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Abstract

In the first part of the thesis, Direct Numerical Simulations (DNS) of temporally evolving, tur-
bulent, compressible shear layers are discussed. Simulations at three different convective Mach
numbers (0.15, 0.7 and 1.1) were performed for both, inert and infinitely fast reacting gases. All
simulations were continued beyond the onset of a self-similar state in order to guarantee statistics
of general value. Self-similarity manifested itself by a collapse of suitably normalized profiles of
flow variables and a constant momentum thickness growth rate. During this state, the Reynolds
number based on the vorticity thickness of the shear layers was between 10000 and 40000 and
therefore in a fully turbulent regime. The relevance of the achieved results and parameter ranges
for practical applications can be seen from the fact that shear (or mixing) layers develop when
injecting fuel into the combustion chamber of an engine. Here, a good mixing of fuel and oxidizer
is of great interest for an efficient combustion process.

The focus of the DNS data analyses was on the effects of compressibility and heat release due to
combustion on turbulence and scalar mixing. Both phenomena, compressibility and heat release,
were studied separately as well as in combination. Increasing compressibility, i.e. increasing
convective Mach number, resulted in a stabilization of the mixing layers: Instantaneous fields of
flow quantities became smoother, there were less turbulent fluctuations and the growth rate of the
mixing layers reduced. The latter effect was related to a reduction in the production rate of the
streamwise Reynolds stress and a reduction in the pressure-strain correlations caused by changes
in the fluctuating pressure field. When heat release was present, the effects of compressibility
were similar as for the inert mixing layers, but they were less distinct, e.g. the reduction of the
growth rate with increasing Mach number was comparatively smaller. At first sight, heat release
alone had similar consequences as compressibility: A stabilization of the shear layers, flow fields
with lower levels of fluctuations and smaller spreading rates. However, when studied in more
detail, it could be seen that the consequences of heat release, were mainly ’mean density effects’,
i.e. a result of the reduction of the mean density by the high temperatures in the vicinity of the
flame sheets. This was not the case for the compressibility effects. Therefore, it is important to
distinguish between compressibility and heat release effects, even though they share the property
to be both detrimental for the turbulent mixing process.

In the second part of the thesis, Large Eddy Simulations (LES) of shear layers at a convective
Mach number of 0.15 were performed. By a coarsening of the grid, large reductions of computa-
tional time were achieved. A deconvolution approach in the form of a single explicit filtering step
was validated successfully for inert and reacting mixing layers by comparison with DNS data.
For the LES with chemical reactions, two differently detailed chemistry models were used for the
filtered chemical source term: one model taking into account the same infinitely fast, irreversible,
global reaction as in the DNS and one flamelet model. The particular formulation of the flamelet
equations allowed not only to take into account multistep Arrhenius chemistry, but also detailed
diffusion mechanisms. The evaluation of the results obtained with two different descriptions of
these mechanisms - one with Soret and Dufour effects as well as multicomponent diffusion and



one without - showed differences for both, laminar flamelets and turbulent mixing layers, in
quantities related to the flame dynamics and in the extinction behaviour.
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Kε coefficient used in the analysis of the reduced growth rate



XXXII NOMENCLATURE
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Li length of computational domain in direction xi
Le Lewis number
l integral length scale
li integral length scale in direction xi
lk Kolmogorov length scale
M Mach number
Mc convective Mach number
Mg gradient Mach number
Mt turbulent Mach number
N number of terms taken into account for the determination of filter Q
Ni number of grid points in direction xi
NP number of particles
Nαγ number of γ atoms in molecule of species α
nα mole number of species α
P production rate of the turbulent kinetic energy
P (f) probability density function (pdf) of f
Pij production rate of 〈ρ〉Rij

p pressure
Q heat release term, Q = Qp/ (γ − 1) (or inverse filter of G if specially indicated)
Q non-dimensional heat release term
Qe heat release parameter
Qp heat release term in the pressure equation
qi Cartesian component of the heat flux vector
q0 enthalpy of reaction
R gas constant of the gas mixture
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sd simplified diffusion
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1 Introduction

The first successful flight of the scramjet powered airplane NASA X-43 in 2004 demonstrated the
feasibility of the scramjet concept that allows to fly at hypersonic speed. Even though this and
other tests of smaller rockets have shown that the operation of scramjets is practically possible,
many difficulties remain still to be solved until a commercial operation can be aimed at.

A scramjet is entirely different from conventional jet engines where fuel is burnt at a relatively
low speed of approximately Mach 0.2. This low speed allows a good mixing of the injected fuel
with air and an efficient combustion process. Subsonic combustion is even possible when flying at
supersonic speed: The high entrance velocity of the air is simply reduced in the inlet of the engine
with the help of strong shocks. At the same time, the air heats up and compresses. Consequently,
no compressor is necessary. In the combustion chamber, the added fuel mixes with the air stream,
combusts and the burnt gases accelerate in the nozzle to high speed. This is the concept of the
so-called ’ramjets’: Subsonic combustion at supersonic flight. However, losses (in total pressure)
are related with the slow-down of the air by shocks, and the losses increase with increasing flight
velocity. Consequently, efficiency and thrust are reduced. Therefore, above Mach numbers of
about 6, it makes sense to accept less efficient supersonic combustion. Then, smaller losses are
caused at the inlet since the air does not have to be slowed down below the speed of sound. This
is the concept of ’scramjets’ with which it is theoretically possible to fly at speeds up to Mach 20.

As just indicated, an important aspect in supersonic and also subsonic combustion is the strong
reduction in mixing efficiency with increasing speed. Since perfect combustion requires effective
small-scale mixing, strategies to improve supersonic combustion have to be based on a full under-
standing of the underlying mechanisms. To contribute to this understanding, is one of the aims of
the present work, in which inert and reacting, compressible turbulent shear layers are investigated
with the help of numerical simulations.

Shear (or mixing) layers are generic configurations for free shear flows, i.e flows that are not
bounded by walls but have mean velocity gradients perpendicular to the main flow direction.
Besides their importance in many basic studies, mixing layers also appear very often in practical
applications. Basically everywhere where two streams of gases or liquids with different velocities
come into contact. Examples are combustion chambers where shear layers separate the core flow
from the recirculation areas. In ’conventional’ jet engines, as well as in ram- and scramjets,
mixing layers develop between the fuel stream that is injected into the combustion chamber and
the surrounding air flow.

Mixing layers are also particularly important for the study of compressibility since free stream
conditions remain constant with downstream distance. Compressibility effects, i.e. density
changes along fluid trajectories, appear not only in high speed gas flows, but also in unsteady
processes at high frequencies (acoustics) and in meteorology, where currents span large vertical
distances. However, this study is limited to the first phenomena: compressibility effects at high
speeds. It is widely known that with increasing compressibility, i.e. increasing flow speed, the



2 1. INTRODUCTION

growth rates of shear layers reduce. Early shear layer experiments have shown that data collapse
onto the so-called ’Langley curve’ when using the convective Mach number as a parameter. This
stabilizing effect of compressibility is further investigated in the present work, both, as a single
mechanism and as a mechanism influenced by heat release due to combustion. Hydrogen is cho-
sen as fuel for the reacting mixing layers, since it is normally used in ram- and scramjets. One
reason for this is that hydrogen has a much higher energy content than kerosene: one kilogram
of fuel delivers about three times more energy. Furthermore, hydrogen has a good capability of
cooling, and the combustion after mixing with air occurs rapidly. However, there are two draw-
backs for its application: hydrogen must be stored in liquid state at very low temperature and its
density is very low which requires voluminous tanks in order to store a certain amount of mass.

In the first part of this work, inert and reacting mixing layers at three different convective Mach
numbers are studied with the help of Direct Numerical Simulations (DNS). The main questions
which are addressed are:

• What are the effects of compressibility on turbulence and scalar mixing within inert mixing
layers?

• How do these effects change when heat is released during combustion?

• Which effects does heat cause at different convective Mach numbers, i.e. different levels of
compressibility?

DNS is the most powerful tool to predict and simulate compressible turbulent flows since it pro-
vides a complete description of the flow field. All scales from the largest to the smallest are
resolved. Since this is only possible at high computational costs, simplifications, e.g. concerning
transport mechanisms and chemistry must be made. In the present DNS of reacting mixing layers,
an infinitely fast, irreversible global reaction and simplified diffusion mechanisms are taken into
account. Nevertheless, it is also of interest what changes occur when detailed, finite-rate chem-
istry and detailed diffusion processes are considered. Therefore, the second part of this work is
dedicated to Large Eddy Simulations (LES). This kind of simulation requires less computational
effort, since only the large turbulent scales are resolved, and the smaller ones are modeled. There-
fore, LES is intermediate between DNS and prediction methods based on statistically averaged
transport equations.

The LES method used in the present work is a particular version of the Approximate Deconvo-
lution Method (ADM) involving a single filtering step. It does not need any analytical modeling
of subgrid terms arising from non-linearities in the transport equations of the flow variables. The
only exception is the chemical source term that has to be modeled nevertheless since most of the
chemical reactions occur in the unresolved small scales. The relevant questions that are answered
in the second part of the study are:

• Is a realistic LES of reacting mixing layers possible with combinations of ADM (in the
form of a single explicit filtering step) and different models for the chemical source term?

• What are the changes that occur in mixing layers at low convective Mach number when
finite-rate chemistry and different approximations of diffusion mechanisms are taken into
account?
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Besides this general introduction, which is the first chapter, the thesis has four chapters. Each
chapter starts with another introduction including an overview over the relevant literature. Chap-
ters 2 and 3 form the first part of the thesis in which DNS of inert and infinitely fast reacting
compressible turbulent mixing layers at three different convective Mach numbers are described
and analyzed. In Chapter 4, the simulations at low convective Mach number from the previous
chapters are ’repeated’ as LES with the objective to check the performance of the LES method
in general and the modeling of the filtered chemical source term for infinitely fast chemistry in
particular. In Chapter 5, a steady flamelet model is used to improve the simulation of the fil-
tered source term. The particular formulation of the flamelet equations allows not only to take
detailed, finite-rate chemistry into account, but also detailed diffusion effects at two different lev-
els of approximation. The aim of Chapter 5 is to contrast the results for finite-rate chemistry to
those obtained with infinitely fast chemistry in the previous chapters. Furthermore, comparisons
between the different diffusion models are performed. Besides summaries and conclusions that
are given in each chapter individually, there is a chapter at the very end of the thesis, in which its
most important results are highlighted and an outlook is given on how the work could be pursued.



2 DNS of inert compressible turbulent
shear layers

2.1 Introduction and literature survey

Turbulent combustion in technical devices heavily depends on the quality of the mixing between
fuel and oxidizer. This is true for combustion devices at all speeds starting from furnaces and
spark ignition engines, going to rocket motors and combustion chambers of aircraft engines and
up to supersonic propulsion engines (scramjet). In this chapter, turbulent mixing in inert shear
layers at different speeds, i.e. convective Mach numbers, is investigated.

The shear layer or mixing layer, a kind of prototype for any free shear flow, has been subject
of many theoretical, experimental and numerical studies for over half a century. Among the
first authors investigating the pressure and velocity fields of the incompressible mixing layer
experimentally were Spencer & Jones [172], Brown & Roshko [21] as well as Dimotakis &
Brown [44] who identified the important role of coherent structures and their pairing for the
mixing process. Later, comprehensive measurements were done for example by Bell & Mehta [7]
who showed that their incompressible mixing layers attained a self-similar state with a constant
thickness growth rate and a collapse of the spanwise averaged flow quantity profiles. The first
authors who performed DNS of temporally evolving incompressible mixing layers up to a fully
turbulent state and analyzed the data in detail were Rogers & Moser [152].

The mixing layer is in particular useful to study compressibility effects since, unlike the jet, which
has continuously varying mean centreline velocity, the free-stream velocities are conserved in
both near- and far-fields. The same applies to density and scalar concentration differences across
the layer. In addition, the fluctuations do not decrease with streamwise distance. Numerical
studies, using both linear stability theory and direct simulations, have shown a significant differ-
ence between the low compressibility regime (convective Mach number Mc < 0.4) where two-
dimensional structures, like Kelvin-Helmholtz instabilites, prevail and the higher compressibility
regime (Mc > 0.6) with oblique instability waves [81, 147] resulting in highly three-dimensional
structures when it comes to non-linearity [158]. This change with increasing convective Mach
number has been confirmed by several experiments [15, 27, 50, 112, 156]. Furthermore, it is
well-known [6, 14, 16, 49, 126] that, when the convective Mach number increases, there is a
large reduction in the thickness growth rate and the turbulent intensities of the mixing layer. The
decrease of the growth rate at higher Mach numbers has important practical implications like for
the quality of mixing between oxidizer and fuel in scramjet engines, and knowing the reason for
the stabilizing effect allows to work on possible mixing enhancement strategies.

The first DNS of compressible mixing layers were only performed up to the early stages of vortex
formation [157] and did therefore not contain very small scales of turbulence. This was im-
proved by later DNS which included the so-called mixing transition to small-scale turbulence
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[63, 64, 123, 183]. All these simulations confirmed the stabilizing effect of compressibility.
Several explanations for this effect have been offered: While some authors [48, 160, 164, 192]
considered the dilatational part of the total dissipation to be responsible for it and reasoned that
this part would increase due to the appearance of shocklets, others pointed out the similarity
with results for the linear growth rate of small disturbances in laminar compressible shear flow
[157]. However, no shocklets have been observed in a 3D simulation or an experiment of a mix-
ing layer below a convective Mach number of one, and it is also not clear why linear instability
theory should apply to a turbulent, non-linearly evolving flow. Other explanations of the reduced
growth rate with increasing convective Mach number, incorporated the effect of compressibility
on large-scale coherent structures [27, 71, 126, 156].

A similar stabilizing effect as in the mixing layer has been observed in simulations of uniformly
sheared, compressible flow [13, 164, 161]. Sarkar [161] identified the gradient Mach number
Mg = Sl/〈c〉, wherein S is the constant mean shear rate, l the integral length scale of the stream-
wise velocity fluctuations in the transverse shearing direction and 〈c〉 the mean speed of sound, as
the crucial parameter, the increase of which is accompanied by a large reduction in the normalized
growth rate of the turbulent kinetic energy (TKE). The cause of this reduction was found to be a
large decrease in the normalized Reynolds shear stress which is involved in the production term of
the TKE transport equation. Explicit dilatational effects, i.e. the dilatational dissipation rate and
the pressure-dilatation correlation, were excluded from being the reason for the stabilization. This
was confirmed by Vreman et al. [183] for the compressible mixing layer even at convective Mach
numbers that lead to the occurrence of shocklets. Sarkar [161] also reasoned that the change of the
pressure field and the related altering of the pressure-strain terms in the Reynolds stress equations
lead to reduced levels of turbulence. By using a direct relation between the momentum thickness
growth rate and the production of TKE together with the integrated equations for the Reynolds
stress tensor, Vreman et al. [183] clearly showed that the decrease in pressure fluctuations, which
leads to reduced pressure-strain terms, is responsible for the changes in growth rate of the com-
pressible mixing layer. Freund et al. [63] found the quintessential element of compressibility to
be the suppression of transverse turbulent length scale with increasing convective Mach number
which leads to reduced pressure fluctuations, pressure-strain correlations, Reynold stresses and
shear-layer growth rates with increasing convective Mach number. Recently, Pantano & Sarkar
[123] derived a relation similar to Vreman et al. [183] and showed the reason for the reduction
of the pressure-strain terms at high Mach number by an analysis based on the wave equation for
the pressure fluctuations: The finite speed of sound in compressible flows introduces a finite time
delay in the transmission of pressure-strain signals from one point to an adjacent point, and the
resultant increase in decorrelation leads to a reduction in the pressure-strain correlation.

The aim of this chapter is to identify and analyze mixing processes in inert mixing layers and
to verify and enhance the already gained knowledge about their alterations with increasing con-
vective Mach number. The highly resolved and therefore computationaly demanding simulations
are performed as DNS. The chapter is organized as follows: In Section 2.2, the DNS code is
presented, and the relevant equations, i.e. the Navier-Stokes equations for a gas mixture, as well
as important features of the numerical method are given. The subsequent section, Sect. 2.3, de-
scribes the inert mixing layer test cases, which differ mainly by their convective Mach number,
i.e. the level of compressibility. Details concerning the initialization and important parameters
of the corresponding DNS are given as well. The main part of this chapter is Sect. 2.4, the pre-
sentation of the simulation results and their analysis. First, the most obvious differences between
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the mixing layers are identified with the help of instantaneous flow images (Sect. 2.4.1). Then,
the relaxation of the mixing layer towards a self-similar state is shown (Sect. 2.4.2). Over this
state, statistics are taken, which form the basis of the subsequent discussions. Before the statisti-
cal results are analyzed, the adequacy of resolutions and domain sizes is checked in Sect. 2.4.3.
The effect of compressibility, first on general turbulence characteristics, e.g. statistical quantities
concerning the velocity field, is investigated in Sect. 2.4.4.1. The effect of compressibility on the
mixing of the inert chemical species, is the subject of Sect. 2.4.4.2. The findings there are closely
related to entrainment, i.e. the way the mixing layers acquire outside fluid. Finally, the studies
concerning the inert mixing layers are completed by analyzing the role of shocklets at high con-
vective Mach number (Sect. 2.4.4.4), before a summary of the results is given and conclusions
are drawn.

2.2 The DNS code for inert gas mixtures

2.2.1 Navier-Stokes equations for a gas mixture

The governing equations describing turbulent flow of gas mixtures are the unsteady, three-dimensional,
compressible Navier-Stokes equations for an inert gas mixture consisting of multiple species.
They consist of equations for mass, momentum, energy and species mass fracions and read in
Cartesian tensor notation:

∂ρ

∂t
+
∂ρui
∂xi

= 0 (2.1)

ρ
Dui
Dt

= − ∂p

∂xi
+
∂τji
∂xj

(2.2)

ρ
D

Dt

(
e+

1

2
uiui

)
=

∂

∂xj
(−puj + τjiui − qj) (2.3)

ρ
DYα
Dt

= − ∂

∂xi
(ρYαVαi) (2.4)

Here and in the following, the summation convention does not apply to Greek indices (α, β,...)
which denote different species. Wherever a sum over species is necessary, this is indicated by∑

α,
∑

β,... The species, which are also called active scalars, do not only influence the flow field
by the density due to their different molecular weights, but also by the transport properties, like
the viscosity and the diffusion coefficients. Density and pressure of the gas mixture are denoted by
ρ and p, which are related with the temperature T via the equation of state for ideal gas mixtures

p = ρ
R
W
T = ρRT. (2.5)

R = 8, 314 Jmol−1K−1 is the universal gas constant, and W =
∑

αXαWα = (
∑

α Yα/Wα)−1

is the average molecular weight of the gas mixture, computed with the molecular weights of the
individual species, Wα, and their mole or mass fractions, Xα and Yα, respectively. An alternative
expression is obtained by using the gas constant of the gas mixture, R = R/W .



THE DNS CODE FOR INERT GAS MIXTURES 7

Other quantities in the Navier-Stokes equations are the velocity components ui, the internal en-
ergy e, the components of the heat flux vector qj and the components of the diffusion velocity of
species α, Vαi. The stress tensor τij can be determined from kinetic theory as

τij = 2µsij +

(
κ− 2

3
µ

)
skkδij (2.6)

with the dynamic viscosity of the mixture µ and its bulk viscosity κ. The Kronecker symbol δij
is the unity tensor of second order and sij the symmetric part of the strain rate tensor,

sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.7)

which is also called deformation tensor.

An accurate way to compute the species diffusion flux YαVαi is given by

YαVαi = −
∑

β

Dαβdβi − Yαθα
∂ lnT

∂xi

= −
∑

β

Dαβ
(
dβi + χβ

∂ lnT

∂xi

) (2.8)

with the diffusion vector

dβi =
∂Xβ

∂xi
+ (Xβ − Yβ)

∂ ln p

∂xi
(2.9)

where Dαβ is the multicomponent flux diffusion matrix Dαβ = YαDαβ with the multicomponent
diffusion coefficients Dαβ. The thermal diffusion coefficients are θα. An alternative to their use
are the thermal diffusion ratios χα. Equations (2.8) and (2.9) consider not only the ’normal’
diffusion caused by gradients in the mole fractions of the species, but also barodiffusion due to
pressure gradients and thermodiffusion due to temperature gradients. The latter is also called
Soret effect and causes lighter molecules to diffuse towards regions of higher temperature. By
using the multicomponent diffusion matrix Dαβ, cross-diffusion effects are taken into account.

An accurate way to determine the heat flux vector is

qi =
∑

α

ρhαYαVαi − λ′
∂T

∂xi
− p

∑

α

θαdαi

=
∑

α

ρhαYαVαi − λ
∂T

∂xi
+ p

∑

α

χαVαi.

(2.10)

The first term on the right hand side (RHS) is the transport of heat caused by diffusion, the second
term is the heat conduction and the last term is the Dufour effect, namely the transport of heat due
to gradients in the mole fractions of the species. Additionally, a barodiffusive term is considered
via Eq. (2.9). λ′ is the partial heat conductivity and λ the heat conductivity1).

1)The heat conductivity λ is more frequently used than the partial heat conductivity λ′, because λ can be measured
experimentally: Every temperature gradient leads to thermal diffusion and therefore to a gradient in the species con-
centration, because of which

∑
α θαdαi 6= 0. Having an external temperature gradient and reaching an equilibrium,

the diffusion velocities in a gas mixture disappear and Eq. (2.10) becomes qi = −λ ∂T∂xi



8 2. DNS OF INERT COMPRESSIBLE TURBULENT SHEAR LAYERS

The specific enthalpies of the individual species, which are required to compute the heat flux
(2.10) are computed by a polynomial expression [66],

hα (T ) =
1

Wα

(
a6αR+

∫ T

T ′=298 K

cpαdT
′
)

=
R
Wα

(
a6α + a1αT + a2α

T 2

2
+ a3α

T 3

3
+ a4α

T 4

4
+ a5α

T 5

5

)
,

(2.11)

which is obtained by the integration of the fourth-order polynomial for the specific heat capacities
at constant pressure,

cpα (T ) =
R
Wα

(
a1α + a2αT + a3αT

2 + a4αT
3 + a5αT

4
)
. (2.12)

The coefficients aiα are taken from tables that mostly distinguish two temperature ranges: 300 K

to 1000 K and above 1000 K. The integration constant a6α in Eq. (2.11) is chosen such that the
correct formation enthalpy hα (T = 298 K) is obtained. The specific enthalpy of the gas mixture
is assembled by h =

∑
α Yαhα and specific heat capacity for the gas mixture by cp =

∑
α Yαcpα.

The specific heat capacity at constant volume, cv, is obtained by cv = cp − R.

2.2.2 The numerical method

The numerical method used in the present DNS is based on the code of Sesterhenn [167], a
similar version of which has also been used by Foysi [61] to simulate compressible channel flows.
The Navier-Stokes equations are written in a characteristic pressure-velocity-entropy formulation
which allows for an easy boundary treatment. Having various species, some adaptions of the
code were necessary, and species transport equations had to be added. For a detailed explanation,
including the treatment of the non-reflecting boundaries, see Appendix A. The transport equations
are integrated in time with a third-order low-storage Runge-Kutta scheme [188] whereby the
spatial derivatives are discretized by using sixth-order compact central schemes [99].

The primitive variables are filtered every 20th time step to prevent spurious accumulation of
energy in the highest wavenumbers using a sixth-order compact filter [99]. The effect of this
filtering is weak and is quantified in Sect. 2.4.3.

In the present DNS, the transport coefficients (viscosity, bulk viscosity, heat conductivity and the
diffusion coefficients) are evaluated by EGlib [54]. EGlib uses an iterative method to obtain an
approximate solution of the linear system of transport coefficients derived from kinetic theory.
Truncation then provides, at a moderate computational cost, approximate expressions for the
transport coefficients at a desired accuracy.

The code is parallelized using MPI-routines and the simulations were done on the Hitachi SR8000-
F1 and the SGI Altix4700 of the Leibniz-Rechenzentrum in Munich on up to 256 processors.

2.3 Test cases

The test cases under investigation are plane mixing layers which develop between two streams
of gas that have constant, but different velocities. The layers are studied in a reference frame
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X3

X2

X1

Figure 2.1: The configuration of temporally evolving shear layers

moving with the average speed of the two streams and under the parallel-flow assumption which
makes them temporally evolving mixing layers. They are computationally much less demanding
than spatially evolving mixing layers, but provide, nevertheless, useful insight into fundamental
properties of turbulenent shear layers, since they isolate specific effects and remove some of the
flow complexity.

Figure 2.1 shows the configuration of the shear layers. All test cases are 3D with x1 and x2

denoting the homogeneous streamwise and spanwise directions and x3 denoting the transverse
direction. The upper stream (index 1) is pure oxygen and the lower stream (index 2) pure
nitrogen. At the beginning of the computations, temperature and pressure are constant. This
results in an initially nearly constant density across the mixing layer due to similar molecular
weight of oxygen and nitrogen.

The convective Mach number
Mc =

∆u

c1 + c2
(2.13)

differs between the test cases: For the simulation called inert-0.15 it is 0.15, for inert-0.7 it is
0.7 and for inert-1.1 it is 1.1. In Eq. (2.13), the velocity difference between the two streams is
denoted by ∆u, and c1 and c2 are their sonic speeds. Strictly taken, expression (2.13), which was
introduced by Bogdanoff [14], is only valid for equal γ of the two streams. As in the present
cases, the ratio of the specific heats γ = cp/cv differs by only 0.3% between the streams, Eq.
(2.13) gives a good approximation of Mc.

The flow is initialized by a hyperbolic-tangent profile for the mean streamwise velocity and den-
sity. In order to accelerate the transition to turbulence, broadband fluctuations in the velocity
components are used. This is achieved by generating an isotropic turbulence spectrum of the
form

E (k) =

(
k

k0

)4

exp

[
−2

(
k

k0

)2
]

(2.14)

with wavenumber k and peak wavenumber k0. k0 is chosen in a way that there are initially 72
peak wavelengths within the streamwise box size for all simulation. The Reynolds number at the

Table 2.1: Geometrical parameters of the simulations inert-0.15, inert-0.7, inert-1.1. The compu-
tational domain has the dimensions L1, L2 and L3 with N1, N2 and N3 grid points, respectively.
The reference vorticity thickness δω, 0 is chosen such that it results in Reω,0 = 640.

L1/δω,0 L2/δω,0 L3/δω,0 N1 N2 N3

129.375 32.25 96.75 768 192 576
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beginning of the computations

Reω,0 =
∆u ρ0 δω,0

µ0

(2.15)

is 640 in all cases. It is based on the initial vorticity thickness δω,0, on the averaged free-stream
density ρ0 = (ρ1 + ρ2) /2 and on the viscosity µ0 = (µ1 + µ2) /2.

Grid and domain sizes are given in table 2.1 and are the same for all inert simulations. The
grid-spacing is constant in all directions.

2.4 Results and analysis

2.4.1 The structure of the compressible shear layers

In the following, instantaneous images of the mixing layers at different normalized times,

τω =
t ·∆u
δω,0

, (2.16)

are shown in order to contrast characteristic features of their development with each other.

Figure 2.2: Case inert-0.15: Instantaneous
mass fraction field of O2, x1-x3-plane in the
middle of the computational domain at τω =

83, isolines YO2 = 0.1 and 0.9 are shown

Figure 2.3: Case inert-0.15: Instantaneous
mass fraction field of O2, x1-x3-plane in the
middle of the computational domain at τω =

286, isolines YO2 = 0.1 and 0.9 are shown

Figure 2.4: Case inert-0.15: Instantaneous
mass fraction field of O2, x1-x3-plane in the
middle of the computational domain at τω =

409, isolines YO2 = 0.1 and 0.9 are shown

Figure 2.5: Case inert-0.15: Instantaneous
mass fraction field of O2, x1-x3-plane in the
middle of the computational domain at τω =

533, isolines YO2 = 0.1 and 0.9 are shown
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2.4.1.1 Inert shear layer at Mc = 0.15

Figures 2.2 to 2.5 show instantaneous distributions of the oxygen mass fraction in the central x1-
x3-plane of the case inert-0.15 at different stages during its development. At early times (Fig. 2.2)
the rotation-dominated vortices (rollers) can be easily distinguished from the strain-dominated
braid regions between them, and pairings of vortices are going on, for example close to the right
edge of the computational domain. However, later during the self-similar state (cf. Sect. 2.4.2) in
Fig. 2.3 and Fig. 2.4, organized pairings are not the dominant mechanism that leads to the growth
of the shear layer. The rollers rather merge gradually with their neigbours which is in agreement
with the simulations of Rogers & Moser [152] and with the experiments of other authors who
were not able to observe pairings during the fully developed turbulent state [21, 75]. A possible
explanation for pairings that are observed in some experiments [18, 83] is given by [152] and
refers to the disturbance environment in the experiments which may include two-dimensional or
quasi-two-dimensional disturbances e.g. due to the splitter-plate tip. At very late times (Fig. 2.5)
only one large structure is present in the computational domain and is interacting unphysically
with itself due to box size limitations.

Instantaneous pictures of the mass fraction in x1-x2-planes through the middle of the domain
(Figs. 2.6 to 2.9) provide more insight into the structures. It can be seen that before self-similarity
is reached (Fig. 2.6), there is some two-dimensional organization of the flow with structures span-
ning the whole domain. This is in agreement with previous studies of incompressible mixing lay-
ers [19, 21, 27, 189]. During the self-similar state (Figs. 2.7 and 2.8) no such two-dimensionality
can be observed, and the mixing layer appears irregular with no organization. While at earlier
times there is a large quantity of unmixed fluid, both pure oxygen and pure hydrogen, present at
the centreline, this is the case only to a minor degree at later states (Figs. 2.7 to 2.9).

Figures 2.10 to 2.13 show x2-x3-cuts through a braid corresponding to a pressure maximum and
a roller corresponding to a pressure minimum at the different times, respectively. In the braid-
region at early times (Fig. 2.10), the isolines are rolled up around the streamwise vortices which
is also a characteristic feature of nonturbulent mixing layers [152]. At later times, these discrete
roll-ups cannot be seen any more (Figs. 2.11 and 2.12), and braid and roller cores appear very
similar since the braid-regions also contain mixed fluid and are not as clean as during the initial
stage. Therefore, the only difference between braids and rollers that can be seen from the mass

Figure 2.6: Case inert-0.15: Instantaneous
mass fraction field of O2, x1-x2-plane in the
middle of the computational domain at τω =

83

Figure 2.7: Case inert-0.15: Instantaneous
mass fraction field of O2, x1-x2-plane in the
middle of the computational domain at τω =

286

Figure 2.8: Case inert-0.15: Instantaneous
mass fraction field of O2, x1-x2-plane in the
middle of the computational domain at τω =

409

Figure 2.9: Case inert-0.15: Instantaneous
mass fraction field of O2, x1-x2-plane in the
middle of the computational domain at τω =

533
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Figure 2.10: Case inert-0.15: Instanta-
neous mass fraction field ofO2, x2-x3-plane
through a braid (left) and a roller (right) at
τω = 83, isolines YO2 = 0.1 and 0.9 are
shown

Figure 2.11: Case inert-0.15: Instanta-
neous mass fraction field ofO2, x2-x3-plane
through a braid (left) and a roller (right) at
τω = 286, isolines YO2 = 0.1 and 0.9 are
shown

Figure 2.12: Case inert-0.15: Instanta-
neous mass fraction field ofO2, x2-x3-plane
through a braid (left) and a roller (right) at
τω = 409, isolines YO2 = 0.1 and 0.9 are
shown

Figure 2.13: Case inert-0.15: Instanta-
neous mass fraction field ofO2, x2-x3-plane
through a braid (left) and a roller (right) at
τω = 533, isolines YO2 = 0.1 and 0.9 are
shown

fraction field at the self-similar state is a smaller extent of the braids in the x3-direction. At the
latest state shown (Fig. 2.12), which is however not self-similar anymore, the difference between
the braid- and the roller-region becomes more pronounced again.

2.4.1.2 Inert shear layer at Mc = 0.7

Figures 2.14 to 2.17 show instantaneous distributions of the oxygen mass fraction in the central
x1-x3-plane at different times. Even at the earliest time shown (Fig. 2.14), no pairing of vortices
is visible which is in contrast to the test case at the lower convective Mach number. As Clemens
& Mungal [27] pointed out, the vortex cores at this time seem to be angular, nearly polygonial, as
opposed to the more elliptical ones in Fig. 2.2. This feature can be noticed at later times, too, for
example in Fig. 2.16 and in general, the structures at Mc = 0.7 are not very coherent with even
less distinction between rollers and braids than at Mc = 0.15. The isolines at YO2 = 0.1 and 0.9

that are shown in Figs. 2.14 to 2.17 and that can be considered as the edges of the mixing layer
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Figure 2.14: Case inert-0.7: Instantaneous mass
fraction field of O2, x1-x3-plane in the middle of
the computational domain at τω = 146, isolines
YO2 = 0.1 and 0.9 are shown

Figure 2.15: Case inert-0.7: Instantaneous mass
fraction field of O2, x1-x3-plane in the middle of
the computational domain at τω = 418, isolines
YO2 = 0.1 and 0.9 are shown

Figure 2.16: Case inert-0.7: Instantaneous
mass fraction field of O2, x1-x3-plane in the
middle of the computational domain at τω =

697, isolines YO2 = 0.1 and 0.9 are shown

Figure 2.17: Case inert-0.7: Instantaneous
mass fraction field of O2, x1-x3-plane in the
middle of the computational domain at τω =

980, isolines YO2 = 0.1 and 0.9 are shown

Figure 2.18: Case inert-0.7: Instantaneous
mass fraction field of O2, x1-x2-plane in the
middle of the computational domain at τω =

146

Figure 2.19: Case inert-0.7: Instantaneous
mass fraction field of O2, x1-x2-plane in the
middle of the computational domain at τω =

418

Figure 2.20: Case inert-0.7: Instantaneous
mass fraction field of O2, x1-x2-plane in the
middle of the computational domain at τω =

697

Figure 2.21: Case inert-0.7: Instantaneous
mass fraction field of O2, x1-x2-plane in the
middle of the computational domain at τω =

980

show ondulations on a larger scale than at the lower convective Mach number (Figs. 2.3 and 2.5).
Especially at later times (Figs. 2.16 and 2.17), mushroom-like ejections are visible.

Cuts through the central x1-x2-plane (Figs. 2.18 to 2.21) reveal the highly three-dimensional
nature of this mixing layer right from the beginning. The lack of any obvious spatial regularity or
organization is striking [27]. Comparing Fig. 2.18 with Fig. 2.6 at Mc = 0.15, the structures at
the higher convective Mach number are more stretched in streamwise direction than at the lower
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Figure 2.22: Case inert-0.7: Instanta-
neous mass fraction field ofO2, x2-x3-plane
through a braid (left) and a roller (right) at
τω = 146, isolines YO2 = 0.1 and 0.9 are
shown

Figure 2.23: Case inert-0.7: Instanta-
neous mass fraction field ofO2, x2-x3-plane
through a braid (left) and a roller (right) at
τω = 418, isolines YO2 = 0.1 and 0.9 are
shown

Figure 2.24: Case inert-0.7: Instanta-
neous mass fraction field ofO2, x2-x3-plane
through a braid (left) and a roller (right) at
τω = 697, isolines YO2 = 0.1 and 0.9 are
shown

Figure 2.25: Case inert-0.7: Instanta-
neous mass fraction field ofO2, x2-x3-plane
through a braid (left) and a roller (right) at
τω = 980, isolines YO2 = 0.1 and 0.9 are
shown

convective Mach number.

The fact that braids and rollers are not so clearly marked can also be seen when cutting through
them as done in Figs. 2.22 to 2.25. Even at earlier times, it is hard to distinguish whether the
structure that is cut is a braid or a roller, with the braids only being a little less extended in x3-
direction. No distinctive roll-ups of the isolines within the braids are visible as it was the case
in Fig. 2.10 at Mc = 0.15. The larger-scale ondulations in braids and rollers as well as the
mushroom-like ejections that are visible in the x1-x3-cuts (Figs. 2.14 to 2.17) can also be seen
here.

2.4.1.3 Inert shear layer at Mc = 1.1

Cuts through x1-x3-planes of the instantaneous oxygen mass fraction distribution for the test case
at Mc = 1.1 are shown in the Figs. 2.26 to 2.29. While the earliest state shown looks completely
different from the mixing layers at lower convective Mach number and gives evidence of the
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Figure 2.26: Case inert-1.1: Instantaneous
mass fraction field of O2, x1-x3-plane in the
middle of the computational domain at τω =

162, isolines YO2 = 0.1 and 0.9 are shown

Figure 2.27: Case inert-1.1: Instantaneous
mass fraction field of O2, x1-x3-plane in the
middle of the computational domain at τω =

381, isolines YO2 = 0.1 and 0.9 are shown

Figure 2.28: Case inert-1.1: Instantaneous
mass fraction field of O2, x1-x3-plane in the
middle of the computational domain at τω =

735, isolines YO2 = 0.1 and 0.9 are shown

Figure 2.29: Case inert-1.1: Instantaneous
mass fraction field of O2, x1-x3-plane in the
middle of the computational domain at τω =

1098, isolines YO2 = 0.1 and 0.9 are shown

Figure 2.30: Case inert-1.1: Instantaneous
mass fraction field of O2, x1-x2-plane in the
middle of the computational domain at τω =

162

Figure 2.31: Case inert-1.1: Instantaneous
mass fraction field of O2, x1-x2-plane in the
middle of the computational domain at τω =

381

Figure 2.32: Case inert-1.1: Instantaneous
mass fraction field of O2, x1-x2-plane in the
middle of the computational domain at τω =

735

Figure 2.33: Case inert-1.1: Instantaneous
mass fraction field of O2, x1-x2-plane in the
middle of the computational domain at τω =

1098

stabilizing nature of compressibility, the later development of this mixing layer is similar to the
inert-0.7 case with rather angular rollers. The isolines at YO2 = 0.1 and 0.9 which limit the mixing
layer show ondulations on even a larger scale than at Mc = 0.7, and the edge of the mixing layer
appears more torn with many ejections going from the turbulent region into the laminar one.

While the organization of the structures at earlier times for Mc = 0.15 was in spanwise direction
(Fig. 2.6) and had a slight tendency towards streamwise organization at Mc = 0.7 (Fig. 2.18),
it is clearly streamwise at Mc = 1.1 as reveals the x1-x2-cut in Fig. 2.30. However, at later
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Figure 2.34: Case inert-1.1: Instanta-
neous mass fraction field ofO2, x2-x3-plane
through a braid (left) and a roller (right) at
τω = 162, isolines YO2 = 0.1 and 0.9 are
shown

Figure 2.35: Case inert-1.1: Instanta-
neous mass fraction field ofO2, x2-x3-plane
through a braid (left) and a roller (right) at
τω = 381, isolines YO2 = 0.1 and 0.9 are
shown

Figure 2.36: Case inert-1.1: Instanta-
neous mass fraction field ofO2, x2-x3-plane
through a braid (left) and a roller (right) at
τω = 735, isolines YO2 = 0.1 and 0.9 are
shown

Figure 2.37: Case inert-1.1: Instanta-
neous mass fraction field ofO2, x2-x3-plane
through a braid (left) and a roller (right) at
τω = 1098, isolines YO2 = 0.1 and 0.9 are
shown

times (Figs. 2.31 to 2.33), there is no more organization visible, and the mixing layer is highly
three-dimensional. While it is obviously more three-dimensional than at Mc = 0.15, it is hard to
say whether the three-dimensionality has increased when rising Mc from 0.7 to 1.1. In particular
at the latest time shown (Fig. 2.33), there is no free-stream fluid present in the mid-plane of the
mixing layer.

Cuts through braid and roller regions, which are of course hardly distinguishable from another,
are shown in Figs. 2.34 to 2.37 and confirm the observations concerning the three-dimensional
nature of the mixing layer. The large-scale ondulations in the isolines correspond to ejections
going outwards from the mixing layer rather than inwards.



RESULTS AND ANALYSIS 17

2.4.2 The self-similar state

All simulations are performed during time-intervals that are long enough to reach a self-similar
state and to collect sufficient data during this state for reliable statistics. After an initial transient,
constant normalized growth rates

δ̇θ =
1

∆u

dδθ
dt

(2.17)

of the momentum thickness

δθ =
1

ρ0∆u2

∫ ∞

−∞
〈ρ〉
(

1

4
∆u2 − 〈u1〉2f

)
dx3 (2.18)

are established in all cases which can be seen from the constant slopes in Fig. 2.38. This figure
reveales that with increasing compressibility it takes longer for the mixing layer to reach a fully
turbulent, self-similar state which has to be attributed to the stabilizing effect of the compressibil-
ity. Following Vreman et al. [183], the normalized growth rate can be computed by

δ̇θ =
2

ρ0∆u3

[∫ (
−〈ρu′′1u′′3〉

∂〈u1〉f
∂x3

)
dx3 +

∫ (
〈τ13〉

∂〈u1〉f
∂x3

)
dx3

]
. (2.19)

Quantities with brackets, like 〈ρ〉, are Reynolds averaged quantities, quantities with an additional
index f , like 〈u1〉f , are Favre averaged quantities. Primes and double primes indicate the respec-
tive fluctuations. The first integral in Eq. (2.19) is the integrated production of the TKE. The
second integral represents the molecular dissipation of the mean flow. In the turbulent regime the
latter can be neglected compared to the former [183, 123], and the expression for the growth rate
reduces to

δ̇θ =
2

ρ0∆u3

∫ (
−〈ρu′′1u′′3〉

∂〈u1〉f
∂x3

)
dx3. (2.20)

The normalized time period between 286 and 409 is considered the self-similar state of the inert-
0.15 case for which the nearly constant normalized growth rate of the momentum thickness com-
puted by Eq. (2.20) is 0.0124. This lies close to the growth rate of 0.014 found by Rogers &
Moser [152] for an incompressible mixing layer. By increasing the convective Mach number δ̇θ
is reduced to 0.0054 in the simulation inert-0.7 and to 0.0036 in the simulation inert-1.1. Figure
2.39 presents the so-called ’Langley Experimental Curve’obtained from growth rates found by

τω
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Figure 2.38: Temporal development of the momentum thickness, normalized by initial momen-
tum thickness δθ,0, ∗: inert-0.15, �: inert-0.7, ◦: inert-1.1, dashed lines show linear regressions
for the self-similar state
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Figure 2.39: Dependence of shear layer growth rate on Mc: solid line: Langley curve, +: De-
bisschop & Bonnet [36], ×: Samimy & Elliot [155], ∗: Chambres, Barre & Bonnet [25], �:
Papamoschou & Roshko [126], �: Clemens & Mungal [27], ◦: Hall, Dimotakis & Rosemann
[71], •: Pantano & Sarkar [123],4: Present DNS

early air-air shear layer experimentalists along with various other experimental results, the DNS
results of Pantano & Sarkar [123] and the present DNS results. Our results are lying within the
region where other experiments are situated. However, they are below the DNS results of Pan-
tano & Sarkar who did similar computations to the present ones. This fact is commented on in
the course of this section.

The beginning and the end of the self-similar states, along with the corresponding Reynolds
numbers

Reω =
∆u ρ0 δω

µ0
(2.21)

are summarized in table 2.2. They are based on the instantaneous vorticity thickness

δω =
∆u

(∂〈u1〉f/∂x3)max
. (2.22)

The peak values of the micro-scale Reynolds number,

Reλ = 2k

√
5ρ

νε
, (2.23)

where ν is the kinematic viscosity, k the TKE and ε its dissipation rate (see Eq. (2.27)) are also
given in table 2.2. This Reynolds number is based on the Taylor micro-scale

λ =

√
10ρνk

ε
. (2.24)

The initial ratio between the vorticity thickness and the momentum thickness is 4.0 which is due
to the initialization of the vorticity by a hyperbolic-tangent profile. It increases during the initial
development to values around 5.5 for all test cases but relaxes back during the self-similar state
to approximately the initial value.

A normalization by the variables δω, ρ0 and ∆u allows to verify if a truly self-similar state is
reached by following the temporal development of profiles which are spatially averaged over the
two homogeneous directions. Figures 2.40 to 2.42 show profiles of the Reynolds shear stress

〈ρ〉R13 = 〈ρu′′1u′′3〉 (2.25)
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Table 2.2: Dimensionless times and Reynolds numbers at the beginning (index: B) and end (in-
dex: E) of the self-similar state

τω,B τω,E Reω,B Reω,E Reλ,B Reλ,E

inert-0.15 286 409 11540 13410 122 144
inert-0.7 626 980 15370 18014 100 105
inert-1.1 1023 1305 18586 22353 85 90

at different times for the three inert test cases, respectively. The relaxation to a self-similar state
is visible. Consequently, a temporal averaging of the appropriately normalized profiles over this
state is possible. A similar collapse can be observed for other profiles, e.g. those of the other
Reynolds stresses, the TKE, the dissipation rate of the TKE or the variance of the mass fractions
and their dissipation rate.

In Figs. 2.43 to 2.47, the mean streamwise velocity and the rms velocities computed from the
turbulent stress tensor

〈ρ〉Rij = 〈ρu′′i u′′j 〉 (2.26)

of case inert-0.15 are shown in comparison with other DNS and experimental values. The profiles
of the numerical simulations are averaged both spatially over the two homogeneous directions
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Figure 2.40: Case inert-0.15: Spatially av-
eraged profiles of the Reynolds shear stress
R13 at different times, +: τω = 83, ×:
τω = 123, ∗: τω = 164, �: τω = 204,
�: τω = 245, ◦: τω = 286, •: τω = 327,4:
τω = 368
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Figure 2.41: Case inert-0.7: Spatially aver-
aged profiles of the Reynolds shear stress
R13 at different times, +: τω = 390, ×:
τω = 474, ∗: τω = 557, �: τω = 640,
�: τω = 725, ◦: τω = 809, •: τω = 866,4:
τω = 923
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Figure 2.42: Case inert-1.1: Spatially aver-
aged profiles of the Reynolds shear stress
R13 at different times, +: τω = 735, ×:
τω = 807, ∗: τω = 878, �: τω = 949, �:
τω = 1023, ◦: τω = 1098, •: τω = 1174,
4: τω = 1248
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Figure 2.43: Streamwise velocity, solid
line: inert-0.15, dashed line: DNS Pantano
& Sarkar Mc = 0.3 [123], [152], +: Exper-
iments Bell & Mehta [7], ×: Experiments
Spencer & Jones [172]
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Figure 2.44: Streamwise rms velocity, solid
line: inert-0.15, dashed line: DNS Pantano
& Sarkar Mc = 0.3 [123], dotted line: DNS
Rogers & Moser, [152], +: Experiments
Bell & Mehta [7], ×: Experiments Spencer
& Jones [172]
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Figure 2.45: Spanwise rms velocity, curves
as in Fig. 2.44
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Figure 2.46: Transverse rms velocity,
curves as in Fig. 2.44
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Figure 2.47: Velocity computed from
Reynolds shear stress, curves as in Fig. 2.44

and temporally over the self-similar state. This is the case for all profiles in the following if
not mentioned otherwise. In general, the agreement of the present profiles with the others is
good which verifies the computation. However, it is interesting to note that the width of the rms
velocity profiles varies which can be due to different initial developments in the time elapsed
until self-similarity is reached. While Rogers & Moser [152] initialized their simulation with
a turbulent field from a previous boundary layer DNS, the present DNS were initialized with
laminar profiles and broadband fluctuations in the velocity components only. Pantano & Sarkar
[123] used similar broadband fluctuations in the velocity components but superimposed additional
pressure and density fluctuations. Little unsymmetries in the profiles of the present simulation
may be attributed to the density ratio of 1.14 between oxygen in the upper stream and nitrogen in
the lower one.

Most of the rms velocity profiles of the current DNS have a somewhat lower peak than the DNS
profiles of Rogers & Moser [152] as well as the ones of Pantano & Sarkar [123]. One reason
might be that the size of the present computation domain is more than four times larger in all
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directions than the simulation of Rogers & Moser and 1.5 times larger in the streamwise and
spanwise directions and 2.25 times larger in transverse direction than the one of Pantano & Sarkar.
Therefore, the present simulation probably captures the relaxation towards a self-similar state (see
Fig. 2.40) more completely than the ones with the smaller domains. This conclusion is drawn
from our simulations in shorter domains (not documented here) which led to higher peak values
in the rms velocity profiles.

Figure 2.48 shows the most important terms in the transport equation of TKE k for case inert-0.15,

∂ (〈ρ〉k)

∂t
+
∂ (〈ρ〉〈uk〉fk)

∂xk
= P + ε + T + Π + Σ (2.27)

with the production P , the dissipation rate ε, the transport T , the pressure dilatation Π and the
mass flux coupling term Σ. The agreement between the present DNS and the simulations of
Pantano & Sarkar as well as Rogers & Moser is good taking into account the previously men-
tioned reasons for discrepancies. Equation (2.27) is obtained from the transport equation for the
Reynolds stresses,

∂〈ρ〉Rij

∂t
+
∂ (〈ρ〉〈uk〉fRij)

∂xk
= Pij + εij + Tij + Πij + Σij, (2.28)

by contracting the indices (k = 0.5Rkk). In Eq. (2.28), the production term is

Pij = −〈ρ〉
(
Rik

∂〈uj〉f
∂xk

+Rjk
∂〈ui〉f
∂xk

)
, (2.29)

the dissipation rate,

εij = −〈τ ′jk
∂u′′i
∂xk

+ τ ′ik
∂u′′j
∂xk
〉, (2.30)

the transport by velocity and pressure fluctuations as well as viscous effects,

Tij = − ∂

∂xk
〈ρu′′i u′′ju′′k + p′u′iδjk + p′u′jδik − τ ′jku′′i − τ ′iku′′j 〉, (2.31)

the pressure-strain term,

Πij = 〈p′
(
∂u′′i
∂xj

+
∂u′′j
∂xi

)
〉 (2.32)
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Figure 2.48: Turbulent kinetic energy budget, +: production, ×: transport, ∗: dissipation, nor-
malized by ∆u3δθ, solid lines: inert-0.15, dashed lines: DNS Pantano & Sarkar Mc = 0.3 [123],
dotted line: DNS Rogers & Moser, [152]
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and the mass flux coupling term

Σij = 〈u′′i 〉
(
∂〈τjk〉
∂xk

− ∂〈p〉
∂xj

)
+ 〈u′′j 〉

(
∂〈τik〉
∂xk

− ∂〈p〉
∂xi

)
. (2.33)

When comparing the temporally and spatially averaged rms velocity profiles of case inert-0.7
with the computations of Pantano & Sarkar [123] and the experiments of Elliott & Samimy [49]
in Figs. 2.49 to 2.51, the differences between the peak values are even more pronounced than
for the incompressible case. Again, a possible reason could be that the large present domain
size allows a more complete relaxation towards a self-similar state than the smaller ones from
the previous simulations of Pantano & Sarkar with their domain being three times smaller in
streamwise and transverse direction and 1.5 times smaller in the spanwise direction. Similar
tendencies can be observed for the major terms in the TKE transport equation (2.27) shown in Fig.
2.52. The suspicion that descrepancies between the self-similar profiles of the present simulation
at Mc = 0.7 and the ones of the simulation by Pantano & Sarkar [123] is caused by an early
break-off of the latter ones due to their smaller domain size is substantiated by the fact that the
momentum thickness growth rate of case inert-0.7 has a small plateau between τω = 300 and
τω = 400 with δ̇ω ≈ 0.007 before it decreases again to the growth rate that is identified in this
work to be the self-similar one (δω ≈ 0.0054 between τω = 626 and 980) (see Fig. 2.53). As
Pantano & Sarkar identified the growth rate of the mixing layer at Mc = 0.7 to be 0.0108, it
seems as if they took an early, higher plateau in the growth rate as the self-similar state since the
limited domain size does not allow the mixing layer to grow further. Equation 2.20 shows that
a larger growth rate is related with a larger Reynolds shear stress. Having a larger self-similar
growth rate it is clear, that the Reynolds shear stress (and also the other Reynolds stresses) of
Pantano & Sarkar must be larger than the ones of the present simulation which is confirmed by
Figs. 2.49 to 2.51. A similar argumention is true for the Reynolds stresses of case inert-1.1. The
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Figure 2.49: Streamwise rms velocity, solid
line: inert-0.7, dashed line: DNS Pantano
& Sarkar Mc = 0.7 [123], +: Experiments
Elliott & Samimy [49]
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Figure 2.50: Transverse rms velocity,
curves as in Fig. 2.44
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Figure 2.51: Velocity computed from
Reynolds shear stress, curves as in Fig. 2.44
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Figure 2.52: Turbulent kinetic energy bud-
get, +: production, ×: transport, ∗: dissi-
pation, normalized by ∆u3/δθ, solid lines:
inert-0.7, dashed lines: DNS Pantano &
Sarkar Mc = 0.7 [123]
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Figure 2.53: Dimensionless momentum
thickness growth rate of the inert-0.7 case,
computed with Eq. (2.20)
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Figure 2.54: Turbulent kinetic energy bud-
get, +: production, ×: transport, ∗: dissi-
pation, normalized by ∆u3/δθ, solid lines:
inert-1.1, dashed lines: DNS Pantano &
Sarkar Mc = 1.1 [123]

most important terms of the TKE budget equation for this test case are shown in Fig. 2.54 in
comparison with the results of Pantano & Sarkar [123] which are again larger than the present
results.

2.4.3 Check of resolution, domain sizes and filtering

In order to verify the accuracy of the results, resolution and domain sizes are checked. All simu-
lations are well resolved with a minimal Kolmogorov length

lk =

(〈ν〉3〈ρ〉
ε

)1/4

(2.34)

of 0.32∆x3 for case inert-0.15, 0.44∆x3 for case inert-0.7 and 0.58∆x3 for case inert-1.1 during
the self-similar state. These resolutions are fine enough to accurately capture most of the dis-
sipation (cf. Sect. 2.4.4.1) and therefore adequate for DNS [117]. As the Schmidt numbers of
gases are smaller than 1, no resolution problems concerning the scalar fields are expected, either.
Various spectra, which are dealt with in Sections 2.4.4.1 and 2.4.4.2, show no accumulation of
energy at the highest wavenumbers as it would be the case for an under-resolved simulation.

The appropriateness of the domain size in the periodic directions is checked by computing two-
point correlations of the velocity components and the species mass fraction. The two-point cor-
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Figure 2.55: Two-point correlation R1 with
f = u1, in the middle of the compu-
tational domain, averaged over the self-
similar state, ∗: inert-0.15, �: inert-0.7, ◦:
inert-1.1
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Figure 2.56: Two-point correlation R2 with
f = u1, in the middle of the compu-
tational domain, averaged over the self-
similar state, symbols as in Fig. 2.55
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Figure 2.57: Two-point correlation R1 with
f = u3, in the middle of the compu-
tational domain, averaged over the self-
similar state, symbols as in Fig. 2.55
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Figure 2.58: Two-point correlation R2 with
f = u3, in the middle of the compu-
tational domain, averaged over the self-
similar state, symbols as in Fig. 2.55
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Figure 2.59: Two-point correlation R1 with
f = YO2, in the middle of the compu-
tational domain, averaged over the self-
similar state, symbols as in Fig. 2.55
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Figure 2.60: Two-point correlation R2 with
f = YO2, in the middle of the compu-
tational domain, averaged over the self-
similar state, symbols as in Fig. 2.55

relation of a quantity f reads in streamwise direction

R1f =
〈f ′ (x1, x2, x3, t) f

′ (x1 + ∆x1, x2, x3, t)〉
f 2
rms

(2.35)

and in spanwise direction

R2f =
〈f ′ (x1, x2, x3, t) f

′ (x1, x2 + ∆x2, x3, t)〉
f 2
rms

. (2.36)

In order to eliminate the contamination of the results by finite domain size, the correlation should
be small for large xi, i.e. in the middle of the domain. Figures 2.55 to 2.60, in which half of the
domain size is shown, prove that this is the case.
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Table 2.3: Integral length scales
l1/L1 l2/L2

inert-0.15 0.073 0.046
inert-0.7 0.068 0.044
inert-1.1 0.060 0.069
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Figure 2.61: Test of compact filter, solid:
filter dissipation, dashed: ε
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Figure 2.62: Test of compact filter, solid:
filter scalar dissipation, dashed: εY

Integral length scales in streamwise and spanwise directions are given by

l1 =

∫ ∆x1=L1/2

0

R1u1d (∆x1) (2.37)

and

l2 =

∫ ∆x2=L2/2

0

R2u1d (∆x2) (2.38)

[123]. In order to have good large-scale resolution, these length scales must be small compared
to the dimensions of the computational box. Table 2.3 shows that this is the case by giving the
spatially and temporally averaged results in the middle of the computational domain in transverse
direction.

To prevent accumulation of spurious energy the primitive flow variables are filtered every 20th
time step. The filtering has only a weak influence and can be quantified by comparing it to the
dissipation rate of the TKE, ε [123]. To do so, the profile of the TKE, averaged over the two
homogeneous directions, after filtering is subtracted from the one before, and the result is divided
by the time between two filterings, (20 time steps). This gives an artificial dissipation rate due to
the filtering which can be compared to the dissipation rate of the TKE. The corresponding profiles
for one of the test cases (inert-0.15) are shown in Fig. 2.61 and prove that the dissipation rate due
to filtering is small compared to the TKE dissipation rate. A similar test can be done by obtaining
a filtering dissipation rate from the scalar (mass fraction) variance and by contrasting it with the
scalar dissipation rate εY which proves to be much bigger (Fig. 2.62).

2.4.4 The effect of compressibility

2.4.4.1 Turbulence characteristics

Mean flow variables The peak in the averaged temperature profile is rising with increasing
Mach number (Fig. 2.63) as a consequence of viscous dissipative heating. This leads to a drop in
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Figure 2.65: Averaged pressure, normalized
by ρ0∆u2, symbols as in Fig. 2.63
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Figure 2.66: Favre averaged streamwise ve-
locity, normalized by ∆u, symbols as in
Fig. 2.63

the averaged density (Fig. 2.64). The averaged pressure normalized by ρ0∆u2 is nearly constant
across the shear layer (Fig. 2.65) and drops with increasing Mc. Multiplying its value by γM 2

c

respectively, gives the same constant, 0.25, for all Mc which demonstrates that the pressure drop
is by γM2

c . Figure 2.66 shows the Favre averaged streamwise velocity. The differences between
the cases with the various convective Mach numbers are small.

Reynolds stresses, turbulent kinetic energy and anisotropies Figures 2.67 to 2.70 show the
averaged Reynolds stresses of the three test cases. They are strongly anisotropic with the stream-
wise stress being the biggest, followed by the spanwise and then the transverse one. The mag-
nitude of the Reynolds shear stress is even smaller. It can be seen that all, the normal stresses
and the shear stress, reduce when increasing the convective Mach number. The turbulent kinetic
energy in Fig. 2.71 shows the same behaviour. The reduction of R22, R33 and R13 is in agreement
with various experiments [36, 49, 68] and DNS [63, 123]. Concerning the streamwise Reynolds
stressR11, different results can be found: While some experiments and DNS [63, 68] find its peak
to be independent of the convective Mach number, others [49, 123] notice a decrease which is in
agreement with our results.
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Figure 2.67: Reynolds stress 〈ρ〉R11, nor-
malized by ρ0∆u2, curves as in Fig. 2.63
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Figure 2.69: Reynolds stress 〈ρ〉R33, nor-
malized by ρ0∆u2, curves as in Fig. 2.63

x3/δω

〈ρ
〉R

1
3
/

(ρ
0
∆
u

2
)

10.50-0.5-1

0.001
0

-0.001
-0.002
-0.003
-0.004
-0.005
-0.006
-0.007
-0.008
-0.009

-0.01

Figure 2.70: Reynolds stress 〈ρ〉R13, nor-
malized by ρ0∆u2, curves as in Fig. 2.63
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Figure 2.71: Turbulent kinetic energy 〈ρ〉k,
normalized by ρ0∆u2, curves as in Fig.
2.63
The similar behaviour of the normal Reynolds stresses and the shear Reynolds stress with increas-
ing convective Mach number makes the shear stress anisotropy parameter

b13 =
〈u′′1u′′3〉f

2k
(2.39)

nearly independent of the convective Mach number (Fig. 2.72) which was also noticed by Vreman
et al. [183]. The anisotropy parameters of the normal Reynolds stress components,

bij =
〈u′′i u′′j 〉f

2k
− 1

3
δij, with i = j (2.40)
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Figure 2.72: Reynolds shear stress
anisotropy, b13, curves as in Fig. 2.63
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Figure 2.73: Streamwise Reynolds stress
anisotropy, b11, curves as in Fig. 2.63
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are also nearly independent of Mc (Figs. 2.73 to 2.75) which corresponds to the results of [123].
However, there are different statements concerning the consequences of compressibility with re-
spect to the anisotropy of the Reynolds stresses in free shear flows, e.g. [183] (increase of trans-
verse anisotropy, no effect on shear stress anisotropy) or [63] (increase of transverse anisotropy,
decrease of shear stress anisotropy). Pantano & Sarkar [123] found in their DNS of turbulent
compressible shear layers that all diagonal components of the Reynolds stresses, as well as the
Reynolds shear stress decrease with increasing convective Mach number. They also showed
in agreement with experiments [6, 155] that compressibility has only a weak influence on the
anisotropy of the Reynolds stresses at least in the full turbulent, self-similar state and the Mach
number range considered. In addition, Pantano & Sarkar [123] noticed that during the initial
transient evolution, the anisotropy tensor is strongly affected by the convective Mach number Mc

which could be a possible explanation for the discrepancies of earlier experiments and simula-
tions.

Reynolds stress transport equations Figures 2.76 to 2.83 show the major terms of the trans-
port equation of the Reqnolds stresses (2.28). The biggest source term in the R11 equation is the
TKE production, the biggest sinks are the dissipation rate and the pressure-strain rate. The latter
one acts to redistribute energy from the streamwise component of the Reynolds stresses, R11,
to the spanwise and transverse components, R22 and R33. The pressure-strain rate is the major
source term in the transport equations of these Reynolds stress components. Contrarily toR11, the
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Figure 2.76: Budget of R11, normalized by ρ0∆u3/δω, symbols as in Fig. 2.63, solid: production,
dashed: dissipation rate
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Figure 2.77: Budget of R11, normalized by ρ0∆u3/δω, symbols as in Fig. 2.63, solid: pressure-
strain rate, dashed: turbulent transport
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Figure 2.78: Budget of R22, normalized by ρ0∆u3/δω, symbols as in Fig. 2.63, solid: production,
dashed: dissipation rate
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Figure 2.79: Budget of R22, normalized by ρ0∆u3/δω, symbols as in Fig. 2.63, solid: pressure-
strain rate, dashed: turbulent transport

production term of R22 and R33 is zero and no energy is coming directly from the mean flow. The
role of the turbulent transport is the same in all diagonal Reynolds stresses: It takes energy away
from the central region and transports it to the edges of the shear layer. The dissipation rates have
nearly the same magnitudes in all budgets of the diagonal Reynolds stresses at each convective
Mach number, respectively, which is supported by the argument that for high Reynolds numbers
the turbulence, which is isotropic at small scales, implies isotropic dissipation [183].

One major effect of compressibility is to reduce the production rate of R11. This is a clear con-
sequence of the reduced Reynolds shear stress R13 (Fig. 2.70) as it appears as a factor in the
production rate

P11 = −2R13
∂〈u1〉f
∂x3

(2.41)

and the Favre averaged velocity profile hardly changes in particular in the center of the shear layer
(Fig. 2.66). Pressure-strain rate and turbulent transport of R11 are also decreased with increasing
convective Mach number as is the dissipation rate. This is also the case for R22 and R33. Pantano
& Sarkar [123] found the magnitude of ε11 rather independent of Mc and noticed a small decrease
of ε33 which is approximately of the size of the decrease found in this study. Even though ε11 in
the present test cases is not constant, it is shown later that its influence on the shear layer growth
rate is small compared to the influence of the pressure-strain rate.

The major source of the Reynolds shear stress R13 is the production and its only major sink the
pressure-strain rate (Figs. 2.82 and 2.83). As R13 is negative, the production is negative too and
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Figure 2.80: Budget of R33, normalized by ρ0∆u3/δω, symbols as in Fig. 2.63, solid: production,
dashed: dissipation rate
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Figure 2.81: Budget of R33, normalized by ρ0∆u3/δω, symbols as in Fig. 2.63, solid: pressure-
strain rate, dashed: turbulent transport

the pressure-strain rate is positive. The turbulent transport oscillates around zero (for unknown
reasons), and therefore its role is not as clear as for the diagonal Reynolds stresses. The fact that
the dissipation rate ε13 is approximately zero is consistent with the expected isotropic dissipation
at sufficiently high Reynolds numbers. The influence of compressibility on the budget terms of
the Reynolds shear stress is the same as for the normal Reynolds stresses: In particular the major
ones, namely production and pressure-strain rate, are decreased with increasing Mc.

Quantities integrated in the transverse direction are convenient as they are less sensitive to the
sample size. They are defined in the following way (using the production P as an example):

P̆ =

∫ ∞

−∞
Pdx3 (2.42)

When integrating all budget terms this way, the following set of ordinary differential equations is
obtained:

∂〈ρ〉R̆11

∂t
= P̆11 + Π̆11 + ε̆11

∂〈ρ〉R̆22

∂t
= Π̆22 + ε̆22

∂〈ρ〉R̆33

∂t
= Π̆33 + ε̆33

∂〈ρ〉R̆13

∂t
= P̆13 + Π̆13 + ε̆13

(2.43)



RESULTS AND ANALYSIS 31

x3/δω
10.50-0.5-1

0.0025

0

-0.0025

-0.005

-0.0075

-0.01

-0.0125

Figure 2.82: Budget of R13, normalized by ρ0∆u3/δω, symbols as in Fig. 2.63, solid: production,
dashed: dissipation rate
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Figure 2.83: Budget of R13, normalized by ρ0∆u3/δω, symbols as in Fig. 2.63, solid: pressure-
strain rate, dashed: turbulent transport

as terms in divergence form vanish after integration. These or slightly modified equations where
also used by other authors [183, 63, 123] for similar studies. As shown by Fig. 2.82, the shear
stress dissipation can be neglected at all Mc (|ε̆13| < 0.04

∣∣∣P̆13

∣∣∣).

Figures 2.84 to 2.86 show the integrated normalized production, pressure-strain and dissipation
rate as functions of the convective Mach number. Certain ratios of these terms are found to be
independent of the Mach number and are shown in Fig. 2.87. Freund et al. [63] denoted these
constant ratios for their annular mixing layer, too. From Fig. 2.87 it can be seen that a reduced
growth rate at high Mc cannot be explained by an increase in the ratios of pressure-strain and
production in the budget equation of R11 and R13 as these ratios are nearly constant. This has
also been pointed out by Vreman et al. [183]. The figure also shows that P̆13 ≈ 1.28Π̆11 and
Π̆13 ≈ −1.13Π̆11. Neglecting ε̆13, the budget equation for R̆13 can be simplified to

∂〈ρ〉R̆13

∂t
= 1.28Π̆11 − 1.13Π̆11 = 0.15Π̆11. (2.44)

This demonstrates that the streamwise pressure-strain rate, Π11 can be directly linked with the
temporal development of the Reynolds shear stress. Any influences of compressibility on Π11 are
therefore not only influencing R11 directly but also via its production rate P11 that is linked with
R13 (Eq. (2.41)).



32 2. DNS OF INERT COMPRESSIBLE TURBULENT SHEAR LAYERS

Mc

∣ ∣ ∣P̆
ij

∣ ∣ ∣/
(ρ

0
∆
u

3
)

1.21.110.90.80.70.60.50.40.30.20.1

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

-0.002

Figure 2.84: Production, integrated in trans-
verse direction, normalized by ρ0∆u3: +: P̆11,
◦: P̆22, ∗: P̆33, �: P̆13

Mc

∣ ∣ ∣Π̆
ij

∣ ∣ ∣/
(ρ

0
∆
u

3
)

1.21.110.90.80.70.60.50.40.30.20.1

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

Figure 2.85: Pressure-strain rate, integrated in
transverse direction, normalized by ρ0∆u3: +:
Π̆11, ◦: Π̆22, ∗: Π̆33, �: Π̆13
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Analysis of the reduced growth rate It is possible to directly explain the growth rate reduction
from the streamwise Reynolds stress equation by establishing a relation between the pressure-
strain rate and the momentum thickness. This was done in similar ways by Freund et al. [63] and
Pantano & Sarkar [123].

The integrated production rate P̆11 can be related to the momentum thickness growth rate δ̇θ by
using Eq. (2.20):

P̆11 = ρ0∆u3δ̇θ. (2.45)

From Fig. 2.86 it can be seen that the factor Kε in

ε̆11 = −Kερ0∆u3 (2.46)

is not constant in our simulation which differs from the results of Freund et al. [63]. However,
later we will show that its variation is of little influence on the growth rate. The exact values of
Kε for each Mc are given in table 2.4.

By substituting (2.45) and (2.46) into (2.43),

∂〈ρ〉R̆11

∂t
= ρ0∆u3

(
δ̇θ −Kε

)
+ Π̆11 (2.47)

Table 2.4: Values used in the analysis linking momentum thickness growth rate with pressure-
strain rate Π11 for the inert test cases

Mc Kε K11 Π̆11/ (ρ0∆u3)

0.15 3.0845 · 10−3 1.0543 · 10−1 −8.3972 · 10−3

0.7 1.8395 · 10−3 6.2236 · 10−2 −3.4054 · 10−3

1.1 1.2830 · 10−3 3.9643 · 10−2 −2.4020 · 10−3
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Figure 2.88: Reynolds stress 〈ρ〉R11, normalized by ρ0∆u2, curves as in Fig. 2.63

is obtained. The integrated streamwise Reynolds stress is defined as:

〈ρ〉R̆11 =

∫ ∞

−∞
〈ρ〉R11dx3 = ρ0∆u2δθ

∫ ∞

−∞

〈ρ〉R11

ρ0∆u2

dx3

δθ
(2.48)

Since, in our test cases, the profile of f (η) = 〈ρ〉R11/ (ρ0∆u2) against η = x3/δθ is not indepen-
dent of Mc, which can be seen from Fig. 2.88, K11 in

K11 =
〈ρ〉R̆11

ρ0∆u2δθ
(2.49)

is not a constant. The values of K11 are given in table 2.4 for the various convective Mach
numbers. Substituting (2.49) into (2.47), the final expression for the normalized momentum
thickness growth rate is

δ̇θ =
−Π̆11/ (ρ0∆u3) +Kε

1−K11
(2.50)

which links it with the integrated pressure-strain rate Π̆11. The values of the normalized integrated
pressure-strain rate Π̆11/ (ρ0∆u3) at each Mc are given in table 2.4. Since Eq. (2.50) corresponds
to Eq. (2.20), when using the values Kε and K11 as well as Π̆11/ (ρ0∆u3) from table 2.4, nearly
identical growth rates δ̇θ are obtained by Eqs. (2.50) and (2.20) at each Mc, respectively. Minor
discrepancies with the values given in Sect. 2.4.2 are due to rounding errors. The growth rates
are also repeated in table 2.5. In order to see, whether the reduction of the momentum thickness
growth rate with increasing compressibility is provoked by the changes in Π̆11/ (ρ0∆u3) or by
the ones in Kε and K11, the averaged values of the latter ones, Kε = 2.069 · 10−3 and K11 =

6.9103·10−2 are used, along with the exact values of Π̆11/ (ρ0∆u3) to compute δ̇θ,1 which is given
together with its relative error (error 1) in table 2.5. In a next step, the exact Kε and K11 from
2.4 but the averaged Π̆11/ (ρ0∆u3) = −4.7349 · 10−3 is used. This gives δ̇θ,2 with a relative error

Table 2.5: Actual and approximated momentum thickness growth rates and relative errors for the
inert test cases

Mc δ̇θ δ̇θ,1 δ̇θ,2 error 1 error2

0.15 1.2835 · 10−2 1.1243 · 10−2 8.7409 · 10−3 12.4% 31.9%

0.7 5.5930 · 10−3 5.8808 · 10−3 7.0107 · 10−3 5.1% 25.3%

1.1 3.8371 · 10−3 4.8029 · 10−3 6.2663 · 10−3 25.2% 63.3%
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(error 2) that is given in table 2.5, too. Comparing the errors, one can see that the influence of
the variation of the pressure-strain rate with compressibility has a much greater influence than the
variation of Kε and K11 which include the influences of dissipation rate and streamwise Reynolds
stress. This is particularly true for the highest Mach number.

Pressure-strain terms There are three, maybe simultaneously occuring possibilities, how the
pressure-strain rate

Π11 = 2〈p′∂u
′′
1

∂x1
〉 (2.51)

might be reduced: Either by a reduction of the pressure fluctuations p′, by a reduction of the strain
rate fluctuations ∂u′′1/∂x1 or by a reduction of their correlation coefficient. It is demonstrated in
the following as an example for the streamwise component of the pressure-strain rate tensor which
one of these possibilities is the most plausible one.

Figure 2.89 shows the rms value of the pressure fluctuations, Fig. 2.90, the rms value of strain
rate fluctuations and Fig. 2.91, the correlation coefficient of both fluctuations,

R (p, ∂u1/∂x1) =
〈p′∂u′′1/∂x1〉

prms (∂u1/∂x1)rms
. (2.52)

It is visible that the pressure fluctuations reduce much more with increasing compressibility than
the fluctuations of the strain rate and that the correlation coefficient remains small for all Mc,
which suggests that the reduction of the pressure fluctuations is primarily responsible for the
reduced pressure-strain rates. This is confirmed by Fig. 2.92 which presents the relative reduction
of the integrated rms value of p′, of the integrated rms value of ∂u′′1/∂x1 and the integrated
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pressure-strain rate |Π11|: The pressure fluctuations are the predominant reason for the reduced
pressure-strain rate since they are reduced in a similar manner with increasing Mc. The strain rate
fluctuations are also reduced for increasing Mc but to a lesser extent. Similar results are obtained
for the other components of the pressure-strain rate tensor (not shown). The reduction of the
pressure-strain rates with increasing Mc is further investigated in Sect. 2.4.4.1.

TKE transport equation The major terms of the transport equation for the TKE, Eq. (2.27),
are shown in Figs. 2.93 and 2.94. The major source term, namely production, is reduced with
increasing Mach number. The turbulent transport acts as a sink in the middle of the shear layer and
as a source at its edges. It therefore moves kinetic energy away from the region of highest shear,
where it is produced, to regions of less production. The pressure dilatation is very small. This
means that the pressure-strain tensor is nearly trace free, and that its major role is to redistribute
energy from the streamwise component of the Reynolds stress to the spanwise and transverse
components the transport equations of which have no production terms. Figure 2.95 shows the
ratio of the integrated pressure dilatation term, Π̆ and the production term P̆ against Mc. Its
magnitude increases with increasing Mc, which is partially due to the reduced production at high
Mc and remains small in total. The dissipation rate, the major sink in the TKE transport equation,
is also reduced by compressibility (Fig. 2.94), however not as much as the production rate. This
can be seen from Fig. 2.96 which shows that the magnitude of the ratio of the dissipation rate
with respect to the production increases with increasing Mc.
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Figure 2.93: Budget of 〈ρ〉k, normalized by ρ0∆u3/δω, symbols as in Fig. 2.63, solid: production,
dashed: dissipation rate
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To further investigate the influence of compressibility on ε, it can be split up into three parts

ε = ε1 + ε2 + ε3 (2.53)

with

ε1 = −2〈µ〉〈s′ijs′ij〉+
2

3
〈µ〉〈s′kks′ll〉,

ε2 = −2〈µ′s′ijs′ij〉+
2

3
〈µ′s′kks′ll〉,

ε3 = −2〈µ′s′ij〉〈sij〉+
2

3
〈µ′s′kk〉〈sll〉

(2.54)

where 〈sij〉 is the strain rate tensor,

〈sij〉 =
1

2

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)
(2.55)

and s′ij the fluctuating strain rate tensor

s′ij =
1

2

(
∂u′i
∂xj

+
∂u′j
∂xi

)
. (2.56)

The part ε1 can be split up again into three parts, in a quasi-incompressible, ’solenoidal’ part εs, a
dilatational part εd and an inhomogeneous part εI :

ε1 = εs + εd + εI (2.57)
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Figure 2.97: Decomposition of TKE dissipation rate, normalized by ρ0∆u3/δω, symbols as in
Fig. 2.63, solid: ε1, dashed: ε2, dotted: ε3
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Figure 2.98: Decomposition of ε1, normalized by ρ0∆u3/δω, symbols as in Fig. 2.63, solid: εs,
dashed: εd, dotted: εI
with

εs = −〈µ〉〈ω′iω′i〉,

εd = −4

3
〈µ〉〈s′kks′ll〉,

εI = −2〈µ〉
(

∂2

∂xi∂xj
〈u′iu′j〉 − 2

∂

∂xi
〈u′i

∂u′j
∂xj
〉
)
.

(2.58)

Here, the fluctuating vorticity is denoted by

ω′i = εijk
∂u′k
∂xj

. (2.59)

In an incompressible flow only

ε = εs + εI = −µ〈ω′iω′i〉 − 2µ
∂2

∂xi∂xj
〈u′iu′j〉 (2.60)

would remain as there are no fluctuations of viscosity and dilatation. Figures 2.97 and 2.98 show
the terms of this decomposition. It can be seen that for all Mc, the part ε1 is the largest one and
ε2 and ε3 are negligible. The biggest contribution to ε1 comes from the solenoidal dissipation rate
εs. However, the other parts are not negligible but have opposite signs and nearly cancel each
other out. ε1 as well as all of its parts, εs, εd and εI , are influenced by compressibility and reduced
in their magnitude. The ratio of the integrated dilatational dissipation rate and the solenoidal
dissipation rate as well as the ratio of the integrated and the total dissipation rate decrease with
increasing compressibility (Figs. 2.99 and 2.100) which acts contrarily to the observed stabilizing
effect of compressibility. However in total, the changes are very small and therefore of limited
influence.
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Figure 2.101: Rms value of the density fluctu-
ations, normalized by 〈ρ〉, symbols as in Fig.
2.63

x3/δω

p r
m
s
/〈
p〉

10.50-0.5-1

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0
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Figure 2.103: Rms value of the temperature
fluctuations, normalized by 〈T 〉, symbols as in
Fig. 2.63
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Figure 2.104: Rms value of the molecular
weight fluctuations, normalized by 〈W 〉, sym-
bols as in Fig. 2.63

Thermodynamic fluctuations The first order relation

ρ′

〈ρ〉 =
p′

〈p〉 −
T ′

〈T 〉 +
W ′

〈W 〉 (2.61)

is derived from the equation of state for gas mixtures (2.5). The corresponding rms values are
shown in Figs. 2.101 to 2.104. For the inert compressible flow, case inert-0.7, density fluctuations
are of acoustic and entropic nature. The latter comprises fluctuations in temperature and molecu-
lar weight. The fluctuations of the molecular weight are reduced by compressibility as a result of
reduced mixing and the corresponding rms profiles change shape with increasing compressibility
(cf. Sect. 2.4.4.2). Normalizing the pressure rms value with its mean value as done in Fig. 2.102,
it is increasing as a consequence of compressibility which is on the contrast to the reduction that
can be observed when normalizing by ρ0∆u2 (Fig. 2.89). However, when considering that the
normalized averaged pressure 〈p〉/ (ρ0∆u2) decreases with γM 2

c (Fig. 2.65), it becomes clear
that the pressure fluctuations with the same normalization (as in Fig. 2.89) must also decrease in
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Figure 2.105: Integrated rms values, +: prms/〈p〉, ×: ρrms/〈ρ〉, ∗: Trms/〈T 〉, �: Wrms/〈W 〉
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order to avoid negative pressure.

Figure 2.105 directly shows the dependence of the thermodynamic fluctations on Mc which is
obtained after integrating the profiles in the Figs. 2.101 to 2.104 in the transverse direction. One
can see that at all Mach numbers the density fluctuations are the most important ones. Density,
pressure and temperature fluctuations increase with increasing compressibility and the tempera-
ture fluctuations which are smaller than the pressure fluctuations at Mc = 0.15 and Mc = 0.7

become bigger than those at Mc = 1.1. The rms value of the molecular weight decreases slightly
with increasing Mc.

A further quantification of the relation between the pressure and the density fluctuations and
the influence of acoustic effects is obtained by a decomposition of the density and temperature
fluctuations into acoustic and entropic parts as suggested by Sarkar [163]:

ρ′ = ρ′ac + ρ′en

T ′ = T ′ac + T ′en

p′ = p′ac

ρ′ac =
p′ac

〈c〉2

T ′ac =
γ − 1

γ

Tp′

p

(2.62)
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Figure 2.106: Acoustic (solid line) and entropic part (dashed line) of the density fluctuations,
normalized by 〈ρ〉, symbols as in Fig. 2.63

x3/δω

T
r
m
s
/〈
T
〉

10.50-0.5-1

0.06

0.05

0.04

0.03

0.02

0.01

0

Figure 2.107: Acoustic (solid line) and entropic part (dashed line) of the temperature fluctuations,
normalized by 〈T 〉, symbols as in Fig. 2.63
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The corresponding rms values for the test cases are shown in Figs. 2.106 and 2.107. While both,
acoustic and entropic mode contribute to the density fluctuations in inert shear layers at high
Mach numbers, the entropic fluctuations prevail at Mc = 0.15. Both, the temperature fluctuations
of the acoustic and entropic part are small at Mc = 0.15 and increase for higher Mc. While
the acoustic fluctuations of density and temperature have their maxima in the center of the shear
layer, the maxima of the entropic fluctuations are located at its edges where the free-stream fluid
is mixed into the layer. However, it has to be noted that the decomposition in Eqs. (2.62) is not
unique and that it is based on the assumption that all pressure fluctuations are of acoustic nature.

Correlations of thermodynamic fluctuations The correlation coefficient of the density and
pressure fluctuations

R (ρ, p) =
〈ρ′p′〉

ρrmsprms
, (2.63)

is shown in Fig. 2.108. The coefficient fluctuates around zero for the inert-0.15 case. This is in
agreement with the small acoustic part of the density and temperature fluctuations found previ-
ously. However, there is a stronger correlation R (ρ, p) ≈ 0.8 for the simulations inert-0.7 and
inert-1.1 which indicates that acoustic effects become more important with the pressure fluctua-
tions traveling at the speed of sound. When neglecting viscous terms, the isentropic relationship

Dp

Dt
= c2Dρ

Dt
(2.64)

applies. Pantano & Sarkar [123] used this to derive a convective wave equation for the pressure
fluctuations. Ananlyzing this equation, they found the reason for the reduction of the pressure-
strain terms at high Mach number within the central part of the inert mixing layer: The finite speed
of sound in compressible flows introduces a finite time delay in the transmission of pressure-strain
signals from one point to an adjacent point, and the resultant increase in decorrelation leads to a
reduction in the pressure-strain correlation.

At low Mc, the density fluctuations are correlated with the molecular weight as shows the corre-
lation coefficient

R (ρ,W ) =
〈ρ′W ′〉

ρrmsWrms
(2.65)

in Fig. 2.109. This is in agreement with the entropic density fluctuations being more important
than the acoustic ones (Fig. 2.106).
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Behaviour of the pressure-strain correlations In the following it is analyzed why compress-
ibility decreases the pressure fluctuations when normalizing by ρ0∆u2 as done in Fig. 2.89 and
why this entails a reduction of the pressure-strain correlations. To do so, an equation determining
the pressure fluctuations is derived. It is shown that when acoustic influences on the pressure fluc-
tuations can be neglected, this equation takes the form of a Poisson equation. Then, correlations
with the pressure (pressure-strain correlations, pressure scrambling terms) can be computed with
the help of a Green function which gives further insight into the various contributions to these
terms and reasons for their changes. By a similar procedure, Kim [89] investigated pressure-
strain correlations in a channel flow, and Foysi [61] and Foysi et al. [60] showed that mean
density effects lead to a reduction of pressure fluctuations in a channel with cooled walls.

Starting point of the derivation is the following equation for the pressure:

∂2p

∂xi∂xi
= −∂

2 (ρuiuj)

∂xi∂xj
+

∂2τij
∂xi∂xj

+ 2ui
∂2 (ρuj)

∂xi∂xj
− uiuj

∂2ρ

∂xi∂xj
+
D2ρ

Dt2
(2.66)

This equation is exact for compressible and reacting flows. It is obtained by taking the divergence
of the momentum equation and inserting the continuity equation. When taking the statistical
average of Eq. (2.66) and subtracting it from Eq. (2.66), one obtains the following equation for
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Figure 2.110: Case inert-0.15: Parts of the pressure-strain correlation Π11 computed with the
Green function, normalized by ρ0∆u3/δω, +: f = f (A1), ×: f = f (A2), ∗: f = f (A3), �:
f = f (A4), �: f = f (B1), ◦: f = f (B2), •: f = f (B3), 4: f = f (C1), N: f = f (C2), O:
f = f (C3), H: f = f (C4), �: f = f (C5)

x3/δω
10.50-0.5-1

0.001

0

-0.001

-0.002

-0.003

-0.004

-0.005

-0.006

Figure 2.111: Case inert-0.15: Pressure-strain correlation Π11, normalized by ρ0∆u3/δω, solid:
computed with the help of the Green function with f = f

(∑4
i=1 Ai +

∑3
i=1 Bi +

∑5
i=1 Ci

)
,

dashed: computed exactly



42 2. DNS OF INERT COMPRESSIBLE TURBULENT SHEAR LAYERS

the pressure fluctuations:

∂2p′

∂x2
j

=− 2
∂〈ui〉f
∂xj

∂

∂xi

(
〈ρ〉u′′j

)
− 2

∂〈ui〉f
∂xi

∂

∂xj

(
〈ρ〉u′′j

)
− ∂2

∂xi∂xj

(
〈ρ〉u′′i u′′j − 〈ρu′′i u′′j 〉

)

− 2〈ρ〉u′′j
∂2ũi
∂xi∂xj

− ρ′
(
∂〈ui〉f
∂xi

)2

− ρ′∂〈ui〉f
∂xj

∂〈uj〉f
∂xi

− 2
∂〈ui〉f
∂xj

∂

∂xi

(
ρ′u′′j
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∂xi

∂

∂xj

(
ρ′u′′j

)
− 2

∂2〈ui〉f
∂xi∂xj

(
ρ′u′′j

)

− ∂2

∂xi∂xj

(
ρ′u′′i u

′′
j

)
+
D

2
ρ′

Dt2
+

∂2τ ′ij
∂xi∂xj

(2.67)

For a fully developed turbulent flow that is periodic in x1- and x2-directions this equation simpli-
fies to

∂2p′

∂x2
j

=−〈ρ〉 ∂2

∂xixj

(
u′′i u

′′
j − 〈u′′i u′′j 〉
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+ 2
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(2.68)

The operator D
2
/Dt2 is defined as

D
2

Dt2
:=

∂2

∂t2
+ 2〈uj〉f

∂2

∂t∂xj
+ 〈ui〉f〈uj〉f

∂2

∂xi∂xj
. (2.69)

The terms on the RHS of Eq. (2.68) can be classified into terms that depend explicitly on the
mean density (A1 to A4), terms that depend on gradients of the mean density (B1 to B3), terms
that are caused by temporal and spatial variations of the density fluctuations with or without direct
coupling to the velocity fluctuations (C1 to C6) and a term that is caused by viscous effects (D).
The latter one is very small for the flows considered in this work and is neglected in the following.
The termsA1 toA4 are the only ones that are present in an incompressible case (constant density).
If considering the complete termC6 and assuming the isentropic relation p′ = 〈c〉2ρ′, a convective
wave equation for the pressure fluctuations is obtained [123]. For the inert shear layers studied
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here, term C6 turns out to be small according to DNS data. This makes Eq. (2.68) a Poisson
equation for the pressure fluctuations.

The Poisson equation for p′ can be studied with the help of a Green function in order to ob-
tain information about the contribution of the individual terms on the RHS. Applying a Fourier
transformation in the homogeneous directions, p (x1, x2, x3) → p̂ (k1, k2, x3), and a coordinate
transformation in the transverse direction, x′3 = 2x3/L3, Eq. (2.68) becomes

(
d2

dx′23
− k2

1 − k2
2

)
p̂ (k1, k2, x

′
3) = f̂ (k1, k2, x

′
3) (2.70)

with f denoting the terms on the RHS of Eq. (2.68). It is assumed that the gradients of the
pressure fluctuations at the boundary of the computational domain, which is sufficiently far away
from the mixing layer, are small. Therefore,

∂p̂

∂x′3

∣∣∣∣
x′3=±1

= 0. (2.71)

The Green function corresponding to Eqs. (2.70) and (2.71) is [89]:

Ĝ (k, x′3, x
′′
3) = −cosh [k (x′′3 − 1)] cosh [k (x′3 + 1)]

2k cosh (k) sinh (k)
, for x′3 < x′′3

Ĝ (k, x′3, x
′′
3) = −cosh [k (x′′3 + 1)] cosh [k (x′3 − 1)]

2k cosh (k) sinh (k)
, for x′3 > x′′3

(2.72)
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Figure 2.112: Case inert-0.7: Parts of the pressure-strain correlation Π11 computed with the Green
function, normalized by ρ0∆u3/δω, symbols as in Fig. 2.110
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Figure 2.113: Case inert-0.7: Pressure-strain correlation Π11, normalized by ρ0∆u3/δω, solid:
computed with the help of the Green function with f = f

(∑4
i=1 Ai +

∑3
i=1 Bi +

∑5
i=1 Ci

)
,

lines as in Fig. 2.111
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Figure 2.114: Case inert-1.1: Parts of the pressure-strain correlation Π11 computed with the Green
function, normalized by ρ0∆u3/δω, symbols as in Fig. 2.110
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Figure 2.115: Case inert-1.1: Pressure-strain correlation Π11, normalized by ρ0∆u3/δω, solid:
computed with the help of the Green function with f = f

(∑4
i=1 Ai +

∑3
i=1 Bi +

∑5
i=1 Ci

)
,

lines as in Fig. 2.111

for k 6= 0, where k = (k2
1 + k2

2)
1/2 and

Ĝ (0, x′3, x
′′
3) = 0.5 (x′′3 − x′3) , for x′3 < x′′3

Ĝ (0, x′3, x
′′
3) = 0.5 (x′3 − x′′3) , for x′3 > x′′3

(2.73)

for k = 0. Consequently, the solution of Eq. (2.70) writes

p′ (x1, x2, x
′
3) =

∫ 1

−1

G ∗ f (x1, x2, x
′′
3) dx′′3 (2.74)
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Figure 2.116: Case inert-0.15: Parts of the pressure-strain correlation Π11 computed with the
Green function and with constant density ρ0, normalized by ρ0∆u3/δω, symbols as in Fig. 2.110
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Figure 2.117: Case inert-0.7: Parts of the pressure-strain correlation Π11 computed with the Green
function and with constant density ρ0, normalized by ρ0∆u3/δω, symbols as in Fig. 2.110
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Figure 2.118: Case inert-1.1: Parts of the pressure-strain correlation Π11 computed with the Green
function and with constant density ρ0, normalized by ρ0∆u3/δω, symbols as in Fig. 2.110

where the convolution G ∗ f represents the inverse Fourier transform of Ĝf̂ ,

G∗f ′ (x1, x2, x
′′
3) =

1

(2π)2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 exp (ikixi) Ĝ (k1, k2, x

′
3, x
′′
3) f̂ (k1, k2, x

′′
3) . (2.75)

Multiplication with s′′ij and averaging, results in the pressure-strain correlations

Πij (x′3) =

∫ 1

−1

〈G ∗ f (x1, x2, x
′′
3) s′′ij (x1, x2, x

′
3)〉dx′′3 (2.76)

Similarly, the pressure-scrambling terms are obtained when multiplying with ∂Y ′′/∂xi instead of
s′′ij . These terms are further studied in Sect. 2.4.4.2.

When inserting not the complete RHS f into Eq. (2.76), but only a part of it, e.g. term A1, it is
possible to see which of the terms on the RHS contributes most to the pressure fluctuations and to
what mechanisms the reduction of the pressure-strain correlations with compressibility are due.
Figure 2.110 shows the contributions to the pressure-strain term, Π11 of case inert-0.15, computed
this way and averaged over the self-similar state. It can be seen that only terms A1 and A2 are
significant, and all other terms can be neglected. When summing up all terms, the result, shown
as a solid line in Fig. 2.111, corresponds well to Π11 computed directly as done in the previous
sections. This justifies the neglection of terms D and C6 for this case. When increasing Mc, the
contribution from term C2, which is one of the terms involving density fluctuations starts to grow
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somewhat, however, it remains small compared to the contributions from terms A1 and A2 (cf.
Figs. 2.112 and 2.114). Even though term C6, which is expected to represent acoustic effects,
is neglected, the summation of the rest of the terms provides still a good approximation to Π11

as shown in Figs. 2.113 and 2.115. Since the analysis of the other pressure-strain terms gives
qualitatively similar results, it can be concluded that acoustic effects do not play a significant role
for the pressure-strain correlations of inert mixing layers in the convective Mach number range
considered in this study.

A comparison between Figs. 2.110, 2.112 and 2.114 shows, that the contributions from terms A1

and A2 decrease with increasing Mc which corresponds to the same behaviour that has been no-
ticed previously for the complete pressure-strain rates. To find out whether this is a consequence
of the mean density reduction (cf. Fig. 2.64) by compressibility, the mean density 〈ρ〉 appearing
in terms A1 to A4 of Eq. (2.68) is set constant, i.e. ρ0 is inserted instead. The density fluctuations
in the other terms are set to zero. Figures 2.116 to 2.118 show the resulting contributions to Π11

when replacing the original terms on the RHS of Eq. (2.68) by these modified terms: The reduc-
tion of the contributions from terms A1 and A2 with increasing Mc is still visible which excludes
mean density effects to be the reason for this behaviour. Consequently, it must be caused by
changes in the velocity field.

Turbulent and gradient Mach numbers The turbulent Mach number

Mt =

√
2k

〈c〉 (2.77)

is an indicator of the level of compressibility of the turbulence and can also be interpreted as the
ratio of the eddy-acoustic time scale τa to the turbulence time scale τt [63]. Fig. 2.119 shows
the increase of the turbulent Mach number with increasing Mc. However, Sarkar [161] showed
for homogeneously sheared turbulence that it is not the turbulent Mach number but the gradient
Mach number

Mg =
Sl

〈c〉 , (2.78)

which steers the reduction of the TKE growth rate by a reduced level of turbulent production. In
Eq. (2.78), S denotes the mean shear and l a length scale in the direction of the mean shear. Sarkar
[161] pointed out that an increase in turbulent Mach number reduced also the growth rate of the
TKE, however considerably less than an increase inMg. The reason for the decrease withMt was
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Figure 2.119: Turbulent Mach number Mt, symbols as in Fig. 2.63
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Figure 2.120: Gradient Mach number Mg, symbols as in Fig. 2.63

identified to be due to a contribution from pressure dilatation and dilatational dissipation. These
findings can also explain why compressibility effects are strong in shear layers and rather lack
in boundary layers: The gradient Mach number in the latter ones is much smaller than in shear
layers. Pantano & Sarkar [123] pursued the investigations for the compressible mixing layer and
also found the gradient Mach number to be the key quantity that determines the reduction of the
pressure-strain term. Figure 2.120 shows the gradient Mach number, computed with l = δω for
the inert mixing layers. In agreement with the just mentioned studies, it increases with increasing
Mc. Since both, Mt and Mg are affected by compressibility it is interesting to see whether both
quantities are correlated. Blaisdell et al. indeed found a correlation [12] which can be confirmed
by the present results (Fig. 2.121). However, due to different initial conditions and the use of
another length scale in the computation of Mg, the slopes of the approximately linear relations do
not coincide.

Since the gradient Mach number can also be interpreted as the acoustic time scale τa divided
by the mean distortion time scale of the flow, τd, the ratio of the gradient Mach number to the
turbulent Mach number,

Mg

Mt
=
τa/τd
τa/τt

=
τt
τd
, (2.79)

is the turbulence time scale, τt, divided by the mean distortion time scale and quantifies the
degree to which rapid-distortion effects govern the flow [63]. The approximately linear relation
between Mg and Mt for the inert mixing layers makes this ratio constant at all convective Mach
numbers that have been investigated and leads to the conclusion that such effects do not increase
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Figure 2.121: Turbulent Mach number Mt plotted as a function of the gradient Mach numberMg.
Symbols as in Fig. 2.63, solid line: Mt = 0.286Mg, dashed line: Mt = 0.159Mg
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significantly with Mc. This is in agreement with the findings of Freund et al. for the annular inert
mixing layer [63].

Spectra Figure 2.122 shows the one-dimensional, streamwise spectra of the velocity u1 (û1
′û1
′∗

with û1
′ denoting the velocity component u1 Fourier transformed in x1 direction and û1

′∗ its
complex conjugate) after averaging over directions x2 and x3. None of the spectra shows signs
of under-resolution like accumulation of energy at the highest wavenumbers. Mostly the higher
wave numbers are affected by increasing compressibility and a decrease of the energy that is
contained in the highest wavenumbers (smallest scales) can be noticed. This is in agreement with
the structural changes that were noticed earlier, like the larger-scale ondulations that show the
mixing layers at higher convective Mach number in comparison to the simulation inert-0.15 (cf.
Sect. 2.4.1). The spectra of the other velocity components evaluated in the streamwise and also in
the other homogeneous direction, which is the spanwise one, demonstrate a similar behaviour (not
shown). Therefore, it can also be found in the spectra of the TKE in Fig. 2.123. A comparison
to the reference line with a slope of −5/3, which gives the energy fall-off in the inertial range
for high Reynolds number turbulence [153], shows that the energy cascade follows this slope for
at least a small part of the spectrum. However, due to the relatively small Reynolds number, a
large inertial range cannot be expected. Pantano & Sarkar [123] also present energy spectra that
show a decrease in the highest wavenumbers with increasing Mc, but they do not comment on
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Figure 2.122: One-dimensional, streamwise spectrum of u1/∆u at the beginning of the self-
similar state, solid: inert-0.15, dashed: inert-0.7, dotted: inert-1.1
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self-similar state, solid: inert-0.15, dashed: inert-0.7, dotted: inert-1.1, the straight line has −5/3
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Figure 2.124: One-dimensional, streamwise dissipation spectrum (spectrum of u1/∆u multiplied
with (k1δω,0)2) at the beginning of the self-similar state, solid: inert-0.15, dashed: inert-0.7,
dotted: inert-1.1
this feature.

One-dimensional dissipation spectra, evaluated as k2
1û
′û′∗, are shown in Fig. 2.124. Compared

to the TKE spectra there is more ’dissipated energy’ situated in the higher wave numbers which
is to be expected since the dissipation of energy takes mostly place in the smallest scales. Again,
increasing compressibility leads to a reduction of the energy content in the highest wavenumbers.

2.4.4.2 Scalar mixing

In the present test cases, the species mass fractions are active, but non-reactive scalars. They are
called ’active’ as they influence the flow field by their molecular weight through the density and
by the transport coefficients that depend among other thermodynamic variables (the temperature
and partially the pressure) on their concentration.

The influence of compressibility on molecular mixing has been investigated previously mostly
by experimentalists. While some authors report a small increase of mixing efficiency with com-
pressibility [27, 28, 45], others found no apparent dependency on the convective Mach number
[78] or even encountered a decrease [70]. However, some of these experiments, e.g. [27] are not
fully spatially resolved as pointed out by [114]. Freund et al. [64] found an increase in mixing ef-
ficiency for their DNS of annular mixing layers between Mc = 0.1 and Mc = 1.54 but a decrease
for their highest Mach number case Mc = 1.8 which they are unable to explain. Many of these
studies also deal with the entrainment ratio, which is the average amount of fluid entrained into
the mixing layer from the high-speed side divided by the average amount of fluid entrained from
the low-speed side, and found it significantly altered by compresssibility. However, due to the
symmetry of the temporally evolving mixing layer, corresponding studies can not be performed
for the present configuration.

Mean profile and variance The differences between the Favre averaged profiles of the oxygen
mass fraction at different Mc (Fig. 2.125) are larger than those of the streamwise velocity profiles
(Fig. 2.66). The case inert-0.15 seems to have a flatter and more extended linear region in the
center of the shear layer than the shear layers at higher Mc the profiles of which are fuller and
closer to the shape of a hyperbolic-tangent or an error function.



50 2. DNS OF INERT COMPRESSIBLE TURBULENT SHEAR LAYERS

x3/δω

〈Y
〉 f

10.50-0.5-1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Figure 2.125: Favre averaged oxygen mass
fraction, ∗: inert-0.15, �: inert-0.7, ◦: inert-
1.1
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Figure 2.126: Scalar variance, symbols as in
Fig. 2.125

The variance of the oxygen mass fraction (Fig. 2.126) and consequently also the variance of the
nitrogen mass fraction are reduced by compressibility, which is in agreement with earlier results,
e.g. [27, 63]. In addition to a reduction of the peak value, a change of the profile shape can be
noticed: At Mc = 0.15, it has a local minimum in the center of the shear layer and two maxima
at its edges. The same double hump has been observed by other authors, too [58, 115, 124].
It is related with the fact that engulfment is most dominant at the edges of the shear layer and
leads to an increased intermittency at these locations. Compressibility first levels the minimum
(Mc = 0.7) and finally leads to a peak in the center of the shear layer (Mc = 1.1). This means
that at low convective Mach number strong deviations from the averaged mass fraction are in
particular present at the edges of the shear layer while at higher Mach number the strongest
deviations can be found in the center of the layer where also the peak value of the TKE is located
(Fig. 2.71). A similar change in the shape of the profiles with increasing Mc is observed for the
rms value of the molecular weight (Fig. 2.104). The general decrease of the scalar fluctuations at
higher convective Mach number can be understood when taking into account that the penetration
of free-stream fluid into the mixing layer decreases with increasing compressibility (cf. Sect.
2.4.4.3) resulting in less flucutations about the respective mean.

Scalar pdfs Figures 2.127 to 2.129 show the probability density functions (pdfs) of the oxygen
mass fraction for various x1-x2-planes corresponding to different 〈Y 〉 whereby the samples were
taken from the self-similar state. The pdfs were constructed by dividing the range between the
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Figure 2.127: Case inert-0.15: pdfs of oxygen mass fraction in planes with various 〈Y 〉, +: 0.1,
×: 0.2, ∗: 0.3, �: 0.4, �: 0.5, ◦: 0.6, •: 0.7,4: 0.8, N: 0.9
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Figure 2.128: Case inert-0.7: pdfs of oxygen mass fraction in planes with various 〈Y 〉, +: 0.1,
×: 0.2, ∗: 0.3, �: 0.4, �: 0.5, ◦: 0.6, •: 0.7,4: 0.8, N: 0.9
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Figure 2.129: Case inert-1.1: pdfs of oxygen mass fraction in planes with various 〈Y 〉, +: 0.1,
×: 0.2, ∗: 0.3, �: 0.4, �: 0.5, ◦: 0.6, •: 0.7,4: 0.8, N: 0.9
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Figure 2.130: Pdfs of oxygen mass fraction in the plane with 〈Y 〉 = 0.3 (solid) and 〈Y 〉 = 0.5

(dashed), symbols as in Fig. 2.125

maximum value (1.) and the minimum value (0.) in 50 bins and normalizing such that:
∫ 1

0

PDF (Y ) = 1. (2.80)

Comparing the pdfs for the different convective Mach numbers, one can see that for Mc = 0.15

more pure, unmixed fluid is present at 〈Y 〉 = 0.8, 0.7, 0.3 and 0.2 than for the other cases. This
is in agreement with the stronger engulfment of this shear layer (cf. Sect. 2.4.4.3). Comparing
directly the pdfs for certain 〈Y 〉, as it is done in Figs. 2.130, it is visible that the higher the
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Mach number the narrower and more pointed the pdfs. This is directly related with the lower
fluctuations noticed at higher Mach number.

Figures 2.127 to 2.129 also show that the most probable value of the mass fraction, i.e. the max-
imum of the pdfs, varies across the layer. At each side of the layer, it is closer to the free-stream
value of that side which proofs that the fluid gets mixed into the layer at the edges. Such pdfs are
called marching pdfs. The other cathegory that pdfs can fall in are the so-called non-marching
pdfs in which the most probable value is independent of the position in the layer. Rogers &
Moser [152] found marching and non-marching pdfs in their incompressible mixing layer de-
pending upon the initial conditions. The layer with the largest initial forcing, which developed
large roller structures and braid regions, had a non-marching scalar pdf which the authors sug-
gested to be caused by pure fluid which is engulfed by the large structures. As all the pdfs found
here are marching, it is expected to find the engulfed fluid volume rather small compared to the
mixed one, which is confirmed and further investigated in Sect. 2.4.4.3. Clemens & Mungal
[27] also found marching pdfs at both, low and high convective Mach number with the pdfs at
low convective Mach number being broader. They elucidated what types of turbulent structures
are responsible for the nature of the pdfs: Narrow, marching pdfs are caused by mixing layers
the structures of which closely resemble the mean profiles being uniform in the streamwise and
sloped in the transverse direction. Broad and non-marching pdfs are the consequence of structures
that are sloped in the streamwise direction and uniform in the transverse direction. As the pdfs
that are encountered here and also by these authors are relatively broad and marching both kind of
turbulent structures must be present in the mixing layer. However, with the high compressibility
pdfs being narrower, the structures of this mixing layer resemble more closely the mean profile
which is equivalent to having less fluctuations.

Mixing efficiency The mixing efficiency measures the mixing of the fluid in the layer that takes
place at the molecular level. Following Freund et al. [64], it is defined in terms of the scalar pdf
P (Y, x3) measured at different transverse positions:

δM
δY

=
1

δY

∫ ∞

−∞
dx3

∫ 1−ε

ε

dY P (Y, x3) (2.81)

where δY denotes the 99% scalar thickness. The choice of the small parameter ε influences the
resulting mixing efficiency. The higher ε is chosen, the more fluid is considered unmixed. Figure
2.131 shows the mixing efficiency for different ε. Since 50 bins have been used to determine the
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Figure 2.131: Mixing efficiency, �: ε = 0.02, ∗: ε = 0.04
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pdfs, ε = 0.02 corresponds to defining the fluid in the extreme bins to be pure and ε = 0.04,
to defining the fluid in the two outer bins to be pure. In the figure it can be seen that there is
an increasing trend in the mixing efficiency from low to high convective Mach number which
is in agreement with the results of Freund et al. [64]. In other words, with increasing Mc,
there is less free-stream fluid present, i.e. fluid with species mass fractions of 0 ≤ Yα < ε

or 1 − ε < Yα ≤ 1. This is consistent with the already observed decrease in mass fraction
fluctuations and with reduced engulfment (cf. Sect. 2.4.4.3).

Scalar variance transport equation The transport equation of the scalar variance reads for
temporally evolving shear layers:

∂

∂t
〈1
2
ρY ′′α

2〉 =− 1

2
〈u3〉f

∂

∂x3
〈ρY ′′α 2〉 − 1

2

∂

∂x3
〈ρu′′3Y ′′α 2〉

− 〈ρY ′′α u′′3〉
∂〈Yα〉f
∂x3

− 1

2
〈ρY ′′α 2〉∂〈u3〉f

∂x3

− ∂

∂x3

〈ρYαY ′′α Vα3〉+ 〈ρYαVαi
∂Y ′′α
∂xi
〉

(2.82)

The first term on the right hand side describes mean convection, the second is called turbulent
transport, the third and fourth turbulent production, the fifth molecular diffusion and the last one is
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Figure 2.132: Major terms in the scalar variance transport equation, normalized by ρ0∆u/δω,
solid: turbulent production, dashed: turbulent transport, dotted: dissipation rate, symbols as in
Fig. 2.125
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Figure 2.133: Parts of the scalar dissipation rate, solid: 〈ρYαVαi ∂Yα∂xi
〉, dashed: 〈ρYαVαi〉∂〈Yα〉f∂xi

,
normalized by ρ0∆u/δω, symbols as in Fig. 2.125
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the dissipation term. Figure 2.132 shows the most important terms: Positive turbulent production
is the major source term, the negative dissipation rate is the major sink and the turbulent transport
is negative in the center of the shear layer and positive at its edges at Mc = 0.15 and oscillates
around zero for higher convective Mach numbers.

The most important change that occurs with increasing Mc is the reduction of the turbulent pro-
duction. In addition, a decrease in the magnitude of the turbulent transport and of the dissipation
rate is noticed. The dissipation rate can be split up into:

εY = 〈ρYαVαi
∂Y ′′α
∂xi
〉 = 〈ρYαVαi

∂Yα
∂xi
〉 − 〈ρYαVαi〉

∂〈Yα〉f
∂xi

(2.83)

Figure 2.133 shows that the second part on the RHS, which is the product of two mean values,
can be neglected with respect to the first part, so that

εY ≈ 〈ρYαVαi
∂Yα
∂xi
〉 (2.84)

is a valid approximation.

Scalar fluxes Figures 2.134 and 2.135 show the most important scalar fluxes, 〈ρu′′1Y ′′α 〉 and
〈ρu′′3Y ′′α 〉. It can be seen that both, the streamwise scalar flux, 〈ρu′′1Y ′′α 〉, as well as the transverse
scalar flux, 〈ρu′′3Y ′′α 〉, reduce with increasing compressibility. The reduction of the latter one, in
particular from Mc = 0.7 to Mc = 1.1, however, is considerably larger than the reduction of the
streamwise flux which has also been noticed by Freund et al. [64]. The spanwise scalar flux (not
shown) is one order of magnitude smaller than the other scalar fluxes and not investigated further.
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Figure 2.134: Scalar flux 〈ρu′′1Y ′′α 〉 of oxygen, normalized by ρ0∆u, symbols as in Fig. 2.125
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Figure 2.135: Scalar flux 〈ρu′′3Y ′′α 〉 of oxygen, normalized by ρ0∆u, symbols as in Fig. 2.125
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Transport equations of scalar fluxes The general form of the transport equation for the scalar
fluxes in Cartesian coordinates is:

∂

∂t
〈ρu′′i Y ′′α 〉 =− 〈uj〉f

∂

∂xj
〈ρu′′i Y ′′α 〉 −

∂

∂xj
〈ρu′′i u′′jY ′′α 〉

− 〈ρu′′i Y ′′α 〉
∂〈uj〉f
∂xj

− 〈ρu′′jY ′′α 〉
∂〈ui〉f
∂xj

− 〈ρu′′i u′′j 〉
∂〈Yα〉f
∂xj

+ 〈p∂Y
′′
α

∂xi
〉

− ∂

∂xj
〈pY ′′α 〉δij +

∂

∂xj
〈τijY ′′α 〉 −

∂

∂xj
〈u′′i ρYαVαj〉

− 〈τij
∂Y ′′α
∂xj
〉+ 〈ρY Vαj

∂u′′i
∂xj
〉

(2.85)

The first term on the RHS denotes convection, the second term is the turbulent transport and the
next three terms are production terms. The term in the third line is the pressure scalar-gradient
correlation and the terms in the fourth line are diffusion terms. The last two terms describe the
dissipation.

For a shear layer which is periodic in x1- and x2-directions the transport equation in the x1-
direction can be simplified to

∂

∂t
〈ρu′′1Y ′′α 〉 =− 〈u3〉f

∂

∂x3
〈ρu′′1Y ′′α 〉 −

∂

∂x3
〈ρu′′1u′′3Y ′′α 〉

− 〈ρu′′1Y ′′α 〉
∂〈u3〉f
∂x3

− 〈ρu′′3Y ′′α 〉
∂〈u1〉f
∂x3

− 〈ρu′′1u′′3〉
∂〈Yα〉f
∂x3

+ 〈p∂Y
′′
α

∂x1

〉

+
∂

∂x3

〈τ13Y
′′
α 〉 −

∂

∂x3

〈u′′1ρYαVα3〉

− 〈τ1j
∂Y ′′α
∂xj
〉+ 〈ρYαVαj

∂u′′1
∂xj
〉.

(2.86)

The resulting equation for the flux in the x3-direction is:

∂

∂t
〈ρu′′3Y ′′α 〉 =− 〈u3〉f

∂

∂x3
〈ρu′′3Y ′′α 〉 −

∂

∂x3
〈ρu′′3u′′3Y ′′α 〉

− 2〈ρu′′3Y ′′α 〉
∂〈u3〉f
∂x3

− 〈ρu′′3u′′3〉
∂〈Yα〉f
∂x3

+ 〈p∂Y
′′
α

∂x3

〉

− ∂

∂x3

〈pY ′′α 〉+
∂

∂x3

〈τ33Y
′′
α 〉 −

∂

∂x3

〈u′′3ρYαVα3〉

− 〈τ3j
∂Y ′′α
∂xj
〉+ 〈ρYαVαj

∂u′′3
∂xj
〉.

(2.87)
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The pressure scalar-gradient correlation can also be written as

〈p∂Y
′′
α

∂xi
〉 = 〈p〉∂〈Yα〉

∂xi
− 〈p〉∂〈Yα〉f

∂xi
+ 〈p′∂Y

′′
α

∂xi
〉. (2.88)

For the x1-direction this becomes

〈p∂Y
′′
α

∂x1
〉 = 〈p′∂Y

′′
α

∂x1
〉, (2.89)

and for the x3-direction:

〈p∂Y
′′
α

∂x3
〉 = 〈p〉∂〈Yα〉

∂x3
− 〈p〉∂〈Yα〉f

∂x3
+ 〈p′∂Y

′′
α

∂x3
〉 (2.90)

is obtained.

In the following, the changes due to compressibility of the major terms in these equations are
investigated. The major terms are the production, the diffusion, the dissipation rates and the
turbulent transport as well as the correlation between the pressure fluctuations and the spatial
derivatives of the mass fraction fluctuations (third term on the RHS of Eq. (2.88)).

Figures 2.136 and 2.137 show the two major production terms of the streamwise scalar flux which
are the ones involving the mean gradient of the streamwise velocity and the mean gradient of the
scalar mass fraction (second and third term in the second line of Eq. (2.86)). For the transverse
scalar flux, only the latter one (second term in the second line of Eq. (2.87)), which is shown in
Fig. 2.138, is important. It is negative and constitutes a source term since the transverse flux itself
is also negative (Fig. 2.135). All production terms are reduced by compressibility. Particularly
striking is the reduction between Mc = 0.15 and Mc = 0.7. The further increase to Mc = 1.1

seems to have less effect which could indicate an asymptotic behaviour. The reduction of the
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Figure 2.136: Part of the streamwise scalar
flux production, normalized by ρ0∆u2/δω,
symbols as in Fig. 2.125
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Figure 2.137: Part of the streamwise scalar
flux production, normalized by ρ0∆u2/δω,
symbols as in Fig. 2.125
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Figure 2.138: Part of the transverse scalar flux
production, normalized by ρ0∆u2/δω, symbols
as in Fig. 2.125
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Figure 2.139: Major part of the diffusion
of the transverse scalar flux, normalized by
ρ0∆u2/δω, symbols as in Fig. 2.125
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Figure 2.140: Part of the dissipation rate
of the streamwise scalar flux, normalized by
ρ0∆u2/δω, symbols as in Fig. 2.125
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Figure 2.141: Part of the dissipation rate
of the transverse scalar flux, normalized by
ρ0∆u2/δω, symbols as in Fig. 2.125
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Figure 2.142: Part of the dissipation rate
of the streamwise scalar flux, normalized by
ρ0∆u2/δω, symbols as in Fig. 2.125
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Figure 2.143: Part of the dissipation rate
of the transverse scalar flux, normalized by
ρ0∆u2/δω, symbols as in Fig. 2.125

scalar flux production is closely related with the reduction of the Reynolds stresses, which appear
as factors in the part involving the mean mass fraction gradients, and with the reduction of the
scalar fluxes themselves which are factors in the parts with the mean velocity gradients.

From the diffusion terms, only the first term in the third line of Eq. (2.87) plays a major role. It
is shown in Fig. 2.139 and decreases with increasing compressibility.

The reduction of the two parts of the dissipation rate of each scalar flux, respectively, (Figs.
2.140 to 2.143) is not as strong as the reduction of the production which is similar to what has
been noticed earlier for production and dissipation rate of the Reynolds stresses and the scalar
variance.

Figures 2.144 and 2.145 show the turbulent transport of the streamwise and transverse scalar flux.
It can be seen that for Mc = 0.15, the direction of the turbulent transport for both fluxes is from
the center to the edges of the mixing layer. The turbulent transport decreases with increasing
compressibility and is strongly damped for the higher convective Mach numbers.
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Figure 2.144: Turbulent transport of the
streamwise scalar flux, normalized by
ρ0∆u2/δω, symbols as in Fig. 2.125

x3/δω

−
∂
∂
x

3
〈ρ
u
′′ 3
u
′′ 3
Y
′′ α
〉

δ ω
ρ

0
∆
u

2

10.50-0.5-1

0.004

0.003

0.002

0.001

0

-0.001

-0.002

-0.003

Figure 2.145: Turbulent transport of the trans-
verse scalar flux, normalized by ρ0∆u2/δω,
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Figure 2.146: Pressure-scrambling term in
streamwise direction, ΠY 1, normalized by
ρ0∆u2/δω, symbols as in Fig. 2.125
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Figure 2.147: Pressure-scrambling term in
transverse direction, ΠY 3, normalized by
ρ0∆u2/δω, symbols as in Fig. 2.125

The reduction of the correlation between the pressure fluctuations and the spatial derivatives of
the mass fraction fluctuations (last term in Eq. (2.88)) with compressibility is more pronounced
for the streamwise derivative than for the transverse derivative (Figs. 2.146 and 2.147). This term,
ΠY i, is also called pressure-scrambling term [100]. While it is purely negative and therefore a sink
for the streamwise scalar flux (Fig. 2.146), it changes sign for the transverse flux: It is positive
and therefore a sink for the negative transverse scalar flux in the center of the mixing layer and
a source at the mixing layer edges (Fig. 2.147). The reduction of the pressure-scrambling terms
with increasing Mc is further investigated in the next paragraph.

Behaviour of the pressure-scrambling terms In Section 2.4.4.1, the pressure-strain correla-
tions were computed and analyzed with the help of a Green function for the Poisson equation of
the pressure fluctuations, Eq. (2.68). A corresponding procedure permits a closer investigation of
the pressure-scrambling terms, ΠY i = 〈p′ ∂Y ′′α

∂xi
〉, and of the reason for their reduction with increas-

ing Mc. Similar to the pressure-strain correlations in Eq. (2.76), the pressure scrambling terms
can be computed by

ΠY i (x
′
3) =

∫ 1

−1

〈G ∗ f (x1, x2, x
′′
3)
∂Y ′′

∂xi
(x1, x2, x

′
3)〉dx′′3 (2.91)

with the Green function G (cf. Eqs. (2.72) and (2.72)) and the source term f which corresponds
to the RHS of Eq. (2.68). When inserting the terms on the RHS of Eq. (2.68) separately, the
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Figure 2.150: Case inert-0.7: Parts of the
pressure-scrambling term ΠY 3 computed with
the Green function, normalized by ρ0∆u/δω,
symbols as in Fig. 2.148
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Figure 2.151: Case inert-0.7: Pressure-
scrambling term ΠY 3, normalized
by ρ0∆u/δω, solid: computed with
the help of the Green function with
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Figure 2.152: Case inert-1.1: Parts of the
pressure-scrambling term ΠY 3 computed with
the Green function, normalized by ρ0∆u/δω,
symbols as in Fig. 2.148
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Figure 2.153: Case inert-1.1: Pressure-
scrambling term ΠY 3, normalized
by ρ0∆u/δω, solid: computed with
the help of the Green function with
f = f
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)
,

lines as in Fig. 2.149

split-up of ΠY 3 in Fig. 2.148 is obtained for case inert-0.15. Since the results for the other
pressure-scrambling terms are qualitatively the same, just ΠY 3 is analyzed in the following. As
for the pressure-strain correlations, only terms A1 and A2 contribute significantly to the complete
correlation. The comparison of ΠY 3 computed without terms C6 and D with the exact term in
Fig. 2.149, shows that the neglection of C6 and D is justified. The same conclusions apply to the
pressure-scrambling terms at higher convective Mach numbers (Figs. 2.150 to 2.153).

To obtain Figs. 2.154 to 2.156 modified source terms with constant density, equal to ρ0 were
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Figure 2.154: Case inert-0.15: Parts of the
pressure-scrambling term ΠY 3 computed with
the Green function and with constant density
ρ0, normalized by ρ0∆u/δω, symbols as in Fig.
2.148
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Figure 2.155: Case inert-0.7: Parts of the
pressure-scrambling term ΠY 3 computed with
the Green function and with constant density
ρ0, normalized by ρ0∆u/δω, symbols as in Fig.
2.148
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Figure 2.156: Case inert-1.1: Parts of the
pressure-scrambling term ΠY 3 computed with
the Green function and with constant density
ρ0, normalized by ρ0∆u/δω, symbols as in Fig.
2.148
inserted in Eq. (2.91). The reduction of terms A1 and A2 and therefore of the complete ΠY 3

with increasing Mc is not removed by the modification of the source terms which leads to the
conclusion that the reduction of the pressure-scrambling terms with compressibility is not a mean
density effect, but caused by changes in the velocity field of the flow.

Spectra Figure 2.157 shows the one-dimensional, streamwise spectrum of the scalar, the oxy-
gen mass fraction Y (Ŷ ′Ŷ ′∗) after averaging over directions x2 and x3. A small inertial range
of the energy cascade with an approximate slope of −5/3 can be seen. There is no significant
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Figure 2.157: One-dimensional, streamwise spectrum of the oxygen mass fraction Y , solid: inert-
0.15, dashed: inert-0.7, dotted: inert-1.1, the straight line has −5/3 slope
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Figure 2.158: One-dimensional dissipation spectrum of the oxygen mass fraction Y (spectrum of
Y multiplied with (k1δω,0)2), solid: inert-0.15, dashed: inert-0.7, dotted: inert-1.1
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accumulation of energy in the highest wavenumbers which would be a sign of under-resolution.
The behaviour with increasing compressibility corresponds to the one noticed for the spectra of
other quantities (cf. Sect. 2.4.4.1), like the TKE: The energy content in the highest wavenumbers
decreases when the convective Mach number rises. The scalar dissipation spectrum in Fig. 2.158,
evaluated as k2

1Ŷ
′Ŷ ′∗, peaks at a higher wavenumber than the scalar energy spectrum and shows

a similar behaviour for the highest wavenumbers with increasing compressibility.

2.4.4.3 Entrainment

In this section, the processes by which surrounding fluid enters the mixing layer and becomes a
part of it is investigated. The focus is on the effects that compressibility has on this entrainment
mechanism.

While entrainment has often been described as an engulfment of large packets of irrotational
fluid from the surrounding non-turbulent region by the action of large-scale coherent structures
followed by disintegration and acquisition of vorticity well within the turbulent region, a recent
study by Mathew & Basu [105] showed that a circular mixing layer grows by nibbling, a fast,
small-scale process occurring very close to the turbulent-nonturbulent interface. The engulfed
fluid volume, on the contrary, was revealed to be very small compared to the total volume of
the turbulent region. These results have been confirmed by subsequent PIV measurements in a
laboratory jet [186].

In this section, studies similar to those found in [105] for a cylindrical, incompressible mixing
layer are performed with the DNS data of the inert, plane mixing layers at different convective
Mach number.

Measurement of volumes To numerically measure the engulfed fluid, one has to define first
a criterion to distinguish between ambient fluid regions and the mixing layer which contains the
engulfed fluid. Engulfed fluid lies inside the turbulent region but still has the scalar concentration
and the low vorticity levels of the freestream fluid. Here, fixed thresholds are used to distinguish
between ambient fluid, engulfed fluid and the rest of the mixing layer, which consists of mixed
fluid. One threshold concerns the magnitude of the vorticity and one the scalar value. For the

Figure 2.159: Case inert-0.15: Instanta-
neous vorticity field, normalized by 〈ω〉max,
x1-x3-plane in the middle of the computa-
tional domain at τω = 286, isoline at 0.1 is
shown

Figure 2.160: Case inert-0.15: Instanta-
neous mass fraction field ofO2, x1-x3-plane
in the middle of the computational domain
at τω = 286, isolines YO2 = 0.05 and 0.95

are shown
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Figure 2.161: Based on vorticity thresholds: Mixing layer volume Vml (solid) and engulfed vol-
ume Ven (dashed) vs. the normalized time passed since the beginning of the self-similar state at
tB . Volumes are normalized with the mixing layer volume at the beginning of the self-similar
state, Vml,B, ∗: inert-0.15, �: inert-0.7, ◦: inert-1.1
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Figure 2.162: Based on mass fraction thresholds: Mixing layer volume Vml (solid) and engulfed
volume Ven (dashed) vs. the normalized time passed since the beginning of the self-similar state
at tB . Volumes are normalized with the mixing layer volume at the beginning of the self-similar
state, Vml,B. Symbols as in Fig. 2.161

vorticity, the threshold is set at 0.1〈ω〉max with 〈ω〉max denoting the maximum value of the spa-
tially averaged vorticity at an instant. For the oxygen mass fraction, 0.95 is the threshold close to
the oxygen-rich stream and 0.05 the one on the other side. Engulfed fluid has vorticity or scalar
levels as in the ambient fluid but lies within the mixing layer. The thresholds used were identified
as the most reliable thresholds nearest to the freestream levels by plotting isolines of the vorticity
and the mass fraction and examining their sensitivity to small variations of the isoline value. For
variations around the thresholds the changes were small, whereas larger variations led to large
excursions of the isolines due to numerical noise. The choice of thresholds is also discussed in
[105]. Figures 2.159 and 2.160 show such isolines for the vorticity and the oxygen mass fraction
at the beginning of the self-similar state of case inert-0.15. When comparing Fig. 2.160 (iso-
lines 0.05 and 0.95) with Fig. 2.3 (isolines 0.1 and 0.9), one can see that there are hardly any
differences between the isolines 0.05 and 0.1 as well as 0.95 and 0.9.

Figures 2.161 and 2.162 show the growth of the mixing layer volume and of the engulfed volume
from the beginning of the self-similar state. The mixing layer volume is the total volume minus
the ambient fluid volume. The latter is computed by comparing grid point values against the
thresholds, proceeding at each x1-x2-location from both freestream towards the mixing layer
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until locations where the thresholds were crossed. All these locations constitute the ambient fluid
volume. The engulfed volume consists of the grid points within the mixing layer, the values of
which are below the threshold. The rest of the mixing layer can be considered the mixed volume.
Figure 2.161 shows the curves based on the vorticity threshold (0.1〈ω〉max) and Fig. 2.162 the
ones based on the mass fraction thresholds (0.05 and 0.95). The conclusions from the two figures
are the same: Both, mixing layer volume and engulfed volume, grow during the simulations. The
growth rate of the mixing layer volume reduces with increasing Mc, and the growth rate of the
engulfed volume is smaller than the one of the mixing layer volume at all Mc. Both growth rates
are nearly constant throughout the self-similar state. In total, the engulfed volume is just a very
small part of the mixing layer volume, around 6% for Mc = 0.15. This percentage even reduces
with increasing Mc (5% for Mc = 0.7 and 4% for Mc = 1.1) which indicates that compressibility
suppresses engulfment.

Visual thickness The visual thickness δvis is the distance in transverse direction between the
two points where 〈ω〉 = 0.1〈ω〉max or, alternatively, where the spatially averaged mass fraction
has the values 0.05 and 0.95. Its temporal development and the temporal development of a thick-
ness computed from the mixing layer volume, δvol = Vml/ (L1 · L2), is shown in Figs. 2.163
(based on vorticity thresholds) and 2.164 (based on mass fraction thresholds) for the self-similar
state. At all convective Mach numbers, the growth rates of both thicknesses are nearly linear and
equal. They decrease with increasing Mach number which is in agreement with other measure-
ments of the mixing layer thickness, e.g. the momentum and vorticity thicknesses and with the
Langley curve (cf. Sect. 2.4.2).

At all convective Mach numbers, the visual thickness is larger than the thickness derived from
the mixing layer volume. This is due to intermittent outward ejections of vortical fluid from
the mixing layer and can be understood when taking into account the different ways by which
the two thicknesses are computed: In a laminar mixing layer, both thicknesses would coincide
and represent the boundary of the mixing layer. In a turbulent flow, when there are a few ejec-
tions from the turbulent region to the non-turbulent surrounding, the mean boundary, computed
by averaging the mixing layer volume, will move slightly. The shift is not very large as only
few ejections are present. However, the ejections consist of core fluid and carry therefore high
levels of vorticity and concentration. The consequence is that even though these events are not
frequent, the average vorticity and concentration profiles are affected considerably and the visual
thickness which is obtained from these profiles is larger than the thickness derived from the mix-
ing layer volume. This intermittency effect is more pronounced when using vorticity thresholds
(Fig. 2.163) to determine the mixing layer boundary than when using mass fraction thresholds
(Fig. 2.164). Figures 2.163 and 2.164 also show that the higher the Mach number, the closer are
the visual thickness and the thickness computed from the mixing layer volume which indicates a
decrase of intermittency.

Measurement of densities Figure 2.165 shows the density of the mixing layer, the density of
the engulfed volume and the density of the mixed volume which are determined based on the vor-
ticity threshold. It can be seen that the mixing layer density and the density of the mixed volume
decrease with increasing compressibility which is due to heating by dissipation. Shocklets, even
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Figure 2.163: Based on vorticity thresholds: Thickness computed from mixing layer volume δvol
(solid) and visual thickness δvis (dashed). Thicknesses are normalized by the visual thickness at
the beginning of the self-similar state, δvis,B. Symbols as in Fig. 2.161
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Figure 2.164: Based on mass fraction thresholds: Thickness computed from mixing layer volume
δvol (solid) and visual thickness δvis (dashed). Thicknesses are normalized by the visual thickness
at the beginning of the self-similar state, δvis,B . Symbols as in Fig. 2.161

though present in the mixing layer at Mc = 1.1 (cf. Sect. 2.4.4.4), are not frequent enough to rise
the density again.

The density of the engulfed volume is always higher than the density of the mixing layer, since it
enters the mixing layer from the non-turbulent region where no heating due to dissipation takes
place. However, the fact that the difference between the reference density ρ0 and the density of
the engulfed volume increases with increasing convective Mach number shows that dissipative
heating is not completely absent within the engulfed volume.

For all convective Mach numbers, the density of the mixed volume is lower than the density of
the complete mixing layer which includes also the engulfed volume. Since the density difference
between the engulfed volume and the mixed volume increases with compressibility, the difference
between the mixed volume density and the mixing layer density increases also.

Figure 2.166 shows the corresponding density curves whereby the regions are determined with the
help of the mass fraction thresholds. It can be seen that the curves of the engulfed volume are all
very close to the reference density ρ0 now. This demonstrates that the two threshold definitions are
not fully equivalent and that dissipative heating has less effect on the engulfed volume determined
by the mass fraction criteria than on the one determined by the vorticity criteria.

In both figures, the density of the engulfed volume of the mixing layer at Mc = 1.1 has a rising
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Figure 2.165: Based on vorticity thresholds: Mixing layer density ρml/ρ0 (solid), density of the
engulfed volume, ρen/ρ0 (dashed), and density of the mixed volume, ρmix/ρ0 (dotted), vs. the
normalized time passed since the beginning of the self-similar state at tB . Symbols as in Fig.
2.161
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Figure 2.166: Based on mass fraction thresholds: Mixing layer density ρml/ρ0 (solid), density
of the engulfed volume, ρen/ρ0 (dashed), and density of the mixed volume, ρmix/ρ0 (dotted), vs.
the normalized time passed since the beginning of the self-similar state at tB . Symbols as in Fig.
2.161
tendency and even exceeds the reference density in Fig. 2.166. It is assumed that this is due
to compression processes like shocklets (cf. Sect. 2.4.4.4) that within the engulfed volume - in
contrast to the complete mixing layer - overcome the density decrease by dissipation.

Particle statistics During the self-similar state pathlines of fluid particles were computed. To
do so, the velocity components at the locations of the particles were integrated every time step,
and the new positions of the particles were determined. The interpolation of the velocity field
from the grid points to the locations of the particles was performed with a third order Taylor
series 13-point scheme proposed by Yeung & Pope [191]. This scheme requires data at staggered
grid points which were obtained by spectral (exact) interpolation in the periodic x1- and x2-
directions and by sixth-order explicit interpolation in the x3-direction [99]. In addition to the
velocity components, the vorticity and the scalar mass fraction at the locations of the particles
were also computed.

The initialization of the particles is done at times when the mixing layers are already turbulent
but have not yet reached the self-similar state. Table 2.6 lists the number of the particles, the
times at which they are initialized and their initial transverse positions for all test cases. Particles
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Figure 2.167: Particle tracks in the upper half of the computational domain during the self-similar
state of inert-0.7
were placed at every 12th grid point in the x1- and x2-directions and at every 8th point in the
x3-intervals that are mentioned in table 2.6. These intervals were chosen such that initially nearly
all particles are situated outside the mixing layer (defined by the vorticity criteria) but close to its
edges.

In the following, it is investigated how the vorticity and the concentration grow along pathlines,
examples of which are shown in Fig. 2.167. It was found by Mathew and Basu [105] that in
a circular mixing layer, the growth of vorticity and concentration occurs close to the turbulent
boundary, and that they are often relatively fast processes. To determine if a particle has entered
the mixing layer, a lower and an upper threshold for the vorticity and the mass fraction are used.
This also captures a transition stage between the non-turbulent and turbulent flow which would
not be the case when using just one threshold, i.e. a sharp cut-off. The lower threshold for the
vorticity is at 0.1〈ω〉max, the upper one at 0.2〈ω〉max. For the scalar value (oxygen mass fraction),
the thresholds are 0.95 and 0.9 on the oxygen-rich side and 0.05 and 0.1 on the other.

In Table 2.7, statistical quantities for the particles during the self-similar state are listed. The
first two rows are displacements in the direction of the mean shear between the locations when
crossing the lower (subscript l) and upper (subscript u) thresholds. The values obtained with the
vorticity thresholds have the index ω, while the ones obtained with the mass fraction thresholds
have the index Y . For normalization, δvis at the time tl at which the lower threshold was crossed
has been used. The third and the fourth rows are the elapsed times between the crossing of the
lower and the upper thresholds, and the last two rows are the times between the crossing of the
vorticity and the mass fraction thresholds. The times are normalized by tvis = δvis (tl) /∆u. In
the last two rows, a δvis (tl) has been used, which is the averaged value of the one determined
with the vorticity and the one determined with the mass fraction. Only particles that are outside
the visual thickness of the shear layer at the beginning of the self-similar period are considered.
These are 14970 particles for case inert-0.15, 15764 for case inert-0.7 and 13335 for case inert-
1.1. The sample size gives the number of particles which among these have crossed the respective
thresholds and are therefore used to compute the respective statistical quantity.

Comparing the mean values in the first four lines of each test case with its considerably larger
maximum, one can see that most of the threshold crossings occur quite fast and close to the
boundary of the mixing layer. The means in the last two lines of each test case are positive which

Table 2.6: Particle parameters: NP particles are initialized at τω,PB. They are situated initially
between x3 = x3,P1 and x3,P2 and between x3 = x3,P3 and x3,P4

NP τω,PB x3,P1/δω,0 x3,P2/δω,0 x3,P3/δω,0 x3,P4/δω,0

inert-0.15 20480 209 -23.81 -11.19 10.68 23.30
inert-0.7 24576 404 -28.52 -13.55 13.21 28.18
inert-1.1 20480 843 -37.27 -24.82 21.96 34.41
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is suggesting that the growth of vorticity occurs faster than the growth of mass fraction. This can
be explained by the fact that the flow is governed by the velocity field from which the vorticity
is computed. In summary, the statistics show that the growth of vorticity and concentration is a
relatively fast process which is occuring close to the boundary of the turbulent region. This is
consistent with the findings of [105] for the circular mixing layer and leads to the conclusion that
nibbling, rather than engulfment is the process by which the mixing layer is growing.

At higher convective Mach number the fluid particles that start entering the mixing layer stay
close to its edges for a longer time and are carried along before they penetrate inside. This can
be seen from the elapsed times between the crossing of the lower and upper thresholds which are
larger for the higher convective Mach numbers. In contrast to the times, the displacements in the
first two lines of each test case do not change much with compressibility. While the particles at
higher Mc are convected downstream near the edges of the mixing layer they are slowed down
to a variable degree. This becomes clear when looking at the pdf of the local Mach number
assembled at the time the upper vorticity threshold is crossed (Fig. 2.168) While it is narrow
with a mean close to 0.15 when Mc = 0.15, the distribution at Mc = 0.7 is much broader and
extends from slightly above 0.7 down to about 0.2. The whole mechanism can be seen as some
kind of resistance that the compressible mixing layer as compared to the incompressible mixing
layer offers towards fluid particles before they are penetrating the mixing layer. Entrainment,
the process of ambient fluid acquiring vorticity, takes place at the very periphery of the turbulent
region. Then, the growth rate is diminished as fluid packets spend a longer period at the turbulence

Table 2.7: Statistics of displacements and elapsed times for growth of vorticity and mixture frac-
tion along particle pathlines

Sample size Mean Max Min

inert-0.15 |x3,ωu − x3,ωl| /δvis (tl) 4220 0.0250 0.5201 0
|x3,Y u − x3,Y l| /δvis (tl) 3875 0.0337 0.5878 0
(tωu − tωl) /tvis 4220 0.4696 9.1722 0
(tY u − tY l) /tvis 3875 0.6144 8.6643 0
(tY l − tωl) /tvis 4728 0.0301 5.4441 -5.8458
(tY u − tωu) /tvis 3636 0.1419 6.3473 -9.1722

inert-0.7 |x3,ωu − x3,ωl| /δvis (tl) 12760 0.0290 0.6667 0
|x3,Y u − x3,Y l| /δvis (tl) 11792 0.0423 0.6769 0
(tωu − tωl) /tvis 12760 0.8359 17.8751 0
(tY u − tY l) /tvis 11792 1.1986 19.4045 0
(tY l − tωl) /tvis 13333 0.3018 9.8935 -13.2233
(tY u − tωu) /tvis 11561 0.6607 17.7959 -17.7959

inert-1.1 |x3,ωu − x3,ωl| /δvis (tl) 5364 0.0205 0.3878 0
|x3,Y u − x3,Y l| /δvis (tl) 2909 0.0362 0.5031 0
(tωu − tωl) /tvis 5364 0.7808 9.8476 0
(tY u − tY l) /tvis 2909 1.2193 9.8476 0
(tY l − tωl) /tvis 5299 0.5850 7.9822 -8.2881
(tY u − tωu) /tvis 2841 0.9067 9.8476 9.4413
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Figure 2.168: Pdfs of the local Mach number magnitude at the time when the particles are cross-
ing the upper vorticity threshold. Symbols as in Fig. 2.161

boundary becoming a part of the turbulence. The lowered entrainment with compressibility goes
in hand with the structural changes that are experiencing the turbulence interfaces with increasing
Mc, which result in them being smoother than at low Mc (cf. next paragraph).

Fractal nature of the mixing layer interface It is of interest to see how the geometrical prop-
erties of the turbulent-nonturbulent interfaces of the mixing layer vary with compressibility and
to see whether these changes can be related with the changes noticed concerning the entrainment.
One question that arises in this context is whether the interfaces are fractal. Sreenivasan & Men-
eveau [173] performed measurements in turbulent shear flow and came to the conclusion that
several aspects of turbulence, among others this very interface, can be described roughly by frac-
tals. Mathew & Basu [105] argued that, if this were the case, the entrainment flux estimated on
large scales could equal that summed from the actual small-scale processes due to the equilibrium
across scales that is usually obtained in the self-preserving canonical shear layer.

Figures 2.169 to 2.174 show some of the interfaces that are investigated in the following. It is
clearly visible how the dominant scales of the vorticity isosurfaces and the mass fraction iso-
surfaces increase with increasing Mc (cf. also Sect. 2.4.1). Close examination reveals that the
surface has small, evenly distributed protrusions into the non-turbulent region at the lower convec-
tive Mach number, while at higher Mc the protrusions are thicker. In total, the observed changes
in the dominant interface scales are consistent with the reduced entrainment and mixing layer
growth at higher Mach numbers when the process is small-scale and occurs at the interface.

A quantitative characterization of the turbulence interface is obtained by measuring its fractal
dimension. The evaluation of the fractal dimensions of the mixing layers is done in the following
by finding the dimension D2 of this interface, determined by vorticity or by mass fraction, within

Table 2.8: Fractal dimensions D of isosurfaces determined from the slopes of the curves in Figs.
2.175 to 2.176 and corresponding ones for ω = 0.2〈ω〉max and Y = 0.9

ω = 0.2〈ω〉max ω = 0.1〈ω〉max Y = 0.9 Y = 0.95

inert-0.15 2.56 2.41 2.41 2.35
inert-0.7 2.64 2.45 2.40 2.31
inert-1.1 2.68 2.49 2.46 2.37
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Figure 2.169: Case inert-0.15: Instantaneous
isosurface of vorticity ω = 0.2〈ω〉max at τω =

286

Figure 2.170: Case inert-0.7: Instantaneous iso-
surface of vorticity ω = 0.2〈ω〉max at τω = 697

Figure 2.171: Case inert-1.1: Instantaneous iso-
surface of vorticity ω = 0.2〈ω〉max at τω = 1098

Figure 2.172: Case inert-0.15: Instantaneous
isosurface of oxygen mass fraction Y = 0.9 at
τω = 286

Figure 2.173: Case inert-0.7: Instantaneous iso-
surface of oxygen mass fraction Y = 0.9 at
τω = 697

Figure 2.174: Case inert-1.1: Instantaneous iso-
surface of oxygen mass fraction Y = 0.9 at
τω = 1098

plane sections as for example shown in Figs. 2.159 and 2.160. Each section chosen is covered
by squares of side rj = j∆x (j = 1, 2, . . .) and the number of squares N(r) which include a
segment of the interface contour are counted. The dimension is D2 = logN/ log(1/r), and is
obtained as the slope of the curve N(r) on log scales (e.g. Figs. 2.175 to 2.176). The dimension
of the surface in three dimensions is then D = D2 + 1.

Table 2.8 lists the fractal dimensions for the isosurfaces ω = 0.2〈ω〉max, ω = 0.1〈ω〉max, Y = 0.9

and Y = 0.95. All values are close to the value of 2.37 that Sreenivasan & Meneveau [173] deter-
mined for the turbulent-nonturbulent interface of a jet with the help of smoke pictures. However,
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Figure 2.175: Number of squares N covering the interface ω = 0.1〈ω〉max vs. δω,0/r, averaged
over the self-similar state, solid: inert-0.15, dashed: inert-0.7, dotted: inert-1.1
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Figure 2.176: Number of squares N covering the interface Y = 0.95 vs. δω,0/r, averaged over
the self-similar state, solid: inert-0.15, dashed: inert-0.7, dotted: inert-1.1

small differences can be noticed between the different interfaces that are listed in table 2.8 and
between the different convective Mach numbers. The fractal dimensions generally decrease when
chosing the interface closer to the free-stream value, i.e. chosing Y = 0.95 instead of Y = 0.9

and ω = 0.1〈ω〉max instead of ω = 0.2〈ω〉max, and the fractal dimensions of the vorticity iso-
surfaces are higher than the ones of the mass fraction isosurfaces due to less intermittency of the
latter one. With increasing compressibility, the fractal dimension of the mixing layer interfaces
defined by vorticity increases. For the mixing layer interfaces defined by mass frations, the fractal
dimension decreases when rising Mc from 0.15 to 0.7, but increases again for Mc = 1.1. The fall
between Mc = 0.15 and Mc = 0.7 is consistent with a decrease in entrainment and shear layer
growth rate. The increase at Mc = 1.1 may be due to rapid changes in scale in the infrequent
indentations, but the generally smoother boundary is nonetheless consistent with the observed
further decrease in growth rate and entrainment by processes at the turbulence boundaries. This
smoothening of the boundary could also account for the observed tapering off of the fall in growth
rate at Mc ≈ 1.1.

2.4.4.4 Shocklets

When monitoring the temporal development of the normalized, maximum pressure gradient dur-
ing the simulations with different convective Mach numbers (Fig. 2.177), one notices that it is
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Figure 2.177: Temporal development of the maximum pressure gradient, normalized by
〈p〉av/δω,0, ∗: inert-0.15, �: inert-0.7, ◦: inert-1.1

much higher for the mixing layer at Mc = 1.1 than for the ones at smaller convective Mach
number. This is particularly the case during the initial development, but also later during the
self-similar state where the peak values of the maximum pressure gradient of case inert-1.1 are
about double the values of case inert-0.7. In Figure 2.177, the pressure gradient is normalized
by 〈p〉av, the box-averaged pressure, temporally averaged over the self-similar state. The high
pressure gradients of the inert-1.1 case suggest the existence of so-called ’eddy shocklets’, which
are small shocklets that are associated with turbulent eddies.

Eddy shocklets were first observed in two- and three-dimensional simulations of isotropic turbu-
lence [97, 127]. In two-dimensional simulations of mixing layers, shocklets were found to occur
at convective Mach numbers higher than 0.7 [98, 159]. However, in 3D, the flow has another
dimension in which it can change direction and thus avoid high pressure regions that are due to
vortical motions. Therefore, shocks were only observed at considerably higher convective Mach
numbers than in 2D, e.g. Mc = 1.2 [182] or 1.25 and larger [115]. Other authors [63], found
shocklets only from Mc = 1.54, which they attribute on one hand to the influence of different
initial conditions or the finite box size and on the other to the lack of a definitive criterion of when
a pressure disturbance is really a shock. Experiments have also revealed the presence of shocklets
in a counterflowing supersonic shear layer [125].

In order to detect possible shocklets in the simulation inert-1.1, locations with high pressure
gradients and strongly negative dilatation are investigated in more detail, and it is checked whether
the shock jump (Rankine-Hugeniot) relations apply. However, as Freund et al. [63] point out, they
are not expected to hold exactly since they are derived for an ideal gas, and the shocklets in the
simulation have a finite thickness and are not steady. However, despite these deficiencies, these
and others authors [12], were able to verify the shock jump relations with an accuracy between 3

and 30 %.

The first structure that is investigated in the following occurs at τω = 1023, which is shortly after
the beginning of the self-similar state. The maximum pressure gradient at this instance is found at
x1 = 0.30L1, x2 = 0.30L2, x3 = 0.32L3 and has an inclination of 6.4◦ with respect to the x1-x2-
plane and an inclination of 10.3◦ with respect to the x1-x3-plane. Since these angles are small, the
shock jump relations are verified with the help of the values along a line, parallel to the x1-axis,
through the location of the maximum pressure gradient. Figures 2.178 to 2.179 show the pressure
gradient, the pressure, the density and the temperature along this line. In these figures, every
fourth grid point is shown which demonstrates that the shock is well resolved by five grid-points.
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Figure 2.178: Case inert-1.1: Pressure gradi-
ent normalized by 〈p〉av/δω,0 on a line paral-
lel to the x1-axis through x2 = 0.30L2 and
x3 = 0.32L3 at τω = 1023. Every 4th grid
point is shown
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Figure 2.179: Case inert-1.1: Pressure normal-
ized by 〈p〉av on a line parallel to the x1-axis
through x2 = 0.30L2 and x3 = 0.32L3 at
τω = 1023. Every 4th grid point is shown
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Figure 2.180: Case inert-1.1: Density in x1-
direction normalized by ρ0 on a line parallel
to the x1-axis through x2 = 0.30L2 and x3 =

0.32L3 at τω = 1023. Every 4th grid point is
shown
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Figure 2.181: Case inert-1.1: Temperature
normalized by T0 on a line parallel to the x1-
axis through x2 = 0.30L2 and x3 = 0.32L3 at
τω = 1023. Every 4th grid point is shown

Therefore, no Gibbs-phenomenon due to under-resolution occurs. Computing ratios with the
minimum and maximum values to the left and right side of the shock at x1 = 0.30L1, one obtains:
pmax/pmin = 1.398, ρmax/ρmin = 1.296 and Tmax/Tmin = 1.089. With the shock relations for
an ideal gas (γ = 1.4), one would obtain a density ratio of 1.269 and a temperatur ratio of 1.102

for the same pressure ratio which is a difference of less than 2.5 % from the actual values. The
corresponding upstream normal shock number would be 1.158. However, when checking it, one
has to take into account that the shock is not necessarily stationary with respect to the grid and
that its speed is unknown. According to Blaisdell et al. [12], it can be checked anyway with the
help of the velocity jump across the shock, ua− ub, which is Galilean invariant and consequently
independent of the shock velocity. When the shock does not contain any mass, i.e. is very thin, the
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Figure 2.182: Case inert-1.1: Dilatation nor-
malized by ∆u/δω,0 on a line parallel to the
x1-axis through x2 = 0.30L2 and x3 = 0.32L3

at τω = 1023. Every 4th grid point is shown
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Figure 2.183: Case inert-1.1: Vorticity nor-
malized by ∆u/δω,0 on a line parallel to the
x1-axis through x2 = 0.30L2 and x3 = 0.32L3

at τω = 1023. Every 4th grid point is shown
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velocity jump remains even uninfluenced by a shock acceleration. If va and vb are the velocities
relative to the moving shock, it therefore holds that ua − ub = va − vb = caM

rel
a − cbM rel

b and
that M rel

b is a known function of M rel
a (e.g. [51]):

(
M rel

b

)2
=

1 + [(γ − 1) /2]
(
M rel

a

)2

γ (M rel
a )2 − [(γ − 1) /2]

(2.92)

With ua, the velocity in the direction of the maximum pressure gradient (normal to the shock)
evaluated at the location of the minimum pressure and ub, the velocity in the same direction at
the location of the maximum pressure, as well as the correspoding speeds of sound, ca and cb, a
Mach number of 1.147 is obtained which is less than 1 % difference from the previously obtained
value. However, the next example will show that such a high precision is rather incidential and
cannot generally be expected since, among other deficiencies, the states on both sides of the shock
are not uniform . Nevertheless, shocklets seem to be present in the mixing layer at Mc = 1.1.
Figure 2.182 shows the dilatation along the line along which the shock jump conditions have
been verified. Next the expected minimum in the dilatation at the location where the pressure
rises steeply, there is an even more marked dilatation maximum on the right side of the shocklet
where the pressure falls. The peak of the vorticity, shown in figure 2.183, is much larger than the
magnitude of the dilatation extrema, which has also been noticed by [63].

The other compressible structure, that is further investigated in the following, manifests the
highest pressure gradient during the self-similar state. It is found at x1 = 0.02L2, x2 = 0.38,
x3 = 0.31L3 and τω = 1295. The maximum pressure gradient has an inclination of 4.93◦ with
respect to the x1-x2-plane and an inclination of 38.5◦ with respect to the x1-x3-plane. Therefore,
it is appropriate to verify the shocklet jump conditions on a line in the x1-x2-plane which has an
inclination of 45◦ with respect to the x1-x3-plane. Figures 2.184 to 2.187 show thermodynamic
quantities along this line on which the shocklet is situated at (x2

1 + x2
2)

0.5
= 0.093 (L2

1 + L2
2)

0.5.
It is found that pmax/pmin = 1.835, ρmax/ρmin = 1.874 and Tmax/Tmin = 1.119. With the
shocklet relations for an ideal gas (γ = 1.4), one would obtain with the same pressure ratio
ρmax/ρmin = 1.533, which is a difference of 22 % to the actual value and Tmax/Tmin = 1.197,
which is 6.5 % difference. The upstream normal Mach number would be 1.310. Again, this Mach
number can be verified with the help of the velocity jump that is the same as in a moving refer-
ence frame. With the values ua, ub, ca and cb inserted in Eq. (2.92), one obtaines M1,rel = 1.137,
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Figure 2.184: Case inert-1.1: Pressure gradi-
ent normalized by 〈p〉av/δω,0 on a line through
x1 = 0.02L2, x2 = 0.38 and x3 = 0.31L3 (in
x1-x2-plane, inclined 45◦ to the x1-x3-plane)
at τω = 1295. Every 4th grid point is shown
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Figure 2.185: Case inert-1.1: Pressure normal-
ized by 〈p〉av on a line through x1 = 0.02L2,
x2 = 0.38 and x3 = 0.31L3 (in x1-x2-plane,
inclined 45◦ to the x1-x3-plane) at τω = 1295.
Every 4th grid point is shown
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Figure 2.186: Case inert-1.1: Density in x1-
direction normalized by ρ0 on a line through
x1 = 0.02L2, x2 = 0.38 and x3 = 0.31L3 (in
x1-x2-plane, inclined 45◦ to the x1-x3-plane)
at τω = 1295. Every 4th grid point is shown
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Figure 2.187: Case inert-1.1: Temperature
normalized by T0 on a line through x1 =

0.02L2, x2 = 0.38 and x3 = 0.31L3 (in x1-
x2-plane, inclined 45◦ to the x1-x3-plane) at
τω = 1295. Every 4th grid point is shown on
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Figure 2.188: Case inert-1.1: Dilatation nor-
malized by ∆u/δω,0 on a line through x1 =

0.02L2, x2 = 0.38 and x3 = 0.31L3 (in x1-
x2-plane, inclined 45◦ to the x1-x3-plane) at
τω = 1295. Every 4th grid point is shown
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Figure 2.189: Case inert-1.1: Vorticity nor-
malized by ∆u/δω,0 on a line through x1 =

0.02L2, x2 = 0.38 and x3 = 0.31L3 (in x1-
x2-plane, inclined 45◦ to the x1-x3-plane) at
τω = 1295. Every 4th grid point is shown

which is a difference of 13 % to the previously estimated value. Therefore, the verification of the
Rankine-Hugeniot relations can be considered successful and the compressible structure can be
called a shocklet. Figures 2.188 and 2.189 show the dilatation and the vorticity and confirm the
observations already made: While there is a local minimum of the dilatation at the location of
the shocklet, a local maximum is situated right next to it. A vorticity maximum, which is much
larger in magnitude than the dilatation extrema, is found close to the shocklet.

Figure 2.190 presents the instantaneous dilatation field together with the pressure isolines in the

Figure 2.190: Case inert-1.1: Instantaneous
dilatation field and pressure isolines, x1-x2-
plane through x3 = 0.49L3 at τω = 1295.
Dilatation is normalized by δω,0/∆u

Figure 2.191: Case inert-1.1: Instantaneous
magnitude of vorticity and velocity vectors,
x1-x2-plane through x3 = 0.49L3 at τω =

1295. Vorticity is normalized by δω,0/∆u
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Figure 2.192: Case inert-1.1: Instantaneous
dilatation field and pressure isolines, x1-x3-
plane through x2 = 0.59L2 at τω = 1295.
Scale as in Fig. 2.190

Figure 2.193: Case inert-1.1: Instantaneous
magnitude of vorticity and velocity vectors,
x1-x3-plane through x2 = 0.59L2 at τω =

1295. Scale as in Fig. 2.191

Figure 2.194: Case inert-1.1: Instantaneous di-
latation field and pressure isolines, x2-x3-plane
through x1 = 0.03L1 at τω = 1295. Scale as in
Fig. 2.190

Figure 2.195: Case inert-1.1: Instantaneous
magnitude of vorticity and velocity vectors, x2-
x3-plane through x1 = 0.03L1 at τω = 1295.
Scale as in Fig. 2.191

x1-x2-plane in which the shocklet is situated. The shocklet is on the left side of the section which
is shown. It can be seen how close the dilatation minimum at the location of the shocklet and a
maximum are situated next to each other. Fig. 2.191 shows the velocity vectors and the vorticity
field in the same part of the domain. The change of velocity direction by the shocklet as well as the
vortical structures that are causing it are clearly visible. Figures 2.192 and 2.193 show x1-x3-cuts
through the shocklet. In this view, it is only visible as a kind of point (in the middle on the far left
side of the figure) and one could think it had a pencil-like shape. However, the other figures (e.g.
Figs. 2.190 and 2.191) reveal its curved nature. Blaisdell et al. [12] suggested a mechanism for
the formation of shocklets based on their observation from instantaneous pressure and vorticity
fields: Most of the shocklets in their simulations seem to be caused by vortex motions which
transport fluid in the direction of the mean shear. This brings together high-speed and low-speed
fluid and the collision caused strong compressions and shock waves. In our simulation such
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Figure 2.196: Case inert-1.1: Instantaneous
dilatation field, x1-x3-plane through x2 =

0.59L2 at τω = 1295. Dilatation is normal-
ized by δω,0/∆u

Figure 2.197: Case inert-1.1: Instantaneous
pressure gradient field, x1-x3-plane through
x2 = 0.59L2 at τω = 1295. Pressure gradi-
ent is normalized by δω,0/〈p〉av

vortical motions, which are transporting fluid in the direction of the shear, are visible in Fig.
2.193, too. Figs. 2.194 and 2.195, x2-x3-cuts, reveal them even more clearly. The superposition
of the downwashs of various vortical structures cause sudden changes of the velocity direction
and lead to the formation of the shocklet.

Finally, Figs. 2.196 and 2.197 show the complete computational domain. The recently investi-
gated shocklet is visible to the extreme left. The figures demonstrate that neither extremely high
pressure gradients nor dilatation minima are very frequent. Therefore, the shocklets in the simu-
lation inert-1.1 do not seem to play a major role for the overall dynamics which is confirmed by
the fact that the pressure dilatation is small even at Mc = 1.1 and the decreasing tendency of the
dilatational dissipation lingers between Mc = 0.7 and Mc = 1.1 despite the presence of shocklets
(cf. Sect. 2.4.4.1).

2.5 Summary and conclusions

In this chapter, DNS of turbulent, temporally evolving, inert mixing layers at different convective
Mach numbers (Mc = 0.15, 0.7 and 1.1) - equivalent to different levels of compressibility - have
been described and analyzed. The particular focus of the study is on the effects that compressibil-
ity has on the turbulence in general, on scalar mixing and entrainment. All simulations have been
performed over a sufficiently long period of time which allowed the attainment of a self-similar
state with constant momentum thickness growth rates. Statistics have been taken over this state
during which profiles of adequately normalized flow quantities collapse.

Instantaneous contour plots of the scalar, i.e. species mass fraction, have shown a smoothening
of the field by compressibility and an increase in the visible length scales of the turbulence in-
terfaces with increasing Mc. This stabilizing effect of compressibility has manifested itself also
in reduced mixing layer growth rates which are a consequence of reduced Reynolds stresses and
reduced turbulent kinetic energy. A reduction of all main terms in the Reynolds stress transport
equations and the transport equation of the turbulent kinetic energy with increasing Mc has also
been noticed, and an analysis of the corresponding transversely integrated terms has shown that
the pressure-strain correlation of the streamwise Reynolds stress is directly connected to the mo-
mentum thickness growth rate and responsible for its attenuation by compressibility. Changes in
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the fluctuating pressure field have been identified to be the reason for the decrease of all pressure-
strain correlations with increasing Mc. Since the pressure-strain correlations are responsible for
the redistribution of turbulent kinetic energy from the streamwise component to the transverse and
spanwise components, this mechanism is also hampered by increasing Mach numbers. Their sig-
nificant influence on the pressure-strain correlations demonstrates that any attempts of Reynolds
stress closure for compressible turbulence must pay particular attention to the modeling of the
pressure-strain rate correlations. A further analysis of the Poisson equation, which governs the
fluctuating pressure field when acoustic effects can be neglected, has shown with the help of a
Green function that the reduction of the pressure-strain correlations and other pressure-related
correlations in the investigated Mach number range is predominantly caused by changes in the
velocity field itself. Explicit compressibility terms, e.g. the dilatational dissipation rate and the
pressure-dilatation correlation, have been found to have negligible influence on the flow field even
when shocklets are present as it is the case for the simulation with Mc = 1.1.

Concerning the scalar mixing, i.e. the mixing of the inert chemical species oxygen and nitrogen, a
general decrease with Mach number and a reduction of scalar fluctuations within the mixing layer
have been observed. Pdfs of the oxygen mass fraction at different transverse locations within the
mixing layers have confirmed that outside fluid penetrates less deeply into the mixing layer, the
higher the convective Mach number is. This implies that there is a higher level of intermittency
for the quasi-incompressible mixing layer than for the compressible one.

A closer study of the entrainment mechanism, i.e. the way by which the mixing layer acquires
surrounding fluid, has shown that this process happens very close to the mixing layer edge at
all convective Mach numbers under investigation. The amount of fluid that is engulfed within
the mixing layer before it becomes part of it, i.e. before it adopts the vorticity level and scalar
concentrations that are typical for the mixed fluid, is small and reduces further with increasing
Mach number. This has been confirmed further by the investigation of pathlines of fluid particles
which enter the mixing layer from outside. Changes of the particle properties (vorticity and scalar
concentrations) have occured close to the mixing layer edge. At low Mc, the time that elapses
between the entering of the mixing layer and the instant at which the vorticity value and the scalar
concentration of the particle crosses a certain threshold, which indicates that the fluid particle has
become part of the mixing layer, is short. However, this time increases with increasing Mc and
confirms the hampering of the entrainment mechanism by compressibility which in total seems
to be detrimental for the combustion that depends on a proper mixing of fuel and oxidizer. This
suggestion is further investigated and confirmed in Chapter 3.



3 DNS of infinitely fast reacting compress-
ible turbulent shear layers

3.1 Introduction and literature survey

In most practical combustion applications, like aircraft or car engines, the combustion takes place
in a turbulent flow. Therefore, it is important to understand the interaction between turbulence
and combustion including chemical, thermodynamical and fluid mechanical processes. On one
hand, turbulence leads to increased mixing which speeds up the overall reaction rate by stretching
and wrinkling of the reaction zone. On the other hand, the density and pressure changes caused
by the heat release of the reaction can significantly affect the turbulence. Compressibility further
complicates the mixing process.

The emphasis of the present study is on how heat release influences turbulence. The effects
of compressibility without combustion and heat release on plane, temporally developing mixing
layers were subject of Chapter 2. In the following sections, it is studied how these effects are
altered by heat release. It is clear that heat release leads to a density reduction, an increase in
kinematic viscosity and therefore a coupling of fluid dynamics with chemical kinetics. However,
it is not immediately obvious how heat release would influence the growth and entrainment of the
mixing layer. One might expect, for example, that dilatation and consequent displacement effects
caused by an increase in temperature in the mixing zone would increase the rate of growth.

As the influence of turbulence and compressibility on the reaction rate is not subject of investiga-
tion in this chapter, the chemistry is simplified with the reaction-sheet approximations of Burke
& Schumann [22] by assuming a one-step, infinitely fast, irreversible reaction between hydrogen
and oxygen. This assumption results in the turbulent mixing and molecular diffusion controlling
the reaction rate. Therefore, all changes to these mechanisms, for example by compressibility,
directly influence the combustion process and are of interest for practical applications like scram-
jets.

The investigated reacting mixing layer is a representative of a diffusion flame, where fuel and
oxidizer are separated by the flame. Both come into contact in the reaction zone due to molecular
diffusion and turbulent motion. An overview over various DNS of diffusion flames can be found
in [180].

In the past, extensive experimental work has been dedicated to the objective of understanding the
effects of the fluid dynamics on mixing and on reaction rates [18, 96, 118]. In these shear layer
studies the density was constant to avoid the reverse effects, namely the influences of the chem-
istry, in particular the heat release, on the development of the velocity field. This was realized by
little heat release. The experiments showed that the reaction products were concentrated in large,
spanwise coherent structures. Three-dimensional effects were also found to be important with an
increase in product formation coinciding with the development of three-dimensional motions in



INTRODUCTION AND LITERATURE SURVEY 79

the flow [18]. Masutani & Bowman [104] focused on the early stages of mixing layer develop-
ment and found that the fluid exists in three states: tongues of unmixed free-stream fluid which,
occasionally, stretch across the layer, finite-thickness interfacial diffusion zones of mixed fluid
which border the parcels of unmixed fluid and regions comprising fluid of nearly homogeneous
composition.

Fewer mixing layer experiments were performed with significant heat release. These experiments
served to understand how the combustion processes affect the flow field, and, in particular, the
layer growth, entrainment, and large-scale structure dynamics. McMurtry & Riley [108] found
the density reduction to suppress the turbulent shear stress, the shear layer growth rate and the
generation of TKE. Hermanson & Dimotakis [72] confirmed that the heat release resulted in
a slower growth rate and noticed a decrease in the mass entrained which they attributed to a
reduction in the turbulent shear stress representing a decrease in turbulent momentum transport.
They found large-scale structures to persist in the shear layer at all levels of heat release, and large
hot structures to be separated by cold tongues of free-stream fluid penetrating deep into the layer.

All these experiments were realized in the incompressible regime. Even fewer investigations took
into account both, heat release and compressibility. Erdos et al. [52] investigated compressible
reacting mixing layers (Mc = 0.86 and 2.5), but reported only measurements of wall static pres-
sure and heat flux. Barlow et al. [4] performed experiments with annular reacting mixing layers
in the near field of supersonic jets (from Mc = 0.1 to Mc = 0.4) and found a lower degree of
organization with increasing compressibility, similar to non-reacting flows. However, the authors
did not exclude influences of the Reynolds number which was higher for the compressible case.
Miller et al. [114] investigated compressible, reacting mixing layers at Mc = 0.32, 0.35 and 0.7

and found them to have structural features consistent with those observed in inert mixing layers
at similar Mc. They concluded that higher compressibility leads to a more disorganized, three-
dimensional structure. Consequences were, for example, a change from non-marching scalar pdfs
to marching scalar pdfs and a beneficial effect on combustion due to changes in the entrainment
process. However, these authors took into account only moderate heat release.

On the numerical side, three-dimensional DNS of temporally developing reacting mixing layers
were performed and analyzed by Riley et al. [151], McMurtry et al. [109], Planché & Reynolds
[141], Miller et al. [115], de Bruyn Kops et al. [38] and recently by Pantano et al. [124].
Day et al. [35] simulated spatially developing, compressible reacting mixing layers. Addition-
ally, many two-dimensional investigations can be found in the literature, for example Givi et al.
[67] who reported reduced mixing with both compressibility and exothermicity. However, it is
known that the 2D approximation excludes vortex stretching and overestimates effects of baro-
clinicity in variable-density turbulent diffusion flames. No secondary instabilities can develop
into streamwise vortices or ribs which might increase mixing and enhance product formation.
Therefore, three-dimensional computations are necessary to realistically simulate the turbulent
flow behaviour.

Riley et al. [151] computed an incompressible reacting mixing layer with a temperature indepen-
dent, single-step chemical reaction without heat release. The authors focused on how the turbulent
flow field affects the transport of chemical species and validated their results by comparison with
analytical and experimental data.

McMurtry et al. [109] investigated the effects of chemical heat release on the large-scale struc-
ture in an incompressible mixing layer with a one-step, irreversible reaction having a Damköhler
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number (Da, ratio of the turbulent time scale to the chemical time scale) of 2. For simplification,
they used temperature-independent transport coefficients. Their results indicated that with mod-
erate heat release (Tmax/Tref = 2), the development of the large-scale structures is slowed down
and their wavelengths are shifted to larger scales. The entrainment of reactants as well as the
overall chemical product formation rate was reduced due to reduced mixing. The reactant field
was much less contorted which the authors attributed to a stabilizing effect of heat release on the
3D structures in the flow. Consequently, the surface area across which the species can diffuse
was decreased, resulting in a lower chemical formation rate. The suppression of Reynolds shear
stress led to a lower transfer of energy from the mean flow to the turbulence and a smaller growth
rate of the mixing layer. Disadvantages of the simulation of McMurtry et al. were their relatively
small domain, that did not allow for subsequent pairings of the vortices, and only moderate heat
release.

Planché & Reynolds [141] performed both, linear stability analysis and DNS of temporally devel-
oping compressible mixing layers and found the mixing behaviour dependent on Mc: Large-scale
engulfment of fluid from both sides of a mixing layer did not occur at high Mach numbers.

Miller et al. [115] also took into account compressibility and a one-step, irreversible reaction
with varying Da and either a constant or a temperature-dependent (Arrhenius law) reaction rate.
Viscosity, diffusivity and conductivity were taken as constants. The authors focused on comparing
their results with the Steady Laminar Diffusion Flamelet Model (SLDFM) and the Conditional
Moment Closure (CMC) and found improved agreement with increasing Da, decreasing value of
the stoichiometric mixture fraction and increasing exothermicity. The major influences of heat
release that were noticed at constant rate kinetics were a decrease of the growth rate of the layer,
delays in the pairing process and a reduction of the TKE and product formation. However, the
domain size in these simulations was also very limited and allowed only for one or two pairings.
Influences of compressibility were not assessed, either.

De Bruyn Kops et al. [38] performed DNS of various mixing layers without heat release and
studied the consequences of different activation energies and stoichiometric ratios.

Day et al. [35] investigated the instability modes of three-dimensional, compressible, infinitely
fast reacting, spatially developing mixing layers. Similar to Planché & Reynolds [141], they
identified two so-called outer modes that existed when there were two maxima in the ρ∂u1/∂x3

profile as it was the case for certain levels of compressibility and heat release. These two modes
led to a mixing of the reactants on each side of the shear layer and resulted in a two-step reaction
process. If the two modes grow at different rates, as in the spatial mixing layer with one slow and
one fast outer stream, mixing and combustion were found to be deteriorated compared to the mere
presence of a central Kelvin-Helmholtz mode. The latter exists in incompressible, non-reacting
mixing layers and leads to the existence of pure reactants in a significant span of cross-stream
positions.

Pantano et al. [124] simulated temporally developing compressible mixing layers with high res-
olution and in a domain that was sufficiently large to extend the simulation until a fully turbulent
state was reached. The authors considered infinitely fast, irreversible hydrocarbon combustion
with variable levels of heat release (up to Tmax/Tref = 7) and observed, in agreement with previ-
ous results at lower heat release [109, 115], a substantial decrease of the overall reaction rate with
increasing exothermicity. Even though Pantano et al. [124] used a fully compressible code they
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did not investigate the interaction of compressibility and heat release which is the main subject of
the present chapter. It is organized as follows: The DNS code used for the simulation of infinitely
fast reacting mixing layers is presented in Sect. 3.2 with a particular emphasis on the modeling
and implementation of the chemistry and the transport equations solved during the simulation.
Section 3.3 gives a description of the three test cases under investigation which differ mainly by
their convective Mach number. Since the reacting mixing layer simulations are performed at the
same convective Mach numbers as the inert ones in Chapter 2, the isolated effects of compress-
ibility and heat release can be analyzed as it is done in Sect. 3.4: Instantaneous images of the
scalar (mixture fraction) fields give a first impression of the effects (Sect. 3.4.1). Then, a self-
similar state is identified for each mixing layer, respectively, over which statistics are taken for
the subsequent investigations (Sect. 3.4.2). The appropriateness of resolution and domain sizes is
verified in Sect. 3.4.3. The rest of the chapter follows the outline of the preceeding one, thereby
allowing direct comparisons between the inert and reacting mixing layers: First, statistical quan-
tities refering to the turbulent flow fields are studied in Sect. 3.4.4.2, then a particular emphasis is
placed on scalar mixing (Sect. 3.4.4.3) and entrainment (Sect. 3.4.4.4). Some remarks concerning
the non-existence of shocklets in the reacting mixing layers under investigation and a summary
of results conclude the chapter.

3.2 The DNS code with an infinitely fast chemical reaction

3.2.1 Infinitely fast chemistry

The reaction of hydrogen and oxygen is simplified by assuming just one irreversible global reac-
tion:

2H2 +O2 → 2H2O (3.1)

In addition, diffusion processes are simplified by neglecting thermo- and barodiffusion and by
using Fick’s law,

ρYαVαi = −ρDα
∂Yα
∂xi

(3.2)

with the diffusion coefficient Dα for species α. Introducing a Schmidt number for each species,

Scα =
µ

ρDα
, (3.3)

and denoting the fuel, in this case hydrogen, with index F and the oxidizer, here oxygen, with
index O, the transport equations for the corresponding mass fractions are:

ρ
DYF
Dt

=
∂

∂xi

(
µ

ScF

∂YF
∂xi

)
+ ωF

ρ
DYO
Dt

=
∂

∂xi

(
µ

ScO

∂YO
∂xi

)
+ ωO

(3.4)

Due to the reaction equation (3.1), there is a particular relation between the mass production rates
of oxidizer and fuel,

ωO = s · ωF (3.5)
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with the stoichiometric ratio

s =
νOWO

νFWF
. (3.6)

νO and νF are the stoichiometric coefficients of the reaction. Assuming a common, constant
Schmidt number for fuel and oxidizer, Sc = ScF = ScO, and combining Eqs. (3.4), a conserva-
tion equation for Z = sYF − YO is obtained:

ρ
DZ

Dt
=

1

Sc
· ∂
∂xi

(
µ
∂Z

∂xi

)
(3.7)

In the simulations that are described in this chapter Sc = 0.7 is used. Since this equation contains
no source term, it is clear that Z is a passive scalar. With an appropriate normalization,

z =
Z − Zo
Zf − Zo

=
sYF − YO + YO,o
sYF,f + YO,o

, (3.8)

z is a quantity which is 0 in the oxidizer stream (index o) and 1 in the fuel stream (index f ). z is
called mixture fraction and follows the transport equation for a passive scalar. With the help of
the equivalence ratio,

Φ = s
YF,f
YO,o

, (3.9)

the mixture fraction can also be expressed as

z =
1

1 + Φ

(
Φ
YF
YF,f

− YO
YO,o

+ 1

)
. (3.10)

In the literature, different definitions are used for the mixture fraction [8, 138], but essentially
the mixture fraction is a measure of the local equivalence ratio [135] and always a passive scalar.
Therefore, the methods using this quantity are part of the so-called conserved scalar methods.
They are not necessarily based on infinitely fast chemistry as it is the case here, but can also use
equilibrium chemistry [31]. Other examples of conserved scalar methods that take into account
finite-rate chemistry effects are the Conditional Moment Closure (CMC) model and flamelet mod-
els (see Sect. 4.1 and Chapter 5).

With the assumption that the mass fractions of the species are pure functions of the mixture
fraction z, Yα = Yα (z), which is called ’steady flamelet assumption’, the location of the flame is
determined by the temporally and spatially varying z-distribution. It is situated at

zs =
1

1 + Φ
, (3.11)

which is the stoichiometric value of the mixture fraction. The structure of the flame is then
given by the functions Yα (z). In a multidimensional flow, the steady flamelet assumption implies
that the flame is thin compared to characteristic length scales of the flow which is satisfied for
hydrogen chemistry [57]. Each element of the flame front can then be seen as a small laminar
flame.

The assumption of an infinitely fast, irreversible global reaction, which implies that fuel and
oxidizer cannot be present at the same time at the same place, leads to piecewise-linear relations
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between the species mass fractions (index P for the productH2O) and the mixture fraction [187]:

YO (z) =

{
YO,o (1 + Φ) (zs − z) , if z < zs

0 , if z ≥ zs

YF (z) =

{
0 , if z < zs

YF,f
1+Φ

Φ
(z − zs) , if z ≥ zs

YP (z) =
WPνPYF,f
νFWF

(
z − YF (z)

YF,f

)

(3.12)

These relations are called ’Burke-Schumann relations’ [22] and are shown in Fig. 3.1. Freezing
the chemistry would lead to pure mixing, which can be expressed by (Fig. 3.2):

YO (z) = YO,o · (1− z)
YF (z) = YF,f · z

(3.13)

The additional assumption of a Lewis number, Le = λ/ (ρDcp) of 1, which implies that the heat
conduction proceeds as fast as diffusion of the species, would permit to write the temperature
as a function of the mixture fraction, T = T (z), too. However, in order to retain realistic heat
conduction and to take into account compressibility effects, this is not used here. Instead, a
transport equation for the temperature is solved (see Sect. 3.2.2).

3.2.2 Transport equations for infinitely fast reacting flows

The set of compressible transport equations, which are integrated in the DNS with infinitely fast
chemistry, writes:
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Figure 3.1: Burke-Schumann relations, ◦: YO,
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Figure 3.2: Frozen chemistry, ◦: YO, ∗: YF
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The density ρ is computed from the ideal gas law, Eq. (2.5). φ is the dissipation function
τij∂ui∂xj . Using relations of the form Yα = Yα (z), the source term σα can be computed from

σα =
DYα
Dt

=
Dz

Dt
· dYα
dz

(3.15)

and the heat flux vector from

qi = −
∑

α

µ

Sc
hα
∂Yα
∂xi
− λ∂T

∂xi
= −

∑

α

µ

Sc
hα
dYα
dz

∂z

∂xi
− λ∂T

∂xi
. (3.16)

Neglecting the Dufour effect in the heat flux vector (3.16) is consistent with the assumption of
simplified diffusion (3.2) without Soret effect. The specific heat capacities, cp and cv, which
define the ratio γ = cp/cv, as well as the species enthalpy hα are computed from polynomial
expressions (see Sect. 2.2.1). EGlib (see Sect. 5.3.2) is used to determine the heat conductiv-
ity λ and the dynamic viscosity µ. The derivatives dYα/dz, which appear in Eqs. (3.15) and
(3.16), are computed directly from the Burke-Schumann relations, Eqs. (3.12). In order to avoid
unsteadiness, a smoothing factor δ is introduced:

dYα
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dYα
dz
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o
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1

2

(
dYα
dz

∣∣∣∣
f

− dYα
dz
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o

)(
1.+ tanh

(
z − zs
δ

))
(3.17)

As in [124], δ = 0.02 is used.

3.2.3 The numerical method

The discretization, integration and filtering of Eqs. (3.14) is the same as for the transport equations
of the inert flow (see Section 2.2.2).

3.3 Test cases

The generic configuration of the test cases corresponds to the one of the inert cases: a temporally
evolving, three dimensional shear layer with x1 and x2 denoting the homogeneous streamwise
and spanwise directions and x3 denoting the transverse direction. The upper stream (index 1) of
the infinitely fast reacting shear layer contains air which is approximated as a mixture of oxygen
and nitrogen with YO2,1 = 0.23 and the lower stream (index 2) contains a mixture of hydrogen
and nitrogen. The hydrogen mass fraction in the free-stream is chosen such that a stoichiometric
mixture fraction of 0.3 is obtained (see Eq. (3.11)). This leads to YH2,2 = 0.0675. Using pure
hydrogen would result in zs = 0.028 making a resolution of the steep temperature gradient on
the oxygen side very difficult. The density of the two free streams is identical, which, at initially
constant pressure, results in a temperature ratio of T1/T2 = 1.926.

The same convective Mach numbers as for the inert mixing layers are chosen for the infinitely fast
reacting mixing layers, which are Mc = 0.15 (test case denoted by inf-0.15), 0.7 (case inf-0.7)
and 1.1 (case inf-1.1).

The mixing layer inf-0.15 was initialized with a turbulent velocity field from an inert mixing
layer which had been simulated previously. Its configuration and initialization at Reω,0 = 640
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corresponds to case inert-0.15, except for the lengths of the domain (L1, L2 and L3) which are
smaller by a factor 1.5 for L1 and L2 and by a factor 2.25 for L3. The grid point numbers (N1, N2

and N3) in this pre-simulation were reduced by the same factors to keep the same resolution as
in case inert-0.15. The inert mixing layer was computed until the Reynolds number reached the
value Reω = 2300. Then, the velocity fields were scaled to match the free-stream velocities and
domain lengths of case inf-0.15 with a Reynolds number of Reω = 9200. Mac was kept constant
during this scaling. The increase in Reynolds number was necessary to reach a fully turbulent
self-similar state with reasonable computational effort inspite of the laminarizing effect of heat
release. The mixture fraction profile at initialization is a hyperbolic tangent with a vorticity
thickness corresponding to Reω = 9200. The pressure is set constant, and the temperature is
initialized by the Burke-Schumann relation

T (z) =

{
zTF,f + (1− z)TO,o +

Q0YF,f
cp

z , if z < zs

zTF,f + (1− z)TO,o +
Q0YF,f
cp

zs
1−z
1−zs , if z ≥ zs

(3.18)

with the heat release Q0 =
∑

α ναWα∆h0
α/ (WFνF ), wherein ∆h0

α is the standard enthalpy of
formation of species α at T 0 = 298K. This results in a peak temperature of 2642K at z = zs.
Equation (3.18) is obtained with equal cp and diffusion coefficients D for all species and a Lewis
number Le = λ/ (ρDcp) = 1. However, this linear relation is only used for initialization. During
the DNS, a transport equation for the temperature is integrated without the assumption of Le = 1

being used (cf. Eqs. (3.14)).

The initialization fields for case inf-0.7 were taken from inf-0.15 at Reω = 10000. They are
scaled in a way that increases the convective Mach number to Mc = 0.7. Correspondingly, the
initialization of case inf-1.1 was done with fields from case inf-0.7 at Reω = 12800.

Grid and domain sizes of the infinitely fast reacting test cases are given in Table 3.1 and are the
same for all reacting test cases. The grid-spacing is constant in all directions.

To compare the infinitely fast reacting mixing layers with results in the literature, a non-dimensional
heat release term

Q =
q0YF,fzs

c0
p,N2T

0νFWF
(3.19)

is computed. The enthalpy of reaction is given by [187]

q0 =
∑

α

ναWα∆h0
α. (3.20)

With the stoichiometric coefficients of reaction used in this study, νH2 = νF = 2, νO2 = 1 and
νH2O = −2, as well as ∆h0

H20 = 13.425MJ/kg and ∆h0
H2 = ∆h0

O2 = 0J/kg, an enthalpy of
reaction q0 = 483.693MJ/mol is obtained. Together with the specific heat of nitrogen at T 0,

Table 3.1: Geometrical parameters of the simulations inf-0.15, inf-0.7, inf-1.1. The computational
domain has the dimensions L1, L2 and L3 with N1, N2 and N3 grid points, respectively. The
reference vorticity thickness δω,0 is chosen such that it results in Reω,0 = 640.

L1/δω,0 L2/δω,0 L3/δω,0 N1 N2 N3

345 86 172 768 192 432
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c0
p,N2 = 1.038kJ/ (kgK), this results in Q = 7.856 which is close to the value that Pantano et

al. [124] had in their mixing layer simulation with the highest heat release rate (Q = 7.46 for
hydrocarbon combustion).

3.4 Results and analysis

3.4.1 The structure of the infinitely fast reacting shear layers

In this section, instantaneous images of scalar (mixture fraction) fields of the infinitely fast react-
ing mixing layers are shown in order to visualize changes that occur when their convective Mach
number is increased. Furthermore, comparisons of the figures with those of the inert mixing
layers in Sect. 2.4.1 are indicative of some consequences of heat release. Since the differences
between the infinitely fast reacting mixing layers are less pronounced than for inert mixing layers
and since the characteristic features can already be seen from x1-x3-cuts, only such figures are
shown in the following. For clarity, the analysis is limited to the self-similar state.

3.4.1.1 Infinitely fast reacting shear layer at Mc = 0.15

Figure 3.3 shows the instantaneous mixture fraction field of the mixing layer inf-0.15 at τω = 573

together with the stoichiometric isoline zs = 0.3 and the isolines, z = 0.1 and z = 0.9, forming
the turbulent boundary of the mixing layer (cf. Sect. 3.4.4.4). The temperature field is shown in
Fig. 3.4 at the same instant. At first sight, when comparing the figures with those in Chapter 2,
the consequences of heat release seem to be similar to those of compressibility: A smoothening
of the mixing layer as well as an increase of the dominant length scales, both within the mixing
layer and at its boundaries are visible. Less contorted fields involving heat release were also
observed by McMurtry et al. [109]. One obvious reason for this is the laminarizing effect of high
temperatures. In Fig. 3.4 no clear distinction between braids and rollers can be made which is
in agreement with the observations of Hermanson & Dimotakis [72] who found heat release to
render the boundaries between two merging structures invisible.

Figure 3.3: Case inf-0.15: Instantaneous mix-
ture fraction field, x1-x3-plane in the middle
of the computational domain at τω = 573, iso-
lines z = 0.1, zs = 0.3 and z = 0.9 are shown

Figure 3.4: Case inf-0.15: Instantaneous tem-
perature field, x1-x3-plane in the middle of the
computational domain at τω = 573, isolines
z = 0.1, zs = 0.3 and z = 0.9 are shown
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Figure 3.5: Case inf-0.7: Instantaneous mix-
ture fraction field, x1-x3-plane in the middle
of the computational domain at τω = 761, iso-
lines z = 0.1, zs = 0.3 and z = 0.9 are shown

Figure 3.6: Case inf-0.7: Instantaneous tem-
perature field, x1-x3-plane in the middle of the
computational domain at τω = 761, isolines
z = 0.1, zs = 0.3 and z = 0.9 are shown

Figure 3.7: Case inf-1.1: Instantaneous mix-
ture fraction field, x1-x3-plane in the middle
of the computational domain at τω = 803, iso-
lines z = 0.1, zs = 0.3 and z = 0.9 are shown

Figure 3.8: Case inf-1.1: Instantaneous tem-
perature field, x1-x3-plane in the middle of the
computational domain at τω = 803, isolines
z = 0.1, zs = 0.3 and z = 0.9 are shown

3.4.1.2 Infinitely fast reacting shear layers at Mc = 0.7 and Mc = 1.1

At higher convective Mach numbers, the mixing layers become even less corrugated with the
dominant length scales increasing further (cf. Figs. 3.5 to 3.8), which is in agreement with
Planché & Reynolds [141]. A little increase of the maximum temperature compared to Fig. 3.4
(cf. respective scales) due to additional heating by dissipation can be noted. The ondulations of
the isolines have a smaller vertical extent than for the incompressible reacting mixing layer which
points towards a reduction of intermittency.

3.4.2 The self-similar state

As for the inert mixing layers, the infinitely fast reacting mixing layers reach self-similar states
with constant momentum thickness growth rates as shown by Fig. 3.9. With increasing com-
pressibility, the growth rates reduce. The same is true for the product mass thicknesses [72]

δP =

∫ ∞

−∞

〈ρ〉〈YP 〉f
ρ0YP (zs)

dx3 (3.21)

in Fig. 3.10.

Table 3.2 gives the non-dimensional times for the beginning and the end of the self-similar states
along with the corresponding Reynolds numbers. The higher the convective Mach number, the
longer it takes to reach the self-similar state which is due to the stabilizing effect of compressibil-
ity. The same has already been observed for the inert test cases. The Reynolds numbers Reω are
higher during the self-similar state of the reacting mixing layers than the ones of the inert mixing
layers (cf. Table 2.2) which is due to the fact that the initial Reynolds numbers of the reacting
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Figure 3.9: Temporal development of the momentum thickness, normalized by the initial mo-
mentum thickness δθ,0, ∗: inf-0.15, �: inf-0.7, ◦: inf-1.1, dashed lines show linear regressions
for the self-similar state

τω

δ P
/δ
P
,0

2000150010005000

8

7

6

5

4
3

2

1

0

Figure 3.10: Temporal development of the product mass thickness, normalized by the initial
product mass thickness δθ,0, symbols as in Fig. 3.9, dashed lines show linear regressions for the
self-similar state
mixing layers have been increased (see Sect. 3.3). However, since the Reynolds numbers during
the self-similar state of all simulations differ by less than a factor of 3 and are therefore within the
same order of magnitude, it is reasonable to attribute different behaviours to compressibility and
heat release rather than to different Reynolds numbers. The peak micro-scale Reynolds numbers
given in Table 3.2 are significantly smaller than the ones in Table 2.2 which is due to the increase
of viscosity in the reacting mixing layers. This is in agreement with the laminarizing effect of
heat release noticed already in Sect. 3.4.1.

The non-dimensional momentum thickness growth rates δθ (according to Eq. (2.19)) are 0.0042

for case inf-0.15, 0.0037 for case inf-0.7 and 0.0030 for case inf-1.1. All these values are signifi-
cantly smaller than the ones for the inert mixing layers at the respective Reynolds numbers, which

Table 3.2: Dimensionless times and Reynolds numbers at the beginning (index: B) and end (in-
dex: E) of the self-similar state

τω,B τω,E Reω,B Reω,E Reλ,B Reλ,E

inf-0.15 459 803 23810 32450 37 41
inf-0.7 761 1216 22150 33970 34 40
inf-1.1 803 2047 20750 37780 36 46
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Figure 3.11: Case inf-0.15: Spatially averaged
profiles of the mixture fraction variance 〈z ′′z′′〉f
at different times, +: τω = 124, ×: τω = 234,
∗: τω = 346, �: τω = 459, �: τω = 573, ◦:
τω = 688, •: τω = 803
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Figure 3.12: Case inf-0.7: Spatially averaged
profiles of the mixture fraction variance 〈z ′′z′′〉f
at different times, +: τω = 344, ×: τω = 485,
∗: τω = 625, �: τω = 761, �: τω = 897, ◦:
τω = 1034, •: τω = 1170
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Figure 3.13: Case inf-1.1: Spatially averaged
profiles of the mixture fraction variance 〈z ′′z′′〉f
at different times, +: τω = 305, ×: τω = 665,
∗: τω = 999, �: τω = 1195, �: τω = 1388, ◦:
τω = 1582, •: τω = 1779

is in agreement with the results of other authors [72, 109]. The effect of compressibility is not as
pronounced for the reacting cases as for the inert ones and consists in a decrease by just a factor
of 1.4 between the growth rates of the lowest and the highest Mc (factor 3.4 for the inert cases).
Taking into account molecular dissipation effects when computing δθ (cf. Eq. (2.18)) results in
differences of less than 4 % compared with the previously given values. Therefore, such effects
can be neglected and the use of Eq. (2.19) is justified.

The relaxation towards self-similar states is not only checked by verifying whether the growth
rates are approximately constant, but also by examining the normalized spatially averaged profiles
of important flow quantities as e.g. the mixture fraction variance 〈z ′′z′′〉f in Figs. 3.11 to 3.13.
The collapse of the profiles onto one ’single’ curve during the self-similar state is clearly visible.
Therefore, all profiles presented in the following are not only averaged over the two homogeneous
directions but also temporally over the self-similar states (if not specified otherwise).

3.4.3 Check of resolution and domain sizes

All simulations are well resolved with a local minimum of the Kolmogorov length lk (Eq. (2.34))
of 0.77∆x3 for case inf-0.15, 0.78∆x3 for case inf-0.7 and 0.9∆x3 for case inf-1.1 during the self-
similar state. In contrast to the inert flows where the minimal Kolmogorov lengths are found in
the center of the shear layers, the minimal Kolmogorov lengths in the reacting cases are situated
at the edges of the layers and the corresponding profiles present a peak close to the center of
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Figure 3.14: Two-point correlation R1 with
f = u1, in the middle of the computational do-
main, averaged over the self-similar state, ∗:
inf-0.15, �: inf-0.7, ◦: inf-1.1
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Figure 3.15: Two-point correlation R2 with
f = u1, in the middle of the computational
domain, averaged over the self-similar state,
symbols as in Fig. 3.14
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Figure 3.16: Two-point correlation R1 with
f = u3, in the middle of the computational
domain, averaged over the self-similar state,
symbols as in Fig. 3.14
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Figure 3.17: Two-point correlation R2 with
f = u3, in the middle of the computational
domain, averaged over the self-similar state,
symbols as in Fig. 3.14
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Figure 3.18: Two-point correlation R1 with
f = z, in the middle of the computational
domain, averaged over the self-similar state,
symbols as in Fig. 3.14
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Figure 3.19: Two-point correlation R2 with
f = z, in the middle of the computational
domain, averaged over the self-similar state,
symbols as in Fig. 3.14

the shear layers. This is due to the increased viscosity at the center that goes along with the
temperature peak at the location of the flame.

Since a Schmidt number of Sc = 0.7 < 1 is used for the mixture fraction and all species, no
resolution problems concerning the scalar fields are expected. Spectra that also demonstrate the
appropriateness of the resolution and, therefore, show no spurious accumulation of energy in the
highest wavenumbers are shown in Sects. 3.4.4.2 and 3.4.4.3.

The domain sizes of the simulations in the periodic directions are large enough which is shown
by the two-point correlations of the velocity components and the mixture fraction (Figs. 3.14 to
3.19), computed according to Eqs. (2.35) and (2.36). The two-point correlations are small in the
middle of the domain.

The integral length scales, Eqs. (2.37) and (2.38), which are given in Table 3.3, are small com-
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Table 3.3: Integral length scales

l1/L1 l2/L2

inf-0.15 0.067 0.041
inf-0.7 0.098 0.041
inf-1.1 0.094 0.035

pared to the dimensions of the computational box which confirms the appropriateness of its size.

3.4.4 Effects of compressibility and heat release

3.4.4.1 Mean heat release term

Figure 3.20 shows the term in the pressure equation that describes the heat release effect,

Qp = − (γ − 1) ρ
∑

α

hασα (3.22)

with σα computed according to Eq. (3.15). The reduction of its peak value with compressibility is
striking, and the term becomes nearly negligible at Mc = 1.1. The peak value of the heat release
term is situated to the right of the mixing layer center, which is the side where the stoichiometric
surface is located.

The conclusion which can be drawn from Fig. 3.20 and which is confirmed by many of the results
in the subsequent sections is that heat release due to infinitely fast chemical reactions has a much
larger influence on the mixing layer with Mc = 0.15 than on the ones with higher Mc where the
differences between the statistics for the inert and reacting mixing layers are small.

3.4.4.2 Turbulence characteristics

Mean flow variables The mean temperature in Fig. 3.21 and the mean density in Fig. 3.22
show the influence of heat release which leads to a temperature maximum and a density minimum.
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Figure 3.20: Averaged heat release termQ = Qp/ (γ − 1), normalized by ρ0∆u3/δω, ∗: inf-0.15,
�: inf-0.7, ◦: inf-1.1
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The location of these extrema is not in the center of the shear layer, but shifted to the oxygen-
rich side of the layer since the stoichiometric mixture fraction is zs = 0.3. The influence of
compressibility on the peak value of the temperature is less pronounced for the infinitely fast
reacting mixing layers than for the inert ones (cf. Sect. 2.4.4.1): The peak value is only slightly
increasing with Mc due to dissipative heating. A larger difference between case inf-0.15 and the
other two reacting cases at higherMc concerns the widths of the temperature and density profiles:
The profiles at Mc = 0.15 are broader than the others leading to smaller gradients.

As for the inert mixing layers, the averaged pressure of the reacting cases, shown in Fig. 3.23,
drops with γM 2

c and is nearly constant across the layer in each test case, respectively, which leads
to the conclusion that temperature and density are mutually dependent.

The influence of compressibility on the Favre averaged velocity profiles in Fig. 3.24 is small.
However, there is a difference between the Favre averaged profiles with and without heat release
as shown in Fig. 3.25 for the cases withMc = 0.7: On the fuel side, the profile with heat release is
above the profile without heat release with the latter being very similar to the Reynolds averaged
profile with heat release. On the oxygen side, the Favre averaged profile with heat release is
below the Favre averaged profile without heat release and below the Reynolds averaged profile
with heat release. Since the relation

〈u1〉f − 〈u1〉 =
〈ρ′u′1〉
〈ρ〉 (3.23)

holds, it can be concluded that the correlation between ρ′ and u′1 is positive on the fuel side and
negative on the oxygen side of the reacting mixing layer. This is understandable since higher
velocity, i.e. positive u′1, is related with colder fluid (positive ρ′) on the fuel side and hotter fluid
(negative ρ′) on the oxygen side.

x3/δω

〈T
〉/
T

0

10.50-0.5-1

4.5

4

3.5

3

2.5

2

1.5

1

0.5

Figure 3.21: Averaged temperature, normal-
ized by T0 = 0.5 (T1 + T2), ∗: inf-0.15, �:
inf-0.7, ◦: inf-1.1
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Figure 3.22: Averaged density, normalized by
ρ0, symbols as in Fig. 3.21
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Figure 3.23: Averaged pressure, normalized
by ρ0∆u2, symbols as in Fig. 3.21

x3/δω

〈u
〉 f
/∆

u

10.50-0.5-1

0.5
0.4
0.3
0.2
0.1

0
-0.1
-0.2
-0.3
-0.4
-0.5
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ity, normalized by ∆u, symbols as in Fig. 3.21
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Figure 3.25: Mass-weighted and Reynolds averaged streamwise velocities, cases with Mc = 0.7,
solid: 〈u〉f/∆u of case inf-0.7, dashed: 〈u〉/∆u of case inf-0.7, dotted: 〈u〉/∆u of case inert-0.7

Reynolds stresses, turbulent kinetic energy and anisotropies Figures 3.26 to 3.30 show the
components of the Reynolds stress tensor and the TKE. As for the inert test cases (cf. Figs.
2.67 to 2.71), the peak values are decreasing with increasing compressibility. However, for the
reacting mixing layers the reduction is not as strong as for the inert ones. The higher Mc the
smaller the differences between the profiles with and without heat release. This is in agreement
with the behaviour of the normalized heat release term which becomes negligible at high Mc (cf.
Sect. 3.4.4.1). Particularly striking is the reduction of the magnitude of the low Mc profiles with
reaction and heat release with respect to the ones without: reductions of about 69 % for the peak
values of the Reynolds shear stresses and of about 60 % for the peak value of the TKE for the
test cases at Mc = 0.15, respectively are observed. The reduction of the Reynolds shear stress is
consistent with the reduction of the momentum thickness growth rate by 66 % (from 0.0124 for
case inert-0.15 to 0.0042 for case inf-0.15) caused by heat release, since the latter directly depends
on 〈ρ〉R13/ρ0 (cf. Eq. (2.19)). A reduction of the Reynolds shear stress by heat release also means
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Figure 3.26: Streamwise Reynolds stress
〈ρ〉R11, normalized by ρ0∆u2, curves as in
Fig. 3.21
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Figure 3.27: Spanwise Reynolds stress 〈ρ〉R22,
normalized by ρ0∆u2, curves as in Fig. 3.21
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Figure 3.28: Reynolds stress 〈ρ〉R33, normal-
ized by ρ0∆u2, curves as in Fig. 3.21
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Figure 3.29: Reynolds stress 〈ρ〉R13, normal-
ized by ρ0∆u2, curves as in Fig. 3.21



94 3. DNS OF INFINITELY FAST REACTING COMPRESSIBLE TURBULENT SHEAR LAYERS

x3/δω

〈ρ
〉k
/

(ρ
0
∆
u

2
)

10.50-0.5-1

0.01
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001

0

Figure 3.30: Turbulent kinetic energy 〈ρ〉k, normalized by ρ0∆u2, symbols as in Fig. 3.21
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Figure 3.31: Turbulent kinetic energy 〈ρ〉k, normalized by 〈ρ〉∆u2, symbols as in Fig. 3.21

a lower transfer of energy from the mean flow to the turbulence, i.e. a lower production rate of the
TKE (see below). The reduction of the TKE leads to a lower exchange of mass, momentum and
energy among the fluid elements and therefore a reduced mixing with the outer fluid (cf. Sect.
3.4.4.3).

Figure 3.31 shows the TKE with a different normalization, i.e. 〈ρ〉k is normalized by 〈ρ〉∆u2

instead of ρ0∆u2 as it was the case in Fig. 2.71. The reduction of the peak value with increasing
Mc is still visible, and a comparison of Fig. 3.31 with Fig. 2.71 reveals that the reduction by heat
release has been removed by the change in normalization for the case with Mc = 0.15. (Note
that Fig. 2.71 does not change significantly when using 〈ρ〉 instead of ρ0 since 〈ρ〉/ρ0 ≈ 1 for
the simulation with Mc = 0.15.) This suggests that the mechanisms of shear layer stabilization,
namely compressibility and heat release act differently: While the first one does not seem to be
a mean density effect, the second one seems to be such an effect since it is removed from the
profile when using 〈ρ〉 for normalization instead of ρ0. Consequently, the reduced transport of the
momentum 〈ρ〉Rij is rather due to changes in 〈ρ〉 than in Rij .

Figures 3.32 and 3.33 show direct comparisons between the streamwise Reynolds stress 〈ρ〉R11 of
the inert and reacting test cases with different normalizations. They reveal that while the Reynolds
stress is reduced by heat release in the normalization of Fig. 3.32, it is increased in Fig. 3.33.
The increase becomes stronger when Mc increases. To explain this difference, two correlation
coefficients are investigated: First,

R1 =
〈ρu′′1u′′1〉√

〈(ρu′′1)2〉
√
〈u′′21 〉

(3.24)
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Figure 3.32: Reynolds stress 〈ρ〉R11, normalized by ρ0∆u2, solid: reacting cases, dashed: inert
cases, ∗: Mc = 0.15, �: Mc = 0.7, ◦: Mc = 1.1
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Figure 3.33: Reynolds stress 〈ρ〉R11, normalized by 〈ρ〉∆u2, lines and symbols as in Fig. 3.32

which is the correlation coefficient between the mass flux ρu′′1 and the velocity fluctuation u′′1.
Second, the correlation coefficient

R2 =
〈u′′1u′′1〉f
〈u′′21 〉

. (3.25)

R1, which is shown in Fig. 3.34 for the various mixing layers, is indicative of the behaviour
of 〈ρ〉R11 in the normalization of Fig. 3.32, i.e. 〈ρ〉R11/ (ρ0∆u2) = 〈ρu′′1u′′1〉/ (ρ0∆u2): Both
decrease when heat release sets in. This means that the decrease of 〈ρu′′1u′′1〉/ (ρ0∆u2) is due to a
decrease in the correlation between ρu′′1 and u′′1. Ratio R2 in Fig. 3.35, on the contrary, increases
in the center of the shear layer for the reacting test cases. The difference between the curves of
R2 for two corresponding (inert and reacting) test cases at the same Mc increases with increasing
Mc. The same features can be noticed in Fig. 3.33, which confirms that R2 is indicative of the
behaviour of 〈R11〉/∆u2 = 〈u′′1u′′1〉f/∆u2.

The reductions of the Reynolds stresses and the TKE by heat release in the normalization of
Figs. 3.26 to 3.30 compared to Figs. 2.67 to 2.71 are in agreement with the results of other
authors [109, 115, 124]. McMurtry et al. [109] found a decrease of the profiles 〈ρ〉R13 and 〈ρ〉k.
Using their density decrease of about 〈ρ〉/ρ0 = 0.5 and dividing the magnitude of the peak values
of 〈ρ〉k (from Fig. 12 in [109]) by this ratio, results in peak values for ρ0k and therefore also
for k/∆u2 that are nearly constant despite heat release. This is in agreement with the present
findings (Fig. 2.71). Moreover, Hermanson & Demotakis [72] showed by an analysis that the
density changes alone suffice to reduce the Reynolds shear stress consistently with the observed
decrease in shear layer growth rate.
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Figure 3.35: Correlation coefficient R2 = 〈u′′1u′′1〉f/〈u′′21 〉, lines and symbols as in Fig. 3.32

In contrast to this and also to the present results, Pantano et al. [124] noted a reduction of the
TKE by heat release by about 30 % when using the normalization of Fig. 3.31. However, when
increasing the heat release to the highest level with which these authors perform a DNS, the
corresponding figure in [124] shows once again an increase in the TKE which the authors do not
comment on, but which is in agreement with the present results. Two other features that can be
seen in Fig. 3.31, namely the pointed shape and the shift of the peak value to the side of the shear
layer where the stoichiometric surface is located are also in agreement with what Pantano et al.
observe.

What the anisotropy of the Reynolds stresses is concerned, the present results reveal that there is
not much influence due to heat release. Plotting the anisotropy parameters from Eqs. (2.39) and
(2.40) would result in figures (not shown) that are very similar to the ones presented for the inert
mixing layers, i.e. Figs. (2.72) to (2.75). The conclusion that compressibility has little effect on
the anisotropy of the Reynolds stresses in the full turbulent, self-similar state and in the Mach
number range considered applies therefore also to the present shear layers with heat release.

Reynolds stress transport equations Figures 3.36 to 3.43 show the major terms in the Reynolds
stress transport equations (2.28) for the reacting mixing layers. All comments made about the re-
spective role of these terms in Sect. 2.4.4.1 also apply here, one example being the redistributive
action of the pressure-strain terms on the fluctuating energy from the streamwise component of
the Reynolds stresses to the spanwise and transverse components. Comparing the figures with the
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Figure 3.36: Budget of R11, normalized by ρ0∆u3/δω, symbols as in Fig. 3.21, solid: production,
dashed: dissipation rate
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Figure 3.37: Budget of R11, normalized by ρ0∆u3/δω, symbols as in Fig. 3.21, solid: pressure-
strain rate, dashed: turbulent transport

corresponding ones for the inert mixing layers (Figs. 2.76 to 2.83), a reduction of all non-zero
terms due to heat release is obvious. It is between 60 % and 70 % for Mc = 0.15 which is com-
parable to the reduction of other quantities (momentum thickness growth rate, Reynolds stresses,
TKE) that have been investigated previously. The reduction is less for higher Mc since the influ-
ence of compressibility on the budget terms is less pronounced for the reacting shear layers than
for the inert ones; so, heat release has a larger influence at low Mc.

The relatively weak reduction of the production terms, pressure-strain correlations and dissipation
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Figure 3.38: Budget of R22, normalized by ρ0∆u3/δω, symbols as in Fig. 3.21, solid: production,
dashed: dissipation rate
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Figure 3.39: Budget of R22, normalized by ρ0∆u3/δω, symbols as in Fig. 3.21, solid: pressure-
strain rate, dashed: turbulent transport

rates by compressibility can also be seen when integrating these terms in transverse direction and
plotting the results as functions of the convective Mach number as done in Figs. 3.44 to 3.46. The
corresponding graphs for the inert mixing layers, Figs. 2.84 to 2.86, have much steeper slopes.
The latter observation once more confirms the strong consequences of heat release.

The ratios of certain terms of the transversely integrated Reynolds stress budget equations are
nearly independent of the Mach number (Fig. 3.47), which has already been observed for the
inert mixing layers (cf. Fig. 2.87). Moreover, the actual values of the constants are close to those
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Figure 3.40: Budget of R33, normalized by ρ0∆u3/δω, symbols as in Fig. 3.21, solid: production,
dashed: dissipation rate
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Figure 3.41: Budget of R33, normalized by ρ0∆u3/δω, symbols as in Fig. 3.21, solid: pressure-
strain rate, dashed: turbulent transport
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Figure 3.42: Budget of R13, normalized by ρ0∆u3/δω, symbols as in Fig. 3.21, solid: production,
dashed: dissipation rate
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Figure 3.43: Budget of R13, normalized by ρ0∆u3/δω, symbols as in Fig. 3.21, solid: pressure-
strain rate, dashed: turbulent transport

without heat release. Figure 3.47 shows that P̆13 ≈ 1.13Π̆11 and Π̆13 ≈ −0.96Π̆11. Neglecting
ε̆13 (|ε̆13| ≤ 0.05

∣∣∣P̆13

∣∣∣), the budget equation for R̆13 from Eqs. (2.43) can be simplified to

∂〈ρ〉R̆13

∂t
= 1.13Π̆11 − 0.96Π̆11 = 0.17Π̆11. (3.26)

A very similar relation has been obtained for the inert mixing layers, ∂
(
〈ρ〉R̆13

)
/∂t = 0.15Π̆11.

This suggests that the approximate relation (3.26) is not only valid for different Mc but also with
and without heat release. As a consequence, the streamwise pressure-strain rate, Π11 is not only
influencing R11 directly but also via its production rate P11 that is linked with R13 by Eq. (2.41).
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Figure 3.44: Production, integrated in trans-
verse direction, normalized by ρ0∆u3: +: P̆11,
◦: P̆22, ∗: P̆33, �: P̆13
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Π̆11, ◦: Π̆22, ∗: Π̆33, �: Π̆13
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Figure 3.46: Dissipation rate, integrated in
transverse direction, normalized by ρ0∆u3: +:
ε̆11, ◦: ε̆22, ∗: ε̆33, �: ε̆13
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Analysis of the reduced growth rate Even though the reduction of the momentum thickness
growth rate with increasing Mc is not as pronounced for the reacting mixing layers as for the
inert ones, it can be shown that it is predominantly due to the reduced pressure-strain correlation.
The procedure to demonstrate this is the same as applied in Sect. 2.4.4.1 to the inert mixing
layers. In Sect. 2.4.4.1, an equation linking the normalized momentum thickness growth rate
with the pressure-strain rate of the streamwise Reynolds stress component, Eq. (2.50) was de-
rived. It is valid for reacting mixing layers as well and the corresponding values of Kε, K11 and
Π̆11/ (ρ0∆u3) are given in Table 3.4. Since they are all changing with Mc, it is not immediately
obvious which one of them is responsible for the reduction of δ̇θ. Using the exact values at each
Mc respectively leads to the exact normalized growth rates which are given in the first column of
Table 3.5. Discrepancies with the values given in Sect. 3.4.2 are small and only due to rounding
errors. The second column in this table, δ̇θ,1, is obtained when using the averaged (over Mc) val-
ues forKε = 1.2004·10−3 andK11 = 6.3003·10−2 along with the exact values for Π̆11/ (ρ0∆u3).
The relative error with respect to the exact growth rate is denoted by error 1. Error 2 is the relative
error when inserting the averaged value of Π̆11/ (ρ0∆u3) = −2.2908 · 10−3, but the exact values
of Kε and K11. As for the inert mixing layers, the variation of the pressure-strain term with com-
pressibility has a much greater influence than the variation of the dissipation rate via Kε and the
one of the streamwise Reynolds stress via K11. Since the influence of compressibility is smaller

Table 3.4: Values used in the analysis linking momentum thickness growth rate with pressure-
strain rate Π11 for the infinitely fast reacting test cases

Mc Kε K11 Π̆11/ (ρ0∆u3)

0.15 1.4127 · 10−3 6.7101 · 10−2 −2.6336 · 10−3

0.7 1.1804 · 10−3 6.6059 · 10−2 −2.3423 · 10−3

1.1 1.0080 · 10−3 5.5849 · 10−2 −1.8966 · 10−3

Table 3.5: Actual and approximated momentum thickness growth rates and relative errors for the
infinitely fast reacting test cases

Mc δ̇θ δ̇θ,1 δ̇θ,2 error 1 error 2

0.15 4.3373 · 10−3 4.0918 · 10−3 3.9699 · 10−3 5.7% 8.5%

0.7 3.7719 · 10−3 3.7809 · 10−3 3.7167 · 10−3 0.2% 1.5%

1.1 3.0764 · 10−3 3.3052 · 10−3 3.4939 · 10−3 7.4% 13.8%
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Table 3.6: Averaged values (respective inert and reacting cases taken into account) used in the
analysis for each convective Mach number

Mc Kε K11 Π̆11/ (ρ0∆u3)

0.15 2.2486 · 10−3 8.6266 · 10−2 −5.5154 · 10−3

0.7 1.5100 · 10−3 6.4148 · 10−2 −2.8739 · 10−3

1.1 1.1455 · 10−3 4.7746 · 10−2 −2.1493 · 10−3

Table 3.7: Actual and approximated momentum thickness growth rates and relative errors
Case δ̇θ δ̇θ,3 δ̇θ,4 error 3 error 4

inert-0.15 1.2835 · 10−2 1.1651 · 10−2 9.6134 · 10−2 9.2% 25.1%

inf-0.15 4.3373 · 10−3 5.3431 · 10−3 7.4264 · 10−3 23.2% 71.2%

inert-0.7 5.5930 · 10−3 5.2523 · 10−3 5.0262 · 10−3 6.1% 10.1%

inf-0.7 3.7719 · 10−3 4.1163 · 10−3 4.3410 · 10−3 9.1% 15.1%

inert-1.1 3.8371 · 10−3 3.7254 · 10−3 3.5740 · 10−3 2.9% 6.9%

inf-1.1 3.0764 · 10−3 3.2040 · 10−3 3.3441 · 10−3 4.1% 8.7%

for the reacting cases than for the inert ones, the errors in Table 3.5 are smaller than the ones in
Table 2.5.

Similarly to the just described procedure, it can be shown that the pressure-strain correlations are
also the reason for the reduction in momentum growth rate with heat release. To do so, averaged
values of Kε, K11 and Π̆11/ (ρ0∆u3) for each Mach number computed from the respective inert
and reacting test cases are determined and given in Table 3.6. To evaluate δ̇θ,3, the averaged values
of Kε and K11 but the exact values of Π̆11/ (ρ0∆u3) (from Tables 2.4 and 3.4) are taken. For δ̇θ,3,
the averaged Π̆11/ (ρ0∆u3) are used along with the exact Kε and K11. The values for δ̇θ,3 and
δ̇θ,4 are given in Table 3.7. Errors 3 and 4 are computed with respect to the exact growth rates δ̇θ
which are repeated in the table for clarity. Since error 4 is in all cases larger than error 3, it is the
pressure-strain correlation that has the largest influence on the growth rates and their reduction
with heat release. Since the influence of heat release is reduced with increasing Mc the errors at
Mc = 1.1 are considerably smaller than those at lower Mc.

Pressure-strain terms The pressure-strain term Π11 in the streamwise Reynolds stress trans-
port equation has been shown in the last paragraph to be responsible for the reduction of the
normalized momentum thickness growth rate due to compressibility and heat release. Therefore,
it is of interest to see what causes the reduction of Π11 = 2〈p′ ∂u′′1

∂x1
〉. Figures 3.48 to 3.50 sug-

gest that the reduced pressure fluctuations, the rms value of which is shown in Fig. 3.48, are
the most probable cause for the reduction of the pressure-strain term Π11 with Mc, since the rms
value of ∂u′′1/∂x1 is only slightly influenced by compressibility and the correlation coefficient
R (p, ∂u1/∂x1) oscillates around zero for all convective Mach numbers. Figure 3.51 even reveals
that the integrated value of the strain rate fluctuations rises slightly for an increase of Mc from 0.7

to 1.1.

When comparing the figures which contain the rms values of the pressure fluctuations and the
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Figure 3.48: Rms value of p′, normalized by
ρ0∆u2, curves as in Fig. 3.21
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Figure 3.49: Rms value of ∂u′′1/∂x1, normal-
ized by δω,0/∆u, curves as in Fig. 3.21
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strain rate fluctuations of the reacting mixing layers (Figs. 3.48 and 3.49) to the corresponding
ones of the inert mixing layers, a strong reduction of both rms values by the presence of heat
release can be observed. Therefore, changes in both, the pressure fluctuations as well as the strain
rate fluctuations, seem to contribute to the pressure-strain rate reduction by heat release. However,
the influence of heat release on the pressure fluctuations in particular at Mc = 0.15 is larger than
the influence on the strain rate fluctuations: While the peak magnitude of the normalized rms
value of the latter is reduced by a factor of 1.7 only (from approximately 1.9 in Fig. 2.90 to 1.1 in
Fig. 3.49), the reduction of the peak value of the rms pressure fluctuation is by more than a factor
of 3 (from 0.035 in Fig. 2.89 to 0.0115 in Fig. 3.48).

TKE transport equation Figures 3.52 and 3.53 show the major terms of the TKE transport
equation (2.27) for the reacting mixing layers. Compared to the corresponding terms of the inert
mixing layers (cf. Figs. 2.93 and 2.94) a decrease of all terms with heat release can be noticed ex-
cept for the pressure dilatation Π which increases with heat release. A direct comparison between
the pressure dilatation profiles of the cases inert-0.15 and inf-0.15 is shown in Fig. 3.54. It can
be seen that heat release leads to a positive value of Π, while in non-reacting flow Π is weakly
negative as in homogeneous shear turbulence [160]. This completely different behaviour of Π

suggests that the underlying mechanisms are different. Dilatation fluctuations in reacting shear
layers are certainly not of acoustic nature. An increase of Π in reacting shear layers has also been
observed by McMurtry et al. [109]. It means that the pressure dilatation represents a source in
the center of the shear when heat release is present. However, due to its small magnitude this
source is overshadowed by the production term, the reduction of which leads to a decrease of the
TKE with heat release. This result does not support the suggestion of McMurtry et al. [109] that
high heat release could lead to such an increase in ∂u′′i /∂xi and Π that the TKE increases with
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Figure 3.52: Budget of 〈ρ〉k, normalized by ρ0∆u3/δω, symbols as in Fig. 3.21, solid: production,
dashed: dissipation rate
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Figure 3.53: Budget of 〈ρ〉k, normalized by ρ0∆u3/δω, symbols as in Fig. 3.21, solid: pressure
dilatation, dashed: turbulent transport

heat release. Fig. 3.55 shows the ratio of pressure dilatation and production, both integrated in the
transverse direction. The ratio is one order of magnitude larger than for the inert mixing layers (cf.
Fig. 2.95) and decreases with increasing compressibility, i.e. the reduction with compressibility
is stronger for the pressure dilatation than for the TKE production.

In general, the influence of compressibility on the terms of the TKE transport equation in the
absence of heat release is stronger than with heat release (compare Figs. 3.52 and 3.53 with Figs.
2.93 and 2.94), and the effects of heat release are more pronounced for lower Mc than for higher
Mc.

The dissipation rate of the TKE is investigated further by decomposing it into three parts, ε1, ε2
and ε3 as shown in Eqs. (2.53) and (2.54). As for the inert mixing layers, the largest part is ε1 (Fig.
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Figure 3.56: Decomposition of TKE dissipation rate, normalized by ρ0∆u3/δω, symbols as in
Fig. 3.21, solid: ε1, dashed: ε2, dotted: ε3
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Figure 3.57: Decomposition of ε1, normalized by ρ0∆u3/δω, symbols as in Fig. 3.21, solid: εs,
dashed: εd, dotted: εI
3.56), which is computed with the help of the mean viscosity. This means that even though the
temperature fluctuations are much stronger than in the inert cases (cf. Figs. 2.103 and 3.61), the
dissipation terms ε2 and ε3, in which viscosity fluctuations are contained, remain small. However,
Fig. 3.56 reveals that their relative importance compared to ε1 increases somewhat compared to
what can be seen from Fig. 2.97.

The further decomposition of ε1 into the solenoidal part εs, the dilatational part εd and the inho-
mogeneous part εI (cf. Eqs. (2.57) and (2.58)) is shown in Fig. 3.57. As for the inert mixing
layers, εs contributes most to ε1, even at the higher convective Mach numbers. This can also be
seen from the fact that the ratio of the transversely integrated εd and εs decreases with increasing
compressibility (Fig. 3.58). εd and εI have nearly the same magnitude but opposite signs and
cancel each other out (Fig. 3.57).
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Figure 3.58: Ratio of the integrated dilatational and solenoidal dissipation rates versus Mc
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Thermodynamic fluctuations Figures 3.59 to 3.62 show the rms values of the density, pres-
sure, temperature and molecular weight fluctuations which are related via the first order relation
(2.61). Temperature and density fluctuations are equally important and strongly correlated as can
be seen from the shape of the corresponding curves in Figs. 3.59 and 3.61. The influence of
compressibility is mainly on the widths of the profiles and to some extent also on the peak values.
As in inert mixing layers, compressibility reduces the turbulence activity and consequently also
the thickness of the layer.

Density and temperature fluctuations are much higher for the reacting than for the inert mixing
layers (cf. Figs. 2.101 and 2.103) as was to be expected from the presence of heat release. The
density and temperature fluctuations are the strongest towards the edges of the shear layer where
cold free-stream fluid is entrained, and not at the location of the reaction sheet. This is because
there are the strongest mean density and temperature gradients, and they form the main source of
density and temperature fluctuations. Another interesting feature is that the peaks of the density
and temperature fluctuations on the lean (upper) side of the mixing layer, (which is the side on
which the flame is located) are higher than the ones on the fuel-rich side. The pressure fluctuations
in Fig. 3.60 are smaller than for the inert cases (Fig. 2.102) and increase with increasing Mc. In
contrast to the other thermodynamic fluctuations, the influence of compressibility on the pressure
fluctuations is rather strong. The fluctuations of the molecular weight, the rms value of which is
shown in Fig. 3.62, are larger than for the inert cases (Fig. 2.104) due to the presence of hydro-
gen. The pointed shape of the rms value is in contrast to the double-hump shape of the density
fluctuations and reveals that molecular weight and density fluctuations are not much correlated.
Since the peak height of the molecular weight rms values decreases only little with compressibil-
ity, the differences in mixing behaviour are not expected to change much with compressibility
when heat release is present (cf. Sect. 3.4.4.3).

A decomposition of the density and temperature fluctuations (cf. Eq. (2.62)) reveals differences
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Figure 3.63: Acoustic (solid line) and entropic part (dashed line) of the density fluctuations,
normalized by 〈ρ〉, symbols as in Fig. 3.21
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Figure 3.64: Acoustic (solid line) and entropic part (dashed line) of the temperature fluctuations,
normalized by 〈T 〉, symbols as in Fig. 3.21

between the inert and the reacting mixing layers: For the latter ones, the entropic parts are much
larger than the acoustic ones, even at higher convective Mach numbers (compare Figs. 3.63 and
3.64 with Figs. 2.106 and 2.107).

Correlations of thermodynamic fluctuations A direct investigation of the correlation coeffi-
cients R (ρ, p) and R (ρ, T ) (Figs. 3.65 and 3.66) confirms what was to be expected from the
previous paragraphs: There is only a weak correlation between density and pressure fluctuations,
but a strong, inverse correlation of density and temperature fluctuations. Both correlation coeffi-
cients are nearly uninfluenced by Mc.
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Behaviour of the pressure-strain correlations In this section, it is analyzed why heat release
decreases the pressure fluctuations when normalizing by ρ0∆u2 as in Fig. 3.48 and why this
entails a reduction of the pressure-strain correlations. The procedure is similar to the one in Sect.
2.4.4.1: A Poisson equation for the pressure fluctuations p′ is derived which is solved with the
help of a Green function. By not considering the complete RHS of the Poisson equation but only
single terms it can be seen which of these terms contribute most to the pressure fluctuations, which
can be neglected and which are responsible for the reduction of p′ due to heat release. The term
C6, D

2
ρ′/Dt2, which was neglected in Eq. (2.68) in Sect. 2.4.4.1 for the inert flows, contains the

heat release term explicitly. To show this, the substantial derivative Dρ/Dt is determined first:
It is computed as a weighted sum of the substantial derivatives of pressure, entropy and species
mass fractions,

Dρ

Dt
= Rp

Dp

Dt
+Rs

Ds

Dt
+
∑

α

Rα
DYα
Dt

, (3.27)

with the partial derivatives as coefficients:

Rp =

(
∂ρ

∂p

)

s,Yα

Rs =

(
∂ρ

∂s

)

p,Yα

Rα =

(
∂ρ

∂Yα

)

p,s,Yβ 6=α

(3.28)
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Figure 3.67: Case inf-0.15: Parts of the pressure-strain correlation Π11 computed with the Green
function, normalized by ρ0∆u3/δω, +: f = f (A1), ×: f = f (A2), ∗: f = f (A3), �: f =
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The partial derivative Rs is computed from the equation of state for ideal gas mixtures, Eq.
(2.5) and the temperature dependence of the specific enthalpy at constant species mass fractions,
dh = cpdT :

Rs =
∂ρ

∂s
=
∂ρ

∂T
· ∂T
∂h
· ∂h
∂s

= − p

RGT 2
· 1

cp
· ∂h
∂s

(3.29)

For the last term, ∂h/∂s, the Gibbs fundamental equation (A.38) is used, which simplifies to
dh = Tds for constant pressure and species mass fractions. Therefore ∂h/∂s = T and

Rs = − p

RGT 2
· 1

cp
· T = − ρ

cp
. (3.30)

The partial derivativeRp is

Rp =
∂ρ

∂p
=

1
∂p
∂ρ

=
1

c2
, (3.31)

whereby Eq. (A.35) is taken into account. To computeRα, the relation

Rα =
∂ρ

∂Yα
=
∂ρ

∂T
· ∂T
∂Yα

(3.32)

is useful. When computing ∂ρ/∂T with the help of the equation of state (2.5), it has to be
considered that the gas constant of the mixture, RG, also depends on the mass fractions of the
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Figure 3.69: Case inf-0.7: Parts of the pressure-strain correlation Π11 computed with the Green
function, normalized by ρ0∆u3/δω, symbols as in Fig. 3.67
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species which themselves depend on the temperature:

∂ρ

∂T
= − p

RG

T 2 − p

R2
GT
· ∂RG

∂Yα
· ∂Yα
∂T

= − p

RGT 2
− p

R2
GT
· R
Wα

· ∂Yα
∂T

(3.33)

Introducing this, as well as Eq. (A.46) into Eq. (3.32),

Rα = − p

RGT

(
1

cpT

(
µα
Wα

− hα
)

+
R

WαRG

)
(3.34)

is obtained. The last term equals zero when the average molecular weight is constant [47]. Using
this approximation (which is later justified by the good quality of the results), the final expression
for Dρ/Dt, after introducing Eqs. (3.30), (3.31) and (3.34), as well as Dp/Dt and Ds/Dt (see
Appendix) into Eq. (3.27), is

Dρ

Dt
=

1

c2

Dp

Dt
+

1

cpT

(
ρ
∑

α

hα
DYα
Dt

+
∂qi
∂xi
− ∂ui
∂xj

τij

)
(3.35)

with DYα
Dt

computed from Eq. (3.15) for infinitely fast reacting flows. When neglecting molecular
transport terms, this becomes

Dρ

Dt
≈ 1

c2

Dp

Dt
− 1

cpT
Q (3.36)
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Figure 3.71: Case inf-1.1: Parts of the pressure-strain correlation Π11 computed with the Green
function, normalized by ρ0∆u3/δω, symbols as in Fig. 3.67
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with the heat release term
Q = −ρ

∑

α

hα
DYα
Dt

(3.37)

which is shown in Fig. 3.20.

When taking into accout the definition of the operator D
2
/Dt2, Eq. (2.69), term C6 can also be

written as
D

2
ρ′

Dt2
=
D2ρ′

Dt2
− 2u′′j

∂2ρ′

∂t∂xj
−
(
2〈ui〉fu′′j + u′′i u

′′
j

) ∂2ρ′

∂xixj
(3.38)

Since the last three terms on the RHS are of higher order, they can be neglected with respect to
the first term so that

D
2
ρ′

Dt2
≈ D2ρ′

Dt2
. (3.39)

Taking into account Eq. (3.36) and neglecting again higher-order terms, term C6 becomes

D
2
ρ′

Dt2
=

1

〈c〉2
D2p′

Dt2
− 1

〈cpT 〉
DQ′

Dt
. (3.40)

In Section 2.4.4.1, it was shown that the influence of the complete term C6 can be neglected
for inert mixing layers in the range of convective Mach numbers considered. It is therefore a
reasonable assumption that, for the reacting mixing layers, the first term on the RHS of Eq. (3.40)
can be neglected with respect to the second term which contains the heat release fluctuations.
Therefore,

D
2
ρ′

Dt2
≈ − 1

〈cpT 〉
DQ′

Dt
. (3.41)

Such an assumption makes Eq. (2.68) a Poisson equation for the pressure fluctuations which has
the same structure and can therefore be solved with the same Green function, Eqs. (2.72) and
(2.73) as the Poisson equation for p′ for inert flows. A further approximation of the term C6 is

D
2
ρ′

Dt2
≈ − 1

〈cpT 〉
ui
∂Q′

∂xi
(3.42)

and consists in only taking into account its convective part. Finally, as for the inert mixing layers,
the pressure-strain correlations can be computed by Eq. (2.76). By not inserting the complete
RHS of Eq. (2.68), but only single terms it can be seen which ones have the largest influence on
the pressure-strain correlations and which are responsible for their decrease due to heat release.
Figure 3.67 shows the contributions to the pressure-strain term Π11 of case inf-0.15, which are
computed this way and averaged over the self-similar state. As for the inert mixing layer (cf.
Fig. 2.110), the terms A1 and A2 which depend on the mean density are the largest ones. The
other terms, even though larger than for the inert case, are small compared to A1 and A2. The
contribution from termC6, which contains the heat release term explicitly, is also small. Summing
all terms up, as done in Fig. 3.68 gives a good approximation of Π11 computed directly from the
statistics. This justifies the assumptions involved in the approximation of C6 in Eq. (3.42) as well
as neglecting term D in Eq. (2.68).

At higher Mach numbers, the contributions from terms A1 and A2 to Π11 decrease, but remain
large compared to the contributions from the other terms (Figs. 3.69 and 3.71). The decrease
with increasing compressibility is, however, not as significant as for the inert mixing layers in
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accordance with what has been observed for the complete pressure-strain rate. The good agree-
ment between the curves in Figs. 3.70 and 3.72, which represent both, Π11 computed with the
help of the Green function and Π11 computed directly from the statistics, shows, that acoustic
contributions are not significant for the pressure-strain rate at convective Mach numbers up to
Mc = 1.1.

Compared to the inert cases, the complete pressure strain rate Π11 as well as the contributions
from terms A1 and A2 are reduced significantly by heat release. To find out, whether this is a
consequence of the reduced mean density (cf. Fig. 3.22), which appears as a factor in terms
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Figure 3.73: Case inf-0.15: Parts of the pressure-strain correlation Π11 computed with the Green
function and with constant density ρ0, normalized by ρ0∆u3/δω, symbols as in Fig. 3.67
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Figure 3.74: Case inf-0.7: Parts of the pressure-strain correlation Π11 computed with the Green
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A1 and A2, this quantity is set constant, i.e. instead of 〈ρ〉, ρ0 is inserted into the terms on
the RHS of Eq. (2.68). Density fluctuations are set to zero. Figures 3.73 to 3.75 show the
resulting contributions to Π11 when replacing the original terms on the RHS of Eq. (2.68) by these
modified terms: In particular for case inf-0.15, this results in the contributions from terms A1 and
A2 to Π11 having approximately the same size as for the mixing layer inert-0.15 (Fig. 2.116).
Since the results for the other pressure-strain correlations, as well as the pressure-scrambling
terms (cf. Sect. 3.4.4.3) are very similar, the conclusion is that at low convective Mach number,
the reduction of the pressure correlations by heat release is predominantly a consequence of the
reduction by the mean density. Therefore, it may be called a mean density effect.

Turbulent and gradient Mach numbers A comparison between Figs. 2.119 and 3.76 shows
that the turbulent Mach number Mt for cases with the same convective Mach number is reduced
by heat release which is mainly due to the increase of 〈c〉/∆u as can be seen from the fact that the
square-root of the TKE, non-dimensionalized as

√
k/∆u, increases with heat release, in particular

for the higher convective Mach numbers. This is revealed by a comparison between Figs. 3.31
and 2.71 (for the inert mixing layers k/∆u2 ≈ k〈ρ〉/ (ρ0∆u2)).

The gradient Mach number,Mg, also decreases slightly with heat release as can be seen from Figs.
2.120 and 3.77. The increase of the gradient Mach number with increasing Mc has been found
to be responsible for the reduction of the pressure-strain terms with compressibility [123]. Since
Mg is not increased when heat release sets in (at constant Mc, respectively), the mechanisms
behind the pressure-strain reduction with heat release must be different from the ones due to
compressibility (cf. Sect. 3.4.4.2).
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Figure 3.76: Turbulent Mach number Mt, symbols as in Fig. 3.21
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Figure 3.78: Turbulent Mach number Mt plotted as a function of the gradient Mach number Mg.
Symbols as in Fig. 3.21, solid line: Mt = 0.350Mg, dashed line: Mt = 0.210Mg

As for the inert mixing layers, there is an approximately linear correlation between Mt and Mg

for the reacting mixing layers as the scatter plot in Fig. 3.78 shows. However, the slope of the
linear relation is different from that for the inert cases (cf. Fig. 2.121) due to different behaviour
of Mt and Mg with heat release.

Spectra Figure 3.79 shows the one-dimensional, streamwise spectrum of the velocity u1 after
averaging over directions x2 and x3. Even though the resolution of the reacting cases is lower
than for the inert cases (cf. Fig. 2.122), which causes the lower range of wavenumbers on the
horizontal axis, no signs of under-resolution are visible, and the energy fall-off in all cases extends
smoothly over several orders of magnitude. The higher the wavenumber, the stronger is the effect
of heat release which manifests itself in a lower energy content. As for the inert mixing layers,
compressibility decreases the energy in the highest wavenumbers resulting in a visible increase
of the dominant length scales (cf. Sect. 3.4.1). While the changes from Mc = 0.15 to Mc = 0.7

are quite strong, an asymptotic behaviour sets in when increasing Mc further.

All scales of the TKE are affected by increasing Mc when heat release is present (Fig. 3.80).
Less energy in large and intermediate scales is observed and means that there is less transport of
momentum and scalar quantities by the turbulence. Consequences are smaller growth rates and
less entrainment of outside fluid due to compressibility (cf. Sect. 3.4.4.4).

In the one-dimensional dissipation spectra in Fig. 3.81, the peak position is rather uninfluenced by
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Figure 3.79: One-dimensional, streamwise spectrum of u1/∆u at the beginning of the self-similar
state, solid: inf-0.15, dashed: inf-0.7, dotted: inf-1.1
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Figure 3.80: One-dimensional, streamwise spectrum of TKE k/∆u2 at the beginning of the self-
similar state, solid: inf-0.15, dashed: inf-0.7, dotted: inf-1.1, the straight line has −5/3 slope
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Figure 3.81: One-dimensional, streamwise dissipation spectrum (spectrum of u1/∆u multiplied
with (k1δω,0)2) at the beginning of the self-similar state, solid: inf-0.15, dashed: inf-0.7, dotted:
inf-1.1
compressibility but shifted to lower wavenumbers in comparison with the inert spectra (Fig. 3.81).
The ’dissipated energy’ content decreases in all wavenumbers except for the very small ones with
heat release. Compressibility also leads to a decrease but mainly in the largest wavenumbers, i.e.
the smallest scales.

3.4.4.3 Scalar mixing

Since chemical reactions can only occur when the reactants become molecularly mixed, a thor-
ough understanding of the mixing process is vital for combustion. Contributing to this is the aim
of the following section. There, the mixing characteristics of the reacting shear layers are inves-
tigated with the help of statistical quantities of the mixture fraction z. Since z and the species
mass fractions are linked by linear relations, the conclusions drawn would be the same when
analyzing the corresponding statistical quantities of any of the mass fractions. This would be dif-
ferent if detailed diffusion effects were taken into account. For the inert mixing layers analyzed
in Chapter 2, detailed diffusion effects play a minor role only: nitrogen and oxygen have similar
diffusion coefficients and no large temperature gradients, which could lead to thermal diffusion,
are present. Therefore, even though detailed diffusion effects are taken into account for the mass
fractions of the inert mixing layers in Sect. 2.4.4.2, but are excluded in this chapter, direct com-
parisons are possible and any major differences that are encountered are due to heat release and
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compressibility and not to diffusion effects.

Mean profile and variance Figure 3.82 shows the Favre averaged profiles of the mixture frac-
tion. The profiles at the various convective Mach numbers are close to each other, and it is hard
to tell whether the differences are larger than those for the velocity profiles of the inert mixing
layers. Due to the larger density fluctuations, the differences between the Favre and the Reynolds
quantities are larger for the reacting mixing layers than for the inert ones. Figure 3.83 demon-
strates this for the mixture fraction of the inert-0.15 case. It can be seen that the Favre averaged
profile is above the Reynolds averaged one on the fuel side of the mixing layer and that the oppo-
site is true on the oxidizer side. This is in agreement with the observations of Pantano et al. [124]
and can be explained when considering that

〈z〉f − 〈z〉 =
〈ρ′z′〉
〈ρ〉 . (3.43)

The correlation between the density and the mixture fraction fluctuations is positive on the fuel
side since higher ρ (colder fluid) is associated there with higher z (more fuel). On the oxidizer
side, the correlation is negative since higher ρ corresponds to more oxygen and therefore lower
z. A similar relation has been observed for the Favre and Reynolds averaged velocity profiles in
Sect. 3.4.4.2.

Figure 3.84 shows the mixture fraction variance for the reacting mixing layers. Comparing this
figure with the corresponding one for the inert mixing layers, Fig. 2.126, it is obvious that the
influence of differentMc is less pronounced for the reacting mixing layers than for the inert ones -
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Figure 3.82: Favre averaged mixture fraction, ∗: inf-0.15, �: inf-0.7, ◦: inf-1.1
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Figure 3.83: Case inert-0.15, solid: 〈z〉f , dashed: 〈z〉
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Figure 3.84: Variance of the mixture fraction, symbols as in Fig. 3.82
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Figure 3.85: Variance of the mixture fraction, normalized by ρ0/〈ρ〉, symbols as in Fig. 3.82

a feature that has already been observed for various other statistical quantities in Sect. 3.4.4.2. In
particular, the decrease of the peak value with increasing Mc is relatively small and no significant
change in shape is visible. None of the variance profiles of the reacting mixing layers has a
double hump as was observed for case inert-0.15. Since the double hump in this case is due to
engulfment at the edges of the mixing layer, weak engulfment is expected for the reacting layers.
This is confirmed by the results in Sect. 3.4.4.4. The variance profiles are more pointed for the
reacting cases than for the inert ones (cf. Fig. 2.126), and the peak value is shifted towards the
side of the mixing layer where the stoichiometric surface is located.

When comparing the level of the scalar fluctuations, it is useful to take into account the reduction
of the density which is done by a different normalization, applied in Fig. 3.85. A corresponding
normalization has been used for the Reynolds stresses and the TKE in Sect. 3.4.4.2 and has
revealed that their reduction by heat release is predominantly a mean density effect. This is also
the case for the scalar variance, since with the normalization in Fig. 3.85 the scalar fluctuations are
reduced by heat release (compare with Fig. 2.126), contrarily to what is observed from comparing
Figs. 3.84 and 2.126. Note that a change in normalization would not alter the profiles of the scalar
variance of the inert mixing layers much since 〈ρ〉/ρ0 ≈ 1 in these cases. Therefore, both, Figs.
3.84 and 3.85, can be compared to Fig. 2.126.

Comparing the effects that heat release has on the scalar variance with its effects on the TKE
(Figs. 2.71, 3.30 and 3.31), it can be concluded that the influence of heat release on the shape of
the profiles is larger for the scalar variance than for the TKE while the peak value of the TKE is
stronger influenced than that of the scalar variance (appropriate normalization provided). Pantano
et al. [124] made similar observations and concluded that the effect of heat release on scalar and
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velocity quantities is approximately the same when integrated across the shear layer.

Scalar pdfs The mixture fraction pdfs of the three reacting test cases in Figs. 3.86 to 3.88 taken
in planes with different 〈z〉 show a marching behaviour with the most probable value varying
across the mixing layer. This behaviour is even more pronounced than for the inert mixing layers
(cf. Figs. 2.127 to 2.129) since the so-called mixed-fluid peak of the extreme pdfs is situated
closer to 〈z〉 of that plane out of which the respective pdf is taken. From the marching behaviour
of the pdfs and the fact that only the two extreme pdfs on each side are bi-modal, i.e. have an
intermittency peak in addition to the mixed-fluid peak, it is expected that the fluid gets mixed into
the layer at the edges rather than engulfed (cf. Sect. 3.4.4.4). In particular at lowMc, the bi-modal
shape is encountered for fewer pdfs than it is the case for the inert mixing layers which shows
that the external intermittency decreases with heat release. This observation is in agreement with
the results of Pantano et al. [124] and with those in Sect. 3.4.4.4.

The probability to encounter free-stream fluid in the reacting mixing layer in the planes with
〈z〉 = 0.2 and 〈z〉 = 0.8 decreases with increasing compressibility. However, in contrast to
the inert mixing layers, the probability to encounter such fluid in the planes with 〈z〉 = 0.3 and
〈z〉 = 0.7 is nearly independent of the Mach number. It can be concluded that for the entrainment,
as for other features that have already been investigated in the previous sections, the influence of
compressibility on inert mixing layers is larger than on reacting mixing layers.
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Figure 3.86: Case inf-0.15: pdfs of mixture fraction in planes with various 〈z〉, +: 0.1,×: 0.2, ∗:
0.3, �: 0.4, �: 0.5, ◦: 0.6, •: 0.7,4: 0.8, N: 0.9
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Figure 3.87: Case inf-0.7: pdfs of mixture fraction in planes with various 〈z〉, +: 0.1, ×: 0.2, ∗:
0.3, �: 0.4, �: 0.5, ◦: 0.6, •: 0.7,4: 0.8, N: 0.9
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Figure 3.88: Case inf-1.1: pdfs of mixture fraction in planes with various 〈z〉, +: 0.1, ×: 0.2, ∗:
0.3, �: 0.4, �: 0.5, ◦: 0.6, •: 0.7,4: 0.8, N: 0.9
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Figure 3.89: Pdfs of mixture fraction in the plane with 〈z〉 = 0.3 (solid) and 〈z〉 = 0.5 (dashed),
symbols as in Fig. 3.82

The pointed shape of the scalar variance in Fig. 3.84 and the shift of its peak away from the center
of the mixing layer can be related with the different shapes that the mixture fraction pdfs have at
the various locations across the mixing layer, as e.g. displayed in Fig. 3.86: The pdfs that are
taken from the lower, oxygen side of the mixing layer are broader, i.e. have a higher variance
than the ones taken from the upper, fuel side. This is consistent with the maximum of the scalar
variance being shifted towards the oxygen side, i.e. towards the plane with the stoichiometric
value 〈z〉 = 0.3.

In Fig. 3.89, the scalar pdfs taken in the planes with 〈z〉 = 0.3 and 〈z〉 = 0.5 are plotted for
different convective Mach numbers. Again, the relatively weak influence of compressibility is
visible.

Mixing efficiency The mixing efficiency, which measures the mixing of the fluid in the layer
at the molecular level and reveals how much free-stream fluid is present, is computed for the
mixture fraction by

δM
δz

=
1

δz

∫ ∞

0

dx3

∫ 1−ε

ε

dzP (z, x3) (3.44)

where δz denotes the 99% scalar thickness. This definition has been suggested by Freund et al.
[64]. Fig. 3.90 shows the mixing efficiency as a function of Mc for the reacting mixing layers.
The curves for two different values of the small parameter ε, which determines what kind of fluid
is considered to be pure, are shown. It can be seen that the mixing efficiency increases with
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Figure 3.90: Mixing efficiency, �: ε = 0.02, ∗: ε = 0.04

increasing compressibility. This does not necessarily mean that the fluid is better mixed but can
also be related with less free-stream fluid being engulfed when Mc increases (cf. Sect. 3.4.4.4).
Whether the mixing efficiency in the reacting mixing layers is higher or lower than the one of the
inert mixing layers (cf. Fig. 2.131) depends on the choice of the exact value for ε and on Mc.
The reacting mixing layer at Mc = 1.1 has the highest mixing efficiency (for ε = 0.02) of all test
cases. For the inert test cases (Fig. 2.131), the increase in mixing efficiency between Mc = 0.15

and Mc = 0.7 is higher than the one between Mc = 0.7 and Mc = 1.1. For the reacting mixing
layers, the contrary is true. An explanation for this behaviour is not available yet.

Scalar variance transport equation The transport equation of the mixture fraction variance
reads for temporally evolving shear layers:

∂

∂t
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2〉 =− 1
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〈 µ
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∂z

∂x3
z′′〉 − 〈 µ
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∂z

∂xi

∂z′′

∂xi
〉

(3.45)

The terms on the RHS describe mean convection, turbulent transport, turbulent production (two
terms), molecular diffusion and dissipation. The diffusion and the convective transport are small
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Figure 3.91: Major terms in the scalar variance transport equation, normalized by ρ0∆u/δω, solid:
turbulent production, dashed: turbulent transport, dotted: dissipation rate, symbols as in Fig. 3.82
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compared to the other terms which are shown in Fig. 3.91. They are all reduced by compressibil-
ity and heat release (cf. Fig. 2.132) with the reduction due to compressibility being weaker when
heat release is present.

The dissipation rate can also be written as

εz = −〈 µ
Sc

∂z

∂xi

∂z′′

∂xi
〉 = −〈 µ

Sc

∂z

∂xj

∂z

∂xj
〉+ 〈 µ
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∂z

∂xj
〉∂〈z〉f
∂xj

(3.46)

with the second term being negligible compared to the first one (Fig. 3.92). Therefore, εz can be
approximated as:

εz ≈ −〈
µ

Sc

∂z

∂xj

∂z

∂xj
〉 (3.47)

Scalar fluxes The streamwise scalar flux, 〈ρu′′1z′′〉, and the transverse scalar flux, 〈ρu′′3z′′〉, are
shown in Figs. 3.93 and 3.94. They are considerably smaller than for the inert cases (cf. Figs.
2.134 and 2.135). The fact that the fluxes in the inert and reacting cases have different signs
results from the different signs of the mean scalar gradient. The spanwise scalar flux is negli-
gible compared to the other fluxes and therefore not shown. As for the inert mixing layers, the
transverse scalar flux is more sensitive to an increase in Mc and reduces more strongly than the
streamwise scalar flux.
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Figure 3.93: Scalar flux 〈ρu′′1z′′〉, normalized by ρ0∆u, symbols as in Fig. 3.82
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Figure 3.94: Scalar flux 〈ρu′′3z′′〉, normalized by ρ0∆u, symbols as in Fig. 3.82

Transport equations of scalar fluxes The transport equation for the scalar (mass fraction) flux
in x1-direction for the temporally evolving shear layer reads:
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(3.48)
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Figure 3.95: Part of the streamwise scalar flux
production, normalized by ρ0∆u2/δω, symbols
as in Fig. 3.82

x3/δω

−〈
ρ
u
′′ 1
u
′′ 3
〉∂
〈z
〉 f

∂
x

3

δ ω
ρ

0
∆
u

2

10.50-0.5-1

0

-0.0005

-0.001

-0.0015

-0.002

-0.0025

-0.003

Figure 3.96: Part of the streamwise scalar flux
production, normalized by ρ0∆u2/δω, symbols
as in Fig. 3.82
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Figure 3.97: Part of the transverse scalar flux
production, normalized by ρ0∆u2/δω, symbols
as in Fig. 3.82
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Figure 3.99: Part of the dissipation rate of
the streamwise scalar flux, normalized by
ρ0∆u2/δω, symbols as in Fig. 3.82
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Figure 3.100: Part of the dissipation rate
of the transverse scalar flux, normalized by
ρ0∆u2/δω, symbols as in Fig. 3.82
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Figure 3.101: Part of the dissipation rate
of the streamwise scalar flux, normalized by
ρ0∆u2/δω, symbols as in Fig. 3.82
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Figure 3.102: Part of the dissipation rate
of the transverse scalar flux, normalized by
ρ0∆u2/δω, symbols as in Fig. 3.82

The corresponding equation for the flux in x3-direction is:
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(3.49)

The terms on the RHS in the first line denote convection and turbulent transport. The ones in
the second line are production terms and the term in the third line is the pressure scalar-gradient
correlation. The last two lines contain diffusion and dissipation terms.
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Figure 3.103: Turbulent transport of the
streamwise scalar flux, normalized by
ρ0∆u2/δω, symbols as in Fig. 3.82
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Figure 3.105: Pressure-scrambling term
in streamwise direction, normalized by
ρ0∆u2/δω, symbols as in Fig. 3.82
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Figure 3.106: Pressure-scrambling term in
transverse direction, normalized by ρ0∆u2/δω,
symbols as in Fig. 3.82

The pressure scalar gradient correlation can also be written as
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〉, (3.50)

in x1-direction and in x3 direction,
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with the last term in each expression being the pressure-scrambling term Πzi.

The major terms in these equations are the production, the diffusion, the dissipation rates and
the turbulent transport as well as the pressure-scrambling term. They are shown in Figs. 3.95 to
3.106 and are smaller than for the inert cases. While the production rates, the dissipation rate, the
diffusion and the turbulent transport are more pointed in the center than the corresponding terms
for the inert cases, the pressure-scrambling term has a similar shape. All terms in the reacting
cases show the already expected behaviour of being less sensitive to changes in Mc than without
heat release which makes the influence of heat release stronger at low Mc. Moreover, most of
the terms are damped by compressibility, except for the two parts of the dissipation rate of the
streamwise scalar flux shown in Figs. 3.99 and 3.101.

Spectra The scalar energy spectra in Fig. 3.107 and the scalar dissipation spectra in Fig. 3.108
of the reacting test cases are similar to the inert ones (cf. Figs. 2.157 and 2.158) in the large
scales but contain less energy in the small scales. This is in agreement with the smoother scalar
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Figure 3.107: One-dimensional, streamwise spectrum of the mixture fraction z, solid: inert-0.15,
dashed: inert-0.7, dotted: inert-1.1, the straight line has −5/3 slope
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Figure 3.108: One-dimensional dissipation spectrum of the mixture fraction z (spectrum of z
multiplied with (k1δω,0)2), solid: inert-0.15, dashed: inert-0.7, dotted: inert-1.1

fields that have been noticed in Sect. 3.4.1. Additionally, the peaks of the dissipation spectra
for the reacting cases are situated at higher wavenumbers than for the inert cases. Due to the
coarser resolution of the reacting test cases, the range of wavenumbers on the horizontal axes
in Figs. 3.107 and 3.108 do not extend to such high wavenumbers as in Fig. 2.157 and 2.158.
Nevertheless, the energy fall-off is smooth over several orders of magnitudes and no signs of
spurious energy accumulation in the highest wavenumbers are visible. In contrast to what has
been observed from the inert test cases, changes with Mc are only observed between Mc = 0.15

and Mc = 0.7 and not when rising Mc further. The peak of the dissipation spectrum is rather
uninfluenced by compressibility.

3.4.4.4 Entrainment

Knowledge of the entrainment mechanisms and their changes with heat release and combustion is
particularly important for reacting flows since the amount of chemical product formed as a result
of mixing is limited by the amount of reactant species entrained into the layer [72]. A hint that the
entrainment of outside fluid is reduced by heat release is given by the fact that the mixing layer
growth rate decreases when heat release is present inspite of a possible increase by displacement
effects due to thermal expansion. Hermanson and Dimotakis [72] used different methods, e.g.
integral and geometrical formulae, to compute the entrainment into mixing layers with different
density reductions by heat release and confirmed this suggestion.

One feature concerning the entrainment that cannot be investigated with the present, temporally
evolving mixing layer configuration is the entrainment ratio, i.e. the average amount of fluid
entrained into a spatially evolving mixing layer from the high-speed side divided by the average
amount of fluid entrained from the low-speed side. Hermanson and Dimotakis [72] showed its
reduction with heat release, and Miller et al. [114] found it to be reduced further with compress-
ibility, which is in agreement with the results of Hall et al. [70] for the inert mixing layer. This
means that the overall stoichiometry of the mixing layer is affected by both, compressibility and
heat release, which can also have feedback effects on the heat release characteristics.

Measurement of volumes The distinction between the mixing layer and its surroundings as
well as between the mixed volume and the engulfed volume within the mixing layer is made
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here again with the help of vorticity and scalar thresholds. The determination of the different
volumes (mixing layer, mixed and engulfed volume) is the same as described previously for the
inert mixing layers (cf. Sect. 2.4.4.3). The threshold values used for the reacting mixing layer
do not differ from those used for the inert test cases: z = 0.05 and 0.95 for the scalar (here the
mixture fraction) and ω = 0.1〈ωmax〉 for the vorticity.

Figures 3.109 and 3.110 show the mixing layer volume and the engulfed volume for the reacting
flow cases through a part of the self-similar state. To facilitate comparison with the corresponding
figures for the inert mixing layers (Figs. 2.161 and 2.162) only part of the self-similar state is
shown. However, the growth of mixing layer and engulfed volume that is visible during the
time period shown continues throughout the self-similar state, and the growth rates nearly remain
constant. The growth of the mixing layer decreases with increasing Mc, but the decrease, in
particular between Mc = 0.15 and Mc = 0.7, is not as pronounced as without combustion. In
total, the growth rates for the reacting mixing layers are smaller than for the inert ones, which is
most obvious for the test cases at Mc = 0.15 and which is in agreement with other authors who
found the entrainment being reduced with heat release [72].
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Figure 3.109: Based on vorticity thresholds: Mixing layer volume Vml (solid) and engulfed vol-
ume Ven (dashed) vs. the normalized time passed since the beginning of the self-similar state at
tB . Volumes are normalized with the mixing layer volume at the beginning of the self-similar
state, Vml,B, ∗: inf-0.15, �: inf-0.7, ◦: inf-1.1
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Figure 3.110: Based on mixture fraction thresholds: Mixing layer volume Vml (solid) and en-
gulfed volume Ven (dashed) vs. the normalized time passed since the beginning of the self-similar
state at tB . Volumes are normalized with the mixing layer volume at the beginning of the self-
similar state, Vml,B . Symbols as in Fig. 3.109
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The engulfed volume constitutes only a small part of the mixing layer: about 4 % for case inf-
0.15, 2.5 % for case inf-0.7 and 1.5 % for case inf-1.1, which is smaller than for the inert cases at
the same convective Mach number, a tendency which is in agreement with the results of Planché
& Reynolds [141].

A comparison between Fig. 3.109 and Fig. 3.110 shows that it is not of much importance for the
volumes and their growth rates whether mixture fraction thresholds are used instead of vorticity
thresholds.

Visual thickness Figure 3.111 shows the visual thicknesses δvis and thicknesses derived from
the mixing layer volume, δvol (cf. Sect. 2.4.4.3), for the reacting mixing layers. Even though a
reduction of the respective growth rates withMc can be observed it is not as strong as for the inert
mixing layers (Fig. 2.163), the growth of which is also faster. As explained in the corresponding
section about the visual thickness of the inert mixing layers, the distance between the curves of
the visual thickness and the ones of the thickness derived from the mixing layer volume is affected
by intermittency. As in inert mixing layers, the intermittency decreases with compressibility in
reacting ones, i.e. δvis and δvol in Fig. 3.111 become closer.

In Fig. 3.112, the mixture fraction thresholds are used to determine δvis and δvol which leads to
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Figure 3.111: Based on vorticity thresholds: Thickness computed from mixing layer volume δvol
(solid) and visual thickness δvis (dashed). Thicknesses are normalized by the visual thickness at
the beginning of the self-similar state, δvis,B. Symbols as in Fig. 3.109
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Figure 3.112: Based on mixture fraction thresholds: Thickness computed from mixing layer
volume δvol (solid) and visual thickness δvis (dashed). Thicknesses are normalized by the visual
thickness at the beginning of the self-similar state, δvis,B . Symbols as in Fig. 3.109
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a lower intermittency than when the vorticity thresholds are used (Fig. 3.111). Compared to the
inert mixing layers, the intermittency in Fig. 3.111 (reacting, thresholds based on vorticity) is
larger than the one in the corresponding Fig. 2.163 (inert, thresholds based on vorticity), but it
is slightly smaller in Fig. 3.112 (reacting, thresholds based on scalar) than in Fig. 2.164 (inert,
thresholds based on scalar).

Measurement of densities Figure 3.113 shows the densities of the mixing layers, the densities
of the engulfed volumes and the densities of the mixed volumes which are determined based on
the vorticity threshold. Due to the heat release, the mixing layer density is only 40 % of the
free-stream density. In contrast to the inert mixing layers (cf. Fig. 2.165), only little influence of
dissipative heating on the mixing layer density can be noticed, i.e. the curves at high Mc are close
to the one at Mc = 0.15. The density of the engulfed fluid is higher than the density of the mixing
layer, because it enters the mixing layer from the cold, outside region. However, the fact that its
density is also smaller than ρ0 shows that it has already been partially heated by conduction.

The density of the mixed volume is below the density of the mixing layer since the latter includes
the engulfed fluid. However, since the amount of engulfed fluid is small at all Mc (cf. previous

(t− tB) ·∆u/δω,0
120100806040200

0.8
0.75

0.7
0.65

0.6
0.55

0.5
0.45

0.4
0.35

0.3

Figure 3.113: Based on vorticity thresholds: Mixing layer density ρml/ρ0 (solid), density of the
engulfed volume, ρen/ρ0 (dashed), and density of the mixed volume, ρmix/ρ0 (dotted), vs. the
normalized time passed since the beginning of the self-similar state at tB . Symbols as in Fig.
3.109
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Figure 3.114: Based on mixture fraction thresholds: Mixing layer density ρml/ρ0 (solid), density
of the engulfed volume, ρen/ρ0 (dashed), and density of the mixed volume, ρmix/ρ0 (dotted), vs.
the normalized time passed since the beginning of the self-similar state at tB . Symbols as in Fig.
3.109
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sections), the difference between mixing layer density and density of the mixed volume is also
small. Using the mixture fraction definition for the thresholds, as done in Fig. 3.114, leads to
higher densities of the engulfed fluid. This behaviour has already been observed for the inert
mixing layers (cf. Fig. 2.166).

Particle statistics As for the inert mixing layers, paths of fluid particles were also computed
for the infinitely fast reacting ones. The procedure is exactly the same as described in the cor-
responding paragraph in Sect. 2.4.4.3. Numbers of particles and initial parameters are given in
Table 3.8. The particles are initially located at every 12th grid point in the x1- and x2-direction
and at every 8th grid point in the x3-direction, except for the simulation inf-1.1 where they are
initialized at every 12th grid point in all directions.

The growths of vorticity and concentration along pathlines are studied, and statistical quantities
are given in Table 3.9. The notations are the same as in the corresponding discussion about the
inert mixing layers. Since the mean values of the displacement between the crossings of lower
and upper thresholds (first and second lines in table 3.9) as well as those of the time between
the crossings of these thresholds (third and fourth lines) are small compared to the maxima, the
process of acquiring vorticity and concentration after the entering of the mixing layer occurs quite
fast and close to the mixing layer boundaries at all Mc. This can rather be described as nibbling
than as engulfment. The same has been noticed for the inert mixing layers and is in agreement
with the fact that the engulfed volume is small at allMc with and without heat release. The means
of the values in the last two lines of Table 3.9 are positive. Therefore, as for the inert mixing
layers, the acquisition of vorticity occurs faster than the one of scalar concentration. There are also
differences between the inert and reacting mixing layers. In particular, what the non-dimensional
times between the crossings of the lower and upper thresholds are concerned (third and fourth
lines of tables 2.7 and 3.9): A significant increase is noticed when heat release is present. On the
contrary, the average displacements between the threshold crossings (first and second lines) do not
change much compared to the displacements without heat release. The same tendencies, but with
an increase of the times to a smaller extent, were observed with increasing compressibility for the
inert mixing layers and can also be found with increasing Mc for the reacting ones. This means
that as heat release and compressibility increase, the particles, after having entered the mixing
layer, are convected longer right along its edges while acquiring vorticity and concentration.
Therefore, at higher convective Mach number, the range of Mach number magnitudes at the time
the upper threshold is crossed is much larger than for the quasi-incompressible mixing layer as
shown by the pdfs in Fig. 3.115.

Table 3.8: Particle parameters: NP particles are initialized at τω,PB. They are situated initially
between x3 = x3,P1 and x3,P2 and between x3 = x3,P3 and x3,P4

NP τω,PB x3,P1/δω,0 x3,P2/δω,0 x3,P3/δω,0 x3,P4/δω,0

inf-0.15 20480 190 -55.67 -24.14 22.55 54.07
inf-0.7 20480 295 -49.29 -17.76 16.56 48.09
inf-1.1 20480 228 -65.65 -18.16 17.36 64.85
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Table 3.9: Statistics of displacements and elapsed times for growth of vorticity and mixture frac-
tion along particle pathlines

Sample size Mean Max Min

inf-0.15 |x3,ωu − x3,ωl| /δvis (tl) 2229 0.0188 0.5410 0
|x3,zu − x3,zl| /δvis (tl) 859 0.0398 0.5766 0
(tωu − tωl) /tvis 2229 0.6437 9.6366 0
(tzu − tzl) /tvis 859 0.9912 11.5919 0
(tzl − tωl) /tvis 1646 0.9502 6.2618 -5.7861
(tzu − tωu) /tvis 853 1.2797 11.3474 -9.6366

inf-0.7 |x3,ωu − x3,ωl| /δvis (tl) 4288 0.0253 0.8277 0
|x3,zu − x3,zl| /δvis (tl) 2482 0.0513 0.8277 0
(tωu − tωl) /tvis 4288 1.1730 25.8824 0
(tzu − tzl) /tvis 2482 1.8754 26.5387 0
(tzl − tωl) /tvis 3721 1.1978 13.9185 -14.2523
(tzu − tωu) /tvis 2466 1.7592 26.5387 -22.5871

inf-1.1 |x3,ωu − x3,ωl| /δvis (tl) 6265 0.0224 0.5050 0
|x3,zu − x3,zl| /δvis (tl) 4134 0.0045 0.6849 0
(tωu − tωl) /tvis 6265 1.0353 34.9646 0
(tzu − tzl) /tvis 4134 1.6721 47.8477 0
(tzl − tωl) /tvis 5517 1.4929 18.1162 -20.5031
(tzu − tωu) /tvis 4131 2.1170 35.8840 -24.8244
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Figure 3.115: Pdfs of the local Mach number magnitude at the time when the particles are cross-
ing the upper vorticity threshold. Symbols as in Fig. 3.109

Fractal nature of the mixing layer interface The fractal dimensions of the mixing layer in-
terfaces, computed as described in the corresponding paragraph of Sect. 2.4.4.3, are given in
Table 3.10. In comparison with Table 2.8, a decrease of the fractal dimensions with heat release
is visible. The behaviour of the fractal dimensions with increasing Mc, i.e. a decrease between
Mc = 0.15 andMc = 0.7 followed by an increase betweenMc = 0.7 andMc = 1.1 is as observed
for the scalar isosurfaces of the inert shear layers.

Lower fractal dimensions with heat release (and also with increasing compressibility) are in
agreement with less intermittency and smoother vorticity and scalar fields as shown in Figs. 3.116
to 3.121. The increase in dominant length scale with heat release and compressibility is clearly
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Table 3.10: Fractal dimensions D of isosurfaces
ω = 0.2〈ω〉max ω = 0.1〈ω〉max z = 0.9 z = 0.95

inf-0.15 2.55 2.39 2.35 2.30
inf-0.7 2.50 2.33 2.28 2.20
inf-1.1 2.54 2.37 2.30 2.26

Figure 3.116: Case inf-0.15: Instantaneous iso-
surface of vorticity ω = 0.2〈ω〉max at τω = 573

Figure 3.117: Case inf-0.7: Instantaneous iso-
surface of vorticity ω = 0.2〈ω〉max at τω = 761

Figure 3.118: Case inf-1.1: Instantaneous iso-
surface of vorticity ω = 0.2〈ω〉max at τω = 803

Figure 3.119: Case inf-0.15: Instantaneous iso-
surface of mixture fraction z = 0.1 at τω = 573

Figure 3.120: Case inf-0.7: Instantaneous iso-
surface of mixture fraction z = 0.1 at τω = 761

Figure 3.121: Case inf-1.1: Instantaneous iso-
surface of mixture fraction z = 0.1 at τω = 803

visible from these figures and when comparing them with the corresponding ones for the inert
mixing layers, Figs. 2.169 to 2.174. Moreover, it can be stated that the scalar fields are in general
smoother, i.e. less intermittent than the vorticity fields, which leads to lower fractal dimensions
for the scalar in Table 3.10. This difference is related with the fact that the vorticity is calculated
from gradients.
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Figure 3.122: Temporal development of the maximum pressure gradient, normalized by
〈p〉av/δω,0, ∗: inf-0.15, �: inf-0.7, ◦: inf-1.1

3.4.5 Shocklets

In order to investigate the possible appearance of shocklets, the normalized maximum pressure
gradient is monitored. Its temporal development for the reacting mixing layers at all Mc is shown
in Fig. 3.122. An increase between Mc = 0.15 and Mc = 0.7 is clearly visible but less prominent
than for the inert mixing layers (cf. Fig. 2.177). Since no further increase of the normalized
pressure gradient between Mc = 0.7 and Mc = 1.1, eddy shocklets are less probable and, if
present weaker, for case inf-1.1 than for the case inert-1.1.

3.5 Summary and conclusions

The subject of this chapter has been DNS of turbulent, temporal evolving, infinitely fast reacting
mixing layers with heat release. The reaction, that has been taken into account, is a one-step,
infinitely fast reaction of oxygen and hydrogen which, together with simplifications concerning
molecular diffusion mechanisms, has allowed to link the mass fractions of the chemical species
with the mixture fraction, using the linear Burke-Schumann relations. Therefore, only the trans-
port equation of one scalar, namely the mixture fraction z, had to be solved, which contained no
source term. From the resulting distribution, the species mass fractions have been computed. No
additional transport equations for the mass fractions were needed. In order to retain realistic heat
conduction and a compressible formulation of the Navier-Stokes equations, an energy equation,
in the form of a pressure or temperature equation, has also been integrated in time.

The results obtained have been analyzed with a particular focus on the changes that have occurred
compared to the inert mixing layers in Chapter 2. Since the simulations have been performed at
three different convective Mach numbers, Mc = 0.15, 0.7 and 1.1, which have been the same as
in Chapter 2, compressibility effects could also be worked out and compared to those encountered
for the inert mixing layers. Contrarily to the inert mixing layers, no shocklets have been found in
the reacting mixing layers at any of the convective Mach numbers under investigation.

All simulations have reached a self-similar state with constant growth rates of momentum thick-
ness and product mass thickness. In comparison to the inert mixing layers, the momentum thick-
ness growth rates are lower for the reacting mixing layers. As for the inert mixing layers a further
decrease with increasing Mach number has been noticed. However, the effects of compressibility
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on the momentum thickness growth rate and on most other statistical quantities are not as strong
as for the inert mixing layers, and they are often masked by the much stronger consequences of
heat release. It was also observed that heat release has stronger influences at lower than at higher
Mc, which is directly visible when regarding the non-dimensionalized heat release terms in the
pressure and temperature equations. These terms become very small at the highest convective
Mach number under investigation.

The effect of heat release on instantaneous scalar (mixture fraction) fields and isosurfaces is sim-
ilar to the effect of compressibility that has been noticed in Chapter 2: When heat release is
present, the fields are smoother and dominant length scales, which are for example visible from
structures at the boundaries of the mixing layers, are larger than for the inert simulations. A cor-
roboration of these observations has been given by the computation of the fractal dimensions of
the scalar and vorticity isosurfaces, separating the mixing layer from its non-turbulent surround-
ings: The dimensions decrease when heat release is present, which is equivalent to the surface
becoming smoother.

The temporally and spatially averaged profile shows the strong decrease of the mean density as
a consequence of the high temperatures around the flame surface. In general, most profiles of
statistical quantities are - in particular at Mc = 0.15 - broader for the reacting mixing layers
than for the inert ones, which is a consequence of thermal expansion. When using a constant
reference density, ρ0, for non-dimensionalization, a significant decrease of the Reynolds stresses
and the turbulent kinetic energy (TKE) is visible. Comparisons with another normalization using
the mean density, 〈ρ〉, have shown that the decrease is mainly a consequence of the drop in mean
density and therefore a so-called ’mean density effect’. However, in particular at high Mc, mean
density effects are not the only ones responsible for the changes occuring in the presence of heat
release: Changes of the fluctuating velocity field itself and its correlation with the massflux field
have also been shown to play a role.

When using the normalization with ρ0, the most important terms in the Reynolds stress and TKE
transport equations decrease in the presence of heat release. Even though the pressure-dilatations
in the latter equation are one order of magnitude larger than for the inert mixing layers, they are
still negligible compared to other terms, and the pressure-strain correlation tensor is consequently
nearly trace-free. The pressure-strain correlation in the streamwise Reynolds stress equation, Π11,
has been shown to be responsible for the decrease in the momentum thickness growth rate with
heat release. Since it is also a decrease in Π11 that leads to the reduction of the momentum thick-
ness growth rate by compressibility, this effect once more demonstrates how important a proper
capturing and modeling of this key quantity and of the remaining pressure-strain correlations in
general is. The decrease of the pressure-strain correlations by heat release has been shown to be
due to a decrease in pressure fluctuations. Density and temperature fluctuations (normalized by
their mean values), on the contrary, increase in comparison with the inert mixing layers. They are
strongly correlated with each other and are shown to be mostly of entropic and not of acoustic
nature. This is further confirmed by a low correlation coefficient between pressure and density
fluctuations.

Since the pressure fluctuations are shown to be responsible for the reduction of pressure corre-
lations, like the pressure-strain correlations, by heat release, an equation for these fluctuations,
has been derived. When neglecting acoustic effects, this equation takes the form of a Poisson
equation, similar to the corresponding equation for the inert mixing layers. However, for reacting
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flow, the Poisson equation includes one additional term reflecting heat release effects. By solving
the Poisson equation with the help of a Green function, the influence of this heat release term has
been shown to be small. The terms which provide the largest contributions to the pressure fluctu-
ations, are the same as for inert mixing layers, namely two terms containing the mean density as a
factor. However, the amplitudes of these terms and of the pressure-strain correlations as a whole
decrease when heat release is present. By evaluating modified pressure-strain correlations with a
constant density, ρ0, instead of the mean density, it could be demonstrated, in particular for low
Mc, that the decrease of Πij is mainly due to the drop in mean density and is therefore called a
’mean density effect’.

Further emphasis of the chapter has been on scalar mixing and on entrainment. In agreement
with the observations from the instantaneous scalar (mixture fraction) fields, the scalar variance
is smaller with heat release than without. Contrarily to the inert mixing layer at Mc = 0.15, no
double hump in the scalar variance caused by engulfment is shown by the corresponding profile
for the reacting mixing layers. This is already indicative of the fact that engulfment events, which
have already been observed to be rather rare for the inert mixing layers, loose further importance
in reacting flow. Confirmation of this suggestion has been given by a direct investigation of the
engulfed fluid volume. Since less engulfed fluid, i.e. fluid that is situated within the mixing
layer but has scalar concentrations or low vorticity values that are typical of free stream fluid, are
found within the reacting mixing layers, the degree of intermittency is reduced compared to the
inert mixing layers. This is in agreement with the behaviour of pdfs of the mixture fraction taken
at different transverse locations: Their marching behaviour is more pronounced for the reacting
mixing layers, and pdfs with bi-modal peaks can only be found at the very edges of these mixing
layers.

Further studies of entrainment, i.e. the way the mixing layers acquire free stream fluid, have been
made by investigating the pathlines of fluid particles, which have initially been situated outside
the mixing layers but have become part of them in the course of the simulations. It has been
shown that changes in their vorticity and scalar values to values away from values typical for
free stream fluid occur very close to the mixing layer edges. This has already been observed for
mixing layers without heat release. However, in contrast to the particles in these mixing layers,
the changes for the fluid particles of the reacting mixing layers take place after a longer time, i.e.
the fluid particles are carried along for a longer time at the edges of the mixing layer before they
become part of it.

To sum up the investigations of the reacting mixing layers, it can be said that heat release is
not beneficial for mixing. On the contrary, due to its damping effect, it reduces the turbulent
fluctuations and hampers the acquisition of outside fluid, i.e. the entrainment and the growth of the
mixing layers. Since the amount of entrained fluid determines how much product is generated by
the chemical reaction, an isothermal reaction is consequently more efficient in product formation
than an exothermal reaction. However, when heat release is present, the detrimental consequences
of a further increase in Mc for the mixing process are not as pronounced as without heat release.



4 LES of inert and infinitely fast reacting
mixing layers

4.1 Introduction and literature survey

The LES method used in this work is a particular version of the Approximate Deconvolution
Method (ADM) [1, 175]. This method aims at reconstructing turbulent flow fields from filtered
fields as they are obtained when performing an LES on a coarse grid. Subgrid terms are no
longer modeled, but reconstructed using an ad-hoc mathematical procedure [46]. The presently
used version of the ADM consists in solving the Navier-Stokes equations (A.22) on a coarse grid
and explicitly filtering the solution afterwards in order to account for an energy transfer between
resolved and unresolved scales. For brevity we use the initials EFM (Explicit Filtering Method)
to denote the method in this thesis.

According to Sagaut [154], ADM and consequently also EFM belong to the family of struc-
tural LES models which are independent of any prior knowledge of the nature of the interac-
tions between the subgrid and the resolved scales. Within this family, there are several groups
of models: First, models derived by formal series expansions for which even no prior knowl-
edge of flow physics is required. Besides the deconvolution procedures, non-linear models and
homogenization-technique-based models also belong to this group. Other structural models are
e.g. scale similarity models and mixed models. Explanations of and examples for all these kinds
of LES models can be found in [154].

Actually, the idea of filtering, as done explicitly here, is part of any LES as the numerical approx-
imation of a derivative always implies a filtering: Finite difference formulae are equivalent to
exact differentiation followed by a filtering which falls off smoothly at high wavenumbers. Spec-
tral differentiation implies a sharp cut-off filter. However, the method presented here involves an
additional explicit filter and avoids implicit filtering of a numerical scheme over a broad range of
resolved scales, by using highly accurate compact finite differences. ADM and EFM are espe-
cially suitable for compressible flows which contain several nonlinear terms. Finding physical or
heuristical models for all LES subgrid terms is a difficult task which can be avoided when using
ADM or EFM. Here, a mathematically consistent approximation of unresolved terms is used,
which applies to any type of nonlinearity unlike other models.

ADM has been used for various types of inert flows: decaying, compressible isotropic turbulence
[175], incompressible channel flow [176] and a compression ramp flow [177]. A comprehensive
discussion of the method can be found in [2]. So far, EFM has been applied to a compressible
channel flow with a passive scalar [106, 107]. In the present work, it is used for the first time
to predict flows with different chemical species, namely inert and reacting, temporally evolving,
compressible, turbulent shear layers.
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Even though LES of combustion is not much older than a decade, much progress in this field has
already been made, and it has started to become a tool for the investigation of real combustion
devices [42, 90, 103, 116]. Janicka & Sadiki [82] as well as Pitsch [135] recently gave overviews
over ongoing work on modeling approaches for combustion LES. However, many questions still
remain to be addressed and improvements of currently used models need to be made to realize
the full potential of LES with combustion and to meet future demands. The most striking ad-
vantage of combustion LES compared with RANS is that large-scale, time-dependant motions
are resolved, and the modeling is confined to just the smallest scales. Since the large-scale mo-
tions contain most of the turbulent kinetic energy and control the dynamic of the flow, it can be
expected that predictions by LES are more ’accurate’ than those by RANS. Resolution of the
spatial-temporal evolution and not just the mean values makes it possible to capture and inves-
tigate unsteady phenomena such as flashback, blow-off [171, 178] and combustion instabilities
[3, 169, 185].

However, while turbulent mixing increases the scalar variance, it is the molecular diffusion that
forms a mixture which enables chemical reactions to take place. Molecular mixing and chemical
reactions occur essentially on the smallest turbulent scales which are entirely unresolved in both,
RANS and LES. Therefore, as in RANS, the chemical source terms in LES need to be modeled
completely, and LES combustion models are similar to and often derived from corresponding
RANS models. The latter are discussed and reviewed for example by [94, 128, 129, 143, 181].
If combustion is controlled by mixing, it is in particular one quantity, the scalar dissipation rate,
which quantifies and steers molecular mixing and combustion. High values of the scalar dissi-
pation rate can have important consequences such as local or global flame extinction. Mixing
controlled combustion is typical for non-premixed systems with relatively fast combustion. The
mixing layers with hydrogen chemistry that are dealt with in this work belong to this class. In
the case of infinitely fast, non-premixed combustion, the turbulent reaction rate is even directly
proportional to the scalar dissipation rate [8]. Like the chemical source term, the scalar dissipa-
tion rate is a small-scale quantity. Nevertheless, even though only the resolved fluctuations of the
filtered scalar dissipation rate can be taken into account in an LES, the results promise to be more
accurate than those obtained by simple use of the Reynolds-averaged dissipation rate [134].

In the following, a short overview over the most common LES combustion models for non-
premixed combustion and a classification of the ones used in this work is given.

The main role of an LES combustion model is to account for the effect of subgrid fluctuations
of species and temperature on the filtered chemical source term. Since the direct closure of this
term is hardly possible due to its non-linearity, the so-called conserved scalar models, a large
group among combustion models, avoid the direct closure entirely. Moreover, the conserved
scalar models have the desirable property to reduce the number of thermo-chemical variables.
For non-premixed combustion, the conserved scalar is the mixture fraction (cf. Sect. 3.2.1).
Under certain conditions (fast reaction etc.) the species mass fractions and the temperature are
directly related to it. However, in contrast to DNS using the mixture fraction (see Chapter 3), the
effect of subgrid-scale (SGS) turbulence must be accounted for, which is predominantly achieved
by integration of filtered density functions (see below).

The most simple conserved scalar models assume the species mass fractions to be functions of
the mixture fraction alone, which is essentially the case for an infinitely-fast, irreversible, global
reaction [85, 130] or equilibrium chemistry [17, 31, 59], both with simplified diffusion. The
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assumption, however, that mixing is equivalent to burning is not always correct, and finite rate
chemistry effects have to be taken into account to obtain more precise combustion models. This is
for example the case when the strain rate becomes large. Then, the key chemical reactions cannot
keep up with the large mixing rate and local or global extinction occurs.

Within the framework of the conserved scalar methods there are several possibilities to account
for finite-rate chemistry effects: Frankel et al. [62] treated non-equilibrium chemistry (single-
step reaction) by employing a joint beta-pdf distribution (see below) for the fuel and oxidizer.
The difficulty with this concept, however, was its dependency on the SGS species covariance that
had to be assumed somehow. Other methods of treating finite-rate chemistry are the Conditional
Moment Closure (CMC, see below) and flamelet approximations. In the framework of the latter,
it is assumed that the chemical timescales are short enough so that the reactions occur in a thin,
one-dimensional layer around the stoichiometric mixture fraction. This layer is smaller than
the smallest scales of the turbulence. Such an assumption is equivalent to a large Damköhler
number (ratio of flow to chemical time scales). As argued by Peters [128], the reaction zone
then has as a laminar structure, and the diffusive transport is predominantly normal to the surface
of the stoichiometric mixture fraction. Under these assumptions, the scalar transport equations
can be transformed into mixture fraction space. A subsequent asymptotic approximation leads
to the so-called flamelet equations (see also Chapter 5) [128, 129] describing the flamelets as
diffusive-reactive layers around the reaction zone that are embedded in an otherwise non-reacting
turbulent flow. Assuming the flamelets to be in steady state, leads to the steady flamelet models,
which result in the species mass fractions being functions of the mixture fraction and one further
parameter only, which is often the scalar dissipation rate. As a consequence, the chemical kinetics
are decoupled from the flow field. For given boundary conditions, the flamelets can be pre-
computed and tabulated in a flamelet library, which is accessed during the actual RANS or LES
simulation. The dependence of the flamelets on mixture fraction and scalar dissipation rate makes
it clear why conserved scalar models with infinitely-fast chemistry are also sometimes classified
as flamelet models: They form the limit of the flamelet domain for a one-step global reaction with
infinitely high Damköhler number [100]. Within the actual flamelet models, departures from this
limit are described by the scalar dissipation rate.

When using conserved scalar methods with or without infinitely fast chemistry, Reynolds aver-
aged or filtered quantities (mass fractions and sometimes temperature) are obtained with the help
of pdfs or fdfs (filtered density functions). The latter were introduced for the first time by Pope
[144] and are also known under the name large-eddy probability density functions (LEPDF) [65].

Most often fdfs are assumed to have a certain shape, for example a beta-function for the mixture
fraction fdf. This assumption benefits from the fact that errors in assumed pdfs are greatly reduced
upon integration [9, 101]. Various examples for the use of a beta-fdf can be found: A priori
tests were performed for isotropic turbulence with equilibrium chemistry and no heat release
[31], isotropic turbulence with a flamelet model and no heat release [33], isotropic turbulence
with a flamelet model and heat release [32], a shear layer with infinitely fast chemistry and no
heat release [85] and a round jet with finite-rate chemistry and heat release [184]. Examples for
actual LES (a posteriori studies) are the simulations of incompressible, isotropic turbulence [37],
a turbulent hydrogen jet diffusion flame [59], a turbulent round jet of methane-air with a pilot
flame [139], a turbulent round jet of nonpremixed hydrogen-air [17], an incompressible mixing
layer [39] and a non-premixed bluff-body flame [87].
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Since the beta-function depends on two moments, the filtered mixture fraction value, z̃, and its
SGS variance, (z2)sg, have to be computed as part of the LES. The first quantity, z̃ is readily
available as a solution of the corresponding transport equation. The SGS scalar variance, (z2)sg =

z̃2 − z̃2, however, has to be modeled. This is a crucial step since the above cited a priori and a
posteriori investigations have revealed that the beta-pdf gives good predictions only if the SGS
scalar variance is predicted very well or available from DNS. Here and in the following, •̃ denotes
a mass-weighted low-pass filtered quantity and • a low-pass filtered quantity. There are various
possibilities to model (z2)sg: First, it can be obtained from a transport equation as done in [166,
84]. One difficulty in this context is to find a reasonable initialization. Second, (z2)sg, can be
computed with a gradient model based on small-scale equilibrium assumptions [17], possibly
with a dynamically determined coefficient [130]. Furthermore, the SGS scalar variance can be
estimated with the help of a scale-similarity assumption which was proposed by [31] and further
investigated and applied by [37, 39, 41, 85, 149]. The necessary coefficient can be computed
by using an assumed scalar spectrum [30]. Other possibilities to obtain (z2)sg are via the Linear
Eddy Model (see below) or via the Approximate Reconstruction using Moments (ARM) method
[111]. The latter model also provides an entire alternative to the computation of filtered non-
linear functions by integration with fdfs [111, 122]. To obtain them, the ARM uses information
from the filtered field itself and from spectra, assumed or known from DNS or experiments.

Beside the SGS variance of the scalar, most flamelet approaches in LES require the knowledge of
the filtered scalar dissipation rate, χ̃. The advantage in modeling this quantity in an LES is that
(reasoning with the help of the energy cascade) it is in principle established by the large-scale
motions that are resolved in an LES even though it is a small-scale quantity. Most models for
χ̃ are based on the eddy viscosity approach proposed by Girimaji & Zhou [69]. Variants with
dynamically determined coefficients can be found for example in [37, 130].

The quasi-steady flamelet model, which is employed by most studies cited so far, has proven to be
inaccurate if slow chemistry or physical processes like the formation of pollutants (NO formation)
and radiative heat transfer have to be taken into account [136]. Improvements can be achieved
by the use of unsteady flamelet models like the Lagrangian flamelet model as in [136, 133, 139,
140]. Easier to apply, and considering also scalar dissipation rate fluctuations, is the Eulerian
flamelet model [134]. An alternative to the unsteady flamelet models, which is also able to capture
phenomena like local extinction, re-ignition and flame lift-off, is given by the flamelet progress
variable (FPV) by Pierce & Moin [131, 132]. Here, instead of the scalar dissipation rate, a reaction
progress variable serves to parameterize the steady state flamelet library. However, further a priori
tests [76, 174] have revealed that the critical point within the concept is the modeling of the fdf
of the reaction progress variable. The model was further improved by Ihme & Pitsch [77], and an
extension to unsteady flamelets was made in [137]

As already mentioned, the Conditional Moment Closure (CMC) is another method within the
framework of the conserved scalar concept, that allows to capture finite-rate chemistry effects.
It has been proposed by Klimenko [92] and Bilger [10] for RANS and used in an LES by Kim
& Pitsch [91]. A variant of it, the conditional source estimation, has been proposed by Bushe &
Steiner [23]. The CMC is based upon averaging of the transport equations conditioned on some
variable that the chemical source term is known to depend on, for example the mixture fraction
in non-premixed combustion. Certain terms within these equations require closure which ben-
efits from the experimental observation that conditioned statistics based on the mixture fraction
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exhibit significantly less turbulent fluctuations than their unconditional counterparts [100]. Un-
conditional quantities are obtained from the conditional filtered variables by using a presumed
fdf approach. Investigations about similarities and differences with the flamelet concept can be
found in [129, 93].

Other categories of combustion models, besides the conserved scalar models, are direct models
of the filtered source term, models related to the Linear Eddy Model (LEM) and transported pdf
or fdf models.

Direct models of the filtered source term based on scale similarity assumptions were tested in
[41] which imply the smallest resolved scales to be statistically similar to the largest unresolved
scales. However, the chemical reactions take place in the very small dissipative scales rather than
in the largest unresolved ones. Therefore, it is questionable whether scale similarity models are
able to capture them sufficiently.

The LEM, proposed by Kerstein [88] and formulated for LES by McMurtry et al. [110] considers
scalar fields to be comprised of many one-dimensional structures, the so-called linear eddies,
which are convected by the turbulent velocity field. Within such a structure all relevant length
scales are resolved by performing a kind of one-dimensional DNS and solving the species and
temperature diffusion equations. While molecular transport as well as combustion are taken into
account in this DNS, the convective transport of the linear eddies is modeled by a stochastic
rearrangement of adjacent linear eddies based on the resolved velocity field (splicing events).
Applications to diffusion flames can be found in [24] and to a gas turbine combustor flow in [90].
One major difficulty within the LES lies in the fact that the simulation of the subgrid stirring
process is particularly expensive for 3D simulations with many grid points.

Like the CMC and the LEM, the so-called transported pdf (fdf) models are not only applicable
to non-premixed, but also to premixed combustion. The principle to solve transport equations for
pdfs was first established for RANS [26, 143, 165, 190] and later extended to LES [29, 65, 80,
144, 150, 168]. Advantages of this concept are the wide variety of possible shapes of the pdfs and
the closed form of the chemical source term within the transport equations. However, turbulent
diffusion and mixing require modeling, and computationally expensive Monte-Carlo simulation
techniques are most often used in the implementation of pdf methods.

The combustion models used within the present work fall entirely in the category of the conserved
scalar methods. However, even though the recent overview has shown that such methods are
widely used, some particularities and novelties are presented. Above all, the EFM is for the first
time combined with different combustion models taking into account heat release effects. The
combustion models differ in accuracy: First, the filtered chemical source term is modeled under
the assumption of a one-step, irreversible, infinitely fast chemical reaction. This simplification
allows to concentrate on the effect of heat release on the EFM and to compare the results directly
with corresponding DNS data (Chapters 2 and 3). Later on, a more advanced flamelet model is
used to take into account finite-rate chemistry and also detailed diffusion effects. This is described
and analyzed in Chapter 5.

The present chapter is organized as follows: In Section 4.2, the LES method is described: First,
ADM and EFM are explained and the close relation between them is pointed out (Sect. 4.2.1).
Details about filters applied in the simulations are also provided (Sect. 4.2.2). Then, the transport
equations, that are integrated and filtered, are given for the inert as well as the reacting LES (Sect.
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4.2.3), and the modeling of the heat release term is described in detail (Sect. 4.2.4). The main
part of the chapter, Sect. 4.4, concerns the LES results and their comparison with DNS data from
Chapters 2 and 3. It is divided into two parts, the inert mixing layers (Sect. 4.4.1) and the reacting
ones (Sect. 4.4.2). Instantaneous fields as well as spatially averaged profiles and spectra are taken
into account. Finally, a summary of the results is given and conclusions are drawn (Sect. 4.5).

4.2 Description of the LES method

4.2.1 Implicit Modeling Approach

The Approximate Deconvolution Method (ADM), first presented in [175], aims at reconstructing
turbulent flow fields from low-pass filtered ones in order to close the LES equations. Subgrid-
scale effects are no longer modeled explicitly, but treated by an ad-hoc mathematical procedure
[46]. The slightly modified version of ADM [175], which is used in the present LES, is based
on the observation that spatial low-pass filtering and deconvolution steps can be combined into
a single filtering step [106]. The relation between the presently used explicit filtering method
and ADM is explained in the following with the help of a simple example: A one-dimensional
transport equation of a flow variable u has the form

∂u

∂t
+
∂f (u)

∂x
= 0 (4.1)

with a nonlinear function f (u). The application of a low-pass filter G to this equation results in

∂u

∂t
+G ∗ ∂f (u)

∂x
= 0. (4.2)

As any LES implies such a kind of filtering, Eq. (4.2) can be regarded as a generic LES equation.
The filtered flow field u is then the low-wavenumber LES solution. u is a continuous function of
the independent variables x (space) and t (time) and is defined by the convolution integral

u = G ∗ u =

∫
G (x− x′,∆)u (x′) dx′, (4.3)

where G (x− x′,∆) is the low-pass filter kernel with the filter width ∆. Equation (4.2) can be
re-arranged in a way that there are only known, namely filtered quantities on the LHS:

∂u

∂t
+
∂f (u)

∂x
=
∂f (u)

∂x
−G ∗ ∂f (u)

∂x︸ ︷︷ ︸
U

(4.4)

On the RHS, there is the unknown remainder U . Most ’classical’ approaches model this term with
the help of the known filtered flow field u, so that U is replaced by Um (u), a model of U . ADM
as presented in [175] computes U by replacing the original field u by a suitable approximation
u∗, viz:

U =
∂f (u)

∂x
−G ∗ ∂f (u∗)

∂x
. (4.5)

Substituting Eq. (4.5) into Eq. (4.4), one obtains

∂u

∂t
+G ∗ ∂f (u∗)

∂x
= 0 (4.6)
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or

G ∗
[
∂u∗

∂t
+
∂f (u∗)

∂x

]
= G ∗ ∂u

∗

∂t
− ∂u

∂t
. (4.7)

The relationG∗u∗ ≈ G∗u is expected to hold for a broad range of the resolved scales. Therefore,
the RHS of Eq. (4.7) may be set to zero:

G ∗
[
∂u∗

∂t
+
∂f (u∗)

∂x

]
= 0 (4.8)

Now, u∗ cannot be more than an approximation to u because the filtering operation has a cut-off,
and u∗ has to be projected onto a coarse grid on which not all scales of u can be resolved (or
represented). From a numerical point of view, Eq. (4.8) can be solved by an integration step
followed by a filtering step. The main final task, and that is the essence of ADM [175], is to
reconstruct u∗ from the filtered field u. To this end, a filter Q is used, which is the approximate
inverse of G:

Q ≈ G−1. (4.9)

The deconvolution (reconstruction) step is then

u∗ = Q ∗ u ≈ G−1 ∗ u. (4.10)

In summary, ADM consists in principle of the following steps which constitute an implicit ap-
proach as defined by Eq. (4.8):

• Deconvolution: u∗(n) = Q ∗ u(n)

• Integration: u∗(n+1) = u∗(n) + ∆t · ∂u∗
∂t

+O (∆t)2

• Filtering: u(n+1) = G ∗ u∗(n+1)

The simple time-integration step is just used for demonstration and not typical of ADM. The
fact that the above ’ADM-steps’ are executed sequentially, led to the idea to execute filtering and
deconvolution steps together as a single filtering step, Q ∗ G ∗ u∗(n+1), which removes the high
wavenumber content. This was proposed by Mathew et al. [106].

4.2.2 Applied filters

A suitable choice of filters for G which are based on five points was proposed by Lele [99]:

βuj−2+αuj−1+ûj+αuj+1+βuj+2 = auj+
b

2
(uj−1 + uj+1)+

c

2
(uj−2 + uj+2)+

d

2
(uj−3 + uj+3)

(4.11)
Here, uj and uj are values on an equispaced grid. If considering periodic functions, convolution
u = G ∗ u in Fourier space is equivalent to the product of the corresponding Fourier coefficients,
û (ξ) = Ĝ (ξ) û (ξ). The filter response function is then obtained by substituting Fourier series
for u and u into Eq. (4.11):

Ĝ (ξ) =
û (ξ)

û (ξ)
=
a + b cos ξ + c cos 2ξ + d cos 3ξ

1 + 2α cos ξ + 2β cos 2ξ
(4.12)
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ξ (k) = 2πk/M (k = 0, ±1, ..., ±M) are scaled wavenumbers represented on the grid of
M intervals per period. There are six coefficients (a, b, c, d, α and β) which must be specified
for the filter. If considering the essential requirements, Ĝ (0) = 1 and Ĝ (π) = 0, sixth-order
accuracy as well as the additional constraint d2Ĝ/dξ2 (π) = 0, a one-parameter family

β =
3− 2α

10
, a =

2 + 3α

4
, b =

6 + 7α

8
, c =

6 + α

20
, d =

2− 3α

40
(4.13)

is obtained [99]. The parameter α controls the filter cut-off. Larger values move the cut-off closer
to the high wavenumber end and imply less filtering.

Following Adams & Leonard [1], the fact that 0 < |Ĝ (ξ) | < 1 allows to write its inverse as a
von Cittert series [99]

Q̂ (ξ) =
∞∑

m=0

(
1− Ĝ (ξ)

)m
, (4.14)

which converges everywhere, except at ξ = π. It is sufficient to take into account N terms of this
series to obtain an excellent inverse over a broad range of wavenumbers. This range increases
with N . In former applications [106], N = 6 has been proven a value that gives a sufficiently
accurate approximation of Q̂. Figure 4.1 shows the filter response functions Ĝ (ξ), Q̂N (ξ) and
Ĝ2 = Q̂NĜ for N = 6 and α = 0.5. The filter Ĝ2 is a perfect low-pass filter for ξ < 0.6π and
then falls off smoothly. With α = 0.5, the cut-off is chosen to be in the undistorted range where
the numerical scheme is exact. This behaviour is required for the deconvolution operator in order
to guarantee that u∗ ≈ u for most of the resolved wavenumbers. Therefore, in the present study
α = 0.5 and N = 6 are chosen.

A regularization term introduced in [1] and subsequent studies, improves the energy transfer from
the resolved to the unresolved fluctuating scales and ensures that errors, which would magnify
during the LES, are damped. In [106] and here, this part is taken over by a second filtering step:
It is not the filter Q∗G that is used, but (Q ∗G)2, the response function of which is also shown in
Fig. 4.1. For periodic directions, this composite filter response function is determined at the start
of the computation and the filtering in Fourier space is done after each time integration step by
multiplication with the two-dimensional Fourier transform of the primary variable fields. Since
the computational costs of Fast Fourier Transformations (FFTs) are of the order O (M lnM) for
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M modes, this is an inexpensive operation, equivalent to the cost of a single derivative calcula-
tion. For the non-periodic direction, which is the direction of the shear in this work, the filter
recommended by Stolz et al. [176] (see their Appendices A 1 and A 2) is used.

4.2.3 Filtered equations

LES of inert mixing layers uses the same equations as DNS, namely the Navier-Stokes equations
written in a characteristic pressure-velocity-entropy formulation (see Appendix A). The only
difference between both techniques is the filtering that is performed after each time integration
step.

The equations that are integrated and filtered during LES of infinitely fast reacting mixing layers
are in principle also the same transport equations as computed in the DNS, Eqs. (3.14). However,
σα from Eq. (A.34) is inserted with diffusion fluxes being simplified to

ρYαVαi = − µ

Sc

∂z

∂xi

dYα
dz

. (4.15)

Neglecting the Dufour effect in the heat flux vector, the transport equations for LES with infinitely
fast chemistry (written without the filtering for clarity) become:

∂p

∂t
=− ui

∂p

∂xi
− pγ ∂ui

∂xi
+ ργRT

∑

α

1

Mα

Dz

Dt

dYα
dz

+ (γ − 1)

[
φ+

∂

∂xi

(
λ
∂T

∂xi

)
+

µ

Sc

∂z

∂xi

∑

α

dYα
dz

∂hα
∂xi
−
∑

α

hαωα

]

∂uj
∂t

=− ui
∂uj
∂xi
− 1

ρ

(
∂p

∂xj
− ∂τij
∂xi

)

∂T

∂t
=− ui

∂T

∂xi
+

1

ρcp

[
φ+

∂

∂xi

(
λ
∂T

∂xi

)
+

µ

Sc

∂z

∂xi

∑

α

dYα
dz

∂hα
∂xi

+
Dp

Dt
−
∑

α

hαωα

]

∂z

∂t
=− ui

∂z

∂xi
+

1

ρSc

∂

∂xi

(
µ
∂z

∂xi

)

(4.16)

where ωα denotes the chemical production rate of species α.

4.2.4 Modeling of the filtered heat release term

The explicit filtering with (Q ∗G)2 accounts for the quadratic nonlinearities arising from the
convection terms of Eqs. (4.16). Assuming subgrid contributions to the other terms, e.g. to the
heat flux vector and to the pressure dilatation, to be small, there is just one important term in the
pressure and temperature equations that requires additional modeling. This term is the filtered
heat release term:

ω = −
∑

α

hαωα ≈ −
∑

α

h0
αωα (4.17)

with

h0
α = hα −

∫ T

T 0

cpα (τ) dτ. (4.18)
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The last part of Eq. (4.17) would be exact if assuming equal specific heat capacities among the
species. The subgrid contribution to the pre-factors of the heat release term in the pressure and
temperature equations is neglected in the present work.

In order to bring the filtered heat release term in a form which is appropriate for modeling, the
definition of the heat release term is needed:

q0 = −
∑

α

h0
αWα (ν ′′α − ν ′α) (4.19)

with the stoichiometric coefficients ν ′α and ν ′′α of reactants and products, respectively. For a global
reaction, the heat release per unit volume and unit time is then

−
∑

α

h0
αωα = q0ωG (4.20)

with the reaction rate of the global step

ωG =
ωα

Wα (ν ′′α − ν ′α)
(4.21)

being the same for all species. If the species mass fractions are functions of the mixture fraction
only, Yα = Yα (z), the species and mixture fraction transport equations allow us to write [128]

ωα = −χd
2Yα
dz2

(4.22)

with the scalar dissipation rate χ = −εz = ρD (∂z/∂xi)
2 and thus,

ωG = −χ 1

Wα (ν ′′α − ν ′α)

d2Yα
dz2

. (4.23)

Choosing for example the fuel as species α, the expression

ωG =
YF,f

WfνF (1− zs)
χδ (z − zs) (4.24)

is obtained for the Burke-Schumann case. The filtered source term (4.17) is therefore

ω = 2Qeχ̃sF̃z (zs) (4.25)

with the heat release parameter

Qe =
q0YF,f

2WFνF (1− zs)
. (4.26)

χ̃s = χ̃z (zs) is the conditionally filtered scalar dissipation rate

χ̃z (z′) =

∫ ∞

0

χ′F̃χ|z ( χ′ |z = z′) dχ′ (4.27)

at the stoichiometric mixture fraction value, z = zs. The tilde denotes a mass-weighted filtering
and F̃z the filtered density function (fdf) of the mixture fraction. In other words, χ̃s is the average
of ρχ on the portion of the filter volume for which z (x, t) = zs divided by the average of ρ on
the same portion.

In Eq. (4.25), the conditionally filtered scalar dissipation rate at the stoichiometric value, χ̃s, and
the fdf at the stoichiometric value, F̃ (zs), are unknown and have to be modeled. Equation (4.25)
emphasizes the particular role of the scalar dissipation rate which characterizes the molecular
mixing: In the case of infinitely fast, irreversible combustion, the source term is proportional to
it. Therefore, its exact modeling is crucial for realistic LES.
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4.2.4.1 The filtered density function

The fdf of the mixture fraction is modeled by a beta-function,

F̃m
z (z) = β =

za−1 (1− z)b−1

B (a, b)
, (4.28)

with B (a, b) = Γ (a) Γ (b) /Γ (a + b) and a/z̃ = b/ (1− z̃) = z̃ (1− z̃) / (z2)sg − 1. Γ (z) is
the gamma function. The beta-function can assume a wide variety of shapes like double-deltas
and Gaussian distributions. Such shapes of scalar pdfs have also been observed in experiments
and simulations of scalar mixing and chemical reactions [100]. One reason why the use of the
beta-function is particularly suited for LES is that intermittency, which is a main source of error
when using it as a probability density function (pdf) in RANS, occurs mostly on the resolved
scales [135] and the subgrid modeling does not have to account for it.

In the present LES, the filtered mixture fraction z̃ that is needed in evaluating Eq. (4.28) is known
from solving the transport equation for z on the coarse grid followed by the explicit filtering.
However for the subgrid variance of the mixture fraction,

(
z2
)
sg

= z̃2 − z̃2, (4.29)

a model is needed. Here, a gradient model (GR) for (z2)sg is used:

(
z2
)GR
sg

= CGR
z ∆2

(
∂z̃

∂xi

)2

(4.30)

with a filter width ∆ that is set equal to an averaged grid spacing,

∆ = 3
√

∆x1∆x2∆x3, (4.31)

computed with the grid spacing ∆xi in xi-direction. The constant CGR
z is adapted during a priori

tests (see Sect. 4.4.2.3).

Figure 4.2 shows the contours of the beta-function at the stoichiometric value βs = F̃m
z (zs) with

zs = 0.3. It is zero at the upper limit, (z2)sg = z̃ (1− z̃), and at the lower one, (z2)sg = 0, except
for z̃ = zs where it diverges.
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10.80.60.40.20

Figure 4.2: Contour lines of βs from 0 to 3 every 0.25
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The fdf in form of a beta-function is not only used in Eq. (4.25), but also to determine the filtered
species mass fractions

Ỹα =

∫ 1

0

F̃ (z′)Yα (z′) dz′ (4.32)

with Yα (z) from the Burke-Schumann relations (3.12). It has proven to be advantageous to pre-
calculate and tabulate the filtered species mass fractions in dependence of the filtered mixture
fraction and the subgrid variance of the mixture fraction.

4.2.4.2 The conditionally filtered scalar dissipation rate

The conditionally filtered scalar dissipation rate is modeled by assuming an instantaneous relation
between the mixture fraction and its dissipation rate [33, 37] which has the form

χ′ = χl (z
′, x, t) = C (x, t) fl (z

′) . (4.33)

C is constant inside each filter volume, but varies from one to another and with time. The shape
function fl (z′) is derived from laminar diffusion flames (one-dimensional counterflow problems),
with the usual choice [128, 129] being

fl (z
′) = exp

(
−2
(
erf−1 (1− 2z′)

)2
)
. (4.34)

Relation (4.33) then implies for the conditionally filtered scalar dissipation rate,

χ̃z (z′) = C (x, t) fl (z
′) , (4.35)

which follows from Eq. (4.27) for F̃χ|z (χ′ |z = z′ ) = δ (χ′ − χl (z′)). As the filtered scalar
dissipation rate is related to the conditionally filtered one by

χ̃ =

∫ 1

0

χ̃z (z′) F̃z (z′) dz′, (4.36)

the scaling factor C (x, t) can be determined, and the final expression for the modeled condition-
ally filtered scalar dissipation rate is

χ̃mz (z) = fl (z)
χ̃∫ 1

0
fl (z′) F̃z (z′) dz′

. (4.37)

Assuming a beta-distribution for the fdf, the quantity in the denominator is a function of z̃ and
(z2)sg. For (z2)sg = 0 it is equal to fl (z̃). Here, the use of a pre-tabulated function has been
proven advantageous, too. The expression, for which a table with the coordinates z̃ and (z2)sg is
assembled before the start of the LES, is

Ĩ =
F̃z (zs)∫ 1

0
fl (z′) F̃z (z′) dz′

. (4.38)

It can be extracted as a factor from Eq. (4.25) after inserting Eq. (4.37).
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4.2.4.3 The filtered scalar dissipation rate

In Eq. (4.37), a model for the unknown filtered scalar dissipation rate

χ̃ =
˜µ

Sc

(
∂z

∂xi

)2

(4.39)

is needed. To this end, a Smagorinsky-type gradient model (GR) is used in this work, and the
filtered scalar dissipation rate χ̃ is split up into a large scale part

χls =
µ

Sc

(
∂z̃

∂xi

)2

, (4.40)

which is computed directly from the LES flow fields, and into a subgrid part

χsg = χ̃− χls, (4.41)

which is unknown and has to be modeled. With the gradient model, the subgrid part is expressed
as

χGRsg =
µt
Sct

(
∂z̃

∂xi

)2

. (4.42)

The turbulent viscosity is
µt = CSM∆2ρ |s̃ij| (4.43)

where |s̃ij| = 2
√
s̃ij s̃ij uses the strain rate tensor computed with the filtered velocities, s̃ij =

0.5 (∂ũi/∂xj + ∂ũj/∂xi). The Smagorinsky constant CSM and the turbulent Schmidt number
Sct are summarized into a single constant CGR

χ that is adapted in a priori tests (see Sect. 4.4.2.3)
for the present simulations. With this constant, the complete model expression for the filtered
scalar dissipation rate is

χ̃ =

(
µ

Sc
+ CGR

χ ∆2ρ |s̃ij|
)(

∂z̃

∂xi

)2

(4.44)

4.3 Test cases

The LES that are performed and described in the following correspond to the DNS inert-0.15

and inf-0.15. In order to distinguish between the LES and the DNS, the latter are now denoted by
DNS-inert-0.15 and DNS-inf-0.15. Two different resolutions are used for each LES case, one time
with a coarsening factor of 4 in each direction and one time with a factor 2. The latter simulations
are used to verify whether the LES results approach the DNS results when diminishing the subgrid
contributions. The filter parameter α (cf. Sect. 4.2.2) is chosen as α = 0.5. Various other values
were tested, but for clarity only results with this α are shown, since it has been proven to be the
most suitable value.

In the reacting LES cases, the gradient model (GR) described in Sect. 4.2.4 is used to model the
subgrid variance (z2)sg. The filtered scalar dissipation rate is modeled with the Smagorinsky-type
gradient model (GR) described in the same section.

All LES are summarized in Table 4.1 which gives the denomination, the number of grid points
and the model constants that are adapted during a priori tests (cf. Sect. 4.4.2.3).
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Table 4.1: LES simulations

Case N1 ×N2 ×N3 CGR
z CGR

χ

LES-inert-0.15-4 192× 48× 144 – –
LES-inert-0.15-2 384× 96× 288 – –
LES-inf-0.15-4 192× 48× 108 0.26 0.06

LES-inf-0.15-2 384× 96× 216 0.23 0.05

The LES are initialized from corresponding DNS flow fields, which are interpolated with splines
of fifth order accuracy onto the coarser LES grid and filtered with a tophat filter, the filter width
of which is the LES grid spacing. The non-dimensional times at which the LES are started are
τω = 139 for the inert LES and τω = 290 for the reacting LES. Both instants are well before the
beginning of the self-similar states (cf. Scts. 2.4.2 and 3.4.2).

4.4 Results and analysis

In this section, the LES data are compared with the DNS results in two ways: First, the original
DNS profiles from Chapters 2 and 3 are used to show the subgrid contents of various quantities.
These subgrid contributions make up the essential difference between the LES and the DNS
profiles. Since the LES is not able to reproduce them due to the coarse grid, comparisons that
allow to judge the quality of the LES results must be made between them and DNS data that
are interpolated onto the LES grid and filtered. These data are denoted by i-f-DNS (interpolated
and filtered DNS) in the following. Subsequent averaging in the homogeneous directions and
over the self-similar state gives profiles of the i-f-DNS data which should ideally be on top of the
corresponding LES profiles.

Most results shown in the following are from the LES cases LES-inert-0.15-4 and LES-inf-0.15-4
that use a grid which is coarsened by factor 4 in each direction compared to the DNS grid. Only
at the end of the sections on the inert and reacting mixing layers, some results for the cases LES-
inert-0.15-2 and LES-inf-0.15-2 are shown for comparison. The grids of these simulations are
only by factor 2 coarser than the DNS grids.

4.4.1 Inert mixing layers

4.4.1.1 Instantaneous fields

Figures 4.3 and 4.4 show the instantaneous mass fraction fields at the beginning of the self-similar
state of the DNS and LES, respectively. The mixing layers in both simulations present similar
structures and have nearly the same thickness. However, a closer look at the inner structure of the
mixing layer reveals that the LES is more blurred due to the coarser grid and does not contain as
finely resolved features as the DNS. More obvious are the differences between the DNS and the
LES when looking at quantities that are more dominated by small scales like the gradient of the
oxygen mass fraction, which is shown in Figs. 4.5 and 4.6. Since the strongest scalar gradients
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Figure 4.3: DNS-inert-0.15: Instantaneous
mass fraction field of O2, x1-x3-plane in the
middle of the computational domain at τω =

286, isolines YO2 = 0.1 and 0.9 are shown

Figure 4.4: LES-inert-0.15-4: Instantaneous
mass fraction field of O2, x1-x3-plane in the
middle of the computational domain at τω =

286, isolines YO2 = 0.1 and 0.9 are shown

Figure 4.5: DNS-inert-0.15: Instantaneous
gradient of oxygen mass fraction, normalized
by δω,0, x1-x3-plane in the middle of the com-
putational domain at τω = 286

Figure 4.6: LES-inert-0.15-4: Instantaneous
gradient of oxygen mass fraction, normalized
by δω,0, x1-x3-plane in the middle of the com-
putational domain at τω = 286

are situated in the range of scales which the LES does not resolve, the highest values that are
visible in Fig. 4.5 are 3.5 and only 0.9 in Fig. 4.6 (compare the two scales to the right of the
respective images).

4.4.1.2 Profiles of averaged flow variables

As far as the mean streamwise velocity in Fig. 4.7 is concerned, the comparison between LES and
DNS results is excellent. The oxygen mass fraction profile of the LES (solid line) has a slightly
smaller gradient than that of the DNS and the i-f-DNS (Fig. 4.8). The agreement between the
TKE of the LES and the interpolated and filtered DNS is also very good (Fig. 4.9) with the LES
resulting in a slightly broader profile. In the center of the shear layer, both LES and i-f-DNS have
smaller TKE values than the DNS itself which is understandable since the DNS results contain
also those scales that are not resolved in the LES. A comparison between the scalar (oxygen mass
fraction) variance profiles is shown in Fig. 4.10. While DNS and i-f-DNS are very close, which
also shows that the scalar variance is mostly dominated by larger scales, the LES underpredicts
the actual value by approximately 20 %. The corresponding profile, however, has the typical
shape and shows the two characteristic peaks which give evidence of the entrainment of fresh
fluid at the edges of the mixing layer (cf. Sect. 2.4.4.2).

The good agreement between the TKE profiles of LES and i-f-DNS is reflected in an also good
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Figure 4.7: Favre averaged streamwise velocity, normalized by ∆u, solid: LES-inert-0.15-4,
dashed: DNS-inert-0.15 interpolated to LES grid and filtered, dotted: DNS-inert-0.15
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Figure 4.8: Favre averaged oxygen mass fraction, solid: LES-inert-0.15-4, dashed: DNS-inert-
0.15 interpolated to LES grid and filtered, dotted: DNS-inert-0.15
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Figure 4.9: Turbulent kinetic energy, normalized by ∆u2, lines as in Fig. 4.7

capturing of the terms in the TKE transport equation by the LES, e.g. the production and dissi-
pation rate in Figs. 4.11 and 4.12 . While TKE production is mostly dominated by large scales
(LES and i-f-DNS profiles are therefore close to the DNS profile), the dissipation rate is a pre-
dominantly small-scale quantity since it is computed with the help of scalar gradients. This can
be seen from the fact, that the magnitude of the DNS value is much larger than that of the LES
and i-f-DNS: Nearly 50 % of the dissipation rate are suppressed on the coarser grid. In order
to ensure a correct flow development, nevertheless, the transfer of energy from the resolved to
the unresolved scales must be modeled. This is accounted for in the present LES by explicitly
filtering the flow variables (see Sect. 4.4.1.4).
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Figure 4.10: Variance of oxygen mass fraction, lines as in Fig. 4.7

In the first two chapters of this work, the importance of the pressure-strain correlations was em-
phasized: Their role is to distribute the turbulent kinetic energy from the streamwise component
of the Reynolds stresses to the spanwise and transverse components. Figures 4.13 to 4.15 show
the good prediction of the pressure-strain correlations by the LES which only slightly underesti-
mates their peak values in the center of the mixing layer.
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Figure 4.11: Production of TKE, normalized
by δω/ (ρ0∆u3), lines as in Fig. 4.7
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Figure 4.12: Dissipation rate of TKE, normal-
ized by δω/ (ρ0∆u3), lines as in Fig. 4.7
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Figure 4.13: Pressure-strain correlation Π11,
normalized by δω/ (ρ0∆u3), lines as in Fig.
4.7
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Figure 4.14: Pressure-strain correlation Π22,
normalized by δω/ (ρ0∆u3), lines as in Fig.
4.7
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Figure 4.16: Production terms of the
scalar variance transport equation,
PY = −〈ρY ′′α u′′3〉∂〈Yα〉f∂x3
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Figure 4.17: Scalar dissipation rate, εY =

〈ρYαVαi ∂Yα∂xi
〉, normalized by δω/ (ρ0∆u), lines

as in Fig. 4.7

One reason why the scalar variance is not as well predicted in the LES as the TKE, is shown in
Fig. 4.16: The most dominant source terms in the scalar variance transport equation, namely the
production terms, are underestimated by the LES. The dissipation rate, on the contrary, is very
well predicted (Fig. 4.17) which can be seen by the good agreement of LES and i-f-DNS profiles.
The fact that the production terms are underestimated underlines that the scalar field depends
more strongly on the small scales than the velocity field. This complicates the modeling of the
scalar with respect to other turbulent quantities and explains why not the same quality of results
can be expected for scalar and velocity related quantities, for example for the scalar variance and
the TKE. Section 4.4.1.5 shows that a refinement of the grid leads to better results concerning
scalar quantities, demanding therefore a compromise between quality and computational costs.

4.4.1.3 Spectra

In an ideal LES, the spectra of the LES with EFM should follow the DNS spectra up to the cut-
off wavenumber. That this is the case for the one-dimensional spectra of the streamwise velocity
and the TKE, both averaged over directions x2 and x3, is shown in Figs. 4.18 and 4.19. Also
the one-dimensional dissipation spectrum, evaluated as k2

1û
′û′∗, in Fig. 4.20 presents the desired

feature.

That the underprediction of the scalar variance by the LES comes from the larger scales is demon-
strated by Fig. 4.21 which shows the spectrum of the oxygen mass fraction: The energy in the
smallest wave numbers is lower for the LES than the DNS. This results in a smaller magnitude of
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Figure 4.18: One-dimensional, streamwise spectrum of u1/∆u at the beginning of the self-similar
state, solid: LES-inert-0.15-4, dotted: DNS-inert-0.15
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the scalar variance peak even though there is a slight accumulation of spurious energy right before
the cut-off wavenumber. This accumulation becomes even more evident in the one-dimensional
spectrum of the scalar dissipation rate, evaluated as k2

1Ŷ
′Ŷ ′∗ in Fig. 4.22. However, since it is

only small, no effect on the scalar dissipation profile is visible in Fig. 4.17 in which LES and
i-f-DNS profile agree well. In Sect. 4.4.1.5, it is shown that a refinement of the grid alleviates the
problem of energy accumulation.
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Figure 4.19: One-dimensional, streamwise spectrum of TKE k/∆u2 at the beginning of the self-
similar state, lines as in Fig. 4.18
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Figure 4.20: One-dimensional, streamwise dissipation spectrum (spectrum of u1/∆u multiplied
with (k1δω,0)2) at the beginning of the self-similar state, lines as in Fig. 4.18
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Figure 4.21: One-dimensional, streamwise spectrum of the mixture fraction z at the beginning of
the self-similar state, lines as in Fig. 4.18
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Figure 4.22: One-dimensional dissipation spectrum of the mixture fraction z (spectrum of z
multiplied with (k1δω,0)2) at the beginning of the self-similar state, lines as in Fig. 4.18

4.4.1.4 Effect of filtering on dissipation rates

The subgrid part of the TKE dissipation rate, which is contained in the DNS data, but removed
when these data are interpolated onto the coarser grid and filtered, can be interpreted as the
difference between the dissipation rate profiles for the DNS and the i-f-DNS in Fig. 4.12. It has
to be predicted somehow by the LES model, the EFM in the present case, in order to capture the
development of the flow correctly. To see whether the filtering has the desired effect, a dissipation
rate caused by the low-pass filter can be computed: After performing one iteration with and one
without filtering on the LES grid, this filter dissipation rate is the difference of the resulting TKE
profiles divided by the time step. The result at τω = 286 is shown in Fig. 4.23 together with
the instantaneous profiles of the actual dissipation rates in DNS and LES. Even though the filter
dissipation rate is highly fluctuating it is clearly a sink term and has about the same magnitude as
the dissipation rate of the filtering. Added together they approximately equate the dissipation rate
of the DNS.

A similar procedure results in the filter scalar dissipation rate in Fig. 4.24 computed from the
scalar (oxygen mass fraction) variance fields after one equation with and one without filtering.
Since the scalar dissipation rate of the DNS is more than double the one of the LES, it is justified
that the filter scalar dissipation profile has a larger magnitude than the LES dissipation profile.
Added together, the total scalar dissipation in the LES, coming from actual scalar dissipation and
filter scalar dissipation, has about the same size than the scalar dissipation rate of the DNS.
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Figure 4.23: TKE dissipation rates at τω = 286, normalized by ρ0∆u3/δω, solid: effect of the
filter, dashed: ε from LES-inert-0.15-4, dotted: ε from DNS-inert-0.15
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Figure 4.24: Scalar dissipation rates at τω = 286, normalized by ρ0∆u/δω, solid: effect of the
filter, dashed: εY from LES-inert-0.15-4, dotted: εY from DNS-inert-0.15

4.4.1.5 Refinement of the grid

Reducing the DNS grid points by factor two in each direction only, as done in case LES-inert-
0.15-2 improves the results compared to LES-inert-0.15-4, in particular those for scalar quantities.
Figure 4.25 shows that the underprediction of the scalar variance is still there in simulation LES-
inert-0.15-2, but it is less severe than in LES-inert-0.15-4 (cf. Fig. 4.10). Therefore, it can be
expected that when increasing the number of grid points further, the LES profile will approach
the i-f-DNS profile and also the DNS profile itself. By a refinement of the grid, the capturing
of the scalar production rate is also improved as a comparison between Figs. 4.16 and 4.26
reveals. The energy content of the smallest wavenumbers, i.e. larger scales is about the same
as in the DNS, and only a slight underestimation for intermediate wavenumbers is visible in the
one-dimensional scalar spectrum in Fig. 4.27. Moreover, there is no spurious accumulation of
energy in the wavenumbers right before the cut-off in both, the scalar spectrum and its dissipation
rate spectrum (Fig. 4.28).
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Figure 4.25: Variance of mixture fraction,
solid: LES-inert-0.15-2, dashed: DNS-inert-
0.15 interpolated to LES grid and filtered, dot-
ted: DNS-inert-0.15
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Figure 4.26: Production terms of the
scalar variance transport equation,
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normalized by δω/ (ρ0∆u), lines as in Fig.
4.25
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Figure 4.27: One-dimensional, streamwise spectrum of the mixture fraction z at the beginning of
the self-similar state, solid: LES-inert-0.15-2, dotted: DNS-inert-0.15
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Figure 4.28: One-dimensional dissipation spectrum of the mixture fraction z (spectrum of z
multiplied with (k1δω,0)2) at the beginning of the self-similar state, lines as in Fig. 4.27

4.4.2 Infinitely fast reacting mixing layers

4.4.2.1 Instantaneous fields

Most of the statements concerning the comparison of instantaneous DNS and LES scalar and
scalar gradient fields of the inert mixing layers in Sect. 4.4.1.1 also apply to the corresponding
fields of the reacting mixing layers. However, the scalar under investigation is now the mixture
fraction instead of the oxygen mass fraction. Figures 4.29 and 4.30 show the instantaneous mix-
ture fraction distribution at the beginning of the self-similar state. They are very similar, and there
are even prominent ejections and intrusions that directly correspond to each other. This comes
from the fact that the LES has been started from an instantaneous DNS field. However, the LES
field is more blurred than the DNS field due to the coarser grid and the mixing layer boundaries
of the LES are not as finely structured as those of the DNS. The same is true for the instantaneous
temperature fields in Figs. 4.31 and 4.32. From the maximum value on the scales to the right of
each image it can be seen that the extreme value of the LES is larger than the one of the DNS
which indicates an overestimation of the temperature field that is also seen in its mean values and
rms fluctuations (cf. Sect. 4.4.2.2).

Even more striking are the differences between the instantaneous mixture fraction gradient fields
of DNS and LES in Figs. 4.33 and 4.34. As for the inert scalar gradient field, the maximum value
in the LES is considerably smaller than in the DNS due to the lack of the smallest scales.
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Figure 4.29: DNS-inf-0.15: Instantaneous
mixture fraction field, x1-x3-plane in the mid-
dle of the computational domain at τω = 459,
isolines z = 0.1, z = 0.3 and z = 0.9 are
shown

Figure 4.30: LES-inf-0.15-4: Instantaneous
mixture fraction field, x1-x3-plane in the mid-
dle of the computational domain at τω = 459,
isolines z = 0.1, z = 0.3 and z = 0.9 are
shown

Figure 4.31: DNS-inf-0.15: Instantaneous
temperature field, x1-x3-plane in the middle of
the computational domain at τω = 459, iso-
lines z = 0.1, z = 0.3 and z = 0.9 are shown

Figure 4.32: LES-inf-0.15-4: Instantaneous
temperature field, x1-x3-plane in the middle of
the computational domain at τω = 459, iso-
lines z = 0.1, z = 0.3 and z = 0.9 are shown

4.4.2.2 Profiles of averaged flow variables

The mean profiles of streamwise velocity, density and temperature are well predicted by the LES
as the comparisons with the DNS and the i-f-DNS results in Figs. 4.35, 4.38 and 4.37 show. The
averaged mixture fraction profile has slightly smaller gradients than the DNS and i-f-DNS ones
(Fig. 4.36). A small overprediction of the temperature and a corresponding underprediction of
the density are visible on the fuel-rich side of the mixing layer (Figs. 4.37 and 4.38).

The locations of the peak values of density and temperature fluctuations are also well predicted
by the LES (Figs. 4.39 and 4.40), but the extreme values themselves are slightly exaggerated.
The same is true to a smaller extent for the TKE in Fig. 4.41. The scalar variance in Fig. 4.42 is
underpredicted by the LES but the underprediction is smaller than for the inert case (Fig. 4.10).

The weak underprediction of the TKE production rate in Fig. 4.43 by the LES does not seem to

Figure 4.33: DNS-inf-0.15: Instantaneous
mixture fraction gradient field, normalized by
δω,0, x1-x3-plane in the middle of the compu-
tational domain at τω = 459

Figure 4.34: LES-inf-0.15-4: Instantaneous
mixture fraction gradient field, normalized by
δω,0, x1-x3-plane in the middle of the compu-
tational domain at τω = 459
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have much effect on the relatively well predicted TKE value itself (Fig. 4.41). The agreement
between the TKE dissipation rate of the LES and its counterpart from the i-f-DNS in Fig. 4.44
is excellent. If one compares Fig. 4.44 with Fig. 4.12 for the inert mixing layers, one can see
that for the infinitely fast reacting mixing layers, there is a smaller part of the DNS dissipation
rate suppressed when coarsening the grid than for the inert mixing layers. This is due to the
smoothening effect of the heat release which leads to a scalar field with smaller fluctuations and
less intermittency.

The scalar variance production rate is underestimated by the LES as shown in Fig. 4.45. Even
though the magnitude of the major sink term in the scalar variance transport equation, namely the
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Figure 4.35: Favre averaged streamwise velocity, normalized by ∆u, solid: LES-inf-0.15-4,
dashed: DNS-inf-0.15 interpolated to LES grid and filtered, dotted: DNS-inf-0.15
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Figure 4.36: Favre averaged mixture fraction, solid: LES-inf-0.15-4, dashed: DNS-inf-0.15 in-
terpolated to LES grid and filtered, dotted: DNS-inf-0.15
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Figure 4.37: Averaged temperature, normalized by T0, lines as in Fig. 4.35
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Figure 4.38: Averaged density, normalized by ρ0, lines as in Fig. 4.35
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Figure 4.39: Rms value of the density fluctuations, normalized by 〈ρ〉, lines as in Fig. 4.35
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Figure 4.40: Rms value of the temperature fluctuations, normalized by 〈T 〉, lines as in Fig. 4.35

scalar dissipation rate in Fig. 4.46, is also underestimated, both effects lead to a too small scalar
variance. A refinement of the grid alleviates the problem partially and reduces the difference
between LES and i-f-DNS (cf. Sect. 4.4.2.6).

4.4.2.3 The filtered heat release term

In this section, the modeling of the filtered heat release term by Eq. (4.25) is tested using a priori
and a posteriori procedures. For the a priori tests, the DNS fields are interpolated onto the LES
grid and filtered with a tophat filter. Then the terms in Eq. (4.25) are computed, whereby either
the exact values or the models (cf. Sects. 4.2.4.1 and 4.2.4.3) for (z2)sg and χ̃ are used. Averaging
over the homogeneous directions as well as the self-similar state and comparing the exact profiles



RESULTS AND ANALYSIS 159

x3/δω

k
/∆

u
2

10.50-0.5-1

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0

Figure 4.41: Turbulent kinetic energy, normal-
ized by ∆u2, lines as in Fig. 4.35
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Figure 4.42: Variance of mixture fraction,
lines as in Fig. 4.35
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Figure 4.43: Production of TKE, normalized
by δω/ (ρ0∆u3), lines as in Fig. 4.35
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Figure 4.44: Dissipation rate of TKE, normal-
ized by δω/ (ρ0∆u3), lines as in Fig. 4.35
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Figure 4.45: Production terms of the
scalar variance transport equation,
Pz = −〈ρz′′u′′3〉∂〈z〉f∂x3
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Figure 4.46: Scalar dissipation rate, εz =

−〈 µ
Sc

∂z
∂xj

∂z
∂xj
〉, lines as in Fig. 4.35

of (z2)sg and χ̃ with the modeled ones, allows an optimal adaption of the model coefficients CGR
z

and CGR
χ .

The first modeled quantity that the heat release term depends on is the subgrid scalar variance
(z2)sg which enters the beta-pdf. Figure 4.47 shows three profiles: the exact profile computed by
Eq. (4.29) from interpolated and filtered DNS data, the profile that results when using gradient
model, Eq. (4.30), a priori (i.e. with the exact gradient from the interpolated and filtered DNS
data) and, finally, the a posteriori profile from the LES. The agreement between (z2)sg from the
LES and the corresponding value of the gradient model computed from DNS data is good for
both, the peak value and the shape. The peak value is already well predicted in the a priori test
which is due to the adaption of the model coefficient. Concerning the shape of the (z2)sg profile,
in particular on the fuel-rich side, the a posteriori test performs even better.

The model of the filtered heat release term depends on the beta-pdf via the factor Ĩ , Eq. (4.38).
Figure 4.48 shows a comparison between its exact profile and the a priori and a posteriori values.
Besides (z2)sg, the filtered value z̃ enters into the computation of Ĩ . Even though the averaged
LES fields of both (z2)sg (Fig. 4.47 ) and z̃ (LES curve in Fig. 4.36) agree quite well with the
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Figure 4.47: Subgrid scalar variance, solid: LES-inf-0.15-4, dashed: a priori test of model with
data from DNS-inf-0.15, dotted: exact value from DNS-inf-0.15
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Figure 4.48: Integral Ĩ , lines as in Fig. 4.47
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Figure 4.49: Filtered scalar dissipation rate, normalized by ∆u/δω, lines as in Fig. 4.47

DNS results, there must be differences in the higher moments of the mixture fraction between
LES and DNS as the overestimation of Ĩ suggests. The a priori test of Ĩ , however, is excellent.

The model of the filtered scalar dissipation rate is given by Eq. (4.44). A comparison of the
exact averaged value of χ̃ with the a priori and a posteriori determined ones is shown in Fig.
4.49. Again, the model coefficient in Eq. (4.44) has been adapted such that the a priori test
gives the best possible approximation of the exact χ̃. About 50 % of χ̃ are from its subgrid part
χsg = χ̃−χls with χls from Eq. (4.40). This is shown in Fig. 4.50 . The figure also demonstrates
that the overestimation of χ̃ by the LES (Fig. 4.49 ) is mainly due to an overestimation of its
subgrid part modeled by the gradient model.
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Figure 4.50: Subgrid part of scalar dissipation rate, normalized by ∆u/δω, lines as in Fig. 4.47
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Figure 4.51: Heat release parameter Qe, normalized by ∆u2, solid: LES-inf-0.15-4, dashed: data
from DNS-inf-0.15

x3/δω

〈ω
〉δ
ω
/

(ρ
0
∆
u

3
)

1.510.50-0.5-1-1.5

2
1.8
1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0
-0.2

Figure 4.52: Filtered source term ω, normalized by ρ0∆u3/δω, lines as in Fig. 4.47

Since the remaining factor in the expression for ω, the heat release parameter Qe (Eq. (4.26)) is
well predicted by the LES, the overestimation of the heat release term itself (Fig. 4.52) can be
mainly traced back to the overestimations of Ĩ and χ̃. However, the a priori computed source
term ω also overestimates the actual value. This leads to the conclusion that correlations between
the factors in Eq. (4.25) play a role. The overestimation of ω, nevertheless, can be considered
as tolerable when taking into account the good results for the averaged density and temperature
profiles (Figs. 4.38 and 4.37).
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4.4.2.4 Spectra

The agreement between various one-dimensional spectra of the reacting DNS and LES up to the
cut-off wavenumber is very good (Figs. 4.53 to 4.55). No accumulation of energy in any of the
resolved wavenumbers is visible.
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Figure 4.53: One-dimensional, streamwise spectrum of u1/∆u at the beginning of the self-similar
state, solid: LES-inf-0.15-4, dotted: DNS-inf-0.15
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Figure 4.54: One-dimensional, streamwise spectrum of TKE k/∆u2 at the beginning of the self-
similar state, lines as in Fig. 4.53
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Figure 4.55: One-dimensional, streamwise dissipation spectrum (spectrum of u1/∆u multiplied
with (k1δω,0)2) at the beginning of the self-similar state, lines as in Fig. 4.53
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4.4.2.5 Effect of filtering on dissipation rates

In a procedure analogous to that for inert mixing layers in Sect. 4.4.1.4, instantaneous filter
dissipation and scalar dissipation rates at the beginning of the self-similar state are computed for
the reacting mixing layers. The results, as well as the actual scalar dissipation rates derived from
LES and DNS data, are shown in Figs. 4.58 and 4.59. Added together, the filter dissipation rate
and the LES TKE dissipation rate in Fig. 4.58 equate approximately the TKE dissipation rate of
the DNS. The same is true for the scalar dissipation rates in Fig. 4.59.

4.4.2.6 Refinement of the grid

Quantities which were not perfectly captured by the LES when coarsening the DNS grid by factor
four in each direction are better approximated when coarsening the DNS grid by factor two in
each direction only. Two examples are shown in Figs. 4.60 and 4.61: The variance of the mixture
fraction and the mean heat release term (compare with Figs. 4.42 and 4.61). For the latter one, we
observe that the a priori computed profile and the a posteriori computed one collapse while the
actual profile computed without any models from DNS results is below these curves. This leads
to the conclusion that the remaining differences between LES and DNS concerning the profile of
ω are mainly due to correlations between the single factors in Eq. (4.25) since the a posteriori
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Figure 4.56: One-dimensional, streamwise spectrum of the mixture fraction z at the beginning of
the self-similar state, lines as in Fig. 4.53
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Figure 4.57: One-dimensional dissipation spectrum of the mixture fraction z (spectrum of z
multiplied with (k1δω,0)2) at the beginning of the self-similar state, lines as in Fig. 4.53
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Figure 4.58: TKE dissipation rates at τω = 459, normalized by ρ0∆u3/δω, solid: effect of the
filter, dashed: ε from LES-inf-0.15-4, dotted: ε from DNS-inf-0.15
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Figure 4.59: Scalar dissipation rates at τω = 459, normalized by ρ0∆u/δω, solid: effect of the
filter, dashed: εz from LES-inf-0.15-4, dotted: εz from DNS-inf-0.15

and a priori profiles match well with the latter one being the best possible approximation with the
presently used models.

4.5 Summary and conclusions

A particular version of the Approximate Deconvolution Method (ADM) has been used for the
LES of inert and reacting shear layers, and the results have been validated by comparison with
DNS data. ADM aims at reconstructing turbulent flow fields from filtered ones by a deconvolution
procedure. Except for the chemical source term, no additional models for subgrid terms are
used during this purely mathematical procedure, and no knowledge about the flow physics is
required beforehand. In the version of the ADM that is used in this work, the filtering and the
deconvolution step are summarized into a single explicit filtering step. This particular variant of
ADM is denoted here as EFM - Explicit Filtering Method. As already mentioned, the chemical
source term in the simulation of the reacting shear layers cannot be treated by ADM or EFM
since the chemical reactions take place nearly entirely in the smallest, unresolved scales. Hence,
there is no chance of reconstructing them by deconvolution. In this chapter, the chemical source
term has been modeled for infinitely fast, irreversible chemistry with the help of a beta-function
for the mixture fraction fdf and gradient models for the mixture fraction subgrid variance and the
filtered scalar dissipation rate. Furthermore, the filtered species mass fractions have also been
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Figure 4.60: Variance of mixture fraction, solid: LES-inf-0.15-2, dashed: DNS-inf-0.15 interpo-
lated to LES grid and filtered, dotted: DNS-inf-0.15
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Figure 4.61: Mean filtered heat release term ω, normalized by ρ0∆u3/δω, solid: LES-inf-0.15-4,
dashed: a priori test of model with data from DNS-inf-0.15, dotted: exact value from DNS-inf-
0.15

obtained by integration with a beta-fdf for the mixture fraction. Coefficients for the models have
been adapted in a priori tests using DNS data.

The LES performed and analyzed are temporally evolving, turbulent mixing layers at Mc = 0.15,
inert and infinitely fast reacting. They have been initialized well before the attainment of the self-
similar state from corresponding DNS flow fields that had been interpolated to the coarser LES
grid and filtered. Two different resolutions for the LES have been used: One with 8 times less grid
points than the DNS and one with 64 times less grid points. A further coarsening of the grid would
also be possible if only stability was the criteria for a successful LES and less quality of the results
was allowed. This concerns in particular quantities that are dominated by small scales like the
TKE dissipation rate and the scalar dissipation rate. However, computation on a grid as coarse
as possible is not the goal of the present work, and we have opted for a compromise between
computational effort and good results by chosing relatively fine LES grids. Statistics from the
LES data were taken over the self-similar states of the mixing layers and compared to DNS data
as well as DNS data that had been interpolated to the LES grid and filtered. A comparison of
instantaneous scalar (mass and mixture fractions) and scalar gradient distributions have revealed
that, while large structures have been successfully captured by the LES, this, as expected, has not
been the case for small structures, and the LES fields appear consequently more ’blurred’. This
is particularly strong for the intermittent scalar gradients, the highest values of which are situated
in the smallest scales, that cannot be resolved in an LES.
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For the inert mixing layers, an excellent capturing of flow dynamical quantities like the mean
streamwise velocity and the turbulent kinetic energy (TKE) is observed, even for the resolution
with 64 times less grid points than the DNS. Moreover, the most important terms in the TKE
transport equation, namely production and the dissipation rates, are reproduced well, with a good
agreement of the LES profiles and the profiles from the interpolated DNS data. The same is
true for the pressure-strain correlations steering the re-distribution of energy from the streamwise
Reynolds stress component to the spanwise and transverse ones. The one-dimensional spectra of
the streamwise velocity, the turbulent kinetic energy and the dissipation rate show the expected
behaviour: The LES spectra follow the DNS spectra up to the cut-off frequency, and no spurious
accumulation of energy is visible in the highest resolved wavenumbers. However, a good captur-
ing of scalar-related quantities seems to be more difficult, even for the inert mixing layers: Too
small amplitudes of the LES profile compared to the filtered DNS profile for the mass fraction
variances and their production rates have been observed. The one-dimensional scalar and scalar
dissipation spectra show a slight accumulation of energy in the highest resolved wavenumbers.
These difficulties are traced back to the fact that the scalar field is more sensitive to the small
scales than the velocity field which complicates its modeling. However, the simulations with the
finer grid (8 times less grid points than the DNS) show a significant improvement of the results.

For the LES of the reacting mixing layers, not only an excellent capturing of flow dynamical
quantities (mean velocity, TKE), but also of thermodynamical quantities (mean temperature and
density and the corresponding rms values) has been observed, even for the coarsest resolution that
has been investigated. As for the inert mixing layers, scalar-related quantities, like the variance
of the mixture fraction show discrepancies between the LES and the interpolated DNS profiles
that are, however, reduced by a refinement of the LES grid. A priori and a posteriori tests of the
filtered heat release term have also been performed. Its weak overestimation by LES has been led
back to a slight overestimation of the subgrid scalar dissipation rate by the Smagorinsky model
and to differences between LES and filtered DNS in higher moments of the mixture fraction.
These deficiencies have been reduced when refining the LES grid. The mixture fraction subgrid
variance has been captured excellently by the gradient model, even at the coarser resolution.
Since the spectra for the reacting mixing layers are less dominated by the small scales than the
inert ones, they are easier to reproduce (up to the cut-off frequency) by the LES, and no spurious
accumulation of energy has been observed in the highest resolved wavenumbers, neither in the
one-dimensional spectra for the streamwise velocity, the TKE and its dissipation rate, nor in the
spectra for the scalar and the scalar dissipation rate.

Finally, it can be concluded that EFM (combined with proper heat release modeling for reacting
flow) has been proven to be a successful and efficient LES model for inert and infinitely fast
reacting turbulent mixing layers. As for any LES model, it is necessary to make compromises
between the quality of the results and computational effort.

Even though only results for Mc = 0.15 have been shown in the present chapter, also inert and
reacting shear layers at higher convective Mach numbers have been simulated successfully with
EFM. However, since the following chapter deals with reacting mixing layers at the same low
Mach number and shows an extension of the combustion model to include finite-rate chemistry
and detailed diffusion, it has been decided not to extend the analysis of the present chapter to
higher Mach numbers.



5 LES of shear layers with chemical ki-
netic and detailed diffusion effects

5.1 Introduction and literature survey

While in the previous chapters DNS and LES of reacting mixing layers with infinitely fast chem-
istry and simplified diffusion have been performed, the aim of this chapter is to take into account
chemical kinetic and detailed diffusion effects by using an LES flamelet model. A classification
of flamelet approaches within the range of combustion models has been provided in Sect. 4.1.

Besides a simplified treatment of chemistry, many existing turbulent combustion models also
use simplified diffusion processes [73]. Multicomponent and thermal diffusion effects are only
included in recent Direct Numerical Simulations (DNS) of turbulent combustion [40] and show
mainly local influences on the flame structure. To our knowledge, only one attempt has been
made to include these effects in a flamelet model for a Large Eddy Simulation (LES) [131]. In
the present chapter, the formulation of the flamelet equations in physical space as well as the
definition of the mixture fraction and its diffusivity is the same as in the work of Pierce & Moin
[131], but the LES model is different. While Pierce & Moin apply eddy diffusivity and eddy
viscosity models with dynamically evaluated coefficients, the LES model used in this work is a
modified version of the approximate deconvolution method (ADM) [175, 176] and has already
been presented in the previous chapter. In [131], Pierce & Moin mention the possibility to include
different diffusion models in their flamelet model and show some LES results for a methane-
fuelled coaxial jet combustor with different diffusion approximations. Based on these results, they
argue that an accurate treatment of mass diffusion can be just as important as accurate modeling
of chemical kinetics. The fact that the authors do not pursue the issue further, but concentrate
instead on the advantages of a progress variable to capture unsteady, lifted flame dynamics [132],
is one of the motivations to investigate detailed diffusion effects in the present work.

Most authors who considered effects of detailed diffusion in flamelets and laminar diffusion
flames concentrated mainly on two species with different but constant diffusivities or Lewis num-
bers [34, 119] or neglected thermal diffusion [138]. Therefore, almost no data is available com-
paring different levels of approximation for the species diffusion fluxes and the heat flux with
respect to multicomponent, Soret and Dufour effects. One aim of the present chapter is to see
their influence in a basic configuration for non-premixed hydrogen combustion, namely a tempo-
rally evolving turbulent shear layer.

This chapter is organized as follows: Section 5.2 explains the essential features of the LES with
a particular focus on the modeling of the filtered heat release term and the filtered species mass
fractions. The computation and tabulation of the steady flamelets is dealt with in Sect. 5.3. It is
also explained how the detailed chemistry is implemented and what different approximations of
the diffusion fluxes and the heat flux vector are used. In Section 5.4, configuration, initialization



168 5. LES OF SHEAR LAYERS WITH CHEMICAL KINETIC AND DETAILED DIFFUSION EFFECTS

and essential parameters of the mixing layer LES are presented and related to the ones of test cases
from other chapters of this work. Section 5.5 is dedicated to the results and their analysis: First,
laminar flamelets with different diffusion approximations are compared with each other (Sect.
5.5.1). Then, the LES results are validated by comparison with DNS data (Sect. 5.5.2). Moreover,
the differences between the LES results with detailed and simplified diffusion are assessed and
contrasted with those encountered between the respective laminar flamelets. Conclusions are
drawn in Sect. 5.6.

5.2 LES approach

5.2.1 LES equations and models

During the LES, the compressible transport equations for the pressure p, the Cartesian velocity
components ui, the temperature T and a passive scalar, which is the mixture fraction z, are in-
tegrated by using sixth-order compact central schemes for the spatial derivatives in all directions
and a third order low-storage Runge-Kutta scheme for time integration. The transport equations
for p, ui and T are the same as given in Eq. (4.16). In the transport equation of z, the diffusivity
of the mixture fraction, αz, is used:

∂z

∂t
= −ui

∂z

∂xi
+

1

ρ

∂

∂xi

(
αzρ

∂z

∂xi

)
(5.1)

αz depends on elemental diffusive fluxes and is therefore not constant. Its determination is ex-
plained in Sect. 5.3.3.

After each time integration step, an explicit filtering step (with the composite (Q ∗G)2 filter) of
the primitive flow variables as described in Sect. 4.2.1 is performed. This procedure implicitly
models the subgrid terms arising from non-linearities when low-pass filtering and projecting the
transport equations onto a coarse LES grid. Only the filtered heat release term

ω = −
∑

α

hαωα (5.2)

which appears in the transport equations of the pressure and the temperature has to be modeled
separately. In Sect. 5.2.2, it is explained how this is done for finite-rate chemistry using a flamelet
database.

Two additional quantities have to be modeled during the LES, since they are required for the
retrieval of the filtered chemical source term and the filtered species mass fractions from the
flamelet database (cf. Sect. 5.3): the subgrid variance of the mixture fraction,

(
z2
)
sg

= z̃2 − z̃2 (5.3)

and the filtered scalar dissipation rate,

χ̃ =
˜

αz

(
∂z

∂xi

)2

. (5.4)

Both quantities, (z2)sg and χ̃, are computed with gradient models which are given by Eqs. (4.30)
and (4.44).
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5.2.2 Filtered heat release term and filtered species mass fractions

As described in Chapter 4, the filtered heat release term, Eq. (5.2), resulting from the chemical
reactions, is not captured by pure explicit filtering and has to be treated separately. The reason
for this is that most of the chemical reactions are taking place in the unresolved scales. While ω
has been computed in Chapter 4 by Eq. (4.25), which is valid for an infinitely fast, irreversible
global reaction, it is determined in the present chapter with the help of relations ω = ω (z, χ0)

which are tabulated in a flamelet database (cf. Sect. 5.3). The filtered species mass fractions Ỹα
are computed based on corresponding relations, Y = Y (z, χ0), and not by the Burke-Schumann
equations as in Chapter 4. χ0 is the average value of the scalar dissipation rate χ for a flamelet,
with χ being defined as

χ = αz

(
∂z

∂xi

)2

. (5.5)

To compute the filtered values Ỹα and ω from the flamelet profiles, Yα (z, χ0) and ω (z, χ0),
integrations like

Ỹα =

∫ 1

0

∫ χmax0

χmin0

Yα (z, χ0)F (χ0)F (z) dχ0dz (5.6)

have to be performed using the filtered density functions (fdf) F of z and χ0, respectively. χmin0

and χmax0 are the minimum and maximum values of χ0 within the filter volume. In Equation (5.6),
z and χ0 are assumed to be statistically independent, i.e. the joint fdf F (χ0, z) can be written as
a product of the two marginal fdfs, F (χ0)F (z). This assumption is justified by the fact that the
scalar dissipation rate is constant for each flamelet individually (cf. Sect. 4). Following Cook et
al. [33] and deBruynKops et al. [37], the integral (5.6) is simplified to

Ỹα =

∫ 1

0

Yα (z, χ̃0)F (z) dz (5.7)

since Yα is a weak, approximately linear function of χ0. To obtain Eq. (5.7) from Eq. (5.6),
Yα (z, χ0) is approximated by the first two terms in the Taylor series expansion about the filtered
value of χ0, i.e.

Yα (z, χ0) ≈ Yα (z, χ̃0) +
∂Yα
∂χ0

∣∣∣∣
eχ0

(χ0 − χ̃0) . (5.8)

Moreover, it is taken into account that

∫ χmax0

χmin0

F (χ0) dχ0 = 1. (5.9)

The fdf of the mixture fraction, F (z), is approximated by a β-distribution (cf. Eq. (4.28))
depending on the filtered mass fraction z̃ and its subgrid variance (z2)sg. The filtered mixture
fraction is known during the LES by solving its transport equation, Eq. (5.1), while its subgrid
variance and the mass-weighted filtered scalar dissipation rate, χ̃0 are modeled (see Sect. 5.2.1).
During the LES, χ̃0 is equated to the actual dissipation rate in the flow, i.e. χ̃0 = χ̃. As it is
convenient to interpolate from pre-calculated tables, ω and Ỹα are tabulated in the coordinates
z̃, (z2)sg and χ̃0 which means that the integrations, Eq. (5.7), are done before the actual LES
simulation.
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5.3 The flamelet database

Instead of computing the 1D flamelets in mixture fraction space [33, 128], they are computed in
physical space (coordinate x) with zero velocity [131, 132]. Assuming constant pressure, which is
justified by the low Mach number in the DNS and LES computations, the following 1D transport
equations are obtained from the complete conservation equations for temperature, species mass
fractions and a passive scalar:

∂T

∂t
=

1

ρcv

[
−∂qx
∂x
−
∑

α

(
hα −

R
Wα

T

)(
−∂ρY Vαx

∂x
+ ωα

)]
(5.10)

∂Yα
∂t

=
1

ρ

(
− ∂

∂x
(ρYαVαx) + ωα

)
(5.11)

∂z

∂t
=

1

ρ

∂

∂x

(
αzρ

∂z

∂x

)
(5.12)

The passive scalar z is the mixture fraction. Solving transport equations for this quantity and the
species mass fractions, Yα, simultaneously, allows to establish relations between z and Yα which
are later used for the tabulation of the flamelets. An alternative to solving the transport equation
of z would be to compute z by its definition based on species mass fractions (see below: Eqs.
(5.26) and (5.27)). However, as Pierce & Moin (2001) emphasize, this approach is equivalent to
integrating Eq. (5.12) with an initial mixture fraction distribution given by Eq. (5.27).

The species diffusion flux YαVαx and the heat flux vector qx in Eqs. (5.10) and (5.11) are evaluated
as described in Sect. 5.3.2. either with detailed or with simplified diffusion.

The computation of the mixture fraction diffusivity, αz is further detailed in Sect. 5.3.3.

5.3.1 Detailed reaction scheme and Arrhenius chemistry

The chemical production rates ωα in Eqs. (5.10) and (5.11) are computed with full Arrhenius
chemistry using the reaction scheme of Miller et al. [113] that is given in table 5.1. It involves
9 species, O2, H2, H2O, N2, O, H , OH , H2O2 and HO2 and 19 elemental reactions. The same
reaction scheme has been used by de Charantenay & Ern [40] for various premixed 2D H2/O2

flames with detailed diffusion.

Each elementary reaction in Table 5.1 can be written in the form
∑

α

ν ′α,irctSα ↔
∑

α

ν ′′α,irctSα (5.13)

with Sα denoting the chemical symbol of species α. For each reaction irct, mass conservation
can be written with the help of the stoichiometric coefficients of the forward reaction, ν ′α,irct, and
of the backward reaction, ν ′′α,irct:

∑

α

ν ′α,irctWα =
∑

α

ν ′′α,irctWα (5.14)
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This can also be written as ∑

α

να,irctWα = 0 (5.15)

with να,irct = ν ′α,irct − ν ′′α,irct. The mass reaction rate of species α that appears in Eqs. (5.10) and
(5.11) is given by

ωα = Wα

∑

irct

να,irctwirct. (5.16)

It is the sum of contributions from the elementary reactions with the progress rates wirct,

wirct = kf,irctΠαC
ν′α,irct
α − kb,irctΠαC

ν′′α,irct
α . (5.17)

The molar concentration of species α is denoted by Cα = ρYα/Wα and the forward and backward
constants of reaction irct by kf,irct and kb,irct. The forward constant of each elementary reaction
is computed with the help of a semi-empirical Arrhenius law in the form

kf,irct = AirctT
βirct exp

(
−EirctRT

)
. (5.18)

Table 5.1: Reaction scheme for H2/O2 combustion with pre-exponential factors A, temperature-
dependence coefficients β and activation energies E [113]

Reaction A in (cm,mol, s) β E in cal/mol

(1) H2 +O2 ↔ 2OH 1.70 · 1013 0.00 47780

(2) H2 +OH ↔ H2O +H 1.17 · 109 1.30 3626

(3) H +O2 ↔ OH +O 2.00 · 1014 0.00 16800

(4) O +H2 ↔ OH +H 1.80 · 1010 1.00 8826

(5) H +O2 +M ↔ HO2 +M 2.10 · 1018 −1.00 0

H2O/21/H2/3.3/O2/0.0/N2/0.0

(6) H +O2 +O2 ↔ HO2 +O2 6.70 · 1019 −1.42 0

(7) H +O2 +N2 ↔ HO2 +N2 6.70 · 1019 −1.42 0

(8) OH +HO2 ↔ H2O +O2 5.00 · 1013 0.00 1000

(9) H +HO2 ↔ 2OH 2.50 · 1014 0.00 1900

(10) O +HO2 ↔ O2 +OH 4.80 · 1013 0.00 1000

(11) 2OH ↔ O +H2O 6.00 · 108 1.30 0

(12) H2 +M ↔ H +H +M 2.23 · 1012 0.50 92600

H2O/6/H/2/H2/3

(13) O2 +M ↔ 2O +M 1.85 · 1011 0.50 95560

(14) H +OH +M ↔ H2O +M 7.50 · 1023 −2.60 0

H2O/20

(15) H +HO2 ↔ H2 +O2 2.50 · 1013 0.00 700

(16) HO2 +HO2 ↔ H2O2 +O2 2.00 · 1012 0.00 0

(17) H2O2 +M ↔ OH +OH +M 1.30 · 1017 0.00 45500

(18) H2O2 +H ↔ HO2 +H2 1.60 · 1012 0.00 3800

(19) H2O2 +OH ↔ H2O +HO2 1.00 · 1013 0.00 1800
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Forward and backward coefficients of each reaction are linked by the equilibrium constantKe,irct,

Ke,irct =
kf,irct
kb,irct

, (5.19)

which is determined by [142]

Ke,irct =

(
p0

RT

)P
α να,irct

exp

[
∆S0

irct

R − ∆H0
irct

RT

]
(5.20)

with the entropy and enthalpy changes, ∆S0
irct and ∆H0

irct, during reaction irct at reference
pressure p0 = 1013.25hPa. In some reactions, like in reaction (5) in Table 5.1, a third compound
denoted by M is involved. Elements present in the gas mixture act as such a third compound, the
effective concentration of which is computed by

CM,irct =
∑

α

γα,irctCα. (5.21)

The pre-factors γα,irct are mostly 1. Exceptions are given in Table 5.1 in the second line of the
respective reaction, e.g. γH2O,5 = 21. The progress of a reaction with a third compound involved
is computed by

wirct = CM,irct ·
(
kf,irctΠαC

ν′α,irct
α − kb,irctΠαC

ν′′α,irct
α

)
. (5.22)

5.3.2 Computation of detailed diffusion fluxes and of heat flux by EGlib

To establish the flamelet databases, detailed transport properties, and in particular the diffusion
fluxes YαVαx and the heat flux qx, are evaluated with the help of subroutines from the library EGlib
[54]. EGlib uses an iterative method to obtain an approximate solution for the linear equations
of the transport coefficients derived from kinetic theory. Truncation then provides, at a moderate
computational cost, approximate expressions of desired accuracy for the transport coefficients.
This is in contrast to the two ’traditional’ approaches for evaluating transport coefficients, namely
the direct numerical inversion of the linear equations, which is computationally expensive, and
the use of empirical average expressions. The latter often leads to poorly accurate transport
coefficients.

EGlib was first applied to laminar flames [55, 56], and it was shown that the accuracy of the trans-
port coefficients severely influenced the flame properties. Later, de Charentenay and Ern [40] used
it for various premixed 2D H2/O2 flames and found local modifications of turbulent flame prop-
erties by multicomponent transport that were much larger than those observed for laminar flames.
In particular, the propagation velocity and the stretch in regions where the flame front experiences
strong curvature effects were affected. Even though the impact on global flame properties was
shown to be only moderate because of the smoothening induced by turbulent fluctuations, these
authors concluded that for some types of flames (highly curved or with quenching phenomena),
multicomponent transport plays a sufficiently relevant role to be included in accurate simulations.

In this chapter, results of computations performed with the detailed diffusion description given
by Eqs. (2.8) to (2.10) are compared with those using a simplified description of diffusion and
heat flux. In the simplified description, the thermodiffusive effects, namely the Soret and Dufour
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effects, are neglected and the Hirschfelder-Curtiss approximation [74] for the species diffusion
coefficients in the mixture is used. The simplified diffusion flux vector reads (in 3D)

YαVαi = −
∑

β

Dαβ,apprdβi (5.23)

with the approximate flux diffusion matrix based on the diffusion coefficient of species α in the
mixture, Dα,m:

Dα,m =

∑
β 6=α Yβ∑

β 6=αXβ/Dαβ

. (5.24)

As each species has just one diffusion coefficient in the mixture, which depends of course on
the local conditions, namely temperature and species’ composition, no cross-diffusion effects
are taken into account. The use of Dα,m, which is computed with the help of EGlib [53, 55],
corresponds to the so-called Hirschfelder-Curtiss approximation [74] of scalar diffusion.

The simplified description of the heat flux is

qi =
∑

α

ρhαYαVαi − λ
∂T

∂xi
(5.25)

with the thermal conductivity λ, which is also given by EGlib.

5.3.3 The mixture fraction and its diffusivity

Following Pierce & Moin [131, 132], the mixture fraction z is defined as an average mass fraction
by combining the conserved elemental (atomic) mass fractions. The elemental mass fractions aγ
are given by

aγ =
∑

α

YαNαγAγ/Wα, (5.26)

where Nαγ is the number of γ atoms in each molecule of species α. Aγ are atomic weights and
Wα molecular weights. After summing the elemental mass fractions and normalizing the result,
the average mixture fraction is given by

z =

∑
γ |aγ − aγ1|∑
γ |aγ2 − aγ1|

, (5.27)

where aγ1 and aγ2 are the elemental mass fractions in the oxidizer and fuel streams, respectively.
Elemental diffusive fluxes aγx can be combined by

aγx =
∑

α

ρYαVαxNαγAγ/Wα. (5.28)

Finally, αz is computed from

ραz

∣∣∣∣
∂z

∂x

∣∣∣∣ =

∑
γ |aγx|∑

γ |aγ2 − aγ1|
. (5.29)

An analogous 3D expression, which is used to compute αz during the LES, is easily obtained
from Eq. (5.29).
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The particular definition of the mixture fraction by Eq. (5.27), which is not only used for comput-
ing the flamelet database but also in the LES, is one feature that distinguishes the present flamelet
computations from others, for example from Pitsch & Peters [138], where the mixture fraction is
not related directly to any combination of the reactive scalars, but defined from the solution of a
conservation equation with an arbitrary diffusion coefficient Dz and appropriate boundary condi-
tions. Even though this approach allows to incorporate detailed diffusion effects into the flamelet
database, while maintaining consistency in the mixture fraction evolution equation, it relies on the
assumption that there exists a mixture fraction that is a conserved scalar and eliminates detailed
diffusion by having the diffusion coefficient Dz. That the existence of such a mixture fraction
is questionable has been shown for example by Sutherland [179]. Quantifications of detailed
diffusion in experiments of turbulent, non-premixed jet flames of H2 and CO2 [170] were also
performed with the help of elemental mixture fractions, the definition of which uses elemental
mass fractions similar to Eq. (5.27), but with one particular element, the mixture fraction is based
on. Other types of elemental mixture fractions were used for example by [5, 11]. However, the
quantification of detailed diffusion that these mixture fractions provide is not unique as shown by
[179] but depends essentially on the element, the elemental mixture fraction is based on. Con-
trarily, the present formulation, Eq. (5.27), has the advantage not to depend on such an explicit
choice.

5.3.4 Steady flamelet solutions

After initialization with the solution from infinitely fast chemistry, Eqs. (5.10) to (5.12) are
integrated with sixth-order central schemes in space and a third-order Runge-Kutta scheme in
time up to the attainment of a steady state. The distinction in scalar dissipation rate between the
single flamelets is caused by the domain length L. Dirichlet boundary conditions are imposed at
the ends of the domain. They correspond to the free stream values of the shear layer computation.
It can be seen from Eq. (5.12) that for ∂z/∂t = 0 each steady flamelet solution is associated with
a single, constant value of the mixture fraction diffusion:

ψ = ραz
∂z

∂x
(5.30)

Using the definition of the scalar dissipation rate, Eq. (5.5), the relation between ψ and χ is given
by

ρχ =
ψ2

ραz
(5.31)

from which we can define an average scalar dissipation rate for each flamelet,

χ0 =
ψ

ρ0L
, (5.32)

by assuming ψ ≈ ρ0αz/L, which implies an averaged scalar gradient of 1/L and an averaged
density ρ0.

As the mixture fraction z is a monotonic function of the spatial coordinate x, the inverse function
x (z) can be obtained and used to remap all flamelet variables to the mixture fraction z. This is
done in Figs. 5.1 to 5.4 for the mass fractions of H2, H2O, OH and the temperature for various
flamelets which differ by a variation of the domain length L. Especially in Figs. 5.1 and 5.4,
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Figure 5.1: Flamelet profiles of YH2 with dif-
ferent χ0, mapped to mixture fraction space,
+: χ0 = 146.4s−1, ×: χ0 = 173.5, ∗:
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Figure 5.2: Flamelet profiles of YH2O with dif-
ferent χ0, mapped to mixture fraction space,
symbols as in Fig. 5.1
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Figure 5.3: Flamelet profiles of YOH with dif-
ferent χ0, mapped to mixture fraction space,
symbols as in Fig. 5.1
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Figure 5.4: Flamelet profiles of T/T0 with dif-
ferent χ0, mapped to mixture fraction space,
symbols as in Fig. 5.1

a flamelet with χ0 higher than the extinction limit is clearly visible. It has a lower temperature
profile than the others, a linear profile for YH2 and no H2O and OH . Within the flamelet library,
we use the assumption of pure mixing between the fuel and the oxidizer stream for all profiles
with χ0 larger than the extinction limit. Fig. 5.1 shows that for χ → 0, the profile of YH2

approaches asymptotically a profile that would be expected for infinitely fast chemistry, i.e. one
with YH2 ≈ 0 for values of z smaller than the stoichiometric value (between z = 0.2 and z = 0.3

for the flamelets depending on the overlapping of the oxygen and the hydrogen mass fraction
profiles) and a linear regime for larger values of z. The maximum values of YH2O, YOH and T/T0

increase with decreasing χ0.

The final flamelet library consists of tables with the relationships

Yα = Yα (z, χ0) , ω = ω (z, χ0) . (5.33)

An example is shown in Fig. 5.5. With respect to the asymptotic behaviour for χ0 → 0 visible
from the flamelet quantities (Figs. 5.2 to 5.4), we use the profile of the flamelet with the lowest
χ0 that converged within reasonable time for all smaller values of χ0.

5.4 Test cases

The configuration of the mixing layers that are computed and analyzed in this chapter corresponds
to the one of case inf-0.15 in Chapter 3. It is described in detail in Sect. 3.3. The resolution is
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Figure 5.5: Tabulation of YOH in the coordinates χ0 in [s−1] and z

the same as for the case LES-inf-0.15-4 in Chapter 4: 192 points in the streamwise direction,
48 in the spanwise direction and 108 points in the direction of the mean shear. The mixing
layer is simulated twice: One time using a flamelet database computed with diffusion fluxes
Y Vαx and a heat flux qx including Soret and Dufour effect, as well as multicomponent diffusion
coefficients, Dαβ (cf. Eqs. (2.8) to (2.10)) and another time without these effects, but with a
Hirschfelder-Curtiss approximation [74] for the diffusion coefficients (cf. Eqs. (5.23) to (5.25)).
The first database is referred to as dd (detailed diffusion) in the following and the second one
as sd (simplified diffusion). It is evident that the diffusion fluxes and the heat fluxes in the LES
(denoted by LES-dd and LES-sd) have to be computed with the same diffusion model as used in
the corresponding flamelet database.

To be consistent with the LES with infinitely fast chemistry in Chapter 4, the LES with finite-
rate chemistry are initialized by turbulent flow fields from the DNS with infinitely fast chemical
reactions, which are interpolated onto the coarser LES grid and filtered with a tophat filter, the
filter width of which is the LES grid spacing. This is done at a non-dimensional time τω = 290

and therefore well before the beginning of the self-similar states (cf. Sct. 3.4.2).

The constants in the gradient models for (z2)sg and χ̃ are set to the same values that have been
found suitable during a priori tests with infinitely fast chemistry (cf. Sect. 4.3), namely CGR

z =

0.26 and CGR
χ = 0.06.

5.5 Results and analysis

5.5.1 Flamelets with detailed and simplified diffusion

In this section, steady flamelet profiles computed with the flamelet equations (5.10) to (5.12) and
different diffusion approximations (sd and dd) are compared to each other.

Figures 5.6 to 5.9 show a comparison of the source term, two species mass fractions and the
temperature at two levels of χ0. The source term ω of the dd flamelet is bigger than the source
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Figure 5.6: Flamelet profiles of ω in [109 · Jm−3s−1], �, dashed: sd, χ = 88.4s−1, �, solid: dd,
χ = 87.1s−1, �, dashed: sd, χ = 7.7s−1, �, solid: dd, χ = 7.7s−1

term of the corresponding sd flamelet for mixture fraction values smaller than z ≈ 0.3. ω is
directly related to the diffusion fluxes by

ω = −
∑

α

hαωα = −
∑

α

hα
∂

∂x
(ρYαVαx) , (5.34)

which becomes evident when setting the RHS of Eq. (5.11) to zero for the stationary state.
Therefore, differences in the diffusion fluxes directly imply different source terms. An analytical
determination of the location of the maximum for the source term in z-space is not possible due
to the complicated relation between the diffusion fluxes, the mixture fraction and its diffusion
coefficient αz by Eq. (5.29). It would have been a welcome mathematical proof for the fact that
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Figure 5.7: Flamelet profiles of YH2O, lines and symbols as in Fig. 5.6
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Figure 5.9: Flamelet profiles of T/T0, lines and symbols as in Fig. 5.6

the peak position of ω is located to the left of the stoichiometric mixture fraction as seen in Fig.
5.6.

In agreement with the behaviour of the source term, the values of YH , YH2O and the temperature
for flamelets with sd are lower than the ones for flamelets with dd for small values of z. For higher
values of z, there are higher temperatures and there is more H for the flamelets with simplified
diffusion. The mass fraction of H2O is nearly the same for dd and sd in the fuel-rich region. The
reason for this behaviour is that the Soret and Dufour effects on a species (here H2O) become
particularly intense where the temperature gradient is high (here on the oxygen-rich side). While
the location of the peak value of ω is rather uninfluenced by the diffusion model, it is shifted
to higher values for sd than for dd in the other profiles (YH2O, YH and T/T0). Similar to the
source term, the peak values of YH and YH2O are higher in the dd flamelets. The peak value of
the temperature, however, is nearly the same for dd and sd, but the peak is found at a different
location.

A further difference between the two databases is found in the extinction limit. In dd, it is at a
χ0-value which is about 45% higher than the extinction value of sd (χext = 192 s−1 for dd vs.
χext = 132 s−1 for sd for our configuration).

Other authors noted similar influences of different diffusion models but direct comparisons with
our results are not possible as the other authors compare different models without thermal diffu-
sion [138] or as their models involve assumptions of constant Lewis numbers or constant diffu-
sivities [34, 119] which are avoided in our simulations.

5.5.2 Evaluation of the LES results

In this section, the LES method is validated by comparing LES with DNS results (from case
DNS-inf-0.15 in Chapter 3) that have been interpolated to the coarser grid and filtered. Even if
the DNS uses a simplified diffusion model (constant Schmidt number Sc = 0.7) and infinitely fast
chemistry (one-step irreversible reaction), mean quantities related to the velocity field and large
scale structures are expected to be similar. To confirm this, instantaneous fields and temporally
and spatially averaged quantities from the DNS and the LES with dd and sd are compared with
each other.

Figure 5.10 shows the one-dimensional spectrum of the streamwise velocity component, u1/∆u,
at the beginning of the self-similar state, with the normalized wavenumber k1 in the streamwise
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Figure 5.10: One-dimensional, streamwise spectrum of u1/∆u at the beginning of the self-similar
state, solid: LES-dd, dotted: DNS

direction. In an ideal case, the spectra of the LES should follow the DNS spectra up to the cut-off
wavenumber. This is the case for the spectrum shown in Fig. 5.10. No spurious accumulation of
energy in the highest resolved wavenumbers is visible.

Figures 5.11 and 5.12 show profiles of the Favre averaged streamwise velocity and the turbulent
kinetic energy, k = 0.5〈uiui〉f . One can see that the LES and filtered DNS profiles match nearly
perfectly which gives evidence that the LES method performs well. For other mean quantities,
like temperature and density (Figs. 5.13 and 5.14), which are more related to the chemistry
and therefore to the combustion model, differences between DNS, LES-dd and LES-sd arise:
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Figure 5.11: Favre averaged streamwise velocity, normalized by ∆u, solid: LES-dd, dashed:
LES-sd, solid with symbols: DNS interpolated to the LES grid and filtered
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Figure 5.13: Averaged temperature, normalized by T0, lines and symbols as in Fig. 5.11
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Figure 5.14: Averaged density, normalized by ρ0, lines and symbols as in Fig. 5.11

Since the maximum temperatures in the flamelets with detailed chemistry at all χ0 are lower than
the maximum temperature resulting from infinitely fast chemistry (see Sect. 5.3), the peak of
the averaged temperature is also higher for the DNS than for the LES and the minimum of the
averaged density is consequently lower. The differences between the cases LES-dd and LES-
sd come from differences in the flamelet temperature profiles, but also from differences in the
extinction behaviour: The scalar dissipation rate at which extinction happens is lower for sd
than for dd (see Sect. 5.5.1), why there is more colder, extinguished fluid in LES-sd. As a
consequence, the averaged temperature in this LES is slightly lower and the density higher than
in the case LES-dd.

Figure 5.15 presents instantaneous temperature fields LES-sd and the DNS. Such a comparison
is quite illustrative, in particular since the LES has been started from an interpolated and filtered
DNS field. Figure 5.15 shows that the large-scale structures in both cases are very similar, being
successfully captured by the LES method. Nevertheless, differences are present. This can be seen

Figure 5.15: Instantaneous temperature fields at the beginning of the self-similar state, x1-x3-
plane in the middle of the computational domain, left: LES-sd, right: DNS, black line: isoline at
z = 0.3
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Figure 5.16: Instantaneous fields of YH2O at the beginning of the self-similar state, x1-x3-plane
in the middle of the computational domain, left: LES-dd, right: LES-sd

Figure 5.17: Instantaneous field of the scalar dissipation rate, normalized by ∆u/δω, at the be-
ginning of the self-similar state, x1-x3-plane in the middle of the computational domain, left:
LES-dd, right: LES-sd

for example by comparing the isoline at z = 0.3 which is the stoichiometric line and therefore
the location of the flame and the highest temperature in the DNS. For this simulation, the isoline
shows indentations on a finer scale than for the LES. Furthermore, the temperature field of the
LES is more blurred than the one of the DNS due to the coarser resolution.
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Figure 5.18: Averaged mass fraction of H2O, solid: LES-dd, dashed: LES-sd
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182 5. LES OF SHEAR LAYERS WITH CHEMICAL KINETIC AND DETAILED DIFFUSION EFFECTS

x3/δω

〈Y
H
〉

1.510.50-0.5-1-1.5

0.0003

0.00025

0.0002

0.00015

0.0001

5e-05

0

Figure 5.20: Averaged mass fraction of H , lines as in Fig. 5.18

An agreement concerning the size and shape of large-scale structures can also be observed when
comparing instantaneous fields of LES-dd and LES-sd, e.g. ỸH2O in Fig. 5.16. The dark spots
within the shear layer are regions where no reaction is taking place due to a scalar dissipation rate
which is above the extinction limit. Figure 5.17 shows these scalar dissipation rates in white color,
computed using the gradient model. The intermittent nature of χ̃ is clearly visible with the high
scalar dissipation rates being organized in sheet-like structures. As the extinction limit for dd was
found to be higher than that for sd, the white regions and dark spots are more pronounced in the
right images of Figs. 5.17 and 5.16, respectively. This means that simple diffusion mechanisms
promote extinction.

Regarding spatially and temporally averaged LES profiles, some features distinguishing dd from
sd that have been detected when comparing the laminar flamelet profiles are still present. Others
are smeared out by the turbulent fluctuations and the averaging procedure. One example, ỸH2O,
is shown in Fig. 5.18: The peak is lower for sd which is also the case for the flamelet profiles
(Fig. 5.7), whereas a shift of the position of the peak can hardly be observed in Fig. 5.18. With
z = 1 being located on the left-hand side of Fig. 5.20 (lower stream), the agreement of the two
profiles on this side corresponds to the one on the right-hand side in Fig. 5.7. The shift of the
peak is also weak when plotting the averaged mass fraction over the averaged mixture fraction as
done in Fig. 5.19. These profiles have a rounder shape than the corresponding flamelet profiles.
Statements similar to the ones for the profiles of YH2O (Fig. 5.18) can be made for the profiles of
YH (Fig. 5.20). A lowering of the peak is also present here, while the shift visible in the flamelet
profiles (Fig. 5.8) is smeared out to a great extent.

Differences between dd and sd are also evident when comparing higher central moments of the
mass fractions, e.g. the variances in Figs. 5.21 and 5.22. These differences can be traced back to
differences in the terms of the transport equation of 〈ρY ′′2α 〉. This equation can be derived from
the mass fraction transport equation

∂Yα
∂t

+ ui
∂Yα
∂xi

=
1

ρ

(
− ∂

∂xi
(ρYαVαi) + ωα

)
(5.35)

and the continuity equation by combining both linearily as described by their time derivatives:

∂ρYαYα
∂t

= 2ρYα
∂Yα
∂t

+ Y 2
α

∂ρ

∂t
. (5.36)

A subsequent split-up into mean values and fluctuations, averaging and subtraction of the corre-
sponding equations for the mean quantities results in the transport equation for 〈ρY ′′2α 〉 in which
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Figure 5.21: Variance of YH2O, normalized by 〈YH2O〉2max, lines as in Fig. 5.18
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Figure 5.22: Variance of YH , normalized by 〈YH〉2max, lines as in Fig. 5.18

two terms depend explicitly on the diffusion fluxes: The diffusion term,

∆α = −2
∂

∂xi
〈ρYαY ′′α Vαi〉 (5.37)

and the dissipation rate,

εα = 2〈ρYαVαi
∂Y ′′α
∂xi
〉. (5.38)

Results, which are not shown here, prove that the first one is negligible compared to the latter.
The dissipation rate is presented for YH2O and YH in Figs. 5.23 and 5.24, respectively. It can be
seen that the magnitude of the dissipation rate is larger for the simulations with sd. For H2O, it is
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Figure 5.23: Dissipation term εH2O, Eq. (5.38), in the scalar variance transport equation of YH2O,
normalized by ρ0∆u〈YH2O〉2max/δω, lines as in Fig. 5.18
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Figure 5.24: Dissipation term εH , Eq. (5.38), in the scalar variance transport equation of YH ,
normalized by ρ0∆u〈YH〉2max/δω, lines as in Fig. 5.18

even about double the size of that for the simulation with dd. This means that the flame dynamics
is different due to the diffusion model. For the temperature variance, shown in Fig. 5.25, there
is no such difference as for the mass fraction variances when results obtained with detailed (dd)
and simplified diffusion mechanisms (sd) are compared. Correspondingly, the influence of the
diffusion model on the terms in the transport equation for 〈ρT ′′2〉 is expected to be small. This
transport equation can be derived starting from the transport equation of the temperature

∂T

∂t
+ ui

∂T

∂xi
=

1

ρcv

[
−p∂ui

∂xi
+ φ− ∂qi

∂xi
−
∑

α

(
hα −

R
Wα

T

)(
−∂ρY Vαi

∂xi
+ ωα

)]
. (5.39)

A linear combination of this equation with the continuity equation according to

∂ρTT

∂t
= 2ρT

∂T

∂t
+ T 2∂ρ

∂t
, (5.40)

and a similar procedure as described above leads to the transport equation for 〈ρT ′′2〉. There are
two terms in this equation that depend explicitly on the diffusion model: The term

Tq = −2〈T
cv

∂qi
∂xi
〉 − 2 (〈T 〉 − 2〈T 〉f) 〈

1

cv

∂qi
∂xi
〉 (5.41)

that is related to the heat flux and the term

Tα = 2〈T
cv
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)
∂ρYαVαi
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(
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∂ρYαVαi
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〉

(5.42)
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Figure 5.25: Variance of the temperature, 〈T ′′2〉f , normalized by 〈T 〉2max, lines as in Fig. 5.18
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that depends directly on the diffusion fluxes. Tq is small and need not be further discussed. Tα is
shown in Fig. 5.26 and confirms the expectation that it is not of much importance for this term
which of the two diffusion models is used.

Comparing the different sensitivities that 〈Y ′′2α 〉 and 〈T ′′2〉 and their transport equation terms
reveal with respect to the diffusion models used, it can be concluded that a judgement whether
detailed diffusion is important depends on the quantity under investigation and is not possible
based on just arbitrary flow variables.

5.6 Summary and conclusions

LES of turbulent temporal shear layers with hydrogen combustion taking into account detailed
chemical reactions and two different levels of diffusion approximation have been performed. The
filtered heat release term has been determined with the help of pre-computed steady flamelet
databases while all other subgrid-scale effects have been covered by an explicit filtering approach
based on approximate deconvolution. A comparison with DNS data obtained using infinitely
fast chemistry shows that this method is able to capture the large scale structures and averaged
primitive flow variables successfully.

One flamelet database has been computed with multicomponent diffusion and the Soret and Du-
four effects while in the other these effects have been neglected and a Hirschfelder-Curtiss ap-
proximation for the diffusion coefficients has been used. Both flamelet databases account for the
extinguished state however with differences in the scalar dissipation rate at the extinction limit.
This leads to differently pronounced extinguished zones in the LES. Further differences between
the laminar flames resulting from different diffusion models have been found in the mass frac-
tion, temperature and heat release profiles. Some of these differences are also present in the LES
results, e.g. a lowering of the peak values of product and intermediate species mass fractions by
simplified diffusion, while others are partly or completely smeared out by the turbulent fluctua-
tions. Other quantities like the temperature variance proved to be rather insensitive towards the
diffusion model. This is in contrast to the strong influence of the diffusion model on the scalar
variances of the species mass fractions.



6 Conclusions and outlook

In this work, DNS and LES of inert and reacting, temporally evolving, turbulent shear layers
have been performed. The DNS have been done at three different convective Mach numbers
(Mc = 0.15, 0.7 and 1.1), corresponding to different levels of compressibility. The focus of their
analysis has been on the consequences of compressibility and heat release for turbulent transport
and scalar mixing. The emphasis of the LES study at low convective Mach number has been on
the validation of a deconvolution approach in the form of a single explicit filtering step [106] as
LES subgrid model and its performance in combination with different modeling approaches for
the chemical source term. While the DNS have taken into account only infinitely fast chemistry,
the LES have also included finite-rate chemistry: Multistep Arrhenius chemistry has been adopted
in the framework of a flamelet model, allowing also to consider detailed diffusion mechanisms. In
this context, results with two different approximations of the species diffusion fluxes and the heat
flux vector have been compared: One LES has been performed with multicomponent diffusion
and the Soret and Dufour effects, while in the other, these effects have been neglected and a
Hirschfelder-Curtiss approximation for the diffusion coefficients has been used.

The relation of the present work to practical applications can be seen when considering, for
example, ram- and scramjet engines. In both, the fuel, mostly hydrogen, is injected into the
combustion chamber, and mixing layers develop between the fuel stream and the surrounding
air flow. Thus, non-premixed combustion takes place, at subsonic speed in the ramjet and at
supersonic speed in the scramjet. Since it is known that the combustion becomes less efficient the
higher the Mach number is, a detailed understanding of the underlying mechanisms, in particular
concerning the interaction of compressibility and heat release is required. The aim of this work
has been to provide new insight into those phenomena.

Since there is a separate conclusion in every chapter, only the major highlights of the work are
repeated in the following. They are assigned to the five basic questions that have been raised in
the introduction (Chapter 1) to this thesis.

The first question was related to inert mixing layers at different Mc (Chapter 2):

• What are the effects of compressibility on turbulence and scalar mixing within inert mixing
layers?

The answer can now be given as: With increasing Mc, the growth rate of the mixing layers re-
duces. This is related to the fact that the entrainment mechanism, i.e. the acquisition of external
fluid, is hampered by compressibility, which has been shown with the help of fluid particles en-
tering the mixing layer from outside. The smaller mixing layer growth rate is a consequence of
reduced velocity fluctuations, i.e. reduced turbulent kinetic energy (TKE) and reduced Reynolds
stresses. Their reduction with compressibility is traced back to a decrease of the production
rate of the streamwise Reynolds stress and a reduction of the pressure-strain correlations. These



6 . CONCLUSIONS AND OUTLOOK 187

correlations steer the redistribution mechanism of turbulent fluctuating energy from the stream-
wise Reynolds stress component to the spanwise and transverse components. The pressure-strain
correlations have been shown to play a crucial role concerning the stabilizing effect of compress-
ibility. Changes in the fluctuating pressure field are mainly contributing to their reduction with
increasing Mc. Instantaneous flow quantities, e.g. scalar (species mass fraction) distributions,
further illustrate the consequences that compressibility has on the turbulence fluctuations: The
fields are clearly smoothed, and an increase in the visible length scales of the wrinklings at the
turbulence interface is observed. Smaller mass fraction variances are related to this. At low con-
vective Mach number, more fluid parcels with scalar and vorticity values that are characteristic
for freestream fluid can be found within the mixing layer, thus leading to higher intermittency.
The engulfment events that are responsible for the presence of such fluid parcels become rarer
when Mc rises. It has to be considered also that their contribution to the mixing layer growth
rate is already small at low convective Mach numbers. Therefore, all inert mixing layers share
the property that the acquisition of external fluid occurs mostly at the mixing layer boundaries.
What increasing compressibility is concerned, it can be concluded that it is not benefitial for the
turbulent mixing process.

The next two questions have been addressed in Chapter 3 of this work, which is dedicated to the
infinitely fast reacting mixing layers at different Mc:

• How do the effects of compressibility change when heat release as a consequence of com-
bustion is present?

• What effects does heat release have at different convective Mach numbers, i.e. different
levels of compressibility?

The effects of compressibility on the momentum thickness growth rate and on most other statis-
tical quantities (TKE, scalar variances etc.) of reacting mixing layers are not as strong as for the
inert mixing layers. They are often masked by the much stronger consequences of heat release.
Nevertheless, a reduction of mixing layer growth and turbulence activity is also observed when
increasing Mc in the presence of heat release.

Heat release mostly acts in the same direction as compressibility, thus reducing turbulent fluc-
tuations and mixing layer growth rates. The reduction is stronger at low Mc. Similar to com-
pressibility, heat release has a smoothening effect on instantaneous flow fields, e.g. scalar fields
and their isosurfaces. A closer investigation reveals that most consequences of heat release, in
particular at low convective Mach number, can be traced back to the strong decrease in mean
density as a consequence of the high temperatures in the vicinity of the flame sheets. Thus, these
effects can be called ’direct mean density effects’, which is not possible regarding compressibil-
ity effects. As for the reduction of the momentum thickness growth rate with compressibility, its
reduction with heat release can also be related to a decrease of the pressure-strain correlations
due to changes in the fluctuating pressure field. Solving the Poisson equation for the pressure
fluctuations with the help of a Green function, after having checked the unimportance of acoustic
effects, it has been shown that the reduction in mean density by heat release is mainly responsible
for the reduction of the pressure fluctutations. Furthermore, the statement that acoustic effects are
negligible turned out to be true at all convective Mach numbers under investigation. This has also
been the case for the inert mixing layers. The explicit heat release term in the Poisson equation
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for the pressure fluctuations when reaction takes place and affects density fluctuations, proved
to play a rather minor role. Density and temperature fluctuations increase in the reacting mixing
layers compared to the inert ones. These fluctuations are strongly correlated with each other and
are mostly of entropic and not of acoustic nature. In accordance with a reduction of scalar fluctu-
ations and intermittency, engulfment events, which have already been observed to be rather rare
for the inert mixing layers, loose further importance in reacting layers. Fluid particles entering
from the freestreams are carried along for a longer time at the edges of the mixing layer before
they acquire vorticity and scalar concentrations that are typical of mixed fluid. This supports the
general conclusion that heat release, similar to compressibility, is detrimental for mixing.

The next question concerns the LES of mixing layers at Mc = 0.15 which have been performed
besides the DNS (Chapter 4 and 5):

• Is a realistic LES of reacting mixing layers possible with combinations of ADM (in the
form of a single explicit filtering step) and different models for the chemical source term?

It has been shown that the implicit modeling of the subgrid terms by the filtering approach can be
successfully combined with different models for the chemical source term taking into account an
infinitely fast, irreversible global reaction or, alternatively, multistep Arrhenius chemistry with a
flamelet approach. Direct comparisons with (interpolated and filtered) DNS data have revealed
that both, flow dynamical quantities (e.g. mean velocity and turbulent kinetic energy), as well
as thermodynamic quantities (e.g. mean density, mean temperature and their rms values) are
captured well: While there is a good agreement between the infinitely fast reacting DNS and the
LES with the same chemistry model, the LES with finite-rate chemistry shows differences which
have been expected. They concern mainly thermodynamic quantities and manifest themselves in
a lower mean temperature, higher mean density and lower temperature and density fluctuations.

The last question concerns the LES with finite-rate chemistry and different models for diffusion
fluxes and heat flux (Chapter 5):

• What changes occur in mixing layers at low convective Mach number when taking into
account finite-rate chemistry and different approximations for diffusion mechanisms?

Before analyzing the LES results with the two different diffusion models, the corresponding lam-
inar flamelet profiles were compared with each other. Both flamelet databases account for the
extinguished state however with differences in the value of the scalar dissipation rate at the ex-
tinction limit: The flamelets with simplified diffusion (no Soret and Dufour effects, Hirschfelder-
Curtiss approximation for the diffusion coefficients) extinguished at a lower scalar dissipation
rate than the ones with detailed diffusion (Soret and Dufour effects, multicomponent diffusion
coefficients). Furthermore, differences mainly in peak values and peak positions of mass frac-
tion, temperature and heat release profiles have been observed. Some of these differences are also
present in the averaged LES data, e.g. a lowering of the peak values of product and intermediate
species mass fractions by simplified diffusion, while others are partly or completely smeared out
by the turbulent fluctuations. Some quantities like the temperature variance proved to be rather
insensitive towards the diffusion model. The lower extinction limit of the flamelets with simpli-
fied diffusion has direct consequences for the corresponding LES, in which extinguished zones
are larger and thus the mean density higher than in the LES with detailed diffusion.
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One interesting possibility for future work, therefore, is to perform DNS of mixing layers with de-
tailed chemistry and detailed diffusion. Since this results in the necessity of very small time steps
when using an explicit time integration schemes, like the third-order Runge Kunge Kutta scheme
in this work, the use of a semi-implicit scheme as given in [121] should be envisaged. With the
results, a direct comparison between LES and DNS using the same detailed reaction mechanisms
and diffusion models would be possible. Another topic that could be worked on in the future
concerns an improvement of the flamelet model: Either an unsteady flamelet model [136] or the
use of a progress variable [131] are imaginable. This would allow to capture unsteady phenom-
ena like extinction and re-ignition processes, also with a view to more complicated configurations
than the temporal mixing layer.



A Appendix: The characteristic form of
the Navier-Stokes equations

A.1 The one-dimensional equations

Formulating the Navier-Stokes equations with the help of characteristics requires to write the
transport equations for the pressure p, the velocity components ui, the entropy s and the species
mass fractions Yα in a wave-like form. For a better understanding, this is first done for a one-
dimensional case, involving only one velocity component, u.

The thermodynamic state of a gas, which consists only of one component or species is determined
by two state variables. Therefore, one can write, for example for the pressure p = p (ρ, s).
However, if the gas is a mixture of various components, the mass fractions of the individual
species are involved as well: p = p (ρ, s, Yα). This leads to the total differential of the pressure:

dp = Pρdρ+ Psds+
∑

α

PαdYα (A.1)

with the partial derivatives as coefficients:

Pρ =

(
∂p

∂ρ

)

s,Yα

Ps =

(
∂p

∂s

)

ρ,Yα

Pα =

(
∂p

∂Yα

)

ρ,s,Yβ 6=α

(A.2)

They depend on the kind of gas and are computed in Sect. A.4 for an ideal gas mixture. In a
system with fluid motion, the substantial derivative replaces the total differential, viz:

Dp

Dt
= Pρ

Dρ

Dt
+ Ps

Ds

Dt
+
∑

α

Pα
DYα
Dt

(A.3)

When partially using D
Dt

= ∂
∂t

+ u ∂
∂x

, it follows that

∂p

∂t
+ u

∂p

∂x
− Pρ

(
∂ρ

∂t
+ u

∂ρ

∂x

)
− Ps

Ds

Dt
−
∑

α

Pα
DYα
Dt

= 0. (A.4)

Using the continuity equation (2.1),

∂ρ

∂t
+ u

∂ρ

∂x
= −ρ∂u

∂x
, (A.5)

leads to
∂p

∂t
+ u

∂p

∂x
+ Pρ · ρ

∂u

∂x
− Ps

Ds

Dt
−
∑

α

Pα
DYα
Dt

= 0. (A.6)

Multiplying this equation with 1

ρ
√
Pρ

and adding or subtracting, respectively, the momentum

equation (2.2) multiplied by 1
ρ

in the form

ρ

(
∂u

∂t
+ u

∂u

∂x

)
+
∂p

∂x
− ∂τ

∂x
= 0 (A.7)
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a wave-like form results:
(

1

ρ
√
Pρ

∂p

∂t
+
∂u

∂t

)
+
(
u+

√
Pρ
)( 1

ρ
√
Pρ

∂p

∂x
+
∂u

∂x

)

− 1

ρ

∂τ

∂x
− Ps
ρ
√
Pρ

Ds

Dt
−
∑

α

Pα
ρ
√
Pρ

DYα
Dt

= 0

(A.8)

(
1

ρ
√
Pρ

∂p

∂t
− ∂u

∂t

)
+
(
u−

√
Pρ
)( 1

ρ
√
Pρ

∂p

∂x
− ∂u

∂x

)

+
1

ρ

∂τ

∂x
− Ps
ρ
√
Pρ

Ds

Dt
−
∑

α

Pα
ρ
√
Pρ

DYα
Dt

= 0

(A.9)

The expression ’wave-like form’ is justified because in the case of a friction-less flow (isentropic
flow) of a one-component gas it follows from (A.8) und (A.9)

(
1

ρ
√
Pρ

∂p

∂t
+
∂u

∂t

)
+
(
u+

√
Pρ
)( 1

ρ
√
Pρ

∂p

∂x
+
∂u

∂x

)
= 0 (A.10)

(
1

ρ
√
Pρ

∂p

∂t
− ∂u

∂t

)
+
(
u−

√
Pρ
)( 1

ρ
√
Pρ

∂p

∂x
− ∂u

∂x

)
= 0 (A.11)

which is equivalent to the transport equations of a quantity Φ which is transported by a wave with
speed c, (

∂

∂t
± c ∂

∂x

)
Φ = 0, (A.12)

and satisfies the one-dimensional wave equation,

∂2Φ

∂t2
− c2∂

2Φ

∂x2
=

(
∂

∂t
− c ∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
Φ = 0. (A.13)

The transport equation of a scalar in a fluid flow is of the same structure as (A.12). The speed c
is replaced by the fluid velocity u. Therefore, the transport equation of the entropy can be written
for an isotropic case as:

∂s

∂t
+ u

∂s

∂x
= 0 (A.14)

As the mass fractions Yα are scalars as well, it follows when chemical reactions are absent:

∂Yα
∂t

+ u
∂Yα
∂x

= 0 (A.15)

If considering heat conduction, diffusion, friction and chemical reactions, source terms, σ and σα,
have to be added:

∂s

∂t
+ u

∂s

∂x
= σ (A.16)

∂Yα
∂t

+ u
∂Yα
∂x

= σα (A.17)
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These source terms are further determined in Sect. A.3. Adding and subtracting the Eqs. (A.8)
and (A.9) to and from each other, results in the system of the one-dimensional Navier-Stokes
equations in a wave-like form,

∂p

∂t
= −ρ

√
Pρ

2

(
X+ +X−

)
+ Psσ +

∑

α

Pασα

∂u

∂t
= −1

2

(
X+ −X−

)
+

1

ρ

∂τ

∂x
∂s

∂t
= −Xs + σ

∂Yα
∂t

= −Xα + σα,

(A.18)

with the wave amplitudes

X± =
(
u±

√
Pρ
)( 1

ρ
√
Pρ

∂p

∂x
± ∂u

∂x

)

Xs = u
∂s

∂x

Xα = u
∂Yα
∂x

(A.19)

The system can be completed by a transport equation for the temperature in order to circumvent
the determination of the temperature from a non-linear polynomial expression relating the entropy
with the temperature [66]. It is derived from a state relation T = T (p, s, Yα):

∂T

∂t
= Ts

∂s

∂t
+ Tp

∂p

∂t
+
∑

α

Tα
∂Yα
∂t

(A.20)

The coefficients are again partial derivatives,

Ts =

(
∂T

∂s

)

p,Yα

Tp =

(
∂T

∂p

)

s,Yα

Tα =

(
∂T

∂Yα

)

p,s,Yβ 6=α

, (A.21)

which are determined in Sect. A.4. It is obvious that when the temporal derivatives of pressure,
entropy and mass fractions are known from Eqs. (A.18), the temporal derivative of the temper-
ature can be computed from Eq. (A.20). Finally, the density can then be computed from the
equation of state, in the present case Eq. (2.5) for an ideal gas.

A.2 The three-dimensional equations in Cartesian coordinates

The way to derive the three-dimensional transport equations corresponds to the one followed in
Sect. A.1 for the one-dimensional equations. Therefore, only the result is given here with the
coordinates denoted as x1, x2 and x3 and the velocity components u1, u2 and u3:
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√
Pρ

2

(
X+ +X− + Y + + Y − + Z+ + Z−

)
+ Psσ +

∑

α

Pασα

∂u1

∂t
= −1

2

(
X+ −X−

)
− Y 1 − Z1 +

1

ρ

∂τ1j

∂xj
∂u2

∂t
= −1

2

(
Y + − Y −

)
−X2 − Z2 +

1

ρ

∂τ2j

∂xj
∂u3

∂t
= −1

2

(
Z+ − Z−

)
−X3 − Y 3 +

1

ρ

∂τ3j

∂xj
∂s

∂t
= −Xs − Y s − Zs + σ

∂Yα
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(A.22)

with
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)
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ρ
√
Pρ
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)
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∂s

∂x1
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∂s
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∂x3

Xα = u1
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∂Yα
∂x2

Zα = u3
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∂x3

(A.23)

A.3 The source terms in the transport equations

In order to determine the source terms σ and σα that appear in Eqs. (A.22) by relating them with
the heat flux vector qi, the stress tensor τij and the diffusion velocity Vαi, it is useful to start from
the transport equation for the internal energy:

ρ
De

Dt
= −p∂ui

∂xi
+ τij

∂ui
∂xj
− ∂qi
∂xi

(A.24)

This equation, valid for gas mixtures, is obtained when subtracting the momentum equation (2.2)
multiplied by the velocity component ui from the energy equation (2.3). As the continuity equa-
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tion (2.1) can be transformed to

p
∂ui
∂xi

= −p
ρ

(
∂ρ

∂t
+ ui

∂ρ

∂xi

)

= −p
ρ

Dρ

Dt
,

(A.25)

Eq. (A.24) can be reformulated as

ρ

(
De

Dt
− p

ρ2

Dρ

Dt

)
= τij

∂ui
∂xj
− ∂qi
∂xi

(A.26)

The left-hand-side (LHS) of this equation can rewritten with the help of the Gibbs fundamental
equation. This equation is for a gas mixture:

de+ pd

(
1

ρ

)
= Tds+

∑

α

µα
Wα

dYα (A.27)

with the chemical potentials µα of the species (see Sect. A.4). Thus, in a system with fluid
motions, the substantial derivatives are related by

De

Dt
− p

ρ2

Dρ

Dt
= T

Ds

Dt
+
∑

α

µα
Wα

DYα
Dt

. (A.28)

This is inserted into the LHS of Eq. (A.24). At the same time it is taken into account that it
follows from Eqs. (A.16) und (A.17) that

Ds

Dt
=
∂s

∂t
+ ui

∂s

∂xi
= σ

DYα
Dt

=
∂Yα
∂t

+ ui
∂Yα
∂xi

= σα.

(A.29)

Thus,

ρ

(
Tσ +

∑

α

µα
Wα

σα

)
= τij

∂ui
∂xj
− ∂qi
∂xi

(A.30)

from which an equation for the source term σ can be obtained:

σ =
1

T

(
1

ρ

(
τij
∂ui
∂xj
− ∂qi
∂xi

)
−
∑

α

µα
Wα

σα

)
(A.31)

The stress tensor τij is given by Eq. (2.6) and the heat flux vector qi by (2.10).

In order to determine the source terms σα, one starts with the transport equation of the species
mass fractions (2.4), the LHS of which is simplified with the help of the continuity equation (2.1):

∂ρYα
∂t

+
∂ρYαui
∂xi

= Yα
∂ρ

∂t
+ ρ

∂Yα
∂t

+ Yα
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∂Yα
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= ρ
∂Yα
∂t

+ ρui
∂Yα
∂xi

+ Yα

(
∂ρ

∂t
+
∂ρui
∂xi

)

= ρ
∂Yα
∂t

+ ρui
∂Yα
∂xi

= ρσα

(A.32)
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In the last step, Eq. (A.17) was used. Together with the RHS of the transport equation of the
species mass fractions (2.4), the final result for the source terms σα is:

σα = −1

ρ

∂

∂xi
(ρYαVαi) (A.33)

When taking into account chemical reactions, then

σα =
1

ρ

(
− ∂

∂xi
(ρYαVαi) + ωα

)
(A.34)

with the mass production rate of species α, ωα.

A.4 Specification of the transport equations for an ideal gas
mixture

In this section, the partial derivatives (A.2) and (A.21), which are necessary for the integration of
the transport equation, are evaluated for an ideal gas mixture.

Pressure and density are determined unambiguously by the density, the entropy and the species
mass fractions: p = p (ρ, s, Yα) and ρ (p, s, Yα). The partial derivative of the pressure with respect
to the density can be expressed with the help of the speed of sound c as:

Pρ =
∂p

∂ρ
= c2 = γ (T )RT (A.35)

γ (T ) = cp (T ) /cv (T ) is the ratio of the specific heat capacities cp (T ) und cv (T ) of the mixture
at constant pressure and volume, respectively. The derivative of the pressure with respect to the
entropy is transformed to:

Ps =
∂p

∂s
=
∂p

∂T
· ∂T
∂e
· ∂e
∂s

= ρR · 1

cv
· ∂e
∂s

(A.36)

In the last step, the ideal gas law (2.5) and the dependence of the internal energy on the tempera-
ture for constant mass fractions, de = cvdT was used. To determine its derivative with respect to
the entropy, the Gibbs fundamental equation (A.27) is taken into account, which is simplified for
constant density ρ and constant mass fractions to de = Tds. Thus, ∂e

∂s
= T and

Ps = ρR · 1

cv
· T =

p

cv
. (A.37)

To determine the partial derivative of the pressure with respect to each mass fraction, the Gibbs
fundamental equation is used again, this time written with the specific enthalpy h:

dh = Tds+
1

ρ
dp+

∑

α

µα
Wα

dYα (A.38)

Keeping the entropy and all but one mass fraction constant, dh = 1
ρ
dp + µα

Wα
dYα or dp =

ρ
(
dh− µα

Wα
dYα

)
is obtained. It follows that

Pα =
∂p

∂Yα
= ρ

(
∂h

∂Yα
− µα
Wα

)
= ρ

(
hα + cp

∂T

∂Yα
− µα
Wα

)
(A.39)
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as the specific enthalpy is a function of both, the mass fractions and the temperature: dh =

cpdT +
∑

α hαdYα. To compute the partial derivative of the temperature with respect to each
mass fraction, the dependence of the specific internal energy on the temperature and the mass
fractions is useful: de = cvdT +

∑
α eαdYα. Thus,

∂T

∂Yα
=

1

cv

(
∂e

∂Yα
− eα

)
. (A.40)

Together with the Gibbs fundamental equation (A.27), which is reduced to de = µα
Wα
dYα when

keeping the density and all mass fractions but one constant,

∂T

∂Yα
=

1

cv

(
µα
Wα
− eα

)
(A.41)

is obtained. The internal energy of each species, eα, can be computed from the species enthalpy
by eα = hα − R

Wα
T . Substituting Eq. (A.41) into Eq. (A.39), the result for the partial derivative

of the pressure with respect to each species is:

Pα = ρ

(
hα +

cp
cv

(
µα
Wα

− eα
)
− µα
Wα

)
(A.42)

The partial derivative of the temperature with respect to the entropy is given by:

Ts =
∂T

∂s
=
∂T

∂h
· ∂h
∂s

=
T

cp
(A.43)

Here, the relation dh = cpdT for constant mass fractions is used, as well as the Gibbs fundamental
equation (A.38) which is reduced to dh = Tds for constant pressure and constant mass fractions.
To determine the partial derivative of the temperature with respect to the pressure, dh = cpdT as
well as the Gibbs fundamental equation (A.38), this time for constant entropy and constant mass
fractions, namely dh = 1

ρ
dp, are needed:

Tp =
∂T

∂p
=
∂T

∂h
· ∂h
∂p

=
1

ρcp
(A.44)

The last partial derivative is the one of the temperature with respect to each species mass fraction.
Equation A.41 is not the relation that is asked for here, as it was obtained by keeping the density
constant. Instead, the pressure has to be kept constant. Together with the assumption of constant
entropy and all species but one mass fraction constant, the Gibbs fundamental equation (A.38) is
reduced to dh = µα

Wα
dYα or ∂h

∂Yα
= µα

Wα
. This is substituted into

∂T

∂Yα
=

1

cp

(
∂h

∂Yα
− hα

)
(A.45)

resulting from the dependence of the specific enthalpy on temperature and species mass fractions,
dh = cpdT +

∑
α hαdYα. The final result is

∂T

∂Yα
=

1

cp

(
µα
Wα

− hα
)
. (A.46)
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In the following, the chemical potentials µα, appearing in Eqs. A.31, A.42 and A.46 are deter-
mined for ideal gases. From the Gibbs fundamental equation, written for the free enthalpy G of a
gas mixture in a control volume V with the mole numbers nα of the individual components,

dG = −SdT + V dp+
∑

α

µαdnα, (A.47)

the relation

µα =

(
∂G

∂nα

)

p,T,nβ 6=α

(A.48)

is obtained. The free enthalpy of the mixture is given by

G = H − TS =
∑

α

nα (Hα − TSα) (A.49)

where H and S are the molar enthalpy and the molar entropy, respectively. H and S are the
entropy and the enthalpy, and n is the total mole number of the mixture in the control volume. In
Eq. (A.49), the entropy due to the mixing of the gas components is neglected. Only the entropies
of the individual gas components, Sα are taken into account. Computing the derivative of Eq.
(A.49), leads to

µα =

(
∂G

∂nα

)

p,T,nβ 6=α

= Hα − TSα. (A.50)

Thus, written in specific quantities, the chemical potentials are

µα = Wα (hα − Tsα) (A.51)

wherein the enthalpies hα and the entropies sα are computed as polynomials of the temperature
[66].

A.5 Non-reflecting boundary conditions

Besides the periodic boundaries used in the streamwise and spanwise directions, only non-reflecting
boundaries in the transverse direction are required for DNS and LES of temporally evolving shear
layers. Their treatment is facilitated by the particular wave-like formulation of the Navier-Stokes
equations (A.22). Wave amplitudes at the boundaries, the direction of which is into the computa-
tional domain, are set to zero. At the lower x3-boundary, it is

Z+ = 0, if u3 + c ≥ 0

Z− = 0, if u3 − c ≥ 0

Z1 = Z2 = Zs = Zα = 0, if u3 ≥ 0

(A.52)

and at the upper x3-boundary

Z+ = 0, if u3 + c ≤ 0

Z− = 0, if u3 − c ≤ 0

Z1 = Z2 = Zs = Zα = 0, if u3 ≤ 0.

(A.53)
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[141] Planché, O.H., Reynolds, W.C., 1992, A numerical investigation of the compressible re-
acting mixing layer, Report No. TF-56, Stanford University, Stanford, CA.

[142] Poinsot, T., Veynante, D., 2001, Theoretical and numerical combustion. R.T. Edwards.

[143] Pope, S.B., 1985, PDF methods for turbulent reactive flows, Prog. Energy Combust. Sci.
11, 119-192.

[144] Pope, S.B., 1990, Computations of turbulent combustion: progress and challenges, Proc.
Combust. Inst. 23, 591-612.

[145] Pope, S.B., 2000, Turbulent Flows, Cambridge University Press.

[146] Pope, S.B., 2004, Ten questions concerning the large-eddy simulation of turbulent flows,
New J. Phys. 6, 1-24.

[147] Ragab, S.A., Wu, J.L., 1989, Linear instabilities in two-dimensional compressible mixing
layers, Phys. Fluids A 1, 957-966.

[148] Red, R.C., Prausnitz, J.M, Poling, B.E., 1988, The properties of gases and liquids. McGraw
Hill.
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