,59</td>
<td>0,88</td>
<td>0,59</td>
<td>1,19</td>
<td>0,86</td>
<td>1,26</td>
<td>0,67</td>
<td>2,70</td>
<td>0,60</td>
<td>2,40</td>
<td>0,67</td>
<td>2,70</td>
<td>0,60</td>
<td>2,40</td>
</tr>
<tr>
<td>34</td>
<td>f</td>
<td>re</td>
<td>31,20</td>
<td>171,00</td>
<td>63,00</td>
<td>2,14</td>
<td>0,96</td>
<td>1,45</td>
<td>1,03</td>
<td>0,70</td>
<td>1,29</td>
<td>1,22</td>
<td>1,25</td>
<td>0,70</td>
<td>2,80</td>
<td>0,70</td>
<td>2,80</td>
<td>0,70</td>
<td>2,80</td>
<td>0,70</td>
<td>2,80</td>
</tr>
<tr>
<td>35</td>
<td>m</td>
<td>li</td>
<td>35,50</td>
<td>183,00</td>
<td>100,00</td>
<td>2,31</td>
<td>1,03</td>
<td>1,49</td>
<td>1,12</td>
<td>0,76</td>
<td>1,43</td>
<td>1,29</td>
<td>1,33</td>
<td>0,71</td>
<td>2,80</td>
<td>0,75</td>
<td>3,00</td>
<td>0,75</td>
<td>3,00</td>
<td>0,71</td>
<td>2,80</td>
</tr>
<tr>
<td>36</td>
<td>m</td>
<td>re</td>
<td>64,70</td>
<td>182,00</td>
<td>81,00</td>
<td>1,89</td>
<td>1,02</td>
<td>1,48</td>
<td>1,06</td>
<td>0,74</td>
<td>1,34</td>
<td>1,28</td>
<td>0,69</td>
<td>2,80</td>
<td>0,67</td>
<td>2,70</td>
<td>0,69</td>
<td>2,80</td>
<td>0,67</td>
<td>2,70</td>
<td>0,69</td>
</tr>
</tbody>
</table>

Mittelwert
- 53,77 167,67 78,06 2,09 0,88 1,29 0,95 0,69 1,15 1,11 1,17 0,53 2,11 0,53 2,15 0,53 2,12 0,53 2,14

Median
- 54,50 166,50 80,50 2,14 0,89 1,30 0,95 0,67 1,14 1,12 1,18 0,51 2,00 0,51 2,10 0,51 2,00 0,51 2,10

Standardabweichung
- 14,16 9,18 13,46 0,24 0,10 0,17 0,09 0,20 0,13 0,13 0,10 0,09 0,36 0,10 0,39 0,10 0,39 0,09 0,37
<table>
<thead>
<tr>
<th>Patient</th>
<th>Geschl.</th>
<th>PS Seite</th>
<th>Alter</th>
<th>Größe</th>
<th>Gewicht</th>
<th>Kopf</th>
<th>Arme</th>
<th>Beine</th>
<th>Rumpf</th>
<th>Rippen</th>
<th>Becken</th>
<th>WS</th>
<th>Gesamt</th>
<th>re BMC</th>
<th>re BMC</th>
<th>II BMC</th>
<th>ESWT BMC</th>
<th>Kontroll BMC</th>
<th>Kontroll BMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>f</td>
<td>li</td>
<td>80,30</td>
<td>159,00</td>
<td>59,00</td>
<td>1,80</td>
<td>0,65</td>
<td>0,92</td>
<td>0,71</td>
<td>0,51</td>
<td>0,83</td>
<td>0,85</td>
<td>0,88</td>
<td>0,34</td>
<td>1,40</td>
<td>0,35</td>
<td>1,40</td>
<td>0,35</td>
<td>1,40</td>
</tr>
<tr>
<td>2</td>
<td>m</td>
<td>li</td>
<td>67,10</td>
<td>156,00</td>
<td>78,00</td>
<td>1,52</td>
<td>0,73</td>
<td>1,07</td>
<td>0,81</td>
<td>0,56</td>
<td>0,95</td>
<td>0,92</td>
<td>0,98</td>
<td>0,34</td>
<td>1,30</td>
<td>0,46</td>
<td>1,90</td>
<td>0,34</td>
<td>1,30</td>
</tr>
<tr>
<td>3</td>
<td>f</td>
<td>li</td>
<td>65,00</td>
<td>159,00</td>
<td>62,00</td>
<td>2,13</td>
<td>0,73</td>
<td>1,04</td>
<td>0,82</td>
<td>0,57</td>
<td>1,00</td>
<td>0,92</td>
<td>1,03</td>
<td>0,48</td>
<td>1,80</td>
<td>0,37</td>
<td>1,50</td>
<td>1,80</td>
<td>0,37</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>li</td>
<td>80,10</td>
<td>151,00</td>
<td>60,00</td>
<td>2,27</td>
<td>0,74</td>
<td>0,97</td>
<td>0,84</td>
<td>0,57</td>
<td>1,02</td>
<td>0,88</td>
<td>1,03</td>
<td>0,44</td>
<td>1,80</td>
<td>0,37</td>
<td>1,50</td>
<td>0,37</td>
<td>1,50</td>
</tr>
<tr>
<td>5</td>
<td>f</td>
<td>li</td>
<td>58,10</td>
<td>164,00</td>
<td>74,50</td>
<td>2,17</td>
<td>0,88</td>
<td>1,20</td>
<td>0,82</td>
<td>0,60</td>
<td>1,02</td>
<td>0,90</td>
<td>1,12</td>
<td>0,48</td>
<td>1,90</td>
<td>0,50</td>
<td>2,00</td>
<td>0,48</td>
<td>1,90</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>re</td>
<td>47,90</td>
<td>150,00</td>
<td>50,00</td>
<td>2,04</td>
<td>0,80</td>
<td>1,10</td>
<td>0,90</td>
<td>0,62</td>
<td>1,08</td>
<td>1,04</td>
<td>1,08</td>
<td>0,47</td>
<td>1,90</td>
<td>0,44</td>
<td>1,80</td>
<td>1,90</td>
<td>0,44</td>
</tr>
<tr>
<td>7</td>
<td>f</td>
<td>re</td>
<td>52,70</td>
<td>163,00</td>
<td>76,00</td>
<td>2,13</td>
<td>0,82</td>
<td>1,12</td>
<td>0,96</td>
<td>0,70</td>
<td>1,13</td>
<td>1,18</td>
<td>1,11</td>
<td>0,48</td>
<td>1,90</td>
<td>0,46</td>
<td>1,90</td>
<td>0,46</td>
<td>1,90</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>re</td>
<td>67,20</td>
<td>165,00</td>
<td>88,00</td>
<td>2,26</td>
<td>0,85</td>
<td>1,20</td>
<td>0,97</td>
<td>0,70</td>
<td>1,22</td>
<td>1,10</td>
<td>1,14</td>
<td>0,55</td>
<td>2,10</td>
<td>0,46</td>
<td>1,80</td>
<td>0,55</td>
<td>2,10</td>
</tr>
<tr>
<td>9</td>
<td>f</td>
<td>re</td>
<td>56,40</td>
<td>170,00</td>
<td>90,00</td>
<td>1,67</td>
<td>0,79</td>
<td>1,13</td>
<td>0,72</td>
<td>0,50</td>
<td>0,92</td>
<td>0,76</td>
<td>0,99</td>
<td>0,56</td>
<td>2,20</td>
<td>0,51</td>
<td>2,00</td>
<td>0,56</td>
<td>2,20</td>
</tr>
<tr>
<td>10</td>
<td>f</td>
<td>re</td>
<td>72,70</td>
<td>162,00</td>
<td>82,50</td>
<td>2,09</td>
<td>0,91</td>
<td>1,24</td>
<td>0,93</td>
<td>0,60</td>
<td>1,09</td>
<td>1,11</td>
<td>1,15</td>
<td>0,52</td>
<td>2,10</td>
<td>0,40</td>
<td>1,60</td>
<td>0,52</td>
<td>2,10</td>
</tr>
<tr>
<td>11</td>
<td>f</td>
<td>re</td>
<td>54,90</td>
<td>166,00</td>
<td>89,00</td>
<td>2,07</td>
<td>0,88</td>
<td>1,27</td>
<td>0,98</td>
<td>0,66</td>
<td>1,16</td>
<td>1,15</td>
<td>1,17</td>
<td>0,58</td>
<td>2,30</td>
<td>0,50</td>
<td>2,20</td>
<td>0,58</td>
<td>2,30</td>
</tr>
<tr>
<td>12</td>
<td>f</td>
<td>re</td>
<td>55,40</td>
<td>180,00</td>
<td>90,00</td>
<td>2,45</td>
<td>0,85</td>
<td>1,18</td>
<td>0,92</td>
<td>0,66</td>
<td>1,09</td>
<td>1,07</td>
<td>1,13</td>
<td>0,53</td>
<td>2,20</td>
<td>0,55</td>
<td>2,20</td>
<td>0,53</td>
<td>2,20</td>
</tr>
<tr>
<td>13</td>
<td>m</td>
<td>li</td>
<td>57,80</td>
<td>177,00</td>
<td>88,00</td>
<td>1,96</td>
<td>0,84</td>
<td>1,32</td>
<td>1,03</td>
<td>0,75</td>
<td>1,13</td>
<td>1,28</td>
<td>1,18</td>
<td>0,48</td>
<td>1,90</td>
<td>0,53</td>
<td>2,10</td>
<td>0,53</td>
<td>2,10</td>
</tr>
<tr>
<td>14</td>
<td>f</td>
<td>li</td>
<td>40,80</td>
<td>167,00</td>
<td>83,00</td>
<td>2,40</td>
<td>0,97</td>
<td>1,37</td>
<td>1,06</td>
<td>0,76</td>
<td>1,31</td>
<td>1,23</td>
<td>1,27</td>
<td>0,49</td>
<td>2,00</td>
<td>0,48</td>
<td>1,90</td>
<td>0,48</td>
<td>1,90</td>
</tr>
<tr>
<td>15</td>
<td>f</td>
<td>li</td>
<td>68,00</td>
<td>163,00</td>
<td>80,00</td>
<td>1,85</td>
<td>0,84</td>
<td>1,14</td>
<td>0,89</td>
<td>0,66</td>
<td>1,04</td>
<td>1,06</td>
<td>1,06</td>
<td>0,44</td>
<td>1,80</td>
<td>0,58</td>
<td>2,30</td>
<td>0,58</td>
<td>2,30</td>
</tr>
<tr>
<td>16</td>
<td>f</td>
<td>li</td>
<td>51,10</td>
<td>162,00</td>
<td>78,00</td>
<td>2,09</td>
<td>0,87</td>
<td>1,32</td>
<td>0,95</td>
<td>0,64</td>
<td>1,19</td>
<td>1,07</td>
<td>1,19</td>
<td>0,50</td>
<td>2,00</td>
<td>0,52</td>
<td>2,10</td>
<td>0,52</td>
<td>2,10</td>
</tr>
<tr>
<td>17</td>
<td>f</td>
<td>re</td>
<td>43,50</td>
<td>167,00</td>
<td>70,00</td>
<td>2,22</td>
<td>0,86</td>
<td>1,32</td>
<td>1,00</td>
<td>0,72</td>
<td>1,26</td>
<td>1,17</td>
<td>1,21</td>
<td>0,54</td>
<td>2,20</td>
<td>0,51</td>
<td>2,10</td>
<td>0,54</td>
<td>2,20</td>
</tr>
<tr>
<td>18</td>
<td>f</td>
<td>re</td>
<td>68,50</td>
<td>158,00</td>
<td>69,00</td>
<td></td>
<td></td>
<td></td>
<td>0,49</td>
<td>2,00</td>
<td>0,47</td>
<td>1,90</td>
<td>0,49</td>
<td>2,00</td>
<td>0,47</td>
<td>1,90</td>
<td>2,00</td>
<td>0,47</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>f</td>
<td>re</td>
<td>40,50</td>
<td>167,00</td>
<td>83,00</td>
<td>2,36</td>
<td>0,97</td>
<td>1,33</td>
<td>1,03</td>
<td>0,71</td>
<td>1,29</td>
<td>1,14</td>
<td>1,24</td>
<td>0,55</td>
<td>2,20</td>
<td>0,51</td>
<td>2,00</td>
<td>0,55</td>
<td>2,20</td>
</tr>
<tr>
<td>20</td>
<td>f</td>
<td>re</td>
<td>64,50</td>
<td>161,00</td>
<td>89,00</td>
<td>2,47</td>
<td>0,89</td>
<td>1,28</td>
<td>1,00</td>
<td>0,72</td>
<td>1,18</td>
<td>1,20</td>
<td>1,22</td>
<td>0,50</td>
<td>2,00</td>
<td>0,52</td>
<td>2,10</td>
<td>0,50</td>
<td>2,00</td>
</tr>
<tr>
<td>Patient</td>
<td>Geschlecht</td>
<td>Alter</td>
<td>Kontroll</td>
<td>BMD</td>
<td>BMC</td>
<td>BMD</td>
<td>BMD</td>
<td>BMD</td>
<td>BMC</td>
<td>BMD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-------</td>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>m</td>
<td>56,10</td>
<td>160,00</td>
<td>3,90</td>
<td>1,10</td>
<td>1,50</td>
<td>1,90</td>
<td>1,40</td>
<td>1,05</td>
<td>0,95</td>
<td>0,85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>m</td>
<td>58,60</td>
<td>170,00</td>
<td>4,30</td>
<td>1,90</td>
<td>1,30</td>
<td>1,70</td>
<td>1,10</td>
<td>0,90</td>
<td>0,70</td>
<td>0,60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>f</td>
<td>35,50</td>
<td>170,00</td>
<td>2,10</td>
<td>1,20</td>
<td>1,10</td>
<td>1,30</td>
<td>1,10</td>
<td>0,90</td>
<td>0,80</td>
<td>0,70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>m</td>
<td>56,10</td>
<td>160,00</td>
<td>2,90</td>
<td>1,10</td>
<td>1,50</td>
<td>1,90</td>
<td>1,40</td>
<td>1,05</td>
<td>0,95</td>
<td>0,85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>f</td>
<td>58,60</td>
<td>170,00</td>
<td>4,30</td>
<td>1,90</td>
<td>1,30</td>
<td>1,70</td>
<td>1,10</td>
<td>0,90</td>
<td>0,70</td>
<td>0,60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>m</td>
<td>56,10</td>
<td>160,00</td>
<td>3,90</td>
<td>1,10</td>
<td>1,50</td>
<td>1,90</td>
<td>1,40</td>
<td>1,05</td>
<td>0,95</td>
<td>0,85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>f</td>
<td>35,50</td>
<td>170,00</td>
<td>2,10</td>
<td>1,20</td>
<td>1,10</td>
<td>1,30</td>
<td>1,10</td>
<td>0,90</td>
<td>0,80</td>
<td>0,70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>m</td>
<td>56,10</td>
<td>160,00</td>
<td>2,90</td>
<td>1,10</td>
<td>1,50</td>
<td>1,90</td>
<td>1,40</td>
<td>1,05</td>
<td>0,95</td>
<td>0,85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>f</td>
<td>35,50</td>
<td>170,00</td>
<td>2,10</td>
<td>1,20</td>
<td>1,10</td>
<td>1,30</td>
<td>1,10</td>
<td>0,90</td>
<td>0,80</td>
<td>0,70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>m</td>
<td>56,10</td>
<td>160,00</td>
<td>2,90</td>
<td>1,10</td>
<td>1,50</td>
<td>1,90</td>
<td>1,40</td>
<td>1,05</td>
<td>0,95</td>
<td>0,85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>f</td>
<td>35,50</td>
<td>170,00</td>
<td>2,10</td>
<td>1,20</td>
<td>1,10</td>
<td>1,30</td>
<td>1,10</td>
<td>0,90</td>
<td>0,80</td>
<td>0,70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>m</td>
<td>56,10</td>
<td>160,00</td>
<td>2,90</td>
<td>1,10</td>
<td>1,50</td>
<td>1,90</td>
<td>1,40</td>
<td>1,05</td>
<td>0,95</td>
<td>0,85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>f</td>
<td>35,50</td>
<td>170,00</td>
<td>2,10</td>
<td>1,20</td>
<td>1,10</td>
<td>1,30</td>
<td>1,10</td>
<td>0,90</td>
<td>0,80</td>
<td>0,70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>m</td>
<td>56,10</td>
<td>160,00</td>
<td>2,90</td>
<td>1,10</td>
<td>1,50</td>
<td>1,90</td>
<td>1,40</td>
<td>1,05</td>
<td>0,95</td>
<td>0,85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>f</td>
<td>35,50</td>
<td>170,00</td>
<td>2,10</td>
<td>1,20</td>
<td>1,10</td>
<td>1,30</td>
<td>1,10</td>
<td>0,90</td>
<td>0,80</td>
<td>0,70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>m</td>
<td>56,10</td>
<td>160,00</td>
<td>2,90</td>
<td>1,10</td>
<td>1,50</td>
<td>1,90</td>
<td>1,40</td>
<td>1,05</td>
<td>0,95</td>
<td>0,85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Danksagung

Zum Gelingen dieser Arbeit haben viele Menschen beigetragen. Ich kann nicht alle aufzählen, möchte mich aber trotzdem für ihre Hilfe und Motivation bedanken.

Herrn PD Dr. L. Gerdesmeyer für die Überlassung des Themas der vorliegenden Arbeit.

Herrn Prof. Dr. med. R. Gradinger für die Bereitstellung des Arbeitsplatzes und der Arbeitsmittel

Frau Wilma Harnisch für ihre unendliche Geduld, die mir viele Stunden bei technischen und statistischen Fragen zur Seite stand.

Nicht zuletzt möchte ich meiner Familie meine Dankbarkeit ausdrücken. Sie war es, die mir den Rahmen gestellt hat, der diese Arbeit überhaupt erst ermöglichte und die mich über die vielen Studienjahre begleitet und gestützt hat.
Lebenslauf

Name: Martina Nicole Weber
Eltern: Dr. med. Josef Weber, Internist
Anna Weber, geb. Kulhanek, Krankengymnastin

Schulbildung

9/83-8/87 Volkschule Bad Tölz-Süd
9/87-6/96 Gymnasium Hohenburg, Lenggries

Studium

05/1997 - 03/2003 Studium der Humanmedizin an der Ludwig-Maximilians-Universität München
3/99 Ärztliche Vorprüfung
3/00 Erstes Staatsexamen
4/02 Zweites Staatsexamen
4/03 Drittes Staatsexamen

Praktische Ausbildung

1/97-2/97 Krankenpflegepraktikum, Kreiskrankenhaus Bad Tölz
4/99+8/99 Famulatur Chirurgie, Kreiskrankenhaus Bad Tölz
9/99-10/99 Famulatur Dermatologie, Praxis Dr. Steinberger / Dr. Vogelgesang, München
8/00 Famulatur Gynäkologie und Geburtshilfe, Kantonsspital Luzern, Schweiz
9/00-10/00 Famulatur Accident&Emergency, York District Hospital, England
8/01 Famulatur Plastische Chirurgie, Klinikum Rechts der Isar, München
4/02-7/02 Tertial Hals-Nasen-Ohrenheilkunde, Klinikum Großhadern, München
8/02-11/02 Tertial Chirurgie, St.Joseph's Hospital Toronto, Kanada
8/02-11/02 Krankenhaus 3. Orden, München
12/02-3/03 Tertial Innere Medizin, Spital Thusis, Schweiz
8/03-10/04 Ärztin im Praktikum, Julius-Maximilians-Universität Würzburg, Abteilung für Hals-Nasen-Ohrenheilkunde
seit 10/04 Assistenzärztin, Julius-Maximilians-Universität Würzburg, Abteilung für Hals-Nasen-Ohrenheilkunde