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Abstract, The plug-ia classification technique has been recently proposed as a new arl of combining
parallel classifiers. The classification of an inpul paltern succeeds if (he output vector of all components
is equal to a valid representation of (he corresponding class-membership. A method is presented how
cach parallel component is optimalty adapted for the beachit of the overall system. lustead of perfectly
filing desired target vatues during the teaining phase, the prescnted methad performs a trade-off 0 the
stability-plasticity dilemma of supervised learning schemes. Using the new approach the expressivity of
a syslem for classification of handwritlen characters has been impreved.
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1 Introduction

In general voting is based on combining various hypotheses as a resuit of multiple training
runs from different random intitial conditions [1], or ones that combine multiple classifiers
that have been constructed by different learning algorithms [2]. A new art of combining
classifiers has been recently proposed [3]. The new approach reduces both the bias-error
and the variance-error of a classification system [4]. The same training algorithm is applied
to a set of different two-class classification problems which are the result of & decomposi-
tion of the original classification problem [5,3,6,7]. The set of two-class tasks implicitely
corresponds to a set of binary target vectors in the layer of the classifier outputs. Each clas-
sifier is related to a single two-class preblem.
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Fig. 1. A classification system of .J parallel plug-in components. The decoder assigns the cutput vector d to ene of the
possible classes (7 by means of minimal distances to tazget vectors.

In this work, the classification system consists of J parallel neural networks and is
applied to a K-class classification task [6,7] (see Fig. 1). Each ncural network NN; is
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fully connected with the input vector & € R". The complete system performs a mapping
from input space R into the decision space R constituted by the outputs of all paral-
lel plug-in compenents NN;. Finally, the decision rule is based on a vector quantizer ap-
proach. The decision making of the decoder is based on the minimal euclidian distance
ming |[d{m} — L]l of a real-valued output vector d € R to the hirary 1arget vectors
tr € {~1.-+1} of all classes C, b € {1.2,..., K}

In a supervised training environment, the target vectors of classes provide the desired
values for all network oulputs according to the correct class membership of the input vec-
tors. The classification of an input vector suecceeds if the output vector is equal to & valid
representation of the corresponding class. On the other hand, it is not mandatory that the
output vector d perfectly fits the target vector £y, especially not if the decision rule depends
on minimal distances to target veclors. In the following, a method s proposed how simul-
taneous online learning of all parailel components oplimaily contributes to the overall sys-
tem. if an output error is detected, each plug-in component is just adapted unti] the union
of all networks significantly contributes to a correct decision of the current input vector, or
in other words, until the output vector matches the so-calied “optimal” target (see ahead).
The presented method follows Widrow’s principle of minimal disturbance [8,9] and may
be discussed in terms of Grossberg’s stability-plasticity dijemma [103.

2 Providing Optimal Targets

The presented training algorithm does aot rely on an error-function approach. Instead of
supervised training as stochastic approximation (see {117}, it is based on empirical risk
minimization [12,13] by embedding of input vectors relative to decision boundaries in the
domain of input patterns in order to remove the current classification error. In each train-
ing step, the algorithm adapts the synaptic weights of all neural networks until the output
d; of cach component satisfies the desired output value for the given input vector [[4]. In
order (0 guarantee the optimal contribution of each plug-in component, a guadratic pro-
gram is performed whenever a misclassified input vector is detected. Thereby an “opti-
mal” target is determined which guarantees a correct classification under the constraint of
Widrow’s principle of minimal disturbance [8,9}. Hence, the search for the optimal target
vector £°7 = d + e is given by

1 .
mein w2-e TCe subjectto 7 €V, (D

whereby V,. represents the corresponding volume element of the correct candidate class
Ch in R7, constituted by the tesselation of the decision space by all target vectors and the
minimal distance decision rule. A more applicable notation of the optimization problem is
obtained by

1 . .
min 5° "Ce subjectto i —{d+e) n; <0 (2)

t+ (0.5 — u) - £ ny. Here, ny is the normal vector on the decision boundary between the
volume element V; of an arbitrary target vector  and the volume element V), of the can-
didate target vectar &5, of the current input patiern . The value n{t, — t:)7 n, represents
the desired distance of an optimal non-binary target to the respective /-th decision bound-
ary. It is determined by a fraction > 0 of the distance between #; and £ In the least

forall 7 & {1,2,..., K3/ kY with g o= (b — 8) /[t — tall2 and v = ({05 + 1) -
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robust case, if 1) ;= (), the reguired distance to the decision boundary vanishes. The matrix
C = C7 defines the metric for measuring disturbances At in the decision space. For the
present, the matrix C' is considered to be the identity matrix J. Using Lagrange multipliers

M0 A >0, A 20, the Lagrange function of the optimizatjon problem is given
by
1 . N »
L((’:‘,A;,f\g ..... /\l}’\’) LT —2-6 fCe—i—Z,\{ (?';—{d -+ G)Iﬂ.{) . (3}
=1
1k

According to the Kuhn-Tucker conditions for a stationary point ( (-"*“1? L= r.,muf]\{ L= of
} ;
(3), it follows

N
e:=C"Y M\ng (4)
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Therefore, with (4) in (3) the Lagrange function of the dual optimization problem max £{A)
is equal to

1Y KoK N
. 1 . .
LX) = E Ay — 3 E E /\1/\]:_71,1 C_ETLK_ - E Ard ITL{, (5}
o =i =

with A; = 0,1 # k. Any component { = k of the gradient of the dual is given by

aL s -

51—[ = — n,TC NA - nlf d. (6)
where N = (1, ..., Mgy, My, oL, ) s the J x {/{ —1) dimensional matrix of nor-
mal vectors to all decision boundaries of the volume clement Vieand A = (A, ... Ay,
Mesteo o An)T is the K — 1 dimensiona) vector of ail feasible Lagrange multipiiers. The

solution of the optimatl non-binary target vector is calculated by (4). The required Lagrange
multipliers are iteratively obtained by

oL
AN 1= max (m,\?M, Tt o!([} : @

The maximum operator guarantees the consideration of the given box constrain(s A +
Adp > 0forall ] # k. The optimal value of the step-size oy is derived by dr{,{((;:;) I
and is equal to o 1=

ni C=in; "

The solution ¢° o% the quadratic programming is called optimal target vector of the
current misclassified input pattern . The vector £ is projected to the coordinate axes of
the decision space R, thus providing optimal non-binary target values 2, £, 17"
for alt parallel components.

The quadratic programming in (1) realizes the principle of minimal disturbance Hefly
in the space of output values R, However, the space of weight parameters (of NN;) is
considered to be the more relevant domain for applying the principle of minimal distur-
bances because all inference from the learning process is only memorized in the weights
of the neural network layers. In order to apply the principle to the previous layers of the
complete network, the disturbances of components in R are weighted by the factor i
which is introduced to represent the impact of possible disturbances in the decision space
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to the previous layer. Therefore, a modified metric for the measure of distances is intro-
duced in decision space. Then, the matrix C is defined by

z
¢ = (1 b ) . ®

Hw il
.. - . . . T . .
The definition is derived from a local approximation w; + %}édt ; of synaplic weight pa-
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) _ " S, . : s, . H " i . .
rameters, whereby Hwi + M(TT!‘:LA{-#; “2 < fhw;ils -;ﬂf;lfjﬁq, according to required changes

in decision space for {itting the current output vector with the desired target vector. The
definition still holds for non-continuous decision functions of the individual parallel com-
ponents. The value of ¢;; is thus numerically derived from an additional previously per-
formed training step based on the identity matrix, i.e. e and Aw; are firstly caiculated for

¢’ = I and then ¢;; is determined by
2 2
1 Aw; 1
;i = s | lwsllz + “—f ) = (1 g e ) , ®)
“ Ik ( ’ ) sl 5

At
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3 Theoretical Aspects

The proposed algorithm for simuitancous training of all parallel components of the sys-
tem represents an optimal trade-off to the stability-plasticity dilemma [10] of neurai net-
work learning and combining. How can a learning system be stable enough to remem-
ber previously learned patterns, and yet plastic enough to learn new ones? Whereas su-
pervised training by means of backprogagation methods answers the stability-plasticity
question in terms of learning rates (see [11]), the presented approach realizes a compro-
mise to the dilemma as fotlows: first, the minimal disturbance principle in the parameter
space of neural components as well as the the correct embedding of the input vectors after
each training step guarantee the stability of already learned responses. On the other hand,
applying the principle to required changes of the output vector by searching for the optimal
target vectors improves the plasticity of the overall classification system.

The improved expressivity of the classification system is also due to the shattering of
the complete decision space by the volume elements of possible ¢classes. On the contrary,
for the original binary targets, the definition of volume elements Vi follows the definition
of the V), however, +; are zero and the normal vector 1; € R is paratlet to the j-axis of the
cartesian decision space R and points into the direction of the target vector £;. Therefore,
yolume elements in the binary case are only subsets of the volume elements based on the
vector quantization approach. Therefore, the joint set of ali volume elements V27 cannot
constitute a tesselation of the decision space.

A proof of convergence for the introduced algorithm is not provided. The online fash-
ion of training and the overall use of non-continuous functions within the neural networks
makes a proof practically impossible. However, if we employed an appropriate architec-
ture of the neural plug-in classifiers, together with the designated backpropagation algo-
rithm {11,151, the idea of a proef would be based on the different instantaneous error func-
tions using the original binary target vectors or providing real-valued optimal targets. In
both cases, under the assumption of the squared error of e, the increment or decrement of
the synaptic weight parameters of a single component would be proportional to {t; — ;) -
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frd ] ad,; . . .
Fas 01 (17— dd;}- £55 Thus, for any misclassified output vector d, a feasibel robustness
1 7

of 0 < 0 < 0.3, and bounded output vectors, the gradients would only differ by a positive
£ . s . . ..
factor J,J—_u&fi < 1. Obviously, providing optimal targets instead of original targets would

preserve any convergence properties if applying a standard backpropagation algorithn,

4 Results and Conclusion

Both methods of distributing supervised training of the overall system to single plug-in
components were thoroughly compared. The first approach used the origina binary target
vectors for the training of all components. In the sccond case, the presented algorithm for
providing optimal targets was applicd for cach misclassified input pattern. The definition
of target vectors £ € {—1,+1}"" with & € {1,2....,10} was based on the one-per-
class approach (1-out-of-10). The target vectors represented 10 classes of inpul vectors
corresponding to exfracted features @ € R or & € R'™ of 10 x 2000 handwritien

characters.
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Fig. 2. Weight distorbances during the training process for binary targels by £5 and based on optimal non-binary targets,
where c;; is constantly cqual o ¢, = 1. The distances 7 of the optimal targets from refevant decision boundaries were
determined by n = 0.1,

Fig. 2 shows the disturbances of synaptic weight parameters during the training process.
Providing optimal targets reduces the required changes of the weight parameters Aw about
a factor 10 in each onfine iteration step compared with using binary targets. Hence, the new
algorithm more supports the principle of minimal weight changes.

A further comparison of both methods is based on the plasticity or expressivity of the
classification system applied to the given classification task. Therefore, 30 different sets of
training patterns & & R* of handwritten characters with increasing number of elements
from 370. .. 440 and 54G . .. 610 were generated. The classifier was assembled by 10 par-
allel two-layer neural networks each consisting of 3 neurons in the first layer and overall
120 weight parameters. For any number of training samples the supervised (raining was
repeated 20 times starting from different initial conditions. Using the one-per-class cod-
ing of target vectors, the capacity of both methods of providing targets is presented in Fig.
3. The capacity of the classifier was defined by o = ﬂﬁ%i The value mp_g 5 equals
the cardinality of the set of training vectors for which a perfect solution of the complete
systerm exists with probability of P == 0.5. The number 123 denctes the aumber of free pa-
rameters in each parallel component. The capacity of both cases is given by g = 341
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and o = 4.63. Hence, the expressivity of the classifier is approximately 1.4X Jarger
providing non-binary targets instead of binary ones.

E

10¢

an binary

60

50 . : -
"optimal

a0

0 400 450 500 550 560 5340 m

Fig. 3. Frequency of error-free (raining rans versus the number of clements ne in the tealning set. The curves are bascd
on averaged values from 20 independent training runs.

Table 1 presents a comparison based on the training results and the generaiization of
both approaches. The overall number of weight parameters depends from the input dimen-
sion and the system architecture and varies from 2030 to 5830. The robustness of the em-
bedding of patterns by the online algorithm was given by 5 = 0.25. In the case of n. = 40
inputs and b = 5 neurons, the generalization ability of providing optimal targets was su-
petior (8.01%) to binary targets (9.61%). In the case of 535( free parameters (n == 194
mputs and & = 3 neurons) the best result was achieved by the binary modus of provid-
ing targets (2.69%). The non-binary case was only marginally worse {2.75%) becanse of
overtraining effects that were caused by the extended expressivity of the classifier which
had been applied to a constant number of training vectors,

Table 1. Error rates (ne rejection) after the training of 10 x 2000 training patterns (10 > 2000 test patterns). The system
configuration is defined by .J x K = 10 3 10. Each parallel component consists of h = 5orh = 3 perceptrons of 40
or 194 inputs. The results present the averaged values of 19 independent training runs (200 x 1600 training epochs %
itcration steps). The final error rates on the training data are given in parenthesis,

{ % of parameters binary optimal |
[2050 = 10 % & x 43 |[0.61% (5.68%)[[8.01% (3.70%))
(5850 = 10 % 3 % 105/[2.69% (0.00%)}|2.75% (0.00%)|

Finally, Table 2 presents the number of required training steps for the proposed meth-
ods. Resuits are only presented for the second case of Table 1 because in the case of 40-
dimensional feature vectors the training does not terminate within the range of the max-
imal number of training steps. The entries in Table 2 are equal to the averaged number
of required iteration steps which the training algorithms takes to eliminate any error in the
training sct. In each step of the training process, the algorithm solves a quadratic optimiza-
tion problem. Because of the simplicity of the quadratic problem in (2} the solution takes
only a few vector-matrix operations in each step.
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"Fable 2. Number of requized training steps (x 1000) until any error in the set of traing samples is eliminated.

{Version of 2050 = 10 x & x 41 parametersfhinaryJoptima|
[  of steps 2271 1487

The new method of providing optimal representative targets during the supervised train-
ing of the combined system obviously improves the plasticity of the classifier. In cases
where the expressivity of the system is satisfactory to the given task, the principle of min-
imat disturbances of synaptic weight parameters and the perfect embedding jn each itera-
tion step guarantee the generalization of the infered decision ruie.
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