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Abbreviations

01 Single material prior knowledge
2PSL 2 pixel slit experiment
β Rotation angle for CT or skipped angular range for partial circular scan
βmax Angular range for scanning
λ Relaxation parameter
Θ Tilt angle of rays in cone beam CT or tomosynthesis
BHF Beam hardening filter
BP Bat Phantom
CT Computed tomography
CT PS 9 Siemens Corporate Technology, Division Power and Sensor Solutions 9
d0

eukl Normalized euklidean distance of reconstructed and original image
dMax Maximum material thickness which can be inspected
DR Dynamic range
DT Discrete Tomography
E X-ray energy
Emax Maximum energy in polychromatic X-ray spectrum
EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt in Switzerland
FBP Filtered back projection reconstruction
FDK FBP algorithm by Feldkamp, Davis and Kress for 3D cone beam CT
FPI Flat Panel Image detector
ML-TR Maximum likelihood reconstruction for transmission tomography
ND Number of detector pixels
NDT Non-destructive testing
NP Number of projections
Nup Number of projections per image update
Nx × Ny Size of reconstructed image
PV Peel volume as prior knowledge

Continued on next page...
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Abbreviations

SART Simultaneous algebraic reconstruction technique
SDD Source detector distance
SM Smoothness of object as prior knowledge
SOD Source object distance
TUM Technische Universität München
WDS Weighted distance scheme for resorting of projections
∆x Nominal pixel resolution at object position
∆xD Detector pixel size
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1 Introduction

In the life cycle of an industrial product non-destructive testing (NDT) is required to
examine prototypes, to control the quality in the production line and to analyze failure
of used components. Typical tasks are the detection of defects like cracks or voids
and the verification of dimensional specifications. While the surface of an object is
accessible for optical inspection we need other methods to look inside. Established
industrial techniques rely on ultrasound, heat (thermography) and X-rays. Concerning
X-ray radiography with high spatial resolution the state of the art are inspection systems
using micro-focus X-ray tubes and flat panel image (FPI) detectors. They are widely used
for testing of small mechanical or electronic components. By cone beam projections a
high magnification is achieved and the spatial resolution can be as small as 1 µm. In order
to obtain full volumetric information we use computed tomography (CT) where a number
of projection images are acquired from different view angles and then reconstructed with
an appropriate algorithm. Most popular is the approximative algorithm by Feldkamp,
Davis and Kress (FDK), which requires projections from a 360◦ scan. It is a 3D extension
of 2D filtered back projection (FBP) and allows a very fast computer implementation.

At Siemens CT PS 91 we operate such a CT system and the possibility to zoom into
samples attracts a lot of attention. However, 3D micro-focus CT is only suitable for
selected inspection tasks. A key problem is the strong absorption of X-rays in metal
parts and this usually limits the maximum object size to a few centimeter at a typical
tube voltage of 200 kV. In this work we consider the case that the extension of the
object is too large and the X-ray signal not detectable from some directions such that the
available information is not sufficient for standard reconstruction algorithms. A similar
situation is given if the X-ray penetration is possible but the geometric access restricted.
In general we speak of limited view angle tomography and the central problem is to
look for a suitable reconstruction method which can handle the lack of data. Simulated
projection data was essential for our analysis and finally the major challenge was to
realize an experiment.

1This term stands for Siemens Corporate Technology, Division Power and Sensor Systems 9, and must
not be confused with the single term CT which stands for Computed Tomography.
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2 Theory

Motivation

Aiming at the reconstruction of limited view angle data we anticipate that there is some
information missing which normally would be essential for an exact reconstruction of the
object. We point out that this circumstance is independant of a specific reconstruction
algorithm and merely related to the sampling process. We will start our discussion with
the physical data acquisition and then use mathematical models to understand which
configuration is necessary to obtain complete information and how limited view angles
result in a lack of data. For a compensation prior knowledge of the object has to be used
and for this purpose we have to consider iterative reconstruction algorithms.

2.1 Data acquisition for computed tomography (CT)

2.1.1 Principal configuration for CT in non-destructive testing

For computed tomography (CT) we have to collect projections of an object from different
view angles. The recorded data is called sinogram. In non-destructive testing (NDT)
the object itself is rotated, e.g. by 360◦, which is shown in the representative set-up in
Fig. 2.1 a). The object can be additionally moved along the three coordinate axes in
the space between the source and the detector. For now we can assume a point source
which projects the object to the detector with a magnification given by the ratio of the
source detector distance (SDD) to the source object distance (SOD)

M =
SDD

SOD
. (2.1)

As a starting point we can distinguish two basic cases of practical relevance. The first
one is what we directly see in the schematic, i.e. 2D fan beam CT with a linear detector.
In order to obtain the full 3D information of the object it has to be scanned slice by slice
by shifting it along the z-direction. If the rotation and z-movement are continuous we
speak of Spiral CT, which is common in medical applications [Kal00]. The other case is
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2 Theory

3D cone beam CT using a planar detector. Looking at the schematic we can think of an
extension of the beam and the detector to the z-direction. The resulting 3D projection
geometry is shown in Fig. 2.1 b). It has the advantages of an isotropic magnification
and allows faster scanning of a 3D object.

a) b)

Figure 2.1: a) Representative set-up for X-ray CT. b) 3D cone beam CT.

The pixel resolution ∆x at the object position follows from the detector pixel size ∆xD

and the magnification

∆x =
∆xD

M
. (2.2)

It is the nominal pixel resolution which can be achieved in a reconstructed cross-section.
In practice the resolution can be reduced due to the finite size of the source. If the source
spot has a diameter ØS then all object points are projected to spots of diameter Ø′

S at
the detector

Ø′
S ≈ ØS (M − 1) . (2.3)

Strictly this equation is exact only for object points within the yz-plane (review Fig. 2.1).
For small objects we can ignore this detail and assume that the ideal projection image of
the object (projection with point source) is smeared out by the projected source spot (of
diameter Ø′

S). Formally this can be described by a convolution of the ideal projection
image with a so called point spread function (PSF) [BS81a]. The maximum useful
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magnification is given when the diameter of the source image is equal to the detector
pixel size. This defines a limit for the spatial resolution. If the source spot is larger than
the detector pixel size we should choose a magnification close to one and the best pixel
resolution is given directly by the detector pixel size. The opposite case is a source spot
which is very small compared to the detector pixel size. Then a magnification M >> 1
is possible and the achievable pixel resolution is equal to the source spot diameter.

2.1.2 Physical background

The measuring process in X-ray imaging relies on the attenuation of the intensity along
the rays which intersect the object. It is also possible to use other types of radiation
like gamma rays and neutrons. Gamma rays and X-rays are physically of the same
nature as visible light (photons) and generated or detected in processes related to the
coulomb interaction. X-rays are emitted from X-ray tubes, linear accelerators (LINAC)
or synchrotrons and gamma rays emerge from radioacitve nuclei like Co-60. Typical
energies are given in Tab. 2.1. The energy spectra are characteristic for each case,
e.g. a radionuclide like Co-60 has a monochromatic spectrum while X-ray tubes have a
polychromatic spectrum. Neutrons are of a different nature. They are nuclear particles
and interact only with other nucleons via the strong interaction. Due to this reason they
can be used to obtain a different type of contrast, for more details about imaging with
neutrons see [Sil99].

Source X-ray tubes Synchrotron Co-60 LINAC
Typ. Energy <450 keV <100 keV 1.3 MeV 10 MeV

Table 2.1: Typical energies of selected X-ray sources in NDT.

In the following we will focus on X-ray tubes because they are favorable for the installa-
tion into industrial inspection systems. In an X-ray tube electrons are accelerated by a
high voltage and then slowed down in a target by interaction with the coulomb field of
the atoms. The result is Bremsstrahlung with a continuous spectrum. Additional atomic
transitions give rise to narrow peaks which are characteristic for the target element, e.g.
tungsten. An example for a tungsten spectrum is given in Fig. 2.2 a). The maximum
energy Emax is directly related to the acceleration voltage U by Emax = Ue, where e is the
electron charge [Mor95]. Most of the incident electron energy is converted to heat and
the tube current has to be limited to avoid a melting of the target. Two types of tubes
are commonly used for NDT. Micro-focus tubes have a focal spot size in the micrometer
range but allow only small currents. Higher currents are possible with mini-focus tubes
where the focal spot is much larger and the target is either fixed or can be rotated to
give a better heat flow. Typical voltages are 225 kV for a micro-focus tube and 450 kV
for a mini-focus tube.
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Figure 2.2: a) Tungsten spectra at 200 kV [Ank00]. b) Energy dependence of
mass attenuation coefficient for copper and contribution of different interaction pro-
cesses [NIST99].

The attenuation of X-rays is described by an exponential law, which is valid for monochro-
matic X-rays of a defined energy E. The intensity I(d) after passing a homogeneous
material of thickness d is given by

I(d) = I0 exp
(
− µ(E) d

)
, (2.4)

where I0 is the intensity of the direct beam, i.e. the intensity without attenuation.
The energy and material dependence is included in the linear attenuation coefficient
µ(E). In databases we frequently find the mass attenuation coefficient µρ(E) which is
proportional: µ(E) = ρ µρ(E), where ρ is the material density. It is plotted for copper
in Fig. 2.2 b) and we see that the absorption is much stronger for small energies. In
general the object has an inhomogeneous material distribution and the exponent of the
absorption law has to be replaced by a line integral along the considered ray

Iray = I0 exp
(
−

∫

ray
µ(x, y, z, E) ds

)
. (2.5)

The line integral is the relevant quantity e.g. for filtered back projection reconstruction
and can be obtained from the measured data by computing the logarithmic attenuation

L = ln
(
I0/Iray

)
. (2.6)

This is only valid for monochromatic X-rays. In the polychromatic case Eqn. 2.5 has
to be additionally integrated over the spectrum and an analytical inversion is no longer
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possible. Nevertheless, the logarithmic attenuation is usually taken as an approximation
and we will see later that this causes artifacts in the reconstructed images.

Coming back to the physical interaction we notice in Fig. 2.2 b) that below 1 MeV three
interaction processes contribute to the total attenuation, i.e. photoelectric absorption,
Compton scattering and Rayleigh scattering [BS81a]. The desired process is the photo-
electric absorption where all energy of an X-ray quantum is transferred to an electron
which is knocked out of an inner shell of an atom. The electron is thereafter stopped
in the material and its kinetic energy is converted to heat. For Compton scattering the
energy is partly transferred to an outer shell electron (inelastic scattering) and the X-ray
quantum changes its direction. In the case of Rayleigh scattering no energy is transferred
(elastic scattering). The attenuation law given above assumes that scattered X-rays are
not detected but in practice they will contribute to an unwanted background signal. We
can read from the diagram that the photoeffect is dominant for small energies while
Compton scattering is getting more and more important for higher energies. This is not
only true for the specific example of copper but similar for all elements. Scattering is a
fundamental problem for technical X-ray CT.

The detection of X-rays relies on the same effects. In an X-ray detector the deposited
energy is mostly not converted to heat but either to an electrical signal (direct conver-
sion) or to optical light (indirect conversion). Most common is the latter case where a
scintillator crystal (e.g. CsI, Gd2O2S, CdWO4) is used for the conversion to light and
combined with an optical detector, e.g. with a photomultiplier, photodiode, film, X-ray
image amplifier or CCD camera. Most sophisticated are Flat Panel Image detectors
where a thin film 2D array of aSi photodiodes is used to detect the light from the con-
version layer. The decline of the detector signal after turning the incident beam off is
called detector lag or afterglow. A small time constant is desired for CT but in practice
it can be quite large for Flat Panel Image detectors where charges can be trapped in
defects of the scintillator crystal as well as inside the aSi photodiodes.

2.1.3 Beam hardening filter and beam hardening correction

In combination with an X-ray tube we typically use a beam hardening filter (BHF). Such
a filter is a thin metal plate which is placed into the beam to increase the mean energy
of the spectrum. The effect is shown in Fig. 2.3 a). Due to the characteristics of X-ray
absorption the lower energies are suppressed, the mean energy increases (which explains
the term beam hardening) and the width of spectrum becomes narrower while at the same
time the integral intensity decreases. The plots were computed from an unfiltered 200 kV
spectrum [Ank00] and tabulated values for the mass attenuation coefficients [NIST99].
The numeric values for the mean energy and the integral intensity are given in Tab. 2.2.
In practice the reduction of the intensity has to be compensated by a higher tube current
or a longer integration time. A beam hardening filter of 20 mm copper would require an
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increase of the current × time product by a factor of 1000 which is not feasible. Typical
copper filter sizes range from 0.5 to 5 mm.
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Figure 2.3: Simulations at 200 kV: a) Effect of copper beam hardening filter (BHF)
on the spectrum. b) Logarithmic attenuation in copper and principle of beam hardening
correction.

The distortion which is caused by polychromatic X-rays in context with CT can be seen
in Fig. 2.3 b) where we plotted the logarithmic attenuation (review Eqn. 2.6) in copper
versus the material thickness. In the monochromatic case (200 keV) we have a linear
function which expresses the fact that the line integrals for CT reconstruction can be
directly obtained from the logarithmic attenuation. However, if we use the logarithmic
attenuation to estimate the line integrals in the polychromatic case, they will deviate
systematically from the correct monochromatic values. In our example (200 kV with
0.5 mm Cu beam hardening filter) the value for the line integral would be too large
(denoted by 1) compared to the correct monochromatic value (denoted by 3). For a single
material object a simple correction is possible by linearization [Her79]. This technique
requires a calibration curve to map the measured CT projection data to the correct
values (denoted by 2). In practice the calibration curve has to be determined by an
independant measurement. Typically a step wedge is used to obtain a small number of
points which have to be fitted with a suitable function. In this work we will use simulated
attenuation data to compute the required functions like we did for the plot. A correction
for polychromatic X-rays is commonly refered to as beam hardening correction. This
explains from the circumstance that the mean energy of a polychromatic beam increases
if it passes through an object. The effect of the correction is to remove this ’hardening’
of the beam which is responsible for the non-linear deviations. If a correction is not
applicable a thicker beam hardening filter will lower the deviations.
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d [mm] 0 0.5 1.5 3 5 10 20

Ē [keV] 61.9 87.5 105 120 131 144 157

1/I 1 2.3 5.3 12 26 110 1000

Table 2.2: Table of values for the mean energy Ē and the integral intensity I (nor-
malized) at different copper beam hardening filter thicknesses d (tube voltage fixed at
200 kV).

2.1.4 Dynamic range and maximum object size

The dynamic range (DR) of the acquisition system is the relevant quantity which deter-
mines the maximum material thickness which can be inspected. The nominal dynamic
range is given by the analogue digital converter (ADC) of the read out electronics of
the detector. For a n bit ADC we obtain a grey level (GL) range of 1 . . . 2n. In reality
the dynamic range will be much smaller and we can define it simply by the ratio of the
maximum and the minimum detectable signal, measured in grey level

DR =
MaxGL

MinGL
. (2.7)

For the specification of the dynamic range we can also refer to an effective number of
bits

DR = 2neff or neff = log2(DR) . (2.8)

For monochromatic X-rays this number is actually proportional to the maximum material
thickness dMax

dMax =
ln 2

µ(E)
neff , (2.9)

where the material and energy dependence is included in the linear attenuation coefficient
µ(E). This equation is derived directly from the exponential attenuation law in Eqn. 2.4
by setting MaxGL = I0 and MinGL = I(dMax). This is specifically related to CT
experiments where the intensity of the direct beam I0 has to be within the dynamic range
because the material thickness at the edge of an object ranges down to zero and this
has to be detected properly. We see here that the possible material thickness increases
linearly with the number of bits. From the properties of µ it follows that for a fixed
dynamic range and a given material, the thickness can be further enlarged if the energy
is raised and that it will be larger for lighter materials.

9



2 Theory

For polychromatic X-rays, dMax cannot be analytically computed but the dependencies
are qualitatively the same as for monochromatic X-rays. For a quantitative analysis we
simulated the intensity decay in typical metals for a 200 kV spectrum with a 5 mm copper
beam hardening filter, Fig. 2.4 a). The direct beam intensity was set to 50000 GL which is
a practical value for a 16 bit detector. In a real experiment MinGL will be determinded
by a background signal and typical contributions are e.g. noise or scattering. For a
certain background level the maximum thickness can be read directly from the plot,
e.g. for copper it is 16 mm for 1000 GL and 40 mm for 10 GL. We also see that the
penetration is better for lighter materials. In the example dMax is about 5 times larger for
aluminum and 10 times smaller for lead compared to copper. For iron it is 25% larger.

a)

0 20 40 60 80 100 120 140 160 180 200 220
10

1

10
2

10
3

10
4

Material thickness [mm]

D
et

ec
te

d 
gr

ey
 le

ve
l

Al
Fe
Cu
Pb

200 kV 5 mm Cu

b)

0 1 2 3 4 5
10

20

30

40

50

60

70

80

Copper beam hardening filter thickness [mm]

M
ax

im
um

 d
et

ec
ta

bl
e 

th
ic

kn
es

s 
[m

m
] 150 kV

200 kV
300 kV

DR  = 50000 : 10 (12 bit)
Material copper

Figure 2.4: Simulation for polychromatic spectra. a) Intensity decay in typical metals.
b) Maximum detectable thickness for copper at different voltages and variable copper
beam hardening filter thickness.

Similar to the monochromatic case the maximum material thickness will be larger for
higher energies. Looking at the energy spectrum we can either increase the maximum
energy with the tube voltage or the mean energy with the beam hardening filter thickness.
The result is plotted in Fig. 2.4 b) for a fixed dynamic range of 50000:10 (12 bit) and
copper as material. Most important is the impact of the tube voltage but also the beam
hardening filter has a significant influence.

2.2 Complete data and limited view angles

Now we will show that the sampling procedure for CT can be mapped to the Fourier
space of the object and in this way we can visualize complete and incomplete data. Our
presented analysis is based on the most fundamental case of CT which is parallel beam
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geometry and is mathematically formulated by the Radon transform. For the mapping
to the Fourier space we need the Fourier slice theorem and the sampling theorem. The
underlying mathematical concept is the Fourier transform.

2.2.1 Fourier transform and sampling theorem

The Fourier transform and the sampling theorem are commonly known. Here we will
only briefly review some important aspects. The Fourier transform defines the frequency
decomposition of a function. For a one dimensional object function f(x) we obtain the
spatial frequency spectrum F (ν) by

F (ν) =
∫

dx exp(−2πiνx)f(x) . (2.10)

Strictly F (ν) can also have a phase because it is a complex number. The amplitude is
then the absolute value |F (ν)|. The Fourier transform is a one-to-one relation between
the object space with coordinate x and the Fourier space with coordinate ν. The inversion
of the Fourier transform is

f(x) =
∫

dν exp(+2πiνx)F (ν) . (2.11)

In this equation the composition of f(x) as a series of the frequency basis functions
exp(+2πiνx) is obvious. The extension to higher dimensions is trivial as similar integra-
tions have to be performed in each dimension. The Fourier space is a reciprocal space
which means that structures which are close to the origin in object space are far from the
origin in frequency space. Basic examples are given in Fig. 2.5. The transformation of a
Gaussian with standard deviation σ is a Gaussian with standard deviation 1

σ
, for a hat

function of size a the resulting sinc function has its first null at 1
a

and the delta function,
which is most localized, gives a constant function, which is most delocalized [Jam95].
A special function is the delta comb which is an infinite sum of delta peaks which are
equally spaced by ∆x. The transformation gives a delta comb with reciprocal peak
spacing 1

∆x
[BS81a].

An important relation in context with Fourier transforms is the convolution theorem. A
convolution is typically used to describe a filtering of a function f(x) with a filter g(x)

f(x)⊗ g(x) =
∫

dtf(t) · g(x− t) . (2.12)

The convolution theorem states that a convolution in the object space is equivalent to a
multiplication in the Fourier space and vice versa

FT(f ⊗ g) = FT(f) · FT(g)) , (2.13)
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Figure 2.5: Examples for 1D Fourier transforms of typical functions. The original
functions are shown above and their Fourier transforms below.

where FT is the Fourier transform. All properties which were discussed here are also
valid for a discrete formulation of the Fourier transform (DFT), i.e. if the integrals are
replaced by sums. The DFT has some additional properties like e.g. periodicity which
we do not discuss here [KS87].

The sampling theorem formulates a limitation for the discrete sampling of a continuous
function f(x). The exact reconstruction of the original function is only possible if it is
bandlimited, i.e. the maximum object frequency is smaller than the Nyquist frequency.
If the sampled points are spaced by ∆x the Nyquist frequency is [Jaeh93]

νN =
1

2∆x
, (2.14)

which is half of the sampling frequency 1
∆x

. If this condition is violated higher and lower
frequency components overlap, which is called aliasing. The situation is illustrated in
Fig. 2.6. We can describe the sampling by a multiplication of the object function with
a delta comb of peak spacing ∆x. In the Fourier space this is a convolution of the
object spectrum with a delta comb of peak spacing 1

∆x
, i.e. the spectrum is reproduced

periodically by the sampling frequency. As the object is defined by a real function the
amplitude spectrum is symmetric, which explains the factor 2 in the Nyquist condition
above. If the object spectrum exceeds the Nyquist frequency the reproduced spectra
overlap and aliasing occurs.

2.2.2 Radon transform and Fourier slice theorem

The most fundamental case of CT is given for 2D parallel beam geometry and the
Radon Transform [Rad17] is the mathematical formulation of the corresponding data
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a)

b)

Figure 2.6: Illustration of Nyquist theorem in Fourier space: a) If the maximum object
frequency is ≤ νN then the reproduced spectra are separated and the object can be
recovered exactly. b) If the maximum object frequency is > νN then the reproduced
spectra overlap, which is called aliasing.

acquisition. The configuration is shown in the left part of Fig. 2.7. An object which is
defined by a function f(x, y) is projected by parallel rays to a line which represents the
detector. We define the orientation of this line by the rotation angle β of the rays relative
to the x-axis in the drawing plane and the condition that the detector is perpendicular
to the rays. The position on the detection line is described by the coordinate t. Each
pair (β, t) defines a specific projection ray which can be parameterized by a function
rayβ,t(s). The corresponding projection P (β, t) is computed by the line integral along
this ray [KS87]

P (β, t) =
∫ ∞

−∞
f

(
rayβ,t(s)

)
ds . (2.15)

With the Radon transform we have a continuous description of the projection process.
Via the 2D Fourier slice theorem (also known as central slice theorem) this process can
be mapped to Fourier space [KS87], [BS81b].

2D Fourier slice theorem: The 1D Fourier transform of a projection line
gives the values on a line of equal orientation (rotation angle β) through the
origin in the 2D Fourier space of the object, see Fig. 2.7.

This theorem is valid independently of a certain reconstruction algorithm. For an exten-
sion to 3D parallel beam geometry we consider a projection to a plane instead of a line.
In the figure for 2D we have to add a third axis which is perpendicular to the drawing
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Figure 2.7: Radon transform and illustration of 2D Fourier slice theorem.

plane. The beam of rays and the detector are extended alike. An additional degree of
freedom is available now. Beside the rotation of the rays by β within the drawing plane
they can be also tilted by an inclination angle Θ relatively to it. For the 3D Fourier slice
theorem we have to exchange the rotating line in the 2D theorem by an accordant plane.

3D Fourier slice theorem: The 2D Fourier transform of a projection plane
gives the values on a plane of equal orientation (rotation angle β and incli-
nation angle Θ) through the origin in the 3D Fourier space of the object.

The definition of the inclination angle Θ will become clearer in the next two subsections.

2.2.3 Complete sampling in CT

If we look at the 2D Radon transform the complete data of the object is recorded if all
points in its Fourier space are collected. This is achieved for a continuous 180◦ rotation
of the line which was considered in the Fourier slice theorem before. However, in an
experiment we can only sample discrete sets. First of all the detector is not continuous
and the projections which are given by the Radon transform have to be sampled by
discrete pixels. The sampling theorem tells us the maximum object frequency which can
be recorded or in other words that the pixel spacing has to be small enough to detect
some given object features. This is common sense. In order to understand how many
projections are necessary we depict the sampling in the 2D Fourier space as it is shown
in Fig. 2.8.
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Figure 2.8: Illustration of the sampling in the 2D Fourier space.

It is natural to spread a certain number of NP projections equally over the angular range
of 180◦. The projections correspond to lines in the Fourier space which are given by
the Fourier slice theorem. For a finite number of ND detector pixels the values on each
line are known at ND points which is indicated by the black dots in the figure. By the
sampling theorem the radius of the slice in the figure is equal to the Nyquist frequency
νN = 1/2∆xD where ∆xD is the detector pixel spacing. Now we can ask for the minimum
number of projections to exploit the resolution which is given in radial direction, i.e. the
resolution which is obtained by the one dimensional sampling with the detector. This is
achieved if the coverage of the Fourier space in angular direction is not worse than it is
in radial direction, i.e. the distance of the points on the circumference of the slice should
be less or equal to the spacing in radial direction

νN
π

NP

≤ 2νN

ND

(2.16)

and the result for the minimum number of required projections is [Eps03]

NP =
π

2
ND . (2.17)

In fact this statement is independent of a specific reconstruction algorithm. The ex-
tension to 3D parallel beam geometry is trivial if we consider a circular rotation and
inclination angle Θ = 0. Then the 3D space can be divided into horizontal slices for
each of which the 2D case is valid. A different situation is given if the beam is not
parallel. For 2D fan beam geometry (Fig. 2.9 a) we can adopt qualitatively what has
been deduced for the 2D parallel beam case. Actually this is plausible because one case
can be mapped to the other. The projection rays which are acquired in a fan beam CT
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can be resorted directly to parallel rays if the source rotates on a full 360◦ circle. In
this way we obtain a 360◦ parallel beam CT and all rays are scanned twice. In fact it
is sufficient to scan only a range 180◦ + fan angle [KS87]. We should mention that for
theoretical considerations we think of a rotation of the source and the detector instead
of the object. For 2D fan beam CT this is a circular source trajectory.

Figure 2.9: a) Scanning geometry for 2D fan beam CT and b) Extension to 3D cone
beam CT.

The extension of a fan beam to a cone beam is shown in Fig. 2.9 b). We can think
of a series of fan beams which are tilted out of the 2D plane and the linear detector
is exchanged by a planar one. The inclination angle between a tilted fan and the x-
axis is denoted by Θ. In the central plane which is defined by z = 0 we have the fan
beam situation where the axis of rotation is perpendicular to the projection rays and
Θ = 0. The other horizontal planes with z 6= 0 are intersected by tilted fans for which
Θ 6= 0. Due to this reason a circular source trajectory is not sufficient for complete
sampling. The generalized theorem which defines the condition for complete sampling
in 3D cone beam CT is the Tuy-Smith sufficiency condition [Tuy83]. It states that exact
reconstruction is possible if all planes which intersect the object also intersect the source
trajectory at least once. An example for a source trajectory which fulfills this condition
is a helix.

2.2.4 Sampling with limited view angles

In order to depict how limited view angles cause a lack of data we look again at parallel
beam geometry for which the situation becomes visible if we apply the Fourier slice
theorem. We can distinguish two fundamental cases where limited view angles occur.
One is a 2D partial circular scan and the other is 3D tomosynthesis. The first case is
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shown in Fig. 2.10 a). Here we consider the 2D Radon transform but the rotation of the
source is not completed leaving out an angular range of 2β in 180◦. In the 2D Fourier
space this is equivalent to a rotating line leaving out a double wedge with opening angle
equal to 2β (Fig. 2.10 b). For an extension to the third dimension the line detector can
be replaced by a plane which is perpendicular to the xy-plane. The double wedge of
missing points will be extended alike with translational symmetry.

a) b)

c) d)

Figure 2.10: Two fundamental cases for limited view angle tomography: a) 2D partial
circular scan results in b) missing double wedge in Fourier space. c) 3D tomosynthe-
sis (Θ 6= 0) results in d) missing double cone.

We have another situation if we consider an inclination angle Θ between the beam and
the xy-plane. For 3D parallel beam tomosynthesis [Hae99] we assume a full 360◦ rotation
but an inclination angle Θ 6= 0. Fig. 2.10 c) shows that the circular source trajectory is
above the xy-plane and that the detector follows the source movement at the opposite
side. The rotating plane which is defined by the 3D Fourier slice theorem omits a double
cone in Fourier space and in analogy to the partial scan the opening angle is equal to
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2Θ (Fig. 2.10 d). In both cases the missing points in Fourier space are equivalent to
missing information of the object. This is evident because the Fourier transform is a
one-to-one relation which connects both spaces. If we compare a 3D partial circular scan
to tomosynthesis for β = Θ the lack of data will be larger in the first case due to the
fact that the missing wedge will have a larger volume than the missing cone.

In X-ray CT we further have to consider 2D fan beam geometry or 3D cone beam
geometry which were discussed before in Fig. 2.9. The partial circular scan can be
applied directly to a fan beam if we extend the source trajectory symmetrically to 360◦.
leaving out an angular range of 4β, review Fig. 2.10 a). It is plausible that a lack of data
will occur similarly as for the parallel case. In NDT this configuration can appear if the
geometric acces of an object is limited, e.g. an oblong object which is placed very close
to an X-ray tube cannot be completely rotated. An equivalent situation is given if the
object can be fully rotated but the X-ray penetration is limited from some directions.
In general the view angles for which the X-rays are not detectable must not be in a
connected angular range, i.e. arbitrary view angles can be missing.

For cone beam CT we have a particular case. We mentioned before that a circular source
trajectory is not sufficient because of the inclination of the rays relative to the xy-plane
(angle Θ), review Fig. 2.9 b). From a qualitative point of view this is comparable to
3D parallel beam tomosynthesis where we have a fixed inclination angle Θ > 0 (review
Fig. 2.10 c) and it is obvious that a lack of data will occur. Beyond this we could also
use the tomosynthesis configuration itself together with the cone beam, i.e. let the point
source travel on a circle above the xy-plane.

2.3 Reconstruction algorithms for complete sampling

The most common reconstruction algorithm is filtered back projection (FBP) [KS87],
which is fast, has a high image quality and is robust against experimental distortions.
FBP is derived using continuous Fourier theory and can be considered as the direct
inversion of the sampling process. In contrast to FBP the simultaneous algebraic re-
construction technique (SART) [AK84] solves a finite equation system. It is a classical
representative for iterative reconstruction. A more special iterative algorithm is maxi-
mum likelihood reconstruction for transmission tomography (ML-TR) [Nuy97]. It is a
statistical method and originates from emission tomography where the reconstruction
of very noisy data is required. The main benefit of iterative algorithms is that prior
knowledge of the object can be included, which will be discussed in the next section.
For the iterative algorithms we will restrict our analysis to 2D problems but in princi-
pal an extension to 3D is possible as well. A practical aspect for the reconstruction of
X-ray projections is that all considered algorithms rely on monochromatic data. The
distortions which are caused by polychromatic X-rays will be discussed later (chapter 3).

18



2 Theory

2.3.1 Filtered back projection (FBP)

Filtered back projection algorithms are known for various scanning geometries and it is
impossible to give a complete overview here. The most important aspect for this work
is that it is a one way process. It directly inverts the sampling process and limited view
angles will result in image artifacts. The simplest form of FBP is given for 2D parallel
beam geometry. From a mathematical point of view this is the analytical inversion of
the Radon transform, which was derived in [Rad17].

A good presentation of the solution is given in [KS87] and can be scetched as follows. The
2D object is defined by a continuous function f(x, y). With the Radon transform (review
Fig. 2.7) an infinite number of parallel projections P (β, t) are collected in the angular
range of 180◦ degree. As discussed in the previous section the Fourier slice theorem
maps the detected values to radial lines in the 2D Fourier space of the object. In fact
the values in the Fourier space are then known in polar coordinates. A transformation
to cartesian coordinates is performed and a 2D inverse Fourier transform returns the
original function f(x, y) exactly. This is evident because all relations are one-to-one.

The resulting inversion formula is

f(x, y) =
∫ π

0
Q

(
t(x, y, β), β

)
dβ (2.18)

Q(t, β) = P (t, β)⊗t h(t) . (2.19)

Q is the filtered projection, i.e. for fixed β the projection P (t, β) is filtered in the t
coordinate with a filter h(t). This is discribed by a 1D convolution, which is indicated
by the symbol ⊗t. The filter function which follows from the mathematical derivation is
called ramp filter (not shown here). Finally the object f(x, y) is obtained by smearing
back the filtered projections along the same rays which were used for the projection
itself. This can be seen if we look at a given image point (x, y). The ray which travels
through this point under a given projection angle β hits the detector at a unique position
which can be described by a function t(x, y, β) and the corresponding value of the filtered
projection is added to the image.

For the practical application it is necessary to transfer the continuous solution to a
discrete version, i.e. replace the integrals by sums. We do not show this explicitly here.
Regarding the natural beam geometry for X-ray tubes we further have to consider a point
source instead of a parallel beam. The solution for 2D fan beam geometry is still straight
forward because the fan beam projections can be resorted to parallel projections if a full
360◦ (or at least 180◦+fan angle) turn is performed. In the analytical derivation this
is expressed by a coordinate transformation resulting into additional weighting factors
in the reconstruction formula [KS87]. These factors can be further extended to the
third dimension which leads to the approximative algorithm by Feldkamp, Davis and
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Kress (FDK) [FDK84] for 3D cone beam CT. It still relies on a circular source trajectory
and from the previous section we know that the sampling of the object is not sufficient in
this case. The advantage is that a fast computer implementation is possible. Compared
to this an exact solution for a helical source trajectory is much more complex [Kat03].

2.3.2 Simultaneous algebraic reconstruction technique (SART)

The simultaneneous algebraic reconstruction technique was first introduced by [AK84]
and is a modification of the algebraic reconstruction technique [Gor70]. We got inspired
by the more recent work of K. Müller [Mue98] where a high performing SART solution
for 3D cone beam CT is presented. For our investigations we implemented a 2D version
of SART and we will focus on this case here.

Projection equation

In contrast to the continuous formulation of the data acquisition with the Radon trans-
form we directly look at the sampled data for SART. A discrete 2D grid defines the
image and the pixels are referenced by a single index, e.g. j. The total number of pixels
is N and the pixel values are combined to the vector v = (vj)

N
1 . The projection data is

defined analogously by p = (pi)
M
1 where the values pi are the measured line integrals and

the index i runs through all projection rays, i.e. all detector pixels and all projection
angles. Notice that the pi must not be confused with the measured intensities, i.e. for
monochromatic X-rays the relation between line integrals and intensities is given by the
logarithmic attenuation in Eqn. 2.6. We can now describe the data acquisition by a
linear equation system

p = Hv , (2.20)

which is called projection equation and H is the projection matrix. The formulation of
this equation is not restricted to a specific geometric configuration and now we do not
explicitly define the position of the image pixels, the arrangement of the detector pixels
and the distribution of the projection angles. All this information is included in the
matrix H. Its coefficients hij are weight factors which describe the contribution of the
image pixels to the projection rays, i.e. for a certain projection ray i the contribution of
an image pixel j to the line integral pi is given by hij. This is visualized in Fig. 2.11 a)
for a single projection ray. The relevant image pixels which have non-zero weights are
shown shaded. In fact the complete measuring process is hidden behind H. Clearly H can
only include a model for the real processes and we refer to Hv as the forward projection
of a given image v. A key problem is the definition of an appropriate model (projection
model) for the computation of H. We will look at this detail later and continue with the
structure of the algorithm first.
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a) b)

Figure 2.11: a) Visualizing the projection equation. b) Work flow for iterative solution.

Iterative solution

The reconstruction problem is here to solve the projection equation from above. As H
is very large it cannot be inverted and a simple formulation by v = H−1p is not possi-
ble. Instead an iterative optimization process is used which is scetched in Fig. 2.11 b).
Starting with an initial guess of the result (usually zero) the image v will be modified to
match the forward projection Hv to the measured projection data p. The modification
step is implemented by a back projection of the difference p−Hv and the back projection
itself is defined by the transposed matrix HT .

This leads to the basic image update formula

vj = vj + λ ·
∑

i∈Pm

Backward︷ ︸︸ ︷
Difference︷ ︸︸ ︷

pi −
Forward︷ ︸︸ ︷∑

k

hikvk

∑
k hik

· hij

∑
i∈Pm

hij

. (2.21)

The parameter λ is called relaxation parameter and controls the reconstruction speed
and stability. The equation is normalized correctly by the sums in the denominators
and λ = 1 would be the choice for ideal projection data. With Pm we denote the set of
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projection rays which are included into the update step. For SART these are all rays
which belong to one projection angle βm and m is the integer index for the enumeration
of the available projection angles. We have to distinguish between iterations and update
steps. Within one iteration the update step is repeated for all angles.

Image update options

Considering the selection of the pojection angles we can generalize the SART approach
and include more than one angle into one update step. If Nup angles are combined then
Pm will contain all rays which which belong to these angles:

Pm = {All rays which belong to Nup projection angles} . (2.22)

In this case the index m enumerates different sets of each Nup projection angles. For
Nup = 1 we obtain the SART solution and if the total number of projection angles is NP

then Nup = NP means that all available projection rays are included. Remark: For ART
only single rays are used in one update step and the term simultaneous ART explains
from the fact that more than one ray is used.

Another important update option for SART is the arrangement of the projection angles.
In the measurement the projections are usually recorded sequentially and in order to
improve the convergence we should resort them before starting the reconstruction. The
angular distance of consequent projections should be as large as possible. Most effective
is the weighted distance scheme (WDS) which is described in [Mue98]: If a certain
number of projections has already been chosen before then the next projection is chosen
such that:

1. The angular distance to the other projections is maximal.

2. The standard deviation of these distances is minimal.

The second condition ensures that the projections are evenly distributed. For the com-
putation of the conditions the projections are additionally weighted, i.e. those which
were selected more recently are given more weight.

Projection model

A central problem in recent research is the projection model which describes how the
weights for the projection matrix are computed. Considering the discrete sets of image
pixels vj and projection rays pi an interpolation will be necessary to adapt to the physical
acquisition process. There are two possible ways to look at this problem. One is the
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voxel driven projection model with interpolation on the detector and the other is called
ray driven with interpolation in the reconstructed image.

The term voxel driven comes from 3D CT and refers to volume pixel. Transferred to
the 2D problem voxel driven means that we consider a physical projection ray which
starts from a certain image grid point j and travels under a given angle to the detector
(Fig. 2.12 a). If the angle is selected from the discrete set of available angles it is unlikely
that this ray hits exactly the center of a detector pixel. The contribution to a neighboring
pixel i is usually computed by linear interpolation giving the weight

hij = 1− dij

∆x
, (2.23)

where ∆x is the detector pixel spacing and dij is the distance of the detector pixel i and
the intersection point of the considered ray with the detector. This interpolation scheme
is actually the same as it is used for FBP reconstruction.
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Figure 2.12: a) Voxel driven projection model and b) Ray driven projection model.

In direct opposition to the voxel driven model the ray driven projection model assumes
that the physical rays start at the center of the detector pixels and travel through the
image grid (Fig. 2.12 b). Obviously such a ray will not essentially hit the grid points
and we need a two dimensional interpolation. Here we followed a method which has also
been used in [Mue98]. A two dimensional continuous interpolation kernel (interpolation
function) has to be defined and convolved with the discrete image grid, i.e. the kernel
is shifted to each grid point and the result is added up. This is indicated by the dashed
circles in the figure. In this way the image is transferred to a continuous function and
the line integral along the ray can be computed which is quite close to the physical
acquisition process.
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In order to achieve a fast reconstruction the kernel should have a small spatial extent
because then the number of relevant image pixels which contribute to each ray will be
small. A problem coming up with interpolation is that aliasing can be introduced and
amplified in the iterative process. In the ideal case the frequency spectrum of the filter
should be bandlimited according to the Nyquist frequency of the grid. But then the
spatial extend would be extremely large which is not feasible. In practice a compromise
is necessary, i.e. a small spatial size and at the same time a small size in Fourier space.
Fig. 2.13 a) shows the one dimensional profiles of typical interpolation kernels and their
Fourier transforms are given in Fig. 2.13 b). The spatial position is given in units of the
image grid spacing ∆x and the frequency in Fourier space is normalized to the sampling
frequency 1

∆x
. The worst case is the hat function which is a sinc function in Fourier space

where it has an infinite extent. The performance of the bilinear interpolation is mediocre
and the Bessel-Kaiser [Lew90] kernel is superior. A further improvement of the aliasing
problem is reported by H. Kunze where in addition to the interpolation in the image,
the projections are convolved with the filter profile [Kun05]. In our analysis we will refer
to this option as Bessel-Kaiser with convolved projections or short as Bessel-Kaiser CP.
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Figure 2.13: a) Different interpolation kernels in object space. b) Corresponding fre-
quency spectra in Fourier space.

Finally we were interested to see what the ideal case would be. A possible way to do
this is to generate the measured CT data with the projection model itself, i.e. define an
image vOriginal on the grid and obtain p by p = HvOriginal and then reconstruct v again
form p. Clearly the projection model is ideal in this case, i.e. it is an exact model of the
data acquisition process. Aliasing cannot occur because the ’needles’ which sample the
original image vOriginal are the same as used in the reconstruction. We will refer to this
option as internal projection data.

24



2 Theory

2.3.3 Maximum likelihood reconstruction (ML-TR)

For the implementation of maximum likelihood reconstruction for transmission tomo-
graphy (ML-TR) which is described in [Nuy97] we used the same structure as for SART.
Only a few essentials had to be changed, namely the update formula and with it the
image update scheme. Further, this reconstruction directly uses intensity values instead
of line integrals. The relation between the measured intensity values, denoted by qi,
and the corresponding line integrals pi which were considered for SART is given by the
exponential absorption law, i.e.

qi = exp
(
− pi

)
. (2.24)

Therefore the forward projection has to be extended in the same way:

ai = exp
(
−∑

j

hijvj

)
, (2.25)

where hij and vj are the coefficients of the projection matrix and the image pixel values as
they were defined for SART. The update formula is derived from the maximum-likelihood
estimation method which is a general method to find an optimum set of parameters by
taking into account the statistical nature of a measurement [Bar95]. In the case of X-ray
CT these parameters are the unknown image pixel values vj. For a given image the
expected intensity of the i-th projection ray is ai and the probability for measuring an
arbitrary value x is given by the Poisson distribution

P (x, ai) =
ax

i exp(−ai)

x!
. (2.26)

Considering a complete CT measurement (qi)
M
i=1 the total probability for this measure-

ment is described by the likelihood

L =
M∏

i=1

P (qi, ai) . (2.27)

The task is to maximize this expression by a variation of the ai which implies the variation
of the vj. In other words the maximum likelihood approach will find a solution for the
image (with pixel values vj) such that the given set of measured projection data (qi)

M
i=1

has maximum probability.
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This leads to the following update formula:

vj = vj + λ ·

Backward︷ ︸︸ ︷

∑

i∈Pm

Difference︷ ︸︸ ︷(
Forward︷︸︸︷

ai −qi

)
·hij

∑
i∈Pm

hij · [∑k hik] · ai

. (2.28)

In analogy to SART the image is forward projected and a difference is computed which
is then back projected. However, the computed difference is an intensity difference. The
forward projection is hidden in the term ai which was defined above. Unlike SART the
set of projection rays Pm has to include all available rays for ML-TR, i.e. all rays from
all projection angles. In our implementation this corresponds to the generalized image
update option Nup = NP as it was explained before in context with SART. Considering
the projection model we can use the same options as for SART except for ’Bessel-
Kaiser CP’ because the convolving of projections is only suitable if we look at line
integrals.

Beside the correct noise model the ML-TR algorithm has another important quality. If
we consider an oblong object we have smaller projection values from some directions
and their contribution in the update formula will be reduced compared to the other view
angles. This effect is due to the summation in the numerator which is performed over
all view angles and enhanced because of the fact that we look at intensity values which
decay exponentially with the object size.

2.4 Limited view angle tomography

2.4.1 Including prior knowledge of the object

We have explained before how limited view angles result in missing points in Fourier
space, review Fig. 2.10. In order to compensate for this we could think of associating
the unknown to the known points. Looking at the projection equation system which was
formulated for SART (Eqn. 2.20) this corresponds to adding appropriate equations or to
reduce the complexity of the problem.

A practical way to realize this is to include prior knowledge of the object. This can be
any kind information which is known before we start the reconstruction. We will see
later that a very effective type is the material composition of the object. Further we
consider that the object must be smooth, i.e. neighboring values in the reconstructed
image should not vary abruptly except for the edges. A type of geometric information
could be e.g. the exterior shape of the object.
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FBP is not suitable here because it is a one way process, i.e. a direct inversion of the
sampling process. Iterative algorithms are required where the prior information can be
built into the feed back loop which is shown in Fig 2.14. The feedback is typically given
by a forward projection (as defined for SART) which is compared to the measured data
in order to verify if the actual reconstruction is good. From this a modification of the
reconstructed image is computed and this is where the prior knowledge can be processed.

Figure 2.14: Flow chart for including prior knowledge of the object.

In the following we consider objects which only consist of one single material and we
will restrict the reconstructed values to ’0’ for air and ’1’ for material. This is a spe-
cial case of discrete tomography [HK99] and is opposed to the continuous scale which
has been assumed so far. We will discuss possible extensions for SART and ML-TR
which are semi-continuous and then look at the full binary method which is presented
by A. Kuba [Kub02]. In this work we will use the term Discrete Tomography (DT)
exclusively to refer to his algorithm (see also section 2.4.3).

2.4.2 SART and ML-TR with single material prior knowledge

The single material prior information can be included into SART and ML-TR by repeated
segmentations. In the simplest case a fixed threshold could be used for a segmentation
of the reconstructed image after each iteration. This is a quite severe impact and it is
better to use a dynamic double threshold which allows a partial segmentation which is
gradually transfered into a full segmentation. Fig. 2.15 shows how a lower threshold
vlo is increased and a higher threshold vhi is decreased after each iteration. For the
segmentation all values above vhi are set to ’1’, those below vlo to ’0’ and those in
between are left unchanged. In this way the segmentation has only a very small impact
at first but then as the two thresholds converge as the binarization proceeds.

Typically the pixel absorption for the material is normalized to ’1’ and the thresholds
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Figure 2.15: Dynamic double threshold for repeated segmentations in SART and ML-
TR.

are incremented linearly and symmetrically within the interval [0, 1]:

vlo(n) =
n

N
·DTH (2.29)

vhi(n) = 1− vlo(n) , (2.30)

where n is the iteration number and N the total number of iterations. The final values
of the thresholds are defined by the threshold range DTH, e.g. 40% or 50%. A similar
approach was used in [Bec02] for ART and introduced as binary steering in [HK99]. Less
effective is an interval projection, i.e. fixed thresholds vlo = 0 and vhi = 1 which was used
in [Jaen93]. Here we considered an additional option. We left the algorithm running for
a certain number of iterations N1 before applying the segmentation and the threshold
increment. This was then repeated N2 times giving a total number of N1xN2 iterations.

As additional information we included a Markov random field smoothness prior which
was derived in [Man00] for ML-TR. In our implementation we used it in the same way
for SART. The following penalty term was added to the corresponding update formulas
in Eqn. 2.21 and Eqn. 2.28:

∑

k

wkj · φ(vk − vj) , (2.31)

where vj and vk denote image pixel values and where wkj = 1 for neighboring pixels and 0
elsewhere. This term enforces that adjacent image pixels have similar values as we would
expect for a smooth object. For a selected pixel j the deviations of the neighbouring
pixels k are given by vk−vj. They are weighted with a linear function φ and then added
up to give a correction for vj in each update step. A limitation is put to the correction
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by defining φ as

φ(v) =

{
b
a
· v for |v| ≤ a
b for |v| > a

}
. (2.32)

The function φ is sketched in Fig. 2.16. We can interprete the action of the smoothness
term similar to a spring force which pulls the value of the selected image pixel j into the
direction of its neighbors. As neighbors we typically consider the 4 nearest neighbors
but also more neighbors could be chosen. In practice the parameters a and b have to be
determined by trial and error to obtain the best result.

Figure 2.16: Linear weighting function with limitation for smoothness prior.

The complexity of the equation system can be further reduced if we only reconstruct
the valid image pixels, i.e. all pixels outside a certain boundary can be set to zero.
If the outer surface of the object is known, we can define such a peel volume [Bec02]
by an envelope of the surface leaving a gap to it. This gap allows a tolerance for the
reconstruction, see Fig. 2.17.

Figure 2.17: Illustratiuon of a peel volume.
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2.4.3 Discrete Tomography (DT)

The Discrete Tomography (DT) approach by A. Kuba is the most consequent method
to include the single material information. At no time there exist intermediate image
values. For the evaluation we had a cooperation with his department at the University
of Szeged, Hungary. The algorithm also uses a forward projection as it was described
by the projection equation for SART (Eqn. 2.20) but it does not modify the image by a
back projection. Instead it randomly changes the image pixel values and keeps a changed
value if an improvement was achieved, i.e. the difference between the forward projection
and the measured projection data is smaller than it was before. We will see below how
this is expressed by an optimization equation which is solved by simulated annealing.
The advantage of this formulation is that additional prior knowledge like smoothness
can be included on a more general basis, i.e. it must not be adapted to a special update
scheme as it was necessary for SART or ML-TR. More details about the algorithm were
described in our joint publication [Kri05] and we quote a section of the text which was
contributed by the University of Szeged.

Remark: A variation to our previous notation is used here, i.e. the letter X was used
instead of v for the image pixel values and P instead of p for the projection values.

Begin quotation:

Discrete tomography is a special kind of tomography that can be applied if the
object to be reconstructed consists of a few known homogeneous materials.
This information can be included into the reconstruction process giving the
possibility to reconstruct such simple objects from a much smaller number
of projection values than it is necessary in the case of more complex objects
[Kub02].

Reformulating HX = P as an optimization problem we get the following
objective function C(X) to be minimized:

C(X) = ‖HX − P‖2 + g · F (X) . (2.33)

The term g · F (X) is an optional penalty term which can control the objec-
tive function according to additional prior knowledge about the object to be
reconstructed. In our case we have used a special kind of function

F (X) =
J∑

i=0

∑

l∈Qm
i

gl · |xi − xl| , (2.34)

where Qm
i is the set of indices of the m×m adjacent pixels of the ith lattice

pixel. The gl is the corresponding element of the m × m Gaussian scalar
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matrix, that is,

gl =
1

2πσ2
e−(µ2+ν2)/2σ2

, (2.35)

where σ is the parameter of the 2D Gaussian function and (µ, ν) is the 2D
coordinates of the 1D index l. The gl scalar weights the differences according
to the distance of the ith and lth lattice points. Using this regularization
term we can reconstruct objects with big homogeneously connected regions.

In discrete tomography we search a binary vector X which can be calculated
by a simulated annealing (SA) combinatorial optimization method. SA is a
random-search technique that is based on the physical phenomenon of metal
cooling. The system of metal particles gradually reaches the minimum energy
level where the metal freezes into a crystalline structure. Based on previous
works [KGV83], we first implemented the SA algorithm in the following way
(Fig. 2.18). The algorithm starts from an arbitrary initial binary image X(0),
an initial (high) temperature T (0) and calculates the objective function value
C(X). Then a position j is randomly chosen in the reconstructed image X.
Let X ′ be the image that differs from X only by changing the value of X
in position j to the other binary value, i.e., x′j = 1 − xj. This change is
accepted by the algorithm, i.e., X is replaced by X ′ if C(X ′) < C(X). Even
if the objective function does not get smaller, the change is accepted with a
probability depending on the difference ∆C = C(X ′)− C(X).

Formally, the change is accepted even in that case when

exp(−∆C/κT ) > z , (2.36)

where κ, T and z are, respectively, the Boltzmann constant (11.3805×10−23×
m2kgs−2K−1), current temperature, and a randomly generated number from
a uniform distribution in the interval [0, 1]. Otherwise, the change is rejected,
i.e., X does not change in this iteration step. If a change is rejected then we
test the level of efficiency of changes in the image in the last iterations. It
means that we count the number of rejections in the last Niter iterations. If
this number is greater than a given threshold value Rthr then the efficiency
of changes is too low and the SA optimization algorithm will be terminated.

We calculate the variance of the cost function in the last Nvar iterations. A
so-called equilibrium state is said to be attained if the present estimate of the
current ∆C variance is greater than the previous variance estimate. If the
equilibrium state is achieved, we reduce the current temperature (allowing
changes with smaller probabilities when the value of the objective function
is greater) and let the algorithm run with a lower temperature value (T is
replaced by h ·T , where h is the so-called cooling factor). In our experiments
we chose the same value for the parameter as in [Pey94], namely h = 0.9.
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Figure 2.18: Flow-chart of the first SA algorithm.

Finally we implemented the SA as follows. We change all the X vector
elements from 0 to 1 or vice-versa in one iteration step. The changes are
accepted or rejected similarly like in the previous implementation. When
one iteration has been done we reduce the current temperature and start a
new iteration step. The algorithm stops when the ratio of the value of the
current objective function and the value of the starting objective function
fall below a given threshold value (C(X ′)/C(X0) < Cthr) or the current
temperature is less then a given temperature (T < Tthr).

End quotation.
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3 Examples of applications where
limited view angles occur

Motivation

In this chapter we would like to put the analysis of the limited view angle problem into a
practical context. We will discuss three related examples of X-ray CT applications which
are of particular interest in non-destructive testing (NDT). In each case we use filtered
back projection (FBP) reconstruction and characteristic limited view angle artifacts
appear. At the beginning of our work we looked at 3D micro-focus CT and investigated
the standard type of FBP for this configuration, i.e. the approximative algorithm by
Feldkamp, Davis and Kress (FDK), and we did not know whether the major contribution
of the observed artifacts were caused by approximations within the algorithm or by
limited view angles. Now we know that the latter is the case. This is obvious from our
theoretical considerations in the previous chapter and we suspect that the artifacts are
somehow related to the missing points in Fourier space. We will demonstrate this with
the help of the discrete Fourier transform at the end of this chapter (Masking of missing
points in Fourier space).

Because of the ongoing miniaturization of industrial products 3D micro-focus CT is of
particular interest and our first two examples (steel cylinder and ball grid array) are
related to this case. Using the steel cylinder we will discuss limited view angles in
the standard configuration and for the ball grid array we consider additional geometric
restrictions. Apart from this there are also other sources of artifacts in a real experiment
and we present an analysis of the most important effects for the steel cylinder. Regarding
a solution for limited view angle tomography, we will see in the next chapters that
distortions of the data are very critical. For an extensive analysis in this work we
selected a 2D problem. This is our third example (Bat Phantom) where limited view
angle artifacts are caused by limited X-ray penetration.

33



3 Examples

3.1 Example 1: 3D micro-focus CT of a steel cylinder

3.1.1 Sample, set-up and classification

Fig. 3.1 a) shows a photo of the steel cylinder. It was originally designed for a joint
project (ForµProd) on dimensional measuring in 3D micro-focus CT, dissertation of
H. Steinbeiß [Ste05]. For this project the main experimental effort was the optimization
of the measurement accuracy yielding µm spatial resolution which is of high industrial
interest considering e.g. the inspection of a part of a fuel injection nozzle. Here and for
the following examples we tried to classify the type of application considering different
aspects:

• Sample category: Small metal components for which full X-ray penetration is
possible.

• NDT task: Full 3D inspection with a very high spatial resolution down to 1 µm
for dimensional measurement and defect detection.

• Feasibility: Well suited problem for 3D micro-focus CT. However, achieving µm
resolution is particularly demanding regarding mechanical stability and calibra-
tions.

a) b)

Figure 3.1: Steel cylinder fixed on PVC rod: a) Photo and b) schematic of vertical
cross-section.

Looking at the cross-section of the steel cylinder (Fig. 3.1 b) we see that it is a hollow
cylinder and it has a step of wall thickness between the lower and upper part. A PVC rod
in the center serves as a holder and there is an air gap between the rod and the cylinder
which is fixed at a few points only. Here we use the steel cylinder to point out limited
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view angle artifacts which can occur in the standard configuration for 3D micro-focus CT,
i.e. a circular source trajectory and FDK reconstruction. Fig. 3.1 b) shows the vertical
cross-section of the selected scanning geometry. The cylinder was orientated axially
with the axis of rotation and the step of wall thickness was in the central plane. In this
configuration the X-ray penetration is not critical, but the half cone angle Θ = 8.2◦ for
the projection of the object to the detector is quite large. For performing the experiment
we used the set-up at Siemens CT PS 9 which is described in chapter 5.

Figure 3.2: Vertical cross-section of 3D scanning geometry.

3.1.2 Artifact analysis

We will now look at the artifacts which were observed in the reconstructed cross-sections
of the steel cylinder. In order to identify the artifacts we reconstructed experimental
as well as simulated projection data. The advantage of simulated projection data is
that the underlying parameters can be selected individually. The following results were
presented in our publication [Kri04]. Three major types of artifacts can be observed
in the experiment (Fig. 3.3 a). They are caused by limited view angles (denoted by
LV), polychromatic X-rays (denoted by beam hardening or BH) and scattering. For our
analysis we first matched the simulation (Fig. 3.3 b) to the experiment by using exactly
the same geometric configuration (see set-up above), using identical beam parameters
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(210 kV polychromatic spectrum, 0.5 mm copper beam hardening filter) and adding a
similar amount of noise (0.5% of direct beam intensity). Scattering, however, could not
be modelled with our simulation tool (see next chapter). Finally we switched to ideal
monochromatic data (Fig. 3.3 c) where only limited view angle artifacts remain.

a)

Scattering: 

Air gap 

smeared out

BH:

Outside

surface

brighter

BH: Step in GL

LV:

Rhombic

artifact

b)

BH: Step in GL

BH:

Outside

surface

brighter

LV:

Rhombic

artifact

c)

LV:

Rhombic

artifact

8.2° Line

Figure 3.3: Reconstructed cross-sections of steel cylinder (FDK algorithm): a) Ex-
perimental result, b) simulation matched to experiment (except for scattering) and c)
ideal simulation. The dashed blue lines indicate the positions where we took line profiles
(see Fig. 3.4).

Due to scattering the reconstructed image of the experimental data appears more washed
out and especially the contrast of the air gap is reduced compared to the matched
simulation, where scattering was not included. A more precise analysis of the image
distortions is possible if we look at the line profiles in Fig. 3.4, which were taken at the
positions indicated by the dashed blue lines in the reconstructed cross-sections. The
horizontal line profiles confirm that the air gap is hardly resolved in the experiment
(Fig. 3.4 a) while it is clearly visible in the simulation (Fig. 3.4 c). Further the central
region is strongly curved in the experiment.
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a) b)

c) d)

e) f)

Figure 3.4: Horizontal and vertical line profiles. Experiment: a) horizontal and b)
vertical; matched simulation: c) and d); ideal simulation: e) and f).
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The effect of polychromatic X-rays was modelled correctly in the matched simulation. We
observe distortions of the reconstructed grey levels to which we refer as beam hardening
artifacts. There is a decline of the grey levels from the outside to the inside cylinder
surface, which can be seen in the horizontal line profile (Fig. 3.4 c) and is also called
cupping artifact. Further we observe a step of grey levels from the lower to the upper
part of the cylinder in the vertical line profile (Fig. 3.4 d), which explains from the
cupping and the different wall thicknesses in the lower and upper part of the cylinder.
The deeper reason for the beam hardening artifacts is that the line integrals which are
required for the reconstruction can only be approximated for polychromatic projection
data by the logarithmic attenuation (review section 2.1.3). The term beam hardening
reminds us to the non-liner shift of the mean energy of the spectrum to a higher value
when the X-rays pass through material.

If we switch to monochromatic X-rays, the beam hardening artifacts vanish. Although
the simulated data is now ideal (no distortions) we notice that rhombic shaped artifacts
at the top and the bottom of the cylinder are remaining in the reconstructed cross-
section (see Fig. 3.3 c). These are typical limited view angle artifacts. In this case they
are caused by the sampling with the circular source trajectory and the large half cone
angle Θ = 8.2◦. The half shape angle of the rhombus is actually roughly equal to Θ.
This is indicated in the figure by the 8.2◦ line (this line is tilted by 8.2◦ relative to the
horizontal orientation). We will observe similar artifacts in the other examples and we
anticipate that errors which may be introduced by the FDK algorithm itself can only play
a minor role. The line profiles for the ideal simulation are shown in Fig. 3.4 e) and f).
In this case the limited view angle artifacts only have an impact on the vertical profile.
In the horizontal profile we observe an additional effect. Due to aliasing there are small
overshoots at the cylinder edge. Concerning the reconstruction the number of projections
(1200) was large enough compared to the number of image pixels in horizontal direction
(400), but for the simulation of the projection data the object was not bandlimited (see
next chapter).

3.1.3 Potential for limited view angle tomography

Considering e.g. the dimensional measurement the discussed artifacts are not a funda-
mental draw back. The method which is presented in [Ste05] is quite robust against
local deviations of grey levels and in addition to this a beam hardening correction can
be applied for single material objects (review section 2.1.3). Of course the limited view
angle artifacts are present at the top and the bottom of long objects but this does not
affect the accuracy of a measurement in horizontal direction at least in the central region.
Above all it is possible to avoid limited view angles by using a helical source trajectory
instead of a circular one. The reconstruction of limited view angle data is therefore not
essential for this application.
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3.2 Example 2: 3D simulation of a ball grid array

3.2.1 Simulation model and classification

In no other field miniaturization is advancing as fast as in electronic industry. This
pushes the development of assembling techniques for a high integration of components
on printed circuit boards (PCBs). A typical example are ball grid arrays (BGAs) for
the connection of micro-chips to PCBs. With an array of tiny solder balls below the
two dimensional surface of the chip a very high number of electrical contacts can be
realized. The requirements for the fabrication are extremely high and non-destructive
inspection with µm resolution is very much desired. 3D micro-focus X-ray CT seems to
be predestined for this task but we point out that the problem hits today’s limits. A
classification can be given as follows:

• Sample category: Electronic components on printed circuit boards. Complex ob-
jects with many different materials. Strong absorbing metals, e.g. lead and tin in
solder balls are particularly critical for X-ray penetration.

• NDT task: 3D inspection with 1-10 µm spatial resolution for the detection of cracks
and voids.

• Feasibility: The inspection with 3D micro-focus CT is today only possible for
small components (typ. Ø 10-20 mm). For larger parts and especially for complete
PCBs the geometric access and/ or the X-ray penetration are limited which make
an X-ray inspection impossible today.

In order to show the limitations we considered a simplified model for a ball grid array,
Fig. 3.5 a). An array of 3x3 copper cylinders (instead of solder balls) is mounted between
two aluminum carriers (instead of the micro-chip and the PCB). Typical defects are
broken joints, i.e. horizontal cracks (parallel to the PCB surface) between the balls
and the carrier. They were modelled by gaps of different heights which are given in
Fig. 3.5 b). The materials as well as the gap dimensions were chosen to give a much
easier inspection problem than we would find it in reality. Further we did not include a
real PCB environment but consider a virtual PCB which restricts the geometric access
of the BGA (Fig. 3.5 c).

3.2.2 Scanning with limited geometric access

Considering the restricted access which is caused by the virtual PCB there are two
consequent scanning geometries: a partial circular scan or tomosynthesis. Examining
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a) b)

c)

Figure 3.5: Simulation model of a ball grid array (BGA): a) Vertical cross-section
showing the gaps between the copper cylinders and the upper aluminum carrier. b)
Horizontal cross-section with corresponding gap heights. c) Proportions of the BGA
model in the environment of the virtual printed circuit board (PCB).

3D micro-focus CT we simulated cone beam projection data for both cases and recon-
structed them with the FDK algorithm. In order to expose only the relevant artifacts
we used ideal parameters for the simulation, i.e. monochromatic energy (160 keV) and
an infinite dynamic range. In this way we also excluded artifacts due to limited X-ray
penetration.

Partial circular scan

For the partial circular scan the set-up was arranged as shown in Fig. 3.6 a). In order to
avoid a collision of the virtual PCB with the X-ray source, the partial circular scan skips
two angular sections each of 2β range, i.e. 4β in 360◦. The drawing plane in this figure
is equal to the central plane of the 3D cone beam configuration. It includes the source
point and is perpendicular to the axis of rotation (review theory section 2.2.3). If we
reconstruct this plane the result of the FDK algorithm is equal to 2D FBP and therefore
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would be exact if the angular sections were not skipped. Here we chose β = 20.16◦ (116
of 500 projections were skipped) and we observe huge rhombic artifacts (Fig. 3.6 b). In
analogy to all other examples the half shape angle is approximately equal to β (see 20◦

line). This is remarkable because the value for β is quite large and we conclude that
the shape of the artifact is directly related to the angular range which was skipped and
obviously a contribution from the reconstruction algorithm can only be minor.

a)

X-ray

source

180° - 2

180° - 2

Axis of rotation

perpendicular to 

drawing plane

Virtual PCB

with BGA

SOD = 100 mm

SDD = 1000 mm

Voxel = (10 µm)3

= 20°

b)

20° Line

Figure 3.6: Scanning with partial circular scan. a) Top view of the central plane in the
3D scanning geometry. b) Reconstruction of central plane (FDK algorithm).

Tomosynthesis

In contrast to the partial circular scan the virtual PCB is orientated parallel to the central
plane for tomosynthesis. Fig. 3.7 a) shows that the virtual PCB is actually elevated above
the central plane such that it cannot hit the X-ray tube. The tomosynthesis angle Θ has
the same impact as the half cone angle in the example of the steel cylinder. In Fig. 3.7 b)
we see the reconstructed vertical cross-section at the position which was indicated before
in Fig. 3.5 b). The gap heights from left to right were 20, 0 and 40 µm and even for small
tomosynthesis angles (here Θ = 6◦) they are not resolvable due to limited view angle
artifacts. Just as for the partial circular scan or the example of the steel cylinder these
artifacts have a rhombic shape and the half shape angle is roughly equal to Θ (see 6◦ line).
They are independent of the magnification and the pixel resolution. We chose a voxel
size of 10 µm for which the gaps would be easily resolvable if no artifacts would occur.
The source detector and source object distance, SDD=1000 mm and SOD=100 mm, are
related to typical micro-focus CT set-ups.
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Figure 3.7: Tomosynthesis of BGA model. a) Vertical cross-section of scanning geom-
etry. b) Reconstructed vertical cross-section (FDK algorithm).

3.2.3 Potential for limited view angle tomography

For both scanning geometries the limited view angle artifacts are formed in such a way
that they cover especially cracks which are parallel to the PCB surface. This stems from
the fact that we cannot take projections from this direction. However, some information
is existing from the available views and the defects may be recovered if prior knowledge
of the object could be additionally included into a suitable reconstruction algorithm.
The requirements for such an algorithm would be extremely high because we look at a
multi material system with complex geometry for which a very high spatial resolution is
desired. At this stage this was not possible.

3.3 Example 3: 2D CT of the Bat Phantom

3.3.1 Phantom definition and classification

The Bat Phantom (Fig. 3.8 a) is the sample which was specially designed and studied
in detail for this work. It represents large and strongly absorbing metal objects for
which the X-ray signal is not detectable from some view angles. To be more specific we
consider single material objects which have an oblong cross-section if they are aligned
in an optimal way for CT. A relevant industrial object is e.g. a gas turbine blade.
3D non-destructive testing (NDT) of gas turbine blades with an X-ray CT set-up which
can be installed into a production line would be a favorable task and this was a strong
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motivation for our work. We tried to classify the problem as follows:

• Sample category: Large and strongly absorbing metal objects which have an oblong
cross-section and consist of only one single material, e.g. turbine blades.

• NDT task, Stage 1: Verification of the internal geometric structure with 100-
200 µm accuracy. Stage 2: Detection of subsurface defects and cracks in the range
of 10-100 µm.

• Feasibility: To be investigated in this work.

The size of our phantom (70x16 mm) was chosen to be critical for typical CT systems
which use X-ray tubes. It is made of copper, which has similar absorption properties for
X-rays as inconel (the base material of turbine blades) and is easier to machine. The
smallest phantom feature is a Ø 0.5 mm drilling hole. For our investigations we further
used a simulation model which has exactly the same cross-sectional dimensions as the
real phantom (Fig. 3.8 b). A design drawing is shown in the appendix in Fig A.1.

a) b)

Figure 3.8: a) Photo and b) simulation model of Bat Phantom. The phantom is made
of copper and the dimensions were identical in both cases.

3.3.2 Scanning with limited X-ray penetration

Our main results will be presented in the following chapters. Here we would like to
put the problem briefly into context with the previous examples. For simplification we
considered a 2D CT configuration and assumed a full rotation of the object. Due to
the oblong shape and the strong absorption of the Bat Phantom the detection of the
X-ray signal was not possible for a small range of view angles as indicated in Fig. 3.9 a).
This situation is comparable to a partial circular scan, which was discussed for the BGA
example, and the 2D FBP reconstruction of simulated data shows similar rhombic shaped
artifacts (Fig. 3.9 b). For the simulation we used 160 keV monochromatic X-rays and a
reduced dynamic range of 350:1 (see next chapter).
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Figure 3.9: a) 2D scanning scheme for Bat Phantom. b) 2D FBP reconstruction of
simulated data with reduced dynamic range.

3.3.3 Potential for limited view angle tomography

Aiming at a solution of the problem we will investigate the performance of iterative
algorithms which include prior knowledge of the object. Taking into account the ex-
perimental conditions and the available reconstruction algorithms we focussed on the
following case:

2D limited view angle tomography of oblong single material objects using a
moderate size for the reconstructed image in the order of 104 pixels1.

With the help of simulated projection data we will demonstrate the principal possibilities
in chapter 4 and the experimental issues are analyzed in chapter 5.

3.4 Masking of missing points in Fourier space

Before we close this chapter we would like to explain in more detail that the observed
rhombic shaped artifacts are caused by incomplete sampling and do not depend on a
certain reconstruction algorithm. We know from theory (chapter 2.2.4) that limited view
angles result in missing points in Fourier space. If we assume 3D parallel beam geometry
we can distinguish between a missing double cone for tomosynthesis and a missing double
wedge for the partial circular scan. Although parallel beam geometry is not what we
usually have in an experiment we consider these two fundamental cases as adequate for
a qualitative analysis.

1For comparison: In 3D micro-focus CT the number of volume pixels can easily be larger than 109.
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Using the 3D discrete Fourier transform (DFT) we can show that the artifacts in the
object space are directly related to the missing points in the Fourier space. The specialty
of this transform is that the considered spaces are discrete and that it is a one to one
relation. If we define an arbitrary object we can transform it and easily manipulate the
points in the discrete Fourier space. The result of the manipulation can be seen in object
space after applying the inverse transform. For our purpose the manipulation is to set all
points to zero which correspond to the missing points, i.e. all points which are defined
by a mask which is given by a double cone or a double wedge. In this way we imitate the
real process without using a specific reconstruction. An illustration is given in Fig. 3.10.

3D DFT

Inverse

3D DFT
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- Case A: double cone of half 

cone angle 

- Case B: double wedge with 

half wedge angle 

3D Discrete 

Fourier space
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3D DFT

x

z
y

Figure 3.10: Process of masking the missing points for an opaque box.

For an object we defined an opaque box which is transformed to a sinc function. The
number of discrete points was 1283. The fact that the sinc function is spread to the
corners of the cubic space is related to the specific definition of the discrete coordinate
system which is commonly used for the discrete Fourier transform [Jaeh93]. The discrete
masks were defined accordingly which is not shown explicitly here. Instead we visualize
the masks in Fig. 3.11 as the they would appear in the continuous 3D Fourier space.
Another important aspect is that the edges of the masks were smoothed by an error
function (integral of Gaussian function) to avoid unwanted oscillations.

We chose the same orientation for the wedge and the cone. As we applied the inverse
transform without masking we got back the original object but after the masking a cloud
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a) b)

Figure 3.11: Shape and orientation of the considered masks: a) double cone with half
cone angle Θ and b) double wedge with half wedge angle β. Visualization in continuous
3D Fourier space.

appeared (see Fig. 3.10). The resulting vertical cross-sections at the center of the box
are shown in Fig. 3.12.

a)

7° Line

Masking with cone: = 7°
z

x or y

b)
= 7° Masking with wedge: = 7°

x y

z

7° Line

Figure 3.12: Vertical cross-sections after masking with a) cone and b) wedge.

Rhombic shaped artifacts are visible in both cases, i.e. for the cone and wedge mask.
This is very impressive because it reflects our experimental observations and as before
the half shape angles are approximately equal to the half cone angle Θ and the half
wedge angle β respectively. Both angles were 7◦ which is indicated by the 7◦ lines in
the figure. This confirms our assumption that the artifacts are directly related to the
missing points. Further, the symmetry of the masks seems to imply the symmetry of
the artifacts. For the cone mask (rotational symmetry) both vertical cross-sections (x-z
and y-z) are identical but for the wedge they are different. The y-z cross-section for the
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wedge mask shows a rectangular shaped artifact in accordance with the alignment of
the leading edge of the wedge which was parallel to the y-axis (translational symmetry).
This illustrates that the tomosynthesis configuration has an advantage compared to the
partial circular scan if Θ = β.
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4 Simulation results for the Bat
Phantom

Motivation

In the previous chapter we examined basic cases where limited view angles occur and
showed that the associated artifacts in filtered back projection (FBP) reconstruction
have a characteristic rhombic shape. Above all we defined a suitable problem for our
further analysis, i.e. the 2D CT of the Bat Phantom with limited X-ray penetration
for a small range of view angles (see Fig. 3.8 and Fig. 3.9). Now we investigate how a
solution can be achieved with iterative reconstruction algorithms if prior knowledge of
the object is included. Using simulated projection data we evaluate the performance of
different algorithms for various parameters.

The parameter which controls the amount of lacking data is the dynamic range. At first
we will use an infinite dynamic range for which the complete data can be sampled. If
no additional distortions occur (ideal monochromatic data) FBP is exact and the image
quality and reconstruction time are unbeatable compared to iterative algorithms. Aim-
ing at sophisticated applications we wanted to know if an iterative algorithm could at all
achieve a similar quality in a reasonable time. For this purpose we look at a high resolu-
tion reconstruction with SART (without prior information) which is the most developed
type of iterative reconstruction. In contrast to this ML-TR has a lower performance but
shows special properties.

The next step will be to reduce the dynamic range such that limited view angle artifacts
occur in FBP. In this case we choose a smaller image size for a prove of principle. Looking
at SART, ML-TR and DT we show that the artifacts can be avoided if the single material
and smoothness prior information is included into the reconstruction. We evaluate the
effect of different types of prior knowledge representatively for SART. In order to prepare
our experiments which are presented in the next chapter we analyze how distortions like
e.g. noise or polychromatic X-rays affect the result.
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4 Simulation results for the Bat Phantom

4.1 Simulation of X-ray projection data

For the simulation of the projection data we used a program which has been originally
developed for medical CT. It can model an arbitrary scanning geometry and uses regular
geometric shapes to define the phantom. Fig. 4.1 shows a simple 2D example where the
object is composed of an ellipsoid (shape G1, material M1) and a cuboid (shape G2,
material M2). The projection is performed via needle rays which start at a point source
and end at points on a line which defines the detector. In addition to the object the
simulation can optionally include a beam hardening filter and a scintillator for detection.
Further it can use an arbitrary energy spectrum and add quantum noise to the result.
The influence of a focal spot and a finite pixel size were neglected. An important aspect
is that the phantom is defined by exact boarders, i.e. the shape edges are sharp and as
a consequence the object is not bandlimited.

Figure 4.1: Simulation process

The projections are computed by using the exponential absorption law for X-rays (review
Eqn. 2.4) and tabulated values for the absorption coefficient µ(E). In order to obtain the
detected intensity for a specific ray (ray ri in the figure) the attenuation for each shape
which intersects the ray, the attenuation in the beam hardening filter and the absorption
in the scintillator is computed for each energy and integrated over the spectrum. For the
attenuation in the ray path the total attenuation is used, i.e. scattered rays are assumed
not to be detected and for the detection process photoelectric absorption is considered.
Strictly these approximations are only valid for lower energies (medical applications).
In non-destructive testing we typically have higher energies and scattering can play an
important role in experiments which will be discussed in the next chapter.

An important note is that the computation is performed in floating point arithmetic,
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4 Simulation results for the Bat Phantom

i.e. the dynamic range is infinite at first and can be reduced in order to model an
experiment. The reduction was performed by setting the values below a certain threshold
to this minimum value. This is a simple model for a saturation at the limit of the dynamic
range in a real system. Further we scaled all projections to a given direct beam intensity.
The following list summarizes the options which were used for our analysis:

• Spectra: 200 kV polychromatic [Ank00], 160 keV monochromatic

• Beam hardening filter: 0, 0.5 or 5 mm Cu

• Detector types: Ideal (100% absorption), 0.6 mm CsI or 6 mm CdWO4 scintillator

• Quantum noise: 0%, 2% or 10% relative to the direct beam intensity

• Direct beam grey level: I0 = 50000

• Dynamic range: infinite or reduced to 350:1 (8.5 bit)

We will use the term ideal projection data for monochromatic X-rays, an ideal detector
and no noise (scattering is not included anyway). However, the dynamic range can be
reduced in this case. This might be a bit confusing at first, but we want to express
that the data itself is not distorted by physical factors and consider the dynamic range
independently. A beam hardening filter is only relevant for polychromatic X-rays. For
the detection of polychromatic X-rays we used a 0.6 mm CsI scintillator like in our
experimental set-up at Siemens (see chapter 5).

4.2 Infinite dynamic range

4.2.1 High resolution reconstruction with FBP and SART

Now we look at the reconstruction of ideal projection data with infinite dynamic range.
The simulation was performed for a monochromatic energy of 160 keV. Fig. 4.2 compares
the results for a high resolution FBP and SART reconstruction of 640×180 image pixels.
Limited view angle artifacts are not an issue here. It is remarkable that SART achieves
a similar image quality as FBP. This was possible by a fine tuning of the reconstruction
parameters for SART which is discussed in the next subsection (λ = 0.1, ’Bessel-Kaiser
CP’, ’WDS’, 30 iterations).

For the presentation of the reconstructed images we have zoomed into the display range,
i.e. we selected a range of ±10% relative to the material value and assigned it to the full
grey scale between black and white, i.e. if the image is normalized and air corresponds
to a value of 0 and material to 1 then all values below 0.9 are white and those above 1.1
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a)

Aliasing artifacts look
similar to interference fringesPartial volume artifacts

appear as straight lines

Position for line profile

b)
Position for line profile

Small overshoots
at the edges

Figure 4.2: a) FBP and b) SART reconstruction of ideal data with infinite dynamic
range. The display ranges for visualization were zoomed in the same way for both cases.

are black in the image. Therefore aliasing and partial volume artifacts become visible.
They appear in both cases and emerge from the discrete sampling of the object. In our
simulation aliasing is particulary relevant because the object is not band limited (review
sampling theorem in chapter 2.2). We want to point out that these artifacts can only
be reduced but never completely avoided by a higher number of detector pixels (here
660) and projections (here 1250). To exclude any other effects we used parallel beam
geometry. For details about the configuration see next subsection.

Regarding our implementation, the reconstruction times were about 120 min for SART
using 30 iterations and 1 min for FBP on a 2 GHz computer. This corresponds to a factor
of 4 in time per iteration in comparison to FBP and we expect that further improvement
is possible. Considering that FBP uses only one back projection and that each SART
iteration needs a forward and a back projection we can estimate a lower limit of 2 per
iteration for this factor. Moreover the number of iterations itself may be reduced but
the optimization of the reconstruction time is a different field of research and here we
wanted to give an impression of what can be achieved for the image quality.

A more precise view of the amount of artifacts is obtained from the line profiles in
Fig. 4.3 a) for FBP and b) for SART. The selected profiles were taken at the positions
which were indicated by the dashed lines in the images. In each plot the profile of
the original object is given as a reference. The agreement of the reconstructed shape
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4 Simulation results for the Bat Phantom

is excellent and further the absolute pixel values were reconstructed correctly. For a
better interpretation we normalized all plots by the material absorption. As observed
before the aliasing artifacts appear as small oscillations. They are a little bit larger for
SART for which additional overshoots occur at the edges. This is hardly visible in the
image but can be clearly resolved here. In general aliasing can be critical in iterative
reconstruction and a higher number of iterations does not necessarily improve the result
(see next subsection).
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Figure 4.3: Line profiles for a) FBP and b) SART reconstruction of the Bat Phantom.
They are compared to the profiles of the original object.

4.2.2 Reconstruction options for FBP and SART

In the following we will explain the parameter settings for the previous reconstructions.
We will briefly look at FBP and then focus on the options for SART. The considered
optimization task was to achieve an image quality of SART which is comparable to FBP.
We go to details here because we consider SART as a good example to point out basic
implications in iterative reconstruction.

Measuring the image quality

In order to measure the image quality we need an appropriate quantity. For this purpose
we computed the euklidean distance from the reconstructed image (vj)

N
1 to the original

image (v0
j )

N
1 :

deukl =

√√√√√
N∑

j=1

(vj − v0
j )

2 , (4.1)
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where N is the number of image pixels. This should not be confused with a spatial
distance. We look at the values of the image pixels and not at their position. The value
vj of an individual pixel j specifies the attenuation of an X-ray which passes by. It is
the contribution of this pixel to the line integral

vj = µj∆x , (4.2)

where µj is the linear absorption coefficient and ∆x the object pixel size. Thus the
computed distance is a distance of attenuation values and we can normalize it by the
attenuation of one material pixel:

d0
eukl =

deukl

µMaterial∆x
. (4.3)

The resulting normalized distance d0
eukl is equivalent to a number of material pixels which

sum up to the same attenuation. Therefore one might think of comparing d0
eukl to the

total number of image pixels but this is not useful because of a non-linear behavior.
Strictly d0

eukl should only be used to compare images of the same size (number of image
pixels) and type (binary or continuous). To get a feeling for this quantity we can look
once more at the reconstructed images (Fig. 4.2) and the line profiles (Fig. 4.3). In this
case d0

eukl directly measures the amount of aliasing artifacts. The values were 6.6 for FBP
and 7.1 for SART.

Geometric configuration

In addition to parallel beam geometry which was used for the presented examples we
will now also look at fan beam geometry. Tab. 4.1 summarizes the geometric parameters

Beam geometry Parallel beam Fan beam
SDD (Source detector distance) 106 + 100 mm 1000 mm
SOD (Source object distance) 106 mm 200 mm
M (Magnification) ≈ 1 5
∆xD (Detector pixel size) 0.12 mm 0.6 mm
∆x (Nominal pixel resolution) 0.12 mm 0.12 mm
ND (Number of detector pixels) 660 660
Nx × Ny (Size of reconstructed image) 640× 180 640× 180
βmax (Angular range for scanning) 180◦ 360◦

NP (Number of projections) 1250 1250

Table 4.1: Geometric parameters for the simulation.
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4 Simulation results for the Bat Phantom

which were assumed for the simulation of the projection data. For a principal explanation
of CT configurations we refer to the theory chapter (review sections 2.1.1 and 2.2.3). Here
we approximated the parallel beam geometry by a point source at a very large distance
form the detector which was sufficiently accurate. For the fan beam we chose a typical
experimental value of SDD=1000 mm and adapted the detector pixel size ∆xD and the
magnification M in order to obtain the same nominal pixel resolution ∆x at the object
position as in the parallel case. Therefore the number of detector pixels ND for scanning
the Bat Phantom and the image grid for its reconstruction were identical for both cases.
The size of the reconstructed images was 640× 180 pixels.

Basic reconstruction parameters

At first we want to verify how many projections are needed. Strictly speaking, this is
not a reconstruction parameter but a matter of sampling and we presume that it is equal
or at least very similar for SART and FBP. Therefore we can confine this investigation
to FBP which has the advantage that there are no further options which interact. In
Fig. 4.4 a) we plotted the normalized distance versus the number of projections NP.
The reconstruction quality improves for larger NP at first, but then reaches a limit at
an optimum number of projections NP0. It does not further improve for NP ≥ NP0.
This behavior is similar for parallel and fan beam geometry. The maximum image
quality which can be achieved in each case is about the same, however, for parallel beam
geometry less projections are required.
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Figure 4.4: Dependence of reconstruction quality on basic parameters. a) FBP: Vari-
ation of the number of projections and the projection geometry. b) SART: Variation of
the number of iterations, the relaxation parameter λ and the projection geometry.
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Tab. 4.2 collects the values which were estimated from the plot. For parallel beam
geometry we scanned an angular range of 180◦ and the optimum number of projections
was NP0 ≈ 1000. Dividing it by the number of detector pixels ND = 660 we obtain
approximately a factor of π

2
which is expected from theory (review chapter 2.2.3). This

factor was about two times larger for the fan beam where a full 360◦ scan was performed.
The explanation for this circumstance is that the angular increment at the optimum
should be the same for both beam geometries. Regarding the image quality the minimum
value for d0

eukl, which was achieved at the optimum, was 6.6 for parallel and 6.8 for fan
beam geometry (recall that this value is related to aliasing, which occurs because the
object is not bandlimited in our simulation).

Geometry βmax NP0
NP0
ND

d0
eukl(NP0)

Parallel beam 180◦ 1000 . . . 1250 1.5 . . . 2 6.6
Fan beam 360◦ 1700 . . . 2500 3 . . . 4 6.8

Table 4.2: Optimum number of projections NP0 and comparison to the number of
detector pixels ND for FBP in the considered example.

After the optimum number of projections has been found we can focus on the reconstruc-
tion options for SART. Now we will vary the two most fundamental parameters which
are the number of iterations and the relaxation parameter λ. The impact of the other
options will be described later and here we set them to optimum values (’Bessel-Kaiser
CP’ and ’WDS’). In Fig. 4.2 b) the reconstruction quality is plotted versus the number
of iterations. It shows the importance of the relaxation parameter λ and the indepen-
dence of the beam geometry. Actually the plots for parallel and fan beam geometry were
separated by a small difference because we used a fixed number of projections NP = 1250
which is large enough for parallel beam geometry but a little bit below the optimum for
fan beam geometry.

We compared two values for the relaxation parameter: λ = 1 and λ = 0.1. Considering
the normalization of the update formula (review Eqn. 2.21) λ = 1 should be ideal but we
observe an oscillation in the plot. Although the image quality approximately reaches the
FBP level after only three iterations it decreases again for a larger number of iterations.
This kind of instability can be reduced with a smaller relaxation parameter but then
the convergence slows down as well. In the example of λ = 0.1 we need 30 iterations to
achieve FBP quality but the stability increases significantly. This setting was used for
the presented images above (review Fig. 4.2 b). It was a compromise where we preferred
stability before speed.
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Resorting of projections and projection model

The interpretation of the oscillation which was observed in Fig. 4.2 b) for λ = 1 is that
aliasing artifacts can be induced and magnified by the iterative process. We will see
that the amount of distortion strongly depends on the choice of the projection model
and as this is a field of recent research we can expect future improvements. Ideally the
forward projection, which is used in the reconstruction and computed by the projection
matrix H, would be an exact model of the physical projection process. We can imitate
this ideal case by ’internal projection data’ (review section 2.3.2), i.e. by sampling the
Bat Phantom to the image grid and using the forward projection itself to generate the
set of ’measured’ projection data which is to be reconstructed.

Fig. 4.5 a) shows the result for the relaxation parameter λ = 1 and parallel beam
geometry. The convergence is excellent and without oscillations. In other words we
can say that aliasing does not occur because the ’needles’ (projection rays) which were
used for generating the ’measured’ projection data are identical to those used in the
reconstruction. We should add that the result for FBP did not improve because in this
case a single back projection is used which cannot benefit from the matched forward
process.
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Figure 4.5: SART: a) Imitation of the ideal case with ’internal projection data’ and
effect of resorting the projections with the weighted distance scheme (WDS). b) Compar-
ison of different projection models for the reconstruction of simulated projection data.

An important option to speed up the convergence is to resort the order of the projec-
tions before the reconstruction. In the plot (still looking at Fig. 4.5 a) we compare the
sequential order to the weighted distance scheme (WDS) where the projection angles are
distributed in such a way that they have the largest possible angular distance to each
other (review section 2.3.2). In both cases the image quality converges to the same value
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but the WDS is much faster. Tab. 4.3 shows selected values from the plot. The achieved
normalized euklidean distance is d0

eukl ≈ 1 after 50 iterations, which is very impressive.
From the point where the convergence slows down we estimate that a good choice for
the number of iterations is between 10 and 30 if the WDS is used.

NIteration 3 5 10 20 30 40 50
d0

eukl (WDS) 3.51 2.73 2.01 1.54 1.36 1.26 1.20
d0

eukl (Sequential) 22.3 18.8 7.84 2.87 1.77 1.44 1.28

Table 4.3: SART reconstruction quality for internal projection data.

Although the internal projection data is of no practical relevance it gives us the clue
to the best achievable performance in iterative reconstruction. It is a special quality of
this work that we did not constrain our investigations to the ideal model. Instead we
looked at the more realistic case where the projection data is generated externally by
our simulation program, or even obtained from a real experiment. Therefore we needed
to accept imperfections and as discussed before a smaller value for λ was helpful to
achieve a stable convergence. Fig. 4.5 b) shows the performance of different projection
models for simulated projection data (λ = 0.1, WDS and parallel beam geometry). The
Bessel-Kaiser interpolation kernel with convolved projections (Bessel-Kaiser CP) is best.
This implies that we talk about a ray driven projection model with interpolation in the
reconstructed image. If we turn off the optional convolution of the projection data we
observe again a strong oscillation. In this case the performance was only similar to the
voxel driven model which uses a linear interpolation at the detector. Coming back to
the ray driven model the bilinear interpolation was mediocre.
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4.2.3 Distinction of ML-TR

The maximum likelihood transmission (ML-TR) reconstruction algorithm stands out for
its special properties. It was derived using a correct noise model and directly reconstructs
from intensity values (SART reconstructs from line integrals). Most important for our
work is that it pays less weight to small projection values and as a consequence the central
region in the Bat Phantom is reconstructed very slowly. This is shown in Fig. 4.6 a) after
1000 iterations and in Fig. 4.6 b) we see that even 15000 iterations are not sufficient for
a complete reconstruction. It is a massive effect and in order to save reconstruction time
we had to reduce the pixel resolution compared to our SART example from before. The
size of the images was only 240 × 70 and the number of projections 360, resulting in a
reconstruction time of about 1 h per 1000 iterations.

a)

Slower reconstruction
in central region

b)

Figure 4.6: ML-TR reconstruction of the Bat Phantom with moderate spatial resolu-
tion: a) 1000 iterations and b) 15000 iterations

The extent of the observed effect is closely related to the object properties. For the
Bat Phantom the absorption is quite strong and the transmission intensities become
particularly small in the directions which are critical due to the oblong shape. Therefore
in the reconstruction the weight of these view angles is drastically reduced. This is
similar to the limited view angle problem where the information from these view angles
is not available at all. If ML-TR is used in the latter case the missing information is
given less weight and we will see the benefit later.

Considering the reconstruction options of ML-TR we can mostly transfer the dependen-
cies on the different parameters from SART. However, two options change. The first
is the image update scheme or to be more precise the number of projections which are
processed in each update step (Nup): For ML-TR the image is not updated until all pro-
jections have been processed while for SART an image update is performed after each
projection. Secondly for ML-TR the ’Bessel-Kaiser CP’ option for the projection model
is not suitable (review theory section 2.3.3) and we chose the bilinear model instead.
Fig. 4.7 a) shows the convergence plot for λ = 1 (and weighted distance scheme). If the
number of projections which are processed in each update step is reduced from Nup=360
(all projections) to Nup=25 the convergence can be improved significantly. However,
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the achieved minimum euklidean distance d0
eukl (review Eqn. 4.3 for definition) is worse

compared to the corresponding FBP result. Due to the high number of iterations and
the bilinear interpolation aliasing is particulary strong.
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Figure 4.7: Convergence for a) ML-TR and b) SART using different image update
schemes (Nup = number of projections which are processed in each update step).

A problem coming up with reducing Nup too much is that at the same time ML-TR
will loose its special properties. With Nup=25 we found a reasonable setting for our
experiments in the following sections. If Nup = 1 is used instead, all the properties are
lost and the result is similar to SART. This is shown in Fig. 4.7 b) for the plots with
relaxation parameter λ = 0.01 where FBP quality is achieved after 50 iterations. In
contrast to ML-TR, for SART a larger Nup is merely equal to a reduction of λ (compare
plots for Nup=1, λ = 1; Nup=1, λ = 0.01 and Nup=100, λ = 1). This emphasizes once
more that ML-TR is unique in its properties.
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4.3 Reduced dynamic range

In the following the dynamic range (DR) of the simulated projection data was reduced
to a ratio of DR=350:1 which corresponds to 8.5 bit (review section 2.1.4 for definition).
This value was estimated from early experiments. For a solution of the reconstruction
problem we investigate the effect of prior knowledge of the object which is included into
SART, ML-TR and DT. An important aspect is that the X-ray signal is not correct at
the limit of the dynamic range and such values have to be skipped in the reconstruction.
In this sense the situation is equivalent to a limited geometric access. We distinguish
between the following prior options (review theory section 2.4):

• Option ’01’: Single material prior information. For a single material object like
the Bat Phantom only two values are possible for the reconstructed pixels, i.e.
’0’ for air and ’1’ for material where we assume a normalization to the material
absorption. While this information is intrinsically included in DT it has to be
imposed on SART and ML-TR by repeated segmentations. In the latter case it
is important that the strength of the segmentation is small at the beginning and
is only slowly increased with the number of iterations, otherwise the shape of the
object can be distorted or even break up.

• Option ’SM’: Smoothness penalty term. The information that the object is
smooth, i.e. mostly homogeneous, can be included in a general form into the
optimization equation for DT while for SART and ML-TR a more specific term is
adapted to the reconstruction formula. In all cases the smoothness information is
given some weight which has to be tuned carefully. If it is too strong small object
features and edges are smeared out.

• Option ’PV’: Peel volume. In this case we reconstruct only those image pixels
which are within a tight envelope of the original object. Here we only test this
option for SART. In practice such an envelope could be obtained e.g. by an optical
measurement.

4.3.1 Limited view angle tomography for ideal data

We start our analysis and reconstruct ideal projection data as we have used it in the
previous section (160 keV monochromatic, no noise, no scattering). Concerning the
image resolution we had to make a compromise. Due to a high computational effort it
was not feasible to strive for a high resolution. For a prove of principle we selected a fan
beam configuration with a small magnification yielding an image size of 240× 70 pixels.
The parameters are given in Tab 4.4 and they correspond to an existing micro-focus CT
set-up.
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Beam geometry Fan beam
SDD (Source detector distance) 1000 mm
SOD (Source object distance) 800 mm
M (Magnification) 1.25
∆xD (Detector pixel size) 0.4 mm
∆x (Nominal pixel resolution) 0.32 mm
ND (Number of detector pixels) 250
Nx × Ny (Size of reconstructed image) 240× 70
βmax (Angular range for scanning) 360◦

NP (Number of projections) 360

Table 4.4: Geometric configuration for limited view angle tomography.

Fig. 4.8 shows the results for FBP, SART, ML-TR and DT. We clearly see that the
limited view angle artifacts which are visible in FBP do not appear for the iterative
algorithms where we included the single material (01) and the smoothness information
(SM). This demonstrates that a solution of the given problem is principally possible.
The best result was obtained for SART because we could set up on and profit from
the optimizations which were achieved for the infinite dynamic range. From this point
of view it was not a surprise that ML-TR stands back a little bit. So far its distinct
properties do not seem to be a particular advantage.

The presented DT result is even a bit worse than ML-TR. Some shape deformations
can be seen, i.e. the second circle from the left is reconstructed octagonal and the large
rectangular gap in the center is too narrow. We suspect that the aliasing in the simulated
data may be the cause of trouble and assume that further optimizations are possible. In
fact DT is a very recent approach and we think that it has a lot of potential because it is
most fundamental and allows the inclusion of any kind of prior information in a general
form. In contrast to this, for SART and ML-TR the inclusion of prior knowledge is a bit
clumsy and for them further extensions are questionable.

Like in the previous section we can measure the reconstruction quality by the normalized
euklidean distance d0

eukl (review Eqn. 4.3 for definition) and the computed numbers are
given in the figure. As mentioned before the behavior of d0

eukl is non-linear and strictly
we should not compare the values for continuous and binary images. Nevertheless, we
found that d0

eukl is suitable to describe the overall impression very well. The time values
in the figure are the reconstruction times on 2 GHz computers. Due to the small size
of the images the relevant coefficients of the projection matrix could be fully stored into
the RAM which led to a significant acceleration.

Some experience is required to tune the reconstruction parameters for SART and ML-
TR. The impact of the segmentation is quite phenomenological and we proceeded by trial
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DT 01 SM

10 min

d0
eukl

= 10.9

ML-TR 01 SM

40 min

d0
eukl

= 9.7

SART 01 SM

5 min

d0
eukl

= 6.7

FBP

5 s

d0
eukl

= 28.4

Prior knowledge: ’01’ = single material; ’SM’ = smoothness.

Figure 4.8: FBP and iterative reconstruction with prior knowledge for ideal data
(160 keV monochromatic, no noise, no scattering) with a reduced dynamic range of
350:1 (8.5 bit).

and error. A list of the chosen values is given in Tab. 4.5. In contrast to our previous
investigations where we focussed merely on the image quality we tried to minimize the
number of iterations as much as possible. For SART this was more or less straight
forward. With respect to the other settings the selected λ is quite high and therefore
the convergence is fast which justifies a small value for N1. The situation is different
for ML-TR which converges extremely slowly without segmentation (review Fig. 4.7 a).
Nevertheless with a reduced value for Nup we could choose relatively small values for
N1 and N2 but point out that the handling was particularly tricky. Considering DT the
optimization was done at the University of Szeged and we cannot discuss details here.
It is an interesting fact that the result for DT can slightly change if the reconstruction
is repeated. This is due to the statistical nature of the simulated annealing optimization
method. For all algorithms the weight of the smoothness information was set as strong
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4 Simulation results for the Bat Phantom

as possible such that the object details are not smeared out. As mentioned in the
introduction to this section we skipped all values at the detection limit and we will see
more details about this in the next subsection.

SART ML-TR

Relaxation parameter λ 0.1 1
Projection model bilinear bilinear
Projection resorting WDS WDS
Projections per image update Nup 1 25
Iterations before segmentation N1 3 5
Number of repetitions N2 20 100
Total number of iterations N1·N2 60 500
Threshold range DTH 40% 40%

Table 4.5: Reconstruction options for SART and ML-TR with segmentation.

4.3.2 Different types of prior knowledge

The effect of different types of prior knowledge was studied representatively for SART.
We do not show all the images but give a concise summary of the results with the help
of the normalized distance d0

eukl (review Eqn. 4.3 for definition). The obtained values
are given in Tab. 4.6 and the reconstruction options were the same as before except for
the cases without prior knowledge where simply 5 iterations were used. First of all we
see what was discussed in the previous section: for an infinite dynamic range SART
(d0

eukl = 6.5) and FBP (d0
eukl = 5.5) are comparable. In fact this is also true for the

reduced dynamic range if no prior knowledge is applied (27.4 and 28.4).

Dynamic range Infinite Reduced 350:1
Prior information No No 01 01 SM 01 PV 01 SM PV

FBP 5.5 28.4 - - - -
SART 6.5 27.9 9 6.7 10.4 6.6

Table 4.6: Values of d0
eukl for different types of prior knowledge.

This explicitly proves that prior knowledge of the object is the key to compensate for
the lack of data in limited view angle tomography. We found that the single material
information (’01’) is most important yielding d0

eukl = 9. Further a significant improvement
is achieved by the smoothness prior (’SM’) giving a result of 6.7 which appears to be as
good as for the reconstruction of data with infinite dynamic range. However, one has to
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4 Simulation results for the Bat Phantom

be careful with this interpretation because the errors in the binary image are distributed
over much less pixels than in the continuous image.

We were a bit surprised that the peel volume (’PV’) did not improve the result. It was
defined by an envelope of the exterior shape of the object leaving a gap of only one
pixel. A possible interpretation is that this may be a bit too ’aggressive’ compared to
the gradually increasing segmentation. This was similar for ML-TR (not shown) but for
DT the result may be different what could not be verified at this stage. We point out
that the process of the image formation is not comprehensible in detail.

4.3.3 Sensitivity to distortions

So far everything seemed to work well. Beside a few image errors a solution of the
given problem was possible for ideal data. Now we want to show the effect of different
distortions as they can occur in a real experiment. We will switch on noise or alternatively
polychromatic X-rays. In addition to this we check what happens if the projection values
at the detection limit are not skipped in the reconstruction. Fig. 4.9 shows the results
for SART and ML-TR. While SART has been superior for the ideal data this is not
any longer the case here. It responds very sensitively to all kinds of distortions. In
contrast to this ML-TR appears to be more robust against errors at the detection limit
(option: Mono 160 keV, no skipping) and noise (option: Mono 160 keV, Noise 10%).
This reflects its distinct properties, i.e. paying less weight to small projection values and
using a correct noise model. For polychromatic X-rays (option: Poly 200kV 0.5 mm Cu)
severe shape deformations occur in both cases.

Poly 200 kV

0.5 mm Cu

Mono 160 keV

Noise 10%

Mono 160 keV

No skipping

MLTR 01 SM SART 01 SM 

Figure 4.9: Sensitivity to distortions for limited view angle tomography with SART
and ML-TR.

The situation at the detection limit can be explained as follows. In the simulation we set
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4 Simulation results for the Bat Phantom

the corresponding values to a constant which is a suitable model for an experiment where
a saturation occurs (review section 4.1). As a consequence these values do not represent a
correct X-ray absorption signal and this circumstance is a strong systematic distortion.
The effect on the reconstructed object is drastic. Therefore these values have to be
skipped in the reconstruction, i.e. the related projection rays are not included into the
projection equation. This is principally necessary for all algorithms. For experimental
data the situation can be even worse because the dynamic range does not simply end
at a certain threshold. Typically there is a gradual saturation due to which non-linear
distortions occur in a larger range before the total limit of detection is reached. If we
consider that SART seems to be extremely sensitive to this type of distortion we can
expect difficulties in the experiment which we do not expect for ML-TR.
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Figure 4.10: Comparing a) FBP and b) DT reconstruction for polychromatic X-rays
(200 kV 1.5 mm Cu). c) and d) Corresponding vertical line profiles at the image center.
They are compared to ideal monochromatic data.

In general systematic distortions are particularly critical if a single material prior is used.
There are merely two possible grey values in the reconstruction and the deviations in
the projection data can only be mapped to shape deformations of the object while for
FBP they can be additionally mapped to a continuous grey scale. A nice illustration was
given in our publication [Kri05] by comparing DT and FBP for an infinite dynamic range
and polychromatic X-rays. Picking up the results, the shape was not at all affected in
FBP (Fig. 4.10 a and c) while it clearly was for DT (Fig. 4.10 b and d). In this example
the same voltage was used as above (200 kV) but the beam hardening filter was 1.5 mm
copper instead of 0.5 mm. Therefore the spectrum was much narrower (review theory
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section 2.3) and the shape deformations not as large as before. The beam hardening
artifacts which are visible for FBP are similar to those discussed in chapter 3.1. Note
that in this example a higher resolution has been used for FBP, which explains the
different scaling on the abscissa.

Finally we give a summary of our observations by looking at the euklidean distance d0
eukl

(review Eqn. 4.3 for definition). The numerical values in Tab. 4.7 help us to compare all
algorithms for a varying amount of distortions. Because we come from a practical field
we chose FBP as a reference to indicate the amount of distortion. The dynamic range
was infinite for FBP and reduced as usual for all other algorithms. Once more we see
that SART is seriously affected if the values at the detection limit are not skipped or
if strong noise occurs. From this point of view ML-TR seems to be more suitable for a
real experiment but we should be aware that its performance is not overwhelming either.
For DT we did not perform all parameter variations but overall we had the impression
that it was comparable to ML-TR. Considering weak distortions a moderate noise level
of 2% may be tolerable in all cases, however, polychromatic X-rays are always critical.
Therefore a correction for polychromatic X-rays (beam hardening correction) will be
obligatory in experiments with X-ray tubes. We may further conclude that any other
kind of systematic distortion e.g. scattering has to be avoided as well. This will be the
main concern in the next chapter.

Reference FBP LV reconstruction DR 350:1
Infinite DR SART 01 SM ML-TR 01 SM DT 01 SM

Ideal data 5.5 6.7 9.7 10.9
No skipping 5.5 26.7 11.7 -

2% Noise 15.2 7.8 10.7 11.3
5% Noise 23 9.6 11.5 12.2
10% Noise 30.3 25.4 17.8 -

Poly 200 kV 0.5 Cu 24.7 34.5 49.9 -
Poly 200 kV 1.5 Cu 18.0 25.3 39.3 32.2
Poly 200 kV 5.0 Cu 10.4 16.3 23.7 -

Table 4.7: Achieved values of d0
eukl for different types of distortions and algorithms.
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Motivation

In this chapter we continue with the investigation of the Bat Phantom regarding a re-
duced dynamic range. Our guideline was to apply the iterative reconstruction algorithms
for limited view angle tomography which were analyzed in our simulations to experimen-
tal data. This was not straight forward. With respect to acquisition time and spatial
resolution 3D micro-focus X-ray CT is most desirable but we will see that the data qual-
ity is not good enough. We start to give an overview of the performance of selected CT
systems by using standard filtered back projection (FBP) reconstruction. We will see
that the dimensions of the Bat Phantom were chosen appropriately to hit the limit of
the dynamic range and we get a first clue that scattering affects particularly 3D set-ups.
Due to the high relevance of 3D micro-focus CT we performed a detailed analysis of this
circumstance at Siemens CT PS 9 and we show that a confinement of the beam profile
is necessary to suppress scattering. In addition to this a beam hardening correction is
required for which we manufactured an appropriate step wedge. We will show that a
solution of the given problem is possible with a particular 2D CT set-up at the EMPA1.

5.1 Looking for suitable CT set-ups

5.1.1 Description of considered set-ups

Table 5.1 shows a selection of available set-ups for non-destructive testing. The inspection
of very large objects is only possible at high energy facilities, e.g. the 10 MeV linear
accelerator at the BAM or the 1.3 MeV Co-60 source at the BAM or TUM. Massive
shielding is required in such facilities and the spatial resolution is quite low (> 0.5 mm).
For the integration into industrial fabrication processes compact and less expensive set-
ups are required and therefore X-ray tubes are a better choice as radiation source. We
will now have a closer look at the 225 kV set-up at Siemens CT PS 9 and the 450 kV
set-up at the EMPA. A particular case is neutron CT. At the TUM the research reactor

1Eidgenössische Materialprüfungs- und Forschungsanstalt, Dübendorf, Switzerland
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FRM II provides for the neutron radiation and although this is large scale facility we
decided to include it here because of the distinct properties of neutrons and a peculiar
detector concept.

2D fan 

beam

3D cone 

or parallel 

beam

3D parallel 

beam

2D fan 

beam

3D cone 

beam

Beam 

geometry

Large scale

Large scale

Large scale

Laboratory

Laboratory

Dimension

of facility

Low resolution: > 0.5 mm

Large objects: > 50 cm possible

2D planar

FPI detector

Co-60 source: 

1.3 MeV X-rays

or

Linear accelerator: 

10 MeV X-rays

BAM,

Berlin

(Not

discussed)

Lower resolution: 0.1 - 0.5 mm

Larger objects: 5 - 50 cm

Different contrast for neutrons

E.g. oil in combustion engines

2D planar 

Mirror camera

Scintillator: 

LiF2 or Gd2O2S

Thermal neutrons 

or

300 kV X-ray tube

TUM FRM-II

ANTARES,

Garching

Low resolution: 1 mm

Large objects: > 50 cm possible

Special application: Inspection 

of barrels with nuclear waste

1D angular

PM detector

Co-60 source: 

1.3 MeV X-rays

TUM RCM,

Garching

(Not

discussed)

Lower resolution: 0.1 - 0.5 mm

Larger objects: 5 - 50 cm

E.g. cylinder heads 

1D angular

PM detector

Scintillator: 

6 mm CdWO4

450 kV X-ray tube

(mini-focus)

EMPA,

Dübendorf,

Switzerland

High resolution: 1 - 50 µm

Small objects: 5 - 50 mm

E.g. tip of injection nozzles

2D planar 

FPI detector

Scintillator: 

600 µm CsI

225 kV X-ray tube

(micro-focus )

Siemens

CT PS 9,

Munich

Typical applicationDetectorRadiationSet-up

Table 5.1: Examples for available CT set-ups in non-destructive testing (FPI detec-
tor: Flat Panel Image detector, PM detector: photomultiplier detector).

3D micro-focus CT at Siemens CT PS 9

Fig. 5.1 shows the set-up for 3D micro-focus CT at Siemens CT PS 9. It is designed
for high resolution 3D cone beam CT of small parts. The object is usually magnified
by a large factor and the spatial resolution, which is limited by the focal spot size of
the 225 kV micro-focus X-ray tube (typ. Ø 1-100 µm), can be very high. At the same
time the tube power is relatively low (typ. < 100 W) and the acquisition time for one
projection (typ. 1-10 s) is rather large. But the total time for a full 3D scan is reasonable
due to the fact that a 2D planar detector is used which acquires a very high number of
projection lines at once. Flat Panel Image (FPI) detectors are the state of the art. They
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Figure 5.1: Set-up for 3D micro-focus CT at Siemens CT PS 9. It is designed for the
inspection of small objects with very high spatial resolution.

have a very high spatial resolution (in our case 2048 x 2048 pixels of 0.2 mm pixel size)
and good noise properties.

A fundamental problem of FPI detectors is that X-ray scattering can arise inside the
detector and affect the data quality if high energies are used to investigate strong ab-
sorbing objects, e.g. the Bat Phantom at 200 kV. This particular effect is studied in
more detail in [Zsc03]. For our detector, at 200 kV only about 10% of the incident X-
rays are absorbed in the 0.6 mm CsI scintillator while 90% are transmitted and can be
backscattered at inner layers, e.g. supporting materials like aluminum.

EMPA set-up for 2D CT

Today the only way to achieve a high data quality is to reduce scattering by beam
collimation. The 450 kV 2D CT set-up at the EMPA realizes this in the most consequent
way (see Fig. 5.2). The detector is composed of 125 separated detector channels which
form an angular line detector, i.e. the channels are spaced equiangular on an arc. A
slit collimator (tungsten) selects a fan beam and a pin hole collimator selects a narrow
bunch of rays for each detector channel. In this way scattering accumulates only within
one bunch of rays, i.e. from an almost 0D beam profile. Rays which are e.g. scattered
at an angle at a certain object point will not be detected. In addition to this 6 mm thick
CdWO4 scintillator cells are used which almost completely absorb the incident X-rays
such that back scattering from the detector housing is mostly suppressed. The cells are
optically isolated from each other and read out with photomultipliers via optical fibres.

The main disadvantages of the EMPA set-up are long scanning times, a lower spatial
resolution and photomultiplier instabilities. When it comes to scanning time it is a
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Figure 5.2: Set-up for 2D CT at EMPA. A special collimator reduces scattering very
effectively and larger objects can be inspected. The spatial resolution is low and the
scanning time is large.

general disadvantage of line detector set-ups that a 3D object has to be scanned slice by
slice. Although a high power mini-focus tube (here 1 kW) is used and the acquisition
time for one projection is quite small (here 25-100 µs) the scanning time for a 3D scan will
be much larger compared to 3D micro-focus CT. As the focal spot of the mini-focus tube
is large (here Ø 2.5 mm) the investigated objects are scanned without (or with small)
magnification and the spatial resolution is limited by the detector pixel size (review
theory section Eqn. 2.1.1). At the EMPA the pixel spacing is also large (2.1 mm) and
therefore sub-positions have to be scanned. In our experiments we used 9 sub-positions
and achieved 0.234 mm resolution.

A very interesting feature of the detector is that the pinhole size can be adapted ade-
quately. It is clear that the inspection time increases significantly with increasing spatial
resolution. Another specialty is that two scanning modes are available for CT. As usual
a rotational mode can be used where the object is rotated by 360◦ and fan beam projec-
tions are recorded. The other option is a translational mode where the object is shifted
parallel to the detector. In this way each detector channel records a parallel beam pro-
jection at an angle which is defined by the position of the corresponding projection ray
in the fan. After one translation the object is rotated by the fan angle and the process
is repeated until all parallel beam projections within 180◦ are collected. The advantage
of the translational mode is that objects can be inspected which are larger than the
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detector.

ANTARES set-up at FRM-II

Another detector concept which is worth to look at is found in neutron imaging. Fig. 5.3
shows the ANTARES set-up at the FRM-II where a mirror camera is used which is
suitable for 3D CT with X-rays and neutrons at the same time. The incident radiation is
converted in a scintillator to visible light which is then reflected by a mirror and recorded
with a high performance optical CCD camera. This configuration is required because
transmitted neutrons can damage any electronic device. For X-ray CT the benefit could
be that backscattering may be avoided assuming that the scintillator would be really free
hanging, the mirror would not contribute to scattering and the converted light would not
be scattered either. Although this is not the case here it may be an interesting option
for future improvements.

Figure 5.3: Set-up for 3D neutron and X-ray CT at ANTARES. The peculiarity is a
mirror camera for detection which is commonly used in neutron physics.

The spatial resolution of the mirror camera is as high as for Flat Panel Image detectors
and the noise properties of the CCD camera which can be cooled down to about -50 ◦C
are even better. But a fundamental disadvantage is that the light is only collected from
a small view angle and therefore the detection efficiency is much smaller compared to
FPI detectors which collect the light from nearly a half sphere with solid angle 2π. As
a consequence large integration times are required to obtain a low signal to noise ratio.
In neutron imaging the spatial resolution is usually qualified by the ratio L

D
, where L is

the distance from the aperture in the figure to the detector and D is the diameter of the
aperture. At ANTARES typical values for L

D
are 400 and 800 but also larger values like

e.g. 2000 can be achieved if a particularly small aperture is used.
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5.1.2 CT results for Bat Phantom with FBP

In Fig. 5.4 we show the CT results of the Bat Phantom for the set-ups which were
described in the previous section. All cross-sections were reconstructed with 2D FBP,
each with the appropriate beam geometry which were fan beam with linear detector, fan
beam with angular detector and parallel beam geometry. For the 3D micro-focus CT
set-up at Siemens CT PS 9 the central plane was considered (review theory section 2.2.3)
and the result at 200 kV has been quite poor. We see that the image is strongly shaded
and smeared out which indicates that massive scattering is present in 3D micro-focus
CT.

ANTARES at FRM II

3D parallel beam neutron CT

Thermal neutrons

EMPA

2D fan beam X-ray CT

450 kV 8 mm Cu

EMPA

2D fan beam X-ray CT

200 kV 5 mm Cu

Siemens CT PS 9

3D cone beam X-ray CT

200 kV 5 mm Cu

Black spot

Figure 5.4: CT results of Bat Phantom for selected set-ups. The reconstruction was
performed with 2D FBP.

In contrast to this the EMPA result is much clearer at the same voltage (200 kV). This
confirms that scattering is effectively reduced by the special collimator at the EMPA.
The data quality is very good and the limited view angle artifact in the object center
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appears to be even a bit smaller compared to our simulations (review Fig. 4.8). Therefore
the dynamic range must be better than in the simulation, i.e. better than 8.5 bit. At
450 kV there are almost no artifacts left and this shows the limit for the inspection of
larger objects with X-ray tubes today. The beam hardening filters were chosen quite
thick to exploit the penetration possibilities.

The ANTARES result for thermal neutrons is of intermediate quality. A moderate
limited view angle artifact is visible and the whole image appears a bit washed out. The
situation is as follows: Thermal neutrons penetrate the material quite well but scattering
limits the dynamic range similar to 3D micro-focus CT. Remarkable is the black spot in
the top left corner of the central rectangular gap, it is glue2 which is invisible in X-ray
CT. Metals are typically weak absorbers for neutrons while plastics are strong absorbers.
This is just vice versa compared to X-rays and the black spot illustrates that neutrons
can be used to obtain complementary information compared to X-rays [Sul05]. Remark:
The X-ray CT configuration at ANTARES was not ready to use at the time of our
measurements.

In order to simplify the comparison between the different experiments we chose recon-
struction parameters which provided the same (or at least similar) reconstruction condi-
tions (No. of projections and No. of image pixels) and spatial resolution. The selected
parameters are listed in Tab. 5.2. For the micro-focus CT the spatial resolution was by
far not at its limit while at the EMPA we could not achieve much more. Although the
nominal pixel resolution at ANTARES was similar to the other set-ups the actual reso-
lution is a bit worse in practice because the neutron detection process is not as localized
as for X-rays.
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3.42
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5 s

30 min

(3D CT)
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tCT

360
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360

310 x 90

360

310 x 90

NP

Nx x Ny

3D parallel

(L/D 2000)

Thermal neutronsANTARES

at FRM II

2D fanX-Rays

200 kV 5 Cu 1000 W

450 kV 8 Cu 1000 W

EMPA

3D coneX-Rays

200 kV 5 Cu 70 W

Siemens

CT PS 9

Beam
geometry

RadiationExperiment

Np = number of projections; Nx×Ny = size of reconstructed image; SDD = source detector distance; SOD
= source object distance; M = SDD/SOD = magnification; ∆xD: detector pixel size; ∆x: nominal pixel
resolution at object position; ØS = focal spot diameter; Ø′S = (M − 1) ∗ ØS = projection of focal spot to
the detector; tA = total acquisition time for one projection including averaging; tCT : scanning time for full
CT (distinguish 2D and 3D CT).

Table 5.2: Scanning parameters for the selected experiments.

2The phantom is composed of two parts which are glued together, see appendix Fig. A.1.
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5.1.3 Step wedge measurement: dynamic range and data quality

Now we want to have a closer look at the experimental conditions from above and
estimate the dynamic range in each case. For this purpose we used a specially designed
step wedge which was made of the same material as the Bat Phantom (copper), see
Fig. 5.5 a). There is a coarse grading at the front side (0 mm to 70 mm in steps of
10 mm) and a fine grading in perpendicular direction at its backside (0, 0.5, 1, 2, 4
and 7 mm). In this way the step wedge provides a fine grading over the full range of
material thickness which can be inspected with X-ray tubes. The resulting size of the
step cross-sections is 20× 20 mm.

a)

Coarse grading at front side: 

0, 10, 20, 30, 40, 50, 60, 70 mm

Fine grading in perpendicular direction at 

back side: 0, 0.5, 1, 2, 4, 7 mm

b)

0 … 7 mm

10 … 17 mm

20 … 27 mm

30 … 37 mm

40 … 47 mm

50 … 57 mm

60 … 67 mm

70 … 77 mm

Step sizes:

Positions for 

line profiles 

indicated by 

dashed arrows

Figure 5.5: a) Photo of copper step wedge. b) Radiography of step wedge at ANTARES
with thermal neutrons.

Fig. 5.5 b) shows an example of a radiography of the step wedge. We chose the result
for thermal neutrons because in this case many steps can be resolved by eye. To get
more detailed information we took line profiles across the fine grading as indicated by
the dashed arrows. Fig. 5.6 a) shows the profiles for the 3D micro-focus CT set-up at
Siemens CT PS 9 (200 kV 1.5 mm Cu) and Fig. 5.6 b) the result for the 2D CT set-up
at the EMPA (200 kV 5 mm Cu). The open beam grey level was scaled to be 50000 in
both cases but notice that the displayed grey level range is different. For comparison the
same color code is used, e.g. the green profile corresponds to the step thicknesses from
20-27 mm in both plots.

We directly see that the dynamic range is much larger at the EMPA, i.e. the measured
grey levels range down to 50 or less (bright blue curve 30-37 mm), compared to 3D micro-

76



5 Experimental results

a)

200 400 600 800 1000 1200 1400 1600 1800
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Position [pixel]

G
re

y 
le

ve
l

0 ... 7 mm
10 ...17 mm
20 ... 27 mm
30 ... 37 mm

Siemens CT PS 9
200 kV 1.5 mm Cu

Small step thickness:
Edges smeared out

Large step thickness: Strong
smearing over whole range

b)

400 500 600 700 800 900
0

50

100

150

200

250

300

350

400

450

500

Position [pixel]

G
re

y 
le

ve
l

20 ... 27 mm
30 ... 37 mm
40 ... 47 mm
50 ... 57 mm

EMPA
200 kV 5 mm Cu

Sharp
edges

Noise and photo−
multiplier instabilities

Figure 5.6: Line profiles across the fine grading of the step wedge for a) 3D micro-
focus CT and b) 2D CT at EMPA.

focus CT where the minimum usable grey level is about MinGL=1000 (dark blue curve
10-17 mm). The corresponding values for the dynamic range are DR=1000:1 (10 bit)
and 50:1 (5.5 bit), and the maximum material thicknesses which can be inspected is
approximately dMax=37 mm and 17 mm respectively. Tab. 5.3 summarizes the results
for the different experiments.

Experiment Beam Geometry dMax MinGL DR

CT PS 9 200 kV 1.5 Cu 3D cone 17 mm 1000 50:1 (5.5 bit)

EMPA 200 kV 5 Cu 2D fan 37 mm 50 1000:1 (10 bit)
450 kV 8 Cu 50 mm 250 200:1 (7.5 bit)

ANTARES 300 kV 1 Cu 3D parallel 15 mm 5500 10:1 (3.5 bit)
Thermal neutrons 35 mm

Table 5.3: Estimation of dynamic range from step wedge measurements (made of cop-
per).

The explanation for the large background signal in 3D micro-focus CT is scattering. If we
have a closer look at Fig. 5.6 a) we see that the profiles for the 3D micro-focus CT set-up
are non-linearly distorted, i.e. the scattering background is not a constant. For small
step thicknesses we observe an edge smearing (black curve 0-7 mm) which is typical for
back scattering inside the Flat Panel Image detector [Zsc03]. For larger step thicknesses
this effect extends over the whole step wedge (e.g. green curve 20-27 mm). In general
the background will depend on the shape and type of the investigated object.
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At the EMPA noise and photomultiplier fluctuations are significant close to the detection
limit (Fig. 5.6 b) but scattering is very effectively suppressed by the collimation of the
beam to an almost 0D beam profile. However, for 450 kV the performance was not
as good as for 200 kV (Tab. 5.3). The higher the energy the more critical scattering
becomes (review theory Fig. 2.2 b). At ANTARES, where 3D parallel beam geometry
is used, the background was even larger compared to 3D micro-focus CT. We conclude
that scattering is particulary strong in 3D CT set-ups where it can accumulate from all
rays in a 2D beam profile. This will become clear in the following subsection.

5.1.4 More details about scattering in 3D micro-focus CT

The previous results indicated that scattering is quite strong in 3D micro-focus CT.
Because of the high relevance of this configuration for industrial applications, we spent
some effort to understand the problem in more detail. The distortions pop out clearly if
we take line profiles across an edge of a lead plate. Fig. 5.7 a) shows the configuration for
this measurement and Fig. 5.7 b) illustrates the position of the profile in a radiographic
projection. It is important that the lead plate is large, strongly absorbing (thickness
5 mm) and machined precisely. Further it has to be aligned carefully, i.e. parallel to the
detector surface and with the edge exactly at the center of the detector (central ray of
cone beam).

a) b)

Figure 5.7: a) Configuration for lead edge measurement at Siemens CT PS 9. b) Po-
sition of line profile in radiographic projection.

The obtained function is the system response to an ideal step function and is called edge
transfer function. Fig. 5.8 a) shows the result at 200 kV for different beam hardening
filter thicknesses (copper filter) and a typical source object distance of SOD = 100 mm.
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Due to scattering the edge is strongly smeared out over a wide range resulting in an
’S’ shaped curve. This effect is massive and it is responsible for a large non-linear
background signal which reduces the dynamic range of the system. We point out that
this background is not a constant as the signal declines behind an object with increasing
distance to its borders. It increases very much with the beam hardening filter thickness,
e.g. for a 6.0 mm Cu beam hardening filter it is as high as 20% of the full signal with tails
extending over 400 pixels (80 mm) on each side of the edge. If we look at the zoomed
plot in Fig. 5.8 b) we see that the slope in the center is also smeared out, but only in a
short range < ±4 pixel (0.8 mm) which is determined by the projection of the focal spot
of the X-ray tube via the edge to the detector. This is expected and limits the spatial
resolution as described in theory section 2.1.1.
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Figure 5.8: Edge transfer function measured with lead edge in the 3D micro-focus CT
set-up: a) Full scale plot: Scattering causes a widely extended background which reduces
the dynamic range. b) Zoomed plot: The finite extension of the focal spot affects the
slope in a short range about the center which defines the spatial resolution.

In order to identify the different sources of scattering we performed a number parameter
variations which we cannot show in detail here. One contribution is back scattering
inside the Flat Panel Image detector [Zsc03] and as we have seen in the plot before,
there must be a strong contribution of the beam hardening filter as well. The effect of
the beam hardening filter is twofold:

• A thicker beam hardening filter increases the mean energy of the X-ray spectrum
and therefore the probability for scattering increases in the detector and the filter.

• If a primary X-ray passes through a thicker beam hardening filter it passes through
more material where it can be potentially scattered.
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From this point of view we should use a low tube voltage and a thin beam hardening filter.
However, for the inspection of strong absorbing metal objects like the Bat Phantom we
need high energies, i.e. a high tube voltage and a thick beam hardening filter, in order
to enhance the penetration possibilities (review theory section 2.1.4). Fig. 5.9 shows the
3D micro-focus CT results for the Bat Phantom at 200 kV using a 0.5 and 5 mm copper
filter. Both images appear to be very similar and apparently the plus of penetration
which is expected for the 5 mm filter is cancelled out by the increased background due
to scattering. The actual background level for the CT experiment can be estimated by
taking the minimum grey value (MinGL) of the recorded projection data (sinogram),
see Tab. 5.4. This is possible because the Bat Phantom totally absorbs the X-rays in
some directions. We point out that in any case the scattering background is huge (also
for thin beam hardening filters) and that the system performance is very limited for the
inspection of strongly absorbing objects like the Bat Phantom.

200 kV 5 mm Cu200 kV 0.5 mm Cu

Figure 5.9: 3D micro-focus CT of Bat Phantom at 200 kV for different beam hardening
filter thicknesses: The expected plus of penetration for the 5 mm filter is cancelled out
by the increased background due to scattering.

Experiment MinGL DR

200 kV 0.5 mm Cu 1150 50:1 (5.5 bit)
200 kV 5 mm Cu 4150 10:1 (3.5 bit)

Table 5.4: Minimum grey level (MinGL) in the projection data of the CT experiment
and resulting dynamic range (DR) for a direct beam of 50000.

In addition to the detector and the beam hardening filter there is a contribution from
the X-ray tube as well, e.g. the emission window of the tube acts in the same way
as a beam hardening filter. The different effects are illustrated in Fig. 5.10 a). The
scattering of the beam hardening filter (or tube window) is projected via the edge to
the detector (indicated by ray 1) in the same way like the focal spot of the X-ray tube,
i.e. the illuminated spot of the filter is projected with magnification M-1 (review theory
Eqn. 2.3). Therefore if we move the edge close to the tube (small SOD, large M), the
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edge smearing is dominated by the scattering from the beam hardening filter (or tube
window). If the edge is fixed directly to the detector (SOD=SDD, M=1), we observe only
the detector effect (ray 2). The result for a measurement without beam hardening filter
(0.0 mm CU) is shown in Fig. 5.10 b). It reveals the contribution of the tube window (or
other tube components) and the detector. Remark: The detector contribution depends
strongly on the energy and therefore would be much larger with beam hardening filter.
An other effect is scattering from the investigated object, which is not relevant for the
lead edge measurement, but can play a role in CT [Kas05].
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Figure 5.10: a) Possible sources of scattering in the lead edge experiment: beam
hardening filter (or tube window) and Flat Panel Image detector. b) Edge transfer
function (zoomed plot) for different positions of the lead edge, measured without beam
hardening filter: This reveals the contribution of the detector and the tube window.

The formation of the observed ’S’-shaped curve in the lead edge experiment can be de-
scribed qualitatively in the following way: In theory section 2.1.1 we mentioned that the
effect of the focal spot on the image (here: edge transfer function, ETF), can be com-
puted by a convolution of a point spread function (PSF) with the ideal image (here: ideal
step function ETFIdeal). We can extend this model by adding the scattering contribution,
i.e. a point scatter function (PScF):

ETF = ETFIdeal ⊗
(
PSF + PScF

)
. (5.1)

In this model the PSF and the PScF are the system response to a primary projection ray
(needle ray or delta pulse). This is of course not a correct model for scattering but we
might take it as a first order approximation and if we further assume basic rectangular
functions for the PSF and PScF, the resulting edge transfer function in Fig. 5.11 a)
rudimentarily reflects the experimental result (Fig. 5.8 b). This model further explains
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the effect of beam collimation: If the dimension of the beam profile in Fig. 5.11 b)
is reduced, the spatial extent of the point scatter function is reduced alike and the
convolution sums up less values. If the 2D PScF has a size of N×N pixels, the reduction
of the scattering background will be a factor of N per dimension. This confirms that
scattering is particularly strong in 3D CT set-ups and we conclude that beam collimation
is the only way to achieve a high data quality3.
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Figure 5.11: a) Qualitative model for the formation of the ’S’-shaped edge transferfunc-
tion (ETF): An ideal step function (ETFIdeal) is convolved with a point spread function
(PSF) and a point scatter function (PScF). b) Illustration of the effect of beam colli-
mation: The number of values of the PScF which are summed up in the convolution is
reduced by a factor of N per dimension to which the beam is confined. The scattering
background will decline alike.

3A scattering correction which includes all effects is questionable from today’s point of view. A recent
work which attempts a correction for scattering of the object is [Kas05].
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5.2 Attempts for limited view angle tomography in
3D micro-focus CT

In the previous section we found that scattering is the primary distortion in 3D micro-
focus CT and obviously this is a serious problem if we want to apply iterative recon-
struction algorithms which include prior knowledge of the object. In order to reduce
scattering we have to confine the cone beam at least to a fan beam. Although in this
case the special advantages of the 3D micro focus CT set-up (fast 3D scanning with
isotropic magnification) are lost, our experiments are valuable to point out the essential
requirements for limited view angle tomography.

5.2.1 Beam confinement: 2 pixel-slit experiment

For the following experiment we confined the cone beam in the 3D micro-focus CT set-up
to a fan beam. This was achieved by means of a lead slit as shown in Fig. 5.12 a). The
projection of the slit to the detector had a width of only 2 pixels (pixel size 0.2 mm), see
Fig. 5.12 b). For this reason we will refer to the experiment as ’2 pixel-slit experiment’
or short ’2PSL’. The slit itself was assembled from two precisely machined lead edges
which were separated by two exact spacers. The manual alignment took some effort but
after some iterations it was sufficient. Another lead collimator in front of the X-ray tube
was necessary to avoid scattering from the environment.

a) b)

Figure 5.12: Set-up for 2 pixel-slit experiment. a) Arrangement of the components
and b) projection of the slit to the detector.

With this set-up we repeated the lead edge measurement which was described in sec-
tion 5.1.4. The lead edge was aligned perpendicular to the slit and the profile taken in
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direction of the slit. Fig. 5.13 shows the obtained edge transfer function (’2PSL: lead
edge’) and compares it to the case without beam collimation (’3DCT: lead edge’). The
beam parameters were identical in both cases (200 kV 0.5 mm Cu). This plot proves
very impressively that scattering can be significantly reduced by beam confinement. As
a result the grey levels can be very small here (zoomed plot with grey level range -50 to
550).
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Figure 5.13: Edge transfer function for the 2 pixel-slit experiment (2PSL) compared
to the 3D set-up.

We had to take special care for this measurement. Apart from scattering the Flat Panel
Image detector exhibits another critical distortion. It is detector lag, i.e. the effect that
the X-ray signal declines very slowly after turning the X-ray beam off. This will be
described in more detail later (section 5.2.3). Here it is important to notice that we had
to use a special scanning scheme to avoid lag, i.e. we turned the X-ray beam off for about
30 min before we took the dark image for the offset calibration, then we acquired the
open beam image for the gain correction and then the object image. Finally the offset-
/gain correction was performed without clipping of negative values and for comparison
we scaled all signals according to a direct beam of 50000 grey levels.

The remaining lag and the amount of noise were determined by the same scanning scheme
but covering the slit completely with the lead plate (denoted in the figure by ’2PSL: lead
plate’). The mean value along the slit gives a lag of 5 grey levels (after 30min) and the
standard deviation a noise of 12 grey levels (acquisition time 20 s). These are excellent
values. However, for a CT experiment it is not possible to achieve the same performance.
The described scanning scheme requires an enormous effort, which is not feasible for each
projection in a CT.
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5.2.2 Application of iterative reconstruction with prior knowledge

At this point it is evident that the better we can collimate the beam the better the
dynamic range and the data quality will be. For the 2 pixel-slit experiment (2PSL) we
expect a significant improvement for the CT of the Bat Phantom compared to the 3D
configuration. This is confirmed if we look at the FBP reconstructions in Fig. 5.14. In
the figure we additionally show the attempt for a ’naive’ scattering correction for 3D CT.
The ’naive’ correction was simply subtracting the minimum value in the sinogram (set
of projection data) before the reconstruction which would be accurate for a constant
background but is only a very rough approximation here. In all cases a beam hardening
correction was performed (see details below).

3D CT

Naive Sc Corr.

BH Corr.

2PSL

BH Corr.

3D CT

BH Corr.

ML-TR 01 SM reconstructionFBP reconstruction

Figure 5.14: CT of Bat Phantom at 200 kV 0.5 mm Cu: FBP and ML-TR 01 SM
reconstruction for 2 pixel-slit experiment (2PSL) compared to 3D CT.

The figure further shows the results for ML-TR 01 SM (01: single material prior knowl-
edge, SM: smoothness prior). The reconstruction parameters were optimized as previ-
ously described for our simulations and we used the same settings here (review Tab. 4.5).
As expected the reconstruction totally fails in 3D CT because of scattering. Further we
see that the ’naive’ scattering correction is not a solution to the problem. The only
way to get really better is a beam confinement as it is demonstrated in the 2 pixel-slit
experiment. But still the reconstructed object suffers from shape deformations and we
assume that there are remaining distortions in this experiment. It is difficult to identify
them here but we assume that it may be detector lag and some scattering which is left
over. In addition to this the performance of the beam hardening correction is affected if
lag or scattering occurs.
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It should attract our attention that the FBP image for the ’naive’ correction appears to
be only a bit worse compared to the 2 pixel-slit experiment although the data quality
is much worse as we conclude from the ML-TR 01 SM images. The effect of the ’naive’
correction is that it removes a constant offset but the non-constant contribution of scat-
tering remains. It is typical that FBP is so robust against non-linear distortions while
the iterative reconstruction with single material prior information reacts very sensitively.

5.2.3 Discussion of remaining distortions

The actual scattering background in the projection data (sinogram) of the 3D CT can be
obtained by subtracting the projection data of the 2 pixel-slit experiment. Necessarily
the alignment of the Bat Phantom must be identical in both experiments and therefore
the CT for the 2 pixel-slit experiment was performed at first, then the slit and collimator
were removed without touching the sample and then the 3D CT was done. Fig. 5.15 a)
shows two selected profiles of the resulting difference sinogram, one corresponds to the
projections of the Bat Phantom in perpendicular position (’BP ⊥’) and the other to the
Bat Phantom in parallel position (’BP ‖’) relative to the detector surface. Once more
we see that the background strongly varies over the detector surface and that it depends
on the phantom orientation and its shape. This explains why the ’naive’ correction
(subtraction of a constant) does not work. The overshoots at the edges correspond
exactly to the long scale edge smearing which was observed with the lead edge.
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Figure 5.15: a) Scattering background in the projection data for 3D CT of the Bat
Phantom: Two selected line profiles across the difference sinogram (set of projection
data) of the 3D CT and the 2 pixel-slit (2PSL) configuration. b) Effect of polychro-
matic X-rays: Logarithmic attenuation measured with the step wedge for the 2 pixel-slit
experiment compared to simulated data.
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After we reduced scattering in the 2 pixel slit set-up we can measure the effect of the
polychromatic X-rays by using the step wedge which was described in section 5.1.3. In
Fig. 5.15 b) the measured logarithmic attenuation is plotted for the different step thick-
nesses and compared to simulated values. In both cases the same parameters were used,
i.e. 200 kV with 0.5 mm beam hardening filter. The spectrum for the simulation was
obtained from the PTB [Ank00] and may not be exactly identical to the experiment
but actually the agreement of the computed and the measured attenuation values was
quite good. It was therefore possible to use the simulated curve directly as a calibra-
tion curve for the beam hardening correction (review theory section 2.1.3). Only for
larger step thicknesses deviations become significant and this is where the limit of the
dynamic range is reached. Here the maximum useable logarithmic attenuation is about
ln(1000)=6.91, i.e. the dynamic range is 1000:1 or 10 bit. By coincidence this value is
the same as for the EMPA. It is important to mention that the step wedge measure-
ment was performed with the same care to avoid lag as we did for the lead edge before
(subsection 5.2.1).
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Figure 5.16: a) Detector lag: decay of detector signal vs. time after turning the X-ray
beam off. b) Detector readout noise: measured in the dark image for individual pixels
vs. number of averaged acquisitions for different integration times tA.

Fig. 5.16 a) shows that detector lag is a serious problem for the considered Flat Panel
Image detector in our set-up. The plot was obtained in the following way. First the
detector was irradiated for 2 min with the X-ray beam on (200 kV, 0.5 mm Cu). Then the
beam was turned off and the decay of the detected signal was recorded for an individual
pixel (actually 4000 pixels were averaged). Finally offset values which were measured
after 2h were subtracted. We see that the lag signal is still as high as 800 grey levels
after 10 s. This appears very high but the effect on CT is smaller because the object is
rotated quite slowly. In a 3D CT it is only hardly visible because it is usually dominated
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by scattering. In the 2 pixel-slit experiment scattering is reduced and the lag is at least
partly responsible for the failure of ML-TR 01 SM above.

If we consider the hypothetic case where all systematic distortions would be cured, then
the ultimate limit for the dynamic range would be given by the readout noise of the
detector. For a measurement a sequence of dark images was acquired and the standard
deviation was calculated for an individual pixel. We additionally took the average of
a certain number of acquired images before computing the standard deviation. The
resulting readout noise is plotted in Fig. 5.16 b) for a variable number of averages. The
measurement was performed at room temperature (20◦) and the X-ray beam was turned
off 24 hours before in order to avoid lag. We see that the noise properties of the detector
are very good and as to be expected the noise can be drastically reduced by averaging,
i.e. it declines from 45 grey levels without averaging to 10 grey levels for 20 averages.
This is similar for different acquisition times which proves that the observed noise is
indeed merely related to the readout process. Remark: for the lead plate measurement
above (subsection 5.2.1) the noise level was a bit larger (12 grey levels for 40 averages at
0.5 s acquisition time) because in that case the standard deviation was calculated over
space and therefore included calibration imperfections as well, while here we looked at
the standard deviation which was calculated from a time series for an individual pixel
(actually 10000 pixels were considered and the final results averaged). The dynamic
range of our detector is specified in the data sheet with 80 dB, i.e. 10000:1 or 13 bit.
This is equal to about 6 grey levels of noise which seems possible for very high averaging
although this would be not practicable for CT experiments.

5.3 2D limited view angle tomography for EMPA data
at 200 kV

In the previous section we showed that a beam confinement is crucial to avoid scattering
which is a prerequisite for limited view angle tomography. We recall that the EMPA set-
up realizes an almost 0D beam profile by a special tungsten collimator (review section 5.1)
and therefore it was superior compared to other existing systems. At 200 kV we can
assume that the collimator completely absorbs the unwanted scattering which comes from
the object side and further that the scintillator cells fully absorb the incident radiation
such that back scattering cannot occur. Further at 200 kV the amount of limited view
angle artifacts in FBP reconstruction were comparable to our simulations and therefore
this case is best suitable to demonstrate what can be achieved with limited view angle
tomography today.
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5.3.1 Pre-processing of the projection data

The required correction for polychromatic X-rays was performed similarly to the 2 pixel
slit experiment (previous section) using the method which is described in theory sec-
tion 2.1.3. The task was to fit a suitable simulated curve to the data which was measured
with the step wedge and take it as a calibration curve for the correction. Fig. 5.17 a)
shows the result for the measurement at 200 kV with a 5 mm copper beam hardening
filter. To optimize the fit we considered a linear combination of a number of simulated
curves for similar beam parameters. This is an advantage because the available spectra
for the simulation do not necessarily agree with the real spectrum. Actually we found
that for this fit method linear spectra can be sufficient. Such a spectrum is given by a
simple linear function for the number of emitted quanta N(E)=Emax-E. With our sim-
ulation tool (review section 4.1) we then computed the attenuation in copper including
an optional beam hardening filter and a CdWO4 scintillator for detection. After some
trial and error we obtained the best result for a linear combination of two curves, one at
200 kV with 1.5 mm copper beam hardening filter and the other with a 2.5 mm filter.
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Figure 5.17: Step wedge measurement at EMPA (200kV, 5 mm Cu): a) Logarithmic
attenuation vs. step thickness. b) Relative deviation of measurement and simulation.

The resulting deviations from the measured values are plotted in Fig. 5.17 b). We see
that the accuracy was quite good, i.e. 1% before the detection limit was reached at about
35 mm. The corresponding dynamic range of 1000:1 (10 bit) agrees with the estimation
from the line profiles across the steps (review section 5.1.3) and defines a minimum
usable grey level (MinGL) of 1

1000
relative to the direct beam intensity. Below MinGL

the projection values in a CT experiment are not valid and we know from our simulations
that they have to be skipped in the reconstruction for limited view angle tomography
(review section 4.3). In addition to the detection limit itself which was considered in the
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simulations we have additional effects in the experiment, e.g. a non-linear response close
to the detection limit, the fact that not all pixels have the same dynamic range and that
noise and especially photomultiplier fluctuation on small values correspond to a large
virtual fluctuation of material thickness. In practice we included this into our estimation
for the dynamic range, i.e. we estimated the value for MinGL a bit higher than we could
have. Further we verified the reconstruction performance for different values of MinGL
and confirmed that the originally selected value was a safe choice.

5.3.2 Reconstruction results for the Bat Phantom

Fig. 5.18 shows the reconstructions of the Bat Phantom (200 kV, 5 mm Cu) with the
iterative algorithms which were optimized in our simulations (review section 4.3) and for
comparison we also added the corresponding FBP result.

DT 01 SM

8 h (50 images 

averaged)

ML-TR 01 SM

40 min

SART 01 SM

5 min

FBP

5 s

Position for 

line profiles

Figure 5.18: Reconstruction of Bat Phantom from EMPA data (200 kV, 5 mm Cu).
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In all cases a beam hardening correction was performed and small projection values were
skipped as described above. The scanning parameters were described in section 5.1.2 and
the reconstruction options were set like in the simulation. We can directly compare the
EMPA results to the ideal data in Fig. 4.8. If we do so we recognize that SART (with
single material prior 01 and smoothness penalty term SM) failed in the experiment
while it showed the best performance in the ideal case. In contrast to this ML-TR
performs quite well which confirms what we have seen in simulations with distortions
(review Fig. 4.9), i.e. SART seems to be most sensitive to noise and distortions on small
projection values while ML-TR is more robust due to its special properties.

For DT we have a particular situation because the result significantly improved compared
to the simulation. The shape deformations which were observed before did not appear
here. There are three reasons for this. First aliasing is not as strong in the experiment
as it was in the simulation because the projection image is smeared out by the focal spot
before it is sampled. Secondly the annealing options were further optimized and a quite
strong smoothness prior was used. Thirdly the reconstruction was repeated 50 times
and averaged which explains the longer reconstruction time of 8 h compared to 10 min
in the simulation. The averaging mostly improves the stability (recall that repeated DT
reconstructions can vary because of the statistical nature of the algorithm) and a lower
number would probably be sufficient as well.
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Figure 5.19: Line profiles for DT 01 SM reconstruction at EMPA: a) vertical and b)
horizontal. Agreement within pixel resolution (0.23mm).

Our results prove that a realization for limited view angle tomography is principally
possible. In this example (200 kV 5 mm Cu) the maximum possible material thickness
for inspection was enhanced from 35 mm to 70 mm (for copper) which is an increase by
100%. However, a few errors are still present, e.g. the smallest drilling hole (Ø 0.5 mm)
appears a bit two small in the DT image because of the strong smoothness prior and in
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the ML-TR image there are some wrong pixels at the edges. The pixel resolution was
0.23 mm (review Tab. 5.2) and the line profiles for DT in Fig. 5.19 match the reference
to a tolerance of one pixel which was similar for ML-TR (not shown). For the reference
we have chosen the FBP reconstruction of simulated ideal projection data.
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6 Conclusion

Aiming at non-destructive testing applications for limited view angle tomography we
could deliver a prove of principle for the special case of the Bat Phantom using the
particular 2D CT set-up at the EMPA (Fig. 5.18). But we point out that future de-
velopments are required for an industrial realization. At this stage the accuracy and
stability of the considered algorithms were not persuading, the possible image sizes were
too small and the reconstruction times too long. Although the EMPA set-up was the
best we could find, it is still not good enough. A higher spatial resolution is a must for
demanding inspection tasks and if we consider that SART reconstruction was excellent
for ideal data but failed in the experiment we conclude that there is much more potential
to enhance the data quality. When we introduced the Bat Phantom we formulated two
types of inspection tasks (section 3.3). The easier one was the verification of the internal
geometric structure with 100-200 µm accuracy. We expect that an application, e.g. for
gas turbine blades, which fulfils these requirements and uses limited view angle tomog-
raphy could be realized soon. The more advanced task of crack and void detection with
a resolution of 10 to 100 µm would require 3D micro-focus CT but this is questionable
in near future due to the poor data quality in such set-ups (Fig. 5.14) and due to the
status quo for the reconstruction algorithms. Another aspect is that limited view angle
tomography is only useful if the limit of the dynamic range is reached as it was the case
for the Bat Phantom at 200 kV. If 450 kV was used at the EMPA the filtered back pro-
jection reconstruction showed almost no artifacts (review Fig. 5.1.2) and the inspection
of the Bat Phantom or similar sized objects does not essentially require limited view
angle tomography presuming that the dynamic range of the detector may be further
increased. Nevertheless, the benefit of limited view angle tomography is obvious, i.e. to
inspect objects which are larger in certain directions than the dynamic range allows or
if the geometric access is restricted. In the considered example of the Bat Phantom at
200 kV the enhancement of object size was about 100%.
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7 Summary

Non-destructive testing on the base of 3D micro-focus CT allows to zoom into objects
with a high spatial resolution. Following the question how to inspect relatively large ob-
jects like turbine blades or other flat object with an oblong cross-section we investigated
limited view angle tomography, i.e. the case that the X-ray signal is not available from
some directions which are naturally required for filtered back projection (FBP) recon-
struction. We had to look for new types of algorithms on the one hand and to achieve
suitable experimental conditions for their application on the other hand. However, we
found that a general solution for 3D micro-focus CT was not feasible at this stage and
we focussed on a special problem for a prove of principle, i.e. 2D limited view angle
tomography of oblong single material objects with moderate spatial resolution. For this
purpose we designed the Bat Phantom which is made of copper and is representative for
heavy absorbing objects like e.g. gas turbine blades. Its dimensions (70×16 mm) were
selected to hit the limit of the dynamic range in typical CT systems such that the X-ray
signal cannot be detected from a few view angles. If the corresponding projection values
are skipped in the reconstruction this is equivalent to a partial circular scan whereas
FBP requires a full circular scan for exact reconstruction.

From a theoretical point of view we distinguished two fundamental configurations for
limited view angle tomography. One is the partial circular scan and the other is to-
mosynthesis where the rotation is completed but the projection rays are tilted. In both
cases the sampling of the object is not sufficient which could be directly visualized by
missing points in the Fourier space of the object. In chapter 3 we motivated our work
by looking at potential applications which are of high industrial relevance: a small steel
cylinder in the standard configuration for 3D micro-focus CT, a simulation model for
a ball grid array using a partial circular scan or tomosynthesis, and the Bat Phantom
which was described above. Using FBP reconstruction we observed characteristic rhom-
bic shaped artifacts (limited view angle artifacts) in all cases. We pointed out that they
were directly related to incomplete sampling and not caused by the specific reconstruc-
tion algorithm. This was illustrated with the discrete Fourier transform of an opaque
box (masking of missing points).

A solution of the reconstruction problem requires a compensation of the missing informa-
tion. For this purpose prior knowledge of the object has to be included into an iterative
algorithm. For our work the most important type of prior information was the compo-
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sition of a single material and additionally we considered smoothness and the exterior
geometric shape of the object. We were first attracted by the simultaneous algebraic
reconstruction technique (SART) which is the most developed iterative algorithm and as
part of this work we implemented our own 2D version for a detailed analysis. With minor
changes we could further extend it to maximum likelihood reconstruction for transmis-
sion tomography (ML-TR) which has distinct properties, i.e. using a correct noise model
and paying less weight to small projection values. In both cases the single material prior
knowledge was heuristically included by repeated segmentations (binary steering). More
fundamental is the discrete tomography (DT) approach presented by A. Kuba from the
university of Szeged, Hungary. For its evaluation we went into a cooperation which lead
to a joint publication.

In chapter 4 we evaluated the principal possibilities for the reconstruction of the Bat
Phantom with the help of simulated projection data. At first we looked at ideal monochro-
matic data with an infinite dynamic range such that limited view angles do not occur
and FBP is superior in image quality and speed. We showed that SART (without prior
information) can principally achieve the same image quality as FBP in a reasonable
time while the convergence for ML-TR was quite poor which was related to its distinct
properties. We pointed out that aliasing is critical in iterative reconstruction and that
the optimization of the projection model is particularly important. In the next step we
reduced the dynamic range and limited view angle artifacts appeared in FBP reconstruc-
tion. We proved representatively for SART that the single material prior information
(’01’) is essential for a solution and a very good performance was achieved in combi-
nation with a smoothness penalty term (’SM’). The corresponding results for ML-TR
and DT were also quite good but showed a few errors. An important aspect is that the
projection values at the detection limit are not correct and they had to be skipped in
the reconstruction. In general systematic distortions are particularly critical due to the
single material prior information. We showed that polychromatic X-rays cause severe
shape deformations and we concluded that a correction (beam hardening correction)
is obligatory for experimental data. Moderate noise, however, seemed to be tolerable.
Overall SART was most sensitive to distortions while ML-TR and DT seemed to be
more robust.

In any case the sensitivity of the algorithms to distortions is a fundamental problem
for an experimental realization of limited view angle tomography and in chapter 5 we
looked for suitable set-ups. First we presented the FBP results of the Bat Phantom
from three very contrary experiments: 3D micro-focus X-ray CT at Siemens CT PS 9,
3D neutron CT at the TUM and 2D mini-focus X-ray CT at the EMPA. Especially
the data quality in the 3D CT set-ups was strongly distorted which was confirmed with
step wedge measurements. For 3D micro-focus CT we found that a strong non-constant
scattering background is the major distortion (at 200 kV). With the help of a lead edge we
showed that the X-ray tube, the beam hardening filter and the Flat Panel Image detector
have a significant contribution. One consequence is that the positive effect of a thicker
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beam hardening filter in a CT experiment (less beam hardening artifacts and larger
maximum object size) is cancelled out by a higher scattering background. We should
mention that this is a particular problem only for the inspection of strongly absorbing
objects like the Bat Phantom. Considering limited view angle tomography we showed
representatively for ML-TR that the reconstruction fails completely if the single material
prior information is used. Further a ’naive’ subtraction of a constant offset (minimum
value in sinogram) did not improve much. With a lead slit (2 pixel slit experiment)
we demonstrated that a significant reduction of scattering is only possible by confining
the beam profile from 2D to at least 1D. Although, in this case, we could perform a
proper beam hardening correction there were still some shape deformations in the ML-
TR 01 SM (01: single material prior knowledge, SM: smoothness prior) reconstruction.
Beside remaining scattering, we showed that strong detector lag is an additional problem
for Flat Panel image detectors. In contrast to this the noise properties were very good.
Finally a solution was only possible with the unique 2D CT set-up at the EMPA which
realizes an almost 0D beam profile by collimation.
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A Appendix

A.1 Dimensions of the Bat Phantom
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Figure A.1: Dimensions of Bat Phantom. The Phantom is composed of two parts
which were glued together.
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[Sul05] Schulz, M., Aufbau einer Röntgenanlage für Radiographie und Tomographie
am Experiment ANTARES am FRM-II, Diploma thesis, Technische Univer-
sität München, 2005.

[Tur01] Turbell, H., Cone-beam reconstruction using filtered backprojection, Ph.D.
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