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A ship in port is safe,

but that is not what ships are for.

Sail out to sea and do new things.

– Admiral Grace Hopper, Computer Pioneer
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Chapter 1

INTRODUCTION

1.1 Motivating Trends

Since starting the industrial revolution, the leading industry has been requiring more

and more precise tools for delivering high quality production while making the pro-

duction procedure as efficient as possible and the production cost as low as possible.

In this context, automatic control has found its place among the leading technologies.

In the early days a control engineer because of hardware implementation limits was

restricted essentially to use her knowledge of the process and her understanding of the

underlying physics to design very simple controllers. As rigorous standards were im-

posed on the performance specifications, the need of advanced automatic tools from

which complex controllers could be designed became a major issue. On the other

hand recent advances in high speed processors with the capability of carrying out

high numerical computations in real time have let complicated control algorithm to

be realized. Therefore quickly, the theorist of feedback control theory oriented their

research toward the computation of high performance (optimal) controllers. For in-

stance a product of these attempts is Robust H∞ control design which uses bounds on

the modeling error to design controller with guaranteed stability and/or performance.

Regarding the fact that practicing engineers need controllers which are precise and

have low complexity, the new developed design tools came short to satisfy the latter

requirement. The complexity of new controllers restricted their operation in embed-

ded systems and increased their implementation costs. As the control theorist did

not make much effort to reduce the complexity of controllers a huge gap between
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theory and practice appeared. During the last two decades many efforts have been

made to bridge this gap and a new field of research emerged, which has been called

controller reduction. This orientation lies basically on the ideas from model reduc-

tion approaches. But it later became clear that a major issue that makes controller

reduction distinct from model reduction is the interplay between controller reduction

and control design. The recent developments in this field has made the reduction for

control to be seen as a complementary design step.

1.2 State of The Art

The early works on controller reduction only aimed at expanding the ideas from

model reduction field, without considering the closed loop stability and performance.

Modern methods for model reduction started in the sixties. The key feature of all

techniques was to retain the dominant modes of the original system and to discard the

nondominant modes. Then in 1981, B. C. Moore, introduced the concept of balanced

realization and its application in model reduction [47]. This was a breakthrough in the

field of model reduction and provided the balanced truncation method for reducing

a stable linear system with associated a priori error bound. Some different aspects

of this method are reviewed in Chapter 3. As mentioned the advanced controller

design methods tend to supply controller with order comparable to the plant order.

The available methods of model reduction did not prove of themselves an effective

way for controller reduction, since the do not provide a systematic way for handling

the problem of retaining closed loop stability and performance. During the eighties,

controller reduction became a field of tremendous research activity. Some notable

results were achieved, all trying to capture the plant into the controller reduction

problem. Perhaps the first result was published in 1984 by D. F. Enns and his

method relied on introducing frequency weighting (as a function of plant) into the

balanced truncation procedure [21]. Another direction of development that occurred

in the nineties was the application of coprime factorization. This line of research was

initiated by the publication of K. Glover and D. Mustafa considering reduction of H∞
optimal controllers [49]. A summary of major achievements is presented in Chapter
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4.

Although different controller order reduction approaches serve different objectives,

stability and transfer matrix matching are common main goals in all of them. Nor-

mally, stability is an essential property that cannot be ignored and it is a challenge

to transfer matrix matching. In other words, the approaches that focus on preserving

special characteristics of the original transfer matrix might easily lose the stability of

the reduced system. For instance Enns controller reduction method (Balanced trun-

cation with two sided weighting) suffers the lack of stability, although it is successful

in transfer matrix matching of the closed loop system in the sense of infinity norm.

Similar to model reduction, there has been some efforts to modify controller reduction

approaches to preserve the stability of the controller itself. For instance the publi-

cation of Lin and Chiu proposed a minor adjustment to the schemes of Enns which

guarantees just the stability of the reduced order controller but not the closed loop

system [38]. This idea was further developed in [59, 65] and [58]. An open problem

which still remains is how we can guarantee the stability of the closed loop system.

This dissertation is dedicated to give an answer to this question.

1.3 Thesis Contribution

The contributions of this thesis address both researchers in field of model and con-

troller reduction and they are essentially focused on the problem of instability in both

cases.

The first contribution concerns model reduction methods based on similarity trans-

formations. For a given model a general framework is proposed that parameterizes a

large set of reduced models that preserve the stability of the original model. As an

application of this result, it is shown how different model reduction methods can be

modified, if they fail to maintain stability. The basic idea in this part is also exploited

as a guideline to deal with the main objective of this dissertation which is preserv-

ing stability of the closed loop system in case of controller reduction. This result is
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detailed in Chapter 5 and has been partially published in

Yousefi, A. and Lohmann, B. “A note on Stability in Model Reduction”.

submitted to the International Journal of Systems Science, 2006.

The second contribution of this thesis is isolating the problem of guaranteeing the

internal stability of the reduced closed loop system from the problem of transfer ma-

trix matching. Our treatment of stability follows that of [29, 60], where stability is

guaranteed by generalized Gramians. The approach here, utilizes the theoretic frame-

work based on strict Lyapunov inequalities. Then for a given controller a framework

is proposed that parameterizes a set of reduced controllers that preserve the stability

of the closed loop system. In addition, a sufficient condition for the existence of such

a framework is derived. An interesting application of these results is an algorithm

to preserve stability in currently available controller reduction approaches that suffer

from the lack of stability, by slightly modifying the corresponding similarity trans-

formations. The details of these results are available in Chapter 6 and have been in

published in

Yousefi, A. and Lohmann, B. “A Parameterization of Reduced Stable

Models and Controllers”. submitted to the International Journal of

Control, 2006.

A special application of this result to frequency weighted controller reduction approach

is studied in an example in Chapter 8 and more comprehensively published in

Yousefi, A. and Lohmann, B. “Stabilizing Frequency Weighted Controller

Reduction Approach”. submitted to ISA (The Instrumentation, Sys-

tems and Automation Society) Transactions, 2006.

1.4 Synopsis

This thesis is organized as follows.

Chapter 2: Feedback Control Theory. This chapter reviews the trend of feedback

control theory in the last decades and it summarizes the achievements on mathemat-

ical analysis of stability and robustness. It also includes a description of the closed
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loop setup that is considered in this thesis, as well as the definitions and tools for

analysing closed loop stability and performance. Finally the basic motivations for

performing controller reduction are explained.

Chapter 3: Order Reduction. This chapter contains a summary of model reduc-

tion based on balancing and its different interpretations, namely from energy, linear

operators and optimality point of view.

Chapter 4: Low Order Controller. This chapter explains the concept of sta-

bilization using feedback and the minimal order required for stabilization. Then a

summary of well-known controller reduction approaches based on minimizing multi-

plicative error, relative error, frequency weighted absolute error, coprime factors and

H∞ error are presented and pros and cons of each approach is shortly expressed.

Chapter 5: Preserving Stability in Model Reduction. It sometimes happens

that model reduction methods based on similarity transformation result in unstable

models although the original model is stable. Given a stable model, based on Lya-

punov criterion, this chapter proposes a general framework that parameterizes a large

set of stable reduced models that each can be obtained by truncating a realization of

the original model. As an application of this result it is shown how Krylov subspace

based model reduction methods and frequency weighted reduction methods can be

modified, if they fail to maintain stability.

Chapter 6: Preserving Stability in Controller Reduction. This chapter ad-

dresses the problem of instability in controller reduction methods based on similarity

transformations. For a given controller a framework is proposed that parameterizes a

set of reduced controllers that preserve the stability of the closed loop system. Then

based on this result a complementary algorithm to obtain a stabilizing stable reduced

controller based on similarity transformations is presented. As an application of this

result it is shown how the two sided frequency weighted reduction method can be

modified to guarantee the closed loop stability. In addition, a sufficient condition for

the existence of such a framework is derived.

Chapter 7: Effect of Controller Reduction on Embedded Controllers. Our

results in Chapter 6 combined with methods in Chapter 4 give a reduced controller

that guarantees the stability and performance of the closed loop system. This chap-

ter aims at giving some insight into the effect of controller reduction on the size and
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processing speed of embedded controllers.

Chapter 8: Illustrative Examples. The efficiency of the methods presented in

Chapter 5 and 6 are illustrated with two examples from literatures. By means these

examples a comparison study among different approaches is carried out and the ad-

vantages of the new methods are highlighted.

Chapter 9: Conclusions and Discussions. This chapter concludes this thesis

and proposes some possible further research topics.
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Chapter 2

FEEDBACK CONTROL THEORY

2.1 Introduction

Automatic feedback control systems have been known and used for more than 2000

years. The word feedback is a 20th century neologism introduced by radio engineers

to describe parasitic, positive feedback of the signal from the output of an amplifier

to the input circuit. Afterward it has entered gradually into common usage in the

English-speaking world during the latter half of the century. The history of automatic

control divides conveniently into four main eras as follows:

• Early Control: to 1900

• The Pre-Classical Period: 1900-1940

• The Classical Period: 1935-1955

• Modern Control: Post-1955

Table 2.1 shows briefly the trend of modern control since 1955 for linear systems,

concerning advantages and disadvantages of the provided tools in this period. For

an interesting overview of control history see [12, 13]. As it is clear form Table

2.1, the modern control theory can address robust stability and performance in a

systematic design procedure, but getting high order controller is unavoidable. One of

the successes of modern linear control is introducing the concept of robust stability
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Time method advantages disadvantages

30’s -50’s Classical Control (PID, graphics-oriented restricted to SISO

Lead-Lag, Root Locus) systems

50-60’s Linear Quadratic guaranteed stability margin full state feedback

Regulator(LQR) pure gain controller accurate model

many iterations

60-70’s Linear Quadratic use available data on noise no stability margin

Gaussian(LQG) and disturbance accurate model

many iterations

80-90’s Loop Transfer guaranteed stability margin possible high gain

Recovery(LQG/LTR) systematic design procedure focus on one point

H2 Optimal Control systematic design many iterations

H∞ Optimal Control address stability and sensitivity high order controller

μ Synthesis transparent performance definition

Table 2.1: A brief history of modern automatic control for linear systems

and its mathematical tools. Sections 2.2 and 2.3 are concerned with this definition and

related mathematical preliminaries, which are used as essential tools in proceeding

chapters. Another outcome of modern linear control is formulating performance in a

transparent manner. Section 2.4 reviews concisely the definition of performance and

restrictions on it in presence of constraints.

2.2 Stability

In this section we consider the stability of a general closed loop system which is

shown schematically in Figure 2.1. Assume that the plant G (which is a model of

a real system), the controller K and sensor F (which are the models of a hardware

realization of a controller and sensors) in Figure 2.1 are fixed real rational proper

transfer matrices1. We should always keep in mind that for linearized model the

1We will relax this assumption in the next section (robust stability) by taking into account the
effect of wide range of uncertainties.
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whole argument in this section is valid only in an area around the operating point

and we have to bury in mind that it’s better (at least as a point of view of stability

analysis) to design the plant and implement the controller as linear as possible. We

can roughly say “stability in the sense of physics means more robust stability, because

the reality is not as ideal as what we do in mathematics”.

Figure 2.1: One degree of freedom control configuration

The first question one would ask is whether the feedback interconnection makes sense

or is physically realizable. Therefore before we step in the definition of stability we

define the notation of well-posedness.

Definition 2.1: A feedback system is called well-posed when it is physically realizable

[74].

Well-posedness can be checked Mathematically using the following theorems.

Theorem 2.1: A feedback system is well-posed iff I+L(∞) is invertible, where L(s) =

F (s)G(s)K(s) is the loop transfer function.

Theorem 2.2: In terms of state-space realization, well-posedness is equivalent to the

invertibility of

⎡
⎢⎢⎣

I 0 Df

−Dk I 0

0 −Dg I

⎤
⎥⎥⎦, where Di matrices denote the feed-through ma-

trices of the part systems, see (2.1).
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Fortunately, in most practical cases we have Dg = 0 and hence well-posedness for most

practical systems is guaranteed. It is also clear that well-posedness is the necessary

condition for the stability.

Definition 2.2: A system is (internally) stable if all signals, containing all measurable

and immeasurable signals in all components including even hidden modes, remain

bounded provided that the all injected signals (at any possible location) and initial

conditions are bounded.

It should be noted that stability analysis in contrast to its initial definitions (in other

references) is independent of the way we have chosen the inputs-outputs pair and is

completely an internal property of a system 2. Internal stability is a basic requirement

for a practical feedback system. This is because all interconnected systems maybe

unavoidable subject to some nonzero initial conditions and some errors, and it can-

not be tolerated in practice that such errors at some location will lead to unbounded

signals at some other locations in the closed-loop system.

Another approach to define stability is Lyapunov’s criterion which is equivalent to

Definition 2.2 (at least for LTI systems). The basic idea of this approach is as follows:

Definition 2.3: If the total energy of a dynamic system is continuously dissipated,

then the system is called stable and it will finally settle down to an equilibrium

point.

In this method by finding an appropriate3 functional V , which (in a generalized point

of view) represents the energy of the whole system, useful stability criteria can be

established not only for LTI systems but also for several class of nonlinear systems.

Based on similar ideas the other notations like passive systems or dissipative systems

are also discussed in other references which have more values in theoretical discussions

2In some special cases the internal stability is equivalent to external stability of some pair of
inputs and outputs, for instance see Theorem 4.5 in [55].
3V (0) = 0, ∀x(�= 0) V (x) > 0, V̇ (x) < 0
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rather that practical ones. More details on Lyapunov’s method can be found in [35]

and more information on passive and dissipative systems are available in [67, 68].

2.2.1 Mathematical analysis of stability

State space

The state space approach represents a very clear and usually understandable view

of different modes (modal approach) and their relationships. Consider the following

state space representation in continuous and discrete form:

S :

{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(2.1)

Sd :

{
x(k + 1) = Adx(k) + Bdu(k)

y(k) = Cdx(k) + Ddu(t)
(2.2)

Analyzing stability in the state space matches completely with the above definition.

Because it is done by analyzing the matrix A (or Ad) which reflects comprehensively all

internal modes of the system without assuming the interactions of inputs and outputs.

Loosely speaking every route that connects any possible pair of input-output will pass

through some parts (or all) of these internal modes. Therefore if all the internal modes

are stable, the stability of the whole system is guaranteed.

Theorem 2.3: The system represented in (2.1) is (internally) stable iff Re{λi(A)} < 0.

(Discrete time: (2.2) is stable iff ‖λi(Ad)‖ < 1.)

Remark 2.1: Assuming A is an n×n matrix, its eigenvalues (λi(A), i = 1, · · · , n) are

the roots of the n’th order characteristic equation Φ(λ) = det(A − λI).

Corollary 2.1: Lyapunov Criterion: Matrix A is a stability matrix (Re{λi(A)} <

0) iff for any positive definite (symmetric) matrix Q, exists a positive definite (sym-

metric) matrix P such that AT P + PA = −Q. (Discrete time: iff P −AT PA = −Q)
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Corollary 2.2: The system represented in (2.1) is (internally) stable iff the matrix A

is a stability matrix.

This result is also consistent with Lyapunov’s criterion (Defenition 2.3), noting that

the quantity V (x(t)) = xT (t)Px(t) can be regarded as a generalized energy associated

with the realization (2.1). In a stable system the energy should decay with time,

consistent with the calculation

d

dt
V (x(t)) = xT (t)(PA + AT P )x(t) = −xT (t)Qx(t). (2.3)

From this we can conclude that x(t) → 0 as t → ∞, provided Q is positive definite. It

can also be shown that if A is a stability matrix, then the Lyapunov equation (AT P +

PA = −Q) has a unique solution for every Q which equals to P =
∫∞

0
eAT tQeAtdt4.

Frequency domain

In the frequency domain we suppose that all transfer matrices in Figure 2.1 have

minimal realizations and none of them contains any unobservable or uncontrollable

modes. Mathematically it means that in constructing each transfer matrix has not

any zero-pole cancellation occurred. The stability of the close loop system can be

analyzed using the following theorems:

Theorem 2.4: The system described by Figure 2.1 is (internally) stable iff the transfer

matrix

⎡
⎢⎢⎣

I 0 F

−K I 0

0 −G I

⎤
⎥⎥⎦
−1

belongs to RH∞.

With the assumption that all transfer matrices have minimal realizations, the internal

stability of the closed loop system is equivalent to external stability of the following

4The matrix equation FX+XG+C = 0 has a unique solution iff λi(F ) �= λj(−G). if Re(λi(F ))+
Re(λj(G)) < 0 this unique solutions is given by X =

∫∞
0

eFτCeGτdτ .
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nine (in fact four distinct) transfer matrices 5

⎛
⎜⎜⎝

r

di

n

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

I 0 F

−K I 0

0 −G I

⎤
⎥⎥⎦

⎛
⎜⎜⎝

er

up

ye

⎞
⎟⎟⎠ ⇔

⎛
⎜⎜⎝

er

up

ye

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

I 0 F

−K I 0

0 −G I

⎤
⎥⎥⎦
−1 ⎛⎜⎜⎝

r

di

n

⎞
⎟⎟⎠

=

⎡
⎢⎢⎣

(I + FGK)−1 −FG(I + KFG)−1 −F (I + GKF )−1

K(I + FGK)−1 (I + KFG)−1 −KF (I + GKF )−1

GK(I + FGK)−1 G(I + KFG)−1 (I + GKF )−1

⎤
⎥⎥⎦

(2.4)

Remark 2.2: Theorem 2.4 also guarantees well-posedness of the closed loop system.

Remark 2.3: Theorem 2.4 includes other special cases where at least one of the trans-

fer matrices is stable (page 69) [74]! One special case is Corollary 2.3.

Corollary 2.3: Suppose K,G, F ∈ RH∞. Then the system in Figure 2.1 is (internally)

stable iff (I + FGK)−1 ∈ RH∞, or equivalently det(I + FGK) has no zeros in the

closed right-half plane.

It is also interesting to note that it is possible that all transfer matrices K,G, F are

unstable but the closed loop system is stable! Thus, the condition K,G, F ∈ RH∞
in the Corollary 2.3 just simplifies the calculations and it’s neither a necessary nor a

sufficient condition for the stability. Although unstable controllers (due to instability

problems in sensor failure) are usually undesirable but it can be shown that in some

cases are unavoidable.

5BIBO (bounded input, bounded output) Stability: All transfer functions defined from any inde-
pendent input to any definable output be externally stable[61]. Another equivalent definition for
externally stable system is a system with bounded impulse response (

∫∞
0

‖h(t)‖2dt < ∞).
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Concluding remarks

Many linear systems arise from nonlinear systems by linearization about an operating

point. The relationship between the stability of the linearized model and that of

the original model is therefore of great interest. The question that arise here is

“How far from the operating point the stability statement for the linearized model

is valid for the nonlinear system?”. One of the notable achievements of Lyapunov

theory is a contribution to this question. It is proved that if A is a stability matrix,

then the original nonlinear equation is also stable under small perturbations from

the equilibrium position and the acceptable range of allowed perturbation can be

calculated invoking the following theorem.

Theorem 2.5: Let ż(t) = f(z(t)) and ze be an equilibrium point (f(ze) = 0), then if

z(t) = x(t) + ze from Taylor expansion we have

f(x(t) + ze) = f(ze) + Ax(t) + g(x(t))

where A � ∂f

∂x

∣∣∣∣
ze

, lim
‖x‖2→0

‖g(x(t))‖2

‖x‖2

= 0

and the linearized model obtained as follows

ẋ(t) = Ax(t)

Now, if A is a stability matrix, then the original nonlinear equation is also stable

under perturbation x iff

2gT (x(t))Px(t)

xT (t)x(t)
< 1

provided that P is a positive definite matrix.

Proof overview: Assuming the following Lyapunov function V (x(t)) � xT (t)Px(t)

⇒ V̇ (x(t)) = xT (t)(PA + AT P )x(t) + 2gT (x(t))Px(t)

(assume Q = I in (2.3)) = −xT (t)x(t)(1 − 2gT (x(t))Px(t)

xT (t)x(t)
) (2.5)

⇒V̇ (x(t)) < 0 iff
2gT (x(t))Px(t)

xT (t)x(t)
< 1
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More information on this issue can be found in [11].

The common issue of all approaches for analyzing the stability of LTI systems boil

down to analyzing the roots of a polynomial. For instance in the state space approach

stability is determined by characteristic polynomial det(A − sI) and in frequency

domain (assuming no right-half plane zero pole cancellation when the product FGK

is formed) by numerator of det(I + FGK) which is also a polynomial. It is worth

also to note that all linear differential equations have homogeneous answer in form

of exponentials (including sines and cosines) and the sign of these exponents (modes)

determine the stability of the corresponding system. Thus, several methods have been

developed to find the sign of these modes (which are roots of characteristic polynomial)

without direct calculation. For instance Nyquist criterion, Routh-Hurwitz test and

Kharitonov theorem [22] for continuous case and Schur-Cohn test [62] for discrete

case.

The idea behind the definition of internal stability is that it is not enough to look only

at a specific input-output transfer matrix, for instance from r to y. As an example,

we cannot always conclude the internal stability of the whole system from stability

of the transfer matrix from r to y. Because still an internal signal (and even y)

could become unbounded resulted from another input and probably causing internal

damages to the physical system. This idea can also be generalized to performance

definition and other analysis of the closed loop system. We should bury in mind that

in a closed loop control system we are not only dealing with one transfer matrix, but

also with several ones, where each one should fulfill different specs and stability is

just one of them.

The most general block diagram of a control system is shown in Figure 2.2. The

generalized plant consists of everything that is fixed like the plant, actuators, sensors

and so on6. The controller consists of the designable part which might be an electric

circuit, microcontroller or some other such devices. The signals w, z, y and u are,

6The generalized plant even might contain uncertain but bounded elements that in some references
the uncertain part is shown with an extra block Δ.
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in general, vector-valued functions of time. The components of w are all exogenous

inputs like references, disturbances, sensor noises and so on. The components of z

are all signals we wish to control: tracking errors between reference signals and plant

outputs, actuator signals whose value must be kept between certain limits and so

on. The vector y contains all measured and accessible signals. Finally u contains all

controlled inputs to the generalized plant. The stability analysis of this configuration

is very similar to what we discussed in this section, but we should note that deriving a

minimal realization of the generalized plant (preventing zero pole cancellation) plays

a crucial role.

Figure 2.2: General control configuration

2.3 Robust Stability

Noting that the universe of mathematical models from which a model is chosen is

distinct from the universe of physical systems, we can conclude that there is always a

mismatch between the model and its corresponding physical system so-called model

uncertainty. We can sometimes reduce this error by adding more complexity to the

model, but complexity is not desirable. A good model should be simple enough to

facilitate design, yet complex enough to give the engineer confidence that the design

based on it will work on the true plant. In this section we would like to conclude the

stability of the physical plant (system) in the face of model uncertainties.
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Definition 2.4: A system is robust stable if it remains (internally) stable in presence

of all allowable uncertainties. As a view of control theory, with a given controller K

the system remains stable for all plants in the (prescribed) uncertainty set ([55] p.

303).

2.3.1 Mathematical analysis of robustness

Robustness in classic control

In Figure 2.1 consider G(s) is a second order SISO systems as follows:

G(s) =
ω2

n

s(s + 2ζωn)

and K(s) = 1, F (s) = 1, where ωn is the frequency in rad
sec

and ζ is the damping.

Based on the following five properties the performance of the transfer function T =
y
r

= ω2
n

s2+2ζωns+ω2
n

can be evaluated7.

1. Phase margin: shows the robust stability against phase deviation and time

delays.

φ = 2 sin−1(
1

2‖Smin‖) = tan−1(2ζωn/ωc) ≈ 100ζ (degree)

where ωc = ωn

√
(4ζ4 + 1)1/2 − 2ζ2 is the open loop bandwidth.

2. Gain margin: shows robust stability against gain deviation (it might have two

directions!).

3. The maximum peak of the complementary sensitivity function ‖T‖∞ = Mpω.

Mpω = 1/(2ζ
√

1 − ζ2) ≈ 1

2 sin φ/2
ζ <

√
2/2 (Mpω = 1 ζ ≥

√
2/2)

Note that Mpω is the absolute magnitude and is not in dB scale.

7These properties can usually be generalized to higher order systems specially the case of two
dominant poles.
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4. Mmin The minimum distance of Nyquist plot from the critical point (M circles).

Mmin = 1/‖S‖∞

5. Dmin: The minimum additive model uncertainty (min ‖ΔG(s)‖∞) that makes

the closed loop unstable.

Remark 2.4: In [8] it is shown that Mmin and Dmin are not sufficient and reliable

conditions for robust stability!

The constraints on the phase and gain margin can be presented in graphical format

in polar coordinate (Nyquist) as shown in Figure 2.3 so-called Θ region [22].

Figure 2.3: Specification of Θ-stability: Nyquist plot must avoid forbidden Θ region

Frequency domain (modern approach)

A powerful tool for analyzing the robust stability is the small gain theorem and its

generalized version based on structured singular value. In order to apply this theorem
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the whole uncertainties (including all structured and unstructured) must be pulled

out in form of Δ transfer matrix as shown in Figure 2.4 and the remaining parts form

another transfer matrix M8. It is clear that the transfer matrix M must be stable to

preserve stability in absence of uncertainties and we assume that Δ is also stable! The

elements of Δ could represent different uncertainties such as unstructured, structured

(independent channels), lumped nonlinearities, time delays and unmodelled dynamics,

parameters variation but the best choice of uncertainty representation for a specific

model depends on the errors that the model makes.

Figure 2.4: M Δ-structure

Theorem 2.6: Assume that the nominal system M(s) and the perturbation Δ(s) are

stable. Then the M Δ system in Figure 2.4 is robust stable iff Nyquist plot of

det(I−M(jω)Δ(jω)) does not encircle the origin, for all Δ in the allowed perturbation

set Δ:

⇔ (det(I − MΔ))−1 ∈ RH∞ ,Δ = {Δ1, Δ2, · · · }, Δi stable and norm-bounded

⇔ λi(M(jω)Δ(jω)) �= 1, ∀i, ∀ω ,∀c ∈ R, |c| < 1 if Δi ∈ Δ ⇒ cΔi ∈ Δ

⇐ ρ(M(jω)Δ(jω)) < 1, ∀ω ,∀c ∈ R, |c| < 1 if Δi ∈ Δ ⇒ cΔi ∈ Δ

⇔ ρ(M(jω)Δ(jω)) < 1, ∀ω ,∀c ∈ C, |c| < 1 if Δi ∈ Δ ⇒ cΔi ∈ Δ

⇔ ρ(MΔ) ≤ σ(MΔ) ≤ (small gain theorem)

≤ σ(M(jω))σ(Δ(jω)) < 1, ∀ω ,Δ = {Δ| Δ stable and norm-bounded }

8Determination and extraction of uncertainties in M Δ-structure is not a trivial procedure and
needs experience and knowledge on different class of uncertainties.
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⇐ min
D∈D

σ(DMD(jω)−1)σ(Δ(jω)) < 1, ∀ω

,Δ = {diag[δ1Ir1, · · · , δsIrS
, Δ1, · · · , ΔF ] : δi(s), Δi(s) ∈ RH∞}

⇔ μΔ(M(jω))σ(Δ(jω)) < 1, ∀ω

,Δ = {diag[δ1Ir1, · · · , δsIrS
, Δ1, · · · , ΔF ] : δi(s), Δi(s) ∈ RH∞}

where D is the set of block diagonal matrices whose structure is compatible to that

of Δ, i.e. ΔD = DΔ.

Remark 2.5: The relationship between loop transfer matrix, close loop characteristic

polynomial (φcl), open loop characteristic polynomial (φol) is as follows:

det(I − MΔ(jω)) =
∏

i

λi(I − MΔ(jω)) =
∏

i

(1 + λi(MΔ(jω))) =
φcl(s)

φol(s)
.c

where is c is just a constant ([55] p. 145).

Remark 2.6: Δ should be convex9 but it can be a nonlinear and time varying stable

operator ([74] p. 139).

Remark 2.7: Small gain theorem is applicable to any norm with submultiplicative

property (‖AB‖ ≤ ‖A‖‖B‖).

Remark 2.8: The H∞ version of small gain theorem is very conservative (because

it ignores the structure of uncertainties). A remedy proposed for this problem is

gathering all uncertainties in one point which is very sensitive when the condition

number of the plant transfer matrix is big (γ(G) = σ(G)/σ(G)). (See [55] p. 239)

Remark 2.9: The structured singular value is bounded as follows:

ρ(M) ≤ max
U∈U

ρ(UM) ≤ μΔ(M) ≤ inf
D∈D

σ(DMD−1) ≤ σ(M)

where U is the set of all unitary matrices U with the same block-diagonal structure

as Δ. The lower bound can have multiple local maxima that are not global. Thus

9The set A is convex if ai, aj ∈ A ⇒ ∀k, 0 ≤ k ≤ 1, (kai + (1 − k)aj) ∈ A.
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local search cannot be guaranteed to obtain μ. The upper bound can be formulated

as a convex optimization problem (D-iteration), so the global minimum can be found.

But unfortunately the (minimum of ) upper bound is equal to μ iff 2S + F ≤ 3 (in Δ

structure). The DK-iteration which is used for controller design in μ synthesis is not

a convex optimization problem!

Time domain (modern approach)

In the time domain, robust stability of the closed loop system is analyzed by consid-

ering the effect of (structured) uncertainties on the closed loop characteristic poly-

nomial. The main results are based on Hurwitz and Kharitanov10 stability analysis.

One of the famous approaches in this category is the parameter space. This approach

is a powerful tool (but graphics-oriented) for structured uncertainties (e.g. parameter

uncertainties in the transfer function) but practically its efficiency is restricted to few

number of parameters (up to three)[22].

Sensitivity in the context of robustness

Sensitivity can be generally defined as follows:

Sf
x =

∂f/f

∂x/x

where f is a function of x. As an example using this formula we can evaluate the

sensitivity of closed loop transfer function to variation of different loop elements (con-

troller, plant, feedback elements and etc.). For instance it can be verified that the

closed loop transfer function is very sensitive to the feedback elements (specially at

loop high gain frequency we have Sf
x ≈ 1) and therefore high accuracy elements must

be chosen to realize the feedback path.

From robust stability point of view the sensitivity of internal stability to the variation

10More information on pages 19-21 and 341-344 in [22].
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of different loop elements can be verified by exploiting the small gain theorem. In this

way we can check the tolerable uncertainty in each loop element in view of stability.

For instance any high gain element (at any frequency) increases the sensitivity of the

loop, specially when it is followed with small gain elements.

2.4 Performance

The performance for a feedback system has three major items which are reference

tracking, disturbance rejection and noise attenuation.

Definition 2.5: The performance of a feedback system is defined as the capability to

keeping the specified output signals (y) close to the reference signals (r) in presence

of any disturbances (di, do) and noises (n).

Remark 2.10: If the defined set of reference signals has only the element zero, the

performance task is called regulating which is very common in industrial applications.

2.4.1 Mathematical definition and analysis of performance

Frequency domain

Fig.2.1 shows the possible exogenous input signals and possible measurable points of

a feedback system. Thus the list of exogenous input signals is as follows:

1. Reference input: r

2. Disturbance in the plant input: di

3. Disturbance in the plant output: do

4. Noise in the measurement signals: n
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Definition 2.6: The difference between the reference and the output signals is called

the error (e � r − y).

Remark 2.11: Sometimes the control error is defined as er = r − ym, which only

considers the measured value not the actual value!

The transfer matrices that connect the exogenous inputs to the error (e) are shown

in Table 2.2 (Reminder: So = (I + FGK)−1 and To = GK(I + FGK)−1).

exogenous signals e = r − y er = r − ym

reference r I − To So

disturbance in input di −GSo −GSo

disturbance in output do −So −So

measurement noise n ToF ToF

Table 2.2: Effect of exogenous signals on the error (e) and measured error (er)

Definition 2.7: The performance can be mathematically represented as the rate of

attenuation of four exogenous signals (r, di, do, n) on the error signal (e).

One way to describe the rate of attenuation in the performance of a control system

is in terms of the size of the error and input signals (e.g. supu
‖e‖
‖u‖). There are several

ways of defining signal’s size (norm of signals) that result in different performance

evaluation methods. Suppose u and y are respectively the input and output of the

transfer matrix G as shown in Figure 2.5. Table 2.311 shows the system gain (supu
‖y‖
‖u‖)

Figure 2.5: G is the transfer function from u to y
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with respect to different signal norms for u and y.

supu
‖y‖
‖u‖ ‖u‖2 ‖u‖∞ ‖u‖pow u(t) = δ(t) u(t) = sin(ωt)

‖y‖2 ‖G‖∞ ∞ ∞ ‖G‖2 ∞
‖y‖∞ ‖G‖2 ‖G‖1 ∞ ‖G‖∞ |G(jω)|
‖y‖pow 0 ≤ ‖G‖∞ ‖G‖∞ 0 1√

2
|G(jω)|

Table 2.3: System gain (see Glossary for the norm definitions)

It can be seen from Figure 2.1 and Table 2.2 that the performance is related to the

norm of transfer matrices: So, GSo, To and ToF . It can also be easily verified that

it is not possible to shape each of these transfer matrices independently. It means

improving one performance index aggravate the other one! The remedy to this conflict

is to consider each transfer matrix in its active range of frequency, which it could be

carried out by defining proper weights on the exogenous signals. These weights could

be considered as frequency filters in front of each input as shown in Figure 2.6. Thus,

Figure 2.6: Weights on exogenous signals which reflects the frequency range of each
one

to reduce the effect of exogenous input signals on the performance index e, the norm

11In this table the notations G, u and y are general (see Figure 2.5).



Chapter 2: Feedback Control Theory 26

of the corresponding transfer matrices should be very small in the specified frequency

range of each input signal. Equivalently, the norm of all weighted transfer matrices

should be small in all frequencies. By introducing the weighing functions (easily from

Figure 2.6) Table 2.2 will be converted to Table 2.4.

exogenous signals e = r − y er = r − ym

reference r (I − To)Wr SoWr

disturbance in input di −GSoWi −GSoWi

disturbance in output do −SoWd −SoWd

measurement noise n ToFWn ToFWn

Table 2.4: Effect of exogenous signals on the error (e) and measured error (er) with
weighting functions

Thus, based on Definiton 2.7 the rate of attenuation (γ) for each exogenous signal

will be defined as follows:

1. For reference tracking γr must be small (ideal case γr = 0).

sup
r

‖e‖
‖r‖ ≤ γr (steady state behavior ‖(I − To(jω))Wr(jω)‖ ≤ γr, ∀ω)

2. For input disturbance rejection γi must be small (ideal case γi = 0).

sup
di

‖e‖
‖di‖ ≤ γi (steady state behavior ‖ − G(jω)So(jω)Wi(jω)‖ ≤ γi, ∀ω)

3. For output disturbance rejection γo must be small (ideal case γo = 0).

sup
do

‖e‖
‖do‖ ≤ γo (steady state behavior ‖ − So(jω)Wd(jω)‖ ≤ γo, ∀ω)

4. For noise attenuation γn must be small (ideal case γn = 0).

sup
n

‖e‖
‖n‖ ≤ γr (steady state behavior ‖To(jω)F (jω)Wn(jω)‖ ≤ γn, ∀ω)
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where W s are proper weight transfer matrices.

In some cases the requirements on the shape of (performance) transfer matrices are

conflicting. This discord, roots in the configuration and characteristic of different

transfer matrices. This issue is discussed comprehensively in [55] under constraints

on performance targeting. The performance analysis always have to be done for a

defined set of reference signals, disturbances and noises. It is worth noting that (using

configuration shown in Figure 2.1), it is not possible to attenuate a noise at the same

frequency that the reference signal has to be followed! Some rules of thumb: For

disturbance rejection at plant output (y), in general, large σ(Lo) is required for (do)

and large enough controller gain σ(K) for di. Hence in this case good multivariable

feedback design boils down to achieving high loop (and possibly) controller gain in

the necessary frequency range.

Remark 2.12: With feed-forward block in Table 2.2 the tracking transfer matrix

changes to e(s)
r(s)

= I − To + GKF So, where KF is the feedforward block.

H2 performance

The performance in the sense of H2 means minimizing the effect of output disturbance

(do) on the error signal, exploiting second and infinity norm for signals do and e

respectively. Using Table 2.2 and element (2,1) in Table 2.3, we can easily find out

that this cost function which should be minimized is as follows:

sup
do

‖e‖2
∞

‖do‖2
2

= ‖So‖2
2(⇒ ‖WeSoWd‖2

2 assuming some weights )

and to avoid saturation of actuators (constraints) and restricting the inputs’ energy,

we should add the following term to the cost function with proper compromise factor

(ρ):

sup
do

‖up‖2
∞

‖do‖2
2

= ‖KSo‖2
2(⇒ ‖WuKSoWd‖2

2 assuming some weights )
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therefore the final cost function is as follows:

sup
do

(
‖e‖2

∞
‖do‖2

2

+ ρ2‖up‖2
∞

‖do‖2
2

) =

∥∥∥∥∥
[

So

ρKSo

]∥∥∥∥∥
2

2

( assuming some weights ) ⇒
∥∥∥∥∥
[

WeSoWd

ρWuKSoWd

]∥∥∥∥∥
2

2

An identical performance cost function will be derived if we try to minimize the effect

of special type of disturbance (do) (impulse) on the error function in the stochastic

framework. Assume that the disturbance do can be approximately modeled as an

impulse with random input direction; that is do(t) = ηδ(t), E(ηη∗) = I where E

denotes the expectation. We define the cost function as follows (Reminder: element

(1,4) in Table 2.3 shows the effect of impulse input on the output) :

E{‖e‖2
2} = ‖So‖2

2(⇒ ‖WeSoWd‖2
2 assuming some weights )

and to avoid saturation of actuators (constraints) we add the following term to the

cost function with proper compromise factor (ρ):

E{‖up‖2
2} = ‖KSo‖2

2(⇒ min ‖WuKSoWd‖2
2 assuming some weights )

therefore the performance is achieved by minimizing the following cost function:

E{‖e‖2
2 + ρ2‖up‖2

2} =

∥∥∥∥∥
[

So

ρKSo

]∥∥∥∥∥
2

2

( assuming some weights ) ⇒
∥∥∥∥∥
[

WeSoWd

ρWuKSoWd

]∥∥∥∥∥
2

2

Remark 2.13: The relationship between the above definition and standard LQR is

described in [74] on page 254.

Remark 2.14: Another aspect of LQR is increasing the fidelity of linearized model to

the original nonlinear system, by proper choice of the weight matrices. This is done

by minimizing the second order effects in the linearized model resulted form Taylor
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series [7].

min

∫ tf

0

δxQδx + δuRδudt

The H2 problem can be presented in a more general format. In Figure 2.7 w represents

all exogenous signals such as reference, disturbance and sensor noises and z all signals

that we wish to control or confine, such as error signal (e = r − y) and actuator

signals (up). The performance can be verified by minimizing the H2 norm of the

transfer matrix Tzw.

H∞ performance

The performance in the sense of H∞ means minimizing the effect of output disturbance

(do) on the error signal, exploiting second (or pow) norm for signals do and e. Invoking

Table 2.2 and element (1,1) (or (3,3)) in Table 2.3 (similar to H2) the performance

in H∞ sense will be achieved by solving the following optimization problem:

min
u

sup
do

{ ‖e‖2
2

‖do‖2
2

+ ρ2 ‖u‖2
2

‖do‖2
2

} =

∥∥∥∥∥
[

So

ρKSo

]∥∥∥∥∥
2

∞

( assuming some weights ) ⇒
∥∥∥∥∥
[

WeSoWd

ρWuKSoWd

]∥∥∥∥∥
2

∞

The H∞ problem can be presented in more general format using the configuration

in Figure 2.7. The performance can be verified by minimizing the H∞ norm of the

transfer matrix Tzw.

Performance in classic control (frequency domain)

In Figure 2.1 consider G(s) is a second order SISO system as follows:

G(s) =
ω2

n

s(s + 2ζωn)
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Figure 2.7: General configuration, Tzω = Fl(G,K)

and K(s) = 1, F (s) = 1. Based on the following seven properties the performance of

the transfer function T (s) = y
r

= ω2
n

s2+2ζωns+ω2
n

can be evaluated12.

1. Bandwidth13 in terms of T (s) is defined as the highest frequency at which

|T (jω)| crosses 1/
√

2 (≈ −3dB) from above. This frequency shows the range

that the closed loop system is effective, which is usually required to be bigger

than some specified frequency but it is restricted by physical constraints.

ωBT = ωn

√
(2 − 4ζ2 + 4ζ4)1/2 + 1 − 2ζ2

Remark 2.15: Crossover frequency is defined as the frequency at which |L(jω)|
first crosses 1/

√
2 (≈ −3dB) from above. In practice ωc is a substitute (an

approximation) for ωBT in the controller design, because it is directly affected

by the controller frequency shape. Therefore it is more convenient to design a

controller that achieve an specified open loop bandwidth ωc and hope that ωBT

is in the acceptable range. Again for a second order SISO we have

ωc = ωn

√
(4ζ4 + 1)1/2 − 2ζ2, (ωc < ωBT < 2ωc, ωBT ≈ 1.5ωc, )

12These properties can usually be generalized to higher order systems specially the case of two
dominant poles.
13The closed-loop bandwidth, ωB , is the frequency at which |S(jω)| first crosses 1/

√
2 (≈ −3dB)

from below.
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2. The maximum peak of the complementary sensitivity function Mpω = ‖T‖∞.

Mpω =
1

(2ζ
√

1 − ζ2)
≈ 1

2 sin φ/2
ζ <

√
2

2
(Mpω = 1 ζ ≥

√
2

2
)

where φ is the phase margin. High Mpω causes overshoot in the time response

therefore it is usually required to be close to one. Note that Mpω is the absolute

magnitude and is not in dB scale.

3. Rising time (step response): The time it takes for the output to first reach 90%,

from 10% of its final value,which is usually required to be small.

tr ≈ 2.2

ωBT

sec

Note that ωBT is in rad
sec

.

4. Settling time (step response): the time after which the output remains within

±2% of its final value, which is usually required to be small.

ts ≈ 4.6

ζωn

sec

Note that ωn is in rad
sec

.

5. Overshoot (step response): the peak value divided by the final value, which

should be typically less than 1.2 (20%).

Mpt = 1 + e−πζ/
√

1−ζ2
, (ζ <

√
2

2
)

6. Decay ratio (step response): ratio of second peak to the first one which normally

less than 0.3 is acceptable.

7. Steady state offsets (step response): the difference between final and desired

final value, which is usually required to be small.

The constraints on ζ and ωn can be presented in graphical format in the complex

plane as shown in Figure 2.8 so-called Γ region [22].
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Figure 2.8: The pole region Γ that guarantees damping, negative real part and band-
width limitation.

Remark 2.16: These specification are also useful in constructing proper second order

weights in order to define performance. For instance it is possible to keep So of a

feedback system beneath γW−1
d (ζ, ωn) to have similar step response to a second order

system (without the coefficient γ ≥ 1 is not possible!).

Performance in classic control (time domain)

One idea for defining the performance in the time domain is the quality of response to

a specified input (r(t)). That is, for a given command r(t) (which is zero for t < 0),

the ideal controller is the one that generates the plant input u(t) (zero for t < 0)

which minimizes14

ISE =

∫ ∞

0

‖y(t) − r(t)‖2dt

14ISE stands for Integral Square Error.
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This controller is ideal in the sense that it may not be realizable because the cost

function includes no penalty on the input u(t) [48]. Another disadvantage, is that it

only contains tracking performance which is not adequate.

Another common approach is step response specifications such as rising time, settling

time and overshoot for step response. These specifications cannot be directly used for

design purposes therefore the usual way is to translate them in frequency domain and

reaching the proper performance by reforming the poles (in SISO case root locus) in

Γ region shown in Figure 2.8. Some of these relationships are given in the previous

subsection.

Remark 2.17: The step response is not always a suitable reference to measure the

performance! In frequency domain it can be shown that it is not possible to fulfill

the performance specs for all frequencies. Therefore the desirable performance can be

achieved (and must be defined) for a specific set of reference signals (with specified

frequency range). The frequency spectrum of step signal is 1
jω

+ πδ(ω) which drops

off with the slope of −20dB/decade and has crossover frequency of 1 rad/sec which

might be so wide for this purpose.

2.5 Design Steps

Modern control design packages often fall short of offering what is truly practical. A

great many physical plants are modeled with high order equations. If we use a typical

commercial software design package, we will typically produce, using robust control

or H2 design methods, a controller which is also high order. In the following, typical

control design steps are shown [19]:

1. Studying the system to be controlled and decide what types of sensors and

actuators will be used and where they will be placed.
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2. Modeling the resulting system to be controlled.

3. Simplifying the model if necessary so that it is tractable∗.

4. Determining the properties of the model.

5. Deciding on performance specifications.

6. Deciding on type of controller to be used and design to meet the specs, if not

modify specs or type of controller.

7. Simplifying the controller if necessary so that it is implementable∗.

8. Simulating the resulting controller on a computer or in a pilot plant and repeat

from step 1 if it’s necessary.

9. Choosing the hardware and software to implement the controller.

10. Tuning the controller in presence of practical situation

The steps marked with an asterisk (∗) show places where reduction approaches could

be helpful tools. These are the places that we can tackle the problem of complexity.

The focus of our research in this thesis is to suggest a complementary tool for the

existing reduction methods to preserve the stability of the reduced model and the

closed loop.
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Chapter 3

ORDER REDUCTION

3.1 Introduction

Accurate modeling is a necessary part in all fields of engineering dealing with physical

systems. Nowadays to achieve an accurate model, powerful computers and newly

developed methods and algorithms are put into service. The task of modeling typically

leads to approximate the behavior of a real system by a set of ordinary differential

equations. To model a physical behavior with a good accuracy, a high order differential

equation is unavoidable and this is in conflict with design engineer requirements.

Because a good model should be simple enough to facilitate design, yet complex

enough to give the engineer confidence that the design based on it work on the true

plant. The main goal of model reduction is to find the best compromise between

accuracy and simplicity. Several methods have been proposed for model reduction of

linear systems in different fields like control engineering, microsystems and applied

mathematics. These methods are mostly based on minimization of some predefined

error functions, deleting the less important states or matching some of the parameters

of the original and reduced systems. A well-accepted method among the existing

methods is balancing and truncation which was first proposed by Moore [47]. A brief

summary of balancing and its properties are given in the next sections.
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3.2 Truncation, Singular Perturbation and Projection

One approach to obtain reduced order systems is to split the states into two sets

so-called dominant and nondominant states. For designating the set of dominant

state variables, there are different methods but among them balancing has been very

successful approach that we discuss it in more details in the next section. After

finding the dominant states, the next step is to trim the nondominant part from

the equations. For removing the nondominant state variables, two approaches are

common. The first one so-called truncation is done by trimming the corresponding

rows and columns of the nondominant state variables as shown below(G → Gtr). The

second approach so-called singular perturbation (also called residualization) does the

similar thing but it also considers the steady state effect of the nondominant state

variables on the rest as shown below (G → Gre).

G(s) =

⎡
⎢⎢⎣

A11 A12 B1

A21 A22 B2

C1 C2 D

⎤
⎥⎥⎦ →

Gtr(s) =

[
A11 B1

C1 D

]

Gre(s) =

[
A11 − A12A

−1
22 A21 B1 − A12A

−1
22 B2

C1 − C2A
−1
22 A21 D − C2A

−1
22 B2

]

Some interesting properties of these two reduced systems are as follows:

Gtr(0) �= G(0), Gtr(∞) = G(∞), Gre(0) = G(0), Gre(∞) �= G(∞)

Finding dominant states as a linear combination of original states and truncating the

dominant states can be realized in one step using projection matrices as follows:

G(s) =

[
A B

C D

]
→ G∗

tr(s) =

[
LAR LB

CR D

]

where LR = Ir. Noting that we can always find L and R such that

[
L

L

]
[R R] = In

therefore

[
L

L

]
represents the similarity transformation T that appoints the domi-

nant states.
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Remark 3.1: The entire class of kth(< n)1 order system is larger than those which can

be obtained by projection matrices (subsystem elimination). The properties of the

projection relationship between two models of different orders have been investigated

in [30]. In the case of square systems, any reduced model whose order is less than

n−m can be obtained by infinitely many projections, any reduced model whose order

is greater than n−m cannot be obtained by projection, and the case of exactly n−m

depends on the eigenvalue structure of a certain pencil.

3.3 Balancing and Its Virtues

A system is balanced iff the controllability and observability Gramians (P,Q) are

equal and diagonal (P = Q = diag(σ1, · · · , σn)). The Gramians satisfy the following

two Lyapunov equations:

AP + PAT + BBT = 0

AT Q + QA + CT C = 0

In a balanced system if σi slope critically downward, it is possible to split the sys-

tem in two dominant and weak subsystems. Approximation in this basis could take

place by truncation or singular perturbation. The common approach for evaluating

balanced basis is Schur method. This method includes two Lyapunov equations (or

one Sylvester), two Schur decompositions and one singular value decomposition to

construct the reduced order system.

1) Lyap. equ. AP + PAT + BBT = 0

2) Lyap. equ. AT Q + QA + CT C = 0

3) Schur dec. V T
A PQVA = Sasc

4) Schur dec. V T
D PQVD = Sdec

5) svd V T
A VD = ULSUT

R

⇒ T = S−1/2UT
L V T

A ,

T−1 = VDURS−1/2

xb = Tx

where xb is the new (balanced) state vector and x is the original state vector. To

obtain the balanced reduced system it is even sufficient to make Gramian matrices

1n and k are the order of the original and reduced model respectively and m is the input dimension.
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block diagonal and equal (P = Q =

[
Σ1 0

0 Σ2

]
)!

Remark 3.2: If σis don’t repeat, the balancing transformation matrix is (up to multi-

plication by a diagonal matrix with ±1 on the diagonal) unique [47]. For more details

on uniqueness see [5] (p. 176).

Remark 3.3: This approach is also applicable to discrete systems, using bilinear trans-

formation (z = α+s
α−s

). For numerical issues and other algorithms see [5] (p. 184-185).

Remark 3.4: Balancing is only meaningful for stable transfer functions. In order to

reduce an unstable system, one idea is to reduce its stable part and add the unstable

part in the end. A better idea is to exploit coprime factorization and reduce each

(apparently stable) factor separately.

Remark 3.5: In order to match at low frequencies we can substitute s with 1/s and

then carry out balancing and truncation and in the end retrieve the reduced system

by inverse substitution (1/s → s). It can be shown that this approach is equivalent

to balanced singular perturbation.

Remark 3.6: There are some other types of balancing, e.g. bounded real balancing

and positive real balancing. For more details see [5] (p. 190).

Generalized Graminas

In [73] it is proved that if

AΣ + ΣAT + BBT ≤ 0

AT Σ + ΣA + CT C ≤ 0

where Σ = diag(σ1, · · · , σn), then the truncated system (Gr) is a balanced truncated

of the extended original system (with some extra virtual inputs and outputs) and still
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satisfies the error bound criterion, which means

‖G − Gr‖∞ ≤ 2
n∑

i=k+1

σi

Based on this property the matrices P̂ and Q̂ which satisfy

AP̂ + P̂AT + BBT ≤ 0

AT Q̂ + Q̂A + CT C ≤ 0

are called generalized Gramians.

B&T from stability point of view

Assume that the original system is stable and balanced (P = Q =

[
Σ1 0

0 Σ2

]
). If

Σ1 and Σ2 have no diagonal entries in common, then the truncated system is stable,

controllable and observable. The argument on this issue is based on the fact that the

reduced model satisfies a similar Lyapunov equation (A11Σ1 + Σ1A
T
11 = B1B

T
1 ) and

therefore the stability will be preserved. More discussion and proves can be found in

[52].

B&T from energy point of view

The smallest amount of energy needed to steer the following system

S :

{
ẋ = Ax + Bu

y = Cx
(3.1)

from x = 0 to x = x(tf ) is equal to E2
i = x(tf )

T P−1(0, tf )x(tf ) and the energy

obtained by observing the output of the system with initial condition x0 assuming

u = 0 is given by E2
o = xT

0 Qx0. Thus, one way to reduce the number of states is to
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eliminate those which require a large amount of energy (Ei) to be reached and yield

small amounts of observations energy (Eo). However this concept is basis dependent,

and therefore in order for such a scheme to work, one would have to look for a basis

which two concepts are equivalent, which means finding a balanced basis such that:

P = Q = diag(σ1, · · · , σn)

where the σi are the Hankel singular values of the system. As it mentioned in a

balanced system if σi slope critically downward, it is possible to split the system in

two dominant and weak subsystems. In this case the dominant subsystem absorbs and

releases more amount of energy in comparison to the weak one (see [47], p. 27-28).

B&T from optimality point of view

The following theorem shows how much balancing is close to optimal in the sense of

H2 norm.

Theorem 3.1: Suppose Gr =

[
Ar Br

Cr Dr

]
solves the following optimal model-reduction

problem.

min
Gr

‖G − Gr‖2

Then there exists nonnegative definite matrices Q̂, P̂ ∈ R
n×n such that

rank(Q̂) = rank(P̂ ) = rank(Q̂P̂ ) = nr < n

τ(AQ̂ + Q̂AT + BBT ) = 0

(AT P̂ + P̂A + CT C)τ = 0

where τ ∈ R
n×n, is an oblique projection matrix constructed from special factorization

of Q̂ and P̂ (for more details see [32]).

Note that the theorem consists of necessary conditions in the form of two modified

Lyapunov equations (similar to controllability and observability Gramians in balanc-

ing) plus rank conditions (similar to small Hankel singular values in balancing).
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The transformation for balancing (xb = Tx) is also the solution to the following

optimization problem:

min
T

trace[TPT T + T−T QT−1]

and obviously the minimum is equal to 2
∑

i σi.

B&T from principle components point of view

The set of differential equations in (3.1) is a linear operator from L2[0, tf ] to R
n

(considering the states at time tf as the output)[9, 41], i.e.,

S : L2[0, tf ] → R
n

x(tf ) = S(u(t)) =
∫ tf

0
eAτBu(tf − τ)dτ

and eAtB can be decomposed with w1, · · · , wn used as orthonormal basis vectors of

R
n and f1(t), · · · , fn(t) as orthonormal basis (functions) of L2[0, tf ], i.e.,

eAtB = [ w1 · · · wn ]

⎡
⎢⎢⎣

σc1 0
. . .

0 σcn

⎤
⎥⎥⎦ [ f1(t) · · · fn(t) ]T

This decomposition is called principal component decomposition, which is similar to

singular value decomposition of matrices. Similarly, for CeAt (which maps states to

output) we have,

CeAt = [ g1(t) · · · gn(t) ]

⎡
⎢⎢⎣

σo1 0
. . .

0 σon

⎤
⎥⎥⎦ [ v1 · · · vn ]T

Principal components of eAtB and CeAt show the controllable and observable space

of state variables with respect to impulse input and they depend on the internal

coordinate system. By balancing the system, the directions of these two spaces will

be aligned and the corresponding component magnitude become equal [47], i.e.,

[ w1 · · · wn ] = [ v1 · · · vn ] = In, σoi
= σci

= σi
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Remark 3.7: Balancing can be carried out with time limited Gramians (P (0, tf ), Q(0, tf )).

These quantities are positive semi-definite and therefore qualify as Gramians. They

also satisfy Lyapunov equations. Balancing in this case is obtained by simultaneous

diagonalization of time limited Gramians. The reduced model obtained by truncation

in this basis, and the impulse response of the reduced model is expected to match

that of the full model in the specified time interval. However the reduced model is

not guaranteed to be stable, this can be fixed as shown in [29].

B&T from error bound point of view

One of the advantages of balancing based on reduction is its a priori H∞ error bound

based on Hankel singular values, which is valid for both truncation and singular

perturbation.

σk+1 ≤ ‖G − Gr‖∞ ≤ 2
n∑

i=k+1

σi

The lower bound of the infinity norm (σk+1) shows the best approximation of a kth

order system. Conservatism of the infinity norm is discussed in [50] (p. 10) and it

is shown that approximation will be difficult when the system is all-pass or strictly

proper part of an all-pass system. Some more error bounds for the balanced truncated

system are ([5], p. 182):

‖G − Gr‖1 ≤ 2
n∑

i=k+1

(2i − 1)σi

‖G − Gr‖2 = trace[(B2B
T
2 + 2Y2A12)Σ2]
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Chapter 4

LOW ORDER CONTROLLER

4.1 Introduction

A fundamental issue that was studied in both classical and modern control theory is

the internal stabilization of systems by means of feedback. It is generally acknowl-

edged that the paper of Youla et al. [69] which gives a characterization of all stabilizing

controllers was a milestone in this study1. One of the major impact of Youla para-

meterization (also called YJBK parameterization) on control theory is isolating the

problem of optimizing performance and robustness from the problem of guaranteeing

the internal stability of the closed loop system. Section 4.2 shows the structure of

all stabilizing controllers based on Youla parameterization. Although Youla parame-

trization is one of the most important breakthroughs in modern control theory, it has

the drawback that the order of the stabilizing controller varies as the optimization

search is performed. Therefore the first question that arises is the minimum order re-

quired to guarantee the closed loop stability (ignoring performance!). To answer this

question a non-convex optimization problem must be solved. Section 4.3 summarizes

the results on this issue. As it is mentioned, the modern approaches for control design

carry out an objective search based on a cost function (optimization problem) among

the stabilizing controllers. In fact, the order of the optimal controller, resulted this

way, is almost always quite high, being comparable to that of the plant. The second

question that arise here is the minimal order controller that guarantees stability and

a specified performance criterion. The answer to this question is straight forward,

1Another formulation of Youla parameterization and conditions is given in [2].
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normally if we look for the optimal answer it is unique and results in a high order

controller. Therefore the task of controller reduction is to compromise between the

optimality and complexity. Section 4.4 presents some of the existing methods for

controller reduction and their impact on the closed loop characteristics.

4.2 Stabilizing Controllers

The very first problem that needs to be focused is to stabilize a given plant with a

controller, with preferably as low order as possible. Given a plant G, this section

presents a general framework that parameterizes all controllers K that (internally)

stabilize G.

Definition 4.1: coprime factorization2: A useful way of representing systems is the

coprime factorization which may be used both in state space and transfer function

form. In the latter case a right coprime factorization (rcf ) of G is

G = NrM
−1
r over RH∞,

where Nr and Mr are stable coprime transfer matrices. Mathematically, coprimeness

means that there exist stable Xr and Yr such that the following Bezout identity is

satisfied

XrNr + YrMr = I

Similarly, a left coprime factorization (lcf ) of G is

G = M−1
l Nl over RH∞,

Here Nl and Ml are stable and coprime, that is, there exist stable transfer matrices

Xl and Yl such that the following Bezout identity is satisfied

NlXl + MlYl = I

2To understand the reason behind this special representation see [19] (p. 59).
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In rcf the stability implies that Nr should contain all right half plane poles of G,

and Mr should contain as right half plane zeros all the right half plane poles of G.

The comprimeness implies that there should be no common right half plane zeros

in Nr and Mr which result in pole-zero cancellations when forming NrM
−1
r . Similar

properties can be proved for lcf. The coprime factorization is not unique and it can

be derived more easier from state space realization by solving an algebraic Riccati

Equation [61].

Figure 4.1: Negative feedback system

Theorem 4.1: All stabilizing controllers K with the configuration shown in Figure 4.1

can be parametrized using the following two approaches:

• Coprime factorization approach [71, 72] (Youla parameterization):

K = (Yr − QNl)
−1(Xr + QMl)

where Q ranges over RH∞ such that det(I + Y −1
l NrQ)(∞) �= 0

or

K = (Xr + MrQ)(Yl − NrQ)−1

where Q ranges over RH∞ such that det(I + QNlY
−1
r )(∞) �= 0

• State space approach [40]: Assume G(s) =

⎡
⎢⎢⎣

A B1 B2

C1 D11 D12

C2 D21 D22

⎤
⎥⎥⎦ . Let F and L be

such that A + LC2 and A + B2F are stable, then all controllers that stabilize G

have the configuration shown in Figure 4.2.
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Figure 4.2: Structure of all stabilizing controllers

Based on state space approach in Theorem 4.1, every stabilizer controller amounts

to adding stable dynamics to the plant and then stabilizing the extended plant by

means of an observer and state feedback.

Remark 4.1: The set of all closed loop transfer matrices from exogenous inputs to

outputs achievable by an stabilizing controller is an affine function of Q3.

Corollary 4.1: The parameterization of all stabilizing controllers is easy when the

plant itself is stable. Suppose G ∈ RH∞ then the set of all stabilizing controllers is

described as

K = Q(I + GQ)−1

for any Q ∈ RH∞ and I + G(∞)Q(∞) nonsingular.

Remark 4.2: Given an stabilizer controller K, the free parameter in Youla factoriza-

tion can be easily calculated. For more details see [74] (p. 230).

3T is an affine function of Q if T = T11 + T12QT21
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The parameterization of all two-degree-of-freedom stabilizing controllers is also avail-

able in [70].

4.3 Minimal Order Stabilization

This section finds the necessary and sufficient conditions for the existence of a sta-

bilizing controller of a prescribed order (k). the main result is summarized in the

following theorem [20].

Theorem 4.2: There exists a stabilizing output feedback law of order k iff there exist

symmetric matrices R, S and a scalar γ > 0 such that

AR + RAT < BBT , AT S + SA < CT C (4.1)

and [
γR I

I γS

]
≥ 0 with Rank

[
γR I

I γS

]
≤ n + k (4.2)

Based on this theorem, by iteration on the parameter k we can find the minimum

achievable order for stabilizing a plant. In [45] a method to find a lower and upper

bound for this minimum is given. The conditions in (4.1) and (4.2) are convex for

the case of full order controller, i.e. where n = k. In this case the rank constraints in

(4.2) are trivially satisfied and the problem is reduced to an LMI convex feasibility

problem. However, the low order controller case k < n is no longer convex since

the rank conditions are not convex in the parameter space (R,S) (see [33] for more

details).

Remark 4.3: In [46] it is shown that there exist an open set in the set of nth order

SISO systems such that every system in this set is not stabilizable by a controller of

order smaller than n − 1!

Remark 4.4: Suppose G(s) = a(s)
b(s)

be a transfer function (SISO) of order n and relative

degree r and a(s), b(s) are coprime. The maximum required order for stabilization of
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G is n− 1 [57]. It is shown in [56] that the upper bounds on the number of right half

plane poles and zeros and an upper bound on the relative degree do not allow these

results to be improved (counter examples!). But if a(s) is Hurwitz the maximum

required order reduces to r − 1. In [56] it is shown that the maximal controller order

r − 1 may be necessary even when an upper bound on the number of right half plane

poles is known.

Another way to cope with minimal order stabilizer problem is directly analyzing

the characteristic polynomial of the closed loop system. The following two terms

are more common for this approaches: “output feedback stabilization” (normally for

memory less feedback) and “fixed order feedback stabilization” (for higher orders).

These methods are based on Hurwitz, Hermit Biehler theorem [31], Taraski theorem

[4], Seidenberg theorem [4] and decision algebra[15]. Although these methods have

been well developed by different scientist from control and mathematic society, their

applicability because of high complexity is still questionable!

Strong stability and realizability

Definition 4.2: Consider the feedback system shown in Figure 4.3, if this system is

stabilized by a stable controller K, then K is said to be a strongly stabilizable con-

troller.

Figure 4.3: General feedback control system

Definition 4.3: Let the distinct real zeros of G(s) be denoted by z1, z2, · · · , zl (infinity
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included) and let the total number of the real poles of G(s) to the right of zi, each

counted according to its McMillan degree, be denoted by ai (i = 1, 2, · · · , l). Then the

plant G(s) is said to have the parity interlacing property if the integers a1, a2, · · · , al

are either all even or all odd.

A SISO plant is said to satisfy the parity interlacing property if the number of unstable

real poles between any two unstable real zeros is even; +∞ counts as an unstable zero

if the plant is strictly proper. The following theorem shows the necessary and sufficient

condition for existing a strongly stabilizing controller.

Theorem 4.3: A plant is strongly stabilizable (can be stabilized by a stable controller)

iff the plant satisfies the parity interlacing property [69].

There are several procedures for constructing strongly stabilizable controllers, see

e.g. [61, 69] and [19] (on p. 70). Most of these methods involve constructing a

stable transfer matrix, satisfying certain interpolation conditions, that usually results

in large order controllers. It has bee shown that the order of strongly stabilizing

controllers may have to be very large depending on the pole zero pattern of the plant

[57]. Obviously, if a plant is strongly stabilizable the choice of K(s) is not unique and

in general, each possible closed loop configuration defines a different overall transfer

function T (s).

Definition 4.4: The transfer matrix T (s) is called strongly realizable for G(s) if the

plant is strongly stabilizable with a closed loop configuration possessing the transfer

function T (s).

The following theorem shows the necessary and sufficient condition for strong realiz-

ability of a pair (G(s), T (s)).

Theorem 4.4: The transfer function T (s) ∈ RH∞ is strongly realizable for G(s) iff

• Every unstable zero of G (including infinity) is a zero of T of at least the same

multiplicity.



Chapter 4: Low Order Controller 50

• No unstable pole of G is a zero of T .

• The unstable real zeros of T (including infinity) and the unstable real poles of

G possess the parity interlacing property.

4.4 Controller Reduction

It is clear that when we are dealing with low order controllers, there are fewer things

to go wrong in the hardware and software; they are easier to understand and the com-

putational requirements are less. Therefore simple controllers are normally preferred

over complex ones. In order to achieve these advantages, there are lots of efforts to in-

vent new methods which yield low order controllers in comparison to the typical ones.

These methods are divided into two classes: direct and indirect. In direct methods

the parameters defining the low order controllers are evaluated by some predefined

procedure, while in indirect methods at first a high order controller is found and then

a procedure (like weighted approximation) is used to simplify it. It should be noted

that reducing the designed controller for a high order plant is more effective than

designing a controller for the reduced plant, because:

• Error propagation might occur when the reduction is done before controller

design.

• the plant approximation needs knowledge of the controller (which has not yet

been designed) and therefore one is impaled on the horns of a dilemma! (com-

prehensive discussion in [50] on p. 95)

In practice exploiting the same methods as in the model reduction are not appropriate

and it might cause instability or aggravate the performance drastically. Therefore the

absolute error is not an effective indicator to judge the quality of controller reduction,

but some other indicators and approaches should be presented. In this section well-

known methods of controller reduction are concisely reviewed.
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Extended Balanced Truncation

In [73] a controller reduction algorithm based on balancing and truncations is proposed

which diagonalizes the (extended) closed loop (T (s)) Gramians without mixing the

plant and controller states. Based on this approach the reduced order controller will

be obtained by balancing and truncation.

Stochastic Balanced Truncation (Multiplicative and Relative Error)

In controller reduction, instead of a reduced order model with small absolute error

sometimes it is more straight forward to look for one with small multiplicative (or

relative) error. Assume Gr(s) is a reduced form of G(s), then the multiplicative and

relative error are defined as follows:

Δmul = G−1
r (Gr − G), Δrel = G−1(G − Gr)

and they satisfy the following relationships:

G(s) = Gr(s)(I − Δmul), Gr(s) = G(s)(I − Δrel)

Δmul = (I − Δrel)
−1Δrel

Motivation: The reduced order controller is accurate enough (bandwidth ωBT ) pro-

vided that

σ(Δmul(jω)) < 1, ω < ωBT

A known method to find a reduced order model with small multiplicative (relative)

error is stochastic balanced truncation.

For overview of this reduction approach see [50] (p. 63-80). The a priori error bound

is given as follows:

σk+1 ≤ ‖G−1
r (Gr − G)‖∞ ≤

n∏
r+1

1 + σi

1 − σi

− 1

σk+1 ≤ ‖G−1(G − Gr)‖∞ ≤
n∏

r+1

1 + σi

1 − σi

− 1
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Remark 4.5: Stochastic balanced truncation can be assumed as special case of weighted

balancing represented in the next section. If G−1 is stable and proper the same results

can be achieved by frequency weighted balancing and therefore the same error bound

is valid there!

In general, assuming original controller to be stable, the stability of reduced controller

is guaranteed but the stability of closed loop system is open to doubt. Applicability

of this approach is restricted to stable square systems with no zeros on the extended

imaginary axis but there are some extensions of this algorithm to non-square transfer

function matrices.

Frequency Weighted Absolute Error

The controller reduction problem can also be regarded as minimizing the H∞ norm

of the absolute error (difference between the original controller and the reduced one)

with a frequency dependent weight. The weight serves to say that it is more important

to approximate the controller well at certain frequencies (where the weight is high)

than at others. In order to elaborate this fact, we can focus on the scalar case,

where we know that the closed loop transfer function has the greatest gain near the

unity gain crossover frequency. Evidently, it is more important to approximate the

controller accurately near the crossover frequency, an idea which is familiar from

classical control reduction methods. Some other motivations for frequency weighted

approximation are:

• Maintaining stability in the closed loop system: As depicted in Figure 4.4, using

small gain theorem, results in one sided frequency weighted inequality as follows:

‖(K − Kr) G(I + KG)−1︸ ︷︷ ︸
V

‖∞ < 1

and to achieve higher robustness, it converts to a minimization problem.

• Similar closed loop behavior : Closed loop approximation results in two sided
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Figure 4.4: Rearrangement of feedback system with reduced order controller

frequency weighted norm as follows:

‖T (s) − Tr(s)‖∞ ≈ ‖ (I + GK)−1G︸ ︷︷ ︸
W

(K − Kr) (I + GK)−1︸ ︷︷ ︸
V

‖∞

and minimizing the above norm, guarantees a similar closed loop behavior.

• Power spectrum: The behavior of the controller is more important in the fre-

quency that its input has the most energy. Thus, by considering Φ(jω) = V V H

where Φ(jω) denotes the power spectrum of the controller’s input, reduction is

defined as minimizing the following expression.

‖(K − Kr)V (s)‖∞

• Suboptimal H∞ controller : Consider a class of (reduced-order) controllers, which

can be represented in the following form

Kr = K + V −1ΔW−1

where K may be interpreted as a nominal higher order H∞ suboptimal con-

troller, and Δ is a stable perturbation with stable minimum phase and invertible

weighting functions V −1 and W−1. It can be shown that a reduced order con-

troller Kr in this class will preserve the stability and H∞ performance bound,

if

‖Δ‖∞ = ‖W (Kr − K)V ‖∞ < 1
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Thus controller reduction using suboptimal H∞ design approach with objective

consideration (stabilizing and satisfaction of gain constrains) boils down to a

weighted frequency reduction (for more details see [74] (p. 309)).

• Model reduction for control purpose: If we reduce the plant before controller

design, this controller (K) also stabilizes the original plant (G), if

‖ΔGrK(I + GrK)−1‖∞ < 1

where Δ = (G − Gr)G
−1
r . This can be derived easily from small gain theorem.

This gives us some clues for multiplicative error reduction of a plant with rough

information from the possible controller (cut-off frequency, slope and etc.).

‖ΔGrK(I + GrK)−1‖∞ ≈ ‖(G − Gr) K(I + GK)−1︸ ︷︷ ︸
V

‖∞ < 1

It could be concluded that the plant reduction can be considered as a relative

error problem together with a possible frequency weighting involving a 20 dB

per decade roll off. For more details see [50] (p. 101-102).

Frequency Weighted Balancing

One way to solve minKr ‖W (Kr −K)V ‖∞ is the idea of frequency weighted balanced

truncation. In this approach we balance and then truncate those parts of the system

(its state vector) which are clearly associated with K rather than weights (W,V ). For

instance in the following one sided case

KV =

⎡
⎢⎢⎣

Ak BkCv BkDv

0 Av Bv

Cv 0 0

⎤
⎥⎥⎦

it is not hard to see that the top left block of the observability Gramian is equal to the

observability Gramian of K, but the controllability Gramian is affected by the input

weight. Roughly speaking, the view of state variables of K has not changed from the

output, what has changed is the effect of input on these states. For balancing we
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now suppose a coordinate change (that only affects the states of K) such that the top

left block of the (overall) controllability Gramian becomes diagonal and equal to the

observability Gramian of K. Similar approach can be used for V K. In this case the

stability is guaranteed4 but no a priori error bound is known.

The two sided case is also similar and it balances the top left block of the observability

and controllability Gramians by similarity transformation that only affects the states

of K.

WKV =

⎡
⎢⎢⎢⎢⎣

Ak 0 BkCv BkDv

BwCk Aw 0 0

0 0 Av Bv

DwCk Cw 0 0

⎤
⎥⎥⎥⎥⎦

In this case there is no guarantee for the stability. The alternative methods in [58]

propose minor adjustments which guarantee the stability of reduced controller but

not the closed loop system.

Remark 4.6: For frequency weighted reduction there is no neat a priori error bound

and is only applicable to stable controllers.

Remark 4.7: Frequency weighted balancing without weight! In some cases the input

and output weighting are not given, but the frequency range of interest is known.

This problem can be attacked directly, without constructing input and output weights.

This is achieved by using the frequency domain representation of Gramians as follows.

P (ω) =
1

2π

∫ ω

−ω

(jωI − A)−1BBT (−jωI − AT )−1dω

Q(ω) =
1

2π

∫ ω

−ω

(−jωI − AT )−1CT C(jωI − A)−1dω

Thus if we are interested in the frequency interval [0, ω], we simultaneously diagonalize

the two Gramians P (ω) and Q(ω) defined above and proceed as before. An error

bound and more details can be found in [29].

4Similar to stability proof for balance and truncation, the Lyapunov equation is the key to
stability.
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Reduction of Coprime Factors

As it is mentioned before, one way to handle instability in reduction is to reduce

the stable part and add the unstable part in the end. But copying the unstable part

directly into the reduced stable part is not reliable (or optimal). Coprime factorization

cope with this problem in model reduction, just by converting an unstable system to

two stable transfer matrices. This idea can be expanded for controller reduction.

Suppose the following coprime factorization of K(s):

K(s) = Xk(s)Y
−1
k (s) (MkXk + NkYk = I)

we find the reduced controller

Kr(s) = Xkr(s)Y
−1
kr (s) (MkrXkr + NkrYkr = I)

by minimizing Δx and Δy defined below

Δx = Xkr − Xk, Δy = Ykr − Yk

One of the possible interpretation of this approach is for LQG controller reduction

where Xk and Yk are two meaningful (and distinguishable) transfer matrices in the

closed loop as shown in Figure 4.5 (see [50] p. 138).

)(sG
y

+
_

r

+

+

F+

+

H

BFA

C
z

v u

)(sK

Figure 4.5: Controller-plant loop resulting from LQG design, coprime factors Xk(s)
and Yk(s) are the transfer matrices form ν to u and ν to z respectively, assuming the
feedback z is disconnected.

The following theorem shows the effect of reduction based on coprime factors on the

closed loop behavior.
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Theorem 4.5: If ‖
[

Δx

Δy

]
‖∞ ≤ ε < 1, then K(s) stabilizes the plant and it implies

the following bound on the closed loop error:

‖T (G,Kr) − T (G,K)‖∞
‖T (G,K)‖∞ ≤ ε

1 − ε

The idea of frequency weighting can be applied here as well, which implies that the

reduced controller can be derived by minimizing the following norm [39]

min
Xkr,Ykr

‖[Δy Δx]

[
V

W

]
‖∞

where V and W are weighting matrices. The frequency weighted coprime factorization

reduction is also an effective approach to preserve H∞ performance by reduction in

suboptimal case. Similarly the relative error approximation for controller reduction

can be formulated with comprime factors as follows:[
Ykr −Mkr

Xkr Nkr

]
= (I − Δrel)

[
Yk −Mk

Xk Nk

]

H∞ Controller Reduction

In H∞ performance-preserving controller reduction, one way is additive reductions

(Kr = K + V −1ΔW−1) that was briefly discussed in motivation items of frequency

weighted reduction. The procedure below, can be used to generate a required reduced-

order controller that will preserve the closed loop H∞ performance bound (γ).

1. Let K be a full order controller that fulfills the H∞ performance bound (γ).

2. Compute weighting functions V −1 and W−1 using the algorithm in [26].

3. Use a weighted reduction method to find Kr so that

‖Δ‖∞ = ‖W (Kr − K)V ‖∞ < 1
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Another approach to preserve H∞ performance by reduction in suboptimal case (γ >

γmin) is coprime factorization approach. This approach ends in a frequency weighted

coprime factorization reduction for more details see [74] (p. 312).

Remark 4.8: The inequalities that the reduced controller are found in here are just

the sufficient conditions to preserve stability and H∞ performance. It means that

there might be some other reduced controllers with the same properties that don’t

satisfy the norm inequalities of this approach.

In calculating the optimal H∞ controller two Riccati equations have to be solved.

It’s easy to see that by balancing and truncating these equation, two reduced Riccati

equation can be achieved that we can interpret them as the reduced plant with its

optimal H∞ controller. The key question is whether this reduced controller will

function satisfactorily with the original plant, which is not guaranteed by the design

procedure. A sufficient condition for closed loop stability is given in [49].
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Chapter 5

PRESERVING STABILITY IN MODEL REDUCTION

5.1 Introduction

This chapter considers the problem of instability in similarity transformation based

model reduction methods. The main results chiefly contribute to linear time-invariant

(LTI) stable models, but using some known techniques the results are extended to

LTI unstable cases.

Stability is an essential property that has to be preserved in the process of model

reduction. Some approaches that focus on preserving special characteristics of the

original transfer matrix might easily lose the stability of the reduced system. For

instance in Krylov subspace methods for model reduction, the focus is on matching the

coefficients of the Taylor (or McLaurin) series of the transfer matrix, but in general,

there is no guarantee for the stability of the reduced model [5]. Some modification

approaches are proposed in [34] and [27] to rectify this problem. Another example

is balancing and truncation with two sided weighting (Enns’ method [21]) that focus

on approximating the original model in a specific range of frequency. Unfortunately

it also suffers the lack of stability.

Our treatment of stability here follows that of [29, 60], where stability is guaranteed

by generalized Gramians, which are solutions of two Lyapunov equations. This idea is

generalized in section 5.2 by introducing the modified Lyapunov Criterion that later

is used as the base of our stability arguments. The approach here, like in [37], utilizes

the theoretic framework developed in [10] by exploiting strict Lyapunov inequalities.
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These mathematical preliminaries serve our main result which parameterizes a set of

reduced models that preserve the stability of the original stable model. This result

is summarized in Proposition 5.1 of section 5.3. An interesting application of this

parameterization is an algorithm to preserve stability in currently available reduction

approaches that suffer from the lack of stability, by slightly modifying the correspond-

ing similarity transformations that presented in section 5.6. This is demonstrated in

two examples of a Butterworth filter and a four disk system in Chapter 8 to compare

the results with those in [50] and [74]. The modification procedure presented here is

applicable to any reduction method based on similarity transformation. It is shown

that the efforts by [38, 60, 65] and [29] for two sided frequency weighting reduction

method can be formulated as a special case of our approach.

5.2 Modified Lyapunov Criterion

From definition 2.2 a system is stable if all signals, containing all measurable and

immeasurable signals in all components including even hidden modes, remain bounded

provided that the all injected signals (at any possible location) and initial conditions

are bounded. Considering a state space representation as follows:

G(s) :

{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
=

[
A B

C D

]
= C(sI − A)−1B + D (5.1)

using theorem 2.3, analyzing stability in this domain can be done by analyzing the

eigenvalues of matrix A in representation (5.1). Equivalently from Lyapunov criterion

(Corollary 2.1), matrix A is a stability matrix (Re(λi(A)) < 0) iff for any positive

definite (symmetric) matrix Q, exists a positive definite (symmetric) matrix P such

that AP + PAT = −Q.

The guaranteed stability in the balancing approaches for order reduction (for an

overview see [29]) is deduced from Lyapunov Criterion where Q = BBT (and/or

Q = CT C) as shown in the following Corollaries:

Corollary 5.1: If AP + PAT + BBT = 0 where P is a positive definite (symmetric)
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matrix and the pair (A,B) controllable, then A is a stability matrix[52].

If the pair (A,B) is not controllable, it follows that the eigenvalues of A lie in the

closed left half plane and each imaginary eigenvalue corresponds to a non-controllable

mode.

Corollary 5.2: If AT P + PA + CT C = 0, where P is a positive definite (symmetric)

matrix, and the pair (A,C) observable, then A is a stability matrix.

If the pair (A,C) is not observable, A has some pure imaginary eigenvalues, which

their associated eigenvectors lie in the null-space of C, i.e., they correspond to some

non-observable modes.

In this section we propose a modified version of Lyapunov criterion in the following

theorem, which represents the stability of a system in form of a linear matrix inequality

(LMI). This theorem will be used in the proceeding lemmas to state the stability of

reduced models derived by truncation or singular perturbation presented in section

3.2.

Theorem 5.1: Modified Lyapunov Criterion: A is a stability matrix iff there exists

a positive definite (symmetric) matrix P , such that AP + PAT < 0.

Proof: The necessary condition is direct result of Corollary 2.1, by choosing a

Q > 0. For the sufficient condition, let vi be the left eigenvector of A and λi(A) the

corresponding eigenvalue (v∗
i A = λiv

∗
i ). Then we multiply the given matrix inequality

from left with v∗
i and from right with vi, consequently:

AP + PAT < 0 ⇒ v∗
i APvi + v∗

i PAT vi < 0

⇒ λi(A)v∗
i Pvi + v∗

i Pλ∗
i (A)vi < 0

⇒ (λi(A) + λ∗
i (A))v∗

i Pvi < 0

(v∗
i Pvi > 0) ⇒ (λi(A) + λ∗

i (A)) < 0

⇒ Re(λi(A)) < 0

Thus the real part of every eigenvalue of A is in the left half plane, therefore A is a
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stability matrix.

In model reduction methods, which are based on the truncation of a special repre-

sentation of a model, the stability of the reduced system depends on a sub-matrix of

A. Without loss of generality we can assume the upper left block of A (A11) as the

reduced system’s main matrix. The following Lemma, based on Modified Lyapunov

Criterion, presents a sufficient condition for A11 to be a stability matrix.

Lemma 5.1: Let A =

[
A11 A12

A21 A22

]
be a stability matrix. A11 is also a stability

matrix, if there exists a symmetric matrix P = diag(P1, P2) > 0 (size(A11)=size(P1)),

which satisfies AP + PAT < 0.

Proof: [
A11 A12

A21 A22

][
P1 0

0 P2

]
+

[
P1 0

0 P2

][
AT

11 AT
21

AT
12 AT

22

]
< 0

⇒
[

A11P1 + P1A
T
11 ∗

∗ ∗

]
< 0

⇒ A11P1 + P1A
T
11 < 0

As it was mentioned, an application of Lemma 5.1 is the stability of reduced model.

We formulate this result in the following Lemma:

Lemma 5.2: Let the stable transfer matrix G(s) with a state space realization as

follows:

G(s) =

[
A B

C D

]
=

⎡
⎢⎢⎣

A11 A12 B1

A21 A22 B2

C1 C2 D

⎤
⎥⎥⎦ (5.2)

be such that there exists a block diagonal matrix

P = diag(P1, P2) > 0, size(A11) = size(P1)
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satisifying

AP + PAT < 0

then the reduced system derived by truncating G(s),

Gr(s) =

[
A11 B1

C1 D

]
, (5.3)

is stable.

Corollary 5.3: If G(s) satisfies the conditions in Lemma 5.2, then the reduced system

derived by singular perturbation,

Gre(s) =

[
A11 − A12A

−1
22 A21 B1 − A12A

−1
22 B2

C1 − C2A
−1
22 A21 D − C2A

−1
22 B2

]
,

is also stable.

Proof: From Lemma 5.1 we assume[
A11 A12

A21 A22

][
P1 0

0 P2

]
+

[
P1 0

0 P2

][
AT

11 AT
21

AT
12 AT

22

]
< 0

After premultiplying and postmultiplying this Lyapunov inequality by T and T T ,

where

T = [I, −A12A
−1
22 ]

we obtain

(A11 − A12A
−1
22 )P1 + P1(A11 − A12A

−1
22 )T < 0

Thus, based on Theorem 5.1 A11 −A12A
−1
22 is a stability matrix and consequently Gre

is stable.

In the next step, we are looking for a set of similarity transformations that all reduced

models of order k, derived by truncating the transformed models, preserve stability.

Therefore, it is necessary to contemplate the effect of similarity transformation on the

modified Lyapunov criterion. The following Lemma shows how a similarity transfor-

mation matrix reshapes the modified Lyapunov criterion.
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Lemma 5.3: If AP + PAT < 0 (P > 0), and we apply the similarity transformation

T to A, then Â (= TAT−1) satisfies ÂP̂ + P̂ ÂT < 0, where P̂ = TPT T .

Lemma 5.3: Proof:

ÂP̂ + P̂ ÂT = TAT−1(TPT T ) + (TPT T )T−T AT T

= TAPT T + TPAT T

= T (AP + PA)T T < 0

A reasonable question rises from Lemma 5.2 is how a state space representation which

satisfies the conditions mentioned there can be found. Proposition 5.1 answers this

question by presenting a set of similarity transformations (T ) that shapes the matrix

P as it is required in Lemma 5.2. It also parameterizes all stable reduced systems

(subject to a specific P ) of order k in the state space, derived by truncating the

transformed system.

5.3 Parameterizing Stable Reduced Models

Consider the system given by (5.1), where the system matrices are decomposed as

in (5.2). Using these partitioned matrices, a reduced order model can be obtained

as in (5.3). The order of this model is k and the quality of approximation depends

on the state coordinate basis of the original system and its stability is verified by

the eigenvalues of A11. In order to improve the quality of approximation and/or the

stability of reduced model, other realization of G(s) can be used. In other words

stability and quality of reduction based on truncation is realization dependent. To

derive different realizations of G(s) similarity transformations are powerful means.

After applying a similarity transformation T to a state space realization of G(s),
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yielding

G(s) =

[
A B

C D

]
=

[
TAT−1 TB

CT−1 D

]
=

⎡
⎣ Â B̂

Ĉ D̂

⎤
⎦ =

⎡
⎢⎢⎣

Â11 Â12 B̂1

Â21 Â22 B̂2

Ĉ1 Ĉ2 D̂

⎤
⎥⎥⎦

another reduced model of order k can be derived as follows:

Gr(s) =

[
Â11 B̂1

Ĉ1 D̂

]
. (5.4)

Therefore different similarity transformations yield unlike reduced models with dis-

tinct properties. In this part we present a large set of similarity transformations and

accordingly a set of coordinate basis to secure the stability of the reduced model. The

choice of similarity transformation is then recast as a choice of matrices L and R such

that

Â11 = LAR, B̂1 = LB, Ĉ1 = CR, LR = I.

In this way we parameterize a large set of stable reduced models of order k. In fact L

and R can be identified by the first k rows of T (similarity transformation) and by the

first k columns of its inverse (T−1) respectively. The following proposition summarizes

our result by parameterizing all block diagonalizing similarity transformations and all

the corresponding set of reduced (stable) systems.

Proposition 5.1: Let the transfer matrix G(s) in (5.1) be such that there exists a

positive definite symmetric matrix P that satisfies

AP + PAT < 0 (5.5)

and U = chol(P ), then the set of all block diagonalizing similarity transformations

can be described as

T =

[
X

Y X⊥

]
U−T (5.6)

for any arbitrary pair of full row-rank matrices X ∈ R
k×n and Y ∈ R

(n−k)×(n−k)

(1 ≤ k ≤ n), and the corresponding set of reduced (stable) systems of order k can be
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parameterized as

Gr(s) =

[
LAR LB

CR D

]
, (5.7)

where

L = XU−T , R = UT

[
X

Y X⊥

]−1 [
Ik

0

]
. (5.8)

Proof: The proof of this proposition relies heavily on the preceding lemmas. To

start, we show that the matrix T in (5.6) is a block diagonalizing similarity transfor-

mation. Since T is a similarity transformation we have:

G(s) =

[
A B

C D

]
=

[
TAT−1 TB

CT−1 D

]

=

⎡
⎣ Â B̂

Ĉ D̂

⎤
⎦ =

⎡
⎢⎢⎣

Â11 Â12 B̂1

Â21 Â22 B̂2

Ĉ1 Ĉ2 D̂

⎤
⎥⎥⎦ (5.9)

From (5.5) and (5.6), Lemma 5.3 shows that Â satisfies

ÂP̂ + P̂ ÂT < 0 (5.10)

where

P̂ = TPT T =

[
X

Y X⊥

]
U−T P

([
X

Y X⊥

]
U−T

)T

=

[
X

Y X⊥

]
U−T UT UU−1

[
X

Y X⊥

]T

=

[
XXT XX⊥T Y T

Y X⊥XT Y X⊥X⊥T Y T

]
=

[
XXT 0

0 Y X⊥X⊥T Y T

]

= diag(P̂1, P̂2) > 0, size(Â11) = size(P̂1) (5.11)

Thus, T is a block diagonalizing similarity transformation. From (5.9), (5.10) and

(5.11), Lemma 5.2 shows

Gr(s) =

[
Â11 B̂1

Ĉ1 D̂

]
=

[
LAR LB

CR D

]
,
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where L and R are given in (5.8), is stable.

To complete the proof, it suffices to show that if P̂ = diag(P̂1, P̂2) > 0, there exists

a similarity transformation with the structure shown in (5.6), which satisfies P̂ =

TPT T . Choosing

X = [chol(P̂1) 0n−k×k], X⊥ = [0k×n−k Ik], Y = chol(P̂2)

and substituting in (5.6), gives the desired result.

It should be noted that if A is stable, on one hand there are infinity number of P

matrices that satisfy the LMI in (5.5) and on the other hand by varying the arbitrary

matrices X and Y in (5.6), a large set of stable reduced models can be achieved.

Remark 5.1: (singular perturbation) By exploiting Corollary 5.3 The results in Propo-

sition 5.1 can be extended to the reduced systems derived by singular perturbation

approximation. It means that if we apply the similarity transformation T in (5.6)

to the original model, independent of using truncation or singular perturbation the

reduced model of order k is stable. Therefore in addition to (5.7) and (5.8), another

class of reduced models of order k with guaranteed stability and DC gain can be

parameterized. But due to the complexity of their structure, the parameterization of

singular perturbed reduced models have not been presented.

Remark 5.2: (Unstable models) Since our approach demands the stability of the orig-

inal model, one might ask what happens if the model is originally unstable. One

well-known idea is to compute an additive stable-unstable spectral decomposition of

G as G = Gs + Gu, where Gs of order ns contains the stable poles of G and Gu of

order n−ns contains the unstable poles of G as depicted in Fig. 5.1. Then reduce the

stable part of the model and copy the unstable part into the reduced model, which

means Gr = Gsr + Gu as shown in Fig. 5.2. Consequently Gr in Fig. 5.2 is the

reduced model of G. Another method is to represent the model transfer matrix as

ND−1 where N and D are both stable rational transfer matrices. Then we can ap-

proximate both the numerator N and the denominator D and construct the reduced

model Gr = NrD
−1
r . But there is an infinite number of fractions so the question arises

which fraction should be chosen. In [39, 44] a normalized representation so-called co-
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prime factorization has been used, but there is no proof on the superiority of this

selection.

Figure 5.1: Stable-Unstable decomposi-
tion

Figure 5.2: Reduced unstable model

5.4 Numerical issues

Regarding Theorem 5.1, existing a positive definite matrix P , which satisfies (5.5) in

Proposition 5.1 only requires the stability of G and does not add any other constraints

on it. For a stable system the inequality in (5.5) is a standard LMI, which is always

solvable, but the solution is not unique. P =
∫∞

0
eAτQeAT τdτ is an explicit solution

to (5.5), where Q is an arbitrary positive definite matrix. This inequality can also

be solved using some well-known convex programming methods, see e.g. [14] and

references therein. Another point, which is worth to be noted here, is the convexity

of the set of solutions to (5.5). Assume that P1 and P2 are solutions to (5.5), which

means

AP1 + P1A
T < 0, AP2 + P2A

T < 0.

Then c1P1 + c2P2, for any positive real scalars c1 and c2 satisfies

A(c1P1 + c2P2) + (c1P1 + c2P2)A
T = c1 (AP1 + P1A

T )︸ ︷︷ ︸
<0

+c2 (AP2 + P2A
T )︸ ︷︷ ︸

<0

< 0
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and therefore it is a solution to (5.5) as well and implies that the set of solutions to

(5.5) is convex.

Obviously, the LMI in (5.5) imposes weaker restriction on P in comparison to the

Lyapunov equation (AP +PAT = −Q) where matrix Q > 0 is given, but a comparison

study of the numerical effort is still required.

5.5 Dual Results

An interesting feature of the arguments in the previous sections is the validity of their

dual forms. In this section the dual forms are presented concisely.

Theorem 5.2: (Dual of Lyapunov Criterion) A is a stability matrix iff there exists a

positive definite symmetric matrix Q, such that AT Q + QA < 0.

Lemma 5.4: (Dual of Lemma 5.2) Let the stable transfer matrix G(s) have a state

space realization as in (5.2). Gr(s) in (5.3) is stable if there exists a block diagonal

matrix Q = diag(Q1, Q2) > 0 satisfying AT Q + QA < 0.

Lemma 5.5: (Dual of Lemma 5.3) If AT Q + QA < 0 (Q > 0), and we apply the

similarity transformation T to A, then Â is equal to TAT−1 and satisfies ÂT Q̂+Q̂Â <

0, where Q̂ = T−T QT−1.

Proposition 5.2: (Dual of Proposition 5.1) If there exists a positive definite sym-

metric matrix Q which satisfies AT Q + QA < 0 then for any arbitrary full row-

rank matrices X ∈ R
k×n and Y ∈ R

k×k, the reduced system Gr(s) with realization

(LqARq, LqB,CRq, D) of order k is stable, where

Uq = chol(Q), Lq = XUq, Rq = U−1
q

[
X

Y X⊥

]−1 [
Ik

0

]
.
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5.6 Application Outlook

In this section two algorithms illustrate how we can benefit from the parameterization

of stable reduced models presented in (5.7). In the first algorithm we show how one

of the famous model reduction methods, known as Krylov subspace methods, can be

modified in order to guarantee the stability of reduced model. In the second one, we

procure a solution to the problem of stabilizing the model resulted from a double-sided

frequency weighting reduction method. The effectiveness of the proposed techniques

are demonstrated by way of two numerical examples in Chapter 8. It should be noted

that the application range of the proposed theorems is not confined to these two

algorithms.

5.6.1 Preserving stability in Krylov subspace based model reduction methods

The output Krylov subspace of order k corresponding to the state space realization

in (5.1) is defined as follows:

Kk(A
−T , A−T C) � colspan[A−T C, · · · , (A−T )k−1A−T C]

The output Krylov subspace can be used to find a projection, resulting in a reduced

model that approximates the original transfer matrix in terms of matching the first

k coefficients of its Taylor series (so-called moments). These applications of Krylov

subspaces, which were first noted in [64], have been well developed and numerically

enhanced during the last decade, for a comprehensive overview see [28] and [5]. It

is proved that in (5.7) if the columns of LT span Kk(A
−T , A−T C), then the first

k moments of the original and the reduced model match. In general, there is no

guarantee for the stability of the reduced model, but if LT is orthonormalized, which

is always the case in the Arnoldi algorithm [5], and R is chosen equal to LT then the

reduced model preserves passivity. When L is given, the following Corollary shows

how we can construct R based on Proposition 5.1 to preserve stability, while still the

moments are matched. This Corollary also generalizes the result presented in [63].
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Please note that the result is not restricted to passive models and only the stability

of the original model is required.

Corollary 5.4: Given a stable system as in (5.1), for any P > 0 that satisfies AP +

PAT < 0 and any arbitrary full row rank matrix L̂ ∈ R
k×n, the reduced model

Gr(s) = (L̂AR̂, L̂B,CR̂,D) is stable if R̂ = PL̂T (L̂P L̂T )−1.

Proof: We show that L̂ and R̂ satisfy

L̂ = XU−T , R̂ = UT

[
X

Y X⊥

]−1 [
Ik

0

]

for special matrices X and Y . Assuming U = chol(P ) and substituting L̂UT for X

and In−k for Y in (5.8), we have

L̂UT U−T = L̂, UT

[
L̂UT

In−k(L̂UT )⊥

]−1 [
Ik

0

]
= PLT (LPLT )−1 = R̂

Since L̂ and R̂ have the same structure as in (5.7), Proposition 5.1 shows that Gr(s) =

(L̂AR̂, L̂B,CR̂,D) is stable.

In other words if the columns of L̂T are chosen form Kk(A
−T , A−T C) and R̂ =

PL̂T (L̂P L̂T )−1, the reduced model will be stable and k moments are matched. This

application can be extended to input Krylov subspaces using the following Corollary.

Corollary 5.5: Given a stable system as in (5.1), for any Q > 0 that satisfies AT Q +

QA < 0 and any arbitrary full column rank matrix R̂ ∈ R
n×k, the reduced model

Gr(s) = (L̂AR̂, L̂B,CR̂,D) is stable if L̂ = (R̂T QR̂)−1R̂T Q.

Proof: Similar to Corollary 5.4.

Therefore if the columns of R̂ are chosen form the input Krylov subspace and L̂ =

(R̂T QR̂)−1R̂T Q, then the reduced model is stable and k moments are matched.

It is worth to be noted that, besides stability consideration, by adding more con-

straints on the inequality in (5.5) the properties of reduced model can be manipu-
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lated. The following corollary shows for instance how we can modify the conditions

in Corollary 5.4 to control the distance of the poles of the reduced model from the

imaginary axis. To be more precise, using the following corollary we can keep all

the eigenvalues of the reduced model in the left-hand side of the eigenvalues of the

original model1.

Corollary 5.6: Given a system as in (5.1) which A satisfies Re{λi(A)} < −σ ≤ 0.

Then for any arbitrary full row rank matrix L̂ ∈ R
k×n and R̂ = PL̂T (L̂P L̂T )−1,

where P > 0 and satisfies AP + PAT + 2σP < 0, the reduced model Gr(s) =

(L̂AR̂, L̂B,CR̂,D) is stable and Ar = L̂AR̂ satisfies Re{λi(Ar)} < −σ.

Proof: Since Re{λi(A)} < −σ ≤ 0, (A + σI) is a stability matrix therefore

(A + σI)P + P (A + σI)T < 0

that is equivalent to

AP + PAT + 2σP < 0

Pre- and post-multiplying this inequality with L̂ and L̂T respectively, we have

L̂APL̂T + L̂PAT L̂T + 2σL̂P L̂T < 0

Noting that (L̂P L̂T )−1(L̂P L̂T ) and (L̂P L̂T )T (L̂P L̂T )−T are identity terms, this in-

equality can be modified as follows

L̂APL̂T (L̂P L̂T )−1(L̂P L̂T )︸ ︷︷ ︸
I

+ (L̂P L̂T )T (L̂P L̂T )−T︸ ︷︷ ︸
I

L̂PAT L̂T + 2σ L̂P L̂T︸ ︷︷ ︸
Pr

< 0

By substituting Ar for L̂AR̂ = L̂APL̂T (L̂P L̂T )−1 and Pr for L̂P L̂T , we obtain

ArPr + PrA
T
r + 2σPr < 0

or equivalently

(Ar + σI)Pr + Pr(Ar + σI)T < 0

1The author would like to acknowledge the advice and criticism of Prof. P.C. Müller and Prof.
A.C. Antoulas at GMA workshop (Modeling, identification and simulation in automatic control)
at Bostalsee (Germany) that led to this result.
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Therefore Ar + σI is a stability matrix that means Re{λi(Ar)} < −σ ≤ 0 which is

the desired result.

Remark 5.3: The result here is not restricted to stabilizing model reduction by input

and output Krylov subspace method, but it can be used to associate with any model

reduction methods that only specify L (or R). The result can be generalized to the

case, where the whole transformation matrix is given. Consider T̆ is a transformation

matrix from a (truncation based) reduction method that does not guarantee the

stability of the reduced model. Then the reduced model can be stabilized by projecting

T̆ onto the space of stabilizing transformations introduced in Proposition 5.1. This

is equivalent to finding the matrices X and Y by solving the following optimization

problem,

min
X,Y

∥∥∥∥∥T̆ −
[

X

Y X⊥

]
U−T

∥∥∥∥∥ ,

where U = chol(P ). This approach is further illustrated in the next subsection.

5.6.2 Preserving stability in frequency weighted reduction methods

The Enns’ two sided frequency weighted reduction was briefly introduced in section

4.4. The goal of this approach is minimizing the index in (5.12), where G(s) is the

original model with the realization shown in (5.1), Gr(s) is the reduced model and

W1(s) and W2(s) are the frequency weights.

min
Gr(s)

‖W1(s)(G(s) − Gr(s))W2(s)‖∞ (5.12)

In some applications we look for a reduced model that approximates its original high

order model in a specific range of frequency. In this case by choosing proper weighting

matrices, Enns’ method can be exploited. Enns proposed to calculate the transforma-

tion matrix T̆ ∈ R
n×n that identifies the new coordinate basis by balancing the upper

left n × n block of the controllability and observability Gramians of G(s)W2(s) and

W1(s)G(s) respectively. Let W1(s) = (A1, B1, C1, D1) and W2(s) = (A2, B2, C2, D2)
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be minimal state space realizations of the weighting matrices. Consider the following

realizations of G(s)W2(s) and W1(s)G(s)

G(s)W2(s) =

⎡
⎢⎢⎣

A BC2 BD2

0 A2 B2

C DC2 DD2

⎤
⎥⎥⎦ ,W1(s)G(s) =

⎡
⎢⎢⎣

A1 B1C B1D

0 A B

C1 D1C D1D

⎤
⎥⎥⎦

where

PGW2 =

[
P11 P12

P T
12 P22

]
, QW1G =

[
Q11 Q12

QT
12 Q22

]
, (5.13)

are the controllability Gramian of G(s)W2(s) and the observability Gramian of W1(s)G(s)

respectively. Then the reduced model is obtained by truncating the new realization

(after performing T̆ on G(s)) as in (5.4). Although this method has been success-

fully employed in many applications, its main weakness is the lack of guaranteed

stability of the reduced model. In this part we briefly present two previous works on

Enns’ approach in order to guarantee stability, then we suggest a third alternative

algorithm for preserving stability by slight modification of Enns’ proposed coordinate

transformation.

• modification by Lin and Chiu: A modification of Enns’ approach has been pro-

posed by Lin and Chiu in [38], which under certain assumptions, guarantees the

stability of the reduced model. Provided P22 and Q11 in (5.13) are nonsingular

(condition ensured if W1(s) and W2(s) are minimal realizations), Lin and Chiu

proposed to choose the frequency-weighted Gramians as

PL = P11 − P12P
−1
22 P T

12, QL = Q22 − QT
12Q

−1
11 Q12.

It is shown that PL and QL are the Gramians of Ĝ(s) = (A, B̂, Ĉ,D), where

B̂ = BD2 − P12P
−1
22 B2, Ĉ = D1C − C1Q

−1
11 Q12.

By balancing Ĝ(s) we obtain a coordinate transformation (T̂ ) that makes the

Gramians equal and diagonal. The balancing and truncation approach implies

that the upper k × k block of T̂AT̂−1, denoted by Â11, is a stability matrix.

Therefore if we apply T̂ to G(s) and noting that matrix A remains unchanged,

the stability of the reduced model is automatically guaranteed.
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• modification by Wang et al.: Another modification of Enns’ method has been

proposed by Wang et al. in [65]. In this method it is proposed to choose the

frequency-weighted Gramians as PW and QW , where they are the Gramians

of G̃(s) = (A, B̃, C̃,D), where B̃ and C̃ are computed from the orthogonal

eigendecompositions of the symmetric matrices X = −(AP11 + P11A
T ) and

Y = −(AT Q22 + Q22A) as follows:

B̃ = U
√
|Σ1|, C̃ =

√
|Σ2|V T

where X = UΣ1U
T , Y = V Σ2V

T and Σ1 and Σ2 are diagonal matrices. Then

the transformation matrix T̃ is calculated by balancing G̃(s). The balancing

and truncation approach implies that the upper k× k block of T̃AT̃−1, denoted

by Â11, is a stability matrix. Similar to the argument in Lin and Chiu approach,

if we apply T̃ to G(s) and noting that the main matrix of G(s) and G̃(s) are

equal (A), the stability of the reduced model is automatically guaranteed.

• An alternative based on Propositon 5.1: Using similar notation as in section 5.3,

a reduced model can be stabilized by the modification discussed in Remark 5.3.

The construction of the projected transformation can be summarized as follows:

1. find a P > 0, such that it satisfies AP + PAT < 0

2. calculate U = chol(P )

3. calculate the modified transformation by projecting T̆ onto the space of

matrices defined in (5.6). A simple suboptimal solution is X = T̆uU
T , Y =

T̆lU
T X⊥†, where T̆u denotes the upper rows of T̆ compatible to the size of

X and T̆l denotes the lower rows of T̆ compatible to the size of X⊥. This

solution can be achieved by solving minX ‖T̆u − XU−T‖ and minY ‖T̆l −
Y X⊥U−T‖ sequentially that gives

T =

[
T̆uU

T

T̆lU
T (T̆uU

T )⊥†(T̆uU
T )⊥

]
U−T . (5.14)

In this part we elaborate the relationship between different alternatives described in

this section.
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• In the approach of Lin and Chiu T̂ guarantees stability by diagonalizing a

specific PL > 0 that satisfies APL + PLAT = −B̂B̂T ≤ 0.

• In Wang’s approach T̃ guarantees stability by diagonalizing a specific PW > 0

that satisfies APW + PW AT = −B̃B̃T ≤ 0.

• In our approach T guarantees stability by block diagonalizing an arbitrary P > 0

that satisfies AP + PAT < 0.

Based on the following lemma it can be seen that all of the mentioned approaches

can be formulated as a special marginal case of our algorithm.

Lemma 5.6: If AP1 + P1A
T ≤ 0, for all ε > 0 there exists a P2 > 0 such that

AP2 + P2A
T < 0 and ‖P1 − P2‖ < ε.

Proof: Assuming AP1 + P1A
T = −Q1, where Q1 is a symmetric positive semi-

definite matrix and using the idea in [51], this equation can be written as

(A ⊗ In + In ⊗ AT )vec(P1) = −vec(Q1), (5.15)

Without loss of generality we assume the following eigenvlaue decomposition of Q1:

Q1 = V diag(λ1, · · · , λs, 0, · · · , 0)V T ≥ 0

where s is the number of nonzero eigenvalues of Q1. If we define Q2 for positive real

numbers σ1, · · · , σn−s+1 as

Q2 = V diag(λ1, · · · , λs, σ1, · · · , σn−s+1)V
T > 0

then Q2 is a symmetric positive definite matrix and therefore

Q1 − Q2 =
n−s+1∑

i=1

σiViV
T
i (5.16)

where Vi is the eigenvector corresponding to σi. Considering P2 satisfies AP2+P2A
T =

−Q2 < 0, we have

(A ⊗ In + In ⊗ AT )vec(P2) = −vec(Q2), (5.17)
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Subtracting (5.17) from (5.15), we obtain

(A ⊗ In + In ⊗ AT )(vec(P1) − vec(P2)) = −(vec(Q1) − vec(Q2)).

Noting that vec(P1) − vec(P2) = vec(P1 − P2), we have

vec(P1 − P2) = −(A ⊗ In + In ⊗ AT )−1vec(Q1 − Q2).

For any matrix norm we know that ‖Av‖ ≤ ‖A‖ ‖v‖, thus

‖vec(P1 − P2)‖ ≤ ‖ − (A ⊗ In + In ⊗ AT )−1‖ ‖vec(Q1 − Q2)‖. (5.18)

By using (5.16) and triangle inequality we have

‖vec(Q1 − Q2)‖ = ‖vec(
n−s+1∑

i=1

σiViV
T
i )‖ ≤

n−s+1∑
i=1

σi‖vec(ViV
T
i )‖

which means the upper bound of ‖vec(P1−P2)‖ in (5.18) and consequently ‖P1−P2‖
can be assigned to any ε > 0 by proper choices of σ1, · · · , σn−s+1.
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Chapter 6

PRESERVING STABILITY IN CONTROLLER

REDUCTION

6.1 Introduction

As we discussed in chapter 4, one of the shortcomings of modern controller design

packages is offering low order controllers without impacting the closed-loop stability

and performance. We reviewed different methods which are developed for reducing

high order controllers in section 4.4. All of these methods must consider maintaining

the performance for the reduced controller and this focus sometimes violates the sta-

bility requirement of the closed loop system. For instance among the existing methods

two sided frequency weighting controller reduction known as Enns’ method [21] has

been very successful in application. Unfortunately this method neither guarantees

the stability of the reduced controller nor the closed loop system. In [60] some efforts

to modify this method to obtain a stable low order controller are reviewed but in all

approaches mentioned in [60] the stability of the reduced closed loop system is still

open to doubt.

This chapter provides a solution to this problem in general by presenting a general

framework to maintain the stability of the closed loop system. The main result chiefly

contributes to LTI stable controllers, but some known tricks extend the result to spe-

cial unstable cases. Our treatment of stability follows that of section 5.2, where

stability is analyzed by utilizing the theoretic framework developed in Theorem 5.1

and exploiting strict Lyapunov inequalities. Section 6.4 expands the results by pre-

senting the dual form of proved statements in section 6.2. As an application of our
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results in section 6.2, we modify the Enn’s approach to guarantee the stability of

the reduced controller. But the major improvement we are seeking is preserving the

internal stability of the closed loop system that makes our modification superior to

the existing ones as in [38, 65] and [60].

6.2 Parameterizing Stabilizing Reduced Controllers

To best present our result in controller reduction, we consider the closed loop system

shown in Fig. 6.1 and we make the assumption that

Plant G(s) =

⎡
⎢⎢⎣

Ag Bg1 Bg2

Cg1 D11 D12

Cg2 D21 D22

⎤
⎥⎥⎦ mth order

Controller K(s) =

[
Ak Bk

Ck Dk

]
nth order

Thus, the transfer matrix from ω to z is given by

Tzω(s) =

[
At Bt

Ct Dt

]
, (6.1)

where

At =

[
Ag + Bg2MDkCg2 Bg2MCk

BkNCg2 Ak + BkND22Ck

]

Bt =

[
Bg1 + Bg2MDkD21

BkND21

]

Ct =
[

Cg1 + D12DkNCg2 D12MCk

]
Dt = D11 + D12DkND21

M = (I − DkD22)
−1, N = (I − D22Dk)

−1.

At this point, we define xg and xk as the set of plant’s and controller’s states respec-

tively. Note that we use the index g for the plant and k for the controller. Regarding
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the fact that the state vector in the closed loop system represented by (6.1) is equal to

[
xg

xk

], in controller reduction we consider only similarity transformations with a block

diagonal structure, e.g. [
T1 0

0 T
]. In this way we prevent constructing a combination

of xg and xk as a new state, therefore the truncated new realization results directly in

a reduced controller. The following proposition parameterizes all stabilizing reduced

order controllers derived this way.

Figure 6.1: General feedback system

Proposition 6.1: For the closed loop system in (6.1), assume there exists a symmetric

positive definite matrix P = diag(Pg ∈ R
m×m, Pk ∈ R

n×n) such that

AtP + PAT
t < 0, (6.2)

and let U = chol(Pk), then

Kr(s) =

[
LAkR LBk

CkR Dk

]
, (6.3)

where

L = XU−T , R = UT

[
X

Y X⊥

]−1 [
Ik

0

]
(6.4)

for any arbitrary full row rank matrices X ∈ R
k×n and Y ∈ R

(n−k)×(n−k) (1 ≤ k ≤ n),

parameterizes a set of stabilizing kth order reduced order controllers. Furthermore,

assuming D22 = 0, Kr(s) is stable.
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Proof: In the following, we first show that a if we apply the following similarity

transformation to (6.1) ⎡
⎢⎢⎣

T1 0

0

[
X

Y X⊥

]
U−T

⎤
⎥⎥⎦ (6.5)

where T1 ∈ R
m×m, X ∈ R

k×n and Y ∈ R
(n−k)×(n−k) are all arbitrary full row rank

matrices and U = chol(Pk), then Ât in the new realization (Ât, B̂t, Ĉt, D̂t) satisfies

ÂtP̂ + P̂ ÂT
t < 0, (6.6)

where P̂ has a special block diagonal structure as follows:

P̂ =diag(P̂g ∈ R
m×m, Pk1 ∈ R

k×k, Pk2). (6.7)

To simplify the proof, we assume without any loss of generality that T1 = Im. We

denote the lower block of (6.5) by T as shown below:

T =

[
X

Y X⊥

]
U−T (6.8)

By applying the similarity transformation in (6.5) ( [
Im 0

0 T
]) to Tzω, we obtain a

new realization (Ât, B̂t, Ĉt, D̂t), where

Ât =

⎡
⎢⎢⎣

Ag + Bg2M̂D̂Cg2 Bg2M̂Ĉ1 Bg2M̂Ĉ2

B̂1N̂Cg2 Â11 + B̂1N̂D22Ĉ1 Â12 + B̂1N̂D22Ĉ2

B̂2N̂Cg2 Â21 + B̂2N̂D22Ĉ1 Â22 + B̂2N̂D22Ĉ2

⎤
⎥⎥⎦
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B̂t=

⎡
⎢⎢⎣

Bg1 + Bg2M̂D̂D21

B̂1N̂D21

B̂2N̂D21

⎤
⎥⎥⎦

Ĉt=
[

Cg1 + D12D̂N̂Cg2 D12M̂Ĉ1 D12M̂Ĉ2

]
D̂t= D11 + D12D̂N̂D21

M̂ = (I − D̂D22)
−1, N̂ = (I − D22D̂)−1, Â11 ∈ R

k×k

K(s)=

⎡
⎢⎢⎣

Â11 Â12 B̂1

Â21 Â22 B̂2

Ĉ1 Ĉ2 D̂

⎤
⎥⎥⎦ =

[
TAkT

−1 TBk

CkT
−1 Dk

]
. (6.9)

Inequality (6.2), together with application of Lemma 5.3, implies that Ât satisfies

ÂtP̂ + P̂ ÂT
t < 0, where

P̂ =

[
Im 0

0 T

][
Pg 0

0 Pk

][
Im 0

0 T

]T

(6.10)

Here we must show that P̂ has a block diagonal structure as in (6.7). Substituting

UT U for Pk and T from (6.8) in (6.10) shows that

P̂ =

⎡
⎢⎢⎣

Pg 0 0

0 XXT 0

0 0 Y Y T

⎤
⎥⎥⎦ > 0, (6.11)

which completes the first part of the proof.

Based on this result, (6.2) implies that there exists a realization of T (s) = (Ât, B̂t, Ĉt, D̂t)

that Ât satisfies (6.6) and (6.7). Therefore applying Lemma 5.2 shows that the system

derived by truncating (Ât, B̂t, Ĉt, D̂t) to order m + k, denoted by Tr(s) is stable.

Tr(s) =

⎡
⎢⎢⎣

Ag + Bg2M̂D̂Cg2 Bg2M̂Ĉ1 Bg1 + Bg2M̂D̂D21

B̂1N̂Cg2 Â11 + B̂1N̂D22Ĉ1 B̂1N̂D21

Cg1 + D12D̂N̂Cg2 D12M̂Ĉ1 D11 + D12D̂N̂D21

⎤
⎥⎥⎦ (6.12)

Note that the structure in (6.5) does not blend the plant’s and controller’s states,

hence Tr(s) can be presented as a general feedback system of G(s) and a controller
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defined as follows

K̂r(s) =

⎡
⎣ Â11 B̂1

Ĉ1 D̂

⎤
⎦ .

Using (6.9) and (6.8) shows that K̂r(s) is equal to Kr(s) defined in (6.3). Hence Kr(s)

is a reduced order controller of order k that the general feedback system of G(s) and

Kr(s), presented in (6.12), is stable, which is the desired result.

In the following we show if D22 = 0, then Kr(s) is stable. Considering (6.6) and

(6.11), it can be easily concluded that

(Â11 + B̂1N̂D22Ĉ1)(XXT ) + (XXT )(Â11 + B̂1N̂D22Ĉ1)
T < 0

Assuming D22 = 0 we have

Â11(XXT ) + (XXT )ÂT
11 < 0

Hence, by Theorem 5.1 Â11 is a stability matrix and Kr(s) is stable.

1K

G

+ +

)( sG a

2K

Figure 6.2: Stable-stabilizer decomposition of controller

Remark 6.1: In particular, if D22 = 0, Dk = 0, from inequality (6.2), we have

AgPg + PgA
T
g < 0, AkPk + PkA

T
k < 0
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These inequalities imply that both Ag and Ak are stability matrices, therefore both

the plant and the controller have to be stable. Hence the parameterization in Propo-

sition 6.1 is not applicable to a system with either unstable plant or unstable con-

troller. As a remedy, a simple idea proposed by [73] can be applied here as well. The

idea is to compute an additive stable-stabilizer spectral decomposition of K(s) as

K(s) = K1(s) + K2(s), where K1(s) stabilizes the plant and K2(s) is stable. If such

a decomposition exists, denote the subsystem with the plant G(s) and the controller

K1(s) by Ga(s) as shown in a dashed box in Fig. 6.2. Then Proposition 6.1 can

be applied to Ga(s) and K2(s). Assume that K2r(s) is a reduced order controller of

K2(s), then Kr(s) = K1(s) + K2r(s) is a reduced controller of K(s). In some cases,

other ideas like bilinear transformation and linear fraction transformation can also

help.

Special Case

Figure 6.3: Negative feedback system

The results in this section can be easily applied to one degree of freedom control

configuration. Considering the closed loop system shown in Fig. 6.3 and

Plant G =

[
Ag Bg

Cg Dg

]
mth order

Controller K =

[
Ak Bk

Ck Dk

]
nth order

.

For simplicity we assume Dg = 0, Dk = 0. Thus, the transfer matrix from ω to z is
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given by

Tzω =

⎡
⎢⎢⎣

Ag BgCk 0

−BkCg Ak Bk

Cg 0 0

⎤
⎥⎥⎦ =

[
At Bt

Ct Dt

]

Proposition 6.2: (special case of Proposition 6.1) Assume there exists P = diag(Pg, Pk) >

0, where Pg ∈ R
m×m and Pk ∈ R

n×n, such that

AtP + PAT
t < 0

and let

Kr =

[
LAkR LBk

CkR Dk

]

where

X ∈ R
k×n arbitrary, U = chol(Pk),

L = XU−T , R = UT

[
X

X⊥

]−1 [
Ik

0

]
,

then the closed loop system with the reduced order controller Kr is stable. Further-

more Kr is also stable.

6.3 Numerical Issues and Solvability Condition

Numerical issues: For a stable closed loop system the inequality in (6.2) with the

given constraint on the structure of P is a standard LMI problem. The development

of computational methods for finding feasible solutions to LMIs, such as the Lyapunov

inequalities considered here, has recently been a rather popular research area in the

control community. Many efficient convex optimization algorithms have already been

developed in particular by the authors of [14]. The following proposition gives a

conservative sufficient condition for the feasibility of this problem.
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Proposition 6.3: Assuming D22 = 0, the LMI in (6.2) is solvable if

ZT (Ag + Bg2DkCg2 + (Ag + Bg2DkCg2)
T )Z

is a stability matrix, where Z is an orthonormal matrix whose columns span null(BkCg2).

Proof: To prove Proposition 6.3, we require a preliminary lemma.

Lemma 6.1: If ZT (Ag+Bg2DkCg2 + (Ag+Bg2DkCg2)
T )Z is a stability matrix, then

for any positive definite matrix Pk with appropriate dimensions, the pair of (Ã, B̃)

defined as

Ã = Ag+Bg2DkCg2︸ ︷︷ ︸
Â

−Bg2CkPk(AkPk+PkA
T
k )−1BkCg2, B̃ = CT

g2B
T
k (6.13)

is stabilizable.

Proof: Assume that ZT (Â + ÂT )Z is a stability matrix, therefore we have

Re{eig(
1

2
(ZT (Â+ÂT )Z))}=Re{eig(

1

2
(ZT ÂZ+(ZT ÂZ)T ))} < 0 (6.14)

A non-symmetric matrix (ZT ÂZ) is negative definite iff its symmetric part (1
2
(ZT ÂZ+

(ZT ÂZ)T )) is a stability matrix, consequently, (6.14) implies ZT ÂZ < 0. Note that

Z ⊆ null(B̃), therefore

ÂZ = ÂZ−Bg2CkPk(AkPk+PkA
T
k )−1 BkCg2Z︸ ︷︷ ︸

B̃T Z=0

= (Â−Bg2CkPk(AkPk+PkA
T
k )−1BkCg2)Z = ÃZ.

where Pk is a solution to AkPk + PkA
T
k < 0 and consequently

ZT ÂZ = ZT ÃZ < 0.

Thus, for any vector x (with an appropriate size) we have

∀λ ∈ C
+ : xT (ZT ÃZ − λZT Z)x < 0 ⇒ (Zx)︸︷︷︸

∈null(B̃)

T (Ã − λI) �= 0, (6.15)



Chapter 6: Preserving Stability in Controller Reduction 88

Noting that Z is an orthonormal matrix whose columns span null(B̃) and x is arbi-

trary, Zx spans null(B̃). Thus, (6.15) implies that (Ã, B̃) is stabilizable.

We now prove Proposition 6.3. The LMI in (6.2) is equal to[
(Ag+Bg2DkCg2)Pg+Pg(Ag+Bg2DkCg2)

T Bg2CkPk+PgC
T
g2B

T
k

BkCg2Pg+PkC
T
k BT

g2 AkPk+PkA
T
k

]
< 0 (6.16)

Using Schur complements lemma, (6.16) is equivalent to

AkPk + PkA
T
k︸ ︷︷ ︸

R

< 0, (6.17)

(Ag + Bg2DkCg2)Pg + Pg(Ag + Bg2DkCg2)
T − (Bg2CkPk + PgC

T
g2B

T
k )︸ ︷︷ ︸

S

R−1ST < 0,

(6.18)

S(I − RR−1) = 0. (6.19)

In other words the LMI in (6.16) is solvable iff the inequalities in (6.17), (6.18) and

(6.19), with respect to variables Pk and Pg, are solvable. Since Ak is assumed to be a

stability matrix, the LMI in (6.17) is solvable and has infinite solutions. Consequently

R is a square negative definite matrix, therefore condition (6.19) is also fulfilled. Thus,

(6.16) has a solution iff (6.18) is solvable. By rearranging (6.18) and using (6.13) we

obtain

ÃPg + PgÃ
T − PgB̃R−1B̃T Pg − Bg2CkPkR

−1PkC
T
k BT

g2 < 0 (6.20)

The inequality in (6.20) is a Riccati inequality and it has a solution if (Ã, B̃) is

stabilizable. Applying Lemma 6.1 shows that (6.20) and consequently (6.2) is solvable

if ZT (Â + ÂT )Z is a stability matrix, which is the desired result.

6.4 Dual Results

An interesting feature of the results in the previous sections is the validity of their

dual forms. In this section the dual forms are presented concisely.



Chapter 6: Preserving Stability in Controller Reduction 89

Proposition 6.4: (Dual of Proposition 6.1) Assume there exists a symmetric positive

definite matrix Q = diag(Qg, Qk) such that

AT
t Q + QAt < 0 (6.21)

and let Uq = chol(Q), then

Kr(s) =

[
LqAkRq LqBk

CkRq Dk

]
(6.22)

where

Lq = XUq, R = U−1
q

[
X

Y X⊥

]−1 [
Ik

0

]

for any arbitrary full row rank matrices X ∈ R
k×n and Y ∈ R

(n−k)×(n−k) (1 ≤ k ≤ n),

parameterizes a set of stabilizing kth order reduced order controllers. Furthermore,

assuming D22 = 0, Kr(s) is stable.

Proposition 6.5: (Dual of Proposition 6.3) Assuming D22 = 0, the inequality in (6.21)

is solvable if

ZT
d ((Ag + Bg2DkCg2)

T + Ag + Bg2DkCg2)Zd

is a stability matrix, where Zd is an orthonormal matrix, which its columns span

null(CT
k BT

g2).

6.5 Application Outlook

In this section an algorithm illustrates how we can benefit from the parameterization

of stabilizing reduced controllers presented in (6.3). The idea is that we can exploit

the result in Proposition 6.1 to modify other controller reduction methods based

on similarity transformation in order to guarantee the closed loop stability. Assume

T̃ ∈ R
n×n is a transformation matrix from a controller reduction approach, which does

not guarantee the stability of closed loop system, like balancing, frequency weighted
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balancing and so forth. Note that T̃ acts on the full order controller. Using similar

notation as in section 6.2, the closed loop system can be stabilized by projecting

T̃ onto the space of stabilizing transformations introduced in Proposition 6.1. The

construction of the projected transformation (T ) is summarized as follows:

1. Find a P = diag(Pg, Pk) > 0, such that it satisfies AtP + PAT
t < 0. This is an

LMI problem with a given structure for matrix P , which can be formulated easily

by available software tools such as MATLAB LMI toolbox. The computation

effort of solving this LMI is O((m + n)6).

2. Calculate U = chol(Pk). For calculating Cholesky factorization of a positive

definite matrix, there is stable optimized code available in LAPACK software

[3] which has the computation effort of order O(n3

3
+ 3n2).

3. Calculate the modified transformation by projecting T̃ onto the space of ma-

trices defined in (6.8). This can be carried out in different ways, a simple

suboptimal solution is given by

T =

[
T̃uU

T

T̃lU
T (T̃uU

T )⊥†(T̃uU
T )⊥

]
U−T ,

where T̃u denotes the upper k rows of T̃ , T̃l denotes the rest lower rows of

T̃ and the reduced controller is obtained as in (6.3). Since T has the same

structure as in (6.8) using Proposition 6.1 the stability of the closed loop system

is guaranteed. In this part an orthonormal basis for the null space of T̃uU
T can

be obtained from the singular value decomposition algorithm, as implemented

in [3], which has a computation effort of order O(12k3).

Using the above algorithm, we can easily procure a solution to the problem of sta-

bilizing the closed loop system resulted from the Enns’ method (frequency weighted

controller reduction). The effectiveness of the proposed technique is demonstrated by

way of a numerical example in chapter 8.
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Chapter 7

IMPACT OF CONTROLLER REDUCTION ON

EMBEDDED CONTROLLERS

7.1 Introduction

A control system is an implemented strategy used to cause a physical system, or

plant, to behave in a desired manner. As the control strategy increases in complexity,

it becomes more difficult to apply analog components for its implementation. On

one hand precise implementation of desired dynamic requires high accuracy stable

components that work in different environmental conditions like ambient temperature.

On the other hand the dynamics in an analog control loop always interact with each

other that makes it more difficult to match desired controller characteristics. To

alleviate these problems, in modern control systems the control strategy is typically

implemented in software on microprocessors. The advantages of using digital control

include improved measurement sensitivity, the use of digitally coded signals, digital

sensors and transducers; reduced sensitivity to signal noise and the capability to easily

reconfigure the control algorithm in software.

Perhaps more than any other factor, the development of microprocessors has been

responsible for the explosive growth of embedded systems. Early microprocessors

required many additional components and peripherals in order to perform any useful

work. For example the first microprocessor was the Intel 4004, which found its way

into calculators and other small systems, but required external memory and support

chips. By the mid-80s, most of the previously external system components had been

integrated into the same chip as the processor. This progress were due to increasing
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use of very large scale integration (VLSI) semiconductor fabrication techniques. A

further extension of the integration is the single chip microcontroller, which adds

analog and binary I/O (inputs/outputs), timers, and counters such that it is capable

of carrying out real-time control functions with almost no additional hardware. The

basic characteristics of a microcontroller are as follows:

• A built-in flash memory within the chip to store the control program.

• A built-in RAM for temporary data storage.

• A CPU that uses single bit instructions so that the limited program memory is

effectively used.

• Built-in timers/counters which can be set by users.

• Built-in I/O ports (Digital and Analog) for easy interaction with external de-

vices.

Some microcontrollers have additional features like communication and external in-

terrupt modules [16].

After enormous use of microcontrollers in different applications, the term “embed-

ded systems” was coined. An embedded system is a special-purpose system in which

the computer is completely encapsulated by the device it controls. Unlike a general-

purpose computer, such as a personal computer, an embedded system performs pre-

defined tasks, usually with very specific requirements. Since the system is dedicated

to a specific task, design engineers can optimize it, reducing the size and cost of the

product. Embedded systems are often mass-produced, so the cost savings may be

multiplied by millions of items[66]. The software written for embedded systems is of-

ten called firmware, and is stored in flash memory chips rather than a disk drive. This

software often runs with limited hardware resources: small or no keyboard, screen,

and little RAM memory. Embedded systems reside in machines that are expected to

run continuously for years without errors, and in some cases recover by themselves if
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an error occurs. Therefore the software is usually developed and tested more carefully

than that for personal computers, and unreliable mechanical moving parts such as

disk drives, switches or buttons are avoided. Recovery from errors may be achieved

with techniques such as a watchdog timer that resets the computer unless the software

periodically notifies the watchdog.

As the cost of a microcontroller fell below one dollar, it became feasible to replace

expensive analog components such as potentiometers and variable capacitors with

digital electronics controlled by a small microcontroller. By the end of the 80s, em-

bedded systems were the norm rather than the exception for almost all electronic

devices, a trend which has continued since. Since there has been an enormous rise

in processing power and functionality of microcontrollers, it might seem that control

engineers are now able to implement even very complex controllers without taking

care of hardware limitations. But it should be noted that for high volume productions

minimizing cost is usually the primary design consideration. Engineers should typi-

cally select hardware that is just good enough to implement the necessary functions.

The choice of hardware for embedded controllers is mostly related to the required

flash memory, RAM and processing speed for the given task. It is shown through

this chapter how the mentioned parameters are connected to the complexity (order)

of the controller and how controller reduction can help us to make our product cost-

effective. Section 7.2 describes a path from control loops to real-time programs by

introducing a common structure used for implementing real-time controllers. Some

important restrictions on embedded controllers like the limited processing speed and

memory are discussed in section 7.3 and it is shown how controller reduction can help

to deal with these constraints.

7.2 From Control Loops to Real-Time Programs

An analog control system uses analog devices to realize the control task, in contrast,

a microcontroller uses digital electronics hardware as the heart of the controller. Like

analog controllers, microcontrollers normally have analog elements at their periphery
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to interface with the real (analog) plant; thus, it is the internal structure of the

controller that distinguishes digital controllers from analog ones. As a result of using

digital processors, the signals in the microcontroller must be in form of digital signals,

and the control system itself usually is treated mathematically as a discrete-time

system. A block diagram of a digital control system is shown in Fig. 7.1. The

(digital) microcontroller in this system receives the measurement signals in digital

form and performs calculations in order to provide an output in digital form. Thus,

an embedded control system uses digital signals and a (digital) microcontroller to

control a process. The measurement data are converted from analog to digital form

by means of the AD converter (analog-to-digital converter) shown in Fig. 7.1, which

is normally provided inside the microcontroller chip. After processing the inputs, the

digital computer provides an output in digital form. This output is then converted

to analog form by the DA converter (digital-to-analog converter) shown in Fig. 7.1.

Figure 7.1: A block diagram of an embedded control system

Sample-rate selection, finding a discrete-time equivalents of continuous-time systems

and quantization are three major issues in obtaining a real time program (discrete

controller) from a continuous-time controller designed for the plant. In the following

these issues are discussed.
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Sample-rate selection

Sampling is the process of deriving a discrete-time sequence from a continuous-time

function, this exactly what happens in the AD converter. Usually, but not always,

the samples are evenly spaced in time. Reconstruction is the inverse of sampling; it is

the formation of a continuous-time function from a sequence of samples, this exactly

what happens in the DA converter. From Shanon’s theorem it is known that in terms

of sampling period, aliasing will not occur if T < 1
2fB

, where T is the sampling time

and fB is the band-limit frequency[6]. From this theorem it is apparent that the

sampling rate is a critical design parameter in the design of digital control systems.

Usually, as the sampling rate is increased, the performance of a digital control system

improves. However, computer costs also increase because less time is available to

process the controller equations, and thus higher performance computer must be used.

Additionally, for systems with AD converters, higher sample rates require faster AD

conversion speed that may also increase system costs. On the other hand reducing

the sample rate for the sake of reducing cost might degrade system performance or

even cause instability. Aside form cost, the selection of sampling rate depends on

some other factors like smoothness of the time response, effects of disturbances and

sensor noise, parameter variation, and quantization. In general, the best sampling

rate which can be chosen for a digital control system is the slowest rate that meets

all performance requirements[6]. There are some rules of thumb that can help us to

guess the proper sampling time. Usually the first figure of merit that the designer

selects is the closed loop bandwidth, ωBT , of the feedback system. Because ωBT is

related to the speed at which the feedback system can track the command input. As

general rule, the sampling period should be chosen in the range

2π

30
< TωBT <

2π

5

where ωBT is in radians per second. Finding the proper sampling time in this range

needs trial and error by simulation and of course experience could play a significant

role.
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Finding a discrete-time equivalents of continuous-time systems

There are different methods to convert a continuous-time controller designed for the

plant to a discrete-time controller. These methods approximate the integrations of the

continuous-time controller with discrete-time operations or try to match the step (or

other) response samples to samples of the analog controller’s step (or other) response.

Discrete-time equivalents of continuous-time systems are discussed in great detail in

[54]. Some of the well-known approaches are

• Zero-order hold (or nth-order hold)[23]: Each incoming impulse to the zero-

order hold produces a rectangular pulse of duration T (sampling period). In

this method it is assumed that the control inputs are piecewise constant over

the sampling period.

• Bilinear transformation (Tustin): This method is based on bilinear (Tustin)

approximation to the derivative

z = esT ≈ 1 + sT/2

1 − sT/2

s ≈ 2

T

z − 1

z + 1

A variation of this method is Tustin approximation with frequency pre-warping.

This variation ensures the matching of the continuous- and discrete-time fre-

quency responses at any deliberate frequency ω.

• Matched pole-zero: The matched pole-zero method applies only to SISO systems

[36]. The continuous and discretized systems have matching DC gains and their

poles and zeros correspond in the transformation z = esT .

Besides continuous- to discrete-time transformation there are some other points that

must be considered. Fig. 7.2 shows a set of possible hardware and software compo-

nents in form of block digram for water level control in a coupled tank system. In this

figure it is assumed that the level of the water varies between 0 to 20 centimeters and
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Figure 7.2: An example of possible additional gains in an embedded control system

a voltage between 0 to 20 Volts can be applied to the plant. Usually there is a sensor

and an electronic circuit that convert the actual value of the output (in this case

water level) to an electrical signal (in this case a voltage proportional to the level).

Assuming that this block has a very fast dynamic that can be ignored, it is equivalent

to a gain block presented by K1(= 1
4
). Then the output signal can be used as an

input for the AD converter. For instance in this case, if we assume an AD converter

with 10 bits resolution, the values between 0 to 5 Volts are linearly mapped to values

between 0 to 1023 (= 210 − 1). Again ignoring the dynamic (or delay) in AD con-

verter, it is equivalent to a gain block presented by K2(≈ 205). Another point that

should be noted is calculating the error signal by proper scaling of the reference input

(block K1 ∗K2). It should be noted that the reference signal in Fig. 7.2 contains the

nominal value of the output and is not only the deviation reference. Similarly, the

gain blocks K3(≈ 1
205

) and K4(= 4) represent the behavior of DA converter and the

actuator respectively. Often in the design process only the dynamic of the plant is

considered, but for implementation and finding K(z), the additional blocks relating

to interfacing components must be taken into account. For instance for the example

in Fig. 7.2 the following relation has to be satisfied.

K4 ∗ K3 ∗ K(z) ∗ K2 ∗ K1 ≈ K(s) ⇒ K(z) ≈ K3−1 ∗ K4−1 ∗ K(s) ∗ K1−1 ∗ K2−1

In additon Fig. 7.2 shows how and where the nominal value of the input must be

added to the manipulating signal generated by the controller (U0).
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Quantization

Usually, continuous- to discrete-time conversion results in a controller whose coeffi-

cients have infinite precision. However embedded controllers are implemented with

finite word length registers and finite precision arithmetic; therefore their signal and

coefficients can attain only discrete values. For example consider a DC motor as the

plant described by the following transfer function:

G(s) =
1.5

s2 + 4s + 40.02

The details of this model can be found in [42]. A PID controller with an approximate

derivative term performs an acceptable closed loop behavior.

K(s) = 315.125 +
148.245

s
+

2.135s

100s + 1

By selecting T = 0.001 as the sampling rate, an equivalent controller in discrete-time

domain (using zero-order hold method) is obtained as follows:

K(z) =
315.1463z2 − 630.1413z + 314.9950

z2 − 2.0000z + 1.0000

Because the controller is implemented with finite word length registers, each of its

coefficients must be quantized. For instance if the binary forms of the coefficients of

this controller are limited to 9 bits (including sign bit) for the left of the binary point

and three bits to the right of the binary point, then the quantized controller transfer

function becomes

Kq(z) =
255.125z2 − 255.125z + 255.875

z2 − 2.000z + 1.000

It can be shown that the closed loop system with Kq(z) is unstable! A simple solution

to this problem is using the equivalent canonical state space representation of K(z)

as follows:

x(k + 1) =

[
2.000 −1.000

1.000 0.000

]
x(k) +

[
0.500

0.000

]
u(k)

y(k) =
[
0.255 −0.255

]
+ 255.875u(k)
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There are different methods for coefficient sensitivity analysis, for further details see

[53]. This simple example showed that further analysis is needed to determine if the

performance of a resulting digital controller in the presence of signal and coefficient

quantization is acceptable.

Structure of an embedded software

After assigning the sampling rate and obtaining an equivalent discrete-time controller

the embedded software can be programmed. The main program should contain func-

tions to perform initialization, facilitate data access, and complete tasks before pro-

gram termination. A sample initializing subroutine for ATMEL’s ATmegaX micro-

controller is as follows[24]:

void

ioinit (void)

{

/* Prescaler set to clk/8 in Timer 0 */

TCCR0 = (1<<CS01);

/* Enable timer 0 overflow interrupt. */

TIMSK = (1<<TOIE0);

sei ();

/* Timer 1 is 10-bit PWM, phase correct*/

//clear OCR1A on compare match

TCCR1A = (1<<COM1B1) | (1<<COM1A1) | (1<<WGM10) | (1<<WGM11);

/* Prescaler set to clk/8 in Timer 1 */

TCCR1B = (1<<CS10);//| (1<<WGM13);

OCR1A = 0x0200;

/* Enable PB1, PB2 as output. */

DDRB = (1<<DDB1)|(1<<DDB2);

/* Test Conversion */

/* ADC enable + Set prescaler to 8 */
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ADMUX |= (1<<REFS1) | (1<<REFS0);

ADCSRA = (1<<ADSC) | (1<<ADEN) | (1<<ADPS1) | (1<<ADPS0);

// check if the conversion is completed

while ( ADCSRA & (1<<ADSC) );

}

In Fig. 7.3 an embedded software architectures for a simple control loop is presented.

In this design, the software simply has a loop which calls subroutines to manage a

part of the hardware or software[17, 18]. The subroutines then write their calculated

data to the real-time model. This control loop routine reads inputs from the external

hardware, calculates the model outputs, writes outputs to external hardware, with

the sequence shown in Fig. 7.3.

Control loop 

Read system input 
from A/D (or encoder) 

Calculate system output 

Increment time 

Write system output to 
D/A (or PWM signal) 

Calculate and update 
discrete states 

Figure 7.3: An embedded software architectures for a simple control loop

In order to decrease the computation costs, it is more appropriate to implement a

controller with its state space representation in canonical form. A sample control
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subroutine for ATMEL’s ATmegaX microcontroller is shown below.

#include "fixedpt.h" // fixed-point math support

/* Initial conditions*/

extern s32 x[n]={10.25,15.21};

/* Controller parameters */

#define n 2

#define U0 0x0F // operating point

extern s32 A[n]={-1.8,-0.15};

extern s32 B =1;

extern s32 C[n]={1.24,2.41};

extern int32_t Reference_input =8;

/* Timer0 overfolw interrupt (control loop)*/

ISR (TIMER0_OVF_vect)

{

/* Initializing the variables*/

uint8_t i=0; // counter

s32 x1temp =0; // buffer

s32 output =0;

s32 er_signal =0;

/* Calculate system output*/

for(i=0;i<n;++i)

output += C[i]*x[i];

/* Write output (PWM)*/

OCR1A = U0 + output; /* Compare register */

/* Read system input */

input = ReadChannel(0);

er_signal=Reference_input-input;

/*Calculate and update states*/

for (i=0;i<n;++i)

x1temp +=A[i]*x[i];

for (i=1;i<n;++i)



Chapter 7: Effect of Controller Reduction on Embedded Controllers 102

x[i]=x[i-1];

x[0]=x1temp+B*er_signal;

}

Reading the measured variable is done be activating the AD converter. The following

subroutine shows how this task can be carried out.

uint16_t ReadChannel(uint8_t chan)

{

uint16_t result = 0;

ADMUX |= (1<<chan); // Choose the input channel

/* AD Converter */

ADCSRA |= (1<<ADSC); // Start Conversion

/* check if the conversion is completed */

while ( ADCSRA & (1<<ADSC) );

result=ADC;

return result;

}

Note that this scheme writes the system outputs to the hardware before the states

are updated. Separating the state update from the output calculation minimizes the

time between the input and output operations. If these computations require the

plant output of the previous sample time, they must be performed in one sample

interval. This implies synchronization between the execution of the logical program

by the controller and the dynamic behavior of the plant in real time.
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7.3 Restrictions on Embedded Systems and Controller Reduction

Flash Memory

The primary restriction on embedded systems is the size of memory allocated to the

program (firmware). This memory is basically a non-volatile flash memory, which

means that it does not need power to maintain the information stored in the chip and

therefore is used to store the program that must be run on the microcontroller. A list

of available flash memories for different ATmegaX series microcontrollers are given in

Table 7.1. As it can be seen from Table 7.1, normally the other specifications of a

microcontroller is proportional to the available flash memory1.

Table 7.1: Atmel’s microcontrollers: ATmegax series [1]

Microcontroller flash (Byte) RAM (Byte) EEPROM (Byte) price ($)

ATmega8 8K 512 256 2.98

ATmega16 16K 1K 512 6.05

ATmega32 32K 2K 1K 7.82

ATmega64 64K 4K 2K 11.33

ATmega128 128K 4K 4K 13.12

ATmega256 256K 8K 4K 16.24

As it was mentioned in the previous sections the main program (for control purposes)

usually contains at least four major tasks as shown in Table 7.2. The number of

instructions required to implement each task varies corresponding to the the applica-

tion at hand. To have an idea about the range of flash memory needed for each task,

some typical values are shown in Table 7.2. Assuming float variables for the controller

parameters, the size of the corresponding memory depends linearly on the order of

the controller. Our experiments on ATmegaX show the following relationship, that

1The prices are based on the information on the website of Arrow Electronics Inc. (Aug. 2006).
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Table 7.2: ATmegax series

Tasks flash (Byte)

Initialization 500-1500

Reading input 300-1000

controller 900-?

safety check 500-2000

is also shown graphically in Fig. 7.4.

flash memory (KByte) = 672︸︷︷︸
initialization

+ 323︸︷︷︸
reading input

+ 7957︸︷︷︸
controller init.

+ n︸︷︷︸
order

∗37

It is worth to mention that there are different data types available with different

sizes to assign to controller parameters. For instance in our case: char is 8 bits,

int is 16 bits, long is 32 bits, long long is 64 bits, float and double are 32 bits.

Besides these standard format, in order to compress the program size and decrease

the computation effort, using fixed point integers and fixed point arithmetic toolbox

is an effective approach.

Computation Time (Sampling Rate)

Another restriction on embedded systems is an upper bound on the computation

time, which guarantees a given sampling rate. In other words, it is required to have

plant input computed at a given input in time. As a result, the controller cannot rely

on iterative computational schemes unless the upper bound of the iterations is fixed.

Based on Fig. 7.3, the first part of the control loop program is reading the system

input. Normally it is necessary to read the input from an AD converter. In ATmegaX

microcontrollers this task takes around 13 clock cycles. After reading the input, the

next step is calculating the system output and updating the output signal2. For a

2For instance if the output is a PWM signal it takes 2 clock cycles to update the corresponding
counter/Timer.
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Figure 7.4: Required flash memory space vs. controller order

SISO controller based on our experiments the following relationship holds between

the number of cycles to calculate the output variable and the order of the controller.

cycles ≤ 1216 + n︸︷︷︸
order

∗520

After updating the controller output-variable, the next step is updating the state

variables. For a SISO controller based on our experiments, an upper bound on the

number of cycles to calculate the new state variables follows the following inequality

cycles ≤ 1224 + n︸︷︷︸
order

∗568

where n is the order of the controller. As a summary the entire control loop calcu-

lations (Fig. 7.3), evaluated based on the number of clock cycles, nearly obey the

following inequality.

cycles ≤ 2560︸︷︷︸
initialization

+ n︸︷︷︸
order

∗1088

Given the order of controller this inequality implies a fixed upper bound for the

controller response time. Fig. 7.5 graphically represents the effect of controller order
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Figure 7.5: Clock cycles vs. controller order

on the clock cycles required to accomplish the whole calculations of the control loop.

As it was discussed in the previous sections the sample rate is determined by control

law analysis and depends on the time constants of the plant: the faster the plant, the

higher the required sampling rate. To have a feeling about the effect of order on the

controller response time, assume a 4MHz clock source, which means that every cycle

takes 0.25μs. Fig. 7.6 shows the computation time for different controller orders. For

instance if the controller is of order 40, the microprocessor requires around 0.01s to

calculate the entire control loop. Thus, a closed loop system with a bandwidth less

than 4Hz can be realized, while in practice the required bandwidth usually is more

than 4Hz.

RAM Memory

Another restriction on embedded systems is the limited size of the RAM memory.

It means that the number of variables and their sizes are restricted to the available

RAM. A SISO controller is defined by its state space representation (canonical form)

needs to save 3n + 6 float number as detailed in Table 7.3. Assuming float variables
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Figure 7.6: Computation time vs. controller order

for the controller parameters, it occupies 12n + 24 Bytes of the RAM. The growth

of the required RAM memory with respect to the controller order is depicted in Fig.

7.7.

Table 7.3: Required RAM memory for a controller of order n

Data A[n] B C[n] D x[n] y input error

size n 1 n 1 n + 1 1 1 1

RAM (Bit) n ∗ 32 1 ∗ 32 n ∗ 32 1 ∗ 32 (n + 1) ∗ 32 32 32 32

By reviewing different constraints presented in this chapter, it seems the high com-

putation time that implies low sample rate is the main problem in implementing high

order controllers. There are two ways to overcome this problem, “controller reduc-

tion” and “fixed point arithmetic”. Due to the nature of fixed point arithmetic it is

often necessary to check and estimate the range of each number appears in the pro-

gram and the result of each operation separately. Consequently, it is more convenient
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to apply fixed arithmetic to low order controllers rather than high orders. Therefore

it is common to use the both approach to find an optimize code that accomplish its

task in a given period of time and uses the minimum number of resources.
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Figure 7.7: Required RAM memory vs. controller order
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Chapter 8

ILLUSTRATIVE EXAMPLES

8.1 Example 1

Butterworth Filter (Output Krylov)

To illustrate the efficiency of the stabilizing method presented in details in chapter

5, a low-pass Butterworth filter of order 100 with cut-off frequency of 1 rad/sec and

gain 1 in the passband is chosen. Model reduction of this plant by means of Krylov

subspaces has been also studied in [5]. We approximate the system with models of

order 30 to 39 using output Krylov subspace and we choose R = LT . It should be

noticed that the filter is not passive, therefore choosing R = LT does not guarantee

the stability of the reduced models. The numerical results show that all reduced

models are unstable, but by exploiting the modification algorithm in subsection 5.6.1

all reduced models are stabilized. Table 8.1 lists the reduction errors in terms of H2

norm. The following abbreviations are used.

k The order of the reduced model

U The reduced model is unstable

KSo Output Krylov subspace method with R = LT

KS+
o Modified Krylov subspace method as in Corollary 5.4

Fig. 8.1 shows the bode plot of the original and the reduced systems. Normally the

quality of approximation reduces by decreasing the order of the reduced model. In this

case our analysis shows that for orders between 19 and 39 the reduced models obtained
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by output Krylov subspaces are all unstable. But with the stabilizing algorithm

in Corollary 5.4 we can modify the reduction procedure to obtain stable reduced

models. In general, the assessment of error introduced by the stabilization algorithm

Table 8.1: The stability and the H2 norm of error

k 39 38 37 36 35 34 33 32 31 30

KSo U U U U U U U U U U

KS+
o 1.65 1.69 1.73 1.76 1.86 1.93 2.07 2.22 2.53 2.95

in Corollary 5.4 is not straight forward. Because, first there are some free parameters

in the algorithm that has not been specified. Second distinct reduction methods serve

different objectives that the error must be estimated according to that objectives. For

instance in Krylov model reduction method the goal is matching k number of moments

and it can be shown that the algorithm in subsection 5.6.1 maintains this property

completely by leaving L unchanged. Therefore assigning proper values to the free

parameters in the proposed algorithms and assessing their impact on the quality of

reduction are matters that must be examined specifically for distinguish cases.

8.2 Example 2

Four Disk System (Enns’ Method)

In order to show the efficiency of the algorithm in subsection 5.6.2, Enns’ method

was applied to the example studied by [21, 75] and [50]. The basic plant is a four

disk system, which is embedded in a generalized plant. The physical plant comprises

four spinning disks, connected by a flexible rod, with torque applied to the third disk.

Angular displacement of the first disk is of interest. The plant is modeled by an eighth

order system which has a double integrator and three vibration modes. A minimal
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Figure 8.1: Bode plot of original and reduced systems for Butterworth filter

realization of the plant in modal coordinates is given by

Ag = diag

([
0 1

0 0

]
,

[
−0.015 0.765

−0.765 −0.015

]
,

[
−0.028 1.410

−1.410 −0.028

]
,

[
−0.04 1.85

−1.85 −0.04

])
,

Bg =
[
0.026 −0.251 0.033 −0.886 −4.017 × 2 0.145 × 2 3.604 0.280

]
,

Cg =
[
−0.996 × 3 −0.105 × 3 0.261 0.009 −0.001 −0.043 0.002 −0.026

]
,

Dg = 0.

The basic plant is the four disk system, but this must be embedded in a general-

ized plant for controller design. The setup for the generalized plant and the system



Chapter 8: Illustrative Examples 113

matrices are given in [75] and are as follows:

ẋ =

⎡
⎣ A1[

I7 07×1

]
⎤
⎦x + B1w + B2u,

z =

[√
q1H

0

]
x +

[
0 1

]T

u,

y = C2x +
[
0 1

]
ω,

A1 =
[
−0.161 −6.004 −0.582 −9.983 −0.407 −3.982 0 0

]
,

BT
2 =

[
1 0 0 0 0 0 0 0

]
,

B1 =
[√

q2B2 0
]
,

H =
[
0 0 0 0 0.55 11 1.32 18

]
,

C2 =
[
0 0 6.4432 × 10−3 2.31 × 10−3 7.12 × 10−2 1 0.10 55 0.99

]
.

where q1 = 1 × 10−6, q2 = 1, and ω is the disturbance, z is the controlled variable.

The controller K(s) feeds back y to u. The transfer function from ω to z is denoted

by Tzω(s). The optimal H∞ norm for the closed loop system is γopt = 1.12. We choose

γ = 1.14 to compute an 8th order suboptimal controller K. The weighting transfer

matrices are chosen as follows:

W1(s) = (I + G(s)K(s))−1G(s), W2(s) = (I + G(s)K(s))−1 (8.1)

where G(s) is the four disk plant and K(s) is the suboptimal 8th order controller. Fig.

8.2 shows the Bode diagram of W1(s) and W2(s) for the given plant and the controller.

These choices of weighting matrices are very common in controller reduction, for more

details see [50]. The controller is reduced using Enns’ method and its three modifica-

tions presented in subsection 5.6.2. Table 8.2 shows the stability and the quality of

reduction in the sense of H∞ norm of weighted error (‖W1(s)(K(s)−Kr(s))W2(s)‖∞)

and the following abbreviations are used:
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k The order of the reduced controller Kr(s)

U The reduced controller is unstable

Enns Enns’ method, two sided frequency weighting [21]

LinChiu Modified Enns by the algorithm presented in [38]

Wang Modified Enns by the algorithm presented in [65]

Enns+ Modified Enns’ method by the transformation presented in (5.14)

As it is shown in Table 8.2, Enns’ method fails to maintain the stability of the reduced

controller for all orders less than 6. In Lin and Chiu modification it is required that

no pole-zero cancellations occur when forming G(s)W2(s) or W1(s)G(s). This restric-

tion prevents the applicability of this method to solve controller reduction problems

involving weights as in (8.1), where pole-zero cancellation takes always place. In order

to apply this method W1(s) and W2(s) are approximated with two weights of order 8.

The results show that the quality of reduction is not acceptable although the stability
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Figure 8.2: Bode diagram of input and output weights

of the reduced controller is guaranteed. Wang’s method results in an high weighted

error in comparison to Enns’ approach. Using the results of Proposition 5.1 and the

algorithm in subsection 5.6.2 the Enns’ transformation matrices are replaced with the
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one in (5.14). For calculating the modified transformation matrix (5.14), a solution of

AP +PAT < 0 must be evaluated. In this example we used Matlab LMI toolbox [43]

and the first feasible solution that only required 9 iterations was taken into account.

Table 8.2 shows that the quality of reduced controllers by our new modification are

in acceptable range and all reduced controllers are stable. Based on the error norms

better results in comparison to other existing modification approaches are obtained.

As it is mentioned by specified choices of the free parameters of the third alternative,

it converges to Wang et al. approach or similarly to Lin and Chiu’s approach. There-

fore it seems possible to get even better results by finding an automatic procedure to

assign proper values to the free parameters in our new method.
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Figure 8.3: Bode diagram of reduced controllers of order 4

Fig. 8.3 compares the frequency response of the reduced 4th order controllers derived

by different approaches. The bode magnitude plots imply that each of the modifica-

tion approaches has its own advantages. In this example Lin and Chiu’s approach

gives a better approximation for high frequencies, Wang et al.’s approach is more

accurate in middle range frequencies and our new modification is more precise in

low frequency range. Therefore it can be concluded that the free parameters in our
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approach can change the frequency range of interest in the reduction procedure.

Table 8.2: The stability and H∞ norm of weighted error (W1(K − Kr)W2)

k 7 6 5 4 3 2

Enns 2.3471 2.3089 U U U U

LinChiu 12.3092 6.1499 152.1967 43.2345 189.6318 65.1409

Wang 10.0073 7.4632 9.9924 12.9023 9.8409 12.1775

Enns+ 2.3471 2.3089 2.5717 2.4843 2.5526 2.2459

8.3 Example 3

Closed Loop Stability

In order to show the efficiency of the algorithm in section 5.6, consider the closed loop

system with the block diagram depicted in Fig. 8.4, where

G(s) = 0.014
(s + 14.82)(s + 70.36)(s + 105.4)(s + 119.6)

(s + 120.2)(s + 116.8)(s + 74.68)(s + 21.6)(s + 1.178)

is the plant and

K(s) = 0.505
(s + 8.56)(s + 70.02)(s2 + 235.6s + 1.39e4)

(s + 75.09)(s + 21.8)(s + 1.23)(s2 + 226.6s + 1.29e4)

is a 5th order controller. Since our discussion is based on the general configuration

depicted in Fig. 6.1, we converted the classic negative feedback in Fig. 8.4 to the

general feedback structure depicted in Fig. 8.5. Starting from the general closed loop

system in Fig. 8.5, the poles of the closed loop transfer function (Tzω(s)) are placed

as follows:

p1 = −120.16, p2 = −116.78, p3,4 = −113.29 ± 9.19i, p5 = −75.09,

p6 = −74.68, p7 = −21.79, p8 = −21.61, p9,10 = −1.20 ± 0.02i
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Figure 8.4: Negative feedback system Figure 8.5: General feedback configura-
tion

The closed loop performance and robustness against uncertainty is given by the

constraints on the loop gain. To approximate K(s) around 10rad/s, two first order

weighting functions W1(s) and W2(s) were selected as shown in Fig. 8.6. To find a

reduced controller Enns’ method was applied. Table 8.3 shows the poles and conse-

quently the stability of the reduced closed loop systems. Note that the first row in

Table 8.3 (k) indicates the order of reduced controller Kr(s). In this example Enns’s

approach failed to maintain the stability of the closed loop system for order 8 and

resulted in the following third order controller

Kr(s) = 0.513
(s + 8.59)(s − 0.0061)

(s + 22.05)(s + 1.23)(s − 0.0052)

that has an unstable pole in the right half plane. In order to guarantee the stability

of the closed loop system, the algorithm in section 5.6 was used. The block diagonal

matrix P required in step one was calculated by finding a solution to AtP +PAT
t < 0,
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which resulted in⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.95 1.12 1.02 0.93 0.98 0 0 0 0 0

1.10 1.96 2.98 4.02 4.95 0 0 0 0 0

0.98 3.09 5.96 9.89 14.89 0 0 0 0 0

1.12 4.01 10.12 19.89 35.2 0 0 0 0 0

0.99 5.14 14.86 35.01 69.14 0 0 0 0 0

0 0 0 0 0 0.82 0.98 1.21 0.84 0.89

0 0 0 0 0 0.97 2.01 2.83 3.94 5.08

0 0 0 0 0 1.16 3.05 5.92 10.15 14.83

0 0 0 0 0 0.89 4.18 10.21 19.54 34.35

0 0 0 0 0 1.23 4.85 14.85 35.12 69.86

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By modifying the transformation matrix the following third order controller was ob-

tained.

K+
r (s) = 0.516

(s + 8.55)(s + 76.53)

(s + 1.23)(s + 21.8)(s + 77.45)
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Table 8.3: The poles of Tr(s)

k 4 3 2 1

p1 -120.16 -120.16 -120.16 -120.16

p2 -116.78 -116.78 -116.78 -116.78

p3 -109.12 -74.68 -74.68 -74.68

p4 -76.48 -22.05 -22.05 -21.60

p5 -74.68 -21.60 -21.60 -2.45

p6 -21.80 -1.25 -1.25 -1.17

p7 -21.59 -1.15 -1.15 -

p8 -1.25 +0.007 - -

p9 -1.15 - - -

The relative error of the modified controller is

‖Kr(s) − K+
r (s)‖∞

‖Kr(s)‖∞ = 1.63e−4

which indicates that K+
r (s) is a good approximation of Kr(s) in the space of stable

third order LTI controllers. The closed loop system as expected is stable and its poles

are located as follows:

p1 = −120.16, p2 = −116.78, p3 = −74.68, p4 = −77.45,

p5 = −21.79, p6 = −21.61, p7,8 = −0.12 ± 0.0002i

In general, the assessment of error introduced by the stabilization algorithm in section

6.5 is not straight forward. Because, first there are some free parameters in the

algorithm that has not been specified. Therefore assigning proper values to the free

parameters in the proposed algorithms and assessing their impact on the quality of

reduction are matters that must be examined specifically for distinguish cases.
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Chapter 9

CONCLUSIONS AND DISCUSSIONS

In this dissertation a general framework was proposed which guarantees the stability

of reduced models in case of model reduction and the stability of closed loop system in

case of controller reduction, which substantially enlarges the applicability of similarity

transformation based approaches. The first contribution which concerns stability in

model reduction methods based on similarity transformations was summarized in

Proposition 5.1. This proposition parameterizes a large set of reduced models that

preserve the stability of the original model. As an application of this result, it was

shown how different model reduction methods can be modified, if they fail to maintain

stability. These results provide also a complementary result to those of [25, 38, 60, 65]

and [73]. The second contribution which isolates the problem of guaranteeing the

internal stability of the reduced closed loop system from the problem of transfer matrix

matching was summarized in Proposition 6.1. This proposition parameterizes a set of

reduced controllers that preserve the stability of the closed loop system. The condition

for existence of a solution and related numerical algorithm have been developed and

studied. As an application of this result an algorithm was presented that helps to

preserve stability in currently available reduction approaches that suffer from the lack

of stability, by slightly modifying the corresponding similarity transformations. Using

the Corollary 5.3 all results can be extended to reduced systems derived by singular

perturbation approximation (instead of truncation) as well.

The framework presented in this dissertation only serves the stability in reduction

methods. But there are some free parameters in this framework that were chosen

arbitrary. To satisfy other objectives of reduction, these free parameters could be
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assigned with more caution. An approach to assign these free parameters could be

an interesting topic for future works. If such an approach is developed, it will be

a rival to the existing reduction methods. These free parameter even can be used

for the assessment of error introduced by the stabilization algorithms in section 5.6

and section 6.5. By assigning proper values to these free parameters in the proposed

algorithms, their impact on the quality of reduction can be assessed more precisely.

Based on these studies, some questions have been arisen that can be the topic of future

works in the field of model and controller reduction. Among different approaches in

this field the reduction methods based on the balancing and truncation method (B&T)

are really interesting. But there are still some issues and ideas related to B&T which

has not been fully investigated. The following shows some of these issues:

• When B&T fails?

By approximating a matrix with a lower rank one, there is a direction that we

lose accuracy! Because B&T based on a similar approach (svd based), there

must be a set of inputs, which the reduced order system reacts completely

different from the original one, although the omitted Hankel singular values are

small. “How this set can be found?”

application: In some applications it is better “to tune” the model reduction

tools to certain classes of inputs. Therefore, it might be possible to tune B&T

to a specified class of inputs!

• Structured balancing!

The transformation for balancing (xb = Tx)1 can be found by :

min
T

trace[TPT T + T−T QT−1]

and the minimum is equal to 2
∑

i σi.

idea: A structured T that minimizes the above cost, could be useful for con-

troller reduction and structured balancing. As an example for a third order

system, suppose we want the third state in the process of balancing (finding

1xb is the new (balanced) state vector and x is the original state vector.
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the (non)dominant states) be independent of x1. This requirement impose the

following structure on T :

xb = Tx, T =

⎡
⎢⎢⎣

T11 T12 T13

T21 T22 T23

0 T32 T33

⎤
⎥⎥⎦

Thus, instead of minimizing the above cost we can minimize the interaction of

x3 with the other states, input and output considering the given structure on T .

In fact we are only looking for T32 and T33 and (assuming T to be full rank) the

other elements are free! This idea can be exploited for iterative balancing and

controller reduction. The question should be answered is: “How to represent

controllability, observability, interaction and cost function such that the resulted

optimization problem be tractable?”

• Iterative Balancing!

Roughly speaking, the idea behind B&T is constructing a new state (nondom-

inant state) which is a linear combination of the system’s states and has low

observability, controllability and consequently low interaction with other states.

If we represent these specification properly, it might be possible to construct

the most nondominant state which is boycotted by other states. In this way

we’re not supposed to apply a similarity transformation to the whole system

and B&T can be carried out iteratively.

Low order controller design should find the minimum order controller that guarantees

stability and performance. As discussed in section 4.3, the order of the minimal

stabilizer can be searched using the following matrix inequalities:

If k ≥ kmin, there are symmetric matrices R, S and a scalar γ > 0 such that

1) AR + RAT < BBT ,

2) AT S + SA < CT C,

3)

[
γR I

I γS

]
≥ 0

4) Rank

[
γR I

I γS

]
≤ n + k
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Finding kmin is a nonconvex optimization problem and solving the above LMIs with

rank constraint is not straight. Even if we suppose that the minimal order is found,

an algorithm to construct the minimal controller is still missed. Therefore the fol-

lowing question has not been completely answered “How to design a minimal order

stabilizer?”.

In the same field there are several methods of constructing strongly stabilizable con-

trollers. Most of these methods involve constructing a stable transfer matrix, satis-

fying certain interpolation conditions, that usually results in large order controllers.

Thus, an algorithm to construct a minimal stabilizable controller sounds challenging.

The question should be answered is “How to design a minimal stabilizer for a plant,

which satisfies the parity interlacing property?”.
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GLOSSARY

Abbrevations

AD converter: analog to digital converter

B&T: balance and truncation

CPU: central processing unit

DA converter: digital to analog converter

I/O: input/output

ISE: integral square error

LTI: linear time invariant

LMI: linear matrix inequality

lcf: left coprime factorization

PID: proportional-integral-derivative controller

PWM: pulse width modulation

MIMO: multiple input multiple output system

RAM: random access memory

rcf: right comprime factorization

124
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SISO: single input single output system

VLSI: very large scale integration

vs.: versus

General symbols

R: set of real numbers.

C: set of complex numbers.

tr(A): trace A.

null(A): null space of A.

λi(A): ith eigenvalue of A.

σ(A): the largest singular value of A.

σ(A): the smallest singular value of A.

σi(A): ith singular value of A.

ρ(A) = maxi |λi(A)|: spectral radius of A.

γ(G) = σ(G)/σ(G): condition number.

Mpω: The maximum peak of T (s) in rad
sec

Mpt: Overshoot of step response

ωB : Bandwidth in terms of S(s) in rad
sec

ωBT : Bandwidth in terms of T (s) in rad
sec



Glossary 126

ωc: Bandwidth in terms of L(s) in rad
sec

μ(M): structured singular value:

μ(M)−1 � min
Δ

{σ(Δ)|det(I − MΔ) = 0 for structured Δ}

which means “Find the smallest structured Δ (measured in terms of σ(Δ))

which makes det(I−MΔ) = 0, then μ(M) = 1
σ(Δ)

”. Clearly, μ(M) depends not

only on M but also on the allowed structure for Δ. This is sometimes shown

explicitly by using the notation μΔ(M).

RH∞: The set of all real rational (prefix R) functions bounded on Re(s) = 0 (includ-

ing at ∞) and analytic in Re(s) > 0.

Some definitions

The whole closed loop, continuous system:

S :

{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
=

[
A B

C D

]
= C(sI − A)−1B + D

where, ui could be any possible input of the system like reference signal r, input

disturbance di, output disturbance do or measurement noise n.

Plant G =

[
Ag Bg

Cg Dg

]

Controller K =

[
Ak Bk

Ck Dk

]

Measurement F =

[
Af Bf

Cf Df

]

The loop transfer function L(s) = F (s)G(s)K(s)

Fl(G,K): lower linear fractional transformation (more details in A.7 [55])
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Vector (Holder) norms:

‖v‖p = (
∑

i

|vi|p)1/p, p ≥ 1

‖v‖2 =

√∑
i

|vi|2

‖v‖∞ = max
i

|ai|

Matrix (induced) norms:

‖A‖p = max
v 	=0

‖Av‖p

‖v‖p

‖A‖1 = max
j

(
∑

i

|aij|) “maximum column sum”

‖A‖2 = σ(A) =
√

ρ(AHA) “singular value or spectral norm”

‖A‖∞ = max
i

(
∑

j

|aij|) “maximum row sum”

Matrix (Schatten) norms:

‖A‖p =

{
(
∑m

i=1 σp
i (A))

1
p , 1 ≤ p < ∞

σ(A), p = ∞
Note that the Schatten infinity norm is equal to induced 2-norm. The Schatten

2-norm is also called Frobenius norm and can be evaluated simpler as follows:

‖A‖F =

√∑
ij

|aij|2 =
√

tr(AHA) “Frobenius or Euclidean norm”

In addition to the four norm properties, matrix norm also satisfies multiplicative

property (‖AB‖ ≤ ‖A‖‖B‖).
Signal Norms:

‖u‖1 =

∫ ∞

−∞

∑
i

|ui(t)|dt

‖u‖2 =

√∫ ∞

−∞

∑
i

|ui(t)|2dt

‖u‖∞ = sup
t

(max
i

|ui(t)|)

‖u‖pow =

√
lim

T→∞
1

2T

∫ T

−T

∑
i

|ui(t)|2dt
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‖ ‖pow is just a semi-norm because it fulfills all properties of a norm except

that some nonzero signals have zero average power.

System Norms:

‖G(s)‖1 =

∫ ∞

−∞
σ(g(t))dt

‖G(s)‖2 =

√
1

2π

∫ ∞

−∞
tr(G(jω)HG(jω))dω =

√√√√∫ ∞

−∞
tr(g(τ)T g(τ))︸ ︷︷ ︸

‖g(τ)‖2
F =
�

ij |gij(τ)|2
dτ

=
√

tr(CPCT ) =
√

tr(BT QB)

‖G(s)‖∞ = max
ω

σ(G(jw))

‖G(s)‖H =
√

ρ(PQ)

where P =
∫∞

0
eAτBBT eATτdτ and Q =

∫∞
0

eATτCT CeAτdτ are the controllabil-

ity and observability Gramians Respectively.
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