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1 Introduction and objectives

Genetic engineering is being increasingly applied in modern agriculture. In addition

to conventional breeding, recombinant DNA techniques are used to improve

agronomic and nutritional traits of food crops. Genetic engineering is a targeted

technique which enables the transfer of defined genes without restriction by species

barriers [1].

Agricultural biotechnology has opened new avenues in the development of plants for

the production of food, feed, fibre, forestry and other products. The first genetically

improved crop was the Flavr Savr® tomato which was approved for sale in the United

States of America in 1994 [2]. Since then, the cultivation of several transgenic crop

species has grown rapidly to more than 58 million ha worldwide [3], i.e.

approximately 5 % of the total world acreage.

For the current generation of genetically modified (GM) crops, the improvement of

agronomic traits (e.g. herbicide-tolerance, insect-resistance) has been a major

objective. Modifications have resulted in benefits mainly orientated to the farmer and

the environment with only indirect benefit to consumers resulting from, for example,

pesticide reduction [4]. The lack of obvious and direct benefits for the consumer has

been a main point of criticism.

In addition to further improvement of agronomic characteristics, e.g. drought and

salinity tolerance, future trends will increasingly encompass the modification of

quality traits, such as the enhancement of sensory and especially nutritional

properties. Some of the ongoing developments try to meet the desire of consumers

for healthy or high-tech foods in developed countries. Others are intended to assist

in adjusting the nutritional status of foods to the needs of consumers in developing

countries [5].

The major prerequisite for the applicability of recombinant DNA techniques in food

production is the safety of the resulting products. International consensus has been

reached on the principles regarding evaluation of the food safety of genetically

modified plants [6, 7]. The concept of "substantial equivalence" [8] is a key element

of the strategies agreed upon by international bodies [9, 10]. The concept is used to

identify similarities and differences between the genetically modified food and a

comparator with a history of safe food use that subsequently guides the safety
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assessment process [11]. It is mainly based on the comparison of parental and

genetically modified plants taking into account phenotypic characteristics, potential

allergenicity of gene products and metabolites, and the chemical compositions, with

a special focus on essential nutrients and critical toxicants [12]. This approach has

proven to be useful for the safety assessment of the current generation of genetically

modified crops [13-15]. Based on comprehensive comparative investigations,

presently commercialised GM crops were shown to be equivalent to traditional

counterparts except for well-defined differences. The key difference to their

respective comparators are the transferred proteins on which safety testing was

focused.

The adequacy of the current approach which is based on targeted compositional

analysis to reveal potential unintended effects of genetic modifications has been

challenged [16]. An unintended effect represents a statistically significant difference

in the phenotype, response, or composition of the GM plant compared with the

parent grown under identical environmental conditions which goes beyond the

intended effect of the target gene [17]. Considering the increasing complexity of

genetic modifications expected for the future generation of GM foods, development

of profiling methods for the identification and characterisation of unintended effects

has been recommended [6]. These techniques are not intended to replace any

existing safety assessment procedure, but aim to provide a more complete

compositional characterisation of the GM organism, in order to increase the chances

of detecting unintended effects due to the application of recombinant DNA

techniques.

Objectives

The comparison of the chemical composition of the genetically modified plant to that

of a traditionally obtained counterpart has been a key element in the safety

assessment of genetically modified crops. One of the most critical points of this

procedure is the selection of compounds to be analysed. "Targeted approaches" are

based on the qualitative / quantitative analysis of defined constituents. Critics of the

targeted approach refer to the biased character of the concept focusing on known

compounds and expected / predictable changes [16]. Profiling methods may be used
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to overcome these limitations. They may be applied to different classes of cellular

constituents, e.g. the genes, the proteins, and the metabolites.

The objective of this study was to contribute to the assessment of different profiling

approaches as regards their suitability to analyse low molecular weight constituents

present in a food matrix. This should be performed in order to evaluate their

applicability within the safety assessment framework of GM foods. Rice (Oryza sativa

L.) was used as model crop for method development.

Near infrared spectroscopy (NIRS) should be tested as rapid non-destructive

technique enabling unspecific fingerprinting of rice grain constituents. Investigations

should be focused on the possibilities to extract quantitative information on a single

nutritionally relevant minor compound from complex NIR spectra. Therefore, an NIRS

method for determination of the phytic acid contents in brown rice grains should be

developed.

In order to complement methods for targeted investigation of single constituents, a

metabolite profiling methodology should be elaborated which allows non-targeted

analysis of a broad spectrum of low molecular weight compounds present in rice

grains. To meet the challenge of the generation of huge amounts of data, the study

should also include the development of tools for automated analysis of metabolite

profiling data. The techniques involved should be checked in terms of their

applicability to other cereal crops, i.e. maize and barley.

Finally, the methodologies should be applied exemplarily to the analytical

characterisation of genetically modified rice.
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2 Background

2.1 Use of GM technology in agriculture

Within a rather short period of time genetic engineering has evolved from basic

science to commercial applications. The techniques developed for transformations of

plants were readily applied to crops, and GM plants used for food production are now

a reality [3].

Starting from 1.7 million ha in 1996, the global area of transgenic crops significantly

increased to 58.7 million ha in 2002 [3]. So far, the spectrum of commercialised GM

crops is essentially limited to soybean, maize, cotton and canola. Ninety-nine percent

of the GM crops planted exhibit herbicide-tolerance and insect resistance as target

traits [3]. This "first generation" will probably be followed by a next wave of

applications of recombinant DNA techniques in food production characterised by

approaches to improve the nutritional properties of raw materials and the foods

made thereof ("second generation") [18].

2.1.1 Agronomic traits

The application of herbicides is an indispensable part of modern agriculture to

combat weed damages. Tolerance to glyphosate (Roundup Ready®) and glufosinate

(BASTA®), respectively, has been conferred to major food crops using genetic

engineering. Herbicide-tolerant plants are grown on 75 % of the global area of

transgenic crops. Herbicide-tolerant soybean was the most dominant (62 %)

transgenic crop grown in three principal countries (USA, Argentina, Canada) in 2002

[3].

The commercially second most important trait conferred to crops by genetic

engineering is insect-resistance. Plants expressing δ-endotoxin from Bacillus

thuringiensis (Bt) have been grown on 19 % of the global area of transgenic crops.

This strategy has been applied to confer insect-resistance to crops such as canola,

corn, cotton and potato. Alternative strategies to achieve insect-resistance to plants,

which might become of practical importance in the future have been described. They

include the expression of lectines [19] and enzyme inhibitors [20].
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The present improvements of agronomic properties are tailored to the needs of

agriculture in developed countries. Additional strategies to improve crop productivity

especially in developing countries are based on increasing crop tolerance to abiotic

stress as evoked by rough environmental conditions, e.g. alkaline soils, metal

toxicity, drought, and salinity. The tolerance of rice to low iron bioavailability in

alkaline soils could be improved by genetically engineering the crop to release more

iron-solubilising chelators [21]. Expression of bacterial citrate synthase in roots is one

of the strategies presently being developed to overcome the problem of toxicity of

aluminum released by acid soils [22]. Forty percent of the irrigated land is affected

by salinity. The resulting decline in photosynthesis and the increased formation of

oxygen radicals limits the crop performance. Genetic engineering can be used to

increase the cellular content of osmolytes [23], to express antioxidative enzymes

[24], or to introduce sodium pumps [25]. Pathways involving the biosynthesis of

metabolites like polyamines, proline, glycinebetaine and trehalose were shown to be

related to drought resistance [26, 27].

2.1.2 Quality traits

In industrialised countries the improvement of the agronomic performance of crops

does not appear as a direct benefit to the customer purchasing the food in the super

market. In order to convince the consumer on the advantage of genetic engineering

and thus to increase the acceptance of GM foods, obvious traits such as sensory or

nutritional properties have to be improved [5]. Genetic engineering can be applied to

modify macronutrients, e.g. starch, fat, and protein, as well as micronutrients in

foods.

Modern plant biotechnology has focused very early on the genetic modification of

plant carbohydrate metabolism. Changing starch composition or accumulating

fructanes in transgenic crops are examples for relevant applications [28, 29].

Modification of the chain lengths and the degree of saturation of fatty acids has

resulted in commercialised products, such as high laurate canola oil [30] and

sunflower seed oil with high oleic acid content [31]. Various strategies have been

described to improve the protein quality of foods and feeds [32]. This ranges from

functional properties, e.g. baking quality of wheat [33], to nutritional properties, e.g.

enhancement of the content of essential amino acids [34].
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The wide range of isoprenoids found in plants and the integration of metabolic

pathways of steroids, carotenoids and retinoids [35] offers the potential to influence

the content of these compounds by genetic engineering. An exciting current example

is the genetically engineered biosynthesis of β-carotene in the so-called "Golden

Rice" [36]. In order to increase the iron content of rice, three approaches have been

combined: (i) introduction of the ferritin gene from Phaseolus vulgaris into rice; (ii)

expression of a heat-tolerant phytase from Aspergillus fumigatus in rice; and (iii)

overexpression of cystein-rich metallothionein-like protein endogenous in rice [37].

Owing to the present wave of "functional foods" increasingly put on the market in

Western countries, there is increasing interest in bioactive plant constituents.

Modifying composition and distribution of high-value compounds, such as carotenoids

and vitamins or flavonoids and isoflavonoids may become "gold mines" for metabolic

engineering [5, 38].

2.2 Food safety assessment of transgenic crops

2.2.1 Food safety evaluation strategies

The major prerequisite for the applicability of GM technology in food production is

the safety of the resulting products. Efforts to define internationally harmonised

strategies for the safety evaluation of foods derived from genetically modified

organisms (GMOs) began already at the very early stage of the exploitation of

recombinant DNA technology in plant breeding [8-11]. This eventually resulted in

various national and international regulatory frameworks concerning market

introduction of genetically modified foods. In the European Union GM food is

currently regulated by Regulation (EC) 258/97 on Novel Food and Novel Food

Ingredients [39]. It lays down a Community procedure for the authorisation of foods

derived from GMOs including the general principles and requirements regarding food

safety assessment. In the European Union [12] the risk assessment strategy for GM

plants and products is based upon a consideration of:

- the characteristics of the donor and recipient organisms;

- the genes inserted and expressed;

- the potential consequences of the genetic modification;
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- the potential environmental impact following a deliberate release;

- the potential toxicity and allergenicity of gene products and metabolites;

- the compositional, nutritional, safety and agronomic characteristics;

- the influence of food processing on the properties of the food or feed;

- the potential for changes in dietary intake;

- the potential for long-term nutritional impact.

The principle of "substantial equivalence" elaborated by international bodies (IFBC,

OECD, FAO/WHO, ILSI) in several workshops and expert consultations since the

beginning of the 1990s became a key element in the safety assessment of foods

derived from GMO. The concept is used to identify similarities and differences

between the GM food and a comparator with a history of safe use that subsequently

guides the safety assessment process [11]. Application of this principle is a starting

point in the safety evaluation, rather than an endpoint of the assessment.

An important part of this strategy is the comparison of the chemical compositions

between parental and genetically modified food, with a special focus on essential

nutrients and critical toxicants. Key nutrients, anti-nutrients and toxicants

characteristic for plant species and information on the extent of natural variability are

provided in OECD consensus documents. Such documents have been prepared for

soybean, oilseed rape, maize, and potato [40, 41], and others on sunflower, sugar

beet, wheat, barley and rice are in preparation [12]. They provide further guidance

for compositional analysis to establish the extent of compositional equivalence. This

may result in three scenarios [42]:

- A GMO-derived product to be placed on the market is equivalent within the limits

of the natural variability to a conventional counterpart. In that situation no further

safety testing is needed. The product is considered as safe as its traditional

counterpart. Defined and well-characterised ingredients isolated from GM plants,

e.g. sugar from herbicide-tolerant sugar beet, would fall into this category.

- A GMO or a derived product to be placed on the market is equivalent to a

traditional counterpart except for some well-defined differences which are due to

the genetic engineering process. In that case the safety assessment can be

targeted to the identified differences. The GMOs presently on the market belong
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to that category. The key difference with their respective comparators is the

presence of the transferred proteins on which safety testing is focused.

- A GMO or a derived product to be placed on the market differs from a traditional

food in multiple and complex respects, or there is no traditional counterpart. Such

a food is not unsafe per se but would require a comprehensive safety assessment.

The concept of "substantial equivalence" proved to be suitable for the "first

generation" of GM crops [13-15]. However, as outlined in 2.1.2, the next generation

of GM foods will not be limited to plants with agronomic advantages but will

increasingly focus on improvements of the nutritional properties of a crop. This will

go along with an increasing complexity of genetic modifications. For example, in

"Golden Rice", with introduced β-carotene biosynthesis pathway into the endosperm,

a transfer of genes from Narcissus pseudonarcissus coding for phytoene synthase

and lycopene-cyclase under control of the rice glutelin promotor, as well as from

Erwinia bacteria coding for phytoene-desaturase under the 35S promotor was

performed [36]. Owing to the unavailability of a staple food as appropriate

conventional comparator, identification and characterisation of effects of the genetic

modification which go beyond the primary intended effects of introducing the target

genes will become increasingly challenging.

2.2.2 Identification of unintended effects

The potential occurrence of "unintended effects" is one of the concerns being raised

as regards the application of recombinant DNA techniques in the production of foods.

"Unintended effects” represent a statistically significant difference in the phenotype,

response, or composition of the GM plant compared with the parent from which it is

derived, but taking the expected effect of the target gene into account. They may be

explicable in terms of current knowledge of plant biology and metabolic pathway

integration and interconnections ("predictable unintended effects") or may fall

outside the present level of understanding ("unpredictable unintended effects") [17].

Unintended effects may be identified by analysis of the agronomic / morphological

characteristics of the new plant and by extensive compositional analysis. The breeder

usually performs phenotypic comparison which has been used successfully in

conventional plant breeding and has led to many new varieties with virtually no
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unintended negative consequences for the consumer. The strategies applied for

compositional analysis may follow a targeted and a non-targeted approach.

2.2.2.1 Targeted approach

Targeted approaches for identification of unintended effects are based on the

qualitative / quantitative analysis of defined constituents. This may range from

proximate analysis to the investigation of major, e.g. amino acids, fatty acids, and

minor constituents, e.g. minerals. Special emphasis has been put on naturally

occurring toxicants and essential nutrients or anti-nutrients. The analyses also

comprised compounds which, from current biological and biochemical knowledge,

might be predicted to change in response to the specific genetic modification. An

example for investigation of such "predictable unintended effects" is the analysis of

phenylalanine, tyrosine and tryptophane in Roundup Ready® soybeans, which took

into account that the EPSPS is involved in the biosynthesis of aromatic amino acids

[43].

The application of a targeted approach for comparative analysis of defined

constituents has been shown to be suitable for the detection of statistically significant

differences between parental and GM lines which go beyond the intended effects of

the genetic modification. Genetically engineered biosynthesis of a nutritionally

valuable protein (soybean glycinin) in rice and potatoes resulted in an increased

content of a nutritionally important (vitamin B6) as well as of toxicologically critical

compounds (glycoalkaloids). These unintended effects were not predicted and have

not been explained by the authors [44, 45].

Genetic modifications targeting key steps in primary metabolism were shown to

provoke profound changes in the generated GM plants. Expression of a yeast

invertase in potato tubers resulted in an altered carbohydrate metabolism and also in

a reduced content of glycoalkaloids. Detailed investigations indicated that the lower

glycoalkaloid content corresponded to a status of advanced maturity of the

genetically modified potato relative to the conventional counterpart grown under

identical environmental conditions [46].

As shown for GM canola, overexpression of an enzyme in the isoprenoid metabolism

(phytoene-synthase) resulted in altered levels of the metabolites downstream the

target of genetic modification (phytoene) but also in metabolic perturbations
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effecting other compounds (tocopherols, chlorophyll) whose biosynthesis is linked to

the modified pathway  [47].

As regards the so-called "Golden Rice", introduction of phytoene synthase and

phytoene desaturase into the endosperm of a single transformant was expected to

induce the formation of lycopene. Surprisingly, α-carotene, β-carotene, lutein and

zeaxanthine were synthesised instead of lycopene. This was explained by a further

conversion of the newly introduced substrate lycopene by lycopene cyclases

inherently present in normal rice endosperm [36].

2.2.2.2 Profiling techniques

In order to increase the chances to detect unintended effects, profiling methods have

been suggested as tools for characterisation of changes in the composition of GM

plants [6, 11]. This may be of particular relevance for GM food crops with improved

nutritional or health-protecting properties, obtained through the insertion of multiple

genes. The non-targeted approach exploiting Genomics, Proteomics and

Metabolomics aims at an "unbiased" profiling of potential changes in the physiology

and metabolism of the modified host organism at different cellular integration levels.

In a recent review the potential of these methods for studying molecular genetics

and physiology of plants has been discussed [48].

Genomics. Localisation and characterisation of the place(s) of insertion are the most

direct approaches to predict and identify the possible occurrence of unintended

effects due to the application of recombinant DNA techniques. With increasing

knowledge of plant genomes including annotations in genomic databases and

understanding of the genomic code and regulation of gene expression, sequencing of

the place(s) of insertion will become increasingly informative [6].

The DNA microarray technology is a powerful tool to study gene expression. The

major advantage of the microarray technology over conventional gene profiling

techniques is that it allows small-scale analysis of the expression of a large number

of genes in a sensitive and quantitative manner [49].

Proteomics. The study of the entire set of proteins present in a cell, organism, or

tissue under defined conditions, is a well-established technique enabling the next

level of analysis after transcript profiling. The main approach currently applied
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involves two-dimensional gel electrophoresis followed by excision of protein spots

from the gel, digestion into fragments by specific proteases, analysis by mass

spectrometry and subsequent computer-assisted identification using databases [50].

The use of specific detection methods, e.g. immunoblotting, should also allow to

screen specifically for potentially adverse proteins, e.g. allergens or anti-nutrients.

Metabolomics. Metabolites can be regarded as the ultimate gene products.

Metabolomics aims to provide a comprehensive picture on the entirety of metabolites

present in biological systems. Main approaches used in the course of Metabolomics

studies are based on metabolic fingerprinting as well as on metabolite profiling

techniques.

Metabolic fingerprinting. This approach aims to rapidly provide a picture on the low

molecular weight compounds present in raw samples. Sample preparation is

frequently restricted to a simple step and chromatographic pre-separation is avoided.

Metabolic fingerprinting techniques solely rely on the resolving power of

methodologies such as nuclear magnetic resonance (NMR) [51], mass spectrometry

(MS) [52], and Fourier-transform (near) infrared spectroscopy (FT-NIRS) [53]. The

potential of these techniques lies in the ease of sample preparation, the speed with

which data can be acquired, and the high degree of reproducibility.

Metabolite profiling. The most important approaches used for metabolite profiling are

based on hyphenated techniques combining various analytical tools, e.g. gas

chromatography (GC), high performance liquid chromatography (HPLC), MS, and

NMR. These methods aim at detecting, resolving, identifying, and quantifying a wide

range of low-molecular weight compounds in a single sample. They can be totally

unbiased or targeted to metabolites in key metabolic pathways [54].
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2.3 NIRS analysis of foods

2.3.1 Introduction

The increasing demand for product quality improvement and production

rationalisation in the food and agricultural industries has led to the gradual

substitution of time-consuming analytical methods by more rapid and

environmentally friendly analytical tools. In this respect Near Infrared Spectroscopy

(NIRS) has emerged over the last years as an extremely powerful tool for quality

control and process monitoring [55].

NIRS has many advantages over chemical and other instrumental methods of food

and beverage analysis in terms of sample preparation and sample throughput.

Spectra of intact food samples may be measured in seconds by reflectance or

transmittance and mathematical processing of the spectral data enables absorption

information to be extracted so that constituents and quality attributes can be

determined [56].

NIRS allows to obtain a comprehensive fingerprint containing qualitative and

quantitative information on the constituents of a sample. After establishment of

appropriate calibrations, multicomponent analyses can be performed on the basis of

a single spectrum. This explains the widespread use of NIRS for screening of large

sample sets in plant breeding programmes. For the same reason, NIRS might be a

powerful tool for comparative compositional analysis of GM plants in the course of a

safety assessment. It might replace time-consuming wet-chemical procedures owing

to the possibility to simultaneously cover a broad spectrum of constituents or single

compounds in a non-destructive way.

The following chapters cover basic principles of NIRS with respect to food analysis.

The approaches to develop an NIRS method will be described and areas of

application with special focus on cereals will be pointed out.

2.3.2 NIRS instrumentation for food analysis

Adjacent to the mid-infrared, the NIR region covers the interval between

approximately 4000 and 12500 cm-1 (800 nm – 2500 nm). Tungsten halogen lamps

are the most frequently employed near-infrared continuous spectral light sources.
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Photoconductive (e.g. PbS) and photovoltaic (e.g. InGaAs) elements are commonly

used as detectors for NIR light.

Up to 1978, only filter instruments designed for specific applications were

commercially available. The increasing availability of monochromator instruments for

routine analysis paved the way to a broader applicability of NIRS to food analysis

[56]. Instruments based on Fourier-transform (FT) spectroscopy have several

advantages compared to monochromator instruments in terms of signal detection

efficiency and degree of accessible spectral resolution [57]. Therefore, FT

spectroscopy is increasingly applied for spectroscopic analyses in the NIR region.

However, due to their robustness and simplicity, filter and monochromator

instruments are still widely used especially in agricultural industries.

Food samples to be analysed by NIRS are often unground and heterogeneous.

Several devices like cuvettes, cells, or petri dishes made of glass or quartz are in use

for sample presentation. Liquids are usually measured in transmission or in

transflection. Solid materials may be measured in transmission or by diffuse

reflectance. Sample spinners were developed for moving the surface of

heterogeneous samples over the measuring aperture. In near infrared diffuse

reflectance spectroscopy of solid material, the light is scattered at or in the sample

into a wide range of angles, so that complete introduction of the light into the

spectrometer is difficult. Special cells and integrating spheres are used for improving

the collection efficiency of diffusely reflected light.

Figure 1 shows the measurement set-up for Fourier-transform near infrared diffuse

reflectance spectroscopic analysis of solid sample material, e.g. rice flour. Starting

from the radiation source, the light beam passes the interferometer in order to reach

an iris blend, which restricts the beam divergence to the maximum acceptable for the

required resolution. After passing a filter wheel, which allows reduction of the

wavelength range, the beam enters the integrating sphere, where it is focused to the

sample cup by means of a mirror (not shown in Figure 1). The sample cup containing

solid inhomogeneous material is mounted onto a spinner, which steadily moves the

surface of the sample over the measuring aperture. The NIR light reflected from the

solid sample into a wide range of angles is collected by the integrating sphere and

eventually focused to the detector.
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2.3.3 Qualitative information in NIR spectra

NIRS is based on the absorption of light in the wavelength range of 800 nm to

2500 nm. NIR spectra of foods show broad bands which comprise overlapping

absorptions corresponding to overtones and combinations involving C-H, O-H or N-H

chemical bonds. Since almost all compounds found in foods contain those types of

chemical bonds, NIR spectra obtained from foods include comprehensive information

on their constituents.

The carbon – hydrogen (C-H) bond is the most frequent one in organic molecules.

The first stretch overtone band in alkanes can be found around 1700 nm. The

weaker second overtone band is expected to be around 1150 nm. The third overtone

exhibits extremely weak absorption in the region of 880 nm. The relative

absorptivities of the first, second and third C-H stretch overtones in the simple

molecule chloroform for example are 484:22:1.

The C-H stretch overtone bands in the more complex food constituents follow similar

though more sophisticated patterns due to the effect of C-C coupling of the chain

units. C-H bands in wheat protein occur at 1190, 1700, 1730, and 1760 nm, those of

starch, pentosanes and lipids occur in the same wavelength ranges. 

Intensive overtone bands in NIR spectra of foods result from O-H (first and second

overtone), and N-H (first and second overtone) bonds. Important combination bands

observed in NIR spectra were assigned to the C-H, O-H, and N-H bonds in proteins,

a
b

c

d e

f

g

Figure 1: Measurement set-up and optical path for Fourier-transform near infrared diffuse
reflectance spectroscopic analysis of solid sample material [58]. (a): NIR radiation source; (b):
interferometer; (c) iris; (d): filter wheel; (e): sample cup with solid material mounted onto a sample
spinner; (f) integrating sphere; (g): detector
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lipids, carbohydrates. In general, absorptivities of the second and third overtones are

weaker than those of the first overtone. Consequently, the most intensive

absorptions in NIR spectra are observed at high wavelengths [56].

The band around 1940 nm in the spectrum of liquid water results from a combination

of O-H stretch with O-H deformation vibrations. From the analytical point of view,

this is the most abundant absorption in the NIR. This kind of combination band also

occurs in all compounds containing hydroxyl groups. As with the O-H overtone

bands, the O-H combination bands are shifted with hydrogen bonding. With

increasing temperature the number of hydrogen bonds decreases which results in

modified absorption characteristics.

2.3.4 Principles of quantitative analysis by NIR diffuse reflectance

spectroscopy

Sample information in the near-infrared region on solid heterogeneous material is

often collected by diffuse-reflectance measurements. In diffuse reflectance mode,

the boundary between the sample and the surrounding medium may be considered

as a series of small interfaces. If radiation transmitted through the first interface

undergoes absorption, the transmitted radiation will be attenuated according to the

Beer – Lambert law. The radiation could also undergo further transmittance and

absorption at other interfaces. When the radiation encounters discrete particles

within the sample which are much larger than the wavelength, destructive

interference becomes incomplete and the radiation propagates in all directions

(scattering). Particles concentrated into a thick layer give rise to multiple scattering,

which results in intensification of absorption bands. This intensification arises from

the radiation traversing an optical path which may be as much as eighty times the

sample thickness [56].

No rigorous theory has been developed for quantitative diffuse reflectance

measurements, but a number of phenomenological theories have been proposed.

Equation 1 is based on the Kubelka-Munk theory and represents the mathematical

model upon which the quantitative NIRS analysis of foods in diffuse reflectance mode

is based:
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equation 1:

)R/1log()*a/s(kc +=
R : reflectance of the sample
s : scattering constant of the sample
a : absorptivity of the analyte
c : concentration of the analyte

The constant a  is the absorptivity of the analyte as defined by the Beer – Lambert

law. The actual value of s  depends on a number of properties of the sample; the

most important are particle size and moisture content. The art of NIRS of scattering

samples lies in standardisation of these sample properties or in the selection of

measurement and reference wavelengths at which s  is nearly equal so that the as /

term becomes a constant. Under these conditions, equation 1 allows the

establishment of a linear relationship between spectral (reflectance, R ) and

compositional properties (concentration, c ) of a sample measured in the diffuse

reflectance mode [56].

2.3.5 Development of an NIRS method for food analysis

Figure 2 summarises the steps for development of an NIRS method for quantitative

analysis of a food constituent.

NIRS in food analysis is a secondary methodology and therefore depends on

(classical) reference analytical methods in order to build-up calibration models.

The first step in NIRS method development is to perform a calibration experiment.

This involves collecting a set of calibration samples and subjecting the samples to

analysis by the reference method for the constituent of interest and by the NIR

instrument. From these data the calibration method must infer a rule for predicting

results in future samples.

Calibration samples should be representative for the population of samples which is

desired to be analysed in the future with the instrument. It is recommended to

carefully optimise spectral data acquisition in terms of reproducibility and to control

the quality of spectral data as well as the reliability of reference values. Samples

showing unique spectral features in comparison to the entire calibration set should

be treated with care.

When selecting the calibration samples, the concentrations of the constituents of

interest are another point for consideration. The range of variability should be as
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large as that expected for future samples. The distribution in future samples will, in

many cases, be Gaussian with a concentration in the centre of the range and fewer

values near the limits. Instead of taking such a distribution for the calibration data

set, it is considered better practice to aim for a more uniform spread of values over

the whole range. This has the advantage of providing more precise estimates of the

calibration constants for a given number of samples. This is likely to be beneficial in

these cases, where the "unusual" samples are the ones that actually matter [56].

Spectral data may be subjected to calibration either directly or after transformation.

Transformations aim to standardise NIR spectra by compensating particle size effects

and reducing high correlations between spectral data at different wavelengths. This

control of
reference data

outlier control
transformation of spectra

calibration data set
including reference and spectral data

calibration model
calibration performance values

NIR spectra sample set reference values

calibration

outlier control
transformation of spectra

validation performance values

NIR spectra independent
sample set reference values

application of the
calibration model

control of
reference data

calibration

validation

measurement
prediction of new independent samples

predicted values

Figure 2: Steps for development of an NIRS method for quantitative analysis of a food constituent.
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may lead to simpler calibrations which can be interpreted more easily. As an effect of

differences in particle size, spectra are shifted and rotated relatively to each other.

The calculation of derivatives for standardisation is attractive because it substantially

reduces particle size effects as well as high correlations between spectral data at

different wavelengths. In combination with a smoothing procedure, transformed

spectra are eventually obtained showing peaks rather than broad bands as observed

in the original spectra. A simple standardisation method is to divide spectral data at

each wavelength by a value measured at a reference wavelength.

A variety of calibration methods are in use to establish a correlation between spectral

data and reference values. Relatively robust methodologies, like multiple linear

regression (MLR), and full-spectrum methods, e.g. principle component regression

(PCR) or partial least squares algorithms (PLS), can be applied to find those

wavelengths whose inclusion in the calibration model results in the best prediction

for the constituent of interest on the basis of spectral data.

The use of MLR for calibration results in a prediction equation as shown in

equation 2.

equation 2:

)(*...)(*)(* 22110 nn LaLaLaac λλλ ++++=

c : predicted concentration of the
constituent

)(λL : spectral data at wavelength λ

0a - na : regression coefficients

:)(* λLa term

In order to find the regression coefficients a0 - an, forward stepwise regression is the

most popular choice. Following this principle, the equation is built-up by consecutive

addition of wavelengths until no further improvement of prediction accuracy is

achieved. However, often the fit improves considerably until two or three terms have

been included and then improves only slightly when further wavelengths are added.

Since equations with the fewest terms are the most robust ones, it is recommended

to choose a simple model rather than equations with a high number of terms.

In contrast to MLR, full-spectrum methods use the entire information in the spectra

for model development. In order to reduce the quantity of data, factors are

calculated from the original spectra without discarding any useful information.

Factors are constructed as linear combinations of the original spectral data and
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multiple linear regression on the factor scores is used to derive a prediction equation.

The important difference between PCR and PLS is, that PCR constructs factors

without taking into account whether they correlate with the reference data, whereas

PLS constructs its factors balancing this desirable property and the aim to cover as

much of the spectral variation as possible [56].

When wavelengths, number of terms and the form of the prediction equation have

been chosen, the reference values of an independent sample set should be

compared to those predicted on the basis of spectral data by means of the

calibration equation (validation). This is done to make sure, that the model is of

universal validity and does not exploit special features of the calibration data set. The

criteria for choosing samples to make up a validation sample set are basically the

same as those for establishing a calibration set.

On the basis of a successful validation, the developed NIRS method can be applied to

predict the concentrations for the constituent of interest in new samples purely on

the basis of their spectral data. Care should be taken in order to make sure, that the

calibration sample set of the underlying NIRS model is still representative for the new

samples to be predicted. If this is no longer the case, the calibration model should be

refined by expanding the calibration sample set with a sub-set of the new samples.

This requires analysis of the sub-set by the reference method and subsequently re-

calculation of the prediction equation.

2.3.6 Assessment of an NIRS method

In order to assess the performance of a NIRS method, several statistical parameters

are calculated which all describe the discrepancies between the specified reference

values and those predicted by the NIRS model. The root mean squared error of

calibration (RMSEC, often called "standard error of calibration", SEC) is calculated

according to equation 3 for the calibration sample set. In an analogous way, the root

mean squared error of prediction (RMSEP) is calculated for the sample set used for

validation.

Optimisation of a NIRS calibration model may aim to decrease the RMSEC. However,

applying this parameter alone would give a rather optimistic estimate of the model

performance and provides no protection against an overfit to accidental features of

the calibration sample set. Therefore a leave-one-out strategy may be used to obtain
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a more realistic evaluation of the calibration model. Following this strategy, the

concentration of each calibration sample is predicted on the basis of a model

established without the sample to be predicted. Using this approach for assessment

of an MLR calibration model, the estimated root mean squared error of prediction

(RMSEPEst) and the root mean squared error of crossvalidation (RMSECV) are

calculated according to equation 3 and Table 1.

The RMSECV is considered as a very suitable statistic parameter for optimum

calibration model selection [59].

equation 3:

:RMSEC  root mean squared error of calibration

:EstRMSEP estimated root mean squared error of prediction

:RMSECV root mean squared error of crossvalidation

:RMSEP root mean squared error of prediction

:specifiedc concentration determined by the reference method

:predictedc concentration predicted by means of the NIRS model

:m degrees of freedom

Table 1: Procedures for calculation of NIRS performance values (MLR model)

parameter  sample set leave-one-
out*

recalculation of
regression parameters

reselection of
wavelengths

degrees of
freedom

RMSEC calibration no no no 1−− Rn
RMSEPEst calibration yes yes no n
RMSECV calibration yes yes yes n
RMSEP validation no no no n
n : number of samples in the calibration/validation sample set
R : number of terms in the MLR calibration model (see equation 2)

    * : A leave-one-out strategy means to successively remove each individual sample from the
calibration set and to analyse them on the basis of models built with the remaining samples.

The above mentioned performance values are absolute errors calculated from the

differences between predicted and specified values. They are suitable to compare

NIRS models. In order to assess the applicability of an NIRS method to the analysis

of future samples and to replace the reference method, relative error measurements

have been proposed taking into account the standard deviation or the range of

concentrations observed for the samples, and the standard deviation of the reference

method. Minimum performance criteria, available from the literature, have to be met

m
)cc(

   RMSEP
RMSECV
RMSEP

  RMSEC
2

predictedspecifiedEst ∑=
  -
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to assure that absolute prediction errors are small enough compared to the sample

concentration range. Table 2 summarises performance criteria proposed in the

literature as general minimum requirements for NIRS methods.

Table 2: Performance criteria proposed for NIRS methods

performance criterion minimum
requirement

literature

RMSECV
min) (max - max: maximum concentration observed in

the calibration sample set
10 [60, 61]

min: minimum concentration observed in
the calibration sample set

RMSECV
s s : standard deviation of concentrations

in the calibration sample set
3 [60]

referenceNIRS s*kRMSEP = references : standard deviation of the reference
method

2≤k [61]

Because NIRS is a secondary method, any error in the reference method is carried

over into the NIRS method. Therefore, results obtained by NIRS cannot be more

accurate than those obtained by the reference procedure. If systematic errors can be

ruled out, the limit of accuracy can be estimated according to equation 4 [56].

equation 4:

)ss(RMSEP 2
predicted

2
specifiedNIRS +>

:NIRSRMSEP root mean squared error of prediction of the

NIRS method

:predicteds standard deviation of the NIRS method

:specifieds standard deviation of the reference method

2.3.7 Applications of NIRS in food analysis

NIRS is being widely used for quality control of raw materials, intermediate products

and final products. NIRS is a non-destructive, simple and rapid analytical technique

and represents an interesting alternative to time-consuming wet-chemical methods.

Proximate analysis (i.e. determination of moisture, protein, fat, starch) still accounts

for the majority of applications. Generally, NIRS is applicable to the determination of

major constituents (contents > 1 %), but a few examples focusing on minor

constituents, e.g. amino acids in cereals, soybeans and sunflower and glucosinolates

in canola have been reported [61-63].
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Wet-chemical analysis of amino acids is a time-consuming process involving

extraction, hydrolysis, clean-up, and ion-exchange chromatography. The contents of

individual amino acids in foods and feeds are often lower than 1 %. Nevertheless,

NIRS calibrations were developed allowing the accurate, simultaneous and fast

prediction of protein and the total contents of methionine, cystine, lysine, threonine,

tryptophan, and other essential amino acids in a broad spectrum of cereals and

feedstuffs. This reduced the time for actual analysis from hours to seconds.

Especially for lysine and methionine, the most limiting amino acids, NIRS was shown

to be superior to other methods for estimation of amino acid distribution, e.g. crude

protein regression [61, 62].

One of the major objectives in canola breeding was to obtain cultivars low in

glucosinolates.  Although the contents of these anti-nutritional constituents in canola

are between 0.2 % and 1.4 %, NIRS was shown to be applicable to the rapid

determination of these compounds in intact rapeseeds [63].

One of the most interesting applications of NIRS in the industry is the evaluation of

complex parameters related to food quality, such as taste, status of processing, or

nutritional value.

Taste - related formulae that derive a taste score from the constituents have been

developed. However, it is impractical for quality control to use the results of time-

consuming chemical analysis. To overcome this problem, rice taste analysers based

on NIRS have been developed. They are based on the fact that rice taste could be

experimentally related to the balance of moisture, protein, amylose and fatty acids

[55].

Whiteness, affected by the degree of milling, is related to the nutritional value of

rice. It has been reported, that whiteness can be measured by NIRS. However, it

does not seem to be measured directly by NIRS, but rather by determining the

amount of bran remaining on the surface of the milled rice kernel. NIRS

determination of the surface lipid content of milled rice has been investigated

because there was a strong correlation with the degree of milling [56].

These few examples demonstrate the usefulness of NIRS for the rapid determination

of a broad spectrum of parameters including those affected by more than one

constituent. However, in many cases the contents of nutritionally important or

toxicologically relevant constituents are close to or even below the reported detection
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limit (0.5 - 1 %) of NIRS [64]. Applicability of NIRS to the determination of such

minor constituents has to be proven case-by-case. The efforts might be

recompensed by gaining an analytical method which is less laborious, more rapid,

more environmentally friendly, and cheaper than the classical wet - chemical

approach.
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2.4 Metabolite profiling of foods

2.4.1 Definitions

Metabolites are the end products of cellular regulatory processes, and their levels can

be regarded as the ultimate response of biological systems to genetic or

environmental changes. In analogy to the terms transcriptome and proteome, the

entire set of metabolites synthesised by a biological system has been named

metabolome [65, 66]. Metabolomics is the science to measure the metabolome and

aims to provide a comprehensive picture of the metabolites synthesised by biological

systems. It tries to avoid biases against certain compound classes by chemical

structure or by apparent abundance in the biological tissue [65].

Several methodologies have been proposed for metabolomics studies. Some are

based on a fingerprinting approach where the metabolome creates a characteristic

pattern that becomes itself the object of analysis [67]. Metabolite profiling aspires to

detect, resolve, identify and quantify as many individual compounds as possible

across all compound classes in an unbiased and non-targeted way [65].

Metabolite profiling applied to food analysis in terms of that definition is in an early

stage of development. The objective of this chapter is to briefly cover recent

applications of metabolite profiling with special emphasis on those with potential

usefulness within the framework of food safety assessment.

2.4.2 Sample preparation

Sample preparation for metabolite profiling aims to efficiently extract a wide range of

compounds across the different chemical classes from biological tissues. As the first

step, the inherent enzymatic activity of biological samples has to be rapidly stopped.

Usually, freezing in liquid nitrogen is used to achieve this effect. Other methods

include lyophilisation which prevents both enzyme and transporter function or

immediate addition of organic solvents and application of heat [68]. Methanol,

ethanol, and water or mixtures thereof are typically used for extraction of polar

metabolites [69, 70]. Methods commonly applied for total lipid extraction are based

on the use of chloroform and chloroform/methanol mixtures [71, 72]. In order to

enhance extraction efficiency, additional energy is put into the system, either by heat 
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[73] or by other techniques, such as accelerated solvent extraction [74]. Owing to

the resulting co-extraction of high-molecular weight compounds, e.g. carbohydrates

and proteins, the additional use of ultrafiltration or precipitation techniques has been

reported [72, 75]. A few methodologies have been described which allow the

fractionation of the total extracts obtained. They are either based on liquid-liquid

distribution to separate polar and lipophilic metabolites [73] or on solid-phase

extraction for separations according to the degree of polarity [72].

2.4.3 Data acquisition and analysis

The methodologies applied for analysis of the complex extracts obtained must be as

comprehensive as possible and have to offer the possibility to detect, resolve,

identify, and quantify a broad spectrum of compounds in a wide range of

concentrations. The methods used for metabolite profiling usually combine a

separation step, such as chromatography, with a universal detection technique. Gas

chromatography provides high resolution separation of compounds and can be used

in conjunction with a mass spectrometer (GC-MS). Both analytical techniques are

highly sensitive and universal, and are capable of detecting almost any organic

compound, regardless of its class or structure. Most metabolites found in plant

extracts have to be converted to less polar, more volatile derivatives before they are

applied to the GC column [73].

So far, GC combined with quadrupole-MS [76, 77] or time-of-flight MS [78] has been

the most successful technique applied for metabolite profiling. However, the use of

other measurement techniques based on coupling liquid chromatography to UV-diode

array detection [54], mass spectrometry [75], and nuclear magnetic resonance [72,

79] for analysis of complex extracts of plant and environmental origin has been

reported. In these cases, no derivatisation step was necessary.

In order to identify the metabolites detected, their chemical-analytical characteristics

may be compared to those of reference compounds. Mass spectra libraries are

available which may assist in identifying analytes on the basis of electron-impact (EI)

mass spectral data obtained by GC-MS analysis [80]. Recently, reference tables

comprising retention times and EI-MS data of several hundred target compounds

found in potato tubers and Arabidopsis thaliana leaves have been published in the
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public-domain [81]. Fourier-transform ion cyclotron resonance mass spectrometry, a

recently developed type of ultra-high resolution mass spectrometry, allows non-

targeted identification and quantification of metabolites based only on their accurate

mass [82].

Metabolite profiling approaches must allow the analysis of raw data files in an

unbiased way. Such files generally contain information in two or three dimensions,

i.e. chromatographic retention time, characteristics of the physical properties of the

molecules, e.g. mass spectra and intensities to quantify metabolite levels. Mass

spectral deconvolution and identification software capable of computing purified

mass spectra from the elution profile of a compound by deconvolution of the

overlapping mass spectra of its neighbouring compounds has been developed. Using

the deconvoluted mass spectra, peak identities are confirmed by searching mass

spectral libraries [83]. 

Detection of relative changes in metabolite levels rather than quantification of

individual compounds has been proposed as primary objective of metabolite profiling

studies [68]. Multivariate data analysis, e.g. Principal Component Analysis (PCA) [77]

and Hierarchical Cluster Analysis [84, 85] has been frequently used to group samples

according to metabolite distribution. In order to find statistically significant

differences between individual metabolite levels, univariate statistics, e.g. Student's t

test, can be applied.

2.4.4 Recent applications

Up to the beginning of the 1990s, metabolite profiling approaches were most

advanced in the area of medicine particularly in diagnostic screening for inborn errors

of metabolism. In pioneering studies [86], multicomponent analyses were carried out

for steroids, acids, drugs and drug metabolites. It was suggested to use the

"metabolic profiles" obtained for studying drug metabolism and for evaluating the

influence of drugs on metabolic pathways. More recently, GC-MS was applied to the

analysis of a total of 126 urinary metabolites in order to diagnose 25 types of organic

acidemia in clinical routine [76]. The earliest application of GC to plant metabolite

profiling employed GC-FID/MS for analysis of barley leaves following treatment with

various herbicides. The detection of changes in peak profiles following herbicide

application was considered as valuable tool to locate the biochemical site of action of
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novel herbicides [70]. In the late 1990s, these studies triggered the proposal to apply

metabolite profiling methodologies for high-throughput large scale approaches in the

field of plant functional genomics [87].

Off-line coupling of solid phase extraction to NMR was applied to the analysis of GM

tomato varieties, with slow ripening characteristics through antisense RNA

exogalactanase modification, and to their non-modified counterpart. 1H-NMR spectra

of pre-fractionated extracts revealed that α-lycopene was present in the antisense

fruit at a concentration of two to four times the levels found in its parental line. This

was explained by a correlation between α-lycopene levels and fruit ripening [88].

A comprehensive HPLC profiling procedure involving UV-diode array detection for

plant isoprenoids has been described with applications to tomato and Arabidopsis

[54]. It has been shown that hydrophilic interaction columns may be coupled to

electrospray mass spectrometers, for structure determination (by MS/MS) and

quantification of polar metabolites of plant origin [75].

The most comprehensive procedure for metabolomics based on GC-MS measurement

has been described and validated using potato tubers [73] and Arabidopsis leaves

[77]. Over 300 compounds have been quantified in Arabidopsis extracts (polar and

non-polar fractions) but only half of them corresponded to known structures. PCA of

GC-MS metabolic data has been used to demonstrate clustering of Arabidopsis

genotypes [77]. The method was also used to characterise genotypes of potatoes

modified in sucrose metabolism. The approach revealed the appearance of novel

unexpected metabolites in chromatograms from transgenic tubers [84] which had

not been detected before because they had not been among the targets. 

Considering the recent advances of metabolite profiling methodologies in plant

functional genomics, the non-targeted screening of a broad spectrum of low-

molecular weight compounds has been proposed as tool for comparative

compositional analysis within the safety assessment framework of GM foods [6].
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3 Materials and Methods

3.1 Materials

3.1.1 Rice

3.1.1.1 Bt-rice

Rough rice grains from a genetically modified insect-resistant rice line expressing a

synthetic cry1Ab gene from Bacillus thuringiensis (KMD1) and from the

corresponding parental line (Xiushui 11) were delivered by Qingyao Shu, Zhejiang

University, Hangzhou, China [89]. Rough rice material was obtained from GM

(sample codes KMD1 (1), KMD1 (2)) and parental lines (sample codes Xiushui 11 (1),

Xiushui 11 (2)) grown in two field trials in China in 2001 under identical

environmental conditions.

An additional sample set consisting of brown rice kernels from rice lines Xiushui 11,

KMD1 and KMD2 (sample codes X11, K11, K21) was a gift from Illimar Altosaar,

University of Ottawa, Canada. KMD2 is another Bt-rice line obtained in the same way

as KMD1 but by a separate transformation [90]. The three samples had been treated

in the course of analysis by crushing using a Single Kernel Characterisation System

(Perten, Huddinge, Sweden) and had not been stored under defined conditions. 

3.1.1.2 GNA rice

Brown rice grains from a genetically modified insect-resistant rice line expressing a

lectin gene from Galanthus nivalis (GNA) and from the corresponding parental line

(ASD16) were delivered by Angharad Gatehouse, University of Newcastle, United

Kingdom [91]. Brown rice material was obtained from the GM (sample code GNA)

and from the parental line (sample code ASD16) grown site by site in a glasshouse

trial in 2001.

3.1.1.3 Conventional rice cultivars

Rough rice and brown rice samples from the conventional cultivars Balilla, Cripto, and

Thaibonnet were obtained from Primavera, Mühldorf, Germany. The samples were
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delivered as separate batches. Their characteristics regarding origin, grain shape and

year of harvest are summarised in Table 3.

Table 3: Conventionally bred rice cultivars used as study material

sample code cultivar grain shape* origin year of harvest

BA1 Balilla SG Spain 2000
BA2 SG Italy 2000
BA3 SG Italy 2000
BA4 SG Italy 2000
CR1 Cripto SG France 2000
CR2 SG Italy 2000
CR3 SG Italy 2001
CR4 SG Italy 2001
CR5 SG Italy 2001
CR6 SG Italy 2001
CR7 SG Italy 2000
CR8 SG Italy 2000

Thai1 Thaibonnet LG Italy 2000
Thai2 LG Italy 2000

*: LG: long grain rice; SG: short grain rice

3.1.1.4 Commercial rice samples

Commercial brown rice samples (not parboiled) were purchased in local

supermarkets (sample codes H1 – H16) or were provided by the following

companies: Bayerische Reismühle, Halfing, Germany (B – B2), Rickmers Reismühle,

Bremen, Germany (R1), MSC, Hamburg, Germany (E1 – E18), Primavera, Mühldorf,

Germany (P1 - P8), and Huber Mühle, Mannheim, Germany (U1 – U3). Samples with

sample codes J1 - J6 were a gift from M. Murata, National Food Research Institute,

Tsukuba Science City, Japan. Characteristics of these commercial brown rice samples

are summarised in Table 4.
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Table 4: Characteristics of commercial rice samples used as study material

sample code
grain

characteristics* origin sample code
grain

characteristics* origin

B
B1
B2

SG
SG
LG

Italy
Italy
Italy

R1
U1
U2
U3

SG
LG

LG, B
LG

USA
Italy
India

Surinam
E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18

LG
LG, B
LG
LG
LG

LG, B
LG

LG, B
LG
LG

LG, B
LG

LG, B
LG
LG

LG, B
LG
LG

USA
India
Spain

Guyana
Spain
India
USA
India
USA

Guyana
India
USA
India

Guyana
Spain
India
USA

Guyana

H1
H2
H3
H4
H5
H6
H7
H8
H9
H10
H11
H12
H13
H14
H15
H16

LG
SG
SG

LG, B
MG
SG
LG
LG
SG
LG
LG
LG
LG
LG
LG
RC

France
France
Italy
Italy
Italy
Italy
Spain

unknown
unknown
unknown

Italy
France

unknown
unknown
unknown
France

P1
P2
P3
P4
P5
P6
P7
P8

SG
SG
SG
SG
SG
SG
SG
SG

Spain
France
France
Italy
Italy
Italy
Italy
Italy

J1
J2
J3
J4
J5
J6

SG
SG
SG
SG
SG
SG

Japan
Japan
Japan
Japan
Japan
Japan

*: LG: long grain rice; MG: medium grain rice; SG: short grain rice; B: Basmati rice; RC: red camargue rice; 

3.1.2 Maize

Maize grains from a genetically modified insect-resistant maize breeding line

expressing a synthetic cry1Ab gene from Bacillus thuringiensis (Navares) and from

the corresponding parental line (Antares) were delivered by Joachim Eder,

Bayerische Landesanstalt für Bodenkultur und Pflanzenbau, Freising, Germany. Maize

material was obtained from the GM and the parental line grown in a field trial in

Neuhof, Germany in 2000 under identical environmental conditions [92].

3.1.3 Barley

Grains of malting barley (cultivar Pasadena) were a gift from Lehrstuhl für

Technologie der Brauerei I, Technical University Munich, Freising-Weihenstephan,

Germany.
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3.2 Methods

3.2.1 Metabolite profiling of major and minor compounds in rice grains

3.2.1.1 Preparation of standard solutions

Internal standard solution for fraction I was prepared by adding n-hexane (Merck,

Darmstadt, Germany) solutions of undecane (1.5 mL, 1 mg/mL), hexadecane

(2.5 mL, 1 mg/mL), tetracosane (4 mL, 1 mg/mL), and triacontane (4 mL, 1 mg/mL)

to 10 mg of octatriacontane. Hydrocarbons were purchased from Fluka, Buchs,

Switzerland.

Internal standard solution for fraction II was prepared by bringing 1 mL of a stock

solution of 5α-cholestan-3β-ol (Fluka) in dichloromethane (2 mg/mL) to a final

volume of 10 mL with dichloromethane.

Internal standard solution for fraction III was obtained by dissolving 20 mg of

phenyl-β-D-glucopyranoside (Fluka) in 50 mL of distilled water.

Internal standard solution for fraction IV was prepared by dissolving 10 mg of p-

chloro-L-phenylalanine (Fluka) in 50 mL of distilled water.

Retention time standard mix I was identical to the internal standard solution for

fraction I.

Retention time standard mix II was prepared by adding 1.5 mL of n-hexane and n-

hexane solutions of hexadecane (2.5 mL, 1 mg/mL), tetracosane (4 mL, 1 mg/mL),

and triacontane (4 mL, 1 mg/mL) to 10 mg of octatriacontane.

3.2.1.2 Sample preparation

Rough rice was dehulled by means of a wooden rice dehuller, which was a gift from

Quingyao Shu, Zhejiang University, Hangzhou, China. Dehulled rice grains (9 % -

12 % moisture) were ground with a cyclone mill (Cyclotec 1093, Foss, Höganäs,

Sweden) equipped with a 500-µm screen. The flour was immediately freeze-dried for

three days using a conventional freeze-drying apparatus (Delta IA, Christ, Osterode,

Germany). The moisture content of the resulting material (<2 %) was determined as

a loss of weight by drying at 130°C for two hours [93]. Freeze-dried flour samples

were stored at -18°C in tightly closed LDPE bottles (Qualilab, Darmstadt, Germany).
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3.2.1.3 Extraction procedure

Two hundred milligrams of freeze-dried rice flour were weighed into a disposable

cartridge (3 mL column volume, Merck) which was sealed with plastic frits at the top

and at the bottom of the flour layer. The cartridge was subsequently connected to a

vacuum manifold (Supelco, Taufkirchen, Germany) equipped with valves to control

the flow rate. The rice flour in the cartridge was soaked in 150 µL of methanol

(Merck) for 20 min at ambient temperature. After removal of methanol by application

of vacuum on top of the cartridge for 30 min, lipids were eluted with a total of 4 mL

dichloromethane (Riedel de Haën, Seelze, Germany) within 20 min (lipid extract).

Traces of dichloromethane were removed from the flour under vacuum.

Subsequently, polar compounds were eluted with a total of 10 mL methanol/water

(80+20, v+v) within 40 minutes (polar extract).

Elutions from the cartridge proceeded by gravity flow or - if necessary - by

application of weak vacuum at the bottom into 10-mL round flasks.

3.2.1.4 Fractionation and analysis of lipids

After addition of internal standard solutions for fraction I (50 µL) and fraction II

(150 µL), the lipid extract was evaporated to dryness by rotary evaporation under

vacuum and redissolved in 300 µL of dry methyl-tert-butylether (MTBE, Oxeno, Marl,

Germany). To this solution, 200 µL of dry methanol and 50 µL of sodium methylate,

5.4M in methanol (Fluka), were added. After reaction for 90 min at room

temperature in the dark, 1 mL of dichloromethane and 2 mL of aqueous 0.35M HCl

were added. After vigorous shaking, the upper phase was discarded. The lower

phase containing the transmethylated lipids was reextracted with another 2 mL of

aqueous 0.35M HCl and subsequently evaporated to dryness by rotary evaporation

under vacuum. After drying over phosphorus pentoxide (Fluka), transmethylated

lipids were subjected to solid phase extraction (SPE).

A small amount of anhydrous sodium sulphate (Merck) was placed on top of a

500 mg silica gel SPE cartridge (LiChrolut, Merck) conditioned with one column

volume (CV, 2.5 mL) of n-hexane. Transmethylated lipids were redissolved in 250 µL

of dichloromethane and transferred to the SPE cartridge. The fatty acid methyl ester

fraction (fraction I) was eluted with n-hexane/MTBE (100+2, v+v, 2 x 3 mL).

Subsequently, the fraction of minor polar lipids (fraction II) was eluted with n-
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hexane/MTBE (7+3, v+v, 2 CV). Elutions from the SPE cartridge proceeded by

gravity flow into 10-mL round flasks. After addition of retention time standard mix I

to fraction II, the eluates were evaporated to dryness by rotary evaporation under

vacuum. The fatty acid methyl ester fraction was redissolved in 150 µL of

dichloromethane, and 1 µL was injected into the gas chromatograph.

Fraction II containing polar lipids was redissolved in 100 µL of dry pyridine (Fluka)

and 50 µL of N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA, Merck) was

added. After flushing with argon, the flask was tightly sealed with a glass stopper

and allowed to stand for 15 min at 70°C in an oil bath. The sample was then cooled

to room temperature and 1 µL was analysed by gas chromatography.

3.2.1.5 Fractionation of the polar extract

After addition of the internal standard solutions for fraction III (150 µL) and fraction

IV (150 µL), 2 mL of the polar extract was concentrated in a rotary film evaporator

and dried over phosphorus pentoxide. Dry pyridine (100 µL) and 50 µL of

trimethylsilylimidazole (TMSIM, Fluka) were added for silylation which was performed

as described for fraction II. The silylated sample was diluted with 200 µL of n-

hexane, and 200 µL of water was added for selective hydrolysis of silylated carboxyl

groups. After shaking and phase separation, 100 µL of the upper phase was mixed

with 50 µL of retention time standard mix I. One microliter of this mixture was

injected into the gas chromatograph.

The remaining polar extract (ca. 8 mL) was concentrated in a rotary film evaporator

and dried over phosphorus pentoxide. The dry residue was redissolved in 100 µL of a

solution of hydroxylammoniumchloride (Merck) in pyridine (2 mg/mL). After heating

for 30 min at 70°C, 50 µL of MSTFA was added and the sample was allowed to stand

for another 15 min at 70°C. The silylated sample was diluted with 400 µL of n-

hexane and 200 µL of water was added for selective hydrolysis of silylated carboxyl

and amino groups. After vortexing, the mixture was allowed to stand for 5 min. The

upper phase containing oximated and silylated sugars was discarded and residual

sugars were re-extracted from the aqueous phase by additional treatment with 2 x

400 µL of n-hexane. The lower aqueous phase containing free organic and amino

acids was concentrated in a rotary film evaporator and dried over phosphorus

pentoxide. The residue was redissolved in 100 µL of dry acetonitrile (Merck) and
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50 µL of retention time standard mix II were added. After addition of 50 µL of

MSTFA, the sample was allowed to stand for 60 min at 70°C in an oil bath for

silylation. It was then cooled to room temperature and 1 µL was analysed by gas

chromatography.

3.2.1.6 Gas chromatography

Gas chromatography (GC) was performed on a Carlo Erba Mega HRGC 5160 (Thermo

Finnigan, Austin, TX) equipped with a flame ionisation detector (FID) which was

heated to 320°C. The chromatography column was a DB-1, 60 m x 0.32 mm i.d.

fused silica capillary coated with a 0.25 µm film of polydimethylsiloxane (J&W

Scientific, Folsom, CA). Split injection (split flow 30 mL/min) was performed at

280°C, and the column temperature was programmed from 100°C to 320°C (30 min-

hold) at 4°C/min. Hydrogen was used as the carrier gas at a constant inlet pressure

of 100 kPa.

FID data were acquired by means of commercially available software (ChromCard,

Thermo Finnigan) using a sampling rate of 600 data points/min. Automated peak

integration within the retention time range between 5 min and 50 min was

performed using a peak width of 5 sec and a peak threshold of 5. For integration of

peaks eluting at retention times higher than 50 min, peak threshold was set to 9, and

peak width was adjusted to 15 sec. Peaks exhibiting an area lower than

3000 µV*min were not taken into account.

Quantification was performed using peak heights which had been normalised on the

basis of those observed for internal standards in the respective fractions.

3.2.1.7 Gas chromatography – mass spectrometry

Gas chromatography – mass spectrometry (GC-MS) was performed on a GC 8000

Top with a Finnigan Voyager (Thermo Finnigan) as the mass selective detector. The

MS interface temperature was set to 260°C. Full scan mass spectra were recorded at

an electron energy of 70 eV (source temperature 200°C) within a scan range of 40-

700 mu. The chromatography column was the same as used for analysis by GC-FID.

Split injection (split flow 30 mL/min) was performed at 250°C, and the column

temperature was programmed as described above. Helium was used as the carrier

gas at a constant inlet pressure of 165 kPa.
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Rice constituents were identified by comparing retention times with those of silylated

and methylated reference compounds or by comparing mass spectra with entries of

mass spectra libraries [80, 81].

3.2.1.8 Repeatability

To determine the repeatability (intralaboratory precision) of the fractionation

procedure, five aliquots of a total extract were subjected to the described protocol

and the resulting fractions were analysed by GC-FID. Repeatability of the overall

metabolite profiling methodology was determined by triplicate analysis of a rice

sample comprising extraction, fractionation, derivatisation, and GC-FID investigation.

3.2.1.9 Linearity

In order to determine the linear range of the overall metabolite profiling

methodology, increasing amounts of rice flour (100 mg – 800 mg) were extracted,

fractionated and derivatised as described above. Normalised peak heights obtained

by GC-FID analysis were plotted against the amount of flour extracted. For

quantitative evaluation of linearity, the correlation coefficient between normalised

peak heights and amounts of extracted flour was calculated.

3.2.1.10 Recovery

For determination of recoveries, rough rice material was analysed in triplicate.

Solutions containing standard compounds were spiked to the first sample at the start

of the analytical procedure. The peak heights determined for the spiked compounds

( 1h ) were compared to those ( 2h ) observed for the rice fraction, which had been

obtained from the second sample and spiked at the end of analysis. Spiked amounts

of naturally occurring compounds were in the same ranges as those found to be

endogenous in rice. In order to be able to calculate the percentages of spiked

amounts recovered at the end of analysis (recovery w ), the peak heights ( 3h )

determined by investigation of the unspiked fraction obtained from the third rice

sample were taken into account. Experiments for determination of recoveries were

performed in duplicate (6 samples). Recoveries were calculated according to

equation 5.
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equation 5:

100
h-h
h-hw

32

31 *=

w : recovery [%]

 h1: peak height determined in the fraction
obtained from a rice sample spiked at the
start of analysis

 h2: peak height determined in the rice fraction
spiked at the end of analysis

 h3: peak height determined in the unspiked
fraction obtained from an unspiked rice
sample

The protocols applied for the four fractions were as follows:

Fraction I : Twenty microliters of dichloromethane solutions containing tetracosane

(0.83 mg/mL), squalene (Acros, Geel, Belgium, 0.25 mg/mL), and tripalmitin (Sigma,

Steinheim, Germany, 8.5 mg/mL) were spiked to 200 mg of rice flour at the start of

the analytical procedure. In order to add standard compounds at the end of analysis,

20 µL of dichlormethane solutions containing tetracosane (0.83 mg/mL), squalene

(0.25 mg/mL), and methyl palmitate (8.5 mg/mL) were spiked to fraction I prior to

GC analysis.

Fraction II : Twenty microliters of dichloromethane solutions containing 5α-

cholestan-3β-ol (1.5 mg/mL), δ-tocopherol (Sigma, 0.25 mg/mL), stigmasterol

(0.45 mg/mL), and palmitic acid (Frey und Lau, Henstedt-Ulzburg, Germany,

3 mg/mL) were spiked to rice flour and to fraction II prior to silylation, respectively.

Fraction III : Ten milligrams of solid sucrose and 50 µL of an aqueous stock solution

of fructose, glucose, raffinose, and phenyl-β-D-glucopyranoside (5 mg/mL) were

added to rice flour prior to lipid extraction. In order to spike standard compounds at

the end of analysis, silylated derivatives obtained from 10 µL stock solution and 2 mg

sucrose were added to fraction III prior to GC investigation.

Fraction IV : Fifty microliters of an aqueous solution containing glycine (Merck,

1.1 mg/mL), glutamic acid (Merck, 1.1 mg/mL), glutamine (Merck, 0.4 mg/mL),

lysine hydrochloride (Merck, 1.5 mg/mL), calcium citrate (Merck, 1.15 mg/mL) and p-

chloro-L-phenylalanine (0.4 mg/mL) were spiked to the polar rice extract and 40 µL

of the same solution to fraction IV prior to re-silylation.
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3.2.1.11 Determination of natural variability

For calculation of the natural variability ( S ) for a compound in a set of samples,

normalised peak heights ( h ) were related to their median ( Med ). According to

equation 6, ratios calculated for the highest and the lowest normalised peak height

observed for a compound in the sample set were summed to obtain S .

equation 6:
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h: normalised peak height

Med: median of normalised peak heights for a
compound in a set of samples

max(X+): maximum value observed for X+ in the
sample set [%]

max(X-): maximum value observed for X- in the
sample set [%]

S: natural variability

3.2.2 Metabolite profiling of maize grain constituents

Sample preparation and extraction of low molecular weight compounds from freeze-

dried maize flour were performed as described in 3.2.1.2 and 3.2.1.3. In contrast to

rice, fractions III and IV were prepared starting from 1 mL of polar extract. All

further fractionation steps, derivatisation and gas chromatographic/mass

spectrometric analysis were carried out according to the procedures described in

3.2.1.4 - 3.2.1.7.

3.2.3 Metabolite profiling of germinating barley

3.2.3.1 Micromalting of barley grains

In order to obtain malted barley at different malting stages, barley grains (cultivar

Pasadena) were subjected to a micromalting procedure according to a guideline

published by "Mitteleuropäische Brautechnische Analysenkommission" (MEBAK) [94].

Micromalting was carried out at Technical University Munich, Institute of Brewing

Technology I, Freising-Weihenstephan, Germany. Samples were taken 5 hours after

the start of the micromalting process and then daily until day 7. An additional sample

was taken after kilning.
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3.2.3.2 Sample preparation

Grain samples at different malting stages were immediately frozen in liquid nitrogen

and subsequently freeze-dried for 3 days using a commercial freeze-drying apparatus

(Christ). Freeze-dried grains with shoots were ground with a cyclone mill

(Cyclotec 1093, Foss) and the flour obtained was stored at –18°C in tightly sealed

LDPE bottles (Qualilab).

3.2.3.3 Extraction, fractionation, and GC analysis of malted flour samples

Extraction of low molecular weight compounds from freeze-dried malted flour

samples was performed as described in 3.2.1.2 and 3.2.1.3. In contrast to rice,

fractions III and IV were prepared starting from 1 mL of polar extract. All further

fractionation steps, derivatisation and gas chromatographic/mass spectrometric

analysis were carried out according to the procedures described in 3.2.1.4 - 3.2.1.7.

3.2.4 Automated comparative analysis of metabolite profiling data

3.2.4.1 Sample preparation

Metabolite profiling chromatograms obtained from rice were used for method

development. Extraction, fractionation and capillary gas chromatographic analysis

were performed following the protocol described in 3.2.1. In order to obtain a spiked

sample, palmitic acid (60 µg), δ-tocopherol (5 µg), 5α-cholestan-3β-ol (30 µg), and

stigmasterol (9 µg) were added to 200 mg of rice flour prior to extraction. For

retention time standardisation, 50 µL of a retention time standard mix (see 3.2.1.1)

containing undecane (C11), hexadecane (C16), tetracosane (C24), triacontane (C30),

and octatriacontane (C38) was added to the rice fractions obtained from spiked and

unspiked rice flour prior to GC-FID investigation.

3.2.4.2 Data acquisition and generation of files

Data acquisition (FID responses and corresponding time points) and automated peak

integration were carried out as described in 3.2.1.6 using commercially available

software (ChromCard, Thermo Finnigan, Austin, TX). Peak heights and corresponding

retention times were stored in Microsoft (MS) Excel files. FID responses and

corresponding time points were saved as ASCII files (100 time points per minute).
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Chromatographic data obtained from the minor lipid fraction (fraction II) of the

spiked and the unspiked rice flour served as sample chromatogram and reference

chromatogram, respectively.

For further processing, i.e. matching and comparison of the sample to the reference

chromatogram, the files were imported into a self-tailored software based on

Microsoft Excel Visual Basic. The tools developed are described in general form in the

following chapters.

3.2.4.3 Manual chromatogram matching

Manual chromatogram matching, i.e. correction of retention time differences and

normalisation of detector responses, is performed by using a graphical user interface

implemented in the software. After import of a sample and a reference

chromatogram, i.e. detector responses and corresponding time points (optionally an

additional list containing peak heights/areas and corresponding retention times), a

baseline function is automatically calculated for the sample chromatogram. This is

done by searching response minima within time intervals of the chromatogram.

Subsequently, linear equations are computed describing the baseline shape between

two adjacent minima.

For retention time correction, time intervals of the sample chromatogram can be

shifted, linearly stretched and/or linearly compressed along the time axis until they

match accurately to the reference chromatogram. Stretching and compressing is

automatically restricted to time intervals exhibiting detector responses close to the

baseline. 

Detector response normalisation is achieved by automated baseline correction and by

linear stretching/compressing of the sample chromatogram along the response axis

using a pre-selectable peak as reference.

In order to be able to accurately control the matching efficiency, the software

provides features for zooming into narrow time intervals of the chromatograms.

3.2.4.4 Automated retention time matching

In order to achieve automated retention time matching, input of the retention times

observed for the five retention time standard compounds (C11, C16, C24, C30, C38) in

the sample chromatogram and in the reference chromatogram is required. By using
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the software tool, retention times of all peaks in the sample chromatogram are

corrected for the retention time difference observed for C24 (shift). Subsequently,

two equations are calculated by means of quadratic regression describing a

correlation between the remaining retention time differences observed for

corresponding standards and the retention time distances to C24. The two quadratic

equations are subsequently applied to correct the retention times of all peaks in the

sample chromatogram eluting earlier and later than C24, respectively

(stretching/compressing).

3.2.4.5 Automated standardisation of peak heights/peak areas

Standardisation of peak heights/peak areas is achieved on the basis of the peak

height/peak area ratio calculated for a pre-selectable standard peak in the sample

and the reference chromatogram.

3.2.4.6 Build-up of databases

Databases are built from peak-based and response-based datasets. Peak-based

datasets consist of standardised heights/areas and corresponding corrected retention

times of all peaks detected in a chromatogram and are obtained by either automated

retention time matching or manual chromatogram matching. Response-based

datasets consisting of normalised detector responses and corresponding corrected

time points (100 time points per minute) are generated by manual chromatogram

matching. Microsoft Excel spreadsheets are used to store the data.

3.2.4.7 Calculation of theoretical chromatographic data / chromatograms from

databases

Calculation of theoretical chromatographic data from a series of pre-selected peak-

based datasets is performed by combining the heights/areas of corresponding peaks

for the calculation of minima, maxima, means and standard deviations. Peaks are

combined if their corrected retention times are within the same retention time

window. The width of the retention time window can be adjusted by setting the

parameter "width".

Calculation of theoretical chromatograms from a series of pre-selected response-

based datasets is performed by combining normalised detector responses at
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corresponding corrected time points for the calculation of maxima, minima and

means.

3.2.4.8 Generation of matrices from peak-based databases for multivariate

analyses

This tool allows to transform peak-based data in a series of pre-selected datasets

into a data format suitable for multivariate analyses, e.g. principal component

analysis or discriminant analysis. The tool assigns exactly the same retention time to

all corresponding peaks in the series of datasets. Peaks are considered to belong

together if their corrected retention times are within the same retention time

window. The width of the retention time window can be adjusted by setting the

parameter "width".

The format of transformed data which are stored in MS Excel spreadsheets is

illustrated in Figure 3.

Principal component analysis using the generated matrix was performed by means of

the XLSTAT add-in for MS Excel (Addinsoft, Paris, France).

3.2.4.9 Peak-based chromatogram comparison

The tailored tool developed for automated peak-based chromatogram comparison

uses the standardised peak heights/areas at corresponding corrected retention times

for analysis. Peak-based datasets as well as theoretical chromatographic data

calculated from a series of pre-selected peak-based datasets can be defined as

comparators (sample and reference). Comparison is performed peak-by-peak. Peak

heights/areas are compared if their corresponding corrected retention times are

within the same retention time window. The width of this retention time window can

sample 1 sample 2 ... sample n

t1 h11 h21 ... hn1

t2 h12 h22 ... hn2

. . . ... .

. . . ... .

. . . ... .

tm h1m h2m ... hnm

Figure 3: General structure of matrices generated by transformation of a series of peak-based
datasets for multivariate analyses. t: retention time, h: standardised peak height.
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be adjusted by setting the parameter "width". The parameter "min. peak

height/area" defines a peak height/area threshold. Peaks exhibiting a height/area

lower than the threshold value are not taken into account for comparison. The

parameter "blanks" refers to retention time windows to be excluded from

chromatogram comparison.

The magnitude of the percentage difference ( w ) between the normalised heights of

corresponding peaks in the sample ( Sh ) and the reference chromatogram ( Rh ) was

calculated according to equation 7.

equation 7:

100*
)h;hmin(

h-hw
RS

RS=

:w magnitude of a percentage peak height
difference [%]

hS , hR : normalised heights of corresponding peaks in the
sample (S) and the reference (R) chromatogram

min(hS ; hR): expression is equal to hS if hS < hR , and vice
versa

Results of comparison are summarised in a graphical and a tabular report. The

graphical report contains separate plots indicating percentage peak height/area

differences and additional peaks as dots along the retention time axis. Differences

falling below a threshold value (parameter "detect differences higher than") are not

reported. A positively signed value expressing the magnitude of a percentage peak

height/area difference indicates a higher peak height/area in the sample

chromatogram in comparison to the counterpart in the reference and vice versa. If

no counterpart is found in the reference, a dot appears in the graphic report

indicating the positively signed height/area of the additional peak in the sample, and

vice versa.

The tabular report lists the number and heights/areas of the additional peaks, the

number and magnitudes of percentage peak height/area differences, the total

number of peaks detected in the sample and the reference, and the number of peaks

taken into account for comparison.

In order to detect statistically significant differences between two series of peak-

based datasets, mean heights/areas and standard deviations are automatically

calculated for all corresponding peaks. Subsequently, percentage differences
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between the means are assessed for statistical significance by means of Student’s t-

test. Finally, graphical and tabular reports are generated which summarise number

and magnitudes of the statistically significant differences.

3.2.4.10 Response-based chromatogram comparison

The tailored tool developed for automated response-based chromatogram

comparison uses the normalised detector responses and the corresponding corrected

time points for analysis. Two response-based datasets as well as theoretical

chromatograms calculated from a series of pre-selected response-based datasets can

be defined as comparators (sample and reference).

Selection of points to be included for comparison is based on the first derivative of

the chromatograms and on the level of the normalised detector response. Points of

the chromatograms exhibiting a slope lower than an adjustable parameter value

(parameter "slope") are taken into account for comparison. In order to determine the

first derivative of a chromatogram at each time point, mathematical functions

describing its shape are calculated for adjacent narrow time intervals by means of

Newton’s polynomial interpolation.

The parameter "min. response" defines a minimum threshold for the response level.

Ranges of the normalised chromatograms falling below this threshold (noisy ranges)

are excluded from comparative analysis.

Percentage response differences are calculated in an analogous way as described for

percentage peak height differences (see equation 7). Results of response-based

chromatogram comparison are summarised in a graphical and a tabular report. The

graphical report shows an overlay of the two comparators. Points of the

chromatograms taken into account for comparison are labelled by empty circles. If a

response difference has been detected, points are labelled by filled circles.

Percentage response differences smaller than an adjustable parameter value

(parameter "detect differences higher than") are not reported. The tabular report

lists the number and magnitudes of percentage response differences. These values

are positively signed if a higher response level has been detected in the sample

chromatogram in comparison to the reference, and vice versa.
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3.2.5 NIRS method for determination of phytic acid in brown rice

3.2.5.1 Sample pre-treatment and sample storage

Rice grains were dehulled, ground, freeze-dried and stored as described in 3.2.1.2.

3.2.5.2  Reference analytical determination                                 of phytic acid in brown rice flour   

One gram of a freeze-dried brown rice flour sample was weighed into a 50-mL oak-

ridge centrifuge tube (Nalgene, Merck Eurolab, Darmstadt, Germany) and defatted

over night with 3 mL of petrol ether (Merck, Darmstadt, Germany). After removal of

the organic solvent by means of a pasteur pipette and by a gentle stream of air,

phytic acid was extracted from defatted brown rice flour at ambient temperature for

two hours with 20 mL of 2.4 % hydrochloric acid (pH = 0.6) under continuous

shaking (Heto Master Shake, Merck Eurolab, Darmstadt, Germany). The aqueous

flour extract obtained was centrifuged for 10 min (15,000 min-1, 15°C) by means of a

cooling centrifuge (ZK 401, Eppendorf, Hamburg, Germany), and the brown rice flour

was re-extracted with 5 mL of water. The combined extracts were adjusted to  pH =

6 with 1N and 0.2M sodium hydroxide solution (Merck, Darmstadt, Germany), and

brought to a final volume of 50 mL water. In order to remove protein precipitates,

the extract was centrifuged for another 10 min (15,000 min-1, 15°C). The clear

supernatant obtained was diluted with water (1:5) and subjected immediately to

anion-exchange chromatography.

Anion-exchange chromatography was performed using disposable cartridges (3 mL),

equipped with large-volume adapters and packed with 0.5 g resin (Dowex AG 1x4

200-400 mesh, Fluka, Neu-Ulm, Germany), which had been activated with 3 mL

water (over night), 3 mL 1N sodium hydroxide solution (1.5 hours), and 3 mL 1N

hydrochloric acid (1.5 hours) prior to use. Anion-exchange columns were washed

with ca. 10 mL of water until eluates exhibited neutral pH. Re-activation of the resin

was achieved by washing with 10 mL of 0.7N sodium chloride solution (1.5 mL/min),

followed by 10 mL of water (1.0 mL/min). Anion-exchange columns were good for

clean-up of a total of three flour extracts.

After a 10 mL aliquot of diluted brown rice extract had been loaded onto the

activated anion-exchange column (1.0 mL/min), a fraction containing inorganic

phosphate was eluted with 15 mL 0.1N sodium chloride solution (1.5 mL/min). The
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phytic acid fraction was subsequently eluted with 15 mL 0.7N sodium chloride

solution (1.5  mL/min) and collected in glass tubes, which had been specifically pre-

treated in order to remove inorganic phosphate. This procedure had included

consecutive rinsing with basic KMnO4 solution, acidified H2O2 solution (3 %) and

water. Afterwards, the tubes were cleaned with water only.

For derivatisation, a 3 mL aliquot of the purified phytic acid fraction was added

immediately to 3 mL of 0.005N hydrochloric acid and mixed thoroughly with 1 mL of

modified Wade solution which had been prepared by dissolving 0.030 g FeCl3 ×

(H2O)6 (Merck) and 0.300 g sulfosalicylic acid (Merck) in 100 mL of water. After

10 minutes, absorption at 500 nm was measured spectrophotometrically (Uvikon,

Bio-Tek, Neufahrn, Germany) against water in disposable plastic cuvettes. The phytic

acid content in the purified fraction, calculated as sodium phytate (c  in µg/mL), was

derived from the measured absorption on the basis of a linear calibration equation.

Each brown rice flour extract was analysed in triplicate and results were averaged for

calculation of the phytic acid content in brown rice flour ( w , g/100g) according to

equation 8.

equation 8:

100*725.0*5.1*5*
10*m
50*cw 6=

w : phytic acid content in brown rice flour [%]

 c: mean phytic acid content in three purified
fractions, calculated as sodium phytate [µg/mL]

 m: amount of rice flour extracted [g]

In order to establish a calibration equation, solutions of sodium phytate (Sigma,

Taufkirchen, Germany) in water with increasing concentrations (15 µg/mL,

30 µg/mL, 45 µg/mL, 60 µg/mL, 75 µg/mL) were subjected to anion-exchange

chromatography as described above. This resulted in calibration standards with the

theoretically calculated sodium phytate concentrations 10 µg/mL, 20 µg/mL,

30 µg/mL, 40 µg/mL, and 50 µg/mL, which were analysed spectrophotometrically as

described for the phytic acid fractions obtained from brown rice flour. Calibrations

were performed daily. Purified calibration standards and purified phytic acid fractions

obtained from rice were analysed in parallel.
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Repeatability of the overall methodology was determined by four-fold investigation of

a brown rice sample (one clean-up step per extract) on four days. Repeatability of

the chromatographic clean-up procedure was calculated from results obtained by

triplicate analysis of one rice extract.

Recovery of phytic acid from brown rice flour was determined in triplicate. Seven,

ten, and thirty-seven milligrams of solid sodium phytate were spiked to one gram of

a brown rice flour sample with known phytic acid content, respectively. This

corresponds to an increase in phytic acid content by 0.54 %, 0.73 %, and 2.68 %,

respectively. Recovery was calculated as ratio of the content determined in the

spiked samples to that theoretically expected.

3.2.5.3 NIRS analysis of freeze-dried brown rice flour

NIRS analysis of freeze-dried brown rice flour was performed in diffuse reflection by

means of a commercial Fourier-transform (FT) NIR spectrometer, equipped with an

integrating sphere and an InGaAs detector (Spectrum One NTS, Perkin Elmer,

Rodgau-Jügesheim, Germany). About 5 g of brown rice flour was placed into a petri

dish which was subsequently mounted onto a continuously rotating measurement

unit (NIRA sample spinner, Perkin Elmer, Rodgau-Jügesheim, Germany). Spectra

were recorded from 1000 nm to 2500 nm in 0.5 nm steps (resolution: 8 cm-1). One

hundred spectra were averaged to obtain a mean NIR spectrum for each sample.

Spectral data (background subtracted) were stored as log(1/R) values at

corresponding wavelength points.

3.2.5.4 Pre-processing of spectral data

Pre-processing of raw spectral data (calculation of derivatives, multiple scatter

correction, smoothing) was performed by means of commercially available software

(Spectrum Quant, Spectrum Quant+, Perkin Elmer, Rodgau-Jügesheim, Germany).

For export, pre-processed spectral data were saved as ASCII files.

3.2.5.5 Establishment of a calibration model

In order to establish a correlation between data obtained by NIRS and phytic acid

contents determined by reference analysis, calibration datasets consisting of pre-

processed spectral data and reference analytical data for phytic acid were imported
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into software programmes for statistical analysis. Ridge regression was performed by

means of MATLAB (The Mathworks GmbH, Unterföhring, Germany), calibration

equations based on Principal Component Regression and Partial Least Squares

algorithms were calculated using Spectrum Quant+ (Perkin Elmer, Rodgau-

Jügesheim, Germany).

For forward stepwise Multiple Linear Regression (MLR), calibration datasets (5-point-

smoothed, 25-point-first derivatives of spectral data and reference analytical data)

were imported into Microsoft Excel spreadsheets and analysed by means of a self-

tailored tool based on Microsoft Visual Basic Macros. Using this tool, imported data

were averaged in 20-nm-segments. Additionally, ratios of averaged spectral data

were calculated for all possible wavelength pairs. Subsequently, transformed data

were subjected to regression analysis in order to calculate regression coefficients in

calibration equations of the following form (equation 9):

equation 9:

)(*...)(*)(* 322110 λλλ LaLaLaac n++++=

c : phytic acid content of brown rice flour
determined by reference analysis

naaa  , ... ,  , 10 : regression coefficients

)( ..., ),( ),( 21 λλλ nLLL : transformed spectral

data or ratios of transformed spectral data

)(* λLa : term

The calibration model was optimised by altering the number and the range of

wavelength points to be taken into account for model establishment. Performance of

calibration models was evaluated on the basis of the Root Mean Squared Error of

Calibration (RMSEC), estimated Root Mean Squared Error of Prediction (RMSEPEst),

and Root Mean Squared Error of Crossvalidation (RMSECV), which were calculated as

described in 2.3.6. For further optimisation, dependence of RMSEC, RMSEPEst and

RMSECV on the number of terms in the calibration equation was investigated. The

objective was to minimise root mean squared errors by using a minimum number of

terms.



3.2 Methods 48

3.2.5.6 Validation of the calibration model

Validation of the optimised calibration model was performed using a series of

independent datasets, which had not been taken into account for establishment of

the calibration model. Phytic acid contents of validation samples were derived from

pre-processed spectral data by applying the calibration equation, and the contents

predicted were compared to those determined by means of reference analysis. For

performance evaluation, the Root Mean Squared Error of Prediction (RMSEP) was

calculated. Dependence of RMSEP on the number of terms was investigated to

confirm appropriate selection of the number of terms in the model established.

3.2.5.7 Analysis of phytic acid in brown rice by means of NIRS

In order to determine the phytic acid contents in brown rice grains by means of

NIRS, sample pre-treatment, acquisition of NIR spectra and pre-processing of

spectral data were performed in the same way as described for calibration and

validation samples. Subsequently, phytic acid contents were predicted on the basis of

pre-processed spectral data by applying the calibration equation. Reproducibility of

the NIRS method was determined by triplicate analysis of a brown rice flour sample.
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4 Results and Discussion

4.1 Development of an NIRS method for determination of

phytic acid in rice

4.1.1 Introduction

Phytic acid (myo-inositol [1,2,3,4,5,6] hexakisdihydrogenphosphate; IP6) is a well-

known naturally occurring anti-nutrient found in cereal grains, seeds and legumes

(Figure 4). Formation of stable complexes with minerals and proteins results in

decreases of their bioavailability and digestibility, respectively. Low bioavailability of

iron and zinc from diets based on staple cereals and legumes that are high in phytic

acid was shown to be a major factor for Fe and Zn deficiencies which are widespread

in developing countries [95]. Numerous studies revealed that consumption of diets

low in phytic acid may increase the absorption of these two trace minerals [96-98].

Other studies have shown that the phytic acid content of soy and wheat flour must

be reduced by ≥ 90 % to achieve a two-fold increase in iron absorption [99]. Efforts

have been undertaken to decrease the phytic acid content of food crops and to

improve the bioavailability of minerals from IP6 - containing diets. Using genetic

screening, several low-phytic-acid mutants of maize and barley have been identified

[100]. Lucca et al. reported on a combination of three genetic engineering

approaches for improving the bioavailability and the level of iron in rice grains. This

involved expression of a thermostable phytase from Aspergillus fumigatus, active

over the pH range found in the gastrointestinal tract [101].

Brown rice is relatively rich in phytic acid (content: ca. 1 %). Hunt et al. determined

a zinc bioavailability of 77 % from brown rice. Milling led to a considerable decrease

in phytic acid content (0.07 %) and to an improved zinc absorption (92 %) from the
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Figure 4: Structure of phytic acid [102]
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resulting white rice grains [103]. Considering the role of rice as staple food and the

anti-nutritional properties of phytic acid, it is important to screen rice cultivars used

in human nutrition for their phytic acid contents. For the same reason, IP6 should be

taken into consideration in the course of a safety assessment of genetically modified

rice.

Various analytical methods have been described in literature which allow the

accurate determination of the phytic acid content in cereals [104]. However, most of

them are laborious and time - consuming. Near infrared spectroscopy, a non-

destructive technique, represents an interesting alternative to wet - chemical

methodologies. NIRS is a widely used analytical technique which has been mainly

applied to the analysis of major compounds, e.g. fat and protein [56]. So far, no

NIRS method allowing the determination of phytic acid contents in rice grains has

been published. Methods for NIRS analysis of phytic acid in cotton seed and

feedstuffs have been reported [105, 106]. However, NIRS performance data were

poor compared to those of NIRS methods for analysis of major food constituents [55,

56].

The objective of this study was to develop an NIRS method for analysis of the minor

brown rice constituent phytic acid, which should be applicable to a broad spectrum of

cultivars and commercial samples. In order to build an NIRS calibration model, brown

rice samples of different grain shape and origin, grown in different seasons, were

analysed for their phytic acid contents using a photometric reference method. NIR

spectra were obtained from ground freeze-dried brown rice samples using a diffuse

reflectance accessory. Subsequently, multivariate statistics were applied to establish

a correlation between spectral data and results obtained by reference analysis. The

calibration model was optimised to meet the challenge of the high sample variability

which in general complicates the determination of a minor component via NIRS.

Validation of the model was carried out using an independent set of brown rice

samples. Applicability of the developed NIRS method to the characterisation of brown

rice samples regarding their phytic acid content was evaluated on the basis of

generally accepted NIRS performance criteria.
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4.1.2 Determination of phytic acid in brown rice by the reference method

Brown rice of different grain shape (short, medium, and long grain rice) and different

origin (Italy, USA, Japan, France, Spain, India, Guyana, Surinam), grown in different

seasons (2000, 2001), was used as material. Samples were obtained from

commercial suppliers or purchased at local supermarkets. Reference data on their

phytic acid contents were obtained using the method described by Latta and

Eskin [107]. It is based on the extraction of phytic acid under acidic conditions from

freeze-dried rice flour and subsequent sample clean-up by means of anion-exchange

chromatography. Phytic acid is quantified by an indirect photometric method which

uses an iron (III) – sulfosalicylic acid complex as the colouring agent. Validation of

the reference method yielded good repeatability data for the clean-up step

(s = 0.05 %, n = 3) as well as for the overall methodology (s = 0.05 %, n = 4) and

revealed excellent recovery (mean: 97 %, s = 1 %, n = 3) of spiked IP6 from brown

rice flour (range: 0.54 % - 2.69 %, n = 3).

Figure 5 shows the results obtained by reference analysis for 67 brown rice samples.

The phytic acid contents in the brown rice samples analysed ranged from 0.85 % to

1.49 % (mean: 1.15 %). The majority of samples (45 of 67) exhibited phytic acid

contents between 1.00 % and 1.30 %. Results were in agreement with data reported

in literature [108].
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Figure 5: Phytic acid (IP6) contents of 67 brown rice samples determined as reference data for
establishment of an NIRS method for phytic acid analysis. For sample codes see chapters 3.1.1.3 and
3.1.1.4. White and patterned bars display reference data for samples assigned to the calibration set,
gray bars those used for the validation sample set. White patterned bars display reference data for
samples assigned to a sub-set consisting of equal proportions of samples low, medium and high in
phytic acid.
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4.1.3 Calibration and validation sample sets

Samples analysed by means of the reference method were divided into a set to be

used for NIRS calibration and an independent set for validation of the calibration

model to be developed. Reference data as well as sample characteristics were taken

into consideration in order to obtain sets representative for the entire sample

spectrum regarding phytic acid content, grain shape, and origin. This resulted in a

validation set comprising 19 brown rice samples (see gray bars in Figure 5).

Characteristics of calibration and validation samples are illustrated in Figures 6 and 7.
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Figure 6: Percentages of brown rice samples exhibiting low (0.8 % - 1.0 %), medium (1.0 % -
1.3 %) and high (1.3 % - 1.5 %) phytic acid contents in (A) the calibration sample set (n = 48) and
(B) the validation sample set (n = 19) to be used in the course of NIRS method development.
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Figure 7: Distribution of brown rice samples of different grain
characteristics and of different origin in (A) the calibration sample set
(n = 48) and (B) the validation sample set (n = 19) to be used in the
course of NIRS method development.



4.1 Development of an NIRS method for determination of phytic acid in rice 53

4.1.4 NIRS analysis of brown rice samples

NIRS analysis of brown rice was performed using ground freeze-dried samples as

material. Samples were prepared by using a cyclone mill equipped with a 500 µm

screen to standardise particle size, and by subsequent freeze-drying for three days.

The moisture content of the resulting material determined as loss of weight by drying

at 130°C for two hours was < 2%.

NIR spectra of flour samples were recorded from 1000 nm to 2500 nm in diffuse

reflectance mode using a commercial FT-NIR spectrometer. In order to meet the

challenge of sample inhomogeneity, flour samples were placed into a petri dish which

was subsequently mounted onto a rotating measurement unit for NIRS analysis. This

allowed accumulation and averaging of NIR spectra obtained from flour surface

moving over the measuring aperture. Spectral data were saved as log(1/R) values at

corresponding wavelength points.

NIRS measurement was optimised regarding spectral resolution and number of scans

to be accumulated. The objective was to gain as much information as possible (high

resolution) in a reproducible manner during a reasonable acquisition time. The

standard deviation spectrum calculated from five-fold NIRS analysis of one rice

sample was used for evaluation of reproducibility. Optimum results were obtained by

averaging 100 spectra per sample, which had been recorded in 0.5 nm steps

(resolution: 8 cm-1). Setting a higher parameter value for spectral resolution (4 cm-1)

did not result in additional information but required double acquisition time to obtain

reproducible NIR spectra. Figure 8A shows an NIR spectrum obtained from freeze-

dried brown rice flour using optimised acquisition parameters (resolution: 8 cm-1; 100

spectra per sample).

4.1.5 Pre-processing of original NIR spectra

Owing to differences in particle size distributions between the brown rice flour

samples analysed, the resulting NIR spectra were significantly shifted and rotated

relatively to each other. The objective of pre-processing was to reduce the influence

of differences in particle size distributions as well as high correlations between

original spectral data at different wavelengths. Following commonly applied standard

procedures [56], this was achieved by calculation of derivatives from original spectra.

In combination with a smoothing procedure, transformed spectra were eventually
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obtained showing peaks rather than broad bands as observed in the original spectra

(Figure 8B/C). These smoothed derivatives of the original spectra were used for

establishment of calibration models.

4.1.6 Calibration model for NIRS determination of phytic acid in brown

rice

The calibration model was developed in order to establish a correlation between

spectral data and the phytic acid contents determined by reference analysis.

Eventually, the calibration method must infer a rule for predicting the reference

analysis results in future samples. This faces the challenge of the high sample

variability regarding grain shape and origin on the one hand, and the low natural

variability of the phytic acid contents in the brown rice samples analysed, on the

other hand. IP6 concentrations of samples in the calibration set differed by a factor

up to 1.75. Various methods (multiple linear regression, ridge regression, principal

component regression, partial least squares algorithms) were taken into

consideration for model development. Considering the aim to develop a method

applicable to a broad spectrum of rice samples, forward stepwise multiple linear

regression (MLR), known as a robust methodology [56], was initially applied. In

accordance to a previously reported method for NIRS analysis of phytic acid in cotton
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Figure 8: NIR spectra obtained from freeze-dried brown rice flour in diffuse reflection mode; A:
original NIR spectrum; B: first derivative spectrum; C: second derivative spectrum.
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seed, smoothed first derivatives of spectral data were averaged in 20 nm segments

and ratios of averaged spectral data were calculated for each wavelength pair [105].

Averaged spectral data, ratios of spectral data and reference data of samples

belonging to the calibration set were subsequently imported into self-tailored tools, in

order to perform forward stepwise MLR. The models established were evaluated

qualitatively on the basis of graphic plots, which allowed comparison of phytic acid

contents predicted by means of NIRS to those determined by reference analysis. The

root mean squared error of calibration (RMSEC), the estimated root mean squared

error of prediction (RMSEPEst) and the root mean squared error of crossvalidation

(RMSECV) were calculated for quantitative assessment of model performance.

The use of forward stepwise MLR on the basis of the first derivative of the original

spectra obtained from calibration samples (n = 48) resulted in a calibration model

(model A) with an RMSEC of 0.10 % and a correlation coefficient of 0.74 (Figure 9).

Spectral data at wavelength points between 2000 nm and 2300 nm showed the best

correlation to reference data. However, due to predominance of samples exhibiting

phytic acid contents between 1.00 % and 1.30 %, NIRS results for samples low

(0.80 % - 1.00 %) and high (1.30 % - 1.50 %) in phytic acid were too high, and too

low, respectively. Based on a principle reported in literature [56], the problem was

overcome by the use of a sub-set for calibration consisting of equal proportions of

samples low, medium and high in phytic acid (see white patterned bars in Figure 5).
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Figure 9: Evaluation of an NIRS calibration model for the determination of phytic acid in brown rice
using MLR and the first derivative of spectral data obtained from the calibration sample set. Each
square represents data for an individual sample. The phytic acid contents of the rice samples
determined by the reference method (=specified) were plotted against the results predicted by the
calibration model (=estimated). The closer the squares are located to the bisecting dashed line the
better are the predictions of the phytic acid contents.
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This resulted in a calibration model (model B) with an improved RMSEC of 0.07 %

and a higher correlation coefficient of 0.94 (Figure 10).

Based on model B, the three rice samples X11, K11, and K21 were analysed by

means of NIRS. The grains of these samples had been crushed in the course of

previous investigations by means of a Single Kernel Characterisation System.

Investigations by reference analysis had revealed that their phytic acid contents were

lower than the lowest content observed for the calibration samples (0.85 %). This

might be due to phytate cleavage catalysed by the endogenous phytase present in

rice [109, 110]. The phytic acid contents predicted for the three samples on the basis

of the NIRS calibration model were in excellent agreement with reference data

(Figure 11). Accurate NIRS prediction of phytic acid contents outside the calibration

range was seen as a first indication for the validity of the NIRS approach.
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Figure 10: Evaluation of an NIRS calibration model (model B) for the determination of phytic acid in
brown rice using MLR and the first derivative of spectral data obtained from a sub-set of calibration
samples (n = 17). For further explanations see Figure 9.
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Figure 11: Phytic acid contents of low-phytate rice samples determined by
means of the reference method (phytic acid contents specified) and by means of
an NIRS method (phytic acid contents predicted). For sample codes see 3.1.1.1.
The vertical line displays the range of phytic acid contents determined by
reference analysis of the samples assigned to the NIRS calibration set.
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In order to expand the calibration range of the NIRS model, one low-phytate rice

sample was included into the calibration sample set. This resulted in a calibration

model (model C, RMSEC = 0.07 %) showing a linear relationship (correlation

coefficient: 0.97 %) between reference data and predicted data in a range from

0.3 % to 1.5 % (Figure 12).

As demonstrated in Figure 13, the refined model was further optimised by monitoring

RMSEC, RMSEPEst and RMSECV values in dependence of the number of terms

included into the calibration equation. The use of three terms resulted in an RMSEPEst

of 0.09 %. 
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Figure 12: Evaluation of an NIRS calibration model (model C) for the determination of phytic acid in
brown rice using MLR and the first derivative of spectral data obtained from a sub-set of calibration
samples and from a rice sample low in phytic acid (n = 18). For further explanations see Figure 9.
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Figure 13: Evaluation of NIRS calibration equations for determination of phytic
acid in brown rice using MLR and the first derivative of spectral data. Equations
differ by the number of terms included. Performance data resulting from
application of different equations are plotted against the number of terms
included.
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Crossvalidation of model C based on three terms revealed an RMSECV of 0.10 %

(Figure 14).

In order to assess the performance of model C in comparison to the range/variability

of the phytic acid contents in brown rice samples (standard deviation, maximum,

minimum), NIRS performance criteria were calculated and compared to literature

data generally accepted as minimum requirements for NIRS methods [60, 111].

Owing to the high standard deviation (0.30 %) observed for phytic acid contents

within the calibration sample set used for model C, requirements reported in

literature for calibration models could be fulfilled (Table 5).

Table 5: Comparison of NIRS performance criteria calculated for an NIRS calibration model for
determination of phytic acid in brown rice (model C) to minimum requirements generally accepted for
NIRS models [60, 111].

performance criterion minimum
requirement

model C

RMSECV
min)(max  - max: maximum phytic acid

contents observed for the
calibration samples

10 10

max = 1.49 %

min: minimum phytic acid
contents observed for the
calibration samples

min = 0.34 %

RMSECV = 0.10 %

RMSECV
s s : standard deviation of phytic

acid contents calculated for
calibration samples

3 3

s = 0.30 %
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Figure 14: Crossvalidation of an NIRS calibration model (model C) for determination of phytic acid in
brown rice. Each square represents data for an individual sample. The phytic acid content of each rice
sample determined by the reference method (=specified) was plotted against the result predicted by a
calibration model built without the respective sample (=predicted). The closer the squares are located
to the bisecting dashed line the better are the predictions of the phytic acid contents.
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In order to verify the plausibility of the developed NIRS calibration model,

wavelength points selected statistically for prediction of phytic acid contents in brown

rice (spectral data at 2260 nm; ratio of spectral data at 2000 nm and 2220 nm; ratio

of spectral data at 2000 nm and 2280 nm) were evaluated in the light of the pre-

processed NIR spectrum obtained from sodium phytate (Figure 15). Occurrence of a

peak in the pure compound spectrum close to the wavelength point included in the

first term of the calibration model (2260 nm) supports arguments for validity of the

NIRS calibration approach. Furthermore, the wavelength points selected were in

excellent agreement with data report by de Boever et al. [106], who found strong

correlations between spectral data obtained from starchy feedstuffs and phytic acid

contents at 2244 nm.

4.1.7 Validation of the calibration model

Considering the fact that generally accepted requirements for NIRS calibrations had

been met on the basis of the optimised model C, this calibration model was

validated. This was performed using the independent validation sample set which

had been shown to be representative for the entire brown rice sample set (see

4.1.3). Validation was carried out by NIRS analysis of validation samples and
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Figure 15: First derivatives of NIRS data obtained from solid sodium phytate in diffuse reflectance
mode. The wavelength point, where the highest correlation between NIRS data and phytic acid
contents of rice was found, is indicated by an arrow. The strong band around 1900 nm is due to the
absorption of NIR light by water.
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subsequent prediction of their phytic acid contents on the basis of spectral data and

the calibration equation of model C. The phytic acid contents predicted were

compared to those determined by reference analysis. This resulted in an root mean

squared error of prediction (RMSEP) of 0.12 % (Figure 16).

Triplicate NIRS analysis of a validation sample revealed a standard deviation equal to

that determined for the reference method (0.05 %).

The RMSEP achieved by applying MLR for calibration was significantly lower than

RMSEPs obtained by models based on PLS algorithms (0.23 %) and ridge regression

(0.20 %). Consequently, forward stepwise MLR was selected as the preferred

calibration algorithm for NIRS determination of phytic acid in brown rice.

4.1.8 Method evaluation

Development of an NIRS method eventually aims to replace the reference method

for routine sample analysis. Therefore performance data achieved by NIRS have to

be compared to those of the reference method. This has to take into account, that

NIRS as secondary method can never be more accurate than the method applied to

provide reference data for calibration.

The RMSEP of the developed NIRS method (0.12 %) is higher than the lowest

achievable accuracy (0.07 %), deduced from repeatabilities of the reference method

(0.05 %) and of NIRS (0.05 %). According to minimum requirements described in

literature [61], the RMSEP should not be higher than twice the standard deviation of

the reference method (2 * 0.05 %). This criterion was nearly fulfilled. Performance
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Figure 16: Validation of an NIRS calibration model (model C) for phytic acid determination in brown
rice using an independent validation sample set (n = 19). Phytic acid contents predicted for validation
samples on the basis of spectral data and model C are plotted against phytic acid contents
determined by reference analysis.
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criteria for calibration models reported in literature [60, 111] could only be met on

the basis of a sample set exhibiting high phytic acid variability (see 4.1.6). This

indicated that the developed NIRS method is useful for rapid differentiation of brown

rice samples low, medium and high in phytic acid.

MLR was chosen as calibration algorithm for model establishment. This resulted in

high robustness of the method in terms of variability of sample characteristics.

Tuntawiroon et al. were able to increase iron bioavailibilty from 7.5 % to 22 % by

decreasing the phytic acid content in a rice diet from 0.62 % to 0.12 % [98]. Hurrel

et al. had shown, that the phytic acid content in a diet has to be reduced by ≥ 90 %

in order to achieve a two-fold increase in iron absorption [99]. Taking these studies

into consideration, the performance of the developed NIRS method is sufficient from

a nutritional point of view. It allows to identify cultivars exhibiting low phytic acid

contents and therefore improved nutritional properties.

In order to assess the progress in method development in comparison to previously

reported approaches for NIRS analysis of phytic acid, the performance data achieved

were evaluated in the light of those published in literature. So far, no study on

applicability of NIRS to phytic acid determination in rice has been reported. As shown

in Table 6, RMSEC, RMSECV and RMSEP values of the NIRS method developed were

lower than data reported for phytic acid analysis in wheat by-products, cotton seed

and broiler excreta. These matrices exhibit chemical compositions and phytic acid

contents similar to brown rice. This indicates that progress could be achieved

towards broader applicability and better performance of NIRS for phytic acid

analysis.

Table 6: Performance data calculated for the NIRS method developed for determination of phytic acid
in brown rice and data reported in literature for similar matrices.

IP6 contents [%] RMSEC [%] RMSECV [%] RMSEP [%] literature

brown rice* 0.3 – 1.5 0.07 0.10 0.12 -

feed flour 0.2 – 1.8 -** 0.35 - [106]

gluten feed 1.1 – 2.4 - 0.28 - [106]

cotton seed 1.6 – 3.0 0.12 - - [105]

broiler excreta 1.0 – 3.5 - 0.28 0.32 [112]
*:  data refer to the method developed in this study; **: data not reported
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4.1.9 Summary

An NIRS method for determination of phytic acid in brown rice flour was developed

for the first time. A broad spectrum of rice samples was analysed by a photometric

reference method as well as by Fourier-transform near infrared reflectance

spectroscopy (FT-NIRS). Reference analysis revealed phytic acid contents ranging

from 0.80 % to 1.50 % (mean 1.15 %, n= 67) and a predominance of samples

exhibiting phytic acid contents between 1.00 % and 1.30 % (n = 45). Calibration

model development was carried out using a set showing equal proportions of

samples exhibiting low, medium, and high phytic acid contents. Best performance

was obtained by means of forward stepwise MLR on the basis of the first derivative

of spectral data. The performance data (RMSEC = 0.07 %; RMSECV = 0.10 %;

RMSEP = 0.12 %) achieved were better than those reported in literature for matrices

similar to rice. The developed method was assessed on the basis of generally

accepted performance criteria. This led to the conclusion that the NIRS approach is

applicable to the differentiation of rice samples low, medium and high in phytic acid.
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4.2 Analysis of phytic acid in conventional and GM rice by

means of NIRS

4.2.1 Introduction

Analysis of the chemical composition represents an important step in the safety

assessment of genetically modified (GM) foods. In contrast to laborious wet -

chemical methodologies, near infrared spectroscopy allows the rapid non-destructive

investigation of a broad variety of matrices. Starting from raw materials, near

infrared diffuse reflectance spectroscopy results in a spectrum which contains

qualitative and quantitative information on a broad variety of constituents.

Consequently, NIRS represents an interesting tool for rapid analytical

characterisation of genetically modified as well as conventional foods. Classification

of crop cultivars including GM lines using NIRS data and chemometric pattern

recognition techniques has been demonstrated [113-115]. Furthermore, NIRS has

been successfully applied to comparative quantitative analysis of major constituents

in GM and corresponding parental lines [92]. This was achieved on the basis of

calibration models, which described correlations between spectral and reference

analytical data.

This study uses phytic acid as model compound in order to exemplarily demonstrate

the application of NIRS to comparative analysis of a minor constituent in GM and

conventional rice material. The objectives were to apply the developed NIRS method

to the analysis of GM and parental rice lines and to assess the results in comparison

to those obtained for conventional rice cultivars and in the light of the overall natural

variability. Potential and limitations of the developed methodology should be

discussed on the basis of the comparison of data predicted by NIRS and those

determined by using the reference technique.

Two types of insect-resistant rice were used as GM material. Insect-resistance had

been achieved by expression of a synthetic cry1Ab gene from Bacillus thuringiensis

(Bt) [89] and a lectin gene from Galanthus nivalis (GNA) [91], respectively. Rice

grains were obtained from a Bt-rice line (KMD1) and from the corresponding parental

line (Xiushui 11) which had been grown under environmentally identical conditions in

two field trials in China in 2001. Grains obtained from GNA rice and from the
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corresponding parental line (ASD16) had been obtained from a glasshouse trial in

2001. Rice samples of the cultivars Balilla and Cripto were used as conventional

material (sample codes BA1-BA4 and CR1-CR8 in Table 3). They were grown at

different locations (France, Spain, Italy) and in different seasons (2000, 2001).

Furthermore, a broad spectrum of commercial rice samples was available which had

been provided by suppliers from Northern and Southern America, Asia, and Europe

(see Table 4).

4.2.2 Phytic acid contents in conventional rice material

In order to gain insight into the intra-cultivar variability of phytic acid contents in

conventional rice material, a set of rice samples comprising the cultivars Balilla

(n = 4) and Cripto (n = 8) was analysed by means of NIRS. The calibration model

used to derive phytic acid contents from NIRS data had been established on the

basis of a sample set which included two Balilla and one Cripto sample (model C, see

4.1.6). Results were compared to the range of phytic acid contents (0.80 % -

1.50 %) determined for the set of commercial rice samples (n = 55) by reference

analysis in the course of NIRS method development. The phytic acid contents

predicted by NIRS for Balilla and Cripto rice grains grown at different locations and in

different seasons spread from 1.00 % to 1.30 %, a range observed for 60 % (33 of

55 samples) of the commercial rice samples investigated (Figure 17). By using NIRS,

no Balilla or Cripto sample exhibiting extraordinarily low (< 1.00 %) or high

(> 1.30 %) phytic acid contents could be identified. The range of phytic acid

contents observed for Balilla samples was smaller than that determined for Cripto

(indicated by vertical lines in Figure 17). Interestingly, Cripto grains grown in Italy in

2001 exhibited the lowest (1.05 %) as well as the highest content (1.30 %) among

Balilla and Cripto samples.

In summary, variability regarding phytic acid content determined by NIRS was higher

within than between the two cultivars. Hence, no statistically significant difference in

phytic acid contents between Balilla and Cripto could be detected. The results

obtained were within the natural range determined for commercial rice samples.
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4.2.3 Phytic acid contents in genetically modified and parental rice lines

In the course of NIRS method development, rice samples with characteristics

regarding cultivar and origin similar to those of genetically modified (KMD1, GNA)

and parental lines (Xiushui 11, ASD16) had not been available for inclusion into the

NIRS calibration model. In order to get an idea on the similarity of NIR spectra

obtained from GM and parental lines to NIR spectra recorded from calibration and

validation samples, a Principal Component Analysis (PCA) of their pre-processed

spectral data was performed. As shown in Figure 18, scores observed for the

transgenic Bt-rice lines (KMD1) were similar to those calculated for the corresponding

parental lines (Xiushui 11). However, the scores were different in terms of PC 1

(sample codes KMD1 (1), Xiushui 11 (1)) and PC 2 (sample codes KMD1 (2),

Xiushui 11 (2)) to those observed for calibration and validation samples. This

indicated, that KMD1 and Xiushui 11 samples had to be classified as outliers

exhibiting unique spectral features when compared to the calibration and validation

sample sets. PC 1 scores calculated for ASD16 and GNA were higher than those

observed for 88 % (59 out of 67) of the samples assigned to the calibration and

validation sets.
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Figure 17: Phytic acid contents in conventional rice material determined by NIRS. Bars display data
for rice grain samples obtained from cultivars Balilla (BA, N = 4) and Cripto (CR, N = 8) grown at
different locations and in different seasons. Vertical lines display the ranges (from maximum to
minimum) of phytic acid contents observed for (1) Balilla samples, (2) Cripto samples, and (3)
commercial rice samples (natural range, N = 55). As regards the natural range, contents in 33 out of
55 samples (60 %) fell into a range between 1.00 % and 1.30 % (3a).
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Results obtained by PCA indicated that the established calibration model C might not

be suitable for accurate NIRS analysis of phytic acid in genetically modified as well as

in corresponding parental lines. Table 7 shows the results obtained by NIRS

determination of phytic acid in the GM lines KMD1 and GNA and in the parental lines

Xiushui 11 and ASD16. In agreement with the findings based on PCA, the predicted

phytic acid contents were either extremely low or high; two predictions resulted even

in "negative results".

Table 7: Phytic acid contents predicted by NIRS for transgenic Bt- and GNA rice (lines KMD1 and
GNA, respectively) and for the corresponding parental lines (Xiushui 11 and ASD16, respectively).
Phytic acid contents were derived from spectral data on the basis of calibration model C built without
parental lines (see 4.1.6)

phytic acid content predicted by NIRS [%]

rice line field trial 1 field trial 2

Xiushui 11 45.13 0.45

KMD1 -0.98 0.51

ASD16 0.48 -

GNA -0.35 -

According to general experience in NIRS, accuracy of predictions for samples with

unique features can be improved by inclusion of their spectral and reference data
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Figure 18: Principal Component Analysis of pre-processed NIRS data. Scores of principal components
1 and 2 for each sample are indicated by circles, squares and triangles. NIR spectra were obtained
from calibration and validation samples used for development of an NIRS method for phytic acid
analysis in brown rice (circles). Scores indicated by triangles and squares were calculated from NIRS
data of GM and parental lines to be analysed using the developed NIRS method. For sample codes see
3.1.1.
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into the calibration model. Considering the similarity of scores calculated for GM and

the respective parental lines, it was decided to include one sample out of each pair

into the calibration set. Consequently, parental lines were analysed by means of the

reference method. Xiushui 11 exhibited phytic acid contents of 0.94 % and 1.01 %

(field trials I and II, respectively). Reference analysis of ASD16 revealed a phytic acid

content of 1.06 %.

Subsequently, a new calibration model was built on the basis of the calibration

sample set for model C expanded by the parental lines. This led to more realistic

NIRS results for parental as well as for GM lines. Phytic acid contents predicted for

conventional cultivars Balilla and Cripto on the basis of the refined model were still in

the same range as those observed using model C built without data from parental

lines (Figure 19A).
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Figure 19: Phytic acid contents in GM and conventional rice material determined by NIRS and
reference analysis.
A: Phytic acid contents in GM and conventional rice material determined by NIRS on the basis of a
refined calibration model which includes reference and spectral data of parental lines (Xiushui 11 and
ASD16). Bars display data for GM (KMD1 and GNA) and corresponding parental lines (Xiushui 11 and
ASD16). For sample codes see 3.1.1. Vertical lines display the ranges (from maximum to minimum) of
phytic acid contents for (1) Balilla  samples (N = 4) and (2) Cripto samples (N = 8) determined on the
basis of the refined model, and (3) commercial samples determined by means of reference analysis
(natural range, N = 55). As regards the natural range, contents in 33 out of 55 samples (60 %) fell
into a range between 1.00 % and 1.30 % (3a).
B: Phytic acid contents and ranges of phytic acid contents determined by reference analysis of the
samples described in (A). Error bars display standard deviations (n = 3).
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Using NIRS and the refined model, no statistically significant differences between

genetically modified Bt-rice (IP6 contents: 0.97 %; 0.90 %) and the corresponding

parental lines (IP6 contents: 1.01 %; 0.88 %) regarding phytic acid contents could

be detected. Genetically modified GNA rice exhibited a lower phytic acid content

(0.75 %) than its conventional counterpart (0.87 %). The magnitude of the

difference was lower than the range of phytic acid contents determined for Cripto

samples. Results obtained by NIRS analysis of GM and parental lines (range:

0.75 % - 1.01 %) were lower than those gained for the conventional cultivars Balilla

(1.19 % - 1.25 %) and Cripto (range: 1.10 % - 1.27 %) and lower than phytic acid

contents observed for the majority (60 %) of commercial rice samples (range:

1.00 % - 1.30 %).

The conclusions drawn on the basis of NIRS results for GM and parental lines as well

as for conventional cultivars were in agreement with those drawn from the reference

analytical data (Figure 19B). Phytic acid contents determined by reference analysis in

GM and parental lines were higher than those predicted by means of NIRS. On the

other hand, reference data for the conventional cultivars were lower than those

predicted by NIRS. However, in accordance to the results obtained by NIRS,

reference analysis did not reveal statistically significant differences between Bt- and

corresponding parental lines regarding phytic acid content. Genetically modified GNA

rice exhibited a statistically significantly lower mean phytic acid content (0.88 %)

than its conventional counterpart (1.06 %). The magnitude of the difference was

lower than the range of phytic acid contents determined for Cripto samples.

Reference data of GM and parental lines were in a lower range (0.88 % - 1.06 %)

than those observed for the conventional cultivars Balilla and Cripto (range: 1.05 % -

1.20 %). They were also lower than the mean phytic acid contents observed for

commercial rice samples (1.15 %).

4.2.4 Conclusions

Near infrared spectroscopy was applied for rapid non-destructive determination of

the phytic acid contents in genetically modified and conventional rice material. The

investigations revealed low phytic acid contents for GM and corresponding parental

lines in comparison to those of the majority of commercial rice samples. In contrast

to the Bt-rice line, the phytic acid content determined for genetically modified GNA
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rice was different to that of the conventional counterpart. Results obtained by NIRS

on the basis of a calibration data set including parental lines were in good agreement

with data obtained by the traditional method. The study demonstrated the

applicability of NIRS for rapid non-destructive screening of GM food for differences in

chemical composition to conventional counterparts. A decrease in phytic acid content

is beneficial from a nutritional point of view. However, safety assessment of the GM

lines used as material goes beyond the scope of the present study. Investigation of

material obtained from additional field trials is required in order to prove the

correlation between differences in composition and the application of recombinant

DNA techniques. 

Using phytic acid as model compound, the present study exemplarily shows, that

NIRS allows the rapid screening of a broad spectrum of rice samples for a

nutritionally important minor compound. The accuracy of NIRS determinations

strongly depends on sample characteristics which might have an influence on the

NIR spectrum. Predictions by means of NIRS for samples exhibiting unique spectral

features, can be totally wrong. As regards applicability of NIRS within the safety

assessment framework of transgenic rice, the study revealed that appropriate

comparators (parental lines) must be available for calibration purposes. It was

demonstrated, that even a rather simple calibration methodology like stepwise MLR

allows to take unique sample characteristics into account, in order to improve the

accuracy of predictions.

In the present study, the time needed for calibration and validation purposes was

much higher than the time saved due to rapidness of the NIRS methodology.

However, the demonstration of the general suitability of NIRS to the analysis of a

minor constituent (phytic acid) in a complex matrix (rice) paves the way for the

application of this technique to screen broad sample sets in the course of breeding

programmes and field trials with GM crops.

4.2.5 Summary

An NIRS method was applied to the rapid non-destructive determination of phytic

acid contents in genetically modified insect-resistant Bt- and GNA rice. Results were

compared to those obtained from corresponding parental lines and from conventional

rice samples.
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The use of an NIRS calibration model built with samples which were different to

GM/parental lines in terms of cultivar and origin led to false NIRS predictions. This

was due to unique spectral features of the samples analysed in comparison to those

used for calibration of the NIR spectrometer. Refinement of the NIRS method by

inclusion of parental lines into the calibration sample set resulted in more accurate

predictions which were in agreement with reference data.

No differences between genetically modified Bt-rice and corresponding parental lines

regarding phytic acid contents were detected. Genetically modified GNA rice

exhibited a lower phytic acid content than its conventional counterpart. The

magnitude of the difference was lower than the range of phytic acid contents

observed for the conventional cultivar Cripto. The phytic acid contents of GM as well

as of parental lines were lower than those of the majority of commercial rice

samples.

As regards applicability of NIRS within the safety assessment framework of

transgenic rice, the study revealed that appropriate comparators (parental lines)

must be available in the course of method development. This eventually allows rapid

non-destructive NIRS analysis of phytic acid in genetically modified rice and the

assessment of results in the light of those obtained from conventional rice samples.
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4.3 Development of a metabolite profiling method for analysis

of rice grains

4.3.1 Introduction

The comparison of the chemical composition of the genetically modified plant to that

of a traditionally obtained counterpart has been a key element in the safety

assessment of GM crops. In addition to the intended effect of genetic modification,

unintended effects may result from the application of recombinant DNA techniques.

The application of a targeted approach for comparative analysis of defined

constituents has been shown to be suitable for the detection of statistically significant

differences between parental and GM lines which go beyond the intended effects of

the genetic modification [44, 45]. In order to increase the chances to detect

unintended effects due to the application of recombinant DNA techniques, profiling

on the metabolite level has been suggested as tool for comprehensive

characterisation of the chemical compositions of GM plants [6].

The role of cereal grains as storage organs results in a complex composition

characterised by extreme differences in concentrations of compounds. The spectrum

of constituents is mainly determined by high amounts (up to 80 %) of

polysaccharides that serve as storage substances. In addition, there are low

molecular weight polar constituents belonging to various compound classes such as

free sugars, sugar alcohols, organic acids, amino acids, and phenolics. The lipid

content of rice is relatively low (2 - 3 %). However, even minor representatives of

this class, e.g. phytosterols, γ-oryzanol and tocopherols, deserve attention because

of their nutritional importance [108].

The objective of this study was to develop a metabolite profiling methodology using

rice as model crop. The study aimed to provide a method allowing the non-targeted

unbiased investigation of the low molecular weight compounds present in rice. This

faces the challenge to be as comprehensive as possible and to take into account the

chemical characteristics specific for different compound classes. In addition, sample

preparation should ensure the suitability of the employed approach to cereals with

compositions similar to rice, e.g. maize and barley. The technique used to investigate

the complex sample extracts should allow to detect and resolve a broad spectrum of
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constituents belonging to various compound classes. In order to be able to evaluate

differences between metabolite profiles, the technique should also allow to obtain

structural information on the compounds detected. The metabolite profiling

methodology should be validated and applied to comparative analysis of cereals with

known differences on the metabolite level. This should provide a positive control for

the suitability of the approach to detect unintended changes in metabolite

concentrations. Eventually, the methodology should be applied to the analytical

characterisation of genetically modified rice.

4.3.2 Principle

A scheme of the profiling method established is shown in Figure 20. It starts with

consecutive extraction of lipids and polar compounds from freeze-dried rice flour.

Both extracts are characterised by the presence of major constituents (e.g.

triglycerides and free sugars) and a spectrum of minor compounds (e.g. organic

acids, amino acids, free fatty acids, phytosterols). Therefore, both extracts were

further subdivided by using transesterification and solid phase extraction (SPE) for

the lipids and by making use of the relative stability of silylated derivatives for the

polar compounds. Coupled high-resolution gas chromatography (GC) to flame

ionisation detection (FID) was selected as technique for routine analysis of

silylated / methylated derivatives. GC coupled to mass spectrometry (MS) was

employed to identify sample constituents.

4.3.3 Extraction

Rice flour was freeze-dried to standardise the water content for the subsequent

extraction procedure. Several solvents were tested for extraction. The use of ethanol

resulted in a complex mixture of lipids and polar compounds as described for barley

[70]. However, considering the concentration differences described above, it seemed

more appropriate to prepare separate extracts of polar and lipid constituents.

A method commonly applied for total lipid extraction is based on the use of a mixture

of chloroform and methanol [71]. Owing to a co-extraction of non-lipids, this

procedure involves an additional washing step. This often results in emulsions

rendering precise phase separation difficult and resulting in potential loss of polar

constituents. The consecutive use of methanol and dichloromethane proved to be
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suitable to overcome these drawbacks. By applying solely dichloromethane, complete

removal of the lipids from rice flour was not possible. However, disintegration of the

flour matrix by pre-treatment with methanol and subsequent use of dichloromethane

resulted in exhaustive extraction of lipids as demonstrated by sequential extractions.

Residues of the solvent were removed from the defatted flour under vacuum.

In accordance with previously described approaches [69], a mixture of methanol and

water (80+20, v+v) was used for extraction of polar compounds. Attempts to

increase the polarity of the solvent by increasing the water content were not

satisfactory from an operational stand point because of foaming during the

concentration process under reduced pressure.
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Figure 20: Metabolite profiling method. a: FAME = fatty acid methyl esters, b: TMSIM =
trimethylsilylimidazole, c: MSTFA = N-methyl-N-trimethylsilyl-trifluoroacetamide.
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4.3.4 Fractionation of lipids through transmethylation and solid phase

extraction

The objective of the fractionation procedure was to separate the abundant

triglycerides from the minor lipids (e.g. sterols, tocopherols). This was achieved by

transmethylation of the triglycerides and subsequent solid phase extraction on silica

gel using elution solvents with increasing polarity [116, 117].

Base-catalysed transmethylation using sodium methylate in methanol as catalyst

converts triglycerides and other fatty acid esters into the respective methyl esters. It

can be performed under mild conditions and allows separate analysis of the

metabolically important free fatty acids which are not methylated. Furthermore, it is

useful for the analysis of the sum of free and esterified minor lipids, e.g. sterols,

triterpenic alcohols.

Conditions for transesterification were optimised using the model compounds

tripalmitin, cholesteryl palmitate, and γ-oryzanol. In agreement with previously

described methodologies [118], transesterification of tripalmitin was accomplished

within a few minutes at ambient temperature. According to [117], complete

transesterification of most steryl esters can be achieved within an hour. However, the

model experiment revealed that a reaction time of 90 min is required at room

temperature for complete transmethylation of cholesteryl palmitate. γ-Oryzanol

comprises a mixture of phytosteryl ferulates [108] known to be quite stable under

alkaline conditions [119]. Consequently, only a small but highly reproducible

percentage (ca. 10 %) of γ-oryzanol was cleaved within 90 min. A temperature

increase to 50°C led to an accelerated cleavage of γ-oryzanol but triggered the

formation of free fatty acids instead of methyl esters in the course of

transesterification of tripalmitin and cholesteryl palmitate. This was not desirable

because of the presence of endogenous free fatty acids in rice. Considering the

reproducible process of γ-oryzanol transmethylation, a reaction time of 90 min at

room temperature was chosen as optimum condition for transesterification of rice

lipids.

Figure 21A shows the GC-FID chromatogram of an unfractionated lipid extract after

transesterification and silylation.
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Solid phase extraction of the transmethylated lipid extract using n-hexane/MTBE

(100+2, v+v) results in a fraction consisting mainly of fatty acid methyl esters

(FAME) derived from ester bound fatty acids and hydrocarbons (Figure 21B).
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Figure 21: Gas chromatography using flame ionisation detection of a rough rice lipid extract spiked
with α-, γ-, and δ-tocopherol. For conditions see 3.2.1.6. A: Total lipid extract after transesterification
and silylation. Spiked tocopherols are indicated by asterisks. B: fraction I (numbers in Table 8). C:
fraction II (numbers in Table 9). Residual fatty acid methyl esters are indicated by arrows.
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Compounds identified in this fraction by means of GC-MS using an apolar stationary

phase are listed in Table 8. The isolation of the fatty acid esters in this separate

fraction also opens the possibility for further analysis, e.g. according to degree of

unsaturation, on a more polar column.

Table 8: Compounds identified by gas chromatography - mass spectrometry in fraction I obtained
from a rough rice sample.

no. compound identificationa no. compound identificationa

fatty acid methyl esters 14 C20:1 (cis 11) 1,2

1 C12:0 1,2 15 C20:0 1,2

2 C14:1 3 16 C21:0 1

3 C14:0 1,2 17 C22:1 (cis 13) 3

4 C15:1 3 18 C22:0 1,2

5 C15:0 1 19 C23:0 1

6 C16:1 (cis 9) 1,2 20 C24:1 1

7 C16:0 1,2 21 C24:0 1,2

8 C17:1 3 24 C26:0 1

9 C17:0 3 25 C28:0 1

10 C18:3 (cis 9,12,15) 1,2 26 C30:0 1

11 C18:2 (cis 9,12) 1,2 hydrocarbons

12 C18:1 (cis 9) 1,2 22 squalene 1,2

13 C18:0 1,2 23 C29:0 1
a: Identification: 1: according to NIST mass spectra library [80]; 2: according to retention times of reference compounds; 3:
according to metabolite mass spectra library of Max Planck Institute of Molecular Plant Physiology [81].

By using hexane/MTBE (7+3, v+v) as elution solvent, a fraction containing the more

polar lipids was obtained (Figure 21C). Table 9 lists representatives of the various

classes (e.g. sterols, tocopherols, free fatty acids, waxy alcohols) identified by means

of GC-MS analysis of the silylated (MSTFA) fraction. The amount of fatty acid methyl

esters not retained in the previous fraction was below 2 %.

In the course of the development of the method it became obvious that separation of

tocopherols and fatty acid methyl esters is a critical step in the SPE procedure.

Tocopherols are occurring naturally in rice only at low levels. Therefore the

transmethylated lipid extract was spiked with α-, γ-, and δ-tocopherol prior to

fractionation (see asterisks in Figure 21A). After column chromatography (Figure

21C), 100 % (γ- and δ-tocopherol) and 95 % (α-tocopherol) of the added

compounds could be recovered in fraction II. This clear-cut procedure was confirmed
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by silylation of fraction I. Except of about 5% α-tocopherol, the resulting

chromatogram showed no difference to the one shown in Figure 21B.

Table 9: Compounds identified by gas chromatography - mass spectrometry in fraction II obtained
from a rough rice sample.

no compounda identificationb no compounda identificationb

free fatty acids sterols and triterpenic alcohols

1 C12:0 1,2,5 25 cholesterol 1,2

3 C14:0 1,2 26 campesterol 2,3

5 C16:0 1,2,5 27 campestanol 6

6 C17:0 1 28 stigmasterol 2,3

8 C18:3 (cis 9,12,15) 1,2,5 29 ∆7-campestenol 6

9 C18:2 (cis 9, 12) 1,2,5 31 obtusifoliol 7

10 C18:1 (cis 9) 1,2,5 32 β-sitosterol 2,3

11 C18:0 1,2,5 33 sitostanol 6

12 C20:1 1 34 ∆5-avenasterol 7

13 C20:0 1 35 gramisterol 7

15 C22:0 1 36 cycloartenol 6,7

16 C23:0 3 37 ∆7-stigmastenol 6,7

18 C24:0 4 38 ∆7-avenasterol 7

22 C26:0 4 39 24-methylencycloartanol 6,7

alcohols 40 citrostadienol 7

7 C18:0 3 phenolic compounds

14 C22:0 3 2 methyl p-hydroxycinnamate 1

17 C24:0 4 4 methyl ferulate 1,2

20 C26:0 4

24 C28:0 1

30 C30:0 4

41 C32:0 4

42 C34:0 4

43 C36:0 4

tocopherols

19 δ-tocopherol 2

21 γ-tocopherol 2

23 α-tocopherol 2,3
a: Metabolites identified as trimethylsilylated derivatives; b: Identification: 1: according to NIST mass spectra library [80]; 2:
according to retention times of reference compounds; 3: according to metabolite mass spectra library of Max Planck Institute of
Molecular Plant Physiology [81]; 4: based on mass spectral data; 5: comparison of mass spectral data to those of reference
compounds; 6: comparison of mass spectral data to those reported by Xu and Godber [125]; 7: comparison of mass spectral
data to those reported by Kamal-Eldin [126].
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4.3.5 Fractionation of the polar extract through differential derivatisation

Fractionation of the polar extract was performed in order to separate free sugars

present as major polar low molecular weight compounds from minor constituents,

such as organic acids and amino acids. Since silylating reagents are known to

strongly differ in their suitability for different compound classes [120], fractionation

would allow an appropriate choice of reagents to ensure complete derivatisation.

The fractionation of the polar extract is based on the relative stability of the R-

Si(CH3)3 group of sugars/polyols and amino acids/organic acids to aqueous

hydrolysis, a principle developed for the analysis of amino acids in human blood

[121]. Mixing the silylated polar extract with n-hexane/water results in the formation

of two phases. The silylated sugars and polyols which are relatively stable to

hydrolysis are enriched in the hexane layer. The aqueous phase contains the free

amino acids/organic acids which are readily released from their unstable trimethylsilyl

derivatives.

In view of the above-mentioned differences in suitability of silylating reagents,

several reagents and combinations thereof were tested. Figure 22 shows a gas

chromatogram of the total polar extract obtained from rice flour after derivatisation

with MSTFA. Sucrose and raffinose are not completely persilylated resulting in

multiple peaks for these compounds.

 0

 20

re
sp

on
se

 [m
V]

 0 13 26 39 52  65retention time [min]

* * *

*

*
*

*

Figure 22: Gas chromatography using flame ionisation detection of a total methanol-water extract of
a rough rice sample after silylation with MSTFA. For conditions see 3.2.1.6. Peaks of incompletely
silylated sugars are indicated by asterisks.
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Trimethylsilylimidazole (TMSIM) is a more powerful silylating agent for sugars [120].

It persilylates mono-, di-, and trisaccharides quickly under mild conditions. Silylation

of the polar rice extract with TMSIM and subsequent treatment with a hexane/water

mixture resulted in a fraction containing only persilylated sugars and polyols (Figure

23). Metabolites identified in a GC-MS study are listed in Table 10.

Table 10: Compounds identified by gas chromatography - mass spectrometry in fraction III obtained
from a rough rice sample.

no compounda identificationb no compounda identificationb

sugars sugar alcohols

4 arabinose 1,2,3 1 glycerol 1,2

5 arabinose 2 threitol 1

7 fructose 1,2,3 3 erythritol 1

8 fructose 6 xylitol 1

9 fructose 13 inositol 1,2

10 galactose 1,2,3

12 galactose

11 glucose 1,2,3

13 glucose

15 sucrose 1,2

16 raffinose 1,2,3
a: Metabolites identified as persilylated derivatives; b: Identification: 1: according to NIST mass spectra library [80];
2: according to retention times of reference compounds; 3: comparison of mass spectral data to those of a reference
compound.

According to West and Moskowitz [122] persilylation of sugars and polyols can be

achieved by means of TMSIM within 15 min at room temperature using pyridine as

solvent. However, in order to dissolve constituents of polar rice extract in pyridine,

heating at 70°C was required. Silylation of reducing sugars by means of TMSIM and

subsequent gas chromatographic analysis on an unpolar column led to multiple

peaks resulting from persilylated anomers which were readily separated. A common

procedure for gas chromatographic analysis of sugars involves an additional

oximation step prior to silylation. However, no clear advantage was seen in the use

of oxime TMS derivatives for analysis, since for a mixture of reducing sugars

(fructose, glucose, galactose) at least two peaks per sugar were observed

(diastereomeres) which were not completely resolved. These findings were in

agreement with those reported by Nikolov and Reilly [123].
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The amino function of amino acids cannot be silylated using TMSIM [120]. Its

presence even inhibited derivatisation of amino acids with MSTFA. Therefore, the

analysis of organic acids/amino acids has to start from a separate aliquot of the polar

extract. In order to protect α-ketoacids from enolisation and decarboxylation prior to

trimethylsilylation an additional oximation step was necessary. A model study with α-

ketoglutarate (oximated with hydroxylamine, silylated with MSTFA) demonstrated the

above-described fractionation strategy to be also applicable to oximated derivatives.

Addition of water has no effect on the R1R2C=N-O-Si(CH3)3 group but hydrolyses the

R-C(O)-O-Si(CH3)3 group resulting in an enrichment of the compound in the aqueous

layer. Application of this strategy to the polar extract from rice flour and re-silylation

of the organic acids and amino acids enriched in the aqueous layer (fraction IV)

resulted in the chromatogram shown in Figure 24. Metabolites identified in this

fraction are summarised in Table 11. Sugars as major constituents of the polar

extract are almost completely separated from organic acids and amino acids. In turn,

no silylated amino acids were detected in the respective hexane layer.
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Figure 23: Gas chromatography using flame ionisation detection of fraction III. For numbers see
Table 10. For conditions see 3.2.1.6.
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Table 11: Compounds identified by gas chromatography - mass spectrometry in fraction IV obtained
from a rough rice sample.

no compound identificationa no compound identificationa

amino acids and amines organic acidsc

1 alanine (2TMS)b 1 5 phosphoric acid 1

2 glycin (2TMS) 1,2 7 succinic acid 1,2

3 urea (2TMS) 1 10 malic acid 1,2

4 valine (2TMS) 1 17 citric acid 1,2

6 proline (2TMS) 1,2 20 ferulic acid 1,2

8 serine (2TMS) 1

9 threonine (2TMS) 1

11 pyroglutamic acid (2TMS) 1

12 aspartic acid (2TMS) 1

13 phenylalanine (2TMS) 1

14 glutamic acid (3TMS) 2,3

15 asparagine (3TMS) 1

16 glutamine (3TMS) 1

18 allantoin (5TMS) 3

19 tyrosin (3TMS) 1,2

21 tryptophane (3TMS) 1
a: Identification: 1: according to NIST mass spectra library [80]; 2: according to retention times of reference compounds; 3:
according to metabolite mass spectra library of Max Planck Institute of Molecular Plant Physiology [81]; b: number of
trimethylsilyl (TMS) groups in parentheses; c: metabolites identified as persilylated derivatives.
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Figure 24: Gas chromatography using flame ionisation detection of fraction IV (four-fold enriched).
For numbers see Table 11. For conditions see 3.2.1.6. Residual sugars are indicated by asterisks.
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Taking advantage of the fractionation procedure, a solvent (acetonitrile, [124])

different from that used for fraction III (pyridine) was applied in the course of re-

silylation of constituents in fraction IV. Silylation of amino acids by means of MSTFA

resulted in the formation of multiple derivatives differing in the number of

trimethylsilyl (TMS) groups per compound. An increase in reaction temperature led to

preferred formation of derivatives with a high number of TMS groups. However,

complete persilylation of amino acids such as glutamine and lysine was not achieved.

Therefore, conditions for trimethylsilylation of amino acids were optimised towards

reproducible formation of the most abundant derivative yielded under mild

conditions. Optimisation was performed by gas chromatographic analysis of amino

acid mixtures and fractions obtained from rice which had been derivatised under

varying conditions. Heating at 70°C for 15 min resulted in the formation of one

predominant trimethylsilyl derivative from alanine, glycin, valine, proline, serine,

threonine, pyroglutamic acid, aspartic acid, phenylalanine, and glutamic acid.

Amounts did not change significantly after further heating for 45 min. For lysine, a

maximum response was observed after 60 min. Consequently, heating for 60 min at

70°C was chosen as optimum condition for trimethylsilylation of rice constituents in

fraction IV.

4.3.6 Quantification

Metabolite profiling studies aim to detect any relative changes in metabolite

abundances in comparative experiments [65]. Therefore, comparison of entire

profiles rather than absolute quantification of individual metabolites is of importance.

For quantitative comparison of metabolite profiling chromatograms, normalised peak

heights were used. Peak heights were preferred to peak areas since automated

determination of heights is less error-prone than that of areas. For narrow peaks as

observed in gas chromatography, peak heights correlate well to peak areas.

Normalisation of peak heights in chromatograms obtained from rice was achieved by

means of internal standards present in each fraction. 

The methyl ester of margaric acid (C17:0) is frequently used as internal standard for

quantification of fatty acid methyl esters as identified in fraction I. However, as

shown in Table 8, small amounts of esterified margaric acid were found to occur
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naturally in rice. Therefore, tetracosane was used instead as internal standard. It

was not detected in fatty acid methyl ester fractions (fraction I) obtained from rice.

In accordance with a study reported by Toivo et al. [127], 5α-cholestan-3β-ol

(dihydrocholesterol) was used as internal standard for fraction II which contains

phytosterols as abundant constituents.

Based on a study described by Starke et al. [128], phenyl-β-D-glucopyranosid was

applied to normalise peak heights in chromatograms obtained from fraction III which

contains sugars as major constituents.

In fraction IV organic acids and amino acids are enriched. Consequently, an amino

acid which does not occur naturally in rice (p-chloro-L-phenylalanine) was selected as

internal standard.

Tetracosane / dihydrocholesterol and phenyl-β-D-glucopyranosid / p-chloro-L-phenyl-

alanine were added to total lipid and polar rice extracts, respectively, and were

completely recovered in the respective fractions. Co-elution with naturally occurring

rough rice constituents was not observed.

4.3.7 Repeatability

Sufficient repeatability is one of the conditions to be met in order to apply the

developed methodology to the differentiation of rice lines and cultivars. Data

obtained for selected compounds belonging to various classes demonstrated the

good intralaboratory repeatability of the fractionation procedures as well as of the

overall metabolite profiling methodology involving extraction, fractionation,

derivatisation and gas chromatographic analysis with flame ionisation detection. As

shown in Table 12 for selected compounds, relative standard deviations (RSD) of

normalised peak heights were equal or lower than 10 % and lower than those

calculated for absolute peak heights. This proves the suitability of the selected

internal standards for peak height normalisation.
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Table 12: Repeatability of the metabolite profiling methodology, calculated for selected compounds

RSD [%]a

compound fractionation (n=5)
(absolute peak heights)

overall method (n=3)
(absolute peak heights)

overall method (n=3)
(normalised peak heights)

fatty acid methyl esters

C16:1 (cis 9) 12 7 1

C17:0 11 9 2

C23:0 8 5 7

hydrocarbons

squalene 16 7 4

C29:0 13 6 3

free fatty acidsb

C18:0 13 8 4

C24:0 11 8 10

alcoholsb

C28:0 7 9 1

C32:0 12 10 3

sterols and triterpenic alcoholsb

campesterol 13 10 3

β-sitosterol 11 10 3

24-methylenecycloartanol 12 12 4

phenolic compoundsb

methyl ferulate 9 8 2

sugarsb

glucose 3c 4 1

sucrose 5c 6 1

raffinose 9c 6 4

amino acidsb

glycine 10 7 6

serine 9 8 5

glutamic acid 9 9 9

organic acidsb

citric acid 9 9 7

malic acid 11 9 5
a: RSD: relative standard deviation; b: Precision data were calculated for trimethylsilylated derivatives. c: n = 4
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4.3.8 Recovery

A sufficient recovery of metabolites from rice material is a further prerequisite to

apply the profiling method to the detection of differences between rice lines and

cultivars. Recovery experiments were performed for compounds identified in

fractions I - IV which belong to various classes.

As a first approach increasing amounts of freeze-dried rough rice flour were

extracted and fractionated by the described procedure and analysed by GC-FID. The

resulting peak areas were plotted against the flour amounts extracted (Figure 25).

Extraction of the metabolites from 200 mg of rice flour with 4 mL of dichloromethane

(lipids) and 10 mL of methanol/water 80+20, v+v (polar compounds) assures

analysis of the respective compounds within the linear range of the method.

This recovery experiment proves that the developed metabolite profiling method can

detect relative changes in concentrations of a broad spectrum of polar and unpolar

rice constituents.

In order to determine the percentages of compounds recovered from rice material

after extraction and fractionation, known amounts of standards were spiked at the

start of the analytical procedure. Results gained by GC-FID analysis of fractions

obtained from spiked samples were compared to those gained for fractions spiked
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Figure 25: Peak areas of compounds identified in fractions I - IV vs. amounts of rice flour extracted
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prior to GC analysis. Recoveries determined for selected compounds (sugars, organic

acids, amino acids, triglycerides, hydrocarbons, fatty acids, sterols) ranged from

67 % (glutamine) to 99 % (glucose) and from 88 % (5α - cholestan-3β-ol) to 104 %

(δ - tocopherol). This experiment demonstrates the suitability of the developed

methodology to isolate compounds belonging to various classes from freeze-dried

rice flour and to separate them quantitatively into different fractions. Recoveries

determined for compounds used as internal standards were in the same range as

those of rice constituents (Table 13).

Table 13: Mean recoveries of compounds belonging to various classes from rice determined for the
metabolite profiling method

fraction/compound mean recovery (n=2)
[%]

fraction/compound mean recovery (n=2)
[%]

fraction I fraction IV

tripalmitin 93 glutamine 67

squalene 95 glutamic acid 84

fraction II glycine 85

palmitic acid 98 lysine 91

δ-tocopherol 104 citric acid 76

stigmasterol 93

fraction III internal standards

fructose 96 tetracosane 90

glucose 98 5α-cholestan-3β-ol 88

sucrose 82 phenyl-β-D-glucopyranosid 76

raffinose 70 p-chlorophenylalanine 85

4.3.9 Conclusions

The first prerequisite of an unbiased profiling approach is the use of a technique

isolating a broad spectrum of compounds from the sample matrix. This in turn results

in a complex extract exhibiting strong differences in concentrations of abundant

constituents on one hand and minor but nutritionally or toxicologically relevant

compounds on the other hand. The work-up of such a mixture must always be a

compromise because clean-up procedures established for the targeted analysis of

single compounds cannot be applied. The usefulness of a sub-fractionation of the
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extract has to be evaluated in the light of the additional information gained and the

input of work required.

The profiling method developed allows the separate isolation of lipids and polar

compounds. For further fractionation two routinely applicable approaches were

selected. For the lipid extract, column chromatography on commercially available

cartridges proved suitable to separate major from minor constituents. For the polar

compounds, a strategy based on the hydrolytic stability of silylated derivatives was

modified and applied for the first time to an extract from plant material.

This sub-fractionation is more laborious than the direct analysis of total extracts as

described previously [69, 77]. However, the procedure decreases the probability of

co-elutions in the resulting gas chromatograms and thus founds the basis to use GC-

FID as routine screening mode and GC-MS for final confirmation of differences

detected. The method will allow valuable additional information especially on the

minor constituents. It should be applicable to plants with similar distributions of

constituents and the principles involved might serve as a basis for compositional

analysis of other crops.

Trimethylsilylation turned out to be a universal method for the detection of a broad

spectrum of compounds. However, the necessity to select the appropriate silylating

reagent became obvious. Compounds exhibiting thermal instability and/or low

volatility cannot be detected by this method. Profiling techniques based on liquid

chromatography have the potential to close this gap [54].

The GC-MS identification of about 100 compounds is to be considered as a first step.

The number of peaks detected in gas chromatograms obtained from rice by far

exceeds that of peaks to which chemical structures could be assigned. However,

following a non-targeted approach, the entirety of peaks detected has to be taken

into consideration for data analysis. Coupling of the GC column to the mass

spectrometer will allow to gain structural information on peaks which exhibited

statistically significantly different abundances in comparative GC-FID analyses. The

repeatability and recovery data determined indicate the potential of the metabolite

profiling methodology to identify metabolic phenotypes, to differentiate rice cultivars,

and to get an idea of the natural degree of variation in the metabolites identified.

Owing to the complexity of the chromatograms obtained, automated data treatment

and assessment will be required.
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The screening of a broad spectrum of compounds combined with an effective

separation of major and minor constituents may help to increase the chance to

detect unintended effects due to the application of recombinant DNA techniques.

4.3.10 Summary

A metabolite profiling methodology was developed using rice as model crop. The

approach is based on consecutive extraction of lipids and polar compounds and

subsequent fractionations of both extracts. Transesterification/solid phase extraction

(lipids) and selective hydrolysis of silylated derivatives (polar compounds) are applied

to separate major from minor constituents. The method covers a broad spectrum of

chemical classes. Preliminary investigation of the four fractions by GC-MS analysis of

silylated derivatives resulted in the identification of more than 100 compounds. This

unbiased non-targeted approach can serve as an additional analytical tool for the

safety assessment of genetically modified crops and may help to increase the chance

to detect unintended effects due to the application of recombinant DNA techniques.
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4.4 Method for automated comparative analysis of metabolite

profiling data

4.4.1 Introduction

Metabolite profiling aims to analyse the entirety of metabolites present in biological

systems in a non-targeted way. In addition to the chemical - analytical techniques

involved, which should be as universal as possible, methods for unbiased analysis of

metabolite profiling data must be available. They have to offer the possibility to

include the entirety of generated data for analysis. This means to extract relevant

information from complex raw data files and to present results in a suitable form for

further evaluation.

The evaluation of metabolite profiling data is based on a comparative approach

taking into consideration a set of comparators and the natural variability. With

increasing data complexity manual comparison of the profiles becomes time -

consuming. The chromatograms obtained by the metabolite profiling method

described in 4.3 are characterised by two-dimensional data structure, i.e. detector

responses at corresponding time points. High data complexity is reflected by the

detection of more than 100 peaks in a single run. The peak heights observed ranged

over three orders of magnitude. The chromatograms were generally well resolved

(see 4.3.4 and 4.3.5). However, patterns formed by groups of partially resolved

peaks were still observed. Visual inspection of consecutively acquired chromatograms

revealed retention time differences between corresponding peaks, which were

frequently higher than a peak width (0.10 min). Software programmes for automated

comparison of such chromatograms are available. They allow multivariate analysis of

multiple chromatograms [129] and univariate peak-by-peak comparison of two

similar profiles [130]. Because computer-assisted analysis of chromatographic data is

mainly complicated by shifting retention times, the programmes involve methods for

automated peak alignment.

The objective of this study was to develop a set of tailored tools which allows

automated comparison of single as well as of multiple chromatograms using a

univariate peak-by-peak approach. In order to meet the challenge of retention time

instability, tools for automated and manual correction of retention time differences
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should be included. This should lead to the generation of standardised

chromatographic data suitable for establishment of databases and subsequent

automated chromatogram comparison.

The performance of the software tools will be exemplarily demonstrated using model

chromatograms obtained according to the procedure described in 3.2.1. Therefore, a

minor lipid fraction was obtained from rough rice spiked with palmitic acid, δ-

tocopherol, 5α-cholestan-3β-ol, and stigmasterol. A minor lipid fraction yielded from

the unspiked rough rice served as the comparator.

4.4.2 Tools

An overview on the software tools developed is given in Figure 26.

The GC-FID data acquired are processed directly and after automated peak

integration using commercially available software. This results in the generation of

data files containing "detector responses + corresponding time points" and "peak

heights + retention times", respectively. Tools were developed for automated and

manual chromatogram matching. This allows transfer of standardised datasets into

fractions

chromatographic data

retention times + peak heights
time points + detector responses

reports

data acquisition

generation of files

data import

manual/automated
matching

peak-based/
response-based
chromatogram
comparison

standardized datasets

chromatogram database

Figure 26: Approach for automated comparative analysis
of metabolite profiling chromatograms.
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databases and eventually automated chromatogram comparison. Tools were tailored

for comparing the sample chromatogram to the reference. Chromatographic data

calculated from databases can also be used as comparators. Chromatogram

comparison is performed peak-based and response-based using "standardised peak

heights + corrected retention times" and "normalised detector responses + corrected

time points", respectively. Results of data analysis are summarised in graphical and

tabular reports.

4.4.3 Standardisation of chromatograms

The tools developed for standardisation of chromatographic metabolite profiling data

include automated and manual methods for correction of retention times,

standardisation of peak heights/areas and normalisation of detector responses. The

automated procedure is based on the use of standard compounds. A graphical user

interface is available for manual standardisation of chromatograms.

4.4.3.1 Automated retention time matching and normalisation of peak heights

Standard compounds, e.g. hydrocarbons or carboxylic acids, are commonly applied

for standardisation of retention times [131]. Considering the high complexity of the

metabolite profiles obtained, a procedure based on the presence of five

hydrocarbons (C11, C16, C24, C30, C38) was implemented into the software. Thus, the

methodology follows principles routinely used for electropherograms [132, 133].

Automated standardisation of retention times of all peaks detected in a sample

chromatogram is achieved on the basis of two regression functions valid for early

and late eluting peaks, respectively. They are calculated on the basis of the retention

time differences observed for the standard compounds in the sample and the

reference chromatogram [134].

Figure 27 illustrates the application of this automated approach to the model

chromatograms. The hydrocarbons were added to the fractions prior to GC analysis.

The chromatograms obtained from the spiked rough rice (sample chromatogram)

and from the unspiked rough rice (reference chromatogram) are shown in Figure

28a/b. Automated integration using commercially available software provided lists of

peak heights and corresponding retention times. Retention time differences observed

for hydrocarbons in the sample and the reference chromatogram ranged from



4.4 Method for automated comparative analysis of metabolite profiling data 92

-0.32 min (C11) to +0.11 min (C38). After using the self-tailored tool, the remaining

retention time discrepancies to the reference (≤ 0.03 min) were lower than one peak

width (0.10 min). 

For complex chromatograms determination of peak heights, which is less error-prone

than that of peak areas, was preferred for quantification. In accordance with

commonly applied standard procedures, normalisation of peak heights was achieved

on the basis of the peak height ratio calculated for an internal standard peak in the

sample and in the reference chromatogram. For the model chromatograms shown in

Figure 28a/b, triacontane was used for peak height normalisation. Eventually,

standardised datasets containing corrected retention times and standardised peak

heights were obtained for the sample and the reference chromatogram.

4.4.3.2 Manual chromatogram matching and normalisation of detector    

responses

In addition to the methodology for automated correction of retention times, a

graphical user interface was developed which allows manual chromatogram

matching. The tool provides a set of functions enabling manipulation of a sample

chromatogram until it fits accurately to the reference, i.e. shifting, stretching,

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

-40 -30 -20 -10 0 10 20 30

ret. time distance [min]

re
t. 

tim
e 

di
ffe

re
nc

e 
[m

in
]

C11

C16

C24
C30

C38

Figure 27: Graphs of quadratic regression functions calculated for automated retention time
matching of a sample chromatogram to a reference chromatogram. Retention time distance: distances
of the standard compound C24 to C11, C16, C30, C38, respectively, observed in the sample
chromatogram; retention time difference: differences in retention times of corresponding standard
compounds observed between the sample chromatogram and the reference chromatogram.



4.4 Method for automated comparative analysis of metabolite profiling data 93

compressing along the time/response axis, and baseline correction. Stretching and

compressing along the time axis is automatically restricted to noisy chromatogram

intervals. This ensures conservation of the peak shape in the course of

chromatogram matching. In contrast to the automated methodology, matching

accuracy can be controlled by eye.

This tool was applied to the model chromatograms obtained from the spiked (sample

chromatogram) and the unspiked rough rice (reference chromatogram). It starts with

lists of time points and corresponding detector responses which resulted from direct

processing of the GC-FID data. An additional list containing retention times and

corresponding peak heights obtained by peak integration was also imported. Starting

from retention time differences ranging from –0.32 min to +0.11 min, manual

matching led to a sample chromatogram fitting accurately to the reference (Figure

30). For response normalisation, the triacontane peak was used as the reference.

Eventually, datasets containing normalised detector responses and corresponding

corrected time points as well as corrected retention times and standardised peak

heights were provided for the sample and the reference chromatogram.

4.4.4 Comparison of chromatograms

The objective of software development was to provide tools for comparison of the

datasets generated by automated and manual standardisation of chromatograms.

This faces the challenges of data complexity and of the non-targeted character of a

metabolite profiling approach. Tools were developed for unbiased comparison of

standardised datasets using a univariate peak-by-peak approach. Results are

reported in graphical and tabular form.

4.4.4.1 Peak-based comparison of chromatograms

The tool tailored for peak-based comparison of chromatograms uses standardised

peak heights and the corresponding corrected retention times for analysis.

Comparison is performed peak-by-peak and results in a graphical and a tabular

report. The graphical report indicates the magnitudes of percentage peak height

differences and the height of additional peaks as dots along the retention time axis.

The tabular report provides a rapid overview on the similarity of the comparators by
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listing the number and magnitudes of differences and the heights of additional

peaks.

Figure 28c/d shows the graphical report obtained by peak-based comparison of the

standardised model chromatograms. It indicates two additional peaks and two peak

height increases for the spiked sample compared to the unspiked reference

chromatogram. The detection of two additional peaks in the sample chromatogram

resulted from spiking with compounds which are absent (5α-cholestan-3β-ol) or

present in very low concentrations (δ-tocopherol) in rough rice. The extra addition of

naturally occurring rough rice constituents (palmitic acid and stigmasterol) led to the

indication of percentage peak height differences.

These results are in accordance to those provided in the tabular report (Figure 29).

Data complexity is reflected by the total number of peaks (307) detected in the two

model chromatograms. In order to meet this challenge and to get meaningful results,

the software tool allows to pass parameters influencing the outcome of data analysis.

By setting a peak height threshold (2000 µV) and blank intervals (4 – 5 min, 30 –

37 min), very small peaks and overloaded intervals were excluded and 72 out of

307 peaks were taken into account for comparison. In combination with the

adjustment of a detection threshold for percentage peak height differences (35 %),

the four alterations due to sample spiking but not those owing to analytical variations

were reported.

In the course of software development it became obvious, that appropriate setting of

the parameter "width" was the most critical step. The parameter was introduced in

order to manage the small discrepancies of corrected retention times between the

sample and reference chromatograms. The parameter defines the maximum

retention time difference acceptable for two peaks to be considered as comparators.

Based on a high matching accuracy, a parameter value (0.03 min) lower than the

width of the narrowest peak (0.10 min) ensured precise chromatogram comparison.
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Figure 28: Automated peak-based comparison of model chromatograms. a/b: GC-FID
chromatograms obtained from the minor lipid fractions (fraction II) of (a) an unspiked and (b) a
spiked rough rice sample: 1: palmitic acid-TMS, 2: δ-tocopherol-TMS, 3: 5α-cholestan-3β-ol-TMS, 4:
stigmasterol-TMS, I: undecane (C11), II: hexadecane (C16), III: tetracosane (C24), IV: triacontane
(C30), V: octatriacontane (C38). c/d: graphical report generated by peak-based comparison of the
chromatograms; heights of additional peaks (c) and magnitudes of percentage peak height
differences (d) are indicated as dots along the retention time axis.
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4.4.4.2 Response-based comparison of chromatograms

The objective of software development was to provide a method which allows

comparison of chromatograms without prior peak integration. This was achieved by

means of a self-tailored tool which uses the manually standardised raw data, i.e.

normalised detector responses and corresponding corrected time points, for analysis.

In contrast to the peak-based approach, selection of time points for comparison is

based on an adjustable threshold value which refers to the first derivative (slope) of

the chromatogram. This allows to take peak apexes and valleys (slope = 0) as well

as shoulders (slope ≥ 0) into account for comparison.

Figure 30 shows a section of the graphical report generated by response-based

comparison of the model chromatograms using a threshold value of zero. It consists

of an overlay of the standardised comparators. The detection of an additional peak

and of a percentage response difference resulting from spiking with 5α-cholestan-3β-

ol and stigmasterol is indicated by filled circles. Points where no difference has been

detected, e.g. at the campesterol peak, are labelled by empty circles. The tool allows

 statistics: comparison of reference and sample

                Parameters
min. peak height: 2000 µV

detect differences higher than: 35 %
width: 0.03 min

total peaks: 307
peaks included: 72
total alterations: 4 8%

                Additional Peaks
total: 2

peak height:   100 - 500: 0 0%
  501 - 1000: 0 0%

  1001 - 2000: 0 0%
  2001 - 5000: 1 50%

  > 5000: 1 50%

                 Differences
total: 2

20 - 30 %: 0 0%
30 - 50 %: 2 100%

50 - 100 %: 0 0%
>100 %: 0 0%

                 Blanks
Blank 1  4.00 min to  5.00 min
Blank 2  30.00 min to  37.00 min

Figure 29: Tabular report obtained by means of peak-based
comparison of the model chromatograms shown in Figure 28a/b.
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the adjustment of two parameters defining thresholds analogous to those used for

peak-based comparison. By setting the response threshold to 3500 µV and the

detection threshold for percentage response differences to 35 %, the results

obtained by response-based comparison of the model chromatograms were in

accordance to those gained by peak-based comparison. In Figure 30, the potential

usefulness of the response-based approach is illustrated at the point labelled by an

arrow. The point is part of a partially unresolved pattern, which is difficult to be

integrated. The use of the response-based tool (slope = 0) instead of the peak-based

methodology ensures appropriate consideration of the shoulder for comparison.
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Figure 30: Graphical report generated by response-based comparison of model chromatograms
obtained from rough rice and from a rough rice sample spiked with 5α-cholestan-3β−ol and
stigmasterol. Points of the superimposed standardised comparators, i.e. peak apexes and a shoulder
(see arrow), taken into account for comparison are labelled by circles. Responses lower than the
response threshold (see horizontal line) were excluded. Detection of response differences is indicated
by filled circles. Points where no difference has been detected, e.g. for campesterol-TMS, are labelled
by empty circles: 1: 5α-cholestan-3β−ol-TMS, 2: campesterol-TMS, 3: stigmasterol-TMS.
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4.4.5 Concept for utilisation of chromatogram databases

The generation of a large number of standardised datasets requires the

establishment of a chromatogram database. The database is an appropriate medium

to store the datasets in a catalogued form for subsequent comparison.

In addition to the tools allowing the comparison of two chromatograms, procedures

were developed for univariate comparative analysis of multiple chromatograms. This

is achieved by the use of theoretical chromatographic data / theoretical

chromatograms calculated from the database as comparators. Starting from a series

of pre-selected peak-based datasets, theoretical chromatographic data, i.e.

maximum, minimum, mean, standard deviation, are derived by combining all

areas/heights of those peaks detected within a retention time window (parameter

"width"). In order to obtain a theoretical chromatogram from a series of pre-selected

response-based datasets, all normalised detector responses at a corresponding

corrected time point are combined to calculate a mean, a minimum or a maximum.

Visualisation of the resulting theoretical rather than all single chromatograms proved

to be advantageous for comparative analysis of large sample sets by eye.

Automated univariate comparison of the data obtained from two series of datasets

can be performed by means of the same methodologies as described for single

datasets. The use of multiple rather than single chromatograms as comparators

offers the opportunity to assess the differences observed. Tools were developed

which exclusively indicate statistically significant differences between two series of

peak-based datasets. Furthermore, the software provides the flexibility to use

theoretical data calculated by different methods as comparators (Figure 31). For

example, comparison of a mean to a maximum chromatogram results in the

detection of extreme differences between two series of datasets. This might be

useful in order to assess differences between samples regarding their relevance in

the light of the overall variability observed for a set of samples.
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Another possibility to utilise a chromatogram database is to subject a series of pre-

selected standardised datasets to multivariate comparison by means of principal

component analysis, hierarchical cluster analysis, or discriminant analysis.

Multivariate analysis of complex datasets is particularly attractive, because it reduces

data complexity to information most useful to describe differences between samples.

Graphical presentation of results gained by these techniques allows to obtain a rapid

overview on the similarity of a huge number of datasets at a glance.

A tool was developed which transforms a series of pre-selected standardised peak-

based datasets into a matrix suitable for multivariate analysis by means of

commercially available statistics packages, e.g. [135]. The tool assigns a uniform

retention time to all those peaks exhibiting corrected retention times within the same

retention time window. The width of the retention time window can be adjusted by

means of the parameter "width".
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Figure 31: Concept for utilisation of chromatogram databases for comparative analysis of metabolite
profiling data. Single datasets and theoretical chromatographic data / theoretical chromatograms
(maximum, minimum, mean, standard deviation) calculated from a series of datasets can be used as
comparators. SD = standard deviation



4.4 Method for automated comparative analysis of metabolite profiling data 100

4.4.6 Conclusions

Metabolite profiling aims to provide a comprehensive picture of the low molecular

weight constituents present in biological systems. The methods applied for analysis

of the data obtained have to take into account the non-targeted character of such a

screening approach. This leads to the necessity to start data analysis from minimally

pre-processed data files.

The use of raw chromatograms [129] as well as of data obtained from a large

number of pre-selected compounds [84] has been described for analysis of complex

chromatograms. Multivariate and univariate statistics have been applied to evaluate

metabolite profiling data [84].

The tools described here for comparison of metabolite profiling data are based on a

non-targeted, univariate peak-by-peak approach. Considering the inherent unbiased

character of the underlying metabolite profiling methodology and the large number

of peaks to be expected, the tools were tailored to use the entire information of the

chromatograms rather than a number of pre-selected peaks for comparative analysis.

This assures equal treatment of data obtained from structurally identified, unknown

or unexpected compounds. The application of univariate methods allows to directly

assign differences between samples to compounds. The use of chromatogram

databases and theoretical chromatographic data / theoretical chromatograms

calculated thereof as comparators offers the opportunity to assess the differences

observed.

The combination of tools developed for automated correction of retention times and

automated peak-based comparison allows rapid assessment of the similarity of

chromatograms. The tools tailored for manual matching and response-based data

analysis provide the flexibility to compare chromatograms, if accurate peak

integration is not possible. Manual matching controlled by eye is more time-

consuming than previously described methodologies, which rely on algorithms for

automated alignment of raw chromatograms [129, 130]. However, the manual

procedure guarantees for accurate results, especially when highly dissimilar

chromatograms exhibiting large retention time differences have to be matched.

The tools described here were developed for the non-targeted processing of GC-FID

chromatograms. The underlying methodology should also be applicable to the

analysis of chromatographic data with similar two-dimensional structure, i.e. detector
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responses and corresponding time points. Consequently, the tools developed and the

concepts applied should be useful in a wide area of applications, e.g. quality control

and authenticity assessment. The importance of public-domain databases as a

medium to store, catalogue and publish metabolite profiling data has been

recognised [67, 136]. The tools described here might support efforts to establish

such databases.

The non-targeted screening of a broad spectrum of compounds combined with the

unbiased peak-by-peak analysis of chromatograms can serve as a powerful analytical

tool for the safety assessment of genetically modified crops. This may improve the

methodologies for detection and assessment of unintended effects due to the

application of recombinant DNA techniques.

4.4.7 Summary

Software tools for comparative analysis of metabolite profiling chromatograms were

developed. They include methods for manual and automated correction of retention

times and responses by means of corresponding standards. This allows transfer of

normalised datasets into databases and eventually automated comparison of

chromatograms. Chromatogram comparison is based on a non-targeted, univariate

peak-by-peak approach using peak heights / areas and corresponding retention

times or detector responses and corresponding time points. Tools were developed for

comparing single chromatograms. Comparison of multiple chromatograms is

achieved by the use of theoretical chromatographic data or theoretical

chromatograms calculated from databases as comparators. Results of data analysis

may be summarised in graphic as well as in tabular reports listing the number of

additional peaks and the magnitudes of (statistically significant) differences.
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4.5 Profiling of systems with known effects on the metabolite

level

4.5.1 Introduction

In chapter 4.3 a metabolite profiling method for simultaneous analysis of a broad

spectrum of low molecular weight constituents in rice was described [137]. Tools for

automated comparison of metabolite profiling data have been developed [138, 139].

In validation experiments it was demonstrated that the metabolite profiling method

allows precise determination of compounds belonging to various classes in rice with

high recovery. It was shown, that changes on the metabolite level due to spiking of

low molecular weight compounds to rice can be detected by means of the self-

tailored software.

Another approach to prove the reliability of the developed metabolite profiling

methodology is to compare the outcomes obtained to those gained by validated

standard protocols. Therefore, this chapter focuses on results yielded by comparative

metabolite profiling of cereal samples exhibiting known differences on the metabolite

level which had been detected by targeted investigations. Different compounds

belonging to the four fractions which are isolated by means of the described

fractionation methodology will be covered. Conventional rice samples with different

contents of a nutritionally interesting minor lipid (γ-oryzanol) will serve as one sample

set. In order to demonstrate the applicability of the developed methodology to other

cereal crops, results obtained by the investigation of maize lines with differences in

major lipids (fatty acid distribution) will be shown. Barley samples at different

malting stages will be used to evaluate the suitability of the profiling approach for

comprehensive high-throughput-analysis of polar and unpolar metabolites in

metabolically active tissue. Results obtained by manual comparison of

chromatograms as well as by means of the self-tailored software tools will be

demonstrated.

4.5.2 Phytosteryl ferulates (γ-oryzanol) in rice

γ-Oryzanol comprises a mixture of phytosteryl ferulates located in rice bran.

Cycloartenyl ferulate, 24-methylenecycloartanyl ferulate (Figure 32), campesteryl
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ferulate, β-sitosteryl ferulate and campestanyl ferulate have been identified as the

major components [125]. In addition to its technological usefulness, e.g. stabilisation

of vegetable oils at frying temperature, physiological properties, such as antioxidative

activity, and hypocholesterolemic effects have been reported for γ-oryzanol [140-

142]. Therefore, γ-oryzanol represents a nutritionally interesting compound class

which should be taken into consideration in the course of a safety assessment of GM

rice. Specific methods for the analysis of γ-oryzanol in rice should allow the

differentiation of the individual components, since studies indicate that the

physiological effects depend on the composition of γ-oryzanol [141, 142].

Recent studies by means of a newly developed on-line LC-GC method revealed

statistically significant differences in total γ-oryzanol contents as well as in γ-oryzanol

compositions between conventional rice cultivars [143, 144]. Figure 33 exemplarily

shows results obtained for rice cultivars Cripto and Thaibonnet by targeted on-

line LC-GC analysis (A. Miller, personal communication). Cripto exhibited higher

concentrations of total γ-oryzanol as well as of individual phytosteryl ferulates

(campestanyl-, 24-methylenecycloartanyl-, and cycloartenyl ferulate).
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Figure 32: 24-methylenecycloartanyl ferulate – a major
component of γ-oryzanol
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Figure 33: Mean total contents of γ-oryzanol and mean distribution of phytosteryl ferulates in rice
cultivars Thaibonnet and Cripto (n = 6) determined by on-line LC-GC analysis.
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In contrast to the specific on-line LC-GC method which allows GC analysis of intact

phytosteryl ferulates, sample preparation according to the developed metabolite

profiling method (see 4.3.4) involves conversion of γ-oryzanol into methyl ferulate

and phytosterols by transesterification. Subsequent fractionation of transesterified

lipids by silica gel column chromatography leads to the enrichment of cleaved γ-

oryzanol components in fraction II (minor lipids). Figure 34 illustrates the usefulness

of the fractionation approach for detection of methyl ferulate. Analysis of total lipids

instead of individual fractions would result in co-elution of the minor compound

methyl ferulate with methyl palmitate, a major lipid formed through transmethylation

of triglycerides containing palmitic acid. This would render GC-FID analysis of methyl

ferulate nearly impossible.

Figure 35A shows a chromatogram which resulted from the GC-FID investigation of a

minor lipid fraction (fraction II) isolated from the cultivar Thaibonnet. The graphical

report (Figure 35B) obtained by automated peak-based comparison of

chromatograms yielded from minor lipid fractions of Thaibonnet (n = 3) and Cripto

(n = 3) indicated a statistically significant difference in mean methyl ferulate

abundances between the cultivars. Furthermore, the report shows a good correlation

of the difference detected for the acid moiety (methyl ferulate) to those observed for

two phytosteryl components derived from γ-oryzanol (campestanol, 24-methylene-
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Figure 34: Overlay of GC-FID chromatograms obtained from lipid fractions I and II of the rice cultivar
Thaibonnet by means of the metabolite profiling method. Sample preparation and GC analysis were
performed as described in 3.2.1. 1: methyl palmitate, 2: methyl ferulate.
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cycloartanol). This indicated the detected difference in methyl ferulate abundances to

result from different γ-oryzanol concentrations in the cultivars.

Results obtained by automated data analysis were confirmed by manual comparison

of the metabolite profiling chromatograms (Figure 36). The profiling data obtained

for methyl ferulate-TMS, campestanol-TMS, and 24-methylenecycloartanol-TMS were

in good accordance to those gained by means of the specific on-line LC-GC method

(Figure 33). This indicated the reliability of the developed metabolite profiling

approach.

Quantification of methyl ferulate by means of the metabolite profiling method allows

estimation of total γ-oryzanol content in rice. However, accurate determination of

total γ-oryzanol contents is not possible since presence of methyl ferulate from

sources different from γ-oryzanol [145, 146] cannot be excluded. The distribution of

individual phytosteryl ferulates in rice cannot be deduced from metabolite profiling

data since differentiation of free phytosteryls from those released by cleavage
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Figure 35: A: Metabolite profiling chromatogram obtained from the minor lipid fraction of the rice
cultivar Thaibonnet. B: Graphical report obtained by automated peak-based comparison of
chromatograms yielded from minor lipid fractions of cultivars Thaibonnet (n = 3) and Cripto (n = 3).
Statistically significant differences between mean peak heights, indicated by dots along the retention
time axis, were detected for methyl ferulate-TMS (1), campestanol-TMS (2), β-sitosterol-TMS (3),
cycloartenol-TMS (4), and 24-methylenecycloartanol-TMS (5). Additional statistically significant
differences were detected for stigmasterol-TMS (a) and ∆5-avenasterol-TMS (b).
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through transesterification is not possible. This is illustrated in Figure 36 showing

phytosteryl compositions which are different from those determined for the

phytosteryl ferulate components of γ-oryzanol by means of the targeted on-line LC-

GC method (Figure 33). Hence, evidence for differences in γ-oryzanol contents

between rice cultivars obtained by means of the developed metabolite profiling

approach should trigger detailed investigations by a specific method, e.g. the on-

line LC-GC technique.

4.5.3 Fatty acids in maize

One of the objectives of metabolite profiling method development was to involve

sample preparation techniques which are adaptable to the work-up of other cereals.

Therefore, the elaborated metabolite profiling methodology was tested for maize

grains. Results will be exemplarily demonstrated for fatty acid methyl esters found in

the major lipid fraction (fraction I). Maize grains are a valuable source of nutritionally

essential fatty acids. Therefore, fatty acid distribution should be taken into

consideration for safety assessment of transgenic maize.

Insect-resistance had been conferred to maize plants by introduction of a synthetic

cry1Ab gene from Bacillus thuringiensis. Roß et al. [92] performed comprehensive

targeted investigations in order to compare the fatty acid compositions of Bt-maize
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Figure 36: Mean abundances (n = 3) of methyl ferulate-TMS as indicator for total γ-oryzanol
contents and of campestanol-TMS, 24-methylenecycloartanol-TMS, campesterol-TMS, β-sitosterol-TMS
and cycloartenol-TMS formed from the phytosteryl ferulate components of γ-oryzanol. Data were
obtained by triplicate analysis of rice cultivars Thaibonnet and Cripto by means of the metabolite
profiling method. Error bars represent confidence intervals (error probability: 5 %).
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grains (event 176) to conventionally bred material. Despite some statistically

significant differences observed at single locations, evaluation of data collected from

field trials in three seasons (1998 – 2000) at six locations in Bavaria led to the

conclusion, that transgenic Bt-maize is substantially equivalent to conventional maize

in terms of fatty acid distribution [92]. In order to prove the applicability of the

developed metabolite profiling approach for analysis of maize grains, GM and

parental lines found to exhibit differences in fatty acid contents were chosen for

analysis.

Figure 37 exemplarily shows results obtained by means of targeted investigation of

fatty acids in GM breeding line Navares and in its conventional counterpart Antares

which had been grown in Neuhof in 2000. The application of a validated standard

method for analysis [147] resulted in the detection of statistically significant

differences in methyl myristate, methyl palmitoleinate, and methyl palmitate contents

between transgenic and parental line.

These lines exhibiting equal contents of total fatty acids (data not shown) were

analysed by the developed metabolite profiling method. Sample preparation

according to the protocol described in 4.3 led to separate extracts containing lipids

and polar compounds. Subsequent transmethylation of lipids under alkaline

conditions resulted in the formation of fatty acid methyl esters from ester-bound

fatty acids. In contrast to the method for targeted investigation of fatty acid

distribution, the metabolite profiling protocol involves an additional fractionation step

which led to the enrichment of fatty acid methyl esters in fraction I (major lipid
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Figure 37: Contents of methyl myristate (14:0), methyl palmitoleinate (16:1), and methyl palmitate
(16:0) expressed as percentages of total fatty acid contents in transgenic Bt – maize (breeding line
Navares, n = 3) and in its conventional counterpart (Antares, n = 3) determined by means of targeted
investigation of fatty acids using a validated standard protocol [147]. Error bars represent confidence
intervals (error probability: 5 %).
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fraction). Triplicate isolation and subsequent GC-FID investigation of fractions I from

Antares and Navares resulted in a total of six chromatograms which were compared

by means of the self-tailored software tools.

Figure 38A shows the graphical report generated by response-based data analysis. It

contains an overlay of mean chromatograms calculated from manually standardised

chromatographic data obtained from Antares and Navares, respectively. The

availability of two matched mean chromatograms instead of six single

chromatograms strongly facilitated analysis of the profiles by eye. Automated

comparison of means led to the detection of differences in methyl myristate, methyl

palmitoleinate, and methyl palmitate contents between transgenic and parental line

which was in agreement with results gained by targeted investigation. Metabolite

profiling of the maize lines revealed an additional difference for methyl
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Figure 38: Reports generated by automated comparison of metabolite profiling chromatograms
obtained by GC-FID investigation of fraction I isolated from maize lines Antares (conventional maize
breeding line, n = 3) and Navares (genetically modified breeding line, n = 3). A: Graphical report
generated by response-based comparison of means calculated from chromatograms obtained from
Antares and Navares, respectively, after manual standardisation. Differences are indicated by filled
circles for (1) methyl myristate, (2) methyl palmitolinoleate, (3) methyl palmitoleinate, and (4)
methyl palmitate. B: Graphical report generated by peak-based comparison of mean peak heights
calculated from chromatographic data obtained from Antares and Navares, respectively, after manual
standardisation. Statistically significant differences are indicated by dots.
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palmitolinoleate whose content was below the quantification limit of the standard

method.

Results obtained by response-based data analysis were in full accordance to those

gained by automated peak-based comparison of the six GC-FID chromatograms. The

graphical report (Figure 38B) indicated statistically significant differences between

mean heights for the same peaks which had been labelled in the response-based

report (Figure 38A).

In summary, the developed metabolite profiling methodology was adaptable to maize

grains and allowed comprehensive analysis of fatty acid distribution without any

modification of the protocol developed for rice. The method involved for synthesis of

fatty acid methyl esters is very similar to that routinely applied for targeted

investigation of fatty acid content. Owing to an additional fractionation step, the

metabolite profiling method has a lower quantification limit than the standard

protocol.

4.5.4 Polar and unpolar metabolites in germinating barley

Germination results in profound changes in the levels of low molecular weight barley

constituents. Therefore, analysis of barley grains at different malting stages

represents a suitable positive control to test the developed metabolite profiling

methodology. Because of its significant role in beer brewing, the malting process has

been extensively investigated by means of classical analytical methodologies. Data

on the time-dependent changes in the levels of sugars, amino acids, organic acids,

and lipids are available from the literature [94].

In order to investigate the applicability of the developed metabolite profiling

methodology to detect the expected effects on the metabolite level in the course of

the malting process, barley grains at different malting stages were analysed by

means of the protocol described in 4.3. Malting barley (cultivar Pasadena) was used

as material. It was subjected to a standardised micromalting procedure [94].

Samples were taken after 5, 24, 48, 72, 96, 120, 144, and 168 hours (1st – 7th day).

An additional sample was obtained after kilning (192 hours). Grains including the

shoot were immediately frozen in liquid nitrogen and subsequently freeze-dried.

Barley flour was analysed in accordance to the metabolite profiling protocol

developed for rice. Owing to the expected high contents of polar metabolites in
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malted barley, the amount of the polar extract subjected to fractionation was

reduced compared to rice (see 3.2.3.3). Samples were investigated in triplicate and

the resulting GC-FID chromatograms were analysed manually as well as by means of

the developed software tools. Univariate and multivariate statistics were used for

data evaluation. Barley constituents were identified by comparing retention times

with those of silylated and methylated reference compounds or by comparing mass

spectra obtained by GC-MS investigations with the entries of mass spectra libraries

[80, 81]. Results on the time courses of barley metabolite levels during germination

gained by means of metabolite profiling will be shown exemplarily for selected

compounds in the following chapters. They will be assessed in the light of data

reported in literature.

4.5.4.1 Amino acids / organic acids
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Figure 39: Time courses of the levels of selected amino acids during barley malting determined by
means of metabolite profiling.
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As shown in Figure 39, investigation of the amino acids-containing fractions of

malted barley grains revealed statistically significant increases in the levels of lysine,

valine, leucine, serine, threonine, aspartic acid, methionine, and glutamine in the

course of the malting process.

These data obtained by means of metabolite profiling are in agreement with

literature data determined with "classical" methods [94, 148-152].

At the beginning of micromalting, levels of free amino acids were shown to be

relatively low. Biosynthesis of proteases during steeping and subsequent enzyme-

catalysed cleavage of proteins at the start of germination resulted in an up to 18-fold

rise (isoleucine) of free amino acid levels. The strongest increase was observed 2 – 3

days after start of the malting process. Formation of Maillard products led to the

expected extreme decrease of free amino acid contents (up to 75 % for glutamine)

during kilning [153].

Proline exhibited a time course which was qualitatively similar to those shown in

Figure 39. However, in accordance to literature data [94, 154], proline content of

germinated barley was found to be approx. three times higher than those of other

free amino acids (Figure 40).

Free proline is liberated from proline-rich hordeins during germination and is

essential for biosynthesis of root proteins. In order to meet the high proline

requirement, additional quantities of this amino acid are produced by de-novo

synthesis from glutamic acid [94, 154]. The observed slight decrease of proline

content (5 %) during kilning was also reported in literature. It was explained by the
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Figure 40: Time course of proline abundances during barley malting, determined by metabolite
profiling (n = 3). Error bars represent confidence intervals (error probability = 5 %).
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absence of a feed-back inhibition of proline formation. This leads to a steady rise of

proline levels at the start of kilning, which counteracts the expected decrease during

curing at high temperature [154].

According to literature data, malate contents in malted barley increase slightly during

steeping and drop down steadily in the course of germination [155]. This was also

observed when using the developed metabolite profiling method for analysis (Figure

41). The extraordinary time course of the malate level was explained by its role in

the Krebs-cycle and in amino acid metabolism. During germination, malate serves as

educt for biosynthesis of oxalacetic acid which is further transformed to aspartic acid.

This results in a continuous decrease of malate contents in barley grains in the

course of the malting process [94, 155-157].

The homoserine level exhibited a time course during barley malting which was

different to those discussed above. As shown in Figure 42, homoserine abundances

were close to the detection limit of the metabolite profiling method from day 1 to

day 7. Kilning resulted in a statistically significant increase of the homoserine

content. These results are in agreement with the reported formation of homoserine

by cleavage of S-methylmethionine during curing at high temperature [94] (Figure

43).
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Figure 41: Time course of malate abundances during barley malting, determined by metabolite
profiling (n = 3). Error bars represent confidence intervals (error probability = 5 %).
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The additional homoserine peak in the chromatograms obtained from cured malt

(Figure 44A) was also detected by automated data analysis using the developed self-

tailored software tools (Figure 44B). This was achieved by peak-based comparison of

mean chromatographic data calculated from GC-FID chromatograms obtained from

cured malt (n = 3) to the maximum of a database containing standardised data of

the 24 GC-FID chromatograms which resulted from the investigation of the green

malt samples at different malting stages (day 1 to day 7, n = 3). Considering the fact

that each of the 27 chromatograms contained approximately 100 peaks, ca. 2700

peaks were taken into consideration for automated comparison. The agreement of

results gained by automated comparison with those obtained manually represents a

successful positive control for the developed self-tailored software tools.
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Figure 42: Time course of homoserine abundances during barley malting, determined by metabolite
profiling (n = 3). Error bars represent confidence intervals (error probability = 5 %).
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Figure 43: Cleavage of S-methylmethionine into dimethylsulfide (DMS) and homoserine at high
temperature during kilning [94].
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In addition to automated univariate peak-by-peak comparison, the

27 chromatograms obtained from the amino acid / organic acid fractions of barley at

different malting stages were subjected to multivariate analysis. Using the self-

tailored software tools, standardised peak-based chromatographic data were

automatically transformed to a matrix which was subsequently imported into a

commercial statistics package (XLSTAT, Addinsoft, France) for Principal Component

Analysis (PCA). For graphical presentation of results, scores calculated for the first

principal component were plotted against those calculated for the second one (Figure

45). Each chromatogram is represented by a dot.
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Figure 44: Data analysis of GC-FID chromatograms obtained from cured malt. A: GC-FID
chromatogram obtained from fraction IV of a cured malt sample by means of metabolite profiling. For
conditions see 3.2.3. The homoserine peak is labelled by an arrow. B: Graphical report generated by
automated peak-based comparison of mean chromatographic data calculated from GC-FID
chromatograms obtained from cured malt to the maximum of a reference database containing
standardised data of 24 GC-FID chromatograms which resulted from the investigation of the green
malt samples at different malting stages (day 1 to day 7, n = 3). The dot indicates the detection of a
peak (homoserine) in chromatograms obtained from cured malt samples which was not found in any
chromatogram stored in the reference database.
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Chromatograms of organic acid / amino acid fractions from barley at different

malting stages were grouped into four visually distinguishable clusters. Samples

which had been taken on the first three days (5 h – 72 h) of the malting process are

part of the first group. During that time, steeping leads to biosynthesis of proteolytic

enzymes but not to extreme differences in metabolite levels (see Figure 39). The

strong increase of amino acid contents on days 4 and 5 (72 h - 120 h) resulted in the

formation of separate clusters comprising samples taken on these two days. The

weaker rise of peak abundances after day 5 (120 h – 168 h) is reflected by the

similarity of chromatograms obtained from the respective samples which group

together with those taken on day 5. Groups comprising samples which had been

taken before kilning (5 h – 168 h) were mainly separated through differences in

scores of the first principal component. Kilning resulted in an extreme change in the

amino acid / organic acid distribution. Consequently, chromatograms obtained from

cured malt form a separate group which differs from green malt samples in the

scores of the second principal component.

4.5.4.2 Sugars

Time courses of sugar metabolites in the malting process were determined by GC-

FID investigation of fractions III obtained from barley at different malting stages. As

regards the most abundant monosaccharides (arabinose, xylose, glucose, fructose),

time courses determined by metabolite profiling were very similar to those observed
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Figure 45: Principal component analysis of standardised peak-based chromatographic data obtained
from organic acid / amino acid fractions of barley at different malting stages.
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for free amino acids. Amylolytic and cytolytic enzymes biosynthesised during steeping

catalyse the cleavage of polysaccharides which results in an extreme increase of

monosaccharide contents (up to 20-fold for glucose) at the start of germination

(48 h – 120 h). Kilning leads to a drop of monosaccharide abundances through

formation of Maillard products at high temperature (Figure 46). Results obtained by

means of the developed metabolite profiling methodology are in full accordance with

data reported in literature. Fructose and glucose are mainly biosynthesised by

cleavage of starch and sucrose. Arabinose and xylose are liberated from pentosanes

located in barley hulls. The hexose - pentose ratio determined (ca. 100) is in

agreement with the fact, that starch content in barley exceeds that of pentosanes by

a factor of 100 [158, 159]. Glucose concentrations in germinated barley are higher

than those of fructose owing to a slower utilisation of glucose for catabolic processes

and the additional formation of glucose through maltose degradation [94].

Sucrose exhibited a time course which was different from those observed for the

monosaccharides. Owing to the relatively low contents of glucose and fructose in

barley grains, sucrose is utilised for catabolic purposes at the start of the malting

process which results in a decrease of its concentration during steeping. With

increasing availability of glucose biosynthesised by cleavage of starch via maltose,
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Figure 46: Time courses of monosaccharide abundances during barley malting, determined by
metabolite profiling (n = 3). Error bars represent confidence intervals (error probability = 5 %).
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sucrose contents rise steadily through de-novo synthesis from glucose [94]. This is

even accelerated during kilning. Due to the fact that sucrose is not involved in the

Maillard reaction its content is higher in cured than in green malt. According to [94],

the maltose content of germinating barley increases significantly but slowly in the

course of the malting process. This was explained by the cleavage of the

disaccharide to two glucose molecules catalysed by maltase. As shown in Figure 47,

results obtained by means of the developed metabolite profiling methodology were in

agreement with the reported metabolic connections between glucose, maltose and

sucrose.

According to Figure 48, levels of raffinose drop rapidly during the first 24 hours of

the malting process. Forty eight hours later the abundance of the raffinose peak was

below the detection limit of the metabolite profiling method. This time course has

been explained by the liberation of sucrose from the trisaccharide which is essential

for energy supply at the start of the malting process [94, 158].

In accordance with the procedure described for organic acid / amino acid fractions

(see 4.5.4.1), the 27 chromatograms obtained by the GC-FID investigation of sugars

were subjected to multivariate analysis by means of PCA (Figure 49). In comparison

to Figure 45, this resulted in an even better separation of samples at different
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Figure 47: Time courses of maltose, glucose, and sucrose abundances during barley malting,
determined by metabolite profiling (n = 3). Error bars represent confidence intervals (error
probability = 5 %).
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malting stages. The non-parallel time courses of mono-, di-, and trisaccharides led to

visually distinguishable groups comprising samples taken after 48, 72, 96, and

120 hours. In agreement with the organic acid / amino acid fractions,

chromatograms obtained from cured malt formed a cluster which differed in scores

of the second principal component from those of green malt samples.
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Figure 48: Time course of raffinose abundances during barley malting, determined by metabolite
profiling (n = 3). Error bars represent confidence intervals (error probability = 5 %).

5 h

48 h

24 h

72 h

96 h

120 h

144 h

168 h

192 h

-10

-5

0

5

10

15

20

-15 -10 -5 0 5 10 15
PC 1 (33%)

PC
 2

 (
20

%
)

Figure 49: Principal component analysis of standardised peak-based chromatographic data obtained
from sugar fractions of barley at different malting stages.
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4.5.4.3 Lipids

Time courses of lipids during the malting process were determined by GC-FID

investigation of fractions I and II obtained from barley grains at different malting

stages. The lipid content of barley is relatively low (2 % - 3 %). Triglycerides, free

fatty acids, mono- and diglycerides, phytosterols, phospholipids, and waxes account

for approximately 90 % of total lipids [94]. Transesterification of the lipid extract

which had been obtained in the same way as described for rice (see 3.2.1.3) and

subsequent silica gel chromatography resulted in fraction I containing mainly fatty

acid methyl esters derived from ester bound fatty acids and hydrocarbons. Free fatty

acids and phytosterols are the major components of lipid fraction II obtained from

barley grains.

Compared to the polar low molecular weight constituents (see 4.5.4.1 and 4.5.4.2)

changes of barley lipids in the course of the malting process were relatively small.

Significant changes of peak abundances similar to those observed for free amino

acids and free sugars were hardly detected. One exception was the hydrocarbon

pentacosane. As shown in Figure 50, peak abundances of this compound identified in

fraction I steadily increased from the first to the sixth day of malting.
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Figure 50: Time course of the abundances of the pentacosane peak during barley malting,
determined by metabolite profiling (n = 3). Error bars represent confidence intervals (error
probability = 5 %).
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So far, de-novo biosynthesis of hydrocarbons in the course of barley malting has not

been reported in literature. However, hydrocarbons are well-known constituents of

starch lipids which are difficult to extract by means of dichloromethane [160].

Germination of barley involves cytolytic, amylolytic and proteolytic degradation of the

grain matrix [161] which might result in an improved extractability of grain lipid

constituents associated with polysaccharide molecules. This might be a possible

explanation for the observed increase of the pentacosane abundance.

According to literature, germination of barley grains leads to a decrease of total lipid

content by less than 25 % [94]. In addition to carbohydrates, free fatty acids cleaved

by lipase-catalysis from triglycerides are used for catabolic processes. Moreover, fatty

acids represent essential building blocks of cell membranes in the newly formed

shoots and roots [94, 162]. Saturated fatty acids are preferentially liberated from

triglycerides in the course of germination. In order to meet the need for unsaturated

fatty acids, additional double bonds are included into saturated ones before build-up

of new lipid structures.

Results obtained by means of metabolite profiling were in full agreement with the

metabolic connections described above. Figure 51 exemplarily illustrates the detected

decrease (-15 %) of the contents of esterified saturated fatty acids and the rise of

free unsaturated fatty acids (+50 %) in the primary stages of the malting process,

using stearic (Figure 51A) and linoleic acid (Figure 51B) as representatives for these

compound classes.
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Figure 51: Mean contents of bound stearic acid (A) and free linoleic acid (B) in barley grains at
different malting stages. Mean peak heights (n = 3) of methyl stearate (A) and linoleic acid-TMS (B)
determined in GC-FID chromatograms obtained from barley grains at the different malting stages
were averaged over the time periods indicated below the columns. Error bars indicate confidence
intervals (error probability: 5 %).
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In agreement with the minor changes in barley lipids detected by univariate

comparison, multivariate analysis of the GC-FID chromatograms (fractions I and II)

resulted in a less clear classification of samples according to different malting stages

than those observed for sugars (fraction III) and organic acids / amino acids

(fraction IV). However, as exemplarily shown in Figure 52 for fraction II, visually

distinguishable groups comprising chromatograms obtained from early (5 h – 24 h,

48 h - 72 h) and late (96 h – 168 h) malting stages were formed. In contrast to the

fractions containing polar metabolites, chromatograms obtained from malted barley

after kilning were not clearly distinguishable from those which yielded from green

malt.

In summary, results obtained by investigation of polar and unpolar metabolites in

germinating barley were in full accordance with literature data. Based on a low

experimental variability (high intra-laboratory repeatability), the metabolite profiling

methodology developed originally for rice also allowed to follow the metabolic

changes in germinating barley and to detect the expected effects on the metabolite

level. It was demonstrated, that the combination of metabolite profiling and

automated data analysis is suitable to detect extreme concentration differences (e.g.

proline) and additional peaks (e.g. homoserine) in broad samples sets. Univariate

data analysis was suitable to trace the time courses of individual metabolites.

Multivariate data evaluation by means of PCA gave a rapid overview on the similarity
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Figure 52: Principal component analysis of standardised peak-based chromatographic data obtained
from lipid fraction II of barley at different malting stages.
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of the samples, taking into account the entirety of peaks detected in the

chromatograms.

4.5.5 Conclusions

In order to evaluate the reliability of the developed metabolite profiling approach, the

combination of GC-FID profiling and automated data analysis was applied to

comparative analysis of samples with known differences on the metabolite level.

Assessment of results has to consider the degree of accordance to reported data and

has to take into account that a profiling approach must always be a compromise

between comprehensiveness and specificity.

Results obtained by means of the new methodology were in all cases in agreement

with the expected differences. Investigations involved low molecular weight

compounds belonging to various classes (triglycerides, free fatty acids, phenolic

compounds, organic acids, amino acids, sugars) in three different cereals (rice,

maize, and barley). It was shown that the fractionation approach developed for rice

is also applicable to crops with similar distribution of major and minor polar and

unpolar constituents. GC-FID/MS was suitable for comprehensive qualitative and

quantitative analysis of silylated / methylated metabolites. In contrast to specific

methods for analysis of single compounds which usually involve a calibration

procedure, differences were detected by comparison of peak heights. In all cases,

analytical variability was lower than the magnitude of differences in metabolite

abundances. In combination with its applicability to constituents in a broad

concentration range (three orders of magnitude), the metabolite profiling method

allowed the detection of small (-15 %) as well as of extreme changes (20-fold

increase) in metabolite levels. However, in order to further confirm such differences,

the amounts of metabolites in a sample should be derived from detector responses

on the basis of a calibration equation. 

γ-Oryzanol in rice served as an example for a nutritionally interesting compound class

which is very difficult to investigate even by specific analytical methodologies. It was

demonstrated that metabolite profiling can give an indication for changes in total γ-

oryzanol contents. However, owing to limited specificity of the profiling approach,

hyphenated techniques (on-line LC-GC) must be applied for confirmation and for

detailed investigation of the distribution of individual γ-oryzanol components.
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As regards analysis of esterified fatty acids in maize grains, principles involved in the

metabolite profiling method are similar to those applied for targeted determination of

fatty acid distribution. In contrast to the standard protocol, the profiling approach

includes an additional purification step and uses an unpolar GC column for

chromatographic separation of fatty acid methyl esters. This results in a low

detection limit and allows additional analysis of long chain fatty acids (> 22 carbon

atoms) as well as of hydrocarbons. On the other hand, the targeted approach was

superior to the profiling method in terms of fatty acid differentiation according to the

configuration of double bonds (cis / trans) and regarding separation of abundant

components (18 carbon atoms) according to the degree of unsaturation. This

illustrates the above-mentioned compromise between comprehensiveness and

specificity.

Metabolite profiling of low molecular weight constituents in germinating barley

served as example for non-targeted investigation of a broad spectrum of compounds

in metabolically active tissue. Compared to classical methods for malt analysis, the

newly developed methodology was advantageous in terms of rapidness and

comprehensiveness. Considering the fact that expected changes on the metabolite

level could be detected, the experiment represents a convincing positive control as

regards the application of the profiling approach to the detection of unintended

effects. As regards pentacosane, the non-targeted approach revealed changes which

had not been reported before. However, further specific investigation of

hydrocarbons would be required in order to confirm that differences in peak

abundances are really due to different contents in grains and not to differences in

extractability from grains at different malting stages.

Application of the developed metabolite profiling method resulted in huge amounts of

data. Based on robust standardisation procedures, the self-tailored software tools for

comparison of chromatograms were successfully applied for automated data analysis.

As demonstrated for investigation of fatty acid distribution in maize grains, (direct)

response-based treatment of chromatographic data proved to be useful for

comparison of GC chromatogram series by-eye. However, based on the applied

fractionation procedure and the resulting sufficient resolution in the GC-FID

chromatograms obtained, the more rapid peak-based approach was preferred for

data analysis. The ability of the software tools to detect statistically significant
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differences between two series of chromatographic data sets turned out to be

extremely useful for data evaluation. The possibility to establish chromatogram

databases and to calculate theoretical chromatographic data thereof provided the

basis for assessment of differences.

The detection of homoserine in chromatograms obtained from cured malt served as

example for identification of a new peak not present in the huge number of

chromatograms yielded from green malt at different malting stages. Comparison of

the maximum chromatogram calculated from the database for green malt samples to

the chromatograms obtained from cured malt directly led to the detection of the

unique peak.

Automated univariate comparison of the chromatograms obtained from rice samples

different in γ-oryzanol content revealed the usefulness of the generated graphical

report for elucidating the role of the compounds underlying the difference. The good

correlation between the changes in methyl ferulate and phytosterol abundances may

facilitate the identification of phytosteryl ferulates as possible candidates causing

unspecific effects in the profiles.

Multivariate analysis of standardised peak-based chromatographic data by means of

PCA allowed a rapid overview on the degree of similarity within huge amounts of

data. In contrast to the univariate peak-by-peak comparison, PCA focuses on the

major differences for sample classification. As regards chromatograms obtained from

barley grains at different malting stages, PCA plots perfectly illustrated the metabolic

changes during germination.

The combination of metabolite profiling and automated data analysis proved to be

able to detect expected differences in abundances of a broad spectrum of low

molecular weight constituents of rice, maize, and barley. This represents an

important prerequisite for application of the developed methodology for non-targeted

unbiased investigation of metabolites in such cereals in order to detect unanticipated

changes on the metabolite level.

4.5.6 Summary

The developed combination of metabolite profiling and automated data analysis was

applied to comparative analysis of cereal grains with known differences on the

metabolite level. This included the investigation of rice grains with different γ-
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oryzanol contents and maize grains different in distributions of fatty acids.

Germinating barley at different malting stages served as material for analysis of

metabolically active tissues with expected changes in metabolite abundances.

It was demonstrated that the metabolite profiling approach developed for rice

involving fractionation of total lipid and polar extracts is also applicable to maize and

barley grains. Results obtained by metabolite profiling were in accordance to those

gained by specific targeted analyses (rice and maize) and in agreement with

literature data (barley). Automated univariate peak-by-peak comparison of

metabolite profiles proved to be useful to detect statistically significant differences in

peak heights between series of standardised chromatographic data sets and allowed

to trace differences directly to individual peaks. Multivariate analysis of

chromatogram series by means of principal component analysis on the basis of the

entirety of detectable peaks allowed to classify samples according to similarity.

The provided evidence that the developed metabolite profiling approach is able to

detect expected changes in metabolite abundances forms the basis for its application

to discover unexpected effects on the metabolite level.
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4.6 Metabolite profiling of GM and conventional rice

4.6.1 Introduction

The comparison of the chemical composition of a GM plant to that of a traditional

counterpart by means of targeted investigation of defined constituents has been

successfully used in the course of the safety assessment of GM foods [15]. The

major limitation of this approach is its biased character focusing on known

compounds and expected / predictable changes.

The objectives of this study were to exemplarily demonstrate the suitability of the

developed metabolite profiling methodology to the non-targeted comparative

analysis of genetically modified food, and to apply the software tools developed for

automated comparative analysis of metabolite profiling data and for establishment of

metabolite profiling databases.

Genetically modified Bt-rice grains expressing a synthetic cry1Ab gene from Bacillus

thuringiensis (line KMD1) [89] and a lectin gene from Galanthus nivalis (line GNA)

[91], respectively, were used as model crops. They were compared to the

corresponding parental lines (Xiushui 11 and ASD16) which had been grown together

with their GM counterparts in two field trials (Xiushui 11 – KMD1) and a glass house

trial (ASD16 – GNA). This represents a suitable model since expression of insecticidal

proteins (Cry1Ab and Galanthus nivalis agglutinin, GNA, respectively) does not aim at

intended changes on the metabolite level. For assessment of potential differences

between GM and parental lines, a model database was established containing

metabolite profiles obtained from conventional rice cultivars as well as from a broad

spectrum of commercial rice samples. Univariate and multivariate methods were

evaluated regarding their suitability to discover statistically significant differences in

abundances of individual metabolites within the broad series of complex data sets.

4.6.2 Metabolite profiling model database for conventional rice samples

In order to get an idea on the extent of natural variability, a set of 23 conventional

brown rice samples was analysed by means of the developed metabolite profiling

method. One sub-set comprised a total of ten samples obtained from the cultivars

Balilla, Cripto, and Thaibonnet (sample codes BA1-4; CR1-4; Thai1-2 in Table 3).
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They were different in terms of growing season and origin. Balilla samples BA2 -

BA4, Cripto samples CR3 and CR4 as well as the Thaibonnet samples were obtained

as different lots from the same supplier. Another sub-set consisted of a total of ten

commercial brown rice samples for which affiliation of the cultivar was unknown

(sample codes E1; E8; E10; E15; H5-7; H9; H16; J5 in Table 4). They differed in

grain shape (short, medium and long grain rice), origin (Italy, US, Spain, India,

Guyana, France, Japan), and other characteristics (Basmati rice, Red Camargue rice)

and had been selected from a set of more than 50 commercial lots (Table 4) in order

to obtain a collection of rice samples which show significant differences. The two

parental Xiushui 11 lines and line ASD16 served as the third sub-set of conventional

rice material.

In order to establish a metabolite profiling model database for conventional rice

material, the 23 brown rice samples were extracted, fractionated and analysed by

GC-FID as described in chapter 4.3. Samples obtained from cultivars Balilla, Cripto

and Thaibonnet (n = 10) and parental lines (n = 3) were subjected in triplicate to

the complete metabolite profiling procedure. The commercial lots (n = 10) were

analysed once only. The resulting GC-FID chromatograms were standardised

automatically and manually by means of the developed software tools. Eventually, a

database was built consisting of 49 standardised peak-based data sets and a total of

approximately 32,000 data points. Every data set contained the informations on ca.

650 peaks.

For characterisation of the database, the degree of overall variability in

corresponding peak abundances was compared to that observed within the sub-sets

of conventional cultivars (intra-cultivar variability) and to that determined by

triplicate analysis of the same sample (analytical variation). Therefore standardised

heights of corresponding peaks were related to their median according to equation 6

(see chapter 3.2.1.11). This resulted in equal weighting of peak abundances which

were twice (+100 %) and half the median (-100 %). This mode of calculation

allowed the comparison of degrees in variability irrespective of the magnitudes of

absolute standardised peak heights. Results obtained for selected compounds

identified in rice fractions I – IV are shown in Figure 53. The data are representative

for rice constituents exhibiting high and low variability within the 23 samples included

in the model database.



4.6 Metabolite profiling of GM and conventional rice 128

The highest degrees of variability within the 23 conventional samples in the model

database were observed for free sugars and polyols identified in rice fraction III (see

Figure 53A). Phytosterols (fraction II) and fatty acid methyl esters (fraction I)

derived from ester-bound fatty acids exhibited the lowest variabilities (Table 14). In

general, variability in peak abundances was lower for lipids (Figure 53C,D) than for

polar compounds (Figure 53A,B). However, as exemplarily shown for β-sitosterol and

free stearic acid, variabilities can differ considerably between individual compounds

identified in the same fraction.

As illustrated exemplarily for eight rice constituents in Figure 53, overall variabilities

within the 23 rice samples in the model database (columns 1) were higher than

those observed within Balilla (columns 2) and Cripto samples (columns 3). Analytical

variation determined by triplicate analysis of the same Thaibonnet sample

(columns 4) was low enough to differentiate individual samples obtained from the

same cultivar. This was even true for β-sitosterol (Figure 53D) exhibiting a

remarkably low intra-cultivar variability.

Ratios of overall and intra-cultivar variabilities to analytical variation calculated for

the eight compounds are summarised in Table 14. Except for methyl docosanoate

and β-sitosterol, ratios were equal to or higher than four.

However, because intra-cultivar variability was as high as inter-cultivar variability, no

differentiation between the cultivars Balilla and Cripto was possible on the basis of

the eight rice constituents. In other words, magnitudes of differences in metabolite

abundances due to changes in environmental conditions (origin, growing season)

were equal to or higher than those due to different characteristics of cultivars.

This leads to the following conclusions regarding the comparison of cultivars on the

basis of metabolite profiling data: In order to reveal the influence of cultivar

characteristics on metabolite concentrations, metabolite profiling data obtained from

samples grown under identical environmental conditions must be used for

comparison. Differences in metabolite profiling data between cultivars should be

evaluated in the light of natural variability determined for a set of appropriate

comparators. Magnitudes of differences should be assessed on a compound-by-

compound basis taking into account the individual degrees of variability.
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Figure 53: Characterisation of a model database containing standardised metabolite profiling data of
23 conventional rice samples. X+ / X- values expressing the magnitudes of divergence of standardised
peak heights to the median were calculated according to equation 6 for selected compounds
identified in fraction III (A), fraction IV (B), fraction I (C), and fraction II (D). Positions of dots in
columns illustrate the variability of peak heights observed within the 23 samples of the model
database (1), within Balilla (2), and Cripto (3) samples. Column 4 illustrates the analytical variation
determined by triplicate analysis of the same Thaibonnet  sample.



4.6 Metabolite profiling of GM and conventional rice 130

Table 14: Natural variability and ratios of natural and intra-cultivar variability, respectively, to
analytical variation calculated for abundances determined by metabolite profiling analysis of eight
compounds in 23 conventional rice samples.

natural variability
S [%]*

natural variability /
analytical variation*

Balilla  variability* /
analytical variation

mannitol 1275 425 36

squalene 409 58 4

asparagine 344 12 7

stearic acid 340 24 9

aspartic acid 229 29 4

inositol 127 21 10

methyl docosanoate 80 9 2

β-sitosterol 66 6 1.7

*: S , Balilla variability and analytical variation were calculated according to equation 6.

4.6.3 Comparative metabolite profiling of genetically modified rice

4.6.3.1 Multivariate approach

As shown by the investigation of germinating barley (see chapter 4.5.4), multivariate

analysis of metabolite profiling data by means of Principal Component Analysis (PCA)

can give a rapid overview on the similarity of samples regarding the entirety of

constituents on the metabolite level. In order to gain a first impression on the

similarity of the genetically modified rice lines to conventional counterparts,

metabolite profiling data obtained from Bt- and GNA rice grains as well as those

yielded from corresponding parental lines and from conventional rice cultivars

(sample codes BA1-4; CR1-4; Thai1-2 in Table 3) were subjected to PCA. This

involved the standardisation of a total of 192 chromatograms. Subsequently,

matrices (one per rice fraction) were generated from standardised peak-based data

sets by means of the developed software tools. The unbiased consideration of the

entirety of peaks detectable in the 192 chromatograms resulted in a total of 32,155

data points which were subjected to PCA analysis. For graphical presentation of

results, scores of the first principal component were plotted against those calculated

for the second one. The plots obtained for each rice fraction are shown in Figures 54

and 55.
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Figure 54: Principal Component Analysis of GC-FID metabolite profiling data obtained from
fractions I and II (major and minor lipids) of genetically modified Bt- and GNA rice (lines KMD1, GNA),
corresponding parental lines (Xiushui 11, ASD16), and conventional cultivars Balilla (BA1 – BA4),
Cripto (CR1 – CR4), Thaibonnet (Thai1, Thai2). For sample codes see Table 3.
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As regards genetically modified GNA rice, PCA resulted in visually distinguishable

groups comprising data obtained from the GM line and from the corresponding

parental line (ASD16). Assessment of PCA plots for fractions I, III, and IV also

revealed visually distinct differences between the Bt-rice line (KMD1 (2)) and the

parental counterpart (Xiushui 11 (2)) which had been grown in the second field trial.
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Figure 55: Principal Component Analysis of GC-FID metabolite profiling data obtained from
fractions III and IV (sugars and organic acids / amino acids) of genetically modified Bt- and GNA rice
(lines KMD1, GNA), corresponding parental lines (Xiushui 11, ASD16), and conventional cultivars
Balilla (BA1 – BA4), Cripto (CR1 – CR4), Thaibonnet (Thai1, Thai2). For sample codes see Table 3.
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However, when taking into account data from the first field trial (KMD1 (1),

Xiushui 11 (1)) no differences between the GM and the parental lines were visually

detectable.

In general, distances between dots representing data for GM and corresponding

parental lines were small in comparison to those between dots for different

conventional rice cultivars. As regards Balilla and Cripto samples, intra-cultivar

variability due to different origins was as high as inter-cultivar variability. PCA plots

for all rice fractions indicated separate groups comprising data for the Balilla sample

grown in Spain (BA1) and for the samples from Italy (BA2 – BA4). The groups

containing data of the Spanish Balilla sample were always superimposed by those

comprising Cripto data. This is in full agreement with the conclusions drawn in the

course of the characterisation of the metabolite profiling database for conventional

cultivars (see Figure 53).

4.6.3.2 Univariate comparative analysis of Bt-rice

Detailed comparative investigation of metabolites in Bt-rice grains was performed

following the univariate approach. The procedure shown in Figure 56 was followed

peak-by-peak, and comparative data analysis was carried out automatically by means

of the developed software tools.

1. Comparison of mean metabolite profiling data obtained from GM and
corresponding parental lines grown under identical environmental conditions:

→ consistent statistically significant differences between the means of GM
and parental lines?

2. Assessment of consistent statistically significant differences by comparison of
the means of GM lines to the mean/maximum/minimum of a metabolite
profiling database for conventional comparators:

→ statistically significant differences between the means of GM lines
and conventional comparators?

3. Further assessment of consistent statistically significant differences between
the means of GM and parental lines by comparison of the magnitudes of
differences to intra-cultivar variabilities and to natural ranges observed for
conventional comparators.

Figure 56: Procedure for detection and evaluation of differences in metabolite profiling data between
genetically modified lines and conventional comparators.
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As a first step, standardised metabolite profiling data obtained from GM lines and

from the corresponding parental lines grown under identical environmental

conditions were compared. Differences between mean peak abundances (n = 3)

were assessed for statistical significance by means of Student's t test (error

probability: 5 %) on a peak-by-peak basis. Peaks exhibiting heights lower than 1 mV

were not taken into consideration. Statistically significant differences between GM

and parental lines which were detectable in both field trials (consistent statistically

significant differences) triggered the additional comparison of GM lines to a database

containing metabolite profiling data sets obtained from conventional comparators.

For that purpose the model database described in chapter 4.6.2 was used which

comprises data sets from conventional rice cultivars and from a broad spectrum of

commercially obtained rice samples. Means of GM lines were compared to the mean

and to the maximum/minimum calculated using the data sets stored in the database.

The statistically significant differences observed were further assessed regarding

their magnitudes compared to the intra-cultivar variability determined for the

conventional cultivars Balilla, Cripto, and Thaibonnet, and to the overall natural range

observed for commercial samples.

The performance of this procedure will be demonstrated by using metabolite profiling

data sets obtained from fractions I – IV of genetically modified Bt-rice and

conventional samples. Results of comparison will be illustrated using the graphical

reports generated by the developed software tools for automated comparative

analysis of metabolite profiling data.

Fraction I

The graphical reports generated by following the described procedure for

comparative analysis of metabolite profiling data sets obtained from Bt-rice

fractions I are presented in Figure 57. The report shown in Figure 57B indicates one

statistically significant difference (-29 %) between the Bt-rice line and the

corresponding parental line which had been grown in the first field trial. As indicated

in Figure 57C this difference (-53 %) and four additional ones were observed in the

second field trial. Hence, one consistent statistically significant difference was

detected in fraction I. The compound "behind" the difference (peak number 1 in
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Figure 57A) was identified as methyl stearate formed by transmethylation of ester-

bound stearic acid. The difference was confirmed by targeted analysis of fatty acid

distribution [163] which required further comparative investigations according to the

procedure described in Figure 56.

As shown in Figure 57D,E, graphical reports did not indicate a statistically significant

difference between the methyl stearate abundances in GM rice lines and the mean

calculated from the database of conventional samples. The difference detected for
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Figure 57: Comparative analysis of metabolite profiling data obtained from rice fractions I of
genetically modified Bt-rice lines (KMD1, n = 3). A: Standardised GC-FID chromatogram obtained
from the corresponding parental line (Xiushui 11) grown in the first field trial. 1: methyl stearate, 2:
methyl hexacosanoate. B – E: Graphical reports generated by automated comparison of mean
metabolite profiling data obtained from GM lines (n = 3) to those from parental lines (B, C, n = 3)
and to those calculated from a database for conventional rice samples (D, E, n = 23).
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methyl hexacosanoate in Figure 57E (peak and dot number 2) had not been detected

in the course of the comparison of the GM line grown in the second field trial to the

corresponding parental line (Figure 57C). This indicated that methyl hexacosanoate

abundances in the GM line as well as in the parental line are different from the mean

of the database. According to the procedure shown in Figure 56, results obtained for

fraction I did not require further assessment.

Fraction II

Figure 58 exemplarily shows a tabular report generated by automated comparison of

mean metabolite profiling data obtained from rice fractions II of Bt and parental rice

grains grown in the first field trial. It indicates that calculation of a total of 365 mean

peak heights was performed. Ninety seven means were higher than 1 mV and were

taken into account for comparison. Eventually, this led to the detection of

2 statistically significant differences (+20 %; -39 %) which were indicated in the

corresponding graphical report shown in Figure 59B.

 statistics: comparison of M_Xiushui 11 and M_KMD1
n = 3 n = 3

                Parameters
min. peak height: 1000 µV
error probability: 5 %

width: 0.1 min

total peaks: 365
peaks included: 97
total alterations: 2 4%

                Additional peaks
total: 0

peak height:   100 - 500: 0 0%
501 - 1000: 0 0%

  1001 - 2000: 0 0%
  2000 - 5000: 0 0%

  >5000: 0 0%

                Statistically significant differences
total: 2

10 - 30 %: 1 50%
30 - 50 %: 1 50%

50 - 100 %: 0 0%
>100 %: 0 0%

                 Blanks
Blank 1  0.00 min to  0.00 min
Blank 2  32.80 min to  33.50 min

Figure 58: Tabular report generated by automated
comparison of mean metabolite profiling data obtained from
rice fractions II of GM (KMD1, n = 3) and parental rice
grains (Xiushui 11, n = 3) grown in field trial 1.
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Figure 59: Comparative analysis of metabolite profiling data obtained from rice fractions II of
genetically modified Bt-rice lines (KMD1, n = 3). A: Standardised GC-FID chromatogram obtained
from the corresponding parental line (Xiushui 11) grown in the first field trial. 1: 24-
methylenecycloartanol-TMS. B – G: Graphical reports generated by automated comparison of mean
metabolite profiling data obtained from GM lines (n = 3) to those from parental lines (B, C, n = 3)
and to means (D, E) and minima (F, G) calculated from a database for conventional rice samples (n =
23). Consistent statistically significant differences were indicated for 24-methylenecycloartanol-TMS
(1).
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The additional graphical reports presented in Figure 59 revealed that one of the two

differences was also detected by comparative analysis of metabolite profiling data

obtained from the second field trial (Figure 59C). The compound "behind" this

consistent statistically significant difference was identified as 24-

methylenecycloartanol-TMS (24-MC, peak number 1 in Figure 59A). In contrast to

the situation described for fraction I, 24-MC abundances in GM lines were statistically

significantly lower than the mean and minimum 24-MC abundances calculated from

the database of conventional rice samples (Figure 59D - G). According to the

procedure described in Figure 56, this triggered further assessment of the

differences.

As shown in Figure 60, the magnitude of the difference observed in the second field

trial was higher than that observed in the first one. However, the magnitudes of the

differences in 24-MC contents observed in both field trials were lower than the intra-

cultivar range observed for Cripto samples from different origins grown in different

seasons.

The 24-MC abundance determined in the GM lines is outside of the natural range

determined for conventional rice samples. From a biochemical point of view this

should be confirmed in additional field trials.
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Figure 60: Abundances of 24-methylenecycloartanol-TMS in GM and conventional rice material. Bars
display mean abundances (n = 3) of 24-methylenecycloartanol-TMS calculated from GC-FID
chromatograms obtained from rice fractions II of genetically modified Bt- (KMD1) and corresponding
parental lines (Xiushui 11) and of the conventional rice cultivars Balilla, Cripto, and Thaibonnet. For
sample codes see 3.1.1. Error bars display confidence intervals (error probability: 5 %). Vertical lines
display the ranges (from maximum to minimum) of mean 24-methylenecycloartanol-TMS abundances
determined for (1) conventional rice samples (natural range, N = 23), (2) Balilla samples (N = 4), (3)
Cripto samples (N = 4), and (4) Thaibonnet samples (N = 2).
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Fraction III

Principal Component Analysis had revealed a clear separation between metabolite

profiling data obtained from the GM line grown in field trial 2 to those of the

corresponding parental line (see Figure 55). This was substantiated by means of the

univariate approach. As shown in Figure 61D, three additional peaks were detected

in Bt-rice grains grown in the second field trail which were identified as xylitol,

mannitol, and trehalose. However, this was not confirmed by comparative analysis of

metabolite profiling data obtained from the first field trial (Figure 61B) and must be

interpreted in consideration of the high degree of natural variability found for sugars

and polyols (see chapter 4.6.2). The only consistent statistically significant difference

in fractions III obtained from GM and corresponding parental lines was detected for

raffinose-TMS (Figure 61A,C,E). Its levels were also statistically significantly lower

than the corresponding mean (data not shown) and minimum (field trial 2, Figure

61G) calculated from the database for conventional rice samples. As shown in Figure

62, the magnitudes of the differences between GM and parental lines were

comparable to the intra-cultivar range in Balilla samples.

Fraction IV

The sequence of comparisons between metabolite profiling data obtained from GM

lines and those from conventional cultivars was identical to that described for fraction

II (see Figure 59). The appearance of a separate group in the PCA plot comprising

data yielded from GM line grown in field trial 2 (see Figure 55) was substantiated by

the detection of a relatively high number of 20 statistically significant differences to

the corresponding parental line. However, only two of them were confirmed through

evaluation of data gained from the first field trial. Subsequent comparison of GM

lines to the database for conventional rice samples resulted in the indication of one

peak whose abundances were statistically significantly lower than the mean and the

minimum calculated from the database. Identification of the compound "behind" the

difference through matching of its mass spectrum to entries in mass spectra libraries

[80, 81] was not achieved.
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Figure 61: Comparative analysis of metabolite profiling data obtained from rice fractions III of
genetically modified Bt-rice lines (KMD1, n = 3). A: Standardised GC-FID chromatogram obtained
from the corresponding parental line (Xiushui 11) grown in the first field trial. 1: raffinose-TMS. B –
G: Graphical reports generated by automated comparison of mean metabolite profiling data obtained
from GM lines (n = 3) to those from parental lines (B – E, n = 3) and to minima (F, G) calculated
from a database for conventional rice samples (n = 23). Three additional peaks were detected in
chromatograms obtained from the GM line grown in the second field trial and were identified as xylitol
(2), mannitol (3), and trehalose (4). Consistent statistically significant differences between GM and
corresponding parental lines were indicated for raffinose-TMS (1).



4.6 Metabolite profiling of GM and conventional rice 141

Table 15 summarises the results gained by non-targeted comparison of metabolite

profiling data obtained from genetically modified Bt-rice grains to those of

conventional rice samples. Out of 163 peaks taken into account for analysis, five

were found to be consistently statistically significantly different to those in the

corresponding parental lines grown under identical environmental conditions. Three

of the five were outside the natural range determined for 23 conventional rice

samples.

Table 15: Comparison of metabolite profiling data obtained from genetically modified Bt-rice grains
to those of conventional rice samples.

statistically significant differences
to parental lines to database

fraction
peaks included
for comparison compound

 mean ratio
GM/parental mean

 maximum/
minimum

I 34 methyl stearate 0.71 - -

II 57 24-methylene-
cyloartanol-TMS

0.55 + +

III 18 raffinose-TMS 0.61 + +

IV 54 aspartic acid-TMS 1.45 - -
unknown 0.69 + +

total
numbers 163 5 3 3
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Figure 62: Abundances of raffinose-TMS in GM and conventional rice material. Bars display mean
abundances (n = 3) of raffinose-TMS calculated from GC-FID chromatograms obtained from rice
fractions III of genetically modified Bt- (KMD1) and corresponding parental lines (Xiushui 11) and of
the conventional rice cultivars Balilla, Cripto, and Thaibonnet. For sample codes see 3.1.1. Error bars
display confidence intervals (error probability: 5 %). Vertical lines display the ranges (from maximum
to minimum) of mean raffinose-TMS abundances determined for (1) conventional rice samples
(natural range, N = 23), (2) Balilla samples (N = 4), (3) Cripto samples (N = 4), and (4) Thaibonnet
samples (N = 2).
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4.6.3.3 Univariate comparative analysis of GNA rice

Univariate comparative analysis of genetically modified GNA rice by means of

metabolite profiling was performed according to the same procedure as described for

Bt-rice. The non-targeted consideration of 169 mean peak heights calculated

automatically from GC-FID chromatograms obtained from the GM line for comparison

resulted in the detection of 50 statistically significant differences to the

corresponding parental line (ASD16). This was in full agreement with the plots

generated by multivariate data analysis (Figures 54, 55) which had revealed a slight

but clearly visible separation between the two lines. Magnitudes of the differences

ranged from -104 % (citrostadienol-TMS) to +265 % (unknown constituent). In

contrast to Bt-rice, material for comparative analysis was limited to brown rice grains

grown in a single glass house trial.

Statistically significant differences detected between GM and parental line were

assessed in the light of the natural range represented in the established model

database for conventional rice samples. Automated data analysis by means of the

developed software tools revealed a total of 8 constituents of GNA rice exhibiting

mean abundances which were statistically significantly different to the means

calculated from the model database. Two of them (valine-2TMS and cycloartenol-

TMS) were found to be outside the natural range determined for 23 conventional rice

samples. The data are summarised in Table 16.

In order to evaluate the total number as well as the magnitudes of differences

observed between the GM and the corresponding parental line, they were compared

to those determined by comparative analysis of conventional cultivars. Results are

summarised in Figure 63. With rising diversity in terms of origin, growing season,

and cultivar, the total number as well as the number of wide differences (>100 %)

observed between conventional rice samples increased. Comparison of two Balilla

samples grown in Italy in 2000 resulted in the detection of 11 statistically significant

differences. Only two of them were higher than 50 %. The use of a Thaibonnet

sample as comparator revealed a total of 51 statistically significant differences and

19 magnitudes higher than 50 %. As regards the total number of statistically

significant differences, results obtained for ASD16 and GNA (50 differences) were

comparable to inter-cultivar variability determined for cultivars Balilla and

Thaibonnet. However, as indicated by the dotted line in Figure 63, this was mainly
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due to the high proportion of small discrepancies (<50 %) between GM and parental

line. On the basis of the number of wide differences (>100 %), diversity of ASD16

and GNA was in the same range as observed for intra-cultivar variability in different

Cripto samples.

Table 16: Comparative analysis of genetically modified GNA rice (n = 3) and conventional rice
samples by means of metabolite profiling

statistically significant differences [%]a

fraction compound
to

parental lineb
to the mean of

conventional samplesc
to the maximum/minimum of

conventional samplesd

Ie C14:0 +51 - -
C15:1 -42 - -
C16:2 +32 - -
C16:1 +32 +50 -
C16:0 +16 - -
C17:1 +38 - -
C17:0 +42 - -
C18:0 +55 +42 -
C20:2 -21 - -
C20:1 -15 - -
C20:0 +27 +42 -
C22:1 +35 - -
C23:0 +16 - -
C24:1 +28 - -
squalene -54 -336 -
nonacosane +41 - -
C28:0 +30 - -

IIf C18:0 +27 - -
C20:1 -25 - -
n. i.g -38 - -
n. i. -12 - -
∆7-campestenol -37 - -
n. i. -60 - -
β-sitosterol -45 - -
∆5-avenasterol -74 - -
gramisterol -41 - -
cycloartenol -48 -99 -21 
∆7-avenasterol -50 -33 -
24-methylenecycloartanol 51 - -
citrostadienol -104 - -

IIIf glycerol +15 - -
sorbitol additional peak +502 -
glucose +138 - -
inositol +43 - -
sucrose +47 - -
trehalose missing peak - -
raffinose -56 - -

IVf alanine +33 - -
valine +49 +35 +7 
phosphate -27 - -
proline +152 - -
leucine +74 - -
serine +77 - -
threonine +53 - -
n. i. -146 - -
malate -71 - -
aspartic acid +81 - -
phenylalanine +61 - -
glutamic acid +55 - -
n. i. +265 - -

a: determined by Student's t-test, error probability: 5 %; b: n = 3; c, d: n = 23; e: compounds (except for squalene and
nonacosane) were identified as fatty acid methyl esters; f: compounds were identified as trimethylsilylated derivatives; g: not
identified
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4.6.4 Conclusions

The developed combination of metabolite profiling and automated data analysis was

applied to comparative compositional analysis of genetically modified rice grains. This

was performed in order to investigate the applicability of a non-targeted profiling

approach for chemical characterisation within the safety assessment framework of

GM foods. The evaluation of the methodology focused on the question whether

additional exploitation of such an approach may yield in additional information which

is useful to guide the subsequent safety assessment process.

The unbiased non-targeted character of profiling techniques is the most striking

argument for their additional use in the course of a safety assessment. The

methodologies applied must be as comprehensive as possible and have to offer the

opportunity to identify and quantify the metabolites which are "behind" the

differences observed. Analytical data have to be provided in a suitable form for

further evaluation.

Genetically modified rice grains expressing genes for biosynthesis of insecticidal

proteins were used as model material. As the type of genetic modification did not

aim at a change on the metabolite level, the study design allowed to focus evaluation

of the chemical composition of the GM lines on the potential occurrence of

unexpected effects on metabolite levels.
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Figure 63: Number and magnitudes of statistically significant differences determined by comparative
metabolite profiling analysis of genetically modified GNA rice and its corresponding parental line
(ASD16) and of conventional rice cultivars from different origins grown in different seasons. For
sample codes see Table 3.
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In accordance to the recommended procedure for targeted analysis of single

compounds, metabolite profiling of GM lines was performed following a comparative

approach. Corresponding parental lines grown under identical environmental

conditions were taken into account as the primary comparators. In contrast to

specific analyses, a method was used isolating a broad spectrum of compounds from

the sample matrix. GC-FID investigation of pre-fractionated extracts resulted in

highly resolved chromatograms exhibiting hundreds of peaks. Comparison of their

mass spectra to entries of mass spectra libraries led to the identification of more

than one hundred compounds. The necessity to derivatise compounds to make them

volatile and limited possibilities to collect them from the eluate of the GC column for

further investigations are the main drawbacks of a GC based approach. Compounds

exhibiting thermal instability and low volatility cannot be detected by the developed

profiling methodology. Presently, it does not cover metabolites "typical" for food

quality (e.g. vitamins) and food safety (e.g. mycotoxins). Although mass

spectrometry provided valuable information on structural identity of compounds, de-

novo identification of unknown metabolites was difficult to achieve. Metabolite

profiling methods applying liquid chromatography coupled to mass spectrometry and

nuclear magnetic resonance may help to overcome these limitations.

Considering the specific requirements of a safety assessment, data analysis of a

metabolite profile obtained from a GM food has to reveal the entirety of differences

to that obtained from the conventional counterpart. The software tools developed

allow to meet these requirements and are suitable to take into consideration for

analysis the entirety of peaks detectable in metabolite profiles. Principal Component

Analysis resulted in the formation of visually distinguishable groups comprising

metabolite profiling data obtained from GM and parental lines used in the model

study. The use of multivariate techniques is particularly attractive because they allow

to reduce data complexity to information most useful to describe differences between

samples. Analysis of PC loadings has been suggested in order to find the differences

in peak abundances which led to a differentiation of sample groups in PCA plots.

However, the use of a univariate peak-by-peak approach for comparison of

metabolite profiles allows to direct assignment of differences in profiles to the

underlying peaks and assures detection of even minor qualitative and quantitative

changes.
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The software tools developed were tailored in order to achieve non-targeted

univariate comparison of metabolite profiling data. Their application resulted in the

unbiased consideration of all peaks higher than a fixed response threshold for data

analysis.

The results obtained indicate the potential of the developed metabolite profiling

methodology to detect statistically significant differences between metabolite

profiling data obtained from genetically modified lines and conventional counterparts.

This meets the objective of this study to demonstrate the applicability of a non-

targeted approach for comprehensive comparative compositional analysis of GM

foods.

Investigation of material obtained from additional field trials could be required in

order to prove the correlation between differences in composition and the application

of recombinant DNA techniques.

Differences in compositions between GM and conventional crops do not mean a

safety issue per se. Evaluation of unintended changes regarding their biochemical,

nutritional, toxicological, and safety relevance is one of the most challenging tasks

arising from the exploitation of metabolite profiling techniques but goes beyond the

scope of the present study. The scheme elaborated (see Figure 56) may help to

standardise the procedure for comparison of a GM to a broader spectrum of

conventional foods as a first step to assess unintended differences to the

corresponding parental line. Considering the huge amounts of data which must be

generated in the course of such an approach, databases are required to store the

data. The software tools developed may help to establish and automatically utilise

metabolite profiling databases.

From a safety point of view, a database describing the natural variability of

metabolite abundances for the parental line should be the primary basis for

evaluation of consistent statistically significant differences in metabolite profiling data

between GM and parental lines grown under identical environmental conditions.

Databases reflecting different developmental stages and environmental conditions

are essential. Inter-laboratory co-operation might help to accelerate the build-up of

such databases. However, this requires stringent standardisation of the protocols

applied for generation of metabolite profiling data. Different approaches have been

described for establishment of metabolite profiling databases [67]. So far, no
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metabolite profiling database exists which can be utilised to assess metabolite

profiles in the course of a safety assessment.

Application of metabolite profiling techniques for safety assessment of GM foods may

in principle provide relevant information regarding metabolic consequences as a

result of genetic modification. In theory, an unbiased non-targeted comprehensive

comparison between GM organisms and their traditional counterparts offers almost

unlimited possibilities for detection of unintended effects. However, due to the

structural diversity of metabolites, analytical coverage of the "metabolome" by

means of a single method will not be possible. The potential of metabolite profiling

techniques for characterisation of the chemical composition of GM foods is obvious,

but further exploration with respect to specificity and sensitivity of the methods and

validation is needed in order to make it really useful for safety evaluation of GM

foods.

4.6.5 Summary

In a model study, the developed combination of metabolite profiling and automated

data analysis was applied to the characterisation of the chemical compositions of

genetically modified rice grains expressing genes for biosynthesis of the insecticidal

proteins Cry1Ab and GNA, respectively. Data obtained from GM lines were compared

to those of corresponding parental lines grown under identical environmental

conditions and statistically significant differences were evaluated in the light of the

variability in metabolite profiling data stored in a model database for conventional

rice samples. The study revealed the potential of the methodology for unbiased

screening of a broad spectrum of compounds in order to reveal statistically

significant differences in the compositions of genetically modified and conventional

foods. The suitability of the developed software tools for establishment of databases

and for assessment of the detected differences was demonstrated. This paves the

way towards application of a non-targeted metabolite profiling approach in order to

screen for unintended effects due to the application of recombinant DNA techniques.
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5 Outlook

The global area of transgenic crops is steadily increasing [3]. In addition to crops

with altered agronomic traits, a number of genetically modified plants obtained

through extensive genetic modifications with the purpose of improving food quality

traits will soon enter the commercial market [6, 164]. Food safety assessment of the

resulting products will become increasingly challenging. New innovative techniques

such as DNA microarray technology, proteomics, and metabolomics may assist in

characterising the complex interactions of food components at the molecular and

cellular levels.

In addition to the assessment of unintended effects regarding their potential

influence on food safety, characterisation of unexpected changes on the metabolite

level may be extremely useful to understand metabolic networks. Recently, large-

scale approaches have been initiated involving targeted over-expression and

inhibition of key enzymes in plant metabolic pathways and subsequent determination

of the metabolic consequences by means of non-targeted metabolite profiling

techniques [165].

Metabolic fingerprinting as well as metabolite profiling may be applied for high-

throughput analysis of GM plants for unexpected shifts in metabolite distributions.

The developed NIRS method offers the possibility to screen large sets of rice

genotypes for unintended effects regarding phytic acid contents in a non-destructive

way. It may also be used to identify low-phytate-mutants thus exhibiting improved

nutritional properties. The performance of NIRS to quantitatively analyse several

compounds on the basis of a single spectrum is particularly attractive.

In addition to the frequently cited "Golden Rice" [36], GM rice plants with altered

polyamine [166] and trehalose levels [27] are in the pipeline. In order to assess the

food safety of products derived from such plants with intended changes on the

metabolite level, unbiased investigation of metabolites will be especially important.

The metabolite profiling method described allows simultaneous non-targeted analysis

of a broad spectrum of cereal constituents including sugars, amino acids, and

isoprenoids which are involved in key metabolic pathways. However, combination of

approaches rather than a single technique will be required to comprehensively cover

the metabolome.
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The potential of metabolite profiling techniques for compositional analysis is obvious

but their suitability to meet regulatory requirements and their usefulness for food

safety assessment still needs to be demonstrated. This will certainly involve

considerable efforts regarding standardisation and validation. Furthermore,

metabolite profiling databases will be an important prerequisite, in order to be able

to store, publish, and evaluate the large amounts of data generated. Establishment

of databases storing metabolite profiles together with raw data and detailed

metadata (i.e. information about the context of the data, such as the experimental

protocol) has been proposed [67]. This type of databases may be extremely useful if

comparison of metabolite profiling data generated in different laboratories is

required. The software tools described offer the possibility to provide raw data in a

suitable form for establishment of such databases.

Exploitation of a combination of specific methods for analysis of single compounds

and profiling techniques will increase the chances to detect unintended effects

resulting from the application of recombinant DNA techniques.
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6 Summary

Analysis of the chemical composition represents an important step in the safety

assessment of genetically modified foods. In addition to the targeted investigation of

single compounds, non-destructive techniques and metabolite profiling

methodologies can be applied for analysis of low-molecular weight food constituents.

In the present study, the suitability of these approaches for the analytical

characterisation of rice grains within a food safety assessment framework was

investigated. Potential and limitations of the techniques were exemplarily

demonstrated by analysis of low-molecular weight compounds in conventional and

genetically modified (GM) rice grains.

The suitability of Near Infrared Spectroscopy (NIRS) for non-destructive

determination of minor compounds was investigated by using phytic acid, an anti-

nutritional rice grain constituent, as example. Applicability of the methodology for

rapid screening of rice samples from different origins regarding low, medium, and

high phytic acid contents was demonstrated. Results obtained by NIRS for GM and

parental rice lines were in agreement with those determined by the traditional

method. Sample preparation is reduced to a minimum by the non-destructive

approach. However, extensive calibration and validation is required in order to gain

reliable results by means of NIRS. Assessment of NIRS data obtained from GM lines

has to take into account spectral features of corresponding parental lines.

A gas chromatographic metabolite profiling method for unbiased screening of a

broad spectrum of compounds was elaborated using rice as model crop. It is based

on a fractionation approach which eventually allows non-targeted investigation of

major and minor rice grain constituents. General applicability of the technique for

analysis of cereals with metabolite compositions similar to rice was demonstrated.

Reliability of the profiling approach was proven by investigation of rice, maize and

barley samples with known and expected differences on the metabolite level.

Software tools for comparative analysis of metabolite profiling data were developed.

They include methods for manual and automated correction of retention times and

responses by means of corresponding standards. This allows transfer of normalised

datasets into databases and eventually automated unbiased chromatogram

comparison. Application of the metabolite profiling methodology to the analysis of
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GM and conventional rice revealed the suitability of a non-targeted approach for

detection of statistically significant differences between metabolite levels in different

genotypes. The usefulness of databases established through investigation of a broad

spectrum of conventional rice cultivars for evaluation of differences in metabolite

profiling data was demonstrated.

The unbiased screening of a broad spectrum of compounds combined with powerful

methods for data analysis may help to increase the chances to detect unintended

effects due to the application of recombinant DNA techniques.
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7 Zusammenfassung

Die Bestimmung der chemischen Zusammensetzung stellt einen wichtigen

Bestandteil der Sicherheitsbewertung gentechnisch veränderter Lebensmittel dar.

Neben der spezifischen Analyse von Einzelverbindungen können nicht-destruktive

Verfahren und Screening–Techniken zur Untersuchung niedermolekularer Lebens-

mittelinhaltsstoffe eingesetzt werden. In der vorliegenden Arbeit wurden diese

Methodenansätze hinsichtlich ihrer Anwendbarkeit zur chemisch-analytischen

Charakterisierung von Reis im Rahmen einer Sicherheitsbewertung beurteilt.

Möglichkeiten und Grenzen dieser Techniken wurden beispielhaft anhand der

Untersuchung konventioneller und gentechnisch veränderter Reissorten aufgezeigt.

Die Eignung der Nahinfrarotspektroskopie (NIRS) zur nicht-destruktiven Analyse von

Minorbestandteilen wurde am Beispiel der Phytinsäure, einem Reisinhaltsstoff mit

antinutritiven Eigenschaften, untersucht. Es wurde gezeigt, dass die NIRS bei

minimalem Probenvorbereitungsaufwand zur schnellen Einteilung von Reissorten

nach hohem, mittlerem und niedrigem Phytinsäuregehalt geeignet ist. Die mit der

NIRS erhaltenen Ergebnisse für konventionelle und gentechnisch veränderte

Reissorten stimmten gut mit denen der klassischen nasschemischen

Referenzmethode überein. Dies setzte jedoch einen erheblichen Aufwand für die

Kalibration und Validation voraus. Weiterhin stellte sich heraus, dass die Beurteilung

quantitativer NIRS Daten für die gentechnisch veränderten Linien nur unter

Einbeziehung der Daten für die Elternlinien möglich ist.

Im Rahmen dieser Arbeit wurde ein gaschromatographisches Analysenverfahren

entwickelt, welches das Screening eines breiten Spektrums niedermolekularer Stoffe

in Reis als Modell-Lebensmittel erlaubt. Das Prinzip der Methode besteht in der

Anwendung von Fraktionierungsschritten, die schließlich eine separate Untersuchung

der Haupt- und Minorbestandteile von Reis ermöglichen. Die allgemeine

Anwendbarkeit der zugrundegelegten Analysenprinzipien für Getreidesorten mit einer

dem Reis ähnlichen Zusammensetzung wurde demonstriert. Die Verlässlichkeit der

mit dem Screeningverfahren erhaltenen Ergebnisse wurde durch die vergleichende

Untersuchung von Reis-, Mais- und Gerstenproben mit bekannten bzw.

vorhersehbaren Unterschieden in der Metabolitenzusammensetzung bestätigt. Zur

vergleichenden Auswertung der komplexen Daten wurde eine Software erarbeitet.
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Sie ermöglicht eine Normalisierung von Chromatogrammen mit Hilfe von Werkzeugen

zur automatischen und manuellen Korrektur von Rententionszeit- und

Responseunterschieden. Dies erlaubt die Aufnahme standardisierter Datensätze in

Datenbanken und schließlich einen automatisierten Chromatogrammvergleich. Bei

der vergleichenden Untersuchung von gentechnisch verändertem und

konventionellem Reis wurde gezeigt, dass mit Hilfe des Screeningverfahrens

statistisch signifikante Unterschiede in der Metabolitenzusammensetzung zwischen

verschiedenen Genotypen detektiert werden können. Zur Beurteilung des Ausmaßes

von Unterschieden können Datenbanken herangezogen werden, die durch

Untersuchung einer großen Anzahl von Reissorten erstellt wurden.

Das Screening eines breiten Spektrums niedermolekularer Verbindungen in

Kombination mit der Anwendung leistungsfähiger Methoden zur Datenauswertung

erhöht die Wahrscheinlichkeit, unerwartete Effekte in gentechnisch veränderten

Lebensmitteln zu detektieren.
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