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Summary

This study describes the development of a hyperspectral remote sensing method to map

and monitor submerged aquatic vegetation, meeting examination and assessment criteria for

adoption in the European Water Framework Directive.

Identifying macrophyte species using objective remote sensing methods can be a consistent

and reliable means to map large areas of lakeshores for monitoring purposes, but only if the

spectral properties of in situ species are distinct. To determine this, the spectral signatures

of eight common aquatic macrophyte species (Chara aspera, C. contraria, C. intermedia, C.

tomentosa, Nitellopsis obtusa, Najas marina, Potamogeton pectinatus, P. perfoliatus) were

investigated to establish whether or not they contain sufficient information for species dif-

ferentiation. To assess the range of spectral variability that may be found in each species,

reflectance spectra of homogeneous macrophyte patches were measured with a submersible

spectroradiometer in 2003 and 2004 at Lake Constance and Lake Starnberg, Germany.

Seasonal variation was found in magnitude and shape of the reflectance spectrum in all

species, but highest variation occurred in tall growing species (P. pectinatus), showing 3 %

increased reflectance, a shift of reflectance maximum to longer wavelengths and a distinct

second reflectance shoulder centred around 650 nm in senescent species. This effect can mainly

be attributed to chlorophyll breakdown. Small growing species (C. contraria) showed less

variation in reflectance values (< 2 % absolute) and wavelengths.

Local variations in macrophyte reflectances were observed, mainly due to species richness

differences between lakes and differences in macrophyte patch densities. Highest difference

was found in green reflectance peak of P. pectinatus, which reflected on average twice as much

light at Lake Constance (8%) than at Lake Starnberg (4 %). In contrary C. aspera reflected

only half of the light at Lake Constance (6 %) as compared to Lake Starnberg (12 %). Lake-

specific spectral differences suggest that unique statistical analyses must be performed for

each new data set. Daily variation could not be observed, and was considered to be less

(< 2 %) than within-species variation for both, tall and short growing species.

v



The second goal of this study was to create an automated macrophyte classification

method to use on hyperspectral airborne data. In a first step, locations and widths of wave-

bands were visually identified that can be applied in routine analyses. It was shown that

derivative analysis improved separability of seven macrophyte species in visible wavelengths

from 90 % to 98 %. In these wavelength ranges in situ spectra were influenced by canopy

structure and absorption of chlorophylls and accessory photosynthetic pigment.

A genetic algorithm (GA) technique was then used to identify important wavebands for

classification. The advantage of this multivariate method is the automated selection of wave-

length combinations while optimising separability. For Lake Constance and Lake Starnberg,

four wavelengths were chosen between 445−665 nm. These selected wavelengths for Lake

Constance were 510 nm in reflectance, 530 nm and 625 nm in the 1st order, and 535 nm in

the 2nd order derivative of reflectance. For Lake Starnberg, somewhat different wavelength

locations were selected: 445, 520, 625 and 665 nm in the 1st derivative. The GA-selected

wavelengths were consistent with the visually-selected wavelengths identified using derivative

analyses and coincide with major reflection and absorption peaks of the macrophyte photo-

synthetic pigments. Most selected wavelengths were below 625 nm, where the water column

attenuates less of the reflected signal, suggesting that accurate spectra discrimination might

be possible up to 2 - 4 m water depth. Statistical tests such as unsupervised classifications

(Principal Component Analysis) and distance measure (Jeffries-Matusita) indices were used

to confirm species separation. Cross-validation by linear discriminant analysis, a supervised

classification approach, confirmed that in situ spectra could be used to discriminate between

seven species with > 98 % accuracy using as few as four optimally-positioned bands. At Lake

Constance classification accuracy ranged from 68.2 % (Chara tomentosa) to 98.2 % (Pota-

mogeton perfoliatus), whereas species at Lake Starnberg could be correctly classified between

90.1 % (Chara contraria) and 99.6 % (Potamogeton pectinatus). The results of this study

demonstrate that it is possible to accurately detect and delineate submerged macrophytes

using a hyperspectral remote sensing technique, and that the potential for species separation

using advanced data-analysis techniques exists.

This field-based study was tested on airborne hyperspectral remote sensing data from

HyMap acquired during HyEurope flight campaigns in 2003 and 2004. The images were

corrected for atmospheric, air-water interface, and water column effects using the Modu-

lar Inversion & Processing System (MIP). Atmospheric correction accuracy was less than

0.3 % absolute reflectance. Despite the dominance of the water column optical properties in

the surface reflectance signal, the inversion process using MIP resulted in obtaining benthic

albedo spectra of up to 0.5 % absolute reflectance difference compared to in situ spectra for
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transmissions higher than 50%, a result found to be acceptable for differentiating similar

substrates, such as macrophyte species.

After pre-processing, the hyperspectral data were classified to bottom cover classes by

linear spectral unmixing. The result contains percent cover classes for short-growing macro-

phytes (e.g. Characeae), tall-growing macrophytes (e.g. P. pectinatus), and bottom sedi-

ments. A subsequent classification of pixels more than 70% vegetation cover was performed

on species level, producing a detailed macrophyte distribution map (in 4 × 4 m2 pixel reso-

lution) to 4.5 m water depth.

The physics-based approach promotes automatisation and the removal of subjectivity

from the classification process, allowing improved transferability to additional sampling lo-

cations and extension of the monitoring season. HyMap sensor was well suited for littoral

vegetation mapping. However the maximal spatial pixel resolution provided by the HyMap

sensor was 4× 4 m2, which might be limitation in macrophyte species recognition, especially

in smaller lakes where patch size and inhomogeneity requires higher spatial resolution.

The quality of aquatic macrophyte species discrimination was dependent on species di-

versity, species composition and homogeneity within the patch, patch size and density. Clas-

sification results of HyMap imagery showed that some species were difficult to be accurately

discriminated by remote sensing instruments, primarily due to spectral overlap with other

species (e.g. C. aspera, C. contraria), or lack of field data (e.g. C. intermedia, N. obtusa).

Although difficulty in differentiating the morphologically similar Chara species was expected,

the results support the merit in further investigations of hyperspectral remote sensing of

submerged aquatic vegetation.

Given that the reflectance spectra of many macrophyte species are statistically distinct,

with high-quality radiometric calibration of hyperspectral imagery, it is also anticipated that

more macrophyte species can be accurately identified during classification applications. How-

ever, further research is required on high spectral resolution reflectance properties of aquatic

macrophytes and expansion of spectral libraries remains a priority.

Successful results of a semi-automated, airborne remote sensing approach for the recon-

struction of submerged aquatic vegetation show promising potential for shallow water targets

in littoral and coastal environments. The methods presented herein form a basis for future

development of a precise automated routine. Consequently, hyperspectral remote sensing

could become an economical and accurate monitoring technology for assessing the quality of

inland waters, benefiting the management of this precious natural resource, and in monitoring

the success of natural ecosystem restoration, rehabilitation, and conservation efforts.
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Zusammenfassung

In der vorliegenden Arbeit wurde eine operationelle Methode zur Kartierung von Unter-

wasserpflanzen mit Hilfe von spektral und räumlich sehr hochauflösenden Fernerkundungs-

daten entwickelt. In Zukunft soll es damit möglich sein, die Überwachungs- und Bewer-

tungskriterien der Europäischen Wasserrahmenrichtlinie zu erfüllen.

Die Identifizierung von Unterwasserpflanzen (submersen Makrophyten) auf der Basis

von Fernerkundungsdaten kann eine zuverlässige Methode zur großflächigen Kartierung der

Litoralzone von Seen sein. Dies ist jedoch nur dann möglich, wenn die vorhandenen Arten

in ihren spektralen Signaturen unterscheidbar sind. In der vorliegenden Arbeit wurden die

spektralen Eigenschaften von acht häufig auftretenden Makrophytenarten (Chara aspera, C.

contraria, C. intermedia, C. tomentosa, Nitellopsis obtusa, Najas marina, Potamogeton pecti-

natus, P. perfoliatus) untersucht. Um ein Maß für die spektrale Variabilität einer Art zu er-

halten, wurde in den Jahren 2003 und 2004 im Rahmen von Feldmessungen am Bodensee und

am Starnberger See die Reflexion einzelner homogener Makrophytenpolster mit einem Un-

terwasserspektrometer (RAMSES) bestimmt. Dabei wurden bei allen Arten saisonale Unter-

schiede in der Amplitude sowie in der Form der Reflexionsspektren festgestellt. Die größten

Unterschiede traten bei hochwüchsigen Pflanzen auf. So wurde bei älteren P. pectinatus

Pflanzen eine durchschnittlich 3 % höhere Reflexion (absolut) im grünen Wellenlängenbereich,

eine Verschiebung des Reflexionsmaximum zu längeren Wellenlängen, sowie ein ausgeprägtes

zweites Reflexionsmaximum bei 650 nm beobachtet. Diese Veränderungen werden haupt-

sächlich durch den Alterungsprozess der Pflanzen und den damit verbundenen Abbau der

Chlorophyll-Pigmente verursacht. Kleinwüchsige Arten (z.B. C. contraria) wiesen geringere

Unterschiede in Reflexion (< 2 % absolut) und Form der Spektren auf.

Des Weiteren wurden Unterschiede zwischen den beiden untersuchten Seen festgestellt.

Dies ist zu einem gewissen Teil auf die unterschiedliche Artenzusammensetzung, aber auch auf

die unterschiedliche Dichte der Makrophytenpolster zurückzuführen. Die größten spektralen

Unterschiede waren im grünen Wellenlängenbereich zu erkennen. P. pectinatus reflektierte
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am Bodensee in diesem Teil des Wellenlängenspektrums im Durchschnitt doppelt so viel

Licht (8 %) wie am Starnberger See (4 %). Dagegen war die Reflexion der kleinwüchsigen

Chara aspera mit 6% am Bodensee nur halb so stark wie am Starnberger See (12 %). Diese

seenspezifischen Unterschiede hatten zur Folge, dass für jeden neuen Datensatz separate stati-

stische Analysen erforderlich waren. Eine vollkommene Übertragbarkeit zwischen den beiden

Seen war nicht gegeben. Tagesabhängige Veränderungen im Reflexionsverhalten sowohl bei

hochwüchsigen (P. pectinatus) als auch bei niedrigwüchsigen Pflanzen (C. contraria) können

dagegen im Vergleich zur natürlichen Variabilität innerhalb einer Art als gering (< 2 %)

eingestuft werden .

Auf Basis der statistisch nachgewiesenen, prinzipiellen Unterscheidbarkeit der Arten bei

in situ Messungen wurde eine automatische Klassifikationsmethode entwickelt, die auf hyper-

spektrale (spektral sehr hochauflösende), von einem Flugzeug aus gemessene Fernerkundungs-

daten angewandt werden kann. Es konnte nachgewiesen werden, dass die zusätzliche Verwen-

dung der ersten und zweiten Ableitung der Reflexionsspektren die Trennbarkeit in den sicht-

baren Wellenlängen wesentlich verbessern konnte. So wurde z.B. die erreichte Genauigkeit

der Artentrennung von 90 % auf 98 % gesteigert. Im sichtbaren Wellenlängenbereich werden

die in situ Spektren vor allem durch die Oberflächenstruktur der Pflanzenpolster und durch

die Absorption von photosynthetisch aktiver Pigmente geprägt.

Um die besten Wellenlängen für eine optimale Klassifizierung zu ermitteln, wurde ein

genetischer Algorithmus (GA) verwendet. Mit dieser multivariaten Technik können Wellen-

längenkombinationen, die zur optimalen Trennbarkeit der Arten beitragen, automatisch selek-

tiert werden. Für den Bodensee und Starnberger See wurden im Bereich zwischen 445−665 nm

verschiedene Kombinationen aus je vier Wellenlängen selektiert. Im Einzelnen lagen die

Wellenlängen für den Bodensee bei 510 nm (Reflexion), 530 nm und 625 nm (1. Ableitung

der Reflexion), und 535 nm (2. Ableitung der Reflexion). Für den Starnberger See lautete

die Wellenlängenkombination 445, 520, 625 und 665 nm der 1. Ableitung der Reflexion.

Die mit dem genetischen Algorithmus (GA) ausgewählten Wellenlängen waren dabei mit

den visuell ausgewählten Wellenlängen der Ableitungen weitgehend konsistent und stimmten

mit bedeutenden Reflexions- und Absorptionsbanden der photosynthetischen Pigmente der

Makrophyten überein. Die meisten der selektierten Wellenlängen lagen damit unterhalb

von 625 nm, also in einem Bereich, in dem die darüberliegende Wassersäule nur minimal

absorbiert. Demzufolge kann davon ausgegangen werden werden, dass eine exakte Arten-

trennung auch bis in Wassertiefen von 2−4 m möglich ist.

Statistische Tests mit einer Hauptkomponenten Analyse (Principal Component Analysis)

und mit Distanz Indizes (Jeffries-Matusita) wurden dazu verwendet, die Trennbarkeit der
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Arten zu überprüfen. Mit Hilfe einer Linearen Diskriminanz Analyse (LDA), wurden die

Makrophyten zu Arten klassifiziert. Es konnte nachgewiesen werden, dass bis zu 98 % der

Arten mit nur vier optimal ausgewählten Wellenlängen richtig eingeordnet werden können.

Dabei lag die Klassifikationsgenauigkeit der einzelnen Arten am Bodensee zwischen 68.2 %

(Chara tomentosa) und 98.2 % (Potamogeton perfoliatus). Am Starnberger See konnten

alle Arten zwischen 90.1 % (Chara contraria) und 99.6 % (Potamogeton pectinatus) genau

klassifiziert werden. Die Ergebnisse dieser Studie demonstrieren, dass es möglich ist, sub-

merse Makrophyten mit hyperspektralen Fernerkundungsmethoden zu erfassen, und dass mit

geeigneten Datenanalyseverfahren verschiedene Makrophytenarten potenziell unterscheidbar

sind.

Die Ergebnisse der beschriebenen Klassifikationsmethoden wurden auf hyperspektrale,

aus einem Flugzeug aufgezeichnete Messungen (HyMap) übertragen. Diese Messungen wur-

den während der HyEurope Flugkampagne in den Jahren 2003 und 2004 aufgenommen.

Mit dem physikalisch basierten Modular Inversion & Processing System (MIP) wurden die

Einflüsse der Atmosphäre und der Wassersäule korrigiert. Die erreichbare Genauigkeit dieser

Atmosphärenkorrektur liegt bei weniger als 0.3 % der absoluten Reflexion. Trotz der beträcht-

lichen Einflüsse der Wasserinhaltstoffe sind die Abweichungen des Inversionsverfahrens für

Albedospektren vom Seegrund für Transmissionen > 50 % maximal 0.5 % im Vergleich zu in

situ Messungen. Die Genauigkeit hängt dabei von der optischen Dicke des Wassers, vom

Substrat und von der betrachteten Wellenlänge ab.

Nach Atmosphären- und Wassersäulenkorrektur wurden die Hyperspektraldaten durch

linear spectral unmixing nach Bodenbedeckunsgraden klassifiziert. Als Ergebnis ergaben sich

Bedeckungsgrade (in %) für niedrigwüchsige Pflanzen (z.B. Characeae), für hochwüchsige

Pflanzen (z.B. P. pectinatus, P. perfoliatus) und für unbedecktes Sediment. Anschließend

wurden diejenigen Pixel, deren Bedeckungsgrad größer als 70 % war, weiter nach sieben Arten

klassifiziert und eine detaillierte Verbreitungskarte (in 4× 4 m2 Pixelauflösung) bis zu einer

Wassertiefe von 4.5 m erstellt.

Dieser auf rein physikalische Grundlagen gestützte Ansatz bietet die Möglichkeit zur Au-

tomatisierung und forciert die Objektivität der Klassifikationsprozesse. Die prozessierten

Daten können auf andere Gebiete und auf verschiedene Jahreszeiten übertragen werden. Der

HyMap Sensor erwies sich als gut geeignet, um litorale aquatische Vegetation zu kartieren.

Jedoch stellte sich die maximal erreichbare räumliche Auflösung des Sensors von 4×4 m2 bei

der Artenunterscheidung als Einschränkung heraus. Dies könnte insbesondere bei kleineren

Seen ein Problem darstellen, in denen kleinere Polstergrößen und die Inhomogenität innerhalb

der Vegetationsstrukturen räumliche Auflösungen des Sensors erfordern.
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Die Qualität der Artentrennung aquatischer Makrophyten durch digitale Bilddatenanalyse

hängt stark von der Artenvielfalt, von der Zusammensetzung der Arten und der Bewuchs-

dichte innerhalb eines Polsters, sowie von der allgemeinen Größe eines Polsters ab. Das Klassi-

fikationsergebnis der HyMap Daten hat gezeigt, dass einige Arten mit Fernerkundungsmetho-

den nur schlecht getrennt werden können, hauptsächlich bedingt durch spektrale Überlappung

(z.B. Chara contraria und C. aspera) oder aufgrund fehlender Messdaten (z.B. Chara inter-

media, Nitellopsis obtusa). Obwohl zu erwarten war, dass die morphologisch ähnlichen Chara

Spezies nur schwer nach Arten zu trennen sind, war es doch möglich drei von vier Chara

Arten spektral zu unterscheiden. Diese Ergebnisse sprechen für weitere Untersuchungen zur

Kartierung von litoraler Unterwasservegetation mit hyperspektralen Fernerkundungsdaten.

Angesichts der Tatsache, dass sich die Reflexionsspektren vieler Makrophytenarten als sta-

tistisch trennbar erwiesen, ist abzusehen, dass in zukünftigen Studien mit weiter verbesserter

radiometrischer Kalibrierung der hyperspektralen Bildauswertung noch weitere Makrophyte-

narten präzise identifiziert werden können. Jedoch werden dazu weitere Untersuchungen

nötig sein, um die sehr hochauflösenden spektralen Reflexionseigenschaften der aquatischen

Makrophyten bis ins Detail zu erfassen. Der ständigen Erweiterung sogenannter ’spektraler

Datenbanken’ sollte Priorität eingeräumt werden.

Die erfolgreichen Ergebnisse eines halbautomatischen Ansatzes für die flächenhafte Be-

standsaufnahme von submersen Makrophyten mit Fernerkundungsmethoden zeigen vielver-

sprechende Möglichkeiten für die Kartierung von Flachwasserzonen in Binnen- und Küsten-

gewässern. Die in dieser Arbeit vorgestellten Methoden legen den Grundstein für die zukünftige

Entwicklung von präzisen, automatisierbaren Auswertungen. Folglich könnte sich die hyper-

spektrale Fernerkundung zu einer kostengünstigen und exakten Technologie ausbauen lassen,

mit der die Wasserqualität von Inlandsgewässern beurteilt werden kann. Unsere Gewässer-

ökosysteme werden durch die regelmäßige Kontrolle von Instandsetzungs-, Wiederherstellungs-

und Schutzmaßnahmen davon profitieren.
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Chapter 1

Introduction

1.1 Mapping aquatic macrophytes in lakes

Water is the most important substance for life on earth. Many interrelated physiochemi-

cal factors, such as depth, light, temperature, density, salinity, et cetera, play a role in the

function of water-based ecosystems, which in turn are more or less dependent on each other

for existence. Ecosystem water quality, defined here as the composition and concentration

of dissolved and suspended constituents, is important not only in determining the biota in

the water-based ecosystem itself (Logan and Furse, 2002), but also for influencing its sur-

rounding environment, (e.g. Fariña et al. (2003); Mathewson et al. (2003)) and human life.

Currently, inland surface waters are used for drinking water, irrigation, waste disposal, indus-

trial processes and cooling, transportation, and hydroelectric power generation, as well as for

various recreational pursuits (Lindell et al., 1999). Surface freshwater is thus an increasingly

valuable natural resource with major impacts and benefits for surrounding populations and

environments.

In Europe there are more than 500, 000 natural lakes larger than 0.01 km2, covering a

total surface area of more than 10, 000 km2 (LAWA, 1985). The majority are of glacial ori-

gin, reflecting their concentration in alpine and northern regions. Simply because of their

considerable number, these aquatic ecosystems make a significant contribution to the total

biodiversity on the European landscape. In the past century, inland water quality has dete-

riorated significantly as a result of nutrients introduced by the discharge of wastewater and

from agriculture, reducing this biodiversity.

Lake eutrophication was an important factor in the decision to introduce water protection

legislation throughout Europe. The terms ‘eutrophication’ or ‘trophic state’ describe the

concentration of (inorganic) nutrients leading to increased primary production, often a result

of increased pollution (Melzer, 1988). Changes in nutrient concentrations can alter physical

1
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characteristics and composition of benthic ecosystems, resulting in species diversity changes

(Dennison et al., 1993). The increasing demand for cleaner rivers and lakes, groundwater and

coastal beaches has been evident for considerable time, and was one of the main reasons why

the European Commission has made water protection one of its priorities. A European-wide

Water Framework Directive (WFD) (EG-Europäische Gemeinschaft, 2000) was adopted in

2000 as the operational tool, setting the objectives for water protection in the future.

The WFD is the most significant legislative instrument in the field of water management

that has ever been established on an international basis. The EU WFD requires the eco-

logical assessment and monitoring of all water bodies in Europe, with the principal goal to

achieve or maintain a ‘good ecological state’ of all surface and ground water bodies by 2015.

This requires an examination and assessment of all still water bodies in area from 0.50 km2

upwards. As an unique innovation, ecological assessment is achieved by measuring various

biological quality elements instead of relying primarily on chemical measurements (Melzer,

1988). One of the quality components used to evaluate ecological status are aquatic macro-

phytes (Melzer, 1999). Assessment is achieved by comparing a lake‘s current macrophyte

species composition and abundance with those of type-specific reference conditions. A refer-

ence condition is the status that would exist if the water body was unaffected from any kind

of pollution or nutrient influx (Schneider, 2000). The larger the differences in macrophyte

species composition and abundance between current state and reference conditions, the worse

the status of the respective site.

Germany has 13, 076 standing water bodies with a surface area exceeding 0.01 km2. The

larger lakes (877 lakes > 0.50 km2 (Ostendorp, 2004)) are included in quality assessment

and management programmes in accordance with the EU WFD. A rough estimation of their

total shoreline length, the habitat for aquatic macrophytes, is in the order magnitude of

10, 000 to 100, 000 km, covering some 1000 km2 of lakeshore (Ostendorp, 2004). These very

considerable stretches of shore are currently not registered, mapped, or evaluated anywhere

(Schmieder, 2004). As periodic assessment of the abundance and health of the submerged

macrophyte communities is required to improve the management of these sensitive littoral

ecosystems (Dennison et al., 1993), highly reliable data on the quality of surface waters is

urgently needed. Consequently, there is a pressing need to develop and establish an adequate

monitoring scheme for European lakes.



1.2. PROBLEM STATEMENT 3

1.2 Problem Statement

1.2.1 Limnological background

Lakes, including their catchment areas, are complex ecosystems, as shown in a schematic

view (Figure 1.1, adapted from Wetzel (2001)). Differences in water depth, flow, chemistry,

available light, and temperature, key descriptors of aquatic ecosystems, produce physically

distinct zones that can vary by day and season. Three major habitats, or zones, are identified:

the littoral, the pelagial, and the profundal. The littoral zone extends from the shore just

above the influence of waves to the depth where light penetration is 1% of the incident surface

light. Littoral zones have especially high biodiversity of vertebrates, invertebrates, submersed

and emergent macrophytes, epiphytes, and phytoplankton, with interactions often occurring

between species.

The pelagial or limnetic zone is found farther from shore but near the water surface.

The transition between the littoral and profundal zones is sometimes called the sublittoral

subzone, which is the deepest area of plant growth. The profundal zone, if present, is the

deepest zone, found below the light penetration level. The profundal and benthic (the bottom

surface of lakes) zones contains mostly heterotrophic organisms, including organisms that feed

off decaying organic matter called detritus. The benthic zone usually has higher biodiversity

than the profundal zone.

The part of the lake that receives < 1% incident light is also called the aphotic zone, and

extends from the lake bottom to the photic zone. Above the aphotic zone is the photic or

trophogenic zone, where there is sufficient light for photosynthesis (primary productivity).

Boundaries between these zones vary daily and seasonally with changing solar intensity and

water transparency. There is a decrease in water transparency with algal blooms, sediment

inflows from rivers or shore erosion, and surface waves.

Bioindication of lake trophic status Lakes are often differentiated by their photosyn-

thetic production of organic matter, or trophic state. Five general states are recognised:

ultra-oligotrophic, oligotrophic, mesotrophic, eutrophic, and hypereutrophic. Oligotrophic

lakes are generally deeper lakes with clear blue water and have sparse nutrients, i.e. < 10

µg∗L−1 dissolved phosphorus, with photosynthesis limited to a few diatom taxa. Mesotrophic

lakes have dissolved phosphorus values between 10 and 30 µg∗L−1. Eutrophic lakes tend to

be shallow and have a rich nutrient supply with phosphorous > 30 µg∗L−1. Hypereutrophic
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benthal

Figure 1.1: Scheme of the littoral ecosystem.(Adapted from Wetzel (2001))

lakes can have dissolved phosphorus values well in excess of 100 µg∗L−1. Mesotrophic and eu-

trophic lakes can have abundant photosynthetic communities, with many diatom and macro-

phyte taxa. At very high nutrient levels, such as those in hypereutrophic lakes, light pene-

tration is so reduced that few plants can grow,(e.g. Vestergaard and Sand-Jensen (2000)).

Aquatic macrophytes are large (visible to the naked eye), multi-cellular aquatic plants with

representatives from the spermatophyta (vascular flowering plants), bryophyta (mosses), and

charophyta (larger macroalgae).

Submerged macrophytes are of particular importance in aquatic ecosystems, as they link

the sediment with the overlying water (Schneider and Melzer, 2004). They are beneficial to

lakes because they provide habitat for fish and substrate for aquatic invertebrates, offering

protection against both currents and predators. Macrophytes also produce oxygen via photo-

synthesis, which assists with overall lake functioning, and are an important food resource for

some fish and other wildlife. Lakes with water plants thus have high ecological value. Because

of specific growth requirements, macrophyte species tend to reflect the physical and chemical

(nutrient) conditions of the lake in which they occur. Thus the composition of macrophyte

species in a water body makes it possible to draw conclusions about local chemical and phys-

ical conditions. Aquatic macrophytes have several advantages which make them attractive

as limnological indicators, as opposed to other algae (diatoms) or macroinvertebrates.
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They are especially sensitive to changes (increases) in nutrient concentrations (notably

phosphorus and ammonium) and to organic pollutants and can be used as long-term indi-

cators, as they change slowly and progressively (Melzer, 1999). Secondly, submerged macro-

phytes are rooted, therefore they reflect the nutrient status of their immediate habitat by

their presence/absence and abundance. Thus they can indicate patterns of nutrient concen-

tration, e.g. caused by natural or artificial inflows (Melzer, 1999). An additional advantage

which makes them attractive to remote sensing applications is that they can generally be

seen and identified to the species level at the sampling site (Schneider, 2004).

Three growth forms of macrophytes are generally recognised: floating, submersed, and

emergent. Some macrophytes grow up to the water surface with many of their leaves floating

just below the water surface, and are denoted in this thesis as ‘tall growing species’. Other

species remain close to the bottom, forming dense mats and are dependent upon the light

that reaches the bottom after passing through the depth of water, and in this thesis grouped

as ‘short growing species’. Techniques for mapping macrophytes in littoral zones to provide

a rapid and accurate estimation of water quality have recently been developed (Melzer, 1999;

Schneider and Melzer, 2003; Stelzer, 2003; Meilinger et al., 2005; Stelzer et al., 2005). With

these methods, the composition and relative and absolute abundance of macrophyte species

are recorded. Based on these data, an assessment of water quality can then be made. In

larger lakes or rivers, these methods face the problem of simultaneous mapping large areas.

A compromise can be reached by SCUBA diving transects, which may or may not be entirely

representative for the whole lake. Wide-scale SCUBA diving, particularly in the larger lakes,

can be very complex, cost-ineffective, and time consuming.

Aerial photographic techniques have been commonly used as an alternative for large-

scale macrophyte mapping (Malthus et al., 1990). Despite offering fine resolution (0.1 -

1.0 m) and relative ease of measurement and data handling, photographic techniques suffer

from a number of drawbacks. Photo-interpretation is largely a subjective process and can be

expensive over the long term due to time consuming analysis (Jensen et al., 1986). Although

multi-band photography, such as the use of false colour infrared, has been shown to be useful

for mapping of emergent plants, it is less useful in discriminating between species. Image

analysis can be applied for more accurate vegetation mapping from photography but the

results may not be transportable over space and time (Malthus and George, 1997).

The application of digital remote sensing has been shown to be a useful tool in supporting

the mapping of submerged macrophytes in spatial and temporal scales (Heege and Fischer,

2004). It provides important additional information about the spatial distribution, density,

and species composition over large spatial scales, allowing transfer of the transect results
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to the whole lake and offers a supplementary and time-saving means of achieving a better

spatial picture.

1.2.2 Principles of optical remote sensing

Remote sensing can complement traditional macrophyte mapping and monitoring methods

as it has the advantages of allowing a quasi - instantaneous view of vast regions and repetitive

investigation of isolated locations.

The use of water colour remote sensing for determination of an optical water quality

variable was initially developed for the oceans. The optical properties of ocean waters are in

general only affected by phytoplankton and its breakdown products. These optically relatively

simple waters are known as Case1 waters. All other types of waters, i.e. those whose optical

properties are influenced by dissolved organic matter from terrestrial origin, dead particulate

matter, and particulate inorganic matter in addition to phytoplankton were determined to

be Case2 waters. If the bottom reflectance influences the water leaving radiance signal, a

water is also considered to be Case2 (Dekker et al., 2001)

Remote sensing techniques have been successfully applied for operational mapping of

the biophysical properties of Case1 waters (Sathyendranath, 2000). However, Case2 waters

continue to represent a challenge to remote sensing techniques. There are also various lim-

nological parameters that can potentially be determined by remote sensing techniques, such

as lake water constituents (e.g. chlorophyll a, gelbstoff, particulate matter), transparency

(Secchi depth), biological primary production, bathymetry, and surface temperature (Keller,

2001). If the water column is sufficiently transparent and the substrate is within the depth

where a sufficient amount of light reaches the bottom and is reflected back out of the water

body, maps may be made of macrophytes, seagrasses, macro-algae, sand and sandbanks, coral

reefs, and other bottom features (Dekker et al., 2001).

Imaging spectroscopy Remote sensing methods are often differentiated or classified by

their energy source. Active systems provide their own electromagnetic source (e.g. laser flu-

orescence sensor, radar), and have the ability to obtain measurements regardless of the time

of day or season. They can also be used for examining wavelengths that are not sufficiently

provided by the sun. Passive systems use the solar radiation that is reflected or absorbed and

then re-emitted from the substrate(s) of interest. However, both active and passive systems

create ‘images’ by measuring the strength of returned signal over a spectrum of wavelengths.

Imaging spectrometry is the simultaneous acquisition of images in many narrow, continuous
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Figure 1.2: The electromagnetic spectrum, which encompasses the visible region of light,
extends from gamma rays with wave lengths of one hundredth of a nanometer to radio waves
with wave lengths of one meter or greater. (Adapted from Lillesand and Kiefer (2000))

spectral bands. These optical instruments have been developed as a new generation of air-

borne remote sensing systems specifically designed to acquire this hyperspectral information.

The difference between hyperspectral imagery and conventional multispectral imagery, such

as that of Landsat Thematic Mapper (TM), is the high spectral resolution of individual chan-

nels. It is less than 10 nm wide over a continuous spectrum throughout the visible, near-IR,

mid-IR, and thermal IR portions of the electromagnetic spectrum. As the channel widths are

relatively narrow, small spectral anomalies can be detected that might otherwise be masked

using the broader bands of multispectral scanner systems.

Light and other forms of electromagnetic radiation are commonly described in terms of

their wavelength. For example, visible light has wavelengths between 400 and 700 nm, as

shown in Figure 1.2. A reflectance spectrum shows the reflectance of a material measured

across a range of wavelengths. Most natural earth surface materials have diagnostic ab-

sorption features in the 0.4 − 2.5 µm range of the reflected spectrum. The sensor measures

reflected surface radiation, which then needs to be calibrated and corrected for atmospheric

effects to derive reflectance. Reflectance is subsequently used for spectral signature analysis

and comparison to spectral libraries of known substrates (e.g. an individual macrophyte

species). An estimate of substrate is then calculated from the strength of the returned signal

(Figure 1.3).

Most remote sensing research on limnological systems is based on airborne systems be-

cause of their flexible uses, large number of bands (i.e. hyperspectral), as well as high spatial

and spectral resolution compared to spaceborne sensors. The latest generation of airborne

imaging spectrometers offer new possibilities for the investigation of shallow water substrates.
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Figure 1.3: Generalised reflectance spectra for vegetation, soil, and water.(Adapted from
Mather (1999))

The application of physics-based methods (e.g. MIP1) has made the determination of sub-

strate types possible (Heege, 2000; Bogner, 2003). Examples of some important sensors are

AVIRIS2, CASI3, ROSIS4, HyMap5, as well as new ARES6 sensor (expected to be operational

by 2007. Regardless of which sensor is used for macrophyte mapping or limnological research

in general, there is an inherent concern with the attenuation of returned signal through the

water column.

The natural colour of water is a complex optical feature created by the processes of

scattering and absorption of incoming solar radiation, as well as radiation emitted by the

water column and reflected by the substrate (Chapter 3.1, Figure 3.1). In shallow clear

water, a significant portion of the light from the sun reaches the bottom and is reflected

from it. Substrate reflectance (from macrophytes, macro-algae, sediment etc.) is a function

of absorption and scattering (Dekker et al., 2001). In order to determine the substrate

distribution in a lake, three main problems must be solved. First, signal correction for

atmosphere effects must be performed. The atmospheric path between object and sensor

modifies the characteristics of the returned radiation signal received at the sensor. Correction

can be performed with a physics-based approach, analysing numerous spectral bands within

1 Modular Inversion & Processing System, EOMAP, c/o Anwendungszentrum, Gewerbegebiet Oberpfaf-
fenhofen, 82205 Gilching, Germany

2 Airborne Visible/Infrared Imaging Spectrometer, http://aviris.jpl.nasa.gov/
3 Compact Airborne Spectrographic Imager, http://www.itres.com
4 Reflective Optics System Imaging Spectrometer, http.//www.dlr.de
5 Hyperspectral Mapper, http://www.hyvista.com
6 Airborne Reflective/Emissive Spectrometer, http://www.dlr.de
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to model atmospheric conditions (Miksa et al., 2004). Second, signal correction for the

air-water surface interface effect must also be applied. The air-water interface complicates

matters since the amount of energy transmitted into the sea versus that reflected off the

surface depends on sea surface state, wind speed and sun angle. Finally, correction for water

column effects, that is to say, to separate the water column signal from that of the substrate

reflectance at the bottom, must be possible.

Aquatic macrophyte mapping remote sensing approach Since sustainable manage-

ment of an aquatic ecosystem requires a thorough understanding of the vegetation com-

position and distribution (Landres et al., 1999), the remote identification and mapping of

submerged vegetation must be possible to the species level, comparable to field mapping.

In remote sensing techniques, the basic underlying premise is that the species are indeed

spectrally separable, with the variance of the reflectance greater between species than within

species. The separation between optically similar signals remains the last major obstacle to

be overcome in the remote identification of subsurface features (Holden and LeDrew, 1998).

Macrophytes, as close relatives to higher plants, have similar pigment composition and there-

fore have an optically green signal (Russell and Waters, 2002).

Discrimination of submerged aquatic vegetation, however, is more challenging since the

water column attenuates most of the signal coming from the substrate at wavelengths beyond

680 nm due to significant absorption by pure water (Kirk, 1994). As a result of the physical

properties of pure water and its optically active constituents, the remotely sensed optical

signal is limited to the visible or optical part of the spectrum where light penetrates the

water column and can be reflected back to a sensor. Strong light attenuation gradients

may further be caused by a combination of water depth and factors that effect water colour

and clarity, such as dissolved organic matter, suspended matter, and phytoplankton content

(Dekker et al., 2006). It is therefore necessary to study, in detail, the spectral separability of

the various bottom components, i.e. vegetation, in shallow lake environments.

Through the application of hyperspectral sensors, it might be possible to improve the abil-

ity to distinguish between macrophyte species. Differentiating spectral differences between

in situ emergent and submerged aquatic vegetation species (Malthus et al., 1997), as well

as aquatic vegetation communities in the laboratory, by contrasting the shape of vegetation

spectra visually and through statistical analysis (Fyfe, 2004) has already been achieved. Us-

ing hyperspectral techniques, the need is to determine if and where the differences between

vegetation spectra occur and which biophysical or biochemical characteristic contributes to

these differences, when these are indeed the characteristics of interest. In the field and at
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the canopy level, spectral discrimination between some seagrass species (Anstee et al., 2000),

coral species (Kutser et al., 2003; Joyce and Phinn, 2003; Hochberg and Atkinson, 2000),

mangroves species (Held et al., 1997; Schmidt and Skidmore, 2003), and major physiognomic

categories (Stephens et al., 2003; Louchard et al., 2003) has been successful.

While remote sensing and substrate mapping of ocean coastal shallow waters is well

established (Anstee et al., 2001; Holden and LeDrew, 1998; Mumby et al., 1997; Hochberg

and Atkinson, 2003), freshwater environments are facing the problem of higher concentration

and variation of water constituents. However, the experience gained there can serve as a

basis for remote sensing of submerged aquatic vegetation in lakes, as shown in Alberotanza

et al. (1999) and Malthus and Karpouzli (2003).

The main difficulty in discriminating macrophyte species is that they share basically the

same physiology, biochemistry, and photosynthetic pigments, such that the wavelength of re-

turning radiation to the remote sensor does not differ significantly between species (Schagerl

and Pichler, 2000). However, the relative concentrations of photosynthetic pigments and

the composition of accessory pigments do vary among taxa (Hilton et al., 1989), providing a

means of spectral separability. The spectral reflectance in visible wavelengths can also vary in

macrophytes species over space and time. Thus when applying remote sensing on the canopy

scale, several factors influencing the spectral signatures recorded from macrophytes canopies

must be taken into account, e.g. density and geometry of the canopy, shadowing by leaves,

background reflectance in sparse patches (such as sediment), stage of growth, chromatic adap-

tion to seasonal cycle, health and environmental condition, changing water depth or clarity,

and epithetic growth on the surface of aquatic plants. Within-species variability may also

increase the chance of spectral overlap with other species and make spectral discrimination

using remotely sensed image data difficult or impossible (Fyfe, 2004). These influences can

only be studied in the field to draw conclusions about natural variation within a species and

their potential to be discriminated by remote sensing. Part of the problem with mapping

aquatic plants using digital techniques is that little is known of the detailed, high-spectral

resolution reflectance properties of in situ macrophytes. Similarly, limited investigations have

been performed to determine the information content in spectral bands from airborne sen-

sors, identifying the most appropriate bands for recognition and determination of biophysical

parameters of rooted aquatic plant species.
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1.3 Aim and Objectives

Remote sensing has recently been noted for its potential contribution to monitoring and

management practices of submerged vegetation in inland as well as in coastal environments.

However, useful applications of these data are currently limited by an incomplete under-

standing of the interactions of light with submerged vegetation features and the controlling

factors of light reflection and absorption (Joyce and Phinn, 2003). To apply hyperspectral

remote sensing techniques to submerged aquatic vegetation, the small scale bio-optical prop-

erties of submerged vegetation must be linked to the larger scale of a remotely sensed pixel.

The high spectral resolution data in hundreds of bands should provide a wealth of informa-

tion for macrophyte species discrimination, a conclusion supported by initial results which

successfully discriminated statistically three seagrass species (Fyfe, 2003).

Thus the fundamental requirements for remote sensing of lake status become (1) that the

bottom-types (i.e. different macrophyte species) each have characteristic spectral features

and (2) that those spectral features are detectable by the remote sensor. The field-based

component of this study is intended to be a cost-effective test of the first requirement. In-

stead of using laboratory data that omit the complexities of field conditions (Schmidt and

Skidmore, 2003), in situ measurements will be used where the influence of real-life factors,

e.g. fluctuation of light source energy, change of daily atmospheric state, the effects of canopy

formation, the effect of seasonal changes, the effect of background soil and waters, the coarse

spatial and spectral resolution of on-board hyperspectral sensors, and the cost of accessibility

are taken into account. Thus conclusions can be made whether hyperspectral sensors (e.g.

HyMap, ROSIS, CASI, etc.) can be effectively used for discriminating macrophyte species

based on valid experimentation. The following questions are addressed in this study, with

special focus put on the feasibility of using airborne hyperspectral remote sensors to detect

macrophyte coverage and species distribution to meet the requirements for limnological ap-

plications.

First, the spectral reflectance of eight macrophyte species, Chara aspera DETH. ex

WILLD., C. contraria A. BRAUN. ex KÜTZ., C. intermedia A. BRAUN. C. tomentosa L.,

Nitellopsis obtusa (DESV.) J. GROVES, Najas marina L. (in this study called Najas marina),

P. pectinatus L., P. perfoliatus L. will be recorded under water using a submersible spectro-

radiometer (RAMSES) to ascertain the differences in reflectance in visible (VIS) and near-

infrared (NIR) radiation wavelengths. In situ underwater bottom reflectance measurements

just above the macrophytes will be used for the spectral separability analysis to determine
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whether they adequately contain useful spectral information for discriminating macrophytes

at species level.

From this data, a comprehensive spectral library of these macrophyte species will be

produced in order to

• characterise the spectral signatures of each species by defining the levels of spectral

variability associated with these macrophytes over a range of natural conditions in

which they grow in the field.

• explore how they differ in their reflectance characteristics in certain wavelength areas.

The second goal of this study will be to investigate methods for the automated classi-

fication of stands of macropyhte species to use on hyperspectral airborne data: It will be

necessary to determine the location and width of wavebands that can be practically applied

in the remote sensing of benthic aquatic plants.

The field based study will be validated on a HyMap hyperspectral remote sensor, flown in

2003 and 2004 at two different lakes with different water quality and macrophyte substrates

in southern Germany. The results will be used to assess the suitability of hyperspectral

remote sensing combined as a monitoring method for mapping aquatic macrophytes vegeta-

tion. Consequently, this study is intended to move one step closer to the conclusion whether

hyperspectral technology could be used for macrophyte species discrimination in lakes.

1.4 Hypothesis

The hypothesis of this thesis is that (1) some macrophyte species will have distinct spectral

reflectance properties based on presence or absence of pigments and (2) hyperspectral remote

sensing can successfully be used to map macrophyte species in lakes. This study is intended

to show that macrophyte substrates in lakes differ from each other optically and that various

remote sensing sensors are able to detect these differences.
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1.5 Thesis Outline

This thesis is organised as follows. Chapter 2 is a comprehensive literature review of remote

sensing of submerged aquatic vegetation. Previous works on remote sensing in shallow water

mapping are presented, including aerial photography satellite remote sensing and airborne

hyperspectral remote sensing. Chapter 3 introduces background information of water optics,

emphasising the radiative transfer processes in shallow water. Chapter 4 describes the

study area in which this work was completed, as well as the process of data collection and

pre-processing steps. Statistical methods used and information of classification approach is

described under the Methodology section in Chapter 5. The results of the in situ spectral

analysis and remote sensing classification are presented in Chapter 6. In Chapter 7, the

results are discussed in the context of macrophyte classification and mapping for the purpose

of water quality assessment and contains some concluding remarks of the existing limitations

and future challenges with the application of remote sensing.
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Chapter 2

Literature Review

The following section provides a review of scientific literature of substrate mapping and will

discuss in detail the current status of remote sensing techniques for mapping submerged veg-

etation in shallow water environments. Dekker and Jordan (ress) and Fyfe (2004) provide

thorough reviews of the history and status of submerged aquatic remote sensing with spe-

cial emphasis on seagrass mapping and coastal waters, and additional references are found

in reviews by Malthus and Karpouzli (2003) and Dekker et al. (2001). A special issue of

Limnology & Oceanography: Light in shallow water (2003) highlights several examples of

remote sensing techniques applied to various types of shallow water environments.

2.1 Optical remote sensing and shallow water

The knowledge of distribution of submerged aquatic vegetation is essential in studying aquatic

environments and is an important facet of water quality and resource management. Therefore,

recent years have seen increasing interest and research in remote sensing of water quality of

inland and coastal waters to map vegetation distributions, algal blooms, and substrate types,

among other variables (Dekker et al., 1995; Doerffer, 1992; Kondratyev et al., 1998; Lindell

et al., 1999). The first assumption in mapping benthic vegetation using remote sensing is

that of optically shallow water. If there is a measurable reflectance contribution from the

plants or substrate in the water column then the water is optically shallow. Optically shallow

waters are a special case in remote sensing of aquatic systems, without measurable bottom

influence on the remotely sensed reflectance, the water is effectively optically deep (Dekker

et al., 2001). As the spectrum of light emanating from the ocean surface in shallow waters

contains information on the optical properties of the water constituents and the benthic

substrate, the challenges for extracting substrate composition from surface reflectance lie

in the removal of the water column signal and in the interpretation of the substrate into

15
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constituent aerial coverage. The degree of the difficulty in these challenges depends, in part,

on the instrumental spectral resolution, but more importantly on the spectral uniqueness

and relative strengths of the signals arising from the water and the substrate (Werdell and

Roesler, 2003). The determination of a substrate cover, i.e. macrophytes, depends on the

water column’s spectral optical depth, the brightness, and the spectral substrate contrast,

and the signal-to-noise performance of the remote sensing device. The water column optical

properties and bathymetry are thus important in remote sensing of aquatic environments,

especially with benthic vegetation and macroalgae mapping (Dekker et al., 2001).

2.2 Monitoring and mapping requirements

The water column signal is of major concern when mapping submerged vegetation with

remote sensing techniques. In contrast to the remote sensing of terrestrial vegetation, there

is practically no signal returning from the water or the substrate at wavelengths beyond

680 nm, due to absorption by pure water (Kirk, 1994). As a result of the physical properties

of pure water and its optically active constituents, the remotely sensed optical signal is

thus limited to the visible or optical part of the spectrum. Figure 2.1 show underwater

reflectance measurements above a macrophyte patch at 3.7 m water depth. The increasing

water column between the sensor and the substrate illustrates the influence of the water

column to the signal reflected from the substrate plant material. With increasing depth of

the water, the signal is rapidly attenuated and diminished as it is filtered through the water

column. All remotely sensed measurements of reflected radiance over submersed species will

be similarly influenced by water column effects, ultimately affecting the accuracy with which

spectral classification of individual species can be performed (Mumby et al., 1998). Strong

light attenuation gradients may be caused by a combination of water depth and factors

that effect water colour and clarity, such as dissolved organic matter, suspended matter and

phytoplankton content (Dekker et al., 2006). The spectral differences between the benthic

substrates and attenuation of light by a water column above the substrate are the main

factors limiting the ability of remote sensing techniques for monitoring macrophyte species.

Submerged vegetation generally has low absolute reflectance, and increasing wavelengths

normally results in decreased reflectance. Little evidence of red-edge increases in reflectance

is seen, except in the shallowest of waters (Dierssen et al., 2003).

In turbid waters, where bottom albedo is not as high as that of carbonate sand and the

diffuse attenuation in the water column is very large, the benthic albedo can contribute less

than 10% of the total measured surface reflectance signature. This problem is compounded



2.2. MONITORING AND MAPPING REQUIREMENTS 17

400 500 600 700 800
0

2

4

6

8

10

12
)

%( ecnatcelfe
R

Wavelength (nm)

Water column
 deep water
 4.2 m
 3.2 m
 2.0 m
 0.8 m

Ir
r.

Figure 2.1: Underwater reflectances measured directly above a macrophyte patch (Nitellopsis
obtusa) with a RAMSES spectroradiometer at Lake Starnberg. The water column increases
from 0.8 m with the sensor at the bottom just above the plants to 3.7 m at the subsurface of
the water column and shows the water column attenuation with increasing water depth. An
additional deep water spectrum from a different location is also added for comparison.

by a green water column over a plant-dominated substrate (Mumby et al., 1998). Increas-

ing water depth is responsible for rapidly attenuating the signal reflected from submerged

plant material (Wittlinger and Zimmermann, 2000), ultimately affecting the spectral classi-

fication accuracy for individual species. The small-scale patchiness of macrophytes, growing

either sparsely or spectrally confused by other habitats, i.e. areas of macroalgae, detritus or

epibionts (Mumby et al., 1997), presents another problem in remote sensing. The changes in

brightness and spectral shape associated with water column do not differ from those induced

by variations in benthic substrate, presenting challenges during model inversion. However, re-

moving the effects of the water column and water depth yields spectral signatures associated

with benthic substrate. Within the spectral signature lies the potential for interpretation

of complex substrate composition from albedo. The goal of reflectance inversion approaches
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to habitat assessment is to unambiguously interpret changes in brightness and colour with

respect to water depth and substrate composition. High radiometric resolution sensors, with

greater signal-to-noise ratio than those used for terrestrial environments, are required for

investigating aquatic environments (i.e. macrophytes, seagrass, sand, macroalgae, mud, coral

reefs). To allow a range of brightness levels over which a classification can be performed

and to be sensitive enough to detect the lower depth of macrophytes, the number of sensor

quantisation levels, known as the sensor radiometric resolution, must be sufficiently large

(Dekker et al., 2001).

2.3 Spectral reflectance of plant canopy

In addition to the substances present in the water column e.g. phytoplankton, suspended

matter and gelbstoff, light reflected from the bottom of a water body can also influence the

colour of the water, provided the water is sufficiently shallow and clear. The influence of

the bottom on the colour of the water can also vary with water body depth, clarity of the

water, substances present in the water, and bottom type. The bottom maybe rocky or sandy,

or be partially or fully covered by a variety of benthic organisms or aquatic plants (e.g.

macrophytes). Previous research into spectral reflectance properties suggests that differences

exist between various benthic substrates (Andrefouet et al., 2001; Green et al., 2000; Mumby

et al., 1997; Holden and Ledrew, 1999; Maritorena et al., 1994; Lubin et al., 2001; Myers et al.,

1999; Holden and LeDrew, 1997; Hochberg and Atkinson, 2003; Holden and LeDrew, 1998;

Kutser et al., 2003; Joyce and Phinn, 2003). However these studies have focused primarily

on reflectance spectra of coral reefs and other coastal benthic types. In contrast, detailed,

high spectral-resolution reflectance properties of in situ aquatic vegetation has received little

attention, and only few studies, e.g. Penuelas et al. (1993); Malthus and George (1997); Fyfe

(2003) describe spectra for a variety of species and differing growth habits.

Light availability plays an important role in determining the structure and distribution

of macrophyte ecosystems (Duarte, 1991). Fyfe (2003) investigated the spectral signatures

of three seagrass species to determine whether species could be discriminated by remote

sensing. It was found that seagrass species were spectrally distinct regardless of whether or

not the leaves were fouled by epibionts and despite spatial and temporal variability in the

reflectance of each species. To identify different benthic species, sufficient spectral bands are

required and the range of wavelengths detected by the sensor must also penetrate the water

column to interact with the vegetation. Figure 2.2 presents reflectance spectra measured

above eight types of freshwater macrophytes in Lake Starnberg, Germany. These spectra can
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be used to draw conclusions about the nature of reflectance of different growths habitats for

freshwater macrophyte species. Absolute reflectances of submersed species (e.g. Potamotegon

pectinatus) are generally low, often lower than reflectance from deeper or background open

water areas.
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Figure 2.2: Bottom albedo measured over different macrophyte species in Lake Constance and
Lake Starnberg. Measurements were made in the water approx. 15 cm above the substrates
using a submersible RAMSES spectroradiometer.

2.3.1 Green plants species

The reflectance curve for healthy green vegetation is characterised by the absorption of blue

(400−500 nm) and red (600−700 nm) wavelengths and by the reflectance of green radiation

(500−600 nm), and very strong reflectance of near-infrared (NIR 700−1300 nm) and mid-

infrared (MIR 1300−2600 nm) radiation (Carter and Knapp, 2001). The steep rise usually

observed in a vegetation curve at about 700 nm, the ‘red edge’ (Carter and Knapp, 2001) is
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unique to the spectral signatures of green vegetation and indicates the limit of chlorophyll

absorption by plant tissue. While the visible reflectance of green light gives plants their

characteristic green colouration, plants absorb blue and red light as the energy source for

photosynthesis. The chemical structure 1 and the absorption properties of phaeophytin,

an accessory photosynthetic pigment and decomposition product of chlorophyll, are almost

identical to chlorophyll. Chlorophyll-a absorbs around 70-90% of the radiation entering a

plant at wavelengths centred at at 430 nm and 660 nm (Rowan, 1989). Chlorophyll-b absorbs

slightly longer blue wavelengths (460 nm) and slightly shorter red wavelengths (640 nm) than

chlorophyll-a, while a variety of carotenoid pigments absorb maximally at various points

across the blue wavelengths (centred around 450 nm)(Blackburn, 1998; Hilton et al., 1989).

The effects of individual carotenoids on blue light absorption may be small but the combined

effect of the chlorophylls and carotenoids together results in the characteristic broad blue

absorption trough observed in the spectral signatures of plants (Gitelson et al., 2002).

2.3.2 Pigment composition of aquatic plant species

Absorption of light by plants are controlled by leaf biochemical properties (e.g. water, pho-

tosynthetic pigments) (Curran, 1989; Asner, 1998), whereas the magnitude of reflectance

of light from plant leaves depends primarily on leaf morphology (e.g. cell wall thickness,

air space) (Gausman and Allen, 1973), leaf surface quality and leaf internal structure (As-

ner, 1998), where the internal structure of leaves controls the magnitude of reflectance and

transmittance across the whole spectrum (Fyfe, 2004).

The relative concentrations of photosynthetic and accessory pigments will vary within a

macrophyte species because of chromatic adaptation to seasonal cycles or genetic variation

(van Dijk and van Vierssen, 1991; Schagerl and Pichler, 2000; Venanzi et al., 1988), stage

of growth (Nielsen and Sand-Jensen, 1991) and health or environmental conditions (Wiegleb

and Brux, 1991; Vestergaard and Sand-Jensen, 2000). Chromatic acclimation of pigments

can occur in an individual aquatic plant grown under changing conditions of water depth or

clarity (Fennessy et al., 1994; Dennison et al., 1993). Spatial and temporal variations in light

(Schagerl and Pichler, 2000), nutrient availability (Lichtenthaler and Babani, 2000; Venanzi

et al., 1988), water temperature, and water movement act in concert to influence growth

and photosynthetic rate, and therefore also influence the spectral reflectance of macrophytes.

Spectral changes in aging or diseased plants have been related to changes in the intercellular

air spaces (Carter et al., 1989; Gausman, 1977), chlorophyll breakdown (Blackburn, 1998;

1 Chlorophylls are conjugated circular macromolecules. A magnesium atom is responsible for the coordi-
nation of the circle. Phaeophytin has the same structure, except that the magnesium atom is missing.
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Merzlyak et al., 2003; Gitelson et al., 2002) and the subsequent unmasking of carotenoids

and other leaf pigments. In addition, epibionts that grow on the surface of aquatic plants may

mask their reflectance to some extent while contributing their own absorption and reflectance

features to the spectral reflectance (Drake et al., 2003; Fyfe, 2003).

The most prominent macrophyte epibionts found in lakes which have the greatest impact

on remote sensing are diatoms and chlorophyceae (Goos, 2003), as their major light harvesting

pigments are chlorophyll-a, lutein and fucoxanthin (Goos, 2003; Förster, 2006). Chlorophyll-

a can be found in all photosynthetic active organisms and is therefore a good indicator for

biological activity in lakes. The carotenoids, such as carotenes and xanthophylls (Kirk, 1994),

absorb light energy in the 400−500 nm range, but at an efficiency of only 30− 40%. Lutein,

a xanthophylls pigment, absorbs light around 445 nm (Rowan, 1989) and occurs mainly in

chlorophyceae whereas fucoxanthin absorbs maximally between 444−449 nm (Rowan, 1989)

and is a common pigment found in diatoms. The biomass and species composition of epiphytes

on a single macropyhte species varies with location and time.

The absorption maxima of a specific pigment can vary in vivo up to 5 nm, the absorption

strength less than 50% (Gege, 1994). This is caused by the fact that chlorophylls have

different tasks in a cell and consequently are active in different environments. Additionally

the absorption signature becomes flatter if the pigments are spatially concentrated. This

packaging effect is caused by the complete absorption of light if the pigment concentration

exceeds a certain level, whereas the pigment is still transparent at other wavelength. The

increase in pigment concentration barely affects the spectra at the absorption maxima, but

changes the spectra in other part more distinctly which flattens the signature (Keller, 2001).
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Table 2.1: The chlorophylls and major carotenoids that characterise angiosperm plants and
some selected classes of algae often found growing as epiphytes on macrophytes leaves ++:
important pigment, +:pigment occurs, -:pigment is infrequent or occurs only in low concen-
trations (adapted from Gege (2000) and Fyfe (2004))
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Chlorophyll
a ++ ++ ++ ++ ++
b ++ ++ - - -
c1 - - ++ + -
c2 - - ++ ++ -

Phycocyanin - - - - ++
Phycoerythrin - - - - ++

Carotenoide
α - Carotene + + - - -
β - Carotene ++ ++ ++ ++ ++
Echinenone - + - - ++
Lutein ++ ++ - - -
Zeaxanthin ++ + - - ++
Neoxanthin ++ ++ + - -
Violaxanthin ++ + ++ + -
Fucoxanthin - - ++ + -
Diatoxanthin - - + + -
Diadinoxanthin - - ++ + -
Peridinin - + - ++ -
Myxoxanthophyll - - - - ++
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Table 2.2: Location of absorption and flourescence (italic) maxima of selected chlorophyll,
carotene and xanthophyll dependent on their solvent (adapted from Rowan (1989) in Gege
(1994))

Acetone Diethyl- Ether

Chlorophyll
a 430,660− 663,668 428− 430,660− 662,668
b 455,645− 647,652 453− 455,642− 644,648
c1 442− 444,630− 631,633 438,625,632
c2 444− 445,630− 631,635 445− 449,628− 629,632

Phycocyanin 430, 660− 663, 668 428− 430, 660− 662, 668
Phycoerythrin 430, 660− 663, 668 428− 430, 660− 662, 668

Carotenoid
α - Carotene 422− 425 443− 445
β - Carotene 420− 432 447− 450
Echinenone 459− 460 455
Lutein 445 443− 448
Zeaxanthin 449− 452 447− 450
Neoxanthin 436− 445 437− 444
Violaxanthin 440− 442 441
Fucoxanthin 444− 449 444− 446
Diatoxanthin 442 439− 443
Diadinoxanthin 448− 449 448
Peridinin 461− 471 453− 454
Myxoxanthophyll 475− 478

2.4 Remote sensing mapping approaches

A number of techniques exist for mapping and monitoring the benthos of shallow waters.

The mapping of macrophyte distribution has traditionally involved the use of diver survey

(Melzer, 1999) or relied on quadrat and transect based methods similar to those typically

used for ground-based survey of plant matter in terrestrial ecosystems (Chipchase and Leach,

2000; Norris et al., 1997; Jäger and Dumfarth, 2004). SCUBA-based surveys provide great

accuracy and high resolution yet are limited by the time and manpower necessary to monitor

large bodies of water. Video (Norris et al., 1997; Lamb and O’Donnell, 1996; Everitt et al.,

1999) and echo-sounding techniques (Jäger and Dumfarth, 2004; Vis et al., 2003; Valley et al.,

2005) have also been applied to map distribution of emergent and submersed macrophytes.

Echo-sounding collects data in profiles, the spacing being typically at intervals from 10 to

20 m in the littoral zone (Jäger and Dumfarth, 2004). However, no data are available between

theses profiles. It provides good results in terms of distribution, but different species can not

be differentiated. Acoustic methods, including side-scan sonar, have the ability to cover
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areas within a wide swath but are generally restricted to zones greater than approximately

5 m in depth and their extrapolation to larger areas can give rise to significant errors in the

estimation of the habitat types, area and quantity.

Remote sensing has become a standard tool for large scale coastal and inland water man-

agement, mainly because remote sensing technology allows information to be gathered from

areas that would otherwise, logistically and practically, very difficult to survey. Since the

early use of aerial photography for exploring the macrophyte, seagrass and coral reefs cover-

age in the 1920s, there has been mounting evidence, that remote sensing can be successfully

applied to several aspects of water management (Vaiphasa et al., 2005), such as resource

inventory and change detection. Remote sensing techniques have been successfully applied in

operational mapping the biophysical properties of oceanic (Case1) waters for inventory pur-

poses (Sathyendranath, 2000). Operational mapping and monitoring programs for assessing

changes in oceanic productivity, based on the measurement of ocean colour through mapping

concentration of organic constituents in the water column, have also been implemented (Gor-

don and Clark, 1995; Carder et al., 1989). Coastal and lacustrine waters (Case2) continue

to represent a challenge for remote sensing techniques, though technological development in

these environs has occurred in the past 30 years to allow mapping of various characteristics of

aquatic environments, including water surface and column constituents and substrate cover

types (Mumby et al., 1997; Green et al., 2000; Hochberg and Atkinson, 2003; Malthus and

Karpouzli, 2003). Mapping of substrate cover types and their biophysical properties has been

carried out successfully in optically clear, shallow (< 20 m), coastal and reef waters, with lim-

ited exceptions (Lee et al., 1998a, 1999). Mapping the concentration of organic and inorganic

materials has been implemented extensively in lakes and rivers (Lindell et al., 1999; Dekker

et al., 2001). These applications are based on a number of remote sensing instruments on both

airplane and satellite platforms, including visible and infrared photographic cameras (Valta-

Hulkkonen et al., 2003), video recorders (Norris et al., 1997), multispectral (Dekker et al.,

2005) and hyperspectral sensors (Alberotanza et al., 1999). Accurately mapping submerged

macrophytes requires repeated measurements, using high resolution radiometric sensors with

sufficient spectral bands, as shown above. In previous studies, accurate maps of submerged

aquatic vegetation coverage have been produced using some of the methods shortly outlined

below.
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2.4.1 Mapping by aerial photography

Given Europe’s extensive lacustrine environments, techniques are required which facilitate

the broad-scale mapping of macrophyte habitat and meet the requirements for routine mon-

itoring. Application of aerial photography has been successful in marine (Meulstee et al.,

1986; Ferguson et al., 1993; Chipchase and Leach, 2000) and littoral environments (Malthus

et al., 1990; Marshall and Lee, 1994; Lehmann et al., 1997; Rutchey and Vilchek, 1999; Valta-

Hulkkonen et al., 2003). The advantages of conventional film-based methods are the very

fine resolution (0.1 to 1.0 m, dependent on scale) (Jensen et al., 1986) and cost-effective data

acquisition compared to airborne multispectral scanner data (Green et al., 1996). However

the results have been shown to be somewhat inaccurate (Lennon and Luck, 1990), as aerial

photographs require careful geo-correction to overcome geometric distortions introduced by

aircraft instability and the camera lens (Chauvaud et al., 1998). If manually undertaken,

photo-interpretation of such media is more often than not a subjective process and, applied

as an operational tool, can be time consuming and limited in temporal coverage (Valta-

Hulkkonen et al., 2003). Digital images are an improvement over manual ones in that they

provide better geographical positioning and can be superimposed upon and compared with

other geographical data in order to study the interactions between parameters and tempo-

ral changes. As much of the interpretation of aerial photographs is based upon brightness,

shallow submerged aquatic vegetation appears dark and is often indistinguishable from deep

water. Variable water clarity, bottom sediments, macroalgae, and epiphytes add to the un-

certainty in photographic identification of benthic vegetation habitats (Werdell and Roesler,

2003). Despite high spatial resolution, the poor spectral resolution of aerial photography

is insensitive to subtle spectral variations and is certainly a limiting factor for successfully

discriminating submerged features (Holden and LeDrew, 1998; Pasqualini et al., 1997; Pic-

chiotti et al., 1997). However, the relatively high spatial resolution of aerial photographs can

be suitable for terrestrial vegetation and emergent aquatic vegetation (Pasqualini et al., 1997;

Picchiotti et al., 1997) where the signal is not influenced by an overlying water column.

2.4.2 Satellite remote sensing

The use of ocean colour remote sensing technology to estimate benthic constituents has been

under development for over a decade. The 30 m resolution Landsat Thematic Mapper (TM)

data have been used successfully to estimate submerged vegetation features in shallow waters

(Lyzenga, 1978; Armstrong, 1993; Mumby et al., 1997; Zhang, 1998). For example, Zhang
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(1998) used Landsat TM in Honghu Lake, China to establish a relationship between the sub-

merged vegetation biomass and a principle component (PC) transformation. In this study

it was assumed that submerged vegetation, water depth and lake sediment were included

in each pixel on the image, which could be considered as three independent and uncorre-

lated variables. A linear relationship between submerged vegetation biomass and the first

two principle components was found and used to determine the total biomass of submerged

vegetation. Multispectral satellite sensors have been moderately successful in mapping ben-

thic subtrata since the mid-1980s (Lyzenga, 1978; Jupp et al., 1985; Raitala and Lampinen,

1985; Armstrong, 1993; Luczkovich et al., 1993; Jensen et al., 1993). The spectral reflectance

data obtained from digital remote sensing imagery include considerable advancements over

conventional aerial photography and allow for physically-based analyses using spectral sig-

natures inherent to specific benthic substrata. Broadband multispectral sensors on satellite

platforms, including Multispectral Scanner (MSS) Landsat TM, SPOT, are most popularly

used because of their cost-effective advantages, but they are mainly limited to the regional

scale, owing to their relatively coarse spatial and spectral resolutions (Jensen et al., 1995;

Maritorena, 1996; Ferguson and Korfmacher, 1997; Pasqualini et al., 1997; Picchiotti et al.,

1997; Holden and LeDrew, 1998; Liceaga-Correa and Euan-Avila, 2002; Call et al., 2003;

Dekker et al., 2005).

Improvements are needed in both these areas in order to enable mapping of aquatic vegeta-

tion at higher resolution. Satellite sensors also have the ability to perform repeated analyses,

useful for living systems that change throughout the year, as demonstrated by Jensen et al.

(1993, 1995). They were able to observe seasonal and yearly cattail and waterlily changes

using panchromatic satellite data from SPOT. A retrospective seagrass change detection was

also undertaken by Dekker et al. (2005) in Wallis Lake, Australia. They analysed Landsat5

TM and Landsat7 ETM satellite imagery spanning 14 years to reconstruct changes in seagrass

and macroalgal communities in a shallow coastal lake. However application of conventional

satellite data, i.e. found on Landsat MSS, TM and SPOT satellites, is restricted to large

features, inland waters, or regional surveys of coastal areas (e.g. Jensen et al. (1986); Ackle-

son and Klemas (1987), primarily because of their coarse spatial resolution, poor radiometric

resolution (256 measured radiance levels) and is limited in its spectral resolution. Improved

spatial resolution, obtainable on IKONOS and Quickbird satellites, provide data at high spa-

tial and radiometric resolution and offer considerable promise for monitoring spatial changes

in marine habitats at scales acceptable to conservation agencies. However they may still be

restricted because of limited spectral resolution. Several studies are currently investigating

the accuracy and usefulness of IKONOS (Mumby et al., 2001; Maeder et al., 2002; Malthus
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and Karpouzli, 2003; Wettle et al., 2004) satellite data for mapping submerged aquatic veg-

etation in marine environments. For example, in Honduras, submerged aquatic vegetation

was classified using IKONOS multispectral (4 m resolution) satellite imagery (Maeder et al.,

2002), extracting more detailed bottom class information than previously collected data.

Similarly, Malthus and Karpouzli (2003) used IKONOS data imagery over the Eriskay region

of Scotland to map subtidal and intertidal habitats. They found IKONOS sensor data to be

of high quality and showed great potential for routine monitoring of habitats and change over

targeted shallow waters, however the utility of the imagery for classification of bottom habi-

tat on the basis of spectral differences was less evident because of limited spectral resolution.

Wolter et al. (2005) used high resolution Quickbird satellite imagery (2.44 m resolution) to

map submerged aquatic vegetation in the Great Lake Basin, where water clarity is lower and

submerged aquatic vegetation richness higher than in most of the studies published on ma-

rine seagrass mapping. They found Quickbird imagery a useful tool for near-shore vegetation

classification, but in terms of regional mapping efforts, were sceptical about its operational

and economic feasibility. In contrast, the report of Galvão et al. (2005) demonstrate how

more sensitive instruments such as the satellite mounted Hyperion2 sensor that processes 220

bands between 400 and 2500 nm with a spatial resolution of 30m, handle the task of discrim-

inating coral communities in Australia Wettle et al. (2004), a task considered difficult for any

multispectral sensor. Despite this success, Hyperion sensor have shown limited potential in

vegetation classification because of low spatial resolution (Brando and Dekker, 2003).

2.4.3 Hyperspectral remote sensing

In order to overcome conventional satellite sensor limitations and to accurately monitor small-

scale macrophyte dynamics (<10m), airborne remote sensing has been employed. The recent

advances in computer and detector technology has generated this new field of imaging spec-

troscopy (Goetz et al., 1985; Green et al., 1991; Vane et al., 1993; Merton and Cochrane,

1995), as airborne sensors usually have higher spatial and spectral resolution than satellite

sensors. This provides more spectral information on more pure targets, and thus greater

spectral accuracy in detailed benthic habitat mapping (Mumby et al., 1997). Instrumen-

tation and technique development in the 1990’s was somewhat limited, with macrophyte

species discrimination by absorption spectrum largely dependant on water column depth.

Improved classification was achieved via increasing data storage capacity, developing broader

2 USGS EROS Data Center (EDC),USA



28 CHAPTER 2. LITERATURE REVIEW

expert knowledge, and designing instruments capable of increased spectral resolution. Air-

borne hyperspectral sensors have three main advantages over broadband sensors. First, they

are capable of detecting narrow spectral features which theoretically increases the number

of substrates that can be separated, as their large number of spectral bands increases the

potential to uniix substrate spectral signatures. Second, the high spatial resolution of the

newly emerging remote sensing technology reveals fine scale variability in the benthos that is

useful for mapping macrophyte populations that at first glance might appear homogeneous.

Such fine-scale data can be necessary for evaluating small scale changes in habitat bound-

aries or standing crops. The last advantage is that hyperspectral sensors can also distinguish

between substrates in deeper water (Kutser et al., 2003). Optimal selection of feature para-

meters for a concrete application goal is very important for making full use of the information

in hyperspectral data (Louchard et al., 2003). Cochrane (2000) and Schmidt and Skidmore

(2003) confirm that hyperspectral data have potential in discriminating terrestrial plants

to the species level and recent reports show promising results for spectral discrimination of

submerged aquatic vegetation (Fyfe, 2003). Several studies successfully used airborne dig-

ital sensors to examine benthic vegetation, e.g. Malthus and George (1997); Mumby et al.

(1997); Jernakoff and Hick (1994); Bajjouk et al. (1998); Dunk and Lewis (1999); Alberotanza

et al. (1999). Recent mapping applications of hyperspectral technology include an analysis

of coastal seagrass (Anstee et al., 2001), the detection of bleached vs. unbleached coral

reefs (Joyce and Phinn, 2003), mapping macrophyte distribution in lakes (Williams et al.,

2003), and discrimination between mangroves and wetlands (Vaiphasa et al., 2005; Artigas

and Yang, 2005). To date, only a few studies have reported spectra from a variety of macro-

phyte species and growth habits, e.g. Penuelas et al. (1993); Malthus and George (1997);

Alberotanza et al. (1999).

Hyperspectral sensors with contiguous spectra allow for more sophisticated multiband

algorithms, and will also allow the use of methods similar to those used in spectroscopy, such

derivative analysis (Andrefouet et al., 2003a; Louchard et al., 2002; Hochberg and Atkinson,

2003), spectral modelling (Kutser et al., 2003; Voss et al., 2003) and matrix inversion (Lee

et al., 1999; Maritorena et al., 1994) in the identification of macrophyte spectra and inter-

pretation of remotely sensed data. Traditionally, interpretation of remote sensing data has

been image based. The main disadvantage of image-based methods is that the algorithms are

either sensor specific, site specific, or time specific such that the relationships cannot be ap-

plied to different sensors, in different places, or at different times with any confidence. With

hyperspectral remote sensing, the ultimate goal is to establish a library of species spectra

such that interpretation can be automated to provide accurate and rapid maps of substrata
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across sensors, locations, and times. In order to do this, steps to correct the attenuation of

the reflectance signal must be made. The radiative transfer model approach to signal correc-

tion is necessary to make hyperspectral remote sensing data comparable. This is feasible as

most natural atmospheric and water-column influences are estimates. After correction, the

modelled reflectances can be compared to in situ measurements and can be directly linked to

remote sensing data, making remote sensing analysis of multi-temporal data sets operational

within a modelled spectral library. Radiative transfer theory is used to evaluate water col-

umn effects on remotely sensed spectra to propagate bottom-reflected light through different

water column depths for a given set of water optical properties. Radiative transfer models

allow the modelling of radiation as it travels through the atmosphere and the water column.

Physics based methods such as Hydrolight have the advantages of repeatability and reduced

time consuming in situ measurements compared to traditional image-based methods (Kutser

et al., 2003). Included in the modelling process is the overlying water column, thus allowing

reflectance of underwater substrates to be predicted over a range of water depths (Kutser

et al., 2003; Holden and LeDrew, 2000).

A number of models have been developed that describe irradiance reflectance as func-

tion of bottom albedo and water depth (Mumby et al., 1997; Philpot, 1987; Mobley et al.,

1993; Lee et al., 1999, 1998a; Maritorena et al., 1994; Leathers and McCormick, 1999). For

example, Werdell and Roesler (2003) investigated the utility of quantifying percent cover of

benthic substrates constituents from surface multispectral reflectance measurements. They

considered six substrates, each of them with a unique albedo spectrum that contributed dif-

ferently to the upward light field in an optically shallow environment. Simplifications of the

radiative transfer equation yielded an analytic solution for surface reflectance on optically

shallow environments. The objective was to test the inverse model to predict bottom albedo

from measurements of surface reflectance. A linear mixing model was used to deconvolve the

derived albedo spectra into contributions by the six constituents and was able to differentiate

the six homogeneous habitats. Spectral libraries as the basis for developing routine methods

of applying remote sensing to aquatic vegetation surveys (Jupp et al., 1985) and are a fun-

damental part of many hyperspectral image classification and radiative transfer modelling

procedures, including atmospheric and water column correction, spectral unmixing and end-

member mapping, e.g. Jupp et al. (1996); Anstee et al. (1997); Held et al. (1997); Kruse

et al. (1997). Kutser et al. (2003) studied the separability of eight substrate types (live coral,

dead coral, soft coral, sand, brown algae, green algae, red algae, and cyanobacteria) and the

influence of the overlying water. They collected a spectral library of coal reef benthic com-

munities and simulated remote sensing reflectance using Hydrolight. Spectral libraries will
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ultimately have the potential to serve as valuable tools for identifying characteristic wave-

lengths that can be incorporated into bottom classification and bathymetry algorithms. The

success of these image processing techniques depends on the comprehensiveness and quality

of the spectral library applied. Spectral libraries also provide information needed to make an

informed choice about the spectral resolution required of a sensor and the wavebands that

will be most useful for a particular application. After spectral libraries are obtained, analysis

of the data to identify significant components of the signal must be made. Another technique

commonly used to extract qualitative maps of submerged aquatic vegetation is to measure

reflectance spectra of different substrate in situ or in the laboratory to create spectral libraries

of substrates (Louchard et al., 2000).

Principle component analysis (PCA) is a commonly used analytical tool in multispectral

detection as data reduction technique, and has been successfully applied in several studies

to determine the most representative spectra (Pasqualini et al., 1997; Bajjouk et al., 1996;

Holden and LeDrew, 1998). Other researchers have developed specific algorithms to discrim-

inate between substrate. For example Bajjouk et al. (1996) used CASI airborne imaging

spectrometers with ground based spectroradiometry for mapping benthic plant species the

principal seaweed and seagrass beds along the coast of Brittany (France). The algorithm was

developed to discriminate between the dominant species. Visible wavelengths allowed good

discrimination between green, red and brown algae and infrared wavelengths allowed separa-

tion of brown species, seagrasses and floating seaweed. A different study undertaken by Dunk

and Lewis (1999) used HyMap imagery for the mapping of seagrass distribution in a coastal

environment in the upper Spencer Gulf, Australia. The data were atmospherically and track

illumination corrected. Three feature extraction techniques were evaluated: band ratios,

principle component analysis (PCA), and spectral angle mapping (SAM). SAM was assessed

to reliably discriminate features from selected endmembers (Alberotanza et al., 1999). The

spectral reflectance characteristics of features within a submerged coastal environment are

optically similar, so confusion can arise in identification. High spectral resolution sensors are

required to perceive the subtle difference, which is demonstrated through analysis of in situ

measurements in a study by Holden and LeDrew (1998). There, the proportion of correctly

identified spectra using first derivatives was 75% with the main source of error resulting from

the inability to identify algae-covered surfaces. Similarly, Malthus and George (1997) evalu-

ated the ability of Daedalus ATM imagery for mapping the distribution of freshwater aquatic

macrophyte species in the Cefni Reservoir on the Isle of Anglesey, UK. Discriminant analy-

sis indicated that good identification of macrophytes could be achieved by a combination

of green, red and near infrared wavebands. A minimum distance supervised classifier using
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three bands showed separation of the species surveyed. The results indicated that airborne

remotely sensed data have good potential for monitoring freshwater macrophyte species. In a

similar study Bogner (2003) tested the Daedalus AADS1268 multispectral airborne scanner

at Lake Constance, Germany, in a multi-temporal analysis. Bottom reflectances were classi-

fied to three endmembers of specific reflectance spectra by linear unmixing using the Modular

Inversion & Processing System (MIP). Specific reflectance spectra of bottom sediments, short

growing macrophytes (e.g. Characeae), and tall macrophytes (e.g. Potamogeton pectinatus,

P.perfoliatus) were successfully identified.

In comparison to conventional spaceborne sensors such as Landsat TM and SPOT, air-

borne hyperspectral sensor data is more accurate and precise (Jakubauskas et al., 2000).

AVIRIS, ATM, HyMap, and CASI airborne hyperspectral sensors show highly accurate re-

sults in mapping aquatic vegetation. Hyperspectral sensors increase the spectral resolution

of mixed pixels and together with spectral libraries, improve the ability to uniix the signal

and resolve the make up of each mixed pixel scene. Until recently, airborne sensors were

the only way to acquire hyperspectral images of submerged aquatic vegetation. The high

spectral and spatial resolution of these instruments makes them very suitable for investigat-

ing the highly complex substrates found in shallow lake systems. Other spaceborne sensors

with a similarly high spatial resolution (e.g. IKONOS) do not yet have comparable spectral

reflectance spectra, whereas the hyperspectral instrument Hyperion, with a spatial resolution

of 30m, has also shown limited potential in vegetation classification (Dekker et al., 2001).

Water column depth, turbidity, surface effect (sunglint, waves), and issues associated with

spatial, spectral and radiometric resolutions are all challenges of above surface approaches

to benthic vegetation surveys of littoral and marine environments. Detecting the change in

habitats over time remains a key objective for remote sensing studies (Green et al., 2000).

In multitemporal data analysis, the interactions between radiation and the optically-active

water column constituents, vegetation and sediment must be both qualified and quantified;

only then can image differences be attributed to actual measurement differences.
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Chapter 3

Optical Remote Sensing and Water

This chapter provides an overview of the physical parameters of optical properties of water

(referred to here as ‘the physics’), as a comprehensive introduction to remote sensing and

physical properties of water by Dekker et al. (2001) exists. They review the historical and

background information describing how light is influenced in the water column and from bot-

tom substrates for the purposes of remote sensing. Much of the mathematics and definitions

in this chapter are based on those found in Kirk (1994); Mobley (1994); Maritorena et al.

(1994).

3.1 Introduction to the physics

When direct and diffuse sunlight penetrates a lake surface, it may be absorbed or scattered

by water molecules or by various suspended and dissolved materials present (see Figure 3.1).

Only a fraction of the scattered and reflected photons find their way back to a remote sensor.

Following the pathway of light (known as the radiative transfer process) is paramount in

understanding the various facets to remote sensing. Four so-called pathways are commonly

identified (Eq. 3.1): first, incoming light can be scattered by atmosphere back to a sensor

(Lsky). Second, light can reach the water surface and be reflected back to the sensor. If this

portion of light is reflected from diffuse sky radiance it is called skyglint (Lskygl) and if it

is reflected from direct sunlight it is called sunglint (Lsungl). Third, light can pass through

the air-water interface, but be scattered back to the sensor by constituents within the water

column (Lw). This radiance value is related to the inherent optical properties (IOP) of the

water. A portion of this upwelling light is reflected down into the water body at the air

water interface. Last, light can pass through the air-water interface, reaching a submerse

substrate (macrophytes, bottom). Reflection occurs and light returns upwards through the

water column exiting the air-water interface and reaching a sensor (Lb). This radiance value

33
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Figure 3.1: Schematic diagram of radiative transfer influenced by surface, phytoplankton,
gelbstoff, suspended matter, and water molecules as well as different bottom types that
contribute to the signal as measured by a remote sensor in shallow water.

is containing information on both water quality and substrate type (e.g. macrophytes, macro-

algae, sediment).

L = Lsky + (Lskygl + Lsungl) + Lw + Lb (Heege, 2000) (3.1)

Each image pixel of remotely sensed surface water contains signals, or radiances, from these

four pathways. The atmospheric contribution, the air-water interface contribution, and the

water column component must be corrected for in order to gain information on the bottom

substrate. The physics based approach to remote sensing is a means to isolate the portion of

signal that pertains to the substrate.

3.1.1 The remote sensing approach

There are different methods of estimating macrophytes using optical remote sensing. One

approach, where a statistical relationship is established between the parameter and the image

data (Bostater et al., 1997; Durand et al., 2000), correlates signal strength to abundance. A
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second, and likely better approach, is in developing an analytical model of radiative transfer

and making estimates from physical principles (Jupp et al., 1985). This second approach is

broken down into its various steps below.

First, inherent (IOP) and apparent optical properties (AOP) are needed to describe the

water light field. Inherent optical properties (IOPs) depend only on the medium and are

independent of the light field. For example absorption and scattering coefficients are inherent

optical properties. Apparent optical properties are dependent on both the medium and the

ambient light fields geometric directional structure. Apparent and inherent properties are

connected via radiative transfer theory, which forms the basis for water quality and substrate

determination.

This determination is called forward modelling if all concentrations of the lake constituents

and other model parameters are known and the radiation is unknown. In practice, the

radiation is known and the water constituents are to be determined, thus the process is

called inversion or backward modelling.

Different approaches for solving the inversion problem exist (Gordon and Morel, 1983;

Prieur and Sathyendranath, 1981), e.g band ratios (Gordon and Morel, 1983; Dekker, 1993),

factor analysis (Krawczyk and Hetscher, 1997; Fischer et al., 1986), curve fitting (Doerffer

and Schiller, 1994; Gege, 1994), matrix inversion (Hoge and Lyon, 1996; Hoogenboom et al.,

1998), non-linear optimisation (Lee et al., 1999; Albert, 2004), look-up tables or the neural

network-method (Schiller and Doerffer, 1999), but in most cases a distinction is made between

empirical and analytical methods.

Empirical methods use only statistical dependencies, whereas analytical methods use phys-

ical knowledge of the light-water system. Empirical (i.e. statistical) methods are not suitable

for inland waters, as not all constituents (e.g. Chlorophyll, gelbstoff, suspended matter etc.)

are statistically correlated. Analytical models are less restricted, as the influence of various

parameters can be included, but their optical properties must be known. Intermediate stages

between empirical and analytical models also occur. Semi-empirical methods use physical

knowledge for the determination of a model equation, but determine the model parameters

statistically, based on measurements. Many (semi-) empirical algorithms make simplifications

regarding water composition, such as the optical domination of one constituent over all the

others.

The processing of remote sensing data into macrophyte distribution maps requires a care-

ful and precise simulation, of light pathway in the water, at/through the air-water interface,

and in the atmosphere, e.g. using statistical Monte Carlo photon propagation tracking meth-

ods or radiative transfer numerical models. Development and adaptation of algorithms is done
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by performing simulations of radiative transfer and comparing the output against measured

(in situ) conditions. Organised field campaigns and laboratory analyses to determine in-water

optical properties, constituent concentrations, and macrophyte distributions are carried out

for this purpose (Dekker et al., 2001).

3.1.2 Radiative transfer in water

The theory of light in water, or radiative transfer process is incorporated within Radiative

Transfer of Energy theory (RTE). RTE links apparent and inherent optical properties. Mob-

ley (1994) explains RTE in terms of radiance and irradiance values and the effects of the

water column due to various constituent’s optical properties. He suggests radiance can be

seen as a beam of photons, where six basic interactions with water and its constituents occur:

• loss of photons by conversion of radiant energy to non-radiant energy (absorption)

• loss of photons by scattering to other directions without change in wavelength (elastic

scattering)

• loss of photons by scattering with change in wavelength (inelastic scattering)

• gain of photons by conversion of non-radiant energy into radiant energy (emission)

• gain of photons by scattering from other directions without change in wavelength (elas-

tic scattering)

• gain of photons by scattering with change in wavelength (inelastic scattering)

Furthermore variations in the suspended sediment, phytoplankton, and coloured dissolved

organic matter concentrations in inland waters result in many different light climates. Optical

modelling approaches utilise radiative transfer models or analytical solutions which describe

the physical behaviour of the light field based on the inherent optical properties of the media.

They are used to quantify the effects, water constituents have on optical variables obtained

from either in situ or remote sensing measurements.

There is a wide range of optical models available, from generic radiative transfer models,

e.g. Hydrolight (Mobley and Sundman, 2000) and FEM (Kisselev et al., 1995; Bulgarelli

et al., 1999) to those based on specific water bodies or conditions, e.g. WASI (Gege, 2001;

Albert, 2004), see also section 3.3.2. Analytical models are advantageous that, due to their

relative simplicity, they can be solved and inverted with relative ease. This is important in a

remote sensing application where a model must be evaluated at every image pixel.
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3.2 Optical properties of water

The optical properties as described by Mobley (1994) are summarised as follows:

• the inherent optical properties (IOP) are those pertaining to the medium itself (i.e. wa-

ter plus constituents). Regardless of the ambient light field, IOPs are usually measured

by active (i.e. having their own light source) optical instruments;

• the apparent optical properties (AOP) are combinations of radiometric variables that

can be used as indicators for the colour or transparency of the water, for example

the reflectance or vertical attenuation coefficient. Note that radiometric variables are

properties of the light field that are usually measured by passive optical instruments

(using the sun as the light source)(Dekker et al., 2001);

• the diffuse inherent optical properties are a combination of IOPs and AOPs and play

an intermediate role in the derivation of the analytical model.

A variety of substances influence the optical properties of lake water, and can be differentiated

based on their optical behaviour. If the inherent optical properties of these substances are

sufficiently known, then it becomes possible to determine their contribution to water column

colour, leading to an estimate of their concentration.

3.2.1 Composition of naturally occurring lake waters

Whereas the optics of open ocean water is influenced by phytoplankton and pure water itself,

the optics of littoral water with bottom visibility is much more complex (Lindell et al., 1999).

Naturally occurring lakes contain a continuous distribution of particles sizes ranging from

water molecules ∼ 0.1 nm to fishes ∼ 10 cm long. Each of these components contributes

in some manner to the optical properties of a water body. Traditionally, matter in waters

is subdivided into ’dissolved’ and ’particulate’ forms of inorganic and organic origin, both

living and non-living (Mobley, 1994). The border between dissolved and particulate matter

is usually set at 0.4µm. In water optics, only particulate and dissolved constituents are

distinguished, though limnologists often distinguish between particulate (> 0.4µm), colloidal,

and dissolved substances.

In lake waters, three main components influence the total absorption and scattering co-

efficients of pure water: phytoplankton, dissolved substances, and particulate matter. Be-

cause they significantly influence turbidity and transparency, the concentrations of these con-

stituents are often used as water quality parameters. The partitioning of these constituents
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into particulate and dissolved components are adopted for convenience from an optical point

of view. It is important to note here that particulate matter includes phytoplankton, also

know as seston, whereas the particulate matter without the phytoplankton component is

called tripton. The final optical breakdown of water and its components are: pure water

(W ), gelbstoff (Y ), phytoplankton (P ), particulate matter (X) and are discussed in detail

below.

3.2.2 Optically active constituents

Current interest in remote sensing is directed towards measuring the absorption and scattering

due to the various particulate and dissolved substances in a given water sample. To quantify

the role of individual components from each of the constituents in situ measurements and/or

collection of water samples for subsequent laboratory analyses are required.

Pure water

Light absorption by pure water has been well documented by Pope and Fry (1997), Smith and

Baker (1981), and most recently by Buiteveld et al. (1994) and Hakvoort (1994). Scattering is

inversely proportional to wavelength, and therefore pure water has a blue colour (Figure 3.2).

At 680 nm, a one metre thick layer of pure water will absorb about 35% of the incident light.

There are absorption shoulders at 610−620 nm and 660−670 nm. Absorption of pure water

(aW (λ)) and scattering of pure water (bW (λ)) can be considered constant to environmental

conditions, except for a slight temperature dependent absorption peak in the near infrared

(NIR).

Phytoplankton pigments

One of the most optically interesting organic matter are algae, also called phytoplankton (P ).

They occur in different shapes and sizes and form the basis of trophic interaction in lakes

(Wetzel, 2001). Chlorophyll-a concentrations are often used as a proxy for phytoplankton

concentration, as chlorophyll occurs in all photosynthetic organisms. Chlorophyll concen-

tration (in milligram of chlorophyll per cubic metre of water) usually refers to the sum of

chlorophyll-a and the related pigment phaeophytin-a, often simply called pigment concentra-

tion. The specific coefficients of absorption and scattering of algae are estimated relative to

chlorophyll concentration. Phytoplankton pigments are strong absorbers of visible light and

therefore play a major role in determining the absorption properties of natural waters. Algal

pigments strongly absorb light in the blue and red wavelengths (peaking at λ ∼ 438 nm and
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Figure 3.2: Absorption aW (λ) and scattering coefficient bW (λ) of pure water at a temperature
of T = 20℃ after Buiteveld et al. (1994).

λ ∼ 676 nm for chlorophyll-a, 480 nm for β-carotene, 624 nm for cyanophycocyanin (CPC),

565 nm for cyanophycoerythrin (CPE)). Absorption by algae is negligible beyond 720 nm

(Dekker, 1993). The specific absorption coefficient of phytoplankton, denoted a∗ph (λ), is the

absorption coefficient of a phytoplankton suspension corresponding to a concentration of 1

mg Chl-a m−3 or (µg Chl-a/l). It is expressed in m2 mg−1 Chl-a(m−1/mg Chl-a m−3). The

specific absorption coefficient depends on the algal species that make up the phytoplank-

ton population and their physiological state, and can therefore vary with time and space.

Specific cyanobacteria are nuisance organisms, potentially forming toxic substances and can

be eutrophication indicators. A general trend has been found that phytoplankton popula-

tions that are found in oligotrophic waters have higher specific absorption coefficients than

phytoplankton in eutrophic waters (Package effect)(Kirk, 1994).

Gelbstoff

Gelbstoff (Y ) is the optical constituent of water that passes through a 0.2 µm filter. Backscat-

tering of gelbstoff is assumed to be zero. Dissolved organic compounds are produced during

the decay of organic decay products and consist mostly of humic and fulvic acids. The com-

pounds are generally brown in colour and for this reason are referred to as yellow substance

(Bricaud et al., 1981), coloured dissolved organic matter (Cdom), or gilvin (Kirk, 1976).

Gelbstoff may have a local origin or come from a distant source (Sathyendranath, 2000).
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Figure 3.3: Specific absorption coefficient of phytoplankton after Heege (2000).

It absorbs very little in the red wavelengths, but its absorption increases rapidly with de-

creasing wavelength and can be significant at blue and ultraviolet wavelengths. Gelbstoff

can efficiently remove blue light in the top few cm’s of the water column, imparting a yellow

colour to the water. It can influence the UV inhibition of primary production due to its strong

absorption in this region of the spectrum (Figure 3.4). From the remote sensing perspective,

this parameter is interesting as it can influence the determinability of other water quality

parameters. The absorption coefficient of dissolved organic matter follows approximately an

exponentially decreasing function, often expressed as:

aY (λ) = aY (λ0) · e−SY (λ−λ0) (m−1) (3.2)

where aY (λ0) is the absorption due to gelbstoff at a reference wavelength λ0, usually at

440 nm, and S is the slope of the function usually varying between 0.01 and 0.02 (Dekker,

1993)(S = 0.0142± 0.0012 nm−1 for Lake Constance (Gege, 2000)).

Suspended particles

Particulate matter (X) can be divided into living organic material (mainly phytoplankton),

non-living organic particles (detritus) and inorganic material. The sum of dead organic

and inorganic components is referred to as tripton, thus, it includes particulate material

that is not phytoplankton. It can serve as a vehicle for toxic anthropogenic substances,

and is one main source of aggradation of lakes as it determines the sedimentation rate. It
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makes an impact on primary production because it can lower the eutrophic depth1 due to

its scattering and absorption properties. Additionally, it can have consequences on both the

fish and macrophyte distributions in lakes. Inorganic particles are due to suspended minerals

coming from inflows and are mainly consisting of quartz, clay and calcite. Inland water

bodies are regions where particulate matter often plays an important role in determining the

optical properties of the water (Sathyendranath, 2000). In general, the absorption of the total

suspended matter absorption is very low and mainly due to the organic fraction of the particles

(detritus). The spectra often resemble gelbstoff spectra (Dekker, 1993) (Figure 3.4). This

suggests that the absorption is high at short wavelengths and decreases exponentially to be

close to zero at longer wavelengths. If the mineral particles are strongly coloured however, the

suspended matter absorption is also a function of the mineral particles. The discrimination

between phytoplankton, detritus and inorganic particle is generally not trivial (Bricaud and

Stramski, 1990). Due to close correlation to phytoplankton, in this study the absorption of

organic particulate matter is treated as part of specific absorption of phytoplankton (Gege,

1994; Heege, 2000).

Total spectral absorption The influence of phytoplankton pigment absorption on the

reflected radiance is often masked by absorption of gelbstoff and detrital material, especially in

the blue wavelengths (Figure 3.4). The combined absorption of the gelbstoff, phytoplankton,

suspended matter and the pure water spectrum suggest that at short wavelengths, gelbstoff,

suspended matter, and the first chlorophyll-a absorption peak causes high absorption. For

this reason, low reflectances are observed in this spectral area. Beyond 500 nm, the spectral

information becomes less ambiguous and reflectance increases allowing better discrimination

of spectral features. The lowest absorption values occur at 550 to 600 nm, at 650 nm, and at

705 nm coincident with maxima in reflectance. It is also evident from the specific absorption

spectra that water absorption is the single most dominant absorbing factor beyond 720 nm.

Total spectral scattering Scattering of natural waters is considered to consist of two

different contributions, pure water (bW ) and particulate matter (bX). Scattering of gelbstoff

is assumed to be zero. The particle scattering can be specified by a power law as defined by

Maffione and Dana (1997). The shape of the scattering spectrum is mainly a function of size

distribution of the particles. An increased scattering of a water body is closely correlated to

an increase in particulate matter concentration.

1 The depth where photosynthesis = respiration
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Figure 3.4: Absorption of phytoplankton, gelbstoff and detritus, spectra were normalised to
specific phytoplankton absorption (0.023 m−1) at 500 nm after Heege (2000).

3.2.3 The inherent optical properties

The relevant inherent optical properties (IOP) are the spectral absorption and scattering

coefficients. The spectral absorption coefficient a(λ) is the fraction of incident power at

wavelength λ, that is absorbed per unit distance, in the medium. The spectral scattering

coefficient b(λ) is the fractional part of the incident power per unit distance that is scattered

out of the beam. Together a(λ) and b(λ) form the spectral beam attenuation coefficient c(λ):

c(λ) ≡ a(λ) + b(λ) (m−1) (Mobley, 1994) (3.3)

The way in which scattering affects the penetration of light into the medium depends not

only on the value of the scattering coefficient, but also of the angular distribution of the

scattered flux resulting from the scattering process. Scattering influences the light budget

of the medium by changing the direction of photon propagation. This angular distribution

has a characteristic shape and is specified in terms of the volume scattering function, i.e.

elastic scattering. Scattering can be partitioned into elastic and inelastic processes. Elastic

scattering is the process where the wavelength and frequency of the scattered photons remain

unaltered, whereas inelastic scattering implies a change in the wavelength and frequency

(Dekker et al., 2001). Two types of inelastic scattering are Raman scattering and fluorescence.
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3.2.4 Specific absorption and backscattering coefficients

Inherent optical properties are additive parameters, which means that the absorption and the

scattering coefficients are proportional to the concentration. To quantify individual absorp-

tion components, the absorption coefficient a(λ) can be expressed as the sum of contributions

from each of the constituents (see Eq.3.4). The contribution of each of the four components

(phytoplankton, suspended matter, gelbstoff and water itself) can be determined from the

product of the concentration of that substance and a corresponding specific absorption coef-

ficient (Sathyendranath, 2000). This equation can be written as:

a(λ, T ) = aW (λ, T ) + pa∗P (λ) + ya∗Y (λ) + xa∗X(λ) (3.4)

where aW , a∗P , a∗Y , a∗X are the specific absorption coefficient of water (W ), phytoplankton

(P ), gelbstoff (Y ) and suspended matter (X) respectively. In the notation used here, the

asterisks indicate specific coefficients, T is the dependence on the temperature, and p, y, x

stand for the corresponding concentrations.

To quantify individual backscattering components, the backscattering coefficient bb(λ)

can be expressed as the sum of contributions from each of the constituents (see Eq.3.5).

bb(λ, T ) = bbW (λ, T ) + pb∗bP (λ) + xb∗bX(λ) (3.5)

where bbW , b∗bP , b∗bX are the specific scattering coefficients of water (W ), phytoplankton (P )

and suspended matter (X) respectively.

Equations 3.4 and 3.5 are clearly multivariate in nature, and if a and bb are known in

concert with p, y, and x, then the IOPs can be estimated. Similarly, if a and bb are known in

concert with the IOPs, then p, y, and x can be estimated. This is the reason for determin-

ing the concentrations of the different components in natural waters by measurements of the

inherent optical properties and thus, for a mechanistic approach in remote sensing. These de-

terminations comprise the directives of the so-called bio-optical algorithms and water quality

parameter extraction methodologies (Dekker et al., 2001).

3.2.5 Radiometric variables and apparent optical properties

The optical variable measured by most passive optical remote sensing instruments is radiance

L. From radiance, a number of other radiometric quantities can be derived, such as the

downwelling and upwelling irradiances. Apparent optical properties are those that depend

both on the medium and the geometric structure of the ambient light field, and display

sufficient regular features and stability to be useful descriptors of a water body (Mobley,

1994).
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Because AOPs are relatively stable, it is relatively easy to relate them to the water

composition in comparison to (ir)radiance measurements. In particular, the reflectance just

below the surface R(0−), and the diffuse attenuation coefficient for downwelling light Kd, are

very suitable, as they are sensitive to changing water compositions.

Radiometric variables

Spectral radiance is the fundamental radiometric quantity of interest in hydrologic optics

providing the foundation from which all other radiometric quantities can be derived, and

describes the spatial (~x), temporal (t), directional(~ξ), and wavelength (λ) structures of the

light field. Spectral radiance L is the radiant energy ∆Φ, within the unit solid angle that

enters a sensor and is incident upon a detector element of area ∆A within time ∆t and over a

wavelength band ∆λ; ∂ is the partial derivative (Eq.3.6). Descriptions and definitions of the

spectral radiometric variables are, where Ξ is within the unit sphere, the set of all directions

s with solid angle dΩ and the cosine µ of the zenith angle to the horizontal plane (Dekker

et al., 2001).

L(~x, t, ~ξ, λ) ≡ ∂4Φ
∂t∂Ω∂A∂λ

(Wm−2sr−1nm−1) (Mobley, 1994) (3.6)

Irradiance E is defined as the radiant flux per unit area of a surface (Kirk, 1994). The

downwelling irradiance Ed is the irradiance of the upper hemisphere (Eq.3.7).

Ed =
∫

Ξd

µL(s)dΩ (Wm−2nm−1) (Mobley, 1994) (3.7)

The upwelling irradiance Eu is the irradiance of the lower hemisphere (Eq.3.8).

Eu =
∫

Ξu

|µ|L(s)dΩ (Wm−2nm−1) (Mobley, 1994) (3.8)

The scalar irradiance E0 is the integral of the radiance distribution at a point over all direc-

tions about the point. Scalar irradiance is thus a measure of the radiant intensity at a single

point which treats radiation from all directions equally (Eq.3.27).

E0 =
∫

Ξ
L(s)dΩ (Wm−2nm−1) (Mobley, 1994) (3.9)

In biological studies the relevant measure of the underwater light field is in terms of pho-

tosynthetically active radiation (PAR), the light within 400−700 nm utilised by plants for

photosynthesis. Since photosynthesis is a quantum process, it is the number of available pho-

tons rather than their total energy that is relevant to the chemical transformation. The light

requirement for the production of a given quantity of oxygen is a fixed number of photons2,
2 nine einsteins per mole of oxygen formed
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(Kirk, 1994; Mobley, 1994). PAR can be calculated using E0 (Eq.3.27). To retrieve the

number of photons, E0(λ) is divided by the energy of the light hc/λ, where h is Plancks

constant, c is light velocity and Einst is the number of photons3

PAR =
∫ 700nm

400nm

λ

hc
E0(λ) dλ (µEinst m−2s−1) (Mobley, 1994) (3.10)

Apparent optical properties

Irradiance reflectance R is the ratio of upwelling and downwelling irradiance at a given point

and is defined as:

R(z) ≡ Eu(z)
Ed(z)

(3.11)

Subsurface irradiance reflectance R(0−) is the irradiance reflectance just below the water

surface. Optical models for subsurface reflectance have been developed which can be related

to remote sensing reflectance measured from (far) above the water surface. R(0−) plays an

important intermediate role in many remote sensing applications on water quality:

R(0−) ≡ Eu(z = 0)
Ed(z = 0)

(3.12)

The radiance reflectance RL(θ, φ) is defined as:

RL(θ, φ) =
πLu(θ, φ)

Ed
(3.13)

The remote sensing reflectance Rrs(θ, φ) makes use of upwelling radiance rather than irradi-

ance and is defined as:

Rrs(θ, φ) =
Lu(θ, φ)

Ed
(sr−1) (3.14)

A proportionality factor Q relates remote sensing reflectance Rrs to irradiance reflectance

R(z), and is defined as the ratio of upwelling irradiance to upwelling radiance:

Q(θ, φ) =
Eu

Lu(θ, φ)
(sr) (3.15)

The downwelling and upwelling average cosine µ̄d and µ̄u describe the angular distribution of

the photons that have been scattered downwards and upwards at a depth z and are defined

as:

µ̄d ≡
Ed

E0d
(3.16)

3 1 Einst corresponds to one mole of photons. The number of photons in an einstein is Avogadro’s number
(6.023 1023 photons). It is named in honour of Albert Einstein, who explained the photoelectric effect
and introduced the idea of light quanta, now called photons (Einstein, 1910).
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µ̄u ≡
Eu

E0u
(3.17)

If the relevant optical lake water constituents were uniformly distributed in the water col-

umn, then the downwelling irradiance would decrease exponentially with depth. The vertical

diffuse attenuation coefficient of downwelling irradiance Kd defines the rate of decrease of

downwelling irradiance with depth z:

Kd =
d lnEd

dz
= − 1

Ed

dEd

dz
(m−1) (3.18)

The vertical diffuse attenuation coefficient for upwelling irradiance Ku defines the rate of

exponential decrease in upwelling irradiance with decreasing depth z. Ku is approximately

Kd for a infinitely deep water column (Kirk, 1989).

Ku =
d lnEu

dz
= − 1

Eu

dEu

dz
(m−1) (3.19)

In shallow water systems κ is the vertical diffuse attenuation coefficient for Eu (z), where the

flux scattered upwards from a thin layer of water with depth z and is combined with bottom

albedo (Kirk, 1994). κ (z) is always > Kd and to a reasonable approximation is κ ∼ 2.5 ·Kd

in the middle of the photic zone.

Another parameter related to Kd is optical depth ξ, which can be used to define the depth

at which photosynthesis occurs. The optical depth ξ is defined by:

ξ = Kd · z (3.20)

Optical depths of particular interest to limnologists concern primary productivity, and corre-

spond to the attenuation of downward irradiance to 10% and 1% of the surface values. These

are ξ = 2.3 and ξ = 4.6, respectively. These optical depth correspond to the midpoint and

the lower limit of the photic zone, within which significant photosynthesis occurs (Wetzel,

2001).

3.2.6 The diffuse apparent optical properties

An intermediate set of optical properties, called diffuse apparent optical properties, describe

absorption and scattering of downwelling and upwelling irradiance. These properties are used

primarily for mathematical convenience in analytical model derivations (Dekker et al., 2001).

3.3 Relationships between IOPs and AOPs

3.3.1 Optically deep waters

Inherent optical properties are physically related to the subsurface irradiance reflectance

R(0−) which is a key parameter of the remotely sensed irradiance data. R(0−) is relatively
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stable under varying solar angles, atmospheric conditions and water surface states. A number

of approximate relations among various IOPs and AOPs have been developed over the years,

based on radiative transfer theory combined with analysis of actual data or numerical simu-

lations. In order to arrive at an analytical solution of the radiative transfer equations, three

important assumptions were made (Mobley, 1994). First, that the water is optically deep,

such that bottom effects are negligible. Second, inelastic scattering, especially fluorescence, is

not taken into account. Last, that the absorption and scattering coefficients (inherent optical

properties) are homogenously distributed, i.e. constant with depth. In such cases, the use of

simple formulas (Eq.3.21) are justified. However, if a and bb do not covary with depth, the

prediction of R(0−) requires detailed calculations based on the RTE (Mobley, 1994).

The relationships between subsurface irradiance reflectance R(0-) and the inherent optical

properties for ocean (Gordon et al., 1975; Aas, 1987), coastal (Kirk, 1991; Walker, 1994), and

inland water systems (Dekker et al., 1997) have been investigated. Dekker et al. (2001) recom-

mend using the following reflectance model by Walker (1994), as it has the least assumptions

and is easiest to use in simulations. Even though this model contains approximations, it may

be expected to yield quite accurate results for turbid waters. In terms of the backscattering

and absorption coefficients, the analytical model for irradiance reflectance can be written as:

R∞(0−) = f
bb

a + bb
where f =

1
1 + µd

µu

(3.21)

f is a coefficient for the anisotropy of the light field and is likely to fall within a range of 0.33

to 0.38.For Lake Constance Albert and Gege (2006) derived a coefficient of 0.38 for a given

concentration of suspended matter CX = 1mg/l.

A parameterisation for remote sensing reflectance Rrs(θ, φ) (Eq 3.14) can accordingly

be calculated after Albert and Mobley (2003), which incorporates sun-angle effects, using

following relationship:

Rrs,∞(0−) = frs ·
bb

a + bb
(3.22)

where

frs = 0.015 · (1 + 4.6659 · ωb − 7.8387 · ω2
b + 5.471 · ω3

b ) ·
(

1 +
0.1098

cos · θ′sun

)
·
(

1 +
0.04021
cos · θ′v

)
Parameters of frs are ωb = bb(λ)/(a(λ) + bb(λ)), the sun-zenith angle in water, θ′sun, and

the viewing angle in water θ′v (Albert and Mobley, 2003).

3.3.2 Optically shallow water

In contrast to optically deep waters, optically shallow waters are those where the substrate

(e.g. submerged macrophytes and sandy bottoms in lakes) signal is detectable through the
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water column by a remote sensor. If remote sensing data are analysed including optically

shallow waters, the bottom depth zB and the bottom albedo A have to be taken into account.

In optically shallow waters the upwelling irradiance just below the water surface Eu(0−)

is the sum of the flux backscattered by the water column Eu(0−)W (as if the bottom were

black) added to the flux reflected by the bottom Eu (0−)B(when it is not black), so that (Lee

et al., 1998a):

Eu(0−) = Eu(0−)W + Eu(0−)B (3.23)

The first term in Eq.3.23 corresponds to the photons that have not interacted with the

bottom, whereas those that have interacted with the bottom at least once form the second

term.

Different authors (Maritorena et al., 1994; Philpot, 1987) have formulated approxima-

tions of the irradiance reflectance for shallow water. Their equation result from a two-flow

approximation including the bottom influence:

R = R∞(1− e−2KzB ) + Ae−2KzB (3.24)

where R∞ is the subsurface irradiance reflectance over a hypothetical optically deep water

column, A is the bottom albedo, zB is the bottom depth, and K is the diffuse attenuation

coefficient of the water column and is equal for the downwelling and upward directions.

According to Lee et al. (1998b), this equation can be transformed to the remote sensing

reflectance Rrs:

R = Rrs,∞(1− e−2KzB ) +
A

π
e−2KzB (3.25)

Equation 3.24 is an analytical formula expressing the reflectance of shallow waters as a

function of observation depth, bottom depth, and albedo. This equation also involves two

apparent optical properties of the water body: a mean diffuse attenuation coefficient and a

hypothetical reflectance, which would be observed if the bottom was infinitely deep. This

equation expresses the Eu(0−)C as a function of the reflectance of an infinitely deep water

column, the vertical attenuation coefficients, and the irradiance reflectance of a substrate. It

shows how different reflecting substrates contribute to the reflectance observed on a water

surface. Assuming a substrate (e.g. sand) reflects more than the signal coming from the

water column, R∞, the signal from the substrate is added to the water column reflectance

resulting in an increased reflectance on the water surface. If the bottom is darker (e.g.

Potamogeton pectinatus), the reflectance on the water surface decreases. In case of a similarly

reflecting bottom target, the reflectance from the water column and from the substrate are

more or less at equilibrium and subsurface reflectance becomes nearly zero. Nevertheless,
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some characteristic differences between water body and bottom types (e.g. macrophytes,

corals, red algae, sediment) do exist (Fyfe, 2004).

However in reality the diffuse attenuation coefficient of the upwelling and downwelling

light is not equal. A more accurate expression is derived by Lee et al. (1998b, 1999), where

the effective attenuation coefficient is divided into a upwelling and a downwelling part. The

upwelling part distinguishes between radiation from the water column (W ) and from the

bottom (B). This results in the following equation:

R = R∞

(
1− e−(Kd+Ku,W )zB

)
+ Ae−(Kd+Ku,B)zB (3.26)

An new analytical parameterisations of irradiance reflectance and the remote sensing

reflectance in deep and shallow waters were developed by (Albert and Mobley, 2003; Al-

bert, 2004). The new model separates the dependencies on inherent optical properties, wind

speed, viewing, and solar zenith angle to obtain an invertible equation for remote sensing

data. Additionally, a new parameterisation for the upward diffuse attenuation coefficient was

developed. The Parameterisation of irradiance reflectance was used in the following analysis.

R = R∞ ·
[
1− C1 · exp

{
−
(

κ0

cos θs
+
(

1 +
bb

a + bb

)κ1,W

·
(

1 +
κ2,W

cos θs

))
(a + bb)zB

}]
+C2 ·A · exp

{
−
(

κ0

cos θs
+
(

1 +
bb

a + bb

)κ1,B

·
(

1 +
κ2,B

cos θs

))
(a + bb)zB

}
(3.27)

where C1 and C2 are additional coefficients introduced to adapt the equations to the

simulated situations, A is the bottom albedo, zB is the bottom depths, and four coefficients

κ1,W , κ2,W , κ1,B, κ2,B for upward and downward diffuse attenuation coefficient from the

water column W and the bottom B were determined.
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Chapter 4

Experimental Description

This chapter describes the study sites, the in situ methods of optical measurements by sub-

mersible instruments, and the water sample analysis protocols used in optical modelling and

for validation of classification results. A description of remote sensing and field data is fol-

lowed by presentation of analysis tools used, and pre-processing steps of the field and remote

sensing data are demonstrated in the last section.

4.1 Description of study areas

Two sites in two different lakes were selected for investigating submerged macrophyte map-

ping potential using hyperspectral HyMap data (Figure 4.1): the Lower Lake (Constance)

(Figure 4.2) and Karpfenwinkel at Lake Starnberg (Figure 4.3, Table 4.1). These test sites

were chosen because of their size, water depth, and similar abundance of dominant macro-

phyte species. The Lower Lake (Constance) is ideal for testing remote sensing applications as

it has very shallow littoral area and large patches of macrophytes in high diversity combined

with clear water and high visibility (6− 7 m). In contrast, the shallow areas at Karpfen-

winkel (Lake Starnberg) are turbid, contain high epithetic growth, and have sparse, patchy

macrophytes and thus is sub-optimal for remote sensing. Choosing one ‘optimal’ and one

‘sub-optimal’ test site allows the investigation of the potentials and limits of hyperspectral

mapping in shallow lake water habitats.
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Figure 4.1: Geographical location of study sites Lake Constance and Lake Starnberg

Table 4.1: Limnological parameters of the investigated lakes (LAWA, 1985)

Lake Constance Lake Starnberg
Lower Lake

Altitude above sea level 395 m 584 m
Area 63 km2 56 km2

Maximum depth 46 m 128 m
Average depth 13 m 53 m
Catchment area 11 454 km2 315 km2

Water exchange time 4 weeks 21 years
Secchi depth [m] 4.4 7.2
Mix type di-holomictic monomictic
Trophic state1 oligo-mesotrophic mesotrophic
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Figure 4.2: Map of location of Lower Lake Constance (Bodensee)

4.1.1 Lake Constance

Lake description and climate Lake Constance (german: Bodensee) lies at the southern

border of Germany, adjacent to Switzerland and Austria (47° 35′ N, 9° 25′ E). This freshwater

lake is 395 m above sea level and is the second largest pre-alpine European lake (after Lake

Geneva) both by area and volume, covering approximately 539 km2 (shoreline of around

273 km) and containing approximately 55 km3 (IGKB, 2002).

The lake is warm-monomictic, with its holomixis in late February or March, at a temper-

ature of 4 ℃The Rhine river is importing significant amounts of mineral particles. There are

several communities surrounding the lake, including Lindau, Friedrichshafen, Bregenz and the

city of Constance, with approximately 2.2 million residents. Due its important role of drink-

ing water source for about 4.5 million people, public interest and water quality monitoring is

a high priority.

The lake is sub-divided into three parts: the south-east main basin Upper Lake (Obersee)

is the largest (472 km2) and deepest basin (252 m). The fjord-like appendix to the north-west

is the Überlinger See (61 km2). The shallow Lower Lake Untersee (63 km2) located to the

south-west, is the test site examined here. The climate around Lake Constance is moderate-

warm because of moderating influence of the lake. Monthly mean temperatures for the city

1 Oligotrophic: natural lake with low concentration on chlorophyll and nutrients(< 10 µg[P ]);
Mesotrophic: higher concentration on chlorophyll and nutrients, (10–30 µg[P ]); Eutrophic: very
high concentration of chlorophyll and nutrients > 30 µg[P ]
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of Constance between 1982-2004 vary from 19.9 ℃ (July) to 0.9 ℃ (January). The mean

annual precipitation is approximately 833 mm (1982-2004).

Hydrographic characters The lake basin was occupied by the Rhine glacier about 30 000

years BP and at the end of this glaciation, ca. 15 000 years ago, its area was more than twice

its present size, including large parts of the Rhine Valley and both Lakes Walen and Zurich.

Today surrounding catchment drains an area of approximately 11 500 km2 resulting in an

annual water budget of about 12 km3 and a water residence time of 4 to 5 years. The Rhine

river is the main tributary contributing 75 % of the total inflow from the southeast (near

Bregenz) through the Upper Lake (Obersee), past the city of Constance, and drains westward

through the Lower Lake (Untersee) near Stein am Rhein. Due to its alpine origin, the river

carries abundant inorganic suspended particles into the eastern part of Lake Constance. Other

inflows, such as these from the northern part of the catchment, influence the lake chemistry

because of agricultural landuse. The Schussen River, for example, stands out with its high

loads of organic yellow substances, nitrates, and phosphates likely derived from fertilisers.

Physical/chemical/biological properties In its natural state, Lake Constance was a

typical oligotrophic pre-alpine lake with low concentrations of nutrients, low densities of

phytoplankton, high water transparency, and high hypolimnic oxygen concentrations (von

Grafenstein et al., 1992). With an increase in human population and fundamental changes

in the economy and human social behaviour, the trophic state of the lake deteriorated over

the past decades. By the end of the 1970s water quality had decreased to a eutrophic state,

however due to sewage diversion and waste water treatment in the catchment area the lake

is recovering. The chlorophyll concentration at the end of the 1970s was approximately

80 µgl−1, whereas at present their concentrations range from 0.5 µgl−1 in winter to 30 µgl−1

in spring (Bäuerle and Gaedke, 1998; Häse et al., 1998). In summer between June and Oc-

tober concentrations can vary typically between 5 and 15 µgl−1. The average current annual

primary production rate is around 200− 300g Cm−2y−1 (Häse et al., 1998). The concen-

tration of suspended particles lies between 0.3 and 10mgl−1, but can also be higher next

to the Rhine delta. Variations in dissolved organic carbon (Cdom) are comparatively low,

ranging between 1− 1.8 mgl−1. Information regarding spatial variabilities in the concentra-

tions of water optical properties suggest large differences, varying by a factor of 2− 5 times

for phytoplankton and suspended matter (Heege et al., 1998). The lakes flora is comprised

of emergent macrophytes such as Phragmites communis, and submerged macrophytes, such

as Najas marina, Chara aspera, C. contraria and C. tomentosa. In deeper areas (1.5− 4 m)

fairly dense patches of P. pusillus, P. perfoliatus, P. pectinatus are found. Since 1959, the
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Figure 4.3: Map of location of the study site Karpfenwinkel in the west at Lake Starnberg

IGKB2 has been responsible for the protection and observation of the lake. The Wollmatinger

Ried nature reserve next to Reichenau Island in the Lower Lake, is a wetland area of reeds

which is used by many birds for the stop-over during their annual migration.

4.1.2 Lake Starnberg

Lake description and climate Lake Starnberg (german: Starnberger See) is located

20 km north of the northern periphery of the Alps (47° 48′ N, 11° 20′ E). The lake lies at

596 m above sea level and has a maximum depth of 127m (average depth 54 m). Its volume

is about 2.998 km3 and covers approximately 56.36 km2 with a shoreline length of around

49 km (approx. 21 km from north to south, average width is approx. 2.8 km).

Surrounding settlements are mostly rural with Starnberg (located at the lake outlet)

being the largest city with 17 000 inhabitants. As Munich, the capital of Bavaria with a

population of 1.2 million, is situated nearby (15 km), the area is frequented for recreation

activities. Towns by the lake are Seeshaupt in the south and Tutzing in the west. The

climate may be described as temperate, having a July mean temperature of 16.8℃ and -

2.2℃ in January (measured in the period of 1931–1980 in Starnberg). The mean annual

2 Internationale Gewässerschutzkomission für den Bodensee, http://www.igkb.de



56 CHAPTER 4. EXPERIMENTAL DESCRIPTION

precipitation is approximately 1101 mm (1931–1980).

Hydrographic characters The 314.7 km2 catchment area is 5.6 times as large as the lake

itself. The water residence time is about 21 years as only a few small rivers flow into the

lake, the largest of which stems from the Osterseen, a chain of oligotrophic groundwater fed

lakes on its southern end. The lake basin was occupied by the Isar-Loisach-Glacier glacier

during the last glacial period some 15 000 - 20 000 years ago. It has a single, small island,

the Roseninsel, and a single outlet at the northern end, the Würm River.

Physical/chemical/biological properties The originally oligotrophic lake has been in-

fluenced by developments, more specifically by nutrient loading (Alefs, 1997). The installation

of a circular sewer line system from 1964 to 1976 and a treatment plant at the lake outlet

improved the water quality such that Lake Starnberg can now be called mesotrophic with a

tendency to oligotrophic. Because of its limited inflow, there is a certain danger of eutroph-

ication. The thermocline formation may be described as dimictic with complete turnover

in spring and fall (Schaumburg, 1996). Present chlorophyll concentrations range from 2.4

to 4.8 µg l−1 in winter, and in summer (July to October) range typically between 6 and

12 µg l−1. The average annual primary production rate is around 889g Cm−2y−1. The con-

centration of suspended particles lies between 0.3 and 2 mg l−1, whereas variations of dissolved

organic carbon (cdom) can range between 8 and 12 mg l−1. The lake flora is comprised of

emergent macrophytes such as Phragmites australis, Scirpus lacustris, Iris pseudacorus, and

submerged macrophytes such as Chara contraria, Nitellopsis obtusa, Potamogeton perfoliatus

and P. pectinatus with a few patches of C. intermedia, C. fragilis, and C. aspera. The test

site Karpfenwinkel lies in the south-west of the lake protected by a shallow, mesotrophic em-

bayment where submerged macrophytes occur. Water depths are up to 4.5 m. Light coloured

silt-mud and sand characterises the lake bottom material. The inflow from the south-east is

the Rötlbach which greatly reduces water clarity within this meso-eutrophic bay.

4.2 Intruments and water samples

4.2.1 Biochemical in situ data

The mechanism of remote sensing is the measurement of absorption and scattering of light

due to the various substrates, particulate and dissolved substances in a given water body. To

quantify the role individual components have in determining a spectrum, water samples from

different locations around the study sites for subsequent laboratory analysis were required.

The major advantage to laboratory analyse of absorption is that it allows each component’s
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Figure 4.4: Filtration set up on the boat

absorption coefficient to be separated. The water samples were collected in shallow water

(0.5 m water depth) with an opaque plastic bottle (1 l) and filtered immediately. Biochemical

analyse for phytoplankton concentrations CP , and total suspended matter CX were performed

by B. Beese and C. Gebauer3. Remote sensing and in situ measurements were undertaken

during flight campaigns in 2003 and 2004.

Phytoplankton

Photometric determination of pigment concentrations were performed using the sum of

chlorophyll-a and phaeophytin-a. Depending on (particulate matter) concentrations, a known

water volume (0.5 to 2.0 l) was filtered after sampling using a glass fibre filter (Schleicher &

Schuell No 6 VG4), retaining particles > ca. 1 µm. The samples were shaded from direct sun-

light during filtration and were stored in dark, cool boxes. The filter samples were analysed

immediately or were placed in a refrigerator at about -18 ℃for later analyis. The pigments

were extracted in the laboratory using hot ethanol (90 %) following a method described by

Nusch (1980). Particulates were separated via centrifugation. Transmission through the pig-

ment solution was measured in 10 cm cuvettes at 665 and 750 nm using a photometer. The

3 University of Konstanz, Limnological Institute, Mainauserstr. 252, 78464 Konstanz, Germany, mailto:
baerbel.beese@uni-konstanz.de

4 Schleicher & Schuell, Hasthnestr. 3, 37582 Dassel, Germany, http://www.schleicher-schuell.de
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750 nm value is used for turbidity correction of the 665 nm value. The correction of phaeo-

phytin was accomplished by a second photometric measurement at the same wavelength,

subsequent to a hydrochloric acid (2 mol/l HCL)5 treatment. Transmission measurements

at the same wavelengths were used to calculate the concentrations according to methods

described by Tilzer (1983).

Suspended matter

Total suspended matter (TSM), or seston, is the sum of organic and inorganic particles and

was measured by weighing the dry residuum from the filter. As described for the phytoplank-

ton determination, a known volume of water (0.5 to 2.0 l) was filtered through a pre-weighed

glass fibre filter (Schleicher & Schuell No 6 VG6(not preheated)), retaining particles ≥1 µm.

The filters were transported to the laboratory in a cooler and stored at about -18℃ prior

to analysis. The filters were dried in an oven for about two hours at 105℃ and the TSM

was determined as the difference between dry weight of the filters before and after filtration.

Normalisation with the water volume yielded TSM concentration. Standard Loss-on-Ignition

procedure (Heege, 2000) was used to estimate the inorganic particles concentration.

Gelbstoff

Concentration (Y ) and spectral shape (S) of gelbstoff were measured from samples obtained

from about 0.5 m depth. To remove particulate matter water samples were filtered using

glass fibre filters retaining particles > 1 µm (Schleicher & Schuell No 6 VG) and re-filtered

using a pre-rinsed membrane filter of 0.2 µm pore size (Sartorius Type 113076) (Gege, 2004).

The filtered water was transferred to small bottles of PVC or glass and stored cool prior

analysis. Spectral measurements were performed in the laboratory within 24 hours of sam-

pling using a Varian CARY-17 ultraviolet-visible double beam spectrophotometer and quartz

cuvettes with 5 and 10 cm pathlengths. In both cuvettes, the transmission of each sample

was measured from 190 to 900 nm at 1 nm intervals. The ratio between transmission spectra

was converted into water absorption and gelbstoff using the Lambert-Beer law. The gelbstoff

absorption spectrum aY (λ) was calculated by subtracting the pure water absorption spec-

trum. Absorption at 440 nm is a measure of concentration (Y ), and spectral slope (S) is an

indicator of wavelength-dependency. Both Y and S were calculated by a linear regression of

ln aY (λ) from 420 to 460 nm as the use of a logarithm compensates for the (near) exponential

5 Hydrochlorid acid (2mol/l HCL) converts chlorophyll-a into phaeophytin-a (Albert, 2004)
6 Sartorius AG, Weender Landstr. 94-108, 37075 Goettingen, Germany, http://www.sartorius.com
7 Varian Inc., 3120 Hansen Way, Palo Alto, CA 94304-1030, USA, http://www.varianinc.com
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wavelength dependency of aY (λ) (Gege, 2000).

4.2.2 In water optical data

Besides measuring inherent optical properties (IOP) and the constituents concentrations on

which these properties depend, it is also desirable to measure the apparent optical properties

(AOP) to directly verify the remote sensed measurements and verify models using the IOPs.

Unlike the IOPs, AOPs are not measured by analysing water samples, because they depend

on ambient radiance distribution.

RAMSES

The commercially available Radiation Measurement Sensor with Enhanced Spectral Resolu-

tion (RAMSES)8 is a combination of submersible radiance and irradiance sensors for optical

measurements in water (Figure 4.5). The system employed simultaneously in this study

consisted of one sensor measuring Lu, the upwelling radiance (RAMSES-ARC-VIS 010–03–

810E), one sensor measuring Eu, the upwelling irradiance (RAMSES-ACC-VIS 010–03–8109),

and one sensor measuring Ed, the downwelling irradiance (RAMSES-ACC-VIS 010–03–8110).

The detected signal, collected every 10 seconds, was transmitted from each sensor unit to

the built-in MMS9 spectrometer consisting of a 256-channel silicon photodiode array. The

spectrometer optics allows for the use of 190 independent channels from 320 to 950 nm with

a spectral sampling interval of 3.3 nm. The wavelength position accuracy is 0.3 nm at a reso-

lution of 10 nm (FWHM). In air, the radiance detector has a field of view of 7° and the noise

equivalent radiance is about 0.3 · 10−6 Wm−2nm−1sr−1 at 500 nm with an integration time

of 8 s. The three sensors were mounted such that their optical axes were aligned parallel to

each other and their entrance optics are on the same level (Figure 4.6). Spectral averaging

of between 10 and 20 spectra was performed to ensure an optimal signal-to-noise ratio. The

upwelling irradiance sensor also contains a 2-axes tilt (±45°) and pressure sensor (50 bar). A

PSA-91610 sonar altimeter was attached to the frame estimate water depth. All sensors were

connected to a RS232 interface to ensures that all measurements were made simultaneously.

The data were transferred from the sensors to an on-board computer by a 25m long cable.

Irradiance reflectance (R), remote sensing reflectance (Rrs), and Q-factor were subsequently

derived from the signals recorded (Albert, 2004).

8 TriOS Optical Sensors, Werfweg 15, 26135 Oldenburg, Germany, http://www.trios.de
9 Carl Zeiss Jena GmbH, Carl-Zeiss-Promenade 10, 07745 Jena, Germany, http://www.zeiss.de
10 Benthos Inc., Undersea Systems Including Datasonics Inc., 49 Edgerton Drive, North Falmouth, MA

02556, USA, http://www.benthos.com
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Figure 4.5: RAMSES spectroradiometer, radiance sensor (left), and irradiance sensor (right)

4.2.3 Airborne data

HyMap

The HyMap sensor, built by Integrated Spectronics Ltd.11, and operated by HyVista Corp.12,

is an airborne imaging system that was originally used for mineral exploration and envi-

ronmental monitoring, and records images in a large number of wavelengths. The system

functions as a ‘whisk-broom’ scanner, recording an image by using a rotating scan mirror,

allowing the image to be built line by line as the aircraft flies forward. The reflected sunlight

collected by the scan mirror is then dispersed into different wavelengths by four individual

spectrometer units. The wavelengths range between 400 and 2500 nm (visible to infrared) is

covered in 125 spectral bands, each with a bandwidth of approx. 16 nm (Table 4.2). The

instrument offers a high signal-to-noise ratio (SNR) of more than 500:1 which is essential for

mapping low reflecting targets such as submerged vegetation. The HyMap uses real time al-

titude and differential global positioning system (DGPS) measurements to provide geocoded

imagery. The spectral and image information from the spectrometer is digitised and recorded

on tape. To minimise distortion in the image by aircraft pitch, roll, and yaw motions, HyMap

is mounted on a gyro-stabilised platform. While the platform minimises the effect of aircraft

motion, small image distortions remain which are monitored using a three axis accelerometer

system (IMU13 C-MIGITS II). The field of view (FOV) of the recorded image is 61.3° or

about 2.3 km when operating 2000m above ground level. Typically, the spatial resolution

achieved with the HyMap sensor is in range of 3 to 10m, flying at an operational altitude of

1500 to 4500m.

11 Integrated Spectronics Pty Ltd, Baulkham Hills, NSW 1755, Australia, http://www.intspec.com
12 Hyvista Corporation, Baulkham Hills, NSW 1755, Australia, http://www.hyvista.com
13 Inertial Monitoring Unit
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Table 4.2: HyMap spectral bands from 4 00− 900 nm calibrated in 2003 and 2004, their band
number and full width half maximum (FWHM)

Band Nr HyMap2003 FWHM HyMap2004 FWHM
[nm] [nm] [nm] [nm]

1 438.000 11.000 445.000 8.100
2 450.000 11.400 454.700 13.600
3 462.400 16.000 469.300 16.500
4 478.100 15.500 485.200 15.600
5 493.400 16.500 500.100 15.600
6 508.500 15.700 515.000 15.400
7 524.100 15.600 530.700 16.400
8 539.400 16.300 546.300 15.900
9 554.900 16.000 561.400 15.200
10 570.200 15.400 576.300 15.300
11 585.200 15.000 591.500 15.500
12 600.200 15.800 607.000 16.100
13 616.300 16.100 622.500 15.300
14 631.700 15.400 637.600 15.400
15 646.500 15.300 652.600 15.100
16 661.600 15.800 667.600 15.300
17 677.100 16.000 682.800 15.500
18 692.400 15.700 698.200 15.900
19 707.500 15.900 713.500 15.300
20 722.900 16.400 728.500 15.200
21 738.100 16.000 743.500 15.400
22 753.000 15.900 758.700 15.600
23 768.000 16.100 773.800 15.100
24 783.100 16.600 788.600 15.300
25 798.300 16.600 803.700 15.600
26 813.400 16.500 818.900 15.700
27 828.500 16.900 834.100 15.600
28 843.900 17.200 849.200 15.900
29 859.200 16.900 864.500 16.200
30 874.300 17.400 879.600 16.200
31 878.200 16.300 880.500 16.900
32 895.400 16.000 897.100 16.100
33 911.100 15.700 913.300 16.700



62 CHAPTER 4. EXPERIMENTAL DESCRIPTION

4.3 Data set

4.3.1 Ground campaigns

Field samples were collected in summer 2003 and 2004 under sunny conditions. To assess the

range of spectral variability and to characterise spectral features found in various macrophyte

species, a sampling strategy was adopted to measure the spectral reflectance of as many

homogenous macrophyte species as possible. The field sampling was carried out at the two

test sites in the main growing season (from June to August) between 10 am and 4 pm local

time to measure seasonal and local variations. The selection of macrophytes species was made

according to their abundance and distribution, size and homogeneity of the patches and the

presence of species types in both lakes.

Figure 4.6: RAMSES spectroradiometer, measurement setup on the boat

RAMSES submersible radiometers were used for optical measurements in the water, as

described in section 4.2.2. The instruments were placed at a distance of 2 to 3m from

the boat, beyond its shading influence. Sampling of macrophytes was carried out following

systematic measurements of hyperspectral reflectance within a small area 15 cm above the

benthic habitat. Bottom albedo spectra A were measured above either homogeneous patches

of macrophytes or sediment. Since the instrument was kept at a nadir angle approximately

15 cm above the target, the water column between the sensor and the target is assumed to

be negligible, such that no correction for attenuation is required. The equivalent reflectance

measured 50 cm below the water surface, the so called subsurface reflectance R(0−), was also

determined for validation of remote sensing data. Averaging of 10–15 individual spectra per

sample was performed to ensure optimal signal-to-noise ratio and that the random measure-

ments covered the range of variance within the homogeneous substrate type. A hand held
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Table 4.3: The macrophyte types sampled with one type determining species, their codes
used, the number of sample plots contributing to each type, and the total number of spectra
collected. (Lake 1 = Lake Constance, Lake 2 = Lake Starnberg)

Species Lake Type Nr.of Nr. of
Code Plots Spectra

Chara aspera 1 1.1Ca 4 38
Chara aspera 2 1.2Ca 4 35
Chara aspera 2 1.3Ca 7 52
Chara contraria 1 2.1Cc 15 132
Chara contraria 2 2.2Cc 9 50
Chara contraria 2 2.3Cc 20 111
Chara intermedia 2 3.2Ci 2 18
Chara tomentosa 1 4.1Ct 4 37
Najas marina 1 5.1Nm 7 13
Najas marina 2 5.2Nm 6 32
Nitellopsis obtusa 1 6.1No 4 15
Potamogeton pectinatus 1 7.1Pp 12 58
Potamogeton pectinatus 2 7.2Pp 24 171
Potamogeton pectinatus 2 7.3Pp 27 173
Potamogeton perfoliatus 1 8.1Pf 7 32
Potamogeton perfoliatus 2 8.2Pf 8 46
Sediment 2 9.2Ss 4 35

158 976

echo-sounding device recorded water depths for each spectral measurement, which ranged

from 0.5 to 4.5 m. A Trimble differential global positioning system14 (DGPS) provided ge-

ographic coordinates of each sample location. A photograph was taken to accompany each

suite of measurements for a given target. A full species composition description, with their

percentage cover estimates, water depth, growth height, and status of epithetic growths was

made at each location (Table 4.3 and Table 4.4).

14 Trimble GmbH, Am Prime Parc 11, 85479 Raunheim, Germany, www.trimble.com
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4.3.2 Flight campaigns

HyMap imaging spectrometer data were acquired by the HyVista Corp.15 over the study

sites in June/July 2003 and 2004 (see Table 4.5) coincident with the campaign. The data

were collected onboard a DLR16 research aircrafts (either a Cessna 208B or a Dornier DO

228) from an altitude of ∼ 1800 m, providing an effective pixel resolution of roughly 4.2 m

and a 2.1 km swath. The weather conditions during each overpass were clear and sunny

with no clouds. In addition to the collected image data, aircraft altitude, such as inertial

navigation information were collected for correction of aircraft altitude, pitch, roll and yaw.

The aircraft geographic location was monitored using DGPS, which allows the image data

to be fully geocoded. Flights to obtain airborne imagery were undertaken considering solar

zenith angles of 30° to 60° and a flight path at 0° or 180° headings with respect to the solar

azimuth to minimise imaging of sunglint effects. This means the aircraft flew either into or

away from the sun. An overview of date, time, and location of the acquired HyMap flightlines

is found in Table 4.5.

15 Hyvista Corporation, Baulkham Hills, NSW 1755, Australia, http://www.hyvista.com
16 German Aerospace Center (DLR Oberpfaffenhofen), Münchnerstr. 20, 82234 Wessling,

http://www.dlr.de
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4.4 Data processing

4.4.1 Field spectroscopy

Analysis tools

RAMSES spectra were extracted from the computer using TriOS MSDA 1.99 -IPS104/417

software. Statistical analysis was carried out using the free statistic software package R

Version 2.2.118(R Development Core Team, 2005). The principle component analyses were

generated using the R function prcomp() from stat package (Venables and Ripley, 2002).

The linear discriminant analysis uses the R function lda() in MASS package (Venables and

Ripley, 2002). The Genetic algorithm GALGO for feature selection were all generated in R

using the modules galgo (Trevino and Falciani, 2006). The derivatives were all calculated

from reflectance spectra and Savitzky–Golay smoothed using ORIGIN 7.019.

Pre-processing

The RAMSES spectrometer automatically calculates from the measured radiance and irra-

diance spectra remote sensing reflectance and irradiance reflectance. Spectra used in the

following analysis are the average of 10− 15 spectra of the same target and their mean and

standard deviation was calculated. The locations selected for analysis had a standard devi-

ation of less than 2.5 % in order to improve the quality of the measurements and to obtain

spectra of homogenous substrates. Those measurements with standard deviation higher than

2.5 % were re-processed, calculating the median reflectance and its 95% percentile. The

spectra beyond that percentile were discarded and mean reflectance was calculated again

to increase number of useful spectra for statistical analysis. For all analyses, the following

Pre-processing of data was performed. First, spectral curves were truncated below 400 nm

and above 700 nm, since the measurements are extremely noisy outside of this range. This

left 61 bands, each with a width of about 5 nm, corresponding to RAMSES spectral sampling

interval. These spectra were simulated to HyMap spectral sampling interval 2003 and 2004

(Table 4.2), resulting in 33 resampled bands from 440 to 910 nm (Table 4.2).

17 TriOS Optical Sensors, Werfweg 15, 26135 Oldenburg, Germany, http://www.trios.de
18 The R Foundation for Statistical Computing, Vienna, Austria, Version 2.2.1 (2005-12-20 r36812) ISBN

3-900051-07-0, http://www.r-project.org
19 http://www.OriginLab.com
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4.4.2 Hyperspectral data analysis

Analysis tools

Atmospheric, and air-water interface, and water column correction was performed using the

Modular Inversion & Processing System (MIP) developed by EOMAP20, DLR21, TUM22 and

RAS23. Image visualisation and spectral analysis was performed using ENVI Version 4.124

and image processing software XDIBIAS (Müller et al., 2002).

Pre-processing

Pre-processing which involves calibration, masking out of land features and geo-referencing

was performed using XDIBIAS image analysis software. The raw image data were first

processed to ’at-sensor’ radiance (µWcm−1sr−1nm−1). The HyMap data were radiometri-

cally calibrated, corrected for the motion of the aircraft, and georeferenced using RECTIFY

and XDIBIAS software, developed at the German Aerospace Centre (DLR).

The images were further corrected for atmospheric, air-water interface and water column

effects using MIP (Miksa et al., 2004; Heege et al., 2003a). This physical-based correction

method allows for direct comparison of image data once distortion effects are removed. Details

about the program may be found in Heege and Fischer (2004); Miksa et al. (2005).

Bottom depth is one parameter of shallow waters that can be retrieved by means of inverse

modelling. This inversion procedure is the basis for the retrieval of water parameters in MIP.

Different modules in the software support algorithms to derive bio-physical parameters by

inverting the measured radiance signal at the sensor. Inverted parameters include e.g. aerosol

concentrations, the concentration of water constituents, and the reflectance characteristics of

substrates in shallow waters (Heege, 2000; Heege and Fischer, 2004).

A previous application of MIP for mapping water constituents in Lake Constance demon-

strated that the software was an efficient and reliable tool for the inversion of remote sensing

data from natural waters (Heege and Fischer, 2004). Details about the processing with MIP

for the retrieval of bottom depth are not yet published, though the overall processing method-

ology used by MIP is found in Figure 4.7. This scheme follows the same structure as the one

20 EOMAP, c/o Anwendungszentrum, Sonderflughafen Oberpfaffenhofen, 82205 Gilching, Germany
,http://www.eomap.de

21 German Aerospace Center (DLR Oberpfaffenhofen), Münchnerstr. 20, 82234 Wessling, Germany
http://www.dlr.de

22 Technische Universität München, Limnologisches Institut, Hofmark 3, 82393 Iffeldorf, Germany
http://www.limno.biologie.tu-muenchen.de

23 St.Petersburg Institute for Informatics and Automation of RAS, St. Petersburg, 14 line 39, 199178
Russia, http.//www.spiiras.nw.ru

24 CREASO GmbH, Talhofstrasse 32A,82205 Gilching, Germany http://www.CREASO.com



4.4. DATA PROCESSING 69

adapted from Van der Piepen et al. (1987) and Dekker et al. (1995)

An azimuthally resolved radiative transfer model for a multilayer atmosphere-ocean sys-

tem with a flat water surface is used for aerosol retrieval, sun glitter, and atmospheric cor-

rection modules (Figure 4.7). The retrieval of water constituents is achieved by an iterative

fitting algorithm to adjust modelled and measured underwater reflectances. The radiative

transfer modules and database system in MIP was implemented by Kisselev et al. (1995);

Kisselev and Bulgarelli (2004) and is based on the Finite Element Method (FEM) (Bulgarelli

et al., 1999). Here, it is used for the atmospheric, water surface and Q-factor correction of

the underwater light field in the same manner as explained in Heege and Fischer (2004).

Databases are generated by this radiative transfer model which calculates radiances in

a vertically inhomogeneous (multilayer) atmosphere-ocean system (with respect to all angle

dependencies of the sun and observer geometry). The first database contains a Lambert

reflector of defined reflection RL(0−) (underwater radiance was assumed to be isotropic). The

free parameters of the database are three types of aerosols: τ1, τ2, τ3 (continental, maritime,

urban), each with four optical depths between 0.01 and 0.5 (at 550 nm), seven reflection values

for RL(0−)(λ) between 0.0 and 0.6, 17 observer altitudes (h), 17 azimuth differences (∆φ)

between sun and observer, eight sun-zenith angles (θsun) and eight observer zenith angles (θ).

The second database is needed to correct the artificial Lambert reflectance values RL(0−)

for the bi-directionality of the underwater light field to R(0−) = Eu/Ed by

R(0−) = RL(0−)π/Q (4.1)

Values of Q = Eu(0−)/Lu(0−)(θφ) were calculated with a standard atmosphere, but with a

fixed medium aerosol concentration and an expanded water body. Q is calculated as function

of λ, h, δφ, θ, θsun and the water constituent concentrations (P , Y , X). The initial step

of using MIP, irrespective of making forward calculations or inverse modelling, is to reduce

the two databases to smaller, so called mission databases. This is accomplished by using the

geometric and flight information given of the recorded scene. The main parameters which

have to be taken into account are flight heading, pitch angle, and the position of the sun.

This information is stored in a mission file which is used to document all program settings

and specifications for the processing of the specific scene. The processing can be summarised

in Figure 4.7.

1. Coupled retrieval of aerosol and water constituents The Fitaerorefbased mod-

ule was used, to retrieve aerosol and water constituent (phytoplankton pigments, suspended

matter, gelbstoff) concentrations in the deep water areas of the remotely sensed scene, as
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described in Miksa et al. (2005). With the knowledge of the aerosol concentrations, subsur-

face irradiance reflectance R(0−) can be retrieved after atmospheric- and air-water interface

- correction. The water constituents (phytoplankton pigments, suspended matter, gelbstoff)

concentrations are used in order to correct the bidirectional effect of the water body itself

(Heege, 2000; Heege and Fischer, 2004).

2. Atmospheric- and water surface-correction This part was done as described in

Heege (2000); Heege and Fischer (2004). The MIP module Atmossurfcorr was used to

correct for atmospheric influences using constant values of aerosol concentrations and water

constituents, previously retrieved and registered in the mission file. They are the result of

a retrieval performed only in certain points of the scene, as keeping the values fixed for the

whole scene assumes that there is low heterogeneity in relation with those parameters, such

that the conditions are constant. The output of this part of the processing are subsurface

reflectances R(0−).

3. Bottom albedo, bottom coverage and water depth retrieval The MIP module

Watrecor is used to estimate bottom albedo, bottom coverage and water depth. The proce-

dure consists of the inversion of the shallow water areas. Inputs are constant values for water

constituents and the underwater reflectance image (output of the previous step). The output

is a set of 29 products which stores different information about the parameters retrieved.

One of these products is an underwater digital elevation model (DEM) which comprises the

water depth information (z) for the whole scene.

Bottom albedo spectra A are calculated from R(0−) after Albert and Mobley (2003)

(Section 3.3.2, Eq. 3.27) R(0−) using one set of water constituent concentrations previously

retrieved (Heege and Fischer, 2004; Kisselev and Bulgarelli, 2004; Kisselev et al., 2005) and

the Gaussian expression for the spectral behaviour of yellow substance absorption (Gege,

2000). The water depth zB is retrieved iteratively in combination with the bottom albedo

A. During the inversion of shallow water, the bottom albedo and the subsurface albedo

(comparison of model spectra with ‘measured’ spectra from HyMap) are fixed while depth

and bottom coverages of three main bottom types are iterated (Heege et al., 2003b)
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Figure 4.7: Process chart of the Modular Inversion Program (MIP) to calculate water con-
stituents and substrate cover from remote sensing imaging spectrometry data.
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Chapter 5

Research Approach

The spectral properties of eight common species of aquatic macrophytes were investigated

to establish whether or not they revealed sufficient information for differentiation, such that

water quality may eventually be inferred (Schneider, 2004). In situ measurements took place

between June and August 2003 and June and August 2004 (Table 4.3). The algal species

were chosen because of their widespread occurrence throughout central Europe. To assess

the range of spectral variability that may be found in each species, reflectance spectra of

homogeneous macrophyte patches were measured with a spectroradiometer according to the

procedures described in section 4.3.1 during each growing season in Lake Constance and Lake

Starnberg. The total number of patches measured for each species was not equal because not

all species occurred at all sites. Hence, the total sample sizes were n = 70 for Chara aspera, n

= 246 for C. contraria, n = 25 for C. intermedia, n = 26 for C. tomentosa, n = 37 for Najas

marina, n = 4 for Nitellopsis obtusa, n = 249 for Potamogeton pectinatus, and n = 70 for P.

perfoliatus (Table 4.3). Spectra were analysed using Principal Components Analysis (PCA)

and derivative analysis to determine if differences exist, and were subsequently assessed for

significance using a Jeffries-Matusita distance method.

5.1 Scientific value

This study is intended to move hyperspectral technology one step closer towards discrimi-

nating macrophyte species in lakes. Instead of using laboratory data (Schmidt and Skidmore

(2003)) that omit the difficulties and variability imposed by field conditions (e.g. the fluctua-

tion of light source energy, change of daily atmospheric state, the effects of canopy formation,

the cost of accessibility, the coarser spatial and spectral resolution of on-board hyperspec-

tral sensors, the effect of seasonal changes, the effect of background soil and waters), in

situ underwater bottom albedo measurements A taken just above macrophyte patches were

73
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analysed for spectral separability to establish whether real-life hyperspectral sensors (e.g.

HyMap, ROSIS, CASI etc.) can be used to differentiate macrophyte species. The second

goal of this study was to develop algorithms for macrophyte spectra classification. Therefore

it was more appropriate to use in situ spectra which can be directly related to real field

conditions. The classification procedure was tested on in situ measured reflectance spectra

and then subsequently applied to HyMap hyperspectral data. Results show the potential

of applying hyperspectral remote sensing to macrophyte mapping for the purposes of water

quality monitoring.

5.2 Analysis of spectral in situ data

The composition and abundance of submerged macrophytes in any given littoral zone are

influenced by the sum of physical and chemical conditions at that location. Unique com-

binations of canopy structure and substrate composition may be associated with individual

species, and are features in remote sensing that ultimately determine a bottom albedo sig-

nal. In situ underwater bottom albedo measurements have negligible water column effects,

as measurements are taken directly above the macrophyte patches, as described in section

4.2.2. In this study, a total of 158 mean reflectance spectra were measured (after averaging)

from eight macrophyte species at Lake Constance and Lake Starnberg (Table 4.3). For some

locations in each lake, a single species or uniform patch was measured multiple times. Be-

fore statistical analyses were performed, spectra were selected and processed as described in

section 4.3.1.

5.2.1 Unsupervised feature extraction

An in-depth discussion of the theory behind the statistical analyses is presented following a

description of how they were applied in this study. Principal component analysis, derivative

analysis, and the Jeffries-Matusita distances were the three statistical techniques employed.

Methodology

The first stage of the analysis was to test for differences between the reflectance spectra of the

eight macrophytes by determining the principal components contained within the data set.

The second step in the analysis was to determine whether any statistical differences could

be enhanced by using first and second order derivatives. The third step, after statistical

differences were found, was to determine how significantly different, or distant in spectral

space, the macrophytes were from each other by using the Jeffries-Matusita (JM) distance
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index. The potential of correct classification of the macrophyte species using hyperspectral

remote sensing is predicted by these distance measures.

Principal component analysis Principal component analysis (PCA) was used to view

the data in a two-dimensional space and to identify possible separation between species. A

two-dimensional graphic has the potential to reveal previously unsuspected groupings, or

draw attention to misclassified samples. The PCA was performed on pre-selected spectra

reflectance data between 400−700 nm wavelengths, listed in Table 4.3. PCA was chosen to

illustrate spectral differences, as spectral variations within an individual species (i.e. intra-

specific spectral variation) in unprocessed data had overlaps that made it very difficult to

resolve differences between species (i.e. inter-specific spectral variation). The PCA loadings

were used to pre-select for relative contributions of particular wavelengths and to identify

poor spectral locations (wavelengths within the spectra).

Jeffries–Matusita distance The spectral separation between each pair of macrophyte

species was quantified using the Jeffries-Matusita (JM) distance index. Because the JM

distance is a parametric method, it was necessary to use a reduced number of spectral features

(bands) for calculation, therefore only the first and second principal components were included

in the calculation (Mutanga et al., 2003). The JM distance is asymptotic to the value of two,

thus an index value of two indicates separation, whereas an index less than 1.9 assumes the

pair is unlikely to be separated in the following classification procedure.

Derivative analysis To optimise separation and enhance species discrimination, derivative

analyses were performed. Differences in rates of change (slope) of the macrophyte spectra

were calculated with first and second order derivatives and were subsequently used to identify

spectral regions where the macrophyte species had distinct features. Derivatives are thought

to be useful in detecting changes in relative pigment concentration pigment balances between

macrophyte species and to enhance absorption features in reflectance signals associated with

a change of vegetation type or physiological state. Higher derivatives are not useful for

establishing spectral differences because their profiles are generally noisy (Joyce and Phinn,

2003). The Savitzky-Golay smoothing method, which generates a local polynomial regression

around each point (Tsai and Philpot, 1998), was used in this study’s derivative computation.

The maximum derivative value was also selected as a potential variable for discriminant

analysis (Section 5.2.2). Qualitative information regarding pigment composition was obtained

by noting wavelength position of absorption features in the derivative spectra. Absorption

features were compared against published values of pigment absorption peak wavelengths (see

Table 2.1 and 2.2). Based on these statistical analyses, spectral bands were selected where
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the macrophytes appeared spectrally unique.

Principles of statistical pre-processing

Principal component analysis Principal components analysis (PCA) is a multivariate

method of statistical analysis and has been used widely with large, multi-dimensional data

sets. Multi- or hyperspectral images are often highly correlated, caused either by similar

materials which make up the spectrum or through sensor band overlap. PCA is an ideal

method for transforming correlated variables in a sample data set into a new, uncorrelated

co-ordinate system or vector space. Each new variable is a linear combination of the original

variables, such that the sequence of new factors successively represent the a maximal variance

of the data. In general, a data matrix X has the form XT = [x1, . . . ,xn], where xi is the ith

training sample.

To derive principal components, the covariance matrix ΣX will be used, as defined by

(Richards, 1993) as:

ΣX =
1

n− 1

n∑
i=1

(xi − µx)(xi − µx)T (5.1)

where µx is the sample mean vector. A matrix A is sought, which linearly transforms the

original variables into vectors, such that the covariance matrix Y of the new co-ordinate

system is diagonal and thus without correlation between any of its components.

ΣY =
1

n− 1

n∑
i=1

(yi − µy)(yi − µy)T = ATΣXA (5.2)

A new data matrix Y can be derived by a linear transformation from data matrix X;

Y = AX with AT A = I. (5.3)

Each resulting eigenvalue is equal to the variance of the respective principal component

along transformed coordinate axes, and the sum of all eigenvalues is equal to the sum of all

band variances in the original data. Associated with each eigenvalue is a set of coordinates

defining the direction of the associated principal axis (Krzanowski, 2000).

Eigenvalues and eigenvectors therefore describe the lengths and direction of principal

axes. Eigenvectors can also be interpreted as correlations between the abstract principal

components and individual bands in the original spectra (or image). These correlations

or loadings are used in the interpretation of the principal components and describe how

closely a particular spectrum resembles the principal component (Holden and LeDrew, 1998).

Principal components are ordered by decreasing variances. The result is a removal of any
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correlation present in the original data with a simultaneous compression of most of the total

variance in fewer dimensions. For more details the reader is referred to Jolliffe (1986) and

Krzanowski (2000).

Jeffries-Matusita Distance A main objective of this study is to establish whether or not

the in situ spectra contain adequate spectral information to discriminate between macro-

phytes at the species level. Separation of species based on their spectra is possible if different

species’ spectra have high statistical distance in feature space and variation within a species’

spectra is less than among species’ spectra (Clark et al., 2005). For the purposes of this

study, it was necessary to calculate the spectral separability index of every macrophyte pair

to determine if significant differences exist.

The JeffriesMatusita (JM) distance between a pair of spectral classes is the measure of the

average distance between the two class density functions. For normally distributed classes,

this distance becomes the Bhattacharyya (BH) distance (Kailath, 1967). For the BH distance,

a larger value indicates greater average distance, while the JM distance1 is asymptotic to the

value two for increasing class separability.

Whereas an increasing BH distance does not necessarily indicate how successful the two

classes are discriminated, a JM distance of 2.0 between two spectral classes would imply

classification of those two classes with 100 % accuracy (Richards, 1993), which means the

within group difference is smaller than the between group difference.

A common practice in remote sensing is to use a squared JM distance threshold of ≥
1.90 to indicate if any two macrophyte species are spectrally separable. Additional details

regarding separability analysis can be found in (Richards, 1993). The JM distance calculation

in this study was based on Eq. 5.4.

Jij =
√

2(1− e−B) (5.4)

where

B =
1
8
(µi − µj)

T

(
Σi + Σj

2

)−1

(µi − µj) +
1
2

ln

(
(1/2)|Σi + Σj |√
|Σi| × |Σj |

)
Note i and j are two signatures (classes) of macrophyte species being compared, Σi is

the covariance matrix of signature i, µi is the mean vector of signature i, ln is the natural

logarithm function, T denotes matrix transposition, and |Σi| is the determinant of Σi.

Derivative analysis Derivative spectroscopy, a technique derived from analytical chem-

istry for resolving overlapping spectral features, was first applied primarily in hyperspectral
1 The Jeffries-Matusita distance method delivers a value between 0 and

√
2 (∼ 1.41), such that the squared

distance gives a number between 0 and 2.
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sensing of terrestrial environments (Demetriades-Shah et al., 1990). Increasing use of hyper-

spectral sensors in aquatic or marine settings, e.g Holden and LeDrew (1998); Clark et al.

(2000) opened the possibility of using derivative techniques for studies of algae in littoral

environments (Louchard et al., 2002; Richardson, 1996).

Derivative spectroscopy uses wavelength changes in spectral reflectance or radiance to

sharpen spectral features, separating components in the derivative spectrum clearer than in

the reflectance spectrum. Another advantage is that second and higher order derivatives

are relatively insensitive to variations in illumination intensity, regardless whether caused by

changes in sun angle, cloud cover, or topography. At the spectral sampling interval typical

of hyperspectral systems, derivatives should also be relatively insensitive to the spectral

variations of sunlight and skylight (Tsai and Philpot, 1998).

Several investigations using spectral derivatives in shallow water environments have used

high-order derivatives, however first and second order derivatives have been most common

(Butler and Hopkins, 1970; Demetriades-Shah et al., 1990; Holden and LeDrew, 1998; Fraser,

1998; Tsai and Philpot, 1998; Andrefouet et al., 2003b). The simplest numerical method

for generating derivatives divides the differences between successive spectral values by the

wavelength interval that separates them. The first order derivative provides information on

the rate of change in reflectance, which is the slope with respect to wavelength; the second

order derivative reveals the change in slope with respect to wavelength (Holden and LeDrew,

1998). Derivatives were computed as change over bandwidth ∆λ, defined as ∆λ = λj − λi

where λj > λi. The estimation for the first derivative is shown in Eq. 5.5. The 2nd derivative

is given by Eq. 5.6
dR

dy
≈ R(λj)−R(λi)

∆λ
= R′ (5.5)

d2R

dy2
=

d

dλ

(
dR

dλ

)
= R′′ (5.6)

Derivatives are particularly sensitive to noise, thus smoothing or otherwise minimising

random noise is a major concern. In this study, first and second derivatives of spectra were

calculated by use of a least-squares third order polynomial smoothing filter of 15 nm width

(Savitzky and Golay, 1964). The general equation of the least squares convolution can be

given as follows:

I∗j =

j=m∑
j=−m

CjIi + j

M
(5.7)

where Ii (i = 1, 2, . . . , n ) are the original brightness values, and I∗ is the resultant value,

Cj is the coefficient for the value of the filter (smoothing window) (Jonckheere et al., 2005),
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and M is the number of convoluting integers and is equal to the window size 2m+1. Further

details about the derivative technique are found in early analytical chemistry literature, e.g.

Procter and Sherwood (1982); O’Haver and Green (1976).

5.2.2 Supervised feature extraction

An automated, transferable, and repeatable classification methodology is not only dependent

on the accuracy of the physical model of corrected remote sensing images but also on the clas-

sification approach. The goal of the final classification step is to obtain biological meaningful

classes of substrates using objective statistical methods.

Statistical modelling techniques can be described as either uni- or multivariate. Univariate

approaches test one feature at a time for their ability to discriminate or identify a significant

dependent variable. The top-most significant features are then used to develop a statistical

model. Multivariate approaches take into consideration that many variables may be highly

correlated. For example, hyperspectral data sets have hundreds of contiguous wavelengths

(variables) that are obviously correlated.

Multivariate approaches are therefore better suited for hyperspectral data classification

and were employed in the following methodology. There are two basic strategies which can

be used to discriminate high dimensional spectral data. First, the dimensionality of the data

can be reduced by some feature extraction pre-processing method, and then classified with

an appropriate low-dimensional test, e.g. linear discriminant analysis (LDA) (Everitt, 2005).

An alternative procedure is to use a classifying technique which is capable of handling a

large number of variables (Mallet et al., 1996; Donald et al., 2006), referred to as a high

dimensional classifier, e.g. penalised discriminant analysis (PDA) as discussed in detail by

Yu et al. (1999) and Hastie et al. (1995). In this study, the feature extraction approach was

used.

Methodology

Prior to feature extraction of the RAMSES measured in situ spectra, first and second deriva-

tives were standardised, resulting in all column means equal to zero and all column standard

deviations equal to one. First, feature selection was performed based on genetic algorithms

using the GALGO component (R Development Core Team, 2005) in the R software package

as described in later in this section. The in situ measured reflectance spectra were used to

derive an ‘optimal’ band set to obtain maximum accuracy in classification. A maximum

likelihood discriminant function (MLHD) (see below) was selected in the GALGO routine.

For discriminant analysis, the underwater bottom albedo (A) were reduced to 61 wavebands
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                              (400-700 nm) 
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Figure 5.1: Schematic diagram of supervised classification approach and feature extraction

over the 400 −700 nm wavelength region and resampled to 5 nm intervals (RAMSES spectral

resolution, see section 4.2.2).

Genetic algorithm was employed to select the best band combination out of the total 183

bands (61 bands of the reflectance spectra, 61 bands in the 1st order derivative, and 61 bands

in 2nd order derivative). The search parameters in the genetic algorithm utilised included up

to a maximum of 1000 iterations and an estimated classification accuracy with optimising

criterion of 98%. The subset size (chromosome) was set to equal four (variables) and was

estimated after a series of runs according to the optimal number of bands for classifying

species in the backward selection process. The genetic algorithm was applied separately to

45 spectra measured at Lake Constance and 113 spectra from Lake Starnberg, as previous

unsupervised classifications using PCA indicated a strong separation exists between these

two lakes.

The same data set was further resampled to HyMap spectral resolution performance, as

flown in 2003 and 2004, resulting in 54 spectral bands (18 bands of the reflectance spectra, 18

in the 1st order derivative, and 18 bands in the 2nd order derivative). During the calibration

procedure, spectral bands from HyMap flown 2003 were significantly different from those of

2004 (see Table 4.2) and were therefore treated separately. The feature selection algorithm

was performed, changing the genetic search parameters to 93% as an optimising criterion for

classification accuracy and the subset size was set to four (variables).
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The optimal band combination was calculated in GALGO for three different wavelength

ranges:400−700 nm, 480−650 nm and 480−600 nm, corresponding to available wavelengths for

different optical depths. Only the best performing wavelengths are presented in the results.

This multivariate statistical technique was employed to identify wavelengths at which the

macrophyte spectral separation was greatest. These wavelengths can be used to classify a

remote sensing image or can provide the basis for the monitoring of macrophyte growth via

remote sensing.

An error estimation, a so-called training and test validation strategy using single or mul-

tiple random splits, was performed after each run and applied to the data. The ability

of the selected discriminant function to separate the macrophyte species was evaluated by

classifying a separate set of pixels. The two-part accuracy assessment was comprised of a

self-test with the original samples and a cross-validation test, and was conducted with the

discriminant functions constructed from the LDA after feature selection. These accuracy as-

sessments were used to analyse the performance of selected spectral bands in discriminating

reclamation levels of macrophyte species. The datasets were randomly split into two groups,

a model training set (1/3) and an independent test set (2/3). The models were built and

optimised on the training set and then independently tested against the second set. A con-

fusion matrix plot was generated for each classification (Gong et al., 1997) and compared for

its performance.

All calculated band set combinations were compared to visually selected derivative bands

and to pigment locations found in the literature (see Chapter 2.3.2). Emphasis was given to

spectral ranges corresponding to PCA loadings. The separation between macrophyte species

was determined for the selected bands to find the best separation ability (maximum JM

distance index) in the two most similar species (Galvão et al., 2005).

Principles behind image classification

Linear discriminant analysis LDA is a supervised transformation method for dimen-

sionality reduction in order to find the best way in which two or more populations can be

distinguished. LDA is a linear coordinate transformation which maximises between-class

variance and minimises within-class variance (Krzanowski, 2000). The discriminant function

may then be used to describe and interpret the difference between populations, and is appro-

priate when the independent variables are metric (Everitt, 2005; Mallet et al., 1996). The

most important assumption of LDA classification is that all classes share the same covariance

matrix (i.e. homogeneity) (Clark et al., 2005). Application of LDA to hyperspectral remote
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sensing images transforms the data onto a hyperplane such that the class separability func-

tion is maximised, which is the ratio of between-class variance Σb and within-class variance

Σw (Eq. 5.11) (Krzanowski, 2000).

Discriminant analysis models comprise sets of equations that are linear combinations of

the independent variables, resulting in the maximum possible separation between groups. The

first step is to standardise the data by subtracting the mean and dividing by the standard

deviation. Standardisation was performed, such that xij changes to:

(xij − µj)/σj (5.8)

where µj and σj are the mean and the standard deviation as calculated for the jth variable,

respectively. After standardisation, all column means will equal zero and all column standard

deviations will equal one. Factors which determine the separability of the macrophytes include

the distances between species and the compactness of each species. In the next step, the ratio

of the between-to-within variability of the transformed training data vectors (i.e. spectra) is

maximised (Jarvis and Goodacre, 2005; Hernández et al., 2005). The within-class covariance

matrix Σw is defined as:

Σw =
g∑

i=1

ni∑
j=1

(xij − µi)(xij − µi)
T (5.9)

The between-class covariance matrix Σb is defined as:

Σb =
g∑

i=1

ni(µi − µ)(µi − µ)T (5.10)

where g is the number of classes, ni is the number of samples in class i, xij is the value for

the jth observation in group i (i = 1, . . . , gi; j = 1, . . . , ni), µi is the sample mean vector in

the ith group, and µ is the overall sample mean vector. LDA maximises the function

F =
v ·Σx

b · vT

v ·Σx
w · vT

(5.11)

where v = (v1, v2, . . . , vd)T is the vector of discriminant coefficients, and Σb and Σw are

the between- and within-covariance matrices of the data matrix X, respectively. One of the

requirements for correct application of discriminant analysis is normality in the variables

(Jarvis and Goodacre, 2005; Hernández et al., 2005). However, a problem inherent within

LDA is that with many highly correlated variables, there is too much flexibility in the choice

between discriminant functions. It leads to what statisticians call ‘over-fitting’, and it mani-

fests itself by having perfect classification on the training set but very poor performance on

the test set. A common solution to this dilemma is to reduce data dimensionality through

spectral feature (i.e. band) selection.
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Feature extraction Data sets from microarray experiments typically have values for each

of a large number of features. Having numerous variables, such as in hyperspectral remote

sensing, does not necessarily improve the performance of the classifier. In fact, an over sup-

ply of variables is likely to cause a substantial deterioration in the classification performance.

When the ratio of training objects per class is comparable to or less than the dimensional-

ity of the data, the parameter estimates of the discriminant model become highly variable

(imprecise), and in some instances may not be obtained due to numerical instability.

Feature selection simply involves selecting a smaller set of variables from a larger set

on the basis of some criteria. Discriminant analysis can determine the particular set of

variables most relevant in describing differences among possible groups. In this context, it is

appropriate to assess the adequacy of a subset of feature variables in terms of the separation

they provide among the groups. In many situations, focusing only on one subset of available

feature variables is inappropriate; the intention should be to find the ‘best subset’ in some

sense (McLachlan, 1992).

Several techniques are available as a way of identifying key wavebands in high spectral

resolution spectra for particular applications. Such techniques include multiple regression

(Lefsky et al., 1999), derivative analysis (Demetriades-Shah et al., 1990), linear discriminant

analysis (Mallet et al., 1996) and cluster analysis (Holden and LeDrew, 1998), random forest

(Gentleman et al., 2005) or genetic algorithms (Yu et al., 1999).

Feature extraction is a linear or non-linear pre-processing data transformation method

where the type of transformation is chosen with the aim of retaining as much discriminatory

information as possible, whilst simultaneously eliminating redundant features that do not

contribute to, or have an adverse effect upon, the classification procedure. Besides improving

the performance of classifiers, having fewer variables often means results can be obtained

with reduced computational and monetary expense. Performing feature extraction may also

simply result in obtaining more meaningful information than the raw data (McLachlan, 1992).

Genetic algorithm (GA) Stochastic search strategies have been developed and tested on

functional genome datasets in order to address the problem of feature extraction. Genetic

algorithms (GA) use a randomised approach based on the processes of mutation and crossover

procedures and have become popular in recent years as a robust search procedure. The same

general approach to variable reduction used in bioinformatics studies (Trevino and Falciani,

2006) can be taken here with the common challenge to find a smaller subset of features which

may improve discrimination. The GALGO 2 component of the software package R is based

2 http://www.bip.bham.ac.uk/bioinf/galgo.html
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on a GA multivariate variable selection strategy, primarily to develop statistical models from

large-scale datasets (Trevino and Falciani, 2006).

The GA is an evolutionary computing technique that can be used to solve problems

efficiently for which there are many possible solutions (Jarvis and Goodacre, 2005). The

basic concept in both exercises, typical of many GA applications, is the optimisation of a

problem where a range of solutions falls within a large search space (Mallet et al., 1996).

The problem is defined within a fitness function against which each individual is evaluated

in order to provide a measure of its accuracy (Jarvis and Goodacre, 2005). The advantage

GAs have, is the selection of combinations of variables. For example, two features chosen

separately may produce less favourable results than two features chosen in combination.

The starting point of any GA is a random population, where only a small portion of the

total search space is explored. Different searches therefore are likely to provide different solu-

tions. In order to extensively cover the space of models that can be explored, it is necessary

to collect a large number of variable combinations (chromosomes). The classifications are

then determined by a count (majority vote) of the classifications from each subset within the

selection space. This strategy of randomly selecting observations and subsets of variables for

constructing new combinations can play a significant role in the analysis of hyperspectral data

(Donald et al., 2006), as the variable selection approach avoids the problems associated with

high wavelength correlation such that localised regions within the spectrum can be identified

rather than just a single wavelength. Additionally, it helps to mitigate the effects of over

fitting that can occur in a single classification. The optimal number of features is determined

by repeating the cross-validation procedure for each feature combination, then choosing the

number that gives the greatest predictive accuracy (Maindonald and Burden, 2005).

The GA methodology is applicable, in principle, to use in any discriminant analysis to

obtain a low dimensional graphical representation. A detailed description of the procedure

is available in Trevino and Falciani (2006).

5.3 Transfer to remote sensing data

5.3.1 Remote sensing data classification approach

In previous section the analysis of in situ derived spectra is presented. In the following section

the methods applied to airborne remote sensing data are described.

The algorithms for macrophyte species discrimination were tested on the hyperspectral

imagery taken with the airborne sensor HyMap using the Modular Inversion & Programming

system (MIP) (Heege, 2000; Heege and Fischer, 2004). The first 33 bands of HyMap (in
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the VIS from 465 to 900 nm) were used. After atmospheric, air-water interface, and water

column correction (see chapter 4.4), the hyperspectral data for each year and from each lake

were classified in two separate steps:

1. initial classification, giving an overview of distribution and an estimate of percent cover

of tall growing vegetation (up to the water surface), short growing vegetation, and exposed

sediment (see Figure 5.2.)

2. subsequent classification of pixels with greater than 70 % vegetation cover to species

level, based on derivatives and distinct spectral features derived from the genetic algorithm

approach. For each pixel, a probability for each species was calculated. The species with

highest probability was used as a final class label.

The initial determination of percent cover of vegetation classes (tall growing (t), short

growing (s), and uncovered sediment (u)) was performed using a linear spectral unmixing

model, and is described in detail by Mather (1999). The underlying premise of spectral

mixture analysis is that the spectral variation in an image is caused by mixtures of a limited

number of bottom materials. The result is an approximation of the proportions of the ground

area per pixel that are occupied by each of the reference classes. The pure reference spectral

signatures are referred to as endmembers, as they represent the cases where 100% of the

sensor’s field of view is occupied by a single cover type. The reflected photons from a given

pixel area on the ground and subsequently intercepted by a sensor can be described in terms

of a simple linear model (Eq. 5.12):

ri =
n∑

j=1

aijfj + ei (5.12)

in which ri is the reflectance of a given pixel in the ith of m spectral bands. The number

of mixture components is n, fj is the jth fractional component (proportion of endmember j)

in the make-up of ri, and aij is the reflectance of endmember j in spectra band i.

The term ei expresses the difference between the observed pixel reflectance ri and the

reflectance for that pixel computed from the model. The individual fractions fi must take

values between 0 and 100%, and the fractions for any given mixed pixel must sum to 100%.

Note that the number of end-members n must be less than the number of spectral bands m

to be computable for the components of r (= ri).

The estimation of lake-bottom cover is performed by an iterative fitting algorithm to

adjust the bottom spectrum to the modelled bottom spectrum. The fit is performed using

the complete spectral information of the retrieved bottom spectrum between 450 and 700 nm.
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The unmixing is performed using downhill simplex minimisation (Heege, 2000):

r = aufu + asfs + atft (5.13)

where fu, fs, and fh are the proportions of uncovered bottom sediments (u), small sub-

merged vegetation (s) and tall submerged vegetation (t) within one image pixel. The classi-

fication is based on the relative contributions of these three pure bottom types (Figure 5.2).

Furthermore, discrimination between tall (t) and short (s) growing vegetation is achieved by

calculating the growth height of the macrophytes. This can be done by subtracting the ab-

solute water depth Z from the calculated water column z on top of the plants. The absolute

water depth Z is derived using a 3× 3 digital elevation model, the subtracted water column

z on top of the plants is iteratively calculated during the process of water column correction.

uncovered
100%

vegetation
100% 

s ediment

100%
s hort tall

Figure 5.2: Diagrammatic presenta-
tion of percent cover distribution of
tall growing macrophytes(t), short
growing macrophytes (s), and sed-
iment (u).

The information from the first bottom cover es-

timate is used in the subsequent analysis for species

discrimination. Pixels having a bottom cover of less

than 70 % vegetation were not included in the dis-

crimination analysis, as the spectral information was

not accurate enough to obtain meaningful conclusions.

This second step involves a refinement of the classifi-

cation with the goal to obtain a map of macrophyte

species distribution. The final species distribution was

obtained using spectral band combinations identified

using the GALGO genetic algorithm and was applied

to the HyMap remote sensing data. Distribution maps

were derived to show the percent probability of one

single species.

5.3.2 Validation of classification results

Pixels dominated by a specific species were identified on the scanner image using visual com-

parison of the image with field observations and GPS position records (Figure 7.1). The

classification results were continuously validated with ground truth measurements at Lake

Constance during and shortly after the flight campaigns and analysed by Geographic Infor-

mation System (GIS) to test the plausibility of the data (Woithon et al., 2005). Figure 7.1

shows an example of how validation was performed at Lake Constance. GPS tracks (white

lines) were recorded from the boat during field campaign to outline macrophyte patches, GPS

data were compared to classified remote sensing data for correct identified patches.
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The results were also compared to traditional aerial photography. Expert knowledge from

Dr. D. Stelzer (TUM), Dr. K. Schmieder (Uni. Hohenheim), S. Wolfer (Uni. Constance),

and A. Woithon (Uni. Hohenheim)3 was applied for confirmation and validation of the remote

sensing classification at Lake Starnberg and Lake Constance.

Figure 5.3: An example of validation of flight campaigns using GPS position records and
GIS. The white lines in the image are GPS tracks recorded from the boat and were compared
to remote sensing data classification result in GIS (Woithon et al., 2005)

3 Institut für Landschafts-und Pflanzenökologie, Universität Hohenheim
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Chapter 6

Results

In the following chapter, the results of statistical analyses are described, indicating the spec-

tral difference of macrophyte species in certain wavelength regions. The classification results

of hyperspectral airborne data are presented, showing the distribution of tall- and short-

growing macrophytes as well as the species distribution of two selected areas in Lake Starn-

berg and Lake Constance.

The data set represents spectra of eight different macrophyte species: Potamogeton pecti-

natus, P. perfoliatus, Chara contraria, C. intermedia, C. aspera, C. tomentosa, Najas marina,

and Nitellopsis obtusa. Six of the species were found at Lake Starnberg, where a juvenile and

a senescent phase of the species C. aspera, C. contraria and P. pectinatus were also discrim-

inated. Seven of the species were found at Lake Constance, whereas five species occurred at

both of the test sites (Table 4.3).

6.1 Analysis of spectral data

A general description of the aquatic macrophytes spectra is presented first. Results of an

unsupervised feature extraction technique, where PCA, derivative analysis, and the Jeffries–

Matusita distance index were used, are subsequently presented. The classification potential,

as determined by the degree of spectral discrimination between macrophytes species, is com-

pared against the degree of spectral discrimination established through a supervised feature

extraction technique.

6.1.1 Spectral difference between macrophyte species

Reflection spectra of the eight macrophyte species, measured directly above uniform patches,

showed low VIS reflectance, caused by absorption by chlorophyll and other pigments, and

high NIR reflectance due to multiple-scattering processes occurring within the leaf structure,

89
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Figure 6.1: Mean irradiance reflectance spectra of eight macrophytes species measured in situ
using a submersible RAMSES spectroradiometer. Codes for the macrophytes correspond to
those used in Table 4.3. Dashed lines are spectra measured at Lake Starnberg, solid lines are
spectra measured at Lake Constance.

both of which are typical vegetation reflectance patterns (Gausman, 1984). Reflectance values

slowly increase from approximately 400 to 510 nm, where they rise sharply to a maximum

around 550−570 nm, depending upon species. Reflectance in all spectra decrease between

550−640 nm (Figure 6.1 and 6.2); this trend at lower wavelengths is in sharp contrast with

the reflectance of pure water, which is higher between 400−550 nm and drops rapidly at

wavelengths greater than 600 nm (Figure 3.2). There was considerable variation in reflectance

spectra between each species, particularly in the green to red (570−680 nm) portion of the

visible spectrum. This region is influenced by chlorophyll absorption, and since pigment con-

centration and composition varies between species, so does their absorption and reflectance.

Spectral reflectance of sediment (Figure 6.2, 9.2Ss) was notably higher than for macrophyte

species in the visible wavelength. There was also an assumption that spectra of Chara aspera
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(1.2Ca) were influenced by sediment (9.2Ss), as their spectra resemble the sediment more

than other species.

Spectral reflectances of the macrophyte samples measured at Lake Starnberg were no-

tably higher than those from Lake Constance (Figure 1.2). In Lake Starnberg, reflectance

magnitude was highest in short-growing species, e.g. C. aspera (1.2Ca, 11 %) and C. con-

traria (2.2Cc, 7.5 %), and lowest in tall-growing species, e.g. P. pectinatus (7.2Pp, 4 %) and

P. perfoliatus (8.2Pf, 5 %). Thus the maximum reflectance difference was about 7 %. In

Lake Constance, macrophyte species had less variation in reflectance values, mostly ranged

from 5 to 8 %, only Najas marina (5.1Nm) had a low reflectance of approximately 3 %. The

maximum reflectance difference between all macrophytes was about 5 %. Chara species dis-

played a dominant reflectance peak in the green wavelengths (540−560 nm), whereas the main

reflectance peak in Potamogeton species shifted towards longer wavelengths (570−580 nm).

There were also small spectral shoulders at 650 nm present in Potamogeton species that were

lacking in Chara species.

Spectral separability

The JM distance indices were calculated for all pairs of macrophytes species using the first and

second principal components (Table 6.1). Sixty-one species pairs were spectrally separable,

having a JM distances greater than the selected threshold value of 1.90. Thirty seven pairs

were unseparable, having distances less than 1.90, and included some of the Chara species

(2.1Cc, 3.2Ci, 4.1Ct) and some species found in Lake Constance (6.1No, 7.1Pp, 8.1Pf). Eight

pairs of Chara species, namely Chara aspera, C. contraria, C. intermedia, and C. tomentosa,

were unseparable. Potamogeton pectinatus (7.1Pp) was also generally unseparable from other

macrophytes, based upon JM distance.

However some of the same species pairs between lakes were separable, e.g. 1.1Ca and

1.2Ca, 5.1Nm and 5.2Nm, and 8.1Pf and 8.2Pf, such that in the following analyses, the two

lakes were examined separately.

6.1.2 Spectral differences within macrophyte species

The spectral reflectance curves measured over the same P. pectinatus patch show that re-

flectance increases rapidly at the beginning of the growing season, from late June (June 26th)

to the middle of July (July 8th), coincident with a shift to longer wavelengths (Figure 6.3).

After peak reflectance values in July, the curves show a second peak of reflectance at longer

wavelengths (640−650 nm) towards the middle of August (August 12th, August 16th).

The same measurement procedure was carried out on a C. contraria patch in 1 m water
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Figure 6.2: Mean and standard deviation of reflectance spectra from macrophyte species
measured from Lake Constance (1) and Lake Starnberg (2 and 3). Codes for the macrophytes
correspond to those used in Table 4.3( Ca=C. aspera, Cc=C. contraria, Ci=Chara intermedia,
Ct=Chara tomentosa, Nm=N. marina, No=N. obtusa, Pp=P. pectinatus, Pf=P. perfoliatus,
Ss=Sediment)
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Figure 6.3: Mean reflectance spectra of P. pectinatus (left) and C. contraria (right) on six
different days during the summer to show growth season variation in spectral reflectance for
tall- and short-growing species.

depth (Figure 6.3). The reflectance curve for the 29th of June shows the highest reflectance,

however subsequent curves show an increasing trend from the lowest reflectance on July 8th

to the penultimate curve on August 16th. It is apparent that homogeneous bottom types,

such as short-growing Chara species, show less variation in reflectance values and wavelengths

than tall-growing species such as P. pectinatus. To investigate whether changes in sun angle

contribute to differing spectral reflectance behaviour at the same plant species (e.g anisotropy

effects (BRF1), measurements were taken at a P. pectinatus and a C. contraria patch at a

constant sensor location, in nadir, on a cloud-free day every half hour from noon to late

afternoon (Figure 6.4). The sun-zenith angle changed from 37.07° at noon to 57.34° in the

late afternoon. Results indicate that difference in sun angle did influence spectral reflectance

characteristics. This also shows that reflectance, as all AOPs, are dependent on incoming

direction of the sunlight. Variation was about 1.5 % for P. pectinatus and 2.7 % for C.

contraria, but differences can be considered as small compared to the large variation in sun

angle. Principal components were calculated from the reflectance spectra from 400−675 nm

for all species. The total variance of all spectra explained 96.2 % of the variation, 86.1 %

by the first axis and 10.1 % by axis two, thus most of the information contained in the data

was able to be explained by two variables (Figure 6.5). The PCA revealed some separation

1 Bidirectional reflectance factor
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Figure 6.4: Reflectance spectra of P. pectinatus (left) and C. contraria (right) measured on
August 12th 2004, every 30 minutes from 12 pm to 6 pm. Only selected curves are shown.

between two species groups, e.g. P. pectinatus, C. contraria, whereas other groups were less

clearly separated.

An apparent difference in distribution occurred between the two lakes (Figure 6.5 B), with

samples from Lake Constance lying above axis 1 and many of those from Lake Starnberg below

this axis. A further distinction between tall-and short growing species is observed (Figure

6.5 C), likely due to the separation between C. aspera and P. pectinatus, and is more obvious

in Lake Starnberg (Figure 6.5 B and C).

The variation in reflectance spectra between 2003 and 2004 appears equally distributed,

such that no differences are considered to have occurred between years (Figure 6.5 D).

6.1.3 Wavelength selection for remote sensing of macrophyte species

The first, and second-order derivatives of mean reflectance spectra of macrophyte species

show differences in shape and magnitude for both lakes (Figure 6.6), and provides a mean

to quantify the exact wavelengths at which absorption troughs and inflection points occur in

reflectance data. In all derivative calculations, the wavelength range at which macrophyte

species exhibited noticeable difference was between 480 and 650 nm. The wavelengths where

the greatest difference between the macrophyte species occurred in the reflectance spectra

were at 485, 560, and 650 nm. In the first-order derivative, these wavelengths were 520, 545,

575, 600, and 665 nm. A greater number of absorption troughs and inflection points were
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observed from the second-order derivative, occurring at 500, 560, 575, 600, 620, and 650 nm.

The first-order derivative spectra appear to be less subject to noise than the second-order,

suggesting that the first derivatives would be the best option in selecting wavelengths to

distinguish between macrophyte species. Comparison of these wavelengths and published

pigment absorption peaks confirms that the first-order derivative identified suitable wave-

lengths for subsequent analyses.

Principal component analysis was applied to reflectance spectra, first, and second-order

derivative spectra. PC loadings (Figure 6.7) describe how closely a particular spectrum

resembles the principal component. The higher the magnitude of the loading at a certain

wavelength, the higher the correlation to the principal component at the same wavelength.

These PC loadings thereby emphasise the significance of certain wavelength locations for

macropyhte species discrimination and confirm important wavelengths location as found in

derivative analysis.

Reflectance spectra were most correlated to the first PC (solid line) at about 560 nm,

and most correlated to the second PC (dashed line) at about 550 and 650 nm. First-order

derivatives for PC loadings showed the most correlation at 520−540 nm and 565 nm for the

first axis, and 520 and 585 nm for axis two. Second-order derivative spectra showed minor

correlations at 510, 560, 575, 600 and 650 nm to axis one, and at 535, 600, 625, and 650 nm

with axis two.

6.1.4 Automated feature selection using a Genetic Algorithm

Employment of the genetic algorithm to analyse the RAMSES data reveals an evolution of the

maximum fitness across generations in searches (Figure 6.8). This test function returns the

average test error in all validation (test) sets and computes the accuracy of a given variable

combination. The point where the highest interval intersects the ‘goal fitness’ is the average

number of generations needed to reach the fitness value.

Reflectance spectra reached a goal fitness of 90 %, whereas a combination of reflectance

spectra and their first and second derivatives increased goal fitness to 98 % in both lakes.

Derivatives were therefore included in following analyses. The average fitness for Lake Con-

stance was 98 % and for Lake Starnberg was 99 %. The average fitness reached the goal fitness

(98 %) after 65 generations for Lake Constance and after already after 5 generations for Lake

Starnberg. The unfinished fitness average (the fitness of all searches that has not ended by

a given generation and shows the average worst case expectation) was 97 % for both Lake

Constance and Lake Starnberg. Thus the genetic algorithm performance was moderately

better on Lake Starnberg spectra, but was considered acceptable for both lakes.
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Figure 6.6: Average spectral reflectances, first, and second-order derivatives seven macro-
phyte species measured at Lake Constance (left) and six species measured at Lake Starnberg
(right)
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PC loadings calculated for reflectance spectra shown in Figure 6.5. Axis one is shown as the
solid line, axis two as the dashed line.
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For Lake Constance and Lake Starnberg, four wavelength were chosen between 445−665 nm.

At Lake Constance, three were below 600 nm whereas for Lake Starnberg, features at longer

wavelengths were selected which provided better separation between tall-growing species and

senescent species. These selected wavelength for Lake Constance were 510 nm in reflectance,

530 nm and 625 nm in the 1st order, and 535 nm in the 2nd order derivative. For Lake Starn-

berg, somewhat different wavelength locations were selected: 445, 520, 625 and 665 nm in the

1st order. This confirmed the assumption that the two lakes should be treated separately.

Linear discriminant analysis, using the GALGO-selected spectral wavelengths, shows

good discrimination between most species (Figure 6.9 and 6.10) in both Lake Constance

and Lake Starnberg. Considerable between-species overlap occurs primarily with Najas ma-

rina (5.1Nm) in Lake Constance. In Lake Starnberg, less overlapping occurred, though Chara

contraria (2.2Cc) had some overlap with Najas marina. For both lakes, a significant portion

of macrophytes species could be discriminated based on wavelength selected by discriminant

analysis. The magnitude of the discriminant coefficients can also be used to relate the impor-

tance of the wavelengths used for classification. A small coefficient implies that the selected

wavelength is not that useful for discriminant analysis, while a large coefficient implies a

robust wavelength.
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Figure 6.9: Discriminant analysis using GALGO-selected wavelengths for Lake Constance
(left) and first and second discriminant loadings (right). Selected wavelengths for Lake Con-
stance were 510 nm in reflectance, 530 and 625 nm in the first order derivative, and 535 nm
in the second order derivative.
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Figure 6.10: Discriminant analysis using GALGO-selected wavelengths for Lake Starnberg
(left) and first and second discriminant loadings (right). The selected wavelengths for Lake
Starnberg were 445, 520, 625, and 665 nm all in first order derivatives.
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Analysis of model accuracy

A confusion matrix (Tables 6.2a and 6.2b) is a matrix that shows the various classifications

and misclassifications of a model in a compact area and contains information about actual

and predicted classifications. Each column of the matrix represents predicted classes from the

classifier, while each row represents the true class values from the validation set. Correctly

classified spectra therefore fall along the diagonal of the matrix.

The confusion matrix provides information on both the overall classification accuracy

as well as the errors among specific species pairs of classes. The sensitivity (Sensit)2 and

specificity (Specif)3 for all classes are given in horizontal axis, which indicates the percentage

of true positive rate and true negative rate, respectively.

The accuracy of discrimination is shown by the probability that each species in the

randomly-generated test set was identified correctly using a randomly-generated training

set. From Lake Constance, 99.9 % of the species identified as C. aspera (bottom-most species

on the vertical axis) were identified correctly, and 26.2 % of what was identified as C. tomen-

tosa was actually C. aspera (Table 6.2a). Only 0.1 % of what was identified as C. aspera was

in fact C. tomentosa.

Of the species identified as C. contraria (next species upwards on the vertical axis), 86.5 %

were correctly identified, 1.6 and 2.9 % of what was identified as C. tomentosa and N. obtusa,

respectively, was actually C. contraria. Only 0.7 % of what was identified as C. contraria was

C. aspera. Similarly, 6.9, 3.4, and 2.0 % of what was identified as C. tomentosa, N. marina,

and N. obtusa, respectively, was C. contraria. Of the species identified as C. tomentosa (third

species upwards on the vertical axis), only 68.2 % were actually C. tomentosa, and 6.9 % of

the algae identified as C. contraria were actually C. tomentosa.

Of the total species identified as C. tomentosa, 26.2 % were C. aspera, 1.6 % were C.

contraria, and 2.9 % were P. perfoliatus. Of the species identified as N. marina, a total of

94.2 % were correctly identified, and 3.4 % of the species identified as C. contraria were in

fact N. marina. False identifications were 1.5 % C. aspera and 4.0 % P. perfoliatus.

2 Sensitivity = true positives /(true positive + false negatives)
3 Specificity = true negatives /(true negatives + false positives)
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Table 6.2a: Class confusion for Lake Constance using in situ spectra. Columns represent the
true class value (original class), whereas rows represent the values assigned by the classifica-
tion algorithm(predicted class). Correctly classified cases occur on the diagonal.

NA 0 0 0 0 0 0 0
8.1Pf 0 0.002 0.029 0.040 0 0.076 0.982
7.1Pp 0 0.003 0.007 0 0.009 0.894 0.002
6.1No 0 0.020 0.001 0.001 0.958 0.007 0
5.1Nm 0 0.034 0.002 0.942 0.002 0.002 0.003
4.1Ct 0.001 0.069 0.682 0.001 0.002 0.016 0.005
2.1Cc 0 0.865 0.016 0.001 0.029 0.001 0
1.1Ca 0.999 0.007 0.262 0.015 0 0.003 0.008

1.1Ca 2.1Cc 4.1Ct 5.1Nm 6.1No 7.1Pp 8.1Pf
Samples 4 15 4 7 2 12 8
Sensit 0.999 0.865 0.682 0.942 0.958 0.894 0.982
Specif 0.951 0.992 0.984 0.993 0.995 0.996 0.975

Table 6.2b: Class confusion for Starnberg using in situ spectra. Columns represent the true
class value (original class), whereas rows represent the values assigned by the classification
algorithm (predicted class). Correctly classified cases occur on the diagonal.

NA 0 0 0 0 0 0 0 0
8.2Pf 0 0 0.021 0.04 0.009 0.010 0.001 0.971
7.3Pp 0 0 0.002 0.001 0.001 0.007 0.996 0.002
7.2Pp 0 0 0 0 0.008 0.975 0.003 0.013
5.2Nm 0 0 0.011 0 0.952 0.001 0 0.005
2.3Cc 0 0.002 0.061 0.966 0 0.001 0 0
2.2Cc 0 0 0.901 0.028 0.004 0.002 0.001 0.007
1.3Ca 0 0.997 0 0 0 0 0
1.2Ca 1 0 0.003 0 0.026 0.003 0 0.002

1.2Ca 1.3Ca 2.2Ca 2.3Cc 5.2Nm 7.2Pp 7.3Pp 8.2Pf
Samples 4 7 9 19 6 24 27 8
Sensit 1 0.997 0.901 0.996 0.952 0.975 0.996 0.971
Specif 0.995 1 0.994 0.991 0.997 0.996 0.998 0.994
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Table 6.3a: Pair-wise distances calculated using four GALGO-selected wavelengths from Lake
Constance (420 nm (R), 490 nm (R′), 620 nm (R′), and 530 nm (R′′)). The values located on
the upper part of the table, oriented to the right-hand side, are JM distance values and those
shown on the lower portion, oriented to the left-hand side, are BH distances.

1.1Ca 1.2Cc 4.1Ct 5.1Nm 6.1No 7.1Pp 8.1Pf

1.1Ca 1.99 1.94 2.00 2.00 1.98 2.00
2.1Cc 5.85 1.93 1.99 2.00 1.98 1.99
4.1Ct 3.60 3.38 2.00 1.99 1.81 1.99
5.1Nm 128.49 5.43 253.74 2.00 1.99 2.00
6.1No 285.59 15.64 7.76 41.69 1.97 1.99
7.1Pp 5.17 5.05 2.36 11.07 4.25 1.95
8.1Pf 23.98 6.44 6.47 23.93 8.97 3.83

Identification accuracy for N. obtusa was 95.8 %, however 2.0 % of the species identified

as C. contraria were actually N. obtusa, and 2.9 % of what was identified as N. obtusa was

actually C. contraria. A total of 89.4 % of the species identified as P. pectinatus were correctly

identified. Only minor percentages (< 1 %) of this species were identified as other species.

However, 7.6 and 1.6 % of what was identified as P. pectinatus were actually P. perfoliatus

and C. tomentosa, respectively. P. perfoliatus was identified correctly at 98.2 %, however

2.9 and 7.6 % of what were identified as C. contraria and P. pectinatus was actually P.

perfoliatus.

Sensitivity was acceptable for all macrophyte classes except C. tomentosa, whereas speci-

ficity was acceptable in all classes. A NA class was added in the predicted class axis (vertical)

for those classification methods that cannot produce a class prediction in any case. There

were no cases where a classification could not be made. From Lake Starnberg (Table 6.2b,

all species were correctly identified with an accuracy greater than 90 %. Sensitivity and

specificity were acceptable in all classes. There were no cases were a classification could not

be made.

The JM distance was calculated for GALGO-selected wavelengths of the macrophyte re-

flectance spectra from Lake Constance (Table 6.3a) and Lake Starnberg (Table 6.3b). All but

one of the macrophyte species pairs were significantly different, exceeding the 1.90 thresh-

old value. Chara tomentosa (4.1Ct) and Potamogeton perfoliatus (7.1Pf) at Lake Constance

could not be separated, having a JM index less than 1.9.
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Table 6.3b: Pair-wise distances between macrophyte species, calculated using GALGO-
selected wavelengths from Lake Starnberg (485 nm (R), 440 nm (R′), 540 nm (R′), and 665 nm
(R′′)). The values located on the upper part of the table, oriented to the right-hand side, are
JM distance values and those shown on the lower portion, oriented to the left-hand side, are
BH distances.

1.2Ca 1.3Ca 2.2Cc 2.3Cc 5.2Nm 7.2Pp 7.3Pp 8.2Pf

1.2Ca 2.00 2.00 2.00 2.00 2.00 2.00 2.00
1.3Ca 42.85 1.99 1.99 2.00 2.00 2.00 1.99
2.2Cc 32.81 12.91 1.95 1.99 1.99 1.99 1.99
2.3Cc 21.97 7.26 3.76 1.99 1.99 1.99 1.99
5.2Nm 36.84 19.63 9.41 12.85 1.99 1.99 1.99
7.2Pp 99.27 20.08 6.28 8.60 6.61 1.99 1.99
7.3Pp 219.66 19.77 12.06 6.83 12.73 6.31 1.99
8.2Pf 81.92 13.31 13.14 7.86 12.35 6.33 7.25

Simulated HyMap spectral resolution

Optimal combinations of wavelengths were derived using GALGO based on a maximum like-

lihood discriminant function (MLHD) classifer and were calculated for different wavelength

ranges: 400−700 nm, 480−650 nm, and 480−600 nm, depending on usable spectral infor-

mation in different water depths. Average JM distances for each species were derived and

compared for variable selection performance in Lake Constance (Table 6.4a) and Lake Starn-

berg (Table 6.4b). For all variable combinations, JM distances were > 1.9, thus all species

were significantly different. The selected wavelength combinations used for further analysis

were in the 480−650 nm wavelength range, providing maximal discrimination of species and

usable spectral information for differing water depths after water column correction. The

wavelengths used differed both between years and lakes (Table 6.4a).

The average fitness functions for HyMap resolution in 2003 and 2004 performed better

for Lake Starnberg, reaching average fitnesses of 98 %, than in Lake Constance, where the

average fitness was 96 % in 2003 and 95 % in 2004 (Figure 6.11b). The average unfinished

fitness was 97 % for Lake Starnberg in 2003 and 2004, and 94 % and 92 % for 2003 and

2004, respectively, in Lake Constance. Thus the genetic algorithm performed better on Lake

Starnberg spectra, showing more stable results independent of sensor resolution. The lower

fitness values in Lake Constance for 2004 suggests some limitations in classification may occur.

The HyMap resampled data showed, on average, a 2% lower fitness than with full-resolution

RAMSES data (Figures 6.2a and 6.2b).

Linear discriminant analysis using the GALGO-selected wavelengths in resampled HyMap
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Table 6.4a: Mean JM distances for GALGO-selected wavelengths from Lake Constance cal-
culated independently for 2003 and 2004.

Species mean JM mean JM mean JM mean JM mean JM mean JM
400-700 nm 400-700 nm 480-650 nm 480-650 nm 480-600 nm 480-600 nm

2003 2004 2003 2004 2003 2004

1.1Ca 1.996 1.993 1.989 1.991 1.990 1.996
2.1Cc 1.967 1.995 1.979 1.956 1.998 1.998
4.1Ct 1.964 1.974 1.984 1.968 1.975 1.994
5.1Nm 1.992 2.000 1.999 1.975 1.999 1.999
6.1No 1.997 2.000 2.000 2.000 1.999 1.990
7.1Pp 1.982 1.974 1.982 1.977 1.985 1.984
8.1Pf 1.981 1.992 1.997 1.986 1.998 1.991

Table 6.4b: Mean JM distances for GALGO-selected wavelengths from Lake Starnberg cal-
culated independently for 2003 and 2004.

Species mean JM mean JM mean JM mean JM mean JM mean JM
400-700 nm 400-700 nm 480-650 nm 480-650 nm 480-600 nm 480-600 nm

2003 2004 2003 2004 2003 2004

1.2Ca 2.000 2.000 2.000 1.999 1.988 2.000
1.3Ca 1.995 1.997 1.999 1.999 1.999 1.999
2.2Cc 1.971 1.978 1.949 1.923 1.738 1.826
2.3Cc 1.974 1.977 1.951 1.927 1.764 1.857
5.2Nm 1.999 1.999 1.999 1.970 1.960 1.998
7.2Pp 1.971 1.996 1.995 1.992 1.991 1.997
7.3Pp 1.999 1.999 1.998 1.994 1.990 1.998
8.2Pf 1.988 1.999 1.997 1.998 1.988 1.977

resolution show good discrimination between most species and between Lake Constance (Fig-

ure 6.12a) and Lake Starnberg (Figure 6.12b). For both data sets in Lake Constance (HyMap

2003 and 2004), species overlap occurs primarily with Najas marina (5.1Nm) and Potamoge-

ton pectinatus (7.1Pp). Less overlap occurred in Lake Starnberg, though Chara contraria

(2.2Cc) had some overlap with Najas marina. Lake Starnberg 2004 showed the best results,

where only Chara contraria (2.2Cc) and Chara contraria senescent (sen.)(2.3Cc) could not

be separated. Regardless of lake and HyMap resolution (2003 or 2004), both lakes showed

that a significant portion of macrophytes species could be discriminated based on selected

wavelengths by discriminant analysis.
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Figure 6.11a: Comparison of fitness evolution of different data sets for Lake Constance and
Lake Starnberg, 2003 and 2004.
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Figure 6.12a: Linear discriminant analysis using GALGO-selected wavebands for Lake Con-
stance 2003 (left) and 2004 (right).
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Figure 6.12b: Linear discriminant analysis using GALGO-selected wavebands for Lake Starn-
berg 2003 (left) and 2004 (right).
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The accuracy of discrimination for Lake Constance 2003 data (Table 6.5a) reveals that

C. aspera was 100 % correctly identified, though it was incorrectly classified as C. tomentosa

28.3 % of the time. C. contraria was 88.3 % correctly identified, but was also incorrectly

classified as P. pectinatus. C. tomentosa was only 57.2 % correctly identified, as 28.3 % of

what was classified as C. tomentosa was C. aspera. N. marina was correctly identified to 92 %

and minor confusion existed with N. obtusa. N. obtusa was identified correctly 81.4 % of the

time, where 6.7 % of what was classified as N. obtusa was actually N. marina. P. pectinatus

was correctly classified to 84 %, however 6.2 and 6.3 % were actually C. contraria and P.

perfoliatus, respectively. P. perfoliatus was classified to 99 % accuracy, and was also the best

identifiable class with the highest sensitivity and specificity. Mean accuracy for all species

was 86 %. C. tomentosa showed poor sensitivity (0.572), but in all cases identifications could

be made, as no NA assignments occurred.

Class confusion at Lake Constance 2004 (Table 6.5b) showed an overall accuracy of 89 %

for all classes, marginally better than in 2003. C. aspera was identified correctly to 100 %,

but 26 % of what was classified as C. tomentosa was C. aspera. C. contraria was correctly

identified to 84.3 %, but 15.8 % of what was incorrectly classified as N. obtusa was also C.

contraria. C. tomentosa was identified slightly better than in 2003 at 72.5 %, but confusion

with C. aspera still existed. N. marina was correctly identified to 98.1 %, whereas N. obtusa

was correctly identified 76.5 % of the time. P. pectinatus was correctly classified to 93.7 %.

P. perfoliatus was 99.6 % accurate, and was also the best identifiable class, having the highest

sensitivity and specificity. The sensitivity was acceptable in all macrophyte classes except C.

tomentosa and N. obtusa. Specificity was acceptable in all classes.

From Lake Starnberg (Tables 6.6a and 6.5b), all species except C. contraria and C.contraria

senescent were correctly identified with an accuracy greater than 95 %. In 2003, C. contraria

(2.2Cc) and C. contraria sen. (2.3Cc) had accuracies of 89.3 and 89.8 % respectively, whereas

in 2004, C. contraria (2.2Cc) and C. contraria sen. (2.3Cc) had accuracies of 93.1 and 93.4

%, respectively. Sensitivity and specificity were acceptable in all classes in both years. No

cases occurred where a classification could not be made.
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Table 6.5a: Class confusion for Lake Constance 2003 using simulated HyMap spectra.
Columns represent the true class value (original class), whereas rows represent the values
assigned by the classification algorithm(predicted class). Correctly classified cases occur on
the diagonal.

NA 0 0 0 0 0 0 0
8.1Pf 0 0.001 0.013 0.028 0.004 0.063 0.995
7.1Pp 0 0.026 0.007 0.001 0.057 0.840 0.005
6.1No 0 0.019 0.001 0.046 0.814 0.019 0
5.1Nm 0 0.029 0 0.923 0.067 0.003 0
4.1Ct 0 0.040 0.572 0.002 0 0.013 0
2.1Cc 0 0.883 0.008 0 0.058 0.062 0
1.1Ca 1 0.001 0.283 0.001 0 0 0

1.1Ca 2.1Cc 4.1Ct 5.1Nm 6.1No 7.1Pp 8.1Pf
Samples 4 15 4 7 2 12 8
Sensit 1 0.883 0.572 0.923 0.814 0.840 0.995
Specif 0.953 0.979 0.991 0.983 0.986 0.984 0.962

Table 6.5b: Class confusion for Lake Constance 2004 using simulated HyMap spectra.
Columns represent the true class value (original class), whereas rows represent the values
assigned by the classification algorithm (predicted class). Correctly classified cases occur on
the diagonal.

NA 0 0 0 0 0 0 0
8.1Pf 0 0.008 0.005 0.015 0.003 0.048 0.996
7.1Pp 0 0.015 0.003 0 0.054 0.937 0.003
6.1No 0 0.060 0.006 0.004 0.765 0.007 0
5.1Nm 0 0.034 0.001 0.981 0.015 0.003 0
4.1Ct 0 0.031 0.725 0 0.005 0.002 0
2.1Cc 0 0.843 0 0 0.158 0 0
1.1Ca 1 0.009 0.261 0.001 0 0.002 0

1.1Ca 2.1Cc 4.1Ct 5.1Nm 6.1No 7.1Pp 8.1Pf
Samples 4 15 4 7 2 12 8
Sensit 1 0.843 0.725 0.981 0.765 0.937 0.996
Specif 0.955 0.974 0.994 0.991 0.987 0.987 0.987
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Table 6.6a: Class confusion for Lake Starnberg 2003 using simulated HyMap spectra.
Columns represent the true class value (original class), whereas rows represent the values
assigned by the classification algorithm(predicted class). Correctly classified cases occur on
the diagonal.

NA 0 0 0 0 0 0 0 0
8.2Pf 0 0.002 0 0.02 0.008 0.01 0.001 0.988
7.3Pp 0 0 0 0.001 0 0.021 0.999 0.002
7.2Pp 0 0 0.001 0.023 0 0.963 0 0.008
5.2Nm 0 0.015 0.001 0 0.956 0 0 0.001
2.3Cc 0 0.01 0.105 0.898 0 006 0 0
2.2Cc 0 0 0.893 0.059 0 0 0 0.001
1.3Ca 0 0.971 0 0 0.003 0 0 0
1.2Ca 1 0 0 0 0.033 0 0 0

1.2Ca 1.3Ca 2.2Ca 2.3Cc 5.2Nm 7.2Pp 7.3Pp 8.2Pf
Samples 4 7 9 19 6 24 27 8
Sensit 1 0.991 0.893 0.898 0.956 0.963 0.999 0.988
Specif 0.995 1 0.991 0.982 0.998 0.995 0.997 0.994

Table 6.6b: Class confusion for Lake Starnberg 2004 using simulated HyMap spectra.
Columns represent the true class value (original class), whereas rows represent the values
assigned by the classification algorithm (predicted class). Correctly classified cases occur on
the diagonal.

NA 0 0 0 0 0 0 0 0
8.2Pf 0 0 0.006 0.054 0 0.007 0 0.986
7.3Pp 0 0 0 0 0 0.004 1 0
7.2Pp 0 0 0.006 0.006 0 0.989 0 0.014
5.2Nm 0 0 0.001 0 1 0 0 0
2.3Cc 0 0 0.056 0.934 0 0 0 0
2.2Cc 0 0 0.931 0.006 0 0 0 0
1.3Ca 0 1 0 0 0 0 0
1.2Ca 1 0 0 0 0 0 0 0

1.2Ca 1.3Ca 2.2Ca 2.3Cc 5.2Nm 7.2Pp 7.3Pp 8.2Pf
Samples 4 7 9 19 6 24 27 8
Sensit 1 1 0.931 0.934 1 0.989 1 0.986
Specif 1 1 0.999 0.992 1 0.996 0.999 0.990
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Table 6.7a: Pair-wise distances for macrophyte species calculated using GALGO-selected
wavelengths from Lake Constance 2003 (632 nm (R), 509 nm (R′), 524 nm (R′), 632 nm (R′′)).
The values located on the upper part of the table, oriented to the right-hand side, are JM
distance values and those shown on the lower portion, oriented to the left-hand side, are BH
distances.

1.1Ca 1.2Cc 4.1Ct 5.1Nm 6.1No 7.1Pp 8.1Pf

1.1Ca 2.00 1.94 2.00 2.00 2.00 2.00
2.1Cc 27.41 1.99 1.99 1.99 1.99 1.99
4.1Ct 3.51 5.41 2.00 2.00 1.92 1.99
5.1Nm 121.44 6.99 59.81 2.00 1.99 2.00
6.1No 161.61 8.63 20.46 44.00 1.99 2.00
7.1Pp 18.95 9.57 3.23 6.35 9.43 1.99
8.1Pf 162.04 13.16 6.80 20.36 147.95 5.84

Table 6.7b: Pair-wise distances for macrophyte species calculated using GALGO-selected
wavelengths from Lake Constance 2004 (500 nm (R), 531 nm (R′), 623 nm (R′), 561 nm (R′′)).
The values located on the upper part of the table, oriented to the right-hand side, are JM
distance values and those shown on the lower portion, oriented to the left-hand side, are BH
distances.

1.1Ca 1.2Cc 4.1Ct 5.1Nm 6.1No 7.1Pp 8.1Pf

1.1Ca 2.00 1.97 2.00 2.00 2.00 2.00
2.1Cc 56.18 1.99 1.99 1.99 1.99 1.99
4.1Ct 4.41 5.71 1.99 2.00 1.99 1.99
5.1Nm 32.22 9.18 10.20 2.00 1.99 1.99
6.1No 19.99 8.70 109.18 24.73 1.95 1.99
7.1Pp 18.22 6.47 10.28 9.93 3.72 1.95
8.1Pf 38.68 8.74 12.10 11.12 5.40 3.84
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Table 6.7c: Pair-wise distances for macrophyte species calculated using GALGO-selected
wavelengths from Lake Starnberg 2003 (555 nm (R), 493 nm (R′), 585 nm (R′), 600 nm (R′′)).
The values located on the upper part of the table, oriented to the right-hand side, are JM
distance values and those shown on the lower portion, oriented to the left-hand side, are BH
distances.

1.2Ca 1.3Ca 2.2Cc 2.3Cc 5.2Nm 7.2Pp 7.3Pp 8.2Pf

1.2Ca 1.99 2.00 1.99 2.00 2.00 2.00 2.00
1.3Ca 12.03 1.97 1.95 2.00 2.00 1.99 2.00
2.2Cc 49.21 4.55 1.20 2.00 1.96 1.93 1.99
2.3Cc 7.49 3.75 0.91 1.99 1.99 1.98 1.94
5.2Nm 18.75 26.52 19.63 12.00 1.99 2.00 1.99
7.2Pp 19.45 17.66 3.96 7.31 6.92 1.77 1.98
7.3Pp 44.69 14.43 3.40 4.82 37.24 2.16 1.99
8.2Pf 22.57 15.66 10.47 3.54 9.74 4.96 10.56

Table 6.7d: Pair-wise distances for macrophyte species calculated using GALGO-selected
wavelengths from Lake Starnberg 2004 (561 nm (R), 592 nm (R′), 607 nm (R′), 515 nm (R′′)).
The values located on the upper part of the table, oriented to the right-hand side, are JM
distance values and those shown on the lower portion, oriented to the left-hand side, are BH
distances.

1.2Ca 1.3Ca 2.2Cc 2.3Cc 5.2Nm 7.2Pp 7.3Pp 8.2Pf

1.2Ca 2.00 2.00 2.00 2.00 2.00 2.00 2.00
1.3Ca 51.08 1.99 1.99 2.00 2.00 1.99 2.00
2.2Cc 63.31 15.54 0.83 1.99 1.98 1.96 1.87
2.3Cc 47.59 8.34 0.54 2.00 1.99 1.99 1.92
5.2Nm 30.03 74.15 9.41 21.11 1.99 2.00 1.99
7.2Pp 65.30 17.04 4.89 12.11 7.09 1.99 1.97
7.3Pp 242.38 12.22 3.82 6.06 30.90 5.81 1.99
8.2Pf 271.70 18.08 2.78 3.30 5.80 4.51 6.39
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The JM distance was calculated for GALGO-selected wavelengths of the 2003 and 2004

macrophyte spectra from Lake Constance (Table 6.7a and 6.7b) and Lake Starnberg (Table

6.7c and 6.7d). No single channel discriminates between all pairs of species, but genetic algo-

rithm results were used in the selection of the four best discriminating wavelengths (variables).

The JM distance between species at these wavelengths indicates the degree of separability,

suggesting that the more spectrally distant species pairs have greater potential of being sep-

arated from other species in remotely sensed imagery. In both lakes from both years, all but

two of the macrophyte species pairs were significantly different, exceeding the 1.90 threshold

value. Chara contraria (2.2Cc) and C. contraria sen. (2.3Cc) from Lake Starnberg in both

2003 and 2004 could not be separated, having a JM index less than 1.9.

6.2 Remote sensing data classification

6.2.1 Lake Constance

A classification of shallow water macrophytes near Reichenau Island (Lake Constance) was

established from HyMap data collected on 19th July 2003 and processed with the Modular

Inversion & Processing System (MIP) (Figure 6.13). The results are presented as the main

bottom-cover classes, including short-growing macrophytes such as the Characeae (in green -

see colour triangle in Figure 5.2), tall-growing macrophytes, mainly Potamogeton perfoliatus

and P. pectinatus (in red), and bottom sediments (in blue). Mixed picture elements contain

more than one single class, e.g. Characeae and bottom sediment, and the sum of the bottom

cover in each pixel is always 100 %. The Characeae and Potamogeton species could be

separated based simply on their growth height alone. The bottom coverage could be mapped

down to a depth of 4.5 m, the maximum depth to which plausible reflectance spectra have

been derived after water depth correction.

At Lake Constance, macrophytes grow beyond this depth, and were not able to be detected

with remote sensing techniques, and appear as dark (white) colour in the classification. All

classified pixels exceeding 70 % vegetation cover were further classified to macrophytes species

distribution in a second processing step using GALGO-selected wavelengths (Figure 6.14).

The algorithm was able to distinguish two tall growing species (Potamogeton perfolia-

tus and P. pectinatus) and four different short growing species (C. aspera, C. contraria, C.

tomentosa and N. marina). The labelled classes are species with the highest probability,

and classes such as Nitellopsis obtusa and C. contraria sen. were not differentiated in this

classification. A validation result of a former classification at Lake Constance 2003 using

visually selected wavelength reached a 77 % accuracy compared to ground-truth data. It is
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19.7.2003 30.6.2004 29.7.2004

Figure 6.15: Classification of hyperspectral airborne data at Bauerhornbucht, Lake Constance
(19th July 2003, 30th June, and 29th July 2004).

19.7.2003 30.6.2004 29.7.2004

Figure 6.16: Macrophyte species distribution of hyperspectral airborne data at Bauerhorn-
bucht, Lake Constance (19th July 2003, 30th June, and 29th July 2004).

anticipated, that recent classification results using the objective GA approach exceeds this

validation result.

6.2.2 Lake Starnberg

A classification of shallow water macrophytes near Karpfenwinkel (Lake Starnberg) was es-

tablished from HyMap data collected on 7th July 2003 and processed with the Modular

Inversion & Processing System (MIP) (Figure 6.17). The results are presented as the main

bottom-cover classes, including short-growing macrophytes such as the Characeae (in green),

tall-growing macrophytes, mainly Potamogeton perfoliatus and P. pectinatus (in red), and

bottom sediments (in blue). Mixed picture elements contain more than one single class, e.g.

Characeae and bottom sediment, and the sum of the bottom cover in each pixel is always 100

%. The Characeae and Potamogeton species could be separated based simply on their growth

height alone. The bottom coverage could be mapped down to a depth of 4.5 m, the maximum

depth to which plausible reflectance spectra have been derived after water depth correction.
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7.7.2003 26.6.2004vegetation

100%

sediment

100%

100%

small tallvegetation

100%

sediment

100%

100%

small tall

Figure 6.17: Classification of hyperspectral airborne data at Lake Starnberg flown on 7th

July 2003 and 26th June 2004. The major bottom classes are tall-growing macrophytes (red),
short-growing macrophytes (green), and exposed sediment (blue). White colour pixels are
either water > 4.5 m deep or unclassified pixels.

7.7.2003 26.6.2004P.perfoliatus
P.pectinatus
P.pectinatus sen.
Najas marina
Chara aspera
Chara aspera sen.
Chara contraria
Chara contraria sen.

uncovered bottom
unclassified

Figure 6.18: Macrophyte species distribution using GAlGO-selected wavelengths of hyper-
spectral airborne data at Lake Starnberg flown on 7th July 2003 and 26th June 2004.
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At Lake Starnberg, unlike at Lake Constance, macrophytes generally do not appear to grow,

and thus the extent of the macrophytes was detected with remote sensing techniques, and is

bounded by exposed sediment (blue colour) in the classification.

The classification of macrophyte species distribution was processed in the same manner

as described in section 6.2.1 using GALGO-selected waveband derivatives (Figure 6.18) and

was able to distinguish two tall growing species (P. pectinatus and P. perfoliatus) and three

different short growing species (C. aspera, C. contraria, and N. marina). Distinction could

be made between juvenile and senescent states of tall growing species (P. pectinatus and

P. pectinatus sen.), and short growing species (C. contraria and C. contraria sen.). The

labelled classes are species with the highest probability, and classes such as Nitellopis obtusa,

and C. tomentosa, did not occur in this area and were therefore not differentiated in this

classification.

6.3 Validation of remote sensing data

6.3.1 Model correction accuracy

Atmospheric and water column correction

HyMap at sensor radiance was corrected for atmospheric effects to subsurface reflectance

R(0−), as described in section 4.4.2 (Figure 4.7). Atmospheric correction accuracy of less

than 0.5 % absolute reflectance difference could be achieved (T. Heege, pers.comm.). Mod-

elled subsurface reflectance from HyMap were compared to in situ measured subsurface re-

flectance measured with RAMSES spectroradiometers (Figure 6.19). Atmospherically cor-

rected HyMap spectra matched with in situ RAMSES measurements within its standard

deviation of less than 0.2 %. There were minor difference in the blue wavelength region,

caused by lower sensor signal-to-noise and higher scattering of the water column.

HyMap subsurface reflectances R(0−) were further corrected for water column effects and

water depth. The accuracy of water column correction is dependent on several signal influ-

encing factors, such as water optical depths, wavelengths and brightness of substrate. The

modelled bottom albedo spectra (A) were compared to in situ RAMSES bottom albedo spec-

tra above a Chara contraria patch at Lake Starnberg in 1.70 m water. Despite the dominance

of the water column optical properties in the surface reflectance signal, the inversion process

using MIP resulted in obtaining benthic albedo spectra of up to 0.5 % absolute reflectance

difference compared to in situ spectra for transmissions higher than 50%, a result found to

be acceptable for differentiating similar substrates, such as macrophyte species.

A transmittance curve plotted against the reflectance spectra shows the percentage of light
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that reaches the water surface after being reflected from the substrate in 1.70 m water for

different wavelengths. It shows how much light is lost on its way up to the water surface due

to absorption and scattering in the water and what proportion of light can still be detected

by the remote sensor. At 550 nm, 60 % of reflected light reaches the water surface, whereas

at 620 nm, 40% and at 650 nm, only 20 % of the reflected light can be detected. Beyond

650 nm, more than 80 % of the light is absorbed by the water column, thus it can not be used

in remote sensing. With increasing water depth, transmission decreases and in 4m water

depth, only spectral information between 480 nm and 600 nm can be used by remote sensors

for spectral analysis.

6.3.2 Remote sensing data classification

To test the plausibility of the data at Lake Constance, the classification results were validated

with extensive ground truth measurements during the flight campaigns, GIS analysis, and

traditional aerial photographic interpretation. The tall- and short-growing macrophytes and

exposed sediment results at Lake Constance from 2003 (Figure 6.13) and macrophyte species

distributions (Figure 6.14) were compared to the ground truth data as a primary validation

step to assess the success presented in hyperspectral processing methods. The results (Table

6.8) indicate a high correspondence (87.5 %) between short-growing vegetation and sediment

(86.7 %), however tall-growing macrophytes were less correctly classified (64.2 %), as many

were of them misidentified as short growing macrophytes that had not grown up to the water

surface, but were covered with a water column of at least 2 m (Woithon et al., 2005). A

plausibility control based on 216 ground truth measurements were statistically analysed and

produced an overall accuracy of 73 %.

The ground-truthing results from a former classification at Lake Constance 2003 using

visually selected wavelength (Pinnel et al., 2004) (Table 6.9) indicate that there was some

spectral confusion with several macrophyte species, only C. tomentosa and C. contraria/C.

aspera were 100 and 92.6 % accurate, respectively. However the species C. contraria and

C. aspera could not be differentiated and showed a high degree of confusion. Potamogeton

perfoliatus was identified correctly at 66.7 %, whereas P. pectinatus was correctly identified

at 50.0 %. Using the measured spectra as a means of checking the accuracy of this second

classification, it was determined that 92 % of tall-growing, 75 % of short-growing, and 80 %

of Chara species would were correctly identified. It is anticipated, that recent classification

results using the objective GA approach exceeds this former validation result.
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Figure 6.19: HyMap modelled reflectance compared to RAMSES in situ reflectance and
standard deviation after atmospheric (red) and water column correction (blue) above a C.
contraria patch in 1.70 m water (a). Bottom albedo spectra from HyMap and RAMSES
compared to transmittance (%) in 1.70 m water (b).
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Table 6.8: A non-GA HyMap classification of Lake Constance 2003 tall-growing macrophytes,
short-growing macrophytes, and exposed sediments verified with ground truth measurements.

  Scanner Classification 
 Vegetation classes  short growing (s) tall growing (t) sediment (u)  User's 

Accuracy 
short growing (s) 56 8 0 87.5 % 

tall growing (t) 48 88 1 64.2 % 

G
ro

un
d-

Tr
ut

h-
C

am
pa

ig
n

 

sediment (u)  2 0 13 86.7 % 

 Producer's 
Accuracy 52.8 % 91.7 % 92.9 % 73 % 

 

Table 6.9: A non-GA HyMap classification macrophyte species of Lake Constance 2003 com-
pared to ground truth validation.

  Scanner Classification  

 Macrophyte 
   species

 Potamogeton 
perfoliatus 

Potamogeton 
pectinatus 

Chara contraria 
 .aspera 

Chara 
tomentosa  

Potamogeton 
perfoliatus 66.7 % 33.3 % 0 % 0 % 100 % 

Potamogeton 
pectinatus 35.7 % 50.0 % 14.3 % 0 % 100 % 

Chara contraria 
. aspera 0 % 3.7 % 92 .6 % 3.7 % 100 % 

G
ro

u n
d-

Tr
ut

h-
n giap

ma
 

Chara tomentosa 0 % 0 % 0 % 100 % 100 % 

 

/C.

/CC



Chapter 7

Discussion

In the following discussion, the results of this thesis will be placed into context, first by pro-

viding a direct explanation of each facet of the study as outlined in the research methodology.

The identification and discrimination of in situ measurements of spectra will be evaluated, and

possible reasons for intra-specific (within species) variation or error will be presented. Sec-

ond, the results from a supervised feature extraction technique of choosing limited wavelength

ranges will be examined. Effects of sensor choice will be discussed in terms of macrophyte

discrimination effectiveness. Third, the macrophyte mapping results at Lake Constance and

Lake Starnberg will be discussed in terms of accuracy, objectivity, and error. Application of

this method for monitoring macrophytes to meet EU WFD guidelines will be proposed.

7.1 Analysis of in situ measurements

7.1.1 Spectral discrimination of macrophyte species

Monitoring macrophyte species is a meaningful, accurate, and relatively straightforward way

to assess the water quality of littoral ecosystems (Dennison et al., 1993; Grasmück et al.,

1995; Lehmann and Lachavanne, 1999; Melzer, 1999). Using remote sensing methods for

discriminating macrophyte species can be a consistent and objective means in mapping large

areas for monitoring purposes (Bostater et al., 2004), but only if the spectra of in situ species

are distinct.

Spectra description

The first goal of this study was to determine whether underwater bottom reflectance mea-

surements performed in situ close above patches of several macrophyte species contain useful

information for discrimination to species level. To achieve this goal, a comprehensive spectral

123
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library of several macrophyte species was produced, characterising the spectral signatures of

each species and defining the levels of spectral variability associated with them over a range

of natural growing conditions in Lake Constance and Lake Starnberg, Germany.

The reflectance spectra of the macrophyte species were found, as expected, to be optically

quite similar because they display the absorption features characteristic of the spectral prop-

erty of green plants that contain abundant chlorophyll. Differences in the spectral signatures

of macrophytes, as shown in Figure 6.1, were quite limited, and may be in part based on

small differences in pigments and their concentrations. For example, at the green reflectance

peak (540−560 nm) and red absorption trough (670−680 nm), the macrophytes may possibly

be separated on the basis of leaf chlorophyll content. The reflectance differences in the range

from 600−650 nm can be attributed mainly to different proportions of red, orange, yellow,

and brown carotenoids (Merzlyak et al., 2003; Gitelson et al., 2002). In the blue region of the

spectrum, absorption occurs from chlorophyll a and b and a range of carotenoids that extend

absorption to shorter wavelengths of the visible spectrum (Table 2.2) (Blackburn, 1998).

The influence of individual pigments on reflectance in the blue region cannot be observed

in the spectral signatures of macrophytes. The observed differences in the visible spectral

reflectance of macrophyte species are thus often attributed to consistent differences in the

total and relative concentrations of chlorophyll, carotenoids and accessory pigments in their

leaves.

Additional significant influences on macrophyte reflectance spectra are vegetation (patch)

density, canopy openness, and the amount, form, and orientation of leaves. The discrimina-

tion of macrophytes using remote sensing relies upon differences in the magnitude of both

pigment and structural characteristics as measured or seen in features of their absorption

spectra (i.e. the depth and width of absorption troughs, or the height and shape of re-

flectance peaks). Lake Constance and Lake Starnberg both have macrophytes growing to

4−6 m depth in fairly large, uniform patches (approx. 1−5 m diameter), thus accurate dis-

crimination based on the moderate differences observed was feasible in these lakes, at least

for some species.

The effects of water-column absorption are most noticeable at wavelengths longer than

720 nm. Although NIR reflectances can be useful for mapping tall growing macrophyte

species, especially those extending to the water surface, visible wavelengths (400−700 nm) are

less attenuated by a water column and thus were used to remotely sense submerged aquatic

vegetation.
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Spectra discrimination

Results of the Jeffries Matusita distance analysis, presented in Table 6.1, suggests that several

of the macrophytes are indeed spectrally sufficiently distinct for classification. The limited

differentiation between some macrophyte species, e.g. Chara contraria, C. intermedia, C.

aspera, C. tomentosa, indicates that with simple data-analysis techniques, they were con-

fused with each other, but could be separated from other genera. The limited separation

in the genus Potamogeton (P. pectinatus, P. perfoliatus) confirms this problem. However

the separation between genera and many species pairs clearly indicates that it is possible to

remotely detect and delineate areas of submerged macrophyte cover, and that the potential

for separation using advanced data-analysis techniques exists.

Spectral differences between macrophyte species occurred primarily in their visible wave-

lengths (Figure 6.2), suggesting that either pigment concentrations or morphological differ-

ences, (e.g. cell wall thickness, airspace, leaf surface quality, and inter-specific leaf structure

variability) play an important role in spectral discrimination (Carter et al., 1989).

7.1.2 Intraspecific variability in reflectance

The potential for within species variation on spatial and seasonal scales has to be considered

when intending to compare measurements from different dates and lakes, as one would wish

to do in a monitoring program. Spatial, depths and temporal variations in light intensity,

nutrient availability, and temperature influences photosynthesis and growth, thereby altering

the spectral reflectance. Furthermore, the differing ability of each macrophyte species to

chromatically adapt and maintain photosynthetic ability under a range of different environ-

mental conditions will affect the direction and degree of spectral change, and thus will also

influence spectral reflectance. Environmental conditions will also determine the biomass and

species composition of epibionts, such as diatoms, that contribute to spectral reflectance of

macrophytes.

An additional reason spectral differences might be observed in macrophytes over differ-

ent seasons, in consecutive years, or over different locations is the within species variation.

Macrophytes themselves can influence the underwater light field affecting plant growth and

leaf/thallus morphology. This in turn affects the spectral shape and magnitude of reflectance

significantly, such that quantification of this phenomena is not feasible (Kirk, 1994).

Seasonal, temporal, and local variations in macrophyte reflectance were observed from

both Lake Constance and Lake Starnberg. Additional sources of variation include species

composition differences between lakes and macrophyte density. The difficulties in deriving
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comparable spectra indicating a species–inherent optical signature due to these variations are

outlined below, and implications to remote sensing are discussed.

Temporal variation

Variation in macrophyte characteristics, such as leaf volume, reproductive structures, and

biomass, occurs over seasons and between years (Bueno and Bicudo, 2006). Leaf age is

particularly important in remote sensing applications as it determines internal leaf architec-

ture and chemical properties, as well as affecting the amount of time exposed to epiphylls

and herbivory (Carter et al., 1989; Drake et al., 1999, 2003). Higher chlorophyll content in

young leaves likely accounts for lower VIS reflectance (i.e. higher VIS absorption) in the blue

(450 nm) and red (680 nm) regions (Gausman, 1984). As the leaf ages, lower concentrations of

chlorophyll greatly reduce the amount of absorption throughout the VIS (chlorophyll breaks

down rapidly whereas carotenoids persist longer, thereby increasing reflectance). This effect

of senescence could be mainly observed in species which grew to the water surface, e.g. P.

pectinatus and P. perfoliatus (Figure 6.3). Chromatic adaptation to light stress and acclima-

tion to different water depths could not be observed in measured reflectance data (Ziegler,

2005), however morphological adaptation due to light stress has been documented for some

species (Schneider et al., 2006).

First, seasonal variation has a tremendously large effect on remote sensing applications.

It likely influences the efficacy of species discrimination, as macrophyte morphology and

physiology changes significantly over the growth season. This has to be considered when

comparing measurements from different dates of airborne data collection. It might be useless

to collect data at the very beginning of the growing season as spectral differences are not

yet discernible. At the end of the growing season spectral variation might also complicate

species classification as epithetic growths and leaf senescence lead to increased variation in

spectral reflectance characteristics. For example, in Lake Constance and Lake Starnberg, C.

tomentosa was confused with C. aspera and P. pectinatus at the beginning of the growing sea-

son. Better separation might have been achieved at a later growth stage, when red carotenes

(γ-carotene) responsible for the red colour, develop in the anteridia of vegetative C. tomen-

tosa plants (Schagerl et al., 2003). This could ultimately lead to improved discrimination

of C. tomentosa from other Characeae. Most macrophyte species at Lake Starnberg showed

a distinct reflectance shoulder centred around 650 nm (not so apparent in spectra measured

at Lake Constance) that might be related to spectral changes found in aging and diseased

plants, leading to chlorophyll breakdown and subsequent unmasking of carotenoids and other

leaf pigments (Gitelson et al., 2002).
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Second, varying growth behaviours and sensitive adaptations to light and weather con-

ditions make it difficult to compare data collected over different years. Different distribu-

tion and growth forms, and thus different reflectance spectra, occurred between 2003 and

2004, likely due to different water temperatures and nutrient conditions (Luterbacher et al.,

2004)(DWD, 20061). For example, during extreme hot summer in 2003 species developed

2-3 weeks earlier than those in 2004 likely due to faster degree-day accumulation (Best and

Boyd, 2003; Pilon and Santamaŕıa, 2002). Ideal growth conditions for macrophytes were

apparent by the dense, homogenous macrophyte patches in both lakes in 2003, whereas in

2004, relatively cold temperatures may have been responsible for reduced macrophyte growth,

as fewer macrophytes were observed, and those present grew in sparse patches. Structural

differences between macrophytes may therefore play a more important role in the spectral

discrimination than pigment concentration. Surprisingly, there was no observable spectral

difference between years, as expected when comparing different growths forms. A spectral

library of different growth forms might be a feasible means to quantify the spectral variation

within one species. Reflectances spectra of young, mature and senescent macrophytes species

could be an attempt to obtain valid spectra which can be transferred to different lakes and

different seasons.

Third, illumination conditions also contribute to some within species differences. The

angle of incidence (sun angle) varies significantly throughout the day and thus it may be

logical that this will affect reflection, sunglint, and absorption processes. More importantly

is the effect, that apparent optical properties (AOPs) are dependent on both the medium

and the ambient light fields geometric directional structure. Thus upwelling and downwelling

irradiance reflectances, as measured underwater, are dependent on sun angle changes and

will ultimately be altered by illumination condition. Measurements in this study have shown

that these influences are negligible in comparison to other parameters. Changing sun angle

conditions did affect in situ measurements. An increase in reflectance and higher within

species variability was observed in tall growing macrophytes, e.g. P. pectinatus, but only

after 4 pm (sun-zenith of 40°). Short growing macrophytes, being a better lambertian target,

showed less sun angle related reflectances (Figure 6.4). Increased reflectance in tall growing

species was more obvious at lower sun-zenith angles, and can be explained by decreased

downwelling irradiance with lower sun angle, as compared to upwelling irradiance, caused by

anisotropic scattering. Optimal measuring time is therefore when sun-zenith angles between

25 - 40° occur (10 am to 4 pm). Investigation of anisotropy effects and reflectance properties

1 Deutscher Wetter Dienst, Monatswerte der Station 10962 Hohenpeissenberg und 10929 Konstanz,1996-
2006, http : //www.dwd.de/de/FundE/Klima/KLIS/daten/online/nat/ausgabe monatswerte.htm
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of tall growing and short growing plants under water are a future challenge in remote sensing

applications and would benefit from further investigation. It might give valuable additional

information of understanding spectral reflectance properties of submerged aquatic plants

when using in situ radiance reflectances (Rrs) instead of irradiance reflectances (R) and are

therefore highly recommended in all future applications.

Spatial variation

Environmental conditions between lakes vary, often because of differing amounts and types

of epithetic growth (‘aufwuchs’, incl. diatoms), community interactions (density effects,

herbivory, allelopathy), nutrients, water temperature, or leaf/plant morphology. This has

likely contributed to the greater variation in morphology, such as cell wall thickness, air

space (Merzlyak et al., 2003), leaf surface qualities, and leaf internal structure (Binzer and

Sand-Jensen, 2002; Peters, 2006), than found in terrestrial plants (Ronzhina and P’yankov,

2001; Schneider et al., 2006), so that exact identifications are often left to genetic analyses

(Mannschreck, 2003; Bögle et al., subm).

The in situ measured macrophyte spectra difference between Lake Constance and Lake

Starnberg, apparent in the PCA analysis (Figure 6.5), was likely influenced by a combination

of the above parameters. However, the most influential factor was likely differing macrophyte

species composition, as C. tomentosa, N. obtusa were only found in Lake Constance. The

difference in reflectances of common species may be a function of patch density, as C. aspera

in Lake Constance shows a distinct green reflectance spectrum, while C. aspera reflectance

in Lake Starnberg resembles, to some extent, sediment reflectance (Figure 6.2). Macrophyte

patches in Lake Starnberg were generally less dense, showing exposed sediment, and often

mixed with other species. These results suggest that when comparing spectra (or macrophyte

classifications) from different lakes with similar macrophyte taxa composition, homogeneity,

density, and patch size may be critical. The differences in spectra between Lake Constance

and Lake Starnberg provided additional impetus for separate treatments of each lake in

subsequent analyses.

Epibiont response to nutrient availability may also result in partial masking of macrophyte

leaf reflectance (Drake et al., 1999). For example, in some (mainly oligotrophic) waters,

epibionts can insulate incoming macrophyte leaves from light up to 90 - 100 % (Goos, 2003),

while contributing their own absorption and reflectance features to the measured signal.

Diatoms, for example, have fucoxanthin (a carotenoid pigment) as the major light harvesting

pigment, absorbing green visible wavelengths in vivo and reflect a broad range of green

to near-red wavelengths (Rowan, 1989). Without a diatom film, these macrophyte species,
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due to lutein (a xanthophyll pigment), would absorb mainly blue wavelengths while reflecting

green wavelengths. Aquatic plants can also secrete substances that have direct, adverse effects

on algal growth, a phenomenon known as allelopathy (Gross, 2003; Berger and Schagerl, 2003;

Körner and Nicklisch, 2002). Non-uniform allelopathy between species may result in different

epibiontic loading, and thus affect spectral signatures. The degree of allelopathic response

may also be related to plant age and health.

In Lake Constance and Lake Starnberg, the spectral properties of macrophyte species

were not uniformly affected by the epibionts, as short-growing C. aspera and C. tomentosa

(Gross, 2003) were suspected to have less diatom biomass than the tall growing P. pectinatus,

which have large leaf-surface areas. Epibiont effects were also not uniform between the lakes,

as P. pectinatus reflected more light in Lake Constance than in Lake Starnberg over the whole

visible wavelength range, whereas P. perfoliatus and C. contraria had similar reflectances in

both lakes (Figure 6.2). Epibiont effects are not entirely negative from a remote sensing

perspective as they can intensify some pigment related features, thus their presence/absence

and abundance might contribute to species specific class separability (Fyfe, 2003). Epithetic

growth was not quantified in this study, however.

Measurement error

Measuring under water is somewhat different to terrestrial applications, as the overlying

water column is an obstacle to accurately producing a spectral library of aquatic vegetation

and bottom types. Measurement errors likely contribute significantly to spectral variation.

The three RAMSES sensors were securely mounted on a frame such that their optical axes

were parallel (Section 4.2.2). Instability caused by wave action and boat drift likely varied

the distance between the sensors and the plants, changing measurement position and the field

of view of the underwater sensors while altering the water column signal in the spectrum.

The most variable factor was the water column itself, as surface movements resulted

in variable distances between sensors and macrophytes and variation in water column ab-

sorption. Observed distance variation was approximately 10−40 cm, depending on state of

water surface and water depth. The changing conditions were assumed to be negligible for

data-processing purposes, but theoretically should not be ignored when measuring fine-scale

features such as macrophytes.

Improved accuracy may be achieved by applying a water column correction on measured

in situ spectra in the same manner as it was applied on the remote sensing data. This

suggestion was not applied to this data set, however the water column correction on the in

situ data could improve the quality and purity of the spectral signature of various macrophyte
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species, and thus improve spectral species discrimination.

The sensitivity of apparent optical properties (AOPs) to illumination effects is also a factor

which should be considered when measuring underwater substrates. Radiance reflectance

measurements provide more information on ambient light field of underwater plants and might

therefore contain useful information for species discrimination, which are not comprehensible

when using irradiance reflectance measurements. Correction for sun angle effects on radiance

reflectance spectra could provide comparable measurements regardless of time and date. This

might be a feasible approach to produce a spectral library to be useful for an operational and

transferable methodology.

Shading effects can also influence the measured reflectance signals. During in situ mea-

suring campaigns, it was more convenient to collect the data above the patches, even for

the tall growing plants. Tall plants, especially those growing to the water surface, present a

particular challenge for underwater spectral measurements, as the only possible sensor po-

sition is inside the patch. Shading effects, specifically for the downwelling sensor, occurred.

Shading by leaves produces increased reflectances, caused by a lower downwelling irradiance

in comparison to the upwelling irradiance. The measured signal is easily mixed with other

parameters, such as water constituents, stems of plants, or short Chara species growing on

the bottom.

What is actually recorded by the spectrometer can also be somewhat different to what

may have been observed by an individual. Monitoring an underwater video camera mounted

next to the sensor’s field of view or direct observations via SCUBA diving might result

in a different interpretation than made from the spectrometer data. These problems mainly

occur in sampling locations with sparse substrate cover, turbid water, or in small macrophyte

patches. Thus underwater spectrometer measurements are most reliable with large and dense

macrophyte cover, such as those found at Lake Constance.

Field measurements should be performed in order to produce a spectral library of com-

parable and suitable spectra, as their accuracy has a great influence of the validity of the

classification results. A systematic approach is essential if they are to be compared between

years and lakes, and should begin simply by obtaining more spectra, regardless of sample

location and instruments. Inter-calibration with field instruments and airborne sensors (i.e.

HyMap) would be useful if both spectra have to be compared at a later date. Inter-calibration

of the field spectrometers (i.e. RAMSES) could also be done using a stable light source, es-

pecially for application in multi-temporal analyses.
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Implications of temporal and spatial variation and measurement errors

Spectral differences between species were seen to exist between Lake Constance and Lake

Starnberg, however consistent statistical spectral separation, regardless of season and loca-

tion, could not be confirmed. Further measurements for these and other species and at other

sampling locations over longer periods need to be performed to better understand spectral re-

flectance behaviour. To improve accuracy of remote sensing results, the field sampling should

be completed on the same day of the remote sensing data collection (flight overpass) and in-

dependently derive an algorithm for each data set (location). This would also require the

presence of field data acquisition with each flight campaign, somewhat contradicting Fyfe’s

(2004) suggestion of a universal, operational approach.

Further investigations of single-contributing components need to be done to be able to

incorporate the macrophyte reflectance signal to the modelling procedure. Signal influences,

such as epithetic growth, pigment concentration, water column effect, anisotropy effects, sun

angle effects, weather condition and clouds, as well as sensor calibration and sensor signal-

to-noise play certainly a significant role and contribute more or less to the measured signal.

Once all macrophyte-signal influencing parameters found in nature are well understood, a

model approach could probably replace extensive field work.

Measuring spectra in the laboratory (Schmidt and Skidmore, 2003) may reduce these

effects by producing a ‘purer’ spectral library of endmembers. Each component could be

investigated separately and deliver useful information about changing growth conditions,

such as plant vigour or age, as found in nature. These parameters could be incorporated

into a growth model, similar to terrestrial applications, e.g. (Verhoef and Bach, 2003),

providing valuable information regarding aquatic plant development. Relating laboratory-

based measurements to field conditions remains difficult for terrestrial environments, and is

even more complex in aquatic habitats.

The remote sensing approach is therefore limited in its application and assumes previous

knowledge of the sampling location and species present. Reflectance spectra of additional sub-

merged aquatic species and at different locations should be collected to be able to make more

accurate and precise estimates of water quality. This would also allow improved transferabil-

ity to additional sampling locations and extend the monitoring season. Further research is

also required into the high spectral resolution reflectance properties of aquatic macrophytes.

Ground-truthing at the time of remote sensing data acquisition is still highly recommended,

as no macrophyte species appeared to have consistent spectral features over the year. Over
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the long term, field data could eventually be reduced, once the spectral behaviour of macro-

phytes in each lake is better understood. Although difficulty in differentiating Chara species

is expected, as indicated by the low JM distance values, the results encourage further investi-

gations into the application of on-board hyperspectral sensors in macrophyte discrimination.

7.1.3 Feature selection

The second goal of this study was to explore how the macrophyte species differ in their

in situ reflectance characteristics at certain wavelength areas. This was a necessary step

in determining the location and width of wavebands that can be quickly, objectively, and

practically applied in the remote sensing of submerged aquatic vegetation. An automated

feature selection strategy using a genetic algorithm found the best wavelength combinations

from the first and second derivatives of reflectance. Derivatives have been proven valuable in

identifying characteristic spectral features, where raw reflectance spectra can be affected by

environmental conditions during spectral measurements, such as illumination condition and

water column.

The initial derivative analysis recovered both spectral shape information, creating peaks

in the derivative analysis, and magnitude information, reflected in the height of the derivative

peaks, leaving the inherent properties in the data that can be related specifically to leaf phys-

iology, biochemistry and morphology. A large spectral region between 500 and 590 nm was

identified in the first derivative, and appears to provide good separation between substrate

types. Depending on the spectral resolution of the remote sensor, an appropriate wavelength

range could be selected from within this range to remotely identify macrophyte cover. A

few narrow spectral bands, between 510 and 650 nm, were identified in the second derivative

where macrophytes separation may also be possible, however there is some indication that

this a noise artifact. The wavelengths identified are present in the visible spectrum, and have

the ability to penetrate water, such that passive optical remote sensors can be employed for

mapping the extent of macrophytes. The feature extraction technique also reduced the size of

the hyperspectral data set (provided by RAMSES or HyMap sensors) and the sharp spectral

information was an improvement over the pure reflectance spectra, allowing discrimination

of fine-scale changes in spectral shape otherwise not observable.

Subsequent automatisation of feature selection of reflectance spectra and their derivatives

was achieved using a genetic algorithm, which has the distinct advantage in selecting combi-

nations of wavelength ranges. For example, two features chosen separately may produce less

favourable results than two features chosen in combination. Selection of specific wavelength

features by hand could also work, but is a labour intensive process and does not provide the
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objectivity in searching for combinations of bands to maximise separation of known classes.

The only assumption necessary for the genetic algorithm to operate was that a certain number

of measured spectra should be provided by the user for statistically meaningful performance.

C. intermedia was excluded from the analysis because of insufficient measurements, however

N. obtusa with only four spectral measurements, which would normally be considered insuffi-

cient, was included because it was the only member of its genus present in the analysis. The

separability of N. obtusa from other species should therefore be interpreted with caution.

The results show that the application of feature selection strategies in finding the best sep-

arable wavelength provided superior performance, compared to ordinary classification rules,

where the over supply of variables likely caused a substantial deterioration in the classification

performance. The genetic algorithm selected wavebands were distributed equally throughout

the visible wavelength range, with the optimal discrimination wavelength between 510-625 nm

for both lakes. They were also conveniently located below 625 nm, where less water column

absorption occurs, suggesting that spectra discrimination might also be possible in 2.0-4.5 m

of water, corresponding to the depth of the littoral zone.

The GA selected wavelengths were consistent with visually selected wavebands from deriv-

ative analyses and coincide with major peaks of reflectance and troughs of absorption for the

macrophyte photosynthetic and accessory pigments, e.g. centred at 445 and 665 nm, or were

selected near the shoulders of wide peaks or troughs, which give more information for the

green peaks at around 530 and 625 nm. The red wavelengths also penetrate shallow water

sufficiently to allow detection of chlorophyll absorption features, between 650 and 665 nm, of

different species. Selected wavelengths above 600 nm were most suitable in discriminating tall

growing species. Thus the selected wavelengths targeted absorption and reflectance features

that characterised each species. A band in NIR could have been improved discrimination of

tall growing macrophytes, but was intentionally excluded because of water column effects.

Cross-validation of the discriminant analysis confirmed that the in situ reflectances could be

used to discriminate between seven of the eight measured species with > 98 % overall accu-

racy using as few as four optimally-positioned bands. These selected wavelengths for Lake

Constance were 510 nm in reflectance, 530 nm and 625 nm in the 1st order, and 535 nm in

the 2nd order derivative of reflectance. For Lake Starnberg somewhat different wavelengths

were seelcted: 445, 520, 625 and 665 nm in the 1st derivative.

Feature selection using the GALGO genetic algorithm technique was able to provide sta-

ble and consistent results, when a large number of iterations (=1000) was performed. It has

to be considered that there is not just one solution (one set of ideal band sets) that can be



134 CHAPTER 7. DISCUSSION

used to separate the species, especially when working with different spectra and spectral res-

olutions. Additional statistical tests, such as unsupervised classifications (PCA) or distance

measure (JM) indices, were used to validate the selected feature result and they confirmed

the improvement in macrophyte species classification. At Lake Constance classification ac-

curacy ranged from 68.2 % (Chara tomentosa) to 98.2 % (Potamogeton perfoliatus), whereas

species at Lake Starnberg could be correctly classified between 90.1 % (Chara contraria) and

99.6 % (Potamogeton pectinatus). The results of this study demonstrate that it is possi-

ble to accurately detect and delineate submerged macrophytes using a hyperspectral remote

sensing technique, and that the potential for species separation using advanced data-analysis

techniques exists.

The highest goal of the final classification step is to obtain biological meaningful classes

of substrates using objective statistical methods. In the case of the genetic algorithm applied

in this study, the analysis indicated that only a few optimised wavelengths were necessary

for the identification of macrophytes, although a different set of wavelength was derived

for each data set separately. This certainly showed some limitation in the automatisation

approach, however with increased knowledge of spectral behaviour of macrophyte reflectances

a more general approach might be feasible. More detailed studies are needed to test whether

remote sensing on the basis of specific spectral band sets will routinely provide meaningful

classifications prior to its acceptance as a method for mapping and monitoring macrophyte

species distributions.

7.1.4 Simulation of sensor spectral resolutions

Discriminant analysis demonstrated that RAMSES resolution in situ spectra provide good

spectral separation of macrophyte species. Achieving the fitness goal of 98 % for both lakes

was a highly encouraging result for all future applications in remote sensing of water quality.

Different classification performance in these lakes might have been due to the different number

of spectra included in the analysis, as only one third of the measurements were used in Lake

Constance compared to Lake Starnberg.

Analysis of sensor-specific spectra showed that hyperspectral and narrowband multi-

spectral sensors have the ability to discriminate between some macrophyte species and sedi-

ment across many levels of mixing, while broadband multi-spectral sensors do not. Although

the full resolution (5 nm) RAMSES spectra of in situ macrophytes performed better class

separations than simulated HyMap spectra (15 nm). The somewhat weaker performance of

simulated HyMap resolution spectra compared to RAMSES field spectra can be explained by

the lower spectral resolution (15 nm) masking out small spectral differences in the spectra.
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Very narrow spectral bands as provided by the RAMSES spectroradiometer (5 nm) proofed to

be advantageous in spectral discrimination of macrophyte species. The classification accuracy

of simulate HyMap resolution spectra was still high (95-96%) and showed great potential in

species discrimination. The spectral resolution of the HyMap sensor was therefore similar to

the field spectrometer, demonstrating that derivative spectroscopy is an appropriate means

of interpreting remotely sensed images. The actual number and width of the bands may not

be critical. Bands should not be wider than any peak or trough they represent and must not

overlap with the spectral information provided by other features. This approach would allow

different substrate classes to be remotely identified and monitored over time.

7.2 Remote sensing data classification

Although it appears that the macrophyte species could be discriminated based on their visible

reflectance of in situ measurements alone, the signals sensed from an aeroplane or satellite

contain different information from that collected by ground spectrometers. This will mainly

be due to scattering and absorption of light in the atmosphere and water column, reflectance

of light from the water surface, mixing of signals in image pixels, the density and geometry

of the macrophyte canopy, and background effects of the substrata.

Despite the dominance of the water column optical properties in the surface reflectance of

optically shallow Case2 waters, inversion using MIP resulted in obtaining reasonable values

for benthic albedo spectra. The model results indicated mixed substrate composition with

a single dominant component, which is more realistic than a result of 100% coverage due to

the complex ecology of benthic substrata.

The remote sensing data classification of 5 m spatial resolution HyMap data showed a

somewhat different result than anticipated by linear discriminant analysis of in situ spectra.

There was a remarkable difference in classification performance between 2003 and 2004. In

2003, tall and short growing species were accurately classified (Figure 6.13), but in 2004, tall

growing species could not be classified in the image data from neither overflight (30th June

and 29th July). What actually can be determined by image analysis may be dependent upon

the relative scales of the image and the patch size. At Lake Constance, the 2003 species clas-

sification (Figure 6.14) correctly distinguished between P. pectinatus and P. perfoliatus, both

tall growing species, and some short growing species such as N. marina and C. tomentosa. C.

aspera were confused with C. contraria, the most abundant species. The 2004 classification

was not able to correctly distinguish any species except the abundant C. aspera/C. contraria

group. Similar results were obtained from Lake Starnberg, which showed good correlation
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between classification and field data in 2003 and poorer performance in 2004. Obviously, the

results for 2004 were disappointing as better classifications were expected. These results may

be explained in part by sparse macrophyte cover throughout the growing season in 2004, such

that dense, homogenous patches may be a prerequisite in achieving accurate classification and

generating valid macrophyte distribution maps.

There are several strategies that could be attempted to improve classification. Applying

specific waveband combinations for classifying short and tall growing species separately and

maximising ‘optimal’ spectral features to species and water depth might improve separability

and needs investigation. Separation of tall and short growing macrophytes based on their

growth height alone simplifies the classification, but it also requires that the digital elevation

model implemented in the water column correction step must be accurate. Differentiation of

tall and short growing species must be reliable to avoid multiplicative errors in subsequent

species classifications. Separating tall and short growing macrophytes based on spectral infor-

mation might also be achievable, but would complicate species discrimination. A combination

of both approaches would probably be the best solution. Additional, object-oriented classi-

fication strategies might also improve differentiation, such as including expert knowledge of

macrophyte spatial distribution in relation to water depth and species composition.

There are further challenges for researchers in scaling the spectral reflectance of field mea-

sured leaf samples up to real mapping situations. The discrimination of aquatic macrophytes

species by digital image processing methods is highly dependent on species diversity, com-

position, and variations in density in the given area. The effect of the lake bottom on the

total reflectance of aquatic macrophytes was found to be more problematic than the effect

of water quality, since the lake bottom effect changed with water depth. Nevertheless, the

observations presented in this study are encouraging because the spectral differences between

macrophyte species are rather subtle.

7.2.1 Classification error sources

Classifying macrophyte species is confounded by such technical factors as model accuracy

and performance, water column correction influences, measurements errors, and calibration

and signal-to-noise performance of the sensor. These are in addition to the highly variable

nature of substrata which are spectrally mixed with several other materials. The relative low

reflectances of aquatic macrophytes (usually < 12 % of the magnitude of the green reflectance

peak) generally presents a bottleneck for remote sensing, as less quantisation levels can be

distinguished by the remote sensor. Thus, the signal-to-noise performance for the remote

sensor must be higher for aquatic ecosystems than in terrestrial applications.
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In developing a hyperspectral remote sensing-based detection and monitoring method,

species discrimination is dependent on the accuracy for which the atmosphere, the air-water

interface, and the water column effects are accounted. The remote sensing approach therefore

involves accurate simulation of substrate reflectance at the bottom through the water column,

the air-water interface, and the atmosphere to a remote sensor, based on radiative transfer

principles. The accuracy of the inversion algorithm needs to be assessed and quantified when

making prediction of data quality. Water depth is one of most limiting factors when applying

remote sensing instruments in shallow littoral areas.

Except for some mechanical and automatic processing steps, it can be conclusively stated

that remote sensing products in shallow littoral environments depend very much on field

conditions and classification accuracy might be limited by:

• water depth. The deeper the water, the more difficult it is to differentiate species,

because of the limited number of available spectral bands for discrimination.

• water clarity. This factor is highly correlated to optical depth, the depth to which

plants reach 1% of light depends on water optical properties.

• density of macrophyte patches.

• homogeneity of the patches and distribution of species within the littoral zone.

• growth height. The higher the plants grow up to water surface, the easier it is to detect

their spectral signatures. Growth height is influenced by water depth and turbidity.

• variability or amount of different species found in one area.

• species richness. Some species can easily be separated from each other while other

species simply cannot.

• quality of spectral library. The quality and quantity of in situ measurements signifi-

cantly influences the statistical analyses and needs to be strategically and systematically

collected.

The accuracy of the remote sensing result is thus dependent upon these conditions which

can vary over space and time. However some error sources can be avoided when sufficient

attention is applied beforehand, such as ensuring sensor stability, choosing an appropriate

day with respect to weather conditions for the flight campaign, and sensor alignment relative

to sun angle.
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7.2.2 Applicability of remote sensing and the WFD

Transfer of this method to different lakes or even other environments, such as wetlands

and coastal environments, is theoretically possible as shown by Heege et al. (2006). The

underlying premise is that substrata of interest are known and can be distinguished from

each other. An extensive spectral library might facilitate future applications and reduce new

field data acquisition. The application should always take into consideration the interests

and accuracy needed, particularly with respect to choosing the sensor’s spectral and spatial

resolution. The user should be thoroughly informed about the sensor’s capabilities and

limitations, as well as quality of the data required, and how they might be used for future

investigations. Distribution maps of submerged aquatic vegetation and their percentage cover

can then be achieved with a reasonably high accuracy, even with limited or no ground-truth

measurements, provided the area is known.

The distribution of tall and short growing macrophytes to 4.5 m water depth in turbid

waters can be achieved with high accuracy over large areas. This may be an interesting

product for limnologists who wish to know the extent of uniform communities, such as invasive

or alien species, particularly if there are only one or two species present. High density cover

of macrophyte growth facilitates remote sensing applications, as the returned signal from the

water bottom is not mixed or deteriorated by other substrates.

Differentiation of macrophyte species and mapping their abundance and distribution ac-

cording to the monitoring requirements for macrophytes within the Water Framework Di-

rective (Melzer, 1999) was the ultimate goal for this study. The results showed that remote

sensing has great potential for monitoring several macrophyte species and eventual incorpo-

ration into a WFD assessment strategy. However, the eight macrophyte species investigated

in this study are only a small fraction compared to e.g. the 45 species found in the macro-

phyte index list (MI) (Melzer, 1999). Only the dominant species (Potamogeton pectinatus, P.

perfoliatus, Nitellopsis obtusa, Najas marina, Chara tomentosa, C. intermedia, C. contraria,

and C. aspera) at the study sites were investigated, since any other species could not be

discriminated or detected by remote sensing instruments. This was primarily because of the

spectral overlap with other species groups, (e.g., Chara aspera, C. contraria) or a lack of field

data (e.g., C. intermedia, Nitellopsis obtusa).

Eventual incorporation into an automated, objective method should consider a variety

of factors. Seasonal variation should be taken into account when applying remote sensing

data to submerged vegetation communities, as some species change significantly with season,

whereas other species have only minor changes. The occurrence of the growth season would
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depend upon climate and degree days, thus scheduling overflights would have to be done

according to annual variations. Temporal and spatial information could be used in remote

sensing to improve species classification and ensure accuracy of classification. A combination

of object-oriented classification methods (Andresen, 2004; Mott, 2005) could also contribute

to the approach of an automated and operational remote sensing application.

Remote sensing data acquisition applied twice (or several times) during the growing season

might be able to reveal spectral groups and classes which were otherwise not discernible. For

example, P. pectinatus and P. perfoliatus were less discernable at the beginning of the growing

season, whereas during senescence their spectral shape changed significantly and could be

separated to 99 % accuracy. Remote sensing could use this seasonal and spatial information

and detect species according to seasonal variability. Investigation of other dominant species

in other locations is absolutely necessary prior to any further application of this method.

Size of vegetation patches should also be at least the size of sensor resolution, (preferably

3× 3) the size of a sensor pixel (0.8-4m pixels). Here lies possibly one of the limiting factors

for remote sensing in limnological applications. Only in larger lakes, such as Lake Constance,

do such growth conditions occur. The littoral zone of smaller lakes would be too complex for

current remote sensor resolution, restricting current remote sensing applications to large-lake

littoral zones. A similar situation will occur with turbid or deep waters. Until increased

resolution sensors are developed and commercially available, this limitation will always exist.

Successful results of a semi-automated, remote-sensing approach for mapping the distri-

bution of submerged aquatic vegetation in littoral zones has been presented. This approach

forms the basis for future developments in precise automated methods. However, further

research needs to be done to stabilise and improve the retrieval procedures (e.g. to improve

algorithms for species recognition in shallow waters and derivation of growth height of aquatic

plants from remote sensing data as an indicator for biomass). Consequently, remote sens-

ing could become an economical monitoring technology for inland waters, with respect to

managing and monitoring natural ecosystem restoration, rehabilitation, and conservation.

By use of physical-based algorithms, a general transferability of data to different water

types and seasons is possible, showing promising potential for further research in the field of

airborne remote sensing over shallow water targets. A previous application of a remote sensing

approach to assess water quality using macrophytes at Lake Constance in 2003 (Woithon

et al., 2005) resulted in the classification of sufficient species to produce a distribution map

of ecological states (Figure 6.16). Some locations, seen as red pixels, are suspected to have

unsatisfactory - bad water quality and may be related to areas of very frequent public use.
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Figure 7.1: Pixel-based reference index calculation after Schaumburg (2004), based on
the 2003 remote sensing macrophyte species classification at Lake Constance (Figure 6.16)
adapted from Woithon et al. (2005)

Their pioneering attempt established first, the potential for this type application and second,

the need for improved sensor resolution and species classification. This study is an attempt

to meet these needs.
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Landnutzung und Umwelt, Department für Ökologie, Fachgebiet für Limnologie, Technis-
che Universität München.

Maritorena, S. (1996). Remote sensing of water attenuation in coral reefs: case study in
French Polynesia. International Journal of Remote Sensing, 17(1):155–166.

Maritorena, S., Morel, A., and Gentili, B. (1994). Diffuse reflectance of oceanic shallow waters:
influence of water depth and bottom albedo. Limnology and Oceanography, 39(7):1689–
1703.

Marshall, T. and Lee, P. (1994). Mapping aquatic macrophytes through digital image-analysis
of aerial photographs - an assessment. Journal of Aquatic Plant Management, 32:61–66.

Mather, P. (1999). Computer processing of remotely-sensed images - An introduction. John
Wiley and Sons, New York, 2. edition.

Mathewson, D., Hocking, M., and Reimchen, T. (2003). Nitrogen uptake in riparian plant
communities across a sharp ecological boundary of salmon density. BMC Ecology, 3:4.

McLachlan, G. (1992). Discriminant analysis and statistical pattern recognition. Applied
probability and statistics. John Wiley and Sons, New York.

Meilinger, P., Schneider, S., and Melzer, A. (2005). The Reference Index Method for the
macrophyte-based assessment of rivers - a contribution to the implementation of the Eu-
ropean Water Framework Directive in Germany. International Review of Hydrobiology,
90(3):322–342.

Melzer, A. (1988). Der Macrophytenindex - eine biologische Methode zur Ermittlung der
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henden und fliessenden Gewässern. Habil Thesis, Wissenschaftszentrum Weihenstephan
für Ernährung, Landnutzung und Umwelt, Department für Ökologie, Fachgebiet für Lim-
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