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Abstract—We investigate the effects of fading correlations on
wireless communication systems employing multiple antennas at
both the receiver and the transmitter side of the link, so called mul-
tiple-input multiple-output (MIMO) systems. It turns out that the
amount of transmitter sided channel knowledge plays an impor-
tant part when dealing with fading correlations. Furthermore, the
possible availability of time diversity in a time-selective channel
can have essential influence on performance. To study the influ-
ence of time-selectivity, the concept ofsample-mean outageis intro-
duced and applied to information theoretic measures, like capacity
or cutoff rate. It will be shown, that in some cases correlated fading
may offer better performance than uncorrelated fading permits,
which is due to exploitable antenna gain, that will also be defined
in a general form for MIMO systems.

Index Terms—Eigenbeamforming, fading correlation, long-term
channel knowledge, MIMO capacity, multiple-input multiple-
output (MIMO) antenna gain, sample-mean outage cutoff rate.

I. INTRODUCTION

M ULTIPLE-INPUT multiple-output (MIMO) communi-
cation systems recently have drawn considerable atten-

tion in the area of wireless communications as they promise
huge capacity increase. If the fading between pairs of transmit
and receive antennas is independently Rayleigh distributed, it is
well known [4], [14], [16], that in the high transmit power re-
gion the average capacity increases linearly with the minimum
number of transmit and receive antennas, even if the transmitter
has no knowledge of the channel. However, in a real world sce-
nario the fades are usually not independent, but will exhibit
certain fading correlations. It has been observed [3], [15], that
channel capacity degrades significantly in the presence of fading
correlations. However, these observations were built on the as-
sumption of having zero transmitter channel knowledge and no
other source of diversity, like time or frequency, available. In this
paper, we like to point out that, allowing the transmitter to know
the channelon average, correlated fading can be used in advan-
tage and actually may lead to higher channel capacity than un-
correlated fading would permit, the more so, if time or frequency
diversity are available to some degree. This is a more general
conjecture than in [10], where optimality of beamforming in the
low signal-to-noise ratio (SNR) region was proved. After intro-
ducing the system model, we will define and discuss the im-
pact of fading correlations, channel time-selectivity and trans-
mitter channel knowledge on information theoretic measures
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Fig. 1. A simple example of multistream transmission, where a number ofr

independent data streams share the total transmit powerP and get transmitted
over r constant channels with unity transmission gain and perturbed with
Gaussian noise of variance� .

like channel capacity and cutoff rate. A scheme will be proposed
that makes efficient use of present fading correlations and turns
their existence from curse into blessing. We will also consider
the effects of linear modulation schemes on system performance
by cutoff-rate analysis.

II. M OTIVATION

The fundamental concept underlying MIMO information
theory is the idea of splitting a data stream into several streams
transmitted in parallel over individual subchannels. Fig. 1
shows a simple example of a communication link comprised
of independent and equal additive white Gaussian noise
(AWGN) subchannels. Because of symmetry, it is optimum to
divide the available transmit power equally between the
subchannels. The capacity of this system is simply the sum
of the individual subchannel capacities and, therefore, reads as

(1)

where is the variance of noise each subchannel perturbs the
signal with. The relationship

(2)

clearly shows the capacity improving potential MIMO systems
offer. Asymptotically, the capacity even becomes a linear func-
tion of transmit power. In this simple example, the number of
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data streams equals the number of transmit and receive antennas
and all subchannels are independent. Such a MIMO channel
is usually referred to as being diagonal. However, in practice
MIMO channels rarely are diagonal, nor is the number of data
streams equal to the number of transmit or receive antennas, as
the algebraic rank of the MIMO channel dictates the number
of data streams which are supported for simultaneous transmis-
sion. When we refer torank deficientchannels, we see that re-
lation (2) doesnothold in general. Rank deficiency may in fact
lead to larger capacity than permitted by a full rank channel, de-
pending on the applied transmit power. However, before going
into details, let us first define the system model we will be using
throughout the text.

III. SYSTEM MODEL

We will assume a frequency flat and possibly correlated
Rayleigh-fading wireless channel, that is accessed by
transmit and receive antennas to transmit independent
data streams, leading to the system model

(3)

where is the -dimensional data stream vector with zero
mean and unity covariance matrix, while is a posi-
tive definite diagonal matrix used to set the transmit power for
each data stream with total transmit power given by tr
and finally the matrix performs the mapping from
data streams onto transmit antennas and is composed of unity
norm column vectors. This mapping can be viewed as beam-
forming. The channel is modeled by the matrix
with possibly correlated complex zero-mean Gaussian entries.
The receive signal vector is corrupted by additive
zero-mean white Gaussian noise with power per
receive antenna.

IV. CONSTANT CHANNELS

If the channel matrix is constant at all times, we may as-
sume it known to both the receiver and the transmitter. In such a
scenario, it is straightforward to arrive at independent subchan-
nels by using singular value decomposition

diag (4)

Setting and applying the one-to-one transformation
we arrive at independent subchannels:

, where is zero-mean Gaussian noise with variance
, which is independent for different streams. The stream index

ranges over , where , as
for . Using the waterfilling [5] power distribution

, the channel capacity reads as [16]

(5)

where is a positive constant chosen to fulfill the power con-
straint tr .

Fig. 2. A constantfull rank MIMO channel (top) and its diagonalization
(bottom).

V. RANK DEFICIENT CHANNELS

From (5) and (4) it is clear, that channel capacity depends
on the eigenvalue profile of the Gramian matrix . It may
be enlightning to study the performance of systems with flat
eigenvalue profile, i.e., tr , which
commands tr and yields capacity

tr
(6)

Now, let us fix the dimensions of the channel matrixand vary
its rank . For a fair comparison, we keep the sum of all eigen-
values , i.e., tr constant. We therefore merely change the
channel rank, while we keep the total channel power constant,
as tr . Under these conditions, it is easy to
show that

(7)

with equality holding for . The transmit power
threshold and the capacity at the threshold can be lower
bounded by

tr
and (8)

If the benefit of a MIMO system is to supply a given channel
capacity with lower transmit power than a single-input single-
output (SISO) system, this result shows, that for desired ca-
pacities lower than , the rank-one channel will demand
less transmit power than the full-rank one. Asymptotically, for

, the rank-one channel willalwaysget the job done with
lower transmit power, while for finite, it will operate favorably
at low transmit power up to the threshold (see also [10]). To
illustrate this point, Figs. 2 and 3 show two very similar MIMO
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Fig. 3. A constantrank deficientMIMO channel (top) and its diagonalization
(bottom).

Fig. 4. Channel capacity of a full rank and a rank deficient 2� 2 MIMO
system with instantaneous channel knowledge at the transmitter. At low
transmit power the rank deficient system yields higher capacity due to antenna
gain, while the full rank system takes the lead at high transmit power, due
to multistream transmission. In this example, the full rank channel behaves
favorably only if the desired capacity is larger thanlog 9 � 3:17 bits per
channel use.

systems using transmit and receive antennas.
The channel matrices are given as

and

where has full rankand exhibits rank deficiency. Fig. 4
compares the capacities

and

of both systems and shows that the rank deficient channel yields
higher capacity for low transmit powers up to tr .

TABLE I
DEFINITION OF TYPES OFFADING CORRELATION

Alternatively, desired capacities lower than
, are supplied demanding less transmit power.

In the sequel, we will deal with stochastic channels, where
is a zero-mean Gaussian random variable, modeling a Rayleigh
frequency-flat fading wireless MIMO channel. However, we
will allow correlations between entries of the channel matrix to
be present, leading us tocorrelated fading. Such channels may
exhibit astochasticrank deficiency, meaning that the correlation
matrices have zero, or very small eigenvalues. Similar to the de-
terministic case above, stochastic rank deficiency may lead to
higher channel capacity as uncorrelated fading permits. Let us
now define the correlation model.

VI. SPATIAL FADING CORRELATIONS

In general, we model fading correlations by writing the
channel matrix as

tr
(9)

where E is the receive correlation ma-
trix and E is the transmit correlation
matrix, while is a random matrix with indepen-
dent,zero-mean unity variancecomplex entries. In contrast to
[6], where multiplicative normal distributions were used to de-
scribe key-hole channels, we will stick to the assumption, that
is drawn from a complex Gaussian distribution leading to cor-
related Rayleigh fading. Note that

tr tr E E (10)

which is the channel’s total power amplification. We can dis-
tinguish four fundamental cases of fading correlation: uncorre-
lated, semicorrelated, semicorrelated type 2, and fully correlated
as defined in Table I. For brevity, we will restrict the discussion
to the first two cases, furthermore, the semicorrelated model is
valid for urban mobile radio channels, as has been shown by a re-
cent measurement campaign taken in downtown Helsinki [12].

A. Uncorrelated Rayleigh Channel

Such a channel may arise if both transmitter and receiver live
in a rich scattering environment (see Fig. 6). The result will be
independent Rayleigh fading from each transmit to each receive
antenna. We have

(11)

producing and tr tr . Note, that
is the identity matrix.
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Fig. 5. Example of the temporal evolution of instantaneous channel capacity
of a block-fading channel with constant transmit power.

Fig. 6. Geometrical interpretation of an uncorrelated MIMO channel. Both
receiver and transmitter are located in a rich scattering environment, with no
line of sight connection.

B. Semicorrelated Rayleigh Channel

Imagine the transmitter is now removed from its rich
scattering environment. From the transmitter’s point of view
the spatial structure of the channel now is governed by remote
scattering objects and will most likely result in a highly spa-
tially correlated scenario, for usually there will only be a small
number of dominant remote scattering objects (see Fig. 8).
Hence, we can write

tr

where is an array steering matrix containing
array response vectors of the transmitting antenna array

corresponding to directions of departure (DoD) and
has zero-mean independent and identically

distributed (i.i.d.) Gaussian random entries. Angle spread is
easily modeled by a high enough number of discrete DoDs.
Applied to the statistical model defined in (9), we have

tr
(12)

Note, that the total power amplification of this channel is nor-
malized to tr tr , which is the same as in
the uncorrelated case.

VII. SAMPLE-MEAN OUTAGE CAPACITY

The channel capacity represents an ultimate information the-
oretic upper bound on system performance. As the investigated
channels are usually time-varying, they are represented by
random processes. Maximization of mutual information with
an average transmit power constraint was presented for time
selective channels in [7]. Here, we will use a different approach,
by using a constant transmit power constraint, independent of
channel state. For simplicity, we look at a block-fading channel,
which properties remain constant during thecoherence time

and afterwards change to a new, independent realization.

The capacity of such a channel depends on the ratio between
usage time and coherence time , defined in Fig. 5.

• For , the appropriate characterization of
capacity clearly is given by the temporal average, or
assuming ergodicity by the expected value, the so called
ergodic capacity: E .

• For , there is nothing to average over. An
appropriate characterization of capacity in this case is
the well knownoutage capacity describing the
capacity that can be guaranteed with probability equal to

, i.e., Prob
• For , there are exactly independent

channel realizations during the usage time. By defining
a new random variable where
are the instantaneous capacities corresponding to different
channel realizations, the appropriate characterization of
capacity is the proposedsample-mean outage capacity

Prob .
The sample-mean outage capacity contains both the ergodic

and the outage capacity as special cases, since

and (13)

A system can approach sample-mean outage capacity in at least
two different ways.

1) Adaptive coding:Change code rate and code according
to the current channel quality, i.e., transmit at higher rate
when the channel is good. This requires the transmitter to
acquire the instantaneous capacity of the channel, which
may involve establishment of a feedback link from the
receiver. This method makes possible the achievement of
the average capacity over different channel realizations.

2) Interleaving:Spread the codewords overfading blocks
and use a fixed rate code. This is simpler than adaptive
coding and does not require knowledge of instantaneous
channel capacity. However, this method makes possible
the achievement of the capacity of the average channel
only. It is in general a suboptimum, however, more prac-
tical approach than adaptive coding.

VIII. I NSTANTANEOUSCHANNEL CAPACITY

Assuming the system model defined in Section III and com-
plete receiverside channel knowledge, the instantaneous mu-
tual information from transmitted Gaussian signalto
received signal is given as [16]

(14)

The instantaneous channel capacity is the maximum mutual in-
formation

s.t. tr (15)

where the maximization is done with respect to the spatial pro-
cessing via and power distribution via , with the constraint
of having a given total transmit power .
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Fig. 7. Comparison of ergodic capacity and mutual information for
semicorrelated and uncorrelated channels with and without average channel
knowledge. Note that in the uncorrelated case, having no channel knowledge
is equivalent to having average channel knowledge.

IX. TRANSMITTER-SIDED CHANNEL KNOWLEDGE

To what extend the maximization of mutual information can
be carried out, now depends on the amount of knowledge the
transmitter has about the channel. We will distinguish three
cases.

A. Complete Channel Knowledge

Assuming that the transmitter exactly knows the channel ma-
trix at each transmit time instant, it is well known [16] that
by following the procedure:

• EVD: ;
• set and choose by waterfilling based on ;

the instantaneous mutual information (14) is maximized.

B. No Channel Knowledge

The other extreme is having the transmitter be completely
ignorant about the channel. We follow this procedure:

• set and ;
• hope for the best.

In this scenario, each antenna transmits an independent data
stream with the power being shared equally among the streams.
While for uncorrelated channels most of the capacity achievable
with complete knowledge can be retained, it turns out to be dis-
astrous in the case of semi- or fully correlated channels.

C. AverageChannel Knowledge

While complete channel knowledge may be too demanding a
request in practice, assuming no transmitter channel knowledge
may well be over conservative. In most cases, the transmitter
should be able to acquire knowledge about the channelon av-
erage. Assuming knowledge of the transmit correlation matrix

and following the procedure:

• EVD: E ;
• Set and choose by Water-filling based on

Fig. 8. Geometrical interpretation of a semicorrelated MIMO channel. The
channel is spatially correlated from the transmitter’s point of view, as the
receiver can be reached through just two narrow spatial directions, while from
the receiver’s point of view the channel is uncorrelated due to its rich scattering
environment.

Fig. 9. Comparison of outage capacity and mutual information for
semicorrelated and uncorrelated channels with and without average channel
knowledge.

will maximize E , i.e., the mutual infor-
mation of the average channel. While complete channel knowl-
edge allows for maximizing the average mutual information,
averagechannel knowledge allows for maximizing the mutual
information of theaverage channel. As we shall see in the next
section, this yields close to optimum performance in MIMO sys-
tems in semicorrelated fading environments, where the perfor-
mance may be even better than in the uncorrelated case. The
procedure above is calledMIMO downlink eigenbeamforming
[9].

X. CAPACITY OF SEMICORRELATEDRAYLEIGH CHANNELS

To evaluate the capacity of semicorrelated channels with and
without average channel knowledge, we simulate a
antenna system, where the antennas form an omni-directional
uniform linear array. We use a four-path semicorrelated channel
and an uncorrelated channel for comparison. The four paths
have zero angle spread and random directions of departure. Av-
eraging over both the Rayleigh fading path coefficients and the
random directions of departure is made, where the latter are as-
sume to be uniformly and independentily distributed in the az-
imuthal range of . The Figs. 7 and 9 show the re-
sults. When using long-term transmit channel knowledge, the
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mutual information is computed by evaluating (14) with the ma-
trices and chosen by the method outlined in Section IX-C.
There are four major points we like to stress.

1) If there is no transmit channel knowledge, the spatial
correlations reduce capacity compared with the uncorre-
lated case. This is true both with time diversity (ergodic
capacity) and without time diversity (outage capacity)
available.

2) If averagetransmit channel knowledge is used, the picture
changes: for low transmit powers up to a cross over point,
the semicorrelated channel indeed offers higher capacity
than the uncorrelated one. This is true for both ergodic
and outage capacities.

3) For the semicorrelated channel, the difference between
average and complete channel knowledge is marginal and
disappears for high transmit powers. As this is true even
for the outage capacity, average channel knowledge is in
practical terms sufficient even if no additional time or
frequency diversity are available.

4) Due to full channel rank, the uncorrelated channel, used
at high transmit powers, gets better and better compared
with the semicorrelated case—or so it would seem.
However, note, that any real communication system will
have to use finite constellation-size modulation schemes,
which will limit the achievable capacity. Taking realistic
modulation schemes into account will again change the
picture, as we shall see shortly.

XI. MIMO A NTENNA GAIN

The capacity advantage of correlated fading MIMO chan-
nels at low transmit power can be explained by the notion of
MIMO antenna gain. An attempt to define such an antenna gain
has been done in [1]. However, that definition was made with
single-stream transmission in mind and does not cover the in-
fluence of long-term average transmitter channel knowledge. In
the following, we therefore propose a more general definition of
MIMO antenna gain, which takes both multistream transmission
and different transmitter sided channel knowledge into account.

A. Instantaneous Transmitter Channel Knowledge

Assuming there is no noise at the receiver, thereceivedpower
for a given channel equals

E tr tr (16)

as and . If instead, just a single pair of
receive and transmit antennas was used to form a SISO system,
connecting the th receive with the th transmit antenna, the
receive power would read as

(17)

Taking the average receive power over all possible pairs of re-
ceive and transmit antennas, we define the receive power of a
reference SISO system as

tr tr
(18)

The instantaneous antenna gain is then simply the ratio ,
i.e.,

tr
tr tr

(19)

It clearly depends both on the eigenvalue profile of the instanta-
neous channel Gramian and the distribution of transmit
power over its eigenmodes. As the eigenvalue profile depends
both on receive and transmit properties of the MIMO channel,
there is no decoupling of antenna gain in a receive and a transmit
part. The maximum antenna gain

tr
(20)

is achieved, if the strongest eigenmode only is powered up, i.e.,
tr , which leads to single-stream transmission.

Note, that waterfilling power distribution has this very effect at
low transmit power. To make this more clear, assume that

where are the two largest eigenvalues of the
channel Gramian . In this case, the capacity achieving
waterfilling power distribution will just power up the strongest
eigenmode and the instantanteous channel capacity from (15)
becomes . Because of the normaliza-
tion tr , we can write

tr

which shows a simple relationship of maximum instanteous an-
tenna gain and channel capacity for low transmit powers.

B. Long-Term Average Transmitter Channel Knowledge

In the case, where only long-term average channel informa-
tion is available to the transmitter, we define the MIMO antenna
gain, based onaveragereceive power

E E E tr

tr (21)

as and . A SISO system operated over
two antennas of the same MIMO channel would produce on the
average over different antenna pairs the average receive power

E
tr tr

(22)

Analogously to the instantaneous case, we define the long-term
average antenna gain

tr
tr tr

(23)

which in contrast to the instantaneous case can be decoupled
easily into a receive and a transmit part

and
tr

tr tr
(24)

as the eigenvalue profile of the transmit correlation matrix
is solely a function of transmitter-sided stochastic properties of
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the MIMO channel. The largest antenna gain is again achieved
for single-stream transmission

tr
(25)

Note that , where the lower bound is taken
on for the uncorrelated case, where is a scaled unity ma-
trix. The maximum antenna gain of is obtained
if has a rank of one, which may happen in practice, if the
mobile station can be reached through just one single-dominant
scattering object, with small enough angle spread. We will look
at such a scenario in more detail later. For low transmit powers
the maximum long-term antenna gain has a simple rela-
tionship with the capacity of the average channel, as defined in
Section IX-C. For

with as the two largest eigenvalues of the transmit
correlation matrix, the capacity of the average channel becomes

. Because of the normalization
tr , we can write

tr

C. No Transmitter Channel Knowledge

If the transmitter has no channel state information (CSI) avail-
able, the uniform power distribution leads to
an antenna gain of

(26)

which is solely due to the receive antenna gain. Activation of
transmitter sided antenna gain needs at least long-term infor-
mation about the channel.

D. AverageInstantaneous Versus Long-Term AverageAntenna
Gain

As the channel is a random variable, this is also true for
the instantaneous antenna gain. It is interesting to compare its
expected value E to the long-term average antenna gain

. From a result of [8] the average maximum eigenvalue of
a matrix can be upper bounded, if is a com-
plex Gaussian matrix with zero-mean i.i.d. components

E
tr

(27)

From this follows:

E (28)

that the average maximum instantaneous antenna gain of an
uncorrelated Gaussian channel grows much slower than the
product of the number of receive and transmit antennas. On the
other hand, the long-term average antenna gain of a correlated
fading MIMO channel takes on the value for rank

. This explains the possibility of having performance
gain in the low transmit power region, when dealing with

Fig. 10. Comparison of average instantaneous MIMO antenna gain of an
uncorrelated channel (EfA g) and long-term average MIMO antenna gain
(A ) for different number of transmit and receive antennas (here equal
number of receive and transmit antennas was assumed). Clearly, long-term
average antenna gain in correlated fading can be way larger than the average
instantaneous antenna gain in the uncorrelated case. This happens for highly
correlated fading, where the transmit correlation matrix has significant
(numerical) rank deficiency.

correlated fading MIMO channels. This effect gets stronger
with larger antenna number, as is illustrated in Fig. 10. Please
note, that for low transmit power, single-stream transmission
is capacity achieving, which makes antenna gain an important
issue in the low power region. On the other hand, in the high
transmit power domain, antenna gain is no figure of merrit
anymore, as true multistream transmission is needed to achieve
capacity.

XII. CUTOFF RATE

While capacity is a theoretical limit for infinite block length
codes and zero-error probability, the cutoff rate gives a bound
for finite block length and error probability. Furthermore, it is
computationally less demanding to compute cutoff rates than
capacities for linear digital modulation schemes in MIMO sys-
tems. The cutoff rate is useful because of the cutoff-rate theorem
[13], which states that there exist block codes, with code
word error probability after maximum- likelihood decoding
being upper bounded by provided the bi-
nary code rate is less than the cutoff rate

(29)

where , with is the set of code symbols (input
alphabet) and is the probability density function of the
received signal given the transmitted code symbol. To apply
this to our MIMO system, we consider the data vectoras a
q-ary code symbol, where each component, with
can take on values from a discrete modulation alphabet ,
with . The input alphabet

is the Cartesian product of the individual alphabet
sets, with . By labeling the elements
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of the instantaneous cutoff rate can be
written as [11]

(30)

with . Ergodic, outage, and
sample-mean outage cutoff rates can be computed accordingly
to the discussion in Section VII.

XIII. C UTOFF-RATE PERFORMANCE

Some insight in MIMO system performance in correlated
fading can be gained by evaluating the cutoff rate for realistic
modulation schemes and antenna numbers. We simulate a
system consisting of transmit antennas, separated
half a wavelength apart and receive antennas, that
is operated either over an uncorrelated channel, or over a
one-path semicorrelated channel. The latter could result in
practice from a scenario, where the receiver can be reached
by remote scattering from justone single tall object—like a
church tower or a tall lamp mast—located in adequate distance
from the transmitter. Note, that the transmit covariance matrix
will have numerical rank deficiency, if the angle spread is
small compared with the standard beamwidth of the transmit
array—in this case 60in the bore-side direction. In the semi-
correlated case, we will distinguish betweenno and average
transmitter channel knowledge. The uncoded (raw) bit rate
shall be fixed to bits per use in all cases, as to
implement a given service. For the uncorrelated case, we use
4-quadrature amplitude modulation (QAM) and transmit two
independent data streams—one over each antenna. The same
holds for the semicorrelated case withno channel knowledge,
as the transmitter is not aware of the channel conditions. If, on
the other hand, average channel information is available to the
transmitter, the rank deficiency can be turned into antenna gain.
Hence, just one single data stream will be transmitted over the
dominant eigenbeam. To achieve the same raw bit rate, the
modulation scheme is changed to 16QAM. Fig. 13 summarizes
the test bed, while Figs. 11, 12, and 14 show the following
results.

1) The uncorrelated channel performs best, when no time
diversity is available, as can be seen from the outage
cutoff rate—at least in the interesting range of code rates
( ).

2) The more time diversity is available—i.e., the more
independent channel realizations are available during
airtime—the more attractive the semicorrelated channel
becomes.

3) If there is no transmit channel knowledge, however, the
semicorrelated channel performs worst, no matter how
much time diversity is available.

4) Arming the transmitter with average channel knowledge,
the semicorrelated channel turns out to yield the best per-
formance—in fact, beating the performance of the uncor-
related channel—provided there is enough time diversity
available.

Fig. 11. Outage cutoff rates for the systems in Fig. 13. As outage cutoff rate
describes a situation with no time or frequency selectivity, the only source
of diversity is space. Hence, the uncorrelated channel behaves superior to
the semicorrelated case. Note however, that in this particular scenario, the
correlated channel gets the lead over the uncorrelated one in thehigh rather
than low transmit power region, though not of much practical concern as the
code rates must be larger than about 0.9 (R > 3:5 bits per use), which rarely
is the case for realistic channel coding in wireless communication systems.

Fig. 12. Sample mean outage cutoff rates for the systems in Fig. 13, with a
sample size of ten. The sample mean outage cutoff rate describes a situation
with a certain amount of time or frequency selectivity available—in this case
interleaving over ten coherence times of the channel is assumed. The situation
now gets more in favor of the semicorrelated channel with long-term average
information at the transmitter. Here, clearly, it is the low transmit power region
where the fading correlations get beneficial.

5) Looking at the ten sample-mean outage cutoff rate, we
see, that the amount of ten independent channel real-
izations during airtime, suffices for the semicorrelated
channel to realize all code rates less than about 0.8 with
lower transmit power than required for the uncorrelated
channel.

6) If the number of independent channel realizations during
airtime is further extended, the ergodic cutoff rate shows,
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Fig. 13. Setup for comparing cutoff rates for different fading correlations and transmitter channel knowledge. The raw data rate is fixed to 4 bits peruse.

Fig. 14. Ergodic cutoff rates for the systems in Fig. 13. This is equivalent to
sample mean outage cutoff rate with an infinite sample size, hence, unlimited
amounts of time or frequency selectivity, e.g., provided by perfect interleaving
are available. Here, the semicorrelated channel with long-term average channel
information at the transmitter gives the favorable performance for virtuallyall
transmit powers and code rates.

that the advantage of the semicorrelated channel is still
improving and extended for virtually all code rates.

XIV. CONCLUSION

The capacity of MIMO systems depends on the statistical
properties of the channel and the amount of knowledge about
those properties. While for no transmitter channel knowledge
correlated fading is a curse—especially if no other form of di-
versity, like frequency or time, is available—having the trans-
mitter acquire the channel properties on average, can actually
lead to capacity improvement over uncorrelated fading chan-
nels. This effect can be understood by the notion of antenna
gain, which can be far larger for correlated fading than in the
uncorrelated case. This leads to performance increase of corre-
lated MIMO channels for low transmit powers. In the domain of
high transmit powers, fading correlations decrease performance,
since capacity gains due to multistream transmission and higher
space diversity get the lead over antenna gain. It depends on the
operating point a MIMO system is set up to work in, if fading

correlations are helpful or not. The concept of sample-mean
outage was defined, which allows to compute the influence of
time selectivity on information theoretic measures, like capacity
or cutoff rate. Cutoff-rate analysis showed, that, for linear mod-
ulation schemes, semicorrelated fading channels have potential
to offer superior performance in an interesting transmit power
range, provided a modest amount of time or frequency diversity
is available in addition to pure space diversity.
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