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Chapter 1

Introduction

1.1 Problem Description

Filtration is an essential step in many production processes in food and bev-
erage industry, designed to guarantee product safety and product stability.
The history of filtration of beer starts in the middle of the 19th century.
At that time Thausing [110] has a very critical view on this new process
and recommends it solely for correction of exceptions and microbiological
infections. In his opinion only incompetent brewers have to improve the nat-
ural clarification of beer in this way. Advantages of this technology, like a
shorter time of production and a better clarification of the beer, were ob-
vious. Today consumers expect a product which is free from haze and will
not loose this attribute during a longer storage. There are other reasons
emphasising the importance of this process like extended distribution chan-
nels, elongated shelf life and the stringent specifications on microbiological,
sensory and chemical-physical stability [75]. For those reasons the process
”filtration” has become more and more important.

The technology of filtration has developed from mass-filter to precoat filter.
Today the use of candle filter or horizontal leaf filter is state of the art.
Diatomite, the mineral deposit of the eucaryotic earth [102], also known as
kieselguhr, is used as filtration aid.

Filterability of beer is an important problem in the brewing process which
may fluctuate between or even within batches. An insufficient filterability
causes major problems, for example an increasing assignment of personnel
and filter-aids. This effects the costs of filtration and, in extreme situations,
the breweries ability to supply.
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2 CHAPTER 1. INTRODUCTION

This is also the reason why filtration has become subject of research ap-
proaches, but still the precise influence of individual ingredients or of the
brewing process technology on filterability is not sufficiently analysed.

1.2 Motivation

Because of the importance of filtration, prediction of filterability was focused
by several works [33, 95]. Forecasting was mainly based on malt or unfiltered
beer. The problem of predicting filterability according to malt attributes is,
that these methods do not consider the technology of brewery. All forecasting
systems are based upon laboratory scale experiments. Generally speaking the
significance of the described systems is impaired due to a difficult scale-up
to production.

Most of the research is concerned with only one particular parameter at a
time, focusing on high molecular substances like polysaccharides or proteins,
the technology, like the trituration of malt [34], or the geometry of the stor-
age vessels. Mostly single, as independent considered parameters have been
targets of the research (SISO: single in, single out).

Recapitulating those investigations, two statements can be made: at first, it
is very difficult to study the influence of the technology and the equipments
of a brewery, and as a second point, there must be further influences which
were not yet determined.

Many breweries use systems for computer-aided production data acquisition
(PDA). These systems store a large amount of process data, including knowl-
edge about the process, which is not evaluated so far. Knowledge Discovery
in Databases (KDD), also known as Data Mining (DM), includes methods
to reveal patterns and coherence in large databases [43]. Analysis and gen-
eration of models from data belongs to the domain of classical statistics, but
during the last decades Data Mining methods have expanded their areas of
application.

These Data Mining methods are successfully implemented in economy, like
finance, marketing and telecommunication, and are increasingly used in pro-
cess technology. The main area of application in technology is sourcing of
process problems, modelling and simulation of processes. So far only few
efforts have been performed in order to apply Data Mining to processes in
breweries yet.
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1.3 Target

The KDD process and Data Mining tools provide the opportunity to use the
process data, reveal covered information within the data and generate knowl-
edge of the process. Modelling a target attribute by other attributes in the
data is perhaps the most traditional Data Mining task [64]. Therefore, the
main objective of this thesis is to develop a model for prediction of beer filter-
ability. Fundament for this purpose is formed by the routinely acquired data
of the brewing process. Furthermore, this model and the revealed knowledge
shall be used to identify factors, which influence the filtration process, and
interactions between these factors.

Thus, the model will be a perfect tool for the brewery technician in charge
of filtration. As a ”virtual filtration assistant” it shall help the technician
to control and regulate the filtration by means of kieselguhr dosage and the
filtration schedulecan even be adjusted based on the specific needs.

A constraint for implementation is given by the information content available
from the used data. As it is one aspect of this thesis to consider only the
routinely measured laboratory data, the respective content of information
allocate by those data has to be considered.

Finally, the presented work will show the aptitude of the applied Data Mining
approach and the used methods for the prediction task. So far a prediction
of filtration of about 80% has been accomplished. In addition, this thesis
reveals a lack of information of the used data.
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Chapter 2

State of the Art

In this work different subjects are addressed. Although no completeness is
aimed to, the following description deals with the most important subjects.
At first an overview about filtration, particularly the principles of filtration,
some aspects of beer filtration and filterability is given, followed by an intro-
duction of Data Mining.

2.1 Filtration

2.1.1 Principles of Filtration

The principle task of filtration is to separate a suspension in its solid and
fluid components. Although several principles can be applied for filtration
(see for example [86]) the databases available for DM have been collected for
a kieselguhr filtration. Thus, in this context, filtration can be considered as
a mechanical process which is used for the separation of suspensions with a
wide distribution of particle sizes. Compared to other separation processes,
filtration stands out with good separation characteristics and low energy
demand at the same time [47].

The filter is permeable to the fluid but due to its pore structure the solid
phase is not able to pass. The particulate material, depending on its inter-
actions, deposits on the filter and forms a growing porous layer, which takes
over the function of the filteraid (cake filtration), or attaches within the pores
(deep bed / precoat filtration). Deep bed filtration is applied for the clar-
ification of fluids with a marginal amount of solid particles [65]. Recently,
cross flow filtration were at first implemented in brewery industries. Figure

5



6 CHAPTER 2. STATE OF THE ART

2.1 describes those methods.

Figure 2.1: Scheme of cake, precoat and cross flow filtration

Filtration systems are subdivided by several criteria. One of these is the size
of retained particles. Thereby, four main groups are defined:

• filtration with pore diameter up to 10µm,

• micro filtration with pore diameter up to 1µm,

• ultra filtration with pore diameter up to 10−3µm,

• reverse osmosis.

Table 2.1: Filteraids: fields of application

application clarification of filteraid

food industry beer, wine, juice, edible
oil, treacle, starch hy-
drolysate

kieselguhr,
perlite, silicic
acid, wood
flour

petroleum
industry

petroleum, organic liquids kieselguhr

metallurgy,
mechanical
engineering

rolling oil, pickling bath,
hardening bath, galvanic
bath

kieselguhr

Because of the deposit on or in the filter layer the efficiency of the process
fades, either with a loss of pressure difference or, in case of a constant pressure
filtration, with a reducing volumetric flow. As the maximum pressure is
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limited, a regeneration phase is required when reaching the limit. The use
of filteraids provides a longer runtime of the filter. Common filteraids are
diatomite, silicic acid and perlite. Their fields of application are described in
table 2.1.

At the precoat filtration two layers are established up on the filter with
the help of filteraids . The first one, having a coarser structure, forms a
supporting layer which is called filter cake. The second layer is applied
continously by dosaging kieselguhr to the suspension and therefore growing
steadily. Thereby, the available filtration surface is assured, because the
continuing addition of kieselguhr inhibits a blocking of surface.

Table 2.2: Diameter of particles in beer

Particle Diameter [µm]

Yeast 5 – 10
Bacteria 0,2 – 2
Tanning protein 0,2 – 1,5
Polyphenol – 3
β-glucans 10−3 – 10−2

Consumer can evaluate the haze of beer, so all particles, which are visible for
the human eye, have to be removed. Due to this, the scope of beer filtration
is clarification of the product and providing a bright beer during its shelf life.
The haze is mainly formed by micro organisms, like yeast cells or bacteria,
and high molecular ingredients, like proteins or polysaccharides. Table 2.2
shows some of the relevant substances and their diameters. To assure the
brightness of beer until end of shelf life, not only these particles have to be
removed, but also those substances which can agglomerate within the time
period in question.

To monitor the clarification during filtration, the product is analysed after
passing the filter with optical methods. The larger particles, like yeast cells
and other micro organisms, reflect applied light, so the reflection is measured
in an angle of 25◦. The diffusion, caused by smaller particles, like high
molecular substances, is measured in an angle of 90◦ to the light source.
The result of this method is presented in form of haze values (h25, h90) and
denoted in EBC (European Brewery Convention) units, an unit derived from
a formalin haze standard [65]. An overview on this method is given by [54].

With respect to practical relevance, the h90 is the more regarded attribute,



8 CHAPTER 2. STATE OF THE ART

because the consumer realizes a turbid beer, caused by many small pending
particles, more easily [102].

Even though new filtration methods like cross flow filtration have to be con-
sidered, today the common technology to achieve a bright, stable beer is pre-
coat filtration with the filteraid diatomite. Schmidt [102] gives an overview
on kieselguhr, its winning, refinement and disposal as well as on its attributes.

Another aspect is the chemical and physical stability of beer. The recent
research of Papp [90] and Kusche [71] addresses those problems in detail.

The filtration of beer is influenced by various factors. Schur [103] classifies
these influences in four categories:

• filtration plant,

• filteraid,

• mode of operation and

• filterability.

Filtration Plant

Normally, the filtration process is split up into individual steps of defined par-
tial targets. The appropriate adjustment of the subsequent steps is of crucial
importance for the filtration success. These steps are commonly separation,
precoat filtration, stabilisation and finally a particle filter.

Filteraid

The first common filteraids were asbestos and cotton, today these are kiesel-
guhr (diatomite), perlite or cellulose [86]. Diatomite is purified, dried and
grinned skeleton of silicic algae. Diatomite is classified by its permeability
and particle size distribution (fine, medium, coarse). The precise combination
and amount of these fractions of kieselguhr influences the formation of the
filtration cake and the characteristics of filtration. A finer kieselguhr causes
a better clarification but effects the permeability of the cake. So the choice
and combination of kieselguhr types are a compromise between clarification
and pressure increase [65].
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Mode of Operation

The level of automation and the control strategies of the plant influence the
filtration. Sudden yeast surges, pressure differences or batches with different
filterability change the conditions during filtration. Also the demands on
shelf life differ between breweries. Modern plants are equipped with haze
and pressure meters. Thus, volume flow of beer or the filteraid dosage can
be regulated.

Filterability

The filterability has an important influence on filtration. The obtained filtra-
tion target should be reached with costs below 0.5 euro/hl. Only sufficient
knowledge about the process enables the brewer to react in time. As this is
one of the main aspects, filterability is discussed in detail in the following.

2.1.2 Some Aspects of Filterability

After clarification of beer by means of filtration was accepted at the beginning
of the last century, it has been noticed that new problems are linked with
this process. The common problems are on one side runtime of the filter,
because of pressure difference reaching the critical value, and on the other
side haze exceeding limit values. Due to this, there are numerous approaches
to analyse the process [65].

The term ”filterability” has been used in literature many times, but still
there is no commonly accepted definition. It is often linked to pressure
difference and filtration runtime. In rare cases the clarification has been
considered. Kreisz [65] proposes therefore an objective evaluation, which is
based on pressure difference, volumetric flow and clarification. Generally,
these attributes together with kieselguhr and its characteristics are used to
evaluate filtration and its quality.

The basic problem of filterability is to identify the significant upstream in-
fluences on this important process type. In literature several approaches try
to analyse a variety of parameters. Often these parameters are considered
and analysed as independent attributes. On one side influences of ingredi-
ents (polysaccharides, proteins, polyphenols, melanoidines, minerals, yeast
and bacteria) are mentioned and on the other side several brewing processes
from mill to filtration are noted [87, 88, 89]. But not for all of these criteria
scientific evidence is shown. The results can be summarised as follows [65]:
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• Influences by ingredients:

– raw materials

∗ polysaccharides

∗ proteins

∗ polyphenoles

∗ mineral materials

– yeast

∗ cell count

∗ products of autolysis

∗ polysaccharides

– microorganisms

∗ polysaccharides

∗ mucous substances

• Influences by Technology

– malt quality

– milling

– mashing

– wort clarification

– boiling

– whirlpool sedimentation

– fermentation

– storing

Polysaccharides are high molecular carbohydrates. Among these macro molecules,
with a molecular weight in a range of several thousands up to some million
dalton, the beta- and alpha-glucans are outstanding. Concerning filtration,
they are the most discussed beer ingredients. Their appearance in beer de-
pends as well on malt as on technology. Kreisz [65] gives a detailed overview
about polysaccharides and their influences on filtration.
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2.1.3 Approaches to Prediction of Filterability

There are several systems to predict filterability. Some of these are described
in this section. The tests can be divided in two groups: filter tests with
constant pressure and tests with constant volume flow. According to Kreisz
[65] the following list gives an overview of most important tests:

• test with constant pressure

– membrane filter test by Esser [33]

– filtration test by Siebert [105]

– kieselguhr filter test by Raible [94]

– kieselguhr filter test by Raible, Heinrich and Niemsch [93]

– filtration test by Webster and Molzahn [116]

• test with constant volume flow

– Zuercher test

– kieselguhr candle filter by Reed [97]

Esser [34] took notice of correlation of filtration in practice and membrane
filtration of the same solution. He developed a system based on a filtration of
unfiltered beer with a 0,25 µm pores in laboratory scale. The volumes V1 and
V2 , which have passed the filter at the timestamps t1 and t2 are measured
and applied to a V/t, t - diagram. The gradient of the connecting line of
t1, V1 and t2, V2 is used as a description of filterability.

In contrast to this, Raible et al. [95] introduced a filtration layer of steel
canvas with 15 µm pores. Kieselguhr is precoated on this layer. The filtration
time and volume are measured as well as the haze. Based on this volume
and runtime the filtration cake coefficient a can be determined as follows:

a =
t

V 2

[ s

m2

]
(2.1)

This coefficient, Kreisz [43] calls it the filter cake factor, is influenced by
the haze of unfiltered beer and the applied kieselguhr. To guarantee the
reproducibility the same kieselguhr has to be used. With the cake factor the
specific filtration volume can be calculated according to Kreisz [65]:



12 CHAPTER 2. STATE OF THE ART

Fspez =

√
3600

a
· 0, 1 hl

m2h
(2.2)

Another approach, which combines several aspects for a ”filterability and
stability check” is supplied by Annemueller and Schnick[3].

2.2 Data Mining

2.2.1 Principles of Data Mining

”The convergence of computing and communication has produced a society
that feeds on information. Yet most information is in its raw form: data. If
data is characterised as recorded facts, then information is the set of pattern,
or expectations, that underline the data. There is a huge amount of infor-
mation locked up in databases — information that is potentially important
but has not yet been discovered or articulated” [119].

In literature Data Mining (DM) is described as the core of ”Knowledge Dis-
covery in Databases” (KDD), but also both terms are used synonymic. DM
is the process of extracting implicit, previously unknown, and potentially
useful information from data. It is also defined as the automatic or (more
commonly) semi-automatic process of discovering patterns in data. The dis-
covered patterns must be meaningful in that they lead to some advantage,
usually an economical one.

KDD has intersecting aims like statistics, but can be separated from this by
several features. The datasets examined by KDD investigators are commonly
larger than those of statisticians and statistics is mostly concerned with static
data in opposition to the evolving data. But also, DM overlaps in many
cases with statistics. Hand [48] discusses the similarities and differences of
statistics and KDD.

To be used for the non trivial prediction of new data, the patterns must be
expressed. This expression can take place in two different ways, as a black
box model or a transparent box model. The transparent box reveals the
structure of the pattern, whereas the interior of the black box is effectively
incomprehensible. Both modeling techniques yield good prediction, but the
results of the transparent box are represented in terms of a structure that
can be examined, reasoned about, and used to inform future decisions. These
patterns are called structural patterns because they capture the decision
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structure in an explicit way [119]. Thus, with transparent box models not
only good prediction is realisable, but also gaining knowledge of the examined
process.

DM is a multi disciplinary field, that includes database theory, statistics, ar-
tificial intelligence (machine learning, pattern recognition) and visualisation
methods. Nakhaeizadeh et l. [85] describe the target of DM with a set of
sub targets.

Segmentation. Divisioning of data in small, homogeneous, interesting and
reasonable subsets or classes. This step is used for preparation of raw data,
to create subsets which can be analysed easier.

Classification. Finding common attributes of database objects is the target of
classification. These attributes are assigned to defined classes of a classifica-
tion model. The class names can be predefined or result from segmentation.

Concept description. A concept includes all basic characteristics of a class.

Prognosis. Scope of prognosis is to supplement missing, numeric attributes
to objects. In contrast to classification the target variable is a numeric value.

Data description and aggregation. Data description and aggregation help the
user to understand data. They allow a description of the basic characteristics
of data in compact form. The data aggregation provides a clear structure
and helps the user to get an exact image of the targets and data structure.

Anomaly detection. If an object differs from an expected value or norm, then
it is an anomaly. This behaviour is significant for a problem which has to be
solved; an anomaly can also refer to a yet unknown problem which has to be
examined.

Interconnection analysis. The Interconnection analysis searches for models,
that describe a correlation between attributes of an object. These intercon-
nections are used to describe the probability, for the appearance of an value
with given attributes.

Fayyad et al. [36] also separate the DM-process in sub processes, given by
figure 2.2. Chapter three will discuss these processes in detail.

Several methods and algorithms are included under the generic term ”Data
Mining” [55]. Some of these are Fuzzy Logic [14], Genetic Algorithms [40]
or Artificial Neural Networks [77]. Chapter 3 gives an deeper discussion on
Data Mining methods in general and the applied ones in detail.
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Figure 2.2: Overview of the steps comprising the KDD process

2.2.2 Application of Data Mining Methods

This section gives an overview on fielded applications of Data Mining, ac-
cording to the papers of Provost et al. [72] and Langley et al. [91] and
recapitulating textbooks [62, 122].

Image recognition. Burl et al. [23] and Kubat et al. [68] present applications
to image classification, for cataloguing volcanoes on the planet Venus and
for detecting oil spills at sea. Fayyad et al. [44] used also a Decision Tree at
the Second Palomar Observatory Sky Survey for classifying sky objects like
stars or galaxies.

Medicine. Lee et al. [73] and Finn et al. [39] used these techniques in
scientific analysis and discovery, for predicting chemical carcinogenicity and
for pharmacological discovery.

Chemical process control. Leech [129] predicts the quality of uranium dioxide
powder pellets, which are used in nuclear plants, with the help of a Decision
Tree method.

Credit decision. Loan companies regularly use questionnaires to collect infor-
mation about people applying for a credit. Based on 1,014 training cases and
18 descriptive attributes, Michie [82] implements a Decision Tree at American
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Express UK.

Marketing. DM methods are often used to analyse market penetration, mar-
ket development and product development [6].

2.3 Conclusion

The preceding two parts of this section present the state of the art of the
two fields Data Mining and Filtration. Together, they provide the motiva-
tion and target of this thesis, as they show on the one hand the problems
in predicting filtration and on the other hand the aptitude and successfull
implementation of Data Mining methods for Knowledge Discovery and pre-
diction tasks. Previous investigations carried out at the Chair of Fluidme-
chanics and Processautomation of the Technical University of Munich prove
those motivation and target. Under the leadership of Professor Delgado the
investigation on aptitude of cognitive algorithms started in 1996 [10, 29].
More over, methods like Fuzzy Logic or Artificial Neural Networks are used
for recognition of damages on beverage crates [124, 101, 123], modelling of
multi-stage high-pressure inactivation of micro organisms [58, 57, 59], state
detection and feedback control of anaerobic wastewater treatment [84], mod-
elling and optimisation of fermentations [69, 11, 5, 70] and the prediction of
flow fields [13, 12].



16 CHAPTER 2. STATE OF THE ART



Chapter 3

Theoretical Considerations

The first and probably the most prominent sophisticated attempt to define
Knowledge Discovery was presented by Fayyad [37] in 1996 (”Knowledge Dis-
covery in Databases is the non-trivial process of identifying valid, novel, po-
tential useful, and ultimately understandable patterns in data.”). Since then,
several different approaches to describe the KDD process [1, 15, 24, 31, 45,
118] were undertaken. The CRISP-DM (CRoss-Industry Standard Process
for Data Mining, compiled by a consortium consisting of DaimlerChrysler,
SPSS and NCR, three industrial and commercial organisations concerned
with Data Mining and applying Data Mining in their business operations as
well as providing services based on Data Mining) initiative started to push
forward the standardisation of KDD and DM. The result is a process model
for Data Mining that is both a step to a standard methodology as well as
an initial guidance in performing Data Mining projects [98]. More detailed
information is available at http://www.crisp-dm.org.

This chapter follows the principles of this model. The CRISP view on KDD
and DM describes six phases. These steps and their relations are outlined
in figure 3.1. Beyond these, relations and interactions between all phases
possible exist, moving back and forth is always required. The first phase,
business understanding, generally focuses on understanding the business ob-
jectives and requirements from a business perspective, then converting this
knowledge into a Data Mining problem definition and a preliminary plan
designed to achieve the objectives. Section 3.1 adapts this step to the objec-
tives of the presented work. The steps dealing with the data are merged into
section 3.2. Here, the used data is introduced, the problems in data acqui-
sition and preprocessing are discussed and the structure of the final dataset
is described. CRISPs modelling phase, enfolding selection of modelling tech-

17



18 CHAPTER 3. THEORETICAL CONSIDERATIONS

Figure 3.1: The CRISP-DM process model for Data Mining

niques, adaption and calibrating of these methods and the implementation
with a discovery system is subject of the sections 3.3, 3.4 and 3.5. Some
aspects of the evaluation process are discussed in section 3.6. As mentioned
above, this is not a straightforward procedure, but one has to go backwards
within the model to obtain the best results and achieve the defined objectives.

3.1 Description of the Task

As defined in chapter 1.3 the objective of this thesis is the optimisation of the
filtration process. This is carried out not only in theory but with practical
reference. Appendix A gives detailed information on the reference plant of
a Bavarian brewery. Due to the very good cooperation with this brewery,
a lot of data and experts knowledge was accessible and availed. According
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to the CRISP-DM process model, this section deals with the step ”Business
Understanding”. In the presented thesis, this includes getting a first overview
on the available data as well as defining the precise targets of DM process.

With respect to problem, motivation and the derived fundamental idea, al-
ready described in chapter 1, the main aspect of this optimisation process is
the prediction of filterability, with the prediction being an important method
of Data Mining. But from this task several subtask and problems arise.
Knowledge has to be extracted from already finished filtration, respectively
from the archived data, in different steps and ways. These aspects are dis-
cussed in the remainder of this section.

3.1.1 Classification of Filtration

To establish a fundament for prediction of filterability the stored data and
the information included are needed to be available in an appropriate way.
This means that the complexity of the filtration data has to be reduced
to a minimum, but still containing the relevant information. Classification
is the process of ordering or dissecting complex sets of objects described
by high dimensional data into small and manageable units. In the present
thesis, this high dimensional data is given by the filtration data stored in
the Process Data Acquisition (PDA). The classification of time series like
filtration is very complex, regarding all the information contained in these
series. Therefore the data is already scaled down before classification. Two
approaches of reducing filtration data and classifying filtration are carried
out, as described in the following.

First Approach of Classification

In the first approach, the data is reduced to a very minimum. Neither time
dependent filtration behaviour nor the state of the filtration plant is taken
into account for classification. This alleviates the processing of the data, but
also the resulting classification may not suffice the requirements of the task.
Another constraint of this approach is given by comparability. With this
classification, not all filtration can be operated together, because of differing
states of the filter at the beginning of filtration. Alikeness can be approx-
imated only for the first filtration of a batch, due to automated cleaning.
Having all this restrictions, this approach shows its eligibility in allowing a
first overview on the filtration, possible classes and even in showing possible
problems with the data and its processing. First approaches on prediction
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of these simple classification can be carried out, but without expecting this
prediction to accomplish the main task, paying attention mainly on the first
filtration.

Second Approach of Classification

Based on the experiences with the classification of the very simplified fil-
tration data, a more sophisticated classification is aspired. To improve the
classification the data is reduced to an optimum, both minimising the amount
of data but still offering enough information to describe the filtration. To
solve the constraints of the simple classification, generalisation of filtration is
aimed at, so that all filtration regardless of their positions within the batches
can be analysed together. By this, not only the number of datasets increases
but also the significance of the results advances.

3.1.2 Analysis of Input Data

With the above defined task, to predict filtration with the help of Data
Mining methods and the available data, this input data has to be analysed.
In this case the matter of interest are patterns, associations or structure
within the data, which can be used for the prognosis task. The input data
considered in this thesis is the laboratory data, the storage conditions and
the sequence of filtration. Assuming that this input data and its containing
information can be used to predict filtration, the patterns and relationships
have to be identified with respect to the corresponding filtration classes.

3.1.3 Prediction of Filtration

This subtask merges the results from the two subtasks described before.
Based on the knowledge discovered from the input data a model has to be
created to predict filtration classes. Therefore the model has to be con-
structed or trained with the knowledge of past filtration and the archived
data to give a prognosis of filtration using the input data.

3.2 The Data

With respect to the above presented CRISP-DM model, this section deals
with the DM steps ”Data Understanding” and ”Data Handling”. It gives an
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overview on the available and used data and its processing.

Because of the organisation structure of the reference brewery process data
is archived very heterogeneously. Therefore a main concern is to establish
a consistent database for the Data Mining tasks. To assure consistency, the
used data is limited to filtration data and the laboratory data a priori. This
section describes the relevant data and its preprocessing.

3.2.1 Data Structure

As mentioned above, the process data is stored in several places and forms.
On one hand the filtration data, based on a PDA, which was implemented
together with the filtration plant in 1999, is used in this work. On the other
hand the product data, beginning with the laboratory data of the maturated
beer just before filtration, is taken in account.

Filtration Data

The filtration data is stored in three parts and by this also in three different
data formats. Table 3.1 shows these data, its format and size:

Table 3.1: Data origin and formats

Data Format Size

Trend binary 1,000 MB
Freie Protokolle Microsoft

AccessTM

9,500 MB

Schrittprotokolle Microsoft
DbaseTM

250 MB

The Trend data consist of measured values of 178 sensors, taken during the
filtration process, as well as state variables of the filtration process. The
values are stored in binary files, with one file per sensor. Each data file,
containing the values paired with a reference time stamp, is stored together
with an header file containing information about how many values are stored
in the data-file. The file names include a time stamp and are separated by
calendar weeks. The stored data covers more then 1,000 MB in more then
50,000 files. Relevant values are volumetric flow during filtration, dosage of
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kieselguhr, haze, both measured optically at 25◦ and 90◦ respectively as well
as in- and outlet pressure.

A report on the batch is saved in the Freie Protokolle. These reports are
managed in a Microsoft Access TMdatabase. The data itself is stored in
several (up to 1,500) files, which are evaluated by the database. Among
other information, those reports contain details about the preparation of
the filter (precoat), the processed beers (including amount) and from which
source storage tanks the beer was taken.

The third type are the Schrittprotokolle. This data contains information
about the process steps, including for example valve and pump states. Ac-
cording to the process recipes the process sequence is recorded.

Laboratory Data

The laboratory data is stored in another, independent PDA. The data is
available in the DBaseTM-format. The laboratory data contains information
like original gravity, percent alcohol per weight and per volume, both ap-
parent and real extract and attenuation, pH, colour and vicinal dicetones.
The analysis is carried out routinely with automated equipment. The results
are transfered manually into the laboratory PDA. Thus, wrong and miss-
ing laboratory data is not yielded by the analysis itself but by the manual
storing.

3.2.2 Data Processing

To meet the requirements of the Data Mining methods the data has to be
transferred from those proprietary formats into an more easy accessible for-
mat. The CRISP-DM process model includes this process within the step
of data preparation. An appropriate solution particular suitable for this
situation is a common database. Another concern of preprocessing is data
cleaning. It improves the data quality to the required level, to suffice the
Data Mining tasks. The following section gives an overview on the database
and its structure, the data import and preprocessing.

Database Structure

MySQL database server is the worlds most popular open source database
management system and provides a high reliability and security. This database
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management system was chosen to store the data.

The data is distributed over several tables. Centre of the database is the table
tbl cdfp. This table contains the data from the freie Protokolle as shown in
Table 3.2. As primary key a field Filtration ID is introduced. It is an unique
key for each filtrated beer.

Table 3.2: Data content of database table tbl cdfp

Field Type Description

Filtration ID number primary key, auto increment
auftr nr number derived from production

date, containing month and
day

charg nr number consecutive numbering of
batches starting with 1 each
brew year

SZ Jahr number year, 1 or 2 digits
Sorte text filtrated beer type
sorte nr number position of filtration within

the batch
sorte hl number filtrated volume in hl
qt 1 1 number number of storage depart-

ment
qt 1 2 number number of storage tank
...

...
...

up to 15 storage departments and tanks
...

...
...

qt 15 1 number number of storage depart-
ment

qt 15 2 number number of storage tank

Due to the timestamps, which are not always synchronous and so prohibit-
ing the consolidation into one table, they are stored in one table per each
sensor. These tables are labelled tbl measNNN where NNN is the number
of the sensor according to the documentation of the PDA (see Appendix for
a detailed description). The tables contain only the timestamps paired with
the corresponding values (Table 3.3). The digital measured values (state
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variables) are stored in the table tbl measdigi. Table 3.4 gives an overview
on the relevant fields of this table.

Table 3.3: Data content of database tables tbl measNNN

field type description

time int number time in seconds, starting at
01.01.1970 00:00

value number measured value of corre-
sponding sensor

Table 3.4: Data content of database table tbl measdigi

field type description

time int number time in seconds, starting at
01.01.1970 00:00

b1 boolean preparation of kieselguhr fil-
ter

b2 boolean processing filter in circuit
flow

b3 boolean filling of first running or
feints tank

b4 boolean filling of pressure tank
b5 boolean gully
b6 boolean weighting of kieselguhr
b7 boolean transferring of kieselguhr

The table tbl labor contains the laboratory data, table 3.5 shows the regular
measured and documented attributes.

Data Import

The data import is subdivided in two steps. The Trend data, representing
the process data of filtration, is converted from the binary files to simple text
files with comma separated values (csv-files) of timestamp and sensor value.
This is carried out with the help of a self written program using JavaTM.
During the import process of data it is already assured that only consistent
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Table 3.5: Data content of database table tbl labor

field type description

Datum str text date of analysis
(tt.mm.yyyy hh:mm:ss)

Bereich text storage department
Sorte text analysed beer type
Nummer number composition of storage de-

partment and tank, depend-
ing on beer type

TK voll text date of filling the tank
(tt.mm.yyyy hh:mm:ss)

STW number original gravity
ALK G number alcoholic strength (mass)
ALK V number alcoholic strength (volumet-

ric)
ES number apparent extract
VGS number apparent degree of attenua-

tion
EW number real extract
VGW number real degree of attenuation
PH number pH-value
Farbe number colour
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time series are imported. Adjacent, the text files are imported into to the
MySQL database, resulting in one table per sensor containing the two fields
timestamp and value.

The meta information of the filtration, consisting of task number, batch num-
ber, year, beer type, position in batch, amount of kieselguhr, begin and end of
filtration, filtrated volume and the source tanks and departments, are merged
into the database similarly. Therefore the Microsoft AccessTMdatabase and
its scripts (VBATM, Visual Basic for Applications) are modified to combine
the data of the original Access database and the Schrittprotokolle. The result-
ing datasets are also stored temporarily in csv-files (comma separated values)
and afterwards appended to the adequate table of the MySQL database.

Data Preprocessing

A major problem in the Data Mining process is the handling of dirty data
in the data source. Broadly, dirty data include e.g. missing data and wrong
data. Dirty data is defined as data which causes the application or rather the
user to end up without a result or with a wrong result. The sources for dirty
data can be several, including data entry errors by humans or computers, data
transmission errors by computer systems or even bugs in the data processing
computer system.

Therefore the data must be cleansed to remove or repair dirty data before
data analysis algorithms are applied. Kim et al. [60] developed a taxonomy
of dirty data, helping to understand the impact of dirty data on Data Mining
and on the techniques for dealing with it.

Concerning the data used in this work two forms of dirty data exist which
are treated in different ways. These forms are missing data and not missing
but wrong data.

• Missing data
In this work missing data is treated with respect to its impact on the
results of the Data Mining algorithms. Especially the time series of
filtration process are sensitive to missing data caused by defective sen-
sors or faulty data transmission. Thereby minor missing data, e.g. few
values of a time series, can be compensated and have no negative effect
on the results respectively, whereas complete missing time series inhibit
the analysis. Therefore, they are not taken in account. Also datasets
with missing laboratory data are not applied.
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• Not missing but wrong data
This kind of dirty data is hard to identify. It can be caused equally
by defective sensors or faulty data transmission. To avoid wrong data,
the values are proofed to be in the measuring range of the according
sensor. So obviously wrong data is eliminated.

3.3 Discrimination of Methods

The first step in modelling, the adjacent step of CRISPs DM model, is to
select the right modelling technique that is to be used. As shown in section
3.1, for accomplishing the defined objective of the present work several differ-
ent types of modeling techniques are needed. Fig. 3.2 gives an overview on
the typical methods used for Data Mining tasks. In this section the typical
Data Mining methods are briefly introduced and their aptitude for the tasks
of this thesis is discussed. The consequent section gives an more detailed
introduction to the applied methods.

As discussed in section 3.1 classification methods are needed as well as meth-
ods for prediction or pattern recognition. These types and the available data
identify and destine the appropriate methods. Therefore, based on the previ-
ous sections, the methods are discussed and narrowed down to the applicable
ones. One main fundamental idea is thereby to keep the methods as simple
as possible and to approximate this methods to the problem.

3.3.1 Classification and Prediction Methods

A major part of this thesis deals with the classification of data, as this is the
fundament for finding patterns, revealing knowledge and finally also predic-
tion tasks. Classification is an ambiguous word. It often means assigning a
new object or case to one of an existing set of possible cases. In this work it
mostly means finding the classes themselves from a given set of cases. There-
fore several classification methods are used for automatic discovery of classes
in data. In opposite to the supervised learning, which means generation of
class description from labelled examples, these methods are called clustering
or unsupervised learning. Automatic classification aims at discovering the
”natural” classes in data. These classes reflect coherences which make groups
of data looking more similar then others. The underlying causal mechanism
can be sample biases in data or can reflect some major new discovery in the
domain. The discovered classes can be well known to experts or they can
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Figure 3.2: Typical use of Data Mining methodologies for various Data Min-
ing problems and data types

reveal some important facts, which were previously unknown. The discov-
ery of previously unknown structures occurs most frequently when the data
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contains many attributes describing each case, because humans are poor at
recognising structure in a large number of dimensions.

In this thesis the classification of unlabeled data presents a very important
part, as the past filtration have to be classified and labeled. This labeled data
will then be the fundament for prediction. Among the availabel methods,
the Decision Tree algorithms and Artificial Neural Networks can be excluded,
because these methods require labeled data for supervised learning. The out-
standing method is Cluster Analysis. Chapter 3.4.1 describes the underlying
principles and algorithms. Sometimes Cluster Analysis is enhanced with the
help of special techniques like Bayesian networks, Hidden Markov models or
special algorithms for clustering time series. In the present case, these ad-
ditional extensions would exceed the requirements of the task and increase
complexity of the model unnecessarily. Warren Liao [114] gives an overview
on clustering time series, showing that clustering of raw data implies several
problems, e.g. how to deal with different length of the series or divergent
sampled data. None of the papers discussed in that survey handles multi-
variate time series data with different length, as given with this thesis.

For prediction Decision Trees fullfill the requirements of the task as well as
Artificial Neural Networks. Another method not always connected to Data
Mining is Fuzzy Logic. With its ability of including experts knowledge and
rules defined by other (Pattern Recognition) methods, Fuzzy Logic is taken
into account for prediction. Bayesian networks and Hidden Markov methods
are excluded for the same reasons of complexity.

3.3.2 Pattern Recognition

Discovery of important structure is usually a process of finding similarities,
interpreting results, transforming / augmenting data and repeating the circle.
This process also needs the interaction of the discovering program and the
expert. On the one hand the structure searching program has the ability
to search huge amounts of data looking for multi-dimensional structure with
outstanding speed and accuracy. On the other hand the expert has domain
knowledge that the program lacks.

Among the algorithm for the pattern recognition tasks Decision Trees and
Association Rules are the outstanding ones. In this approach Association
Rules are not used. Association Rules were developed originally for market
basket analysis and so its qualities are fit to this scenario, to find relationships
or affinities between unlabeled datasets. But as defined in chapter 3.1.2
it is very important to reveal patterns regarding the filtration classes, the
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labeled data. Additionally the Expectation Maximisation (EM) algorithm
as described in the following section is used for extracting knowledge from
data.

3.4 Methods

This chapter gives an overview on the methods used in this thesis.

3.4.1 Cluster Analysis

Clustering is used to reveal structures in data that can be useful for the
analyst by gaining an insight into some structure inherent in the data set. It
is one of the most widely used techniques in Data Mining. The aim of Cluster
Analysis is partitioning a d-dimensional data set of n-entities or points into k
subsets (clusters), so that the data points within a cluster are more similar to
each other than to those in other clusters [8]. Some 40 years ago, biologists
and social scientists began to develop algorithms to find groups in their data,
advanced by computers becoming available. Up to now, clustering methods
and algorithms are applied in many domains, including artificial intelligence,
pattern recognition, chemometrics, geoscience, marketing, medical research
and political science. Kaufmann [56] gives an overview on this development.

Benchmarking and evaluating of cluster algorithms and implementation are
general problems. One main problem is measuring the quality of resulting
clusters depending on the application problem [44]. Zäıt and Messatfa [129]
describe this problem in detail. Michaud [82] compares some cluster tech-
niques, whereas Bock [18] is the most important reference for entrenched
cluster techniques.

The choice of a clustering algorithm depends both on the data, e.g. type
and availability, and on the aspired objectives. The determination of the
appropriate method to use is sometimes not easy, especially when a priori
arguments may not suffice to narrow down the choice to a single method. Also
because of the descriptive and explorative complexion of Cluster Analysis, it
is permissible to apply several algorithms on the same data [56].

Cluster algorithms can be characterised by three attributes. These are clas-
sification type, partition criterion and construction method. These charac-
teristics are discussed in the following.
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Classification type

The different classification types are

• overlapping classes,

• partitions,

• quasi-hierarchical and

• hierarchical structures.

Each of these forms can be exhaustive, so that each element belongs to at
least one cluster, or nonexhaustive, having elements without assignment to
a cluster. The latter is advisable for datasets with extreme outliers, avoiding
heterogenous classes.

Overlapping classes (see Fig. 3.3a) identify a classification having some el-
ements belonging to more then one cluster, without clusters being part of
another cluster. In contrast to this, partitioning methods (see Fig. 3.3b)
yield classification with objects belonging to no more then one class.

The quasi-hierarchical classification (Fig. 3.3c) is generated by a sequence of
overlappings. On each level of the hierarchy the classes have the character-
istics of overlapping classes. Comparing the levels, classes from one level are
stringently part of a class from the next level. The hierarchical structure is
very analog to the quasi-hierarchical, having partions instead of overlappings
within the different levels. These structures are characterised with the help
of a pedigree, having the coarsest overlapping on the bottom level and the
finest on the top. Especially the hierarchical classification (Fig. 3.3d) is often
described with a dendogram. These diagrams are constituted top (coarse) to
bottom (fine), having, in addition to the pedigree, a distance scale. Figure
3.4 shows a pedigree (a) and a dendogram (b) of the hierarchical clustering
mentioned above.

Partition criterion

As it is the goal to find clusterings which both satisfy homogeneity within
each subset as well as much heterogeneity between the clusters, a criterium
has to model these conditions. The following section gives an overview on
several criteria for defining a measure of adequacy or inadequacy for a given
partition.
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Figure 3.3: Classification types: a) overlapping, b) partitioning, c) quasi-
hierarchical and d) hierarchical clusters [56]

Similarity and Dissimilarity of elements and groups of elements can be de-
fined in several ways. Depending on the defining function, certain aspects are
emphasised or disregarded. Similarity can be defined as a real-valued func-
tion, yielding a real number s = s(ei, ej) = sij for two elements ei, ej ∈ E,
the universe. This function s can be constricted to the interval s0 ≤ s ≤ s1,
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Figure 3.4: Pedigree (a) and dendogram (b), according to the hierarchical
cluster seen in fig. 3.3d [56]

with s0 = 0 and s1 = 1, so that sij = s1 shows the maximum and sij = s0

the minimum similarity. The following axioms are valid:

sij ≤ s1 (3.1)

sij = sji (3.2)

sii = s1 (3.3)

The (n, n)-matrix S = (sij) is called similarity matrix. According to (3.2)
and (3.3) the matrix is symmetric and all diagonal elements are identical.

Equally, the dissimilarity or distance of elements can be defined as a real-
valued function, describing to elements ei, ej ∈ E with a non-negative real
number d = d(ei, ej) = dij and having analogue axioms.

dij ≥ 0 (3.4)

dij = dji (3.5)

dii = 0 (3.6)
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The (n, n)-matrix D = (dij) is called distance matrix. According to (3.5)
and (3.6) the matrix is symmetric and all diagonal elements are identical.

Obviously, a major similarity between two elements is connected with a minor
distance. Therefore, several functions can be applied to transform similarity
functions to distance functions. Examples for these transformations are:

s =
1

(1 + ad2)
(3.7)

s = 1− d

a
, a = max

i6=j
dij (3.8)

s =
(H − d2)

(H + d2)
with H := medial distance. (3.9)

With 0 ≤ s ≤ 1 the following transformations are valid:

d = 1− s (3.10)

d =
1

2
(1− s) (3.11)

d = − log s. (3.12)

Based on this functions and the distance matrix, classifications can be eval-
uated by concerning their homogeneity and the heterogeneity between the
classes. The following functions show some possibilities of describing the ho-
mogeneity of classes, the larger the value g(Cl) ≥ 0 for the class Cl, the more
inhomogeneous is the class.

1.: Deviated sum of distances of objects in Cl

g1(Cl) =
1

c

∑
i<j

i,j∈Cl

(dij) (3.13)

with c = nl (number of objects) or c = (nl−1)
2

(number of object pairs). The
latter leads to a better evaluation of classes with many objects.
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2.: Distance of the two most dissimilar objects in Cl

g2(Cl) = max dij (3.14)

3.: Distance of the two most similar objects in Cl

g3(Cl) = min dij (3.15)

4.: Sum of variances

g4(Cl) =
m∑

j=1

s2
j(Cl) with s2

j(Cl) =
1

nl − 1

nl∑
i=1

(xij − x̄j)
2. (3.16)

The heterogeneity of two classes v(Cl, Cl∗) can be described in similar ways.
The value v, the degree of heterogeneity, increases with inhomogeneity of the
compared two classes.
1. Distance of the two most dissimilar objects in Cl and Cl∗ (complete linkage,
furthest neighbour)

v1(Cl, Cl∗) = max
i∈Cl;j∈Cl∗

dij (3.17)

2.: Distance of the two most similar objects in Cl and Cl∗ (single linkage,
nearest neighbour)

v2(Cl, Cl∗) = min
i∈Cl;j∈Cl∗

dij (3.18)

3.: Medial distance of all object pairs in Cl and Cl∗ (average linkage)

v3(Cl, Cl∗) =
1

nlnl∗

nl∑
i=1

nl∗∑
j=1

dij (3.19)

4. Quadratic, euclidian distance of centre of gravity of the classes (centroid)

v4(Cl, Cl∗) = ‖x̄l − x̄l∗‖2 with x̄l =
1

nl

(
nl∑

i=1

xi1, . . . ,

nl∑
i=1

xim

)′

(3.20)

To evaluate the heterogeneity of overlapping clusterings, the degrees men-
tioned above (3.17-3.20) can be applied, after elimination of double entries
from the corresponding classes. Also to determine the heterogeneity of hier-
archical and quasi-hierarchical clusters the equations are used, provided that
the logical difference

C∗
l∗ = cl∗ \ Cl (3.21)
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is used if Cl∗ contains Cl and than v(Cl, C
∗
l∗) is calculated.

The overall quality of a Classification C, having g partitions, can be described
as the sum of class

q1(C) =

g∑
l=1

g(Cl) (3.22)

homogeneities or as the reciprocal sum of heterogeneities

q2(C) =
0, 5g(g − 1)∑

Cl∈C

∑
Cl∗∈C︸ ︷︷ ︸

l<l∗

v(Cl, Cl∗)
(3.23)

or a combination of both

q3(C) = q1(C)q2(C). (3.24)

Construction method

Due to the impracticability of investigating all possible partitions, clustering
methods use various heuristic strategies for obtaining an optimal solution
[82]. Traditionally, two different classes of algorithms are used for clustering.
On the one hand, these are the hierarchical cluster algorithms which result
not in a single clustering but in a refining sequence of clusterings. On the
other hand, class of methods are the partitioning cluster algorithms, requiring
the number k of classes defined in advance. Commonly, the resulting clusters
are visualised in a tree-like structure. Beside these widely used classes of
algorithms some other algorithms can be found in literature, mostly used in
special, unique applications or with restrictions [44].

Hierarchical clustering is known to be the oldest heuristic approach to ob-
tain a nearly optimal solution [82]. The agglomerative hierarchical clustering
starts with n clusters, each having only one element. Iteratively, a pair of
clusters is merged into one, so that the number of clusters decreases by one.
Which pair of clusters or elements to merge is determined by the best ob-
jective function value, obtained by the merge. The iterative merging process
stops when only one cluster is left. In contrast to this agglomerative methods
stands the divisive hierarchical clustering, starting from one entire set of all
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elements (one cluster) iteratively splitting this into two subsets, until each
element has its own cluster (fig. 3.5).

Figure 3.5: Agglomerative and divisive clusterings; a) construction of clus-
ters, b) cluster at different levels of distance di

A constraint of these methods is given by the pairwise grouping. Once defined
clusters can not be divided, whereas non-hierarchical methods can. These
partitioning methods separate the given elements simultaneous in k clusters.
It is important to note that k is given in advance. Indeed, the algorithms
will construct a partition with as many clusters as necessary. Of course,
not all values of k are reasonable, so its advisable to apply different values
of k. The common idea of partitioning methods is to refine the quality of
classification with respect to a partition criterion, starting from an initial
partition and rearranging elements iteratively. Mostly, the methods differ
by the applied criterion, with each method yielding different classifications,
with respect to the extremum of the partition criterion. Obviously, a global
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extremum of quality exists, because the number of arrangements is finite,
but the approach of an overall iteration of all criterions is not practicable
due to the fast increasing number of arrangements. So none of the methods
ensures the global extremum to be found.

The following hierarchical and partitioning algorithms are used in this work.

• hierarchical

– AGNES - agglomerative nesting
The agnes algorithm constructs a hierarchical cluster by combin-
ing the two nearest clusters or elements at each step, yielding
as well a dendogram and a banner plot. Also it determines the
agglomerative coefficient (ac) which measures the amount of clus-
tering structure. The ac can be used to compare two clustering
approaches, but because it depends on the number of observations
it should only be used for the comparison of identical datasets, e.g.
to evaluate the appropriate partition criterion [50, 108]. Table 3.6
gives an overview of the clustering methods which can be applied
for the agglomerative approach.

– DIANA - divisive analysis clustering
This method computes a divisive hierarchy of the dataset. Similar
to agnes, it provides a dendogram, a banner plot and a divisive
coefficient. The algorithm constructs a hierarchy starting with one
large cluster containing all elements. Clusters are divided until
each cluster contains only one element. At each iteration step the
cluster with the largest dissimilarity is selected. To divide this
cluster the most disparate element is determined. This element
forms the so called ”splinter group”. Afterwards, the algorithm
reassigns elements that are closer to the ”splinter group” than to
the ”old party”, yielding two new clusters [50].

• partitioning

– PAM - partitioning around medoids
The algorithm aims at finding k representative objects or medoids
among the dataset, which describe the structure of the data. The
initial k medoids can be given or will be chosen by the algo-
rithm. Based on these medoids k clusters are constructed, assign-
ing each element to the nearest medoid. The algorithm iterates
the medoids to find the k representative elements which minimise
the sum of dissimilarities [50].
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– CLARA - clustering large applications
Clara is very similar to pam. It was developed to handle large
datasets. Therefore, clara does not store all dissimilarities in cen-
tral memory of the computer. Beside that, the algorithm is iden-
tical to pam [50].

Another algorithm used is the k-means algorithm. The k-means algorithm is
similar to PAM. The given data is clustered into k groups such that the sum
of squares from elements to be assigned to the cluster centres is minimised.
These centres can be pre-defined or otherwise they will be chosen by the
algorithm. The packages available for the software suite ”R” provide several
different implementation of the algorithm from which the Hartigan-Wong
algorithm is used [50].

3.4.2 Decision Trees

Decision Tree learning is a common method used in Data Mining. A Decision
Tree describes a tree structure wherein leaves represent classifications and
branches represent conjunctions of features that lead to those classifications
[81]. A Decision Tree is also a predictive model [4]. A very good overview
on this topic is given by Buntine [22].

A Decision Tree can be set up by recursive partitioning of a dataset into
subsets. This process is repeated on each derived subset. The recursion is
completed when splitting is either non-feasible or a singular classification can
be applied to each element. To avoid large tree structures, the tree may be
pruned.

The two most often used algorithms are C4.5 and CART (Classification and
Regression Trees). CART was published in 1984 by Breiman [20]. The
algorithm constructs binary trees, such that each node has two branches.
C4.5 is the successor of the ID3-algorithm firstly introduced by Quinlan in
1986 [92]. Compared to CART, C4.5 is not limited to binary trees. Therefore
it can construct more compact trees.

The Decision Tree method is a white box model, that can be understood and
interpreted with few effort. The method is very robust and performs well
with large datasets. Both nominal and categorical data are handled by the
algorithm, data preparation is needed only in basics.

In this work, the CART-algorithm is chosen. It constructs a binary tree
using a given response (left-hand-side) to divide the dataset (right-hand-side)
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Table 3.6: Agglomerative methods

Method Distance Characterisation

Single link-
age (Nearest
neighbour)

min(dpi, dqi) contractive, mono-
tone, invariant under
monotone transfor-
mations of distance
matrix, chaining

Complete
linkage
(Furthest
Neighbour)

max(dpi, dqi) divergent, monotone,
invariant under mono-
tone transformations
of distance matrix,
tends to small groups

Average link-
age

1
2
(dpi + dqi) conservative, mono-

tone
Average
linkage
(weighted)

1
n
(npdpi + nqdqi) conservative, mono-

tone, weighted by
count of elements

Median 1
2
(dpi + dqi)− 1

4
dpq conservative, non-

monotone (inversion),
only for squared
euclidian distances

Centroid 1
n
(npdpi + nqdqi) −

npnq

n2 dpq

conservative, non-
monotone (inversion),
only for squared
euclidian distances

Ward 1
n+ni

((ni + np)dpi +
(ni +nq)dqi−nidpq)

conservative, mono-
tone, minimisation
of variance criterium
for squared euclidian
distances

Flexible
strategy

α(dpi + dqi) + (1 −
2α)dpq

α → 0: contractive,
α = 0, 5: conserva-
tive, α > 0, 5: diver-
gent. Recommended:
0, 5 ≤ α ≤ 0, 7.

with the help of one variable of the dataset. The split which maximises the
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reduction in impurity, based on squared probabilities of membership for each
target category [64], is chosen according to a split target. This split target
is called the Gini diversity index. With RF (Cj, S) denoting the relative
frequency of cases in the training set S that belong to class Cj, the Gini
index is defined as:

G(S) = 1−
x∑

j=1

RF (Cj, S)2. (3.25)

The algorithm partitions the data until every leaf contains cases of a single
class. So the Decision Tree will classify all training elements. This effect is
called overfitting and well described by [41, 63]. Overfitting leads to a loss
predictive accuracy in most application, so that the tree is pruned to reduce
some of its structure. CART employs the ”1 SE rule”, which chooses the
smallest tree whose estimated error is within one standard deviation of the
estimated error of the best tree.

3.4.3 Artificial Neural Networks

An Artificial Neural Network (ANN) is an interconnected group of artificial
neurons that uses a mathematical or computational model for information
processing. It involves a network of highly complex processing elements (neu-
rons), where the global behaviour is determined by the connections between
these elements and their parameters. The topology of Artificial Neural Net-
works varies from simple perceptrons (two layer neural networks) to high
structured ANNs. Fig. 3.6 gives an example of both structures. The original
inspiration for the technique is grounded in biology and refers to the exam-
ination of the central nervous system and its neurons. A neural network
can be described also as the synergetic use of a non-linear function and a
learning-algorithm. ANNs qualify for domains lacking explicit systematical
(expert) knowledge of the problem to be solved [17].

The outstanding feature of ANNs is their ability of learning, which in practice
means that a (data) set of observations is used to train the network in order
to solve a certain task in an optimal sense. Also ANNs are marked by the
ability to generalise very well. The resulting neural network models can
be trained by either supervised or unsupervised methods, depending on the
nature of the task. The supervised learning methods use sets of instances in
the form 〈x, y〉, where y represents the variable to predict and x is a vector
of features thought to be relevant to determine y. The goal of supervised
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Figure 3.6: Structure of a simple perceptron (a) and a multi layer network
with two hidden layers (b)

learning is to induce a model that allows to predict y values for previously
unseen examples x. In unsupervised learning, the model is also build with
the help of training examples, but each instance consists only of the x part
without the y value. The goal of unsupervised learning is to build a model
that accounts for regularities in the training set [28].

The papers [130, 2] give an overview on the Artificial Neural Networks and
the learning methods, including the following:

• supervised learning

– back propagation

– superSAB
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– quickprop

– resilient propagation

• unsupervised learning

– hebbian learning

Artificial Neural Networks represent their learned solutions using real-valued
parameters of the network (connection weights). Therefore, they are so called
black box models, which means that their results can not be interpreted
in a simple way. With respect to this, the main application of ANNs in-
clude control systems (vehicle control), pattern recognition (radar systems,
face identification, object recognition), sequence recognition (gesture, speech,
handwritten text) and financial applications. The application of ANN for
Data Mining tasks like knowledge discovery or rule extraction is described
by Craven [28].

The investigations carried out at the chair of Fluidmechanics and Process
Automation of Professor Delgado show the aptidue of ANNs for prediction
tasks of, for example, fermentation processes or the recognition of damaged
beverage crates [124, 101, 123, 11, 13, 12]. The results of those investigations
prove the aptitude of ANNs for Data Mining tasks like the prediction tasks
of the presented thesis.

3.4.4 Fuzzy Logic

L. A. Zadeh initiated Fuzzy Logic in 1965 [125, 127, 126]. An overview to
this topic, the development of Fuzzy Logic and further details are given by
[7, 16, 19, 131, 32].

Whereas classical boolean logic expresses its statements in binary terms,
Fuzzy Logic extends the boolean logic with the concept of partial truth.
This multivalued logic representation of truth in form of degrees of truth al-
lows intermediate values to be defined between conventional evaluations like
true/false, yes/no, high/low, etc. and is therefore nearer to real-life problems
and statements. Also, Fuzzy Logic can deal with imprecise statements and
linguistic knowledge from experts [106, 107, 9]. Fuzzy Logic is implemented
in several domains including household appliances (washing machines, refrig-
erators), automobile subsystems (ABS, cruise control), air conditioners and
elevators.
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Fuzzy Logic represents membership in vaguely defined sets, allowing values
between 0 and 1 (including borders) and in its linguistic form inprecise state-
ments like ”slightly”, ”less”, ”very”. These fuzzy sets, for example describing
the input and output variables of a system, are an extension of classical set
theory, defining elements in a binary way, either belonging to a set or not.
A simple example of a fuzzy set is given in fig. 3.7, showing the membership
µ(x).

Figure 3.7: Simple Fuzzy Set

The rules are represented in the form

if input is A then output is B. (3.26)

Specifically, partial membership in a set is allowed. The relationship between
fuzzy sets is expressed with ”If-Then” rules [128, 121]. Building the fuzzy
system and assessing the rules can be carried out in different ways [9, 42,
109, 67, 26].

Fuzzy sets own several features, approving this method for KDD purposes.
Among these the user friendly linguistic terms excel, the rule-based system
and concluding the descriptive and easy to interpret and visualise results.

At the investigators group of Professor Delgado, Fuzzy Logic is subject of
many investigations. Several papers [5, 10, 13, 14, 57, 58, 69, 70] show the
aptitude of those method for optimisation and prediction tasks.
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In the presented work, the fuzzy modell is constructed using as well experts
knowledge as results attained from other Data Mining algorithms. The re-
sulting model is used for prediction of filtration, as similar approaches yielded
good results [58, 57, 59, 84, 69, 5, 70].

3.4.5 EM Algorithm

The Expectation Maximisation (EM) algorithm is a broadly applicable and
applied approach to the iterative calculation of maximum likelihood esti-
mates. The algorithm consists of two steps at each iteration, called expecta-
tion step (E-step) and maximisation step (M-step). The name EM algorithm,
deduced from these steps, was given by Dempster, Laird and Rubin in their
fundamental paper [30]. A good overview on this algorithms, its features,
limits and applications is given by [80, 115]. Among the applications of this
algorithm are protein classification [78], modelling fish stocks [27] and mod-
elling internet traffic [76]. The algorithm is also used for clustering purposes
as described in [119].

The EM algorithm can be used to analyse superposed distributions. Within
an observed single variable in a large sample, this algorithm identifies the
underlying normal distributions of possible clusters within these observations.
An example of two normal distributions with different means and deviation
forming one superposition distribution is shown in fig. 3.8.

In this work, EM algorithm is applied to analyse data and to determine
boundaries of groups with similar features. With a given distribution of
observations, the algorithm is used to identify the means and deviations of
n underlying distributions. In this approach, the E-step sets n distributions
with estimated means and deviances. The M-step varies from the common
used algorithm, as in this work the minimisation of the sum of squared errors
is applied, in opposition to the maximisation of likelihood. Therefore, the
EM algorithm approximates the observed distributions of valued based on
mixtures of different distributions in different classes.

3.4.6 Principal Component Analysis (PCA)

In the presented thesis, PCA, a popular technique in pattern recognition, is
applied for Knowledge Discovery from laboratory data. PCA is a technique
that can be used to simplify a data set, by yielding a new coordinate system
for the data setsuch that the greatest variance by any projection of the data
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Figure 3.8: Example of superposition of two distributions

set comes to lie on the first axis, called the first principal component PC1, the
second greatest variance on the second axis PC2 and so on. This is reached
by a linear transformation of the data set. Thereby, PCA is used to reduce
dimensionality in a data set while retaining those characteristics of the data
set that contribute most to its variance. Thus, the low-order components
contain the most important aspects of data.

The resulting principal components, subsequently denoted as loadings, rep-
resent eigenvectors of the data set matrix and are obtained by the determina-
tion of the eigenvectors and eigenvalues of the correlation matrix. Since the
data matrix X can be constructed from a linear combination of the eigen-
vectors, a transformation between the matrix containing the loadings V and
the original data matrix X must exist and is supposed to have the form

Xn×m = Sn×mV̇ n×mT (3.27)

where S is the score matrix containing the coefficients for the linear combi-
nation of the loadings.

The graphical representation of this methods supports the investigation of
correlations and dependencies in data. The resulting diagrams project the
initial variables into the subspace defined by the reduced number of load-
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ings. Therefore, two principal components are plotted against each other.
The length of the arrows representing the initial variables is proportional
to standard deviation. The scalar product of two vectors is proportional to
covariance of both variables. The cosines of the angle between to vectors
represents the correlation coefficient for both variables. Further details on
PCA are given by [46, 79, 51, 112]

3.5 Discovery System

To solve the defined task, software is needed to carry out Data Mining tasks.
For this purpose several solutions are available, ranging from a set of spe-
cialised programs to a complete suite, including as well the needed Data Min-
ing methods as data preprocessing and preparation. The different systems
can be defined according to simple dimensions as summarised as follows.

• Supported tasks

– single mining task, only one method

– single mining task, multiple methods

– multiple mining tasks

• Supported process steps

– only Data Mining

– also pre- and postprocessing

• Supported domains

– generic system

– domain specific

• Tool integration approach

– macro integration

– micro integration

• Architectural layers

– data management

– data aggregation
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– pattern and model evaluation

– search

– user interaction

Various reports, including commercial ones, provide an extensive overview
and evaluation of KDD tools, such as Two Crows, Aberdeen Group and
Gartner Group. Whereas those reports run the risk of being out of date,
some sources of information are regularly upgraded like KDD nuggets [53].
The most known Data Mining suites include IBM’s Intelligent Miner, Ora-
cle’s Darwin, SAS’s Enterprise Miner, Silicon Graphic’s MineSet and SPSS’s
Clementine. Detailed information on these discovery systems is provided by
[61, 104, 21, 100].

For the approach in the present work the open source software ”R” [111]
was chosen. R is an integrated suite of software facilities for data manipula-
tion, calculation and graphical display. It is based on the same programming
language as S-Plus, a commercial statistic suite, and among other features
providing a full reference of this language. R is widely used in academic envi-
ronment and many packages, provided also as open source, extend the main
package. Therefore, also packages can be adapted or extends to special needs
and new functions can be implemented respectively. Additionally, for ANN
and Fuzzy Logic an existing code, developed at the Chair of Fluidmechanics
and Process Automation and the InformationTechnology Weihenstephan, is
used.

The use of free software enables the compilation of a very well adapted and
lean software suite for the application as a tool in breweries.

3.6 Evaluation

Within the iterative process of knowledge discovery the built model or models
have to evaluated. A key objective is to determine whether the defined task
and subtasks have been sufficiently considered. Therefore the model has to
be tested on scenarios or real applications. Moreover, this evaluation process
assesses not only the results necessarily related to the original objectives but
also other Data Mining results generated, like findings which are not related
to the objectives, but may also unveil additional challenges, information or
hints for future directions. Recapitulating (see also [122, 6]), the results can
be defined as
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results = models + findings. (3.28)

Both parts of this equation have to be evaluated. The main aspects of model
evaluation are accuracy and generality. On the one hand, the models have
to be accurate to fullfill the requirements, e.g. prediction tasks, but on the
other hand they have to be general, because the models are built with past
experiences but have to be applied to new datasets that will arise in the
future. The classical technique for evaluation is to assemble a sample of
cases that is devoted exclusively to evaluation. Fig. 3.9 shows the splitting
of the data in two samples, one for training and one for evaluation.

Figure 3.9: Data assembling for empirical evaluation

Relying only on training data would probably tend to exceptional results,
being perfect for the used training data, but may not generalise to new
examples. This overfitting or memorising of the model can be prevented by
hiding the test datasets and comparing the training results to the results of
the prior unseen datasets. In this work the training data covers 80% of the
available data, whereas the remaining 20% is used for evaluation.

To determine the quality of the model with the given training and testing
data, in this work the performance of prediction is measured. Unless a perfect
model is found, the model will generate wrong predictions. Therefore the
known labeld data, the testing data, is compared to the predictions and the
error is measured. The error from classification is defined as

Error rate =
number of errors

number of examples
. (3.29)

A more detailed view of error can be reached by identifying the errors as false
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positives (FP ) and false negatives (FN). Based on a binary classification
(true / false), false negatives are those elements that were classified as
false, but in fact are true, whereas the false positives are elements classified
as true but being false. FP and FN have an important influence on model
quality, depending on the application. For instance in medical applications
an erroneous diagnosis may have enormous consequences and therefore one
may accept many more FP s then FNs for screening tests. FP and FN
form together with the true positives (TP ) the precision (3.30) and recall
(3.31). Sometimes, they are combined to F , the harmonic mean of precision
and recall (3.32) [117].

precision =
TP

TP + FP
(3.30)

recall =
TP

TP + FN
(3.31)

F =
2

1
precision

+ 1
recall

(3.32)

Secondly, the findings of the KDD process have to be evaluated. The question
is, whether the results are novel and usefull. Depending on those aspects and
on the sufficiency to fullfill the task, the process has to be reviewed. New
objectives can arise from the findings or new subtasks can get important.
These aspects have to be considered in the iterative KDD process.



Chapter 4

Results

Within this chapter the results of the KDD process, starting with the two
classification approaches, followed by the analysis of laboratory data, the
knowledge discovery and the approaches to prediction of filtration, are pre-
sented. Some explanation on methodology is included, provided that it was
not introduced in chapter 3.

4.1 Classification of Filtration - First Approach

This approach is carried out to give a first insight into filtration. Because of
the high reduction of data, several constraints emerge. Therefore, filtration
having different states of the filter can not be compared. Solemnly this
reduces the filtration to those ones which are operated on a clean filter. All
following filtration of a batch start with an undefined filter. In the remainder
of this section the data reduction, Cluster Analysis and the evaluation of the
resulting clusters, followed by interpretation and comparison of the results
are presented.

4.1.1 Reduction of Data

With respect to experts knowledge not all of the available data is used to
characterise filtration, but only five attributes are concerned. These are:

• haze measured at 25◦ (h25),

• haze measured at 90◦ (h90),

51
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• volume flow (V̇ ),

• pressure difference, calculated from inlet and outlet pressure (∆p =
pout − pin) and

• kieselguhr, given by its dosage (dKG) and the overall amount, used for
one filtration (

∑
KG).

With the exception of
∑

KG the attributes are time series, with values
measured normally every six seconds. Figure 4.1 shows these time series of a
sample filtration. Whereas V̇ , dKG, h25 and h90 show alternating curves, the
value of ∆p increases within the batch more or less constantly, with respect
to the principles of filtration and the regulation of dKG and V̇ .

The data reduction is carried out by narrowing down the time series to just
one value. Therefore, the data of V̇ , h25 and h90 is reduced to the respective

arithmetic mean ¯̇V , h̄25 and h̄90. These means are also shown in Figure 4.1,
diagram a, d and e. The attribute kieselguhr is considered by overall applied
amount of the filtration

∑
KG. The pressure difference is expressed by the

overall difference ∆p∗ = ∆pend −∆pbegin.

Figure 4.1: Diagrams of a) V̇ , b) dKG, c) ∆p, d) h25 and e) h90

4.1.2 Cluster Analysis

Based on the reduced data described in the section above, four different
Cluster Analysis methods are applied. According to Chapter 3.4.1 these are
the two hierarchical methods AGNES and DIANA and another partitioning
one, PAM. More over, the parameters of the cluster methods are evaluated
to estimate the most applicable settings, e.g. which agglomerative criterion
yields the best result.
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The different algorithms are firstly applied to the data of filtration of light
lager beer with a cleaned filter, because as described in chapter 3.1.1 a com-
parison with filtration processed on an used filter is not possible.

AGNES

The Agglomerative Nesting Cluster Method is influenced by three parame-
ters. These are the metric used for calculating dissimilarities, the clustering
method and the standardisation of values. As all data is standardised with
the data preprocessing, this option is not used. The distance of elements is
always calculated with the euclidian metric. Therefore, only the clustering
method is varied. The agglomerative coefficient ac is used to compare the
quality and applicability of the results. Fig. 4.2 compares the ac of the
different parameters.

Figure 4.2: Comparison of AGNES cluster methods

The method yielding the best coefficient is Ward’s method. The dendograms
of the different method are displayed in Appendix B.1. They demonstrate
some of the characteristics described in Table 3.6, especially the chaining
effect of the single linkage method can be seen in Figure B.2.

DIANA

This divisive cluster algorithm results a divisive coefficient dc = 0.87. The
dc is the counterpart of the ac and can be compared to it [56]. Variation is
not necessary, as only one method is available. Furthermore, the Euclidean
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distance and no further standardisation are applied. Figure B.6 presents the
dendogram of the clustering.

PAM

Apart from standardisation and metric, which are handled as described
above, this partitioning method needs only the number of clusters as param-
eter. In opposition to the hierarchical methods the results of this method are
not displayed as a dendogram but with a silhouette plot and characterised
by the average silhouette width asw and the silhouette width of the clusters
si. The plots for n = 3 . . . 9 clusters are shown in Figure B.7 – B.13.

The comparison of the results of the PAM algorithm are displayed in Figure
4.3. The heighest asw and therefore the best results yield the approaches
with n = 3 and n = 4, but the according silhouette plots (Fig. B.7 and Fig.
B.8) indicate at least one very inhomogeneous cluster within the clusterings
of those approaches.

Figure 4.3: Comparison of asw for n = 3 . . . 9 Clusters

4.1.3 Conclusion

Recapitulating, Ward’s method of the agglomerative approach yields the best
result. The other methods of AGNES succumb to Ward’s method and also
the result of the divisive approach. The partitioning algorithm divides the
dataset with respect to a given number n of clusters, but the clusterings of
these approaches are very inhomogeneous.
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To verify the thesis of Ward’s method being the appropriate one for this
task, it is applied to further beer types. Figure 4.4 shows the resulting ac’s
of clustering the data from four beer types, two different light lager, a Pilsener
and a nonalcoholic beer. These are the beer types commonly processed on a
clean filter. Very homogenous clusters result from this approach, having ac’s
from 0.94 – 0.96. The dendograms are displayed in the Appendix (Fig. B.14
– B.17).

Figure 4.4: Ward’s method applied on Filtration Data of 4 different beer
types

A remaining question with Ward’s method is defining the number of clus-
ters, as the hierarchical methods split the dataset until each the number
of clusters is equal to the number of elements with each cluster having one
element. Therefore, the number of clusters depends on the desired homogene-
ity. According to the height, respectively the level of distance as described
in Chapter 3.4.1, a level has to be chosen to define the clusters. The lower
they are defined, the more clusters, being very homogenous, are generated.
Therefore, a compromise about accuracy and number of clusters has to be
effected. Depending on the beer type cutting at a level of about 0.2 – 0.4
produces approximately seven clusters. With respect to the respectively den-
dogram the clusters are generated by cutting at this level, aiming at 5 to 9
clusters. Resulting groups of at least 3 elements are aspired, as well as groups
showing equal numbers of elements. Thus, for the example of the light lager
beer the level to separate clusters is chosen at 0.25, yielding 8 clusters form
which only one contains a single element.
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4.1.4 Evaluation of Clusters

The clustering itself produces unlabelled groups. These groups include simi-
lar elements differing from those of other groups, with the heights of the den-
dogram measuring the difference. In this first approach the labelling of the
groups is carried out with respect to the elements attributes. As mentioned
in Chapter 4.1.1, the used filtration attributes are the arithmetic means of

volume flow and haze ¯̇V , h̄25 and h̄90 as well the used amount of kieselguhr∑
KG and the overall pressure difference ∆p∗.

To compare the groups the arithmetic mean of each attribute for the complete
dataset and furthermore for each cluster is computed (Table 4.1). A complete
overview on the clustering with respect to each attribute is given in Appendix
B.18 - B.22.

Table 4.1: Overall Means and Cluster Means of Lager A

n µh̄25
µh̄90

µ ¯̇V
µ∆p∗ µP

KG

overall 56 0.304 0.226 0.585 0.067 0.174
1. cluster 3 0.352 0.528 0.576 0.063 0.222
2. cluster 10 0.375 0.256 0.579 0.059 0.175
3. cluster 6 0.260 0.293 0.579 0.075 0.161
4. cluster 3 0.515 0.321 0.567 0.070 0.212
5. cluster 6 0.496 0.173 0.562 0.084 0.172
6. cluster 21 0.245 0.169 0.593 0.056 0.161
7. cluster 6 0.150 0.181 0.603 0.097 0.155
8. cluster 1 0.086 0.143 0.602 0.064 0.390

The cluster means are compared to the overall mean of all elements. A binary
rating system results by labelling each cluster with ”0” for a cluster mean
better than the overall mean and 1 respectively. The result better is defined
by technological view as means less than the overall mean for h25, h90, ∆p∗,
and

∑
KG and a higher cluster mean for V̇ . Thus, each cluster is described

by the binary labels LBh̄25
, LBh̄90

, LB ¯̇V
, LB∆p∗ , and LBP

KG as shown in
Table 4.2.

In the following, the binary labels are combined to a five digit binary number
with the first, left digit representing LBh̄25

up to the last digit covering
LBP

KG, according to the columns of Table 4.2. A further simplification is
the transfer from the binary labels to a rating based on one decimal number.
Therefore, the 5 binary labels of one cluster are merged to one number by
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Table 4.2: Binary Labels of Clusters of Lager A

n LBh̄25
LBh̄90

LB ¯̇V
LB∆p∗ LBP

KG

overall 56 - - - - -
1. cluster 3 1 1 1 0 1
2. cluster 10 1 1 1 0 1
3. cluster 6 0 1 1 1 0
4. cluster 3 1 1 1 1 1
5. cluster 6 1 0 1 1 0
6. cluster 21 0 0 0 0 0
7. cluster 6 0 0 0 1 0
8. cluster 1 0 0 0 0 1

adding the values in a decimal way. Thus, a range from 0 . . . 5 results, with
the rating showing the number of attributes being poorer than the overall
mean of filtration of the corresponding beer.

Adjacent, the classes are defined as better filtration (rating 0, 1, 2) or as
poorer filtration (rating 3, 4, 5) compared to the mean of all filtration for one
beer type. Table 4.3 shows the evaluations for the example of one beer type,
the evaluations of the remaining beer types are given in Tables B.1 - B.3. As
Figure 4.5 shows, the number of poorer and better filtration is the same.

Table 4.3: Evaluation of Clusters of Lager A

binary label rating description

1. cluster 11101 4 poorer
2. cluster 11101 4 poorer
3. cluster 01110 3 poorer
4. cluster 11111 5 poorer
5. cluster 10110 3 poorer
6. cluster 00000 0 better
7. cluster 00010 1 better
8. cluster 00001 1 better
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Figure 4.5: Evaluation of Clusters of Lager A

4.1.5 Interpretation of Clusters with Decision Tree

The cluster algorithm carried out above yields similar groups but gives no
insight into the underlying reasons or aspects for the clustering. In this
approach a Decision Tree algorithm is used to reveal structures of clusters.

Thus, the datasets already used for clustering are expanded by the evalu-
ation defined in section 4.1.4. The Decision Tree method divides the data
as described in section 3.4.2 and yields the attributes and values used for
splitting. In this case it is the objective of the method to split the datasets
according to the evaluation. The results are shown in B.23 - B.26, the rating
from 0 . . . 5 is used for analysis.

The decisions trees show a major influence of haze values, both h25 and
h90, on the clusterings. Minor impact is applied by kieselguhr and pressure
difference.

4.1.6 Comparison of the Results with Experts Knowledge

To verify the method and its applicability the results are compared with
knowledge of experts. The reference brewery positions thresholds for each
of the five attributes and for each type of beer, describing different quali-
ties. The threshold values are anonymised, as well as the attribute values of
filtration are already standardised (see Chapter 3).

Table 4.4 shows the comparison of threshold values for the h25 attribute of
bottom-fermented beer (expert knowledge) with limits found by the Data
Mining methods.
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Table 4.4: Comparison of h25 thresholds from experts knowledge and Data
Mining results

experts knowledge Data Mining result

very good < x1 –
good < x2 < 0.9 · x2

middle x3 − x4 > 1.04 · x3

poor > x4 > 1.13 · x4

4.2 Classification of Filtration - Second Ap-

proach

This second approach of classifying filtration aims at improving the classifi-
cation compared to the first one. Especially a better delineation of filtration
is aspired. Moreover, the restriction to only the first filtration, having a de-
fined status, is avoided, but irrespective of preceding batches filtration can
be taken in account. Therefore, a more complex way of describing filtration
is applied as explained in the following. This approach considers the time de-
pendent behaviour. Furthermore, dummy filtration are introduced, helping
to evaluate filtration.

4.2.1 Reduction of Data

Basically, the same attributes are used as in the first approach: h25, h90, V̇ ,
∆p∗ and (dKG or

∑
KG, respectively. In contrast to the first approach data

is reduced not to arithmetic means but to monotone functions. This is carried
out by integration or summation of process data or by the combination of
them according to technological principles.

Moreover, in this approach the attributes are not related to (filtration) time
but are transformed in relation to accumulated kieselguhr

∑
KG. Expected

advance of this approach is a better comparability of filtration due to the
technological and technical background. Independently of volumetric flow
and filtration time, the maximum amount of kieselguhr is given by the con-
struction of the vessel. The remaining constraint, the pressure is dependent
of the kieselguhr layer [35] and therefore of the amount of kieselguhr, too.

The data reduction of the two haze attributes is carried out with summation
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of values. The following four figures explain the process on the example of
h25 of one filtration. Figure 4.6 displays the raw data of this precise filtration.
The typical characteristics of raw data are visible: noisy and missing data.

Figure 4.6: Example filtration: raw data of h25

These effects are abolished by interpolation which is carried out with three
objectives: removal of noise, replacement of missing data and synchronisation
of the different attribute series. Further process steps need these synchro-
nised data. The different sensors may have different time stamps and only
after synchronisation a precise assignment and charging against each other
is possible. The gaps of data, origin from sensors being out of synch or from
missing data, are filled by a linear interpolation between the last and the
next known sensor value. Thus, the unknown sensor value v2 at the time t2
is interpolated between the previous value v1 at t1 and the next value v3 at
t3 as follows (t1 < t2 < t3):

v2 =
v3 − v1

t3 − t1
· (t2 − t1) + v1 (4.1)

Fig. 4.7 shows the interpolated series of h25 of the example filtration. Noise
and gaps are eliminated but still the alternating characteristic of the series
complicates the classification. Therefore, in this approach the series of h25

and h90 are transformed by summation. It is emanated that the haze value
of the suspension beer is correlated with the mass of the particles causing the
haze. The summation is based on this assumption. Furthermore, for reasons
of comparability the attributes are now related to the amount of kieselguhr.
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Figure 4.7: Example filtration: interpolated data of h25

The third figure (Fig. 4.8) shows the summation of h25 dependent of the
summation of kieselguhr. This new illustration yields a monotone increasing
characteristic of the transformed attribute, being obviously nearly linear.
Generality of the example filtration is shown in Appendix C (Fig. C.1). The
characteristics of the series resemble those of the example.

Figure 4.8: Example filtration: summation of h25

The last diagram (Fig. 4.9) displays the approximation with a linear equation
of the form y = bx + c with b representing the slope and c the axis intercept
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which is in this case the origin (c = 0), based on the technological fact that
at the beginning of filtration (

∑
KG = 0) no haze particles were applied on

the filter. Already the summation shows this feature.

Figure 4.9: Example filtration: linear regression of h25

In the Appendix C (Fig. C.1 and C.2) the summation and regression di-
agrams of several filtration are displayed. The representation of the time
series by the transformed attributes and their linear equations is evaluated
by the suitability of this approximation. An overview on the quality of the
linear regression gives Fig. 4.10 which shows the mean of correlation and
its deviance as well as minimum and maximum values for the regression of
all filtration for the four beer types Hell A (176 filtration), Hell B (288 fil-
tration), Nonalcoholic (82 filtration) and Pilsener (98 filtration). It can be
seen, that most filtration can be approximated by linear regression with a
very high correlation. Obviously, linear regression of summation qualifies
very good for approximation of the haze time series.

The two remaining attributes V̇ and ∆p∗ are treated in a different way due
to different initial situation. On one hand, volumetric flow is kept constant
during most of filtration time at the desired value and only regulated to
adapt the process to filtration problems for example. On the other hand,
pressure difference shows in most cases a monotonic characteristic, cause by
the increasing kieselguhr layer and the residues within the layer. Therefore,
summation is not taken into account for these attributes, but more over they
are regarded with respect to technological facts and known dependencies
which are introduced briefly in the following. Evers [35] gives a detailed
introduction to this topic.
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Figure 4.10: Comparison of correlation coefficient of linear regression of h25

and h90 for different beer types.

The ideal cake filtration is described by Eq. 4.2, known as Darcy’s law.
Stringently, this equation is suitable only for laminar flows of pure newtonian,
non polar fluids through porous, incompressible filter cakes.
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dV

dt
=

∆p · A
η ·R

(4.2)

Thus, the volume flow is proportional to pressure difference between inlet and
outlet of filter ∆p as well as to the filter area A and inversely proportional
to dynamic viscosity of the suspension η and filter resistance R. The latter
parameter is made up of cake resistance rc and resistance of the supporting
layer r0 as shown in Eq. 4.3 [35].

R = rc + r0 (4.3)

Evers [35] describes also that the cake resistance increases proportionally to
the layer thickness hc (Eq. 4.4) inducing the specific cake resistance α.

rc = α · hc (4.4)

With the assumption of A and η being constant Eq. 4.2 can be transformed
as follows:

R ∼=
∆p

V̇
. (4.5)

Moreover, from Eq. 4.3 and 4.4 it can be deduced, that the filter resistance R
behaves proportional to the increasing filter cake and therefore to the amount
of Kieselguhr:

R ∼=
∑

KG (4.6)

Furthermore, Hagen-Poisseuille’s law (Eq. 4.7) and a variation of the fil-
ter equation from Carmann-Kozeny (Eq. 4.8) can be applied for a better
description of filter processes in brewery.

dV

dt
=

A ·∆p · ε · d2
0

η · 32 · hc

(4.7)

dV

dt
=

A ·∆p · ε3

η · hc ·K ′ ·O2
s · (1− ε)2

(4.8)

with
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A filter area

∆p pressure difference

ε porosity

d0 diameter of capillars

η viscosity

hc layer thickness

K ′ Kozeny resistance constant

Os specific surface

These coherences rely on generalising assumptions like the flow through par-
allel cylindrical capillaries (4.7) or on parameters like specific surface of filter
cake Os which can be measured only with much effort.

Therefore, in practice an enhanced Darcy equation (Eq. 4.9) is used. This
equation considers cake resistance as well as resistance of supporting layer
and consists of measurable and derivable quantities, respectively [35].

∆p(t) =
η

A
·
(α · κ

A
· V (t) + β

)
· dV

dt
(4.9)

In the following the transformation of ∆p and V̇ is carried out analogous and
according to Darcy’s law and the equations 4.5 and 4.6.

Consecutive, ∆p

V̇
is illustrated dependent of

∑
KG as figure 4.11 shows.

In agreement with the equations mentioned above, this figure describes the
increment of filter resistance, for this example approximated with a linear
regression. In this case the intercept denotes the filter resistance at the
beginning of filtration. The slope illustrates the increasing resistance. In
this special case the linear regression yields a good approximation of the
characteristic but in the following also nonlinear regression considering a
squared term y = ax2 + bx + c is applied. Generally, the axis intercept
defines a measurement that enables the conjointly analysis of all filtration,
regardless of the number of previous filtration.

Just as an overview, Figure 4.12 shows filtration of the pale ale hell A carried
out on a freshly cleaned filter. With only few outliers the filtration feature low
resistances at the beginning, evolving further on with differing characteristics
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Figure 4.11: Graphical representation of ∆p and V̇ dependent of
∑

KG
(example filtration)

Figure 4.12: ∆p, V̇ dependent of
∑

KG regarding first filtration of hell A

pertaining length of filtration and increase of the characteristics. Figure 4.13,
using the same axis scaling, displays filtration of the same beer applied on
the filter as second batches. Dependend on antecedent filtration and their
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impact on the filter, the second filtration show different initial conditions
with a wider range than the first ones. Also, on this two figures a problem
of assignment of the batches becomes obvious, as some filtration show a
strong decreasing characteristic at the very end of the process. The filtration
showing this effect are found to be the last filtration of a process without
any following ones. To avoid this effect in the following the filtration data,
mainly the duration of filtration, is adopted to this fact.

As already mentioned above, for the approximation of this filtration linear
(y = bx + c) and quadratic (y = ax2 + bx + c) regression are applied. Figure
4.14 displays the results of the linear regression whereas figure 4.15 shows the
ones of nonlinear regression. A deeper look at the correlation of both regres-
sions reveals that the nonlinear regression does not enhance the linear one.
This is underlined by the quadratic term a being negligible low compared to
the linear factor b. Appendix C contains the comparison of correlation (Tab.
??) and analysis of the quadratic term carried out with a distribution anal-
ysis (Fig. ??). Because of the marginal enhancement reached by nonlineare
regression, in the following the more simple approach of a linear regression
is applied.

Thus, in the remainder the axis intercept c and the linear term b of regression
are considered, with c describing the initial state of filter and b yielding the
increase of filter resistance.

Figure 4.13: ∆p, V̇ dependent of
∑

KG regarding second filtration of hell A



68 CHAPTER 4. RESULTS

Figure 4.14: Linear regression of ∆p and V̇ dependent of
∑

KG regarding
first filtration of hell A

4.2.2 Dummy Filtration

Furthermore, within this second approach dummy filtration are introduced.
Dummy filtration represent virtual filtration characterised by the use of the
threshold values which are considered by experts for evaluation of the process.
Regarding these attributes and their thresholds, process data of filtration is
generated by a Java program and appended to the respective database tables.
The further processing like preprocessing or summation of dummy filtration
is exactly the same as those of regular filtration data.

In detail, the attributes h25, h90, ∆p and dKG are considered with their
thresholds shown by table 4.5.

These thresholds are upper limits so that a filtration is evaluated good re-
garding h25 with h25 ≤ hg

25. For a better representation of the evaluation
ranges in this approach the values describing the mean of these ranges are
applied, as described in table 4.6. As the good range has no lower limit, the
therotical lowest value is considered, in case of the example h0

25 = 0. The
other attributes are treated analog.

The remaining attributes needed for dummy generation are volume flow V̇
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Figure 4.15: Nonlinear regression of ∆p and V̇ dependent of
∑

KG regarding
first filtration of hell A

Table 4.5: Attributes and their thresholds from experts knowledge

evaluation h25 h90 ∆p dKG

good hg
25 hg

90 ∆pg dg
KG

middle hm
25 hm

90 ∆pm dm
KG

poor hp
25 hp

90 ∆pp dp
KG

Table 4.6: Means of evaluation ranges as used for generation of dummy
filtration with the example of h25

evaluation lower limit upper limit mean of range

good h0
25 hg

25 hg∗
25 = 0.5 ∗ (hg

25 − h0
25) + h0

25

middle hg
25 hm

25 hm∗
25 = 0.5 ∗ (hm

25 − hg
25) + hg

25

poor hm
25 hp

25 hp∗
25 = 0.5 ∗ (hp

25 − hm
25) + hm

25

and output pressure pout. As the maximal volume flow V̇ max is aspired, this
value is used to compute the process data. Furthermore, of all filtration
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output pressure is found to be pc
out with only very little deviation so this

value is also regarded for dummy filtration.

As the flow of kieselguhr suspension V̇KG [l/h] is considered by filtration PDA
it is calculated as follows (Eq. 4.10):

V̇KG[l/h] =
dKG[g/hl] · V̇ max[hl/h]

cKG[kg/l]
. (4.10)

For all these attributes process data is computed considering a filtration of
one hour. These process data are stored analog to the regular process data
and also processed similar, afterwards. As within this approach the linear
term of regression of those transformed attributes is taken into account, the
filtration time of one hour suffices.

In the following these induced, virtual filtration based on experts knowl-
edge are used as reference processes. They act as tracers and facilitate the
evaluation of the adjectant methods and their results.

To visualise and compare dummy and regular filtration a web diagram is
considered. Figure 4.16 show the dummy filtration marked with the colours
green, yellow and red as they are displayed in general.

This diagram displays the attributes of dummy and regular filtration in four
dimensions. These are the slopes of regression of haze values bh25 (slope of∑

h25 dependent of
∑

KG) and bh90 (slope of
∑

h90 dependent of
∑

KG)
and the slope of increase of filter resistance b∆p/V̇ (slope of ∆p/V̇ dependent
of
∑

KG). The fourth dimension represents the ratio of applied kieselguhr∑
KG and the filtrated volume of the corresponding batch Vbatch. These

four dimensions represent two features: quality and performace of filtration.
The quality of the filtration is measured by the two attributes containing the
haze values, as it is the target of filtration to produced a bright beer. The
impact of the process on the filter as measured by filter resistance and the
mass of applied kieselguhr diplays the performance of filtration.

Figure 4.17 shows some example filtration compared to dummy filtration
using the web diagram.

These four filtration are representative ones of the whole universe of regular
filtration. Filtration d shows very good quality and performance as all four
attributes are lower than the ones of the good dummy filtration. Filtration
c describes a filtration with a very low increase of filter resistance combined
with medium (bh90) and high (bh25) slopes. For this example the rate of∑

KG to Vbatch attracts attention as it is very high. A deeper look at this
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Figure 4.16: Visualisation of filtration using web diagram

filtration and its original characteristics explains this diagram. This precise
filtration c is characterised by two features: the batch size of this filtration c
is very small and it is the first batch on a clean filter. As the first batches are
processed with declining dosage of kieselguhr emerging from a high dosage,
this outstanding small batch shows a very high rate of kieselguhr compared
to the filtrated volume. Whereas filtration b shows very high slopes and a
medium rate of kieselguhr and volume characterising a very poor batch re-
garding both quality and performance, filtration a owns poor quality features
combined with good to middle performance.

4.2.3 Cluster Analysis

Similarly to the first approach reduced data is used for further analysis,
starting with Cluster Analysis. Following the results of the first approach,
only AGNES is applied as hierarchical method, supplemented by the k-means
algorithm as a partitioning method. Combined with representative dummy
filtration the k-means algorithm is preferred over the earlier used method
PAM, because of its better aptitude, explained by the use of dummy filtration
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Figure 4.17: Example filtration (a, b, c and d) graphically represented with
web diagram

as centroids for the clustering.

Appendix C contains the results of the clustering approaches. The results
of AGNES are characterised by are very high agglomeration coefficient ac =
0.99. Figure C.3 shows the clustering of hell A filtration without respect to
filter state. Additionally, Figure C.4 displays the clustering of the same data,
supplemented by three dummy filtration (good, middle and poor). Compari-
son of the two illustrations shows, that the additional dummy filtration have
only little impact within the clusters but do not affect the global result of
Cluster Analysis.

Furthermore, an analysis using the k-means algorithm is carried out. As this
method generates clusters around given centroids or chooses those centroids
randomly from the given data, both approaches are applied. In Appendix,
figures C.5 and C.6 display the complete results, Table 4.7 and 4.8 summarise
these clusterings.

Obviously, the algorithm determines the same cluster using random centroids
and using dummy filtration as centroids, only the sequence of clusters differs.
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Table 4.7: Summary of k-means results using random centroids

cluster elements b̄h25 b̄h90 b̄∆p/V̇

1 34 0.129 0.177 0.915
2 6 0.156 0.230 2.802
3 134 0.141 0.205 0.264

Table 4.8: Summary of k-means results using dummy filtration as centroids

cluster elements b̄h25 b̄h90 b̄∆p/V̇

1 134 0.141 0.205 0.264
2 34 0.129 0.177 0.915
3 6 0.156 0.230 2.802

The cluster means of slopes b̄ and the number of elements within the three
clusters equate.

Furthermore, the clusters found by AGNES and k-means are very similar,
assuming a splitting of the clusters given by AGNES at the level yielding
the same number of clusters than k-means. Comparing the results of both
methods (s. Appendix C, fig. C.3 and fig. C.4) shows, that the same small
group of six elements appears using the hierarchical method, marked by a
high dissimilarity to the other elements. The separation of the remaining
two cluster differs exiguous from AGNES to k-means by ten elements.

4.2.4 Evaluation of Clusters

Adjacent, the unlabelled groups are evaluated. Because of the features of
this approach, the clusters can be evaluated regarding two property. Firstly,
dummy filtration enable evaluation of clusters as they act as tracers among
the regular filtration. Table 4.9 describes the used dummies.

Thus, by this means the cluster can be labelled. The already presented re-
sults of AGNES and k-means allocate the dummies differently. Both Meth-
ods yield a large cluster (AGNES : 124 elements, the left branch; k-means :
134 elements) comprehending the good dummy and another group (AGNES :
44 elements, the middle branch; k-means : 34 elements) containing the poor
dummy. The third dummy filtration (middle) resides among those 10 filtra-
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Table 4.9: Description of dummy filtration

description filtration id bh25 bh90 b∆p/V̇

good 10000 0.046 0.093 0.257
middle 10040 0.069 0.139 0.482
poor 10080 0.083 0.222 0.617

tion assigned to the large cluster by k-means but to the medial cluster by the
AGNES method, respectively. For both the hierarchical as the partitioning
method, the third cluster, having six elements, can not be labelled using a
dummy.

Therefore, the evaluation is carried out with the help of cluster means as
summarised in tables 4.7 and 4.8 in comparison with the slopes of dummy
filtration (Tab. 4.9). As the remaining cluster is characterised by attributes
being notedly higher than those of the poor dummy with particularly an
outstanding high slope b∆p/V̇ , this group is identified as a group of filtration
showing very poor characteristics compared to dummy filtration.

4.2.5 Interpretation of Clusters With Decision Trees

The results of Cluster Analysis are further analysed by means of Decision
Tree algorithm, as already used before. Target parameter for construction
of Decision Trees is given by the clustering, by the number of the clusters.
The Appendix contains figures C.7 and C.8, showing the resulting trees, both
based on AGNES and k-means clustering.

In this case, the Decision Trees are completely based on the performance
attribute b∆p/V̇ . Splitting of the data universe using this attribute yields
trees with nearly pure leave nodes.

4.3 Knowledge Discovery

This section takes a deeper look at the input data, the laboratory data.
These data are analysed using three methods: the Decision Tree method, a
method based on the Expectation Maximisation algorithm and the Principal
Component Analysis. The results are presented in the following.
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This knowledge discovery aims at revealing patterns, associations or structure
within the data which enhances the prognosis task, but furthermore it can be
basis for case studies. As already mentioned above, storage time Ts, original
gravity Go, alcohol content, both per weightAw and volume Av, apparent Es

and real Ew extract, apparent Vs and real Vw attenuation, vicinal dicetones
DA, pH-value and colour F are available for these analysis.

4.3.1 Decision Tree Analysis of Laboratory Data

An first overview on input data is gained by a Decision Tree analysis of
laboratory data using filtration classes as target attribute for construction of
the tree. All of the laboratory attributes described above are used as input
data. The complete resulting Decision Tree for the example of beer lager A
is presented in Appendix D (Fig. D.1). The most important attributes for
tree construction are storage time, alcohol content, attenuation, pH-value
and colour. Original gravity appears only on some leafs at the bottom of
the tree. The impact of storage time stands out among the other attributes.
The insight this Decision Tree gives on laboratory datasuffices to extract
information for construction of fuzzy sets and indicates influences of the
storage conditions on the filtration. In the following, further investigations
on storage conditions are carried out and later laboratory data is analysed
in detail by means of EM algorithm and PCA.

Figure 4.18 shows the same tree with a coloured bar representing the clas-
sification (from dark red as very poor to dark green as very good) of the
underlying filtration. The leafs show groups of good homogeneity. Further-
more, all nodes described by the outstanding attribute Ts are marked red.

Obviously, this figure marks the role storage time Ts has. Comparison of the
splitting of the data caused by storage time and the corresponding classifi-
cations indicates an important influence of Ts on filtration.

Following this indication, further investigations on influence of storage time
are carried out. Therefore, the distribution of better and poorer filtration
with respect to storage time is analysed. Figure D.2 shows these distributions
of lager A and lager B separately for first and second filtration.

Figure 4.19 displays this disturbion of filtration classes regarding storage
time in detail. It reveals a storage time Ts,max which splits the storage time
in two ranges. The range having longe storage time Ts > Ts,max shows a
poorer rate of better and poorer filtration classes than filtration with shorter
storage time. An optimal range characterised by an advantageous rate of
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Figure 4.18: Decision tree of laboratory data

filtration classes is limited at the lower bound by Ts,min, due to technological
requirements like reduction of vicinal dicetones.

Figure 4.19: Distribution of filtration classes regarding storage time for the
example of lager A first filtration

As storage time is one feature in the field of storage conditions, another is the
geometry of the storage tank. In breweries, horizontal tanks were commonly
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used for years, but these days vertical tanks are common. With the geometry
of the vessel also the storage conditions like for example pressure differ. The
beer type lager B permits the consideration of geometry as it is stored in
both types of vessel with major utilisation of the standing vertical tanks. The
distribution of filtration classes with respect to tank geometry is presented
in figure 4.20.

Figure 4.20: Influence of storage tank geometry on distribution of filtration
classes

The black horizontal line marks the ratio of better to poorer filtration of
all filtration of this beer type lager B. The ratio of only filtration stored in
vertical tanks is very similar, but the ration considering horizontal tanks is
adverse. The low number of filtration stored in horizontal tanks nh = 24
compared to nv = 163 vertical stored filtration attenuates the result, but
still it indicates a marginal influence of geometry.

The last feature in the field of storage conditions examined is storage de-
partment. The storage cellar is split up in several different departments,
each containing several tanks. Each department is equipped with its own lie
system and blending device. The beer type lager A is stored in eighteen dif-
ferent departments all consisting of horizontal tanks of identical size. Thus,
investigation on influence of storage department on filtration is carried out
for this beer.

Regarding the first classification approach this beer type shows a ratio of
better to poorer filtration rbetter/poorer = 0.5. Assuming no influence of the
source department on filtration classification the distribution of filtration
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classes with respect to departments will show the same ratio for all depart-
ments with minor variations. Therefore, this distribution is presented in
figure 4.21.

Figure 4.21: Influence of storage department on filtration classes

With exception of three departments (Dep. 13, 14 and 18) all other de-
partments show only the expected fluctuations of distribution of filtration
classes. Departments Dep. 13 and Dep. 14 attract attention by notedly
better ratios of good to poor filtration, whereas Dep. 18 is identified having
an unfavourable ratio.

Alltogether, from storage conditions only storage time shows a significant
impact on filtration, whereas storage departments and the geometry of tanks
affect filtration only marginal.

4.3.2 Analysis of Laboratory Data with EM Algorithm

Within the presented thesis, the Expectation Maximisation (EM) algorithm
is used for analysis of laboratory data, to reveal structures within these data.
Therefore, EM algorithm is applied on each laboratory attribute of each beer
type. Targets of analysis are the frequency distributions of laboratoy data
as well as filtration data.
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Firstly the ranges for the distribution of frequency of occurrence are deter-
mined. Starting from a maximum of 100 ranges with a very small width
the number of ranges is decreased iteratively until the ranges are represen-
tative. As a criterium for further expansion of range width the number of
ranges containing not more than 3 elements has to be less than one third
of all ranges. Figure 4.22 shows a frequency distribution using to different
range width. The absolute frequency is presented over the ranges. Therefore,
the scale of abscissae changes. The ranges used for part b of this figure is
three times wider than the range applied at part a. Thus, the noise of the
distribution is reduced.

The next step, assigning of superposed distributions, an expectation of those
distributions has to be made. This is carried out by identifying the peaks of
possible distributions. Thus, as shown in figure 4.23, the maximum values,
marked by the red arrows, are determinded, together with their right side
limit value, the next peak minimum, visualised by the green arrows. For
each possible distribution, these two values, supplemented by an assumed
standard deviation σ = 1 are further processed. If, like for the left peak, no
possible minimum can by identified only the peak maximum is considered,
marked by both a red and green arrow.

Subsequently, these values, used as a first expectation, are processed with
the help of the Microsoft Excel Solver to compile subordinate distributions.
Therefore, by the means of EM algorithm, those distributions are calculated
iteratively. Figure 4.24 shows the results of an example distribution. The
coloured lines represent the subordinate distributions.

The exemplary distributions of laboratory data attributes alcoholic content
Aw, real extract Ew and original gravity Go, both for lager A and lager B,
are presented in Appendix D, figures D.3-D.6.

The number of subordinate distributions differs for the attributes, but the
figures show very similar underlying distributions for the same attribute of
those two different beer types. Thus, the original distribution of for example
alcoholic content (Fig. D.3 and D.4) is represented by five subordinate ones.
The ranges of these distributions are used for a gradation of the attribute.
For other attributes like original extract and attenuation more subordinate
distributions describe the frequency distribution.

As a further simplification those peaks are conglomerated to 5 classes iden-
tified as lower, low, middle, high and higher. Therefore, the three most im-
portant peaks are considered: one of these peaks represents the peak of the
overlying distribution, the two others are chosen among the left and right
neighbour peaks, still overlapping the first one. These peaks, from left to
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Figure 4.22: Example of a frequency distribution using small (a) and wide
(b) ranges

right are identified as low, middle and high. The range left of low is marked
as lower, the higher class is defined as right of high.

Analogue, classification of filtration attributes like slopes of haze values and
filter resistance is carried out. Those resulting classes of filtration and lab-
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Figure 4.23: Example of identification of possible superposed distribution

Figure 4.24: Example of superposed distributions

oratory attributes and their limitating values are for example applied for
defining fuzzy sets.
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4.3.3 Principal Component Analysis of Laboratoy Data

As a further analysis of laboratory data and specially the influence on fil-
tration a Principal Component Analysis of laboratory data is carried out.
Input parameters of this approach are the laboratory attributes as already
used before: Go, Aw, Ew, pH, C, DA and tS. They are amended by the EM
classification of slope b∆p/V̇ as target attribute.

The PCA transforms the attributes to principal components. The following
table presents the cumulated percentages of principal components in total
variation.

Table 4.10: Cumulated percentages of PCA of laboratory data

component pc1 pc2 pc3 pc4 pc5 pc6 pc7 pc8 pc9

percentage 24.62 42.81 59.04 72.02 80.96 88.30 95.14 99.99 100.00

In the following, figure 4.25 shows the results of that analysis, presented
as a biplot of the components pc2 and pc3. The target attribute value of
the elements, the classification of b∆p/V̇ according to the EM algorithm, is
marked by ”1” for high, ”0” for low and an asterisk ”∗” for middle slopes. The
contributions of the original attributes are visualised as arrows, as described
in section 3.4.6. Biplots of the remaining combinations are presented in
Appendix D.

This figures demonstrates covariance of attributes. For example the nearly
perfect negative correlation of storage time ts and vicinal dicetones DA,
technologically caused by degradation of DA during storaging. Moreover,
this figure visualises a separation of high and low slopes of ∆p/V̇ , but still
with some overlappings. The elements characterised by middle slopes are
distributed among both other groups. Therefore, the differences of filter
resistance are not explained by this PCA.

To implement more information, two other attributes are recruited. These
are batch number and the initial filter resistance of the filtration c∆p/V̇ . Both
attributes give information on the initial conditions of the filtration. Together
with laboratory data the carried out PCA yields better results in separating
the target attribute, as figure 4.26 displays. The target attribute values are
marked within the figure as ”1” for high and ”0” for low. The elements
showing middle slopes of filter resistance are identified by an asterisk(∗).



4.4. PREDICTION OF FILTRATION 83

Figure 4.25: Principal Component Analysis of laboratory data regarding
slope of filter resistance

Still, the technological covariance can be found, but due to the recruited
attributes a better separation is yielded. Those two attributes are found
to have a high correlation and influence the better separation mainly. The
”noise” caused by the middle slopes of filter resistance still exists, but by
this means the low and high ones are separated nearly completed from each
other with only few overlappings.

4.4 Prediction of Filtration

Approaches in predicting filtration based on the available laboratory data are
carried out using different input data (partly results from other methods),
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Figure 4.26: Principal Component Analysis of laboratory data supplemented
by batch number and initial filter resistance regarding slope of filter resistance

different methods and also combination of methods. Even the output of those
models differs from predicting tendencies of filtration (better and poorer)
up to the forecasting of attribute values like the slope of increasing filter
resistance (b∆p/V̇ ). These attempts and their results are described in the
following.

4.4.1 Fuzzy Logic

Among the prediction methods, Fuzzy Logic approaches are established for
prediction tasks. Thus, several Fuzzy Logic models are set up within this
thesis. These approaches differ in the basis of fuzzy sets, both input and
output data. Commonly for all approaches, the fuzzy sets are defined man-
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ually from the used data, for example Decision Tree results, findings of EM
algorithm or PCA, or combination of these. The respective approaches are
presented in the remainder of this section.

Fuzzy Sets derived from Decision Tree of laboratory data and first
classification

Based on the results of Decision Tree analysis of the laboratory data the
fuzzy sets are defined. Therefore, the limit values of each attribute yielded by
the tree are accounted together with the respective classes of corresponding
filtration by means of better and poorer filtration.

The resulting fuzzy set yields results of maximal 60% correct predictions,
even after adapting of the set.

Fuzzy Sets derived from Decision Tree results and EM classes of
filter resistance

For the approach, the input sets are also constructed based on the Decision
Tree of laboratory data. Differing to the first approach, this time target
attribute is the slope of filter resistance and its classes generated by EM
algorithm. The resulting fuzzy set is very lean as it contains only 14 rules.
It shows results of up to 65% correct predictions.

Fuzzy Sets derived from EM algorithm results

This third approach uses the results of EM algorithm of laboratory to con-
struct the input sets of the fuzzy system. Figure 4.27 shows the input set of
stw as an example.

Also, the output set base upon EM results, respectively of those from the
analysis of slopes, especially in this case the slope of filter resistance. This
proceeding offers results of about 50% up to 60% at maximum, depending
on the defined fuzzy sets.

Fuzzy Sets derived from various results

This final Fuzzy Logic approach combins the rules of the approach based on
Decision Tree findings and those based upon EM results. This proceder leads
to results of maximal 70% of correct predictions.
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Figure 4.27: Fuzzy input set of original extract stw

4.4.2 Artificial Neural Networks

Furthermore, within this work ANNs are applied for prediction of filtration.
Here, two approaches are carried out, predicting firstly the classes resulting
from the first classification approach and secondly those of the second ap-
proach. For each approach network topology of the ANN as well as the learn-
ing algorithm are evaluated. Overall, the best results for those approaches
are reached by a net of six input nodes, one hidden layer having four nodes
and at last two output nodes. Resilient propagation qualifies best as training
algorithm. Figure 4.28 displays the applied topology for the example of the
classes resulting from the first classification approach.

ANN based on laboratory data for prediction of better and poorer
filtration according to the first classification approach

After evaluation of different topologies reaching from up to four layers with
overall 25 nodes down to networks having three layers with only 12 nodes,
best results are reached applying the topology presented above. This ANN
yields correct predictions for about 70% of the testing data.

ANN based on laboratory data for prediction of very good and
very poor filtration according to the second classification approach

The topology as well as the results of this second ANN approach are very
similar to those of the first ANN approach. The difference in topology is the
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Figure 4.28: Topology of applied ANN

output nodes representing the very good and very poor filtration. Again, the
ANN results a prediction rate of about 70%.

4.4.3 Predict Tree

This method uses a Decision Tree for prediction. Therefore a Decision Tree
is constructed by a subset of data, the training data. The presented method
predicts the target values of the remaining testing data exerting that Decision
Tree. In this work several approaches based on this method are carried out,
differing in input data and target values.

Predicting better and poorer filtration according to the first clas-
sification approach

For this approach, the Decision Tree is set up from laboratory data. The
classes better and poorer, yielded by the first classification approach, are
applied as target values as well as the rating from ”0” to ”5”. The Predict
Tree yields results of about 50% of the precise rating and up to 70% for the
first mentioned two classes.
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A deeper look on the generated trees indicates some inhomogeneous leafs,
representing not only elements of contiguous ratings but of distant ones.
Considering these groups as negative influences factors on prediction, the
classification carried out is adapted by classifying only homogenous classes
as described earlier and identifying and labelling the inhomogeneous ones.
Thus, the original ratings 0 . . . 1 as well as the derivated classes better and
poorer are complemented by the class inhomogeneous. This reclassification
improves prediction quality up to 70% for prediction of rating and to about
80% for coarse classes.

Predicting very good and very poor filtration according to the sec-
ond classification approach

The classification of the second approach together with laboratory data gen-
erates the Predict Tree for this approach. The prediction of those classes of
very good and very poor filtration succeeds for about 70% of all data. Like
for prediction of the classes of the first classification approach, this prediction
shows false postives and false negatives.

Predicting the slope of filter resistance form laboratory data

The third approach carried out with this method predicts the slope of filter
resistance b∆p/V̇ . As a precise prediction of the real value is very inprobable,

a distance d = |breal
∆p/V̇

− bpredict

∆p/V̇
| of predicted and real value is applied. As the

values are normalised to the range 0 . . . 1 the maximum distance dmax = 1.
Figure 4.29 displays the results of prediction dependent of this distance d.

The green line shows the increase of prediction quality with increasing dis-
tance d. At a distance of d = 0.24 a prediction rate of more than 80% is
reached. The false prediction decrease from 64% higher and 33% lower pre-
dictions down to 7% and 11% for a distance of d = 0.24, as the yellow line
for lower and the red for higher predictions shows.

Predicting the slope of filter resistance form the laboratory at-
tribute classes yielded by EM algorithm

This last Prediction Tree approach recruits the classes of laboratory data
attributes extracted from EM algorithm analysis of laboratoy data. This
causes a generalisation of input data. Output data, the target attribute,
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Figure 4.29: Prediction results dependent on distance d of predicted and real
value

features again the slope of filter resistance b∆p/V̇ . This approach results
correct prediction in around 70% of validation cases.

4.4.4 Conclusion of Prediction Approaches

The following table 4.11 sumarises the results of prediction approaches.

Obviously, the best results show prediction rates of 80% at maximum. The
following Chapter 5 discusses these results and their preceding process steps
in the Data Mining process.
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Table 4.11: Summary of prediction approaches and results

method input data target attribute prediction
result

Fuzzy Logic Decision Tree of labo-
ratory data

classes better and
poorer

∼ 60%

Fuzzy Logic Decision Tree of labo-
ratory data

EM classes of b∆p/V̇ ∼ 65%

Fuzzy Logic EM classes of labora-
tory data

EM classes of b∆p/V̇ ∼ 60%

Fuzzy Logic combination of EM
classes and Decision
Tree of laboratory
data

EM classes of b∆p/V̇ ∼ 70%

ANN laboratory data classes better and
poorer

∼ 70%

ANN laboratory data classes very good and
very poor

∼ 70%

Predict Tree laboratory data classes better and
poorer

∼ 80%

Predict Tree laboratory data classes very good and
very poor

∼ 70%

Predict Tree laboratory data b∆p/V̇ < 80%

Predict Tree EM classes of labora-
tory data

EM classes of b∆p/V̇ ∼ 70%



Chapter 5

Discussion

This chapter discusses the methods and results of the presented thesis. Con-
sidering the presented CRISP-DM process model for Data Mining tasks (Fig.
3.1) a constant evaluation and discussion of methods and results is necessary.
Due to the formal structure of this thesis this repeating proceeding is pre-
sented in a linear way in the following.

In the following the three previous defined subtasks classification, knowledge
discovery from laboratory data and prediction are discussed. On top of that
a conclusion of the complete Data Mining process, its applicability and its
assets and drawbacks is given for especially the technological motivation and
target of this presented thesis.

5.1 Classification Approaches

During this work, two approaches of classifying filtration are carried out.
Target of these approaches is the allocation of relevant information included
within the process data. Therefore the data is reduced to manageable units.

These approaches differ mainly in the process of data reduction, but thereby
the subsequent processes are bothered. This influence and the methods them-
selves are discussed in the following regarding applicability and findings.

91
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5.1.1 Potential Of The Used Methods

Data Reduction

Both data reduction approaches of this work show their own excellences and
impairments. The first approach enables a detailed view on each of the
used attributes. Beside that, the description of each filtration by only the
arithmetic mean does not allow a considering of individual characteristics.
Further on, this proceeding determines examination of only the first filtration
of each batch. Another impact on this method is given by technological
constraints, as the kieselguhr dosage is regulated for the first filtration in a
declining way, so that these filtration show high amounts of kieselguhr. This
is seen especially in filtration of small volumes.

The second approach is carried out to remedy most of the restrictions men-
tioned above. As shown, the integration of attribute values of the filtration
time series yields monotonous functions. Furthermore, a regression of these
functions enables a high reduction of the process data, comparable to those
reduction of the first approach. The axis intercept of those regressions de-
scribes the initial state at beginning of each filtration. Thereby, the com-
parability of filtration is limited only to the beer type, but no more to the
position of the filtration within the corresponding batch.

Therefore the second approach applies obviously better as it enables the
further processing of all filtration. In reference to the results of both classi-
fication approaches, identifying on the one hand the quality attributes (h25

and 90) as main influences (first approach) and on the other hand the per-
formance attributes (∆p, V̇ and

∑
KG combined by b∆p/V̇ ), each approach

seems to enable a different view on the data.

Cluster Analysis

Especially within the first classification approach several clustering algo-
rithms and their parameters were analysed. Considering their results the
algorithm AGNES, showing the best separation of groups is chosen for fur-
ther processing. This method reveals structures and patterns of fitration
data and therefore forms the fundament for the adjacent classification of
these filtration.
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Evaluation

With respect to the two data reduction approaches, two adequate ways of
evaluating clusters are carried out. The Assessment applied for the first
approach is based upon an assessment of each of five filtration attributes,
yielding a 5 digit binary evaluation. This may be summarised to a 1 digit
decimal number, yielding a range 0 . . . 1, or even to a two class allocation,
better and poorer. Particularly the binary evaluation suffices for a detailed
look on filtration. Thus, a discussion with experts revealed information that
special combinations of attribute evaluations indicate reasons. Most notably
is the combination of a high value of pressure increase ∆past and high mean
of haze h90 which may be indicating high values of β-glucanes [66].

Dummy filtration are introduced for the review of the clusters (second ap-
proach). These virtual filtration are defined with respect to the threshold val-
ues used by experts for evaluation of filtration. The presentation of dummy
and real filtration within a web diagram enables the evaluation and discus-
sion of filtration. Furthermore, these dummy filtration act as tracers within
the Data Mining process and allow therefore an opportunity of evaluation.

Decision Tree

This method within this subtask classification reviews the evaluation of fil-
tration clusters. Particularly for the first classification approach, this method
has shown its applicability by revealing nearly the experts threshold values
for filtration attributes, as described in Chapter 4 with this example of haze
h25.

5.1.2 Findings

The outstanding result of this subtask is given by the possibility of a machine-
aided classification of filtration, based on Data Mining methods. The fact
that these classes of Data Mining methods comply those classes experts would
define underlines the applicability of the approach and the chosen Data Min-
ing methods.

Another important result of this subtask is the qualification of the second
classification approach which is based on a data reduction by generation of
monotonous functions of process data. This leads to the conclusion that the
investigation of all filtration of one beer type without further limitation gets
possible.



94 CHAPTER 5. DISCUSSION

5.1.3 Open Questions

Concluding, the previously discussed classification approach suffices accord-
ing to the defined subtasks targets. Nevertheless, some open questions re-
main. These questions deal mainly with an enhancement of data reduction
and therefore of the whole classification.

Following the discussion of data reduction, one question needs to be asked,
whether the assets of both approaches of reduction can be combined (e.g. by
considering results of both approach for further classification).

Considering the second approach, one may think of advancing this approach,
too. Purchase for this is given by the regression of the monotonous function.
Though the linear regression shows very good correlation to these functions, a
consideration of different sections of such a function may reveal small changes
of the gradient. These knicks of the gradient may further on lead to an
enhanced classification and may reveal further technological impacts.

Furthermore, a third approach, the clustering of the time series, may suffice.
Warren Liao [114] gives a survey on clustering techniques for time series data.
More over, papers dealing with time series classification [96, 25] and Data
Mining approaches regarding time series [120, 49] indicate the suitability of
such approaches.

Independent of an enhancement of the data reduction methods a weighted
contemplation of filtration attributes will better satisfy the constraints in
practice. Thus, in practice the attribute h25 becomes less important [113].
Therefore, a detailed analysis of h90 in combination with ∆p∗ and V̇ may
lead to better and more practical results.

At last, the question arises, whether these approaches qualify for automatic
regulation of filtration process. Especially the second approach of data reduc-
tion and the principle of monotonous functions supplemented by the knowl-
edge of dummy filtration provide the opportunity to interfere with the process
for an optimisation of the process.

5.2 Knowledge Discovery of Laboratory Data

This subtask of the defined Data Mining process presents the second fun-
dament for the prediction task. It aims at finding patterns, associations or
structure within laboratory data, the input data of prediction. The remain-
der of this section discusses the used methods and their results.
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5.2.1 Applicability of Methods

All three chosen methods for this subtask have shown their own assets and
weaknesses, each yielding relevant informartion for enhancement of the prog-
nosis task and indicating further approaches of case studies.

One problem, somehow shown by all of the applied methods of this task,
presents the partly very unspecific separation of corresponding filtration by
the given laboratory data. This indicates an insuffiency of information con-
tent of laboratory data regarding the target of prediction.

Decision Tree

This method suffices perfectly for gaining a first overview on the data. More
over this method and its result can be modified to fullfill the prediction task,
as discussed later.

In this work, especially the Decision Tree of laboratory data revealed the
importance of storage condition for filtration. It indicates these and leads
the way to further analysis of storage conditions.

One restriction of this method is given by the inhomogeneous leaf nodes
described in Chapter 3. Thus, a coarse structure of filtration by Decision
Tree of laboratoy data is obvious, but a deep look reveals ”noise” within the
leafs of the tree. With ”noise” in this case, the inhomogeneous leaf nodes
are considered. They ma be explained in two ways. Firstly, the method is
inadequate for this task or systematic errors influence the result. Secondly,
the content of information of laboratory data does not suffice for a complete
explanation and reconstruction of those filtration classes.

EM algorithm

Also this algorithm shows its applicability for the task, for example by re-
vealing superposed distributions within the original distribution of labora-
tory data attribute values. Thus, this algorithm yields classifications of those
attributes, which are used for prediction approaches.

A deeper look at these EM classes shows again unspecific patterns, suggesting
the same reasons as discussed above for the Decision Tree method.
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Principal Component Analysis

The PCA is the third method applied for analysis of input data. As well
as the other methods, this one qualifies for the Data Mining task. Thus, it
reveals already known dependencies of attributes and furthermore gives the
opportunity for further case studies.

Even this method, as the figures within Chapter 3 show, does not qualify
for a clear separation of filtration classes with only considering laboratory
data. A supplementation of information, in this case the initial state of
filter, defined by the axis intercept of linear regression of ∆p/V̇ over

∑
KG,

and the position of filtration within the batch, enhances the discrimination
of filtration classes by means of laboratory data.

5.2.2 Findings

The analysis carried out within this task reveals several facts and indices,
some of them already known. These known ones confirm the validity of
the applied methods and the new ones give information for further analy-
sis. Thus, the further view of the indicated influence of storage conditions
revealed a remarkable impact of storage time on filtration, whereas storage
department and tank geometry showed no significant influence. Reasons for
this may be the identical equipment of storage departments and the good
practice in production. The analysis of influence of tank geometry is limited,
as only one beer type owns enough relevant data for such an analysis, and
even for this beer type the horizontal vessel are only considered to avoid
production bottlenecks.

As further important findings of this approach the unspecific allocation of
filtration classes as well as the laboratory data and its structures indicate a
leak of information. Thereby, the Open Questions arise, as described in the
following.

5.2.3 Open Questions

Indeed, as discussed with both the methods and the findings, the question
arises whether the laboratory data still contains information that the applied
methods do not reveal or even if the methods are not applicable for this
task. The third explanation for these unspecific patterns is given by a leak
of information content of the input data.
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Up to this point and for this application, the Decision Tree method as well
as the principal component analysis are modified to their optimum. A better
adaptation of the EM algorithm seems to be possible. By means of this, an
analysis of those unspecific allocations and perhaps an enhancement of this
allocation may perform better.

5.3 Prediction of Filtration

This last subtask combines the findings and partly the methods of the first
two subtask. The results show a maximum prediction rate of about 80%.
This finding and the accordant methods are discussed further on.

5.3.1 Applicability of Methods

For this subtask, three different Data Mining techniques, suited for predic-
tion tasks, are chosen. More over not only the original input data is applied
for prediction, but also the findings gained by the knowledge discovery pro-
cess, such as rules and threshold values from Decision Tree old classes of
laboratory data yielded by EM algorithm. The methods and the input data
for prediction are considered within the following sections.

Fuzzy Logic

The fuzzy sets generated within this work are all constructed manually, by
combining experts knowledge and findings of knowledge discovery process.
Therefore, the results from Decision Tree analysis of laboratory data, the
classes of laboratory data defined by EM algorithm and combinations of
both are applied.

The first two Fuzzy Logic approaches carried out recruit Decision Tree re-
sults for prediction, but differ in the prognosed attribute. The comparison
of both the prediction of the coarse classes of better and poorer filtration
shows a poorer rate (60%) than the prognosis of classes of gradient of ∆p/V̇
(65%). This indicates the important middle filtration class. The two class
system better and poorer prevents a correct assignment of these filtration. In
opposition to this approach the EM classes include these classes, so that this
second approach improves the prediction.

Furthermore, this leads to using the EM classes of laboratory data as in-
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put data for construction of fuzzy sets. The results of that approach (60%
prediction rate) indicate to much generalisation of laboratory data. Further
investigations of the results of prediction based on Decision Tree findings and
EM classes show differences in the prognosis. To use these different findings
a final approach based on both Decision Tree rules and EM classes is carried
out, yielding the best prediction rate of Fuzzy Logic approaches of 70%.

Artificial Neural Networks

Two approaches prognosis based on ANNs are carried out. Both approaches
are based upon laboratory data as input data, one predicting the classes
better and poorer, the other the extreme classes very good and very poor.
Both yield a prediction rate of about 70%.

Further approaches are not considered. Especially modification of input data
is obsolete, as the ANNs deal best with the laboratory data. Further investi-
gations regarding more differing topologies and prediction attributes showed
no improvement of the results. This indicates again the hypothesis that
the information available from laboratory data does not suffice for a better
prediction of filtration.

Predict Tree

This method, based on Decision Tree algorithm, yields the best results in
predicting filtration. The presented results show that this method suffices
for prediction of different classes (better and poorer) as well as prediction
of the gradient. But these approaches show a non negligible rate of false
positives and false negatives. This problem occurs for all of the carried out
approaches. Thus, this effect is independent of the applied kind of input data
as well as the predicted classes or attribute.

5.3.2 Findings

The shown and discussed prediction approaches yield results of 70-80% reli-
able correct prediction rate. Obviously, this does not satisfy the requirements
of practice.

All approaches of enhancing those results, including modification of methods,
input data and the predicted attribute or classification, showed no further
increase of the prediction rate or quality of prediction.
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This leads to the final conclusion that the laboratory data is to unspecific
and contains not enough information for a better prediction of filtration than
the presented 70-80% prediction rate.

Further on, this leads to the next section, the open questions.

5.3.3 Open Questions

The outstanding question is, how the prediction result can be further in-
creased. The discussion of all three subtasks displays, that further modifica-
tions of the data and method of this work will not lead to further success.
Therefore, an expansion of the input data pool is necessary. This raise the
questions which data will yield the desired success, how the data can be
expanded and by which cost.

Considering the principal idea of applying only routinely measured and stored
data, the data from fermentation may by applied. Especially the state of the
yeast, the laboratory data and the characteristic of fermentation may contain
further valuable information. Further on, an expansion of input data down
to laboratory data of raw material and process data of the whole brewing
process is possible. Thus, problems will appear not by the growing data but
by allocation and identification of the corresponding data for filtration.

5.4 Conclusion

With respect to the target of this work, the different approaches and the
fundamental process model of CRISP-DM, some final conclusions can be
drawn. Thus, this work shows that Data Mining tasks dependent not only
on algorithm but that the acquiring, understanding and preprocessing of
data is an important part of Data Mining. Especially for brewing process,
data acquiration and preprocessing is very difficult. More over, the correct
identification of for example the linkage of storage tanks and filtration or
fermentation and storage tank have important roles. Thus, the Data Mining
process can be carried out with data distributed over several PDAs and
storage systems, but a well organised data warehouse, like modern process
control systems offer, alleviates the Data Mining process.

Some other aspects become apparent with this work. The process modell for
the Data Mining task, in this case the CRISP-DM, guarantees usefull results.
Furthermore, the role of business and data knowledge has high impact on the
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Data Mining process. It is very important to understand the brewing process
and its problems and its procedures as well as the used data to implement
the Data Mining process.



Chapter 6

Summary and Outlook

This present thesis deals with the technological problem of predicting filtra-
tion, as filtration of beer is an important process step within the brewing
process. Thus, this work applies Data Mining methods for the prediction
task of filtration. Data Mining is also denoted as the process of Knowledge
Discovery in Databases (KDD). The fundamental database for the prediction
task of this thesis is given by a Production Data Acquisition System (PDA)
of a Bavarian brewery. The data of the past five years is analysed by different
Data Mining methods. Those Data Mining methods are already established
for modelling target attributes in economy or finance. First approaches of
adopting Data Mining methods to process technology are carried out lat-
terly. The main objective of this thesis is to adopt Data Mining methods to
develop a model for prediction of filtration. The input data of this model is
constrained to routinely acquired laboratory data of matured beer and the
corresponding filtration data. Especially the limitation of taking only rou-
tinely taken in consideration alleviates this approach. A consideration of non
routinely taken data increases the effort and moreover reduces the available
data, as the access to past data is very difficult. Regarding data of preced-
ing process steps than the laboratory data of matured beer complicates the
analysis as allocation to the corresponding filtration is very complex.

To fulfil the prediction task the considered two parts of data, in a first step
filtration data and laboratory data are analysed separately. The filtration
data represented by haze, volume flow, kieselguhr dosage and increase of
pressure difference are classified. Therefore, two different approaches are
carried out, evolving from different assumptions. One approach bases on
a very simple view on filtration which is regarding the means of filtration
attributes. The other one respects more details of filtration characteristics.
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This is reached by transforming the filtration attributes and their time se-
ries into monotonous functions by means of summation or the consideration
of dependencies of attributes with respect to technological facts. Besides
the advantages and disadvantages of those two approaches the applied Data
Mining methods Cluster Analysis and Decision Trees showed their aptitude
for this classification task. The results of classification compared to experts
knowledge and thresholds used in practice support the determined classes
and their class limits, as found by the Data Mining methods.

Furthermore, the laboratory data is studied to find knowledge in form of
dependencies or associations which contribute to the prediction task. By
applying several Data Mining methods including Decision Trees, Expectation
Maximisation algorithms and Principal Component Analysis this subtask is
carried out. These investigations revealed several facts, of which some are
already known. These known facts show again the aptitude of the Data
Mining methods. One main new finding of this knowledge discovering process
is the revealed influence of storage conditions. Further studies on this topic
yield an important impact of storage time on filtration. An optimal storage
duration according to filtration is found for the studied beer.

Adjacent, the results of these two parts, the classification and the knowledge
discovery, are combined for the main task, the prediction of filtration based
on laboratory data. For this objective of the present thesis Fuzzy Logic,
Artificial Neural Networks and Prediction Trees, a modification of the De-
cision Tree algorithm, are applied. The resulting models predict filtration
with a success rate of up to 80%. This prediction rate does not suffices the
requirements for practical implementation.

Due to the following equation already presented in Chapter 3.6,

Results = Model + Findings, (6.1)

the results of this approach are not constraint to models. The important
finding of the prediction task indicates a lack of information. Up to a certain
degree prediction suffices independent of the applied methods. This predic-
tion rate of about 80% can not be enhanced by means of methods. Therefore,
it has to be considered by which measures or attributes the database has to
be extended, to suffices the requirements of practice.

Possible data which is not to complex to be included is the data of fermen-
tation. Especially the state of the used yeast is recommended by experts as
well as the temperature conditions during fermentation and maturing. But
as these data are not stored in a PDA, they have to be acquired manually.

Recapitulating, this thesis shows the aptitude of Data Mining methods for
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classification, knowledge discovery and prediction task for technological pro-
cesses in breweries. Different models are generated enabling a prediction rate
of up to 80%. Further enhancement of prediction is inhibited by a lack of
information available from the applied laboratory data.
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[60] Kim, W., Choi, B.-J., Hong, E.-K., Kim, S.-K., Lee, D. (2001). A
Taxonomy of Dirty Data. Data Mining and Knowledge Discovery.

[61] Klösgen, W. (2002). Overview of discovery systems. Handbook of Data
Mining and Knowledge Discovery. Oxford University Press.



112 BIBLIOGRAPHY
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Appendix A

Reference Plant

The Data used for this work is taken from an local brewery. The reference
plant is a modern candle filter, which was implemented in 1999. The refer-
ence brewery produces different beers, from which eleven are filtered using
the mentioned reference plant. During one batch, which takes normally one
production day, up to six different beer types (mostly two or three) are pro-
cessed. Three different kieselguhr types are used as filter aids. The filtration
is followed by stabilisation and a particle filter, before it is bottled.

Chronological arranged in front of the filtration is the fermentation, condi-
tioning and maturation. Due to the historical growth of the reference brew-
ery, these production steps are carried out in different stock cellars, each with
different tanks and different tank architectures. For the same reason, there
are three brew houses.

The data can be divided in two parts: the data accumulating before filtration,
like laboratory data and information of the previous process steps, and data
generated during the filtration process.
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Appendix B

Classification of Filtration -
First Approach

B.1 Cluster Analysis
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Figure B.1: Dendogram of Filtration Data using AGNES with method ”av-
erage”
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Figure B.2: Dendogram of Filtration Data using AGNES with method ”sin-
gle”
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Figure B.3: Dendogram of Filtration Data using AGNES with method ”com-
plete”
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Figure B.4: Dendogram of Filtration Data using AGNES with method
”ward”
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Figure B.5: Dendogram of Filtration Data using AGNES with method
”weighted”
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Figure B.6: Dendogram of Filtration Data using DIANA
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Figure B.7: Silhouette Plot of Filtration Data using PAM, n = 3 cluster
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Figure B.8: Silhouette Plot of Filtration Data using PAM, n = 4 cluster
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Figure B.9: Silhouette Plot of Filtration Data using PAM, n = 5 cluster
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Figure B.10: Silhouette Plot of Filtration Data using PAM, n = 6 cluster
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Figure B.11: Silhouette Plot of Filtration Data using PAM, n = 7 cluster
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Figure B.12: Silhouette Plot of Filtration Data using PAM, n = 8 cluster
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Figure B.13: Silhouette Plot of Filtration Data using PAM, n = 9 cluster
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Figure B.14: Dendogram of Filtration Data from ”Hell A” using AGNES
and Ward’s Method
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Figure B.15: Dendogram of Filtration Data from ”Hell B” using AGNES
and Ward’s Method



B.1. CLUSTER ANALYSIS 137

Figure B.16: Dendogram of Filtration Data from ”Nonalcoholic” using
AGNES and Ward’s Method
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Figure B.17: Dendogram of Filtration Data from ”Pilsener” using AGNES
and Ward’s Method
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Table B.1: Evaluation of Clusters of Lager B

binary label rating describtion

1. cluster 11100 3 poorer
2. cluster 10001 2 better
3. cluster 01101 3 poorer
4. cluster 01100 2 better
5. cluster 01101 3 poorer
6. cluster 00010 1 better
7. cluster 00010 1 better
8. cluster 11111 5 poorer
9. cluster 10110 3 poorer
10. cluster 10000 1 better

Table B.2: Evaluation of Clusters of Nonalcoholic

binary label rating describtion

1. cluster 01011 3 poorer
2. cluster 00010 2 better
3. cluster 00001 1 better
4. cluster 11101 4 poorer
5. cluster 10000 1 better

B.2 Evaluation of Clusters

B.3 Interpretation of Clusters
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Figure B.18: Comparison of Means of h̄25
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Figure B.19: Comparison of Means of h̄90
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Figure B.20: Comparison of Means of ¯̇V
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Figure B.21: Comparison of Means of ∆p∗
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Figure B.22: Comparison of Means of
∑

KG
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Figure B.23: Decision Tree of Filtration Data of Lager A
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Figure B.24: Decision Tree of Filtration Data of Lager B



B.3. INTERPRETATION OF CLUSTERS 147

Figure B.25: Decision Tree of Filtration Data of Nonalcoholic
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Figure B.26: Decision Tree of Filtration Data of Pils
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Table B.3: Evaluation of Clusters of Pils

binary label rating describtion

1. cluster 01100 2 better
2. cluster 01101 3 poorer
3. cluster 11111 5 poorer
4. cluster 11110 4 poorer
5. cluster 00001 1 better
6. cluster 00010 0 better
7. cluster 10001 2 better
8. cluster 10010 2 better
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Classification of Filtration -
Second Approach

C.1 Data Reduction

151
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Figure C.1: Example Filtrations: Summation of h25 over
∑

KG
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Figure C.2: Example Filtrations: Linear Regression of h25 over
∑

KG
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Figure C.3: Clustering of hell A filtration using the gradients of linear re-
gression
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Figure C.4: Clustering of hell A filtration including dummies using the gra-
dients of linear regression
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Figure C.5: K-means algorithm using random centroids
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Figure C.6: K-means algorithm using dummy filtration as centroids



158APPENDIX C. CLASSIFICATION OF FILTRATION - SECOND APPROACH

Figure C.7: Decision tree of AGNES cluster results
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Figure C.8: Decision tree of k-means cluster results
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Appendix D

Knowledge Discovery

D.1 Decision Tree Analysis

161
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Figure D.1: Decision Tree of lager A
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Figure D.2: Distribution of classes better and worse regarding storage time
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Figure D.3: Superposed Distributions of alcoholic content Aw of lager A
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Figure D.4: Superposed Distributions of alcoholic content Aw of lager B
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Figure D.5: Superposed Distributions of alcoholic content STW of lager A

Figure D.6: Superposed Distributions of alcoholic content STW of lager B
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Figure D.7: Superposed Distributions of alcoholic content Ew of lager A

Figure D.8: Superposed Distributions of alcoholic content Ew of lager B
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