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Abstract— Currently, long-term channel properties are
only used for reduced-dimension processing in eigen sub-
spaces. In this paper, we introduce a prerake at the trans-
mitter in the uplink of a Direct Sequence (DS) CDMA sys-
tem with non-orthogonal codes in order to exploit long-term
channel properties for reduced-dimension Wiener filtering in
Krylov subspaces at the receiver. Simulation results show
that Krylov outperforms eigen prefiltering with and without
previous correlation. Moreover, long-term is better than or
equal to short-term processing except for optimal filtering
in Krylov subspaces assuming multipath environments.
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I. INTRODUCTION

IME dispersive channels and multi-user access in mo-

bile communication systems cause Intersymbol (ISI)
and Multiple Access Interference (MAI). Since equalizers
process the received signal in space and time to restore
the desired signal, the dimension of the observation space
has to be reduced to avoid high computational complex-
ity. Additionally, long-term channel properties like path
delays and angles of arrival can be exploited to decrease
the number of subspace updates as shown by Brunner et
al. [1] who designed reduced-dimension filters in eigen sub-
spaces. Long-term processing employs second order statis-
tics which include the expectation with respect to the fast
changing channel weights (short-term channel property),
where long-term channel properties are assumed to be slow
changing or approximately constant.

The Multi-Stage Nested Wiener Filter (MSNWEF) intro-
duced by Goldstein et al. [2] can be seen as Wiener Filter
(WF) operating in a Krylov subspace [3, 4]. Unfortunately,
the Krylov prefilter depends upon the crosscorrelation vec-
tor between the observation vector and the desired signal
which is zero in the long-term case assuming zero mean
complex normal distributed channel weights.

Our contribution is to combine the channel with a short-
term matched filter either at the transmitter or the receiver
of the communication system. Thus, the crosscorrelation
vector is no longer zero and a long-term Krylov prefilter
can be used to reduce dimension of the observation space.

In the next section, we define the system model and the
receiver structures for the uplink of a DS-CDMA system
with non-orthogonal codes. Before we show simulation re-
sults in Section IV, we derive short-term and long-term
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Fig. 1. System Model of DS-CDMA Uplink

second order statistics for time dispersive and non time
dispersive channels in Section III.

II. SYSTEM MODEL AND RECEIVER STRUCTURES

We consider the uplink of a DS-CDMA system shown
in Figure 1. The i.i.d. symbols sx[m] of user k& €
{1,2,... ,K} are spread with the chip sequence ci[n] of
length x chosen from a set of non-orthogonal codes. Thus,
we have MAI even for flat Rayleigh fading channels. We
employ a time processing short-term matched filter at the
transmitter of user k, the so-called prerake [5]

pelnl = [ gz 2 Mgk, —
Z 1|hkq| Z !

where @), is the number of paths of user k, hy 4 is the zero
mean complex normal distributed channel weight of the g-
th path with delay vy 4, and vy g, is the maximum delay
of user k. The signal xi[n] of user k is transmitted over
the channel

Vk,Q]J

Qe
hk[n] = Z hk,qak,qé[n - l/k’q] € (CN‘*,
g=1

where ay, 4 is the steering vector of the g-th path. IV, anten-
nae receive the signal perturbed by Additive White Gaus-
sian Noise (AWGN) nn].

An alternative system might be obtained by moving the
time processing short-term matched filter to the receiver.
Nevertheless, we consider only preprocessing at the trans-
mitter since matched filtering at the receiver increases com-
putational complexity because of additional space process-
ing due to multiple antennae and the estimation of short-
term channel properties in the full observation space. In
our approach, the receiver estimates only long-term chan-
nel properties in the full observation space whereas short-
term channel properties may be determined in the reduced-
dimension subspace. The main disadvantage of the chosen
system is that short-term channel properties have to be

492



known at the transmitter which is no problem in Time Di-
vision Duplex (TDD) systems if we assume a channel co-
herence time greater than the time between two successive
uplink and downlink slots (see e. g. [6]).

In the following, we deal with two different receiver struc-
tures. The first receiver (cf. Figure 2) prefilters directly the
received signal whereas the second structure (cf. Figure 3)
correlates the received signal with the chip sequence of the
user of interest before applying the reduced-dimension WF.

yln] = T[] = x| = w =5 m]

Fig. 2. Receiver without Previous Correlation
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Fig. 3. Receiver with Previous Correlation

In order to compute the prefilter impulse responses
T[n] € CNo*P and T [m] € CNo*P of length L and L.
(observation length), and the D-dimensional filter vectors
w and w,, respectively, we derive a matrix-vector model
of the channel. We define the IV, L-dimensional space-time
observation vector g[n] = [yT[n],yT[n —1],... ,yT[n —
L+ 1% n = x(m + 1) — 1, and the symbol vector
sp[m] = [sx[m],si[m — 1],... ,sxlm — £ + 1]]T € C*,
L = [(L+ 2v4,0,)/x], of user k, where [z] denotes the
next integer greater than or equal to z. Furthermore, we
define the selection matrix

Sy = [ Omxe 1a Onrsnv—p | € {0, 1} FN)

where 0,7y, denotes the M x ¢ zero matrix and 1,; the
M x M identity matrix. The selection matrix selects the /-
th main diagonal of the M x (M + N) convolutional matrix.

Finally, we obtain the following representation of the
channel:

K
gln] =) Husim] + qln), (1)
k=1
with the complete channel matrix
Hy = HkPkC,iL+2uk‘Qk),
where
Vk,Qy,
Hi= > Struo,) ®hll]
£=0

is the N,L x (L+vy,q, ) convolutional matrix of the physical
channel,

VE,Qp

Pk: = Z pk[é]S(E,L-‘rVk‘Qk,l/kka)
£=0

is the (L 4 vk, ) X (L + 2vy ¢, ) prerake matrix, and

V) = Sy v @er), N=[N/x],
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is the N x A code matrix of user k£ with the code vector
cr = [cr[0],cx[1], ..., cx[x —1]]T € CX of user k. Note that

N=Lfor N=L+ 2v1,Q, - This choice of the code matrix

implies already the upsampling of the symbol sequence.
The operator ‘®’ denotes the Kronecker multiplication.

Without loss of generality, we consider only the detection
of the first user. We set 7 = [T7[0], T"[1],... ,T"[L -
1" e CNL*P D < N, L, T, € CNaleXP D < N, L., in
the same way, and get the estimate $;[m] by applying the
reduced-dimension WF w € CP, i.e.

31[m] = whTHg[n], n=x(m+1) —1.

In the second receiver case, we decorrelate the signal before
reduced-rank Wiener processing and obtain

S1fm] = w TIDYgln), n=x(m+1) -1,

where the decorrelation matrix Dy = C SL) ® 1y, €
CNalxNale and w, € CP. Note that L. = [L/x]. Tt
remains to determine the prefilter matrices 7 and 7 ., and
the reduced-dimension WF vectors w and w...

The known eigen based approach [7] chooses the D
columns of the prefilter matrices 7 and 7. to be the D
eigenvectors of the covariance matrices Ry and D?Rng,
respectively, corresponding to the largest eigenvalues.
Thereby, the second order statistics defined in Section III
include either short- or long-term information which is de-
noted in the following with the superscript “short” and
“long”.

In comparison to that, we choose the D columns of T
and 7 . to be the base vectors of the D-dimensional Krylov
subspaces of the covariance matrices Ry and D} R;D;,
and the crosscorrelation vectors 75 5, and Di'r; ., , respec-
tively (cf. e.g. [3]). The base vectors @1, ®2, ..., p of a
D-dimensional Krylov subspace of a matrix A and a vector
b, i.e.

KP) (A, b) = span {b,Ab, o ,AD—lb} :
may be computed by applying the Lanczos algorithm [8]

H H
Az, — fDi,QAwifliBifz - miflAzl’iflwifl

Ti= HAa:i_l - m?_2Ami_1m1’_2 — x?_lAmi_lmi_ln 2’

if the matrix A is assumed to be Hermitian.
Finally, we define the mean square errors

§(w) = E{[51[m] = safm — u|*}

So(we) = B { sealm] = sifm — i}

where p is the latency, and obtain the D-dimensional WFs
w and w, by solving the following optimization criteria:
w = argmipf(w') and w, = arg mi/nf(wg).
w C

The solutions are

Y,s1 )

-1
w = (THR%hortT) TH,,,short

-1
(T}:-IDll-InghortDlTC) Ti—IDII-I,’,,short

w, Y,S1



where the short-term covariance matrix nghort =
E{y[n]g[n]"} and the short-term crosscorrelation vector
rirort = E{g[n]si[m — p]} are derived and explained in
the next section. Although we compare prefiltering based
on short-term channel properties to prefiltering based on
long-term channel properties, the reduced-dimension WFs

depend always on short-term knowledge.

III. SHORT-TERM AND LONG-TERM CHANNEL
PROPERTIES

The short-term crosscorrelation vector between the ob-
servation vector g[n| and the desired signal s;[m — |, and
the short-term covariance matrix of the observation g[n]
can be written as

r%h;)ft = U§1H1€M+1 and
K
hort 2 H, 2
stj ort __ Zo‘sk”"k,"‘k + 07]1’
k=1

respectively, where short-term means instantaneously
known or estimated channel weights hy, 4. Here, e,41 de-
notes a unit vector with a one at the (u + 1)-th position
and o2 = E{|si[m][*} is the power of user k.

If we consider only long-term channel information, we
have to compute the expectation value over all channel
realizations where long-term properties, i.e. path delays,
angles of arrival and codes, don’t change. Thus, we take
the expectation with respect to the time varying channel
weights h .. We get
long __

2
Tys1 = O0sy Eh1,17~~ yhi,Qq {Hl} €u+1 and

K
long 2 H 2
Rg = ZUSk Ehk,1a~'~ahk,Qk {H;ﬂ"k} -‘ra‘nl.
k=1

Note that in general, R%‘mg and r%ogf are not analytically
computable except for some special cases because the com-
plete channel matrix Hy already includes the convolution
of the physical channel and the prerake. Thus, we have to
build the expectation over the combination of higher order
powers of the channel weights. Consequently, in our simu-
lations presented in Section IV, we estimate the long-term
second order statistics by averaging over several samples
of short-term channel realizations in the general multipath
channel case.

If we assume flat Rayleigh fading channels for all K users,
i.e. Qr =1 and v;; = 0 Vk, we may derive the long-term
statistics analytically. Note that g = 0 in this case. The
matrix-vector model of the channel (cf. Equation 1) can be
simplified to

K

yln] = Z |hi.1] (ex @ @ 1) sp[m] + 7[n],
k=1

where again n = x(m + 1) — 1 but this time L = x.
It can easily be seen that the short-term statistics may
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Fig. 4. BER without Previous Correlation (Flat Rayleigh Fading)

be written as

ront =0l hal (e ®ay;)  and
K

R%hort _ Z ng \hk,1|2 (ck ®ag) (cx @ ak,1)H + 07271.
k=1

The long-term second order statistics may be obtained by
using the variances o7 = BEj, ,{|hx1]*} of the channel

weights. It follows [9]

long ™

2
Ty = nglahl,l (1 ®ai1) and
K
long 2 2 H 2
Ry = E O Ohu s (ck®ak11) (ck®ak,1) +UW1'
k=1

IV. SIMULATION RESULTS

In this section, we present simulation results where we
compare eigen with Krylov based prefiltering and where we
use either short-term or long-term information to compute
the prefilter matrices. Furthermore, we give a comparison
to the optimal WF without prefiltering.

First, we consider flat Rayleigh fading. We transmit
QPSK symbols of K = 4 users with the same power over
Rayleigh fading channels with unit variances. A spread-
ing factor of x = 4 and N, = 4 antennae establish a 16-
dimensional observation space which is reduced to D = 2
dimensions. The channel is assumed to be known. Thus,
the second order statistics can be computed analytically.
Figure 4 and Figure 5 show the Bit Error Rate (BER)
without and with previous correlation, respectively.

It can be seen that Krylov outperforms eigen prefiltering
for both receiver structures and results in similar BERs as
the full-dimensional WF for SNRs below 0dB although it
leads to a tremendous complexity decrease. Besides, long-
term is always better than or equal to short-term process-
ing. The short-term eigen prefilter chooses the subspace
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Fig. 5. BER with Previous Correlation (Flat Rayleigh Fading)

with the largest instantaneous signal power regardless if it
is signal power of the user of interest or interference. In the
long-term case the eigen prefilter projects the received sig-
nal in the subspace with the largest average signal power.
Thus, it gains if we look at the BER averaged over several
long-term and short-term channel realizations.

If we correlate the received signal before applying the
reduced-dimension WF (cf. Figure 5), the BER increases
since we lose degrees of freedom. Nevertheless, the eigen
prefilter gains in this case because the correlation magnifies
the desired signal compared to the interfering signals.

Second, we simulate a multipath fading channel with
Q. = 2 paths for all K = 4 users. The path delays v ; =0
and 142 = 1. Note that we sample in multiples of a chip
duration. We average over 1000 short-term channel real-
izations where path delays and angles of arrival are kept
constant in order to estimate the long-term second order
statistics. Figure 6 shows the results.

We see that optimal linear receive processing without any
prefilter gains compared to the results of the flat Rayleigh
fading channel due to diversity. For SNRs greater than
—5dB, long-term eigen prefiltering produces again smaller
BERs than short-term eigen preprocessing. The reason for
this fact is the same as mentioned above. Again, Krylov
outperforms eigen prefiltering even in the long-term case,
but in time dispersive channels, long-term Krylov pre-
processing is worse than short-term Krylov preprocessing.
This is due to the long-term crosscorrelation vector. Com-
pared to the long-term covariance matrix and short-term
second order statistics, the long-term crosscorrelation vec-
tor includes no information to combat ISI because it is
the expectation of the combination of prerake and physical
channel over all short-term channel realizations. Thus, it
remains only the sum of the squared channel weights at
one time position where the channel matches the prerake
perfectly. The mixed products vanish due to expectation.
In flat Rayleigh fading scenarios, long-term is better than
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Fig. 6. BER without Previous Correlation (Multipath Channel)

or equal to Krylov prefiltering since there exists no ISI.

V. CONCLUSIONS

In this paper, we considered the uplink of a DS-CDMA
system with non-orthogonal codes where we put a pre-
rake at the transmitter in order to reduce dimension of
the WF at the receiver with long-term Krylov prefilter-
ing. Simulation results showed that Krylov increases the
performance compared to eigen preprocessing. Moreover,
long-term is better than short-term processing if we assume
flat Rayleigh fading channels although it reduces computa-
tional complexity dramatically.
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