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Abstract

The ever growing amount of transferred data and the constantly increasing expectance on re-
liability and performance in the Internet pose a fundamental problem for network designers.
Traditionally these problems have been tackled by overprovisioning link and router capacity to
ensure enough spare room. More recently however careful steering of traffic flows has been
deployed as a more sophisticated solution to this problem. This so called Traffic Engineering
is mostly done by manually configuration of network components to optimally distribute traffic
demands over the available resources. There is also ongoing research on automated traffic man-
agement using load adaptive routing algorithms to reduce manual intervention on the network.
Both approaches rely on the observation, that the size of traffic flows follows Zipf’s Law. This
implies that only a small number of flows are responsible for the vast majority of the overall
network traffic. Traffic Engineering as well as load adaptive routing try to exploit this property
by identifying a small set of traffic flows and, by treating this small set in a special way, to con-
trol the flow of data in a network. Unfortunately the high variability of Internet traffic leads to
the problem that the set of these few large traffic flows is not constant over time. Some of the
traffic flows will cease to exist, new ones appear and existing ones change their size drastically
over time. The consequence of this variability is the need for periodic reclassification and in-
tervention into the network configuration. For load adaptive routing this implies the threat of
instability through route oscillation.

In this work we investigate the nature as well as the causes of the volatility of Internet flows
and their impact on traffic engineering and load adaptive routing. We base our study on packet
level and NetFlow traces, covering access networks and backbones of scientific as well as com-
mercial networks and propose a methodology for studying persistence aspects of large Internet
flows. We show the feasibility of using coarse grained NetFlow data to perform this kind of
analysis. Using this methodology we study persistency aspects of large flows on multiple time
resolutions and flow aggregations. Our analysis shows a significant stability of flows with high
average flow rates, but that there is a high amount of variability in the set of the largest flows.
We then use fine grained packet level traces to understand these persistency aspects. We identify
the arrival of new and the departure of active flows and rate fluctuations for aggregated flows
as the two main contributors of the observed inpersistency. We then introduce a methodology
to automatically derive network and protocol parameters from traces of tightly controlled Web
page retrievals in order to configure our simulations and show that the base components of our
simulation environment, the ns-2 network simulator and the NSWeb traffic generator, are able
to provide us with the needed accuracy and configurability. We then introduce our simulation
environment and demonstrate, that we are able to reproduce the persistency properties and the
variability of large network flows for the evaluation of traffic management approaches in simu-
lations.
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Figure 1.1: Zipf’s Law across 10 successive time bins with rank sequences for three flows depicted
by connecting the flow ranks on different size-rank curves. The clearly visible linear relation between
logarithms of flow rates and ranks, one for each of 10 consecutive time intervals, show that Zipf’s Law
for flow rates old, even over time.

1.1 Motivation

The Internet is becoming more and more important infrastructure for traditional data services as
well as for new applications like Internet telephony and multimedia delivery platforms. The in-
creasing reliance on data networks in conjunction with a growing availability of high bandwidth
access at the edge require more and more powerful core networks to satisfy increasing band-
width demands. In the past higher demands on the network capacity have been addressed by
overprovisioning. Based on link and router utilization, network capacities have been increased
so that the network was able to cope with the expected raise of the load imposed by ever in-
creasing amounts of traffic. But with the broad availability of the Internet via broadband access
technologies and the rise of new applications, this approach will no longer be feasible in the
near future. The costs of extending, operating and maintaining an increasingly dense network
with the newest technology are growing faster and faster enforcing a much more efficient use
of existing and a more careful planning and design of new network capacities. Possible ways
to make more efficient use of existing network capacities is Traffic Engineering and the use of
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1 Introduction

load adaptive routing algorithms. Traffic engineering addresses more coarse grained time scales
and does therefore not cope well with unexpected or short term changes in traffic. Load adaptive
routing mechanisms on the other hand are capable of fast reaction to different traffic patterns, but
such routing algorithms tend to introduce instability in the form of oscillation into the routing.
Therefore load adaptive routing has been viewed with suspicion in the past.

But with new demands on network capabilities, e.g., by real time applications like Voice or TV
over IP, and the insight that overprovisioning is no longer a feasible solution, traffic engineering
and load adaptive routing are coming more and more into the focus of network designers and
researchers. Developing novel mechanisms that efficiently use available network capabilities in
the presence of highly variable traffic is becoming more and more important.

The evaluation of new approaches to control traffic, identify merits and weaknesses and to
predict how such new mechanisms behave for existing or planned networks, cannot be done in
either real operational networks or in small scale laboratory setups. In order to be able to assess
the effects of deploying new mechanisms and algorithms to control the flow of traffic within
large networks, the only feasible way is by simulation. But before one can start to develop
traffic control mechanisms and use a simulation environment to examine the behavior of such
mechanisms, it is necessary to generate realistic traffic for the simulations as a work load to
confront new approaches with highly variable traffic. The capability to produce realistic traffic
is a vital component of the process of designing and evaluating new traffic control mechanisms in
simulations. In order to generate traffic in simulations, a model of realistic traffic is needed. Such
a model has to capture the high variability of traffic found in operational networks, especially in
the case of traffic control mechanisms as the ability to cope with traffic variability is the main
challenge for such algorithms. There are two main contributors to the variability of network
traffic in large networks that are relevant for traffic control applications, namely self-similarity
and conformance with Zipf’s Law of the rate of traffic aggregates.

Starting with the statistical analysis of Ethernet LAN traces in [LTWW94], there has been
extensive work towards developing appropriate mathematical and statistical techniques for ex-
plaining, describing, and validating the invariant of traffic in packet switched networks to be
consistent with self-similar behavior. The self-similar nature or long range dependency of traffic
in packet switched data networks implies that there exist a very high variability in the funda-
mental parameters of network traffic, not only in volume but also in the session arrival, session
duration and session size processes. This variability can be observed in the form of large traffic
bursts at all time scales. This burstiness is one of the reasons that make it inherently difficult to
cope with network traffic, for example in network capacity planning and traffic control mecha-
nisms.

A side effect of the heavy tailed distributions in the On-Off model is the fact, that there are
lots of very short sessions or connections that contain together, in spite of their high frequency,
only a minor part of the overall packets. The majority of the traffic is generated by only a
few very large connections, appearing with low frequency. This phenomenon is also called the
’20-80 rule’, as about 20% of the connections can be hold responsible for about 80% of the
bytes crossing a single point in the Internet (see e.g. [BHGc04]). In a more general context
this behavior has been described the in context of Zipf’s Law [Li03]. One consequence of this
imbalance is that any attempt to cope with network traffic on a per-connection or per-session
basis will suffer from the huge number of connections that are responsible for the overall traffic.

2
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This is further complicated by the fact that, due to the self-similar nature of these processes,
many connections can arrive in a very short time span (see, e.g., flash crowds [JKR02, LCD04a]).
As it is necessary to keep state for every active connection and this state has to be updated at
potentially very high rates, this approach requires extensive computing and memory resources.
Applications that suffer from this effect are, e.g., quality of service assurance (QoS) and network
security [BP01, LCD04b, LCD04a]). But this imbalance also has its advantages. Traffic control
mechanism are able to control a large fraction of the traffic by identifying the few very large
packet streams to treat them in a special way, e.g., adjust the routing in the network to avoid
overloading of links, while ignoring the many small streams. But still a problem remains, as
this approach relies on the assumption that once a stream is identified as large, it will stay large.
This property of large packet streams is illustrated in Figure 1.1 which shows a log-log plot of
the rank-rate relationship for 10 consecutive time intervals for the rates of Internet flows. The
curves for the ten time intervals are offset from one another to by a small amount in the vertical
direction to facilitate a visual assessment of Zipf’s Law across time, indicated by a more or less
linear behavior of the ten curves on a log-log scale. The persistence of the ranks of three example
flows is visible as by lines that connect the points over the ten bins that belong to the same flow.
This lines indicate how the the rates of that particular flows change over time. Note that while
the blue line shows about the same amount of movement as the red and the green ones, the range
of ranks covered by the medium and the low ranked flows is, due to the logarithmic scaled x-
axis, much higher than that of the top ranked flow. Note that, in spite of the high variability in
ranks, the medium and low ranked flows show no indication of ever becoming a top ranked flow.

The self-similar nature of network traffic however implies that traffic fluctuations can induce
significant changes in the rate of these streams. As a result it is necessary to frequently reclas-
sify traffic streams and identify changes in the set of directly controlled streams. Thus the rate
at which traffic streams change, the rate at which reclassification has to be performed and ap-
plications have to react to possible changes in the classification, the so called engineering rate,
are crucial corner stones for these kind of application and will have a significant impact on the
feasibility and the kind achievements that can be reached.

Here emerges the questions of how these two fundamental behavior properties of network
traffic interact with each other, what are the consequences of such interactions for applications,
that rely on the persistence of at least the large traffic streams, in what way should these applica-
tions react to possible lack persistence in the used traffic invariants and at what time scale should
they react.

Consequently, in this thesis we look into the nature of the variability of traffic volume over
time and the persistence properties of large traffic streams as well as the interrelationship be-
tween self-similarity and conformance of stream rates with Zipf’s Law with the objective to
capture these properties in a traffic workload generator for network simulators. We base out
workload model on several large packet and NetFlow traces, collected at an access network, the
connection of a large scientific network to the Internet, as well as at the backbone of a large
commercial network provider. After showing the feasibility of using this kind of trace data, we
examine the traffic in respect to self-similarity, Zipf’s Law and the nature and stability of these
properties, both individually and in conjunction. Finally we incorporate our findings into a net-
work simulation environment based on the widely used network simulator NS-2 and provide an
evaluation of the quality of the implementation of our workload generator.
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1.2 Outline

We now briefly summarize the following chapters.

Chapter 2. In the second chapter, we start by introducing necessary background information
on various ways to collect network usage information that is needed for assessing current
traffic properties used for development of traffic models and also as the basis of traffic
engineering approaches. We then focus on one of the introduced traffic monitoring ap-
proaches, the network flow concept and its most widely deployed implementation, the
CISCO NetFlow module. The we shortly cover basic traffic properties relevant for our
modeling approach, namely self-similarity and Zipf’s Law for flow rates. We conclude
this chapter with a short introduction to traffic engineering and currently used methods to
control traffic streams in large operational networks.

Chapter 3. In the third chapter, we introduce our network flow based methodology to identify
and characterize properties of network traffic that we need to capture the kind of traffic
variability with the highest impact on traffic control applications. We then describe the
trace data on which we base our analysis, cover the problems of using network flows for
our purposes and show the feasibility of our approach to analyze trace data.

Chapter 4. We start the fourth chapter by looking into basic aspects of flow rankings in terms
of stability, followed by a characterization of how the flow rankings behave under dif-
ferent time resolutions and varying degrees of traffic aggregation. We then look into the
causes for the observed features of flow rankings using our packet level traces and char-
acterize how they influence the variability of the traffic. Finally, we introduce our metric
for quantitively assessing the degree of variability of flow rankings to be able to compare
the persistence properties of different data sets, traffic aggregates and time granularity.

Chapter 5. In Chapter 5, we introduce NS-2 and a basic workload generator, NSWeb, that
already provides us with the ability to generate self-similar traffic by simulating Web re-
quests. We then show that NS-2 and NSWeb are able to reproduce simple network traffic
with high accuracy. We do this by building traces from tightly controlled real Web page
requests, automatically configuring simulations based on this traces and compare the sim-
ulations with the real Web page requests.

Chapter 6. In this chapter we use the findings of out flow analysis and develop a workload
generator that is able to generate simulated network traffic exhibiting the same persistency
properties as real traffic. We use Markov modulation as a means to variate flow rates and
show that the resulting traffic shows very similar properties as real traffic.

Chapter 7. In the last chapter we provide a summary of this thesis, recur our findings and
contributions. We close this work with a discussion of future work.
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2 Background

In this chapter we introduce necessary background information on the most important concepts
used in this thesis. We start in Section 2.1 with an introduction of various ways to collect net-
work usage information that is needed for assessing current traffic properties. These properties
are needed by most approaches to traffic engineering and are therefore the basis of developing
traffic models for the design and evaluation of novel traffic control mechanisms. We then focus
in Section 2.2.1 on one of the introduced traffic monitoring approaches, the network flow con-
cept and its most widely deployed implementation, the CISCO NetFlow module. Then in we
shortly cover basic traffic properties relevant for our modeling approach, namely self-similarity
of network traffic in Section 2.3 and Zipf’s Law for flow rates in Section 2.4. We conclude this
chapter in Section 2.5 with a short introduction to traffic engineering and currently used methods
to control traffic streams in large operational networks.

2.1 Monitoring High Volume Network Traffic

With the constantly growing complexity of the network infrastructure in the presence of increas-
ing traffic and complex algorithms on application and network layers, monitoring networks has
become both necessary and increasingly difficult. While simple networks consisting of only
a few hosts and one connection to the Internet can be easily maintained and controlled, entire
provider backbone networks with hundreds of routers and several connections to the rest of the
Internet have a complexity that cannot easily be understood and maintained without monitoring
what happens on the individual links and routers. Monitoring is a crucial prerequisite for ap-
plication and user monitoring, capacity planning, security analysis, and traffic engineering. In
all of this cases, knowledge about the current behavior of the network in necessary to be able to
detect and to adopt appropriate steps to solve problems in the network. Another important field
where monitoring is needed is traffic accounting and billing. Here a network carrier needs to
reliably determine which of its customers is responsible for what amount of traffic.

Currently, there are five methods readily available to monitor network traffic, packet level
capturing, per-interface packet counters on network equipment like switches and routers, sFlow
packet sampling and network flow generation.

Packet Capturing

Packet capturing is the most accurate, most fine grained but also the most costly monitoring
method. In this case, every packet that passes a network link or a network interface is cap-
tured and accounted for, depending on the given application. Capturing packets on links can
be achieved by using network taps, that either electrically or optically generate a copy of the
link signals and feeds these signals to a monitoring device. Such a device can be as simple as a
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personal computer using a dedicated network interface card (NIC) to receive the copied packets
and forwards them to a monitoring application. There also exist special hardware to perform this
task, that can give certain quality guarantees like avoiding packet loss while capturing packets
(e.g., DAG cards [End]). While this method is the most accurate one, it poses very high de-
mands on I/O-, CPU and memory capacity, as most networks today have very high bandwidths,
in some cases up to 10 Gbps. For such high bandwidth networks, packet rates can be as high
as 15 million packets per second and capturing of only the packet header information for one
minute needs 16 megabytes of memory for an average packet size of 645 bytes. Because of this
lack of scalability, packet level traces are only used in low to medium bandwidth networks or
only for small time spans for in-depth analysis of network traffic, e.g., anomaly based network
intrusion detection [BP01, LCD04b, LCD04a].

For high bandwidth networks, packet level capturing is only feasible with packet sampling. In
this case, not all packets are recorded by the monitor system but only one in n packets. The state
of the network has then to be inferred by inverting the sampling process using statistical methods.
There exists an IETF working group called PSAMP [PSA] that is concerned with defining a
standard set of simple to implement capabilities for network components to sample subsets of
packets by statistical and other methods. Sampling of packets can be done either randomly by
considering every n-th packet, or probabilistic by randomly sampling any one out of n packets
(see, e.g., [CPB93]). Both methods have the disadvantage, that it is not possible to observe
the same set of sampled packets at different points in the network, which is needed, e.g., for
delay measurements. To overcome this drawback, Duffield and Grossglauser use hash functions
to select a subset of the packets passing the network [DG01]. This method, called Trajectory
Sampling, allows to capture the packets at multiple points along their path (trajectory) through
the network and to send information about a packet in the form of a short label to a central
accounting machine. Careful adjustment of the hash function allows to capture a particular
subset of the traffic or can be used in the same manner as probabilistic sampling.

SNMP and Per-Interface Packet and Byte counters

An alternative to exhaustive packet capturing is provided by modern network equipment like
switches and routers in the form of per-interface packet and octet counters that can be ac-
cessed remotely using management protocols like the Simple Network Management Protocol
(SNMP) [Sta99]. Using these counters it is possible to monitor the amount of packets and bytes
that enter and leave a network node, usually on a time scale of 5 minutes [RGK+03]. This allows
for a drastic reduction in the amount of monitoring data while enabling an operator to determine
link usage even for larger networks. The information that can be won this way is sufficient for
local capacity planning and can also be used to detect anomalies in the traffic that show up as
distinct increase in link load, e.g., worm attacks [LCD04b].

But even though packets are accounted for on entering the device as well as on leaving the
device, it is not easy to discern, where packets originate or where they are forwarded to. No
information on end-to-end source and destination or device local forwarding path is available
using counters or other statistics provided by the Management Information Bases (MIBs), that
come with SNMP enabled devices. While it is possible to derive such information from a set of
counters, both per device as well as for entry and exit points of entire networks in the form of
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traffic matrices, such analysis is computationally expensive and there exist only approximative
solutions [ZRDG03, ZRLD03]. SNMP counter values have to be actively requested by a moni-
toring application at certain time intervals (pull principle). This is especially critical if one needs
a snapshot of the counter states from a large number of devices, because this results in counter
values at many different points in time. This leads to additional problems when correlating
counter values from different points in the network.

Network Flows

As packet capturing does not scale in contemporary networks and SNMP based packet and byte
counters are too coarse grained, both temporally and spatially, and lacks source and destination
information, the concept of a flow was introduced in network monitoring. Flow monitoring
delivers highly aggregated counter information while preserving timing information, originator
and destination of traffic, routing path information. Moreover, with network flows it is possible
to identify protocols and, in a limited fashion, the applications that are responsible for the traffic.

A flow is an abstraction of end-to-end packet streams. It thus constitutes a set of packets,
grouped according to common properties like source and destination. Packet and Byte counters
are kept on a per-flow basis, allowing for a much more fine grained resolution of the monitoring
process as with SNMP. The additional information of packet originator and packet destination
allows for reliable accounting and billing based on traffic volume. It enables network operators
to determine which links are under what load and who is responsible for network load, allowing
for a sensible upgrade of network capacity to accommodate future user demands on performance
and reliability. In the case of anomalies, using flow information it is possible to locate the source
of the packets causing an anomaly, both for malicious traffic as well as for traffic caused by
misconfiguration of devices or applications. In contrast to SNMP based counters, monitoring in-
formation is not polled by an application, but exported automatically from the monitored device
to a flow collector (push principle).

sFlow

sFlow is a simple mechanism for traffic monitoring on high speed network equipment. It uses
probabilistic packet sampling in order to cope with large traffic volume and sends information
about sampled packets to a central data collector [PPM01].

sFlow thus combines sampled packet capturing with an active export mechanism similar to
that of network flows of Trajectory Sampling. It however does not provide complete traffic
stream information like network flows nor does its sampling mechanism allow for sampling the
same subset of packets at different measurement points to follow the trajectories of the sampled
packets. All post precessing of the exported information have to be done offline.

2.2 Network Flows

As the traffic analysis and traffic modeling presented in this thesis is mainly based on network
flows we now describe the concepts of network flows in more detail. In addition we take a look
at the most widely deployed implementation of network flow probes, namely CISCO’s NetFlow.
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2.2.1 The Flow Abstraction

The network flow concept was introduced as a means to monitor network traffic in a scalable
way while still preserving as much information from the packets as possible [CBP95]. As most
communication in IP [RFC81a] based networks does not consist of single packets but of se-
quences of packets, grouping packets that belong to the same communication stream, e.g., the
same TCP [RFC81b] connection, is a sensible solution to the scalability problem. It is a conve-
nient way to reduce monitoring data as one can resort to gather only summarized information
instead of storing all packets contained in a packet stream. Information collected for flows
usually includes start and end times, counters for packets and bytes and, if available, routing
information, e.g., address prefix mask lengths. Network flows are unidirectional by definition,
describing packets flowing from a source to a destination. In the case of bidirectional commu-
nication, e.g., TCP connections, the packets that make up one of the two directions of such a
communication stream have at the very least common source and destination information, and
the same protocol. For UDP [RFC80] and TCP, the communication endpoints can be described
more precisely by source and destination port numbers. Port numbers are used to distinguish be-
tween multiple communication streams terminating at the same network node. This additional
information can also be used to identify packets belonging to a single communication stream.
The source and destination information used to group packets into flows is called the flow key.
In order to determine when a flow begins and when it ends, a flow is defined not only by its
source and by its destination, there are also timing based restrictions. Consequently a flow is
defined by those packets with common source and destination, that are “close in time”. When
two packets with the same source and destination are separated by a long time period they are
not close in time and thus do not belong to the same flow. Instead, the first packet marks the end
of the current flow and the second packet marks the beginning of a new flow.

The IETF working group IPFIX [IPF] is currently concerned with specifying an information
model for network flows and a transport mechanism to transfer network flow information from
monitoring points to flow collection points. Some of the concepts referred to in IPFIX have been
described and defined in a series of RFCs ([Bro99b, BMR99, Bro99a, HSBR99]).

Five-Tuple Flows

The most commonly used and also most fine grained definition of a network flow is the “five
tuple flow”. Five tuple flows group packets according to five packet header fields, namely source
and destination IP addresses, source and destination port numbers and IP protocol number, e.g., 6
for TCP and 17 for UDP. For protocols without port number information, e.g., ICMP [RFC81a],
the port number fields default to zero. As we have seen earlier, flows are uni-directional by
definition, so a bidirectional communication, e.g., TCP connections, shows up as two five-tuple
flows, one for each direction.

Flow Aggregation

There are cases where it is not necessary to collect such fine grained flow information as five-
tuple flows, e.g., for accounting purposes, where information for entire subnetworks are needed.
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Therefore it is possible to use other than or only a subset of the five packet attributes of five-
tuple flows to group packets into a flow. One commonly used method is grouping packets with
common destination address prefix into so called destination prefix flows. The length of the IP
address prefix is determined by the corresponding entry in the forwarding table. Destination
prefix flows contain all five-tuple flows with destination IP addresses contained in the subnet
specified by the destination prefix. This approach is called flow aggregation. There are several
other schemes to aggregate flows, e.g., AS flows [CBP95, LM97] where the flow key consists of
the AS number of the destination IP address, origin-destination [LPC+04] flows, where flows are
defined by network ingress and egress points. Aggregation can take place on the probe itself, on
the flow collector or by monitoring applications. If the flow probe is able to generate aggregated
flows directly from the packet streams, the memory pressure on the flow probe, the network load
caused by the export of flow records and storage and processing capacity on the collector and
monitoring nodes can be reduced significantly.

The price of flow aggregation is loss of accuracy because of the coarser granularity with
which packets are grouped into flows. It depends on the kind of information that is needed for
any given application. So is it possible to discard origin and destination related information
and only use network ingress and egress points and interfaces to construct very accurate traffic
matrices [LPC+04]. Even for accounting and billing applications only IP address prefixes are
needed because of the way providers assign IP address blocks to their customers.

It is also possible to perform the aggregation of flows offline. In this case less information is
lost as compared to online aggregation on the flow probe because the rates of the contributing
five-tuple flows are still available individually and can be used to derive more fine grained flow
rate information.

Flow Expiration

As network flows provide only packet and byte counters corresponding to a flow’s lifetime,
long idle periods can result in misleading flow rate estimations. Therefore it is important to
expire flows as soon as they cease to be active and no longer contribute packets to the traffic.
Determining the first and the last packets of a flow is not easily possible, as there is usually no
mark on a packet that brands it as being the first or the last of a communication stream. For some
protocols it is possible to use protocol semantic to recognize start and end packets. An example
for such a protocol is TCP, where connections always start with packets carrying a SYN flag
and end with packets carrying FIN or RST flags. Nonetheless, TCP flags can be interpreted
for finding start and end packets of TCP flows, at least in CISCO’s NetFlow implementation
and also in other works, e.g. [DLT03]. But even for these protocols, relevant packets that allow
one to recognize the end of a transmission, can get lost, appear multiple times or get reordered.
Therefore a heuristic based on the notion of a maximum idle time is used. This idle time also
allows one to detect the end of flows that do not explicitly signal their termination. But also for
protocols with explicit termination signals long idle periods can occur. If there are no packets
contributing to a flow for some time, the so called inactivity timeout, the flow is considered ended
and the statistics collection for this flow is concluded. This heuristic has two advantages. First, it
prevents a misleading calculation of flow rates caused by long idle periods. Using the inactivity
timeout, such a flow is split into two flows, one ending when the idle period begins and another
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Figure 2.1: Construction of network flows from packets. Packets with the same flow key are grouped
into flows if they are ’close in time’. The timing is defined by an inactivity timeout. If there are no packets
belonging to a flow for some time, the flow is considered ended.

one staring when the idle period ends. Omitting long idle periods allows for much more precise
flow rate measurements. The second advantage concerns the application of network flows as a
cache for routing information. In order to avoid expensive longest prefix match lookups on a
per-packet basis, first a lookup is made in the flow cache for a matching five-tuple flow to find
information about how to forward the packets of this flow. In order to maintain a high cache hit
rate, idle flows had to be replaced in the cache as early as possible by new active ones. This is
especially important because of the very limited amount of memory to cache flow entries.

Figure 2.1 shows an example of how flows are generated from packets. The x-axis represents
time. Packets are represented by colored rectangles where packets with the same five-tuple are
colored in the same way. The length of the rectangles depicts the size of the packets. Timestamps
are derived from packet arrival times. The blue packets form together a single flow, starting with
the arrival of the first one and ending with the arrival of the third packet. The same holds for
the flow consisting of the four green packets. The time between the arrival of two consecutive
packets of the same flow is in all cases below the time defined by the flow idle timeout, therefore
the flows contain all packets of one color. In the case of the red packets, the time between the
arrival of the second and of the arrival of the third red packet exceeds the idle timeout duration.
Thus two flows are generated, one consisting of the first two packets and one consisting of only
the third red packet. Because the second red flow consists of only a single packet, start and end
times are identical and thus the flow is assigned a duration of zero.

Flow Information Export

Contrary to SNMP based counters, where a monitoring application has to regularly request
counter values from network devices, network flow statistics are exported actively by the de-
vice, that generates flow information from packet streams (flow probe). Flow exporting happens
as soon as a flow is expired, either by TCP flags or by the idle timeout. In addition, flows are
exported, when they have been active for some time, to ensure that the flow information becomes
available to monitoring applications in a timely manner. This is important as especially highly
aggregated flows may never be idle and would thus never be expired and exported. Flow infor-
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mation, consisting of the flow key, e.g., the five-tuple, timestamps of the first and the last packets
of the flow and packet and byte counters, is then sent to a flow collector, a network node that
receives and stores the flow information for later reference. Common export protocols include
UDP and SCTP [SXM+00].

Generating Flows from Sampled Packet Streams

Although monitoring based on (aggregated) network flows is able to reduce the amount of moni-
toring data significantly, there are cases where this still is too much data. In the presence of, e.g.,
many short connections or distributed denial of service (DDOS) attacks, only very few packets
are really grouped into a single flow. Thus, the number of flows to export is still very high.
In order to reduce the load induced by exporting large numbers of small flows, there exists the
possibility to generate flows from a sampled packet stream, where only one in n packets, e.g.,
n = 100, is randomly selected and used to generate and update flows. This is usually referred
to as sampled flows. This is a very different approach from flow sampling, where flows are
generated using the full packet stream and then only one in n flows is exported. The former is
implemented, e.g., in CISCO’s NetFlow [Cisb] module while the latter is usually not available
on standard network equipment.

Sampled flows have several peculiarities that have to be taken into account. Sampled flows
have a bias towards larger flows, as the likelihood of detecting flows consisting of only a few
packets is much smaller than the likelihood of detection of large flows with many packets. Very
small flows might not even be detected at all. As sampling leads to skipping of packets of flows,
the gap between two consecutively seen packets of a particular flow can exceed the configured
inactivity timeout and thus lead to packet streams being divided into several network flows. This
effect is called flow splitting [DLT02, DLT03]. Additionally, the likelihood of sampling the first
and last packets of a packet stream is very small. Thus timing information about start and end
of a flow is somewhat imprecise.

There exist numerous work on the non-trivial problem recovering statistical traffic informa-
tion from flows generated from sampled packet streams. In [DLT03] the authors show methods,
starting from sampled packet traces, to estimate the size and number of flows in the unsam-
pled packet stream, including those flows that evaded being detected by the sampling process.
Other work shows ways to detect elephant flows on sampled network flows using Bayes’ theo-
rem [MMK+04] or do a ranking on sampled flows based their rates [BID04]. In [DLT01], the
authors propose a method for billing customers on the basis of sampled NetFlow data.

The IETF PSAMP working group responsible for defining standards related to packet sam-
pling is cooperating closely with the IPFIX working group to be able to apply the packet sam-
pling standards to network flows.

2.2.2 The Constant Flow Rate Assumption

As stated above, network flows provide information on packet and byte counts only as total
values, accumulated over the lifetime of a flow. However, as we are interested in the dynamics of
flow rates over time, we have to derive this information from the total packet and byte counts that
a flow contributes to the overall traffic during its lifetime. We need to determine how much traffic
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a flow contributes during some time interval and compute flow rates using traffic contribution
and the length of the time intervals. This traffic contribution however is only available as one
value accumulated over the lifetime of a flow. In order to obtain the traffic contribution for some
time interval, we need to somehow distribute the total amount of packets and bytes across the
flow’s lifetime. A natural choice is to assume a constant flow rate, computed as flow volume
divided by flow duration. This is referred to as constant flow rate assumption.

Practical experience with accounting and visualization systems suggests that this is a rea-
sonable assumption, especially for cases where export for reasonably large aggregation lev-
els [SF02]. This is also consistent with the results of Barakat et al. [BTI+02] who model Internet
traffic at the flow level via a Poisson shot noise process where the shape of the “shot” can be
rectangular which corresponds to the assumption of constant rate.

In the case of offline flow aggregation based on five-tuple flows, we have can derive more
fine grained flow rate information by calculating the rate of aggregated flows as the sum of the
average rates of the contributing five-tuple flows. Here the rates of the aggregated flows are no
longer constant, but exhibit a significant amount of variability.

2.2.3 CISCO NetFlow Implementation

The most widely deployed implementation of network flow probes is CISCO’s NetFlow imple-
mentation [Cis98]. As this implementation differs a bit from the concept described above, we
now look into this implementation in more detail.

Originally, flow information has been used as a cache of routing information to speed up
packet forwarding. As all packets belonging to the same flow can be treated in the same manner
by the forwarding process, expensive routing database lookups can be performed once when the
first packet of a flow arrives and the forwarding information can be stored in the flow cache for
future reference. All successive packets belonging to the same flow would be forwarded accord-
ing to the information stored in the flow cache entry. This is the reason why CISCO’s NetFlows
are more complex than simple five tuple flows. They contain additional routing related informa-
tion in the flow key and the flow statistics. Keeping per-flow packet and byte counters complete
the implementation of the network flow concept. We will refer to network flows generated by
the CISCO module as NetFlows or NetFlow records.

Figure 2.2 depicts a NetFlow record in CISCO version 5 format. In contrast to simple five-
tuple flows, CISCO uses up to seven fields as flow key. These fields are shown with dark back-
ground in Figure 2.2. Besides the fields also used in five-tuple flows, CISCO additionally uses
the type of service (TOS) bits of the IP header and the internal index of the incoming interface.
These two additional fields can influence the routing decision of a CISCO router and have to
be considered because of the flow mechanism being used as a routing information cache. The
flow statistics have also been extended to contain routing information in the form of AS numbers
and IP prefix mask lengths for both source and destination IP, as well as output interface index
and the IP address of the next hop router. In the case of TCP flows, the records also contain
information on TCP header flags. The flags are the result of a cumulative OR of all flags seen
in the headers of all packets of a TCP flow. CISCO NetFlows are exported as UDP datagrams.
As UDP is an unreliable transport protocol, NetFlow records might get lost on their way from
the flow probe to the flow collector. In order to be able to detect flow record loss, there exist
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Figure 2.2: CISCO Version 5 NetFlow Records. Fields with dark background are flow key fields.

per-interface flow record sequence numbers that are exported along with the flow records. Flow
record loss shows in gaps in the sequence number space.

The timeout values to expire flows are called inactivity timeout and activity timeout. The in-
activity timeout, per default 15 seconds, expires flows that are idle for at least this time, i.e.,
there has been no packet belonging to the flow. The activity timeout is used to enforce export
of long living flows. If a flow is active for a longer time than the value of the activity timer
specifies, the flow is exported, regardless of the flow still being active or not. The default of
30 minutes allows for a time granularity that makes it possible to react to undesirable phenom-
ena in reasonable time, e.g., to packet storms due to denial of service attacks. Otherwise, flows
might not be exported at all if they are always active. This happens with increasing probability
in the presence of aggregation. Both timeouts are configurable, but it is crucial to consider the
side effects of these timeouts. The first side effect influences the network load induced by flow
record export. If the timeout values are too small, flows might become fragmented, depending
on the per-flow packet interarrival time. Each fragment is then treated as its own flow and is
exported accordingly, increasing the number of exported flows per time. As CISCO NetFlows
are exported in UDP datagrams, a high network load can lead to loss of NetFlow records on the
way from the probe to the collector. If the timeout values are too high, the memory consump-
tion on the flow probe is increased. Thus, there is a tradeoff between memory consumption and
export induced network load. In addition to the inactivity and the activity timeouts, there exists
an additional set of non-disclosed heuristics to export active flows in the presence of memory
shortage. The result of poor configuration of the timeout values are coarse time granularity, loss
of flow records, and artificially fragmented flows. While a coarse granularity and fragmenta-
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tion can be tolerated, loss of flow records should be avoided, especially if flows are used for
accounting and billing applications. In modern high-end routers, flow generation is no longer
used for forwarding purposes. Instead forwarding table lookups are performed using content
addressable memory (CAM/TCAM) [MF93, LRV05]. These CAMs are a hardware solution are
therefore pose no per-packet load on the CPU. CISCO advertises NetFlow only as a monitoring
and billing mechanism.

CISCO’s NetFlow implementation starting with version 8 allows flow aggregation on the flow
probe using virtually any packet header fields, any routing or forwarding related information like
interfaces or prefixes, and even payload information [CISa]. As aggregation is in this case done
online on the flow probe, the constant flow rate assumption as to be applied for the resulting
NetFlow records.

2.3 Self-Similarity in Network Traffic

One of the most challenging characteristics of traffic in packet switched networks like the In-
ternet is the high variability of the traffic intensity. This variability shows itself in the form of
pronounced packet bursts at almost all time scales. This high variability over a wide range of
time scales distinguishes traffic in packet switched network from that in, e.g., circuit switched
telephony networks. The fact that packet bursts can be observed over a range of time scales
implies, that the bursts do not average out over long enough time scales. No matter at what
scale one looks at, e.g., on the number of packets crossing a network link, one will always find a
similar amount of packet bursts. This phenomenon is referred to as Self-Similarity and was first
described for network traffic by Leland et al. in [LTWW94]. One of the consequences of the
self-similar nature of packet traffic is the failure of traditional network models that use Poisson
processes to model packet inter-arrival times [PF95]. While these models have attractive the-
oretical properties, they lead to a significant underestimation of the burstiness of packet traffic
over a wide range of time scales [PF95, GB96].

There exist several methods that can be used to inspect time series for self-similarity, e.g.,
periodigrams, time-variance plots or Wavelet based methods (see [Gog00] for a more complete
overview). In this work, we will use the wavelet based method described in [FHW99]. This
scaling analysis technique relies on Wavelets to describe the burstiness of a time series, e.g.,
packets per time unit, in the form of an energy value as a function of time resolution at different
scales. The energy function E j for a time series X0,k is calculated using the discrete Haar-Wavelet
coefficients [Chu92a, Chu92b]

d j,k =
1√
2

(

X j−1,k −X j−1,2k+1
)

so that E j can be expressed as

E j =
1

N j
∑
k

∣

∣d j,k

∣

∣

2
, j = 1,2, . . . ,n

where N j is the number of coefficients at scale j. The energy function of a time series is a
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Figure 2.3: Scaling-Plot Examples for a fractionally-differenced ARIMA model, h = 0.6: Global scaling
plot (left) and Local scaling plot (right). Self-similar scaling is indicated by a linear relationship between
the logarithms of scale and energy function (global scaling) or partition function (local scaling) with a
non-zero slope. For local scaling plots a linear relationship between the parameter q of the partition
function and the scale is indication of multi-fractal scaling.

measure for the amount of variability in the number of events per time unit. Self-similarity is in-
dicated by linear behavior with non-zero slope of the plots over a range of scales. Global scaling
plots give information about the average behavior over the complete sample time. Local scaling
plots, in contrast, give information about local features like packet bursts. This is accomplished
by analyzing the relation between the size of a time interval and the number of events that hap-
pen within that interval. The stronger the event bursts are, the less the number of events in an
interval depends on the size of the interval. Local scaling plots are plots of the so called partition
function S(q, j) as sum over the local maxima of the normalized wavelet coefficients raised to
the qth power at each scale j:

S(q, j) = ∑
max

∣

∣

∣
2− j/2d j,k

∣

∣

∣

q

Local scaling plots indicate self-similar scaling behavior, much like global scaling plots, by a
more or less linear relationship between scale j and logS(q, j) over a range of the finest scales.
If in addition the plots show a non-linear relation between the slope of the curves and q, the plots
indicate multifractal behavior. An example for scaling plots is show in Figure 2.3. Both plots are
derived from the same time series. This time series is generated using a simulated long-memory
process from a fractionally-differenced ARIMA model with h = 0.6 [Bre73]. For both plots, the
x-axis shows the time scale in both seconds (top axis) and as a time scale index (bottom axis).
The energy function and the partition function are plotted on logarithmic y-axes, respectively.
Both plots show approximately linear behavior over all time scales, thus indicating self-similar
scaling behavior. Moreover, the slope of the curves in the local scaling plot depends on q in
a more or less linear fashion, suggesting monofractal local scaling. In both global and local
scaling plots, periodic events, caused for example by packet round-trip times, appear as ’dips’
in the plots, because the variability at the corresponding time scale is lower than at the other
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time scales. For a more detailed description of the used scaling analyzing method see [FHW99]
and [FGWK98].

In [TWS97] the authors show, that self-similar network traffic can be generated with the help
of so called ON/OFF sources. An ON/OFF source alternates between sending packets (ON) and
being idle (OFF). If the durations of the ON and the OFF phases are consistent with a heavy
tailed probability distribution, the superposition of a large number of ON/OFF sources results
in self-similar packet traffic. Heavy tailed distributions have high or even infinite variance and
therefore show extreme variability on all time scales. A statistical distribution is heavy tailed, if
the relationship

P[X > x] ∼ x−α ;0 < α ≤ 2

holds, at least approximately. More intuitively heavy tailed distributions show a wide range of
values, including very large ones, even if almost all values are small. Heavy tailed distributions
show a very high variability.

An often used heavy-tailed distributions is the Pareto distribution [JK70]. Its probability mass
function is defined as

p(x) = αkαx−α−1, α ,k > 0, x ≥ k

and its cumulative distribution function is given by

F(x) = P[X ≤ x] = 1− (k/x)α

The Pareto distribution is an example for a power-law distribution. Note, that the variance of the
Pareto distribution is infinite if α ≤ 2 and for α ≤ 1 the mean is infinite as well.

A special case of the Pareto distribution that often appear in popularity relations and can
be used to describe rate-frequency relations for flow rates are Zipf-like distributions (see Sec-
tion 2.4). The cumulative distribution function of a Zipf-like distribution is given by

PZipf[X > x] ∼ x−(1/β )

A Zipf-like distribution with ’slope’ β can be generated using a Pareto distribution with k = 1.0
and α = β .

Two other distributions, that are not strictly heavy-tailed according to the above definition,
but that both show heavier tails than the Exponential distribution for certain parameters, are the
Lognormal and the Weibull distribution [JK70]. The two-parameter Lognormal distribution is
defined as

U =
log (X)−ξ

σ
where U is a unit normal random variable, ξ the expected value and σ the standard deviation of
X . A random variable X has a Weibull distribution if there are values for c > 0, α > 0 and ξ0,
such that

Y =

(

X −ξ0

α

)c
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is exponentially distributed with probability density function

py(y) = e−y,0 < y

2.4 Zipf’s Law and the Consequences for Network Traffic

Zipf’s Law [Zip49, Li03] was originally used to describe the relationship between a word’s
popularity in terms of rank and its frequency in use. It states, that if P is the frequency of use
and ρ the popularity of a word, then we have P ' 1/ρ or, that the nth most popular word is used
twice as often as the 2n-th most popular word.

This concept has been used to describe the properties of many other systems, so that Zipf’s
Law can be formulated in a more general context in the following way: if the frequency of
occurrences as function of the rank is consistent with a power-law distribution it is referred to
as Zipf’s-like [Zip49, Mit03]. The rank is determined by the frequency of the occurrence of the
studied event, where a low rank index refers to a popular event. Not surprisingly quite a number
of different quantities in Internet traffic are consistent with Zipf-like distributions, including the
popularity of Web pages [BCF+99, SKW00], intra-domain traffic demands [FGL+01, ZBPS02,
CB02], as well as inter-domain Web traffic demands [FKM+04].

If a system behaves in a way that is consistent with a Zipf-like distribution, like the exam-
ples above, it is in principle sufficient to optimize the system for the popular events only while
ignoring all other events, without introducing a significant performance penalty. In [BCF+98]
and [BCF+99] the authors show that Web object access frequencies follow Zipf’s-like prob-
ability distributions and that this behavior can be used to improve caching of web objects.
In [SKW00], the authors show that adjusting the cache replacement algorithm for Web caches
according to the Zipf’s like access probability distributions, leads to higher cache hit rates, even
if the exact distributional parameters are not known a-priori. Breslau et al. however showed
in [BCF+99] that the correlation between access frequency and size is very weak, implying that
even with a high cache hit rate, the efficiency of caching in terms of bytes affected by caching
is limited. Fang and Peterson show in [FP99] that for a set of traces, the size of flows is highly
non-uniform with about 9% of AS flows accounting for 86% of all bytes. In order to avoid keep-
ing state for a huge number of concurrent flows, they therefore propose to concentrate on only
the small set of large flows when maintaining state for traffic engineering tasks, e.g., in QoS ap-
plications. Similar results where found in [UB01]. Other work in the area of network traffic that
examines, relies on or has found processes to be consistent with Zipf’s Law include load adap-
tive routing [KKDC05], visualization of network flows [MHCS], flow classification [SST+04]
or fair scheduling in routers [NB02].

2.5 Engineering and Controlling of Network Traffic

When operating a network of nontrivial size, the problem arises how to make use of the existing
resources as efficiently as possible while at the same time ensuring the best possible perfor-
mance in transporting data. This problem becomes both more important and complex as the
network grows. Efficient use of network resources can mean different things in different situa-
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tions. For networks that carry transit traffic, the optimization goal is to distribute the traffic over
the available links in a way that no link becomes overloaded while others are underutilized, or to
minimize the maximum loads on all links in a network [FRT02, PTD04, KKDC05]. A variant
of this performance objective is to keep link utilization below 40% [GlFV05]. Similar effects
exist for routers, where the capacity of the forwarding engine is exhausted by the joint traffic on
all links (hot spot).

For small ISPs or multihomed customer networks, who have to pay for traffic forwarded
over upstream links, the goal is to minimize the cost of interdomain traffic while keeping the
performance of the interdomain connectivity as high as possible [UB01]. The process of defining
an optimization goal and taking measures to achieve this goal is referred to as traffic engineering.
In traffic engineering network performance is defined by measures like delay, delay variation,
packet loss and throughput [ACE+02].

2.5.1 Traffic Demand and Traffic Matrices

Before deciding how to control the traffic crossing a network, it is necessary to first know what
kind of traffic one copes with. Thus the process of traffic engineering starts with acquiring infor-
mation on the traffic demand that is posed on a network. This is usually achieved by deriving a
traffic matrix from measurements taken from an operational network. A traffic matrix describes
how much traffic flows between from all sources to all destinations within an network. More for-
mal, a traffic matrix Ti, j provides information on traffic volume entering the network at ingress
point i and leaving at egress point j over some time.

Deriving traffic matrices from network measurements is a non-trivial problem. The most
obvious approach would be to measure per-destination traffic volume at all routers, but this is
not feasible even for moderate sized networks [FGL+01]. An alternative approach is based on
NetFlow information from all routers in the network. Since traffic passing through the network
generates corresponding flow records on all routers from ingress to egress router, these records
can be correlated in a way, that the path through the network can be determined for all incoming
packets, together with source, destination and volume information as an Origin-Destination
Flow (OD-flow) [LPC+04]. The superposition of all OD-flows in conjunction with the path
through the network gives then rise to a traffic matrix. Alternatively, one could also collect flow
data on ingress routers only and correlate the resulting flow records with routing information
to derive the paths of the incoming flows through the network [FGL+01]. The disadvantage of
these flow based methods is the huge amount of measurement information needed to derive a
traffic matrix.

Therefore, yet another method is based on per-interface SNMP counters (see section 2.1).
SNMP counter data is usually collected every 5 minutes [RGK+03], so the amount of measure-
ment information is much lower than for full flow generation. But this comes at a price. SNMP
data allows only for estimation of traffic matrices instead of an exact determination [RTZ03].

Existing traffic matrix estimation techniques are, while sufficiently accurate, quite complex
[ZRDG03, ZRLD03, MTS+02] because it is a highly underconstrained problem where N ingress
and egress points lead to N2 origin-destination demands [RGK+03].

Usually, demands are stable [TDRR05], which means that they do not change significantly
over time. But there are cases, when demands can change dramatically in very short time peri-
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ods, e.g., Worms, link or router outages or routing changes. If such events are not considered dur-
ing the process of determining how to route the existing demands, they can lead to link and router
overload which in turn results in high delays, packet drops and even router crashes [WXQ+06].
A common approach to avoid such effects is to maintain a history of traffic demand matrices and
optimize routing to accommodate for these [ZG05].This way, future matrices are inferred from
past ones. In [FT03] the authors show how to optimize routing not only for common case alone
but how to ensure that the routing does not become too bad under a preselected set of link or
router failures. In [WXQ+06], the authors also propose a methodology to optimize routing for
the common case while providing worst case performance guarantees for unexpected scenarios.

A more flexible way to deal with changes in traffic demands is to automate the process of
measuring and calculate an optimal routing in real time. Examples for such online algorithms
are MATE [EJLW01] and TeXCP [KKDC05]. These approaches are able to detect short-term
traffic demands and to adjust the routing accordingly. Another way to deal with unpredictable
traffic spikes is oblivious routing [AC03, ABC04, BBCM03]. Oblivious routing does not even
try to consider traffic matrices but still manages to minimize the maximum congestion on all
links in a network. While oblivious routing can impose an upper bound on congestion, it shows
bad performance for the common case [KKDC05].

2.5.2 Traffic Control

After a traffic matrix has been derived, there are currently two major methods for controlling net-
work traffic in use. The first uses intradomain routing protocols like OSPF and IS-IS to control
the flow of traffic through the network in way, that the desired performance and utilization goals
are met. This is done by carefully computing link metric values that are used by these routing
protocols to find the shortest paths from ingress to egress routers [FGL+00, FT00, FRT02]. The
solution of this optimization problem ist NP-hard. Consequently, approximation algorithms have
to be used, but existing algorithms come very close to the theoretical optimal solution [FRT02].

The second approach makes use of Multi-Protocol Label Switching (MPLS). In MPLS an op-
erator basically defines virtual paths through the network by configuring tunnels on the routers.
Then traffic is divided into classes and the packets are labeled according to their classes. Packet
forwarding is now done based on this label instead on the destination IP address. For a more
complete overview of how traffic engineering with MPLS works, see [Awd99] and [GlFV05].

The advantage of MPLS based traffic engineering over routing-metric based methods is the
more fine-grained control of what traffic is treated in what way. This comes from the traffic
classification mechanism, that is used to determine which label to use for the forwarding process
within an MPLS network. The disadvantage of MPLS stems from the static tunnel configuration,
that cannot react automatically to link failure of change in traffic patterns. Backup tunnels
have to be configured in advance, to alleviate link failure. Also the setup of network wide
tunnels using router-local configuration primitives makes it difficult for operators to maintain an
overview of what tunnels are configured and what paths they are using.

There exists also the possibility of using load-adaptive routing protocols, e.g., [QYZS03],
[KKDC05] or [FKF06]. These routing protocols can react reasonably fast on changes in traf-
fic demands, something that is not easily possible with static traffic engineering methods like
OSPF link weight optimization or MPLS. Disadvantages with load adaptive routing protocols
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are proneness to oscillations and too frequent route changes. Oscillation effects can appear if
shifting traffic from one path to another leads to a situation, where the routing algorithm tries
to shift the traffic back from the new path to the old one. There can also be more complex
scenarios when many path changes occur that cause traffic to be shifted around in the network
without the algorithm converging to a steady state. The second disadvantages, namely changes
in routing paths, holds to lesser degree also for static traffic engineering schemes. In the case
of adaptive routing algorithms, routing changes appear much more often, leading to undesirable
effects, e.g., packet drops and packet delay changes. These two effects have especially nega-
tive influences on TCP performance and real time applications like voice-over-IP. The negative
impact of changes in the internal routing of an AS is amplified, when they lead to additional
changes in the inter-AS routing by choosing different egress points in the presence of hot-potato
routing [Tei05]. There exist other adaptive routing schemes based on source routing [ICS96] or
overlays, e.g., Detour [SAA+99] or RON [ABKM01].

2.5.3 Concentration on Heavy Hitters

Optimizing routing to accommodate all demands detected in the traffic analysis phase of the en-
gineering process can become a complex task when the amount of different demands growths.
In the case of MPLS based traffic engineering, demands are routed over specific paths through a
network by configuring tunnels. Covering the entire traffic matrix can result in high number of
tunnels. Furthermore, packets entering the network have to be classified to be able to be assigned
to their appropriate tunnel, leading to very complex packet classification schemes. The classifi-
cation problem appears also for adaptive routing algorithms. In order to alleviate this problem, it
is a commonly-used approach in traffic engineering to target primarily the large demands and to
attempt to optimize system performance mainly for them. This approach exploits the property of
traffic demands or traffic flows to be consistent with Zipf’s Law. Most of the traffic is contained
in only a small portion of the traffic demands. The rest of the demands can be routed without
special treatment without significant impact on the overall optimality of the routing. Examples
that follow this basic approach to traffic engineering include, among others, [EV02] and [FP99].

2.5.4 Engineering Rate

The traffic engineering process shown above suffers from two major problems. The first one
consists in taking a snapshot of the traffic conditions in a network to compute a traffic matrix
that in turn is used to decide how to route the traffic to achieve a performance goal. But traffic
conditions change over time, making a traffic matrix obsolete and thus lead to detoriation of the
initially achieved performance gains. It is possible to alleviate, e.g., time of day effects by taking
two traffic matrices, one taken during the day and a second one taken during the night. It is then
possible to calculate a routing configuration that is optimal over an entire day by considering
both matrices [FRT02]. This approach however does not work for mid- to long-term trends or
sudden changes in traffic volume like, e.g., flash crowds.

Therefore, the traffic matrix has to be frequently recomputed and traffic reclassified accord-
ingly. Here, the more often the traffic matrix is updated, the more accurate are current traffic
conditions represented by the traffic matrix and the better can the routing be adapted for optimal
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performance goals. On the other hand, routing changes that result from reconfiguration of paths,
disrupt the operation of networks, even to the point of changing the inter-AS routing by influenc-
ing BGP routes [Tei05], and are therefore to be done as seldom as possible (see section 2.5.2).

Therefore there exists a tradeoff between accuracy of traffic engineering and stability of rout-
ing [FT02], that is controlled by the traffic engineering rate. The traffic engineering rate de-
termines how often the routing is adapted to the current traffic conditions. For, e.g., static
link-weight based traffic engineering, the engineering rate can range from several minutes to
hours [PTD04] or even longer. For adaptive routing mechanisms, the engineering rate has to be
at least as high as the rate of traffic changes that are to be considered by the algorithm. Thus
the engineering rate for adaptive routing mechanisms takes values from a few seconds to a few
minutes.
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As we have seen earlier, both traffic engineering and load adaptive routing mechanisms try to op-
timize the network load by influencing the routing of large traffic aggregates. This requires some
care however, as it is important to distribute packets over the aggregates in a way that has as little
influence on end-to-end network characteristics as possible, especially for constructs like, e.g.,
TCP connections or Voice-over-IP (VoIP) streams. Distributing packets of such an end-to-end
communication stream over different aggregates and then using different routes for these aggre-
gates can easily lead to packet reordering or significant variability in packet end-to-end delays.
Both delay and jitter are known to have a highly detrimental influence on the performance and
quality of such packet streams. One way to avoid these problems is to use network flows as the
basic ingredient to build traffic aggregates. Network flows contain by definition those packets
that have some common properties, which can be as precise as one direction of a bidirectional
TCP connection or as universal as a destination AS. Therefore network flows have become one
of the corner stones of traffic engineering. But using network flows can still have its problems in
terms of scalability. Depending on the granularity of the used flows, there can be a huge number
of them at any given time. In the worst case, one can get one network flow per packet, e.g., for
DNS requests. The way that traffic engineering mechanisms cope with this problem exploits
the property of network flows, that only a small number of flows is responsible for most of the
traffic. This phenomenon, also known as Zipf’s Law for flow sizes, allows us to concentrate on
a small number of flows while ignoring the rest, and still be able to control the vast majority of
the traffic.

In this section we introduce our methodology to analyze network traffic in order to identify
and characterize properties of flows that need to be captured by our workload generator. We
describe what data we base our analysis on, cover the problems of using network flows for our
purposes and show the feasibility of our approach.

3.1 Overview

As we have seen in chapter 2.5.3, traffic engineering applications rely on the heavy tailed nature
of flow rates in order to be able to act on large portions of the network traffic by concentrating
on only a small number of flows, the heavy hitters, and treating these flows in some special way.
Because of the high variability inherent in Internet traffic, dividing network flows into classes
like elephants or mice, is a non-trivial task. Because of the self-similar nature of network traffic,
flows that are classified as elephants at one point in time can drop their rate drastically and would
be classified as mouse some short time later. The result of this volatility in the rate of network
flows would then lead to instable classifications.

Therefore relying on this phenomenon as the foundation of operation critical processes makes
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it necessary to carefully examine the characteristics of heavy hitters and the influence these
characteristics exert on the procedures used in traffic engineering. We now turn our attention
on how the set of the largest flows behaves at some point in the network and try to identify
invariants in the characteristics of this set that either are helpful or harmful for the effectivity of
the algorithms used in applications like traffic engineering or load adaptive routing and should
therefore be reproducible by the traffic workload generator of our simulation environment.

Accordingly, we concentrate our analysis on heavy hitters and on their dynamics along two
dimensions, corresponding to heavy tailed nature of flow rates or flow sizes on the one hand,
and the effects related to Zipf’s Law for flow sizes on the other hand.

We start this chapter by giving an overview of flow classification methods used to identify a
small set of relevant flows. Then we explain our offline analysis approach based on slicing time
into bins and derive flow rankings based on per-bin byte contributions. After introducing the
trace data we use for our analysis and the necessary preprocessing steps to insure comparability
between the different trace types, we show that the feasibility of our methodology relying on
less fine grained network flows to perform an in-depth analysis of the behavior of large Internet
streams.

3.1.1 Elephants and Mice

When analyzing the properties of large flows, we first need a proper definition for what a large
(’elephant’) or small (’mouse’) flow exactly is before we can isolate such flows in the measure-
ment data. A way that is often used to define elephants is based on traffic fractions. In this case,
the n largest flows that together account for more than some fraction of the total traffic during a
time interval, e.g., 80%, are considered to be elephants. All other flows are then considered to be
mice. Instead of using a fraction of the traffic to classify flows as elephants, it is also possible to
work instead with a per-flow rate as a threshold. Estan et al. [EV02] define an elephant as a flow
whose rate is larger than 1% of the total link utilization. All flows with rates beyond this thresh-
old are then considered elephants. There exist other schemes to classify flows besides using flow
rates. In [CB02] Brownlee et al. classify flows by duration into short lived ("Dragonflies") and
long lived flows ("Tortoises"). Papagiannaki et al. [KTB+02] use a two feature classification
scheme based on both rate and persistence in time. Sarvotham et al. use the burstiness of flows
to discern between short high rate flows (alpha traffic) and longer flows without pronounced
spikes (beta traffic) [SRB01]. Another classification by burstiness is proposed by Lan and Hei-
demann based on three different types of burstiness, namely variance burstiness, RTT burstiness
and train burstiness [KCL06], referring to very bursty flows as "porcupines". The authors also
show in [KCL06] that there exists a strong correlation between the rate and the size of a flow,
which explains why the different definitions of elephants that are sometimes based on the flow
rate and sometimes on the flow size do not lead significantly different findings.

Adhering to one of the above definitions for elephants might limit our analysis by omitting
flows that are, by that definition, not elephants but still might provide insightful observations. We
therefore forego an exact definition prior to examining the properties of flows that may suggest
a new classification method or reaffirms one of those above. Instead we cover as many of the
largest flows as our resources allow us to do. In this way we get the best possible coverage of
flow properties of large flows, even if we waste some resources by analyzing much more data
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than we may actually have to.

3.1.2 Offline Analysis of Network Flows

Independent of the classification scheme used to identify a small set of high rate flows in the
overall traffic, the classification of flows itself and the analysis of the properties of the relevant
flows is a very resource intensive endeavor.

To avoid having inconsistent flow classifications it is necessary to not only look at the imme-
diate present but to the entire history of flows. If we classify and analyze flows in real time, we
do not know the entire history of a flow, but only their past. In such cases, it is possible to predict
the future by extrapolating the past. Here one could use statistical methods like, e.g., weighted
moving averages [PTB+01, KTB+02] or autoregression based approaches (ARIMA). There are
also proposals to use Bloom filters [KXLW03] or sample and hold filters [EV02] to be able to
cope with high data rates and large amounts of traffic in real time. These methods however trade
accuracy for scalability and thus also provide only approximated results.

These issues might be acceptable when one has to react quickly upon identifying an elephant
flow, e.g., by adjusting the routing or for using network flows as the basis of some accounting
scheme. Still, using one of these approaches, we would base our analysis on somewhat imprecise
flow properties. Moreover, real time analysis needs a large amount of system resources, even
when using approximation algorithms, as one has to cover a potentially large number of flows
at the same time, consuming system memory and CPU cycles while having to be fast enough to
keep up with the amount of monitoring data arriving at the same time.

We therefore chose to follow the path of offline analysis. Analyzing monitoring data offline
has several advantages over real time analysis. First, we are not limited in our classification
and analysis by system resources and time constraints as we are in the real time case. We are
able to spend more time on identifying elephant flows and on analyzing flow behavior. This
and the availability of complete per-flow monitoring data allows for a more precise and reliable
identification and analysis of elephant flows than what is possible in real-time using methods
that can only estimate flow properties and are thus less accurate. Another advantage of offline
analysis is the possibility to repeat analysis steps of the same data set using different time scales
and different parameters, e.g., different flow aggregation schemes. If the monitoring data is
available as packet level trace, it is possible to derive flow properties that are not available in
NetFlow records. The most important of these properties are the fluctuations of flow rates over
time. NetFlow records provide flow rates only as an average over the flow’s lifetime.

3.1.3 Binning: Slicing Network Traffic by Time

Given the above decisions to avoid a limiting pre-definition of elephants and mice and to perform
our analysis offline, both providing a maximum of flexibility, we still need a basic common
strategy for dealing with measurement data. One of the most fundamental aspects of our analysis
of flows is their behavior over time. Note that with packet switched networks like the Internet it
makes no sense to look at discrete points in time as at most a single packet belonging to only one
flow would be visible at any given point in time. Therefore, in order to be able to observe how
flows change their properties during their lifetime and also to compare the behavior of different

27



3 Methodology

t

t + 4k

t + k

Time

B
in

si
ze

 4
k

B
in

si
ze

 2
k

B
in

si
ze

 k

Time

Time

Bin 1 Bin 2 Bin 6

Bin 1

Bin 1

Bin 2

Bin 2

t + 2k

Figure 3.1: Slicing time into bins. The sizes of bins are multiples of powers of 2. Two bins of size k
build a larger bin of sizes 2k.

flows, even under alternative flow definitions or flow aggregation schemes, we divide the time
line into constant size intervals called time bins or bins.

In order to allow for exploration of the influence of time granularity of flow behavior and
thus of a sensible engineering rate for controlling flows, bins always start and end on a fixed
raster. This raster is defined in a way, that a bin of size 2k seconds contains exactly 2 bins
of size k seconds, and so on (see Figure 3.1). By looking into the per-bin byte and packet
contributions of flows, we get sequences of flow rates, building the cornerstone for the analysis
of per-flow behavior over time. On the other hand we can also study the interaction of flows by
means of comparing the flow rates during a single bin and also during a sequence of bins (see
Section 3.1.4).

Although this approach allows us to analyze flow behavior over time, it also has its drawbacks,
partly due to the nature of flows itself, partly as consequence of the fixed raster used to enable us
to perform comparable analysis for different time granularity. The first problem is based on the
nature of network flow statistics collected on a flow probe (see Section 2.2.3). We only have data
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on when the first and the last packet of a flow passed the flow probe and how many packets and
bytes a flow contained in total. So the only information we have on a flow’s rate is an average
value, calculated as

avg. rate =
bytes

flow end−flow start

and the average per-bin contribution as

avg. contrib = avg. rate×bin size

We have no information on whether the flow rate was really approximately constant around
this average rate or not. There might have been peaks and dips or a drop in the flow rate at
some time. The entire dynamics of a flow’s rate during its lifetime is lost when the flow with its
statistics is being built by a flow probe. In order to assess the influence of this problem on our
analysis, we use packet traces with their high level of accuracy to show, that the effect of using
only average flow rates is less pronounced than one might think, depending on time granularity
(bin size) and aggregation scheme used (see Section 3.4).

The second problem arises from the fact, that bins start and end at a raster, but flows do not.
Flows may begin or terminate at any given time within some bin. This leads to flows starting
during a bin, thus raising the problem of how to determine the flow rate for the first bin (see
Figure 3.1). The same happens when a flow ends. For the solution to this problem, we make
use of a flow’s average rate. Using the average flow rate and the fraction of the duration of the
bin during which the flow was alive, we can calculate how much bytes and packets the flow
contributes to the bin. The exact relation for the first bin that a flow contributes to is given by

contribstart =
bin end−flow start

bin size
× avg. contrib

=
bin end−flow start

bin size
× avg. rate×bin size

=
bin end−flow start
flow end−flow start

×bytes

Finally, the bins should not be too small. The end of a network flow is defined via the inactivity
timeout (see Section 2.2.1), therefore it is not possible to chose a bin size that is smaller than
this timeout. This lower bound on bin sizes ensures, that each flow contributes to all bins during
it’s lifetime. Otherwise, an active flow might disappear from a bin, even when it has a high,
although bursty, data rate and thereby introducing artifacts into the analysis and distorting the
results.

3.1.4 Flow Rankings

Analogue to the way we slice time into bins to be able to look into time dependent properties
of flows, we also slice the total traffic into slices using the flow abstraction. This enables us
to examine the ways that flows interact with each other. Because of the high variability in
flow arrivals, flow departures and the rates of flows, we perform this slicing on a per time bin
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basis. This allows us to examine in which way the overall traffic is comprised of flows at any
time interval. The actual definition of flows can be chosen in advance, making the slicing very
flexible. Possible ways to define flows are, e.g., five-tuple flows or destination prefix flows (see
Section 2.2.1).

In order to analyze the behavior of heavy hitter or elephant flows, we compute flow rankings
for each time bin for all flows active during that bin. This allows us to identify these kind of
flows and concentrate our analysis on them. For our analysis we define a ranking as an ordered
set R of flows f with

ri < r j ⇔ contrib( fi) ≥ contrib( f j)

where ri is the rank of flow fi and contrib( fi) is the contribution of the flow to some bin. Note
that ri = 1 represents the flow that contributes the most and therefore has the highest rank. The
smaller the rank index i, the higher is the rank and the contribution of the flow at rank r i to the
overall traffic. The ranking is based on the contribution of each flow to the overall traffic during
the time bin. Usually the contribution is determined in terms of number of bytes, although it
is also possible to use number of packets. As network flows only provide us with total number
of bytes and timestamps for the first and the last packets of a flow, and thus with a flow rate
averaged over the flow’s lifetime, we have to calculate the actual per-bin byte contribution using
this average flow rate (see Section 3.1.3). When considering aggregated flows, we calculate the
per bin byte contribution as the sum of the per bin byte contributions of all five-tuple flows that
are accumulated into the same aggregated flow. As the number of five-tuple flows that together
make up an aggregated flow is not constant over time, the rate of an aggregated flow is no longer
constant over time but may a significant variability in its rate.

As seen in Section 2.4, we expect flow rates and thus the per-bin contribution to the traffic
to be consistent with a Zipf’s-like distribution. This is the basis of current traffic engineering
and load adaptive routing algorithms. If this is indeed the case with our data we can cut down
the size of the per-bin rankings to a small number of the largest flows. How many of the largest
flows are necessary to cover a significant portion of the total traffic is highly dependent on the
respective measurement points and the nature of the traffic crossing that point. One way to solve
this problem is to adjust the size of the rankings so that always a minimum fraction of the traffic,
say, e.g., 75% is covered by the ranking. But for the first iteration, we chose to use constant size
rankings with the number of ranked flows small enough to be handled with relative ease, e.g.,
100, 1000 or 10000 flows.

An example of how the ranking works for up to three flows is shown in Figure 3.2. On the
x-axis we plot time and the y-axis represents traffic volume. The figure shows three time bins
of size k, starting at times t, t + k, t + 2k and t + 3k respectively. For each bin the three flows
with the highest contribution in volume are colored. Each color represents one flow, so the plots
contains five different flows. During the first bin, the “green” flow contributes the most, hinted
at by having the largest area for the first bin. Thus this flow has rank one and is shown at the
top of the flows in this bin. The second most contributing flow for the first bin is the “red” flow
and is thus ranked second. The “blue” one with the third highest volume has rank three. The
traffic volume in this bin that is not contributed by the three flows with the highest contribution
is represented by the shaded area and is comprised of all the remaining flows. These remaining
flows only contribute a small part of the total traffic volume and the per-flow contribution for
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Figure 3.2: Ranking of flows using time bins. Flows are ordered by per-bin byte contribution with the
flow with the higher contribution having a higher rank (smaller rank number). Ranks can change by flow
rate changes, new flows arriving or active flows terminating.

these flows is so small that the effort to further refine the ranking is not worthwhile. After all we
are able to cover three quarters of the total volume by looking at three flows only. In the next
bin, starting at time t + k, the green flow has reduced its contribution and is now ranked only
second, while the red flow has increased its contribution and is now rank at 1 as the flow with
the highest traffic contribution. The blue flow has not changed its contribution and is still ranked
third. In the third bin a new flow appears in the ranking, colored magenta. This flow has a higher
contribution than each of all the other flows and is thus ranked first in this bin. As we only look
at the three most contributing flows, the blue flow is now no longer visible and is represented,
together with all the rest of the flows, by the shaded area. The blue flow has been pushed out of
the ranking by the magenta flow. In the last bin, starting at t +3k, the red flow has disappeared,
either because its contribution to this bin has dropped or it has terminated entirely. This leads to
the green flow to raise its rank to second and a new flow, colored yellow, to appear in the ranking
at rank 3.

The above example shows that there are two major components of variability in the flow
rankings over time. The first component is change in flow rates and can cause a flow to raise
in the ranking if its rate and thus its per bin contribution grows, or even result in flow with
very low rate to newly appear in the ranking. A similar effect can happen when a flow’s rate
decreases and the flow drops in rank or even disappears from the top ranked flows. As all flows
can be expected to change their rates over time at least somewhat, this leads to a very complex
interaction between some flows increasing their rates and some decreasing them. Again, due to
the heavy tailed distribution for flow rates, we expect that top ranked flows have to show much
larger rate fluctuations to change their ranks than lower ranked flows do. This should lead to
different dynamics in the top ranks than for the lower ranks. The second component for changes
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in the rankings stems from high-rate flows terminating or of new ones to start and, due to high
flow rates, appear in the top ranks while pushing the lowest ranked flow out of the ranking. The
dynamics of this component of ranking volatility depend on the arrival and departure process of
flows and whether this process is different for high rate flows than it is for low rate ones. Prior
work by Lan and Heidemann [KCL06] suggests, that there is a strong correlation between flow
rate and flow size and also between flow rate and flow duration [ZBPS02, KCL06]. Because
these effects have a fundamental influence on the dynamics of flow rankings and thus on rank
based flow classification algorithms, we explore these dynamics in more detail in section 3.4
before we base any analysis results on flow rankings.

3.2 Available Trace Data

We base our analysis on multiple data sets, taken at different points in the Internet. We also
try to cover different types of networks, e.g., backbone links versus access network uplinks.
Moreover, as it is not always easy to gain access to high resolution monitoring data, we want
to assess the influence of less detailed monitoring data on our analysis. Therefore we apply our
analysis methodology to data sets with different levels of detail, from packet traces to NetFlow
records built from sampled packet streams and look into what influence a lack of detail has on
the results of our analysis.

In this section we now introduce the data sets that build the foundation of our analysis scheme
and are also the base for the feasibility evaluation for performing the kind of analysis described
in section 3.1 using NetFlow data.

Trace Type Sampled Duration Records/Packets

NF-I NetFlow Version 5 no 24 hrs. 211 million records
NF-II NetFlow Version 5 1:100 24 hrs. 330 million records
WASHng NetFlow Version 5 1:100 24 hrs. 180 million records
MWN-I packet level no 4 hrs. 350 million packets
MWN-II packet level no 7 hrs. 30 min. 345 million packets
MWN-III packet level no 24 hrs. 2.9 billion packets
USB packet level no 3 hrs. 30 min. 100 million packets

Table 3.1: Network traces used in this thesis.

3.2.1 NetFlow Traces

In this section we introduce the NetFlow traces used throughout this thesis. The traces are
grouped by measurement points.

Tier-1 Backbone Traces The first CISCO NetFlow trace NF-I was collected from a single
backbone router within a Tier-1 ISP. The trace contains a day worth of CISCO Version 5 NetFlow
data (see Section 2.2.3), collected on Dec. 11, 2001. The data set NF-I contains over 211 million
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Prefix Length /22 /23 /24 /25 /26 /27 /28 /29 /30 /31 /32

#prefixes 496 459 1791 42 41 30 3 9 30 4 12
affected prefixes 17.0% 15.7% 61.4% 1.4% 1.4% 1.0% 0.1% 0.3% 1.0% 0.1% 0.4%
all prefixes 3.6% 3.3% 13.1% 0.3% 0.3% 0.2% 0.0% 0.1% 0.2% 0.0% 0.1%

Volume [GBytes] 72.5 109.9 488.3 26.1 2.1 1.5 0.1 6.1 1218.1 0.0 0.8
affected prefixes 3.4% 5.1% 33.0% 1.2% 0.1% 0.1% 0.0% 0.3% 56.8% 0.0% 0.0%
all prefixes 0.4% 0.6% 4.0% 0.1% 0.0% 0.0% 0.0% 0.0% 6.9% 0.0% 0.0%

Table 3.2: Effect of Abilene anonymization method on trace quality

flow records or about 4 GB of compressed data. This NetFlow trace is unsampled and has a loss
rate of 9% (mostly due to the capacity limits in the monitoring infrastructure, not in the ISPs
infrastructure). A second day-long sampled NetFlow trace NF-II was collected on Sept. 5, 2002
and consists of almost 330 million flow records or more than 5.1 GBytes of compressed data.
This trace contains NetFlow records built from sampled packet streams considering one in 100
packets.

Abilene Backbone Trace We use a third NetFlow trace, collected at the Abilene network.
The Abilene network is an Internet2 research network located in the United States, connecting
research laboratories and universities and is intended to enable the development of advanced
Internet applications and the deployment of leading-edge network services for the Internet2
project. In contrast to the rest of the traces, this CISCO Version 5 NetFlow trace is acces-
sible at the Abilene Observatory [Abi] for registered research projects. This trace, referenced
as WASHng, covers 24 hours worth of data, collected using a packet sampling rate of 1 in
100 packets (see Section 2.2.1) on Nov. 2., 2005 on a core router in Washington, USA.

As this is a publicly available trace, the source and destination IP addresses have been anon-
ymized. The anonymization has been performed by setting the low-order 11 bits to zero, limiting
the granularity for network prefixes to /21. This means, that different prefixes that both have the
same prefix mask length of more than 21 bits, cannot be distinguished from each other. In order
to assess the influence of this anonymization method on the accuracy of our analysis, we look
into how many distinct prefixes are affected by zeroing out not only host- but also prefix bits and
how much of the traffic is directed to affected prefixes.

The trace contains 13706 different prefixes. Of these prefixes, 2917 (21.8%) have a length
of more than 21 bits and are thus affected by the anonymization. In terms of bytes the trace
contains flows that account for 15.9 Terabytes of traffic, 12.1% of which are destined for affected
prefixes.
In Table 3.2 we show the effect of anonymization on the Abilene trace WASHng. Affected
prefixes are those that have a longer prefix mask length than 21 bits. The table shows, that most
of the affected prefixes have netmask length of 24 or smaller, with /24 prefixes accounting for
more than 60% of the affected prefixes and only 13.1% of all prefixes. When looking at the
amount of data sent to the affected prefixes, most of the bytes go to /24 and /30 prefixes.

As a consequence of the effects of anonymization, we avoid using this trace to analyze 5-tuple
flows. On the other hand, doing analysis on flows aggregated by destination prefix, both with
fixed netmask length, e.g., /24 or /16, and with netmask length as contained in the flow records,
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is not affected in a major way.

3.2.2 Packet Traces

Because of their usually very large volume, we in this thesis use packet level traces mainly for
validation of the feasibility of using network flows for our analysis. We also use packet level
traces in cases where NetFlow data was not available. As all available packet level traces were
captured at access links with only a limited host population on the inner and the rest of the
Internet on the outer side, one needs to be careful when considering destinations for incoming
and sources for outgoing targets for analysis. This property of the packet level traces has however
no influence on the validity of the evaluation of our methodology.

Münchner Wissenschaftsnetz (Munich Scientific Network) Of the four packet level
traces used for this thesis, three were collected at the access link between the Munich Scien-
tific Network (Münchner Wissenschaftsnetz, MWN [MWNa, MWNb]) and the Internet. The
MWN, operated by the Leibnitz-Rechenzentrum (Leibnitz-Computing Center, LRZ) provides
access for two major universities (Technische Universität München and Ludwig-Maximilian
Universität), and several Max-Planck- and Fraunhofer Institutes to the Internet via the Deutsches
Forschungsnetz (German Research Network, DFN). It consists of about 50000 individual hosts.
The uplink to the Internet has been upgraded during the development of this thesis. Starting with
a 622 Mbps PoS link, the uplink has been changed to 1 Gbps Ethernet in 2003. On average the
uplink carries about 60 TBytes of data per month as of 2005. The traces were collected using the
monitoring facility of the core switch, duplicating the traffic on the uplink to a dedicated 1Gbps
fiber to a capturing machine. Although it is in principle problematic to copy both directions of a
monitored 1Gbps link onto a single 1Gbps fiber, the peak traffic rate observed using the account-
ing mechanism of this switch show, that our traces do not suffer from overload of the monitoring
port and resulting packet drops. The first trace collected at the MWN, called MWN-I throughout
this work, was captured on Friday, Oct. 31, 2003, 11:17–15:22 local time in Munich. This trace
contains only packets from and to the CS department of the Technische Universität München. It
consists of about 350 million packets or more than 10.3 GBytes of compressed data. The second
trace, MWN-II, was gathered at the same location but this time capturing all packets crossing
the monitored link without limiting traffic to or from a subset of the internal hosts. It contains
all traffic starting from Wednesday, Nov. 13, 2003 , 19:10 up to 02:43 the following Thursday
morning, amounting to about 345 million packets or 2.5 GBytes of compressed data. The third
trace, MWN-III, contains 24 hours worth of data and was collected on Nov. 15., 2005. This trace
is comprised of about 2TBytes worth of packets. As this trace covers an entire day and does thus
not limit the maximum flow durations more than any of the NetFlow traces, we use this trace,
along with the NetFlow traces, for studying network flow properties.

Universität des Saarlandes (Saarland University) The fourth trace, USB, was collected at
the 155Mbps link between the campus network of the Universität des Saarlandes, Saarbrücken,
Germany and the DFN backbone. The campus network connects about 10000 hosts using a
1Gbps backbone and generates about 7TB of outgoing and 3TB of incoming traffic per day. The
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trace was captured at the university uplink on Tuesday, Feb. 02, 2003 between 12:00 and 15:29.
It contains approximately 100 million packets or some 2.5 GBytes of compressed data.

3.3 Data Preparation

The traces available for our analysis show a high degree of diversity. Not only do the traces
originate from very different network setups, they also come in two entirely different classes of
granularity. On the one hand, we have NetFlow traces as exported by CISCO routers. As we
have seen in Section 2.2.3, this implementation of the network flow concept comes with certain
drawbacks when compared to the theoretic flow model. On the other hand, we use packet level
traces. In order for all traces to be comparable, we first have to build network flows from the
NetFlow record and packet level traces. In this section we describe how to construct network
flows from the available packet level traces and how to cope with the peculiarities of CISCO
NetFlow traces.

3.3.1 NetFlow Normalization

All the NetFlow traces we use come from CISCO routers, that construct flows from packet
streams in real time. The routers have to do this using limited resources especially in terms of
memory. In order to keep the memory pressure low, routers try to export NetFlow records as
early as possible. This is achieved by immediately exporting flows that are idle for some time or
where the protocol allows for a detection of flow termination, e.g., TCP’s FIN and RST packets.
A minor problem is the retransmission of such termination packets. Every packet following
the last one is exported as a new flow consisting of a single packet. Two much more serious
problems are caused by heavy usage of router memory, either by very long flows or by a very
large number of flows. In the case of very long flows, routers export portions of a flow, when it
has been active for a longer time as the activity timeout specifies. The incentive for this behavior
is to provide applications with at least near-time information about the network conditions. The
second reason for exporting portions of non-terminated flows is memory pressure in the presence
of a high number of active flows. In such a situation a router expires active flows following
heuristics that try to reduce memory consumption as efficiently as possible.

Unfortunately, exporting a long flow as several flow portions leads to problems in the analysis
process, e.g., when looking at the duration of flows. In [SF02] the authors had to cope with
the same problem while generating connection summaries from NetFlow records. In order to
capture all flows belonging to the same connection, the authors sometimes had to recombine
NetFlow records with the same source and destination IP addresses and port numbers to cap-
ture all NetFlow records belonging to a connection even if the the time gap between the end
of one record and the start of next one exceeded the inactivity timeout value. In contrast to
this connection oriented point of view on network flows, we are interested in the behavior of
network flows as defined by the more theoretic approach described in Section 2.2.1. Therefore,
we recombine NetFlow records that in principle belong to the same network flow but have been
exported as several portions because of router memory shortage or high flow duration. We call
this procedure flow restitching.
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We perform flow restitching on five-tuple flows only. A restitched network flow thus consists
of all NetFlow records that have the same source and destination IP addresses and port numbers
and the same transport layer protocol type and in addition never have gaps between two chrono-
logically consecutive NetFlow records that are longer than allowed by the inactivity timeout
value. The procedure of flow restitching is illustrated in Figure 3.3. The figure shows five Net-
Flow records with the same source and destination IP addresses and ports. The earliest record
to the left side, labeled A, has a duration that is equal to the activity timeout configured on the
exporting router. We assume that NetFlow records of at least this duration are exported because
of the configured activity timeout and are thus still active at that time. This means that we expect
another NetFlow record, that is the continuation for this flow. In our example, such a NetFlow
record is depicted by the record labeled as B. This record follows the first record within a short
time period, one that is significantly smaller than the configured inactivity timeout. Another
reason for a router to export a record for an active flow is memory shortage. In this case, the
router prematurely exports a record for an active flow to free memory for new flows. A record
that is exported for this reason will, if it is not the first record for a flow, follow another record in
less time than the inactivity timeout would suggest. Such a NetFlow record is shown as record
C in Figure 3.3. The record D starts later after the end of record C than the inactivity timeout
demands. This means, that the network flow represented by the records A to C ends and record
D is the beginning of a new network flow. The restitching process therefore merges the records
A to C into a single network flow, that starts with the beginning of record A, terminates with the
end of record C and whose byte and packet counters are the sum of the bytes and packets of the
three NetFlow records. A third case, where we merge multiple NetFlow records into a single
network flow happens, when parts of a flow carry different type of service (TOS) bits [RFC81a]
than the rest of the flow. As CISCO routers do not only use source and destination addresses
and ports and the transport layer protocol, to build NetFlow records but also the TOS bits, we
merge NetFlow records that fulfill the timing requirements according the two timeouts. Such a
case is shown in Figure 3.3 by the records D and E. Restitching such records is more difficult,
as they may overlap in time. In our example, record E is completely contained in record D,
so restitching can be done by simply taking the start and end time of record D and sum up the
bytes and packets of both records. In general however, we restitch such records into a network
flow, that begins with the minimum of the start times of all related records and ends with the
maximum of the end times. Summing up packet and byte counters of all the pieces of a network
flow leads to loss of flow rate information, if the flow rates for the pieces are different. But as we
have to be able to cope with the fact, that we only have flow rates averaged over a flow’s lifetime
to work with anyway, this does not further complicate the handling of network flows.

Restitching of NetFlow records in this way normalizes the available NetFlow traces and results
in network flows that are consistent with the theoretical model and are thus comparable with flow
traces collected under different network conditions, independent of flow duration distribution or
router architecture or hardware configuration.

3.3.2 Generating Network Flows from Packet Level Traces

Although our analysis concentrates on the properties of network flows we do not use only flow
traces but also rely on packet level traces. We do this both to broaden our data basis to ensure
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Figure 3.3: Flow restitching. Record B is caused by the activity timeout. Record C is the result of
CISCO’s export mechanism and starts before an inactivity timeout occurs. Record E has the same five
tuple values as record D, but different TOS bits.

better representability of our results as well as to show that it is possible to do traffic analysis
using network flows. As we cannot use packet level traces directly in our analysis, we first have
to construct network flows from the packet level traces. We construct two types of flows:

The first type are five-tuple flows according to the theoretical model. These flows can be
treated in the same way as the normalized flows generated from NetFlow records by restitching.
Note, that we can generate network flows from packet traces without having to artificially split
flows into several pieces. As we have more memory resources than a real router and because
there is no need to report long flows by premature export, we do not have to expire active flows.
This way, we can skip the restitching step that is needed for NetFlow records. We can expire
flows based on idle time alone. But as we cannot derive additional information like, e.g., prefix
mask lengths from the packet level traces, we have to consult BGP [Ste99] tables from either the
router used to collect the trace or, in the case the trace has been collected using a passive network
tap, from an router adjacent to the tap. Using BGP tables, we can complement the generated
flows with AS numbers and prefix mask lengths both for source and for destination addresses.

The second type of flows is intended for the evaluation of the quality of NetFlow based traffic
analysis. As already shown in Section 2.2.1, flows contain only averaged information on the flow
rate, based on time stamps and packet and byte counters. On the other hand, the fine grained
packet level traces can provide us with very accurate flow rate information. In order to use this
information to obtain more fine grained flow rates for network flows, we generate, along with
the five-tuple flows, short flow fragments. These fragments are oriented along the same time
raster that we use for the time bins (see Section 3.1.3). This way, we have precise flow rates
that match the finest time granularity we use for our flow analysis. A more fine grained time
resolution than the smallest bin size is not needed to obtain exact values for flow rates during a
bin and thus the exact traffic contribution of a flow during a time bin. In the remainder of this
thesis, we refer to raw, non-aggregated five-tuple flows also as RawFlows, while we will refer to
the flow fragments as FragFlows.

In order to be able to aggregate flows by, e.g., destination IP prefix we need to fill in the prefix
mask length fields of the flows with correct values. Therefore, we extracted BGP tables from the
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Figure 3.4: Scatterplots comparing the per-bin byte counts for NetFlows and FragFlows (top: IP flows,
bottom: aggregated destination prefix flows using a fixed 16 bit mask; left: bin size = 60 sec; right: bin
size = 480 sec). Already strong concentration around diagonals, especially for top ranked flows, increases
with larger bin sizes and higher aggregation levels.

corresponding access routers, reconstructed the routing tables from the BGP information and
then used longest prefix lookups into these routing tables to get per IP prefix mask lengths for
inclusion into the generated NetFlows. As both collection points, MWN and USB announce
the interior networks in only a few large blocks, this procedure is somewhat inaccurate for hosts
within both academic networks. However the number of affected IPs is sufficiently small for this
kind of error to be tolerable. In cases were this inaccuracy might have a noticeable impact on the
aggregation results, we omit aggregation for internal hosts, e.g., by only considering destination
prefix flows that are outgoing from the viewpoint of these networks.

3.4 Feasibility of NetFlow Based Analysis

Before embarking on a study of the persistence aspects of Internet flows, we first examine in
this section the implications of the constant flow rate assumption and the impact of possible
deviations of actual flow rates from a flow’s average rate. As discussed in Section 2.2.2, this
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assumption is unavoidable when using non-aggregated NetFlow data in this context.
To this end, we rely on our packet-level traces for which we can derive both FragFlows (see

Section 3.3.2) and RawFlows. We generate the rankings for both FragFlows and RawFlows
and compare the resulting rankings in terms of per bin byte contribution and, as we want to
concentrate on the dynamics of the rankings, also in terms of per bin ranks. After obtaining the
per bin rankings for the top 5000 flows for both RawFlows and FragFlows at various abstraction
levels, we match the appropriate RawFlows and FragFlows and compare them to assess the
impact of the constant flow rate assumption on the validity and quality of our findings. More
precisely, we select the top 1000 entries from each bin and locate the matching counterpart if it
existed among the top 5000 entries. In order to assess the influence of different time granularities
on our results, we perform this comparison for different small to medium bin sizes in the range
of 1 to 8 minutes. The bin sizes are chosen in a way that one size is an integral multiple of the
next smaller bin size. Starting with 1 minute as the smallest bin size, we additionally use the
rather small bin sizes of 120, 240 and 480 seconds for the purpose of evaluation.

3.4.1 Per-Bin Byte Differences

We start by comparing how the per-bin byte counts of the FragFlows differ from those of the
RawFlows for different time aggregations and flow abstractions. The working hypothesis is that
we should expect differences, but that they will diminish as we consider larger bin sizes and/or
higher flow aggregates. In this context, one of the objectives is to try and identify the causes of
and quantify to some extent the expected differences for small bin sizes and unaggregated flows.

We expect the constant flow rate assumption for network flows to have its highest impact when
comparing how many bytes a FragFlow is contributing to a particular bin and how many bytes
the corresponding network flow contributes. To illustrate this comparison, Figure 3.4 shows
scatterplots of the per-bin contributions of RawFlows (x-axis, log-scale) against the per-bin con-
tributions of the corresponding FragFlows (y-axis, log-scale) for the trace MWN-I. The top row
is for unaggregated RawFlows and bin sizes of 60 seconds (left) and 480 seconds (right), while
the bottom row is for aggregated destination prefix flows using fixed 16 bit prefix masks and the
same two bin sizes. Note that the plot only shows distinct points; duplicates are removed before
plotting. We use different symbols to indicate the ranking that a particular point is associated
with. A small “4” corresponds to a byte count that has at least one ranking (FragFlow or net-
work flow) in the top 1000 but none in the top 100. A “+” marks those byte counts that have
one ranking in the top 100 but not top 10, and a “×” identifies the byte counts that have a top 10
ranking.

The most pronounced feature in all of these plots is a strong concentration of the points around
the diagonal, with varying degrees of deviation as we consider different bin sizes and/or flow
abstractions. In relative terms, these deviations from the diagonal seem to be smallest for byte
counts with a top 10 ranking and tend to get larger as we consider more of the more frequently
occurring lower-ranked byte counts. Also, as we consider either larger bin sizes (left to right
in Figure 3.4) or larger aggregation levels (top to bottom), or a combination of larger bins and
aggregates (top left to bottom right), the concentration along the diagonal is accentuated. As far
as increasing the bin size is concerned, one explanation for this observation is that more flows
will completely fall within a single bin, and that this feature impacts not only the many lowly-
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Figure 3.5: Histogram of the relative byte differences between FragFlows and network flows with linear
x- and logarithmic y-axis (non-aggregated flows, bin size = 60, 120, 240, 480 sec). Relative error is
mostly small and further shrinks as larger bin sizes are considered.

ranked flows whose durations tend to be shorter than those of the few top-ranked flows. In terms
of increasing the level of flow aggregation, the variability of the per-bin byte counts of large
aggregates is bound to decrease as predicted by the Central Limit Theorem (see, e.g., [JS87]).

To quantify the degree of (in)accuracy of the approximation resulting from the constant flow
rate assumption, we compute for each per-bin byte count the relative byte difference between
the FragFlow and the network flow entries. This is done for each bin and flow by taking the
absolute value of the difference between the two byte counts, dividing it by the maximum of
those two values, and multiplying by 100 to get percentages. Figure 3.5 shows histogram plots
of the relative byte differences for different bin sizes and illustrates that the error caused by
the constant flow rate assumption decreases with bin size. Overall we observe that—as we
expected—the accuracy of using the more widely available network flows instead of the hard-
to-come-by FragFlows increases with bin size and with aggregation level, implying that the
constant throughput assumption may be appropriate for certain flow abstractions.

While concentration around the diagonal in the plots in Figure 3.4 is highly desirable, points
that clearly deviate may also be informative, especially if they concern top-ranked byte counts,
and deserve closer inspection. An obvious artifact in Figure 3.4 are the vertical bands that are
associated with one and the same network flow byte count and result from having in general
many different FragFlow byte counts for the same flow. For example, in the top left plot in
Figure 3.4, we can identify 18 bins associated with 16 flows where the difference in FragFlow-
vs. flow-derived byte counts was large enough to cause the byte counts to be classified as top
10 for FragFlow and as top 100 for Flow, or vice versa. Of these 18 “outliers”, 14 occurred at
the start (6) or the end (8) of the flows. Possible explanations include TCP slowstart and initial
protocol overhead for those at the beginning of their lifetime, and timeout effects for those at the
end.
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Figure 3.6: Scatterplots comparing the per-bin ranks for network flows and FragFlows (top: non-
aggregated flows, bottom: destination prefix flows using a fixed 16 bit mask; left: bin size = 60 sec;
right: bin size = 480 sec). The deviation in ranks decreases with larger bin sizes, higher aggregation
levels, and higher ranks (smaller rank numbers) where the influence of the rank on the error is somewhat
hidden by the logarithmic scales.

3.4.2 Per-Bin Rank Differences

Next we examine what impact the observed differences in per-bin byte counts that are the result
of the constant throughput assumption have on the per-bin ranking of the flows. While the pre-
vious subsection focused on the impact of the constant flow rate assumption on byte counts, we
now examine the differences that are imposed by this assumption on the ranking. The raw rank
data derived from the MWN-I trace are given in Figure 3.6 which shows scatterplots of the per-
bin network flow derived ranks (x-axis, logarithmic scale) against the corresponding FragFlow
derived ranks (y-axis, logarithmic scale). As in Figure 3.4, the top row is for unaggregated flows
and bin sizes of 60 seconds (left) and 480 seconds (right), while the bottom row is for aggregated
flows using a fixed 16 bit mask and the same two bin sizes. The symbols have the same mean-
ing as in Figure 3.4, but note that the top-ranked per-bin flow rates are now concentrated in the
lower left rather than in the upper right corners of the four plots as high byte counts correspond
to small rank numbers. After accounting for the artifacts caused by selecting only the top 1000
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Figure 3.7: Scatterplots of the relative per-bin byte count differences between network flows and
FragFlows vs. jittered absolute per-bin rank differences between FragFlows and network flows (left:
RawFlows, bin size = 60 sec; right: aggregated destination prefix flows using a fixed 16 bit mask, bin
size = 480 sec). There can be relative byte count changes of up to 50% (20%) without a difference in
ranks. The same relative byte difference leads to smaller absolute rank changes for elephants than for
other flows.

entries (cut off in the upper right corners) and by using a logarithmic scale in conjunction with
ranks that can only have discrete values, the common dominant feature in these plots is again
a pronounced concentration of the points around the diagonal, with some obvious deviations.
However, these deviations from the diagonal diminish significantly as either larger bin sizes or
higher flow aggregates are considered. The deviations are also smaller for higher ranks (smaller
rank numbers). This fact is not readily discernible due to the logarithmic scales of the plots.

Before addressing the issue of how the constant flow rate assumption impacts the ranking of
individual flows, we first examine how much of a per-bin rank difference can be expected as a
result of a given per-bin byte count difference. In effect, in answering this question, we combine
the information from Figures 3.4 and 3.6 to generate Figure 3.7. More precisely, to generate the
relevant information, we consider the relative per-bin byte count differences instead of their ab-
solute values because generally, for elephants, larger absolute byte changes are needed to switch
ranks than for mice. At the same time, in terms of rank differences, it seems more sensible to
consider absolute rather than relative rank changes. To be able to examine the relative byte dif-
ferences in conjunction with the smaller absolute rank differences in more detail, we manipulate
the data by adding a constant offset (jitter) of 0.1 to both the absolute rank differences as well
as to the relative byte differences; we also introduce some jitter to the absolute rank differences
by adding a uniform random amount between 0 and 0.4 to each absolute rank difference so as
to avoid the situation that all points with the same (integer-valued) rank difference appear as a
single point in the plot.

The resulting two plots, one for unaggregated flows and a bin size of 60 sec (left), and one
for aggregated flows using a fixed 16 bit mask and a bin size of 480 sec (right), are shown in
Figure 3.7. The two plots correspond to the top left and bottom right plots shown in Figures 3.4
and 3.6. The clearly visible band with (jittered) rank differences between 0.1 and 0.5 corre-
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Figure 3.8: Scatterplots of percentages of bytes from elephant/hybrid bins for network flow-derived
elephants/hybrids vs. percentages of bytes from elephant/hybrid bins for FragFlows-derived ele-
phants/hybrids (left: RawFlows, bin size = 60 sec; right: aggregated destination prefix flows using a
fixed 16 bit mask, bin size = 480 sec). The concentration around the diagonals mean the same ranks for
FragFlows and network flows. The points at x = 0 represent bins where the flow rate is misjudged by
network flows because of their inability to capture rate fluctuations. The points at y = 0 are caused by
edge effects where the rank of network flows is just barely overestimated.

sponds to those bins where FragFlow and the corresponding network flow entries have the same
rank (absolute rank difference of 0 plus jitter). It is interesting to note that in the non-aggregated
case (left plot), rather large relative byte difference (up to 50%) can occur without influencing
the rank too much. Once we include the next few discernible bands corresponding to rank dif-
ferences of ±1, ±2, to ±5 and so on, the number of top-ranked bins is drastically reduced, more
so for the aggregated case (right plot) than for the non-aggregated one. The remaining elephant
bins are the ones where a large relative byte difference leads to a relatively large rank change.
Figure 3.7 begs the question how a flow rate can more or less keep its rank in going from network
flows to FragFlows even if the byte count difference is relatively large. There are at least two
arguments that can be put forward. For one, the byte difference may not be big enough to either
reach the byte count of the next higher ranked entry or let it drop below the next lower ranked
entry. Alternatively, another flow that was lower or higher ranked than the current one has a
large relative byte difference and is therefore now ranked higher or lower than the current one.
The latter argument also explains why a flow may change its rank from one bin to the next even
if the byte difference extremely small or even zero. Similar comments apply when considering
different bin sizes and/or flow aggregation levels. Figure 3.7 also illustrates that because the
byte differences between the individual ranks are much smaller for the lower-ranked entries, the
observed rank differences for the latter will be larger than for the top-ranked items.

3.4.3 Per-Flow Rank Differences

Until now, we have been mainly concerned with the per-bin byte count differences between
FragFlows and network flows and with their impact on the resulting per-bin rank differences.
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Here we will use the insight gained so far at the per-bin level and apply it to determine the impact
that the constant throughput assumption has on the flows as a whole. To this end, we focus on the
heavy hitters, where we define a heavy hitter to be a flow that is at least once ranked an “elephant”
(i.e., in the top-10) in any bin during its lifetime. Other choices of defining an elephant (e.g., in
the top-5, or top-20) yield similar results. For such flows we are interested in determining what
percentage of the total bytes contributed by an “elephant” flow can be attributed to bins that are
ranked within the top-10 or the top-100. Accordingly, a flow is considered a “hybrid” flow if its
top ranked bin is a “hybrid” (i.e., in the top-100, but not in the top-10).

Figure 3.8 shows two scatterplots of the percentage of bytes contributed by an elephant or
hybrid flow during bins that were ranked within the top-10 (for elephants) or top-100 but not
top-10 (for hybrids) using network flows (x-axis) against the same FragFlow-derived quantity
(y-axis). The left plot deals with the non-aggregated case (i.e., IP flows and a bin size of 60),
and the right plot is for the aggregated case (i.e., aggregated flows using a fixed 16 bit mask and
a bin size of 480 sec).

Figure 3.8 shows a number of informative properties related to relying on network flows as
compared to FragFlows. For one, most of the points in both plots scatter around the diag-
onal, some are right on the diagonal (indicating a perfect match between network flows and
FragFlows), some occupy the line x = 0 (vertical line through 0) and others the line y = 0 (hori-
zontal line through 0). Looking first into the 24 (total points in the top plot is 524) flows satisfy-
ing y = 0, we find that the median distance of the FragFlow and the network flow ranking for the
bins that cause each of these flows to be considered an elephant is 1 (mean is 1.8). This suggests
that network flows just barely overestimated the ranking in comparison with FragFlows. Un-
fortunately, these edge effects cannot be avoided whenever one chooses a simple static elephant
classification such as top-10 ranking, but time aggregation helps in alleviating this problem.
Next the 51 flows satisfying x = 0 have little to do with edge effects, but represent in some sense
the price one has to pay when using network flows instead of FragFlows in classifying Internet
flows. Indeed, the reason for this obvious mismatch in between network flows and FragFlows in
this case is that while FragFlows are capable of capturing the dynamics of the within-flow data
exchange, these details are invisible to network flows. To illustrate, a sample sequence of per-bin
ranks for a FragFlow is: 135, 9, 11, 7, 15, 18, 18, 19, 17 classifying the flow as an elephant;
the network flow-derived per-bin rank sequence for the same flow is: 92, 13, 12, 15, 15, 18, 18,
19, 17 which qualifies for a hybrid. One consequence of network flows “mis-classifying” some
elephant bins as hybrid bins is that the affected flows tend to get a large percentage of their bytes
from hybrid bins when the actual (FragFlow-derived) percentage is in fact smaller. This explains
the set of hybrid flows clustering around the line x = 100%. In general, this problem can be al-
leviated with flow aggregation, which illustrates yet again that aggregation is the proper tool for
achieving a desirable degree of accuracy when using network flows instead of FragFlows.
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Many traffic engineering methods rely on identifying a small set of flows, the heavy hitters, and
control how these flows are routed through the network. Thereby they rely implicitly on the
large flows to stay large, at least for some time. But there also is the the fact, that the rate of
traffic aggregates is consistent with self-similarity, showing high variability on a wide range of
time scales. Here the question arises of how much traffic individual Internet flows (especially
the heavy hitters) contribute during their lifetime to the overall traffic. A better insight into
the persistency properties of heavy hitters and the causes for that properties, especially in the
presence of self-similar behavior of network flow rates, is vital for the understanding of existing
and the development of new mechanisms for network flow based traffic engineering and load
adaptive routing algorithms.

A simulation environment that is designed to enable the evaluation of novel traffic engineering
or adaptive routing mechanisms therefore should be able to generate workload traffic that shows
the same properties and characteristics as real network traffic. This is important not only on
the packet level, where traffic shows self-similar scaling properties. Such workload traffic must
also show realistic characteristics on the flow level where it has to exhibit flow rates that are
conformant with Zipf’s Law. Finally, it is also important that the workload traffic is not only
self-similar and conforms with Zipf’s Law, but that it also shows the same interactions between
these two characteristics.

Consequently, we look into the persistency properties of heavy hitter flows and characterize
as well as look into possible causes for these properties. Instead of analyzing the exact behavior
of every network flow we classify flows according to their significance in terms of traffic contri-
bution. We do this by deriving rankings for flows based on their per bin byte contribution and
analyze the dynamics of such rankings over time.

The remainder of this chapter is structured as follows: We start by looking into basic aspects
of flow rankings in terms of stability, followed by a characterization of how the flow rankings
behave under different time resolutions and varying degrees of traffic aggregation. We then
look into the causes for the observed features of flow rankings using our packet level traces and
characterize how they influence the variability of the traffic. Finally, we introduce our metric
for quantitatively assessing the degree of variability of flow rankings to be able to compare the
persistence properties of different data sets, traffic aggregates and time granularity.

4.1 On the Dynamics of Flow Rankings

For traffic control applications it is not without problems to rely on flow rates to be consistent
with Zipf’s Law. On the one hand, flow rates are in fact consistent with Zipf’s Law, at least for
all our traces. This observation even holds over time. On the other hand, the dynamics inherent
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Figure 4.1: Zipf’s Law across 10 successive time bins with rank sequences for three flows depicted by
connecting the flow ranks on different size-rank curves. The colored lines connect corresponding ranks
of the same flow. Although the rank fluctuations for the example flows seem to be equal in size because
of the logarithmic x-axis, their real extent is much higher for low ranked flows than for top flows.

in network traffic lead to problems when trying to exploit Zipf’s Law to identify a set of heavy
hitter flows and then concentrate traffic control on this flow set.

To illustrate that Zipf’s law applies bin-by-bin over time, we reconsider Figure 4.1 which
shows a plot of 10 rank-rate relationships for flow rates of IP flows corresponding to 10 consec-
utive 1-minute bins. On the x-axis, the rank is shown on a logarithmic scale, while the y-axis,
also in logarithmic scale, shows the rate of the flow. The curves are offset from one another by a
small amount in the vertical direction to facilitate a visual assessment of Zipf’s law across time,
i.e., an approximate straight line behavior for each of the 10 curves. This kind of behavior also
holds for other time periods, flow abstractions, and bin sizes. Given that Zipf’s law for flow rates
applies on a per-bin basis across time begs the question whether a flow that lasts for a number of
bins and has been classified as “heavy hitter” has earned this distinction because of being top-
ranked only sporadically because the flow rates associated with just one or two bins made it into
the top ranks, or if the the flow is persistently top ranked, because its rates are top ranked in most
of the bins throughout its lifetime. In Figure 4.1, we emphasize the ranks of three flows across
the 10 bins by connecting the appropriate points of the rank-rate curves. All three flows show a
certain amount of variability in their respective ranks. But they also stay either top ranked (blue
curve), medium ranked (red curve) or low ranked (green curve). Note however that, although
Figure 4.1 at first glance suggests otherwise, the movement in ranks of the low ranked flow is
much higher than that of the top ranked flow. Note that flow #3, though seemingly spanning
the same range of ranks as flow #1, the logarithmic scale on the x-axis shows, that while flow
#1 spans over 5 ranks, flow #3 does so over the range of several hundred ranks! Still the low
ranked flow shows no indication of ever becoming a medium or top ranked flow. This shows
that although there exists a certain amount of variability in the ranks of a flow, there is also a
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Figure 4.2: Number of top-ranked flows needed to account for a given portion of the total traffic per bin
(IP flows, bin size = 60 sec). With sampled flows, more top flows are needed to account for 20% of the
traffic, whereas less sampled flows are needed to cover 50% or more of the traffic. This is the result of a
bias towards higher rates when considering flows from sampled packet streams.

tendency for a flow to maintain at least its classification as top, medium or low ranked. It is this
persistence of classification of flows that makes them interesting for traffic control applications.

Informally, Zipf’s law and its variations are often interpreted as 80 − 20 or 90 − 10 rules,
which state that about 80% (or 90%) of consequences stem from some 20% (or 10%) of causes.
In the present context, this translates into “a significant portion of the total number of bytes in
a bin is due to a relatively small percentage of the top-ranked flows (i.e., flows with the highest
flow rates). Relying on the unsampled NetFlow trace, NF-I, and the sampled NetFlow trace
NF-II, Figure 4.2 considers network flows and 1-minute bins and shows how many of the top-
ranked flows are needed for each bin to account for 20%, 50%, and 80% of the bin’s total traffic
volume. For example, we note that most of the time the top 100 flows account for 20% of the
total traffic per bin, the top 1000 flows are responsible for about 50%, and to account for 80%
of the total traffic, we need to consider way more than the top 1000 flows (e.g., there are times
that require more than the top 10000 flows). We note that the relative bytes per top ranked flows
for the unsampled NetFlow trace, NF-I, is larger than those for the sampled NetFlow trace, NF-
II. Yet for the lower ranked flows they are less. Also note that the overall per bin volume of
the unsampled trace is about a factor 2− 3 smaller than for the sampled trace. This is a direct
consequence of constructing flows from sampled packets streams. The high sample rate of 1 in
100 packets on average leads to a bias towards large flows while missing lots of very small ones
entirely.

According to Figure 4.2 it is necessary for traffic engineering applications to consider in the
order of about 10000 of the largest flows to be able to control the majority of the traffic passing
a router. Therefore, we construct rankings for our analysis that include the top 10000 ranks
to cover enough of the traffic to obtain meaningful results. However in most cases, we want
to concentrate on the largest flows only, so we show only flows with ranks 1− 10 (elephants),
ranks 11− 100 (hybrids) and ranks 101− 1000 (mice). Using this flow classification we focus
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on more manageable amount of the largest flows, while still covering about 50% of the overall
traffic.

4.1.1 Stability of Flow Ranks

Figure 4.2 leaves open the possibility that the cast of top-ranked flows can vary considerably
from one bin to the next due to the arrivals of new and the departure of existing flows. There
always exist opportunities for newly arriving flows to make it into the top ranks if their rates are
high enough and for existing flows to fall out of the top ranks, either due to them ending or being
pushed out of the top ranks by new large flows.

To illustrate the degree of variability among the per-bin sets of top-ranked flows over time,
Figure 4.3 considers network flows for 1-minute bins again and shows the “churn rate” among
the top 10, top 100, and top 1000 flows, respectively. Here, for each bin, the churn rate is
defined to be the percentage of top 10 (top 100, top 1000) flows in that bin that were not among
the top 10 (top 100, top 1000) flows in any of the previous bins. Thus, a high churn rate is
an indication of significant non-persistency among the top-ranked flows, while a low churn rate
reflects a considerable degree of stability among the cast of top-ranked flows in time. In the
upper and middle sections of Figures 4.3 a) and 4.3 b) we can see that, while the different churn
rates are roughly comparable, they show subtle but nevertheless important differences. Overall,
the variability of the churn rate drops as one considers more ranks. For the non-sampled trace
NF-I (Figure 4.3 a), the churn rate among the top 100 and top 200 ranks is lower than the churn
rate for the top 10 ranks. During the early morning hours this difference is reduced. The churn
rate for the top 1000 ranks shows the opposite behavior. It is larger than the churn rate for the
other ranks and it increases as the traffic volume decreases. This indicates that most flows that
are in the top 1000 but not the top 200 are short lived and interchangeable with small byte rate
differences in the order of tens of bytes.

For the sampled trace NF-II (Figure 4.3 b), the churn rate among the top 100 and top 1000
ranks is slightly lower than the churn rate for the top 10 ranks during the early AM hours. During
the later AM/early PM hours it is slightly higher, and appears to revert to the early AM behavior
during the late PM hours. For this trace the churn rate for top 1000 ranks does not show the
opposite behavior as we saw for NF-I since the byte volume differences between flows at rank
1000 are in the order of thousands of bytes. This is caused by the bias towards larger flows when
using sampling to construct flows from packet streams.

For both, NF-I and NF-II, the churn rate appears to be correlated with the total number of
flows. However during the less busy periods in NF-I, a flow needs to contribute a smaller number
of bytes to a bin in order to be top ranked than during the corresponding periods in NF-II. For
a visual assessment of this observed behavior of the churn rates, we show in the lower sections
of Figure 4.3 the time series representing for each bin the rate (i.e., number of bytes per bin)
at which a newly arriving flow would have to send data to move into the top 10 ranks (i.e., be
classified as elephant). The differences observed in the plots in Figure 4.3 again resulting from
the use network flows derived from unsampled (trace NF-I) vs. sampled (trace NF-II) packet
streams clearly warrants further investigations.

To assess the influence of this variability in the set of top-ranked flows on traffic engineering
and load adaptive routing, Figure 4.4 shows 10%, 50% and 90% percent quantiles of the fraction
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Figure 4.3: Upper and middle parts: Churn rate processes associated with the top 10, top 100, top 200,
and top 1000 flows, respectively. Lower part: Time series of flow rates needed for a newly arriving flow
to move into the top 10. (IP flows, bin size = 60 sec.)
The churn rate for top 1000 flows for the non-sampled trace (a) hows the opposite behavior than for the
top 200, top 100 and top 10 flows due to very small byte volume differences. This is not the case for
the sampled trace (b) where the sampling leads to a bias towards higher flow rates. For the non-sampled
trace, the volume needed to enter the top 10 ranks during the less busy hours is lower than for the sampled
trace.
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Figure 4.4: Byte contribution of a fixed set of top 1000 flows for WASHng and 1 minute bins. The traffic
fraction contributed by any fixed set of flows diminishes quickly over time as top flows will terminate
with time. Using aggregated flows reduces this effect due to higher flow durations.

of bytes covered by considering only the top 1000 flows of some bin (y-axis) and how this
fraction develops with time in terms of distance in bins. For both non-aggregated and aggregated
flows, the fraction of bytes contributed by a fixed set of flows diminishes quickly over time.
In the case of non-aggregated flows, the byte contribution halves within about 20 minutes on
average. Although the reduction in byte contribution for aggregated flows is not as dramatic as
for non-aggregated flows, the plots show, that it is necessary to reclassify the set of top flows on
a regular basis if one wants to control a significant part of the overall traffic. The curves in this
plots are also consistent with similar assessments of Papagiannaki et. al. in [PTD04].

Figure 4.2 also does not answer the question, whether the observed dynamics are due to churn
only. It might be the case that there is no persistency of flows across bins and our observations
automatically follow from the well-known heavy-tailed distribution of flow rates or flow dura-
tions. However, a simple comparison of the flow duration distributions shows that this is not
the case for the top ranked flows. For example, for the trace NF-I the median of the flow length
distribution for 60 second bins increases from 4.2 seconds for the top 10000 flows to 44.7 for
the hybrid flows and to 57.8 seconds for the elephant flows. In the case of 480 second bins, the
larger bin length increases the possibility of flows with moderate rate but high duration to be
ranked higher. In fact, for the same trace, the median of the flow length distribution changes
from 44.7 seconds to 136.0 seconds for hybrids and from 57.8 to 296.5 seconds for elephants.
The maximum flow length coincides with the trace duration.

In general instabilities can have many causes including flow rate fluctuations. But even if
one assumes that all flows operate at a fixed flow rate, a top ranked flow can become a medium
ranked one if a number of larger flows pop up. Alternatively a medium ranked flow can become
a highly ranked one if enough top ranked flows end.
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a) Heavy hitters (non-sampled) as Elephants b) Heavy hitters (non-sampled) as Hybrids

duration

pe
rc

en
ta

ge

1 10 100 1000 10000

0
20

40
60

80
10

0

gnutella
other

duration

pe
rc

en
ta

ge

1 10 100 1000 10000

0
20

40
60

80
10

0

gnutella
other

c) Heavy hitters (sampled) as Elephants d) Heavy hitters (sampled) as Hybrids

Figure 4.5: Scatterplots of lifetimes of heavy hitters (log-scale on x-axis) against relative amount of time
spent as elephants (left plots) or hybrids (right plots) for NetFlow trace NF-I (top) and NF-II (bottom).
More than 95% of the heavy hitters are elephants for more than half of their lifetime. This is largely inde-
pendent of what application is responsible for the flows. The half-moon shapes are caused by the constant
flow rate assumption and the handling of partially covered bins in conjunction with the logarithmic x-axis.

4.2 Persistency Properties of Heavy Hitters

Given the persistency behavior of Internet flows suggested by Figure 4.3, we next focus on the
heavy hitters, where we define a heavy hitter as in Section 3.4, and ask whether or not heavy
hitters have a distinct persistency property. Put differently, we are interested in whether “once
an elephant” implies “always an elephant”, at least with high probability. Evidence of such
persistency properties for the largest Internet flows is crucial for approaches to traffic engineering
that rely on the persistence in time of flows to remain elephants. For the trace NF-I with a bin size
of 1 minute and considering non-aggregated network flows, we extracted a total of 5666 heavy
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4 Network Flow Variability Analysis

hitters and show in Figure 4.5 scatterplots of the heavy hitters’ lifetimes against the percentage
of the time they were ranked “elephants” (ranks 1-10; top left plot) or “hybrids” (ranks 11-
100; top right plot); we use a logarithmic scale for their lifetimes on the x-axis and linear scale
for percentages on the y-axis. When computing the percentage of time that flows were ranked
as elephants/hybrids, there are flows that start during some bin and subsequently cover one or
more full bins before terminating during another partially covered bin. The contributions to the
partially covered bins are calculated as a portion of the average per-bin contribution, depending
on how much of the bin is covered by a flow (see Section 3.1.3). This partial contribution results
in the rank of a flow to be too low for the first bin. To avoid artifacts caused by this effect,
the time a flow spends in the first (partial) bin is counted towards the rank of the flow in its
first full bin; ending partial bins are handled in a similar way. Figure 4.5 reveals a number of
interesting features as far as the heavy hitters are concerned. Ignoring for the time being the
different coding of the points, we first note that about half of the heavy hitters are elephants
during their entire lifetime (i.e., out of a total of 5666 (5830) points, some 2875 (3075) fall on
the y = 100% line). Second, heavy hitters who are alive for 2 or more bins and are not elephants
during their whole lifetime, but only part of it, have about a 40% chance to be elephants for
more than half their lifetime and a 60% chance to be elephants for less than half their lifetime
(i.e., half-moon shaped cluster starting at x = 120 sec and y = 50%). The half-moon shape is
the result of the way we handle partially covered bins and the assumption of a constant flow
rate for network flows in conjunction with the logarithmic x-axis. Expressing the lifetime of
flows as n times the bin size, each flow can be an elephant (or hybrid) for a fraction on the range
of 1/n to 1− 1/n of its lifetime. The half-moon shape vanishes if we do not handle handle
partially covered bins as described above. Finally, when comparing the left and right columns of
Figure 4.5, the anti-symmetry between heavy hitters as elephants and heavy hitters as hybrids is
not an coincident. In fact, the right plots show some 60% of the heavy hitters are never hybrids,
and those heavy hitters that are alive for 2 or more bins and are hybrids for some time have about
a 60% chance to be hybrids for less than half of their lifetime. These observations are largely
independent of whether we use non-sampled data (top row, trace NF-I) or sampled data (bottom
row, trace NF-II). Note that the remaining structure in the left sections of the plots of Figure 4.5
are relatively uninteresting since those points correspond to heavy hitters that are alive for less
than 120 seconds (2 bins). Flows that last less than 120 seconds and are elephant for only part
of their lifetime are split across two bins. Since they are more likely to be elephants in the bin
in which they spend most of their time it is not surprising that most of the fractions are larger
than 50%. In summary, Figure 4.5 shows that more than 95% of the heavy hitters are elephants
for more than half of their lifetime. A breakdown of all the heavy hitters by application is easily
possible, but simply shows the usual suspects (e.g., web, nntp, peer-to-peer, ftp, and others) and
individually, they produce plots similar to the ones shown in Figure 4.5. To illustrate, we use in
Figure 4.5 the symbol “4” to denote heavy hitters associated with the well known peer-to-peer
application Gnutella.

4.2.1 Variability across Bin Sizes

Part of the multi-scale aspect of our flow analysis involves considering different time scales and
performing the same type of persistency study across a range of time scales. The effects of using
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Figure 4.6: Distribution of the contribution to large bins over the two corresponding smaller bins. Heavy
hitters tend to be invariant under time (dis)aggregation for a limited range of time scales. This allows
certain persistency properties to be gleaned from analysis at coarse time scales, increasing the efficiency
of the analysis.

different bin sizes depend on the granularity of our trace data, as especially for non-aggregated
network flows we have only averaged information on the per-bin byte contribution and so have to
distribute the byte contribution of a flow evenly over all fully covered bins. In this case, there is
no variability across the size of bins. For FragFlows, where we have access to byte contribution
in a sufficiently fine grained resolution, or for aggregated network flows, e.g., destination prefix
flows, the situation is more complicated, because the contributions of a flow to a coarse scale bin
may generally no longer be distributed evenly among the smaller scale bins. Therefore, we use
the FragFlows generated from the MWN-III packet level trace and inspect how the contributions
to bins are distributed over the corresponding two half-sized bins.

Figure 4.6 shows a probability density plot of how the byte contribution of a large bin is
distributed over the two corresponding bins on the next finer time scale. The x-axis shows the
fraction of the contribution to the first of two fine scale bins and the y-axis shows the probability
density for a given fraction. The curves show a pronounced concentration about 50% with
a small probability that the entire contribution goes (almost) completely to either one of the
fine scale bins. This holds over a wide range of time scales with little variation except for the
fact that with larger bin sizes the probability for the entire contribution going to a single bin
is increasing. This effect is not surprising and increases further as the bin size approaches or
exceeds the duration of a significant part of the flows. Nevertheless, Figure 4.6 shows that for
aggregate heavy hitters across a limited range of time scales (from a few seconds to hundreds
of seconds) the heavy hitters tend to be invariant under time (dis)aggregation. This explains
why certain persistency properties associated with heavy hitters can already be gleaned from

53



4 Network Flow Variability Analysis

bins

pe
rc

en
t o

f b
yt

es

0 200 400 600 800 1000 1200

0
20

40
60

80
10

0
top 10
top 100
top 1000

bins

pe
rc

en
t o

f b
yt

es

0 10 20 30 40

0
20

40
60

80
10

0

top 10
top 100
top 1000

bins

pe
rc

en
t o

f b
yt

es

0 200 400 600 800 1000 1200

0
20

40
60

80
10

0

top 10
top 100
top 1000

bins

pe
rc

en
t o

f b
yt

es

0 10 20 30 40

0
20

40
60

80
10

0

top 10
top 100
top 1000

Figure 4.7: Percentage of traffic covered by top ranked flows depending on bin size for the MWN-III
trace (top row: unaggregated, bottom row: aggregated by destination prefix, left column: one minute
bins, right column: 30 minute bins). Fraction of traffic covered by top n flows is largely independent of
the bin sizes, but is significantly influenced by flow aggregation.

an analysis at coarse time scales which in turn generally involves a substantially reduced data
set and is therefore faster and more efficient. This is also confirmed by Figure 4.7 where we
show what fraction of the overall traffic is contributed by the top 10, top 100 and top 1000 flows,
respectively. The plot shows curves for non-aggregated (top row) and for destination prefix flows
with a fixed 16 bit prefix length (bottom row), both for 1 minute bins (left column) and for 30
minute bins (right column). In both cases, the bin size has no distinct influence on the fraction
of bytes covered by the top n flows. With aggregation however, the fraction of bytes covered by
the top n flows is clearly larger than for non-aggregated flows. Here, the top 1000 flows cover
more than 90% of the overall traffic, while for non-aggregated flows, this fraction is about 50%
on average.

Our analysis suggests that the observations reported in the previous sections are largely in-
variant under different choices of bin sizes and hold in a genuinely multi-scale fashion. This
property is the consequence of the fact that heavy hitters at the level of IP flows and at large
time scale tend to remain heavy hitters at finer time scales. Considering a fine scale to mean a
k-second bin size and coarse scale to mean a 2k-second bin size, an IP flow that is a heavy hitter
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4.3 Causes of Instability

at coarse scale will simply re-distribute the bytes in each large bin nearly evenly among the two
corresponding k-minute bins at the finer time scale and is thus likely to cause the resulting flow
to be a heavy hitter at the finer time scale.

4.2.2 Variability across Traffic Aggregation

Another aspect of our multi-scale analysis of Internet flows concerns aggregation in IP or flow
abstraction. NetFlow data lends itself naturally to different levels of aggregation, from five-tuple
flows (defined by source and destination IP addresses and port numbers and protocol) to prefix
flows (defined by source and destination prefix) to AS flows (defined by source and destination
AS). As we have seen in the previous section, flow aggregation has a direct influence on the
fraction of the traffic that is covered by the top n flows, with a significantly larger fraction for
higher aggregations. To illustrate that flow aggregation is in many other ways more intricate
than time aggregation, we explore for traces NF-I and NF-II in Figure 4.8 the question whether
or not flows that are heavy hitters at some coarse scale of flow aggregation (e.g., prefix flows)
are in general made up of constituents that are heavy hitters at a finer scale of flow abstraction
(e.g., unaggregated five-tuple flows). That is, what is the observed behavior of heavy hitters
under flow (dis)aggregation? To this end, for a 1-minute bin size, Figure 4.8 shows scatterplots
of the per-bin contributions of the heavy hitters at the aggregate level (destination-prefix, log-
arithmic scale on x-axis) against the sum of the per-bin contributions of those flows that were
elephants (top row), hybrids (middle row), and mice (bottom row), respectively, at the level of
five-tuple network flows (logarithmic scale on y-axis). Thus we get one point per aggregated
flow for each of the three flow classes. We observe a certain number of points between the lines
y = x and y = x/2 in the top an middle rows (about 50%), representing aggregated flows that
have a per-bin byte contribution that comes at least by half from elephant and hybrid five-tuple
flows, respectively. However, in the bottom row, the vast majority of points concentrate in that
area, showing that there are a large number of aggregated elephant flows whose per-bin byte
contributions come almost exclusively from five-tuple flows that are classified as mice. This
observations hold for both unsampled data (left column, trace NF-I) and sampled data (right
column, trace NF-II).

4.3 Causes of Instability

In the previous sections we have seen that, although our datasets show that flow rates are con-
sistent with Zipf’s Law even over different time resolutions and across time, the cast of flows
that contribute most to the overall traffic can vary considerably over time. So far, we have con-
centrated on characterizing this variability without looking into its causes. We therefore explore
now possible causes for the instabilities in the rankings of large flows.

We have already seen, that one cause for instability is the arrival and departure of flows. The
set of top n flows changes whenever a new flow arrives with a rate higher than any one of the
top n flows. Also if a top n flow terminates, it disappears and makes room for a new flow to
enter the set of top n flows. We refer to the characteristics of flows entering and leaving the cast
of top n flows as entry- and exit process, respectively. The arrival of new and the departure of
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Figure 4.8: Scatterplots of the per-bin byte contribution of aggregate heavy hitters (log-scale on x-axis)
against the sum of the per-bin byte contributions of the constituent five-tuple elephant flows (top), hybrid
flows (middle), and mouse flows (bottom) for non-sampled NetFlow trace NF-I (left column) and the
sampled trace NF-II (right column) and a bin size of 1 minute. Many elephant flows (about 50%) consist
mostly of elephant and hybrid five-tuple flows, but there are a large number of elephant flows that are
made up almost exclusively by five-tuple flows that are mice. This holds for both for sampled and the
unsampled NetFlow traces.
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Figure 4.9: Churn rates for the top 1000 destination prefix flows for traces MWN-III (left) and WASHng
(right). For aggregated flows, the churn rate increases with the bin size, as the flow rates are no longer
constant over time. This makes it harder for a flow to retain a high rank over time.

old flows is one of the two underlying causes for instability among the top n flows. How much
the entry and exit processes can influence the set of top n flows has already been shown by the
churn rate for non-aggregated flows (see Figure 4.3). The same findings hold for aggregated
ones as well. This can be seen, e.g., when considering Figure 4.9 which shows the churn rate
among the top 1000 flows. The churn rate is now defined as the percentage of top n flows in
a bin that were not among the top n flows in the previous bin. Figure 4.9 shows that indeed a
significant portion of the top 1000 flows, about 30%, are no longer in the top 1000 ranks in the
next bin. An interesting aspect here is that the churn rate increases with larger time bins, as it
gets more and more difficult for a flow to retain a top 1000 rank over longer time periods. This
change in the top ranks results in the undesired fact, that a set of flows once classified as top n
is at first responsible for a significant portion of the overall traffic, but that this portion quickly
diminishes over time. This confirms previous observations by Papagiannaki et al. [PTD04] for
different data sets.

In the case of aggregated flows, where we cannot assume constant flow rates because of the
way we perform the aggregation (see 3.1.4), the entry and exit processes are not the only cause
of the observed instability in flow rankings. Here we also have variability in the rankings that
is caused by flow rate fluctuations. A flow changes its rank, as soon as its flow rate increases
beyond the rate of the next higher ranked flow or decreases below the rate of the next lower
ranked flow.

In the following sections we look into both causes for the variability in the set of top flows
over time, the flow entry and exit processes as well as fluctuations of the flow rates. We rely on
the MWN-III and the WASHng traces for our analysis. We compute the entry/exit processes and
the flow rate fluctuations for 1, 5 and 30 minute bins, representing small, medium and large bin
sizes. Because the MWN-III trace was collected at an access network and thus has a limited IP
address variability on the access side, we separate this trace into incoming and outgoing flows
and consider only aggregation by destination address prefix for outgoing flows. The offline
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aggregation process results in 9.1 million destination prefix flows for the MWN-III trace and
roughly 1.9 million for the WASHng trace.

4.3.1 Flow Entry and Exit Process

In this section we go beyond previous results [PTD04] and decompose the churn rate into its
components, flow entry process, flow exit process, and duration, and study their behavior. The
entry process determines the rank at which a flow enters the ranking and the flow exit process
determines the rank at which it leaves the ranking. The exit process is the result of combining
the entry process with the flow durations.

Figure 4.10 (top and middle rows) shows histograms for the first ranks of those flows that
have an average rank of at least 100. Each bar summarizes the counts for 5 consecutive ranks.
For the MWN-III trace (left column), the counts increase sublinearly with the entry rank. This
also holds in general for the WASHng trace (right column), although there is a pronounced spike
at the top ranks. We assume this spike to be the effect of the special kind of traffic carried
by the Abilene network, generated to a large degree by experimental protocols and transfers of
measurement data (see also Section 3.2). For both traces, the entry process is influenced to only
a small degree by different bin sizes. For the MWN-III trace, the entry ranks level out to be
almost uniformly distributed. For the WASHng trace, the pronounced spike at the top 5 entry
ranks is somewhat distributed over the top 25 ranks. Still the general shape of the histograms
persists over a large range of bin sizes and shows that new flows arrive with all kinds of different
ranks, including top ranks, to a non-negligible degree.

The exit processes show almost identical behavior to the entry processes. This is not surpris-
ing, as entry and exit processes are tightly coupled to the duration of flows. For every flow that
enters the top 100 ranks, another of the top 100 flows has to terminate and leave the ranking.
As to the rank of the flow leaving the top 100 flows, the histograms for the exit processes in
Figure 4.10 (bottom row) show, that the probability for top ranked flows to leave the rankings
is nearly as high or even higher than for all other flows. Again this observation holds for all
considered bin sizes.

The above properties of the flow entry and exit processes show that newly arriving flows as
well as departing flows are with a non-negligible probability top ranked. This causes a lack
of predictability for the entry and exit ranks of flows and therefore it is not clear how to take
advantage of the “heavy-tailed” nature of flow rates for the purpose of better engineering the
network. Still, Papagiannaki et al. [PTD04] found that they were able to identify a subset of
flows that contribute more traffic than the average flows, i.e., they are highly ranked, and persist
longer than the large majority of the flows. For this to be possible some of the highly ranked
flows have to have longer durations. We find that the top rank of a flow (its highest rank) is not
a good indicator to decide if a flow is large and has a longer than average duration. But flows
with top average ranks over their duration usually persist longer than those with lower average
ranks. This is shown in Figure 4.11 where we show on the y-axis the probability density for
flows of three different classes of top ranks to have a certain duration (y-axis). The plot shows
that flows with average ranks from 1 to 10 have a high probability to last for more than 5000
seconds, which is longer than for flows with an average rank from 11 to 100, which in turn is
longer than for flows with lower average rank. The peaks at the right hand side of the plot are

58



4.3 Causes of Instability

0 20 40 60 80 100

co
un

t
0

50
10

0
15

0
20

0
25

0
30

0

Entry Rank
0 20 40 60 80 100

co
un

t
0

10
0

20
0

30
0

40
0

Entry Rank

0 20 40 60 80 100

co
un

t
0

10
20

30
40

50
60

Entry Rank
0 20 40 60 80 100

co
un

t
0

20
40

60
80

Entry Rank

0 20 40 60 80 100

co
un

t
0

10
20

30
40

Exit Rank
0 20 40 60 80 100

co
un

t
0

20
40

60
80

Exit Rank

Figure 4.10: Histograms of entry/exit ranks with a granularity of 5 ranks: left column MWN-III, right
column WASHng; entry 1 minute bins (top row), entry 30 minute bins (middle row), exit 30 minute bins
(bottom row). The counts increase sub-linearly with the ranks, indicating that flows can begin with all
kinds of ranks, including top ranks. The spike for the WASHng trace is the result of the special traffic
carried by the Abilene network. The exit process behaves almost identical to the entry process. Both
processes are only slightly influenced by the bin size.
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Figure 4.11: Probability density of the logarithm of the flow duration for WASHng. The higher the
average rank of an aggregated flow, the higher the probability that it has a large duration. The right peaks
are caused by the limited duration of the traces of 24 hours (86400 seconds).

artifacts of the traces covering only 24 hours (86400 seconds). But the probability mass covered
by these spikes is higher if the average ranks are higher which means that there are more long
lived flows in the higher ranks than in the middle and lower ranks. These findings explain the
observations by Papagiannaki et al. [PTD04], as there is a strong correlation between average
rank of a flow and its duration.

4.3.2 Flow Rate Variability

So far our analysis has ignored the important aspect of flow rate fluctuation and its impact on
rank changes. As flow rates are consistent with heavy-tailed distributions, the difference of the
rates of top ranked flows are very high, so only large deviations are able to influence the ranking
of top flows. Correspondingly, we do not care much about small additive deviations. We choose
instead to consider a multiplicative metric, called relative deviation (or reldev). We compute this
metric for all bins of each flow in the following manner:

reldev = log2

(

actual byte contribution
mean byte contribution

)

A reldev value 1 (2) stands for a deviation from the mean by a factor of 2 (4) and a value −1
(−2) represents a deviation by a factor of 1/2 (1/4).

Figure 4.12 (left) shows, for a typical destination prefix flow, how the relative deviation be-
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Figure 4.12: Relative deviation over time for a typical example flow, before (left) and after (right) remov-
ing time of day effects. The detrending using Wavelets removes the time of day effects while it conserves
the spikes.

haves over time for 1 minute bins. The plot shows a clearly discernible time-of-day effect. This
means that we see the effects of the combination of different processes, a periodic trend caused
by time of day effects and the rate fluctuations we are interested in. To be able to perform a
meaningful analysis of the flow rate fluctuations stemming from the nature of the flows them-
selves, we detrended our data to remove time-of-day effects. We use a wavelet based filtering
methodology for detrending our trace data. Wavelets have the advantage over, e.g., Fourier based
filter mechanisms, that they are able to work on non-periodic data. They are also able to pre-
serve pronounced spikes in the data with a much smaller risk of introducing artifacts. The filter
threshold depends the frequency of the time of day effect and is internally expressed in terms of
bins. We use the bi-orthogonal spline wavelet bs1.3 [BG96] because it is known to be resilient
against the introduction of artifacts [Chu92a, Chu92b].

The result of the detrending of the relative deviation sequence of our example flow is shown in
the right plot of Figure 4.12. The time-of-day effect has been removed while the characteristics
of the curve, even the distinct spikes, have been preserved.

The overall behavior of the relative deviation for this example flow is again shown in the
left plot of Figure 4.13. The plot shows on the right hand side the probability density over
the per-bin relative deviation values for this flow which lasts for more than 1400 one-minute
bins. The values range from −3 to +4, which means that there are times when this flow shows
only an eighth of its average rate but also increases its rate at time to 16 times its average rate!
The distribution of the values of the relative deviation shown in Figure 4.13 (right) is close to
a normal distribution with the same mean and variance as the relative deviation values, with a
slight bias to higher than average rates.

However, this is not always the case. Especially for aggregated flows, where contributors on
the level of five-tuple flows come and go, there is not always a cleanly centered distribution of
the relative deviation. Figure 4.14 shows the a probability density plot for the relative deviation
of a different destination prefix flow. This plot shows bimodal behavior with a spike at −0.5
and a second one at +0.4. Bimodal distributions are not uncommon and there are even tri- and
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Figure 4.13: Probability density of relative Deviation for an example destination prefix flow. The rate
fluctuations are with one eight up to 16 times the average rate high enough to cause rank changes.
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Figure 4.14: Probability density of rel. Deviation for an example multimodal destination prefix flow.
The modes are caused by transient changes in set of constituent flows, often caused by a single five-tuple
flow.

higher multimodal distributions to be found. A manual inspection showed, that the modes are
mostly caused by only a few bins deviating from the average rate, especially in the bimodal
cases. We found that for the MWN-III trace with aggregation by destination prefix 60% of the
116 flows spanning at least 20 bins and with an average rank in the top 1000 flows, are consistent
with a normal distribution and 37% show bimodal distributions. For 30-minute bins, we found
522 destination prefix flows spanning at least 10 bins and with an average rank also in the top
1000. Of these, 65% are consistent with a normal distribution with same mean and variance,
while 30% follow a bimodal distribution. Both Figures 4.13 and 4.14 show however that there
is a significant variance in the relative deviation values throughout the lifetime of the flows and
that the changes are not necessarily predictable or restricted to only some part of the lifetime of
a flow. These observation also hold for larger bin sizes.

In order to get a more general view on the properties of the relative deviation of aggregated
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Figure 4.15: Probability density for relative deviation for top 1000 flows for 1 minute bins (left) and
30 minute bins (right). Overall per-bin flow rates are usually close to the average rate of the flow with
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Figure 4.16: Correlation of relative deviation and rank change for an example flow. There exists a strong
linear correlation between decadic logarithm of ranks and the relative deviation. This means that flow
rate fluctuations are a major ingredient of rank changes.

flows, Figure 4.15 shows, for both data sets, the probability density of the relative deviation
for all flows with average rank 1–1000 that span at least 10 bins for 1 minute bins (left) and
30 minute bins (right) respectively. The plot omits all values outside the 5% and 95% quantiles.
For 1 minute bins, both curves have a similar form and show a pronounced spike at 0 while
covering a range from −3 up to +1. which corresponds to flow rates between 1/8-th of the
average rate use up to two times the average rate. With 30 minute bin size the curve for MWN
widens slightly while it almost stays the same for the WASHng data set. The spike around 0
indicates that the flow rate of most highly ranked flows does not diverge significantly from their

63



4 Network Flow Variability Analysis

average rate. Still, the broad base in both curves highlights that there are in some cases deviations
from the average flow rates, especially towards lower rates. Some of the larger absolute reldev
values are due to short flow rate spikes or bandwidth drop-offs.

Given the size of the flow rate fluctuations one can expect them to have an impact on the
flow ranking. To verify this we plot the relative deviation against the rank of the flows. Yet as
the relative deviations are logarithmic we also consider the logarithm of the ranks of the flow.
Figure 4.16 shows for a typical flow, the corresponding scatterplot (reldev (x-axis) vs. decadic
logarithm of flow rank (y-axis)) for 1 minute bins. There is one data point for each time bin
that shows the relation between the flow rate during a bin and the rank that the same flow had in
that bin. The plot shows a clear correlation between rank and relative deviation. This is a clear
indication that for aggregated flows bandwidth fluctuations can have a significant influence on
the flow ranking. The linear relation visible in the plot with both axes having logarithmic scales
(reldev is in itself a logarithmic metric) relates well to the observation that the bandwidth use is
consistent with Zipf’s Law. For a change in the top 10 ranks one needs a much larger rate shift
than for a change in the ranks 900 to 1000. Such a correlation is not just apparent for this flow
but seems to be present for all flows for all bin sizes.

4.4 Rank Change Metric

The churn inherent among the top ranked flows as shown above in Section 4.1.1 is a major
ingredient of instability of flow rankings. The churn rate shows us how much of the flows enter
or leave the rankings from bin to bin. However, according to Zipf’s Law for flow rates, an
elephant entering or leaving a ranking indicates a much more pronounced change in the traffic
constitution than when a mouse flow enters or leaves a ranking. In this section we introduce
a novel way to quantitatively characterize the volatility of flows in terms of their ranks. More
precisely we show how to measure the difference between two rankings R1 and R2 in a way that
takes into account that the quantities we base our rankings on are consistent with heavy-tailed
distributions. Accordingly, changes in the ranking that involve popular elements, i.e., those with
high ranks, should have more weight than those involving only non popular elements, i.e., those
with low ranks. We propose to use a metric that is based on the inversions needed to transform
R1 into R2, thereby weighting inversions according to the importance of the ranks.

In the following sections we introduce such a metric and explore its properties. We examine
how the metric captures various changes in the ranking and finally apply it to our data sets.

4.4.1 Rank change metric definition

Given two rankings R j = r j,1, . . . ,r j,n with r j,i < r j,i+1 and j ∈ {1,2} over the same set of flows,
R2 is a permutation π of R1 with r2,i = π(r1,i). There are many ways in which one can define
a metric M for R1 → R2. For example one could count the number of rank changes, e.g., for
R1 = (1,2,3,4) and R2 = (2,3,4,1) the metric would yield a value of 4, or one could compute
the sum of the absolute distances between the two vectors, e.g., 1+1+1+3, or the number of
inversions, e.g., 3. Note, that the sum of the distances is twice the number of inversions. The
problem with these ideas is that they do not capture the fact that low ranked elements should
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have a different weight than high ranked ones. The problem with adding a weight to the first
alternative of counting the rank changes is that it is unclear how to weight a change. The same
applies to computing distances. Only the inversion based approach can be easily extended to
use weights. Each inversion is weighted according to the rank where it is applied. The crucial
insight is that the order in which the inversions that lead from R1 to R2 = π(R1) take place does
not matter. Therefore the metric can be computed based on any sequence of inversions that result
in π and always yield the same result. Accordingly we define our rank change metric M in the
following manner:

M =
n

∑
r=1

(W(r) · inv (r))

where inv(r) counts the number of inversions at rank r and W(r) is a function that specifies the
weight of rank r.

Unfortunately it is not always the case that R2 is a permutation of R1. In our case some flows
are leaving the ranking while others are entering. Indeed, recall from Section 4.1.1, that the
churn rate which captures this aspect is rather sizable. In order to account for this problem
the metric is computed on the closure of the two rankings. The closure is computed by first
determining the set of leavers ⊂ R1, the elements that appear in R1 but not R2, and the set of
newcomers ⊂ R2, the elements that appear in R2 but not R1. R̄1 is now the extended ranking
(R1, newcomers) while R̄2 is defined as (R2, leavers). Hereby it is important that the newcomers
and the leavers retain the order they have in R1 (respectively R2) to ensure that no additional
inversions are introduced.

Weight function The weight function W is used to account for the disparity in byte contri-
bution between the flows. As we assume that flow sizes follow a Zipf’s-like distribution, we
choose the weight function as

W(r) =

{

1/rα : r ≤ n
0 : r > n

, α > 1

where r is the higher of the two ranks of the inversion, n is the size of the ranking and α is the
parameter of the Zipf-like distribution. Note that r = 1 represents the highest rank and thus the
largest flow. Therefore any inversion involving the top ranked flow is weighted by 1. Moreover,
defining the weight to be 0 for ranks greater than the number of flows in R1 and R2 ensures
that our metric is insensitive to differences in the ranks for the leavers and the newcomers. The
weight function has been chosen to match the characteristics of the relative frequency of the
occurrence relation f (x) for Zipf-like distributions. It has the nice property that the relation of
the logarithms of rank and weight is linear, as is the case for any Zipf-like distribution. If, e.g.,
the rank of a flow changes by a factor of two the weight decreases by a factor of 1/(22).

An alternative way of defining the weight of an inversion is based on the actual byte contri-
butions of the two flows at the ranks r1 and r2.

W(r) =

{

bytes(r1)−bytes(r2)

total bytes : r ≤ n

0 : r > n
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where total bytes is the sum of all bytes in the bin and r is the higher of rank of r1 and r2. The
advantage of using this weight is that distributional properties of the flows are captured implicitly
even if they change over time. The disadvantage is that it is more difficult to determine the
expected values analytically. Therefore we in this paper focus on the rank based weight function.

Metric Computation Algorithms for computing the inversions to transform one permutation
into another are readily available. Using an approach similar to merge sort, it is possible to
compute the metric in time O(nlogn) with n = |R̄1|.

The implementation of the metric computation first determines the leavers and the newcomers,
and then constructs the rankings R̄1 and R̄2 ensuring that no additional inversion is introduced.
Then the inversions are applied one by one to transform the first ranking into the second one.
During this process the weight of the inversions is accrued according to the metric definition.

4.4.2 Experimental evaluation

If we assume that the entry process and exit processes are consistent across the ranks with the
uniform distribution, it is possible to compute the expected contribution of the arriving and
departing flows to the rank change metric. More precisely, if the i-th flow leaves a ranking with
probability pi then the expected cost Ei,n of it departing and a newcomer being added at the
lowest rank is:

Ei,n = pi

n

∑
j=i

W ( j)

If the weight function is defined as W ( j) = 1/ j2 the the expected cost of q flows departing and
q newcomers being added to the at the lowest ranks the expected cost is:

Eq,n = q ·
n

∑
i=1

·Ei,n

= q ·
n

∑
i=1

(

1/n ·
n

∑
j=i

W ( j)

)

= q/n ·
n

∑
i=1

i ·1/i2

= q/n ·
n

∑
i=1

1/i

Even though the entry and the exit process are symmetric the expected cost of replacing one
entry with a new entry is not twice the cost of one entry leaving the ranking. This difference,
while minor, is caused by a different base value n. The number of ranks decreases by one which
decreases n by one. The same applies if one replaces 300 random elements from a ranking with
1000 entries: the expected metric value is 300 ∗Eq,1000 + 300 ∗Eq,700 = 4.38. The base value
changes from 1000 to 700.

For a ranking with 100 entries and one newly arriving flow the above calculation would predict
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Figure 4.17: Impact of flow rate fluctuations on the rank change metric assessed by numerical simula-
tions. Bandwidth fluctuations are simulated using normal distributions with different standard deviations
(left) and for Pareto distributions with different alpha values (right). The plots show that the metric reacts
with growing values to the increased variance of the simulated flow rates. The amount of metric increase
is smaller for Pareto because of the fluctuations are not always sufficient to result in rank changes.

a metric value of 0.052. An experimental evaluation using an ordered vector of samples from a
Pareto distribution with k = 100 and α = 1.0, where we determined the rank of one additional
sample, gives a value of 0.049, only a small difference.

In order to assess the impact of flow rate fluctuations on our rank change metric, we use
another simple numerical simulation as in the previous section. We again use 100 samples
from a Pareto distributed random variable as flow rates. For this experiment, we chose α =
1.5 fairly arbitrary and derive k from the mean rate of /24 destination prefix flows with five
minute bins from the MWN-III trace as 29k. We now modulate the synthetic flow rates using
relative deviation values sampled from a normal distributed random variable with mean zero and
a standard deviation of 0.54. The standard deviation is derived from the same data as k. Then
we calculate the ranking for the modulated rates and compute the rank change metric between
the the two bins. We repeat this step 100 times. To explore the impact of different amounts of
bandwidth fluctuations, we repeat the entire simulation two more times, but with twice and half
the standard deviations for the relative deviations. This gives us data for three sets of experiments
with the following standard deviations: 0.25, 0.54, and 1. Figure 4.17 (left) shows probability
density plots of the resulting metric values. An increase in bandwidth fluctuation clearly causes
the mean metric value to increase (from 2.96 over 3.33 to 3.62). If there would be no bandwidth
deviations then 25−35 of the 100 flows would have to be replaced to get similar metric values.
Large fluctuations do not always have to imply a large value for the metric. Indeed, if two flows
with consecutive ranks experience bandwidth increases/decreases such that no inversion of the
two occurs then the bandwidth fluctuations may not have any impact on the metric. This is the
reason why some of the experiments have a significantly lower metric value than others.

The likelihood of whether an inversion occurs depends on the distances between the band-
width values of the two flows. The larger the distances the less likely is the inversion. This
explains why flows ranked towards the bottom are more likely to change ranks than those ranked
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Figure 4.18: Change metric values over time: for different bin sizes (left) and for different aggregations
(right). The metric is sensitive to larger bin sizes as the churn is generally higher because of accumulation
effects. It is less sensitive to different aggregation schemes as the rate fluctuations of aggregated flows
are mostly the result of the behavior of a few contributing five-tuple flows.

towards the top. It also indicates that there may also be a relationship with the degree of heavy-
tailedness of the bandwidth values. To explore this aspect we focus on one value for the relative
deviation (0.25) but vary the α value from 1 over 1.5 to 2 and repeat the above experiment. This
choice of α values ensures a good coverage of the degree of heavy-tailedness. A heavier tail
in the Pareto distribution ensures that the byte differences between top ranked flows are larger.
Therefore it is less likely that bandwidth fluctuations lead to rank changes in the top ranked
flows. Accordingly, the rank change metric values should be less for α = 1 than for α = 1.5 and
for α = 2. Figure 4.17 (right), which plots the probability density for the change metric values
for the simulation with the different α values, confirms this.

We now return to the actual data and compute the change metric for consecutive time bins.
Figure 4.18 shows the metric value for different time granularities and different aggregations vs.
time for the time from 9:00am to 3:30pm. As the time granularity changes from 1 minute to
30 minutes the metric increases from a mean value of 1.15 over a value of 1.58 to 2.57. This is
not too surprising as the churn rate, Figure 4.3, increases from about 20% to 40%. Yet, when
comparing the churn rate with the metric, it becomes apparent that the churn rate is only part
of the story. The variability in the metric is significantly higher than in the churn rate. Also
note that the metric value for the larger time bins seems to accumulate the value for the lower
time granularities. This again confirms that available degree of persistency decreases as the time
granularity is increased.

Figure 4.18 (right) explores the relationship between aggregation and rank change metric
values. Interestingly, while the metric value for higher aggregations is usually smaller than
without aggregation, all curves are rather spiky. This is fairly surprising if one considers that
the churn rate at higher aggregations is smoother. This indicates that the spikiness in the metric
values is due to bandwidth fluctuations. Bandwidth fluctuations at higher aggregations are likely
to be caused by flows that by themselves contribute significant amounts of bandwidth. Therefore
it is to be expected that they induce bandwidth fluctuations across all aggregation levels and
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hence spikes in the metric values. A churn rate of 20% would impose an expected contribution to
the rank metric of 1.03. The remaining parts of the rank change metric are due to the bandwidth
fluctuations and their resulting rank changes. Overall we note that the metric very nicely captures
the variability due to the churn rate as well as due to bandwidth fluctuations.
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The goal of this thesis is the development of a simulation environment that is capable of gener-
ating workload traffic, that has the same properties as we have found in our NetFlow and packet
level traces. But instead of implementing another network simulation engine, we rely on an ex-
isting network simulator to provide the basic components to simulate network traffic, the NS-2
network simulator. In this chapter, we introduce NS-2 and a basic workload generator, NSWeb,
that already provides us with the ability to generate self-similar traffic using a Web based traffic
model. After this short introduction, we show that NS-2 and NSWeb are able to reproduce sim-
ple network traffic with high accuracy and are thus suitable core components for our simulations
environment. We do this by building traces from tightly controlled real Web page requests, au-
tomatically configuring simulations based on this traces and compare the simulations with the
real Web page requests.

5.1 The NS-2 Network Simulator and the NSWeb Workload
Generator

In this thesis, we make use of an existing network simulator called NS-2 [Pro]. NS-2 is a discrete
event simulator, providing support for the Internet core protocols like HTTP[FGM+99] and sev-
eral flavours of TCP[RFC81b]. It provides mathematical support in the form of random number
generators which are able to generate random number sequences that underlie certain probability
distributions, like the exponential or the Pareto distribution. There is also extensive support for
logging of events and tracing of protocol interactions. NS-2 also provides us with the topology
and routing issues of our simulation environment. Moreover, we rely on the implementation of
the different versions of TCP that comes with NS-2.

Only a short time ago, the World Wide Web (WWW) was the predominant contributor to
Internet traffic Therefore traffic generators for self-similar traffic has so far been realized by
imitating WWW traffic using empirical parameter sets. As shown in Section 2.3, self-similar
network traffic is the result of the cumulative traffic of many sources that each generate traffic
alternating between sending of data and being idle and the length of both periods is consis-
tent with heavy-tailed distributions, e.g., the Pareto distribution [TWS97]. In the case of the
WWW, distributions and parameters for this model have been first described in [Mah97] and
[CB97]. Based on these insights, the SURGE workload generator [BC98] was proposed. This
workload generator models ON/OFF sources indirectly with the help of User Equivalents (UE)
with user behavior described in terms of page access probabilities and probability distributions
for accesses in time (see Figure 5.1). The indirection is necessary because WWW follows the
client-server paradigm where clients request data from servers. The actual traffic is thus initiated
by clients but is generated by the servers.
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Figure 5.1: ON/OFF Model in SURGE. The model is based on user equivalents, and uses two types of
inactivity phases. It is defined for one transfer per connection and one connection per time.

For this work we use the SURGE-based workload generator NSWeb [Wal01]. NSWeb is an
extension for the NS-2 simulator. It uses the same user and WWW content model as SURGE,
modeling clients as user equivalents. Such a UE alternates between being idle and issuing re-
quests to a server and downloading data. Figure 5.1 illustrates this process. In SURGE, a UE
knows two different kinds of OFF phases, the passive OFF or user think time, and the active
OFF periods that are responsible for modeling network overhead and client processing time. In
addition to the SURGE client behavior model (Figure 5.1), NSWeb adds the notion of a user
session. A user session refines the user behavior model by grouping client requests to be near in
time and separating these groups with longer idle times. User sessions are modeled much like a
SURGE-UE with similar distributions and parameters for the ON and OFF times. In addition to
the inter-request times that correspond to the client OFF times, NSWeb introduces inter-session
times. Inter-session times are basically the same as inter-request times, but their duration is usu-
ally higher. The lengths of sessions are described in terms of number of requests per session and
also follow a heavy-tailed distribution. Figure 5.2 shows how client requests are grouped into
sessions. This model has important effects on the burstiness of WWW traffic. It leads to long
idle periods followed by phases of high activity when actual WWW requests occur. In [BC98]
the authors show, that omitting OFF phases from the user model destroys self-similarity in the
resulting traffic under high loads.

NSWeb also provides support for the different variants of HTTP. The first published version of
HTTP processed exactly one client request per transport layer connection, using the termination
of that connection as an end-of-response indicator (Figure 5.2). Modern Web browsers are ca-
pable of using multiple parallel connections and support persistent or even pipelined connection
to process user requests. These features have a great influence on network packet traffic, as the
overhead of setting up and towing down TCP connections for every Web file can grow very large
when requesting many small files. Persistent and pipelined connections are able to reduce this
overhead significantly [Mog95].

Web content in NSWeb is modeled as pages and embedded objects. For each page there is a
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Figure 5.3: Page access probability control in NSWeb. Pages are referenced indirectly via a Page Ref-
erence Vector using an access probability distribution. This indirection allows for changing the access
probability of pages while maintaining the overall distribution.

number of embedded objects, e.g., images, that are loaded by a client after or during the down-
load of the page itself. A page together with its embedded objects are called web objects in
NSWeb. The sizes of pages and embedded objects are consistent with heavy-tailed distributions
gleaned from actual network traffic. This is similar to the SURGE workload model. In NSWeb
however, it is possible to place web content explicitly on multiple server instances and have
embedded objects referred to by multiple pages simultaneously. This allows for both more real-
istic scenarios and the simulation of Content Distribution Networks (CDN). Content distribution
networks are intended to improve access performance by replicating content near to the clients.
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In order to generate self-similar traffic by simulating Web requests in such a scenario requires
a flexible and highly configurable mechanism to determine, what client requests what content
from what server. Such a mechanism is provided by NSWeb. In addition to be able to control
such complex web content scenarios, it also allows to control page access probabilities to follow
a desired probability distribution. This is a key property of NSWeb as it allows page access
probabilities or page popularity to be configured to follow Zipf’s Law and provides us with
the second major component to reproduce traffic with a variability that is conformant with our
observations in the previous chapters. The core of the page selection mechanism is an ordered
vector containing references to every configured page as illustrated in Figure 5.3. The page
selection process first determines at which index in the page reference vector to look for the
page to request next. This index is selected using a configured probability distribution, which in
turn indirectly defines the page access probability distribution. The advantage of this approach
is the possibility to change page access probabilities for specific pages without changing the
overall access probability distribution. In the case that, e.g., a page is configured on more than
one server the same mechanism is used to select a server from which to download the page. We
make use of this mechanism to implement a simulation environment that provides for controlled
variability in page access probability to reproduce the variability in the set of heavy hitters as
described in Chapter 4. For a more in-depth description and evaluation of NSWeb see [Wal01].

5.2 On the Realism of Network Simulations

Earlier work by, e.g., [KR01], has shown that the behavior of TCP and its interaction with ap-
plication layer protocols have a significant impact on the nature of packet traffic caused by these
protocols [KW99]. Effects caused by TCP itself are mostly due the congestion control algo-
rithm. While the slowstart algorithm in TCP has a significant impact on Web performance, it
is the closed-loop sender control that is responsible for the intricate properties of TCP traffic.
This feedback loop leads for example to a phenomenon called ACK compression [ZSC91] which
has been identified as one cause of the intricate scaling properties of TCP at more fine grained
time scales in the order of typical round-trip times observed in operational networks [FHW99].
The interaction of TCP, and especially of the congestion control mechanisms in TCP, with ap-
plication layer protocols has a major impact on the performance of applications. This has been
shown for WWW traffic in, e.g, [Mog95, NGBS+97], and has lead to major changes in HTTP
to improve Web performance [FGM+99].

In order to improve the accuracy of our simulation framework, we look in this section into
the protocol parameters for TCP and HTTP, how they are configured and what their impact is on
the accuracy of our simulations. To this end we first show how to automatically extract values
for these parameters from packet level traces of controlled Web accesses. We then evaluate how
exact NS-2and NSWebare able to reproduce those web accesses using the extracted parameter
values. Finally we look into the impact the respective parameters have on the accuracy of our
simulations.
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5.2.1 Methodology

In order to “reproduce” reality in a simulation framework we need real network traffic to com-
pare our simulations to. To acquire a basis of comparison, we make use of measurements of
real world Web transfers. On the one hand, we rely on active probing by performing Web page
retrievals in order to determine factors like what real Web content looks like in terms of number
and size of files, which HTTP protocol features are supported by the servers and how much
time it took the client to retrieve the page and all embedded objects. On the other hand, we
passively monitor what happens on the transport layer during the page retrievals. This is done
by generating packet level traces of the actively performed Web page retrievals directly at the
client end of the network. These packet level traces allow us to determine network related prop-
erties like packet round trip times and the bandwidth used by the downloads. In addition, we
can glean a set of TCP parameters from the traces, for example maximum segment size and
congestion window size. The extraction of TCP parameters and network path properties from
passive measurements like packet level traces is a non-trivial task. Therefore we use different
heuristics to extract information from the traces and evaluate which heuristics are best suited for
our purposes.

To avoid location based or temporal biases in our measurements, we perform measurements
from two different locations, one in Europe (EU) at the University of the Saarland (see also
Section 3.2), and a second one in New Jersey, USA (US). In order to be able to cope with
variations in network conditions, we repeat every measurement multiple times both on weekdays
and on weekends. Our measurements also cover different connectivity to the Internet, starting
from very low bandwidth connectivity using a modem up to 100 MBit LANs connected to the
Internet via a 155 MBit backbone.

Starting from our measurements we extract values for a set of parameters for configuration of
topology, Web content and of the protocols in NS-2 and NSWeb. All parameters we consider have
a direct or indirect influence on Web performance. Because of the high number of measurements
to perform, we automate the entire process of measurement, parameter extraction and simulation
as far as possible. We use the time a client needs to fetch a the complete page with all embedded
objects as a metric to compare real Web page retrievals against simulated ones.

5.2.2 Configuration Parameter Sets

Before we start analyzing what influence the different protocol parameters have on the quality
of the simulations, we first need to determine what parameters have to be considered to achieve
this goal.

We start by looking at the application layer protocol HTTP. The main HTTP parameters have
to to with how a client connects to servers. There are a number of strategies to do so, starting
from a Single HTTP/1.0 connection, were a client requests and receives one file per TCP con-
nection and requests a Web page and all embedded objects one after another. In order to speed
up page retrieval, several improvements to this scheme have been made. First, clients started
to retrieve the files not one after another but used HTTP/1.0 with parallel connections. Here,
a client can request and retrieve multiple objects simultaneously. A further improvement are
persistent connections HTTP/1.1. To avoid the setup of a new connection for every file existing
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TCP connections are reused. This avoids performance problems due to the TCP slow start al-
gorithm. Moreover it is possible to us HTTP/1.1 with pipelined connections, were requests can
be streamed over persistent connections. All these features are supported by NSWeb and we are
thus able to adjust the way that clients retrieve Web pages and so improve the accuracy of our
simulations.

Considering that clients retrieves Web pages that consist of several files, it is important to
reproduce the number and sizes of the files that make up a Web page and how these files are
distributed over a set of servers. For persistent connections to be useful, several files have to
be located on the same server. Distributing the files over multiple servers defeats the intended
performance improvement. In the case a persistent connection is used to retrieve a single file
it is de-facto the same as a simple connection without persistence. We therefore explore the
properties of Web retrieved content. This enables us to accurately reproduce traffic of real page
retrievals. NSWeb provides a powerful interface to configure Web content in exactly this way.

On the other hand, there are HTTP features seen in real Web traffic, that cannot be modeled
using NSWeb. Earlier studies have shown that caching [Dav01, FCDR99] can have a significant
influence on the user perceived latency of Web page retrievals. While caching can improve
performance it can also hinder reproducibility and predictability. With caching enabled it is
much harder to asses which Web component actually delivered the data or part of the data to the
client. Other aspects of HTTP such as bandwidth optimizations (byte ranges requests [KR01]
Chapter 7, compression [MDFK97]) or message transmission are not considered.

The behavior of TCP is influenced by a number of parameters. Parameters that have a sig-
nificant influence on the throughput, especially for small files typical for Web traffic, are the
maximum segment size and the size of the initial congestion window These parameters deter-
mine how fast TCP is able to increase its sending rate and adjust it to the network conditions.
Another parameter is the size of the advertised receiver window. This parameter is able to limit
the sender rate according to client capabilities, independently from network conditions. A more
complex influence on the behavior of TCP is exerted by using delayed acknowledgments and Na-
gle’s algorithm. Both algorithms are intended to avoid sending of overly many or unnecessarily
small packets.

Finally, we need to consider network conditions and topology as the network itself has a
major influence on how fast the protocols can do their work. Because we have no way to extract
either exact network conditions nor the topology from actively retrieving Web pages or passively
monitoring page retrievals, we have to resort to model the network in an indirect way. We do
this by abstracting from the real conditions and reduce the influence of the network to end-to-
end metrics in the form of Roundtrip Times and available bandwidth between all encountered
client-server pairs. These metrics already include the influence of the network topology, so we
are able to use very simple topologies for our simulations.

Even determining what kind of congestion a Web page download was subjected to is hard. We
only observe the results of congestion and packet losses as a reduction of the throughput. The
estimation the available bandwidth is also a difficult question in itself (e.g., [All01, Pax97, BA96,
LB01]). An alternative to using the available bandwidth is to identify the bottleneck link on the
network paths between the client and each server and use its capacity. This implies identifying
the link capacities of the network path, which again is a hard question [Dow99, Mah01, CC96].

The TCP throughput is determined by the interactions of the network path characteristics
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round trip time (RTT) and available bandwidth, the TCP implementation details of the end-
systems, and the amount of data to transfer (see e.g., [PFTK98]). We derive the link properties
from the path characteristics: delay from round-trip time, capacity from the available bandwidth.
This works well under the assumption that these values do not change rapidly. An alternative to
such estimation is random choice or default values. Random choice is not desirable while using
default values may be appropriate as fallback or in scenarios where the necessary information
cannot be obtained, e.g., for downloads via modem, where the modem link is quite likely to be
the network bottleneck. However, most of the time measurements can be expected to generate
better estimates than default values. Thus we use measurement results to drive the simulations
where available and use default values otherwise.

5.2.3 Performing Controlled Web Access Measurements

The candidate set of Web sites used for our evaluation relies on the notion of “popular sites” as
determined by some rating site. More specifically we obtain a list of top 135 Web sites from
the November 2001 Hot100 [hot] list. Only 122 Web sites existed in late February 2002 when
we started our experiments, six of which used redirections and were resolved manually. For the
measurements to complete in a reasonable time we choose 40/10 Web sites for the wide area
and modem measurements respectively. We selected the Web sites to represent the distribution
of number of embedded objects per page and number of servers involved in each download. To
this end we downloaded each page and determined the number and sizes of embedded objects
and the number of servers. Based on this information we tried to pick one Web page for each
combination: number and size of embedded objects and servers, without checking if the servers
supported HTTP/1.1. We perform active measurements in order to estimate the user perceived
end-to-end latency of Web page downloads. The basic engine for our active measurements is
httperf [MJ] which supports all the HTTP protocol features needed for our study. The two
key drawbacks [KW00, KA01] of httperf are that it does not parse HTML code to retrieve
embedded images and that a single run of httperf can communicate with only one server. To
overcome these limitations we used the same approach and software as used in [KW00]. The
drawback of this approach is that it serializes the downloads of the main page and its embed-
ded objects and the downloads from different servers (if more than one server stores objects
embedded in the Web page). The advantage of using the method from [KW00] is that the struc-
ture/list of the Web page and its embedded objects is determined once. Afterwards this list of
objects can be used for repeatedly downloading the Web page, as long as these downloads oc-
cur within a short measurement period. To evaluate the performance bottlenecks of the active
measurements and estimate the network path properties, we traced each Web page download via
tcpdump [JLM]. This produces a separate packet level trace file for each Web page retrieval.

To eliminate location biases the measurements are performed from two different locations on
two different continents, Europe (EU) and USA (US). Our sample sites, Saarland University,
Saarbrücken, Germany and New Jersey, USA, differ in connectivity and network bottlenecks.
To increase the range of considered access bandwidth we used a client connected to the LAN
and one connected via a modem. The experiments were run from using the same software. At
Saarland, we used a 600MHz Athlon PC with 256 MByte memory running Linux 2.2.17. At the
US site, we used a 200MHz R4400 with 64 MByte memory running Irix 6.5. Saarland Univer-
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sity is connected to the general Internet via a 155 Mbit/s link to the German research network
(DFNnet) which is richly interconnected with other networks. The US site is dual-homed to the
commercial Internet via a fractional T3 line and a backup T1 line. To increase the diversity in
terms of access network bandwidth we run the tests from a similar machine at Saarland Univer-
sity but this time connected via a 28.8 Kbit/s modem line. We denote the Saarland University
experiments as WAN(EU) and the US site experiments as WAN(US). Downloads via the modem
are denoted as Modem(EU).

We choose a time interval of 6 hours in-between experiments to enable us to capture four
experiments within a 24 hour interval. Each experiment consisted of 10 downloads of each
Web page. In the modem case the latencies are significantly larger. Therefore we had to limit
the number of servers to 10 instead of 40 and the number of downloads to 5 instead of 10.
Measurements were performed at 1am, 7am, 1pm, 7pm UTC time during the 3,4,5,15th of
April 2002 for weekdays and 6,7,13,14th of April 2002 for weekends.

Based on the trace data from the active measurements we performed some sanity checks on
the datasets. We found the servers that did not support persistent/pipelining connections on their
base server (10/11 of 40). Therefore we excluded these servers from the evaluation of these
features. Other servers send a Connection:close header for the main web page but otherwise
support persistent connections and pipelining. This leads to overhead that is not accounted for
in the simulations.

5.2.4 Parameter Estimation

In this section we discuss how to extract values for our parameter set from our measurements.
Because there are no exact ways to determine values for some of our parameters from passive
measurements at a single point near the clients, we resort to heuristics to estimate parameter
values.

Page Retrieval Time: We determine our main metric, the page retrieval time, as the time
from observing the first SYN packet (from downloading the main page) until the last data packet
has been received for each download. Note that we use the last data packet since upon receipt
of the last data packet the Web page can be presented completely to the user. Waiting for the
close of the connection can be a mistake especially when using persistent connections. In order
to eliminate measurement outliers we then compute the median value of all measurements to
estimate the user perceived latency for a certain client and Web page at a specific time using a
certain HTTP feature.

Web Content: Determining the information about the Web page is fairly straightforward.
Using tcpreduce [Pax] on a tcpdump trace file from retrieving a Web page using a single
TCP connection and HTTP/1.0 produces a per connection summary with one connection per
object. The size of each object and its meta-information is the number of bytes transfered via
the connection. For dynamically generated data there is a chance that another Web page down-
load generates an object of a different size—this is not accounted for. The retrieval order is
determined by the start time of each connection. We approximate the number of servers by the
number of different IP addresses observed in one of the traces. This ignores IP aliasing. Each
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object of a given size is mapped to the server corresponding to the destination IP address of the
connection. We do not account for Web sites that use DNS or other methods for distributing
Web page requests among different servers.

Round Trip Times: In the context of TCP, the round-trip time is understood to be the time
difference between the sending of a packet to the receipt of the acknowledgment for this packet.
Therefore we just need to find pairs of packets and acknowledgments for estimating the round-
trip time. Unfortunately delayed acknowledgments, packet loss, and retransmissions complicate
the estimation. There are several ways to cope with them: only consider unaffected packet pairs
or explicitly deal with the complication. The latter can be done using the same approach used in
TCP. We consider both alternatives.

The packets pairs involved in the initial TCP handshake are not subject to delayed acknowl-
edgments and losses are easy to detect, due to long, deterministic timeouts. Thus, for each TCP
connection, we approximate the round-trip time by the time difference between the last packet
sent by the client with the SYN flag set and the first packet from the receiver with the SYNACK
flag set. The advantages of this estimation technique, denoted SYNACK, is its simplicity, that
it is unbiased by application layer overhead, and that it works well for short connections. The
disadvantages are that it ignores TCP- and server overhead and only uses a small fraction of the
available packet pairs.

We contrast the simple SYNACK method to one that uses a TCP-like mechanism. For this,
we use the round-trip estimates from tcptrace [Ost]. tcptrace computes an estimate of the
average round-trip time and the minimum round-trip time for each TCP connection. The advan-
tages of this estimation technique, denoted TCPTRACE, are that it is based on a larger sample
set of packet pairs and uses a well tested tool that has proven to be useful in other contexts. The
disadvantage is that, since it is based on a TCP like mechanism, it needs more packets in order
to derive good round-trip time estimates and that many packet losses can significantly alter these
estimates.

Each measurement downloads each Web page repeatedly using different HTTP protocol fea-
tures. Therefore our set of tcpdump traces should contain several samples of TCP connection
between the same endpoints. Accordingly, we derive several round-trip time samples using each
round-trip time estimator. Based on these samples we derive an estimate of the round-trip time
by computing either the minimum value or the average value of the round-trip time estimates.
This value is then divided by a factor of two to account for the difference between one-way delay
and round-trip time. By choosing the minimum (and in the case of tcptrace the minimum of
the minimum round-trip time estimates) we focus only on the static portion of the round-trip
time delay. By using the average round trip time delay (in the case of tcptrace the average of
the average round-trip time estimates) we have the option of considering some of the variable
portions of the round-trip time and thus the influence of congestion.

Throughput: We benefit from the fact that the Web page downloads are sampling the avail-
able bandwidth between the client and each server. We use two different techniques for the
bandwidth estimation. The first one uses throughput estimations from tcptrace for each TCP
connection, which is computed by dividing the goodput of the connection by the elapsed time.
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To account for slow-start effects we only consider TCP connections which transfer at least 6 data
packets from the server to the client. The advantages of this technique, denoted TCPTRACE,
are that it is based on a well tested tool, that it only considers goodput, and that it requires a
minimal number of transmitted data packets. The disadvantages are that the TCP connection
could have received a much higher throughput throughout parts of its lifetime, that elapsed time
may include idle periods due to the use of persistent connections, and that the slow-start phase
is included in the throughput computation.

To circumvent some of the disadvantages of tcptrace’s estimation technique we wrote our
own throughput estimation tool which uses a tighter window for computing throughput. The end
of the time window is determined by the last packet that carries data from the server to the client.
This eliminates the time for closing a connection. The start of the time window depends on the
number of packets in the TCP connection. If there are sufficiently many packets (> 12) then
we skip part of the slow-start phase by using the timestamp of the 6th data packet as the start of
the window. Our justification is that ack-clocking should be established once the window size is
larger than 4. Throughput is estimated based on the number of data bytes (goodput) transfered
within the time window. The advantages of this method, denoted TAIL, are that it tries to skip
the initial slow-start phase and the last idle time before a connection is closed. The disadvantages
are that it cannot skip slow-start phases due to packet losses and other longer idle periods (e.g.,
due to server problems or idle persistent connections). As before, we only applied this tool to
TCP connections with at least 6 data packets from the server to the client.

We compute several samples for each bandwidth estimator from the various TCP connec-
tions. Based on theses samples we derive an estimate for the throughput by taking either the
maximum value or the average value of the throughput estimates. Our motivation for choosing
the maximum value is that the throughput is limited by TCP effects and congestion. By choos-
ing the maximum we use an optimistic estimate. By using the average throughput we are more
pessimistic and place a larger emphasis on the influence of congestion.

TCP parameters: Using the tcpdump trace information it is possible to analyze what TCP
options are supported by the various Web servers and what TCP parameters are used. We exam-
ined the traces for the following factors: The maximum segment size can be determined using the
TCP option fields of SYN packets. The factor that mainly influences end-to-end latencies is the
receiver window size of the client which is a httperf parameter. We use the default value: 16
KBytes. The window value actually used is available via the window information in the packets
from the client to the server. To understand if Nagle is disabled by the server, one can examine
if the server sends several small packets in a row. By default httperf disables Nagle on the
client. To check if the client is using delayed Acknowledgments one can see if each data packet
is acknowledged immediately. Certain systems, such as Linux, are known to disable delayed
ACKs during slow-start. Another factor that impacts the speed of page retrievals is the size of
the initial congestion window at the server. Most systems by default use an initial window of one
or two. But larger values are also conform with the TCP RFCs [MA02, KP98] and can improve
user-perceived latency. To check the server initial window size we inspect the packet level trace
to see how many packets are sent by the server at the beginning of the slow-start phase before
waiting for an acknowledgment from the client.
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Figure 5.4: Probability density of the end-to-end latency of the EU Web page retrievals: (left) weekday;
(right) weekend. The plots show a representative range of latencies. It also shows the improvement in
latency of persistent and pipelined connections over simple ones. The latencies for weekends (right) is
smaller than for weekdays (left) due to congestion effects.

5.2.5 Measurement Results

Using our estimation techniques we generate and simulate 24 simulation scenarios per Web
page, HTTP flavour, and each combination of the techniques for estimating round-trip times
and throughput for each experiment. To facilitate a detailed comparison we also collect packet
level traces from the simulation. Overall a typical experiment results in roughly 400 MBytes of
measurement and simulation traces and logs.

To verify that the Web sites that we picked indeed cover a range of different end-to-end la-
tencies Figure 5.4 shows the density of the logarithm of the end-to-end latency of the Web page
downloads from the EU location. The left plot summarizes all weekday experiments while
the right plot summarizes all weekend experiments. As expected overall latencies are best for
HTTP/1.1 with pipelining, next are the downloads with four simple TCP connections, while
using just a single persistent connection is the worst. Somewhat surprisingly pipelined and per-
sistent connections show a peak at 60 seconds. This is httperf’s standard timeout value which
applies if the server does not send an answer. Since this peak is due to an anomaly it should be
ignored which improves the results even more. The latencies for the downloads during weekends
are a bit better than those during the weekday, indicating that congestion effects are more preva-
lent during the weekday than during the weekend, just as one would expect. Similar observations
hold for daytime vs. nighttime.

For some of the Web sites the end-to-end performance is subject to significant fluctuations:
the median end-to-end latency differs rather significantly from the minimum/maximum values
and the standard deviation is of the same order of magnitude as the original latency. Upon further
inspection of the packet level traces we found that one factor contributing to such fluctuations is
the number of packet drops (approximated via the number of packet retransmissions). Therefore
we decided to split the evaluation into two cases. Case one includes all measurements while
case two only contains measurements without packet retransmissions. Of the approx. 19000
(3800) measurements from WAN(EU) (modem(EU)) 13.4% (30.4) had retransmissions, respec-
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tively. Of the 22300 measurements from WAN(US) 63.9% had retransmissions. We observed
more retransmissions in the modem(EU) datasets and the US datasets than in the WAN(EU)
datasets. While surprising it can be explained by considering that the transmission of packets
over the modem line takes time and that those packets are buffered on the remote end. If the
retransmission timeout value is too small the client will retransmit packets before the data can
be acknowledged. A similar effect seems to be happening for the US based client.

Except for one server which uses a segment size of 512 bytes all servers use a segment size
bigger than 1300 and most servers use the expected segment size of 1460. Other anomalies
include Web sites that use embedded objects located on servers that require the use of cookies.
Requests without these cookies will just hang until the connection is closed. We observed this
on two of the Web sites and eliminated them from further consideration.

5.2.6 Comparison of Parameter Estimators

In Section 5.2.4 we discussed several different ways of estimating round-trip times and through-
put. The scatter plots shown in Figure 5.5 plot for each experiment and each involved server
the round-trip time estimate using one method vs. the round-trip time estimate derived using
another method using logarithmic scales for both axes. In addition we added a line for x = y
indicating identical results by both estimators. This plot includes all experiments independent
of the location of the client, the time of day or the time of week. This means that we consider
more than 3200 bandwidth and over 6200 round-trip time samples.

The left plot of Figure 5.5 compares the minimum of all round-trip time samples to one server
during one experiment to the average round-trip time for SYNACK. Note that the round-trip
times range from such small values as 2.96 milliseconds all the way up to 1.91 seconds for
SYNACK(min). In general we observe that the average round-trip time does not differ too much
from the minimum round-trip times. Yet, there are cases where they differ significantly. In the
case of SYNACK some of these are due to retransmissions and some are due to the overhead of
TCP connection establishment and the necessary server overhead and some are due to congestion
effects. It appears that the minimum value is a better estimator than the average value since the
effects of larger outliers are minimized. The penalty of using the minimum could be that we
put too much emphasis on small values (in effect using the small outliers). In addition we can
observe that there is a clustering of the round-trip values around some expected values such as,
e.g., 20 ms (approx. time to EU–US), 100 ms (approx. modem delay).

The right plot of Figure 5.5 compares the round trip time estimators SYNACK(min) and
TCPTRACE(min). Overall they agree rather well. There are only a few cases in which the
SYNACK estimator is significantly smaller than the TCPTRACE estimator. These are likely
due to short TCP connections which limits the effectiveness of the TCPTRACE estimator. In a
small number of cases the TCPTRACE estimator is smaller than the SYNACK estimator, most
likely highlighting the drawback of using a much smaller sample set and the influence of the TCP
connection establishment. Overall the results show that even simple round-trip time estimators
can provide good estimates for round-trip times.

The scatter plots of Figure 5.6 each compare two throughput estimators. Note that the differ-
ence between the estimators for throughput is significantly larger than the difference between
the estimators for round-trip time. The plot contains more “noise”. Interestingly one can distin-
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Figure 5.5: Scatter plots of RTT estimates. Each plot compares two different estimation techniques:
round-trip time estimates in seconds SYNACK(avg) vs. SYNACK(min) (left) TCPTRACE(min) vs.
SYNACK(min) (right). Minimum and average SYN-ACK RTTs do not differ significantly in most cases.
Differences are caused by retransmissions and server processing overhead. SYNACK(min) and TCP-
TRACE(min) generally agree very well, except for very short connections where TCPTRACE gets too
few samples. Overall the very simple SYNACK(min) estimator can yield very good RTT estimates.

1

10

100

1000

10000

100000

1 10 100 1000 10000

T
A

IL
 (

m
ax

) 
[K

B
it/

s]

TCPTRACE (max) [KBit/s]

TAIL(max) vs. TCPTRACE(max)

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

T
A

IL
 (

m
ax

) 
[K

B
it/

s]

TAIL (avg) [KBit/s]

TAIL(max) vs. TAIL(avg)

Figure 5.6: Scatter plots of throughput estimates. Each plot compares two different estimation tech-
niques: throughput estimates in Kbit/s for TAIL(max) vs. SYNACK(max) (left) and TAIL(max) vs.
TAIL(min) (right). TAIL sometimes overestimates throughput for short connections but is otherwise
relatively accurate due to its ability to ignore connection setup and teardown. The clusters are due to
common link capacities, e.g., T1.

guish three clusters: one with smaller bandwidth estimates and less data points for the modem
case, one for T1 and similar speeds, and one for high bandwidth connections. Another interest-
ing aspect is that the results spread across a large range of bandwidth values: from 130 bit/s to
8.9 Mbit/s for TAIL(max). As is to be expected TCPTRACE(max) is significantly smaller than
the TAIL(max). This is the result of ignoring slow-start and connection teardown in the TAIL
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estimator. It is interesting to observe that for some cases TAIL(max) seems to overestimate the
throughput. This is most likely due to cases where the number of packets is just large enough so
that TAIL can ignore the slow-start phase but where the next set of packets arrives more or less
back to back. These are the clusters far to the left of the x = y line. But otherwise TAIL(max)
looks promising. Overall based on the above results we choose the most optimistic network
characteristic estimator combination, SYNACK(min) for round trip times and TAIL(max) for
available bandwidth, as the base case for our simulations.

5.2.7 Simulation Setup

In order to configure our simulations according to the findings in the previous sections, we
chose our parameter values as follows. TCP parameters were chosen so that NS-2 mimics a
TCP RENO implementation without selective acknowledgments (SACK) [MMFR96] and the
following options: Nagle is disabled, delayed acknowledgments are enabled with a maximum
timer value of 200 ms, the MSS is 1460 bytes, the receiver window sizes are 11 segments
(corresponds to roughly 16 KBytes for full segments) and the initial window is one segment.
This configuration differs from vanilla TCP only in the sense that Nagle is disabled. But this is
a common performance enhancement of Web servers and we have found no evidence of Nagle
in the traces.

The topology parameters for each server are derived from the estimated round-trip times and
throughput values. In the case where we cannot derive throughput estimates from the packet
level measurements, we use the following default values: 56 Kbit/s for the modem (speed of
serial interface), 2 Mbit/s for US and 1.54 Mbit/s for EU. We used a slightly higher default
speed for the US since most accesses didn’t involve transatlantic links that are likely bottle-
neck links. Overall we use several different estimation techniques: min/avg from SYNACK
and TCPTRACE for round-trip time estimation and max/avg from TCPTRACE and TAIL for
throughput estimation. The round-trip time is translated into the link delay by dividing it by two
and subtracting the transmission delay for a 40 byte packet. The throughput estimation translates
directly into link capacities.

The choice of topology is hard since we do not know the location of the servers in relationship
to the client nor do we know the exact path and its characteristics between the client and the
servers. We thus choose a rather simplistic topology consisting of a single client and a set of
servers which correspond to the servers contacted by the active measurement client. Figure 5.7
shows an example of such a topology. The client node has a direct link to each server node with
delay and bandwidth corresponding to the measured roundtrip time and throughput values. The
direct links ensure that the path characteristics estimated from the actual downloads interfere
witch each other in the simulations.

In order to be as accurate as possible, we have to ensure that the order that the embedded
objects of a Web page are loaded is the same between measurements and simulation. Unfor-
tunately due to our approach for actively downloading the Web pages using httperf [MJ] the
simulation scenario sketched above consisting of one Web page which contains all embedded
objects, does not achieve this. In the simulation the client can simultaneously contact all servers
and download all embedded objects in parallel. To ensure that in the simulation the client cannot
start downloading the embedded objects until it has received at least the main page, the client is

84



5.2 On the Realism of Network Simulations

Client

Servers

...

Main Server

’Slave’ Servers

− delay (from RTT)
− bandwidth (from Throughput)

Figure 5.7: Example topology for simulation accuracy evaluation. Every server used by a Web Object is
connected to the client according to the estimated capacities and delays. The direct connection prevents
that traffic from a server does not influence the characteristics of the traffic from the other servers.

configured to delay requests for embedded objects from the main server until the entire page has
been received. To ensure that the client can only download objects from a single server at a time,
a real Web page request is simulated not as a page with embedded objects but rather as a series
of page requests, one page request per server. This implies that for each server, we choose one
embedded object and make NSWeb treat it as if it was a page object. This page embeds all other
objects residing on this server and the client is configured to not delay requests for embedded
objects for these servers and instead load page and embedded objects simultaneously. Thus,
from the view of the transport layer, the simulated client behaves in the same way as the real
one.

5.2.8 Evaluation of Simulation Accuracy

To compare the results for each measured Web page we consider the relative error between the
median end-to-end latency of the active measurements to the end-to-end latency of the simu-
lation. The relative error is the percentage difference between the larger value and the smaller
value. If the latency from the simulation is faster we force the value to be negative otherwise
the value is positive. For example a relative error of 100% means that the latency derived from
the simulation is twice the latency of the active measurement. A relative error of −50% means
that the latency from the simulation is 1.5 faster than the latency from the active measurement.
A relative error of 0 means that the latencies are equal. The advantage of using the relative error
is that is captures both faster and slower deviations in the same fashion and that it is centered at
zero.

Figure 5.8 shows two density plots of the relative error for the 1pm weekday experiments for
different client locations, one with four simple connection and one with one persistent connec-
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Figure 5.8: Density plots of the relative error for different client location and connectivity for the 1pm
weekday experiments using 4 simple connections (left) and 1 persistent connection (right). The relative
error is mostly smaller than ±30% and overall smaller than a factor of 2. Simulations are mostly faster
for the modem case (capacity overestimation) and slower for WAN(EU) (throughput underestimation
because of large RTT values). Using different HTTP connection methods has only a small influence on
the relative error.

tion. We only consider measurements without retransmissions for the estimation of the parame-
ters and the latencies. The good news is that most (68% for four simple, 70% for persistent, 78%
for pipelined connections) of the relative error values are fairly small: in the range of −30% to
30%. The bad news is that some of the results are of by more than 30%. For the modem case
the simulation results are almost always faster than the measurements but not by a huge factor.
This indicates that our bandwidth default might be a bit too generous with 56 Kbit/s. This is
in contrast to the WAN(EU) case were the simulation tends to be slower than the measurement.
This is indicative of a systematic error which causes us to use too large link delays, too small link
capacities, or incorrect TCP parameters. The fact that this is only happening for the European
measurements is interesting and can be explained in the following way: downloads via modems
are mainly constrained by the speed of the modem; download from the US experience shorter
round trip times and most likely a more homogeneous network environment; this enables them
to open their congestion windows faster and achieve a higher throughput. On the other hand
the larger round trip times for the EU environment implies that the throughput estimator might
significantly underestimate the actual throughput. In addition this means that underestimating
the initial window size has a stronger impact on the EU measurements than the US measure-
ments. This may explain why the simulations are in general slower than the measurements for
the WAN(EU) scenarios. Overall the relative errors from the US client cover a much wider
range of relative errors. In part this is due to the larger variances already present in the measured
latencies.

Taking a closer look at the Web pages where the relative error is large leads us to the following
observations. One Web server uses an initial window size bigger than one while the simulation
uses an initial window size of one. While in the case of WAN this leads to slower simulated
latencies this somewhat surprising yields faster (factor of 1.5) simulated latencies for the modem
case. There is a second effect that dominates the first. The bandwidth estimate for the modem
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Figure 5.9: Density plots of the relative error for 4 simple connections for the WAN(EU) client for
different times of day and different weekdays and no retransmissions (left) and for different clients for
1pm weekday measurements including and excluding measurements with retransmissions. The quality
of the measurements (left) is not significantly influenced by the measurement time except for a few cases
of bad RTT estimations and high server load. There seems to be however a small systematic error of
about 25%) towards slower simulations. If measurements with packet drops are included (right), this
error seems to vanish, although there are more outliers caused bey, e.g., retransmission timeouts.

appears to be too small and since the modem client is rather sensible to accurate bandwidth
estimations this may explain this surprising difference. The simulated latencies for another
server, which also uses an initial window size bigger than one, are also off by about a factor of
1.5 from the measured latencies for all HTTP versions and WAN clients.

In the case of WAN(EU) the outliers with the five biggest positive relative errors (> 45%)
are all due to Web pages that consist of lots of small files and where the servers have a bigger
initial window size, causing a mismatch to the simulation setup. This is especially pronounced
for the case of four simple connections. With persistent/pipelining only 3/2 still show relative
errors > 30%. As reasoned above the impact of the mismatches in initial window size although
noticeable is not as strong for the WAN(US) case as for the WAN(EU) case.

We noticed that the typical standard deviation of the measured latencies are significantly larger
for the US than for the EU experiments. These variations leave their signature not just on the
latency estimates but also on the parameter estimators. For example for one Web page the
maximum estimated throughput differs from the average estimated throughput by more than
a factor of two. In this case the average would have been a better estimator. The use of the
maximum leads to deviations of the simulated and the measured latencies in the order of 50%.
Another contributing factor to the differences between the simulations and the measurements is
that we used a fairly old measurement machine in the US. It needs roughly 150 milliseconds
to start each new httperf process. (Note, we need a separate httperf processes per server.)
This overhead impacts especially Web pages that are spread across many different servers, for
example one page spread across four servers.

One of the interesting questions is what influence the time when we conduct the experiments
has on the quality of the simulations derived from the measurements. Therefore on the left side
of Figure 5.9 we plot the relative errors from each of the eight experiments for four simple con-
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nections for WAN(EU). We note that the shapes of the curves do not change dramatically from
experiment to experiment. But there are some differences visible. For example the weekday
measurements include two pages that suddenly show a much larger negative relative error at
−78.7, −61.6 and −57.9. The outlier at −78.7 is caused by a minimum round-trip time that is
representing the network state at that particular time rather badly. The average round-trip time is
about twice that of the minimum and would have been a better estimator in this case. The second
and third outliers (plus the weekend 1am outlier) are due to high load on the server, which causes
it to send packets at irregular intervals.

On the other hand the Web page responsible for the largest outliers during the weekday 7pm
experiment shows a much smaller relative error for almost all other time periods. This underlines
that at certain times network effects and server load limit the accuracy of our approach. In
addition we note that the accuracy of the simulations for the weekend experiments is smaller
than for the weekday experiments. The number of outliers is significantly smaller. The fact that
in most cases the simulation is slower than the real measurements and that a lot of the weekend
experiments have an error in the order of 25% may indicate that we are suffering from some
systematic error, e.g., over estimating the round-trip time, underestimating the throughput, or
using wrong TCP parameters. (See Section 5.2.9 for the sensitivity analysis.)

So far we have ignored measurements with retransmissions. The penalty of this is that we are
excluding some measurements. On the other hand the estimations of the measured latencies and
the network path properties should be more accurate. Figure 5.9 (right) plots the relative errors
including/excluding measurements with retransmissions for four simple connections. In this
case it is especially noticeable that we get faster simulated latencies indicating that our network
path estimators can be fooled by retransmissions. In the case of retransmissions using the max-
imum of the estimated throughput values is most likely responsible for the larger relative error
values. We verified that the extreme outliers (relative error of −98.8% and −96.3%) are indeed
related to packet drops. In these cases the client side experienced retransmission timeouts.

Another question one may ask is what is the influence of the network path characteristics esti-
mation technique. We already pointed out a few cases where using a different network parameter
estimator might have produced better results. Figure 5.10 (top) shows how varying the estima-
tion technique for round-trip time has an influence on the relative error for the WAN(EU) client
keeping the throughput estimator constant. As the scatter plots shown in Figure 5.5 suggest,
most of the relative errors stay the same. But some change drastically. For example the number
of outliers where the simulation is too fast is reduced by using averages instead of minimum
values. On the other hand using averages leads to a larger number of errors in the +40% range.
The results look similar for the other HTTP version and clients.

Varying the bandwidth estimators causes bigger shifts in the relative errors as can be seen
in Figure 5.10 (middle) vs. (bottom). Given how much more noise the corresponding scatter
plots shown in Figure 5.6 exhibit, this really should not be surprising. Since TAIL estimators
yields higher network capacities than the TCPTRACE estimators one expects that the simulated
latencies are reduced. Accordingly the plots show the expected shift towards negative relative
errors. Especially the relative error for the US client with pipelining indicate that using the least
conservative bandwidth estimator maximum of TAIL can be a good idea. But it comes at a price:
sometimes it is too aggressive. Probably the best would be something in between the maximum
and the average: e.g., some small quantile.
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Figure 5.10: Estimation effects: Density plots of the relative error for different link delay estimators for
WAN(EU) 1pm weekday measurement and 4 simple connections (top) different bandwidth estimators for
1pm weekday measurement for WAN(EU) and 4 simple connections (middle) and different bandwidth
estimators WAN(US) and pipelining without retransmissions (bottom). Using average based RTT estima-
tors instead of minimum based ones leads to more simulations with an error at about +40, but otherwise
yield simulations of similar accuracy (top). Using average based bandwidth estimators instead of maxi-
mum based ones has little influence for simple connections (middle) but leads to significant errors when
using pipelined connections (bottom).
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Figure 5.11: Sensitivity analysis: density plots of the relative error for different shifts of round-trip
time estimations for 1pm weekday measurement: US client for with 4 simple connections (left) and
EU client with pipelining (right) (no retransmissions). In both cases, a relatively small deviation in the
RTT estimates leads to an increase in the relative error of up to 50%. This effect is strongest for simple
connections due to them mostly being in delay dominated slow start phase.
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Figure 5.12: Sensitivity analysis: density plots of the relative error for shifts of throughput estimations
by 0.5 and 2 for 1pm weekday measurement EU client for with 4 simple connections (left) and with 1
pipelined connection (right) (no retransmissions). Changes in estimated bandwidth have little effect for
simple connections but can influence the accuracy of simulations significantly for persistent and pipelined
connections that are more susceptible to available path capacities.

5.2.9 Sensitivity Analysis for Protocol and Network Parameters

From the above discussion it should be obvious that there is no “right” set of parameters for the
simulation scenario. Matching the real scenario is not always possible. Therefore we, in this
Section, present the results of a sensitivity analysis by changing some of our parameters in a
systematic fashion. Our base case is a page download without retransmissions using the base
estimators: minimum SYNACK and maximum TAIL.

Figure 5.11 shows the effect of changing the value of the estimated round-trip time by ±20%.
This relatively small shift can increase or decrease the relative error by as much as 50% for
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Figure 5.13: Density plots of the relative error for initial window size for EU client for 1pm weekday
measurement and no retransmissions with 4 simple connections (left) and 1 pipelined connection (right).
In both cases, a larger TCP initial congestion window has a clearly visible influence on the simulated
latencies with a larger effect for simple connections. The correct initial window size is crucial for highly
accurate simulations.

the US based client using simple HTTP/1.0 connections. The same effect, although not as
pronounced, can be seen for different HTTP connection types as well as for different client
locations. This effect is due to the small file sizes which leave many TCP connections stuck
in the round-trip time dominated slow-start phase. This effect is especially strong for simple
HTTP/1.0 connections and for relatively small estimated round-trip time, e.g., for the WAN(US)
client. For the modem case, the effects are not as pronounced as for the WAN cases due to
the small capacity of the network path. In this case the round-trip time is dominated by packet
transmission delay instead of the link propagation or queuing delay. Overall it appears that both,
under as well as overestimating the, round-trip time can have quite an impact on the accuracy of
the simulations.

Correspondingly one would assume that changing the bandwidth by a factor of ±2 should
not change the simulated latencies for the WAN(EU) client with simple connection too much.
Figure 5.12 (left) confirms this assumption. On the other hand clients using pipelining can take
advantage of the increased bandwidth (Figure 5.12 (right)). But for some servers the relative
error becomes rather large with −95%. Decreasing the bandwidth again has a dramatic effect
on some servers. The simulation is now an additional 50% slower. Overestimating the available
bandwidth seems, in most cases, to have a lesser impact than underestimating it.

Earlier we noted that a sizable number of the outliers with positive relative error are due to a
mismatch of the initial congestion window size. In order to examine this effect more closely, we
compared the relative errors for initial congestion windows of 1 and 4 segments. The results are
shown in Figure 5.13. As expected the servers with slower simulated latencies improve relative
to the error measure. On the other hand servers whose relative error fell in the range of ±30
may now show much larger errors. It seems that including the initial window estimation in the
simulation setup is necessary and could significantly improve our quality measure.
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5.2.10 Summary

Given the above results, we find that we are able to very closely reproduce real Web page re-
trievals using properly configured and parameterized simulations. We have also seen, that the
impact that some parameters have on the accuracy of our simulations are far more significant
than it is the case for other. Especially the correct configuration of the network link delays and
the size of the initial congestion window are far more crucial, than for example link capacities, at
least when using such simple scenarios as we did in our evaluation. The accuracy with which our
simulations are able to reproduce network traffic at the level of detail corresponding to transport
and application layer protocols seems to be sufficient to rely on NS-2 and NSWeb to provide a
robust platform to base our simulation framework on.
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Simulations

In this chapter, we set out to take advantage of the findings on the nature of variability of large
network flows and develop a workload generator that reproduces the observed variability charac-
teristics and thus provides the means to develop and evaluate new as well as refine existing traffic
engineering and load adaptive routing strategies. We provide a simulation framework that con-
siders the variability characteristics described earlier in this thesis and generates network traffic
consistent with self-similarity for per link packet and byte rates, follows Zipf’s Law for flow
rates, sizes and durations and, in addition, considers the variability and interaction properties of
network flows as found by our trace analysis.

6.1 Introduction

As the main goal of our efforts is to provide a simulation framework that captures the variability
of network flow rates as observed in Chapter 4 and is thus suitable for evaluating traffic engineer-
ing and load-adaptive routing algorithms, we need to extend the NSWeb workload generator by
two major components. The first component is support for the generation of network flows with
properties much like that of flows with higher aggregation levels while maintaining heavy-tailed
flow size and flow rate distributions over multiple levels of flow aggregation and time granular-
ity. The second missing component covers support for introducing the same variability in flow
rates as characterized in Section 4.1.1 to also capture the dynamics of large Internet flows in
simulations.

Using the NSWeb workload generator for NS-2, we are able to generate self-similar traffic, the
first major component of traffic variability observed in operating networks. Because this is done
using a SURGE-like workload model with heavy-tailed page access probabilities, this implies
that we are also able to reproduce the Zipf-like transfer size distribution and thus also for five-
tuple flows resulting from TCP connections used to download of files with a heavy-tailed size
distribution [Wal01]. In this chapter we extend this framework to allow us to generate a Zipf-
like distribution for flow rates on a bin-by-bin basis. As the traffic granularity most commonly
used in traffic engineering applications and load adaptive routing algorithms is on the level of
destination prefix flows (see Section 2.5), we concentrate our efforts on generating traffic, that
not only exhibits a Zipf-like transfer size distribution but also maintains Zipf’s Law for flow
rates on the level of destination prefix flows. As a first step in developing such a simulation
framework, we extend NSWeb by the ability to reproduce destination prefix flows using normal
Web requests, relying on the page selection mechanism provided by NSWeb. Moreover, we
enable our framework to generate destination prefix flows that follow a Zipf-like distribution for
flow rates, much like we found in our analysis efforts in Chapter 4. In a final step we further
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Figure 6.1: Flexbell topology with 200 client subnets for destination prefix flows. The subnet access
routers are used to assess the behavior of prefix flows where the server and client subnets represent the
network prefixes. To control the rate of flows over a wide range of possible values, we configure a
relatively high number of clients per subnet. The nodes A, B and C mimic backbone routers and are used
to assess the characteristics of the overall traffic.

refine our framework to introduce the same variability into flow rates as we found in the flow
rankings derived from our trace data.

6.2 Static Configuration

We start out by showing how we generate traffic using NS-2 and NSWeb that exhibits self-
similarity and a transfer size distribution that is consistent with Zipf’s Law. Because the transfer
size distribution translates over TCP connections to five-tuple flows, this setup is already able to
generate the intended flow size distribution as observed in real world traffic.

Another feature we are able to support is the consistency of flow size and flow rate distri-
butions for destination prefix flows with Zipf’s Law. However, the controlled generation of
destination prefix flows using NSWeb is not straightforward. Remember, that the traffic model
of NSWeb relies to a large degree on client behavior. In the case of WWW, traffic is caused
by client requests, but generated by the server responses. Controlling how much data and with
what distributions for rates and flows sizes is generated is thus only possible in an indirect way.
Also the temporal and spatial properties of the traffic we need are only achievable by carefully
scheduling client requests considering both timing and client selection constraints.

6.2.1 Simulation Setup

In order to generate destination prefix flows, we group the traffic destinations, in this case the
clients, into subnets. These subnets are defined by the topology of the simulation (see Fig-
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ure 6.1). All traffic that is caused by requests by clients of the same subnet travels in the form of
the according responses from the servers to the clients of this subnet. Together the clients build
the destination of a number of file transfers that individually correspond to five-tuple flows yet
are aggregated into a single destination prefix flows in the core of the topology. This is shown
in Figure 6.1. The topology consists of a backbone built by the links between routers A and
B and between B and C. Router A connects all client subnets to the backbone via the client
subnet access routers. In Section 4.2.1 we have seen that for destination prefix flows it usually
is sufficient to consider roughly the 100 largest flows to account for half of the total traffic. In
order to increase the range of possible aggregated flow rates, we further increase this number and
configure 200 client subnets. Each of these subnets is connected to the backbone using a subnet
access router and contains 75 client nodes. There are also server subnets that are connected to
the backbone in the same way using router C with 10 servers per subnet. We put 10 servers into
each server subnet to avoid link overload at the server nodes. The Web page retrievals issued
by the clients cause the servers to send data in the direction of the requesting clients. These
downloads appear as five-tuple flows at the core router B with one of the server nodes as source
and one of the client nodes as destination. All five-tuple flows with destination node in the same
client subnet can then be aggregated to build destination prefix flows at the core routers. At
the same time, these five tuple flows can also be aggregated to source prefix flows when using
the source of the five-tuple flows as flow key. As we use NSWeb to configure SURGE-like Web
content and have the clients issue page requests using the NSWeb session model, we can expect
that the five-tuple flows are consistent with the desired properties regarding the distribution of
the size of the five-tuple flows.

So far we have been able to configure NSWeb to generate traffic that can be aggregated to des-
tination prefix flows. These aggregated flows however still need to have a flow-rate distribution
that is consistent with Zipf’s Law. As we have already seen, we can control the rate of flows only
indirectly by carefully controlling the access rate of the clients. We have to reduce client access
frequency for pages on our servers without destroying the self-similarity of the traffic generated
using the session model of NSWeb. The only way to do so is to "deflect" requests from the
servers that the clients reach over the backbone of our topology to off-site servers, that are reach-
able by network paths that do not include the topology backbone links and routers. This ensures
that the NSWeb session model is preserved while reducing requests to the servers on the right
hand side of the topology. For performance reasons however, we do not really issue requests
to off-site servers, but make the clients only pretend to do so. This way, there are much fewer
requests to process which significantly reduces the number of packets that have to be processed
by the simulation engine. Pretending to perform Web page retrievals in our simulation setup
is done by omitting to issue server requests on a per-session basis while still considering when
sessions end and new sessions start. The duration of sessions to off-site servers can be inferred
using the inter-request times and the Web content configuration. This way the traffic demand of
the clients can be reduced while preserving the NSWeb session model.

Now that we are able to control the request rate of clients, we still need to adjust this rate in
a way, that the combined requests of all clients of a subnet cause the destination prefix flows to
have a Zipf-like byte rate distribution. Therefore we have to adjust the request rates not only
on a per-client but on a per subnet basis. We achieve this by limiting the number of concurrent
sessions for each client subnet. Each time a client starts a new session, it has to check whether

95



6 Capturing Traffic Variability in Simulations

adding this new session to the already active sessions would exceed the session limit for its
subnet. If this is the case, the client omits this session and schedules a new one using inferred
session duration and the configured inter-session time. In order to achieve a Zipf-like byte rate
distribution for destination prefix flows, we assign ranks to subnets and determine the per-subnet
session limits of a subnet with rank r and number of clients c to be

max. sessions(r) = c · 1

2(r−1)

This allows at most as many sessions as there are clients in a subnet while enforcing an ordered
Zipf-like distribution of the session numbers with the top ranked subnet being allowed to have
all its clients issue page requests simultaneously, the subnet ranked second to have half as many
active sessions, the subnet ranked third to have a quarter of the sessions as the top ranked subnet,
and so on.

Unfortunately, this method only works at coarse time scales while leading to uniformly dis-
tributed flow rates at finer time scales in the order of 1 to 5 minutes. This is a result of the
granularity of our client control mechanism that operates on the level of entire sessions. The
individual page requests and file transfers are still limited only by the available end-to-end band-
width between clients and servers. In order remedy this problem we limit the available band-
width between client subnet and servers depending on the targeted rank for the destination prefix
flow to the corresponding client subnet. We achieve this by configuring the capacities of the links
between the backbone and the server access routers as bottleneck links with appropriate capac-
ities and direct all requests of the clients of a subnet to the server subnet that is connected by an
appropriate bottleneck link. The link capacities are chosen according to the intended rank r of
the destination prefix flows as

capacity(r) =
max. capacity

r−1

This approach requires the use of a variant of the basic page selection mechanism in NSWeb
as described in Section 5.1. Our variant allows a client to first select a server and then select a
page that is available on that particular server. As the content of all servers is the same in terms
of distributions of file sizes and number of embedded objects referenced by pages, this has no
influence on the workload model and thus on the other properties of the generated traffic. In our
case we determine the server by first selecting the server subnet according to the targeted end-to-
end path capacity and then randomly select a server from that subnet with uniform probability.

In order for clients to issue requests to one of the servers in the correct server subnet we add an
additional level of indirection by using Access Maps, the same mechanism that is used for page
selection in NSWeb (see Section 5.1 and Figure 5.3). There is one Access Map per server subnet
that contains references to all servers within a subnet. As we want to select every server in a
subnet with the same probability, we use a uniform distribution to determine the server access
probabilities.

Whenever a client is scheduled to issue a page request, the page selection mechanism works
as follows:

1. Determine the subnet the client resides in. The subnet implicitly defines a single destina-
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tion prefix flow with a given rank r.

2. Using this rank r, we look up the server access map of the server subnet related to rank r.
Select a server s by using the appropriate Access Map.

3. Lookup the page Access Map of server s. Select a page p by using this Access Map.

In order to complete the topology setup, we still need to configure the capacities of the rest of
the links and assign link delays yielding sensible end-to-end round trip times. Nowadays, a large
number of clients have broadband access to the Internet like ADSL or cable modems. Moreover
our evaluation in Section 5.2.9 has shown that the quality of our simulations is not likely to
suffer from using higher capacities than found in real networks. Therefore the only limitation
we have on link capacities is that the server subnet access links have to be the bottleneck on
the path from servers to clients. Thus the link capacities are configured as follows: The links
between clients and their respective access routers have a capacity of 1 Gbps. The corresponding
links for servers are configured as 100 Mbps links. The links between the core router A and the
client access routers as well as the backbone links between routers A and B and between B and
C all have a capacity of 1 Gbps. The links between core router C and the server subnet access
routers are configured to support the rank-dependent rate limiting for destination prefix flows
described above. Because these links need to be bottleneck links, we configure the capacities
with a maximum of 1 Gbps.

In order to have a variety of different realistic round trip times on the paths between servers
and clients the links between the clients and their respective access routers have delays of 2–
20ms, the delays for the links between the servers and their access routers are between 2ms and
30ms. For the links between the client access routers and the core router A we use delays of
3–10ms. To avoid interactions between delays and capacities for the links between the server
access routers and core router C we use 3ms delay for all these links. The backbone links both
have a delay of 2ms. These delay values result in round trip times between 28ms and 134ms.

Besides the topology, client sessions and Web content, we need to configure the protocol pa-
rameters for both HTTP and TCP. For HTTP, the only parameter we need to configure is which
connection scheme clients use to access the servers. Available connection schemes are four
parallel HTTP/0.9 connections supporting one request per connection, one persistent connec-
tion per server without request pipelining and one persistent connection per server with request
pipelining (see Sections 5.1 and 5.2.2). According to our measurements in Section 5.2.3, 25% of
the servers are configured to support pipelined connections, another 25% to support persistent
connections without pipelining and the rest to support up to four parallel simple connections.
The clients are configured to adjust themselves to the connectivity of the servers so that we get
a similar connection mix as found in our Web request measurements.

For TCP we also use parameters as suggested by our measurements. Specifically, we use
a maximum segment size of 1460 bytes instead of the NS-2 default of 512 Bytes, a receiver
window of 22 segments or about 32 KBytes and an initial congestion window of one segment.
We enable delayed acknowledgments with a delay of 200ms and disable the Nagle algorithm as
both features are not enabled by default on NS-22.

In order to be able to generate flows of a length comparable to those found in our NetFlow and
packet level traces, we configure the simulation to run for 24 hours of virtual time. As a measure
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Figure 6.2: Scaling plots for simulated traffic at backbone link C-to-B, static configuration. The global
scaling (left) shows an approximately linear behavior with a dip at 256ms indicating self-similar scaling.
The local scaling plot (right) shows similar behavior with no distinct influence of q suggesting monofrac-
tal scaling. Both plots show the traffic to be self-similar.

to reduce synchronization effects, the clients start issuing requests at a randomly chosen time
within the first 200 seconds of a simulation.

6.2.2 Evaluation and Results

In this section we show, that the traffic generated by our simulation setup shows the desired
features, namely self-similarity and Zipf’s Law for flow rates.

We therefore first generate packet level traces from the simulation log files at the backbone
link between routers C and B and at all subnet uplinks between router A and the client subnets
and between the server subnets and router C. Starting from the packet level trace at the backbone
link, we first generate network flows and then process these flows in the same way we did
with our real network traces. We then generated flow rankings for both non-aggregated and
destination prefix flows for bin sizes of one and five minutes. Because of the limited number
of possible destination prefix flows of 200, we perform the rankings for the top 10, top 20 and
top 100 flows only. The packet level traces collected at the various client subnet uplinks are used
to analyze the scaling behavior of individual destination prefix flows.

In order to show that the generated traffic is self-similar, we make use of the technique intro-
duced in section 2.3. This method captures variability at different time scales with the help of a
Wavelet based energy function. Self-similar behavior is then indicated by a more or less linear
dependency of the logarithm of the energy function with non-zero slope over a range of differ-
ent time scales. For local scaling, a partition function is used instead of the energy function to
capture very short bursts. Self-similar local scaling is then indicated, similar to global scaling,
by a linear relationship between the logarithm of the partition function and of the time scale.
In order to detect multi-fractal scaling behavior, local scaling plots consider a family of parti-
tion functions using powers q = 0,2,4, . . . ,20 of the Wavelet coefficients. A linear relationship
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Figure 6.3: Scaling plots for simulated traffic at client subnet access links for prefixes 1 (top), 30 (middle)
and 100 (bottom), static configuration. In all three cases, the approximately linear relationship between
scale and the logarithm of the energy and partition functions indicates self-similar scaling for the aggre-
gated flows at that links. The local scaling with its almost linear relationship between scale and the slope
of the partition function family hints at multifractal scaling. This shows that the traffic caused by the
individual destination prefix flows is self-similar.
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Figure 6.4: Per-bin byte contribution vs. rank for five-tuple flows (left) and destination prefix flows
(right) for five consecutive one minute bins (simulation with static configuration). The linear relationship
between the logarithms of ranks and flow rates for both non-aggregated and aggregated flows shows, that
Zipf’s Law holds in both cases, even over time.

between the partition function and q shows multi-fractal scaling behavior. See Section 2.3 for
more details on this scaling analysis technique.

Figure 6.2 shows global (left) and local (right) scaling plots for the traffic rate at the link from
router C to router B. The global scaling shows approximate linear behavior over the time scales
between 3 and 9 and again from scale 11 to scale 16 indicating self-similarity over a wide range
of time scales. The change in scaling behavior between scales 9 and 11 , corresponding to times
from about 64ms to 256ms is the result of periodic behavior caused by RTT effects. The time
periods are of a magnitude that correspond to the range of RTTs (28ms to 134ms) and multiples
thereof. The local scaling plot shown in Figure 6.2 also shows linear behavior over almost
all time scales. The linear relationship between scale j and the power q indicates monofractal
scaling behavior. The dip apparent in the global scaling plot is only marginally visible for high
values of q. The absence of a pronounced dip at middle to coarse time scales is indication that
there is no major congestion on the path from the servers to the clients. This is to be expected
considering the high link capacities in our simulation setup.

Figure 6.2 shows that the traffic as an aggregation of all destination prefix flows shows self-
similar scaling over a wide range of time scales. There remains however the question whether
this also holds for the individual flows themselves. As the ranks of the flows are constant during
the simulation, we can analyze the scaling behavior flows of a particular rank at the client subnet
access links of the respective client subnets. Accordingly, Figure 6.3 shows scaling plots for
the destination prefix flows with the static ranks 1 (top row), 10 (middle row) and 100 (bottom
row), as measured on the respective client subnet uplinks. The global scaling plots (left column)
show approximately the same features as the corresponding plot for the entire backbone traffic.
The curves are only slightly less linear for the lower ranked flows at coarser time scales. This
observations also hold for the local scaling plots (right column). They show similar behavior as
the plot for the entire backbone traffic, again with a slight jitter over the coarser time scales that
increases with rank. We assume that the scaling plots for the individual destination prefix flows
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Figure 6.5: Fraction of total traffic contributed by the top 10 and top 100 flows, without aggregation
(left) and with aggregation by destination prefix (right) (simulation with static configuration). The byte
contribution of the top 10 and the top 100 five-tuple flows is, apart from missing time-of-day effects, very
similar to real traffic. For aggregated flows, the simulated flows account for more traffic than real flows.
This is caused by the limited number of 200 destination prefixes in our simulations.

are not as clear as for the entire backbone traffic because of the much smaller traffic volume
contributed by the lower ranked flows. Still the scaling plots demonstrate that the entire traffic at
the backbone as well as the individual destination prefix flows show self-similar behavior over a
wide range of time scales.

The second major traffic property we want to reproduce in our simulation framework besides
self-similarity is conformity with Zipf’s Law for the rates of the destination prefix flows. In
order to show that Zipf’s Law holds over time for our generated traffic, we plot in Figure 6.4
for five consecutive one minute bins the per-bin byte contribution versus the rank of the top 100
flows on a log-log scale for non-aggregated (left) and destination prefix flows (right). Both plots
show approximately linear relationship between logarithms of rank and byte rate over all five
plotted bins. This is clear indication, that Zipf’s Law for flow rates holds with and without flow
aggregation, and even over consecutive time bins. We also find the same behavior for the larger
bin size of five minutes. These results show, that our simulation environment is able to reproduce
Zipf’s Law for flow rates.

The implication of flow rates being conformant to Zipf’s Law is that a small number of flows
contributes a large fraction of the overall traffic. Figure 6.5 shows the fraction of bytes con-
tributed by the top 10 and top 100 flows for non-aggregated (left) and for destination prefix
flows (right). These plots correspond to Figure 4.7, where we show the same relationship for the
MWN-III trace. Although our simulations do not show a time-of-day effect as the plots for the
trace data do, the top 10 flows contribute about 30% of the total traffic on average and the top 100
flows are responsible for about half of the total traffic. Apart from the time-of-day effect, our
simulations come very close to the real world traffic in terms of traffic contribution of top flows,
at least for the non-aggregated flows. In the case of destination prefix flows (right) the simulated
traffic shows with almost 40% a slightly higher fraction of the traffic contributed by the top 10
flows, than we have for our trace data with about 30% on average. If we look at the top 100
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Figure 6.6: Entry (left) and Exit (right) ranks for aggregated flows and 60 second bins (simulation with
static configuration). The entry exit process look almost identical. They are also very similar to the
entry/exit processes of real data, except for higher absolute frequencies as a result of a limited number of
prefixes in our simulations.

destination prefix flows, we see a contribution of almost 90%, which is much higher than for
the trace data, where we have a contribution of only 70% on average. Again, we assume this to
be caused by the limited number of different destination prefixes (200) in our simulations. Still,
there is a remarkable agreement in the byte contribution of top ranked flows between simulated
and measured traffic.

Another aspect of the traffic that should already be visible even for statically ranked flows is
the entry and exit process as described in Section 4.3.1. For our trace data we have seen that
both entry and exit ranks show basically the same distribution with a significant fraction of the
flows entering and leaving the rankings at top ranks. For our simulations, Figure 6.6 shows
histograms for the entry (left) and exit (right) ranks for aggregated flows and one minute bins.
Both histograms are almost identical to each other and also show a rank-frequency distribution
that is very similar to that of the MWN-III trace as shown in Figure 4.10. The only visible
difference are the slightly increased absolute numbers of flow appearing or disappearing with
a rank in one of the 5 ranks wide intervals used in the histograms. This can be explained by
the limited number of destination prefix flows in our simulations which leads to a concentration
of all aggregated flows in the top 200 ranks, while this effect has no influence on the entry and
exit process for our trace data with a much higher number of destination prefix flows. Still,
Figure 6.6 shows, that we are able to reproduce this aspect of the entry and exit process with a
relative high accuracy.

One of the most important assumptions made in traffic engineering is that large Internet flows
usually have a longer duration. This correlation of rate and duration has been described in
[KCL06] and we could also show this in our own analysis in Section 4.3.1. Therefore we show
in Figure 6.7 probability density curves for destination prefix flows to have particular duration.
We discern between flows having an average rank between 1 and 10, between 11 and 100 and
lower than rank 100. The curves show quite a different picture of the correlation between flow
rate and flow duration than our trace data does. For flows with an average rank lower than 100
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Figure 6.7: Duration of destination prefix flows, classification by avg. rank for 1 minute (left) and
5 minute bins (right) for simulation with static configuration. For our simulations, the duration of top
ranked flows is in most cases shorter than for other flows, although there are some top 10 flows, that last
as long as the entire simulation. This observation holds for both small and medium sized bins.
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Figure 6.8: Mean number of contributing five-tuple flows for destination prefix flows, classification
by avg. Rank for 1 minute (left) and 5 minutes (right) for simulation with static configuration. Top
10 destination prefix flows consist of less five-tuple flows than lower ranked ones. This increases the
probability for top 10 flows to terminate due to lack of contributing five-tuple flows. This explains the
limited duration of aggregated top flows.

there is an upper limit for the duration at slightly less than 5000 seconds or approximately one
hour and 20 minutes. Moreover flows with average rank between 11 and 100 have a higher
probability to last for a long time than flows with low average rank. However aggregated flows
with very high mean ranks are in most cases shorter than all others with high probability at
about two minutes and a slight probability mass concentration at 24 hours, the duration of our
simulations. This observation holds for 1 minute bins as well as for 5 minute bins, where this
effect is less pronounced for longer bins. The duration of aggregated flows however directly
depends on the constant presence of at least one contributing five-tuple flow. As soon as there
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is no contributing five-tuple flow for a longer time period than specified by the flow inactivity
timeout (15 seconds), an aggregated flows is terminated. Accordingly, we show in Figure 6.8
density plots for 1 minute (left) and 5 minute bins (right) of the average number of five-tuple
flows contributing to the same aggregated flow. For aggregated flows with a mean rank of 1 to 10,
the number of contributing five-tuple flows is generally smaller than for lower ranked aggregated
flows. Moreover, the number of contributing five-tuple flows scales approximately linear with
the bin size, independent of the mean rank of the aggregated flows. This is clear indication, that
the top ranked aggregated flows consist mostly of a small number of short high-rate five-tuple
flows. Therefore the short durations of the top ranked aggregated flows in our simulation are
most likely the effect of a too small number of contributing five-tuple flows. To rectify this
problem, we have to generate more five-tuple flows which, in our simulation environment, we
can only accomplish by configuring more clients. Unfortunately, this is not possible due to the
high memory consumption of the NS-2 network simulator.

We do not yet look into relative deviation as we have not yet introduced our mechanism
to change the ranks of aggregated flows in a controlled manner and thus the variability is not
comparable to that of real traffic. Yet for the characteristics that do not depend on changing flow
ranks we can show a reasonable accuracy of the consistency of our simulated traffic with Zipf’s
Law, for individual bins as well as over time, and also with self-similarity as can also be found
in real traffic.

6.3 Dynamic Configuration

In the last section, we have shown that we are able to simulate self-similar traffic that is consistent
with Zipf’s Law for the rates of flows aggregated by destination prefix and does so over time.
The reproduction of the dynamics of flow rankings highlighted in Section 4.1 however is still
missing. Starting from the setup described in the previous section, we now extend our simulation
framework to be able to reproduce variability in the ranks of the destination prefix flows. To this
end, we add a mechanism, that is able to variate the average ranks of the aggregated flows in a
way that the same or at least very similar variability as we found in the trace data is introduced.

We assume that the rank change behavior can be described by a memoryless system, that is,
the rank in bin i + 1 is not dependent on the ranks in bins 1 to i, except that the average of all
ranks is preserved. In other words, we assume that there are no temporal dependencies in the
sequences of ranks. Based on this assumption, we rely on Markov Chains to model the rank
changes for aggregated flows. As flow rankings describe the rates of flows only in relation to the
rates of all other flows, this does not necessarily contradict the property of aggregate traffic rates
showing self-similar scaling behavior.

6.3.1 Markov Modulation for Ranks

In this section, we now describe the mechanism we use to vary flow ranks over time so that
the rank change dynamics found in Section 4.1 can be reproduced in our simulation framework.
This mechanism uses a Markov Chain to determine how to change the target ranks for flows
over time.
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A Markov Chain is defined as a finite state machine with probabilities for each transition.
The transition probabilities describe the likelihood that the next state of the machine is s i+1,
given that the current state is si [Fre71]. This definition implies, that the sequence of transitions
leading to si has no influence on the transition from si to si+1. The system is memoryless. In our
case we need to model the way that flow ranks change over time. We want to know with what
probability the rank ri of some flow during time bin i changes to rank ri+1 in the next bin.

However we have seen in 4.1 that there exists a significant amount of stability in the ranks
of flows, depending on the average ranks of flows. This stability is highest for elephants and
decreases for hybrids and mice. This means, that a process with states consisting only of the
current rank of a flow cannot be memoryless. Accordingly, we need to model the states of the
Markov Chain not simply as ranks but as as tuples (ravg;ri), where ravg is the average rank and
ri is the current rank of some flow. This process is memoryless if the transition probabilities for
(ravg;ri) are equal for all i, that is, the transitions do not depend on the current rank. Then the
transitions depend only on ravg which is constant for any given flow. In order to model flows
leaving a ranking, i.e., flow termination, we use a special state (ravg;rmax+1) to account for the
corresponding probability.

Changing the ranks of the flows using this model is implemented in the following way. Using
a sample u from a uniformly distributed random variable in ]0;1[, we look for the largest rank
with a cumulative transition probability that is smaller than u. With p j being the transition
probability to rank j, we thus determine the new rank rnew of a flow as

rnew = max(i) with

(

i

∑
j=1

p j

)

≤ u

When changing the ranks of all destination prefix flows, we get collisions, where we attempt to
assign the same new rank to two different flows. We resolve such collisions by prioritizing high
ranks. This is achieved by determining new ranks for flows in the order of descending current
rank. Whenever we want to change the rank of a flow to a rank already configured for another
flow, we chose instead the next lower rank (higher index) that is not yet assigned to any flow.
The resulting ranking is used to replace the mapping between destination prefix flows and client
subnets used in the first step of the page selection algorithm described in the previous section.

The transition probabilities for a flow with average rank ravg to change its rank from any rank
ri to ri+1 are empirically derived from the rankings we derived from our trace data. We do
this by first determine the integer average rank for all flows. We then count, for all flows of a
given average rank, the ranks these flows had during their lifetime and normalize the counters
to probability values. This way, we get one Markov chain for every average rank. As we
want to use the Markov chains to configure our simulations and we are not able to simulate
more than 200 prefixes, we construct the Markov chains for 200 ranks and one meta rank to
account for flows outside the top 200 flows. Because Markov chains derived in this manner
show a high dispersion of the probability values, we use median ranks for flow classification
and Markov chain construction. Median ranks lead to a much clearer rank distribution than
mean ranks. Figure 6.9 shows surface plots (density plots of 2 variables) of the Markov Chains
for the WASHng trace for destination prefix flows and 60-second bins covering 200 ranks. On
the x-axis, we plot flow median rank and on the z-axis the new rank that a flow is changed to.
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Figure 6.9: Markov chain for WASHng data set, destination prefix flows, 1 minute granularity. with
probability density for ranks depending on median rank. On the x-axis we plot the flow median rank and
on the z-axis we plot the rank that a flow is changed to. On the y-axis we show the transition probability
for a flow to change its rank to a given new one. The probability mass is concentrated along the diagonal
with a high probability mass at the top ranks. The mass for next rank beyond 200 is caused by flows
disappearing from the rankings. This mass concentrates at flows with low median rank. The top plot
covers all ranks while the bottom plot shows a detailed cut-out of the top 40 ranks.
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The y-axis represents the transition probabilities for a flow with a given median rank to change
to the respective new rank. Not surprisingly, the plot shows a high probability concentration
along the diagonal where the new rank is near the median rank. Moreover, the concentration
is clearly more pronounced for the top average ranks (elephants) as for lower ranks (hybrids
and mice). This is consistent with the results of our analysis in Section 4.1.1, were we found
a higher stability in ranks for top ranked flows than we did for lower ranked ones. The plot
also shows that the probability to change to a rank beyond 200, which is, as we have described
above, equivalent to disappearing entirely from the ranking in some bin, increases approximately
exponentially with the median rank of a flow. Again, this is consistent with the findings of our
analysis.

6.3.2 Simulation Setup

To validate our simulation environment with support for varying the ranks of the destination
prefix flows, we build upon the setup of the static configuration described above. We reuse
topology, link delays and capacities, Web content, the NSWeb session configuration and all pro-
tocol parameters from our static simulation setup.

In order to incorporate the Markov modulation mechanism, we schedule calls to the stepping
function of the Markov modulator that calculates a new mapping vector between destination
prefix flows and their targeted ranks. According to the most fine grained time scale used in our
simulations, we schedule these calls every 60 seconds in terms of simulated time. In order to
examine, if the frequency of modulating the ranks of flows has an influence on the variability
of the traffic, we also performed simulations where we change the prefix flow to rank mapping
every 5 minutes.

6.3.3 Evaluation and Results

As the dynamic configuration of our simulation environment differs from the static configuration
only by the Markov modulation system, we begin our evaluation by ensuring that the modula-
tion mechanism works as intended. We do this by deriving the Markov chains from rankings,
generated from simulation trace files in the same manner as described above for the static config-
uration. The resulting Markov chain for 60 second bins and destination prefix flows is shown in
Figure 6.10 as a surface plot. There are two features in the top plot that are clearly different from
the Markov chain derived from the MWN-III trace. The first difference is the zero probability
for flows to have a rank beyond 200, which is not surprising, as there only are 200 destination
prefix flows in our simulations. The second variation is the increasing probability concentration
along the diagonal for flows with a median rank larger than 100, which shows that low ranked
flows stay low ranked but cannot leave the ranking. This also is an effect that is caused by the
limited number of aggregated flows. On the other hand, we can see on the bottom plot, which
shows the Markov chains for flows with a median rank of 40 or higher in more detail. The high
probability for flows with a median rank in the top 10 ranks to stay in the top 10 ranks shows,
that we are able to generate a certain persistence in ranks for the top flows. It is also visible that
the probability concentration along the diagonal is far less distinctive for flows with median rank
in the top 10 than for the rest of the flows. This shows, that the modulation mechanism intro-
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Figure 6.10: Markov Chains derived from simulated traffic. The Markov Chains derived from the simu-
lated traffic shows a much higher concentration of the probability mass along the diagonal than was the
case for real traffic. The probability mass broadens out at for top 10 median rank flows which is the result
of the desired high flow rate fluctuations causing top flows to change their ranks.
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Figure 6.11: Probability density plots for the relative deviation of destination prefix flows for static (left)
and dynamic (right) simulation configuration. There is a significant probability mass for relative deviation
between +2 and +4 for the dynamic simulation configuration than for the static one. Especially for top
10 flows, the probability mass is moved towards positive relative deviation values. This indicates that the
Markov modulation mechanism is able to increase the variability of flow rates significantly.
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Figure 6.12: Per-bin byte contribution vs. rank for non-aggregated (left) and aggregated flows (right)
for Markov modulated flow ranks for five consecutive bins. The plots show for both cases a clearly
linear relation between logarithms of rank and per-bin byte contribution. This shows that the Markov
modulation preserves Zipf’s Law for flow rates even for different aggregation levels and over time.

duces a notable variability in ranks for the largest flows, which in turn requires a high amount of
variability in the flow rates.

In order to verify, that the rate variability for top ranks has indeed been increased by the
Markov modulation mechanism, we show in Figure 6.11 probability density plots for the relative
deviation of destination prefix flows for the static (left) and the dynamic (right) configuration.
The plots show, that the relative deviation of aggregated flows with a mean rank in the top 10
shift a significant amount of probability mass to larger values for the dynamic configuration. The
spike at zero is more pronounced and there is a higher probability density at +1 to +4, whereas
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the few very small values in the static configuration between −6 and −2 vanish in the dynamic
case. The higher probability density between 1 and 4 in the dynamic case correspond to rates
that are 2 to 16 times higher than the average rate of the flows! A similar observation, although
less distinct, can be made for flows with an average rank from 11 to 100. We therefore conclude,
that the Markov modulation mechanism is able to significantly increase the variability of the rate
of large aggregated flows.

After verifying the effectiveness of the Markov modulation mechanism, we have to ensure
that the other traffic invariants discovered during our analysis, e.g., Zipf’s Law, are still present
in the aggregated flows. We start with self-similarity. The only difference between the static and
the dynamic configuration in this regard is where the packets passing the monitored backbone
link are destined. We still have the same high number of clients representing ON/OFF sources
with heavy tailed durations for the ON and OFF phases. Therefore we should still see the same
scaling behavior for the dynamic configuration as we did for the static one. This is confirmed
by the respective scaling plots that are almost indistinguishable from the plots for the static
configuration. In order to verify, that the rate of the destination prefix flows still follow Zipf’s
Law, we show in Figure 6.12 for five consecutive bins the per-bin byte contribution versus the
rank of the top 100 flows on a log-log scale for non-aggregated (left) and destination prefix flows
(right). Both plots show a linear relationship between byte contribution and rank over all five
bins. Moreover, the plots look very similar to the corresponding plots for the static configuration
shown in Figure 6.4. This a is clear indication that the Markov modulation mechanism is able
to increase the flow rate variability without destroying self-similarity or conformance to Zipf’s
Law for flow rates.

After covering the two main traffic features self-similarity and conformance to Zipf’s Law, we
now take a more detailed look at the traffic properties we already examined for the static config-
uration and verify that these properties, with the exception of the flow rate variability itself, are
unaffected by the Markov modulation mechanism used in the dynamic simulation configuration.
We start by ensuring that the fraction of bytes contributed by the top 10 and top 100 ranked
flows is unaltered when compared to the static simulation configuration. Figure 6.13 shows the
percentage of bytes contributed by the top 10 and top 100 ranked five-tuple (left) and destination
prefix flows (right) on a per-bin basis. This plots are almost identical to the corresponding plots
for the static configuration shown in Figure 6.5, except for a slightly higher variability in the
curves. For the non-aggregated flows for example, there are several bins where the top 10 flows
contribute one half of the total bytes although the average contribution is still about 30%. For the
static configuration, the top 10 flows contribute only little more than 40% during a small number
of bins. The same observation can be made when we aggregate flows by destination prefix. This
shows that this traffic property is nearly invariant under Markov modulation of the rates of ag-
gregated flows, except for a slight increase in variability of the contribution of top ranked flows.
However, it also shows that the Markov modulation mechanism does not help to overcome the
the effects of having too few flows in our simulations which leads to a significant deviation of
the contribution of top flows when compared against real traffic as shown in Figure 4.7.

Next, we focus on the entry and exit process for aggregated flows in the dynamic setup.
Accordingly, we show in Figure 6.14 histograms of the entry (left) and the exit (right) ranks
of destination prefix flows. The histograms show a slightly higher probability for a flow to
first appear in the rankings with a rank in the top 40 than for the static configuration. For the
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Figure 6.13: Fraction of total traffic contributed by the top 10 and top 100 flows, no aggregation (left)
and aggregated by destination prefix (right) for the dynamic simulation configuration. The curves are
almost identical to the corresponding ones for the static configuration, except for a slightly higher vari-
ability. This shows that the Zipf’s-like per-bin flow rate characteristic is largely invariant under Markov
modulation, even under different aggregation levels.
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Figure 6.14: Entry (left) and Exit (right) ranks for aggregated flows for the dynamic simulation setup
and 60 second bins. The histograms look almost identical to the ones for the static configuration with
more flows entering and leaving with a rank in the top 40 caused by the higher flow rate variability. Still
the plots show that the entry end exit processes are only slightly influenced by the Markov modulation
mechanism.

remaining ranks, there is almost no discernible difference between dynamic and static simulation
setup. A similar observation can be made for the exit ranks of aggregated flows. This is not
surprising, as in all cases we have considered so far, the entry and exit processes are almost
identical. Although the absolute numbers are again much higher for the simulation as for the
trace data, the plots show that the entry and exit processes are only slightly influenced by the
higher flow rate variability and the tendency towards higher flow rates for top ranked flows
shown in Figure 6.11.
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Figure 6.15: Churnrates for the top 100 (left) and the top 200 ranks for the dynamic simulation setup
using destination prefix aggregation. Both plots show that we have much higher churn rate for our sim-
ulations than we found in the trace data. Especially when considering the top 200 flows, the high churn
rate suggests that the top ranked aggregated flows in our simulations are in general much shorter than
those found in the trace data.

Another way to characterize the variability of network traffic on the level of flows is the churn
rate. The churn rate is a measure for how many flows appear and disappear from the ranking
from one bin to the next. A high churn rate means that a high number of flows are either short
or have a rate that is so volatile that, even if high ranked in one bin, the rate is not sufficiently
high to make it in the top ranks again in the next bin or that there are short bursts that push the
flow into the rankings. Figure 6.15 shows the churn rate for the dynamic simulation setup for
the top 100 (left) and top 200 (right) destination prefix flows for bin sizes of one and of five
minutes. The plots show, that for the top 100 ranks, at least half of the flows in every bin were
not among the top 100 flows in the previous bin. This fraction is with about 60% even higher
for the longer bin sizes of five minutes. The values are much higher for the simulations than
those we found in our trace data in Section 4.2. There we have similar churn rates not for the
top 100 but for the top 1000 ranks. When we consider the top 200 ranks (right), the churn rate
for one minute bins is significantly smaller (by about 20%) for five minute bins, and the churn
rate for one minute bins is, with a factor of about one third, much smaller than for the top 100
flows. The churn rate for top 200 ranks and five minute bins drops only slightly compared
to that for the top 100 flows. Note that even though our simulations have only 200 distinct
destination prefixes, there can be more than 200 destination prefix flows per bin because packet
streams to the same destination prefix with gaps that are longer than the inactivity timeout value
generate multiple flows. The churn rate plots in Figure 6.15 show that we have much more flows
appearing and disappearing from one bin to another than we can see in our trace data. Especially
when considering the top 200 flows, the high churn rate affirms that the top ranked aggregated
flows in our simulations are in general much shorter than those found in the trace data.

So far, we have shown, that a large part of the variability of the simulated traffic is caused
by flows entering or leaving the rankings from one bin to the next. There are however a larger
number of top ranked flows that do not disappear, but stay in the rankings over two or more bins.
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In order to assess how much influence the behavior of these flows has on the overall variability of
the simulated traffic, we rely on our rank change metric introduced in Section 4.4. Accordingly,
we compare in Figure 6.16 the rank change metric over time of the WASHng trace (left column)
with the metric of our simulations with Markov modulation (right column) for the rates of non-
aggregated and for destination prefix flows. As the rank change metric is sensitive to flows
appearing and disappearing, we look at the metric values computed for only the top 10 (top row)
and the top 100 flows (bottom row). The maximum values our metric can have depending on the
number of top ranks considered (see Section 4.4) when all top flows disappear and are replaced
by new ones, are 2.9 for the top 10 and 5.19 for the top 100 flows. If we consider the top 10
flows (upper row), we can see that for the trace data (left), the metric values for non-aggregated
flows clearly stay below their upper bound, and are mostly concentrated from 2.0 to 2.8 with
some bins where they drop to almost 0.0. In the case of our simulations (right), the upper bound
is almost reached during a number of bins, which means that in these cases, almost all top 10
flows are replaced by new ones from one bin to the next. During most of the bins however, the
metric values are significantly smaller than those derived from the trace, and without a visible
concentration around some value. This metric behavior is caused by the different size of the flow
population of the trace data and the simulations. The top n flows for our simulations represent a
much higher fraction of the overall number of flows than for the trace data. In our simulations
we saw at most a few thousand concurrent flows, while this number is larger by several degrees
of magnitude for the trace data. According to the results from our flow analysis, the more flows
are active, the harder it gets for a flow to reach the top ranks.

When we look at the metric values for destination prefix flows, we can see that for the
WASHng trace these values are about half as large on average as for the non-aggregated flows. In
the case of our simulations the metric for non-aggregated and for destination prefix flows shows
the same or at least very similar values over large time spans. This is another indication that the
aggregated flows generated using our simulation environment consist only of a small number of
contributing five-tuple flows and therefore both kinds of flows show the same behavior in the
metric values.

When we compare the metric values between the top 10 and the top 100 flows, we can see an
increase in the metric values for the trace data by factor of about 1.5, while the values for our
simulations are almost twice as high as before. There is also a slight increase in the variability
of the metric values for both trace data and the simulations and the nature of the variability
described for the top 10 flows above is still basically the same. The larger increase in the metric
values for our simulations can be explained by the generally shorter durations of the flows when
compared to the trace data, which leads to a higher portion of the flows to leave the top ranks.
But in contrast to the top 10 flows, we can see that the metric values for non-aggregated flows
are generally higher by a factor of about 1.3. This difference in metric values between five-tuple
and aggregated flows indicates a higher persistency of aggregated flows than of the five-tuple
flows, which is a direct result of the aggregation process.

In summary, the plots show that we are able to capture most of the important variability
properties of network flows in our simulation environment. We can reproduce self-similar traffic
from which network flows can be derived that have rates consistent with Zipf’s Law on a per-bin
basis and over time. We can also reproduce the rate variability of large network flows using
the Markov modulation mechanism of our simulation environment. On the other hand, we were
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Figure 6.16: Rank change metric for trace WASHng (left column) and for simulation (right column),
top 10 flows (top row) and top 100 flows (bottom row). During most of the bins the metric values are
significantly smaller than those derived from the trace and without a visible concentration around some
value. This is caused by the different size of the flow population of the trace data and the simulations.
The difference in metric values between five-tuple and aggregated flows indicates a higher persistency of
aggregated flows as a result of the aggregation process.

not able to accurately generate aggregated flows with similar durations as we find in our trace
data. The cause of this shortcoming is that, using the NS-2 network simulator as the core of
our simulation environment, we are not able to generate enough five-tuple flows that contribute
to the aggregated flows. NS-2 needs too much memory in order to configure more clients and
more destination prefixes. In spite of this limitation, the techniques and mechanisms used by our
simulation environment are able to reproduce almost all the aspects of real world traffic needed
to generate simulated network traffic that exhibits a high degree of variability.
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7 Conclusion

In this chapter we close this thesis by summarizing our findings and contributions and presenting
a discussion of possible future work.

7.1 Summary

With the current increase in bandwidth demands, network operators rely more and more on
traffic engineering or load adaptive routing algorithms to use existing capacities as efficiently
as possible. Both approaches rely on a particular property of network traffic, namely that a
very small number of traffic flows are responsible for the vast majority of the overall network
traffic, a consequence of flow rates being consistent with Zipf’s Law. This approach however is
somewhat problematic, as there is a high amount of variability in the rate of Internet flows. This
variability is a major problem for the efficiency and stability of traffic management mechanisms

The goal of this work is the development of a workload generator for network simulators that
is able to capture the variability aspects of real traffic and that is therefore suitable to evaluate
existing and upcoming traffic management algorithms. Such a workload generator has to capture
traffic variability properties not only for the entire traffic but also on the level of network flows.
This includes the two most important properties, self-similarity nature of packet traffic and the
consistency of flow rates with Zipf’s Law.

In order to understand the influence of Zipf’s Law and the self-similar nature on the variability
of network traffic, we proposed a new methodology to analyse the persistency and variability
properties of Internet traffic. Because traffic management applications operate of network flows
and because it is easier to work with flow traces than with high volume packet level traces, we
base our method on flows. For our analysis, we slice time into constant size bins and compute
rankings of active flows based on their per-bin byte contribution. The flows with the highest
ranks are those that contribute most of the traffic during a bin. Our methodology allows for the
analysis of flow properties using different time scales and different flow abstractions. The main
difficulty with this approach is the coarse detail level of network flows. The only information a
flow provides on its rate is an average value computed over its lifetime. By comparing rankings
derived from network flows with those from packet level traces, we found that the assumption of
a constant flow rate always leads to errors and mismatches. But these errors can be significantly
reduced by flow aggregation or time aggregation and by focusing on the heavy hitter flows.

After showing the feasibility of flow based traffic analysis, we applied our methodology on a
set of NetFlow and packet level traces. We found the rates of flows to be consistent with Zipf’s
Law for all our data sets, even across time and under different time and aggregation granularities.
For all our traces, a reasonably small number of top ranked flows covered about half of the total
traffic. This number was smaller by an order magnitude for sampled network flows than for
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unsampled ones, because of sampling leading to a bias towards large flows. We also found, that
this set of top ranked flows changed significantly over time. On the other hand, flows that were
top ranked at least once during their lifetime had a high probability to stay in the top ranks. Such
flows also showed a tendency to have longer durations than lower ranked ones. This behavior
again was largely invariant under different bin sizes. For aggregated flows, we were not able to
find a distinct pattern in the properties of the contributing five-tuple flows. Aggregated flows can
become heavy hitters both because of a high number of small contributors and because of a few
very large ones.

Next we explored the causes for the significant degree of variability in the set of top flows and
found two major contributing factors. The first factor is the arrival of new and the departure of
active flows. New flows entering at high ranks can lead to lower ranks for a significant number
of active flows, while their departure leads to higher ranks. We found that there is a relatively
high probability for new flows to arrive, and for departing flows to leave at top ranks, leading to
a lack of predictability of the behavior of flows that have a high rank at some particular bin. The
second factor are flow rate fluctuations of aggregated flows. We used a multiplicative metric to
assess the variability of flow rates around their mean values. After removing time of day effects
using a wavelet based approach, we found that the rate fluctuations are often high enough to lead
to changes in the flow rankings, even though the flow rates were consistent with Zipf’s Law. We
could also show, that for top ranked flows, the rate deviations were relatively small in most cases.
In addition, we found a strong correlation between the relative deviation and rank on a per-bin
basis, a clear indication of the strong influence of flow rate fluctuations on the rankings. These
observations imply, that the average rank of a flow is better suited for controlling large parts of
the traffic than, e.g., the highest rank.

After identifying the causes for the inpersistency of network flows we introduced a metric that
is able to capture the the variability in the constitution of network traffic based on flow rankings.
This metric describes the difference of the rankings of two bins in terms of inversions where
inversions are weighted according to the involved ranks. This way, we take into account, that
changes at the top ranks have more impact on the traffic than changes in lower ranks. We could
show, that this metric shows more details in the behavior of rankings over time than the churn
rate we used during our analysis. The higher precision comes from the fact that the metric does
not only accounts for flows entering or leaving the rankings but also considers the rank change
dynamics of flows that are active in both compared bins.

We then set out to incorporate our findings of the behavior of Internet flows into a simulation
environment, based on the NS-2 network simulator and the NSWeb traffic generator. In order
to first assess the accuracy of NSWeb we compared simulations with real Web page retrievals.
To this end, we generated packet level traces from tightly controlled Web accesses for a set of
popular pages. We then automatically extracted parameter values for TCP and HTTP and derived
a topology and Web content from the traces to configure our simulations. We found that using
NS-2 and NSWeb we are able achieve a high accuracy for our simulations. We were moreover
able to assess the degree to what certain parameters are able to influence the accuracy. So has,
e.g., an increased TCP initial congestion window a much stronger influence on the behavior of
the simulations than an overestimated bandwidth between clients and servers.

For our simulation environment, we concentrated again on destination prefix flows. We were
able to generate such flows by clustering client nodes into subnetworks and coordinating client
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behavior on a per subnet basis. Traffic flowing from the servers to a client subnet represents a
destination prefix flow. In order for the rates of the aggregated flows to be consistent with Zipf’s
Law, we had to control the behavior of the clients, as the actual traffic is generated by the servers
upon client requests. We achieved this by limiting the number of concurrent client sessions on
a per-subnet basis. The session limits were chosen to also follow Zipf’s Law. In addition to
controlling the number of concurrent client sessions, we also had to impose bandwidth limits
between servers and client subnets by routing the traffic over links with logarithmically scaled
capacities. We showed, that our approach to control flow rates did not affect the ability of NSWeb
to produce self-similar network traffic and that our setup indeed shows Zipf’s Law for the rates
of aggregated flows. We were moreover able to reproduce the entry- and exit processes of real
traffic in our simulations. We had however problems to recreate the duration distribution for the
aggregated flows. The cause of that problem are the too small numbers of clients per subnet,
that we were not able to increase because of the high memory consumption of NS-2.

In a final step, we completed our simulation environment by integrating a mechanism to
change the rate of destination prefix flows over time. This mechanism uses an approach based
on Markov chains to modulate the rates of the destination prefix flows by adjusting the client
session limits. We derived the Markov chains from our trace data. An analysis of the simula-
tion results showed, that using Markov modulation, we were able to increase the variability of
the flow rates as intended while preserving the variability aspects from the simulations without
modulated flow rates. The modulation mechanisms had also no additional harmful influence on
the durations of the aggregated flows.

The simulation environment we developed in this work therefore allows for a more accurate
evaluation of traffic engineering and load adaptive routing mechanisms by confronting them
with more variable and more realistic workload traffic.

7.2 Outlook

There are number of questions and problems that open up ways for future work.

First and foremost there are the scalability problems of NS-2 that prevented us from config-
uring our simulation scenarios to generate enough five-tuple flows to sustain traffic aggregates
like, e.g., destination prefix flows long enough to be able to reproduce realistic flow durations.
This requires the use of a different network simulator than NS-2. There are a number of possible
candidates for such an endeavor. Recently, work has begun on the successor of NS-2. One of
the design goals of this successor is a better scalability to enable larger simulation scenarios.
Another possible choice is SSFNet, a Java based network simulator that is able to cope with
very large simulation setups.

In this work, we have largely concentrated on destination prefix flows with prefix lengths
either chosen as fixed values, e.g., /16 or /24, or derived from routing tables. A promising direc-
tion to extend this work is to go beyond destination prefix flows as most commonly used flow
aggregation and consider other aggregation schemes like, e.g., origin-destination flows which
are used as basis of some traffic management algorithms. This flow type uses network entry
and exit points as flow key and is independent of source and destination addresses. We believe
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that applying our analysis methodology to other aggregation mechanisms will lead to a better
understanding of the behavior of traffic aggregates in the Internet and thus to the development
of new ways to control the flow of traffic through large networks.

Other interesting questions concern the flow rate modulation mechanism. In this work we
used a Markov modulation based approach that requires the modulation to be a memoryless
process. But that might not be the case. A more in-depth analysis of the properties of flow rates
to explore the behavior of flow rates of aggregated flows over time opens the possibility of a
more realistic flow rate modulation.

Independent of how the modulation mechanism is implemented, we believe that it is an in-
teresting question to go beyond trace derived parameterization of the modulation and develop a
formal model to be able to configure the modulation in a more generic and representative way.
Additional ways to improve the modulation mechanism includes the addition of time-of-day
effects.

The goal of this work was to develop a workload generator for simulators that is able to
provide traffic with a variability properties that relevant for traffic engineering and load adaptive
routing mechanisms. This of course opens up the wide area of developing and evaluating such
mechanism with the help of simulations.

As overprovisioning is proving to be more and more infeasible to ensure that there is enough
network capacity to cope with current and future traffic demands, the development of novel
approaches to traffic management becomes more important. The evaluation of new traffic man-
agement systems according to correctness, stability and convergence behavior under realistic
workloads and resilience against failure of links or routers is an important prerequisite for the
application of these systems in operational networks. Using our workload generator it is now
possible to actually perform simulation based evaluations of traffic management systems under
highly variable traffic demands and this way improve the quality of such evaluations.

The interaction between overlay and underlay routing in the presence of traffic management
mechanisms is another interesting question, independent of what management approach is actu-
ally used. Overlay networks that base their routing on measured path quality are able to dynam-
ically circumvent the traffic management decisions of the underlay and are therefore a major
challenge for network operators. A simulation based evaluation of traffic management algo-
rithms can be used not only to explore correctness, stability and convergence behavior of such
algorithms, but are also suitable to look into the interaction between traffic management on the
underlay on the one hand and the overlay routing on the other.
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