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SUMMARY

We derive the minimum mean square error (MMSE) solution to vector precoding for frequency flat multiuser
scenarios with a centralised multi-antenna transmitter. The receivers employ a modulo operation, giving the
transmitter the additional degree of freedom to choose a perturbation vector. Similar to existing vector
precoding techniques, the optimum perturbation vector is found with a closest point search in a lattice.
The proposed MMSE vector precoder does not, however, search for the perturbation vector resulting in the
lowest unscaled transmit power, as proposed in all previous contributions on vector precoding, but finds an
optimum compromise between noise enhancement and residual interference. We present simulation results
showing that the proposed technique outperforms existing vector precoders, as well as the MMSE Tomlinson-
Harashima precoder, and compare the turbo-coded performance to the capacity of the broadcast channel.

Copyright © 2007 John Wiley & Sons, Ltd.

1. INTRODUCTION

For the broadcast channel scenario [1] (i.e. decentralised
receivers), the application of pure precoding, where the
receivers only apply a simple scalar weighting, is necessary,
since the joint optimisation of transmit and receive
filters as in References [2—4] is impossible because the
received signals cannot be transformed jointly by a non-
diagonal matrix filter. Linear precoding (e.g. References
[5-7]) is attractive due to its simplicity, because the data
signal is linearly transformed at the transmitter and the
received signal is only weighted with a scalar before
quantisation.

However, we will focus on non-linear precoding in this
paper due to the superior performance compared to linear
precoders. One type of non-linear precoding is based on
the minimisation of the bit error probability (BEP) as
in References [8, 9]. Unfortunately, analytical solutions
exist only for special channel matrices [9]; otherwise,
the non-convex optimisation has to be solved numerically
[8]. Thus, we do not consider BEP minimisation in

this paper.

Instead, we focus on systems with modulo receivers (e.g.
Reference [10]), where a modulo operator is applied to
the weighted received signal prior to quantisation. If the
modulation alphabet is a subset of the fundamental Voronoi
region of the lattice A corresponding to the modulo operator,
correctly estimated symbols are not affected by the modulo
operator, since the modulo operator maps any element of the
fundamental Voronoi region to itself (e.g. Reference [11]).
Due to the property of the modulo operator that any element
of a coset of the lattice A is mapped to the representative of
the coset in the fundamental Voronoi region, the transmitter
gains the degree of freedom to choose any element of
the coset, whose representative is the data vector to be
transmitted, as the desired value for the modulo operator
input. This degree of freedom is employed by the scheme
of Hochwald et al. [12], which is similar to shaping without
scrambling for dispersive channels (cf. e.g. Reference [11]).
Hochwald et al. proposed to use a linear transformation at
the transmitter whose input is the desired element of the
coset, that is the sum of the representative of the coset (data
signal) and an element of the lattice A (perturbation signal).
First, the linear transformation is chosen and kept fixed,
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for example following a zero-forcing criterion resulting in
the weighted channel pseudoinverse. In a second heuristic
step, the perturbation signal is optimised to minimise the
transmit power [12]. Since the lattice search necessary for
finding the perturbation signal is closely related to the
sphere decoder (e.g. Reference [13]), the algorithm was
named sphere encoder [12]. However, we follow Reference
[14] and simply call the scheme vector precoding. Note that
the prominent Tomlinson-Harashima precoding (THP, see
e.g. References [11, 15-21]), which is also based on modulo
operators at the receivers, is a constrained type of vector
precoding, since the elements of the perturbation vector are
computed successively. We can therefore expect THP to be
outperformed by vector precoding.

Motivated by the result that zero-forcing linear precoding
is always outperformed by MMSE linear precoding (see
References [6, 7]), Hochwald et al. also proposed a variant
of vector precoding with a regularised pseudoinverse as the
linear transformation at the transmitter in Reference [12].
Again, the perturbation signal was found by heuristically
minimising the transmit power. As noted in Reference [12],
the choice of the regularisation in the pseudoinverse is an
open question and the results were obtained with a trial
and error procedure. Thus, most publications on vector
precoding concentrated on finding an appropriate linear
transformation at the transmitter, but kept the heuristic of
minimising the transmit power. In Reference [22], the linear
Wiener Filter (WF) precoder was used as transformation
at the transmitter and a similar scheme was applied to
frequency selective MIMO systems in Reference [23]. In
Reference [24], a signal-to-interference-plus-noise-ratio
(SINR) criterion was used to find the linear transformation
at the transmitter, but the power of some intermediate
signal was minimised instead of the total transmit
power.

To circumvent the computational complexity necessary
for vector precoding, two suboptimum approaches have
been proposed. In Reference [14], Windpassinger et al.
simplified the closest point search in the lattice necessary
for finding the perturbation signal with approximations by
Babai [25], a technique known as lattice reduction aided
detector atthereceiver side [26]. Meurer et al. [27] proposed
to split the symbols into groups to reduce the dimensionality
of the problem for the closest point search.

Windpassinger [28] reported that the regularised vector
precoder of Reference [12], which was considered to be
the best vector precoder, is outperformed by MMSE-THP
[21], even though THP computes the perturbation signal
successively. This non-intuitive result can be explained by
the heuristic of using two conflicting optimisations for
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the design of the linear transformation (minimisation of
MSE or maximisation of SINR) and the perturbation signal
(minimisation of the transmit power). Therefore, our aim
is to find a single optimisation for vector precoding from
which both, the linear transformation and the perturbation
signal, result.

We will show how the well-known optimisations
developed for linear precoding (e.g. Reference [7]) can
be modified so that a design of the non-linear vector
precoding based on a single optimisation is possible. Such
a transformation will be performed for the optimisations of
the popular zero-forcing linear precoding (e.g. References
[5, 29-31]) and of the superior MMSE or Wiener filter
(WF) linear precoding (e.g. References [7, 32, 33]). Neither
do we consider matched filter precoding [34, 35] which is
interference limited, nor linear precoding based on the SINR
criterion (e.g. Reference [36]), because its application to
non-linear precoding techniques still has open questions
(see Reference [37]).

The resulting vector precoding optimisations allow any
structure of the transmitter, that is we do not restrict
ourselves to transmitters where the sum of the data signal
and the perturbation signal is transformed by a linear filter as
in Reference [ 12]. Nevertheless, as we will see, the optimum
structure in the MMSE sense is of this form.

Our contributions are as follows.

1. We base vector precoding on one optimisation, instead of
the state-of-the-art approach to employ two conflicting
optimisations [12]. However, the single optimisation
leads to a two-step procedure for vector precoding. First,
the perturbation vectors are obtained by a nearest point
search in a lattice. Second, the linear transformation is
computed. Note that finding an optimisation for vector
precoding is not only crucial for a deeper understanding
but also for application, since the assumption of perfect
channel state information (CSI) at the transmitter does
not hold in reality. If the CSI is erroneous, a robust
precoder design is necessary (as in e.g. Reference [38]),
where a conditional mean has to be applied to the cost
function of the optimisation for full CSI.

2. Motivated by the information theoretic results of Erez
and Zamir in Reference [10] (see also Reference [39]),
we use the mean square error (MSE) as the figure of
merit to find a regularised vector precoder.

3. We derive MMSE vector precoding, that is we find a
closed form solution for the necessary regularisation
in the pseudoinverse. Interestingly, the structure of the
linear transformation at the transmitter is independent of
the choice for the perturbation vector.
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4. We show that the state-of-the-art minimisation of the
transmit power to obtain the perturbation vector is not
optimum in the MMSE sense, that is for regularised
vector precoding [12].

5. By including a zero-forcing constraint, we find that the
scheme of Reference [12] without regularisation is the
solution for zero-forcing vector precoding. Therefore,
we show that the heuristically introduced rule for finding
the perturbation vector by minimising the transmit power
is optimal for zero-forcing vector precoding. Moreover,
it is clear that our new MMSE vector precoding is
superior to the variant in Reference [12], since MMSE
vector precoding does not have to fulfill the zero-forcing
constraint.

6. With simulations, we demonstrate that MMSE vector
precoding outperforms all other vector precoding
variants and in particular, is superior to MMSE-THP for
any SNR contrary to the state-of-the-art vector precoders
[12].

This paper is organised as follows: first, we review some
concepts of optimised linear precoding, which will prove to
be applicable to vector precoding as well. Then, in Section 3,
we introduce the modulo operator at the receivers and show
how the additional degree of freedom can be exploited by
the precoder. In Section 4, we derive the MMSE vector
precoder and finally compare its performance to that of
existing schemes in Section 5.

1.1. Notation

Throughout the paper, we will denote vectors and matrices
by lower and upper case bold letters, respectively. We
use E[e], (o)*, (o)T, (o)f, tr(e), Re(e) and Im(e) for
expectation, complex conjugation, transposition, conjugate
transposition, the trace of a matrix, the real part and the
imaginary part, respectively. | e | denotes the floor operator,
which returns the largest integer that is smaller than or equal
to the argument. The M-dimensional zero vector is 0,7 and
the N x N identity matrix is Iy. We use the same definition
of derivatives of functions with complex arguments as in
Reference [40]:

o) _ 1 ( @ @ )

9z 2 \3Re(z) 7aIm(2)

Furthermore, we define the derivative of a scalar function
with respect to a vector or matrix to be a vector or matrix
of the same dimensionality, containing the derivatives with
respect to the elements of the vector or matrix.
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2. LINEAR PRECODING

In the course of this paper, the concepts known from linear
precoding techniques will turn out to also be applicable to
vector precoding to a large extent. We therefore begin by
reviewing the principle of linear precoding for frequency
flat multiple input multiple output (MIMO) channels.

In our scenario, the transmitter employs N, antennas,
while the B decentralised receivers have a single antenna
each. The transmitted symbols at the N, antennas are
collected in the vector

ylnl = [vilnl. ... yw,[nl] " € CNe

and the received symbols of the B users are collected in the
vector

x[n] = [xin], ..., xpln]]" € C®

The frequency flat channel is represented by the
matrix H € CB*M containing the complex transmission
coefficients from each of the transmit antennas to every
receiver. Furthermore, the B receivers experience additive,
stationary, zero-mean noise, collected in the vector g[n] €
CB. We define the spatial noise covariance matrix as

R, = E [lnln"[n]] € C*** (1
The received signal consequently evaluates to
x[n] = Hy[n] + nln] € C* 2

In order to be able to transmit an independent stream of
data symbols to each of the B users, the transmitter forms
the transmit symbols y[n] by linearly combining the data
symbols si[n], ..., sp[n]:

yln] = Ps[n] € C™ 3
where P € CNa*8 is the precoding matrix, the vector s[n] =
[s1[n], ..., sgln]]T € AB with the covariance matrix

Ry =E [s[n]s"'[n]] e CB*#

contains the data symbols and A denotes the set of all points
in the symbol constellation. In doing so, the transmitter must
fulfill a transmit power constraint

E [Iytnl3] < o )

The receivers apply a common gain control factor g € RT,
which can be acquired for example by means of training
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Figure 1. System model for linear precoding.

B

symbols, to the received signal. With Equations (2) and (3),
the estimates of the data symbols at the receivers are

§[n] = gHPs[n] + gy[n] € C® )

where the vector §[n] = [51[n], ..., $z[n]]* € CB contains
the estimates, which are finally passed on to the channel
decoder. The system model for linear precoding is depicted
in Figure 1.

The precoding matrix P can be designed according to
different criteria. We begin with the most obvious approach,
the inversion of the channel or zero-forcing (ZF) solution [5,
6,29]. Here, we would like the cascade of precoder, channel
and scaling by the receiver to be the identity matrix, thus
allowing no interference between the users. If more than one
solution is possible, we wish to further minimise the power
of the amplified noise. This leads us to the optimisation
problem

{PlinzF, glinzr} = argmin E [llgﬂ[n]ll%]
{P.g}
st: gHP =TIz and E {||Ps[n]||%} <E; (6)
The solution to this problem is
_ -1
Plinzr = ghnlszH (HHH) @)

where

1
Slinzk = || —tr (HHY)~'Ry)
Etr

so that the transmit power constraint is fulfilled with
equality [7]. Due to the inversion of HHY, it is necessary
that B < N, for the solution to exist.

Another approach is the minimisation of the mean square
error (MSE) of the estimates at the receivers §[n] with
respect to the desired symbols s[n], the minimum mean
square error (MMSE) or Wiener filter (WF) solution.
Here, we do not specifically require the interference to be
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cancelled completely.

(Prawr. ginwr} = argmin E | [5{] — (]|
P.g}

st: E [||Ps[n]||§} < Ex ®)

The solution (see References [7, 32, 41])

_ —1
Piinwr = glinlw]:HH (HHH + 513) 9

is somewhat similar to the ZF solution in Equation (7),
the inverse, however, is regularised with an identity matrix
weighted with the factor

_u(Ry)

§
Ey

(10)

The scalar gjipnwr is chosen to fulfill the power constraint
with equality.

It is well researched and understood that the MMSE
precoder always outperforms the ZF solution in terms of bit
error rate (BER). An intuitive explanation is that the WF
optimisation problem of Equation (8) becomes the ZF opti-
misation problem of Equation (6) if the additional constraint
gHP = Ip is introduced: when the constraint is plugged
into Equation (5), the MSE simplifies to E[||gn[n] ||%].
Since the ZF problem is essentially the same as the WF
problem with additional constraints that must be fulfilled,
it becomes clear that less degrees of freedom are available
for minimising the influence of the noise. While the WF
precoder does not completely cancel interference between
the users, it finds an optimum compromise between the
noise gain and the residual interference. For a more in-
depth discussion of linear precoders and the derivation of the
solutions in Equations (7) and (9), the reader is referred to
Reference [7].

3. PRECODING FOR MODULO RECEIVERS

We now introduce a simple non-linear operation at each
of the receivers, which will later prove to enable great
performance gains: the modulo operator M(e), defined as

M(b) = b — {Rer(b) n IJ T =] {Im(b) 41

> 2JTEV
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where the parameter 7 is the modulo constant and

T T T T
v={reC|-J <Re@ <3 -3 <m@ <3}
Put in words, the modulo operator maps both the real and the
imaginary part of the operand to the interval [—t/2, 7/2),
by adding integer multiples of 7 and jt. For example for b =
2.2 — 3.1jand t = 4, applying the modulo operation results
in M(b) = —1.8 + 0.9]. In this case, the modulo operator
added —4 +4j to b.

We can equivalently think of M(e) as an operation
that maps any element of a coser of the lattice A to the
representative of that coset in the fundamental Voronoi
region V of the lattice A, where A =1Z + jtZ (e.g.
Reference [11]).

We define the modulo operation applied to a vector b =
[by, ... ,bK]T e CX to be

M) = [M(by), ..., Mbg)]" € VK

that is the operator is applied elementwise. Again, the
modulo operation applied to a vector can be thought of
as mapping the element of a coset of the lattice AX to
the representative in the Voronoi region VX, where AKX =
tZX +jrzZK.

Now let us assume that each receiver applies this modulo
operation after scaling the received signal. To ensure that
correctly estimated symbols are not influenced by the
modulo operator, we require A C V—that is the symbols
must be elements of the fundamental Voronoi region V—
since M(b) = b for b € V. This requirement can be fulfilled
by proper choice of the modulo constant t. As a simple
example scenario, we consider BPSK modulation and a real
valued channel. The data symbol for a single receiver can
be either +1 or —1; the modulo operation, however, also
maps the values +1 + 7, +1 — 7, +1 + 27, etc. to +1, as
long as T > 2, to ensure {—1, +1} € V. Therefore, if the
transmitter would like to transmit the data symbol +1 to a
certain user, it now has the additional option of transmitting
+1 + kv instead, where k € Z. This can also be thought of
as a periodic extension of the symbol constellation [11].
When transmitting to B users, this means that the vector
of data symbols for all users may be superimposed with
any B-dimensional vector containing integer multiples of
7, henceforth referred to as the perturbation vector [12].
For complex valued transmission, the perturbation vector
may be any lattice point of AZ.

How can the transmitter benefit from this additional
degree of freedom? One well-known precoding scheme in
which the receivers employ the modulo operation is THP.
The THP transmitter for a frequency flat MIMO channel

Copyright © 2007 John Wiley & Sons, Ltd.
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(see e.g. References [18, 19, 21]) employs a successive
interference cancellation procedure, in which the data
streams are precoded one after another. In principle, the
first symbol is transmitted unaltered; the second symbol
is transmitted taking into account and subtracting the
interference that will be caused by the first symbol, and so
on, until the last symbol is transmitted with compensation
for all other symbols. Every precoded symbol is also
processed with the same modulo operator as is applied by
the receivers. Thus, the amplitude of the transmit signal is
strictly limited.

Similar to the linear precoders, THP can be designed
according to the ZF criterion, in which no interference
between users is allowed, or the MMSE (or WEF)
criterion, in which a compromise between interference and
noise enhancement is found. Again, ZF-THP is clearly
outperformed by WF-THP (see Section 5 and Reference
[21]). The complexity of computing the feedforward and
feedback filter for THP is cubic in the number of users,
the precoding of the data symbols itself requires quadratic
complexity [42].

Note that the choice of the perturbation vector in THP
is a byproduct of the interference cancellation procedure:
each time a precoded symbol passes the modulo operator,
an integer multiple of both 7 and jt is added to the respective
component of the symbol vector; together, these extra
summands constitute the perturbation vector. In contrast,
we refer to precoding schemes that directly determine the
perturbation vector as vector precoding schemes.

A very straightforward design for a vector precoder is
shown in Figure 2 (cf. [12]). First, the vector of data
symbols s[n] is superimposed with the perturbation vector
a[n], then the resulting vector is processed by a linear
precoding matrix P. An obvious heuristic approach for the
case B < N, is to employ a linear ZF filter (cf. Equation 7)
that removes all interference

Pyp = gysHY (HHY) ' € CNaxB (11)

s [n]
M()

[ P yln] [ [
a[n] nin]

Figure 2. Heuristic vector precoder with perturbation and linear
filter.
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and to find the perturbation vectors that minimise the
unscaled transmit power

arg min
aln]etZB+jtZB

— 2
aveln] = B (HHY) ™ (sln) + aln))|

12)

thus being able to fulfill a transmit power constraint as
in Equation (4) with a maximised scaling factor g\_,f) in
Equation (11), resulting in minimised noise amplification
at the receivers.

The discrete optimisation problem (12) is a closest
point search in a lattice. The lattice consists of all vectors
HYHHY)'a[n], where a[n] € 1Z% + jtZ8. The matrix
tHHEHHY) ! is called the generator matrix [13]. Of all
points in this lattice, we are looking for the one with the
lowest Euclidean distance to the point —HH(HHH)’ls[n].
The vector a[n] corresponding to that closest lattice
point will then be the perturbation vector ayp[n]. Closest
point searches in lattices are a well-researched problem,
the solution to which can be found with a number of
algorithms, most notably the Schnorr—Euchner search
strategy [43]. For a comprehensive overview, the reader
is referred to Reference [13]. A very similar problem is
the implementation of the maximum likelihood receiver
for frequency flat MIMO channels as a sphere decoder
(e.g. Reference [44]). The sphere decoder performs a
search for the symbol constellation point closest to the
received symbol vector. For QAM symbol constellations,
the constellation points are points of a lattice, so the sphere
decoder essentially performs a closest point search in a
lattice. However, there is only a finite number of valid
constellation points, consequently not all lattice points
must be incorporated into the search. Nonetheless, the
complexity of the sphere decoder grows exponentially with
the number of users [45—47]. The lattice search problem
at hand is even more complex than the sphere decoder,
since all lattice points are possible solutions. In general,
the complexity of a lattice search problem has been shown
to be exponential in the number of users [13].

Determining the scaling factor gyp for which a transmit
power constraint as in Equation (4) is fulfilled is
unfortunately not possible at filter design time, as the
statistics of the perturbed symbols are unknown. We are
forced to process blockwise, that is a block of data symbols
must be precoded without scaling (e.g. by setting gyp = 1),
then the transmit signal has to be scaled to fulfill the power
constraint on average for the block before the signal is
actually transmitted.

Copyright © 2007 John Wiley & Sons, Ltd.
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This vector precoder was proposed in Reference [12] and
examined in References [14, 22]. In Section 4.3, we show
that it is the zero-forcing solution to vector precoding. As
can be seen in Section 5, it performs significantly better than
ZF-THP.

The proposed precoder cancels interference between the
different users completely. For both the linear filters and
THP, it has been shown that allowing some interference
can improve the performance significantly (e.g. References
[7, 21]). As can be seen in Equation (9), this improvement
is achieved by merely inserting a regularisation factor in
the pseudo-inverse. By the same token, an improved vector
precoder was also introduced in Reference [12], with the
linear precoding matrix

Pregvp = grobypH (HH +215) 7 e Y8 (13)
The criterion for the choice of the perturbation vectors was
also the minimisation of gregvp:

AregVP [n] =

arg min

H H -1 2
B (Y 1) 6001 + aln))|) (14)
alnletZB+jrZB 2

The best regularisation factor ¢ was however found by
trial and error to be significantly lower than £ in Equation
(10) and also to be different depending on the number of
users B (cf. [12]). Furthermore, simulation results show the
performance of the regularised vector precoder to be worse
than WF-THP for low to medium SNR (cf. Section 5).

4. OPTIMISED VECTOR PRECODING

In this section, we will introduce a framework for optimising
the vector precoder according to different criteria. We derive
the WF vector precoder, which is different from the above
mentioned regularised technique (Equations 13 and 14)
and show that the ZF vector precoder is identical to the
interference cancelling vector precoder discussed in the
previous section (Equations 11 and 12).

4.1. System model

In contrast to the previous sections, we do not impose
a specific structure on the precoder (see Figure 3). We
consider the transmission of one block of data symbols of
length Np, during which the scaling factor g is constant. We
assume that the data symbols of the block s[1], ..., s[Ng]
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DOI: 10.1002/ett



MMSE VECTOR PRECODING 225

s[n] yinl H din] §[n] before the modulo operator d[n]. Clearly, when d[n] is a
—7—{ Precoder :)ﬁ M() [=>  good approximation of d[n], §[n] will also be close to s[n].
B N, B glp Incorporating the non-linear effect of the modulo operator
nin] into the cost function, on the other hand, would make

Figure 3. System model for vector precoding optimisation.

are known to the precoder. Based on the data symbols, the

precoder chooses the transmit symbols y[1], ..., y[NB].
The scaled received symbols at the receivers
d[n] = gHyln] + gyln] € C* (15)

are processed by the modulo operators, yielding the
estimates

8] =M (J[n]> c VP

which are passed to the channel decoders. Again, the
modulo constant T must be large enough so that A C V.

Similar to the linear filters in Section 2, we impose a
transmit power constraint. As the statistics of the transmit
symbols are unknown, we average over the block instead of
taking the expected value:

L
— > Iy} < Eq (16)
NB n=1

The precoder has to perform two tasks:
1. It must choose the virtual desired symbols
d[n] = s[n] + a[n] € C*

forn = 1,..., Ng, where a[n] € tZ5 +erB. In other
words, it chooses which of the infinitely many vectors
d[n] of the coset of AB with the representative s[n] € VB
it will try to approximate. All members of this coset are
mapped to s[n] by the receivers’ modulo operators. We
must keep in mind that the choice of the perturbation
vector a[n] in general may have an influence on the MSE.
2. It must determine the transmit symbols y[n], for n =
l,..., Np, so that the transmit power constraint of
Equation (16) is fullfilled and the d(n) approximate the
d[n], for n =1, ..., Np, according to some criterion.
Inherent in the choice of the transmit symbols that fulfill
the power constraint is the choice of the gain factor g.

4.2. Mean square error optimisation

First of all, we define the error to be the difference between
the desired virtual symbol d[n] and the received symbol

Copyright © 2007 John Wiley & Sons, Ltd.

the optimisation problem intractable. Note that we thereby
follow along the lines of Peel et al. [12], where it is also the
power of the scaled noise before the modulo operator that
is minimised (cf. Equation 12).

We define the MSE for a given block of data symbols by
averaging the symbol MSE over the whole block:

1O A 2
e (alnl, yinl. &) = 3~ ;15 Uﬂd[n] —dn| | s[n]}

Above MSE is conditioned on the symbols s[n] since these
are known to the precoder. Consequently, the expected value
is taken only over the noise. Note that conditioning on s[n]
is crucial for the vector precoding optimisation, to preserve
the known s[n] in the cost function. With Equations (15)
and (1),

e (a[n], ylnl, g)
N
(a*[n1din) - 2gRe (@ [nHy1n))

n=1

1
=

+¢ " Hy[n]) + gt (Ry) (17
We would like to find the joint optimum of all perturbation
vectors a[n], all transmit vectors y[n] and the scaling factor
g, constant forn =1, ..., Np:

{awr[n], ywrln], gwr} = argmin ¢ (a[n], y[n], g)
{a[n], y[n].g}

L
2
o= <E 18
s Np 2= ly[n]ll5 tr (18)

In this optimisation, the y[n] and g are continuous, while the
a[n] € tZ8 + jtZ® can only take certain discrete values.
We therefore find the joint optimum in two steps: first,
we assume that the a[n] are given and optimise over y[n]
and g taking into account the transmit power constraint. To
this end, we apply the method of Lagrangian multipliers,
which yields necessary conditions for the optimal y[n]
and g. It turns out that these conditions lead to a unique
solution, which therefore is the global optimum for fixed
a[n]. Second, we further minimise the MSE by searching
over the a[n] under the assumption that the optimum
y[n] and g for the respective a[n] are employed. We
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would like to emphasise that even though we seem to be
treating the continuous and discrete part of the optimisation
separately, this procedure leads to the true optimum solution
of Equation (18).

The Lagrangian function reads as

L (a[n], y[n], g, 1)

N
1
= e(a[n], ylnl, &) + * (NB > yHnlyln] - Etr>
n=1

where 1 € RT™9. We set the derivatives with respect to

y[n]l,n =1, ..., N, and g to zero, yielding the optimality
conditions
oL(... 1

Cod (g Td )+ PHTH Y 0] 4+ Ay

ay[n] Ng
=0y, (19)
Np
oL(...) 1 ( H
— —2Re (d"'[n]Hy[n]
% Np o ( ylnl)

+2gy [n]HHHy[n]) + 2gtr (Ry) =0 (20)

A third condition for optimality is

2y

1 e
A (NB ; yinlylnl - Eu> =0

Taking the transpose of Equation (19) and multiplying it
from the right with y[n]Np/g yields

A
—d"[n1Hy[n] + gy [nIH'Hy[n] + ng[n]y[n] =0

from which we can infer that d9[n]H y[n] must be real
valued. With Equation (20), we obtain

tr (Ry)
= Sonly Ynlyin]
Since g € RT, it becomes clear that A > 0, that is the

transmit power constraint must be fulfilled with equality
for Equation (21) to hold. Together with Equation (16),

_ 2t (Ry)
—8 TR,

)»:g2

=gt

using the same definition of & as in Equation (10). Now
ywrln] and gwr follow immediately from Equation (19)
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and the transmit power constraint of Equation (16), which
is to be fulfilled with equality:

1

yweln] = gopH" (HHY + £15) ™ d[n] (22)
B \/ YN g HHY (HHH + £15) 7 din]
BWE= EuNg
(23)

where we also applied the matrix inversion lemma’ (e.g.
Reference [48]). ywr[n] and gwr are the unique solution
to the optimality conditions Equations (19), (20) and (21),
and therefore are globally optimal for fixed a[n].

Before proceeding with the remainder of the optimisa-
tion, we would like to point out an important aspect of this
intermediate result: whatever the best virtual desired symbol
vectors d[n] = s[n] + a[n] turn out to be, we can obtain
the optimum transmit symbols by linearly filtering d[n].
Furthermore, only the scalar weight gwr depends on d[n],
but not the structure of the linear filter. We can conclude
that the intuitively introduced structure of the precoder in
Figure 2 is valid for the optimisation in Equation (18).

We now assume that the optimum gain factor and transmit
vectors are employed and plug Equations (10), (22) and
(23) into the MSE (17). The expression so obtained finally
simplifies to

¢ (aln], ywrlnl, gwr)
NB 1
(a*1n1din) —d® o HE (HEM+-615)

n=1

1
=N

n])

ZdH[n | (HHY + £15) ' d[n]

n=1

N
NiB S GsInl + aln )™ (HHY + £15) ™' (s[n] + aln))
n=1

Note that above MSE expression, to be minimised by the
choice of the perturbation vectors a[n], n =1, ..., N,
is different from the cost function for regularised vector
precoding in Equation (14), even for ¢ = &.

The complete MSE e(a[n], ywr[n], gwg) can be
minimised by considering each summand (i.e. each time

T More precisely, we used the relation (AHA + oI)7!AH = AHAAH +
oI)~!, which follows directly from the matrix inversion lemma.
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index n) separately. With any matrix L that fulfills
(HH" + £15) ' = LIL

which can be obtained, for example via Cholesky
factorisation, we can rewrite the problem as

argmin  ||L (s[n] + a[n])||3
alnletZB+jtZ8

awr[n] =

forn=1,..., Np.

Consequently, the optimum choice of a[n] is again the
solution to a closest point search in a lattice. In this case,
the lattice is generated by the matrix tLL and we are looking
for the integer vector that corresponds to the lattice point
closest to —Ls[n]. Note that contrary to the regularised
vector precoder proposed in Reference [12] (cf. Equations
13 and 14), this is not necessarily the point resulting in
the lowest unscaled transmit power. Instead, we construct
a lattice in which the Euclidean distance between a lattice
point and the point —Ls[#] is a measure for the mean square
error resulting from the choice of the perturbation vector
corresponding to that lattice point.

We can summarise the MMSE or WF vector precoder
as follows: for every symbol s[n] in the block, with n =
1,..., N, we determine the perturbation vector awg[n]
through alattice search and filter the resulting virtual desired
symbol d[n] = s[n] + awr[n] with the regularised pseudo-
inverse of the channel HY(HHH + £I3)~!. Finally, the
whole block is scaled so that the transmit power constraint
is fulfilled. The procedure is given in detail in Table 1.

4.3. Zero-forcing optimisation

Now we use the same method to derive the zero-
forcing vector precoder. We only need to include complete
interference cancellation as an additional constraint in the

Table 1. The Wiener filter vector precoder.

factorize (HHY + £13)~! = LHL
forn=1,..., Ng:
awg[n] < argmin
a[nletZB+jrZB

yln] < HYHH" + £1p)~!(s[n] + awr[n])

IL(s[n] + aln))|?

Np
1 H
ENg E,l Yy [nlyln]

forn=1,..., Ng:
ywrlnl < gwryln

8WF <—
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optimisation, which now reads as

argmin ¢ (a[n], y[nl, g)
{alnl,ylnl.g}

{azr(n], yzrlnl, gzr} =

1 N
2
s.t.. — < Ey and
Np nE=l Il y[nlll3 tr

gHy[nl =d[n], n=1,...,Np

Due to the additional constraint, the MSE in Equation (17)
simplifies to
e (aln], ylnl, &) = g*tr (Ry) (24)

The solution for yzp[r] and gzr can again be found with
the method of Lagrangian multipliers and reads as

yzrlnl = gz Y (HHY) ™ d[n]

Ng

H Hy !
v ;d [n] (HHY) ™ d[n)

87F =

Plugging yzp[n] and gz into the MSE (24) yields

e (a[n], yzrlnl, gzr)
E

>~ (stnl + aln)™ (HHY) ™' (s(n] + aln))

= Np
n=1

We can therefore find the optimum perturbation vectors with

argmin  |[HY (HHY) ™ (s[n] + a[n])Hz

alnletZB+jt7B

azg[n] =

This is identical to the interference cancelling vector
precoder proposed in Reference [12] (cf. Equations 11 and
12). Note that—contrary to the MMSE vector precoder—
B < N, is necessary for the existence of the zero-forcing
vector precoder.

5. SIMULATION RESULTS

For the simulation results presented in this section, we
used a 16QAM symbol constellation and set the modulo
constant t to four times the distance between nearest
neighbours in the symbol constellation. We generated the
channel as a matrix with i.i.d. unit variance complex
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Gaussian distributed entries and assumed perfect channel
state information at the transmitter. We compare WF vector
precoding (WF-VP), ZF vector precoding (ZF-VP) and the
heuristic regularised vector precoder (reg. VP) with the
discussed linear precoding techniques (lin. WF and lin. ZF)
and THP using the optimum precoding order [21] (WF-
THP and ZF-THP). The regularised vector precoder was
simulated with regularisation factor ¢ = & (reg. VP) as well
as with the regularisation factor found to be optimum in
Reference [12], that is ¢ = £/20 (reg. VP £/20) for B =
N, = 4 users and transmit antennas and { = £/10 (reg. VP
&/10)for B = N, = 10(cf. Equations 10, 13, and 14). Since
vector precoding techniques require blockwise processing
to exactly fulfill a power constraint while THP and the linear
precoders fulfill the power constraint on average, we scaled
the transmit symbol blocks for THP and the linear precoders
to exactly fulfill the power constraint as well, in order to
ensure a fair comparison. We define Es/Ny as the ratio of
the average transmit symbol energy per user to the noise
power per user. Note that this ratio is equal to &~! (10).

5.1. Uncoded simulations

For the uncoded bit error rate (BER) results in Figures 4 and
5, we assumed B = N, = 4 users and transmit antennas,
and B = N, = 10users and transmit antennas, respectively.
We used blocklength Ng = 100 and averaged over 10000
blocks transmitted over random channel realisations.
Clearly, the WF schemes always outperform the
according ZF schemes, for linear precoding, THP, as well
as vector precoding. In particular, the plots show that the
WF vector precoder developed in this paper consistently

107}
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Figure 4. B = 4 users, N, = 4 transmit antennas, 16QAM.
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Figure 5. B = 10 users, N, = 10 transmit antennas, 16QAM.

outperforms all other schemes. Furthermore, as can be
seen from the slope of the graphs for high SNR, only the
vector precoding schemes have the potential to achieve full
diversity order. The reason for this is that with THP, the
data stream of the first user is precoded linearly, as the
interference from the subsequent users is not yet known.
For high SNR, the performance of the linearly precoded first
user becomes dominant and the slope of the BER graph is
the same as for the linear precoders.

Even though the slope of the WEF-THP graph does not
decrease in the visible SNR range in Figure 5, it will behave
similar to the WF-THP graph in Figure 4 for very high SNR,
once the linearly precoded first user becomes the limiting
factor.

The effect of regularising the ZF vector precoder depends
on the regularisation factor. While the use of the factor
¢ = & degrades the performance for high SNR compared to
ZF-VP in both scenarios, significantly lower regularisation
factors can lead to a slight improvement. However, in the
BER region relevant for coded transmission, that is around
a BER of 10~!, WF-THP is better than the state-of-the-
art regularised vector precoders (reg. VP £/10, £/20), even
though with THP the elements of the perturbation vector
are computed successively. Note that the new WF vector
precoder outperforms WF-THP also in this BER region.

5.2. Turbo-coded simulations

For the coded BER results in Figures 6 and 7, we followed
the simulation setup in Reference [12] and employed a
standardisation parallel concatenated rate 1/3 code, with
the feedforward polynomial 1 + D + D3 and the feedback
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Figure 6. B = 4 users, N, = 4 transmit antennas, 16QAM, code
rate 1/2, dashed vertical line: ergodic broadcast channel capacity.

polynomial 1 4+ D? + D3 [49]. In order to achieve code
rate 1/2, we punctured the non-systematic bits. We encoded
blocks of 2000 data bits per user, resulting in 4000 coded bits
or 1000 16QAM symbols per block. Each of these symbols
was transmitted using an independent channel realisation
(perfect interleaving), which was perfectly known to the
transmitter, enabling a meaningful comparison with the
ergodic capacity of the broadcast channel.

Furthermore, we determined the ergodic capacity of our
i.i.d. channel model over Es/Ny by averaging over the
capacity of 10000 channel realisations, calculated with the

24
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Figure 7. B = 10 users, N, = 10 transmit antennas, 16QAM,
code rate 1/2, dashed vertical line: ergodic broadcast channel
capacity.
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iterative waterfilling algorithm presented in Reference [50].
For reliably transmitting eight bits per channel use over
the 4 x 4 channel, the minimum Eg/Ny turned out to be
approximately 0.5 dB, for transmitting 20 bits per channel
use over the 10 x 10 channel, at least —3.3 dB are needed.
These theoretical limits are represented in Figures 6 and 7
as dashed vertical lines.

With this setup, WF-VP is approximately 3.5 to 4dB
away from the ergodic capacity of the broadcast channel,
where increasing the number of users apparently decreased
the distance, a conclusion also reached in Reference [12].
The gain of WF-VP over WF-THP is relatively modest:
approximately 0.5dB for B = N, = 4, and close to 1dB
for B = N, = 10. In the scenarios at hand, WF-THP is
clearly advantageous over the state-of-the-art regularised
vector precoders from Reference [12].

6. CONCLUSION

We introduced a method for optimising the precoder for
decentralised modulo receivers and derived the optimum
precoder according to the MMSE criterion. Simulations
show the MMSE vector precoder to perform slightly better
than existing techniques, such as linear precoders, THP
and regularised vector precoders. Also, by employing turbo
codes, we were able to take a small step towards the
information theoretic limit of the broadcast channel with
a scheme based on separate channel coding of the data
streams, even though all streams are given the same data
rate. It appears that for higher dimensional systems, the
distance to the information theoretic limit decreases. On
the other hand, the complexity of the lattice search required
for each precoded symbol quickly becomes prohibitive for
real-time implementation.

Therefore, the results are more of theoretical interest by
showing the performance gains achievable by introducing
the simple modulo operator at the receivers. For practical
implementation, successive precoders, such as THP or
rounding-off procedures in a lattice with a reduced basis
as in Reference [14], seem to be suited far better, as their
complexity is quadratic, instead of exponential, per symbol
vector, once the filters for the block have been computed.
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