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Abstract

Numerical studies of core collapse supernovae are an important field of research in astro-
physics. They are concerned with such diverse aims as the investigation of the collapse
dynamics, the formation of a high-density neutron star, the propagation of shock fronts
and heavy element nuclear synthesis in the shock, the explanation of the light curves,
the cooling, spin behavior and oscillation modes of the neutron star, pulsar physics and
the interaction of the shock with the interstellar medium and the fate of the supernova
remnant. Many of these aspects can be modeled using Newtonian gravity.
On the other hand, core collapse of ideal fluids has always been a playground for numerical
general relativity. However, numerical simulations of relativistic matter flows which evolve
in the presence of strong (and dynamic) gravitational fields are a highly complex problem.
To make things worse, the most commonly used formulations of numerical relativity lack
long-term stability. Therefore, up to date no numerical simulations of rotational core
collapse to a neutron star have been undertaken in general relativity.
In this thesis we present a new approach to this problem: In order to simplify the com-
plexity of the gravitational field equations of general relativity, Wilson and coworkers have
proposed an approximation scheme, where the three-metric γij is chosen to be conformally
flat. This reduces the Einstein equations to a set of 5 coupled elliptic equations. We have
adopted this approximation for the equations of spacetime, and have combined it with a
modern high-resolution shock-capturing scheme to solve the hyperbolic conservation equa-
tions for relativistic hydrodynamics, with an equation of state consisting of a thermal and
a polytropic contribution.
Here we introduce an axisymmetric general relativistic hydrodynamic code which is based
upon this approach. We have applied this code to simulations of rotational core collapse.
A comprehensive set of tests demonstrates the ability of the code to handle a variety of
astrophysical situations, including, among others, the propagation of highly relativistic
shocks and the evolution of rapidly differentially rotating neutron stars in equilibrium.
We have performed a parameters study of rotational core collapse and have computed the
gravitational radiation waveforms for each model. These results extend previous work on
rotational supernova core collapse and the resulting gravitational radiation in Newtonian
gravity. In most cases, compared to Newtonian simulations the gravitational wave signal
is weaker and its spectrum exhibits higher average frequencies, as the inner core is more
compact in the deeper gravitational potential in general relativity. The computed wave
templates will be useful in the data analysis of the gravitational wave interferometer
detectors which are scheduled to become operational in the near future. We present models
where relativistic effects qualitatively change the collapse dynamics. We show that in
relativistic gravity, core collapse with multiple bounces is only possible for a narrow range
of parameters. We further demonstrate that the prospects for detection of gravitational
wave signals from supernova core collapse are most likely not enhanced by taking into
account relativistic gravity.
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We are all in the gutter,
but some of us are looking at the stars.

Oscar Wilde, Lady Windemere’s Fan (1892).

It’s the nexus of the crisis
And the origin of storms

Just the place to hopelessly
Encounter time and then came me

...
Astronomy – a star

Blue Öyster Cult, Astronomy (1974).

Ich bin kein Freund großer Worte...

Harry Dee.
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Chapter 1

Introduction

1.1 History of Supernova Research

Rarely occurring spectacular phenomena in the sky have always been fascinating for human
beings. Among the most exciting of these are supernovae, although only a few human beings
ever have had the opportunity to see one with the unaided eye. In historical times, the ap-
pearance of new stars (or guest stars) has often been attributed to some heavenly omen which
was supposed to influence mankind’s fate for better, or mostly worse [91]. So the director of
the Chinese Imperial Astronomical Bureau, Yang Wei-te, who observed the supernova of 1054,
the one which should leave behind the much studied Crab nebula, was smart enough to ensure
his employer that this sign in the sky could be deciphered as a promise that a person of great
wisdom and virtue was to be found within his realm. He certainly did not want to share the ill
fate of his two famous predecessors Hsi and Ho who had been beheaded for not being able to
fulfil the Emperor’s expectations.

A few centuries later it was sheer coincidence that the emergence of modern Western science
and especially astronomy in the Renaissance period was accompanied by the appearance of
two supernovae visible in Europe, and that two of the most famous astronomers ever, Tycho
Brahe and Johannes Kepler, each witnessed one of them. They were both, in succession, court
astronomers and astrologists of King Rudolph II of Bohemia – a combination of professions
which has somewhat gone out of fashion in later times. However, at those times of philosophical
and scientific clashes between the geocentric and heliocentric view of the Universe, at least
among professionals, the notion of a heavenly phenomena as indicators for famine and other
catastrophes (in ancient Japan, astronomers had interpreted the supernova of 1181 as a sign
of abnormality, indicating that at any moment we can expect control of the administration to
be lost [91]) had already yielded to the idea of scientifically interesting objects of study. Tycho
must have really been struck so much by his noticing of the new star in 1572 that he asked his
servants for confirmation of his observation, and as not even that seemed convincing enough
for him, he even sought assistance from local peasants who passed by.

As already mentioned, the Renaissance supernova observations and their interpretation also
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CHAPTER 1. INTRODUCTION

played a role in the struggle for the acceptance of the new heliocentric picture of the Universe. In
the Aristotelean philosophy, which still influenced science in late medieval times, the celestial
crystal spheres of the planets and fixed stars which was supposed to surround the Earth at
the outer boundary of the Universe was thought to be flawless and unchanging. All nonregular
heavenly phenomena therefore had to take place in the Earth’s atmosphere. When observations
of the supernovae exhibited no measurable parallax, the distance to the supernovae had to be
extended beyond the Moon’s orbit and even the known planets. This dealt a serious blow to
the Aristotelian view.

A similar extension in distance for the origin of supernovae was repeated in 1885 when
the first extragalactic supernova was discovered. However, since Kepler’s supernova in 1604,
astronomers had been patiently waiting in vain for another unobscured nearby supernova,
although theoretical calculations and the observations in other galaxies were indicating an
average galactic supernova birthrate of about one every 20 to 50 years. In 1987, the long waiting
was finally rewarded when the light of supernova SN 1987A arrived on Earth. This supernova
had exploded in the Large Magellanic Cloud, a satellite of our Milky Way, about 160,000 years
agoa. This event enhanced interest in supernova research in astronomy and astrophysics, and
triggered the publication of a great number of scientific articles; this is similar to what happened
after Kepler’s supernova, of which Kepler himself said that, as far as its astrological significance
was regarded, it would bring good fortune to publishers at least. Today, more than a decade
after the explosion of a blue supergiant star was detected as SN 1987A, the field of supernova
research is still an interesting and far from completely solved topic in astrophysics, although it
has calmed down to the daily scientific routine work again after the boost it got from SN 1987A.
New advanced concepts for explosion mechanisms for both thermonuclearly driven supernovae
and core collapse supernovae, and the advent of gravitational wave detectors, which will be
able to detect galactic supernovae as soon as they are in full operation within the next years,
will most probably reveal new insights into the physics of supernovae in the years to come.
The supernova explosion mechanism and the prospects of detectability will be discussed in the
following sections.

aAlthough astrophysicists have now sophisticated models to determine the event rate of galactic supernovae,
the corresponding detection rate on Earth is strongly influenced by their galactic distribution, the possible
obscuration by dust clouds, and the runtime of the light and the neutrinos.
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CHAPTER 1. INTRODUCTION

1.2 Supernova Classes

Supernovae come in two breeds. This was first discovered by Minkowski in 1941 on observational
grounds, when he split a sample of 14 extragalactic supernovae into one class of 5, which
exhibited distinct hydrogen absorption lines in their spectrum, and into one class of 9, which
did not. By now, after the discovery of numerous other supernova explosions, this clearcut split
into two single types and therefore explosion scenarios has evolved into the emergence of various
subclasses [29, 30], which we want to summarize briefly in the following: If hydrogen Balmer
lines are present in the spectrum of the light emitted by the supernova, either as blue-shifted
emission lines, or red-shifted absorption lines, we speak of Type II supernovae. Supernovae,
whose spectrum exhibits no distinct hydrogen line features, are dubbed Type I supernovae.
This class again branches into the subclasses Type Ia (which contain Si absorption lines), Ib
(which show no Si, but He lines), and Ic (which have neither Si nor He lines in their spectrum)b.
The light curve, i.e. the emission of electromagnetic radiation in the visible spectrum versus
time, also differs for both types: In a Type Ia supernova, the initial peak in the light emission
is followed by an exponential drop over about 3 magnitudes within about 100 days, which
gradually goes over into a gentler decline. On the other hand, in Type II supernovae the
maximum brightness phase is followed by either a distinct plateau with a subsequent drop by
about 4 orders in magnitude in the first 100 days (Type II-P), or by first a steep linear decline
in magnitude in the first 100 days (Type II-L). Then the slope flattens and the afterglow decay
is less pronounced compared to a Type I supernova. A comprehensive review of supernova light
curves can be found in [29].

However, the spectroscopic classification is misleading in terms of the underlying explosion
mechanism, as it only yields information about the state of the envelope of the stellar progenitor
at the time of the supernova explosion. A useful observation, which has helped to determine the
explosion mechanism, is a particular feature of Type II and Type Ib/Ic explosions: The host
galaxies of these events are spiral galaxies, where they especially occur in the spiral arms, i.e. in
places where the density of young and massive stars is high. Type Ia supernovae however occur
in all types of galaxies, but seem to favor elliptic galaxies, i.e. galaxies with an overproportional
population number of old stars. This observation indicates that members of the Type Ia have
old stars as progenitors, whereas such of Type II and Type Ib/Ic are associated with massive
stars, which have a relatively short lifetime.

The exact mechanism of Type Ia explosions is still a somewhat open issue, with several
debated possible scenarios, although a standard model has emerged here: These explosions are
possibly caused by a thermonuclear deflagration which completely incinerates and subsequently
disrupts a compact star in a binary system, which has got rid of its H envelope prior to the
supernova explosion due to mass transfer to its companion star. The most likely candidate for a
Type Ia progenitor is a carbon-oxygen white dwarf in which a thermonuclear runaway is ignited
due to accretion from its companion. As a low mass transfer rate may be needed for a successful
explosion [143], the above scenario could explain the increased occurrence of this type in elliptic
galaxies, in which the formation rate of new stars is very low. The total energy released in
a Type Ia explosion is the thermonuclear energy of its fuel, which amounts about 1051 erg.

bType II supernovae can also be divided into classes II-L, II-P, IIn, and IIb. However, for Type IIn it is not
even known if they are genuine supernovae [30].
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Most of this energy is converted to kinetic energy of the stellar material which is ejected by the
explosion. As small part (about 1048 erg) is emitted in the form of electromagnetic radiation.

The by now well established theory of the Type II and Type Ib/c supernova mechanism
predicts those explosions to be the violent end of massive stars in the mass range between 9M�
(Type II) up to 30M� (Type Ib/c), where M� = 1.98× 1033 g is the solar mass. During their
evolution, they have developed an onion-like internal structure of layers consisting of different
nuclear compositionc. When the mass of the interior core, which contains the end products of
thermonuclear burning, becomes too large, an instability develops. Following this instability,
the dense interior core, which has an average density of about 1010 g cm−3, collapses on the
timescale of about 100 ms, and forms a neutron star. A part of the gravitational binding energy,
which is released during this gravitational core collapse as kinetic energy of the infalling mass
shells, is converted into an outward shock wave which drives the explosion of the outer layers
of the star. As in the case of Type Ia supernovae, the kinetic energy in the explosion amounts
to about 1051 erg, and the total electromagnetic radiation energy is of the order of 1048 erg.

In thermonuclear explosions, almost all of the liberated total energy couples to the stellar
material, which is then ejected. Therefore, by measuring the amount of ejecta, and its velocity,
one can infer an estimate of the total energy released in the supernova explosion. This method
can not be applied in an analogous way to core collapse supernovae: Here the kinetic energy of
the ejecta is only a small fraction of the gravitational binding energy released by the collapse
of the stellar core to a neutron star. During the collapse, about 3 × 1053 erg are released
as gravitational binding energy, of which less than 1% couple to the stellar matter to form
the shock wave. The overwhelming part of the binding energy is deposited in the form of
neutrinos, which are emitted during the formation of the neutron star. According to current
understanding of supernova core collapse, it is the release of the energy stored in neutrinos
which plays a decisive role in driving the supernova explosion. This standard model of core
collapse, and the still debated issues arising from it, will be the focus of Section 1.3.

Although astrophysicists now have elaborate models for the engines of the different types of
supernova explosions, many of the details are far from being fully understood. Nevertheless,
observers and theoretical astrophysicists use Type Ia supernovae as standard candles at high
red-shifts to measure the cosmic expansion rate, and thus to test cosmological models and to
determine the value of the cosmological constant [9]. In core collapse supernovae, the light
curves can be computed without detailed knowledge of the physics in the central explosion
engine. However, if it comes to nucleosynthesis and the emission of gravitational radiation
(see Section 1.4) and neutrinos from the core collapse, and the explanation of the properties of
newborn neutron stars, one must resort to multi-dimensional simulations of the collapse, which
is the content of this thesis.

cDuring their evolution as giant stars, the Type Ib/c progenitors have been stripped off their H envelopes
by a stellar wind or by mass transfer to a companion star. Possibly the Type Ic progenitors have also lost their
He envelopes.
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1.3 Physics of Supernova Core Collapse

As a result of the interplay between observation and numerical simulations, in the last few
decades a rather sophisticated standard scenario of the physics of core collapse supernovae has
emerged. This state-of-the-art model combines ideas from very different aspects of physics, in-
cluding, among others, stellar evolution, hydrodynamics, gravitational physics, and nuclear and
particle physics. (For a more detailed review of the standard model of core collapse supernovae
and numerical simulations, see e.g. [87, 61]).

As already indicated, the progenitor of a core collapse supernova is a massive star in the
mass range of 9M� to 30M� at the end of its thermonuclear evolution, which lasts for a time of
the order of about 107 yr. Initially, these stars consist mainly of hydrogen, which is burned to
helium by thermonuclear fusion at temperatures above 2×107 K. This is the star’s main energy
source for most of its lifetime. However, in the late evolutionary stages, helium, carbon, neon,
oxygen, and finally silicon burning are ignited subsequentlyd, with ignition temperatures up to
3× 109 K for Si [109]. A burning stage usually begins in the central regions of the star, where
the concentration of the nuclear burning products of the prior burning stage, and the density
and temperature are highest. As a consequence of this burning sequence, the star develops an
onion-like structure of concentric layers composed of different nuclei (see Figure 1.1).

In the center, elements of the iron-nickel group, which are the end products of the chain of
exothermic fusion reactionse, accumulate in a so-called iron core. The iron core is surrounded
by the silicon shell, the oxygen shell, and the carbon shell. The outermost parts of the stellar
structure consist of the helium shell and finally the hydrogen envelope, unless the star has
already lost its outermost layer(s) by means of a stellar wind.

Whereas in the outer layers of the star the pressure is still predominantly due to radiation
or ionized gas pressure, the iron core is stabilized against gravity by the pressure exerted by
degenerate relativistic electrons:

Pe � Pion � Prad. (1.1)

At the high densities and temperatures encountered in the core, the nuclei, electrons, and
photons are in nuclear statistical equilibrium via the strong and electromagnetic interactions.
This implies that their collisional mean free paths are much smaller than the characteristic
macroscopic scale of the system, i.e. the radius of the iron core. Furthermore, energy transport
by heat conduction, and the viscosity of matter can be neglected, i.e. the iron core can be
treated as an ideal fluid. (For a more detailed justification of the hydrodynamic ideal gas
model, see Section 4.1.) As the pressure of a relativistic degenerate electron gas follows a
polytropic relation with an adiabatic index γ = 4/3, the total pressure in the iron core depends
practically only on the density and can be well approximated by a polytropic equation of state
(EoS). Due to continuing silicon shell burning, the iron core mass increases until it exceeds
the Chandrasekhar mass, which is the maximum mass which can be supported by Pe against

dDuring their evolution, stars with masses less than about 9M� lose too much mass to be able to reach
central temperatures high enough to ignite oxygen. Their final state is a compact white dwarf consisting mainly
of carbon and oxygen.

eThe nucleus 56Fe has the maximum binding energy per nucleon.
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Figure 1.1: Onion-like shell structure of the progenitor of a Type II core collapse supernova:
The iron core in the center is surrounded by the silicon shell, the oxygen shell, the carbon shell,
the helium shell, and the hydrogen envelope. Note that the radial scale is arbitrary. (Figure
reproduced by courtesy of M. Rampp.)
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gravitational forcesf:
MCh = 1.457(2Ye)

2M�, (1.2)

where Ye is the electron fraction (number of electrons per baryon). When the core reaches
this limit, the central density ρ ∼ 1010 g cm−3, the temperature T ∼ 1010 K, the entropy per
nucleon s ∼ 1kB, and the electron fraction Ye ∼ 0.46. Accordingly, its mass has grown to about
1.5M�, and its radius is about 1,500 kilometers.

The iron core is marginally stable, and any lowering of its adiabatic index will result in a
collapse. The main process which drives the iron core to instability is electron capture by
nuclei and free protons. This “neutronization” reduces the degeneracy pressure exerted by
the electrons, as Ye is reduced (deleptonization). The electron neutrinos generated in the
electron capture processes can leave the iron core unhindered. Photodissociation can also act
as a source of instability: At temperatures like the ones in the iron core, highly energetic
photons can dissolve Fe nuclei into α particles, and those into free nucleons. This process is
endothermic as it consumes nuclear binding energy and effectively cools the core (and thus
reduces the pressure and lowers the effective γ). This effect is only significant in very massive
stars with main sequence masses greater than about 25M�, where Pion, which can be reduced
by photodissociation, constitutes about 10% of the total pressure.

When the adiabatic index is reduced below 4/3, the iron core becomes unstable against radial
oscillations. It starts to collapse on a dynamic timescale of several 10 milliseconds. As long as
γ stays below the critical value of 4/3, the collapse cannot be halted. Initially, any neutrinos
emanating from electron capture processes can leave the iron core without scattering. However,
at matter densities around 1011–1012 g cm−3, the opacity of matter due to coherent scattering
of neutrinos off nuclei increases considerably and becomes important. When the mean free path
of the neutrinos becomes comparable to the dimension of the core, the neutrinos are “trapped”
in the coreg. At even higher densities of about 1013 g cm−3, the neutrino–matter reactions
reach equilibrium, and the neutrinos fill up their Fermi sea. As a result, the phase space for
new neutrinos generated by electron capture is effectively blocked, and thus electron capture
is strongly suppressed. Therefore, nuclei, electrons, photons, and neutrinos are in equilibrium,
and the collapse proceeds adiabatically with γ ≈ const. (during the entire collapse, the specific
entropy only rises by about 0.5kB). This in turn means that the collapse (at least in the
nonrotating case) cannot be stopped unless the EoS changesh. As the density increases further,

fStellar rotation increases the maximum stable mass. Relativistic effects decrease the critical mass.
gOne can define a neutrino sphere at the radial location where the opacity is unity.
hElectron capture and photodissociation at the onset of collapse and during the infall phase will reduce the

effective adiabatic index γ to between 1.28 and 1.325. Neutral currents, which have been introduced in the
theory of weak interactions by Weinberg, Salam, and Glashow, are crucial in this collapse scenario: They allow
for coherent scattering off nuclei, with a cross section given by [109]

σcoh
A ≈ σ0

16

(
Eν
mec2

)2

A2

[
1− Z

A
+
(
4 sin2 θW − 1

) Z
A

]2

, with σ0 = 1.76× 10−44 cm2, (1.3)

where Eν is the neutrino energy, A is the atomic mass number, Z is the atomic (proton) number, mec
2 is the

electron rest energy, θW is the Weinberg angle, and σ0 is the characteristic cross section of weak interactions [128].
This cross section features an effective factor A2, which increases the opacity dramatically. If neutrinos would
continue to leak out during the collapse instead of being in equilibrium, the entropy would increase due to
ongoing electron capture, and the equilibrium for the nuclear matter would shift towards free nucleons. This
would in turn increase the gas pressure by the ions by a factor A ≈ 56, which would then dominate the total
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the separation between the nuclei becomes smaller. When the mean matter density approaches
nuclear density, the individual nuclei form extremely massive nuclei with mean atomic mass
numbers up to about 500i.

Until nuclear density is reached in the center of the core, the density and collapse profiles
obey the self-similar solutions for a γ = 4/3 polytrope. In these solutions, the core splits into
an approximately homologously falling inner core, in which the matter stays in sonic contact,
and into a supersonically falling outer core. The mass of the inner core is approximately the
Chandrasekhar mass (1.2) for the now reduced electron fraction Ye and lies between 0.6M�
and 0.9M�. The (negative) velocity of the inner core is proportional to the radius coordinate
r. This behavior, which can be derived analytically [46, 144], has been confirmed by numerical
simulations.

When the central density exceeds nuclear density at ρnuc ≈ 2.0× 1014 g cm−3, the repulsive
part of the nuclear forces between the protons and neutrons becomes important, and the EoS
rapidly stiffens. This can be modelled by a jump in γ to about 2.5j. This is sufficient to halt
the collapse by subsequently stopping the infalling mass shells, beginning in the center. From
the bouncing mass shells, acoustic waves start to travel outward through the inner core until
they concentrate near the sonic point. Within about 1 ms, the entire inner core has come
to a halt, and the pressure waves, which have accumulated at its edge, steepen into a shock
wave. This shock starts to propagate through the outer core, and reverses the velocity of the
supersonically falling mass shells by passing through them. The initial energy of the shock is
approximately equal to the kinetic energy of the inner core just before bounce, which is between
4 and 8× 1051 erg. This is in principle enough energy to power a supernova explosion. In this
prompt shock scenario, the shock wave would then eject the stellar envelope and leave behind
a hot core of supranuclear density with a radius of about 20 to 30 km, the nascent neutron
star (see Figure 1.2). However, it turns out that the shock stalls, because it loses energy due
to photodissociation of iron nuclei into α particles and free nucleons, as it propagates outward
through the infalling matter. The losses amount to about 2 × 1051 erg per 0.1M� of matter
which is passed by the shock. Additional energy losses arise from neutrino cooling as soon as
the shock breaks through the neutrino spherek. The energy gain by dissipation of kinetic energy
from infalling matter is insufficient to compensate the losses. As a consequence, the shock stalls
after a few 10 ms at a radius of several 100 km, when all its energy is spent in dissociating the
matterl, and the expanding shock front turns into an accretion shock.

pressure and stop the collapse. Such “thermal bounces” have been reported from numerical simulations, where
neutrino trapping due to neutral currents was not included.

iAt intermediate effective mass numbers electron capture is further suppressed due to shell blocking effects
in the neutron rich heavy nuclei [43].

jThe supranuclear γ is approximately bounded in the lower limit by 5/3, which is the adiabatic index
for a nonrelativistic Boltzmann gas of nucleons. The upper bound is 3, which is the maximum value for
nuclear forces between the nucleons consistent with extrapolations from heavy ion experiments, and theoretical
calculations [53].

kNeutrinos, which are generated in the heated matter behind the shock front, can then escape much easier;
this leads to a sudden rise in the neutrino luminosity.

lFor small iron core masses the prompt shock energy could in principle be sufficient to drive the shock
through the iron core. In the outer layers, where the density and temperature is lower, less energy is lost by
dissociation processes.
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Figure 1.2: Prompt shock phase of a core collapse supernova: While the inner core reaches a
new equilibrium state, the hydrodynamic shock propagates outward through the outer core, where
matter continues to fall inward. (Figure reproduced by courtesy of M. Rampp.)

At that time, in the interior a hot quasi-static proto-neutron star has formed. The electron
fraction is still large (Ye ≈ 0.3), and most electrons have not been captured by the protons
yet, as the neutrinos are still trapped inside the proto-neutron star. However, around the time
when the prompt shock has come to a halt, neutrino diffusion becomes important, i.e. more
electrons can be captured, and the proto-neutron star becomes neutron richer. Together with
the µ- and τ -neutrinos, which are generated by thermal processes, these e−-neutrinos now leave
the proto-neutron star. This neutrino emission cools the proto-neutron star and lets it shrink
in size. Neutrino cooling may be enhanced by convective processes; in that case, the hot proto-
neutron star virtually boils. When the nascent neutron star has reached its final size of about
10 km, 99% of the core collapse energy, i.e. the binding energy of the neutron star,

Egrav ∼
GM2

core

R
= 3× 1053

(
Mcore

M�

)2(
R

10 km

)−1

erg (1.4)

(where R is the radius of the neutron star, and G is the gravitational constant), has been
emitted in the form of neutrinosm. When the neutrinos pass the region behind the stalled
shock front, there is a small, but finite, probability that they scatter off the dissociated nuclei
which mainly comprise the matter there. If only about 1% of the neutrinos deposit their energy
in the post-shock “heating region”, the resulting pressure and temperature increase is sufficient
to drive the shock further outwards and cause the supernova explosion. It is now believed that
this neutrino heating of the initially stalled prompt shock is the mechanism which ultimately
leads to the ejection of the outer layers of the star. It can be shown [61] that (under certain

mAt bounce time, the kinetic energy of the inner core, which is somewhat smaller than 1052 erg, is converted
into the kinetic energy of the shock. The total released energy of about 1053 erg originates from the difference in
gravitational energy between the proto-neutron star (Rpns ≈ 30 km) and the final neutron star (Rns ≈ 10 km),
and the internal energy in the inner core (in the form of neutrinos) which is released as the proto-neutron star
cools down.
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conditions) the heating by neutrinos behind the shock dominates over the cooling due to thermal
emission, which leads to the net energy deposition. This scenario is dubbed delayed explosion,
as the initially stalled shock is “revived” (see Figure 1.3). The neutrinos necessary to drive
the shock are emitted from the collapsed core on the diffusion timescale (about 10 s). The
resulting neutrino luminosity is of the order of 1052 erg s−1. It is clear that momentum transfer
of the neutrinos to the nucleons in the heating region plays no role in reviving the shock, as
the neutrino Eddington luminosity (i.e. the flux which is needed to balance the gravitational
attraction of nucleons by momentum transfer) is several orders of magnitude higher than the
actual neutrino flux.

n

20 km
200 km

dM/dt

Neutrino
  cooling

Neutrino
     heating

Proto−neutron star
(n, p)

Stalled shockp

eν
ν ν

ν

ν

Figure 1.3: Reviving of the stalled prompt shock in the delayed explosion scenario: The deposi-
tion of energy due to neutrino heating behind the stalled prompt shock drives the shock through
the outer layers of the star. (Figure reproduced by courtesy of M. Rampp.)

Finally, a few to many hours after core collapse, the shock front reaches the stellar surface,
and the “optical” explosion of the star begins, when the ejected stellar matter expands into the
interstellar medium.

In the above scenario, spherical symmetry has been assumed during all stages of core collapse.
However, observations, analytical calculations, and numerical simulations suggest that in a core
collapse supernova, local and global nonspherical effects might play an important role during the
collapse and in the explosion mechanism: Observations indicate that core collapse supernova
progenitors possess non-negligible equatorial surface velocities [122], at least while they are
on the main sequence. However, the rotation profile inside the star is not well known, as
there are no consistent numerical stellar evolution calculations including rotation available up
to now. Due to angular momentum conservation during the collapsen, the rotational velocity
of an observer comoving with the fluid will increase significantly. This has several important
consequences: First of all, for initially rapidly rotating iron cores, the collapse could be stopped
by centrifugal forces before nuclear density is reached. In such a case of a centrifugal bounce,
the core can experience several distinct multiple bounces. This scenario has been observed in

nThere are no efficient angular momentum transport mechanisms inside the star on the collapse timescale.

10



CHAPTER 1. INTRODUCTION

numerical simulations. On the other hand, if the rotation rate, specified by the quantity

β =
Erot

|Epot|
, (1.5)

which measures the ratio between rotational energy Erot and potential energy Epot, rises above
13.8% (27.4%) during the infall phase, an initially axisymmetric matter distribution can develop
a secular (dynamical) triaxial instability, respectivelyo. Rotation also affects the form of the
shock front, as in a rapidly rotating collapsing iron core the density at a given radius along
the rotation axis is reduced compared to the density at same radius in the equatorial plane.
Rotation may also lead to the generation of strong magnetic fields due to the winding up of
magnetic field lines, which could in turn determine the evolution of the dynamics, or even result
in the generation of a second, “magnetohydrodynamic” shock [88].

Other nonspherical effects occur only locally: Even in an initially spherically symmetric mat-
ter distribution, convection or Rayleigh–Taylor instabilities can induce vortices in the velocity
field. This can modify the neutrino luminosity of the proto-neutron star, the shape of the
heating region and the shock front, and thus the nucleosynthesis in the explosive environment
behind the shock frontp.

oThese numbers have been obtained by linear stability analysis for homogenous and uniformly rotating
MacLaurin spheroids in Newtonian gravity. However, the corresponding nonlinear and relativistic numbers
should be similar.

pObservations of radioactive 56Ni generated during the explosion of SN 1987A suggest that it was formed in
clumps rather than in a uniform angular distribution [62].
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1.4 Gravitational Radiation

When Einstein put forth his discovery of wavelike vacuum solutions in general relativity (GR)
in 1916, shortly after he established his new theory of gravity, the physical existence of these
gravitational wave solutions was debated for long: Even Eddington thought for a long time
that these solutions of the linearized Einstein equations were a mere coordinate effect and
propagating with the “speed of thought” rather than with the speed of light [25], but it finally
emerged and was commonly accepted that they were an invariant, i.e. physical, effect.

Contrary to electromagnetic radiation, which are oscillations propagating through spacetime,
gravitational waves are oscillations of spacetime itself. Apart from this fundamental differ-
ence, there are other significant properties where electromagnetic and gravitational radiation
differ [125]: Whereas electromagnetic radiation emitted by astrophysical sources is easily ab-
sorbed or scattered along the line of sight by e.g. interstellar matter or the Earth’s atmosphere,
gravitational waves are nearly unattenuated after they decouple from the source due to their
extremely weak coupling to any intervening matter. Absorption and re-emission of electromag-
netic waves is also responsible for the fact that they carry information predominantly about
the thermodynamic state of the optically thin outer layers of the source. As their wavelength is
typically much smaller than the spatial extension of the source, they give local pictures of the
emitting system. Contrary to that, gravitational waves contain information about the global
coherent bulk motion of some matter concentration (even if that matter is surrounded by other
layers of matter with high optical thickness, but low density), conveyed by wavelengths com-
parable to the size of the source. The bottom line of this is that the content of information
by electromagnetic and gravitational wave brought to us from astrophysical sources is almost
“orthogonal”, i.e. complementary. Observing gravitational waves from relativistic astrophysical
sources like e.g. active galactic nuclei, accretion discs, rotating neutron stars, inspiralling and
merging black holes and neutron stars, or rotational supernova core collapse will provide new
insights into the dynamics and physical constitution of those systems. Moreover, just like the
exploration of the Universe with radio astronomy was revolutionary to astronomy and astro-
physics in the second half of the 20th century, gravitational wave astronomy could similarly
open a new window onto the Universe in the future.

For nonspherical supernova core collapse in particular this means that with the detection of
gravitational waves we could see right through the optically thick envelope of the star and look
directly at the collapsing iron core and thus at the engine which drives the explosion of the
stellar envelope, hours before the first light emission from the surface of the star. The only other
possibility of a “direct” observation of core collapse dynamics in the first few hundred millisec-
onds of a (Galactic) supernova is the detection of neutrino emission from the nascent neutron
star, which has actually been measured for SN 1987Aq [7]. The price a prospective observer has
to pay for this unobscured view to the very heart of the supernova is that gravitational waves
are equally elusive to detection as neutrinos: The predominant problem in detecting neutrinos
from a galactic supernova is not the number of particles arriving at the Earth. A typical core
collapse supernova ejects roughly 1057 neutrinos, which translates into a time integrated flux

qFor neutrinos the luminosity, i.e. the flux through a unit area, scales like R−2, where R is the distance
between the source and the detector. Contrary to that, in the detection of a gravitational wave, its amplitude
is measured, and thus the luminosity declines like R−1.
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of about 1011 cm−2, if the supernova is in the galactic center at a distance of 10 kpc. Of this
large number of neutrinos, only about 1 per 1014 can be detected by the current Cherenkov
type neutrino detectorsr.

We now want to estimate the prospects of detecting a gravitational wave with an average
amplitude hs. The amplitude h, which measures the mean deviation of the actual spacetime
from flat spacetime in a region far from the source, can also be seen as a “relative strain” of
the gravitational wave on spacetime, which causes a relative, time dependent displacement ∆l
of two test particles, which are a distance l apart, at a detector site [55]:

h =
2∆l

l
. (1.6)

Like an electromagnetic radiation field, gravitational radiation can be represented by an expan-
sion into multipoles, where the mass density assumes the role of charge density in electromag-
netic radiation. The field itself is then the second time derivative of the series of multipoles.
Just as there is no electric monopole in electromagnetic radiation due to charge conservation,
the time derivative of the according electric mass monopole of a gravitational wave vanishes
due to mass conservation. Additionally, the time derivatives of the electric mass dipole, and
the magnetic mass dipole of gravitational radiation also vanish, as the moments correspond to
the linear and angular momenta, which are conserved for an isolated source (see Chapter 36
in [85]). The first nonvanishing moment is the mass quadrupole moment Q, and the wave
amplitude h is the second time derivative of Q divided by the distance to the source R:

h ∼ G

c4

Q̈

R
, (1.7)

with c being the speed of light. In order to obtain a rough estimate of the emission of gravita-
tional radiation by a compact source like a collapsing iron core, we approximate the quadrupole
moment Q by

Q ∼ML2, (1.8)

where M is the mass of the source that moves, and L is its typical size. If we neglect any
accelerations, and denote the average time for the masses in the system to move from one side
to the other by T , we get:

Q̈ ∼ 2ML2

T 2
= 2MV 2 ' 4Enonspher

kin , (1.9)

where V is the average internal velocity of the source, and Enonspher
kin is the nonspherical part of

its internal kinetic energy. From this we get for the wave amplitude:

h ∼ 4GEnonspher
kin

c4R
. (1.10)

rThe Kamiokande experiment reported 11 detections of neutrinos from SN 1987A [92]. The advanced
Superkamiokande experiment has an estimated sensitivity increase by a factor of around 50 compared to
Kamiokande [127].

sA more detailed derivation of gravitational radiation and the quadrupole formula can be found in Ap-
pendix C.1.
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Thus the gravitational wave’s influence on the detector is roughly 4 times the gravitational
binding exerted by the mass-equivalent of the source’s nonspherical internal kinetic energy. As
the signal amplitudes of gravitational waves generated by laboratory devices are out of the scope
of any practical detection (see e.g. Section 36.3 in [85]), only energy and mass concentrations
in the Universe seem to be promising sources of gravitational waves. As matter concentrations
in the Universe are generally bound, from the virial theorem we can infer that the gravitational
binding energy of such an astrophysical system is of the order of its internal kinetic energy.
Systems with a high kinetic energy thus require a large gravitational binding energy, and, in
turn, have to be compact. If the matter in such a compact concentration of mass undergoes a
dynamical nonspherical bulk motion, its nonspherical kinetic energy and thus the second time
derivative of its quadrupole moment will be large. As a consequence of this, a system of one or
more compact objects moving under its self-gravitation will be a strong source of gravitational
radiation.

In a core collapse supernova the gravitational energy release during the infall will be mostly
put into radial motion, and the energy radiated away in gravitational waves due to quadrupolar
motion has a maximum of only about 10−7M�c

2 [147]. This then translates into a gravitational
wave amplitude of h ∼ 10−23 at a distance of 20 Mpct. The frequency of the radiation will
be in the so-called high frequency band, and range from about 100 to 1000 Hz, as the typical
timescales of the oscillatory motion in the formation of a proto-neutron star lie between 1 and
10 ms. The predicted signal from coalescence and merger of two black holes of several solar
masses is in the same frequency range, but its amplitude may be about 4 orders of magnitude
larger [33], as the nonsphericity of such a configuration is much higher, and the objects involved
are extremely compact. Nevertheless, gravitational wave emission from supernova core collapse
is one of the promising sources for ground-based detectors.

There are basically two classes of detectors which are capable of measuring such minute length
differences like the ones caused by gravitational waves from an astrophysical source [125]: Res-
onant mass detectors are massive bars or spheres tuned to a very narrow frequency bandwidth,
where their sensitivity is rather high. This type of detector goes back to a prototype by Joseph
Weber built in the 1960s. Several of these detector projects are currently operating in vari-
ous countries (Grail in the Netherlands, Allegro in the U.S.A., Nautilus and Auriga in Italy,
Explorer in Switzerland, and Niobe in Australia). However, due to their narrow bandwidth
they are not designed to detect the gravitational wave burst signal from supernova core col-
lapse, because that will not be a clean single mode signal but rather a superposition of many
frequencies, which will probably vary distinctly with each supernova event.

The best observational tools available in the near future for detecting gravitational waves
from core collapse will definitely be ground-based Michelson interferometers, several of which
are being built and tested right now on sites in the U.S. (the two LIGO detectors), Italy (the
Italian–French collaboration VIRGO), Germany (the joint German–British venture GEO600),
Japan (the TAMA project), and Australia (the AIGO detector). Each of these detectors consists
of four massive mirror test masses in two perpendicular arms suspended on vibration-isolated

tThe astronomical distance measure 1 parsec (pc) is the distance from which the radius of the Earth’s orbit
around the Sun appears under an angle of 1◦. 1 pc equals 3.26 light years (Ly), where 1 Ly = 9.46× 1017 cm.
The diameter of our Milky Way is approximately 30 kpc, while the distance to the center of the Virgo cluster
of galaxies is about 15 Mpc.
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supports to damp seismic noise. The separation between the masses can be measured to ex-
tremely high precision by a laser, which is split to run through the optical cavities in the two
interferometer arms and is reflected by the mirror masses. When a gravitational wave passes
through the detector, not only its amplitude, which translates into a displacement of the mir-
rorsu, can be measured as long as the detector is sensitive enough, but also its polarization can
be determined, and the direction to the source can be triangulated by two or more detectors.
The current detectors have arm lengths between 300 m and 4 km. It can be hoped that the
gravitational wave signal from a Galactic supernova is within the range of detectability [125].
However, even with the help of a neutrino detection as a trigger for (offline) data analysis,
which could improve the signal to noise ratio by a factor of 2 [125], the low event rates of only a
few per century is a serious obstacle to a successful detection in practice. As advanced detector
stages with increased sensitivity (like advanced LIGO) will become operational in the future,
the prospects of detection will grow immensely, as these detectors could search for gravitational
wave signals from core collapse supernovae out to the Virgo cluster (although they will not be
able to utilize a neutrino trigger, as the flux of neutrinos emitted by extragalactic supernovae
is too small to be detectable with current experiments). From such observations astrophysi-
cist could scrutinize their current understanding of core collapse supernovae, and significantly
extend their knowledge about the detailed physics involved. Already now gravitational wave
templates from numerical simulations of rotational core collapse [147] are being used to cal-
ibrate data analysis tools for interferometer detectors [99]. As more realistic waveforms for
such scenarios become available, it may be possible, given a positive detection of such a grav-
itational wave signal, to infer detailed information about the dynamics of a particular core
collapse supernova from such a signal.

uTo increase sensitivity of the detector, multiple passage of the light in the optical cavities is achieved by
means of Fabry–Perot resonant cavities. This adds up the apparent movement of the test masses.
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1.5 Simulations of Supernova Core Collapse

As we have laid out in Section 1.3, the aspects of physics which play a role in supernova core
collapse are diverse and complicated. Therefore it is futile to try to extract anything but the
crudest physics from analytic models. Rather, one has to resort to numerical simulations,
which enable astrophysicists to get a handle on such distant and experimentally inaccessible
phenomena like supernovae. However, core collapse is a very complicated interplay between hy-
drodynamic and relativistic gravitational forces, involves neutrino transport and thermonuclear
burning fronts with turbulent combustion, and may additionally be influenced by rotation, con-
vection, and magnetic fields. Thus numerical simulations, even such which include the above
physics only partially, will be in no way trivial. Furthermore, any numerical treatment has to
deal with the problems arising from the huge range of the relevant temporal and spatial scales
present in the scenario: While the collapse of the core lasts only for several 10 ms and takes
place within a radius of about 1000 km, the shock wave reaches the surface of the star several
hours (a factor of ∼ 105) later at the radius of several 10 million kilometers (a factor of ∼ 104)v.

Despite of all these difficulties, our current understanding of the physics involved in core col-
lapse relies strongly on numerical simulations. Since the early days of computational physics,
there have been numerous efforts to numerically simulate this problem. From the first investi-
gations, which were considering spherically symmetric gravitational collapse of an ideal fluid in
Newtonian gravity, basically two branches have emerged: On the one hand, the nonrelativistic
approaches approximate gravity by a Newtonian potential, and use sophisticated microphysics.
The first attempts to simulate core collapse by assuming that a prompt supernova shock is
driven by means of energy deposition from neutrinos, have been performed by Colgate and
White [20]. This was ruled out by Wilson, whose simulations showed that this scenario would
fail due to the small neutrino scattering cross sections [136]. The introduction of neutral currents
in the weak interaction lead to an additional weakening of the explosion by effectively reducing
the neutrino luminosity of the proto-neutron star [138]. The delayed explosion mechanism due
to neutrino heating, which was discovered by Wilson [140], turned out to yield sufficient explo-
sions energies under certain circumstances [13]. However, the outcome of a successful explosion
was a marginal effect and depended very much on the specific model. There have been many
attempts to include more realistic physics in the simulations to get explosions more naturally.
One of the directions has been to solve the Boltzmann equation for the neutrino transport in
Newtonian gravity [101], or even in general relativity [71]. While these simulations have been
performed in spherical symmetry, other promising approaches are to enhance energy deposition
from neutrino heating by means of convection in the proto-neutron star, while keeping the
neutrino transport schemes simple. This has been done in two dimensions using SPH [52], and
using finite volume hydrodynamics [16]. In a similar work [90], the gravitational wave imprint
of convective instabilities induced by neutrino heating has been computed.

vIn one-dimensional hydrodynamic simulations, this problem can be remedied by using Lagrangian coordi-
nates, which comove with the fluid [80]. In multi-dimensional simulations, this is not possible, and one has to
use either fixed Eulerian coordinates, or some method of moving the grid with the flow [146]. Another approach
is to automatically adapt the grid resolution to the hydrodynamic evolution (adaptive mesh refinement tech-
niques [63]). A completely different method is to avoid finite difference or finite volume methods altogether,
and use smoothed particle hydrodynamics (SPH).
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In other multi-dimensional Newtonian gravity codes, the influence of microphysics was ap-
proximated by an ideal gas EoS, sometimes including a simple model for neutrino treatment.
Rotational core collapse simulations in axisymmetry [89, 86, 147] or even without symmetry as-
sumptions [102] have successfully been accomplished and used for approximately calculating the
gravitational wave emission from such collapse scenarios. In some two-dimensional simulations
magnetic fields were also included [88, 121]. However, even in Newtonian gravity, up to now no
simulations which consider rotation, convection and a sophisticated Boltzmann transport for
neutrinos have been performed.

The above models have predominantly originated from the astrophysics community. On the
other hand, numerical relativists have mostly concentrated their efforts on solving the Einstein
equations in vacuum. The most intriguing aspects of the theory of general relativity like black
holes or gravitational radiation could be investigated without ever having to take into account
the right hand side of Einstein’s equations, the tensor of energy-momentum of matter. Even
today, a considerable part of numerical relativity is concerned with coalescence and mergers
of black holes [54], normal modes of black holes [10], and collapse of gravitational waves to a
black hole [2], where no matter at all is present.

Nevertheless, in order to explain the existence of black holes in the Universe, the problem of
astrophysical black hole formation has to be addressed, and thus attempts to use relativistic
hydrodynamics for simulating core collapse to a black hole or neutron star were undertaken
in numerical relativity. This meant that it became necessary to couple matter to the vacuum
metric equations and evolve matter flows in a dynamic spacetime. The first simulation of
an ideal fluid collapsing to a neutron star in spherical symmetry with a shock front forming
has been done in 1966 by May and White [80, 81], who used a formulation of the Einstein
equations by Misner and Sharp [84]. In the following decades, more sophisticated models
emerged from that, like linear perturbations evolving on a background spacetime in a simulation
of spherical core collapse to a neutron star [107, 106], and axisymmetric matter collapse from
neutron star density to a black hole by Stark and Piran [117], and recently Shibata [111].
The introduction of modern sophisticated numerical methods from fluid dynamics to numerical
relativity [104] and new formulations of the Einstein equations [112, 3] boosted progress in
relativistic hydrodynamics simulations. Due to the discovery of gamma ray bursts and jets in
active galactic nuclei, interest was triggered in collapsar models and studying the formation of
relativistic jets near black holes [6, 74, 82].

Similar to the state-of-the-art astrophysical simulations in Newtonian gravity, current nu-
merical relativistic codes put high demands on numerical techniques and computer resources.
To simulate the inspiral and merger of two orbiting neutron stars requires major efforts like
the U.S. Grand Challenge or the new E.U. TMR network. However, such research is not only
of theoretical interest, but clearly has astrophysical relevance since the actual discovery of the
binary pulsar PSR 1913+16 by Hulse and Taylor [59, 58]. Furthermore, the gravitational ra-
diation from such a merger could be among the first to be detected by the new gravitational
wave interferometers.

In spite of all the progress in numerical relativity over the last two decades, the advances
in GR to simulate rotational core collapse to a neutron star in two or three dimensions – the
necessity of which becomes apparent when it comes to explaining the rotation of newborn
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neutron starsw or asymmetries in the supernova explosion – were rather slow and tenacious.
Practically all of the attempts so far [145, 139, 93, 28] used the ADM {3 + 1} formulation of
numerical relativity (see Section 3.1), which is numerically unstable in the long run.

As a consequence, up to now there exist no successful numerical simulations of rotational
core collapse to neutron stars in general relativity, even for simple matter models. On the other
hand, simulations which include better microphysics like neutrino transport have been confined
to spherical symmetry, or have used Newtonian gravity. There is obviously a need to bridge
the gap between these different approaches to the core collapse problem, if one wants to answer
these questions:

• What is the quantitative influence of general relativity on the dynamics of core collapse
compared to Newtonian gravity?

• How do higher densities and velocities expected in general relativistic simulations change
the properties of the rotating neutron star?

• To what extent do general relativistic effects alter the gravitational wave signal?

• What is the behavior of the rotation rate β in a relativistic simulation, and what conse-
quences does that have on the development of dynamical or secular triaxial instabilities
in the neutron star?

• Is the prompt shock propagation sensitive to relativistic effects?

These are the issues which we have addressed in this work. It is based upon the parametric
study of rotational core collapse of polytropes in Newtonian gravity by Zwerger and Müller [146,
147]. We have extended their work by including general relativistic gravityx. As a consequence
of the apparent dead end situation in using the ADM formalism for that scenario in numerical
relativity, we have chosen to utilize a close approximation of full general relativity. Like Zwerger
and Müller, we use a simplified EoS (see Section 4.2).

With the work described in this thesis we have tried to unite in a numerical code a relativis-
tic formulation of the hydrodynamic equations with some of the features of the most advanced
multi-dimensional rotational core collapse studies in Newtonian gravity, using modern compu-
tational and numerical tools. We believe that it is justified to proceed along this path and
eventually, by adding sophisticated microphysics like neutrino transport, arrive at a model to
simulate rotational core collapse with all aspects of the relevant physics included. For the time
being, the repeated failures of numerical models to produce the desired explosion simply show
the shortcomings of such approximate numerical models, but they do not prove that the un-
derlying physical scenario is entirely wrong. However, with improved numerical simulations of
core collapse supernovae and realistic gravitational wave templates, astrophysicists will have a
tool at hand which allows them to extract important and otherwise unaccessible information
from actual observations of the gravitational wave signal from core collapse supernovae.

wNewborn neutron stars obviously have linear velocities of several 100 km s−1, so they must have been
subject to a “kick” during their formation.

xA similar direct comparison between Newtonian and general relativistic models of core collapse was done
in spherical symmetry by van Riper [130, 131].
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1.6 Organization of the Thesis

The thesis is structured as follows:

We briefly recapitulate the ADM {3 + 1} formalism of general relativity in Chapter 2, and
explain the derivation of the GR system of hydrodynamic conservation equations from the
Einstein equations. We show how the hyperbolic structure of these conservation equations can
be exploited to analytically solve the Riemann problem in GR hydrodynamics. Such methods
are the foundation of many modern numerical schemes for solving hydrodynamic problems.

In Chapter 3 we present the ADM metric equations, and derive a constrained system of cou-
pled nonlinear elliptic equations for the spacetime under the assumption of conformal flatness.
The validity of this approximation is assessed considering our specific astrophysical model.

We describe our physical model, and especially the approximations we use to numerically
handle rotational core collapse in Chapter 4. A hybrid equation of state is introduced, which
extends a simple polytropic or ideal gas EoS to account more consistently for thermal heating
behind shock fronts.

The numerical implementation of the hydrodynamic and metric equations derived in the
previous sections is discussed in Chapter 5. The numerical representation of the matter dis-
tribution and spacetime on the computational grid is presented, and we explain the numerical
application of Riemann solvers in high-resolution shock-capturing schemes. We also introduce
the method employed to calculate initial data representing rotating polytropes in equilibrium.
We present our specific implementation of a Riemann solver in the evolution method for the
hydrodynamic quantities. A detailed discussion of the methods to numerically solve the metric
equations follows, as these are the limiting factors in terms of computational efficiency.

Chapter 6 deals with comprehensive tests we have performed with our numerical code. In
addition to evolution tests of initial data under various symmetry conditions, it also contains
investigations on convergence and conservation features of the code.

The results from applying the computer code to rotational core collapse simulations, the
principal object of study in this thesis, are presented in detail in Chapter 7. This chapter also
contains a broad discussion of these results, including an analysis of the gravitational wave
signals and their prospective use as templates for gravitational wave detection.

The thesis is summarized in Chapter 8, particularly focussing on the applicability of the
results and future directions for continuing and extending the work presented here.

In Appendix A, we state the eigenvectors and eigenvalues needed for the solution of the
general relativistic Riemann problem. In Appendix B, we list the source terms for the GR
hydrodynamic conservation equations. The numerical method for extracting the gravitational
radiation content from the spacetime of rotational core collapse is explained in Appendix C.
The thesis is completed by a catalogue of the collapse types and gravitational wave signals
of all models, which we have obtained from our simulations. This catalogue is contained in
Appendix D.
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CHAPTER 1. INTRODUCTION

1.7 Conventions

Throughout the thesis, unless otherwise stated, we use geometrized units for all hydrodynamic
and metric quantities, i.e. the speed of light c and the gravitational constant G are set to 1.

Greek indices run from 0 to 3, while Latin indices run from 1 to 3. Repeated indices are
summed up according to the Einstein summation convention, and the flat Minkowski spacetime
metric has the diagonal elements (−1,+1,+1,+1).

Four-vectors vµ are called time-like if vµv
µ < 0, and space-like if vµv

µ > 0.
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Chapter 2

General Relativistic Hydrodynamics

2.1 Relativistic Field Equations – {3 + 1} Formalism

Contrary to Newtonian gravity, where the gravitational forces between massive bodies act in
Euclidean space, in Einstein’s general theory of relativity, gravity manifests itself as curvature
of space and time, which is determined in a nonlinear way by the energy of matter or gravity
itself. Cast into a mathematical formulation this is expressed by a theory of pseudo-Riemannian
geometry of a continuous four-dimensional spacetime. This spacetime is a manifoldM on which
a metric gµν (and its inverse gµν) with six independent metric functions is defined. The Einstein
equations relate the curvature of spacetime, specified in the Einstein tensor Gµν , which derives
from the Ricci tensor Rµν and scalar R = Rµ

µ as

Gµν = Rµν +
1

2
gµνR, (2.1)

with the energy-momentum tensor Tµν of the mass energy distribution in the spacetime:

Gµν = 8πTµν . (2.2)

With the help of the Bianchi identities ∇νGµν = 0, where ∇ν is the covariant derivative on
Riemannian manifolds, from the Einstein field equations one can derive the relativistic equations
of motion, which manifest themselves as divergence equations for the energy-momentum tensor:

∇νTµν = 0. (2.3)

The form (2.3) of the equations is coordinate-free, or covariant. However, to solve these equa-
tions numerically, one has to choose a suitable coordinate system. As the concept of absolute
space and time is not valid in GR unlike in Newtonian physics, the interpretation of the geom-
etry of coordinates has to be handled with caution.

In numerical relativity, the most widespread form of writing the Einstein equations as an
initial value evolution problem was introduced in 1962 by Arnowitt, Deser and Misner [8], based
on the {3 + 1} splitting of spacetime by Lichnerowitz [70]. It is known as the ADM {3 + 1}
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CHAPTER 2. GENERAL RELATIVISTIC HYDRODYNAMICS

formalism, and their equations derived from the Einstein equations (2.2) have served as the
workhorse of numerical relativity for the last four decades. The {3 + 1} splitting is based upon
a foliation of the four-dimensional spacetime manifold M into a continuous sequence of three-
dimensional Cauchy hypersurfaces Σt̂, where t̂ is a scalar time parameter. This decomposition
allows for an illustrative geometrical interpretation (see Figure 2.1):

^
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hypersurfaces2

1

0

1

2

initial data

numerical         grid t

t

t

x

x
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^
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Figure 2.1: Foliation of spacetime M into hypersurfaces Σt̂ in the {3 + 1} formalism.

Each of these time slices Σt̂ is a space-like hypersurface encompassing the entire three-
dimensional space. Thus we have defined a Cauchy problem, i.e. if initial data on some hyper-
surface Σt̂0

and boundary conditions for all other Σt̂>t̂0
are specified, then the time evolution

of the initial data is determined.

The most general metric, which describes a spacetime foliated that way, can be derived as
follows: First we introduce a set of coordinates (xµ) = (t, xi) which cover the entire spacetime
manifold M. Then the line element ds2, the interval between two events x̂µ and xµ on in-
finitesimally separated time slices Σt̂ and Σt̂+dt̂ in spacetime, is given by the generalization of
Pythagoras’ theorem to Riemannian geometry:

ds2 = −
(

proper time between
the hypersurfaces

)2

+

(
proper distance within

the hypersurface

)2

= −(dt̂ )2 + (dx̂i)2. (2.4)

In order to find an explicit form for ds2, one has to take into account that in general the distance
between two infinitesimal time slices depends on the location xi on Σt̂. Thus we have

dt̂ = αdt, (2.5)

where α is called lapse function. The position of the spatial coordinate point xi, when projected
to Σt̂+dt̂ by the vector normal to Σt̂, will be displaced by an amount

dx̂i = dxi + βidt (2.6)

by the shift vector βi. With those expressions for dt̂ and dx̂i the time-like contravariant unit
vector nµ normal to the hypersurface Σt̂ is given by

nµ = (α−1,−α−1βi), nµn
µ = −1. (2.7)
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As in general the coordinates between hypersurfaces are shifted by βi, the world line of a
coordinate observer need not be normal to the hypersurface. Instead, its tangent is given by
the time-like unit vector

tµ = αnµ + βµ. (2.8)

After having fixed the coordinate relation between two consecutive time slices, what remains to
be done is to specify the curvature of the time slices themselves. That is given by the intrinsic
three-dimensional curvature tensor γij on a time slice Σt̂, which is the spatial part of the tensor

γµν = gµν + nµnν . (2.9)

So in the end the ADM line element is given as

ds2 = gµνdx
µdxν = −α2dt2 + γij(dx

i + βidt)(dxj + βjdt), (2.10)

where γij describes the intrinsic geometry on a particular time slice, and α and βi determine
the relation between the coordinates on two consecutive time slices.

The four-dimensional spacetime metric gµν assumes the following form:

gµν =


−α2 + βiβ

i β1 β2 β3

β1

β2 γij
β3

 . (2.11)

In order to project vector or tensor quantities from the four-dimensional manifoldM onto a
three-dimensional hypersurface Σ embedded in M, one uses the projection operator

⊥µν = gµν + nµnν . (2.12)

With the help of ⊥iµ one can get the spatial components Sij of the energy-momentum tensor,
or the spatial momenta Si,

Sij = ⊥iµ⊥jµT µν , (2.13)

Si = −⊥iµT µνnν , (2.14)

whose role in the GR hydrodynamic equations will be discussed in detail later. The explicit
formulations of T µν , Sij, and Si for an ideal fluid EoS can be found in Appendix B.1.

Another metric quantity, which is extensively used in numerical relativity, is the extrinsic
curvature Kij. It measures the shear and expansion of neighboring coordinate observers in local
proper time [116], and gives information about the embedding of the three-surface Σt̂ in the
four-dimensional manifold M. The extrinsic curvature is defined as

Kij = −1

2
Lnµγij, (2.15)

where Lnµ is the Lie derivative with respect to the normal vector nµ, a description for infinites-
imal parallel transport in a curved spacetime (for a detailed discussion of the Lie derivative,
see e.g. [133]).
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The concept of parallel transport and differentiation in a curved spacetime becomes more
apparent, if we point out that the derivative of e.g. a tensor Aµν with respect to the coordinates
xλ does not transform as a tensor under coordinate transformations. So instead one introduces
the covariant derivative (often denoted by the semicolon operator):

Aµν;λ = ∇λAµν =
∂Aµν
∂xλ

− Γ κ
µλAνκ − Γ κ

νλAµκ. (2.16)

The quantities Γ λ
µν used in this generalized derivative are called Christoffel symbols, and are

defined as

Γ λ
µν =

1

2
gκλ
(
∂gµκ
∂xν

+
∂gνκ
∂xµ

− ∂gµν
∂xκ

)
. (2.17)

Note that the Christoffel symbols also do not behave like tensors under coordinate transforma-
tions.

A more detailed discussion of the geometrical interpretation of the ADM {3 + 1} formalism
can be found in [116]. The connection between derivatives in curvilinear coordinates in general,
the covariant derivative, and the Christoffel symbols is discussed in the book by Landau and
Lifshitz [67].

We finish this introduction to the geometrical properties and quantities in the ADM foliation
of spacetime by a remark on raising and lowering indices of vectors and tensors: Unless otherwise
stated, the indices of quantities defined in the four-dimensional spacetimes like Gµν or the four-
velocity uµ are lowered or raised using the four-metric gµν or its inverse gµν , respectively. On
the other hand, quantities on the embedded three-dimensional hypersurface Σt̂ like Kij or vi
are lowered or raised using the three-metric γij or its inverse γij. Note that in general the
components of the inverse three-metric are different from the spatial components of the inverse
four-metric: γij 6= gij.
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2.2 Conservation Equations

From the mathematical point of view the relativistic equations of motion (2.3) together with the
continuity equation are a set of conservation laws for hydrodynamic quantities. This character
becomes more apparent when they are written in the ADM formalism for a fluid obeying an
ideal gas EoS:

The hydrodynamic evolution of a relativistic perfect fluid with the rest-mass current Jµ and
energy-momentum tensor T µν ,

Jµ = ρuµ, Tµν = ρhuµuν + Pgµν , (2.18)

is determined by a system of local conservation equations, which read:

∇µJµ = 0, ∇µTµν = 0. (2.19)

Here uµ the four-velocity of the fluid. Its 3-velocity, as measured by an Eulerian observer at
rest in the space-like hypersurface Σt̂ is

vi =
ui

αu0
+
βi

α
. (2.20)

The Lorentz factor, which is defined as W = αu0, satisfies the relation

W =
1√

1− vivi
. (2.21)

Following [11] we now introduce the following set of conserved variables in terms of the
primitive hydrodynamic variables (ρ, vi, ε), where ρ is the rest mass density, and ε is the internal
specific energy:

D = Jµnµ = ρW, rest mass density, (2.22)

Si = −⊥iνT µνnµ = ρhW 2vi, momentum density, (2.23)

τ = T µνnµnν − Jµnµ = ρhW 2 − P −D, total energy density. (2.24)

Here P is the pressure, and h = 1 + ε+ ρ/P is the relativistic specific enthalpy.

Then the local conservation laws (2.19) can be written as a first-order, flux-conservative
hyperbolic system of conservation laws:

1√
−g

[
∂
√
γF 0

∂x0
+
∂
√
−gF i

∂xi

]
= Q, (2.25)

with the state vector (vector of conserved quantities), flux vector and source vector given by

F 0 = (D,Sj, τ)T (2.26)

F i =

(
D

(
vi − βi

α

)
, Sj

(
vi − βi

α

)
+ δijP, τ

(
vi − βi

α

)
+ Pvi

)T
, (2.27)

Q =

(
0, T µν

(
∂gνj
∂xµ

− Γ λ
µνgλj

)
, α

(
T µ0∂ lnα

∂xµ
− T µνΓ 0

µν

))T
. (2.28)
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Here
√
−g = α

√
γ, with g = det(gµν) and γ = det(γij) being the determinant of the four-metric

and three-metric, respectively. Γ λ
µν are the four-dimensional Christoffel symbols (2.17), which

represent the gravitational source action of the curved spacetime, and δij is the Kronecker delta.

These equations are the general relativistic analogue to the mass conservation equation, the
Euler equations, and the energy conservation equation in Newtonian gravity. They have been
formulated by Banyuls et al. in 1997 [11]. Other conservative formulations of the relativistic
hydrodynamic equations have been derived by Eulderink and Mellema [27], or by Papadopoulos
and Font [96].

The following list summarizes the evolutionary steps from the Newtonian to the GR hydro
equations in flux conservative form.

• In the Newtonian limit, the hydrodynamic equations read:

∂ρ

∂t
+
∂ρvi

∂xi
= 0, (2.29)

∂ρvj
∂t

+
∂(ρvjv

i + Pδij)

∂xi
= ρgj, (2.30)

∂(ρε+ 1
2
ρviv

i)

∂t
+
∂(ρε+ 1

2
ρviv

i + P )vi

∂xi
= ρgiv

i. (2.31)

• In special relativity, i.e. for flows with characteristic velocities close to the speed of light c
on a flat Minkowski spacetime ηµν = (−1,+1,+1,+1), the corresponding equations are:

∂ρW

∂t
+
∂ρWvi

∂xi
= 0, (2.32)

∂ρhW 2vj
∂t

+
∂(ρhW 2vjv

i + Pδij)

∂xi
= ρgj, (2.33)

∂(ρhW 2 − P − ρW )

∂t
+
∂(ρhW 2 − ρW )vi

∂xi
= ρgiv

i. (2.34)

• For a general relativistic system, the matter flow is determined by Equations (2.25) (with
the fluxes and sources explicitely written out, and v̂i = vi − βi/α):

1√
−g

(
∂
√
γρW

∂t
+
∂
√
−gρWv̂i

∂xi

)
= 0, (2.35)

1√
−g

(
∂
√
γρhW 2vj

∂t
+
∂
√
−g(ρhW 2vj v̂

i+Pδij)

∂xi

)
= T µν

(
∂gνj
∂xµ
−Γ λ

µνgλj

)
, (2.36)

1√
−g

(
∂
√
γ(ρhW 2−P−ρW )

∂t
+
∂
√
−g((ρhW 2−P−ρW )v̂i+Pvi)

∂xi

)
= α

(
T µ0∂ lnα

∂xµ
−T µνΓ 0

µν

)
.(2.37)
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2.3 The General Relativistic Riemann Problem

The general relativistic equations (2.35–2.37) for the evolution of an ideal fluid constitute a
highly nonlinear problem. In general, nonlinear hyperbolic systems have the property that
they allow for weak solutions, i.e. classical solutions in smooth regions which are separated
by a finite number of discontinuities (shocks or contact discontinuitiesa). Even an initially
smooth density, velocity, and energy distribution can develop shocks after some time, if it is
evolved according to such nonlinear hyperbolic equations. This is particularly true for core
collapse scenarios, where the core bounce will result in the formation of a shock wave, which
then propagates through the envelope of the star.

On the other hand, in a hydrodynamic computer code based on finite difference or finite
volume methods (see also Section 5.4), hydrodynamic quantities are represented as discrete
data. As a consequence, even a smooth flow is treated as a sequence of piecewise constant
data, which are discontinuous at cell interfaces between neighboring grid points. This is a good
approximation for regions of smooth flow, and is especially well suited for discontinuities. Now
one can regard every such interface in isolation: Each of these cell interfaces then defines a
Riemann problem, the simplest initial value problem with discontinuous initial data. Such a
problem admits an exact solution. For the Euler equations of classical fluid dynamics such
an analytic solution has been developed by Godunov [45]. The extension of this solution to
special relativistic flows has been done by Mart́ı and Müller [76]b. In both cases a general
solution of the Riemann problem consists of constant states, which are separated by three
distinct classes of waves, depending on the states left and right of the interface: (i) shocks, (ii)
contact discontinuities, and (iii) rarefactionsc. The exact nature of the solution to a particular
Riemann problem is determined by the Rankine–Hugoniot conditions across the discontinuity.
The solutions of the local Riemann problem are themselves exact solutions of the conservation
laws. Therefore a series of such local solutions on a discrete grid constitutes a global solution
of the conservation equations for the discrete initial data.

We have already stated in Section 2.2, that the hydrodynamic equations are formulated as
a hyperbolic set of conservation problems. This means that the information in this system is
propagating with finite velocities (unlike in elliptic equations, which have infinite propagation
speeds and therefore instantaneous action), and thus the evolution of the matter flow is governed
by the characteristic velocities of the system. This characteristic information is then used to
(exactly or approximately) solve the associated Riemann problem for this specific system of
conservation equations. The procedure to obtain the characteristic structure is as follows:
The Jacobi matrices of the conservation equations (2.25) corresponding to the three spatial
directions are

Bi = α
∂F i

∂F 0 (2.38)

aIn shocks, all hydrodynamic state variables are discontinuous; in contact discontinuities, the density is
discontinuous while the other state variables are continuous.

bThis method can be extended to flows on a curved spacetime in general relativity: By a local coordi-
nate transformation the spacetime is changed to a locally flat Minkowski spacetime, which then allows for an
application of the solution of (locally) special relativistic Riemann problems [98].

cIn rarefactions, all state vector quantities are continuous, but nonconstant.
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(i = 1, 2, 3), i.e. the derivatives of the flux vectors in each spatial coordinate direction with
respect to the state vector.

As the state and the flux vector have five components, to each of the three Jacobi matrices
belong five eigenvalues [11],

λi0 = αvi − βi, threefold degenerate, (2.39)

λi± =
α

1− v2c2
s

[
vi(1− c2

s )± c2
s

√
(1− v2)(γii(1− v2c2

s )− vivi(1− c2
s ))
]
− βi, (2.40)

and a set of right eigenvectors r (which are listed in Appendix A.2). These solve the three
linear eigenvalue problems Biri = λiri.

From this we can infer that the features in the flow are transported with velocities corre-
sponding to the eigenvaluesd. This form of the eigenvalues (2.39, 2.40) is again the general
relativistic extension of the corresponding form in Newtonian hydrodynamics, where they as-
sume the simple and instructive form

λi0 = vi, threefold degenerate, (2.41)

λi± = vi ± cs. (2.42)

From that it is obvious that in a Newtonian flow information can propagate with the velocity
of the flow itself (material waves) or with plus or minus the speed of sound with respect to the
flow velocity (acoustic waves).

The information about the propagation velocities (i.e. the eigenvalues λi) together with the
knowledge about the hydrodynamics states left and right of the interface (i.e. the density ρ, the
pressure P , and the internal energy ε) is sufficient to analytically solve the Riemann problem.

However, the exact analytic solution of numerous Riemann problems – i.e. one per grid point
for each coordinate direction in one time step – during a numerical computation can be costly
and therefore time consuming. To cope with this fact, it is often sufficient in numerics to solve
the Riemann problem approximately: For this one assumes that the Jacobian matrices are
locally constant (for a justification of this assumption in conjunction with numerical codes, see
Section 5.4.1). This is effectively a local linearization of the hyperbolic system at each Riemann
interface. Then one can utilize the following decomposition of the Jacobi matrix:

Bi = RiΛi(Ri)−1 = RiΛiLi. (2.43)

Here Ri is the matrix of right eigenvectors (as columns), Λi is the diagonal matrix of the
eigenvalues λi, and Li = (Ri)−1 is the matrix of left eigenvalues (as rows). With the help of
this transformation, the approximate Riemann problem can be numerically solved in a straight-
forward way, which will be shown in Section 5.4.

As the matrix of right and left eigenvectors, and the matrix of eigenvalues are analytically
known for the general relativistic hydrodynamic conservation equations (2.25), the numerical
solution of the Riemann problem can be accomplished in a fast and easy manner. Modern

dThe curves defined by the tangents along these characteristic velocities in the flow are called characteristics.
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numerical solvers for hydrodynamic flows often rely upon approximate Riemann solvers. The
solutions obtained in that way are for practical purposes almost as good as if the full nonlinear
Riemann problem would be solved [24].
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Chapter 3

Metric Equations

The system of equations (2.25) determines the evolution of the hydrodynamic quantities in a
given spacetime. On the other hand, the evolution of spacetime itself is governed by another set
of equations. In order to be able to understand more clearly the mathematical classification of
the system of metric equations, at this point we briefly explain the general concept of evolution
and constraint equations.

When the evolution of a physical problem is determined by a set of hyperbolic partial differ-
ential equations, then it can be mathematically formulated as a Cauchy problem. This means
that if the initial data are specified on a time slice Σt̂0

, and boundary conditions are given
for all subsequent times, then the corresponding differential equations can be separated into
a set of evolution and constraint equations. As a simple example, we want to consider the
one-dimensional wave equation:

∂ttφ− ∂xxφ = 0. (3.1)

If we now introduce the following definitions,

u = ∂tφ, γ = ∂xφ, (3.2)

the second-order wave equation can be written as a set of three evolution equations,

∂tφ = u, (3.3)

∂tu = ∂xγ, (3.4)

∂tγ = ∂xu, (3.5)

and one constraint equation,
0 = ∂xφ− γ, (3.6)

each with derivatives of first order in t and x.

The evolution equations (3.3–3.5) propagate forward in time the quantities φ, u, and γ, while
the constraint equation (3.6) must be satisfied at all times (and will be, if the propagation is
properly done according to the evolution equations). As in the case of the wave equation (3.1),
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where there are in total four equations for three unknowns, in general a number nu of un-
knowns are determined by a system of neq equations. The nu unknowns can be computed
numerically by picking any nu of the neq equations and solving thema. Sometimes, there are nu

evolution equations, so it is sufficient to determine the evolution of the unknowns by solving
these equations (“free evolution”). The constraint equations will then (in the limit of infinitely
good accuracy of the numerical scheme) be satisfied automatically. In practice, this method of
numerical evolution is often preferred, as the numerical solution of an evolution equation may
be easier and more inexpensive in terms of computer time. The constraint equations, which are
normally computationally expensive, are then used to monitor the accuracy of the evolution
equations at given times during the evolution. On the other hand, some or all of the constraint
equations can be used to solve the system. This method is then called “constrained evolution”.
From the mathematical point of view, both approaches, the free or constrained evolution, are
a valid method for solving such a system. However, in the numerical implementation, one may
be preferable to the other method for reasons of computational efficiency, stability, or accuracy.

In general, a system of evolution and constraint equations will not be purely hyperbolic in
its nature, but it will be a mixture of equations of hyperbolic, parabolic, and elliptic type, or
contain ordinary differential equations. This is why mathematically stringent statements about
the behavior of such equation systems, and especially of their numerical representations, are
rather difficult to make [42].

aThe system is overdetermined, if neq > nu. Then the remaining equations, which have not chosen for
determining the evolution of the unknowns, can be used for a consistency check of the numerical evolution.
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3.1 ADM Evolution and Constraint Equations

In the ADM formalism (2.11), the Einstein equations can also be written in a mixed evolution
and constraint form [145]:

∂tγij =− 2αKij +∇iβj +∇jβi, three-metric evolution, (3.7)

∂tKij =−∇i∇jα + α(Rij +KKij − 2KikK
k
j ) + βk∇kKij+ extrinsic curvature evolution,

+Kik∇jβ
k +Kjk∇iβ

k − 8πα
(
Sij −

γij
2

(S − ρH)
)
, (3.8)

0 =R +K2 −KijK
ij − 16πρH, Hamiltonian constraint, (3.9)

0 =∇i(K
ij − γijK)− 8πSj, momentum constraint, (3.10)

where ρH = α2T 00, Rij is the Ricci curvature tensor of the three-hypersurface Σt̂ and R its
contraction (the scalar curvature). So the ADM system of equations consists of two times six
evolution equations for the three-metric γij and the extrinsic curvature Kij, and four constraint
equations. As explained before in the example of the wave equation (3.1), the evolution equa-
tions can be used to propagate forward in time the 12 unknowns γij and Kij, which are given
on the initial time slice, whereas the constraint equations provide a check for the accuracy of
the numerical solution.

Like any arbitrary spacetime metric on a four-dimensional manifold without symmetries, the
ADM metric (2.11) has 10 independent components, as it is symmetric with respect to the
diagonalb. However, the theory of general relativity has only 6 physical degrees of freedom. As
a consequence of this, one is free to choose 4 additional gauge conditions, just like in the vector
formulation of Maxwell’s theory of electromagnetic fields. So within boundariesc, gauge choices
can be imposed as a set of algebraic relations between the elements of gµν , or, for the ADM
system, equivalently between α, βi, γij and Kij. In numerical relativity such gauge conditions
are usually adapted to the specific evolution situations in order to ensure nonpathological
coordinate behavior or numerical stability of the system. This exploiting of gauge freedom
plays an essential role in many numerical simulations, e.g. in the evolution of binary systems or
the handling of coordinate and metric singularities, like in the case of black hole singularities.
The fundamental concepts about gauge conditions in numerical relativity have been introduced
by Smarr and York in 1978 [116]d.

bNote that the ADM equations (3.7–3.10) have 12 unknowns. This is due to the introduction of the quantities
Kij , which are combinations of the components of the metric gµν . They are auxiliary constructs like the
quantities u and γ in Equation (3.2), which are used in the wave equation (3.3–3.6).

cDepending on the symmetry of the spacetime, certain metric components cannot be subjected to arbitrary
gauge conditions.

dIn numerical simulations, α and βi are often determined by algebraic equations. One approach would be to
set all components of the shift vector βi to zero, and impose the maximal slicing gauge condition on the lapse
function by setting the trace of K to zero, which fixes α.
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3.2 Problems with the ADM Equations – Alternative

Formulations and Approximations

Since its introduction over 40 years ago, the ADM formalism and the associated system of metric
equations have been the workhorse of numerical relativity. Most of the numerical simulations
in the literature [108, 34] have been based upon solving the ADM equations (3.7–3.10) with
a variety of different approaches to exploit the remaining gauge freedom for relations between
the metric components.

However, there exist many essential drawbacks, which have been hampering the use of the
ADM equations in numerical applications. Not only is it computationally expensive and compli-
cated to solve the complete set of ADM equations (especially if the elliptic constraint equations
have to be solved at every time step), but the ADM formalism of metric equations also seems
to have an intrinsic negative property: In many simulation runs severe numerical instabilities
are encountered after some evolution time, which often lead to unacceptable constraint viola-
tions and cause the computer code to crash in the end. This failure of the ADM equations to
guarantee long term stable evolution, particularly if the numerical grid is based on coordinates
which result in singularities of some metric components (like polar radial coordinates), has been
a serious obstacle in previous simulations of black holes [15], rotational core collapse [145, 28],
and other astrophysical scenarios.

Because of this deficiency of the ADM equations, the quest for the Holy Grail of Numerical
Relativity, defined by Shapiro and Teukolsky in 1985 [110] as a computer code which

(i) evolves an arbitrary spacetime in GR without symmetries,
(ii) avoids or successfully handles singularities,

(iii) can deal with black holes,
(iv) maintains high accuracy, and
(v) runs indefinitely long,

has so far not yet been brought to a successful end for codes based on solving the original ADM
equations. At present there is no clear understanding for the underlying reasons of the lack of
stability of the ADM equations [42]. As a consequence of this, in the last few years many re-
formulations of the {3 + 1} equations particularly for the use in numerical relativity have been
attempted, like the conformal traceless treatment of the metric equations, first proposed by
Shibata and Nakamura [112]. This reformulation has been tested on evolutions of gravitational
waves [12], and single black holes, boson stars, and neutron stars [3]. These simulations exhibit
better long term stability than the ones where the metric is solved with the help of the ADM
formulation; still, they will also eventually develop serious constraint violations or numerical
instabilities.

Another approach are alternative formulations of the Einstein equations not based on the
ADM formalism. Among these is the characteristic formulation, in which the spacetime is
sliced along null hypersurfaces (rather than along time-like hypersurface like in the ADM for-
malism) [142]. In this formulation, the numerical solution of the vacuum Einstein equations for
a single nonrotating black hole exhibits long-term stable behavior [123]. In spherical symmetry,
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the core collapse of a supermassive star has been simulated [72], and there are ongoing attempts
to extend hydrodynamic simulations to two dimensions [114].

For many hydrodynamic applications in astrophysics it is not necessary to solve the full set
of Einstein equations to obtain a fair approximation of the actual physics: When simulating
cosmological structure formation, the influence of gravity, which leads to the first structures
in the early Universe, is so weak that a general relativistic approach to this problem is not
necessary. Moreover, the velocities in the matter flows are so small compared to the speed of
light c, that not even special relativity is needed for such simulations. Thus, even if the first
cosmological matter concentrations form on a curved background spacetime, the gravitational
interaction between them can be described to high accuracy by a Newtonian potential [134].
Another example of approximating general relativity by a less complicated physical model in
an astrophysical context is the simulation of jets streaming from active galactic nuclei into
the intergalactic medium. As such jets propagate with speeds very close to the speed of light
(with Lorentz factors of approximately 100), relativistic effects play a crucial role. However, far
away from the central engine, which powers the outflow, both external gravitational fields and
self-gravity can be completely neglected, and it suffices to solve the much simpler special rela-
tivistic equations of fluid dynamics (see [78] for two-dimensional, and [5] for three-dimensional
simulations).

On the other hand, there are astrophysical situations, where gravity can neither be neglected
nor be sufficiently approximated by a Newtonian potential. Then one can still resort to ap-
proximation techniques which better model general relativistic gravity without having to deal
with the full machinery of GR: One such example are calculations of inspiralling black hole or
neutron star binaries. A common approach to analytically or numerically attack this problem is
to represent the two compact objects by “point particles”) and expand the Einstein equations
in orders of (v/c)2, known as the parameterized post-Newtonian (PPN) formalism [135, 14]. In
this method, the exact general relativistic metric is typically expanded in orders 1, 2, 2.5, 3,
3.5, . . . , which significantly simplifies the Einstein equations, when this expansion is truncated
at some power. The resulting PPN metric equations can be regarded as “truncated” Einstein
equations. The rationale behind this way of approximating the full Einstein equations is very
similar to perturbation theory. Depending on the order of the PPN expansion, the equations
include different relativistic effects, like the generation of gravitational waves, the gravitational
radiation back-reactione, dragging of inertial frames, etc. However, even for point particles, in
higher expansion orders the PPN equations become analytically not solvable and increasingly
complicated. Still the PPN formalism is endowed with an important property of general rela-
tivity, which is a curved spacetime. Therefore it follows the philosophy of the full theory much
closer than Newtonian gravity, which suffers from features like infinite propagation speed of
information or the artificial split of energy and mass.

Another approximation method, which yields a good modeling of relativity for specific physi-
cal systems is the description of the spacetime by a time-independent, i.e. static, metric (Cowl-
ing approximation). The application range of this method is confined to systems where the
hydrodynamic matter flow exerts only negligible influence on the variation of spacetime with

eAs a consequence of the nonlinearity of the theory of general relativity, gravitational radiation will react
back onto the emitting system by curving the spacetime and extracting energy from the source.
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time, like accretion onto compact objects [36], or rotating neutron stars in equilibrium [119, 35].
A less restrictive approximation is the fully relativistic evolution of matter on a spacetime which
is calculated by linearizing the metric equations. This has been done as well for simulating ac-
cretion onto black holes [95] and computing neutron star oscillations [4].

A rather novel approach in general relativity, using a truncated set of metric equations by
assuming the conformal flatness condition (CFC) for the three-metric, first introduced recently
for a coupled set of metric and hydrodynamic evolution equations in numerical relativity by
Wilson et al. [141]. Our implementation of the metric equations is based upon this approx-
imation. We will motivate its assumptions and derive the resulting metric equations in the
following.
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3.3 Conformally Flat Metric Equations

3.3.1 Conformal Flatness Condition

Instead of approximating the full spacetime metric by expanding it in orders of (v/c)2 and
then truncating this series, as in the PPN formalism, one can try to impose certain conditions
on particular quantities of the metric. Then one can investigate whether, and under which
conditions, the resulting set of equations describes a general relativistic hydrodynamic flow
properly.

We now want to see which parts of the metric might be best suited for a modification: The
lapse function α, which controls the distance between subsequent time slices, should better
remain a free parameter at first, as it ensures that the metric evolves in a way such that the
numerical grid points do not exhibit pathological behavior, like e.g. getting attracted by a
coordinate or physical singularity. Nevertheless, its behavior can be determined by a gauge
condition, which then controls the evolution of α, and thus the sequence of time slices, in
the desired way. Similarly all shift vector components should be kept as in the general metric,
because they are also responsible for the appropriate reaction of the hypersurfaces to the metric
evolution. Fixing βi without prior knowledge of the spacetime geometry during the evolution
may result in a too rigid sequence of time slices and coordinates which could turn inadequate
to adapt properly to the curvature of spacetime.

These restrictions leave us with the freedom to modify the three-metric γij, which describes
the curvature of three-dimensional space during the evolution. The simplest possible choice for
the three-metric is the flat metric γ̂ij, which in Cartesian coordinates is δji = diag (1, 1, 1), and
in spherical coordinates is

γ̂ij = diag (1, r2, r2 sin2 θ) =

 1 0 0
0 r2 0
0 0 r2 sin2 θ

 . (3.11)

A less restrictive choice, and thus a better approximation to a general three-metric, is given by
introducing a conformally flat metric

γij = φ4γ̂ij =

 φ4 0 0
0 φ4r2 0
0 0 φ4r2 sin2 θ

 , (3.12)

where the conformal factor φ depends in general on the coordinates xµ = (t, r, θ, ϕ)f. It can
be shown that any (even time-dependent) spherically symmetric spacetime can be described
by a conformally flat metric, with the additional properties that βi = 0, and φ = φ(r). This
holds for any spherically symmetric matter distribution in general relativity, even for a single
Schwarzschild black hole spacetime.

fIn the context of curved manifold, two metrics γij and γ̂ij are called conformal, if they are identical modulo
a conformal factor φ: γij = φ4γ̂ij . If γ̂ij is the flat metric, γij is called conformally flat. The forth power in the
factor φ4 is due to convention.
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Therefore, permitting an unconstrained lapse function, shift vector and conformal factor, any
spacetime which does not deviate too far from spherical symmetry, should be well approximated
by the following four-metric:

gµν =


−α2 + βiβ

i β1 β2 β3

β1 φ4 0 0
β2 0 φ4r2 0
β3 0 0 φ4r2 sin2 θ

 . (3.13)

As a consequence of that, the approximation (3.13) for the spacetime metric in a dynamic sim-
ulation of a rotational core collapse seems properly justified. Additionally, since all off-diagonal
components of the three-metric are zero, this metric simplifies both the metric equations (3.7–
3.10) as well as the hydrodynamic equations (2.25), in particular the expressions for the source
terms.

Nevertheless, there are obvious limitations to the validity of approximating the exact space-
time by a conformally flat three-metric. An unstopped rotational core collapse proceeds towards
a rotating Kerr black hole, for which the approximation would certainly break down: For a
Kerr black hole, there exists no coordinate transformation of the Kerr spacetime solution to
a conformally flat spacetime [44]. So whereas the exact spacetime even for a nonspherical ro-
tating neutron star only slightly deviates from conformal flatness, a maximally rotating black
hole violates conformal flatness considerably. Note however, that the CFC makes no explicit
assumptions whether the spacetime is static or dynamic. Therefore we can assume that the
deviation of the CFC metric from the exact metric is only determined by the instantaneous
deviation of the matter from spherical symmetry; this conjecture is supported by tests, which
we present in Section 6.6.

Another issue which needs special consideration is the inability of a conformally flat three-
metric to describe the gravitational radiation content of spacetime. We have already mentioned
that any spherically symmetric spacetime can be written in such a way that it obeys the CFC.
However, due to Birkhoff’s theorem, even dynamic matter distributions in spherical symme-
try cannot emit gravitational radiation. Furthermore, in polar coordinates, the component
γ23 of the metric can be identified in the far field with one of the two states of polarization
of the gravitational waves radiated away by an isolated source. Gravitational waves are an
invariant physical effect rather than a coordinate effect, and hence cannot be transformed
away. Therefore, if all off-diagonal elements of the three-metric are zero like in (3.13), then
the spacetime metric does not account for gravitational radiationg. Nevertheless, as numerical
simulations [147] of rotational core collapse indicate that only about 10−6 of the total energy is
converted to gravitational waves during the collapse, the above restriction is acceptable. But
instead of computing gravitational waves directly, one has then to resort to an approximate cal-
culation of the radiation, e.g. in some sort of post-processing step using the quadrupole formula,
which is the first order term of the multipole expansion of gravitational radiation [124]. This
method and its numerical implementation in our numerical code is explained in Appendix C.

gWe emphasize that the CFC does not just mean “exact general relativity minus gravitational radiation”.
The CFC yields a spacetime with no gravitational radiation present, but additionally imposes more restrictions
than that, as even spacetimes which do not radiate gravitational waves like the Kerr spacetime cannot be exactly
described by a conformally flat metric.
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The conformal treatment of spacetimes is a line of research in GR on its own: It has been
first introduced by Penrose [97] to eliminate the blowing up of the physical metric at space-
like infinity. There are many formulations of GR which are based upon this approach [41, 56,
39, 57]. Recently, a conformal treatment has been used to obtain long-term stable numerical
evolutions, as described in [3]. On the other hand, there have also been numerous applications
of conformally flat metric transformations, mostly in numerical techniques which aim towards
obtaining initial data for binary black hole or neutron star evolutions, which are listed in [21].

The extension of the CFC to a numerical evolution scheme as an approximation of the full
Einstein equations has first been used by Wilson et al. in 1996 [141]h. In that work the CFC
metric equations, which will be described in Section 3.3.3, have been derived. This new approx-
imation scheme has been applied to computing a sequence of quasi-equilibrium configurations
of two equal mass binary neutron stars, using the hydrodynamic evolution equations to obtain
the equilibrium state with a relaxation technique. This sequence of orbits has also been used
as an approximate estimate of the actual inspiralling motion of the binary system, which would
have been obtained if the exact system of metric equations would have been evolved. The
metric equations by Wilson et al. have then been used as a basis in other simulations: Cook
et al. [22] have compared a sequence of single rapidly rotating neutron stars in equilibrium,
and have found that in these cases the largest deviations of the CFC solution from the exact
solution are less than 5%, and in general much less than that. Kley and Schäfer [64] have in-
vestigated the accuracy of the CFC approximation for rotating infinitesimally thin dust disks.
Their comparisons show that the approximate solution is very accurate for moderate values
of the central lapse function. For extremely relativistic configurations (with a central value of
the lapse function which is much smaller than in any of our simulations), the agreement dete-
riorates for some of the metric function. The validity tests of the CFC metric in the context
of rotational core collapse, which have been performed by us, also indicate that the CFC is a
justified approximation for our applications (see Section 6.6).

In this thesis for the first time the coupled set of hydrodynamic and CFC metric equations
is solved in a fully dynamic situation, the collapse of a rotating iron core to a neutron stari.
Comparisons of results obtained by using the CFC with solutions in full general relativity or
in the PPN formalism [141, 64, 22], although performed in the context of quasi-equilibrium
situations, were very promising. This has motivated us to apply this approximation to the
scenario of rotational core collapse.

hSee [32, 79] for corrections.
iAn approximation of the exact spacetime, which is related to the CFC approximation, was suggested for

core collapse simulations by Cardall et al. [18]. The metric in this “Newton-Plus” approximation is the same as
the CFC metric (3.13) with the additional requirement that all shift vector components are zero. As the CFC
metric has three additional degrees of freedom compared to the Newton-Plus metric, it is a better approximation
of the exact ADM metric (2.11). So far no results from numerical simulations of core collapse supernovae using
the Newton-Plus formalism have been published.
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3.3.2 Conformal Scaling

When one deals with conformal transformations between two metrics of the general form

γij = φ4γ̂ij (3.14)

(here γ̂ need not be conformally flat), it is interesting to investigate the transformation (i.e. the
conformal scaling) behavior of scalar, vector, tensor, and other quantities associated with the
three-metric.

For example, the Ricci scalar curvature scales like thisj:

R =
1

φ4

(
R̂− 8

φ
∆̂φ

)
. (3.15)

Here ∆̂ is the flat space Laplace operator, which in spherical polar coordinates reads

∆̂ =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

∂2

∂θ2
+

cot θ

r2

∂

∂θ
. (3.16)

Similarly, we get a rather simple transformation rule for the Christoffel symbols,

Γ k
ij = Γ̂ k

ij +
2

φ

(
δki ∇̂jφ+ δkj ∇̂iφ− γ̂ij γ̂kl∇̂lφ

)
, (3.17)

which can be easily checked for the transformation between the flat and the conformally flat
metric. These transformation rules can be directly derived from the definition of R and Γ k

ij.

Another useful scaling property is the following one for the Laplacian of a scalar function α
multiplied with the conformal factor φ:

∆(αφ) =
1

φ5

(
φ∆̂(αφ) + 2γ̂ij∇̂i(αφ)∇̂jφ

)
. (3.18)

This equation can also be rewritten as

∆̂(αφ) = φ5
(
∆α− αφ∆φ−1

)
= φ5∆α + α∆̂φ, (3.19)

using the identity

∆(αφ) = φ∆α− αφ2∆φ−1 − 2γ̂ij

φ5
∇̂i(αφ)∇̂jφ, (3.20)

and Equation (3.18) applied to α = 1:

∆α = ∆1 = 0 =
1

φ5
∆̂φ+ φ∆φ−1. (3.21)

Note that for any scalar function s the covariant derivative is independent of the metric:

∇is = ∇̂is. (3.22)

jIn the following, the quantities with a hat are computed using the metric γ̂ij .
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For a tensor quantity like the extrinsic curvature Kij, the transformation behavior is in
no way trivial: Although the extrinsic curvature is a three-tensor, and its components are
lowered and raised with the three-metric, its geometrical meaning has to be seen in relation
to the four-metric, as the Lie derivative of the three-metric involves components of the four-
metric. So one has to investigate how such a tensor, depending on four-vector components,
transforms under a conformal scaling of the three-metric. As a first approach to this problem,
we can make a definite statement about the behavior of the covariant derivative of Kij: The
momentum constraint (3.10), and therefore ∇iKij and ∇iK

ij, should be invariant under a
conformal transformation of the form (3.14). But how do covariant derivatives like the one of
Kij react to such a metric transformation?

A mathematically rigorous derivation of the transformation properties for such quantities
can be found in the book by Wald [133]. Here we just summarize the most important aspects
of conformal scaling. Let d be the dimension of the conformal metrics (in our case d = 3). We
now assume that d-tensors Tij and T ij scale with a factor φ2s:

Tij = φ2sT̂ij, T ij = φ2sT̂ ij. (3.23)

Then the covariant and contravariant derivatives of these tensors exhibit the following trans-
formation behavior:

∇̂iT̂ij = ∇̂i(φ
−2sTij) = φ−2s∇iTij + (s+ d− 2)φ−2s+2Tij∇iφ

−2,

∇̂iT̂
ij = ∇̂i(φ

−2sT ij) = φ−2s∇iT
ij + (s+ d+ 2)φ−2s+2T ij∇iφ

−2,

∇̂iT̂ij = ∇̂i(φ−2sTij) = φ−2s+4∇iTij + (s+ d− 4)φ−2s+6Tij∇iφ
−2,

∇̂iT̂ ij = ∇̂i(φ−2sT ij) = φ−2s+4∇iT ij + (s+ d)φ−2s+6T ij∇iφ−2.

(3.24)

If we want the covariant and contravariant derivative of the tensors to be conformally invariant,
then the terms on the right hand sides involving the derivative of the conformal factor φ must
vanish. This yields values for s in each of the four cases in Equation (3.24):

∇̂iTij : ∇̂iT
ij : ∇̂iTij : ∇̂iT ij :

s = −1 s = −5 s = +1 s = −3

↓ ↓ ↓ ↓

Tij = φ−2T̂ij, T ij = φ−10T̂ ij, Tij = φ2T̂ij, T ij = φ−6T̂ ij.

(3.25)

Thus, under the requirement that the momentum constraints have to be conformally invari-
ant, the left two columns of Equation (3.25) yield the transformation behavior of the extrinsic
curvature as follows:

Kij =
1

φ2
K̂ij, Kij =

1

φ10
K̂ij. (3.26)

As we have already pointed out, for this derivation neither of the metrics γ and γ̂ need
to be flat. However, if γ̂ is the flat metric in Cartesian coordinates, and γij = φ4γ̂ij, then

both all Christoffel symbols and the Ricci scalar vanish: Γ̂ k
ij = 0, R̂ = 0. Note that for a
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flat metric in curvilinear coordinates, the Christoffel symbols Γ̂ k
ij are in general non-zero, but

rather a combination of functions of the coordinates. However, the components of the Ricci
tensor R̂ij and thus its trace R̂ are still zero, i.e. the equation for the conformal scaling of R in
Equation (3.15) yields:

R = − 8

φ5
∆̂φ. (3.27)

3.3.3 Derivation of the CFC Metric Equations

With the definition of the conformally flat three-metric from Section 3.3.1, and the knowledge
of the transformation behavior of vectors and tensors under conformal transformations of the
three-metric from Section 3.3.2, we can now proceed to investigate the consequences of the
CFC on the hydrodynamic and metric equations. As already mentioned in Section 3.3.1, the
hydrodynamic equations (2.25) will be simplified, as the characteristic fields and velocities
(see Appendix A.2), the energy-momentum tensor (see Appendix B.1), and the four-metric
Christoffel symbols (see Appendix B.2) will have a much simpler form. However, the form of the
hydrodynamic equations, and particularly their conservative character, will remain unaffected.

This does not hold for the ADM metric equations (3.7–3.10). First of all, as already indicated
in Section 3.3.1, we impose one of the usual gauge conditions on the lapse function, the so-
called maximal slicing condition, which translates into a condition for the trace of the extrinsic
curvature:

K = Ki
i = 0. (3.28)

This gauge condition is widely used in numerical relativity, as it simplifies the ADM equations
considerably.

Furthermore, in the following derivations we make frequent use of the square root of the trace
of the three-metric and the four-metric. For a CFC metric, they have the following form:

√
γ = φ6r2 sin θ,

√
−g = α

√
γ = αφ6r2 sin θ. (3.29)

As we demand that the CFC is fulfilled not only initially but at all times, the time derivative
of the trace-free parts of γij, i.e. the off-diagonal components, have to vanish:

γ1/3 ∂

∂t

γij
γ1/3

= 0. (3.30)

With this requirement the evolution equation for the three-metric (3.7) yields a simple expres-
sion for the extrinsic curvature showing no explicit time dependence:

0 = γ1/3∂t(γ
−1/3γij) = ∂tγij −

2

3
γij∂t ln γ1/2 =

= −2αKij +∇iβj +∇jβi −
2

3
γij∇kβ

k, (3.31)

where we have used the following relation for the trace of Equation (3.7),

∂t ln γ1/2 =
1

2
γij∂tγij = −αKk

k +∇kβ
k = ∇kβ

k, (3.32)
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together with the maximal slicing condition.

So in the end, the extrinsic curvature can be calculated from Equation (3.31) according to

Kij =
1

2α

(
∇iβj +∇jβi −

2

3
γij∇kβ

k

)
. (3.33)

Equation (3.32) together with Equation (3.29) yields a relation for the time derivative of the
conformal factor φ, whose numerical usefulness will be examined in Section 5.5.1:

∇kβ
k = ∂t ln

√
γ =

1

φ6
∂tφ

6 =
6∂tφ

φ
−→ ∂tφ =

φ

6
∇kβ

k. (3.34)

Following Equation (3.17), the three-metric Christoffel symbols in the conformally flat metric
can be calculated directly from the conformal factor φ, as the flat metric Christoffel symbols
are time independent functions of the coordinates r and θ.

Now that we have shown how the conformal flatness condition, applied to the ADM evolution
equation for γij (3.7), affects (and simplifies) the expressions for three-metric quantities like
the extrinsic curvature Kij or the Christoffel symbols Γ k

ij, we next discuss the influence of the
CFC on the other ADM metric equations (3.8–3.10):

Hamiltonian constraint:
Using the transformation condition for the Ricci scalar of the conformally flat met-
ric (3.27), the Hamiltonian constraint (3.7) can be written as

0 = R +K2 −KijK
ij − 16πα2T 00 = − 8

φ5
∆̂φ−KijK

ij − 16π(ρhW 2 − P ). (3.35)

From this follows an equation for the Laplacian of the conformal factor φ:

∆̂φ = −2πφ5

(
ρhW 2 − P +

KijK
ij

16π

)
. (3.36)

Three-metric and extrinsic curvature evolution equations:
As a consequence of the maximal slicing condition (3.28), the time derivative of the trace of
Kij must vanish. Thus, the three-metric and extrinsic curvature evolution equations (3.7,
3.8) can be combined with the Hamiltonian constraint (3.9) in the following way:

0 = ∂tK = ∂t
(
γijKij

)
= γij∂tKij +Kij∂tγ

ij =

= γij
[
−∇i∇jα + α(Rij +KKij − 2KikK

k
j ) + βk∇kKij +Kik∇jβ

k +Kjk∇iβ
k−

− 8πα
(
Sij −

γij
2

(S − ρH)
)]

+Kij

(
−2αK ij +∇iβj +∇jβi

)
=

= −∆α + α
(
R +K2 − 2KijK

ij
)

+ βk∇kK +Kij∇iβj +Kij∇jβi −

−8πα

(
S − 3

2
(S − ρH)

)
+Kij

(
−2αK ij +∇iβj +∇jβi

)
=

= −∆α + αR + 4πα(S − 3ρH) = 0. (3.37)
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Using the scaling relations for the Laplacian of a scalar function (3.19, 3.20), and the
metric equation for φ (3.36) together with Equation (3.27), we can rewrite this as

0 = − 1

φ5

(
∆̂(αφ)− α∆̂φ

)
− 8α

φ5
∆̂φ+ 4πα(S − 3ρH) =

= − 1

φ5
∆̂(αφ) + 14πα

(
ρhW 2 − P +

KijK
ij

16π

)
+ 4πα(−2ρhW 2 − ρh+ 6P ) =

= − 1

φ5
∆̂(αφ) + 2πα

(
3ρhW 2 − 2ρh+ 5P +

7KijK
ij

16π

)
. (3.38)

Here we have used the ideal fluid expressions for S and ρH from Appendix B.1.

So we are left with an equation for the Laplacian of the lapse α scaled with the conformal
factor φ:

∆̂(αφ) = 2παφ5

(
ρh(3W 2 − 2) + 5P +

7KijK
ij

16π

)
. (3.39)

Momentum constraint:
For a spatial three-metric obeying the CFC, the momentum constraint equation (3.10)
yields an equation for the shift vector βi. First we manipulate the momentum constraint in
the following way, where the transformation properties of the extrinsic curvature according
to Equation (3.26) play a crucial role:

0 = ∇i(K
ij − γijK)− 8πSj =

=
1

φ10
∇̂i

(
φ10Kij

)
− 8πSj =

1

φ10
∇̂iK̂

ij − 8πSj =

=
1

φ10
∇̂i

[
φ6

2α

(
∇̂iβj + ∇̂jβi − 2γ̂ij

3
∇̂kβ

k

)]
− 8πSj =

=
1

2αφ4

[
∆̂βj + ∇̂j

(
1

3
∇̂kβ

k

)
+
α

φ6
∇̂i

(
φ6

α

)(
∇̂iβj + ∇̂jβi − 2γ̂ij

3
∇̂kβ

k

)]
− 8πSj =

=
1

2αφ4

[
∆̂βj + ∇̂j

(
1

3
∇̂kβ

k

)
+
α

φ6
∇̂i

(
φ6

α

)
K̂ij

]
− 8πSj. (3.40)

Here we have used the abbreviation ∆̂βj ≡ ∇̂i∇̂iβj.

Equation (3.40) then translates into a Laplace operator equation for the shift vector:

∆̂βi = 16παφ4Si + 2Kij∇̂j

(
α

φ6

)
− 1

3
∇̂i∇̂kβ

k. (3.41)

In spherical axisymmetric coordinates, the quantity ∇̂i∇̂kβ
k present in Equation (3.41)

reads:

∇̂i∇̂kβ
k =

(
β1
,rr + β2

,rθ +
2β1

,r

r
− 2β1

r2
+ cot θβ2

,r+

+
β1
,rθ

r2
+
β2
,θθ

r2
+

2β1
,θ

r3
+

cot θβ2
,θ

r2
− β2

r2 sin2 θ

)
. (3.42)
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We want to close this derivation of the metric equations for βi by pointing out that
in curvilinear coordinates in general ∆̂βj 6= (∆̂β)j, because βi is a three-vector which
behaves not like a scalar with respect to covariant derivatives. For example, in spherical
polar coordinates we have

∆̂βi 6= ∂2βi

∂r2
+

2

r

∂βi

∂r
+

1

r2

∂2βi

∂θ2
+

cot θ

r2

∂βi

∂θ
. (3.43)

Rather, the Laplacian of the shift vector obeys the following relations:

∆̂β1 =
∂2β1

∂r2
+

2

r

∂β1

∂r
+

1

r2

∂2β1

∂θ2
+

cot θ

r2

∂β1

∂θ
− 2β1

r2
− 2 cot θβ2

r
− 2

∂β2

∂θ
,

∆̂β2 =
∂2β2

∂r2
+

4

r

∂β2

∂r
+

1

r2

∂2β2

∂θ2
+

cot θ

r2

∂β2

∂θ
− 2

r3

∂β1

∂θ
+

(1− cot θ)β2

r2
,

∆̂β3 =
∂2β3

∂r2
+

4

r

∂β3

∂r
+

1

r2

∂2β3

∂θ2
+

3 cot θ

r2

∂β3

∂θ
.

(3.44)

The solution of the system of metric equations (3.52–3.54) involves the calculation of the
extrinsic curvature components. They are given by a combination of metric components, and
for (r, θ) coordinates in axisymmetry, the various components of Kij read:

K11 =
1

3αφ4

(
2β1

,r − β2
,θ −

2β1

r
− cot θβ2

)
, (3.45)

K12 =
1

2αφ4

(
β1
,θ

r2
+ β2

,r

)
, (3.46)

K13 =
1

2αφ4
β3
,r, (3.47)

K22 =
1

3αφ4r2

(
−β1

,r + 2β2
,θ +

β1

r
− cot θβ2

)
, (3.48)

K23 =
1

2αφ4r2
β3
,θ, (3.49)

K33 =
1

3αφ4r2 sin2 θ

(
−β1

,r − β2
,θ +

β1

r
+ 2 cot θβ2

)
. (3.50)

The quantity K2 = KijK
ij used in the equations for φ and α is then given by:

KijK
ij =

1

12α2

[
6 sin2 θ(β3

,θ)
2 +

8

r2
(β1)2 + 8(β2

,θ)
2 + 8(β1

,r)
2 + 6r2(β2

,r)
2 + 6r2 sin2 θ(β3

,r)
2 −

−8 cot θβ2
,θβ

2 +
8 cot θ

r
β1β2 − 8 cot θβ1

,rβ
2 + 8 cot2 θ(β2)2 +

6

r2
(β1

,θ)
2 −

−16

r
β1
,rβ

1 +
8

r
β2
,θβ

1 − 8β1
,rβ

2
,θ + 12β1

,θβ
2
,r

]
. (3.51)
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3.3.4 Properties of the Elliptic System of Metric Equations

Collecting the metric equations (3.36, 3.39, 3.41) derived in Section 3.3.3, we get the following
system of equations for the metric degrees of freedom for a conformally flat three-metric:

∆̂φ = −2πφ5

(
ρhW 2 − P +

KijK
ij

16π

)
, (3.52)

∆̂(αφ) = 2παφ5

(
ρh(3W 2 − 2) + 5P +

7KijK
ij

16π

)
, (3.53)

∆̂βi = 16παφ4Si + 2Kij∇̂j

(
α

φ6

)
− 1

3
∇̂i∇̂kβ

k. (3.54)

These equations are five Poisson-like equations for the metric components φ, α, and βi. How-
ever, while a system of genuine Poisson equations are linear and its equations independent of
each other, the single equations (3.52, 3.53, 3.54) of the metric equation system couple to each
other via their right hand sides, and in the case of the equations for βi additionally via the
operator ∆̂ acting on the vector βi. The equations are dominated by the source terms involving
the hydrodynamic quantities ρ, P , and vi, whereas the nonlinear coupling through the other,
purely metric, source terms becomes only important for strong gravity.

By approximating the three-metric by a conformally flat one, we have gained the following:
The CFC reduces the complexity of solving the full set of Einstein evolution and constraint
equations to solving five not explicitely time-dependent equations. Then on each time slice, the
metric is solely determined by the instantaneous hydrodynamic state, i.e. the distribution of
matter in space. Compared to the general system of evolution equations and metric equations,
the number of terms involving time derivatives is reduced significantly. Therefore, the CFC
approximation allows for more stable numerical evolution schemes. In our simulations we have
never encountered severe problems with numerical instabilities (see Sections 6 and 7).

As already mentioned in Section 3.3.1, the CFC metric equations are equivalent to the Ein-
stein equations in spherical symmetry (and imposing no symmetry restrictions, up to the first
post-Newtonian approximation).
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Rotational Core Collapse

4.1 Physical Model

As indicated in Section 1.5, for supernova core collapse a combination of a state-of-the-art mi-
crophysical matter model including sophisticated neutrino transport, a fully dynamic general
relativistic treatment of spacetime, plus a detailed and consistent initial model from stellar evo-
lution, combined in a multi-dimensional simulation code without the assumption of symmetries
is still beyond the scope of feasibility. Therefore, a numerical simulation of this problem can
only cover parts of this complicated scenario. In order to reduce the complexity of the problem,
we introduce several simplifications in our model:

Hydrodynamic approximation:
In order to justify the use of hydrodynamics to model supernova core collapse, two re-
quirements must be satisfied [90]: First of all, the collisional mean free path λ of any
particle has to be small compared to the characteristic macroscopic length scale L of the
system. Then one can define a fluid volume element, whose linear dimensions are large
compared to λ, but small compared to L. In Section 1.3 we have seen that this can be
assumed for electrons, photons, and nucleons during all stages of the collapse. However,
the neutrinos are not in equilibrium with the rest of the matter outside the neutrino
sphere. For a correct description of the neutrino behavior, a transport scheme must be
used. Nevertheless, if one only wants to study the collapse dynamics until the prompt
shock stalls, i.e. in a phase where the neutrinos do not yet determine the dynamics of the
system, the neutrinos can be completely neglected. The second criterion for the hydrody-
namic approach is that the forces between the particles saturate. Then one can define an
internal energy, and the pressure of the particles exerted on the walls of a fluid element
can be described as an internal force, i.e. instead of being written as a source term, P
can be included in the flux term. As a result of the hydrodynamic approximation, we can
define a local EoS, which closes the hydrodynamic system of equations.
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Equation of state:
Our matter model obeys an ideal gas EoS with the pressure P consisting of a polytropic
and a thermal part as in Zwerger and Müller [147]:

P = Pp + Pth. (4.1)

We neglect any other microphysics like electron capture or neutrino transport. The treat-
ment of matter and its equation of state are discussed in detail in Section 4.2.

Initial model:
As initial configurations we have constructed rotating relativistic polytropic stellar cores
in equilibrium [65, 66, 120]. These models are marginally stable, and the collapse is
initiated by decreasing the adiabatic index. Our initial data solver allows us to construct
both uniformly and differentially rotating polytropes (see Section 4.3).

So far the rotational state of the core prior to its gravitational collapse is not well known,
as multi-dimensional evolutionary calculations of rotating stars have not yet been per-
formed [90]. Up to now, only quasi-spherical progenitor models with a phenomenological
description of mixing and angular momentum transport are available [51]. Thus, predic-
tions from rotational core collapse rely upon extensive parameter studies, i.e. simulations
with a large set of initial configurations. Due to this lack of a specific initial model, we
have computed a comprehensive set of rotating polytropes with various rotation profiles
and strengths as initial models.

Conformal flatness condition:
We numerically solve the fully general relativistic set of hydrodynamic equations. How-
ever, the metric equations are approximated by adopting the conformal flatness condition
for the three-metric γij (see Chapter 3). This results in a constrained system of elliptic
metric equations. Due to the conformally flat three-metric, no gravitational waves are
present in the system in the first place. The extraction of gravitational radiation is then
done by post-processing the data via the quadrupole formula.

Symmetry assumptions:
The dimensionality of the problem is reduced by assuming both axisymmetry with respect
to the rotation axis, and equatorial plane symmetry. The numerical code uses a spherical
grid in (r, θ) coordinates with a logarithmic grid spacing in the r-direction, and constant
grid spacing in the θ-direction. All derivatives with respect to the ϕ-direction vanish. We
evolve only one quarter of the (r, θ) plane (0 ≤ θ ≤ π/2).

These assumptions are physically well motivated and do not impose unnecessary restrictions
to the ability of our model to address the questions posed in Section 1.5. Simulating rotational
core collapse with this model allows us to capture the important dynamics of all phases of the
collapse until the prompt shock stalls, and to compute the gravitational wave signal resulting
from the bulk motion of the core. According to the work of Zwerger [146], there is a strong
correlation between the collapse dynamics, which may be strongly influenced by relativistic
effects, and the gravitational wave signal. We are therfore convinced that including relativistic
gravity in a rotational core collapse simulation, while imposing the above simplifications, will
yield important results which are a basis to determine the parameters of the initial state and
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the collapse dynamics of the iron core in a core collapse supernova event from an observed
gravitational wave signal (as described in Section 1.4).
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4.2 Equation of State

For the initial model of a rotating iron core in equilibrium, the polytropic relation between the
pressure P and the rest mass density ρ,

P = Kργini , (4.2)

with γini = 4/3 and K = 4.8974894 × 1014 (in cgs units) [146, 109], is a fair approximation
of the density and pressure stratification. It is also consistent with the EoS of an iron core
supported against gravity by relativistic leptons (see Section 1.3). Following along the path of
practically all general relativistic hydrodynamic simulations, in the infall phase we assume the
matter of the core to obey an ideal gas EoS for a compressible inviscid fluid,

P = (γ − 1)ρε. (4.3)

Note that during the collapse phase, which we initiate by lowering the adiabatic index γini to γ to
model the onset of instability in a real iron core by electron capture and photodissociation, the
density profile of the fluid is still well described by the polytropic relation (4.2) (see Section 6.5).

In the bounce and shock propagation phases of the collapse scenario, the appropriate ther-
modynamic modeling of the fluid behavior becomes more complicated: A necessary condition
for the polytropic relation (4.2) to hold is that no shocks are present. In the shock front, ki-
netic energy is dissipated into internal (thermal) energy. A polytropic EoS cannot account for
this dissipation of kinetic energy, which contributes to the total pressure. In order to approxi-
mate this effect, we assume that the total pressure consists of a polytropic and a thermal part,
P = Pp + Pth, where Pp mimics the pressure exerted by the degenerate electron gas, while Pth

is due to a thermal distribution of ions [146].

The polytropic part, where

Pp = Kργ, (4.4)

still undergoes only adiabatic processes, for which we have:

dεp = −Ppd

(
1

ρ

)
→ dεp =

Pp

ρ2
dρ → εp =

Pp

ρ(γ − 1)
. (4.5)

We now assume that the polytropic index γ jumps from γ1 to γ2 for densities larger than
nuclear matter density ρnuc

a; this approximates the effective stiffening of the EoS and the
resulting increase in pressure at a density, where the matter composition changes and the
proto-neutron star forms. Then by requiring the pressure and internal energy to be continuous
at the transition density ρnuc, we get the following general solution for the polytropic internal
energy:

εp =


K

γ1 − 1
ργ1−1 for ρ ≤ ρnuc,

K

γ2 − 1
ργ2−1ργ1−γ2

nuc +
(γ2 − γ1)K

(γ2 − 1)(γ1 − 1)
ργ1−1

nuc for ρ > ρnuc.
(4.6)

aThe values for γ1 and γ2, which we have used in our simulations, are given in Section 4.4.
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The thermal part of the pressure, which is due to shock heating, is given by

Pth = (γth − 1)ρεth, (4.7)

where γth = 1.5. This describes a mixture of relativistic (γ = 4/3) and nonrelativistic (γ = 5/3)
components of an ideal fluid. The thermal internal energy can then be determined by

εth = ε− εp. (4.8)

From these equations, we can construct a single EoS for all densities, which is continuous at
ρnuc for the total pressure P and the individual contributions Pp and Pth:

P =

(
K − (γth − 1)

K

γ − 1

)
ργ + (γth − 1)ρε− (γth − 1)(γ − γ1)

(γ1 − 1)(γ2 − 1)
Kργ1−1

nuc ρ. (4.9)

It is this equation which we employ as the EoS during all stages of the collapse.

The sound speed for this sum of polytropic and thermal pressure has the usual form of an
ideal fluid, where the pressure terms simply add:

c2
s =

1

h

(
χ+ κ

P

ρ2

)
=
γPp + γthPth

ρh
. (4.10)

Here χ and κ are given by

χ =
∂P

∂ρ

∣∣∣∣
ε

, κ =
∂P

∂ε

∣∣∣∣
ρ

. (4.11)

As we have mentioned before, during the infall phase, where no shocks are present, the matter
flow exhibits a polytropic profile. In practice this means for our hybrid EoS that the thermal
part of the EoS does not contribute, and its associated pressure is therefore negligible. After
shock formation, we expect the thermal pressure to rise as the shock front passes by. We will
come back to this behavior of the pressure in Section 6.5.

Compared to the more conventional formulations based on purely polytropic or purely ideal
fluid equations of state, our approach has the advantage that it represents the (already simpli-
fied) microphysics of the problem in a better way, while it keeps the hydrodynamic and metric
equations simple.
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4.3 Rotating Relativistic Stars in Equilibrium

From observations of supernova remnants and neutron stars one can infer that rotation may
play a crucial role in the core collapse scenario [122]. However, as pointed out in Section 4.1, up
to date there are no realistic models for the final evolutionary stages of a massive star, i.e. the
progenitor of a core collapse supernova, which include rotation in a consistent way. Due to the
lack of an initial model with a definite rotation state, we proceed along the lines of the previous
Newtonian rotating core collapse simulations by Zwerger and Müller [147], who constructed a
set of differentially rotating polytropes in equilibrium as pre-collapse iron core models.

While Zwerger and Müller have used Newtonian iron core models, our initial models are
obtained from a consistent general relativistic method for solving the equilibrium equations for
rotating polytropic matter distributions. The appropriate general metric to describe rotating
axisymmetric relativistic matter configurations in equilibrium is

ds2 = −e2ν̂dt2 + e2α̂(dr2 + r2dθ2) + e2β̂r2 sin2 θ(dφ− ωdt)2, (4.12)

with the metric quantities ν̂, α̂, β̂, and ω.

Note that this metric is not conformally flat. It has been shown [44] that the Kerr metric or
any other equivalent metric which describes the spacetime of a rotating black hole (the limit a
rotating matter configuration with infinite central density) cannot be written in a conformally
flat way. This result also holds in general for any spacetime of a rotating star in equilibrium.

The only nonvanishing 3-velocity component is v3, the velocity of the fluid as measured
by a zero angular momentum observer (ZAMO). Thus the Lorentz factor is given by W =
1/
√

1− v3v3. With the definitions u0 = We−ν̂ , and u3 = ΩWe−ν̂ , where Ω is the angular
velocity of the fluid as measured from infinity, the four-velocity becomes:

uµ =
W

α̂
(1, 0, 0,Ω). (4.13)

Thus we get for the ϕ-component of the 3-velocity:

v3 =
u3

u0eν̂
− ω

eν̂
= e−ν̂(Ω−ω); v3 = e2β̂−ν̂r2 sin2 θ(Ω−ω); vϕ ≡

√
v3v3 = eβ̂−ν̂r sin θ(Ω−ω).

(4.14)
Here vϕ is the proper rotation velocity with respect to the ZAMO. The specific angular mo-
mentum of the fluid j ≡ u0u3 is given by

j = W 2e2(β̂−ν̂)r2 sin2 θ(Ω− ω) =
v3v

3

(1− v3v3)(Ω− ω)
. (4.15)

Using the Einstein equations we can derive the equation of hydrostatic equilibrium for a
rotating mass distribution in axisymmetry, where the angular velocity Ω depends on r only:

∇P
ρh

+∇ν̂ − vϕ
1− v2

ϕ

∇vϕ + j∇Ω = 0. (4.16)
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This is the relativistic generalization of the corresponding Newtonian equation

∇P
ρ

+∇Φ− vϕ∇vϕ + j∇Ω = 0, (4.17)

where Φ is the Newtonian gravitational potential, obeying Poisson’s equation ∆Φ = 4πρ.

We now specify a rotation law where j depends only on Ω (integrability condition):

j = A2(Ω− Ωc), (4.18)

where Ωc is the value of Ω at the center, and A is a constant positive parameter. In the
Newtonian approximation, the following rotation law follows from (4.18):

Ω =
Ωc

1 + d2

A2

=

 Ωc for A→∞ (rigid rotation),
A2Ωc

d2
for A→ 0 (j = −A2Ωc = const.).

(4.19)

with d = r sin θ being the distance to the rotation axis.

With the use of the rotation law (4.18), we can integrate the equilibrium equation (4.16),
and obtain:

lnh+ ν̂ − 1

2
ln(1− v2) +

1

2
A2(Ω− Ωc)

2 = const. (4.20)

Again, this is the relativistic generalization of the Newtonian equation

h+ Φ +
A2Ωc

2
(
1 + d2

A2

) = const. (4.21)

For the four-metric components α̂, γ = β̂ + ν̂, δ = ν̂ − β̂ and ω we get 4 coupled partial
differential equations [65]:

∆δeγ/2 = Sδ, (4.22)(
∆ +

1

r
∂r −

1

r2
∂θ

)
γeγ/2 = Sγ, (4.23)(

∆ +
2

r
∂r −

2

r2
∂θ

)
ωe(γ−2δ)2 = Sω, (4.24)

∂θα̂ = Sµ, (4.25)

where Sδ, Sγ, Sω, and Sµ are source terms which in general depend on all four metric functions.

In order to solve the system of equations (4.22–4.25), the first three PDEs are converted from
their differential form into an integral representation using a two-dimensional Green’s function.
The Green’s function in then approximated by an expansion into Legendre polynomials. In
discretized form, these equations are solved in an iterative scheme until convergence is obtained.
During each iteration, the equation for α̂ is integrated.
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4.4 Initial Models and Collapse Parameters

For a given adiabatic index γini, the initial models, which are constructed by applying the
HSCF method to solve the equilibrium equations for a rotating polytrope (see Section 5.2),
are determined by three parameters, as described in Section 4.3: The central density ρc ini, the
degree of differential rotation A, and the rotation rate βini. In Section 1.3 we have stated that
the central density of the iron core is about 1010 g cm−3. We adopt this value for ρc ini in all
initial models.

Due to the lack of a specific rotating iron core model from stellar evolution (see Section 4.1),
we have chosen to follow Zwerger [146] and treat A and β as free parameters in computing the
initial models. In accordance to that work, we use the values for A and β given in Table 4.1,
and employ the same nomenclature.

Initial A βini Model Model Initial A βini Model Model
model [108 cm] [%] possible used model [108 cm] [%] possible used

A1B1 50.0 0.25
√ √

A3B1 0.5 0.25
√ √

A1B2 50.0 0.5
√ √

A3B2 0.5 0.5
√ √

A1B3 50.0 0.9
√ √

A3B3 0.5 0.9
√ √

A1B4 50.0 1.8 × × A3B4 0.5 1.8
√ √

A1B5 50.0 4.0 × × A3B5 0.5 4.0
√ √

A2B1 1.0 0.25
√

× A4B1 0.1 0.25
√ √

A2B2 1.0 0.5
√

× A4B2 0.1 0.5
√ √

A2B3 1.0 0.9
√

× A4B3 0.1 0.9
√

×
A2B4 1.0 1.8

√ √
A4B4 0.1 1.8

√ √

A2B5 1.0 4.0
√

× A4B5 0.1 4.0
√ √

Table 4.1: Nomenclature of initial models and corresponding values for the free parameters. The
parameter A quantifies the degree of differential rotation, and βini is the rotation rate. Note that
the combination of parameters for models A1B4 and A1B5 are not possible, as these polytropes
would rotate with more than the Kepler speed in the outer regions close to the equator, which
would lead to mass shedding. We have selected 13 initial models from this set.

With the initial models fixed, the only other free parameters in the collapse models are
γ1, the adiabatic index during the infall phase, and γ2, the adiabatic index at supranuclear
matter densities (see Section 4.2). As in [146], we set γ2 = 2.5, which is inside the plausible
limits for matter at supranuclear matter densities. The values for γ1 are parameterized as
{1.325, 1.320, 1.310, 1.300, 1.280}. In our simulations we have evolved the 26 models listed in
Table 4.2b. One of the models (A3B2G4soft) was run with γ2 = 2.0 for testing the influence
of a softer supranuclear EoS on the collapse dynamics. The nuclear density is set to ρnuc =
2.0× 1014 g cm−3 in all simulations. Additionally to the models specified in Table 4.2, we use
the model A3B4G3 for test purposes in Section 6.6.

bNote that not all initial models will collapse for any value of γ1, as some are stabilized against infall by
rotation even for γ < γini. We have not considered such models.
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If ρc ini, A, βini, γ1, and γ2 are specified for a particular collapse model, the evolution is
completely determined by those parameters, provided that the numerical grid resolution, and
the parameters which control the accuracy of the numerical scheme, are also fixed.

Collapse A β γ1 γ2

model [108cm] [%]

A1B1G1 50.0 0.25 1.325 2.5
A1B2G1 50.0 0.5 1.325 2.5
A1B3G1 50.0 0.9 1.325 2.5
A1B3G2 50.0 0.9 1.320 2.5
A1B3G3 50.0 0.9 1.310 2.5
A1B3G5 50.0 0.9 1.280 2.5
A2B4G1 1.0 1.8 1.325 2.5
A3B1G1 0.5 0.25 1.325 2.5
A3B2G1 0.5 0.5 1.325 2.5
A3B2G2 0.5 0.5 1.320 2.5
A3B2G4soft 0.5 0.5 1.300 2.0
A3B2G4 0.5 0.5 1.300 2.5
A3B3G1 0.5 0.9 1.325 2.5
A3B3G2 0.5 0.9 1.320 2.5
A3B3G3 0.5 0.9 1.310 2.5
A3B3G5 0.5 0.9 1.280 2.5
A3B4G2 0.5 1.8 1.320 2.5
A3B5G4 0.5 4.0 1.300 2.5
A4B1G1 0.1 0.25 1.325 2.5
A4B1G2 0.1 0.25 1.320 2.5
A4B2G2 0.1 0.5 1.320 2.5
A4B2G3 0.1 0.5 1.310 2.5
A4B4G4 0.1 1.8 1.300 2.5
A4B4G5 0.1 1.8 1.280 2.5
A4B5G4 0.1 4.0 1.300 2.5
A4B5G5 0.1 4.0 1.280 2.5

Table 4.2: Nomenclature of collapse models, which have been simulated, and corresponding
values for the initial model and collapse parameters. A is the degree of differential rotation, βini

is the rotation rate, γ1 is the adiabatic index at subnuclear densities, and γ2 is the adiabatic
index at supranuclear matter densities.
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Chapter 5

Numerical Implementation

5.1 Numerical Grid

5.1.1 Grid Setup – Logarithmic Radial Spacing

In computational fluid dynamics, and especially in numerical relativity, the choice of the coor-
dinates and their adaption to the geometry of a given problem is of crucial importance. Since
the early attempts of axisymmetric simulations of ideal fluids in general relativity over 20 years
ago, the issue of coordinate problems has always been a challenge. At those times, due to
insufficient computer power it was out of question to use a three-dimensional Cartesian grid
to simulate axisymmetric problems. But even if this is now possible with modern computers,
Cartesian coordinates are not well suited for such geometries as they do not exploit the exis-
tence of an azimuthal Killing vector, i.e. a rotational symmetry, to reduce the dimensionality
of the problem to two dimensions.

For axisymmetric problems, both cylindrical and polar coordinates are suitable. These coor-
dinate systems share a common disadvantage: The coordinate origin at the center r = 0, and
for polar coordinates the rotation axis θ = 0, are distinguished from the other coordinate points.
Often the equations contain terms involving geometrical quantities like e.g. γ̂22 = r−1, which
becomes infinite at the origin, or γ̂33 = r−1 sin−1 θ, which becomes infinite at the axis. Thus the
reduction of the problem from three to two dimensions is paid for by having to deal with coor-
dinate pathologies due to singularities at specific points. This fact was the reason for the failure
of axisymmetric relativistic ADM codes to provide long term stability [145, 28, 15]. Attempts
to solve the axisymmetric problem are nowadays made by going towards three dimensions in
Cartesian coordinates, now that larger and faster computers are available.

Still, polar coordinates are by definition the most appropriate ones for axisymmetric sit-
uationsa. Thus we have chosen to use a polar grid, with special analytical and numerical

aCylindrical coordinates, which are another obvious choice for axisymmetric problems, are not so well suited
for our simulations, as we often use spherically symmetric matter configurations for tests purposes, which are
much more precisely handled by polar coordinates.
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precautions taken to avoid ill coordinate behavior close to the center and the axis. The setup
of our (r, θ)-grid is as follows:

• As we have no azimuthal dependence for any variable, the coordinate ϕ never shows up
explicitely. However, there are motions in the ϕ-direction, and the associated velocity v3

and momentum S3 are nonzero.

• For any meridional plane we assume symmetry with respect to the equator at θ = π/2.
Therefore, θ spans the interval between 0 and π/2. Within this range, the grid is equally
spaced in θ, with θj denoting the cell centers (1 ≤ j ≤ nθ).

• The radial grid points ri run from the center to the outer boundary and are also located
at cell centers. They are logarithmically spaced.

• Each cell (ri, θj) is bounded by interfaces at ri− 1
2
, ri+ 1

2
, θj− 1

2
, and θj+ 1

2
.

• The spacing between two neighboring cell centers or interfaces in the θ-direction is ∆θ =
θj+1 − θj = θj+ 1

2
− θj− 1

2
.

• The difference between cell centers in the r-direction is ∆ri+ 1
2

= ri+1−ri, whereas the dif-
ference between radial interfaces is ∆ri = ri+ 1

2
− ri− 1

2
. The logarithmic spacing translates

into the following relation: ∆ri+ 1
2
/∆ri− 1

2
= ai. The radial spacing of the three innermost

cells is enlarged in order to increase the maximum possible time step; for i > 3, ai = const.
Note that the radial distances from cell center to inner and outer interface are identical,
i.e. ri+ 1

2
− ri = ri − ri− 1

2
, but unless ai = 1 we have ri − ri− 1

2
6= ri− 1

2
− ri−1.

With this we have defined a grid of finite volume cells, where the cell centers and interfaces
are located at points

(ri, θj), i = 1, . . . , nr, j = 1, . . . , nθ, cell centers,

(ri+ 1
2
, θi), i = 0, . . . , nr, j = 1, . . . , nθ, radial interface points,

(ri, θj+ 1
2
), i = 1, . . . , nr, j = 0, . . . , nθ, angular interface points,

(ri+ 1
2
, θj+ 1

2
), i = 0, . . . , nr, j = 0, . . . , nθ, cell corners.

(5.1)

Here nr and nθ are the number of radial and angular grid points, respectively. Note that r 1
2

= 0
is the origin, rnr+ 1

2
= R defines the outer boundary, θ 1

2
= 0 coincides with the rotation axis,

and θnθ+ 1
2

= 0 denotes the equatorial plane. In the simulations of all models, we choose a
resolution of nr = 200 radial grid points, and nθ = 30 grid points for the numerical grid; this
corresponds to an angular resolution of 3◦. The radial differences ∆ri in the innermost cells
are set to about 500 m, which fixes the logarithmic spacing factor ai. This grid resolution is
sufficient to resolve the important features of core collapse dynamics (see Section 6.7.2).

A sketch of the polar grid and the relation between cell centers and interfaces is shown in
Figure 5.1.
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Figure 5.1: The numerical grid in polar coordinates (r, θ). The angular spacing ∆θ is equidis-
tant, while the radial one ∆ri is logarithmic. The hydrodynamic and metric quantities are
assigned to cell centers (black circles), while the fluxes are assigned to cell interfaces (white
circles).

5.1.2 Symmetry Conditions

Due to the symmetry conditions stated in Section 5.1.1, we evolve only one quadrant of the
actual spacetime domain. As a consequence of this, in the numerical code we have to impose
symmetry conditions for both hydrodynamic and metric quantities across the center (r = 0),
the rotation axis (θ = 0), and the equatorial plane (θ = π/2). The quantities, which have
to be continued across the symmetry boundaries, are the hydrodynamic state variables ρ, vi
and ε, and the metric quantities φ, α and βib. Typically, a quantity is being mirrored either
symmetrically or antisymmetrically across a symmetry boundary, depending on whether it
should be continuous across the boundary, or zero at the boundary. We combine those two
options in the following notation for a quantity qi,j:

q− 1
2
,j = ±cq 1

2
,j, qi,nθ+ 1

2
= ±eqi,nθ− 1

2
, qi,− 1

2
= ±pqi, 1

2
, (5.2)

where

± =

{
+ symmetric,
− antisymmetric,

(5.3)

and the subscripts c, e, p refer to the center, equator, and pole, respectively.

The symmetry conditions for the scalar quantities ρ, ε, φ and α are trivial: Like their
Newtonian counterparts ρ, ε and Φ they have to be continuous across all boundaries; thus the
corresponding symmetry conditions are symmetric (+) at all boundaries. However, contrary to

bIn the code, these symmetry conditions are implemented in the form of “ghost zones”, which extent beyond
the regular grid across the symmetry boundaries. These zones are needed in the reconstruction procedure for
the calculation of the numerical fluxes, and in the metric solver (see Equation 5.88).
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Newtonian hydrodynamics, the symmetry conditions for the vector quantities are nontrivial,
as they occur both in covariant and contravariant form. We want to explain this with the
following example: Consider the angular velocity v3, which is a component of a covariant
vector. Its contravariant form, which also occurs in the hydrodynamic equations, is v3 =
γ33v3 = φ−4r−2 sin−2 θv3. Obviously, the factor r−1 sin−1 in this expression changes sign at
the rotation axis, and additionally becomes infinite at both the center and the axis. Then
the question arises, whether a symmetry condition should be imposed on the covariant or the
contravariant component of the velocity vector, and which one this should be. This problem
can be resolved by defining “physical” velocities (the same can be done for the shift vector
components βi):

vr =
√
v1v1 = φ−2v1 = φ2v1, (5.4)

vθ =
√
v2v2 = φ−2r−1v2 = φ2rv2, (5.5)

vϕ =
√
v3v3 = φ−2r−1 sin−1 θv3 = φ2r sin θv3. (5.6)

As these velocities are bounded by the speed of light c = 1 (0 ≤ |vr|, |vθ|, |vϕ| ≤ 1), and

directly occur up in the Lorentz factor, W = 1/
√

1− v2
r − v2

θ − v2
ϕ, they can be regarded are

the general relativistic analogue of the ordinary hydrodynamic velocities. For these velocities,
we can then specify the usual symmetry conditions from Newtonian hydrodynamics. The
symmetry conditions for covariant or contravariant components follow immediately from these
conditions together with the symmetry behavior of the geometrical terms in the three-metric
components γij and γij:

β1 β2 β3

vr vθ vϕ v1 v2 v3 v1 v2 v3

center − − − − ? ? − + +
pole + − − + − ? + − +
equator + − + + − + + − +

(5.7)

For the symmetry conditions summarized in this table we have demanded that all velocities
should vanish at the center (no mass flow across the center); additionally, the meridional velocity
vθ should be zero along the rotation axis and in the equatorial plane (no mass flow across these
boundaries), and the azimuthal velocity vϕ should be zero along the rotation axis. These
entries are set to (−), all others, where the velocities are continuous, are set to (+). The
shift vector components βi are treated according to the velocity vector components, as the
shift vector corresponds to a “coordinate velocity”. An entry labeled with (?) states that the
corresponding symmetry condition cannot be specified unambiguously with this methodc.

cIn practice, the symmetry conditions are imposed on the “physical” velocities. Any covariant or contravari-
ant components in the ghost zones are then calculated from these velocities by lowering or raising the index
with the three-metric.
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5.1.3 Boundary Conditions – Isotropic Schwarzschild Solution

As the computational grid covers only the part of the (in principle spatially infinite) spacetime
up to the outer boundary at rnr+ 1

2
, we have to impose boundary conditions for the hydrody-

namic and metric quantities thered. In the case of hydrodynamic quantities, this is a trivial
task: We simply extrapolate the interior values to the ghost zones.

The metric quantities cannot be extrapolated, as the elliptic equations for the metric define
a boundary value problem. Here the boundary values are not given by the metric equations
either a priori or during the solution process, but rather are free parameters which influence
the solution of the equations. Therefore we have to determine the boundary conditions by
matching the interior metric to an exterior spacetime metric. One possibility is to assume that
the exterior spacetime is given by the Schwarzschild solution for a spherically symmetric vacuum
spacetime. The quality of this approximation will be good enough for all practical purposes,
if the spacetime at the boundary does not deviate too much from spherical symmetry. This
is true for iron core initial data, and also holds for rotational core collapse, as the radius of
the boundary is fixed at the initial iron core radius of about 1, 500 km, while the radius of the
(possibly highly nonspherical) neutron star is much smaller.

The usual Schwarzschild solution in vacuum in Schwarzschild coordinates (t, r̂) has the line
element

ds2 = −
(

1− 2Mgrav

r̂

)
dt+

dr̂

1− 2Mgrav

r̂

+ r̂2dΩ2. (5.8)

However, this radial coordinate is inappropriate for matching this spacetime to the interior
geometry, which uses an isotropic radial coordinate, i.e. one that has the same conformal factor
in front of all three diagonal spatial metric components. Thus, in the exterior we introduce a
new isotropic coordinate r as well, with

r̂ = r

(
1 +

2Mgrav

r

)2

←→ r =
1

2

(
r̂ −Mgrav +

√
r̂2 − 2Mgravr̂

)
. (5.9)

Then with

dr̂ = dr

(
1 +

Mgrav

2r

)[(
1 +

Mgrav

2r

)
− 2Mgrav

r

]
, (5.10)

the line element in isotropic coordinates becomes

ds2 = −

(
1− Mgrav

2r

)2

(
1 + Mgrav

2r

)2dt
2 +

(
1 +

Mgrav

2r

)4

(dr2 + r2dΩ2). (5.11)

For a vanishing shift vector, this metric can be exactly matched to the conformally flat interior
metric (3.12):

α =

(
1− Mgrav

2r

)
(

1 + Mgrav

2r

) , φ = 1 +
Mgrav

2r
, βi = 0. (5.12)

dAs for the symmetry conditions, the boundary conditions are in practice established by ghost zones.

61



CHAPTER 5. NUMERICAL IMPLEMENTATION

As the gravitational mass Mgrav is conserved (see also Section 6.4), and as βi is close to zero at
the outer boundarye, we choose to employ the matching to the isotropic Schwarzschild metric
as an outer boundary condition for the metric coefficients α, φ and βi.

However, we point out that these boundary conditions are only an approximation to the
exact vacuum spacetime solution, since no rotating spacetime can be described by a confor-
mally flat metric (see Section 3.3.1). By matching the interior spacetime to the spherically
symmetric isotropic Schwarzschild solution, we neglect effects like frame dragging (β3 6= 0),
which would in general be present in the vacuum spacetime region outside the computational
domain. Still, such effects or the deviation from spherical symmetry are only significant for
extremely relativistic and rapidly rotating configurations. Still, a natural improvement of this
boundary condition would be to use the values from the initial data solver at the outer bound-
ary as boundary conditions. This would definitely give better boundary conditions at least for
spacetimes which are highly relativistic and nonspherical even at the boundary, like the one for
a rapidly rotating neutron star on a grid, whose boundary is close to the neutron star radius.

eNote that the metric components g0i are zero in the isotropic Schwarzschild metric.
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5.2 Hachisu’s Self-Consistent Field Method

Hachisu’s self-consistent field (HSCF) method [65, 66] for relativistic stars is a numerical method
to iteratively solve the equilibrium equations for a rotating relativistic polytrope (4.15, 4.18,
4.20, 4.22–4.25)f. The only free parameters of this method are ρc (central density), rp/re (ratio
of equatorial to polar radius) and A (rotation law parameter). In the following, we briefly
summarize this method.

One starts with a spherically symmetric constant density distribution (interior Schwarzschild
solution). This solution is then iterated until the equilibrium equations are satisfied. To obtain
the correct shape of the rotating star, the equilibrium equation (4.20) and the rotation law (4.18)
are evaluated at three points: P, the outer boundary of the star at the polar axis; W, the point
with the maximum density in the equatorial plane; and Q, the outer boundary of the star in
the equatorial plane. Using a Newton–Raphson method, the quantities Ω(P), Ω(W), Ω(Q), Ωc,
re and the r.h.s. integration constant of (4.20) are computed for a given metric, which is then
recalculated. This iteration is repeated until convergence. For a different choice of the three
points P, W and Q, one can also obtain toroidal rotating matter configurations in equilibrium.

As we have already pointed out, the metric for a rotating relativistic star in equilibrium
cannot be written in a conformally flat way. Thus, in order to match the initial data obtained
with the HSCF method, which uses the metric (4.12), to the conformally flat metric (3.12),
we apply the approximation α̂ = β̂g. By virtue of this assumption, the metric (4.12) becomes
conformally flat, and its components relate to the CFC metric components as follows:

α = eν̂/2, φ = eα̂/2 = eβ̂/2, β3 = −ω. (5.13)

The error arising from this approximation is only a few percent even for rapidly and differentially
rotating (and therefore strongly deformed) neutron star models (see Section 6.2).

Finally, we map the initial models obtained with the HSCF method onto the grid which we
use in the evolution code (see Section 5.1.1). As the initial data solver uses an equidistant
grid with a Schwarzschild-like radial coordinate r̂ (a generalization of the one in Equation (5.9)
to non-vacuum spacetimes) and an angular coordinate µ = cos θ, this mapping procedure,
which involves interpolation of both hydrodynamic and metric quantities, introduces additional
numerical errors. However, this has no negative influence on the ability of the evolution code
to maintain stability of e.g. a rotating iron core or neutron star in equilibrium (see Section 6.2).

fThe HSCF method is the relativistic extension of the self-consistent field method for stars in Newtonian
gravity described in [49]. Other, older methods for obtaining equilibrium configurations can be found for
Newtonian rotating polytropic models in [26], for Newtonian neutron star models in [40], and for relativistic
homogenous bodies in [17]. A recent improvement of the HSCF method is the RNS code [120], which uses a
compactified radial coordinate to cover the entire spacetime.

gAs this approximation is equivalent to assuming conformal flatness for the metric of the rotating star, its
range of validity is the same as for the CFC metric (3.13) used in the dynamic evolution.

63



CHAPTER 5. NUMERICAL IMPLEMENTATION

5.3 Atmosphere Treatment at the Surface of the Star

One common problem of many hydrodynamic codes is their inability to handle regions where
the density is zero (or very small compared to the typical densities in the system). However,
polytropic density distributions in stellar models have the property that the density has a very
sharp drop at the boundary of the star; this fall-off actually defines the stellar surface. For
spherically symmetric stars, this rapid drop in density does not result in numerical problems as
the exterior boundary of the grid can always be put at a radius where the density is sufficiently
large to be properly handled by the numerical scheme.

On the other hand, in multidimensional simulations, particularly for strongly rotating matter
configurations, the deformed stellar surface does not coincide with a coordinate line of the
computational grid. For rapidly rotating neutron stars in equilibrium [65, 120, 119], the axis
ratio (i.e. the ratio between polar and equatorial radius) can be as low as 0.7. Putting the
boundary of the numerical grid at a fixed radius within the star will cut off a large portion of
the star in the vicinity of the equator. Defining the boundary of the grid at the maximum grid
radius (which is outside the stellar matter) will also not help, as in those parts of the grid the
density is zero, and the hydrodynamic scheme is destined to fail.

fatm thr fatm EoS vi

10−5 10−5 P = Kργatm 0

Table 5.1: Parameters for the low density atmosphere model in our core collapse simulations.
fatm thr has a value between 5×10−4 and 1×10−4 for the extremely differentially rotating models
A4.

As a remedy for this we introduce a low density atmosphere outside the stellar matter distri-
bution. In practice we choose a matter model for the atmosphere which is given in Table 5.1.
An atmosphere will be assumed in all regions where the density ρ is below a threshold of some
fraction fatm thr in the maximum density of the initial matter distribution prior to collapse:

ρatm thr = fatm thrρmax ini. (5.14)

The density ρatm of the atmosphere is again a fraction fatm of ρatm thr (which gives additional
flexibility by e.g. setting the atmosphere density to a lower value than the threshold density,
which defines the stellar surface):

ρatm = fatmρatm thr. (5.15)

This atmosphere is not only set up initially, but also reset after each evolution step in the
simulation. This ensures that the region covered by the atmosphere adapts automatically
to the collapse dynamics, as the “shape” of the matter distribution may change during the
evolution. However, in practice it turns out that the shape of the atmosphere region will not
change much.
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For the values specified in Table 5.1 and an initial maximum density ρmax ini = 1010 g cm−3,
this translates into a homogenous atmosphere with a density ρatm = 1 g cm−3 obeying a poly-
tropic EoS. For all practical purposes this can be considered as a low density atmosphere, which
has no influence on the dynamics of the core collapse. The only tradeoff is a slight loss of an-
gular momentum to the atmosphere from regions of the star which are close to the boundary
(see Section 6.4).

Figure 5.2 shows density profiles at the equator and along the polar axis for a differentially
rotating neutron star. The neutron star’s parameters are listed in Table 6.2 in Section 6.2, and
it possesses an axis ratio of 0.7. Beyond its surface, the neutron star is surrounded by a low
density atmosphere of the type described above.
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Figure 5.2: Profiles of the equatorial density ρe (solid line) and polar density ρp (dashed line)
for a rapidly rotating neutron star model in equilibrium: Due to its rapid rotation, its polar
radius Rp ≈ 10.4 km is only 70% of its equatorial radius Re ≈ 14.8 km (indicated by the
vertical dotted lines). The neutron star is surrounded by an artificial low density atmosphere.
The horizontal lines specify (from top to bottom) the central density ρc ≈ 7.9 × 1014 g cm−3,
the threshold density ρatm thr = fatm thrρc, and the atmosphere density ρatm = fatmρatm thr.
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5.4 High-Resolution Shock-Capturing Methods

Whereas Section 2.3 was devoted to an introduction of the general relativistic Riemann problem
and the spectral decomposition of the Jacobi matrices (2.38) of the hyperbolic conservation
laws (2.25), we will now apply these concepts to construct numerical algorithms for solving the
evolution equations.

Many modern computational codes which simulate gas dynamics rely upon Godunov type
methods. In such codes the evolution equations for the hydrodynamics are discretized in finite
volumes, which are bounded by cell interfaces. The hydrodynamic quantities at the cell centers
represent the corresponding average value within the cell. An interpolation method is used to
construct values at cell interfaces from these cell centered mean quantities. From those recon-
structed quantities, the numerical fluxes through the cell boundaries are computed, which then,
together with the source terms, determine the time evolution of the cell averaged quantities.
The evolution is propagated forward in time by solving local Riemann problems at each cell
interface. The maximum numerical time step is limited by the criterion that waves propagating
from neighboring cells must not interfere with one another, i.e. that characteristics originating
from the cell interfaces do not cross within one time step.

A numerical implementation based upon the solution of local Riemann problems is called
high-resolution shock-capturing (HRSC) scheme. Unlike finite difference codes which have
problems with weak solutions of the evolution equations containing shocks, the fact that HRSC
schemes are based on (exactly or approximately) solving discontinuous Riemann problems re-
sults in the ability to capture shocks accurately and resolve them within only a few grid points.
Additionally, such methods guarantee, when written in conservation form, the convergence of
the numerical solution to the physical solution of the problem, and the correct propagation
speeds of discontinuities.

In general the solution of a Riemann problem can contain shock waves (where all hydrody-
namic quantities are discontinuous), contact discontinuities (where some hydrodynamic quan-
tities are discontinuous), and rarefaction waves (where all hydrodynamic quantities are contin-
uous) between states where the quantities are constant. A solution of the Riemann problem
which contains all three of these features is shown schematically in the top part of Figure 5.3.
In the bottom part of that figure the representation of the smooth physical solution by the
piecewise constant numerical quantities in grid cells, which define the local Riemann problems,
is demonstrated.

The solution of the local Riemann problem depends on the fluxes of density, momentum,
and energy which cross the cell interfaces. Therefore, it is important to numerically approx-
imate these fluxes as accurately as possible. First we have to specify how the values of the
hydrodynamic quantities at the left (L) and right (R) side of the cell interfaces,

qL
i− 1

2
,j
, qR

i+ 1
2
,j
, in r-direction, (5.16)

qL
i,j− 1

2
, qR

i,j+ 1
2
, in θ-direction, (5.17)

are reconstructed from the corresponding cell averages qi,j, which are defined at cell centers.
Note that all components of the state vector (2.22) and the primitive variables have to recon-
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Figure 5.3: Riemann problems in numerical hydrodynamics: The representation of a continuous
solution by a discrete solution is shown in the lower panel. The discrete states qni define a series
of Riemann problems. The analytic solutions to this class of problems admit shocks, rarefaction
waves, and contact discontinuities (upper panel). (Figure reproduced by courtesy of J.A. Font.)

structed at the interfaces.

The simplest way of reconstruction is to assume constant functions within a zone, which
means that the zone interface values are set equal to the values qi,j at the cell centers. This
piecewise constant reconstruction, which is only first order accurate in space, was originally
proposed by Godunov in 1959 [45] in the development of his exact Riemann solver.

Higher order reconstruction methods were gradually introduced, including second order accu-
rate MUSCL (monotonic upstream schemes for conservation laws [129]), or third order accurate
PHM (piecewise hyperbolic methods) and PPM (piecewise parabolic methods [19]), and their
respective derivatives. Higher order schemes include methods to detect and sharpen discon-
tinuities, or monotonize numerical artifacts in the post-shock flow. Common to them is that
they try to reproduce the physical profiles of the quantities by the numerical reconstruction
at the cell interfaces as accurately as possible without introducing numerically unstable fea-
tures. The key property in these methods to accomplish this is to require monotonicity, which
avoids local maxima; this again suppresses the growth of unphysical numerical high frequency
oscillations [68].

In our code we have implemented Godunov, MUSCL, and PPM type reconstruction. Except
in accuracy tests, however (see Section 6.1), for our simulations we only use PPM reconstruction
due to its superior numerical accuracy compared to lower order reconstruction methods.

We can obtain the numerical flux from the reconstructed values at the interfaces computed
according to the above methods, together with the characteristic information from the Rie-
mann problem. This is demonstrated in the following. As expressed in the conservation equa-
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tions (2.25), any change in a state variable is completely determined by the flux through the
cell boundaries (and additional sources). This is reflected by this numerical scheme, and owing
to this property the HRSC methods are called flux conservative.

5.4.1 Approximate Solvers for the Riemann Problem – The Numer-
ical Flux

When nonlinear hyperbolic evolution equations – like the general relativistic hydrodynamic
equations – are simply discretized according to some straightforward finite difference scheme, it
is unavoidable that either the solution is diffused considerably at discontinuities (in first order
methods), or that spurious numerical oscillations develop behind shock fronts (in second order
schemes). To damp out such unwanted oscillations in those conventional evolution schemes,
artificial viscosity terms are introduced in the equations to “break” their hyperbolic character.
This concept was first put forward by von Neumann and Richtmyer [132]. The additional
effective “viscosity” term is particularly aimed at damping out high frequency oscillations while
(ideally) not affecting flows with small wave numbers. As it is not present in the original
evolution equations, it is called “artificial”. This purely numerical construct stabilizes the
evolution behavior of computational codes by preventing post-shock oscillations at the prize of
smearing out shocks fronts across several grid zones. Another disadvantage of this approach is
that the amount of artificial viscosity needed is usually problem and resolution dependent. For
the particular case of the relativistic hydrodynamic equations, artificial viscosity schemes have
severe problems when entering the ultrarelativistic regime [94]. Recent developments in this
direction for non-grid-based schemes such as SPH are given in [115].

Conservative codes, which are based on high-resolution shock-capturing schemes for finite
volume methods, do not need such artificial viscosity terms. In these schemes the wave structure
of the system is used to compute the numerical fluxes through the interfaces and to solve
the exact or approximate Riemann problem. There are numerous ways for constructing the
numerical fluxes (like Roe, HLLE, Shu and Osher’s ENO solvers, etc., for an overview see [126])
which all involve characteristic information from the structure of the Riemann problem. We
have chosen to adopt the numerical flux introduced recently by Donat and Marquina [24], which
is called Marquina flux for short.

Like many flux construction methods this method involves the averaging of state variables
left and right of the interface. The characteristic information is contained in a term called
numerical viscosity. This viscosity term is a result of the characteristic information of the
hyperbolic system of conservation laws, and automatically adds as much viscosity to the evo-
lution scheme as necessary. Contrary to artificial viscosity, this numerical viscosity needs no
adjustable parameters and is in general considerably smaller.

The Marqunia flux is based upon Roe’s formulation of the numerical flux [103] (which is
introduced below), and has improved features where the Roe flux produces pathological behav-
ior [24].
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Roe flux formula:
In this formulation the numerical flux at cell interfaces in r- and θ-direction is given as
the average of the reconstructed fluxes left (F L) and right (F R) of the interface plus the
numerical viscosity term:

F 1 =
1

2

(
F 1 R + F 1 L −

5∑
k=1

r̃1
k|λ̃1

k|α̃1
k

)
, (5.18)

F 2 =
1

2

(
F 2 R + F 2 L −

5∑
k=1

r̃2
k|λ̃2

k|α̃2
k

)
. (5.19)

All quantities with a tilde depend on the “Roe mean”, which is some function f of the

left and right states of the state vector F 0 at the interface: F̃
0

= f(F 0 L,F 0 R).

In Equations (5.18, 5.19), λ̃lk are the five eigenvalues (2.39, 2.40) of the Jacobi matri-
ces (2.38) as numbered in Equation (A.13), and r̃lk are the five right eigenvectors (A.6,
A.8) as numbered in Equation (A.12). The superscript l = 1, 2 denotes the r- and θ-
direction, respectively. Note that the fluxes in the r- and θ direction are defined at the
corresponding interfaces:

F 1 = F 1
i+ 1

2
,j

(
F 0 L
i+ 1

2
,j,F

0 R
i+ 1

2
,j

)
, F 2 = F 2

i,j+ 1
2

(
F 0 L
i,j+ 1

2
,F 0 R

i,j+ 1
2

)
. (5.20)

The quantities α̃lk are called wave strengths, and are defined implicitly as

F 0 R − F 0 L =
5∑

k=1

α̃1
kr̃

1
k, F 0 R − F 0 L =

5∑
k=1

α̃2
kr̃

2
k. (5.21)

If the hyperbolic system is locally linear, then the Jacobi matrices are constant, and the
matrix of right eigenvectors can be inverted: L = R−1. As a consequence of such a
property of the Riemann problem, the wave strengths can be written as

α̃1
k = l̃

1

k

(
F 0 R − F 0 L

)
, α̃2

k = l̃
2

k

(
F 0 R − F 0 L

)
, (5.22)

and can thus be calculated analytically in a rather simple way.
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Marquina flux formula:
This improved flux formula has a structure which is very similar to Roe’s flux for-
mula (5.18, 5.19), but differs in the numerical viscosity term, which does not depend
on “Roe averaged” reconstructed state vector quantities, but rather has a clear split into
left and right states:

F 1 =
1

2

(
F 1 R + F 1 L −

5∑
k=1

(
r1 R
k |λ1

k|maxα
1 R
k − r1 L

k |λ1
k|maxα

1 R
k

))
, (5.23)

F 2 =
1

2

(
F 2 R + F 2 L −

5∑
k=1

(
r2 R
k |λ2

k|maxα
2 R
k − r2 L

k |λ2
k|maxα

2 R
k

))
. (5.24)

Here the function |x|max is the maximum of the right and left reconstructed values of a
quantity x: |x|max = max (xR, xL).

If we again assume that the system is linear and thus the Jacobi matrices are constant,
we can invert the matrix of right eigenvectors. We define the wave strengths as

α1 L
k = l1 L

k F
0 L, α1 R

k = l1 R
k F

0 R, α2 L
k = l2 L

k F
0 L, α2 R

k = l2 R
k F

0 R, (5.25)

and rewrite the flux formula as

F 1 =
1

2

(
F 1 R + F 1 L −∆q1

)
, (5.26)

F 2 =
1

2

(
F 2 R + F 2 L −∆q2

)
, (5.27)

where the numerical viscosity vector ∆ql can be written as the difference of the products of
the right eigenvector matrix, the diagonal eigenvalue matrix, the left eigenvector matrix,
and the state vector, evaluated right and left of the interface:

∆ql = qlR − qlL = RlR
∣∣ΛlR

∣∣
max

LlRF 0 R −RlL
∣∣ΛlL

∣∣
max

LlLF 0 L. (5.28)

The analytic expressions for the right and left eigenvectors in r- and θ-direction are given in
Appendix A.2. Using these equations, the numerical Marquina flux terms can be calculated in
a straight-forward and computationally inexpensive way.

We want to close this introduction to approximate solvers with a short reflection on the
justification of the use of approximate Riemann solvers. In Section 2.3 we have especially
emphasized the fact that the hydrodynamic evolution equations are nonlinear. However, ap-
proximate Riemann solvers are based on Jacobi matrices which are assumed to be locally
constant. This assumption does not neglect the nonlinearity of the hyperbolic conservation
laws, as the equations are linearized locally. This is similar to the linearization of equations in
a numerical discretization scheme, where the solution of an arbitrary analytic equation is ap-
proximated by a locally linear function. Indeed, as suggested by Donat and Marquina [24], one
can assume that the discretization of the analytic equations, and the reconstruction process at
the cell interfaces already leads to some local loss of nonlinear information, so that the use of an
approximate instead of an exact numerical Riemann solver will probably not have a significant
impact on the accuracy of the numerical solution. Then the clear advantage of an approximate
Riemann solver in terms of considerable savings in computational effort is decisive for choosing
this method in the calculation of the numerical flux.
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5.5 Iteration Scheme – Discretization of the Evolution

Equations

5.5.1 Time Evolution of the Conserved Quantities

To integrate the hydrodynamic evolution equations (2.25) forward in time, we have implemented
a Runge–Kutta multi-step scheme for the discretized equations. In general, we have to integrate
a system with the following structure:

∂
√
γF 0

∂t
+
∂
√
−gF 1

∂r
+
∂
√
−gF 2

∂θ
−
√
−gQ = 0. (5.29)

This can be transformed into two analytically equivalent forms,

∂F 0

∂t
+
∂(αF 1)

∂r
+
∂(αF 2)

∂θ
+ α

(
F 0∂ ln

√
γ

α∂t
+ F 1∂ ln

√
γ

∂r
+ F 2∂ ln

√
γ

∂θ
−Q

)
=

∂F 0

∂t
+
∂F̃

1

∂r
+
∂F̃

2

∂θ
+ αQ̃ = 0, (5.30)

or,

∂F 0

∂t
+

1
√
γ

∂(α
√
γF 1)

∂r
+

1
√
γ

∂(α
√
γF 2)

∂θ
+ α

(
F 0∂ ln

√
γ

α∂t
−Q

)
=

∂F 0

∂t
+

1
√
γ

∂F̂
1

∂r
+

1
√
γ

∂F̂
2

∂θ
− αQ̂ = 0, (5.31)

where the spatial derivatives of ln
√
γ are given by

∂r ln
√
γ =

4

φ

∂φ

∂r
+

2

r
, ∂θ ln

√
γ =

4

φ

∂φ

∂θ
+ cos θ. (5.32)

Note that for a CFC metric, we can rewrite ∂t
√
γ in a form without any explicit time dependence

by virtue of Equation (3.34). In the above equations, we have made use of the definitions
F̃ = αF and F̂ = α

√
γF , and have grouped the source terms in Q̃ and Q̂.

Both forms differ in the sense that expression (5.30) contains more source terms compared
to expression (5.31)h. These source terms stem effectively from the coordinate choice and the
above algebraic conversion of the conservation equations, and do not emanate from actual
physical processes. The additional source terms act like ficticious forces (e.g. like a Coriolis
force term) on the systemi. This can lead to numerical inaccuracies, as these forces tend to

hNote that the fluxes in both expression (5.29) and expression (5.30) are written in divergence form. However,
this is not immediately apparent in this form of writing the equations, as the appropriate geometrical terms
involving r and θ are hidden in

√
γ and the covariant form of the fluxes.

iWe point out that such source terms as in Equation (5.30) do not contain derivatives of the evolved (or
primitive) hydrodynamic quantities, contrary to earlier non-conservative formulations of the relativistic hydro-
dynamic equations (c.f. Wilson [137]). For Cartesian coordinates and Minkowski spacetime, in our formulation
the derivatives of geometrical terms in the sources Q̃ vanish.
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spoil the conservative character of HRSC schemes. More on that issue can be found at then
end of this section and in Section 6.4.

The standard method to integrate forward in time such a system of equations, where the data
are stored only on one time slice (contrary to e.g. staggered leap frog schemes), are Runge–Kutta
integration schemes of various orders. There are different numerical implementations of these
schemes like the midpoint method, or the Heun (or modified trapezoidal) method [1, 100]. We
have chosen to use a scheme which was constructed by Shu and Osher [113]. It has a Courant
number of 1j and is total variation diminishing (TVD – for further discussion of this property,
see [50]). For an evolution equation of the form

∂f

∂t
= g(f), (5.33)

where the function f is defined as fn and fn+1 at the old and new time slice with a time
difference of ∆tn, the scheme has the following implementation:

(1)

fn+1 = fn + ∆tn g(fn),

fn+1 =
1

2

(
fn+

(1)

fn+1 +∆tn g(
(1)

fn+1)

)
,

 2nd order (5.34)

(1)

fn+1 = fn + ∆tn g(fn),
(2)

fn+1 =
1

4

(
3fn+

(1)

fn+1 +∆tn g(
(1)

fn+1)

)
,

fn+1 =
1

3

(
fn + 2

(2)

fn+1 +2∆tn g(
(2)

fn+1)

)
.


3rd order (5.35)

In the time evolution we use quantities which are defined at a specified time tn at cell centers
(qni,j), and cell interfaces with respect to the r-direction (qn

i+ 1
2
,j

) and to the θ-direction (qn
i,j+ 1

2

).

The metric quantities φ, α and βi are needed and defined both at cell centers and at cell
interfaces:

φni,j, αni,j, β1n
i,j , β1n

i,j , β1n
i,j ,

√
γni,j, ĝni,j,

φn
i+ 1

2
,j
, αn

i+ 1
2
,j
, β1n

i+ 1
2
,j
, β1n

i+ 1
2
,j
, β1n

i+ 1
2
,j
,
√
γn
i+ 1

2
,j
, ĝn

i+ 1
2
,j
,

φn
i,j+ 1

2

, αn
i,j+ 1

2

, β1n
i,j+ 1

2

, β1n
i,j+ 1

2

, β1n
i,j+ 1

2

,
√
γn
i,j+ 1

2

, ĝn
i,j+ 1

2

,

(5.36)

where ĝ ≡
√
−g, γ = φ4r2 sin θ, and −g = αφ4r2 sin θ.

jThis value for the Courant number can be derived mathematically. However, in most practical numerical
applications, the actual Courant number used in the calculation of the time step has to be reduced in order to
ensure numerical stability.
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The discretized state vector quantities,

F 0n
i,j =



Dn
i,j

Sn1 i,j

Sn2 i,j

Sn3 i,j

τni,j


, (5.37)

and the discretized source vectors of Equations (5.30) and 5.31),

Q̃
n

i,j =



−Dn
i,j

∂ ln
√
γ

α∂t
−Dn

i,j v̂
1∂ ln

√
γ

α∂r
−Dn

i,j v̂
2∂ ln

√
γ

α∂θ

Qn
2 i,j − Sn1 i,j

∂ ln
√
γ

α∂t
− (Sn1 i,j v̂

1 + P )
∂ ln
√
γ

α∂r
− Sn1,i,j v̂2∂ ln

√
γ

α∂θ

Qn
3 i,j − Sn2 i,j

∂ ln
√
γ

α∂t
− Sn2 i,j v̂1∂ ln

√
γ

α∂r
− (Sn2 i,j v̂

2 + P )
∂ ln
√
γ

α∂θ

Qn
4 i,j − Sn3 i,j

∂ ln
√
γ

α∂t
− Sn3 i,j v̂1∂ ln

√
γ

α∂r
− Sn3 i,j v̂2∂ ln

√
γ

α∂θ

Qn
5 i,j − τni,j

∂ ln
√
γ

α∂t
− (τni,j v̂

1 + Pv1)
∂ ln
√
γ

α∂r
− (τni,j v̂

2 + Pv2)
∂ ln
√
γ

α∂θ


, (5.38)

Q̂
n

i,j =



−Dn
i,j

∂ ln
√
γ

α∂t

Qn
2 i,j − Sn1 i,j

∂ ln
√
γ

α∂t

Qn
3 i,j − Sn2 i,j

∂ ln
√
γ

α∂t

Qn
4 i,j − Sn3 i,j

∂ ln
√
γ

α∂t

Qn
5 i,j − τni,j

∂ ln
√
γ

α∂t


, (5.39)

are defined at cell centers, while the numerical fluxes in the r- and θ-direction are composed of
flux differences at the respective cell interfaces plus the numerical viscosity vector V . The ex-
plicit form for the numerical flux difference ∆F̃ in Equation (5.30), and ∆F̂ in Equation (5.31)
are as follows:
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∆F̃
1n

i,j =



αn
i+ 1

2
,j
D̄n
i+ 1

2
,j

–
v̂1n
i+ 1

2
,j
− αn

i− 1
2
,j
D̄n
i− 1

2
,j

–
v̂1n
i− 1

2
,j

αn
i+ 1

2
,j

(S̄n
1 i+ 1

2
,j

–
v̂1n
i+ 1

2
,j

+P̄ n
i+ 1

2
,j

)− αn
i− 1

2
,j

(S̄n
1 i− 1

2
,j

–
v̂1n
i− 1

2
,j

+P̄ n
i− 1

2
,j

)

αn
i+ 1

2
,j
S̄n

2 i+ 1
2
,j

–
v̂1n
i+ 1

2
,j
− αn

i− 1
2
,j
S̄n

2 i− 1
2
,j

–
v̂1n
i− 1

2
,j

αn
i+ 1

2
,j
S̄n

3 i+ 1
2
,j

–
v̂1n
i+ 1

2
,j
− αn

i− 1
2
,j
S̄n

3 i− 1
2
,j

–
v̂1n
i− 1

2
,j

αn
i+ 1

2
,j

(τ̄n
i+ 1

2
,j

–
v̂1n
i+ 1

2
,j

+P̄ n
i+ 1

2
,j
v̄1n
i+ 1

2
,j

)− αn
i− 1

2
,j

(τ̄n
i− 1

2
,j

–
v̂1n
i− 1

2
,j

+P̄ n
i− 1

2
,j
v̄1n
i− 1

2
,j

)


+∆Ṽ

1n

i,j , (5.40)

∆F̃
2n

i,j =



αn
i,j+ 1

2

D̄n
i,j+ 1

2

–
v̂2n
i,j+ 1

2

− αn
i,j− 1

2

D̄n
i,j− 1

2

–
v̂2n
i,j− 1

2

αn
i,j+ 1

2

S̄n
1 i,j+ 1

2

–
v̂2n
i,j+ 1

2

− αn
i,j− 1

2

S̄n
1 i,j− 1

2

–
v̂2n
i,j− 1

2

αn
i,j+ 1

2

(S̄n
2 i,j+ 1

2

–
v̂2n
i,j+ 1

2

+P̄ n
i+ 1

2
,j+ 1

2

)− αn
i,j− 1

2

(S̄n
2 i,j− 1

2

–
v̂2n
i,j− 1

2

+P̄ n
i− 1

2
,j− 1

2

)

αn
i,j+ 1

2

S̄n
3 i,j+ 1

2

–
v̂2n
i,j+ 1

2

− αn
i,j− 1

2

S̄n
3 i,j− 1

2

–
v̂2n
i,j− 1

2

αn
i,j+ 1

2

(τ̄n
i,j+ 1

2

–
v̂2n
i,j+ 1

2

+P̄ n
i,j+ 1

2

v̄2n
i,j+ 1

2

)− αn
i,j− 1

2

(τ̄n
i,j− 1

2

–
v̂2n
i,j− 1

2

+P̄ n
i,j− 1

2

v̄2n
i,j− 1

2

)


+∆Ṽ

2n

i,j . (5.41)

∆F̂
1n

i,j =



ĝn
i,j+ 1

2

D̄n
i+ 1

2
,j

–
v̂1n
i+ 1

2
,j
−ĝn

i,j− 1
2

D̄n
i− 1

2
,j

–
v̂1n
i− 1

2
,j

ĝn
i,j+ 1

2

(S̄n
1 i+ 1

2
,j

–
v̂1n
i+ 1

2
,j

+P̄ n
i+ 1

2
,j

)−ĝn
i,j− 1

2

(S̄n
1 i− 1

2
,j

–
v̂1n
i− 1

2
,j

+P̄ n
i− 1

2
,j

)

ĝn
i,j+ 1

2

S̄n
2 i+ 1

2
,j

–
v̂1n
i+ 1

2
,j
−ĝn

i,j− 1
2

S̄n
2 i− 1

2
,j

–
v̂1n
i− 1

2
,j

ĝn
i,j+ 1

2

S̄n
3 i+ 1

2
,j

–
v̂1n
i+ 1

2
,j
−ĝn

i,j− 1
2

S̄n
3 i− 1

2
,j

–
v̂1n
i− 1

2
,j

ĝn
i,j+ 1

2

(τ̄n
i+ 1

2
,j

–
v̂1n
i+ 1

2
,j

+P̄ n
i+ 1

2
,j
v̄1n
i+ 1

2
,j

)−ĝn
i,j− 1

2

(τ̄n
i− 1

2
,j

–
v̂1n
i− 1

2
,j

+P̄ n
i− 1

2
,j
v̄1n
i− 1

2
,j

)


+∆V̂

1n

i,j , (5.42)

∆F̂
2n

i,j =



ĝn
i,j+ 1

2

D̄n
i,j+ 1

2

–
v̂2n
i,j+ 1

2

−ĝn
i,j− 1

2

D̄n
i,j− 1

2

–
v̂2n
i,j− 1

2

ĝn
i,j+ 1

2

S̄n
1 i,j+ 1

2

–
v̂2n
i,j+ 1

2

−ĝn
i,j− 1

2

S̄n
1 i,j− 1

2

–
v̂2n
i,j− 1

2

ĝn
i,j+ 1

2

(S̄n
2 i,j+ 1

2

–
v̂2n
i,j+ 1

2

+P̄ n
i+ 1

2
,j+ 1

2

)−ĝn
i,j− 1

2

(S̄n
2 i,j− 1

2

–
v̂2n
i,j− 1

2

+P̄ n
i− 1

2
,j− 1

2

)

ĝn
i,j+ 1

2

S̄n
3 i,j+ 1

2

–
v̂2n
i,j+ 1

2

−ĝn
i,j− 1

2

S̄n
3 i,j− 1

2

–
v̂2n
i,j− 1

2

ĝn
i,j+ 1

2

(τ̄n
i,j+ 1

2

–
v̂2n
i,j+ 1

2

+P̄ n
i,j+ 1

2

v̄2n
i,j+ 1

2

)−ĝn
i,j− 1

2

(τ̄n
i,j− 1

2

–
v̂

2n

i,j− 1
2
+P̄ n

i,j− 1
2

v̄2n
i,j− 1

2

)


+∆V̂

2n

i,j . (5.43)

The components of the state vector F 0 with overbars are the averages of left and right recon-
structed states at the interface, F 1 R +F 1 L as in the flux formula (5.23, 5.24) in Section 5.4.1.
We also use the following abbreviation: v̂i = vi − βi/α.

These flux terms contain the characteristic information of the hyperbolic system through the
numerical viscosity q, according to Section 5.4.1:

∆Ṽ
1n

i,j = αn
i+ 1

2
,j
q1n
i+ 1

2
,j
− αn

i− 1
2
,j
q1n
i− 1

2
,j
, (5.44)

∆Ṽ
2n

i,j = αn
i,j+ 1

2
q2n
i,j+ 1

2
− αn

i,j− 1
2
q2n
i,j− 1

2
, (5.45)
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and

∆V̂
1n

i,j = ĝn
i+ 1

2
,j

∆q1n
i+ 1

2
,j
− ĝn

i− 1
2
,j

∆q1n
i+ 1

2
,j
, (5.46)

∆V̂
2n

i,j = ĝn
i,j+ 1

2
∆q2n

i,j+ 1
2
− ĝn

i,j− 1
2
∆q2n

i,j+ 1
2
. (5.47)

The time and space derivatives of the state and flux vectors are discretized to 1st order
accuracy for the time derivative and 2nd order accuracy for the spatial derivative as

∂F 0
i,j

∂t
=
F 0n+1
i,j − F 0n

i,j

∆tn
,

∂F̃
1

i,j

∂r
=
F̃

1n

i+ 1
2
,j − F̃

1n

i− 1
2
,j

∆ri
=

∆F̃
1n

i,j

∆ri
,

∂F̃
1

i,j

∂θ
=
F̃

1n

i,j+ 1
2
− F̃ 1n

i,j− 1
2

∆θ
=

∆F̃
1n

i,j

∆θ
, (5.48)

∂F̂
2

i,j

∂r
=
F̂

2n

i+ 1
2
,j − F̂

2n

i− 1
2
,j

∆ri
=

∆F̂
2n

i,j

∆ri
,

∂F̂
2

i,j

∂θ
=
F̂

2n

i,j+ 1
2
− F̂ 2n

i,j− 1
2

∆θ
=

∆F̂
2n

i,j

∆θ
.

Thus, the expression (5.31) for the evolution equations can now be written as the following
2nd order Runge–Kutta integration equations:

(1)

F 0n+1
i,j =F 0n

i,j + ∆tn

(
− 1

(φni,j)
4r2
i sin θj

(
∆F̂

1n

i,j

∆ri
+

∆F̂
2n

i,j

∆θ

)
+ αni,jQ̂

n

i,j

)
,

F 0n+1
i,j =

1

2

F 0n
i,j +

(1)

F 0n+1
i,j +∆tn

− 1

(φni,j)
4r2
i sin θj

∆

(1)

F̂
1n+1

i,j

∆ri
−

∆

(1)

F̂
2n+1

i,j

∆θ

+ αni,j

(1)

Q̂
n+1

i,j


 .

(5.49)
The 3rd order accurate form is constructed in an analogous way, and reads:

(1)

F 0n+1
i,j =F 0n

i,j + ∆tn

(
− 1

(φni,j)
4r2
i sin θj

(
∆F̂

1n

i,j

∆ri
+

∆F̂
2n

i,j

∆θ

)
+ αni,jQ̂

n

i,j

)
,

(2)

F 0n+1
i,j =

1

4

3F 0n
i,j +

(1)

F 0n+1
i,j +∆tn

− 1

(φni,j)
4r2
i sin θj
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F̂
1n+1

i,j

∆ri
−
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(1)

F̂
2n+1

i,j

∆θ

+ αni,j

(1)

Q̂
n+1

i,j


 ,

F 0n+1
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1

3

F 0n
i,j + 2

(2)

F 0n+1
i,j +2∆tn

− 1

(φni,j)
4r2
i sin θj

∆

(2)

F̂
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i,j

∆ri
−

∆

(2)

F̂
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∆θ

+ αni,j

(2)

Q̂
n+1

i,j


 .

(5.50)
The superscripts (1) and (2) over the flux difference and source terms mean that these quan-
tities have to be taken at the first and second intermediate Runge–Kutta step, respectively,

as functions of the respective intermediate state vector quantities
(1)

F 0n+1
i,j and

(2)

F 0n+1
i,j . The time

integration equations for the expression (5.30) have a similar form.
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In this time integration from a particular time slice Σtn , on which the metric is given, no
explicit time derivatives of the metric occur in the flux part of Equation (5.29). Thus for this
part of the conservation equations the data given on Σtn are sufficient. However, time derivatives
of all metric quantities φ, α, and βi show up in the Christoffel symbols (see Appendix B.2), and
thus in the source term Q. As the equations for the metric in the CFC approximation do not
provide us with explicit expressions for the time derivatives of all of these quantities, we have
to approximate them numerically by the following discretized derivatives using values from the
two time slices Σtn and Σtn−1 , on which the metric has already been calculated:(

∂φ

∂t

)n
i,j

=
φni,j − φn−1

i,j

∆tn−1
,

(
∂α

∂t

)n
i,j

=
αni,j − αn−1

i,j

∆tn−1
,

(
∂βi

∂t

)n
i,j

=
βi ni,j − βi n−1

i,j

∆tn−1
. (5.51)

For ∂tφ we can also use the analytically equivalent version from Equation (3.34):

(
∂φ

∂t

)n
i,j

=
1

(φni,j)
6

[(
∂β1

∂r

)n
i,j

+

(
∂β2

∂θ

)n
i,j

+
β1n
i,j

ri
+ cot θjβ

2n
i,j +

6β1n
i,j

φni,j

(
∂φ

∂θ

)n
i,j

+
6β1n

i,j

φni,j

(
∂φ

∂θ

)n
i,j

]
,

(5.52)
where we have used the following abbreviation for the radial and angular derivative of a metric
quantity q: (

∂q

∂r

)n
i,j

=
qn
i+ 1

2
,j
− qn

i− 1
2
,j

∆ri
,

(
∂q

∂θ

)n
i,j

=
qn
i,j+ 1

2

− qn
i,j− 1

2

∆θ
, (5.53)

The numerical deviation between expressions (5.51) and (5.52) for ∂tφ during the evolution is
a good measure for the accuracy of the numerical scheme and for the quality of the metric
extrapolation, if the metric system is not solved at every time step (see also Section 5.6.4 and
Section 6.6).

If the conservation equations are written in the form (5.30) rather than in the form (5.31),
additional terms appear, which effectively act as sources in addition to the ones originating from
curved spacetime (“gravity”) and non-Cartesian coordinates (“ficticious forces”). Although
formulations (5.30) and (5.31) are equivalent, there is a profound numerical difference between
them. For illustrative purposes, we now consider the Newtonian case. Here in axisymmetry
with polar coordinates used, the equations for the rest mass ρ, the angular momentum S3 =
ρv3 = ρr sin θvϕ and the total energy E = ρε + 1

2
ρv2 are true conservation equations without

source terms. For a closed system, the sum of the fluxes through all interfaces is zero, and
if a flux-conservative scheme is used, the conserved quantities are constant throughout the
evolution up to machine precision.

This “exact” numerical conservation stems from the fact that for each conserved quantity
there exists a corresponding flux divergence, and no source terms are present. This does not
hold for Equation (5.31), where the fluxes differ from the ones in Equation (5.30) by the
volume element

√
γ (which is r2 sin θ in the Newtonian case). Therefore in this formulation

we introduce a source terms which numerically “drives” mass, angular momentum and energy
creation/destruction, respectively. So the system of the form (5.30) is more in the spirit of the
conservative character of the hydrodynamic equations, which is reflected in its superiority as
far as numerical conservation of certain quantities is concerned.
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However, in the general relativistic conservation equations, only the rest mass D is ana-
lytically conserved (which manifests itself in the vanishing first component of Q in Equa-
tions (2.28)). Both angular momentum and total energy are not conserved (at least for a
system with boundaries not at infinity), as there is angular momentum and energy transport
for example by gravitational waves. So the corresponding source term components are not zero,
unlike in the Newtonian case. Thus in GR the motivation for writing the equations in the exact
numerical conservation form is not as high as in Newtonian hydrodynamics, as in general the
strict conservation will be violated anyway for S3 and τk. In some collapse situations the less
conservative form may even be favorable, as the effective viscosity along the rotation axis is
apparently higher, and therefore numerical noise at this problematic part of the grid, where
some metric components become zero or singular, is reduced.

Another part of the hydrodynamic conservation equations, where analytically equivalent
formulations can lead to quite remarkable numerical differences, is the radial and angular flux
derivative: We can rewrite the derivatives in the flux divergence terms of Equation (5.31) as
follows:

1

φ4r2 sin θ

(
∂

∂r
(φ4r2 sin θF 1) +

∂

∂θ
(φ4r2 sin θF 2)

)
=

3

φ4

∂

∂r3
(φ4F 1)− 1

φ4

∂

∂ cos θ
(φ4F 2). (5.54)

We again point out that analytically both forms are equivalent. However, in the discretized
form the r.h.s. form has the advantage of a better effective numerical resolution close to the
center and the polar axis, as in the l.h.s. form the factor in front of the derivative becomes
analytically singular (and therefore numerically very large in the center of the first radial or
angular cells, respectively).

A discretization of the l.h.s. of Equation (5.54) is given by

1

(φni,j)
4r2
i sin θj

(
(φn

i+ 1
2
,j

)4r2
i+ 1

2

sin θjF
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2
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2
,j
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2

sin θjF
1n
i− 1

2
,j

∆ri
+

(φn
i,j+ 1

2

)4r2
i sin θj+ 1

2
F 2n
i,j+ 1

2
− (φn

i,j− 1
2

)4r2
i sin θj− 1

2
F 2n
i,j− 1

2

∆θ

)
, (5.55)

whereas the r.h.s. is discretized as follows:

1

(φni,j)
4

(
3

(φn
i+ 1

2
,j

)4F 1n
i+ 1

2
,j − (φn

i− 1
2
,j

)4F 1n
i− 1

2
,j

∆r3
i

−
(φn

i,j+ 1
2

)4F 2n
i,j+ 1

2
− (φn

i,j− 1
2

)4F 2n
i,j− 1

2

∆ cos θj

)
, (5.56)

with ∆r3
i = r3

i+ 1
2

− r3
i− 1

2

and ∆ cos θj = cos θj+ 1
2
− cos θj− 1

2
.

In our core collapse simulations it has turned out to be favorable to use form (5.55) for the
radial derivative, and form (5.56) for the angular derivative to minimize unwanted numerical
artifacts at the center and the rotation axis.

kIf a source of gravitational waves is axisymmetric, the gravitational radiation does not carry away angular
momentum (see exercise 16.3 in [109]). Furthermore, if a system does not emit gravitational waves, and
is isolated in other respects as well, angular momentum is also conserved, and the source term for the S3

evolution equation vanishes. However, approximating the spacetime by a CFC metric destroys this exact analytic
conservation by introducing a nonzero source term. In this case it is irrelevant that there is no gravitational
radiation in a CFC spacetime, as this is an artificial restriction due to this specific approximation.
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5.5.2 Recovery of the Primitive Quantities

While the conversion between the primitive quantities (ρ, vi, ε) and conserved quantities (D,Si, τ)
is trivial in Newtonian hydrodynamics, this is different in the relativistic case: As there are no
closed form relations for the dependence of the primitive variables on the conserved quantities,
ρ, vi and ε cannot be explicitely calculated from D, Si and τ . We therefore have to resort to
iterative methods to extract the new primitives from the updated conserved quantities.

For an ideal gas EoS this method has been introduced by Mart́ı et al. for their calculations
in [75], and has been described analytically in [77]. We have extended this method to be suitable
for our hybrid EoS (4.9).

We calculate a function f(P ∗) ≡ P (ρ∗, ε∗) − P ∗, where ρ∗ and ε∗ depend on the conserved
quantities and P ∗ only (in all relations involving the pressure we replace P by P ∗):

f(P ∗) =K
(
D
√
X
)γ (

1− γth − 1

γ − 1

)
+ (γth − 1)X

[
τ +D

(
1− 1√

X

)
+ P ∗

(
1− 1

X

)]
−

−(γth − 1)(γ − γ1)

γ1 − 1)(γ2 − 1)
Kργ1−1

nuc D
√
X − P ∗, (5.57)

where we use the auxiliary quantity X ≡ 1−S2/(τ+D+P ∗)2, and S = SiS
i. The new pressure

is iteratively computed using the Newton–Raphson method:

P ∗ new = P ∗ − f(P ∗)

(
df(P ∗)

dP ∗

)−1

, (5.58)

where the derivative of f(P ∗) is given by

df(P ∗)

dP ∗
=
K
(
D
√
X
)γ
S2
(

1− γth−1
γ−1

)
X(τ +D + P ∗)3

+
2(γth − 1)S2

[
τ +D

(
1− 1√

X

)
+ P ∗

(
1− 1

X

)]
(τ +D + P ∗)3

+

+(γth − 1)X

[
DS2

X3/2(τ +D + P ∗)3
+ 1− 1

X
+

2P ∗S2

X2(τ +D + P ∗)3

]
−

− (γth − 1)(γ − γ1)Kργ1−1
nuc DS

(γ1 − 1)(γ2 − 1)
√
X(τ +D + P ∗)3

− 1. (5.59)

The primitive quantities and the Lorentz factor are updated using the following relations:

v∗i =
Si

τ +D + P ∗
, W ∗ =

1√
1− v∗i vi∗

, ρ∗ =
D

W ∗ , ε∗ =
τ +D(1−W ∗) + P ∗(1−W ∗2)

DW ∗ .

(5.60)

When convergence is achieved, the temporary variables ρ∗, v∗i , and ε∗ have assumed the
desired values of the primitive variables ρ, vi, and ε. They obey the relation between the
primitive quantities (2.26) and the conserved quantities (2.22–2.24). This recovery procedure
has to be done at each time step, after the conserved quantities D, Si, and τ have been updated,
i.e. after each step of the Runge–Kutta integration of the conservation equation described in
Section 5.5.1.
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5.6 Numerical Solution of the Elliptic Metric System

Finding a numerical stable and efficient method for solving the system of metric equations (3.52,
3.53, 3.54) is in no way trivial. The metric equations are governed by a system with the following
properties, which make a numerical implementation rather cumbersome: The equations are
(i) elliptic, (ii) coupled, and (iii) nonlinear. Their numerical solution is therefore much harder
and more time consuming than the solution of their Newtonian counterpart, Poisson’s equation
∆Φ = 4πρ for the gravitational potential Φ.

In general, the numerical solution of an elliptic problem is more difficult than the solution of
a hyperbolic problem. A common numerical approach for solving hyperbolic equations is based
on finite difference or finite volume discretization, and forward time integration which represents
the Cauchy problem. If one uses an explicit integration scheme to propagate forward quantities
at a specific grid point on the basis of a hyperbolic equation, only knowledge of the values
of the quantities at the nearest grid points (i.e. on grid points which comprise the numerical
discretization stencil, which rarely involves more than e.g. 5 or 9 points) is needed. However,
in elliptic equations the solution for a single grid point involves and influences all other points
on the discrete grid.

So while hyperbolic equations can numerically be regarded as a nearest neighbor interaction
problem (like point particles which are influenced only by very few other ones, if the forces
between them fall off rapidly enough), elliptic problems are more like a system of point particles
where the forces between all particles have to be taken into account due to their long effective
range.

5.6.1 Finite Differencing – Newton–Raphson Iteration

If we have to solve a linear system like Poisson’s equation on a numerical grid, one of the
standard methods is to discretize the equation. Let the vector of unknowns be u = (ui,j), and
the vector of sources be f = (fi,j), where (i, j) labels the position (ri, θj) on the grid. For
computational purposes, the entries are usually ordered in a single vector array according to
k = (i − 1)nθ + j. This discretization then leads to solving a linear matrix equation with the
right hand side being the source vector of the original equation:

Au = f . (5.61)

Depending on the size of the discretization stencil and the extension of the grid, the matrix A
of dimension nr × nθ is more or less densely filled. In general, however, the matrix is sparse,
i.e. the number of nonzero elements is much smaller than the total number of elements. For
solving sparse linear systems of equations, there exist a variety of efficient numerical methods
and software packages for various computer architectures.

Although the CFC metric equations do not form a linear system like Poisson’s equation, we
can still try to reduce them to a linear system, to which we could then apply a standard linear
solver. Therefore our strategy for solving the system of elliptic metric equations (3.52, 3.53,
3.54) is as follows:

79



CHAPTER 5. NUMERICAL IMPLEMENTATION

We first define a vector of unknowns, whose components are the five metric quantities:

u = (uk) =


φ
αφ
β1

β2

β3

 . (5.62)

Then the metric equations read (with u,f = ∂fu, u,fg = ∂f∂gu):
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,θθ
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+
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2 +

3(u3
,θ)

2

r2
+

4(u3)2

r2
+ 4(u3

,r)
2 + 3r2(u4

,r)
2 + 3 sin2 θ(u5

,θ)
2 −

8u3u3
,r

r
+

+6u3
,θu

4
,r +

4u3u4
,θ

r
− 4u3

,ru
4
,θ + 4(u4

,θ)
2 +

4 cot θu3u4

r
− 4 cot θu4u3

,r − 4 cot θu4u4
,θ+

+4 cot2 θ(u4)2
]
, (5.63)
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0 = f 3(uk) = u3
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0 = f 4(uk) = u4
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0 = f 5(uk) = u5
,rr +

4u5
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r
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,θθ
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. (5.67)
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Now we discretize these equations on the (r, θ)-grid, denoting the components uk (k =
1, . . . , 5) at the position (ri, θj) by uki,j. The metric quantities are defined on cell centers:

uk(ri, θj) = uki,j. (5.68)

Their values at zone interfaces (needed for the hydrodynamic solver like in the flux difference
equations (5.40, 5.41)), are obtained by interpolation. The radial and angular derivatives are
approximated by linear finite differences. On a grid which is non-equidistant in radial, and
equidistant in angular direction, they are given by

∂uk

∂r

∣∣∣∣
i,j

=
uki+1,j + (a2

i − 1)uki,j − a2
iu

k
i−1,j

∆ri− 1
2
ai(ai + 1)

+O(∆r2
i− 1

2
),

∂uk

∂θ

∣∣∣∣
i,j

=
uki,j+1 − uki,j−1

2∆θ
+O(∆θ2),

∂2uk

∂r2

∣∣∣∣
i,j

= 2
uki+1,j − (ai + 1)uki,j + aiu

k
i−1,j

∆r2
i− 1

2

ai(ai + 1)
+O(∆r2

i− 1
2
), (5.69)

∂2uk

∂θ2

∣∣∣∣
i,j

=
uki,j+1 − 2uki,j + uki,j−1

∆θ2
+O(∆θ2),

∂2uk

∂rθ

∣∣∣∣
i,j

=
uki+1,j+1 − ui+1,j−1 − uki−1,j+1 + uki−1,j−1

2∆ri− 1
2
∆θ(ai + 1)

+O(∆ri− 1
2
∆θ).

We therefore need a 9-point stencil to represent the discretized equations:

i−1,j−1 i−1,j i−1,j+1

• • •
i,j−1 • • • i,j+1

• • •
i+1,j−1 i+1,j i+1,j+1

(5.70)

Hence, the system of metric equations, when discretized, gives rise to a nonlinear system of
dimension 5× nr × nθ,

fki,j(u
n
i−1,j−1, u

n
i−1,j, u

n
i−1,j+1, u

n
i,j−1, u

n
i,j, u

n
i,j+1, u

n
i+1,j−1, u

n
i+1,j, u

n
i+1,j+1) = 0, (5.71)

or
f(u) = 0, (5.72)

for which we have to find the roots uni,j.

The standard numerical method to find the roots of such a system of equations is to apply a
Newton–Raphson iteration. This means that the nonlinear problem of dimension 5 × nr × nθ
is reduced to a linear one of the same dimension, but at the cost of having to solve the linear
system several times until the desired accuracy is reached.

We illustrate this method first for the root of an equation for a single unknown,

f̃(ũ) = 0. (5.73)
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Then the Newton–Raphson method to find the unknown ũ0, which solves Equation (5.73),
yields an iterative procedure involving the derivative of the function f̃ with respect to ũ (the
Jacobian J̃ of f̃),

ũs+1 = ũs + ∆ũs = ũs − f̃(ũs)

J̃(ũs)
= ũs −

(
∂f̃(ũs)

∂ũs

)−1

f̃(ũs), (5.74)

Where s is the iteration step. In general, this is a very easy, robust and fast numerical method
for finding the root of a function f̃ .

In multi-dimensions, i.e. if the function f̂ is a function vector of an unknown vector u, the
Newton–Raphson equation (5.74) is generalized in vector form to

ûs+1 = ûs + ∆ûs = ûs −
(
Ĵ(ûs)

)−1

f̂(ûs) = ûs −

(
∂f̂(ûs)

∂ûs

)−1

f̂
s
(ûs), (5.75)

or for the single components to

ûs+1

ı̂ = ûsı̂ + ∆ûsı̂ = ûsı̂ −
(
Ĵsı̂ ,̂ (ûs

k̂
)
)−1

f̂̂ (ûs
k̂
) =

(
∂f̂ı̂ (ûs

k̂
)

∂ûŝ

)−1

f̂̂ (ûs
k̂
). (5.76)

It immediately becomes clear from Equation (5.76) that the Newton–Raphson method in-
volves the solution of the following linear problem with a dimension of the maximum of the
index ı̂ during every iteration:

Ĵsı̂ ,̂ ∆ûsı̂ = −f̂ ŝ , or in vector form: Ĵ
s
∆ûs = −f̂ s. (5.77)

However, the Jacobi matrix Ĵ = (Ĵı̂ ,̂ ) of the nonlinear system is in general both sparse and
diagonally dominant, which reduces the complexity of the linear problem significantly.

5.6.2 The Linear Problem

Now we want to apply the Newton–Raphson iteration scheme for multi-dimensions (5.76), to the
system of discretized metric equations, which emerge from plugging Equations (5.68) and (5.69)
into the analytic metric equations (5.63–5.67).

The Jacobi matrix of this system is defined as

Ĵ = (Ĵı̂ ,̂ ) =

(
∂f̂ı̂
∂û̂

)
=

(
∂fki,j
∂unl,m

)
. (5.78)

As indicated by the last transformation in Equation (5.78), the discretized five functions fki,j
and five unknowns unl,m, which each depend on three indices, can be represented by a single
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vector of functions f̂ı̂ and a single vector of unknowns û̂ . The relation between the vector
index and the three indices of the original quantities is given by

ı̂ = (i−1)× nθ × 5 + (j −1)× 5 + k,
̂ = (l−1)× nθ × 5 + (m−1)× 5 + n,

}
with ı̂ , ̂ = 1, . . . , nr × nθ × 5. (5.79)

We use this transformation to express more clearly the fact that for numerical purposes the
functions and unknowns are one-dimensional vectors rather than multi-dimensional constructs.

As the five functions fki,j at a zone (i, j) in the system of equations (5.71) depend only on
the five metric unknowns uq at the neighboring points within the 9 point stencil, the Jacobi
matrix will be a sparse matrix consisting of nine bands composed of blocks of size 5 × 5 with
the following structure:

5× nθ︷ ︸︸ ︷

Ĵ =



5 6 8 9
4 5 6 7 8 9

4 5 6 7 8 9
4 5 7 8

2 3 5 6 8 9
1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9
1 2 4 5 7 8

· · ·
· · ·

· · ·· · ·
· · ·

· · ·· · ·
· · ·

· · ·· · ·
· · ·

· · ·
2 3 5 6 8 9
1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9
1 2 4 5 7 8

2 3 5 6
1 2 3 4 5 6

1 2 3 4 5 6
1 2 4 5



, (5.80)

︸ ︷︷ ︸
5× nθ × nr

where the single blocks of the sparse Jacobi matrix bands are given by

1 =
∂fki,j

∂uli−1,j−1

, 2 =
∂fki,j
∂uli−1,j

, 3 =
∂fki,j

∂uli−1,j+1

,

4 =
∂fki,j
∂uli,j−1

, 5 =
∂fki,j
∂uli,j

, 6 =
∂fki,j
∂uli,j+1

,

7 =
∂fki,j

∂uli+1,j−1

, 8 =
∂fki,j
∂uli+1,j

, 9 =
∂fki,j

∂uli+1,j+1

.

(5.81)
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Note that the indices k and l label the position of the entry in the vertical and horizontal direc-
tion of the block, respectively. This corresponds to the following positions in the discretization
stencil:

i−1,j−1 i−1,j i−1,j+1

1 2 3
i,j−1 4 5 6 i,j+1

7 8 9
i+1,j−1 i+1,j i+1,j+1

. (5.82)

In order to determine the filling factor of Ĵ , i.e. the ratio of nonzero entries to the number
of elements, we first look at the number of blocks i :

1 : (nr − 1)× (nθ − 1), 2 : (nr − 1)× nθ, 3 : (nr − 1)× (nθ − 1),
4 : nr × (nθ − 1), 5 : nr × nθ, 6 : nr × (nθ − 1),
7 : (nr − 1)× (nθ − 1), 8 : (nr − 1)× nθ, 9 : (nr − 1)× (nθ − 1).

(5.83)

As the total number of blocks of linear size 5 in the matrix is (nr×nθ)2, we get for the block
filling factor:

fblock fill =
9× nr × nθ − 6nr − 6nθ + 4

(nr × nθ)2
. (5.84)

Here the numerator is the sum of the number of blocks i from Equation (5.83).

Concerning the derivatives (5.69), some are zero for certain indices k, and the filling of the
blocks is

• • • •
• • • •

• • • • • •
• • • • • •

• • •

• • • • • • • • • • • • •
• • • • • • • • • • • • •

• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • •

• • • •
• • • •

• • • • • •
• • • • • •

• • •

,

1 2 3 4 5 6 7 8 9

i.e. the numbers of elements per block i is

1 : 2, 2 : 19, 3 : 2,
4 : 19, 5 : 21, 6 : 19,
7 : 2, 8 : 19, 9 : 2.

(5.85)

Combining the number of blocks (5.83) with the number of elements per block (5.85) yields
the maximum element filling factor (some entries can still be zero for specific matter distribu-
tions and symmetries):

felement fill =
105× nr × nθ − 46nr − 46nθ + 8

(5× nr × nθ)2
. (5.86)

Table 5.2 shows some values of the block and element filling factors for sample grid resolutions.
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nr nθ fblock fill felement fill

10 10 7.84× 10−2 3.83× 10−2

100 100 8.88× 10−4 4.16× 10−4

200 50 8.85× 10−4 4.15× 10−4

50 200 8.85× 10−4 4.15× 10−4

200 200 2.23× 10−4 1.04× 10−4

Table 5.2: Block and element filling factors of the Jacobi matrix for sample grid resolutions;
note that the filling factor is symmetric with respect to the number of radial and angular grid
points nr and nθ. For increasing grid size, the filling factors decrease and the matrices become
more sparse.

However, setting up the Jacobi matrix Ĵ is not yet the end of the story. It becomes clear
from Equation (5.71) that at the grid boundaries, i.e. for indices

i = 1, i = nr, ∀ j,
j = 1, j = nθ, ∀ i, (5.87)

due to the form of discretization of derivatives (5.69), the functions fki,j depend on metric
quantities unl,m which lie on ghost zones outside the numerical grid. This also holds for the
Jacobi matrix via Equations (5.81). What still needs to be done is to specify the symmetry
and boundary conditions at the grid boundaries, i.e. for the indices given in (5.87). For the
metric the general symmetry conditions have been derived in Section 5.1.2, and the boundary
conditions are stated in Section 5.1.3. When applied to the discretized equations, we get the
following conditions for the unknowns uki,j at the boundaries:

center uk0,j =±kcuk1,j
equator uki,nθ+1 =±keuki,nθ

uknr+1,nθ+1 =±keuknr+1,nθ

polar axis uki,0 =±kpuki,1
uknr+1,0 =±keuknr+1,1

mixed uk0,0 =±kc ±kp uk1,1
uk0,nθ+1 =±kc ±ke uk1,nθ

. (5.88)

Here ±kc , ±ke , and ±kp denote the (symmetric or antisymmetric) boundary condition for the
unknown quantities uk at the center, pole, and equator, respectively, as derived in Section 5.1.2.
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For the corresponding locations in the Jacobi matrix this implies:

i− 1, j − 1

∂fk1,j
∂ul0,j−1

=±lc ·
∂fk1,j
∂ul1,j−1

©a
1

∂fk1,1
∂ul0,0

=±lc · ±lp ·
∂fk1,1
∂ul1,1

©b

i = 1 (center) i− 1, j
∂fk1,j
∂ul0,j

=±lc ·
∂fk1,1
∂ul1,j

©c 2

i− 1, j + 1

∂fk1,j
∂ul0,j+1

=±lc ·
∂fk1,j
∂ul1,j+1

©d
3

∂fk1,nθ
∂ul0,nθ+1

=±lc · ±le ·
∂fk1,nθ
∂ul1,nθ

©e

i− 1, j − 1

∂fki,1
∂uli−1,0

=±lp ·
∂fki,1
∂uli−1,1

©f
1

∂fk1,1
∂ul0,0

=±lp · ±lc ·
∂fk1,1
∂ul1,1

©g

j = 1 (polar axis) i, j − 1
∂fki,1
∂uli,0

=±lp ·
∂fki,1
∂uli,1

©h 4

i+ 1, j − 1

∂fki,1
∂uli+1,0

=±lp ·
∂fki,1
∂uli+1,1

©i
7

∂fknr,1
∂ulnr+1,0

= 0 ©j

i− 1, j + 1

∂fki,nθ
∂uli−1,nθ+1

=±le ·
∂fki,nθ
∂uli−1,nθ

©k
3

∂fk1,nθ
∂ul0,nθ+1

=±le · ±lc ·
∂fk1,nθ
∂ul1,nθ

©l

j = n (equator) i, j + 1
∂fki,nθ
∂uli,nθ+1

=±le ·
∂fki,nθ
∂uli,nθ

©m 6

i+ 1, j + 1

∂fki,nθ
∂uli+1,nθ+1

=±le ·
∂fki,nθ
∂uli+1,nθ

©n
9

∂fknr,nθ
∂ulnr+1,nθ+1

= 0 ©o

. (5.89)

With ©i we have labeled the different symmetry conditions, and the i refer to the derivatives
given in Equation (5.81). Note that the following symmetry conditions are identical: ©b =©g ,
©e =©l .

Assuming the metric quantities to be constant at the outer radial boundary, as specified in
Section 5.1.3, the outer boundary of the grid at i = m + 1 has no effect on the Jacobi matrix
structure, as the corresponding derivatives vanish to 2nd order (elements ©j and ©o ).

Taking these symmetry conditions into account, the Jacobi matrix has to be extended by
additional entries. In practice this is done by adding to the Jacobi matrix Ĵ a symmetry matrix
Ĵ symm:

Ĵ tot = Ĵ + Ĵ symm. (5.90)
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The locations of the blocks ©i in the symmetry matrix are:

Ĵ symm =



©x ©d ©i
©a ©c ©d
©a ©c ©d
©a ©y ©n

©f ©h ©i

©k ©m ©n
· · ·

· · ·
· · ·· · ·

· · ·
· · ·· · ·

· · ·
· · ·· · ·

· · ·
· · ·

©f ©h ©i

©k ©m ©n
©f ©h

©k ©m



, (5.91)

with

{
©x =©c +©g +©h ,
©y =©c +©l +©m .

Each 5×5 block©i is identical to the corresponding block j in the rightmost column of (5.89),
except that it is preceeded by either a plus or minus sign, depending on the appropriate sym-
metry condition.

By comparing the block filling for the Jacobian matrix and the symmetry matrix, it is obvious
that the sparsity pattern of Ĵ is not changed Ĵ symm.

The linear problem which has to be solved during each Newton–Raphson iteration is thus
defined by

Ĵ
s

tot∆û
s = f̂

s
. (5.92)

5.6.3 Numerical Methods for Solving the Linear Problem

As we will show in Section 5.6.4, the performance of the evolution problem is dominated by the
computation time spent in the metric solver, and thus by the computational efficiency of the
linear solver. Therefore we have to make sure that we solve the linear problem as efficiently as
possible. This boils down to the requirement of finding a fast numerical method for solving the
sparse linear matrix problem (5.92). As our collapse simulations have been performed on a NEC
SX-5 vector supercomputer, the method of choice should also exploit the specific advantages
of this computer architecture.
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The simplest solver for a linear problem one could think of, is the direct (exact) inversion of a
matrix, with the use of e.g. Gauss–Jordan elimination, or exact LU decomposition [100]. On the
other hand, matrix inversion can also be accomplished by approximation and iteration methods
like incomplete LU factorization. As these methods converge to the correct solution with some
specified accuracy, they are for numerical purposes practically as good as exact solvers. Still
these methods make no assumption about the structure of the linear problem, and thus do not
utilize the sparsity of the matrix to reduce the complexity of the algorithm.

However, there are linear solvers especially designed for sparse linear problems, which are,
if applied to the appropriate problem, much faster than general linear solvers. Furthermore,
as the solution of large sparse linear problems is routinely encountered in numerical codes,
there are a number of widespread and tested standard methods for solving these. Among those
methods are successive over-relaxation (SSOR), conjugate gradient (CG) methods, etc. [105].

Nevertheless, despite of the existence of rather specialized and highly efficient sparse linear
solvers, we have found that for our particular linear problem (5.92) our own implementation
of an especially tailored solver method shows the best computational performance. To demon-
strate that, we compare the ability of the following methods to deal with the linear problem
resulting from the Newton–Raphson iteration of the discretized metric equations:

Gauss–Jordan elimination:
This is a direct method to invert the matrix Ĵ

s
in order to find the solution vector ∆ûs. It

assumes nothing about the filling pattern or sparsity of the matrix. We have implemented
a standard Gauss–Jordan elimination scheme with full pivoting [100]. This simple method
is extremely slow for all but small grid sizes, as it is an (nr × nθ)

3 process. Therefore
it is of very limited practical use, and usually cannot be the basis of a linear solver for
numerical simulations. On the other hand, the advantage of any direct method is that
the number of arithmetic operations for the solution is entirely determined by the number
of unknowns, and therefore known a priori.

Conjugate gradient methods for sparse matrices:
As an iterative method, the conjugate gradient (CG) method approaches the solution of
the linear problem through a sequence of approximations, until some specified level of
accuracy rtol with respect to the exact solution is reached:

max
(
Ĵ
s

tot∆û
s − f̂ s

)
≤ rtol. (5.93)

For iterative methods it is often crucial for the speedup of convergence to apply a pre-
conditioner to the linear problem. A preconditioner maps the original linear system

Ĵ
s

tot∆û
s = f̂

s
(5.94)

onto a system
J̄
s
tot∆ū

s = f̄
s
, (5.95)

such that
J̄
s
tot = P−1

l Ĵ
s

tot ' I (5.96)
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for a left preconditioner P l, or

J̄
s
tot = Ĵ

s

totP
−1
r ' I (5.97)

for a right preconditioner P r (here I is the diagonal unity matrix). For a good choice of the
preconditioner matrix P the new linear system exhibits better convergence characteristics.
In order to achieve this, the matrix P should be as close to the original matrix Ĵ

s

tot as
possible, as well as invertible in a simple and fast way. Thus, in preconditioning one has
to balance the reduction in the number of iterations against additional computational
costs for the calculation and inversion of the preconditioner matrix.

For testing our code we have implemented a bi-conjugate gradient stabilized (BiCGStab)
method, which can make use of several preconditioning methods like inversion of the
diagonal 5 × 5 blocks of the Jacobi matrix (which exploits the diagonal dominance of

Ĵ
s

tot), or incomplete LU decomposition (where the LU factorization of the Jacobi matrix
is used): P = LDU with L (U ) being the lower (upper) triangular matrix with unit
diagonal elements, and D being the diagonal matrix.

If the preconditioning does not outweigh the solution of the linear problem, this is a
(nr×nθ)2 process. However, for large matrices, the preconditioning is generally slow and
does not vectorize well, and convergence problems with the BiCGStab solver are often
encountered.

Block tridiagonal sweeping method:
This method is especially designed for block tridiagonal matrices, i.e. matrices A which
consist of a sequence of blocks Di along the diagonal, and of blocks Li and Ri directly
left and right of these (here for i = 1, . . . , 5):

A =


D1R1

L2D2R2

L3D3R3

L4D4R4

L5D5

 . (5.98)

All other elements of A must vanish. A solution of the linear problem defined by A is
then obtained by sweeping down along the diagonal from the upper left corner to the
lower right corner. During this downward sweep the submatrices Li, Di, and Ri have
to be inverted. In an upward sweep the solution vector is recursively extracted from the
inverted submatrices:

down-sweep:

↘
↘
↘
↘
↘

, up-sweep:

↖
↖
↖
↖
↖

.

As this is the method of choice in our solver for the metric equations, we explain the
sweeping method in more detail in the following.
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For the sweeping method to be applicable, the matrixAmust be of the form (5.98). However,
the combined Jacobi and symmetry matrix, which defines the linear problem we have to solve
during each Newton–Raphson iteration, has nine bands of blocks rather than three. The bands
1 , 2 , 3 , and 7 , 8 , 9 are furthermore separated from the diagonal bands 4 , 5 , 6 .
Nevertheless we can combine the left three, the middle three, and the right three bands, and
collect them in the left, diagonal, and right band of submatrices Li, Di, and Ri, respectively.
Then the matrix Ĵ has the required structure of A in Equation (5.98). The tradeoff of this
collecting is that the sweeping method only makes the assumption of zero elements outside the
blocks Li, Di, and Ri, whereas most of the block elements of the submatrices in the tridiagonal
form of Ĵ will be empty. Thus we cannot exploit the sparsity to the full extent when we use
the sweeping method.

The iterative scheme for this method then goes as follows: First, as already mentioned, we
combine the nonzero entries of Ĵ tot into blocks Li, Di and Ri of size 5 × nθ (i = 1, . . . , nr),
such that we get a tridiagonal band matrix with three bands of these larger blocks. We also
divide the vector of unknowns ∆û and the function vector f̂ into nr chunks ∆ûi and f̂ i of size
5× nθ:

Ĵ tot =



D1 R1

L2 D2 R2

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·

LnrDnr


, ∆û =



∆û1

∆û2

...

...

∆ûnr


, f̂ =



f̂ 1

f̂ 2
...
...

f̂nr


. (5.99)

Then the linear problem can be written as

Li∆ûi−1 +Di∆ûi +Ri∆ûi+1 = f̂ i. (5.100)

Introducing the two definitions

r̂i = ∆ûi − Y i∆ûi+1, and M i = LiY i−1 +Di, (5.101)

we get the following relation:

M ir̂i +M iY i∆ûi+1 = f̂ i −Lir̂i−1 −Ri∆ûi+1. (5.102)

A comparison of coefficients in this equation yields recursive equations for r̂i and Y i:

M ir̂i = f̂ i −Lir̂i−1, (5.103)

M iY i = −Ri. (5.104)

So in the end we have a recursive scheme for solving the linear problem: We start with setting
r̂0 = 0 and Y 0 = 0 as initial values for calculating the next values in the downward sweep:

r̂i = M−1
i (f̂ i −Lir̂i−1), Y i = −M−1

i Ri. (5.105)
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This involves the inversion of the dense submatrix M i (or more generally, the solution of
the linear problem defined by M i), which has the size 5 × nθ. (Note that even if the initial
submatrices Li, Di, and Ri were sparse, the matrices M i will in general be dense.) For solving
the recursive submatrix equation (5.105), we use a standard LU decomposition scheme for
dense matrices, as e.g. implemented in the LAPACK numerical library.

When all the r̂i and Y i are calculated, we can extract the solution vector in a downward
sweep from Equation (5.101), where we use ∆ûnr+1 as starting value.

As the sweeping method is a recursive scheme, we can vectorize only over the inner submatrix
inversion part. However, even for moderately large nθ we are able to get into vector register
saturation on the computers we use. In total the sweeping method exhibits an nr×n2

θ behavior,
and is thus in performance superior to both the Gauss–Jordan and the BiCGStab methods,
particularly as it does not to suffer from convergence problems due to the direct solver nature
of the iterative sweeping part of the algorithm.

5.6.4 Computational Performance of the Metric Solver – Metric Ex-
trapolation

In order to estimate the accuracy of the numerical solution of the metric equations, we have
to address two distinct questions: Firstly, how well is the analytic solution of the equations
approximated by the numerical solution obtained by solving the discretized equations. And
secondly, to what degree of numerical precision are the discretized metric equations solved by
the Newton–Raphson scheme, which is obviously an iterative and thus an approximate solver.

The relation between the discretized equations and the analytic formulation is straightfor-
ward. As the derivatives showing up in Equation (5.69) are second order accurate in both ∆ri
and ∆θ, we can infer that the discretization method is second order accurate. Therefore, the
difference between the analytic solution and the exact solution of the discretized equations will
vanish with the inverse square of the grid resolution. This second order accurate behavior of the
discretization scheme, and its implementation in our code, will be demonstrated in Section 6.7.

However, we still have to ensure that the discretized equations are solved accurately enough.
In Section 5.6.2 we have shown how the nonlinear problem can be solved by an iteration involv-
ing the subsequent solution of linear problems. We can assume that the linear solvers introduced
in Section 5.6.3 yield a solution of the linear problems which is accurate up to machine precision
(at least for the sweeping method, which is the one we use for our simulations). Therefore, if
we get convergence of the Newton–Raphson iteration with some specified tolerance limit, we
can be sure that the numerical nonlinear problem is solved to the desired level of accuracy.

There are two tolerance measures we utilize to control convergence of the Newton–Raphson
method to the actual solution. One is the maximum increment of the solution vector over the
grid:

∆ûsmax = max (∆ûs) = max (∆ûsı̂ ). (5.106)

The max function involved here is simply the maximum of the absolute value of the vector
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elements.

As the machine precision of floating point arithmetics on the computers we have run our
simulations on is somewhat better than 10−15, the tolerance level ∆ûsmax ≤ 10−15, which we
have set, is a good convergence criterion. We were able to meet this convergence criterion in
all our computations.

The other accuracy criterion which is implemented in our code is based on the maximum
residual of the function vector on the grid:

f̂ smax = max (f̂(ûs)) = max (f̂ı̂ (ûŝ )). (5.107)

If ûs is the exact solution of the discretized equations f̂(ûs) = 0, then f̂ smax = 0. Thus
the deviation of f̂ smax from zero in combination with the convergence criterion is an excellent
measure of the performance of the Newton–Raphson solver. In practical applications of the
nonlinear solver, we use a threshold for the function residual of f̂ smax ≤ 10−18.

A combination of the two criteria (5.106) and (5.107) gives us confidence that the Newton–
Raphson solver converges to the correct solution with the desired accuracy. In Figure 5.4 we
show how ∆ûsmax and f̂ smax decrease with the number of iterations s in the metric computation
of a typical core collapse model around the time of maximum density. Both of these measures
exhibit an inverse exponential behavior until saturation is reached when the increment ûs comes
into the vicinity of machine precision.
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Figure 5.4: Decrease of the maximum increment of the unknown vector ∆ûsmax (left panel) and
of the function residual f̂ smax (right panel) with the number of Newton–Raphson iterations s for
a typical metric computation: Until ∆ûsmax reaches the limit set by the machine precision of
the computer at s ≈ 8, both tolerance measures decrease exponentially. After that they saturate
well below the precision thresholds used in the code, which are marked by the horizontal dotted
lines. The threshold imposed on the function residual is used only to detect total failures of the
Newton–Raphson method.

In Section 5.6.2 we have seen that the iterative solution of the linear problem in the metric
solver is a computationally very expensive procedure. We have performed comparisons be-
tween the execution time for one metric solution (for different linear solver methods) and one
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hydrodynamic time step; these demonstrate that, particularly for grid sizes appropriate for our
collapse simulations, the computation is by far dominated by the metric solver. It is therefore
essential to have a linear solution method at hand which is most efficient. In our case this is
the up/down sweeping method introduced in Section 5.6.2. Still one metric computation can
be as time-consuming as about 100 hydrodynamic time steps!

On the other hand there is a complementary approach to reduce the overall computational
time for the evolution: As long as the metric quantities do not change too rapidly with time,
it is a fair approximation not to solve for the metric at every time step. Therefore, one can
introduce a sequence of “metric” time slices Σtn̂ , which are a subset of the “hydrodynamic”
time slices Σtn , on which the hydrodynamic quantities are evolved:

{Σtn̂} ⊂ {Σtn}. (5.108)

In practice this means that the metric is calculated only on some of the “hydrodynamic” time
slices, viz. on the “metric” time slices. We introduce the metric resolution parameter ∆nmetric,
such that mod (n,∆nmetric) = 0. Then ∆nmetric expresses the difference in time steps between
two “hydrodynamic” time slices on which the metric is calculated. The time difference between
two metric calculations is ∆tn̂. If the interval ∆tn̂ between metric calculations can be chosen to
be large compared to ∆tn without sacrificing numerical accuracy of the evolution, the resulting
payoff in saving of computer time can be enormous.

During the simulation, the metric resolution parameters should vary with time in a way which
adapts to the specific phase of the collapse scenario. During the infall phase, it can be chosen
to be comparatively large, whereas around bounce time, where the highest densities, the largest
variations of the hydrodynamic and metric quantities, and the most significant deviations from
spherical symmetry are encountered, it must be reset to smaller values. After the ring-down
phase, when the proto-neutron star has essentially settled down to a quasi-equilibrium state,
with the shock wave traveling through the outer layers of the iron core, it can be increased
once more. The case of distinct “multiple bounces” deserves special attention: Here the metric
resolution has to be refined during each of the multiple bounces, where the highest densities
are being encountered.

We have chosen to split the core collapse scenario into three different phases: The pre-bounce
phase lasts from the start of the evolution until the maximum density on the grid ρmax reaches a
threshold density, which is a specified fraction of the nuclear density: ρthr ≡ frefineρnuc. During
that phase the metric is calculated every n

(1)
metric “hydrodynamic” time steps. The following

bounce phase then lasts for a certain time ∆trefine, and the metric is solved on every n
(2)
metricth

time slice. After this time interval, in the post-bounce phase, the metric resolution parameters
is set to n

(3)
metric.

In multiple bounce scenarios, i.e. for a collapse where the maximum density has multiple
distinct peaks in time, often separated by several 10 ms, the evolution time is split into a series
of consecutive bounce phases interspersed with phases, where the density is below the threshold
marked by ρthr. During the bounce phases, the metric resolution is given by n

(2)
metric, and before

the first bounce and in between the bounces by n
(1)
metric.

The collapse phases introduced above are sketched in Figure 5.5, while the actual values for
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frefine and ∆trefine used in our simulation are summarized for the two different collapse types in
Table 5.3.

Collapse type frefine ρthr ∆trefine n
(1)
metric n

(2)
metric n

(3)
metric

[1014 g cm−3] [ms]

Regular collapse 0.1 0.2 5.0 100 10 50
pre-bounce bounce post-bounce

phase phase phase
Multiple bounce 0.02 0.04 — 100 10 —

collapse inter-bounce bounce
phase phase

Table 5.3: Values for the metric refinement parameters frefine, ρthr, ∆trefine, and nmetric for
regular collapse models and for multiple bounce scenarios, as used in our simulations.

Obviously, in reality the metric quantities φ, α, and βi are not constant between the metric
computations done on the “metric” time slices Σtn̂ . In order to approximate the actual evolution
of the metric on the “hydrodynamic” time slices (when it is not calculated), the state of the
metric at old “metric” time slices can be used to extrapolate the metric quantities forward in
time. If the metric is kept constant between computations, we only have to keep its state from
the last “metric” time slice. For linear (parabolic) extrapolation, the metric from the last two
(three) “metric” time slices has to be retained in memory. Figure 5.6 schematically shows the
approximation of the actual metric calculated at every time slice by a metric which is calculated
at every 10th time step, and is kept constant or is linearly or parabolically extrapolated in
between.

Tests of collapse models with different intervals of metric calculation will be shown in Sec-
tion 6.7.2. They demonstrate clearly that our choice of values for the metric resolution param-
eters, which is given in Table 5.3, is appropriate to obtain the desired accuracy. Due to the
superior accuracy of the 3rd order parabolic metric extrapolation scheme, as demonstrated in
Figure 5.6, we use this method in all our simulations.
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Figure 5.5: The collapse phases used for specifying the metric resolution for regular collapse
models (upper panel) and multiple bounce collapse models (lower panel): In a regular collapse,

the metric is calculated every on n
(1)
metricth time step in the pre-bounce phase (a). In the bounce

phase (b), which starts when the maximum density ρmax is higher than 0.1ρnuc, the metric is

calculated every n
(2)
metricth time step. After 5 ms, the post-bounce phase begins (c), with the metric

being calculated every n
(3)
metricth time step. In a multiple bounce model, the inter-bounce phases

(a), during which the metric is calculated on every n
(1)
metricth time step, are interspersed with the

bounce phases (b), where the metric is calculated every n
(2)
metricth time step. Due to the lower

average maximum densities, in these models the density threshold is specified by ρmax ≥ 0.02ρnuc.
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Figure 5.6: Approximation of the metric evolution by extrapolation: The evolution of the central
value of the conformal factor quantity φc during core bounce, which is calculated at every time
step (solid line), is very well approximated by a parabolic extrapolation of the metric which is
calculated at every 10th time step (dashed line, circles). If the extrapolation scheme is linear
(dotted line, squares) or constant (dashed-dotted lines, diamonds), the approximation is less
accurate. The symbols mark the instants when the metric is actually calculated. The model
used for this plot is A1B3G5 in low grid resolution; for the usual resolution of 200 × 30 grid
points (see Section 6.7.2), deviations between the different metric extrapolation schemes are
hardly visible.
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Tests

As our numerical code combines many different numerical techniques, and has been written
from scratch, in this section we present a series of tests which have been performed to check
whether the code e.g. can maintain long-term stability, yields the correct numerical evolution
behavior for analytically known problems, produces appropriate results for test problems when
compared to other relativistic hydrodynamic codes, and has sufficient accuracy.

6.1 Relativistic Shock Tube Tests

Shock tube tests can efficiently test the ability of a code to handle shock fronts. This is a
severe and mandatory test to validate a code which is based on high-resolution shock-capturing
methods for the hydrodynamic evolution. Normally, for smooth matter distributions without
the presence of discontinuities, HRSC codes solve many “microscopic” Riemann problems at
the level of grid cells by representing the smooth data by a discontinuous distribution. In a
shock tube test, a “macroscopic” Riemann problem has to be solved. Initial data are given for a
fluid system which has two states of constant pressure, density and velocity, initially separated
by a boundary. When these data are evolved in time, one gets a combination of constant states
separated by shocks, contact discontinuities, and rarefaction waves. The Riemann problem can
be calculated analytically even in relativity [77], and thus we can compare the numerical results
against the analytic solution in a straightforward way.

As sample shock tube tests we have performed simulations of the two relativistic shock tube
problems analyzed by Mart́ı and Müller [77]. The initially constant states on the left and
right side of the discontinuity are given in Table 6.1. Both cases are computed in a flat one-
dimensional Minkowski spacetime using Cartesian coordinates in an interval x ∈ [0, 1]. The
EoS is assumed to be polytropic with an adiabatic index γ = 5/3, and the initial discontinuity
is placed at x = 0.5. Following [77], we also set Pr = 0.66 × 10−6 in problem 2, since, as any
other hydrodynamics code, our code cannot handle zero pressure regions. The grid used in the
simulations consists of 500 equidistant zones. The results for the mildly relativistic problem 1
are shown in Figure 6.1, and for the more difficult relativistic blast wave problem 1 in Figure 6.2,
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both after an evolution time of tfinal = 0.25. In both cases the profiles of the density ρ, the
pressure P , and the velocity vx reproduce the analytic solution very well. The typical nonlinear
features of a Riemann problem solution like rarefaction wave, contact discontinuity, or shock
front are resolved properly. In those runs we have used PPM reconstruction.

Problem 1 Problem 2
left state right state left state right state

ρ 10.0 1.0 1.0 1.0
P 13.3 0.0 103 10−2

vx 0.0 0.0 0.0 0.0

Table 6.1: Density ρ, pressure P , and velocity vx initial values for the left and right states of
the relativistic shock tube problems 1 and 2 of Mart́ı and Müller [77].
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Figure 6.1: Numerical (symbols) and analytic (solid line) profiles of the (rescaled) density ρ,
pressure P , and velocity vx for the shock tube problem 1 from Table 6.1. See text for simulation
details.

As we have built different reconstruction methods into the code, shocks tube tests also
help to show the superiority of high order reconstruction compared to e.g. constant Gudunov
reconstruction. In Figure 6.3 we compare numerical results for the density profile after tfinal =
0.35 for the two shock tube problems from Table 6.1 for a first order (Godunov) and a third
order (PPM) reconstruction scheme. As expected, PPM reconstruction not only resolves the
shock front much better (i.e. with a spread of less grid points), but also has less numerical
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Figure 6.2: Numerical (symbols) and analytic (solid line) profiles of the (rescaled) density ρ,
pressure P , and velocity vx for the shock tube problem 2 from Table 6.1. See text for simulation
details.
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dissipation (particularly visible in problem 2). It is also assuring that high order reconstruction
does not introduce unwanted high frequency oscillations behind the shock. Such spurious
numerical oscillations can be observed in non-HRSC codes, like the one used for comparison in
Section 6.3.
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Figure 6.3: Comparison of first order Godunov (dashed line) and third order PPM (solid line)
reconstruction for shock tube problems 1 (left panel) and 2 (right panel) from Table 6.1. The
snapshots show the density ρ at tfinal = 0.35.

We have also performed additional simulations of these two shock tube problems using radial
and non-equidistant Cartesian grids. We have further tested second order (MUSCL) reconstruc-
tion schemes with minmod and MC slope limiters [69]. For all our core collapse simulations,
however, we have used PPM reconstruction, which provides the best numerical accuracy.
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6.2 Rotating Neutron Stars

A severe test for both the evolution code and the initial data solver is to construct either a
spherically symmetric or a rotating stellar model in stable equilibrium, and to evolve it without
changing the EoS. If the initial model is accurate, and if the evolution scheme is implemented
properly, then the matter and metric profiles of the model should oscillate only slightly around
their initial equilibrium states. For a rotating model, particularly the rotation profile should
be preserved for several rotation periods.

In order to enhance relativistic effects, we have used a rapidly and uniformly rotating neutron
star model with a polytropic matter distribution (see Table 6.2) rather than an iron core model,
which is not very relativistic prior to collapse. One nice feature of these tests is that they allow
for a rather independent check of the metric and the hydrodynamics part of the code: If
desired, the code can evolve only the hydrodynamic quantities according to Equation (2.25)
while keeping the metric fixed (Cowling approximation), or evolve both the hydrodynamics
and the spacetime (fully coupled evolution). In both cases we observe that the neutron star
remains in equilibrium to high accuracy for several 10 milliseconds, which corresponds to many
dynamic timescales.

ρc γ K re/rp Mrest Mgrav β Ω/ΩK T
[1014 g cm−3] (cgs) [M�] [M�] [%] [%] [ms]

7.905 2.0 1.456× 105 0.70 1.756 1.627 7.419 76.0 1.0

Table 6.2: Parameters of the rotating neutron star model used for the stability tests: ρc is the
central density, γ and K specify the EoS, re/rp is the ratio of equatorial to polar radius of the
star, Mrest/grav are the rest/gravitational masses, β is the rotation rate, Ω/ΩK is the ratio of
angular velocity of the star and its Keplerian angular velocity, and T is the rotation period.
Note that this model corresponds to the (albeit nonrotating) model II in Font et al. [38].

In Figure 6.4 we show the time evolution of the density ρ, the lapse α, and the radial
velocity vr =

√
γ11v1 evaluated inside the star in the equatorial plane at a radius of 8.77 km; in

this simulation the metric was evolved fully dynamic. All three quantities oscillate around their
initial equilibrium value, the oscillations being triggered by numerical discretization errors. The
fact that these small amplitude oscillations are hardly damped reflects the very low numerical
viscosity of the HRSC scheme. The small secular drift in ρ and α is an artifact of the numerical
scheme and has also been observed by Font et al. [38]. Contrary to their tests of a nonrotating
neutron star in the Cowling approximation, the oscillations in ρ and vr in our simulation are
of higher amplitude due to the coupling of the hydrodynamics to the metric, and the rapid
rotation of the star.

In Figure 6.5 we plot the radial profiles of the density ρ and the rotation velocity vϕ =
√
γ33v3

along the equatorial plane for the same neutron star model. Even after 5 rotation periods the
rotation profile is rather close to its initial distribution. Only at the stellar surface, the angular
velocity slightly deviates from its initial shape during the evolution due to interaction with the
atmosphere (see Section 5.3).
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Figure 6.4: Time evolution of hydrodynamic and metric quantities of a neutron star model which
rotates with uniform angular velocity close to its Keplerian limit: The density ρ (upper panel),
the lapse function α (middle panel), and the radial velocity vr (lower panel) are evaluated at a
radius r100 = 8.77 km and an angle θ = π/2. The shape of the oscillations are very close to the
results for a spherically symmetric neutron star in the Cowling approximation presented in [38]
(see Figure 2 and 4 therein).
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In this test run the metric equations were solved every 200th time step, which corresponds
to a time interval between two metric time slices of 0.06 msa. For a fixed metric, i.e. in the
Cowling approximation, the code can keep the neutron star in equilibrium for many rotation
periods as well.

As the neutron star model specified in Table 6.2 is rapidly rotating and thus deviates strongly
from spherical symmetry, the evolution of such a highly relativistic configuration is a convincing
test for the ability of the CFC to yield a good approximation of the exact spacetime. The initial
model for the neutron star has been calculated in the exact metric (4.12) without assuming
conformal flatness. The initial data are then matched to the CFC spacetime according to
Equation (5.13). The fact that the evolution code maintains stability for many rotation periods
already proves the validity of the CFC in the case of rotating neutron stars, particularly as it
is not possible to keep Newtonian initial neutron star models in equilibrium with the CFC
evolution code, or vice versa relativistic initial neutron star models with a Newtonian evolution
code. This observation is supported by Figure 6.6, which shows how well the conformal factor
of the CFC metric φCFC approximates the corresponding metric quantity in the exact metric
φex (left panels). The excellent approximation of the azimuthal component of the exact shift
vector β3 ex by the CFC shift vector component β3 CFC is shown in the right panels. This very
good matching is in agreement with the results for rapidly rotating neutron stars in the CFC
spacetime by Cook et al. [22].

The neutron star models used in the above tests were not disturbed from their equilibrium
state. However, in order to determine the oscillation normal modes of rotating neutron stars,
a standard method in numerical relativity is to add low amplitude perturbations to the initial
equilibrium density distribution, which then excite normal modes of specific parities. The
frequencies of these normal modes and their first few harmonics can then be extracted by
Fourier analysis of quantities like the density or radial velocity read out at a fixed location in the
star. This has already been done for spherically symmetric and uniformly rotating relativistic
neutron stars [38, 35], however only for a fixed background spacetime. As the tests above
indicate, this code can be used to determine normal mode frequencies for rotating relativistic
stars with a fully coupled and evolved spacetime. The long-term stability of the code even for
rapidly rotating neutron stars allows one to compute the evolution for many rotation periods
and to extract the oscillation frequencies very accurately.

aThis time interval is both small compared to the star’s rotation period and the frequencies of the strongest
radial oscillations.
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Figure 6.5: Evolution of the density profile (upper panel) and angular velocity profile (lower
panel) in a neutron star model which rotates with uniform angular velocity close to its Keplerian
limit: The equatorial density profile ρe at t = 5.0 ms (dashed line), corresponding to 5 rotation
periods, is close to the initial profile at t = 0.0 ms (solid line). The same holds for the angular
velocity profile vϕ e, also plotted at t = 5.0 ms (dashed line) and t = 0.0 ms (solid line); this
behavior is similar to the results for a rotating neutron star in the Cowling approximation
presented in [38] (see Figure 6 therein). The spike in the t = 5.0 ms profile of vϕ e close to the
neutron star boundary is a numerical artifact due to the artificial atmosphere. The height of
the spike oscillates in time with a maximum amplitude as plotted here. Note that the neutron
star model rotates with more than 30% of the speed of light at the equator. The dotted profile
in the upper panel is the initial density along the polar axis ρp. Due to the rapid rotation, the
polar radius of the neutron star is only 70% of its equatorial radius. The horizontal dotted line
in the density plot marks nuclear matter density.
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Figure 6.6: Quality of the CFC approximation for rapidly rotating neutron star initial data:
The values for the exact and approximate conformal factor φex

e and φCFC
e (upper left panel),

and for the exact and approximate shift vector component β3 ex
e and β3 CFC

e (upper right panel),
both evaluated along the equatorial plane, agree very well. In the lower panels the corresponding
relative deviations are plotted. For the conformal factor the deviations are less than 0.2%, while
they stay below 4% for the shift vector even where it is very close to zero.
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6.3 Spherical Core Collapse

The problem of relativistic core collapse for an ideal fluid in spherical symmetry has been
successfully solved in numerical relativity by May and White in 1966 [80]. Their code used a
Lagrangian formulation, where the coordinates label mass shells rather than spatial positions,
and thus comove with the fluid. To damp out unwanted spurious numerical oscillations behind
shock fronts, this code utilized a simple form of artificial viscosity. As we have a May–White
type Lagrangian code to our disposal [23], we are able to compare our code, which uses a HRSC
method for calculating the hydrodynamics, and is based on Eulerian-type fixed coordinates,
against a Lagrangian finite difference code, at least in the case of spherically symmetric core
collapseb.

For this test we set up a nonrotating equilibrium star as initial data on a two-dimensional
(r, θ)-grid, with the same EoS and central density as in the (rotating) initial models listed in
Section 4.4. During the evolution, we do not use the hybrid EoS (4.9), but a simple ideal fluid
EoS,

P = (γ − 1)ρε. (6.1)

The effective stiffening of the EoS at supranuclear matter densities is modeled by a variable
adiabatic index given by the following relation [104, 131]:

γ =

{
γ1 for ρ < ρnuc,

γ1 + 1
2

log
ρ

ρnuc

for ρ ≥ ρnuc,
(6.2)

with γ1 = 1.320. As initially all derivatives in the angular direction are zero, with this spherical
core collapse model we can easily test the ability of the code to maintain spherical symmetry
throughout the collapse.

Furthermore, this test is important insofar, as the numerical treatment of the evolution
equations, and the coordinate choice of both codes are different. While the May–White code
obtains very good radial resolution throughout all phases of the collapse by virtue of its comov-
ing coordinatesc, the Eulerian geometry of the coordinates of our code lack this property, as the
resolution is fixed. As most of the matter finally concentrates in the center of the numerical grid
in the form of the stable neutron star, whose volume is small compared to the initial extent of
the iron code, in Eulerian coordinates we have to select a radial resolution fine enough to resolve
the dynamics of collapse over two orders of magnitude in space already from the beginning.
Because of the CFL criterion this slows down our code considerably, whereas the May–White
code allows for much larger time steps initially, while still having superior resolution during and
after the bounce. On the other hand, after the shock forms and the hydrodynamic quantities
exhibit discontinuities, the HRSC properties of our scheme are superior to the artificial viscosity
approach of the May–White formulation in terms of correct shock propagation speed and good
resolution of the discontinuity.

bDue to the special choice of the radial coordinate, the May–White code cannot be extended to multi-
dimensions.

cComoving coordinates are an ideal way to automatically adapt the radial resolution to the flow by following
the motion of the mass elements.
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The different ability of both codes to handle these two issues of radial resolution and capturing
of shocks, can clearly be seen in Figure 6.7: In the upper panel we plot the evolution of the
central density around the time of bounce. Even during this evolution stage, where the highest
densities are reachedd, the density obtained with our code very accurately follows the density
from the May–White code. However, due to its superior effective radial resolution, the May–
White code resolves the dip in the central density evolution after the maximum density peak
better, and also produces a smoother density curve. Up to the formation of the shock front,
both codes yield equally good results for the radial infall velocity profiles. The profiles at
t = 60 ms (before bounce) and t = 75 ms (after bounce) are plotted in the lower panel of
Figure 6.7. When the velocity profile becomes discontinuous at the location of the shock front,
our code demonstrates the superiority of the HRSC scheme: The shock front is steeper and
confined to less grid zones than the one in the May–White code. Additionally, the velocity
behind the shock is higher and the shock propagates faster, which is a result of much less
numerical dissipation. If the artificial viscosity is reduced in the May–White code to remedy
its negative effects, unphysical spurious oscillations grow behind the shock front (see inset in
the lower panel).

To simulate the core collapse problem in spherical symmetry, Romero et al. [104] have used
a reformulation of the spherically symmetric relativistic hydrodynamic equations as a set of
conservation laws. Similar to what is implemented in our code, they also have used modern
high-resolution shock-capturing methods to simulate core collapse; thus, their results are ideal
for comparison with our code. However, as we could not exactly identify the initial model
used for the core collapse runs presented in [104], we have used their results only for a rough
comparison with the above spherically symmetric test model. As far as the spread of the shock,
the amplitude of oscillations in the stable post-bounce inner core, and the conservation of total
rest mass and gravitational mass (see also Section 6.4) are concerned, our code yields equally
good results. The dynamic range and the radial resolution of their simulations is approximately
the same as in our model. Hence, we are confident of the correct implementation of our
numerical schemes.

dNote that due to the relatively soft supranuclear EoS (6.1, 6.2), the core dives deeply into the potential well
and reaches very high densities of more than 5ρnuc.
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Figure 6.7: Comparison of results obtained with our Eulerian HRSC code (solid lines) against
results from a Lagrangian finite difference code (dashed lines) applied to spherically symmetric
core collapse: The time evolution of the central density ρc (upper panel), here plotted around
bounce time, agrees very well during all stages of the collapse. In the lower panel, the radial
velocity profiles from both codes are plotted at t = 60 ms (a) and at t = 75 ms (b). During the
infall phase before core bounce (a), the velocity profiles match very well. When the shock front
propagates outward (b), the alignment is less good. In the inset the velocity profile from the
finite difference code for very low artificial viscosity is plotted at t = 75 ms. The vertical dotted
line in the density plot marks nuclear matter density.
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6.4 Integral Quantities – Conservation of Rest Mass and

Angular Momentum

The hydrodynamics part of our code solves the system of relativistic hydrodynamic equa-
tions (2.35–2.37) for the state vector of the conserved quantities D, Si, and τ (2.22–2.24).
These equations derive their conservative character directly from the relativistic equations of
motion (2.19), which are conservation equations for the rest mass current and the energy-
momentum tensor. Equations (2.35–2.37) are the general relativistic extension of the New-
tonian conservation equations (2.29–2.31). Analogous to the conserved quantities related to
symmetries in Newtonian gravity, in general relativity one can define integral quantities which
are conserved in an isolated system. However, in a curved spacetime, the notion of total mass
and total angular momentum is not as clear as in Euclidean space (for a summary on the differ-
ent regions around an isolated source in spacetime and their relation to total mass and angular
momentum, see Box 19.1 in [85]). The way to define the mass M and angular momentum J
is to match integral quantities of spacetime to appropriate line element quantities in the weak
field limit.

In the {3 + 1} formalism, the general definitions for the (baryon) rest mass Mrest, the proper
mass Mproper, the gravitational mass Mgrav, the angular momentum Jrot, and the rotational
mass (energy) Mrot are [40]

Mrest = −
∫
dV ρuµn

µ, (6.3)

Mproper = −
∫
dV ρ(1 + ε)uµn

µ, (6.4)

Mgrav = −
∫
dV (2Tµν − gµνT ) tµnν , (6.5)

Jrot = −
∫
dV Tµνs

µnν , (6.6)

Mrot = −
∫
dV Tµνs

µnν
sλu

λ

2nκuκ
, (6.7)

where uµ is the four-velocity, nµ is the unit vector normal to the three-dimensional hypersurface,
and tµ and sµ are a time-like and a space-like Killing vector, respectivelye. The rotation axis
is perpendicular to sµ. For the CFC metric (3.12) in axisymmetry, where sµ = ê3 (i.e. the unit
vector in ϕ-direction), the above integral quantities assume the following form:

Mrest = −2π

∫
drdθr2 sin θφ6ρW, (6.8)

Mproper = −2π

∫
drdθr2 sin θφ6ρ(1 + ε)W, (6.9)

Mgrav = −2π

∫
drdθr2 sin θφ6

(
α(2ρhW 2 + 2P − ρh)− 2ρhW 2viβ

i
)
, (6.10)

eNote that the gravitational mass Mgrav is only defined this way if a time-like Killing vector exists, i.e.
if we have a stationary solution. In a dynamic context we can assume that Mgrav is calculated in a series of
(quasi-)equilibrium states of the system. However, strictly speaking Mgrav is defined only for stationary systems.

109



CHAPTER 6. TESTS

Jrot = −2π

∫
drdθr2 sin θφ6ρhW 2v3, (6.11)

Mrot = −2π

∫
drdθr2 sin θφ6ρhW 2v3(αv3 − β3)

2
. (6.12)

From these quantities, we get the following relation for the mass Mpot associated to the potential
binding energy and the rotation rate β:

Mpot = Mgrav −Mproper −Mrot, β =
Mrot

|Mpot|
=

Mrot

|Mgrav −Mproper −Mrot|
. (6.13)

The formulation of integral quantities (6.8–6.12) is an extension of the masses and angular
momentum defined in [65] for nonzero radial and angular velocity and shift vector components
in a conformally flat metric. It is obvious that the integrand of the rest mass and the angular
momentum can be written as

√
γD and

√
γS3, respectively, which are the first and fourth

component of the state vector in Equation (2.26), corresponding to the continuity equation and
the angular momentum conservation equation.

Like in Newtonian gravity, the general relativistic continuity equation (2.35) is also a strict
conservation law. For the angular momentum Jrot, whose evolution is determined by the third
component of the momentum equation (2.36), one has to distinguish several cases: In an exact
spacetime (described e.g. by an unconstrained ADM metric (2.11)), any rotating matter distri-
bution in equilibrium will exhibit a vanishing source term in the equation for S3. If gravitational
waves are radiated away by the system, e.g. during a core collapse, angular momentum can
be carried off from the source by them. However, in axisymmetry, the angular momentum of
gravitational radiation is zero, and again Jrot is conserved (see Exercise 16.3 in [109]). For an
approximate metric like the CFC metric, the situation is not as trivial: Although gravitational
waves are not explicitely present in the spacetime, the peculiarity of the CFC metric as an
approximation of the exact metric will result in a small but nonzero contribution to the source
term for the angular momentum conservation equation.

If an appropriate and correctly implemented conservative scheme is used to numerically
evolve a physical system governed by conservation laws, the analytic conservation of a certain
quantity is reflected in the numerical method by a conservation of the associated numerical
quantity up the machine precision. However, in the case of the hydrodynamic conservation
laws in Newtonian gravity (2.29–2.31) or in general relativity (2.35–2.37), and their numerical
implementation in our code, there are several prerequisites for achieving “exact” numerical
conservation of the total rest mass Mrest and the total angular momentum Jrot:

Stationarity of the metric:
Instead of being conservation equations for the quantities D, Si, and τ , the evolution
equations (5.29) are written in the form of conservation equations for the generalized
conserved quantities

√
γD,

√
γSi, and

√
γτ . The common factor

√
γ contains the term

φ6, which obviously varies with time. If the metric components would be determined by
evolution equations (like e.g. the ADM metric evolution equations), it would be possible
to evolve the volume weighted state vector

√
γF 0 and extract the state vector F 0 on the

new time slice from
√
γF 0 using the value

√
γ computed from the metric which has been
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evolved forward in time independently. However, in the CFC approximation the metric
is computed not by evolution equations but by constraint equations, and the equations
which are actually used for the evolution are of the form (5.31). These exhibit effective
source terms which contain the time derivative of

√
γ. If the metric is assumed to be

stationary (Cowling approximation), these additional source terms are zero, Q̂ = Q, and
the equations (5.31) become genuine conservation equations even for a CFC metric.

Vanishing physical and geometrical source terms:
A quantity, whose evolution in time is determined by a conservation equation, is only
conserved if it is not subject to external real forces (i.e. physical, like gravitational forces),
or ficticious forces (i.e. geometrical, like Coriolis forces; see Section 5.5.1). Source terms
associated to ficticious forces vanish only if the evolution equations are written in the
form (5.31) rather than in the (analytically equivalent) form (5.30). The only conservation
equation, where the source term due to gravitational forces is zero in all situations, is the
one for the rest mass D. As already mentioned, in an axisymmetric situation the source
term in the angular momentum conservation equation for S3 also vanishes, but only for
an exact metric, not for a CFC metric.

Influence of the atmosphere:
The last requirement for conservation of a certain quantity is that the sum of the fluxes
through the interfaces of all finite volume cells must be zero, i.e. the system must be
closed. For the numerical implementation this means that there must not be any artificial
atmosphere (such as the one introduced in Section 5.3), as this acts as (an albeit possibly
small) source or drain of mass, energy, and momentum. Furthermore, the numerical fluxes
through all boundaries have to be exactly zero.

We have performed tests where we have evolved the state vector according to equations (5.31)
for a fixed spacetime metric. Additionally, the fluxes at the outer boundary were explicitely
set to zerof, and no artifical atmosphere was used. In this restricted test situation, we could
obtain conservation of the rest mass and the angular momentum of

dMrest ≡
∣∣∣∣ Mrest

Mrest 0

− 1

∣∣∣∣ <∼ 10−15, dJrot ≡
∣∣∣∣ Jrot

Jrot 0

− 1

∣∣∣∣ <∼ 10−15, (6.14)

i.e. up to machine precision; here Mrest 0 and Jrot 0 are the initial total rest mass and angular
momentum, respectively. In Newtonian gravity, the same level of conservation could be reached
for the total angular momentum Jrot.

In a dynamic core collapse simulation, these above restrictions have to be abandoned. Then
the nonstationarity of the metric and (in the case of nonsphericity) the artificial atmosphere
destroy the exact conservation of the numerical scheme. These violations of exact conservation
become apparent in the quantities dMrest and dJrot. If precautions are taken, these changes
in Mrest and Jrest are small – typically of the order of the discretization errors –, but they are
nevertheless orders of magnitude larger than machine precision. By carefully fine-tuning the
atmosphere setup as specified in Table 5.1, we could achieve a relative mass conservation dMrest

of better than 3% and a relative angular momentum conservation dJrot of better than 20% in

fThe fluxes across the equatorial plane and along the polar axis are always zero in our code.
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all simulations of the collapse models listed in Table 4.2. These values are an upper limit, and
for many models the conservation was better by orders of magnitude, especially for rapidly
collapsing models and less rapidly rotating models, which allow for a lower density atmosphere.

In Figure 6.8, where we plot the behavior of mass and angular momentum conservation in the
rotational core collapse model A3B2G4, one can clearly identify the individual contributions
of the three effects to the violation of conservation described in the above list: In Newtonian
gravity, the only source for mass and angular momentum accretion is the artificial atmosphere.
This becomes visible as a small monotonous increase in Mrest and Jrot. Until bounce, the
mass increase in relativistic gravity exhibits the same behavior. However, due to the nonzero
source term in the angular momentum equation in relativity, dJrot is larger than its Newtonian
counterpart already during the infall phase. Around the time of bounce, where the temporal
variation of φ and thus

√
γ is largest, dMrest and dJrot vary considerably, too. When the central

density has settled down to a constant value, and the core has reached a new equilibrium
configuration, the variations of Mrest and Jrot in the relativistic case again show a similar
increase rate like in Newtonian gravity. One important fact to note is that the violation of
conservation due to the three effects (variation of

√
γ, source term in the angular momentum

equation, and atmosphere) is of the same order of magnitude.

The impact of the artificial atmosphere on the conservation of total mass and angular mo-
mentum can be seen in Figure 6.9: In the highly nonspherical rotational core collapse model
A4B2G2, the shock propagates outward at different speeds in the polar and equatorial direc-
tion. When the shock reaches the surface of the star in the polar regions, a considerable amount
of mass, but obviously not much angular momentum is lost to the atmosphere. Later the shock
also passes the equatorial surface, as it propagates slower in this direction, and as the stellar
radius is larger at the equator. Around that time, the curve of mass loss once more steepens,
and significantly more angular momentum is lost, as the relative contributions of fluid elements
to the total angular momentum is higher in the equatorial regions than in the polar regions.
In Figure 6.9 the variation of dMrest and dJrot due to rapid changes of the volume element

√
γ

around peak maximum density can also be observed.
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Figure 6.8: Conservation of total rest mass and angular momentum in the relativistic (solid
lines) and Newtonian (dashed lines) simulation of model A3B2G4: Until the time of bounce
tb ≈ 39 ms (indicated by the vertical dotted line), the relative changes in the total rest mass
Mrest (middle panel) and angular momentum Jrot (lower panel) due to interaction of the stellar
interior with the artifical atmosphere are small compared to the respective initial values Mrest 0

and Jrot 0. A nonzero source terms in the evolution equation for S3 additionally drives non-
conservation of the angular momentum in relativistic gravity (indicated by the arrow). As the
central density ρc (upper panel) and thus the metric volume factor

√
γ contained in the conser-

vation equations vary most during the bounce, a strong oscillatory variation of total mass and
angular momentum can be observed in this phase. The horizontal dotted line in the density plot
marks nuclear matter density.
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Figure 6.9: Influence of the artificial atmosphere and of the time dependence of the volume
element

√
γ on the conservation of total rest mass and angular momentum for model A4B2G2:

Around the time of bounce tb ≈ 68.5 ms (a), the maximum density ρmax (upper panel), which is
off-center in this toroidal model, and thus the value of the volume element

√
γ oscillate strongly;

this oscillatory behavior manifests itself in a relative change of the total rest mass Mrest (middle
panel) and angular momentum Jrot (lower panel) compared to the respective initial values Mrest 0

and Jrot 0. Before bounce the change of total mass and angular momentum due to interaction
of the stellar interior with the atmosphere is small. At t ≈ 85 ms (b), the shock reaches the
stellar surface, first at the pole at Rb p ≈ 1, 200 km; this leads to mass loss. At t ≈ 92.5 ms
(c), the slower shock along the equatorial plane passes the stellar surface, which is located at
Rb e ≈ 1, 320 km > Rb p; this results in loss of total angular momentum, and also increases the
mass loss. The horizontal dotted line in the density plot marks nuclear matter density.
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6.5 Excitation of the Thermal Pressure

When introducing the hybrid EoS (4.9) in Section 4.2 as a combination of a polytropic and a
thermal contribution to the pressure, we have already mentioned that the thermal part should
only play a non-negligible role in the presence of a shock front. During the infall phase of core
collapse, i.e. before nuclear matter density is reached and the core bounces, it should make no
significant difference whether the EoS is purely polytropic (P = Kργ1), or given by the hybrid
EoS of Equation (4.9). This should also hold for the ideal gas EoS P = (γ1 − 1)ρε. Thus for
all three cases, the respective profiles of hydrodynamic quantities during infall should deviate
only slightly from each other.

We have tested the validity of this assumption by collapsing model A3B2G4 to nuclear matter
density using the three different EoS, and comparing the time evolution of the density and the
internal energy. The left panel of Figure 6.10 shows the evolution of the relative deviations of
the density ρ, when comparing the simulation using the hybrid EoS with one using the ideal
gas EoS, and with one using the polytropic EoS. The evolution of the relative deviations for
the energy density ε are plotted in the right panel. For both hydrodynamic quantities, which
are being evaluated at a fixed radius r100 = 159 km, and for both comparisons the relative
difference is minute throughout the infall phase, reaching at most 2% just before the central
part reaches nuclear matter density. This proves that during the infall phase the collapse
proceeds adiabatically, and the polytropic density profile is preserved.
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Figure 6.10: Relative deviation between the evolution of the density ρ (left panel) and the internal
energy density ε (right panel) for different EoS in model A3B2G4: The relative deviations in
both the density and energy density between a simulation using the hybrid EoS and one with
the ideal gas EoS (solid lines), or one with the polytropic EoS (dashed lines) are less than 2%
until the time nuclear matter density is reached at about 39 ms. The hydrodynamic quantities
are evaluated in the equatorial plane at a radius r100 = 159 km.

When continuing the collapse of the above model with the hybrid EoS until the adiabatic
exponent in the EoS increases from γ1 to γ2 due to nuclear matter effects, the formation and
subsequent propagation of the shock front produces a thermal contribution, which will manifest
itself in the total pressure. This can be seen in the pressure profiles of Figure 6.11, where we plot

115



CHAPTER 6. TESTS

1.0 10.0 100.0

r [km]

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

P
e [

10
33

 g
 c

m
-1

 s
-2

]

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

P
e [

10
33

 g
 c

m
-1

 s
-2

]

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00
P

e [
10

33
 g

 c
m

-1
 s

-2
]

Figure 6.11: Contribution of the polytropic pressure Pp (dashed lines) and the thermal pressure
Pth (dotted lines) to the total pressure P (solid lines) at different stages of the collapse of model
A3B2G4, evaluated along the equatorial plane: Before the bounce at t = 39 ms (upper panel),
the contribution of the thermal pressure to the total pressure is insignificant, i.e. the profiles
of P and Pp are identical. Right after bounce at t = 39.5 ms (middle panel), the shock front
forms, and the thermal pressure begins to rise. At t = 42 ms (lower panel), when the shock front
propagates through the outer parts of the core, the thermal pressure is and remains dominant
in the post-shock region, and drives the shock further outward. Right behind the shock front,
Pth is almost one order of magnitude larger than Pp. The vertical dotted line marks the radius
where the pressure in Figure 6.12 is evaluated.
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the polytropic and thermal contribution of the hybrid EoS to the total pressure. We see that the
thermal contribution is negligible before the formation of the shock wave (upper panel), builds
up as the shock front forms (middle panel), and acts as a significant source of total pressure
right behind the shock front (lower panel). Still, in regions which have not yet been affected
by the shock (at larger radii), and inside the unshocked inner core, the thermal contribution
is very close to zero. The sudden rise of the thermal pressure behind the shock front is also
illustrated in Figure 6.12. We have found that the ratio between thermal and total pressure is
typically 80% right behind the shock front in all collapse models. During the further evolution,
while the shock front propagates outward, this ratio, and thus the thermal contribution of the
heated post-shock matter to the overall pressure, remains approximately constant right behind
the shock front. Thus as a rule of thumb we can say that about 80% of the pressure can
be attributed to thermal pressure anywhere and anytime behind the shock. Farther behind
the shock front, the ratio of thermal to total pressure declines, and the contribution from the
polytropic pressure becomes more important again (see Figure 6.11).
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Figure 6.12: Evolution of the polytropic pressure Pp (dashed lines), thermal pressure Pth (dotted
lines), and total pressure P (solid lines) in the equatorial plane at r100 = 159 km for model
A3B2G4: Before bounce the total pressure is approximately constant over time, with P = Pp

and Pth = 0. When the shock front passes at t ≈ 45.5 ms, the thermal pressure rises steeply,
initially contributing about 80% to the increased total pressure. At later times both the total
pressure and the contribution of Pth decline.
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6.6 Quality of the CFC Approximation during Rota-

tional Core Collapse

When the conformally flat three-metric was introduced as an approximation of the exact space-
time metric in Section 3.3.1, we have already pointed out the limitations of this approximation.
For highly relativistic and nonspherical configurations we expect growing deviations of the CFC
metric from the exact solution of the metric equation. We have set up a variety of tests to
quantify these deviations and assess the validity of the CFC approximation. The complexity
of these tests gradually increases from stationary rotating (and thus distorted) neutron star
models to dynamic spherical collapse models, and finally to dynamic nonspherical core collapse
models.

In Figure 6.6 in Section 6.2 we have already presented the excellent agreement between
components of the exact metric and respective components of the approximate CFC metric for
rapidly rotating neutron star initial data. The ability of the evolution core to keep long-term
stability when evolving this initial configuration also indicates that the CFC metric is close to
the exact metric. However, as the neutron star model is highly relativistic and nonspherical,
the CFC metric will solve the exact metric equations not exactly.

There are several ways to quantify the violations of the exact metric equations: Obviously, one
can reinsert the CFC metric obtained by solving the CFC metric equations (3.52–3.54) into the
Einstein equations (2.2). In numerical relativity similar methods are applied to test the accuracy
of numerical solutions of a spacetime metric calculated from the ADM equations [83]. However,
the essential drawback of this method is that the constituents of the Einstein equations like
the four-Ricci tensor Rµν or the four-energy-momentum tensor Tµν are very complex algebraic
constructs and have several thousand terms even in axisymmetry. On the other hand, the ADM
metric equations (3.7–3.10) are equivalent to the Einstein equations. As we only use a subset of
the full set of ADM equations to calculate the CFC metric, we can use the other equations to
test the quality of the CFC approximation. The method of choice is to re-insert the CFC metric
components into the individual ADM metric equations, and to compare the left and right hand
sides of the respective equationsg. If the metric, which is inserted, is an exact solution of the
Einstein equations, the numerical inequality between the left and right hand sides of the ADM
equations converges to zero with increasing resolution. For an approximate metric like the CFC
metric, in the equation for a metric quantity qi there will be a nonzero relative residual

rqi ≡
∣∣∣∣ lhs qi
rhs qi

− 1

∣∣∣∣ > 0 (6.15)

for at least some of the quantities qi irrespective of numerical resolutionh. Here lhs q and rhs q
stand for the left and right hand side of the equation, respectively. In the following we will test
which of the ADM equations will exhibit such a residual due to the CFC approximation, and
to what degree they are violated.

gIn the evolution equations for γij (3.7) and Kij (3.7), the left hand sides are simply the time derivatives of
the respective quantities.

hFor finite resolution, the residual resulting from numerical truncation errors will add to this residual.

118



CHAPTER 6. TESTS

In the derivation of the metric equations for the CFC metric components φ and βi in Sec-
tion 3.3.3, additionally to the ADM Hamiltonian and momentum constraint equations (3.9,
3.10) only the maximal slicing condition was used. Therefore, the metric equations (3.52–3.54)
are analytically equivalent to the ADM constraint equations, and any solution according to
CFC metric equations will also be a solution of the ADM constraint equations, at least up to
the precision of the numerical scheme.

The evolution equations for the three-metric γij (3.7) are also identically fulfilled for the off-
diagonal elements of γij, as for a CFC metric they transform into the definition of the extrinsic
curvature (3.33). As the three-metric γii is conformally flat, of the six evolution equations (3.7)
there remains only the evolution equation for the conformal factor φ, Equation (3.34). We have
found that the residual of this equation,

rφ =

∣∣∣∣ lhsφ

rhsφ
− 1

∣∣∣∣ =

∣∣∣∣ ∂tφ
1
6
φ∇kβk

− 1

∣∣∣∣ , (6.16)

is very close to zero in various test situations, including rotational core collapse. For the test
model A3B4G3, the radial profile of rφ is plotted in the right panel of Figure 6.13, shortly
before maximum density is reached during bounce. Except where a pole develops due to a
zero denominator in Equation (6.16), rφ is everywhere less than 0.2%, particularly in the dense
interior. Hence, we infer that the ADM evolution equations for the diagonal elements of γij are
well solved by the CFC metric, too.
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Figure 6.13: Numerical equivalence of the left hand side ( lhsφ = ∂tφ) and right hand side
(rhsφ) of the evolution equation for φ: The relative difference for the evolution of φc in model
A1B3G5, obtained by using the discretization of ∂tφ according to Equation (5.51) (reg) or
Equation (5.52) (alt) in the numerical source terms, is minute (left panel). In the test model
A3B4G3, the residual rφ of the evolution equation for φ, plotted along the equatorial radius at
t ≈ 41 ms (right panel), is small everywhere. This proves that the ADM equation (3.7) is solved
to high accuracy by the CFC metric. Note that the pole at large r in the plot of rφ is due to a
vanishing denominator in Equation (6.16).

Figure 6.13 proves that the analytic equivalence of the left and right hand side of Equa-
tion (3.34) is represented well by the numerical scheme: The results of core collapse simula-
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tions using the left or right hand side of Equation (3.34) in the discretized equation for the time
derivative of the conformal factor deviate only slightly from each other: In the left panel of
Figure 6.13 we show the evolution of the relative difference of the central value of the conformal
factor φc for model A1B3G5, using Equation (5.51) or Equation (5.52) for ∂tφ in the source
terms. Even at maximum density during core bounce, when the time variation of φ is maximal,
the values for φc from both simulations differ only by about 0.03%. Thus any of the discretized
expressions for ∂tφ as stated in Equations (5.51) or (5.52) can be used in the source terms of
the numerical scheme. Neither of the two formulations is preferable by being numerically more
accurate or stable.

With the ADM constraint equations being solved identically, and the ADM evolution equa-
tion for the three-metric being solved either identically (for the off-diagonal elements) or to a
very high degree (for the diagonal elements), this leaves the ADM evolution equation for the
extrinsic curvature as another way of checking the accuracy of the CFC approximation: As in
the case of the evolution equation for the three-metric, one can compare the left and right hand
sides of that equation. We note that such a procedure has also been used by Gourgoulhon et
al. [48] in their validation of initial data for binary black holes, yielding satisfactory results for
the CFC approximation even in such extremely relativistic (stationary) situationsi.

As a consequence of the maximal slicing condition (3.28), the sum of the left and right hand
sides of the equation for the diagonal elements of the extrinsic curvature are identical up to
numerical discretization errors at all grid points in any evolution. Furthermore, in spherical
symmetry, the left and right hand sides of all six evolution equation for Kij agree, as in this
case the CFC metric is an exact solution of the spacetime (see Section 3.3.1). For the evolution
equation of K11 this is demonstrated in the upper panel of Figure 6.14. In this simulation a
nonrotating initial model with the same EoS and central density as in the (rotating) initial
models listed in Section 4.4 collapses to supranuclear matter density, with the collapse initiated
by reducing the adiabatic index to γ1 = 1.300. As the EoS does not change at nuclear matter
density, the collapse proceeds until a black hole forms. Both at moderate and at high supranu-
clear matter densities the left and right hand sides of the equation for K11 agree very wellj. As
the CFC metric is an analytically exact metric in spherical symmetry, this test shows that our
numerical scheme for solving the metric equations is implemented correctly, and the method
of comparing the left and right hand sides of the ADM equations during the evolution, e.g. in
Equation (3.8), instead of computing the full Einstein tensor Gµν and checking the equality
Gµν = 8πTµν , is appropriate.

However, inserting the CFC metric into the same equation for the case of the rapidly rotating
(and therefore nonspherical) neutron star model specified in Section 6.2 yields a detectable
deviation of the left and right hand side of the evolution equations for the diagonal elements,
which cannot be reduced by increasing the numerical resolutionk. This deviation is entirely

iComparisons with Damour’s analytic post-Newtonian expansion show satisfactory agreement up to third
order in the expansion [47].

jHowever, as both sides are very small with absolute magnitudes of the order of the numerical discretization
errors, they will deviate from each other in the center due to numerical inaccuracies.

kThe left hand sides of the extrinsic curvature evolution equation (3.8), ∂tKij , are analytically zero for
equilibrium models. In a numerical evolution however, they acquire a finite nonzero (but small) value which
decreases with increasing resolution.
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due to the CFC approximation, as it vanishes for neutron star models in spherical symmetry,
where the CFC is exact. The lower panel of Figure 6.14 shows the discrepancy between the
left and right hand side of the evolution equation for K11. On the other hand, this pronounced
violation of some of the six components of Equation (3.8) does not directly reflect the quality of
the CFC approximation in terms of its ability to model the exact spacetime of a given matter
distribution accurately. As we have seen in Section 6.2, despite Equation (3.8) not being
fulfilled, the equilibrium of the rotating neutron star models can nevertheless be maintained,
and the exact metric is well approximated by the CFC metric quantities.

A violation of the evolution equation 3.8 for the diagonal elements of Kij occurs in all highly
relativistic pronouncedly nonspherical spacetimes, for example in the core collapse test model
A3B4G3: Whereas the agreement between left and right hand sides of the equation is fair for
lower densities at the beginning of the infall phase, at the high densities encountered in the
center during and after the bounce the misalignment becomes as prominent as for the rotating
equilibrium neutron star model (see lower panel of Figure 6.15). On the other hand, for example
the evolution equation for K13 is solved to high accuracy, which is reflected by the very good
alignment of the left and right hand sides of that equation even in the center of the core, as
shown in the upper panel of Figure 6.15.

These observations raise the question why the left and right hand sides of some of the evolu-
tion equation for the extrinsic curvature disagree so much for nonspherical matter distributions.
The reason for this becomes clear by investigating the structure of the ADM evolution equations
for Kij:

∂tKij = −∇i∇jα︸ ︷︷ ︸
©a

+αRij︸ ︷︷ ︸
©b

+αKKij︸ ︷︷ ︸
©c

−α2KikK
k
j︸ ︷︷ ︸

©d

+βk∇kKij︸ ︷︷ ︸
©e

+Kik∇jβ
k︸ ︷︷ ︸

©f

+Kjk∇iβ
k︸ ︷︷ ︸

©g

−

−8πα(Sij − 1
2
γij(S − ρH))︸ ︷︷ ︸
©h

. (6.17)

In comprehensive tests of many dynamic collapse models we have found that the terms ©c –©g
are negligibly small compared to terms ©a , ©b , and ©h everywhere on the grid during all times.
The relevant terms ©a , ©b , and ©h depend only on the metric quantities α (which is fixed by
a gauge condition) and φ, but not on the shift vector components βi. This points towards
the inability of the conformally flat three-metric γij, which has only one nonzero quantity
φ, to exactly represent the physical spacetime. On the other hand, the quality of the shift
vector components, which are calculated directly according to the ADM momentum constraint
equations (3.10) (which are equivalent to the metric equations (3.54)), is not measured by
Equation (3.8).

Therefore, the misalignment of the evolution equation for the extrinsic curvature is not a
result of strong deviations of the shift vector components, but due to the restriction imposed
onto the three-metric γij by the CFC approximation. This conjecture is additionally supported
by the following observations: As demonstrated in Figure 6.6 in Section 6.2, even for high
density configurations like rapidly rotating neutron stars in equilibrium, the value of the shift
vector component β3 calculated by the CFC equation (3.54) is close to the exact value.

This also explains the very good matching of the left and right hand sides of Equation (3.8) for
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Figure 6.14: Effect of the CFC approximation on the ADM evolution equation for K11 in a
spherical core collapse model (upper panel) and in the equilibrium rotating neutron star model
from Table 6.2 (lower panel): While the equatorial radial profiles of the left hand side (solid
lines) and of the right hand side (dashed lines) of the ADM evolution equation coincide closely
for the spherically symmetric model, they exhibit significant misalignment in the case of the
neutron star model due to the deviation of the CFC metric from the exact spacetime metric.
In the upper panel, the profiles are plotted at t = 20 ms, and at t = 38.45 ms when the central
density reached more than 5 times nuclear matter density. The mismatch between the curves in
the upper panel is caused by numerical discretization errors and converges away with increasing
resolution.
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Figure 6.15: Effect of the CFC approximation on the ADM evolution equation for K13 (upper
panel) and K11 (lower panel) in the rotational core collapse test model A3B4G3: In the case
of the evolution equation for K13, where the terms ©a and ©b in Equation (6.17) vanish, the
equatorial radial profiles of the left hand side (solid lines) and of the right hand side (dashed
lines) of the ADM evolution equation coincide closely down to small radii, where the relativistic
effects are most significant. These terms are nonzero in the evolution equation for K11, which
causes the non-negligible misalignment of the left and right hand side of that equation (as seen
in the lower panel). The equations are evaluated at t = 41 ms, which is about 1 ms before
bounce.
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K13 even for rapidly rotating and collapsing models: For this component the problematic terms
©a and ©b in Equation (6.17) vanish. (For K12 and K23 the deviations are more pronounced,
since the polar velocity v2 is very close to zero in our collapse models, and therefore the left
and right hand sides of these evolution equations are dominated by truncation errors.)

The above considerations about the quality of the conformal flatness condition and the rela-
tions between the (exact) ADM metric equations and the (approximate) CFC metric equations
can be summarized as follows: The ADM constraint equations are solved identically and yield
expressions for the conformal factor φ and the shift vector βi. The lapse function α is determined
by the maximal slicing condition together with the trace of Equation (3.8). Equation (3.34),
which stems from the ADM evolution equation for γij, is solved to high accuracy even for
strongly relativistic situations.

For some components of Kij, the ADM extrinsic curvature evolution equations are not well
solved for relativistic nonspherical matter distributions, both in equilibrium and dynamic situ-
ations, as the three-metric is constrained by the CFC. In both stationary and highly dynamic
evolutions, the violations of this equation are of comparable strength. Obviously, the extrinsic
curvature very sensitively reflects the inability of the CFC metric to exactly represent the actual
spacetime. However, these violations affect neither the stability of the evolution nor the good
quality of the CFC approximation compared to the exact metric even for highly relativistic
configurations, like e.g. rapidly rotating neutron stars. Apart from this, these equations are
never used in our approach to determine any of the metric quantities. Therefore, in our code
the Kij which are particular combinations of the metric components φ, α, and βi, only act as
auxiliary quantities with no direct physical interpretation.

124



CHAPTER 6. TESTS

6.7 Convergence and Accuracy Tests

6.7.1 Order of Numerical Convergence

We still have to address the issue of convergence and accuracy of the code. One central state-
ment of numerics is the one of accuracy up to a certain order, in our case up to second order.
When a system of equations is solved numerically, a simulation with a higher grid resolution
yields a solution with higher accuracy. More precisely, for a system which is second order con-
vergent, an increase in the number of grid points by a factor mi in the coordinate direction i
results in a decrease of the deviation between the numerical solution and the analytic solution
by a factor m2

i .

The numerical methods we have chosen to discretize the analytic equations are in general
second order accurate in space and time. This translates into an approximation of the analytic
solution by its numerical counterpart in the following way (here we confine ourselves to the
spatial representation, although these considerations are also valid for accuracy in time):

fnum(xi, xj) = fana +O(∆x2
i ,∆xi∆xj,∆x

2
j), (6.18)

or, on a polar grid (ri, θ):
fnum(r, θ) = fana +O(∆r2

i ,∆ri∆θ,∆θ
2), (6.19)

where fana and fnum are the analytic and numerical solution of some equation on a 2-dimensional
grid, respectively.

Usually the analytic solution fnum of the system of equations is not known. However, if the
system of equations is indeed second order convergent, one can check for convergence without
prior knowledge of the analytic solution: By solving the numerical system for three different
resolutions, where the number of grid points are e.g. ni 1, 2ni 2, and 4ni 3, respectively, the
analytic solution can be canceled out:

fninum(xi, xj) = fana(xi, xj) +O(∆x2
i ,∆xixj,∆x

2
j),

f 2ni
num(xi, xj) = fana(xi, xj) +

1

4
O(∆x2

i ,∆xixj,∆x
2
j),

f 4ni
num(xi, xj) = fana(xi, xj) +

1

16
O(∆x2

i ,∆xixj,∆x
2
j).

From this we can then infer a condition for second order convergence of a particular discretiza-
tion scheme:

rconv =

∣∣∣∣f 2ni
num − f 4ni

num

fninum − f 2ni
num

∣∣∣∣ =
1

4
. (6.20)

Note that the solutions fnum for the different spatial resolutions have to be evaluated at the same
evolution time. The condition for second order convergence (6.20) can be tested for various
hydrodynamic and metric quantities.

In general, the order of convergence fconv of a system of discretized equations can be deter-
mined according to

fconv =
ln rconv

ln 2
. (6.21)
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We have successfully tested second order convergence of the code in various situations, including
simulations of spherically symmetric core collapse, evolution of the hydrodynamics in a station-
ary spacetime (Cowling approximation), and evolution of rotational core collapse models. In
Figure 6.16 we show results for the quantities ρ and φ for a fully dynamic evolution of a rapidly
rotating core collapse model. We have increased the spatial resolution in both the radial and
angular direction and find second order convergence everywhere on the grid, except close to
the outer boundary, where boundary effects lower the order of convergence. This demonstrates
that the hydrodynamic evolution scheme and the metric solver are accurate up to second order.
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Figure 6.16: Order of convergence in the evolution of a rapidly rotating core collapse model:
Both in the radial direction (left panels) and angular direction (right panels), the density ρ
(upper panels) and the conformal factor φ (lower panels) exhibit second order convergence. The
order of convergence fconv ρ and fconv φ in r- and θ-direction are determined by evaluating ρ
and φ along constant angles θnθ/2 and constant radii rnr/2, respectively. Note that the order of
convergence for φ in the radial direction decreases to less than 1 at the outer boundary; this is
caused by boundary effects. The horizontal dotted lines mark the value of fconv for second order
convergence. The single point spikes are a result of inaccuracies due to numerical truncation
errors.
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6.7.2 Grid and Metric Resolution Tests – Metric Extrapolation Tests

When analyzing the order of convergence as in Section 6.7.1, there arises a practical problem:
One can only make definite statements about second order convergence if the grid is uniform
and the time step is fixed. It also fails if shocks are present, which is the case after bounce;
in a shock the second order hydrodynamics scheme is reduced to first order accuracy. This
means that we can prove second order convergence of the code only in a narrow regime of space
and time during the evolution. Because of its limitations, with this method we cannot check
whether the resolution in space and time we have chosen is good enough to resolve the physical
features of a particular model. As we compute the metric not on every time slice but only on
multiples of them, we also have to demonstrate that this reduced calculation of the metric in
time is good enough for all practical purposes.

In order to be able to answer these questions, we have performed several resolution tests
with four collapse models, representing multiple bounce collapse (A2B4G1), regular collapse
(A3B2G4), and collapse of a rapidly and differentially rotating core (A4B4G4); for a definition
of collapse types, we refer to Section 7.1. We have simulated these models using the regular
resolution of the grid and the metric computation as specified in Sections 5.1.1 and 5.6.4, us-
ing double resolution in the radial and angular direction, and using double resolution of the
metric computation. In Figure 6.17 we show a comparison between the results for hydrody-
namic, metric, and derived quantities obtained from the resolution tests of models A2B4G1
and A3B2G4l. As the gravitational wave signal amplitude AE2

20 (upper panels) is determined
by the quadrupole moment, i.e. a volume integral over the entire core, it is comparatively in-
sensitive to local deviations between simulations using different resolutions. Thus we expect
a good agreement for the evolution of AE2

20 in all four resolution tests of the two models; this
is confirmed by the plots in Figure 6.17. The evolution of the conformal factor at the center
φc is more sensitive to local deviations, as here the metric quantity φ is evaluated at a single
grid point, and φ has its maximum at the center. Nevertheless, as the metric is determined
by an elliptic system of equations, its components are influenced by the global state of the
system; additionally this quantity does not exhibit shocks. As a result of these properties of
metric quantities, the values for the evolution of φc (middle panels) also coincide very well in
the test models for all investigated resolutions. A very strong test for the quality of the chosen
standard resolution is to probe for possible deviations in the shape of e.g. a radial profile of
a hydrodynamic quantity, particularly if a strong shock is present in the profile. The radial
profile along the equatorial plane for the radial velocity vr =

√
v1v1 shortly after core bounce,

obtained by simulations of the two test models with standard resolution, double radial resolu-
tion and double resolution for the metric computationm, exhibits excellent agreement even in
the region of the shock. Obviously, a better radial resolution (green lines) results in a steeper
shock. Nevertheless, all features of the profile of vr both in the region of the shock itself and
in the smooth regions before and behind the shock, as well as the position and height of the
shock, are well captured in all resolution tests.

The results presented in Figure 6.17 demonstrate impressively, that our standard resolution

lThe results from the resolution tests of A4B4G4 are qualitatively similar.
mAs vr e is evaluated at the center of the cells (ri, θnθ ), a grid with a different angular resolution has different

values of θnθ ; thus, we cannot unambiguously compare quantities evaluated at these grid points for different nθ.
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of the grid and the metric computation is fine enough for investigating rotational core collapse;
any increase in resolution does not change the dynamics of metric or hydrodynamic quantities
significantly, even in the center during core bounce, where the highest densities and largest
time derivatives are encountered.

The test methods discussed above only prove that the numerics converge with second order
to the solution of the discretized equations, and that the resolution suffices to be in the zone
of convergence. They do not allow for checking whether the equations in the code are the
correct discretized equations of the analytic equations. This is not a mathematical, but rather
a computational problem, as we have to make sure that we code up the equations not only
in second order accurate form, but also in a correct way. One can always think of a second
order convergent code, which yields the incorrect physics due to programming errors. Thus,
in order to minimize the risk of such errors in our code, we have performed the tests stated
in Sections 6.1 to 6.5, which compare solutions obtained with our code against known analytic
solutions, or against solutions from independent codes; they also scrutinize different parts of
the code, and check long-term stability of stationary solutions. Together with the convergence
and resolution tests presented in this section, this gives us strong confidence that the code is
both second order convergent and yields the correct physics, and that the chosen resolution is
appropriate to resolve the core collapse problem.
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Figure 6.17: Tests of the resolution of the grid and metric computation for the rotational
core collapse models A2B4G1 (left panels) and A3B2G4 (right panels): The evolution of the
gravitational wave signal amplitude AE2

20 (upper panels) and the evolution of the conformal factor
at the center φc (middle panel) coincide very well for regular resolution (black lines), double
radial resolution (red lines), double angular resolution (green lines), and double resolution of
metric computation (blue lines). The agreement of radial profiles along the equatorial plane for
vr (lower panels), here plotted for regular resolution and double resolution in radial direction
and metric computation, is also excellent. The profiles of vr e are evaluated shortly after core
bounce at t = 99.0 ms (model A2B4G1) and t = 39.25 ms (model A3B2G4), when the shock
forms.

129



CHAPTER 6. TESTS

130



Chapter 7

Results and Discussion

In the following, we present the results from simulating all 26 models as defined in Section 4.4. In
order to be able to clearly identify the impact of relativistic gravity on the collapse dynamics, we
have simulated those models in both Newtonian and relativistic gravity. If not stated explicitely
otherwise, the results presented refer to the relativistic simulation of a particular model.

7.1 Collapse and Waveform Types

Before we turn to elaborate on the differences between general relativistic and Newtonian
simulations of rotational core collapse, we want to present three typical collapse models. These
are representative to three classes, into which the set of models splits. Following Zwerger [146],
who has first identified these three classes, we call them type I, II, and IIIa. In the following
three parts of this sections, we will demonstrate their peculiarities, and explain the physical
effects which lead to the different collapse types.

The evolution of any core collapse can be divided up into three phases:

Infall phase:
This phase is initiated by the instability when the EoS of the initial model, which is in
equilibrium, changes. The entire core contracts, with the inner part collapsing homol-
ogously (v1 ∝ r), and the outer part falling supersonically. Depending on the collapse
parameters, in our models the infall phase lasts between about 30 ms and 100 ms.

Bounce phase:
When the EoS stiffens due to nuclear forces, or when centrifugal forces due to rotational
spin-up become dominant, the inner core decelerates, and the contraction of the inner
core is abruptly stopped on a timescale of about 1 ms. Because of inertia, the inner core

aZwerger’s classification is based on the form of the gravitational wave signal. As the gravitational radiation
waveform is closely linked to the collapse dynamics, it also mirrors the collapse behavior, and the signal types
can in general be used to classify the collapse type.
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shoots over its equilibrium configuration, and therefore rebounces. Depending on the
rotation strength and the EoS during the collapse, the bounce can occur at subnuclear or
supranuclear densities. During that phase, the amplitude of the gravitational wave signal
is highest.

Ring-down phase, or re-expansion phase:
If the infall has been happening moderately fast, and the centrifugal forces do not dom-
inate the dynamics, the inner core settles down to a new equilibrium state. While the
shock wave, which forms at the boundary between the inner and the outer core, prop-
agates outwards, the inner core oscillates over a time of typically several 10 ms with a
superposition of several more or less damped eigenmodes which have frequencies of about
103 Hz (ring-down). This collapse type is called regular collapse.

If the core collapses very rapidly (i.e. on a timescale of about 30 ms), the core plunges
deeply into the gravitational potential well. Thus the central density reaches significantly
higher values, and the signal waveform changes qualitatively compared to collapse models
with a slower infall. Such models belong to the rapid collapse type.

On the other hand, if the core is predominantly stopped by centrifugal forces, the core as
a whole expands again and recollapses. It experiences several distinct sequences of infall,
bounce, and re-expansion separated by up to 50 ms, generating an outward shock at each
bounce. Finally it settles down in an equilibrium state. The behavior of such a type is
dubbed multiple bounce collapse.

If the maximum central density is close to or above nuclear matter density, and if the
core rotates differentially and rapidly, a combination of regular and multiple collapse
is possible. Then the core re-expands less than in a genuine multiple bounce, but still
bounces and re-expands coherently.

In Figure 7.1, snapshots of radial profiles of the equatorial density and radial velocity at
different evolution times are plotted. In this typical regular collapse model A3B2G4, the three
phases of infall (profiles a, b, c), bounce (profiles d, e), and ring-down and shock propagation
(profiles f, g) can be identified. As the shock front passes by, the density rises by almost one
order of magnitudeb.

7.1.1 Type I Collapse Model – Regular Collapse

As in the work by Zwerger [146], we choose model A1B3G3 as a representative model for a
regular collapse. In Figure 7.2 the time evolution of the central density ρc and the gravitational
wave signal amplitude AE2

20 are plotted. (For a definition of the gravitational wave amplitude
AE2

20 and the numerical wave extraction techniques, we refer to Appendix C.) The three phases

bFor a strong shock, the ratio between the density in front of the shock ρ1 and the density behind the shock
ρ2 is given by

ρ2

ρ1
≈ γ + 1
γ − 1

. (7.1)

For an adiabatic index of 1.30, the pressure thus rises by a factor of about 8 across the shock discontinuity.

132



CHAPTER 7. RESULTS AND DISCUSSION

0.0 50.0 100.0

r [km]

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

v 1 
e

0.0 50.0 100.0

r [km]

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

1.0e+01
ρ e [

10
14

 g
 c

m
-3

]

a

b

c

d

e

f

g

a
b

c

e

f
g

Figure 7.1: Snapshots of radial profiles of the equatorial density ρe (upper panel) and radial
velocity vr e (lower panel) for model A3B2G4. The labels refer to ta = 25.0 ms, tb = 35.0 ms,
tc = 38.25 ms, td = 39.0 ms, te = 39.25 ms, tf = 40.0 ms, and tg = 41.75 ms, respectively.
For clarity, profile d is not plotted in the upper panel. The dotted line specifies nuclear matter
density.

133



CHAPTER 7. RESULTS AND DISCUSSION

of the collapse are clearly identifiable in both quantities: The infall lasts until about 48 ms. In
the subsequent bounce phase nuclear matter density is exceeded at 48.10 ms, and maximum
density is reached with ρc b = 4.09 × 1014 g cm−3 ≈ 2ρnuc at tb = 48.45 ms. After that
the core rebounces and rings down to its equilibrium state with a final central density of
ρc f ≈ 3.0× 1014 g cm−3 ≈ 1.5ρnuc.

The corresponding gravitational wave signal amplitude first rises during the infall phase, and
turns negative shortly before bounce. It has a negative peak with |AE2

20 |max = 483.86 cm at
tgw = 48.88 ms. In all regular collapse models the maximum signal amplitude is negative. As
tb < tgw, the negative flank of the wave signal exhibits a small local minimum at the time of
bounce, a feature which was identified and discussed in Zwerger’s workc. The ring-down phase
of the inner core is directly reflected in the wave signal, which oscillates accordingly. As in the
Newtonian runs by Zwerger, the maxima of AE2

20 in the ring-down phase are less damped than
the minima due to the stronger accelerations encountered at the high density extrema of the
core. Clearly this relativistic model is of type I like its Newtonian counterpart, and the wave
signal belongs to the standard signal class in [146].

7.1.2 Type II Collapse Model – Multiple Bounce Collapse

For an adiabatic index γ1 close to its initial value of 4/3, and for rapid and highly differential
rotation, centrifugal forces can not only influence the core collapse dynamics, but even halt the
collapse at densities lower than nuclear matter density, and thus cause a subnuclear bounce.
This can indeed be observed in some of our collapse models. To demonstrate this, we choose
model A2B4G1d. Figure 7.3 again shows the time evolution of the quantities ρc and AE2

20 .

In both the central density and the wave signal, distinct extrema are discernable. Again,
like in the regular collapse case, the (negative) maximum of the signal waveform |AE2

20 |max =
744.61 cm is reached at a time tgw = 98.38 ms which is shortly before the time tb = 99.09 ms
of the first maximum of the central density ρc b = 0.42 × 1014 g cm−3 ≈ 0.2ρnuc. This is also
true for the following signal peaks, where the waveform develops a local peak in the negative
flank of the second signal peak, which for the third peak produces a double maximum.

7.1.3 Type III Collapse Model – Rapid Regular Collapse

If the infall of the core proceeds rapidly (i.e. almost with free fall velocity) because the value of γ1

is much smaller than 4/3, the corresponding behavior of the density is hardly affected compared
to a regular collapse of type I. As in a regular bounce model, ρc becomes and stays higher than
nuclear matter density. Due to the rapid contraction of the core, the average densities are very
high, and the inner core oscillates only slightly after the bounce. In model A1B3G5, which is

cThe occurrence of this small intermediate spike in a regular collapse is model dependent, as pointed out
in [146].

dModel A1B3G1, which is the representative multiple bounce models in the Newtonian simulations in [146]
exhibits no multiple bounce behavior in our relativistic simulations. This discrepancy between collapse types
in relativistic and Newtonian models will be discussed in Section 7.5.
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a typical rapid bounce model, the values for the maximum and the final central density are
ρc b = 4.49× 1014 g cm−3 ≈ 2.5ρnuc at tb = 30.10 ms, and ρc f ≈ 3.5× 1014 g cm−3 ≈ 1.75ρnuc.

However, the gravitational wave signal amplitude changes its shape qualitatively compared
to type I models, which can be seen in Figure 7.4 where the evolution of ρc and AE2

20 are plotted.
Obviously, |AE2

20 |max = 106.21 cm at tgw = 29.91 ms is now assigned to the first positive peak of
the signal, contrary to the signal waveform of the regular collapse models, where the maximum
is at the first negative peak.

In rapid collapse models, the negative peak, which dominates the waveform of the collapse
models I and II is almost entirely suppressed, and the overall amplitude of the signal is signif-
icantly smaller. There is no clear feature in the waveform which identifies the time of bounce
tb, which falls into the time interval in which the waveform exhibits the declining flank of the
signal maximum peak.

For a given initial model, the transition between type I and III collapses occurs gradually
with decreasing γ1 values. In the gravitational wave signal this can be seen by a decrease of
the negative main peak and a stronger emphasis of the first positive peak.

The above investigation of the three different collapse types has shown that relativistic sim-
ulations of rotational core collapse exhibit the same qualitative collapse dynamics and allow
for the same classification as Newtonian simulations. However, there are important and non-
negligible differences arising from relativistic effects in other aspects. In the following we will
work out these differences.
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Figure 7.2: Time evolution of the central density ρc (upper panel) and the gravitational wave
signal amplitude AE2

20 (lower panel) for the regular collapse model A1B3G3. The horizontal
dotted line in the upper panel marks nuclear matter density ρnuc, and the vertical dotted line
the time of maximum central density tb.
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Figure 7.3: Time evolution of the central density ρc (upper panel) and the gravitational wave
signal amplitude AE2

20 (lower panel) for the multiple bounce collapse model A2B4G1. The vertical
dotted lines mark the times of maximum central density tb in each bounce.
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Figure 7.4: Time evolution of the central density ρc (upper panel) and the gravitational wave
signal amplitude AE2

20 (lower panel) for the rapid collapse model A1B3G5. The horizontal dotted
line in the upper panel marks nuclear matter density ρnuc, and the vertical dotted line the time
of maximum central density tb.
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7.2 Homology of the Infall

When investigating the quality of homology of the inner core during the collapse, one can
already determine differences between relativistic and Newtonian simulations: Homologous
infall is defined by the (negative) radial infall velocity vr being proportional to the radius,
with the proportionality constant (i.e. the slope of vr(r)) growing with time according to the
self-similar solution of Goldreich and Weber [46]. If centrifugal forces can be neglected, in
Newtonian core collapse homologous behavior can be observed in the regions of the inner core,
which is the part of the core where the mass shells stay in sonic contact. Therefore the inner
core is bounded by the sonic sphere, i.e. the sphere defined by the sonic point. It is this inner
core which comes to a sudden halt within a fraction of a millisecond during the bounce, and
forms the proto-neutron star. The ratio between the masses of the inner and the outer core
crucially influences the dynamics of the prompt shock, and thus also specifies the location of
the heating region behind the stalled shock in the delayed explosion scenario.

The analytic Goldreich–Weber solution for a homologously collapsing core is only valid in
spherical symmetry for a Newtonian 1/r potential. Therefore we expect both rotation and
relativistic effects to have effects on the quality of homology, and the radial extent and mass
of the inner core. Figure 7.5 shows the radial profile of the infall velocity at the equator vr e

in the rather rapidly collapsing model A3B2G4, just before the EoS changes when nuclear
matter density is reached. It is obvious that the radius of the homological region, i.e. the
maximum radius for which there is a linear relation between vr and r, which also corresponds
to the size of the inner core, is significantly smaller in the relativistic case. This is mainly
due to the higher infall velocities encountered in the relativistic simulation due to the deeper
gravitational potential, which shifts the sonic sphere to smaller radii. Also within the inner core,
the deviations from an exact vr ∝ r profile are more pronounced in the relativistic simulation
compared to the Newtonian one, which can be clearly seen in the more rounded profile of the
velocity in the left panel of the figure, and especially in the right panel of the figure, where the
velocity profile is tilted such that its slope is zero close to the center. This behavior can be
explained by the fact that if relativistic gravity is approximated by a potential, this potential
has a radial dependency close to, but not exactly, 1/r. From Figure 7.5 one can estimate the
radius of the homologous region at the equator to be rR

hom ≈ 12 km for the relativistic case, and
rN

hom ≈ 20 km for the Newtonian case, respectively. The difference in radius between both cases
of about 8 km is much more than the difference in the radii of equal masses, which in this region
is about 1.5 km. This means that not only the radial extent of the homologously infalling inner
core is smaller in a relativistic gravitational potential, but that also the mass contained in this
region and thus the mass of the inner core is significantly smallere. However, although parts
of the relativistic inner core do not contract exactly homologously, sonic contact will still be
maintained throughout the inner core. As a result, contrary to Newtonian gravity, the quality
of homology during the infall phase is not a good measure for determining the extent and mass
of the inner core which finally constitutes the proto-neutron star.

While the collapse dynamics in model A3B2G4, which collapses to supranuclear densities,
are not strongly influenced by rotation, the effects of rotation on the homology become visible

eOne can show that in Lagrangian mass coordinates the boundary of the inner core is at smaller masses in
a relativistic simulation. Thus the fraction of total mass contained in the inner core is smaller.
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in model A2B4G1, whose radial profile of the infall velocity at the equator vr e just before the
centrifugal bounce at subnuclear densities is plotted in Figure 7.6. Again, as in the denser and
thus more relativistic model A3B2G4, the sonic sphere of the relativistic simulation is smaller
than in the Newtonian case. Furthermore, however, except close to the center the homology
is destroyed due to the rapid spinup of the inner core and the strong centrifugal forces, which
make the core bounce before it reaches supranuclear densities. This breaking of the collapse
decelerates the infall and thus reduces the slope of the velocity profile near the center. Note
that this deceleration does not result from any changes in the EoS or occurrence of shocks. As
the central parts of the inner core effectively fall with lower velocities, the radius of the sonic
sphere and thus the mass of the inner core will increase, because more mass shells out to a
larger radius can stay in sonic contact.
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Figure 7.5: Homology of the infall for the rapid collapse model A3B2G4: Both in relativistic
(solid lines) and Newtonian (dashed lines) gravity, the profiles of the radial velocity along the
equatorial plane vr e, which are plotted shortly before bounce at t = 38.75 ms, exhibit homologous
behavior near the center of the star (left panel). The size of the inner core is larger for the
Newtonian model. This becomes clear when v1 e = v1 e− s · r, where s is the slope for small r, is
plotted (right panel). The arrows indicate the radii where the homology fails. The inset in the
left panel shows the velocity profile up to the outer core radius in a logarithmic plot.
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Figure 7.6: Homology of the infall for the slow collapse model A2B4G1: Both in relativistic
(solid line) and the Newtonian (dashed line) gravity, the profiles of the radial velocity along the
equatorial plane vr e, which are plotted shortly before bounce at t = 98.0 ms, exhibit homologous
behavior only in a small region in the central part of the inner core. Farther outside, the
homology is severely spoilt by the breaking action of centrifugal forces due to rotation. These
forces determine the dynamics of this model and stop the collapse at subnuclear densities. The
inset shows the velocity profile up to the outer core radius in a logarithmic plot.
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7.3 Central Densities and Time of Bounce

An obvious set of quantities to use for investigating differences between models evolving in New-
tonian and relativistic gravity are the maximum central density reached during the evolution
ρc b, and the corresponding time of bounce tb, which are defined as

ρc b ≡ max ρc(t), tb = t(ρc = ρc b). (7.2)

Another important criterion is the central density at the end of the simulation ρc f . The time
tf when a particular simulation was terminated, was specified such that in a regular type I
or rapid type III collapse the ring-down oscillations have sufficiently been damped, and the
central density has settled down to an approximately constant value. For multiple bounce
type II collapse simulations at least two subsequent bounces were covered, often three (see the
plots showing the evolution of the central density in Appendix D). The quantities introduced
in Equation (7.2) are listed for all 26 models in Table 7.1 (A1 and A2 models), Table 7.2
(A3 models), and Table 7.3 (A4 models). If the final central density ρc f is above ρnuc for a
particular model, a multiple bounce collapse can be excluded. Note that some models cross
the nuclear matter density threshold at several distinct times tρc=ρnuc . Such models usually
exhibit a type I/II transition behavior. After the first bounce their core oscillates coherently
with large amplitude, however without the large time intervals between subsequent bounces
which are characteristic for a type II multiple bounce collapse. For genuine multiple bounce
models the final central density ρc f is not specified as their inner core does not reach a new
stable equilibrium configuration during the simulated evolution time.

From the information contained in Tables 7.1–7.3, two important conclusions can be derived:
With the exception of run A4B4G4f, the maximum central densities reached during the main
bounce are on average significantly higher in the relativistic simulations than in simulations with
a Newtonian gravitational potential. In some cases, which all show a type II multiple bounce
collapse, ρc b increases by more than a factor of 2 due to relativistic effects; in model A3B3G1 the
maximum central density increases by almost a factor 5. This behavior is a direct consequence
of the deeper potential in relativistic gravity, which leads to higher infall velocities and denser
and more compact inner cores. Note that the density listed for the relativistic simulations in
Tables 7.1–7.3 is the primitive quantity ρ, i.e. the rest mass. Both the corresponding generalized
relativistic conserved density D = ρW in the state vector (2.26) and the effective density ρ(1+ε)
used in the integral of the gravitational mass in Equation (6.10) are even larger than ρ. The
influence of relativistic effects on ρc b becomes particularly evident in the regular collapse model
A3B2G4, which we have evolved with a soft supranuclear EoS (γ2 = 2.0, model A3B2G4soft)
and the regular EoS (γ2 = 2.5; model A3B2G4). Until nuclear matter density is reached at
tρc=ρnuc = 38.83 ms, the evolution of the collapse proceeds identically in both models. At this
point the cores in both models have the same linear momentum S1 corresponding to the radial
infall of the mass shells. However, in the subsequent bounce, where the increasing pressure
forces due to the jump in the adiabatic index γ act against the momentum of the contracting
core and lead to a reversal of the velocity, a softer EoS results in higher average densities in
the central regions and thus an ever deeper relativistic gravitational potential well. This is

fIn the rapidly and highly differential models A4B4 and A4B5 which develop toroidal density structures (see
Section 7.7), the central density is of less importance as it is not identical to the maximum density in the core.
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reflected by a more than proportional relativistic density increase ρR
c b/ρ

N
c b − 1 = 27% in model

A3B2G4soft compared to ρR
c b/ρ

N
c b − 1 = 14% in model A3B2G4.

The shorter infall times and the resulting higher average radial infall velocities in the rela-
tivistic simulations of most models can also be attributed to the deeper gravitational potential.
In relativistic gravity, the core of model A3B2G1 collapses through to very high supranuclear
central densities and bounces at tb = 92.42 ms, whereas in the Newtonian run the core is
stopped by centrifugal forces at around nuclear matter density at tb = 94.32 ms, leading to
a significant difference in the times of bounce ∆tb ≡ tRb − tNb = 1.9 ms. On the other hand,
some relativistic models seem to collapse slower than their Newtonian counterparts, particu-
larly models with high rotation rate and very differential rotation profile. However, as already
mentioned, the inner cores of these models develop a torus-like structure and thus the central
density is no good criterion for indicating the time of bounce anymore. Furthermore, in such
rapidly rotating cores the bounce occurs at subnuclear densities due to centrifugal forces. A
detailed discussion of this scenario, where the relativistic effects are hard to disentangle and
interpret, follows in Section 7.7.

143



CHAPTER 7. RESULTS AND DISCUSSION

Model ρc b tb ρc f tρc=ρnuc ∆tρc>ρnuc ρR
c b/ρ

N
c b − 1

[1014 g cm−3] [ms] [1014 g cm−3] [ms] [ms] [%]

A1B1G1R 4.57 90.87 3.3 90.48 17.71+
+42

A1B1G1N 3.22 92.23 2.4 91.76 1.31
95.05 13.64+

A1B2G1R 4.17 91.56 3.1 91.17 22.27+
+45

A1B2G1N 2.89 93.10 — 92.61 1.22
101.30 1.69
108.64 1.81

A1B3G1R 3.63 92.85 2.8 92.43 41.53+
+67

A1B3G1N 2.17 94.70 — 94.58 0.51
A1B3G2R 3.86 69.10 2.9 68.74 45.78+

+37
A1B3G2N 2.83 69.87 — 69.47 1.24

76.39 1.42
83.16 1.11

A1B3G3R 4.09 48.45 3.1 48.10 21.00+
+21

A1B3G3N 3.38 48.57 2.5 48.22 21.17+
A1B3G5R 4.49 30.10 3.5 29.84 29.29+

+6
A1B3G5N 4.26 29.98 3.0 29.70 28.99+
A2B4G1R 0.42 99.09 —

+268
A2B4G1N 0.11 99.71 —

Table 7.1: Summary of the bounce density for relativistic (R) and Newtonian (N) A1 and A2
models: ρc b is the central density at bounce, tb is the time of bounce, ρc f is the central density
at the time when the simulation was stopped, tρ>ρnuc is the time when the density rises above
nuclear matter density, ∆tρ>ρnuc is the time interval during which the central density exceeds
nuclear matter density, and ρR

c b/ρ
N
c b − 1 is the relative increase (+) or decrease (−) of ρR

c b

compared to ρN
c b. A + sign behind the value for ∆tρ>ρnuc indicates that the central density was

still higher than nuclear matter density when the simulation was stopped at tf . ρc f is not given
for multiple bounce models; a + sign behind its value means that ρc is still rising at tf , as the
neutron star is accreting mass.
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Model ρc b tb ρc f tρc=ρnuc ∆tρc>ρnuc ρR
c b/ρ

N
c b − 1

[1014 g cm−3] [ms] [1014 g cm−3] [ms] [ms] [%]

A3B1G1R 4.15 91.27 3.1 90.91 22.74+
+38

A3B1G1N 3.00 92.72 — 92.26 1.29
92.32 1.05

100.25 1.40
106.60 1.64
112.67 1.48+

A3B2G1R 3.45 92.42 2.6 92.05 40.64+
+52

A3B2G1N 2.28 94.32 — 93.88 0.86
A3B2G2R 3.58 69.15 2.7 68.81 28.88+

+34
A3B2G2N 2.68 69.98 — 69.56 1.11

77.79 1.20
86.45 0.35

A3B2G4R
soft 5.64 39.18 3.4 38.83 18.57+

+27
A3B2G4N

soft 4.45 39.14 2.7 38.78 20.85+
A3B2G4R 3.90 39.14 2.9 38.83 19.09+

+14
A3B2G4N 3.41 39.07 2.5 38.78 20.90+
A3B3G1R 2.36 95.26 — 94.84 0.97

+400
A3B3G1N 0.47 96.57 —
A3B3G2R 2.56 70.96 — 70.37 1.33

78.19 1.13
85.95 0.38

+133
A3B3G2N 1.10 71.77 —
A3B3G3R 2.91 49.42 — 49.12 1.60

52.01 27.32+
+23

A3B3G3N 2.36 49.64 — 49.30 1.08
A3B3G5R 3.64 30.53 2.8 30.26 26.42+

+6
A3B3G5N 3.44 30.36 2.3 30.11 26.96+
A3B4G2R 0.38 74.51 —

+145
A3B4G2N 0.16 73.99 —
A3B5G4R 0.18 44.31 —

+17
A3B5G4N 0.15 44.31 —

Table 7.2: Summary of the bounce density for relativistic (R) and Newtonian (N) A3 models:
Quantities like in Table 7.1.
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Model ρc b tb ρc f tρc=ρnuc ∆tρc>ρnuc ρR
c b/ρ

N
c b − 1

[1014 g cm−3] [ms] [1014 g cm−3] [ms] [ms] [%]

A4B1G1R 3.71 90.45 2.4+ 90.19 28.85+
+50

A4B1G1N 2.47 91.77 — 91.53 0.56
101.89 0.58
110.33 0.53
118.09 0.32

A4B1G2R 3.59 68.07 2.4+ 67.85 22.14+
+42

A4B1G2N 2.53 68.69 — 68.47 0.50
73.59 0.65
78.12 0.50

A4B2G2R 2.68 68.34 1.6 68.18 0.32
70.90 0.27

+25
A4B2G2N 2.14 69.02 — 69.00 0.08
A4B2G3R 2.42 48.69 — 48.53 0.29

+12
A4B2G3N 2.15 48.74 — 48.74 0.16
A4B4G4R 0.25 39.85 —

+2
A4B4G4N 0.25 39.66 —
A4B4G5R 0.17 32.24 — −60
A4B4G5N 0.42 31.91 —
A4B5G4R 0.05 37.58 —

+0
A4B5G4N 0.05 37.29 —
A4B5G5R 0.09 30.68 —

+20
A4B5G5N 0.07 30.82 —

Table 7.3: Summary of the bounce density for relativistic (R) and Newtonian (N) A4 models:
Quantities like in Table 7.1.
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7.4 Gravitational Wave Amplitudes

It can be expected that the differences in maximum central density between a relativistic and
a Newtonian simulation of a particular model, listed and discussed in Section 7.3, are also
reflected in the gravitational wave signal. Before elaborating on the qualitative changes in the
collapse type and thus the signal form due to relativistic effects in Sections 7.5 and 7.6, we want
to summarize for all models some essential quantities derived from the gravitational wave signal.
The obvious quantities to investigate are the maximum positive signal amplitude AE2

20 + max, the
maximum negative signal amplitudeAE2

20−max, the maximum absolute signal amplitude |AE2
20 |max,

and the time of the maximum absolute signal amplitude tgw, which are defined as follows:

AE2
20 + max = max (AE2

20 ), (7.3)

AE2
20−max = −max (−AE2

20 ), (7.4)

|AE2
20 |max = max (|AE2

20 |), (7.5)

tgw = t(AE2
20 = |AE2

20 |max). (7.6)

The values of these quantities and some other quantities derived from them are listed in Ta-
bles 7.4–7.6 for all 26 models in both relativistic and Newtonian gravity. As in the Newtonian
simulations of Zwerger [146], the time of maximum signal amplitude is always later than the
time of maximum central density, tgw > tb, except in the rapidly collapsing models A1B3G5
and A3B3G5. However, these are the only models where the maximum signal amplitude is
positive. Still maximum negative signal amplitude is reached after bounce also in these models:
t(AE2

20−max) > tb. Therefore, it is obviously a common feature of core collapse in both relativis-
tic and Newtonian gravity, that the time of bounce falls into the declining slope of the first
negative signal peak. This observation has been discussed in detail by Zwerger.

On average, the relativistic models also share with their Newtonian counterparts the wide
spread in the range of observed maximum signal amplitudes: In our sample of 26 models,
the Newtonian maximum signal amplitudes range from about 100 cm to over 5000 cm. The
relativistic simulations exhibit the same lower limit, whereas the highest maximum signal am-
plitude reaches only about 3000 cm. The maximum signal amplitudes of core collapse models
with moderate rotation strength and differentiality of the rotation law, and with an adiabatic
index in the middle of the parameter interval, lie usually between 500 cm and 1000 cm. Both
kinds of simulations also show the same tendency in the dependence of |AE2

20 |max on the col-
lapse parameters: Iron cores which initially rotate almost uniformly and thus slowly, and which
collapse slowly due to a high γ1, collapse to high supranuclear densities and are decelerated
strongly in the deep gravitational potential. However, due to the rapid infall, the mass of
the inner core in such a collapse model is comparatively small (see Section 7.2), and most of
the matter is concentrated at small radii during bounce time. The resulting small quadrupole
moment leads to a very small gravitational wave signal. If such initial models collapse more
slowly, they can bounce at densities below or around nuclear matter density, which yields a
large gravitational wave signal due to coherent deceleration of large parts of a more extended
core. If the initial rotation rate is higher, and the rotation profile more differential, the signal
strength is also enhanced on average. However, for extremely rapidly and differentially rotating
models, a lower γ1 and thus a faster contraction leads to a larger signal, as otherwise centrifugal
forces decelerate the collapse already at lower densities.
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On the other hand, the relative deviations of the maximum signal amplitud between the
relativistic and the Newtonian simulation of the same model prove that relativistic corrections
do indeed play an important role in the collapse dynamics. The gravitational wave amplitude
AE2

20 is a very appropriate tool to measure global changes in the collapse dynamics, as it is
determined by the bulk motion of the matter rather than by just local effects. The fact that
|AE2

20 |max can increase or decrease for a collapse model by up to 70% as a result of relativistic
effects demonstrates that the dynamics of large regions in the core are considerably altered by
relativistic corrections during rotational core collapse. In many models the global change of
collapse dynamics is also reflected by a change of the collapse type according to the definitions
in Section 7.1. Whether the maximum signal amplitude increases or decreases in relativistic
gravity is closely linked to whether the collapse type changes between a Newtonian and a
relativistic simulation of a particular model. This issue will be addressed in the following
sections.

Model AE2
20 + max AE2

20−max |AE2
20 |max tgw AE2

20 + max − AE2
20−max Type

|AE2
20 |Rmax

|AE2
20 |Nmax

− 1

[cm] [cm] [cm] [ms] [cm] [%]

A1B1G1R 295.7 -548.8 548.8 90.91 844.2 I −68
A1B1G1N 651.8 -1698.3 1698.4 92.76 2350.8 I/II
A1B2G1R 560.2 -1278.3 1278.3 91.97 1838.3 I −46
A1B2G1N 978.7 -2354.6 2354.6 93.52 3333.9 II
A1B3G1R 533.4 -2484.7 2484.7 93.18 3018.2 I

+70
A1B3G1N 190.8 -1463.4 1463.4 94.99 1654.6 II
A1B3G2R 536.6 -1445.3 1445.3 69.47 1981.1 I −31
A1B3G2N 755.1 -2084.4 2084.4 70.29 2839.5 II
A1B3G3R 327.9 -483.9 483.9 48.88 811.2 I −50
A1B3G3N 576.5 -975.9 975.9 49.00 1553.0 I
A1B3G5R 106.2 -36.5 106.2 29.91 142.8 III −19
A1B3G5N 130.5 -38.0 130.5 29.78 168.6 III
A2B4G1R 183.1 -744.6 744.6 98.38 927.8 II

+14
A2B4G1N 166.9 -651.7 651.7 100.21 818.6 II

Table 7.4: Summary of the gravitational wave signal amplitude for relativistic (R) and New-
tonian (N) A1 and A2 models: AE2

20 +/−max is the maximum positive/negative signal amplitude,

|AE2
20 |max is the maximum absolute signal amplitude, tgw is the time of maximum absolute sig-

nal amplitude, AE2
20 + max − AE2

20−max is the difference between maximum positive and negative
signal amplitude, Type is the signal and collapse type as described in Sections 7.1.1–7.1.3,
and |AE2

20 |Rmax/|AE2
20 |Nmax − 1 is the relative increase (+) or decrease (−) of |AE2

20 |Rmax compared to
|AE2

20 |Nmax.
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Model AE2
20 + max AE2

20−max |AE2
20 |max tgw AE2

20 max − AE2
20 min Type

|AE2
20 |Rmax

|AE2
20 |Nmax

− 1

[cm] [cm] [cm] [ms] [cm] [%]

A3B1G1R 689.7 -1325.2 1325.2 91.57 2014.6 I −47
A3B1G1N 863.4 -2509.9 2509.9 93.04 3373.0 II
A3B2G1R 648.0 -2709.5 2709.5 92.67 3357.8 I

+58
A3B2G1N 174.9 -1711.0 1711.0 94.36 1885.7 II
A3B2G2R 647.6 -1972.6 1972.6 69.43 2620.1 I −18
A3B2G2N 639.2 -2407.0 2407.0 70.24 3046.6 II
A3B2G4R

soft 280.9 -527.9 527.9 39.44 808.8 I −32
A3B2G4N

soft 422.2 -781.1 781.1 39.43 1203.3 I
A3B2G4R 246.6 -426.3 426.3 39.49 673.0 I −39
A3B2G4N 386.3 -703.2 703.2 39.45 1089.4 I
A3B3G1R 238.2 -1713.4 1713.4 95.20 1951.2 II

+58
A3B3G1N 153.3 -1087.3 1087.3 96.63 1240.0 II
A3B3G2R 319.8 -1953.6 1953.6 70.93 2273.3 I/II

+38
A3B3G2N 233.0 -1419.5 1419.5 71.65 1652.2 II
A3B3G3R 309.6 -1542.7 1542.7 49.65 1852.5 I/II

+4
A3B3G3N 327.4 -1480.1 1480.1 49.83 1807.9 I/II
A3B3G5R 239.9 -96.9 239.9 30.32 336.8 III −9
A3B3G5N 263.4 -163.7 263.4 30.16 427.2 III
A3B4G2R 291.8 -862.4 862.4 73.61 1154.8 II −4
A3B4G2N 244.6 -893.9 893.9 74.53 1138.9 II
A3B5G4R 481.0 -421.5 481.0 38.97 902.0 III −9
A3B5G4N 527.9 -466.6 527.9 38.84 994.2 III

Table 7.5: Summary of the gravitational wave signal amplitude for relativistic (R) and Newto-
nian (N) A3 models: Quantities like in Table 7.4.
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Model AE2
20 + max AE2

20−max |AE2
20 |max tgw AE2

20 + max − AE2
20−max Type

|AE2
20 |Rmax

|AE2
20 |Nmax

− 1

[cm] [cm] [cm] [ms] [cm] [%]

A4B1G1R 1121.5 -1766.0 1766.0 90.53 2887.6 I −11
A4B1G1N 304.1 -1991.5 1991.5 91.95 2295.9 II
A4B1G2R 867.9 -1713.0 1713.0 68.18 2580.2 I −16
A4B1G2N 399.0 -2033.8 2033.8 68.88 2432.8 II
A4B2G2R 1041.9 -2287.6 2287.6 68.37 3329.7 I/II

+7
A4B2G2N 380.2 -2131.5 2131.5 69.13 2511.5 II
A4B2G3R 734.6 -1900.0 1900.0 48.75 2634.7 I/II −14
A4B2G3N 635.2 -2217.4 2217.4 48.89 2852.9 I/II
A4B4G4R 868.0 -1346.6 1346.6 39.78 2214.4 – −23
A4B4G4N 738.8 -1748.3 1748.3 39.74 2487.4 –
A4B4G5R 625.7 -1566.9 1566.9 31.83 2192.5 – −27
A4B4G5N 879.6 -2149.1 2149.1 31.76 3028.6 –
A4B5G4R 974.7 -2342.9 2342.9 37.19 3317.6 – −21
A4B5G4N 1143.3 -2965.2 2965.2 37.27 4108.2 –
A4B5G5R 1190.6 -3143.5 3143.5 30.43 4334.7 – −42
A4B5G5N 3114.9 -5443.9 5443.9 30.97 8558.4 –

Table 7.6: Summary of the gravitational wave signal amplitude for relativistic (R) and Newto-
nian (N) A4 models: Quantities like in Table 7.4. The extremely rapidly and strongly differ-
entially rotating models A4B4, A4B5, A5B4, and A5B5 develop a toroidal density structure;
thus, we do not assign a specific collapse type to them.
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7.5 Multiple Bounces

In the parameter study of Newtonian rotational core collapse simulations undertaken by Zwerger
[146], models with multiple bounces were observed quite often. Relativistic effects should have
a noticeable impact on these collapse models, particularly if the average central density of such
a model is high. If the density increase is sufficiently large due to relativistic corrections, nuclear
matter density can be exceeded in parts of the core, i.e. the EoS changes qualitatively, and a
collapse which leads to a multiple bounce in a Newtonian simulation might become a regular,
single bounce.

Before investigating the change of the collapse type, we first want to quantify the effects of
relativity on collapse models exhibiting multiple bounce behavior also in GR. Only three of the
models we have simulated (models A2B4G1, A3B3G1, and A3B4G2) maintain an unambiguous
multiple bounce collapse in a relativistic run. Another one, model A3B3G2, is a transition type
model which has both features of a regular and a multiple bounce model. The evolution of
the central density of the models A2B4G1, A3B3G1, and A3B3G2 is plotted in Figure 7.7. In
model A2B4G1 (upper panel), the central density in both the relativistic and the Newtonian
run stays well below nuclear matter density at all evolution times. On the other hand, in the
relativistic simulation of model A3B3G1 (middle panel), nuclear matter density is exceeded in
the central regions of the core during the first bounce, whereas in the Newtonian simulation
the density stays significantly below nuclear matter density in all parts of the core. The case
of model A3B3G2 (lower panel) deserves special attention: While the evolution of the central
density in the Newtonian run is according to a normal multiple bounce, the model almost
behaves like a transition between a multiple bounce collapse and a regular collapse in the
relativistic simulation: There are still pronounced and distinct separate peaks of the central
density; nevertheless, the values of the local minima of the central density rise noticeable with
time and tend towards nuclear matter density. Nevertheless, we add this ambiguous case to
the class of multiple bounce collapse models also in relativistic gravity.

There are some features shared by all three models which can be attributed to the influence of
relativistic gravity: As summarized in Table 7.7, the peak central densities associated with the
individual bounces in the relativistic runs are much higher (by up to an order of magnitude)
compared to the ones in the Newtonian runs. As a consequence of the higher central and
average densities in the relativistic models, the period of time between subsequent bounces
is decreased by a factor of up to 2. This reflects the simple fact that a denser configuration
oscillates faster.

The peak densities and thus the influence of relativistic effects on the collapse dynamics
increase from model A2B4G1 via model A3B3G1 to model A3B3G2. The sequence of plots
in Figure 7.7 clearly shows how relativistic corrections can alter the collapse dynamics for
multiple collapse models with a peak density close to or above nuclear matter density. With
increasing central densities, the influence of relativity can actually affect the dynamics so much
that the collapse type for a particular model becomes different from that of the Newtonian
simulation. The models for which this happens, and the respective collapse types in relativistic
and Newtonian simulations are listed in Table 7.8. One important observation is that only
changes from type II (multiple bounce collapse) in Newtonian gravity to type I (regular collapse)
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Figure 7.7: Evolution of the central density in the relativistic (solid lines) and Newtonian
(dashed lines) simulation of the multiple bounce collapse models A2B4G1 (upper panel),
A3B3G1 (middle panel), and A3B3G2 (lower panel): With increasing peak density and thus
large relativistic corrections, the qualitative differences between the evolutions of the central
density in the relativistic and the Newtonian configurations become more pronounced. Note the
significantly shorter oscillation periods in the relativistic simulations. The relativistic model
A3B3G2 no longer exhibit unambiguous multiple bounce behavior, but rather tends towards a
transition type to a regular bounce. The horizontal dotted lines mark nuclear matter density.
If the central density only slightly exceeds nuclear matter density during a bounce, the sudden
stiffening of the EoS causes the oscillatory behavior of the density as seen in the relativistic run
in the lower panel.
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Model ρc b1 ρc b1 tb1 tb2 ∆tb
ρR

c b1

ρN
c b1

− 1
ρR

c b2

ρN
c b2

− 1
∆tRb
∆tNb

− 1

[1014 g cm−3] [ms] [ms] [ms] [%] [%] [%]

A2B4G1R 0.42 0.22 99.09 136.33 37.24
+268 +319 −25

A2B4G1N 0.11 0.05 99.71 149.58 49.87
A3B3G1R 2.36 1.91 95.26 112.42 17.16

+400 +699 −48
A3B3G1N 0.47 0.24 96.57 129.43 32.86
A3B3G2R 2.56 2.29 70.96 78.57 7.61

+133 +364 −50
A3B3G2N 1.10 0.49 71.77 87.10 15.33
A3B4G2R 0.38 0.19 74.51 95.96 21.45

+144 +204 −16
A3B4G2N 0.16 0.06 73.99 99.51 25.52

Table 7.7: Summary of the parameters of the first two bounces in the relativistic (R) and
Newtonian (N) multiple bounce models A2B4G1, A3B3G1, A3B3G2, and A3B4G2: ρc b1/2

are
the peak central densities of the first/second bounce, tb1/2

are the times of the first/second bounce,

∆tb = tb2 − tb1 is the period of time between the first and second bounce, ρR
c b1/2

/ρN
c b1/2
− 1 is the

relative increase of ρR
c b1/2

compared to ρN
c b1/2

, and ∆tRb /∆t
N
b − 1 is the relative decrease of ∆tRb

compared to ∆tNb .

Model Type ρc b Model Type ρc b

[1014 g cm−3] [1014 g cm−3]

A1B1G1R I 4.57 A3B2G2R I 3.58
A1B1G1N I/II 3.22 A3B2G2N II 2.68
A1B2G1R I 4.17 A3B3G3R I 2.91
A1B2G1N II 2.89 A3B3G3N I/II 2.36
A1B3G1R I 3.63 A4B1G1R I 3.71
A1B3G1N II 2.17 A4B1G1N II 2.47
A1B3G2R I 3.86 A4B1G2R I 3.59
A1B3G2N I/II 2.83 A4B1G2N II 2.53
A3B1G1R I 4.15 A4B2G2R I/II 2.68
A3B1G1N II 3.00 A4B2G2N II 2.14
A3B2G1R I 3.45
A3B2G1N II 2.28

Table 7.8: Suppression of multiple bounces in relativistic simulations (R) compared to Newto-
nian simulations (N): Type is the collapse type (type I: regular collapse; type II: multiple bounce
collapse; type I/II: transition type between regular and multiple bounce collapse) as described in
Sections 7.1.1–7.1.3, and ρc b is the central density at the time of bounce. For all models listed
here, the collapse proceeds qualitatively different for relativistic gravity, and thus the signal type
changes.
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or to the transition type I/II in relativistic gravity seem possible.

According to Table 7.8, the change of type occurring most frequently is from type II in
Newtonian gravity to type I in relativistic gravity. For three of these models we plot the
evolution of the central density in Figure 7.8, and the gravitational wave signal in Figure 7.9.
The reason for the change from a multiple bounce to a regular bounce due to relativistic
corrections in the gravitational potential is obvious: Most of the multiple bounce runs in
Zwerger’s simulations [146] are stopped due to centrifugal forces at densities below ρnuc. Only
a few multiple bounce models collapse through to nuclear matter density, with the maximum
central density being ρc b max = 3.0×1014 g cm−3 in model A3B1G1. Models which reach higher
central densities during the bounce are all of regular collapse type. If we apply the following
criterion for a multiple bounce collapse,

ρc b ≤ ρc b max = 3.0× 1014 g cm−3, (7.7)

to our models with relativistic gravity, we find that this criterion is also fulfilled for all the
models exhibiting multiple bounces listed in Table 7.7. On the other hand, the collapse models
from Table 7.8, which change type from multiple bounce collapse to regular collapse, all have
maximum central densities ρc b > ρc b max. The effectively deeper relativistic gravitational po-
tential drives the cores to higher supranuclear densities, and thus the density criterion for a
multiple bounce collapse is violated, resulting in a regular collapse where the inner core assumes
an equilibrium configuration almost immediately.

The evolution of the central density (plotted in Figure 7.8) clearly shows the influence of
relativity on models, which suffer multiple bounces in Newtonian gravity: In model A4B2G2
(lower panel), relativistic effects are not strong enough to drive the core to sufficiently large
densities to show a regular bounce behavior. Nevertheless, the inner core reaches an equilibrium
configuration with a central density ρc f = 1.6 × 1014 g cm−3 quite quickly, although at sub-
nuclear densities. In models A4B1G2 (middle panel) and A1B3G1 (upper panel), relativistic
corrections are strong enough to enable the formation of a core in equilibrium at supranuclear
central densities. The change of collapse type is also clearly reflected in the pattern of the
gravitational radiation waveform of these models (see Figure 7.9).

The same analysis as above can be applied to models which are of the transition type I/II
between a multiple bounce collapse and a regular bounce in Newtonian gravity, and have
maximum central densities of around 3 × 1014 g cm−3. In relativistic gravity these models
also contract to such high densities that the condition in Equation 7.7 is violated, and the
collapse proceeds as a regular type I collapseg. The evolution of the central density for the
three models from Table 7.8 which show this behavior, are presented in Figure 7.10. However,
as these models show a transition type I/II behavior already in Newtonian gravity, and are not
clear-cut multiple bounce collapse models, the differences of the waveforms, which are plotted
in Figure 7.11, are not as pronounced as those for the models in Figure 7.9. For example,
the waveform patterns and amplitudes for model A3B3G3 (lower panel) are almost identical
independent of the model being evolved in relativistic or Newtonian gravity. On the other hand,

gModel A3B3G3 has a maximum central density ρc b = 2.91×1014 g cm−3 < ρc b max, but it can be regarded
as a regular collapse model forming an equilibrium configuration with a central density around ρnuc. The
criterion for a regular collapse in Equation (7.7) obviously allows for exceptions in case of a high rotation rate
and strongly differential rotation law.
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Figure 7.8: Evolution of the central density ρc in the relativistic (solid lines) and Newtonian
(dashed lines) simulation of the models A1B3G1 (upper panel), A4B1G2 (middle panel), and
A4B2G2 (lower panel): While the runs with Newtonian gravity are clear multiple bounce col-
lapses, the relativistic runs are of regular bounce type (models A1B3G1 and A4B1G2), or of
transition type between a regular bounce and a multiple bounce (model A4B2G2). The horizontal
dotted lines mark nuclear matter density.

155



CHAPTER 7. RESULTS AND DISCUSSION

60.0 70.0 80.0 90.0 100.0 110.0

t [ms]

-2000.0

-1000.0

0.0

1000.0

A
E

2

20
 [

cm
]

60.0 70.0 80.0 90.0

t [ms]

-2000.0

-1000.0

0.0

1000.0

A
E

2

20
 [

cm
]

80.0 90.0 100.0 110.0 120.0 130.0

t [ms]

-3000.0

-2000.0

-1000.0

0.0

1000.0
A

E
2

20
 [

cm
]

Figure 7.9: Evolution of the gravitational wave signal amplitude AE2
20 in the relativistic (solid

lines) and Newtonian (dashed lines) simulation of the models A1B3G1 (upper panel), A4B1G2
(middle panel), and A4B2G2 (lower panel): The qualitative differences in the waveforms ob-
tained from simulations with relativistic gravity and Newtonian gravity are obvious.
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in model A1B3G2 the typical wave amplitude peaks associated to the distinct multiple bounces
can still be seen for the first two bounces in the waveform of the Newtonian run, whereas the
signal of the relativistic simulation shows the ring-down characteristic for a regular bounce.
The most striking difference between the waveforms in model A1B1G1 (upper panel) is the
much lower average amplitude in the relativistic run, which is a consequence of the suppressed
coherent motions of the inner core in a regular bounce (see Section 7.6).

The implications of relativistic effects on multiple bounce collapse models can be summa-
rized as follows: Multiple bounce collapse models, which are rather common in Newtonian
gravity for low or moderate rotation rates and rotation laws not too far from uniformity, are
strongly suppressed in relativistic simulations. In most collapse models, the core contracts
to such high central densities, that it cannot be stopped by centrifugal forces and re-expand
subsequently. It rather immediately forms a stable configuration which is mainly supported by
the stiff supranuclear EoS. This suppression of multiple bounces results in a very strong reduc-
tion of the region of parameter space where multiple bounce models are possible, as shown in
Figure 7.12. As in the case of Newtonian gravity, only for values of the adiabatic index in the
range γ = {1.320, 1.325}, which are very close to the initial γ = 4/3, multiple bounces occur
at all. But whereas the values for the rotation parameter A (differentiality of the rotation
law) and the rotation rate β (relative amount of rotational energy) are rather wide for multiple
bounce models in Newtonian gravity, relativistic effects narrow the range of possible values for
A and β drastically, with only rapidly rotating models with a moderate differential rotation law
remaining. (It is probable that the initial models A2B5 and A3B5 would also exhibit multiple
bounce behavior in a relativistic simulation given a γ1 close to 4/3, but as such high rotation
rates are astrophysically hard to motivate we have not investigated these models.)

The effects of relativistic gravity in cases of rapid and highly differential rotation, where the
core collapse is also stopped by centrifugal forces and re-expands but does not bounce for a
second time, are described in Section 7.7.
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Figure 7.10: Evolution of the central density ρc in the relativistic (solid lines) and Newtonian
(dashed lines) simulation of the models A1B1G1 (upper panel), A1B3G2 (middle panel), and
A3B3G3 (lower panel): While the runs with Newtonian gravity are of transition type between
regular collapse and multiple bounce collapse, the relativistic runs are regular collapses with
ρc f > ρnuc. The horizontal dotted lines mark nuclear matter density.
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Figure 7.11: Evolution of the gravitational wave signal amplitude AE2
20 in the relativistic (solid

lines) and Newtonian (dashed lines) simulation of the models A1B1G1 (upper panel), A1B3G2
(middle panel), and A3B3G3 (lower panel): While the waveforms obtained from simulations
with relativistic gravity show a pronounced ring-down feature, the waveforms from Newtonian
simulations exhibit a form which is attributable to the coherent bounce of a transition type I/II
collapse.
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Figure 7.12: Parameter space spanned by the rotation parameter A and the rotation rate β
for multiple bounce collapse models in relativistic (italic font) and Newtonian (normal font)
simulations: The combinations of A and β for which multiple bounce collapses occur are marked
by a circle. If the circle is filled, there is a multiple bounce collapse model in relativistic gravity
for the corresponding parameter combination. The other free parameter γ1 is specified by the
name of the models.
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7.6 Compactness of the Proto-Neutron Star Core

We now discuss the effects of relativity for models, where the collapse type and thus the signal
type are the same for the relativistic and Newtonian simulation. These models are presented in
Table 7.9. Although all relativistic simulations reach higher central densitiesh and on average
larger infall and rotation velocities, only the three models A2B4G1, A3B3G1, and A3B3G2 have
higher maximum (and average) signal amplitudes than their Newtonian counterparts. This fact
is surprising, as one would naively expect larger gravitational signals for the denser and more
rapidly moving relativistic models.

However, by closely looking at any of the (analytically identical) formulations (C.9, C.10,
C.11) used to calculate the gravitational wave signal, it becomes clear that the signal amplitude
is determined by the bulk motion of the core rather than by the motion of just the innermost
mass shells. It is therefore conceivable that a matter configuration with very dense mass shells
in the interior, gives rise to a smaller gravitational wave signal compared to a configuration,
which has a lower central density, but is denser and more rapidly moving in its outer parts. The
importance of the bulk motion is emphasized by the weight factor r2 in the volume integrand

ρr2

(
3

2
cos2 θ − 1

2

)
r2 sin θdrdθ = ρr2

(
3

2
cos2 θ − 1

2

)
dV (7.8)

of the standard quadrupole formula (C.9), which allows the matter distribution at large r to
contribute significantly to the signal amplitude. This may also explain the behavior of the
models in Table 7.9, whose maximum signal amplitudes are smaller in the relativistic case.
These models may be more compact near the center but less dense farther out. We will test
this “compactness conjecture” in the following.

We first assume that the regions outside the inner core, through which the shock wave
propagates, play no important role for the gravitational wave signal, as there both the density
and the motions are too small to contribute significantly to the quadrupole moment. Hence,
any deviations in density or velocity profiles between the relativistic and Newtonian simulation
of a particular model at large radii (r >∼ rinner core) will not influence the gravitational wave
signal. However, at small radii (r <∼ rinner core), any differences between matter configurations in
relativistic and Newtonian simulations will be important. In Figure 7.13, the equatorial density
profiles in the inner core of model A3B2G4soft

i are plotted for a relativistic and a Newtonian
simulation at the time of bounce and after ring-down. As expected, and as confirmed by
Table 7.2, a relativistic enhancement of the post-bounce central density of 25% can be observed.

On the other hand, at radii r >∼ 6 km, the density in the Newtonian models exceeds that
of the relativistic one. This first occurs at the time of bounce in the entire post-shock region
(upper panel in Figure 7.13), and later after ring-down up to the edge of the inner core (lower
panel). This “density crossing” takes place at different radii in the core for different angles θ,
but otherwise is a universal feature which can be observed in the inner core at all times t > tb
and for all angular directions. The constancy of this effect over time can be seen in Figure 7.14,

hModel A4B4G5 is an exception to this general rule.
iWe have chosen this model, as relativistic effects are very pronounced due to its soft EoS and high central

density.
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Model Type ρc b ρc f |AE2
20 |max |AE2 R

20 |max
<
> |AE2 N

20 |max

[1014 g cm−3] [1014 g cm−3] [cm]

A1B3G3R

I
4.09 3.1 483.9

<
A1B3G3N 3.38 2.5 975.9
A1B3G5R

III
4.49 3.5 106.2

<
A1B3G5N 4.26 3.0 130.5
A2B4G1R

II
0.42 — 744.6

>
A2B4G1N 0.11 — 651.7
A3B2G4R

soft I
5.64 3.4 527.9

<
A3B2G4N

soft 4.45 2.7 781.1
A3B2G4R

I
3.90 2.9 426.3

<
A3B2G4N 3.41 2.5 703.2
A3B3G1R

II
2.36 — 1713.4

>
A3B3G1N 0.47 — 1087.3
A3B3G2R

II
2.56 — 1953.6

>
A3B3G2N 1.10 — 1419.5
A3B3G5R

III
3.64 2.8 239.9

<
A3B3G5N 3.44 2.3 263.4
A3B4G2R

II
0.38 — 862.4

<
A3B4G2N 0.16 — 893.9
A3B5G4R

III
0.18 — 481.0

<
A3B5G4N 0.15 — 527.9
A4B2G3R

I/II
2.42 — 1900.0

<
A4B2G3N 2.15 — 2217.4
A4B4G4R

II
0.25 — 1346.6

<
A4B4G4N 0.25 — 1748.3
A4B4G5R

II
0.17 — 1566.9

<
A4B4G5N 0.42 — 2149.1
A4B5G4R

II
0.05 — 2342.9

<
A4B5G4N 0.05 — 2965.2
A4B5G5R

II
0.09 — 3143.5

<
A4B5G5N 0.07 — 5443.9

Table 7.9: Summary of the density at bounce and the gravitational wave signal amplitude for
models of the same collapse type in both relativistic (R) and Newtonian (N) simulations: Type
specifies the signal and collapse type as described in Sections 7.1.1–7.1.3, ρc b is the central
density at bounce, ρc f is the central density at the time when the simulation was stopped,
|AE2

20 |max is the maximum signal amplitude, and |AE2 R
20 |max

<
> |AE2 N

20 |max indicates whether the
relativistic or Newtonian maximum absolute signal amplitude is higher. Note that only for
models A2B4G1, A3B3G1, and A3B3G2 the maximum absolute signal amplitude is larger in
the relativistic case.
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Figure 7.13: Radial density profiles ρe at the equator for model A3B2G4soft: Both during the
bounce at t = 39.25 ms (upper panel) and after the core has rung down at t = 55.0 ms (lower
panel), the density of the relativistic simulation (solid line) is higher than the density of the
Newtonian simulation (dashed line) in the central region. At r ≈ 6.5 km (upper panel) and
r ≈ 6.2 km (lower panel) the density of the relativistic model drops below that of the Newtonian
one; the radius of density crossing is indicated by the vertical dotted lines. For large radii the
density profiles coincide closely. The position of the shock front is clearly visible in the lower
panel and is located at r ≈ 320 km.
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Figure 7.14: Evolution of the density at different radii in the relativistic (solid lines) and New-
tonian (dashed lines) simulation of model A3B2G4soft: In the upper panel the central density is
plotted; in the middle and lower panel the equatorial density is shown at a radius r10 = 6.2 km
and r20 = 12.9 km, respectively. With increasing radius, the density in the Newtonian model
exceeds the one in the relativistic model, which indicates that the core in the relativistic model
is more compact in the inner regions, and less dense in the outer parts. The vertical dotted line
indicates the time of maximum central density tb, the horizontal dotted lines specify nuclear
matter density ρnuc. Note the different vertical scale of the plots.
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where the evolution of the equatorial density is plotted at different radial locations in the inner
core. After the bounce, the central density of the relativistic configuration is always higher
than the corresponding Newtonian one (upper panel). However, close to the radius of density
crossing, the density difference between both simulations is minute (middle panel). At an even
larger radius, but still inside the inner core, the relativistic configuration exhibits a relative
density reduction ρN/ρR − 1 of up to −50%.

Repeating the above analysis with the multiple bounce model A2B4G1, whose relativistic
simulation yields a larger signal amplitude than the Newtonian one, at first sight shows a situa-
tion which is similar to the one of model A3B2G4soft: The central density at the time of bounce
is almost 4 times higher in the relativistic run compared to the Newtonian run. The density
profiles at the equator shortly after maximum density, which are plotted in Figure 7.15, show
the typical density crossing. However, in this case the density crossing occurs at a much larger
radius (r ≈ 40 km). Inside this radius, the cores of both the relativistic and the Newtonian sim-
ulation oscillate coherently. The density of the relativistic run is significantly higher throughout
the evolution (see Figure 7.16). Furthermore, compared to model A3B2G4soft, where the accel-
erations of the central parts of the inner core are of comparable strength irrespective of whether
the core is evolved in relativistic or Newtonian gravity, in model A2B4G1 the center of the inner
core is subject to much higher accelerations in the relativistic run, which is reflected by the
shorter width of the density peaks in time, and the shorter intervals between two consecutive
bounces.

The impact of the relativistic density reduction in the outer regions of the inner core on the
gravitational wave signal can be estimated from Figure 7.17, where the equatorial density profile,
weighted with a factor r2 as in the integrand of the quadrupole formula (7.8), is plotted. In the
multiple bounce model A2B4G1, the inner core shows a large relativistic density enhancement
in the inner part, and a small density reduction in the outer part; thus the dominance of the
Newtonian profile of ρr2 in the outer region is more than compensated for by the dominance
of the relativistic profile in the central region (upper panel). As the central parts of the core
are being accelerated strongest during the bounce, it is the inner region which will contribute
most to the gravitational wave signal. Therefore the signal amplitude is larger in the relativistic
simulation.

The situation is quite different in the regular collapse model A3B2G4soft: Here the dominance
of the relativistic weighted density profile is much weaker in the central regions of the core for
r <∼ 6 km. Contrary to the small relativistic density enhancement in the central parts, the
dominance of the Newtonian weighted density profile in the outer parts is overwhelming (lower
panel). Thus even if the mass shells at r >∼ 6 km are not accelerated so much, the higher
weighted density there in the Newtonian configuration will still cause a gravitational wave
signal contribution which is much larger than the one in the relativistic case. Therefore, it can
be expected that the total signal amplitude is larger in the Newtonian configuration.

To prove the above predictions for the gravitational wave signal amplitudes for the two test
models, we have artificially split the quadrupole moment into two parts: For part one, we
evaluate the integral in the quadrupole formula (7.8) between the center r = 0 and r = rsplit,
and for part two between r = rsplit and the outer boundary of the computational domain. We
choose the radius rsplit to be the point of density crossing at the equator during bounce. As
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Figure 7.15: Radial density profiles ρe at the equator for model A2B4G1: During the bounce
at t = 99.25 ms, the density of the relativistic simulation (solid line) is higher than the density
of the Newtonian simulation (dashed line) in the central region. At r ≈ 40.0 km the density
crossing occurs (which is indicated by the vertical dotted line), i.e. the density of the Newtonian
model higher than the one of the relativistic model in the outer regions of the neutron star. For
large radii the density profiles coincide. Compared to the regular bounce model of Figure 7.13,
the densities of the relativistic and Newtonian simulations cross at a much larger radius in
this multiple bounce model, and the inner region, where the relativistic model is more dense, is
significantly more extended.
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Figure 7.16: Evolution of the density at different radii in the relativistic (solid lines) and New-
tonian (dashed lines) simulation of model A2B4G1: In the upper panel the central density is
plotted; in the middle and lower panel the equatorial density is shown at a radius r10 = 6.2 km
and r30 = 21.4 km, respectively. With increasing radius, the density in the Newtonian model
gets closer to the one in the relativistic model, which indicates that the core in the relativistic
model is more compact in the inner regions, and less dense in the outer parts. The vertical
dotted line indicates the time of maximum central density tb, the horizontal dotted lines specify
nuclear matter density ρnuc. Note the different vertical scale of the plots.
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Figure 7.17: Radial density profile ρe at the equator for models A2B4G1 at t = 99.25 ms
(upper panel) and model A3B2G4soft at t = 39.55 ms (lower panel), weighted with a factor
r2: The integrand in the equation for the standard quadrupole formula (C.9) is proportional
to ρr4 sin θdrdθ = ρr2dV (see Appendix C.2). Therefore, the outer parts of the inner core,
where the density of the Newtonian model is higher than the density of the relativistic model,
contributes significantly to the quadrupole moment and thus to the signal. The radius of density
crossing is indicated by the vertical dotted lines.
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a consequence of this split, we can separate the gravitational wave signal into a contribution
from the central regions of the inner core, and a contribution from the rest of the core. The
total signal amplitude is simply the sum of both contributions.

The result of this split applied to the models A3B2G4soft and A2B4G1 can be seen in Fig-
ure 7.18 and Figure 7.19, respectively. As already suggested, in the regular bounce model
(Figure 7.18) the outer parts of the inner core contribute over-proportionally to the total signal
amplitude. This contribution has a much larger signal in the Newtonian case (lower panel), and
the pronounced first negative peak of the Newtonian run is entirely missing in the relativistic
run. Such a feature in the signal can be attributed to a coherent acceleration of the core, which
is obviously suppressed in the outer parts of the core in the relativistic configuration. The
signals in the contribution of the central region are of similar amplitude in both the relativistic
and the Newtonian run with a moderate dominance of the signal in the relativistic run (mid-
dle panel). Consequently, the combined total signal amplitude of the Newtonian simulation is
larger than the one of the relativistic simulation (upper panel).

In the Newtonian simulation of model A3B2G4soft, the negative first peaks in the signal of
both contributions add up due to the coherent motion of the central and outer parts of the inner
core. Contrary to that, in the multiple bounce model A2B4G1 the signal contribution from the
inner part (middle panel) is entirely negative, and the one from the outer part (lower panel)
is entirely positive in both the relativistic and the Newtonian simulation, as the inner part
(r < rsplit) encompasses almost all of the coherently moving inner core. The total (negative)
signal amplitude is constituted by what is left over when the (positive) signal contribution
from the outer part is added to the (negative) contribution from the inner part. In both
parts of the inner core the signal is higher in relativistic gravity due to the higher densities
and accelerations involved. After adding up the two contributions (upper panel), the wave
amplitude of the relativistic simulation is higher in all the peaks of the waveform associated to
the bounces of the core.

The above analysis also helps to explain the weaker maximum and average gravitational wave
signal amplitudes in model A1B1G1 when evolved in relativistic gravity (see Figure 7.20). In
general relativity, the central parts of the inner core collapse to almost 2.5ρnuc, and after a
single bounce rapidly settle down to an equilibrium state with constant density (middle panel).
Due to the compactness of the inner core, the density is rather small in the outer parts of the
core (lower panel). The motion of the fluid in the outer regions of the core is not coherent with
the motion of the fluid in the inner regions. The parts of the core at radii r >∼ r20 = 13.0 km
are already in the region where the shock formsj. If the collapse proceeds in a Newtonian
gravitational potential, the inner core is much less compact and has a lower central density,
but a much higher density at r20 = 13.0 km. The entire inner core oscillates coherently with
large amplitude motions, which results in a huge time variation of the quadrupole moment and
thus a large gravitational wave signal. Although the accelerations during the bounces are less
violent than in the single bounce of the relativistic simulation, the corresponding gravitational
wave signal is significantly larger, the maximum signal amplitude being three times higher than
the corresponding one in relativistic gravity.

Summarizing this discussion, we want to point out that a density crossing occurs in all the

jThe influence of the shock is visible as a negative spike in the density plot in the lower panel of Figure 7.20.
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models we have investigated. Such a behavior is not only confined to models of the same qual-
itative collapse type in the relativistic and Newtonian run of a particular model. The density
crossing is a manifestation of the increased compactness of the inner core due to relativistic
effects. The compactness in the central regions, which is closely linked with a reduced density
in the outer regions of the inner core, is responsible for the smaller total signal amplitudes
observed in most of the models listed in Table 7.9. The cases, where the signal amplitude of
the relativistic simulation is larger than the Newtonian one, are characterized by a multiple
bounce collapse, where the maximum central density is close to or above nuclear matter density
in the relativistic configuration, and thus much higher than the maximum central density in
the Newtonian configuration. Plots of the signal amplitudes for all these models are given in
the gravitational wave signal catalogue in Appendix D.
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Figure 7.18: Contribution of the inner and outer part of the computational domain to the
gravitational wave signal amplitude in the relativistic (solid lines) and Newtonian (dashed lines)
simulation of model A3B2G4soft: In the upper panel the total quadrupole signal amplitude AE2

20

is plotted. The middle and the lower panel show the contributions of the mass shells lying inside
and outside a sphere of radius r = 6.5 km. Although the signal amplitude from the inner region
is large in the relativistic case, the Newtonian signal amplitude is larger both in the outer parts
of the core, and for the entire core. The vertical dotted line indicates the time of maximum
central density tb.
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Figure 7.19: Contribution of the inner and outer part of the computational domain to the
gravitational wave signal amplitude in the relativistic (solid lines) and Newtonian (dashed lines)
simulation of model A2B4G1: In the upper panel the total quadrupole signal amplitude AE2

20 is
plotted. The middle and the lower panel show the contributions of the mass shells lying inside
and outside a sphere of radius r = 40.2 km. Contrary to model A3B2G4soft (Figure 7.18), the
larger signal amplitude from the inner core in the relativistic case more than compensates for
the larger Newtonian signal amplitude from the outer parts of the core; thus the total signal
amplitude is larger in the relativistic simulation. The vertical dotted lines indicate the time of
maximum central density tb.

172



CHAPTER 7. RESULTS AND DISCUSSION

85.0 90.0 95.0 100.0 105.0

t [ms]

0.0

0.5

1.0

ρ r 20
 e
 [

10
14

 g
 c

m
-3

]

0.0

1.0

2.0

3.0

4.0

ρ c [
10

14
 g

 c
m

-3
]

-2000.0

-1000.0

0.0

1000.0
A

E
2

20
 [

cm
]

Figure 7.20: Effects of a coherent motion of the inner core on the gravitational wave signal
in the relativistic (solid lines) and Newtonian (dashed lines) simulation of model A1B1G1: In
the upper panel the evolution of the gravitational wave amplitude AE2

20 is plotted. The middle
and lower panel show the evolution of the central density ρc and the equatorial density ρr20 e

evaluated at a radius r20 = 13.0 km. Contrary to the simulation with relativistic gravity, the
inner core oscillates coherently with a large amplitude in Newtonian gravity, which causes a
much larger gravitational wave signal. The vertical dotted lines indicate the time of bounce,
and the horizontal dotted line in the density plot marks nuclear matter density.
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7.7 Rapidly and Highly Differentially Rotating Models

If initial models which have high rotational energy (i.e. large β), and whose rotation law is very
differential (i.e. small A), collapse on a short timescale due to a low adiabatic exponent γ1, the
inner region of the core spins up considerably due to angular momentum conservation. The
increasing centrifugal forces usually stop the collapse before nuclear matter density is reached
(or at low supranuclear densities), as in ordinary type II multiple bounce models. However,
contrary to these models, which have been discussed in Section 7.5, the central density exhibits
only a single bounce. After this bounce, the core settles down to a new equilibrium state, often
at very low subnuclear central density. However, an investigation of the time evolution of the
maximum density in the core ρmax reveals an interesting phenomenon which characterizes these
collapse models: The maximum density does not coincide with the central density anymore
but instead may exceed the latter by up to 2 orders of magnitude, as shown for the extremely
rapidly and highly differentially rotating model A4B5G5 in Figure 7.21k.
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Figure 7.21: Evolution of the central density (solid line) and the maximum density (dashed line)
for the extremely rapidly and highly differentially rotating model A4B5G5: The central density
ρc is much lower than the (off-center) maximum density ρmax at all times (after the bounce by
almost 2 orders of magnitude). The horizontal dotted line marks nuclear matter density, which
is almost reached but never exceeded by ρmax.

This means that the maximum density is reached off-center, and (due to symmetry con-
ditions) the shape of the density distribution in the core is torus-like. Some initial mod-
els (e.g. models A4B4 and A4B5) already have a torus-like structure. When these models
collapse, the torus shape of their density distribution, which can be measured by the ratio
atorus = ρmax/ρc > 1, will be significantly enhanced during the evolution. Other rapidly and

kSimilar to the behavior of the central density, the maximum density also exhibits one bounce and then
levels off to a constant value after some ring-down phase. In other models, several subsequent oscillation peaks
with decreasing amplitude can be observed in the maximum density, like for the central density of a transition
type I/II model.
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highly differentially rotating initial models like A3B5, A4B1 and A4B2 have a regular oblate
structure with ρmax/ρc = 1. For particular values of the parameter γ1, they will develop a
toroidal density shape during the infall phase. The density profiles along the equator and the
pole for such a model (A4B2G3) are plotted in Figure 7.22. As the core contracts (upper panel),
the equatorial density profile starts to become non-monotonous, while the polar profile remains
monotonous. At the time of bounce (middle panel), atorus is already significantly larger than
1, and at late evolution times (lower panel) the maximum density is about twice the central
density. If the model initially rotates extremely rapidly and highly differentially, the torus struc-
ture can be very pronounced, and atorus can assume high values during the collapse. In model
A4B5G5 (see Figure 7.23) most of the core’s mass is concentrated off-center, where the density
is almost 2 orders of magnitude higher than the central density during bounce (middle panel)
and after bounce (lower panel), as the already initially toroidal shape gets strongly enhanced
during the infall phase (upper panel). The influence of the rotation rate and profile on the
development of a torus-like density structure is summarized in the sequence of two-dimensional
density plots in Figure 7.24.

For a rapidly and highly differentially rotating core it can be misleading to infer the impor-
tance of relativistic effects from the central density alone. For example, in model A4B5G5 the
central density is always less than 5% of nuclear matter density, whereas the maximum den-
sity is close to nuclear matter density, which results in non-negligible relativistic corrections.
The effects of relativistic gravity on the density distribution of the core are demonstrated in
Figure 7.25. About 3 ms before bounce, the central parts of the core have a significantly
higher average density in relativistic gravity (upper panel). Again, as the relativistic density
configuration is more compact, the Newtonian model has a higher density in the outer regions
of the core. After bounce and the subsequent ring-down phase, the maximum density in the
simulation with relativistic gravity actually falls below the maximum density in the Newtonian
simulation. The relativistic gravitational potential concentrates more mass in the central parts
of the core, and thereby depletes the torus of mass, which results in a lower average atorus.
The Newtonian configuration possesses a lower central density, but a higher maximum density.
This effect only occurs in rapidly and highly differentially rotating models. In all other models
the maximum density (which in these cases is identical with the central density) is higher in
relativistic gravity at all times (see Section 7.3). However, the effect that more mass is concen-
trated near the center by the deeper relativistic gravitational potential, can also be observed in
many models with less rapid and less differential rotation. An example is the regular collapse
model A3B3G5, whose core develops a torus-like density structure in Newtonian gravity, but
has a regular spheroidal oblate density structure in relativistic gravity (see Figure 7.26).

The implications of these effects of relativistic gravity on the gravitational wave signal are
obvious. Above all, both relativistic and Newtonian simulations of rapidly and highly differen-
tially rotating models will have signals with a very high amplitude, as the quadrupole moment
of a toroidal density structure is large compared to an oblate density shape. This is confirmed
by the high maximum amplitudes of such models as listed in Tables 7.4–7.6. However, due
to the lower average and maximum density in the torus, the relativistic models are character-
ized by gravitational wave signal amplitudes that are lower than the corresponding Newtonian
ones. As an example, the signal amplitude for model A4B5G5 is plotted in the upper panel
Figure 7.27. In Newtonian gravity the torus has a higher bounce density and rings down to its
new equilibrium state with large amplitude oscillations after the bounce (see the evolution plot
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Figure 7.22: Evolution of the equatorial (solid lines) and polar (dashed lines) density profiles for
the rapidly and highly differentially rotating model A4B2G3: The equatorial and polar density
profiles ρe and ρp are plotted before bounce at t = 40.0 ms (upper panel), during bounce at
t = 48.75 ms (middle panel), and after the ring-down of the inner core at t = 80.0 ms (lower
panel). The initial model already has a toroidal configuration with an off-center maximum
density ρe max > ρc; this torus-like shape becomes more pronounced during the collapse. The
horizontal dotted line marks nuclear matter density.
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Figure 7.23: Evolution of the equatorial (solid lines) and polar (dashed lines) density profiles
for the extremely rapidly and highly differentially rotating model A4B5G5: The equatorial and
polar density profiles ρe and ρp are plotted before bounce at t = 20.0 ms (upper panel), during
bounce at t = 30.75 ms (middle panel), and after the ring-down of the inner core at t = 60.0 ms
(lower panel). Already the initial model has a strongly toroidal configuration with an off-center
maximum density ρe max � ρc; this torus-like shape becomes very pronounced during the collapse.
The density in all parts of the core is below nuclear matter density throughout the evolution.
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Figure 7.24: Development of a toroidal density structure with increasing rate and differentiality
of rotation: Model A1B3G5 (upper left panel) rotates slowly and retains an almost spherical
structure; the more rapidly rotating models A3B2G4soft (upper right panel) and A4B2G3N3
(lower left panel) develop a visible toroidal density distribution; this influence of centrifugal
forces is enhanced by the slower contraction of the core due to the slightly higher γ1. Model
A4B5G5 (lower right panel) rotates extremely rapidly and differentially and exhibits a remark-
able toroidal density structure with a clearly off-center maximum density. The color coding of
the plots shows log(ρ [1014 g cm−3]), evaluated after the ring-down phase. Note that the radius
of the plotted region and the density color coding have different scales in the various plots.
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Figure 7.25: Evolution of the equatorial density profiles in the relativistic (solid lines) and
Newtonian (dashed lines) simulation of the extremely rapidly and highly differentially rotating
model A4B5G5: The equatorial density profile ρe is plotted shortly before bounce at t = 28.0 ms
(upper panel), and after the ring-down of the inner core at t = 60.0 ms (lower panel). At both
times (and during the entire collapse) the central density is significantly higher in the simulation
with relativistic gravity. At larger radii, the Newtonian configuration has a higher density, and
even has a higher maximum density at late times (see lower panel). In both the relativistic and
Newtonian simulation the density distribution has the shape of a torus.
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Figure 7.26: Equatorial density profiles in the relativistic (solid lines) and Newtonian (dashed
lines) simulation of the moderately rapidly rotating model A3B3G5: While for relativistic gravity
the core has a regular oblate density structure, the less deep Newtonian gravitational potential
leads to the development of a toroidal density configuration. The horizontal dotted line marks
nuclear matter density.

of the maximum density in the lower panel of Figure 7.27). Thus, the wave signal has a higher
(negative) first peak which is followed by the typical ring-down signal. The relativistic config-
uration has a lower maximum density in the torus and does not oscillate strongly after bounce,
which results in a smaller wave signal with hardly any trace of a ring-down. The behavior of the
mass shells in the very center is completely irrelevant to the wave signal, as the density there
is extremely low compared to the maximum density (middle panel). As demonstrated here
for model A4B5G5, in rapidly and highly differentially rotating core collapse relativistic effects
again lead to important differences both in the structure of the core and in the gravitational
wave signal.
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Figure 7.27: Evolution of the gravitational wave signal amplitude and the maximum density in
the relativistic (solid lines) and Newtonian (dashed lines) simulation of the extremely rapidly
and highly differentially rotating model A4B5G5: The signal amplitude AE2

20 (upper panel) is
larger in the Newtonian case, although the central densities (middle panel) are comparable
throughout the evolution. However, the (off-center) maximum density ρmax (lower panel) of
the relativistic and Newtonian model is more than 20 times higher than the central density
during bounce. Except at the beginning of the infall phase, and right after the first bounce, the
maximum density ρmax is lower in the relativistic simulation than the one in the Newtonian
simulation, leading to a larger wave signal. The relativistic density enhancement can also be
recognized in Figure 7.25. At late evolution times, the Newtonian density is higher by a factor
5. Note that ρmax reaches supranuclear densities in the Newtonian case which leads to multiple
bounces not present in the relativistic case. The horizontal line marks nuclear matter density.
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7.8 Gravitational Wave Energy Emission and Spectra

While the core collapse dynamics in the center of a supernova is not directly observable, gravi-
tational waves, if detected by e.g. a gravitational wave interferometer, provide an observational
means to obtain information about the collapse type. As the gravitational wave signal strengths
of even galactic supernova events just fall into the sensitivity range of the detectors currently
under construction, and as the sensitivity curve is strongly frequency dependent, it is essential
to have detailed knowledge about the expected signal frequencies from rotational core collapse
simulations. Even if the signal frequencies are in the frequency range of the detector, powerful
filtering techniques have be to applied in the data analysis of the detector output to obtain
a reasonable signal-to-noise ratio [99]. Thus, another important goal of numerical simulations
of supernova core collapse is to provide observers with templates of the signal waveform from
typical collapse events. The filters employed in data analysis strongly depend on the frequency
spectrum of these wave templates. Contrary to gravitational waves emitted e.g. by the inspiral
of binary black holes or neutron stars, signals from a core collapse supernova are not as “clean”,
i.e. monochromatic in frequency. These signals depend on a broad variety of parameters like
the rotation rate and profile of the initial model, the EoS during the collapse, and as seen in the
previous sections, on general relativistic corrections. Whereas relativistic effects may not play a
crucial role in the supernova explosion mechanism, they nevertheless influence the gravitational
radiation waveform.

A detailed discussion of the spectra of gravitational waves emitted during rotational core
collapse, and their dependence on the collapse type and dynamics can be found in the work
of Zwerger [146]. We briefly recapitulate the important quantities, and otherwise refer to this
work. The differential energy radiated away by gravitational waves during the collapse is given
by

Erad

dt
=

1

32π

∣∣∣∣dAE2
20

dt

∣∣∣∣2 , (7.9)

and the total radiated energy in a collapse event is

Erad tot =
1

32π

∫ ∞
−∞

∣∣∣∣dAE2
20

dt

∣∣∣∣2 dt. (7.10)

By replacing the gravitational wave amplitude in the time domain AE2
20 (t) by its Fourier trans-

form in the frequency domain ÂE2
20 (ν), the total radiated energy Erad tot can be expressed as a

frequency integral (here limited to positive frequencies):

Erad tot =
1

16π

∫ ∞
0

ν2
∣∣∣ÂE2

20

∣∣∣2 dν. (7.11)

The spectral energy distribution, i.e. the differential energy in the frequency domain, is then

dErad

dν
=

1

16π
ν2
∣∣∣ÂE2

20

∣∣∣2 . (7.12)

The squared absolute value of the Fourier transform of the signal amplitude is called power
spectrum:

P =
∣∣∣ÂE2

20

∣∣∣2 . (7.13)
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A good measure for the dominant frequency in the wave signal is the frequency νmax, where the
energy spectrum dErad/dν has its maximuml.

In Table 7.10 we summarize the results for the radiated energy and the predominant fre-
quency in a comparison between the relativistic and the Newtonian simulations for all 26
collapse models. As discussed in Section 7.3 the average and maximum central densities are
higher in relativistic gravity compared to Newtonian simulations. This increases the oscilla-
tions frequencies of the inner core during the ring-down phase in a regular collapse situation,
and also decreases the time interval between consecutive bounces in multiple bounce models.
Therefore, the most obvious effect of general relativity is a significant shift of the gravitational
wave frequency spectrum to higher frequencies. Only four models have a higher frequency
in Newtonian gravity, and these exceptions can be attributed to a broad global maximum of
the energy spectrum with many local peaks; an approximation of the global maximum by a
smooth function again yields higher average frequencies for relativistic runs. In the other mod-
els, the frequency shift can be as large as a factor 3. These are obviously the models where
the deeper relativistic gravitational potential changes a multiple bounce collapse to a regular
collapse. The energy spectrum for such a model is plotted in the lower panel of Figure 7.28m.
While the shapes of the energy spectra are similar for both the relativistic and the Newtonian
simulation in cases where the collapse type does not change due to relativistic effects (upper
and middle panel), model A3B3G1 clearly has an energy spectrum associated to a multiple
bounce in Newtonian gravity, and one typical for a regular collapse in relativistic gravity.

By integrating the spectral energy distribution (7.12) over all frequencies, one can calculate
the total energy radiated by the system in form of gravitational waves, as given in Equa-
tion (7.11). In a numerical code, however, this method is unfavorable, as high frequency noise
contributes significantly to Erad tot. It is usually not possible to unambiguously define a cutoff
frequency, as Erad does not decline sharply at some specific frequency. Applying a filter (like
the Welch filter used for the plots in Figure 7.28) is no remedy either, as it attenuates the
energy spectrum and therefore (in some cases grossly) underestimates Erad tot. Owing to these
problems, in Table 7.10 we use formulation (7.10) to calculate the total radiated energy. Due
to the second time derivative in the integrand, and the resulting sensitivity to numerical resolu-
tion, however, this method can also only be regarded as an estimate for the actual gravitational
wave energy emitted during the core collapse. We therefore refrain from a detailed discussion
on this quantity and just comment briefly on the influences on relativistic dynamics on Erad tot:
In cases, where a multiple bounce collapse exhibits the same behavior in general relativity, the
associated gravitational wave energy emission increases due to higher average frequencies and
signal amplitudes in the waveform. If a Newtonian multiple bounce model collapses regularly in
relativistic gravity, Erad tot also increases in most cases. However, in models which are of regular
type I in both Newtonian and relativistic simulations, the on average lower signal amplitudes
due to relativistic effects result in a decreased radiated energy, in spite of the higher frequencies
of the gravitational waves in relativity. For a more elaborate discussion on the dependence of

lNote that the energy spectrum may exhibit two maxima of comparable height in distinct frequency regions.
m The spectra in this figure have been obtained by performing a fast-Fourier transformation (FFT) on the

original gravitational signal which has been resampled to 215 = 32768 equidistant points. For smoothing out
unphysical high frequency noise contributions in the spectrum, we have applied a Welch filter in the FFT. To
compensate for the power losses due to the filtering, the energy spectrum has been rescaled by demanding that
the total energies in the time domain and frequency domain are the same: Etrad tot = Eνrad tot.
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Model Erad tot νmax
νR

max

νN
max

− 1 Model Erad tot νmax
νR

max

νN
max

− 1

[M�c
2] [Hz] [%] [M�c

2] [Hz] [%]

A1B1G1R 2.69× 10−8 564
+10

A3B3G2R 1.07× 10−7 385
+41

A1B1G1N 5.85× 10−8 515 A3B3G2N 9.25× 10−9 274
A1B2G1R 6.90× 10−8 591

+33
A3B3G3R 5.42× 10−8 668

+84
A1B2G1N 6.44× 10−8 446 A3B3G3N 2.08× 10−8 363
A1B3G1R 1.27× 10−7 612

+217
A3B3G5R 1.70× 10−9 1006

+4
A1B3G1N 1.83× 10−8 193 A3B3G5N 2.73× 10−9 964
A1B3G2R 6.58× 10−8 646

+44
A3B4G2R 4.86× 10−9 84 −1

A1B3G2N 5.82× 10−8 448 A3B4G2N 1.52× 10−9 85
A1B3G3R 1.43× 10−8 666

+16
A3B5G4R 1.54× 10−9 91 −19

A1B3G3N 2.54× 10−8 576 A3B5G4N 1.14× 10−9 113
A1B3G5R 2.37× 10−10 896

+5
A4B1G1R 1.60× 10−7 1075

+85
A1B3G5N 3.81× 10−10 852 A4B1G1N 6.90× 10−8 580
A2B4G1R 3.15× 10−9 82

+34
A4B1G2R 1.20× 10−7 1111

+17
A2B4G1N 5.87× 10−10 61 A4B1G2N 6.24× 10−8 946
A3B1G1R 8.11× 10−8 651

+35
A4B2G2R 3.22× 10−7 752

+61
A3B1G1N 8.71× 10−8 482 A4B2G2N 4.08× 10−8 466
A3B2G1R 2.03× 10−7 693

+52
A4B2G3R 1.53× 10−7 709

+92
A3B2G1N 2.28× 10−8 456 A4B2G3N 5.15× 10−8 370
A3B2G2R 1.12× 10−7 727

+47
A4B4G4R 2.11× 10−8 305

+35
A3B2G2N 7.56× 10−8 494 A4B4G4N 1.58× 10−8 226
A3B2G4softR 1.19× 10−8 871

+15
A4B4G5R 2.47× 10−8 172 −21

A3B2G4softN 1.92× 10−8 755 A4B4G5N 3.26× 10−8 217
A3B2G4R 8.23× 10−9 812

+10
A4B5G4R 2.64× 10−8 79

+4
A3B2G4N 1.54× 10−8 737 A4B5G4N 2.75× 10−8 76
A3B3G1R 1.12× 10−7 231

+25
A4B5G5R 6.25× 10−8 134

+16
A3B3G1N 3.75× 10−9 185 A4B5G5N 1.54× 10−9 159

Table 7.10: Summary of the gravitational wave energy and frequency for relativistic (R) and
Newtonian (N) collapse models: Erad tot is the total energy radiated in the form of gravitational
waves, νmax is the frequency of maximum spectral energy dErad/dνmax, and νR

max/ν
N
max− 1 is the

relative increase (+) or decrease (−) of νR
max compared to νN

max. Note that in most models the
relativistic effects increase the frequency where the spectral energy has its maximum.
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Figure 7.28: Spectral energy distribution dErad/dν of the gravitational wave signal in the rela-
tivistic (solid lines) and Newtonian (dashed lines) simulation of model A1B3G3 (upper panel),
A3B3G1 (middle panel), and A1B3G1 (lower panel): The energy spectrum of model A1B3G3
with a stronger low frequency part and a weaker high frequency part is typical for the signal of
a regular collapse. Model A3B3G1 is of multiple bounce type in both Newtonian and relativistic
gravity; in its energy spectrum a broad low frequency peak dominates. In model A1B3G1 rel-
ativistic effects change the collapse type from multiple bounce collapse to regular collapse; the
shape of the signal waveform, and thus of the energy spectrum reflects this change of collapse
type. The left (right) vertical dotted lines mark the maxima of the energy spectrum in New-
tonian (relativistic) gravity; due to higher average central densities in relativistic gravity, the
maximum of the energy spectrum is shifted to higher frequencies.
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the amount of radiated energy on the collapse parameters, we refer to the corresponding parts
in the work of Zwerger [146].

The distribution of the dimensionless signal amplitude at a distance of r = 10 kpc from the
source, i.e. the gravitational wave strain

hTT ≡ hTT
θθ (θ = π/2) =

1

8

√
15

π

AE2
20

r
= 8.8524× 10−21

(
AE2

20

103 cm

)(
10 kpc

r

)
, (7.14)

is shown in Figure 7.29n. A comparison of this figure with Figure 8 in [147] proves that our
sub-sample, encompassing 25 of the 78 models in the parameter study of Zwerger and Müllero,
is distributed well across both frequency and signal amplitude space. Within the wide range
of the models between 0.4 and 3 × 10−20 in hTT and 60 and 1000 Hz in ν, relativistic effects
do not seem to have a significant impact on the shape of the distribution. Only in the high
frequency branch, which consists of rapidly collapsing models with waveforms of type I and III,
the weaker signal amplitudes (due to the stronger compactness of the inner core in a relativistic
gravitational potential) cause a discernible change in the distribution of these models.

The influence of general relativity on the frequency distribution is more clearly identifiable,
if only the models are selected which are of multiple bounce type in Newtonian gravity (see
Figure 7.30). As explained in Section 7.5, of the 13 models which exhibit this behavior in
Newtonian gravity (i.e. half of all models), only 4 models remain of type II in general relativity,
namely models A2B4G1, A3B3G1, A3B3G2, and A3B4G2p. These models are labeled with 1a,
1b, 1c, and 1d in Figure 7.30, and their migration in the signal amplitude–frequency diagram is
marked by arrows. With the exception of model A3B4G2, which is exceptional due to rapid and
strong differential rotation, all models shift towards higher signal amplitudes and frequencies.
If the collapse type changes from type II to type I or I/II as a result of relativistic corrections,
the signal amplitude can either increase (as in the cases 2a and 2b), or decrease (as in the cases
3a and 3b). The type and degree of change depends very sensitively on the rotation state of the
initial model and the value of γ1. In these cases the frequency also increases, too. The trend
of migration can be summarized by the arithmetic median of all 13 models in Newtonian and
relativistic gravity:

νN
med = 394 Hz

νR
med = 588 Hz

+ 49%,
hTT N

med = 1.55× 10−20

hTT R
med = 1.50× 10−20

− 3%. (7.15)

While the increase or decrease of hTT averages out itself, the average frequency is raised by
about 50%.

This frequency shift may have important consequences for the prospects of detecting gravita-
tional waves from core collapse supernovae. Again, if all 26 models are considered, the impact
of relativistic effects on the distribution of the models relative to the sensitivity curve of the
LIGO detector is only small (see upper panel in Figure 7.31). As in the case of Newtonian

nThe error bars mark the frequency range inside which the spectral energy is higher than 50% of its peak
value.

oWe have simulated one additional model with a soft supranuclear EoS (model A3B2G4soft).
pOf these 4 models, model A3B3G2 is not a clear-cut case and can also be classified as a I/II transition type.
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Figure 7.29: Frequency distribution of the dimensionless signal amplitude hTT for a source at
10 kpc in the relativistic (black circles) and Newtonian (red circles) simulation of all 26 models:
Relativistic effects do not significantly change the global distribution of the signal amplitude in
frequency space. The bulk of the models has signals with a strength of about 0.4 to 3 × 10−20

in a frequency range between 60 and 1000 Hz, with a high frequency branch of low amplitude
signals.
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Figure 7.30: Frequency and signal amplitude shift for the multiple bounce models in Newtonian
gravity due to relativistic effects: The models labeled with 1 remain multiple bounce models in
relativity; with the exception of model 1d, the amplitude and frequency of their signals increases.
Labels 2 and 3 mark examples for models which show regular collapse behavior in relativistic
gravity; the frequency of their signals increases, while the signal amplitude can increase (2) or
decrease (3). The symbols +R and +N mark the arithmetic median of the signal amplitudes and
frequencies of all models in Newtonian and relativistic gravity, respectively. The dimensionless
signal amplitude hTT is scaled to a distance of 10 kpc.
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simulations, the prospects to detect gravitational radiation emitted by the models in the high
frequency branch are not very encouraging, because above several 100 Hz the sensitivity of the
laser interferometer detectors drops rapidly. Still, the bulk of models falls into the range of high
sensitivity both for the first and the advanced LIGO detector. A galactic supernova with core
collapse dynamics according to one of our models would thus be definitely within the range of
detection by first LIGO.

However, if nature should prefer multiple bounce scenarios in core collapse supernovae, the
situation would change: Due to the coherent motion of the inner core, these models exhibit
particularly strong signals, i.e. they are potentially easy to detectq. On the other hand, with
increasing signal strength the associated frequencies also rise. Thus, in the signal amplitude–
frequency diagram they are aligned parallel to the high frequency slope of the detector sensi-
tivity curve. If the signal of a particular model is close to the detection threshold of a detector,
as shown in the lower panel of Figure 7.31 for the 13 Newtonian multiple bounce models scaled
to a distance to the source of 100 kpcr, the influences of relativity can be twofold: In the “best
case scenario”, the core also bounces multiply in relativistic gravity, and the signal is shifted
approximately parallel to the detector sensitivity curve to both higher frequencies and ampli-
tudes (case a). However, on average the migration will be only to higher frequencies (along the
direction of arrow b), according to Equation (7.15). Then in a borderline case the signal may
leave the sensitivity window of the detector due to relativistic corrections.

The frequency shift is an effect common to all models, and cannot be compensated for by
a possible increase in the signal amplitude. On the contrary, many relativistic models have
weaker signal amplitudes due to their higher compactness and suppression of multiple bounces.
Therefore, within the limits of our physical model of rotational core collapse, relativistic ef-
fects on average tend to decrease the prospects of detectability of gravitational radiation by
interferometric detectorss.

qAmong the Newtonian models which initially have not too extreme rotation rates and profiles (i.e. A1–3,
B1–3), the multiple bounce models have the largest average signal amplitudes.

rThe scaling to a source distance of 100 kpc is arbitrary; it is intended for shifting the high-frequency part
of sensitivity curve close to the signal strengths of the models.

sIn the above discussion, we have restricted ourselves to comment on the detectability of gravitational wave
from rotational core collapse by laser interferometer detectors. Resonant bar detectors can have comparable
or even better sensitivities than interferometers. However, they are sensitive only in very narrow frequency
bands. As the energy spectrum of a gravitational wave signal from a core collapse is comparatively broad (see
Figure 7.28), laser interferometers are much better suited for the detection of such a signal.
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Figure 7.31: Prospects of detection of the wave signal by LIGO: With the exception of some
high frequency models, for a source at a distance of 10 kpc the signals of all models are within
the sensitivity of the first LIGO detector (upper panel). The frequency (and possibly amplitude)
shift in multiple bounce models may shift the signal out of the range of detectability (lower
panel). In the lower panel hTT is evaluated at 100 kpc; n is the signal-to-noise ratio.
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7.9 Evolution of the Rotation Rate

As the iron core contracts during the infall phase, angular momentum conservation results in
a spinup, i.e. an increase of the average rotation velocity, particularly in the central regions of
the inner core. For the rotation rate β, the ratio of rotational energy to potential (binding)
energy, this translates into an increase which roughly scales like the inverse of the radius of the
inner core [109]:

Erot ∼MΩ2R2 ∼ J2

MR2
, |Epot| ∼

M2

R
−→ β =

Erot

|Epot|
∼ J2

M3R
∝ 1

R
, (7.16)

where M , Ω, R, and J are the typical mass, angular velocity, radius, and angular momentum
of the inner core. The exact quantitative behavior of the evolution of β during core collapse
is important due to several reasons: Firstly, the rotation state of the inner core after bounce
determines the rotation rate and profile of the neutron star which subsequently forms. It
is known from observations of pulsars that neutron stars can spin with very high rotation
frequencies of the order of milliseconds [73]; however, these millisecond pulsars seem to have
gained their high rotation rates via mass transfer from a companion star, and so far there is no
clear notion about the initial rotation state of a newborn neutron star.

Secondly, proto-neutron stars with a sufficiently high rotation rate may be subject to the
development of triaxial instabilities, driven by various mechanisms [118]. In the case of uni-
formly rotating, constant density MacLaurin spheroids in Newtonian gravity, the threshold
values for the development of instabilities on dynamic and secular timescales are βsec ≈ 13.8%
and βdyn ≈ 27.4%, respectively, the former one driven by gravitational radiation or viscosity,
the latter one by hydrodynamics and gravityt. Due to relativistic effects these thresholds are
significantly reduced for a variety of polytropic and realistic EoS. Additional to that, the higher
average rotation velocities in relativistic simulations of rotational core collapse tend to increase
the rotation rate β. Thus, we expect that the criteria for the development of triaxial instabil-
ities during and after core bounce are fulfilled for more models and for longer time intervals
compared to Newtonian gravity.

Before turning to the influence of relativistic gravity on the rotation rate, we investigate
the qualitative change in the azimuthal velocity vφ =

√
v3v3 during core collapse. The radial

profiles of vφ at the time of bounce tb for three representative models are plotted in Figure 7.32.
As in all other models, the impact of the deeper gravitational potential is obvious: Compared
to Newtonian simulations, both the peak and average rotation velocities are higher, and the
maximum of vφ is shifted to smaller radiiu. The differences are most prominent in the case of
model A1B3G1 (lower panel), which changes from multiple bounce collapse to regular collapse
due to relativistic effects. In relativistic simulations, the core is denser at bounce, and thus
it exhibits higher rotation velocities at significantly smaller radii. In model A1B3G5 (upper

tFor a core with an average density of ρnuc and a radius of about 20 km, the sound travel time through
the core and thus the dynamic timescale is roughly 1 ms. As our code is axisymmetric, the growth of such
instabilities cannot be simulated; however, the values obtained for β can serve as a criterion to predict the
behavior of our models if axisymmetry is relaxed.

uNote that the maximum of vφ is at the boundary of the proto-neutron star; the boundary is defined by a
drop of the density over several orders of magnitude.
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panel), the initially almost uniform rotation profile and the rapid contraction render centrifu-
gal forces almost ineffective, irrespective of Newtonian or relativistic gravity. Therefore, the
spinup is weak, and vφ reaches a value of at most 0.08, which is small compared to collapse
models with higher initial rotation rates and slower contraction. The highest peak values for
vφ were encountered in model A1B3G1, exceeding 0.2 at r ≈ 15 km during core bounce. This
corresponds to a rotation period of T ≈ 1.6 ms at the boundary of inner core. Two-dimensional
plots of the rotation velocity field are presented in Figure 7.33. These plots further illustrate
the effects of relativistic gravity. The rotation velocity is on average higher and has its peak
value closer to the center not only in the equatorial plane, but for all angular directions. The
plots also show that the maximum rotation velocities can occur outside the equatorial plane.

As the rotation energy Erot depends on the square of the rotation velocity (see Equation 6.12),
the increase of the average rotation velocities in relativity has important consequences for the
evolution of β. This is demonstrated for models A1B3G1, A4B2G3, and A4B5G4 in Figure 7.34:
The rotation rate β assumes its maximum values at times of maximum central densities; if the
core rebounds in a series of distinct multiple bounces, this is also reflected in multiple peaks of
β. As expected, the rotation rate in the relativistic simulations surpasses the rotation rate in the
corresponding Newtonian simulations, both in its maximum value and on average. Taking the
thresholds βsec and βdyn as a basis for judging whether a model is prone to triaxial instabilities,
relativistic effect do not make a difference in model A1B3G1, as β > βsec holds only for less
than 1 ms. This changes drastically in the already initially rapidly rotating model A4B2G3;
here β remains above βsec after core bounce in relativistic gravity and even reaches βdyn for
a short time, while in Newtonian gravity it again declines below βsec. Considering the fact
that relativistic effects also lower the actual threshold βsec, this is an impressive example how
Newtonian simulations yield incorrect predictions about the development of secular instabilities.
In the extremely rapidly and differentially rotating model A4B5G4, secular instabilities are
likely to develop in both Newtonian and relativistic gravity, but instabilities on a dynamic
timescale can only appear in relativistic simulations, where β > βdyn holds for almost 5 ms, i.e.
several dynamic timescales.

In Tables 7.11–7.13 we list the maximum value for the rotation rate βmax and the time
intervals where the thresholds for the development of triaxial instabilities are exceeded, for
the relativistic and Newtonian simulation of all models. The results listed in these tables
confirm the trend from Figure 7.34: Many models which would otherwise stay below βsec fulfill
this criterion due to relativistic corrections. In some of the models β stays virtually constant
beyond core bounce until the simulation was terminated. A subset of these models even reaches
rotation rates exceeding βdyn for several milliseconds in relativistic gravity; the three models in
Newtonian gravity for which β > βdyn is achieved, stay in this regime at most 1 ms, which is
probably too short for a significant growth of triaxial instabilities. In the above discussion, β is
the ratio of total rotation mass energy to total potential mass energy, where the corresponding
masses encompass the entire core. Strictly speaking, the criteria for instabilities are only valid
for the rotation rate of the inner core which will finally form the neutron star. However, Erot

and Epot can be only defined globally in an unambiguous way. Furthermore, due to the rapid
decrease of density and rotation velocity at the outer boundary of the inner core, the inner core
contributes most to the total rotation rate. This has also been observed in the Newtonian core
collapse simulations by Zwerger [146]. Thus we can assume that βinner core ≈ β.
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Figure 7.32: Spinup of the core during the infall phase in the relativistic (solid lines) and New-
tonian (dashed lines) simulation of model A1B3G5 (upper panel), A2B4G1 (middle panel), and
A1B3G1 (lower panel): Due to angular momentum conservation during contraction, the rota-
tion velocity vφ increases considerably in the inner regions of the core. The rotation profiles of
vφ e along the equatorial plane, here plotted shortly after tb, exhibit higher maxima in relativistic
gravity. The models A1B3G5 (rapid collapse) and A2B4G1 (multiple bounce) do not change
collapse type in the relativistic simulation. The fast contraction in model A1B3G5 results in
lower average rotation velocities. Relativistic effects cause model A1B3G1 to change from mul-
tiple bounce to regular collapse. The vertical dotted lines mark the radius of maximum rotation
velocity.
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Figure 7.33: Two-dimensional plots of the rotation velocity of the core at the time of bounce in
the relativistic (left panels) and Newtonian (right panels) simulation of model A2B4G1 (upper
panels) and A1B3G1 (lower panels): The increased compactness of the rotation velocity field in
relativistic gravity is clearly visible; relativistic effects cause the maxima of the rotation velocity
to be higher and significantly closer to the center in both the multiple bounce model A2B4G1
and the regular bounce model A1B3G1. The color coding of the plots shows the rotation velocity
vφ =

√
v2v2.
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Figure 7.34: Evolution of the rotation rate β in the relativistic (solid lines) and Newto-
nian (dashed lines) simulation of model A1B3G1 (upper panel), A4B2G3 (middle panel), and
A4B5G4 (lower panel): In model A1B3G1, which changes from multiple bounce collapse in New-
tonian gravity to regular collapse in relativistic gravity, only the relativistic simulation reaches
βsec. The core in the relativistic simulation of the rapidly and moderately differentially rotating
model A4B2G3 crosses βdyn for a short time, and stays permanently above βsec after ring-down,
while its rotation rate is higher than βsec only for a short time in the Newtonian simulation.
In the extremely rapidly and differentially rotating model A4B5G4, both the Newtonian and the
relativistic simulation yield a permanent β > βsec after ring-down. Only for relativistic gravity
the rotation rate is higher than βdyn for several dynamic time-scales. The horizontal dotted
lines labeled βsec and βdyn mark the rotation rate thresholds for the growth of instabilities on
secular and dynamic timescales, respectively.
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Model βmax tβmax tb tβ>βsec ∆tβ>βsec tβ>βdyn
∆tβ>βdyn

βR
max/β

N
max − 1

[%] [ms] [ms] [ms] [ms] [ms] [ms] [%]

A1B1G1R 7.7 90.86 90.87
+48

A1B1G1N 5.2 92.26 92.23
A1B2G1R 12.2 91.60 91.56

+49
A1B2G1N 8.2 93.20 93.10
A1B3G1R 17.7 92.98 92.85 92.73 0.72

+66
A1B3G1N 10.7 95.00 94.70
A1B3G2R 15.6 69.20 69.10 69.05 0.38

+47
A1B3G2N 10.6 70.10 69.87
A1B3G3R 12.7 48.47 48.45

+59
A1B3G3N 08.0 48.66 48.57
A1B3G5R 05.4 30.14 30.10

+60
A1B3G5N 03.4 30.05 29.98
A2B4G1R 17.6 98.96 99.09 96.94 4.59

+49
A2B4G1N 11.8 100.12 99.71

Table 7.11: Summary of the rotation rate for relativistic (R) and Newtonian (N) A1 and A2
models: βmax ≡ max β(t) is the maximum rotation rate, tβmax is the time of maximum rotation
rate, tb is the time of bounce, tβ>βsec/dyn

is the time when the rotation rate crosses the threshold
for secular/dynamic instabilities, ∆tβ>βsec/dyn

is the time interval during which the rotation rate

exceeds the threshold for secular/dynamic instabilities, and βR
max/β

N
max−1 is the relative increase

(+) or decrease (−) of βR
max compared to βN

max. A + sign after the value for ∆tβ>βsec indicates
that the rotation rate still exceeds the threshold for secular instabilities when the simulation was
stopped.
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Model βmax tβmax tb tβ>βsec ∆tβ>βsec tβ>βdyn
∆tβ>βdyn

βR
max/β

N
max − 1

[%] [ms] [ms] [ms] [ms] [ms] [ms] [%]

A3B1G1R 13.5 91.31 91.27
+81

A3B1G1N 7.5 92.79 92.72
A3B2G1R 21.4 92.54 92.42 92.26 0.83

+95
A3B2G1N 11.0 94.30 94.32
A3B2G2R 19.7 69.27 69.15 69.03 0.71

+69
A3B2G2N 11.7 70.13 69.98
A3B2G4R

soft 16.3 39.20 39.18 39.09 0.32
+72

A3B2G4N
soft 9.5 39.21 39.14

A3B2G4R 15.1 39.17 39.14 39.08 0.22
+69

A3B2G4N 9.0 39.20 39.07
A3B3G1R 23.9 95.31 95.26 94.20 2.37

111.10 2.79
125.61 2.92

+108
A3B3G1N 11.5 96.55 96.57
A3B3G2R 26.7 70.94 70.96 70.12 2.03

77.54 2.80
84.69 3.48
91.69 4.28
98.45 10.62+

+95
A3B3G2N 13.7 71.64 71.77
A3B3G3R 26.2 49.63 49.42 49.09 1.69

52.27 2.47
55.70 23.64+

+66
A3B3G3N 15.7 49.84 49.64 49.54 0.63
A3B3G5R 14.7 30.70 30.53 30.58 0.38

+58
A3B3G5N 9.3 30.65 30.36
A3B4G2R 21.5 74.03 74.51 71.48 5.51

93.12 5.52
117.71 1.14+

+46
A3B4G2N 14.7 74.50 73.99 73.48 2.05
A3B5G4R 30.3 43.92 44.31 40.18 48.14+ 42.82 2.92

+47
A3B5G4N 20.7 43.73 44.31 41.18 47.22+

Table 7.12: Summary of the rotation rate for relativistic (R) and Newtonian (N) A3 models:
Quantities like in Table 7.11.
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Model βmax tβmax tb tβ>βsec ∆tβ>βsec tβ>βdyn
∆tβ>βdyn

βR
max/β

N
max − 1

[%] [ms] [ms] [ms] [ms] [ms] [ms] [%]

A4B1G1R 18.8 90.43 90.45 90.31 0.27
+154

A4B1G1N 7.4 91.85 91.77
A4B1G2R 20.5 68.09 68.07 67.95 0.32

+142
A4B1G2N 8.5 68.77 68.69
A4B2G2R 31.0 68.34 68.34 67.99 0.81

70.53 33.17+ 68.27 0.17
+147

A4B2G2N 12.6 69.06 69.02
A4B2G3R 34.3 48.67 48.69 48.17 1.14

50.77 1.93
53.02 32.97+ 48.55 0.24

+121
A4B2G3N 15.5 48.83 48.74 48.66 0.34
A4B4G4R 37.4 39.87 39.85 37.46 38.07+ 39.05 1.74

+65
A4B4G4N 22.6 39.78 39.66 38.51 2.99

46.49 2.81
A4B4G5R 55.0 32.02 32.24 30.29 39.36+

+79
A4B4G5N 28.0 31.96 31.91 31.04 14.06

47.34 3.00 31.16 2.79
53.17 11.28+ 31.86 0.20

A4B5G4R 47.1 37.52 37.58 33.06 42.67+ 35.61 4.65
+69

A4B5G4N 27.9 37.55 37.29 34.85 44.18+ 37.30 0.48
A4B5G5R 76.8 30.78 30.68 27.78 39.63+ 29.14 8.13

+102
A4B5G5N 38.1 30.89 30.82 29.18 39.91+ 30.32 1.11

Table 7.13: Summary of the rotation rate for relativistic (R) and Newtonian (N) A4 models:
Quantities like in Table 7.11.
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7.9.1 Problems with the Calculation of the Rotation Rate

As already discussed above, predictions about the actual development of instabilities are hard
to make: The thresholds originate from a linear stability analysis with many restrictions. In
nature, and in many numerical simulations, the EoS is different, the density is not homogenous,
the velocity field is not uniform, etc. What is actually needed in order to prove whether a par-
ticular model will eventually develop a triaxial instability is a three-dimensional hydrodynamic
simulation of core collapse to a neutron star without any symmetry restrictions. In full general
relativity, such a simulation has not been performed yet (for a successful attempt in Newtonian
gravity, see [102]).

The issue of the validity of stability analysis is additionally complicated by a specific problem
related to the CFC approach for the metric in our code: For high rotation rates, which are
encountered at high central densities during and after core bounce, the proto-neutron star is
highly distorted. In this regime we expect deviations of the CFC metric from the exact metric in
the range of a few percent (see Section 6.2, and [22, 64]). However, in the equation for β (6.13),
the potential mass energy Mpot is determined by the small difference between the gravitational
mass Mgrav and proper mass Mproper. Even for strongly gravitating systems like neutron stars,
this difference is only about 10% of the individual terms. Thus, if the values for Mgrav and
Mproper are subject to an error of a few percent in the CFC approximation, we expect their
difference and, as a consequence, β to deviate by several 10% compared to its value in an exact
spacetime. This can indeed be shown by comparing the rotation rate of rapidly rotating neutron
star models obtained from the exact initial data solver against the corresponding rotation rate
in a CFC spacetime. In such equilibrium situations we could observe deviations between βexact

and βCFC of about 15%v. However, in all these tests, which included neutron stars with both
uniform and strong differential rotation, the approximate value βCFC underestimates the exact
value βexact. From these consideration we can infer for rotational core collapse, that the rotation
rate computed using the CFC approximation is firstly close to the exact value, and secondly
probably an underestimate of the exact value.

Nevertheless, owing to the ambiguities with the definition of the thresholds and the problems
with the calculation of the rotation rate in the CFC approximation, we point out that the
results of Section 7.9 should be regarded as an estimate rather than a clear prediction about
the stability of a particular model.

vNote that this is only a relative deviation between the two values for β.
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7.10 Propagation of the Shock Front

After core bounce, the position of the shock can be detected as a strong discontinuity in the
profiles of the radial velocity. The radial position of the shock front for a given angle and time
depends strongly on the type of collapse, on the density, and on the rotation rate and profile of
both the inner core and the outer regions. If the collapse is nearly spherically symmetric, i.e. if
the initial rotation rate is small and the contraction proceeds rapidly due to a small adiabatic
index, we expect the shock front to be almost isotropic. The formation and propagation of the
shock in the regular collapse model A1B3G3 is shown in Figure 7.35. At all times, the velocity
field in a meridional plane, ~vmer = vrê

1 + vθê
2, is almost radial, i.e. ~vmer ≈ vrê

1. Except in
the first fractions of a millisecond after bounce, where a small anisotropy can be detected, the
shape of the shock front is almost spherical.

This behavior of the shock front propagation changes drastically in the case of rapid and
differential rotation, which is illustrated by the velocity field plots of model A4B5G5 in Fig-
ure 7.36. Contrary to model A1B3G3, here the maximum density is located at an off-center
position already during contraction, and the inner core settles down to a new equilibrium state
with a toroidal density structure. When the shock forms after core bounce, its initial form
reflects the very oblate density structure. As the shock propagates outward, the anisotropy of
the shock front increases further: Along the equatorial plane, the high density torus exhibits
an almost disk-like shape in regions which have not yet been passed by the shock. Matter
from these regions are subsequently being accreted by the central parts of the torus. Here the
shock has to push its way through dense matter with large infall velocities, and thus propa-
gates out comparatively slowly. On the other hand, the regions close to the rotation axis have
been depleted of matter during the collapse. Here the average density is orders of magnitudes
lower than close to the equatorial plane at the same radius, and the shock propagates out very
rapidly. As a result of the initial anisotropy of the shock front and the focussing of the shock
propagation to the polar regions due to the large density gradient in angular direction, the
meridional velocity field exhibits a jet-like form, and matter is predominantly ejected from the
inner core along the rotation axis.

The shock discussed above is the so-called prompt shock which obtains its energy from the
hydrodynamic bounce of the inner core (cf. Section 1.3). As already indicated in the description
of the physical scenario of supernova core collapse, the prompt shock stalls at a radius of a few
100 kilometers. The location where the shock comes to a halt may play an important role in
a successful revival of the shock and its conversion into a neutrino-driven shock resulting in a
delayed explosion. We have already discussed the impact of rotation on the shock propagation.
The effects of relativistic gravity on the shock front propagation become most apparent in
models which change from multiple bounce collapse type in Newtonian to regular collapse type
in relativistic gravity. The higher central densities and much stronger abrupt deceleration of
the inner core in a regular bounce reverse the contraction of the core into an outward shock with
a much larger kinetic energy. Although the shock forms much closer to the center compared to
the Newtonian multiple bounce collapse, its higher initial energy results in a higher propagation
speed. At late times, the shock front is located considerably farther outside from the center,
as shown for model A1B3G1 in Figure 7.37.
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In the cases described above the effects of relativity on the shock front propagation can be
attributed to a qualitative change of the entire collapse dynamics. The influence of relativistic
gravity on the shock can be also be observed by investigating models which do not change
the collapse type. In this case, however, the states of the inner core at shock formation are
comparatively similar in the relativistic and the Newtonian simulation. The initial strength of
the shock depends sensitively on the rapidity of contraction and the density profile of the inner
core, and the effects of rotation. All these factors are subject to changes under the influence of
relativity to various degrees, and thus it is hard to interpret the effects of relativistic gravity on
the physical mechanisms which determine the shock strength. Therefore, we want to confine us
to simply stating two general observations: By investigating models which do not change their
collapse type under the influence of relativity, we have found that in all regular collapse models
relativistic gravity increases the initial shock strength (defined as the jump in radial velocity
across the discontinuity), whereas the initial shock is weaker in the relativistic simulations of
multiple bounce collapse models. The radial velocity profiles shortly after the formation of the
shock in the relativistic and Newtonian simulations of the two representative models A3B2G4
and A2B4G1 are plotted in the upper panels of Figure 7.38 and 7.39, respectively. As the
deeper gravitational potential in the relativistic simulations increases the compactness of the
inner core, in both models the shock forms at a radius which is smaller than the one in the
Newtonian simulations. The position of the shock front long after bounce can be identified
in the plots of the radial velocity profile in the lower panels of Figure 7.38 and 7.39. In the
regular bounce model the shock in the relativistic simulation can never catch up with the shock
in the Newtonian simulation as its velocity is lower initially and also at later times. Contrary
to that, in the multiple bounce model its high initial velocity is sufficient to make up for the
“head start” of the shock in Newtonian gravity. The shock front in the relativistic simulation
“overtakes” the shock front in the Newtonian simulation, and later the difference between the
radial locations of the shock fronts increases with time.
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Figure 7.35: Propagation of the shock in the regular collapse model A1B3G3: During the infall
phase, at t = 30.0 ms (upper left panel), the velocity vector field in a meridional plane ~vmer

(indicated by white vectors) is radial in the entire core. At t = 48.5 ms (upper right panel), the
inner core comes to a halt and the shock forms at r ≈ 10 km. While the inner core rebounces,
the shock propagates outward to about 20 km at t = 49.0 ms (lower left panel); the outer layers
of the core continue to fall inward. At t = 50.5 ms (lower right panel), the inner core starts
to ring down; at its boundary it accretes matter from post-shock regions, while the shock front
travels further outward. The velocity vectors ~vmer = vrê

1 + vθê
2 are scaled to the maximum

value in the plot region. The color coding shows log(ρ [1014 g cm−3]). The radius of the plotted
region and the density color coding have different scales in the various plots.
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Figure 7.36: Propagation of the shock in the extremely rapidly rotating collapse model A4B5G5:
During the infall phase, at t = 25.0 ms (upper left panel), the velocity field in a meridional
plane vmer (indicated by white vectors) points towards an off-center region, where the collapsing
matter forms a high density torus. At t = 28.5 ms (upper right panel), the inner core suffers
a centrifugal bounce, which creates a strongly anisotropic shock. Due to low average densities
in the polar regions, the shock propagates fastest there; at t = 30.0 ms (lower left panel),
the toroidal inner core continues to accrete matter, predominantly from the equatorial plane.
At t = 35.0 ms (lower right panel), the torus is surrounded by large scale velocity and density
vortices; the anisotropy of the density further focuses the shock propagation towards the rotation
axis. The definition of vmer and the color coding of ρ are according to Figure 7.35.
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Figure 7.37: Difference in the shock propagation for the relativistic (solid lines) and Newto-
nian (dotted lines) simulation of model A1B3G1, which changes from multiple bounce collapse
type to regular collapse type in relativistic gravity: The shock is much stronger in the regular
supranuclear bounce in relativistic gravity, i.e. the shock propagation velocity is higher. Thus,
about 20 ms after core bounce, the position of the shock in the relativistic simulation is more
than 400 km farther out from the center compared to the one in the Newtonian simulation. The
radial difference in the shock position due to relativistic effects is indicated by an arrow. The
velocity profiles of vr e are evaluated along the equatorial plane.
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Figure 7.38: Difference in the shock propagation for the relativistic (solid lines) and Newtonian
(dotted lines) simulation of the regular collapse model A3B2G4: Shortly after the bounce at
t ≈ 39.25 ms, the shock forms at the outer boundary of the inner core. Due to the higher
compactness of the central regions, the radius of shock formation is smaller in relativistic gravity
(upper panel). As the speed of the shock is lower in the relativistic case at all times, the shock
in the relativistic simulation cannot catch up with the shock from the Newtonian simulation of
the same model. About 20 ms after core bounce, the difference between the shock positions has
grown to almost 20 km. The radial differences in the shock position due to relativistic effects
are indicated by arrows. The velocity profiles of vr e are evaluated along the equatorial plane.
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Figure 7.39: Difference in the shock propagation for the relativistic (solid lines) and Newtonian
(dotted lines) simulation of the multiple bounce collapse model A2B4G1: Shortly after the bounce
at t ≈ 100.0 ms and t ≈ 100.75 ms, respectively, the shock forms at the outer boundary of the
inner core. Due to the higher compactness of the central regions, the radius of shock formation
is smaller in relativistic gravity (upper panel). Contrary to regular collapse models, the speed of
the shock is higher in the relativistic case at all times, and the shock in the relativistic simulation
quickly catches up with the shock in the Newtonian simulation of the same model. About 30 ms
after core bounce, the shock in relativistic gravity is over 100 km ahead. The radial differences
in the shock position due to relativistic effects are indicated by arrows. The velocity profiles of
vr e are evaluated along the equatorial plane.
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Chapter 8

Summary and Outlook

Studies of supernova core collapse are a rich and complex field of astrophysics, involving very
different physical aspects. In the advent of experimental gravitational wave astronomy, the
predictions from astrophysical simulations of this problem are becoming very important. In
this thesis we have only touched a small section of contemporary research on supernovae.
However, with the hydrodynamic code presented in this work, we were able for the first time
to numerically simulate the collapse of a rotating dense stellar core to a neutron star in a fully
dynamical general relativistic spacetime, from the infall of the core, via the formation and
ring-down of the proto-neutron star, until the inner core assumes a new equilibrium state.

Owing to the complexity of the problem, several simplifications had to be made in our in-
vestigation. A detailed consideration of the microphysics involved in the core collapse and sub-
sequent explosion of a supernova, which would require a multidimensional neutrino transport
scheme coupled to a sophisticated equation of state (EoS) for the hydrodynamics in relativistic
gravity, was beyond the scope of this work. We have shown that in the phases of core collapse
which we have investigated, the microphysical behavior of the core can be modeled very well
by an adiabatic EoS with thermal contributions. As we were mainly interested in the dynamics
of the core, and not focussing on the propagation of the shock front and the explosion mech-
anism, we have neglected neutrino transport. We have further restricted our simulations to
axisymmetry.

For the spacetime metric we have adopted the conformal flatness condition (CFC). This
approximation significantly reduces the complexity of the hydrodynamic and metric equations.
In this work, the CFC formalism has been used in a fully dynamical context for the first time.
In numerous tests, including a detailed resolution study, we have demonstrated that our model
and the numerical implementation is appropriate for studying rotational core collapse in general
relativity. We have particularly shown that the CFC approximation of the spacetime metric is
justified and that the code yields results which are sufficiently close to the exact solution of the
Einstein equations. By virtue of the CFC approximation we were also able to avoid numerical
instabilities which have been hampering many previous general relativistic hydrodynamic codes
based on the conventional ADM formalism of calculating the spacetime metric.

For the construction of our initial models we have used the approach of Hachisu at al., who
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have introduced a robust and versatile method to compute rotating polytropes in general rel-
ativity. The initial models approximate the iron core of the progenitors for a core collapse
supernova at the onset of the collapse. The collapse of the core was triggered by a prescribed
reduction of the adiabatic index, which mimics the effects of electron capture and photodisso-
ciation. A set of 26 core collapse models with various rotation rates and profiles, and several
values of the adiabatic index were evolved through all phases of the collapse until a new equi-
librium configuration formed, or (in the case of multiple bounces) until several sequences of
contraction and re-expansion have been simulated.

Concerning the gravitational wave signal obtained by our general relativistic simulations,
we have observed the three general collapse types introduced by Zwerger in his Newtonian
simulations: Regular collapse, multiple bounce collapse due to centrifugal forces, and rapid
collapse. With the help of a direct comparison of our models with the corresponding models
in Newtonian gravity, we were able to identify and interpret the influence of relativistic effects
on rotational core collapse.

Already during the infall phase, the influence of relativity becomes apparent. Both the radial
extent of the homologously collapsing inner core (where the radial infall velocity is proportional
to the radius), and the mass contained therein, are significantly smaller when relativity is taken
into account. Furthermore, the quality of homology on the inner core is less good when the
collapse proceeds in a relativistic gravitational potential, manifesting itself in a deviation from
the linear infall velocity profile in relativistic gravity.

During the bounce, when the density of the core and the gravitational wave signal amplitude
are largest, relativistic effects enhance both the peak density and the average densities in the
central parts of the core for all investigated models, in multiple bounce collapse models by up
to 400%. These higher average and maximum densities are a direct consequence of the deeper
gravitational potential well in relativistic gravity. The deeper relativistic potential also causes
larger accelerations which reverse the infall velocity of the inner core during bounce. This effect
is most prominent in multiple bounce collapse models, where the time intervals between the
subsequent bounces are significantly shorter compared to their Newtonian counterparts.

However, the higher densities do not directly and in all models translate into a larger signal
amplitude of the gravitational waves. An evaluation of the maximum absolute signal amplitudes
proves that, while the maximum signal amplitudes increase by up to +70% in some models,
relativistic effects result in an attenuation of the maximum gravitational wave signal by up to
−70% in most models. The higher densities and accelerations during core bounce increase the
predominant frequency of the wave signal in all models except one. As the gravitational wave
signal amplitude is the second time derivative of the quadrupole moment, which is an integral
quantity of the entire mass distribution, the interpretation of these results is not trivial.

We have found that the compactness of the central regions of the inner core in relativistic
gravity is crucial for explaining the weaker gravitational wave amplitude. Although the densities
close to the center are enhanced by relativistic effects, by comparing the radial density profile
to Newtonian results during and after bounce we could detect a density crossing within the
inner core in all models. This means that in a relativistic potential the outer parts of the inner
core are (in some models significantly) less dense. In regular bounce models, which collapse to
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(often very high) supranuclear densities, the comparatively slow rotating central regions of the
core contribute less to the quadrupole moment and its second-order time derivative than the
outer regions of the core. The comparatively low average densities in the outer regions of the
inner core thus explain the lower gravitational wave signal amplitudes observed in most of the
relativistic simulations.

In multiple bounce collapse models the crossing between the density profiles in relativistic
and Newtonian simulations also occurs, albeit at much larger radii. Therefore, the density
is enhanced by relativistic effects throughout most of the inner core, and the corresponding
gravitational wave signal is larger than in Newtonian gravity. Nevertheless, as the density
crossing is still present, the increase in the gravitational wave signal is by far not as high as the
enhancement of the central density.

Apart from these quantitative differences in the core density and gravitational wave signal
of models evolved in a general relativistic spacetime, relativity also causes qualitative changes
in the collapse type of many models which show multiple bounces in Newtonian gravity. Due
to the relativistic enhancement of the central density and the increased compactness of the
core, only a small fraction of the Newtonian multiple bounce models exhibit this collapse type
also in relativistic gravity. The other models collapse to supranuclear density and behave like
regular collapses. As the parameter space of models which allow for the occurrence of multiple
bounces is already restricted by astrophysical reasons due to the strong and differential rotation
necessary for a centrifugal bounce, relativistic effects further narrow the region of parameter
space for multiple bounce models.

The suppression of multiple bounces in relativity has important consequences on the am-
plitude and frequency of the gravitational wave signal emitted by these models. On average,
relativistic regular collapse models yield signal strengths which are smaller and have frequencies
which are higher than for the corresponding model evolved in a Newtonian simulation. As both
a smaller signal amplitude and a higher frequency worsen the prospects of detection by laser
interferometers, the suppression of multiple bounce models in relativity may have important
consequences on the detection of signals from rotational core collapse supernovae. Even in the
case of relativistic multiple bounce models, where the signal amplitude increases, the higher
signal frequencies compensate for this effect in terms of detectability. Despite these shifts of the
position of relativistic models in the signal–frequency space, the spread and average position of
the bulk of models (from about 400 cm to 3500 cm in signal amplitude, and 60 Hz to 1000 Hz
in frequency) are comparable to those of the Newtonian simulations. In general, the gravita-
tional wave signals obtained in our simulations are within the sensitivity range of modern laser
interferometer detectors if the source is located within our Galaxy or in the Magellanic Clouds.
A successful detection of a wave signal attributable to a core collapse supernova could, together
with the waveforms obtained by our code, put important constraints on the parameter space
of this event. This is particularly the case, if a signal, which is characteristic for a multiple
bounce collapse, would be detected.

The rotation rate is strongly amplified during the contraction of the core due to conservation
of angular momentum. This can lead to the formation of a toroidal density structure of the inner
core during and after bounce for initially rapidly and differentially rotating models. Relativistic
effects in general tend to increase the rotation velocities and shift the center of maximum
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rotation velocity in the high density torus closer towards the star’s center. Such rapidly and
differentially rotating proto-neutron stars may be subject to developing a triaxial instability
on secular or even dynamic timescales if the rotation rate exceeds respective threshold values.
Our simulations show that the maximum and average rotation rates of all 26 models increase
significantly in relativistic gravity. As relativistic effects further lower the respective instability
thresholds, we can infer that our models are much more prone to the development of triaxial
instabilities. However, this conjecture can only be confirmed by three-dimensional simulations
in general relativity.

For rapidly rotating models we observe a strongly anisotropic form of the shock front. The
propagation of the shock front is also influenced by relativistic effects. The shock can either
propagate faster or slower than the shock front in a Newtonian simulation.

The results presented in this thesis, particularly the waveforms of gravitational radiation
emitted during the collapse, will be of use for data analysis in gravitational wave detectors.
These waveforms from relativistic simulations can augment or even replace the set of wave-
forms obtained by Newtonian simulations. As realistic waveforms are crucially needed in in-
terferometer data analysis for calibration of digital filtering and as templates during the actual
search for events, we hope that our results can contribute to a hopefully successful detection of
gravitational waves from astrophysical sources.
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Appendix A

Characteristic Fields

A.1 Characteristic Structure of the Conservation Equa-

tions

When the hydrodynamic equations are formulated as a hyperbolic set of conservation laws,

1√
−g

[
∂
√
γF 0

∂x0
+
∂
√
−gF i

∂xi

]
= Q, (A.1)

we can use the characteristic information to analytically solve the Riemann problem (evolution
of piecewise constant initial data). The Jacobi matrices corresponding to the three spatial
directions are

Bi = α
∂F i

∂F 0 . (A.2)

If the Jacobians are constant (quasi-linear Riemann problem), and we can utilize the following
transformation

B = RΛR−1 = RΛL, (A.3)

with R being the matrix of right eigenvectors, Λ being the diagonal matrix of eigenvalues, and
L being the matrix of left eigenvectors.

From these we can calculate the numerical fluxes in a straightforward way.
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A.2 Eigenvalues and Eigenvectors

The 5 eigenvalues associated to the Jacobian matrices are [11]a:

λi0 = αvi − βi, threefold degenerate, (A.4)

λi± =
α

1− v2c2
s

[
vi(1− c2

s )± c2
s

√
(1− v2)(γii(1− v2c2

s )− vivi(1− c2
s ))
]
− βi. (A.5)

These are the characteristic velocities of the general relativistic hydrodynamic system, analo-
gous to λi0 = vi and λi± = vi ± cs in Newtonian hydrodynamics.

The corresponding right-eigenvectors (columns of R) in the r-direction read:

r1
0,1 =


κ̄/(hW )

v1

v2

v3

1− κ̄/(hW )

 , r1
0,2 =


Wv2

2hW 2v1v
2

h(1 + 2Wv2v
2)

2hW 2v3v
2

Wv2(2hW − 1)

 , r1
0,3 =


Wv3

2hW 2v1v
3

2hW 2v2v
3

h(1 + 2W 2v3v
3)

Wv3(2hW − 1)

 ,

r1
± =



1

hW

(
v1 −

v1Λ1
±

γ11 − v1Λ1
±

)
hWv2

hWv3

hW
γ11 − (v1)2

γ11 − v1Λ1
±
− 1


, (A.6)

with

κ̄ =
κ/ρ

κ/ρ− cs

, κ =
∂P

∂ε

∣∣∣∣
ρ

, and Λi
± =

λ±
α

+
βi

α
. (A.7)

The corresponding right-eigenvectors in the θ-direction can be obtained from the above by
exchanging the indices 1 and 2, and by a permutation of rows 2 and 3:

r2
0,1 =


κ̄/(hW )

v1

v2

v3

1− κ̄/(hW )

 , r2
0,2 =


Wv1

h(1 + 2Wv1v
1)

2hW 2v2v
1

2hW 2v3v
1

Wv1(2hW − 1)

 , r2
0,3 =


Wv3

2hW 2v1v
3

2hW 2v2v
3

h(1 + 2W 2v3v
3)

Wv3(2hW − 1)

 ,

r2
± =



1
hWv1

hW

(
v2 −

v2Λ2
±

γ22 − v2Λ2
±

)
hWv3

hW
γ22 − (v2)2

γ22 − v2Λ2
±
− 1


. (A.8)

aNote that the eigenvectors stated in [11] are only valid for a diagonal three-metric (like the CFC metric).
The general expressions for the eigenvectors can be found in [60] or in [37].
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The left-eigenvectors are the rows of L:

l10,1 =
W

κ̄− 1


h−W
Wv1

Wv2

Wv3

−W

 , l10,2 =
1

h(1− v1v1)


−v2

v2v
1

1− v1v
1

0
−v2

 , l10,3 =
1

h(1− v1v1)


−v3

v3v
1

0
1− v1v

1

−v3

 ,

l1± = ∓ h
2

∆1


hWA1

∓(v1−γ11Λ1
∓)−v1−W 2(viv

i−v1v
1)(2κ̄−1)(v1−A1

∓γ11Λ1
∓)+κ̄A1

∓γ11Λ1
∓

1 +W 2(viv
i − v1v

1)(2κ̄− 1)(1−A1
∓)− κ̄A1

∓
W 2v2(2κ̄− 1)A1

∓(v1 − γ11Λ1
∓)

W 2v3(2κ̄− 1)A1
∓(v1 − γ11Λ1

∓)
−v1 −W 2(viv

i − v1v
1)(2κ̄− 1)(v1 −A1

∓γ11Λ1
∓) + κ̄A1

∓γ11Λ1
∓

 ,

(A.9)

with

Ai± =
1− vivi

1− viΛi
±
, and ∆i =

γ11(Λi
+ − Λi

−)h3W (κ̄− 1)(1− v1v
1)2

(1− v1Λ1
+)(1− v1Λ1

−)
. (A.10)

Again, the left-eigenvectors in the θ-direction can be obtained from the above by exchanging
the indices 1 and 2, and by a permutation of rows 2 and 3:

l20,1 =
W

κ̄− 1


h−W
Wv1

Wv2

Wv3

−W

 , l20,2 =
1

h(1− v2v2)


−v1

1− v2v
2

v1v
2

0
−v1

 , l20,3 =
1

h(1− v2v2)


−v3

0
v3v

2

1− v2v
2

−v3

 ,

l2± = ∓ h
2

∆2


hWA2

∓(v2−γ22Λ2
∓)−v2−W 2(viv

i−v2v
2)(2κ̄−1)(v2−A2

∓γ22Λ2
∓)+κ̄A2

∓γ22Λ2
∓

W 2v1(2κ̄− 1)A2
∓(v2 − γ22Λ2

∓)
1 +W 2(viv

i − v2v
2)(2κ̄− 1)(1−A2

∓)− κ̄A2
∓

W 2v3(2κ̄− 1)A2
∓(v2 − γ22Λ2

∓)
−v2 −W 2(viv

i − v2v
2)(2κ̄− 1)(v2 −A2

∓γ22Λ2
∓) + κ̄A2

∓γ22Λ2
∓

 .

(A.11)

In the flux formulas in Section 5.4.1 we use the following convention for numbering the left
and right eigenvectors:

R= (r1, r2, r3, r4, r5) = (r−, r0,1, r0,2, r0,3, r+) ,

LT= (l1, l2, l3, l4, l5) = (l−, l0,1, l0,2, l0,3, l+) .
(A.12)

Analogously, the eigenvalues are numbered in this order:

Λ = diag (λ1, λ2, λ3, λ4, λ5) = diag (λ−, λ0,2, λ0,2, λ0,3, λ+). (A.13)
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Appendix B

Source Terms for the Evolution
Equations

The source terms in the hydrodynamic equations (2.25), which determine how the conserved
quantities evolve in the curved spacetime, translate in the CFC spacetime to the following form:

Q =



0

T µν
(
∂gν1

∂xµ
− Γ δ

µνgδ1

)
T µν

(
∂gν2

∂xµ
− Γ δ

µνgδ2

)
T µν

(
∂gν3

∂xµ
− Γ δ

µνgδ3

)
α

(
T µ0∂ lnα

∂xµ
− T µνΓ 0

µν

)


=



0

T 1µ∂g11

∂xµ
− g11X

1

T 2µ∂g22

∂xµ
− g22X

2

T 3µ∂g33

∂xµ
− g33X

3

T 0µ ∂α

∂xµ
− αX0


, (B.1)

where Xλ = T µνΓ λ
µν .
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B.1 Energy-Momentum Tensor

In the CFC metric, the energy-momentum tensor

T µν = ρhuµuν + Pgµν (B.2)

for an ideal fluid has the following components:

T µν =



1

α2
(ρhW 2−P )

1

α

(
β1P

α
+ρhW 2v̂1

)
1

α

(
β2P

α
+ρhW 2v̂2

)
1

α

(
β3P

α
+ρhW 2v̂3

)

1

α

(
β1P

α
+ρhW 2v̂1

)(
1

φ4
−

(β1)2

α2

)
P+ρhW 2(v̂1)2 −

β1β2

α2
P+ρhW 2v̂1v̂2 −

β1β3

α2
P+ρhW 2v̂1v̂3

1

α

(
β2P

α
+ρhW 2v̂2

)
−
β1β2

α2
P+ρhW 2v̂1v̂2

(
1

r2φ4
−

(β2)2

α2

)
P+ρhW 2(v̂2)2 −

β2β3

α2
P+ρhW 2v̂2v̂3

1

α

(
β3P

α
+ρhW 2v̂3

)
−
β1β3

α2
P+ρhW 2v̂1v̂3 −

β2β3

α2
P+ρhW 2v̂2v̂3

(
1

r2 sin2 θφ4
−

(β3)2

α2

)
P+ρhW 2(v̂3)2


,

(B.3)
with v̂i = vi − βi/α, and the four-velocity components u0 = W/α and ui = Wv̂i.

The projection Sij = ρhW 2vivj + γijP of the energy-momentum tensor onto the three-
dimensional hypersurface Σt̂ is given by

Sij =


ρhW 2(v1)2 +

P

φ4
ρhW 2v1v2 ρhW 2v1v3

ρhW 2v1v2 ρhW 2(v2)2 +
P

φ4r2
ρhW 2v2v3

ρhW 2v1v3 ρhW 2v2v3 ρhW 2(v3)2 +
P

φ4r2 sin2 θ

 , (B.4)

and the linear momenta Si = ρhW 2vi read

Si =

 ρhW 2v1

ρhW 2v2

ρhW 2v3

 . (B.5)

Note that in general neither Sij = T ij, nor Sij = Tij.
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B.2 Christoffel Symbols

Of the 64 Christoffel symbols Γ λ
µν , 40 are independent. In the numerical code, we replace the

time derivative φ,t by the analytic equivalent 1
6
φβk;k (see Equation (3.34)).

Γ 0
00 = − 1

α2

[
2r2(β2)3φ3φ,θ − αα,θβ2 + 2(β1)3φ3φ,r − αα,rβ1 + β1β2φ4(β1

,θ + r2β2
,r)+

+β1(β2)2r2φ4

(
1

r
+

2φ,r
φ

)
− αα,t + r2(β2)2φ4

(
β2
,θ −

2φ,t
φ

)
+

+(β1)2φ4

(
2β2φ,θ
φ

+ β1
,r −

2φ,t
φ

)
+ r2 sin2 θφ4

(
β2(β3)2 cot θ +

2β2(β3)2φ,θ
φ

+

β2β3β3
,θ +

β1(β3)2

r
+ β1β3β3

,r +
2β1(β3)2φ,r

φ
− 2(β3)2φ,t

φ

)]
, (B.6)

Γ 0
01 = − 1

2α2

[
−2αα,r + φ4

(
4β1β2

φ
+ β2β1

,θ + r2β2β2
,r + 2β1β1

,r + r2β3β3
,r sin2 θ+

+
4(β1)2φ,r

φ
− 4β1φ,t

φ

)]
, (B.7)

Γ 0
02 = − 1

2α2

[
−2αα,θ + φ4

(
β1β1

,θ + 2rβ1β2 + r2

(
β1β2

,r +
4β1β2φ,r

φ
+ 2β2β2

,θ+

+β3β3
,θ sin2 θ +

4(β2)2φ,θ
φ

− β2φ,t
φ

))]
, (B.8)

Γ 0
03 = − 1

2α2

[
r2 sin2 θφ4

(
β2β3

,θ + 2β2β3

(
cot θ +

2φ,θ
φ

)
+

2β1β3

r
+ β1β3

,r+

+
4β1β3φ,r

φ
− 4β3φ,t

φ

)]
, (B.9)

Γ 0
11 = − φ

α2

[
2β2φ,θ
φ

+ β1
,r +

2β1φ,r
φ
− 2φ,t

φ

]
, (B.10)

Γ 0
12 = − φ4

2α2

[
β1
,θ + r2β2

,r

]
, (B.11)

Γ 0
13 = −

r2 sin2 θφ4β3
,r

2α2
, (B.12)

Γ 0
22 = −r

2φ4

α2

[
β1

r
+

2β1φ,r
φ

+ β2
,θ +

2β2φ,θ
φ
− 2φ,t

φ

]
, (B.13)

Γ 0
23 = −

r2 sin2 θφ4β3
,θ

2α2
, (B.14)

Γ 0
33 = −r

2 sin2 θφ4

α2

[
β2 cot θ +

2β2φ,θ
φ

+
β1

r
+

2β1φ,r
φ
− 2φ,t

φ

]
, (B.15)
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Γ 1
00 =

αα,r
φ4
− β1β2α,θ

α
− (β1)2α,r

α
− β1α,t

α
− r2 sin2 θ

(
(β3)2

r
+ β3β3

,r +
2(β3)2φ,r

φ

)
−

−β1β1
,r − r2β2β2

,r −
2(β1)2φ,r

φ
− r2(β2)2

(
1

r
+

2φ,r
φ

)
+ β1

,t +
4β1φ,t
φ

+

+
β1φ4

α2

[
2(β1)3φ,r

φ
+ β1

(
r(β2)2 + β2β1

,θ + r2β2β2
,r +

2r2(β2)2φ,r
φ

+

+r2 sin2 θ

(
(β3)2

r
+ β3β3

,r +
2(β3)2φ,r

φ

))
+ (β1)2

(
2β2φ,θ
φ

+ β1
,r −

2φ,t
φ

)
+

r2

(
2(β2)2φ,θ

φ
+ (β2)2β2

,θ −
2(β2)2φ,t

φ

)
+ r2 sin2 θ(β3)2

(
β2 cot θ +

β2β3
,θ

β3
+

+
2β2φ,θ
φ
− 2φ,t

φ

)]
, (B.16)

Γ 1
01 =

2φ,t
φ
− β1α,r

α
+

φ4

2α2

[
β1
(
β2(β1

,θ + r2β2
,r) + r2β3 sin2 θβ3

,r

)
+

4(β1)3φ,r
φ

+

+2(β1)2

(
2β2φ,θ
φ

+ β1
,r −

2φ,t
φ

)]
, (B.17)

Γ 1
02 = −β

1α,θ
α

+
1

2

[
β1
,θ +

4β1φ,θ
φ
− r2β2

(
1

r
+

2φ,r
φ

)]
+
β1φ4

2α2

[
2β1β2r2

(
1

r
+

2φ,r
φ

)
+

+β1β1
,θ + r2β1β2

,r + r2

(
2β2β2

,θ + sin2 θβ3β3
,θ +

4(β2)2φ,θ
φ

− 4β2φ,t
φ

)]
, (B.18)

Γ 1
03 =

r2 sin2 θ

2

[
−β3

,r − 2β3

(
1

r
+

2φ,r
φ

)
+
φ4

α2

(
(β1)2β3

,r + 2(β1)2β3

(
1

r
+

2φ,r
φ

)
+

+β1β2

(
2β3 cot θ + β3

,θ +
4β3φ,θ
φ

)
− 4β1β3φ,t

φ

)]
, (B.19)

Γ 1
11 =

2φ,r
φ

+
φ4

α2

[
2(β1)2φ,r

φ
+ β1

(
2β2φ,θ
φ

+ β1
,r −

2φ,t
φ

)]
, (B.20)

Γ 1
12 =

2φ,θ
φ

+
φ4

2α2

[
β1β1

,θ + r2β1β2
,r

]
, (B.21)

Γ 1
13 =

r2 sin2 θφ4β1β3
,r

2α2
, (B.22)

Γ 1
22 = −r2

(
1

r
+

2φ,r
φ

)
+
r2φ4

α2

[
(β1)2

(
1

r
+

2φ,r
φ

)
+ β1β2

,θ +
2β1β2φ,θ

φ
− 2β1φ,t

φ

]
, (B.23)

Γ 1
23 =

r2 sin2 θφ4β1β3
,θ

2α2
, (B.24)

Γ 1
33 = r2 sin2 θ

[
−
(

1

r
+

2φ,r
φ

)
+
φ4

α2

(
(β1)2

(
1

r
+

2φ,r
φ

)
+ β1β2

(
cot θ +

2φ,θ
φ

)
−

−2β1φ,t
φ

)]
, (B.25)
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Γ 2
00 =

αα,θ
r2φ4

− (β2)2α,θ
α

− β2α,t
α
− β2β2

,θ −
2(β2)2φ,θ

φ
+ β2

,t +
4β2φ,t
φ
−

− sin2 θ

(
(β3)2 cot θ + β3β3

,θ +
2(β3)2φ,θ

φ

)
−
β1β1

,θ

r2
+

2(β1)3β2φ4φ,r
α2φ

− β1β2α,r
α

−

−2(β1)2φ,θ
r2φ

+
φ4

α2

[
β1

(
(β2)2(β1

,θ + r2β2
,r) + r2(β2)3

(
1

r
+

2φ,r
φ

)
+

+r2 sin2 θ

(
β2(β3)2

r
+ β2β3β3

,r +
2β2(β3)2φ,r

φ

))
+ (β1)2β2

(
2β2φ,θ
φ

+ β1
,r −

2φ,t
φ

)
+

+r2β2

(
(β2)2β2

,θ +
2(β2)3φ,θ

φ
− 2(β2)2φ,t

φ
+ sin2 θ

(
β2(β3)2 cot θ + β2β3β3

,θ+

+
2β2(β3)2φ,θ

φ
− 2(β3)2φ,t

φ

))]
, (B.26)

Γ 2
01 =

β2α,r
α
−
β1
,θ

2r2
− 2β1φ,θ

r2φ
+
β2
,r

2
+ β2

(
1

r
+

2φ,r
φ

)
+
β2φ4

2α2

[
2β1β1

,r +

+β2

(
β1
,θ +

4β1φ,θ
φ

+ r2β2
,r

)
+ r2 sin2 θβ3β3

,r +
4(β1)2φ,r

φ
− 4β1φ,t

φ

]
, (B.27)

Γ 2
02 =

2φ,t
φ
− β2α,θ

α
+
φ4β1β2β1

,θ

2α2
+
r2φ4β2

2α2

[
2β1β2

(
1

r
+

2φ,r
φ

)
+ β1β2

,r + 2β2β2
,θ+

+β3β3
,θ sin2 θ +

4(β2)2φ,θ
φ

− 4β2φ,t
φ

]
, (B.28)

Γ 2
03 =

sin2 θ

2

[
−β3

,θ − 2β3

(
cot θ +

2φ,θ
φ

)
+
r2φ4β2

α2

(
β2

(
β3
,θ + 2β3

(
cot θ +

2φ,θ
φ

))
+

+β1β3
,r −

4β3φ,t
φ

+ 2β1β3

(
1

r
+

2φ,r
φ

))]
, (B.29)

Γ 2
11 = −2φ,θ

r2φ
+
φ4β2

α2

[
2β2φ,θ
φ

+ β1
,r +

2β1φ,r
φ
− 2φ,t

φ

]
, (B.30)

Γ 2
12 =

1

r
+

2φ,r
φ

+
φ4β2

2α2

[
β1
,θ + r2β2

,r

]
, (B.31)

Γ 2
13 =

r2 sin2 θφ4β2β3
,r

2α2
, (B.32)

Γ 2
22 =

2φ,θ
φ

+
r2φ4

α2

[
2(β2)2φ,θ

φ
+ β1β2

(
1

r
+

2φ,r
φ

)
+ β2

(
β2
,θ −

2φ,t
φ

)]
, (B.33)

Γ 2
23 =

r2 sin2 θφ4β2β3
,θ

2α2
, (B.34)

Γ 2
33 = sin2 θ

[
− cot θ − 2φ,θ

φ
+
r2φ4β2

α2

(
β2 cot θ +

2β2φ,θ
φ

+ β1

(
1

r
+

2φ,r
φ

)
− 2φ,t

φ

)]
, (B.35)

Γ 3
00 = −β

3α,t
α
− β2β3α,θ

α
− β1β3α,r

α
+ β3

,t +
4β3φ,t
φ

+
φ4

α2

[
2(β1)3β3φ,r

φ
+ β1(β3)3r sin2 θ+
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+β1β2β3β1
,θ + (β1)2β3

(
2β2φ,θ
φ

+ β1
,r −

2φ,t
φ

)
+ r2

(
2(β2)3β3φ,θ

φ
+ β1β2β3β2

,r+

+β1(β2)2β3

(
1

r
+

2φ,r
φ

)
+ (β2)2β3

(
β2
,θ −

2φ,t
φ

))
+ r2 sin2 θ

(
β2(β3)3

(
cot θ +

2φ,θ
φ

)
+

+β2(β3)2β3
,θ + β1(β3)2β3

,r +
2β1(β3)3φ,r

φ
− 2(β3)3φ,t

φ

)]
, (B.36)

Γ 3
01 = −β

3α,r
α

+
β3
,r

2
+ β3

(
1

r
+

2φ,r
φ

)
+
φ4β3

2α2

[
2β1β1

,r + β2

(
β1
,θ +

4β1φ,θ
φ

+ r2β2
,r

)
+

+r2 sin2 θβ3β3
,r +

4(β1)2φ,r
φ

− 4β1φ,t
φ

]
, (B.37)

Γ 3
02 = −β

3α,θ
α

+
β3
,θ

2
+ β3

(
cot θ +

2φ,θ
φ

)
+
φ4β3

2α2

[
β1

(
2rβ2 + β1

,θ + r2β2
,r +

4r2β2φ,r
φ

)
+

+r2

(
2β2β2

,θ + sin2 θβ3β3
,θ +

4(β2)2φ,θ
φ

− 4β2φ,t
φ

)]
, (B.38)

Γ 3
03 =

2φ,t
φ

+
r2 sin2 θφ4

2α2

[
β2β3

(
2β3 cot θ + β3

,θ +
4β3φ,θ
φ

)
+ β1β3

(
β3
,r + 2β3

(
1

r
+

2φ,r
φ

))
+

+r2

(
2β2β2

,θ + sin2 θβ3β3
,θ +

4(β2)2φ,θ
φ

− 4β2φ,t
φ

)]
, (B.39)

Γ 3
11 =

φ4β3

α2

[
2β2φ,θ
φ

+ β1
,r +

2β1φ,r
φ
− 2φ,t

φ

]
, (B.40)

Γ 3
12 =

φ4β3

2α2
(β1

,θ + r2β2
,r), (B.41)

Γ 3
13 =

1

r
+
r2 sin2 θφ4β3β3

,r

2α2
+

2φ,r
φ
, (B.42)

Γ 3
22 =

r2φ4β3

α2

[
β1

(
1

r
+

2φ,r
φ

)
+ β2

,θ +
2β2φ,θ
φ
− 2φ,t

φ

]
, (B.43)

Γ 3
23 = cot θ +

r2 sin2 θφ4β3β3
,θ

2α2
+

2φ,θ
φ
, (B.44)

Γ 3
33 =

r2 sin2 θφ4β3

α2

[
β2

(
cot θ +

2φ,θ
φ

)
+ β1

(
1

r
+

2φ,r
φ

)
− 2φ,t

φ

]
. (B.45)
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Gravitational Wave Extraction

The computation of wave templates of the gravitational radiation emitted by the rotational
core collapse models is one of the main objectives of this work. In this section we will introduce
different approximate descriptions of the radiation field, and the numerical techniques we have
implemented in our code to extract gravitational radiation. A catalogue of wave templates for
all our runs can be found in Appendix D.

C.1 Multipole Expansion of the Radiation Field

Gravitational waves are in principle a highly nonlinear feature of a general relativistic spacetime.
This means that they can curve spacetime, and interact with themselves and the matter in the
system. Owing to this nonlinearity, it is rather difficult to specify to what extent the curvature
of spacetime due to some source can be attributed to a gravitational wave rather than to the
background curvature of some quasi-equilibrium solution. It is therefore much less ambiguous to
define gravitational waves in the so-called wave zone, which is the part of spacetime outside the
source zone and the near zone. In the source zone the gravitational waves are being generated,
and in the near zone they strongly interact with the background curvature, whereas in the
spacetime gµν of the wave zone, far away from the source, they can be regarded as a linearized
metric perturbation h̃µν propagating on the flat background Minkowski spacetime ηµν [85, 124]:

gµν = ηµν + h̃µν . (C.1)

In the transverse traceless coordinate gauge, where e.g. the components h̃µ0 vanish, the Einstein
equations can be linearized, and one gets a wave equation for the time dependent metric
perturbations h̃TT

ij :

2h̃TT
ij = 16πT̃ij, (C.2)

where T̃ij is the linearized energy momentum tensor in the weak field limit.

In the regime of the wave zone we can then decompose the radiation field of the gravitational
wave into a multipole expansion of the transverse traceless part of the strain amplitude h̃TT

ij .
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In the wave zone, the strain amplitude will fall off linearly with the inverse of the distance r to
the source:

h̃TT
ij =

Ãij(t− r, θ, ϕ)

r
. (C.3)

For the expansion, we now absorb the angular dependence of Ãij(t−r, θ, ϕ) in a sum of pure ten-
sor spherical harmonics T̃E2 lm

ij and T̃B2 lm
ij , and we get the following expression for the radiation

field:

h̃TT
ij =

1

r

∞∑
l=2

l∑
m=−l

(
ÃE2
lm(t− r)T̃E2 lm

ij (θ, ϕ) + ÃB2
lm(t− r)T̃B2 lm

ij (θ, ϕ)
)
, (C.4)

where the coefficients ÃE2
lm and ÃB2

lm are the respective amplitudes of the tensor harmonics. They
are also called electric (E2) and magnetic (B2) multipoles of the radiation field.

By truncating the series (C.4), the radiation field h̃TT
ij can be approximated. In the New-

tonian quadrupole approximation, all terms in the expansion except the first are neglected.
Additionally, for the quadrupole moments ÃE2

2m and ÃB2
2m the Newtonian expressions AE2

2m and
AB2

2m are chosen. For an axisymmetric source in spherical coordinates the quadrupole field then
depends only on the quadrupole moment AE2

20 , as all other quadrupole moments vanish:

hTT
θθ =

1

r
AE2

20 (t− r)TE2 20
θθ , (C.5)

where

AE2
20 =

d2

dt2

(
32π3/2

√
15

∫
ρ

(
3

2
cos2 θ − 1

2

)
r4 sin θdrdθ

)
. (C.6)

The remaining tensor harmonic TE2 20
θθ also exhibits a particularly simple geometrical form:

TE2 20
θθ =

1

8

√
15

π
sin2 θ. (C.7)

In general, fully nonlinear gravitational waves are a nonlocal phenomenon. However, in the
quadrupole approximation of the radiation field (C.5), the contribution of the source to the
radiation field can be reduced to an integral over the mass density, which thus has compact
support. This property makes this formula particularly well suited for numerical application,
as the integral has to be done only over those parts of spacetime which contain matter.

In the quadrupole approximation, the only independent nonzero field component is hTT
θθ . It

is related to the other nonzero component hTT
φφ by hTT

θθ = −hTT
φφ .
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C.2 Standard Quadrupole Formula

According to Equation (C.5), the quadrupole radiation field hTT
θθ of an axisymmetric source is

given by

hTT
θθ =

1

8

√
15

π
sin2 θ

AE2
20

r
, (C.8)

where the radiation field quadrupole moment AE2
20 can be expressed as the second time derivative

of the mass quadrupole moment ME2
20 of the source:

AE2
20 =

d2ME2
20

dt2
=

d2

dt2

(
32π3/2

√
15

∫
ρ

(
3

2
cos2 θ − 1

2

)
r4 sin θdrdθ

)
. (C.9)

This formulation of the radiation field as the second time derivative of ME2
20 is known as the

standard quadrupole formula (SQF).

A numerical implementation of this formula is rather problematic. Due to the second time
derivative of the mass quadrupole moment ME2

20 , discretization errors in both space and time
will produce significant numerical high frequency noise in the gravitational wave signal. The
amplitude of these oscillation artifacts can be higher than the total amplitude of the signal.
If the signal is Fourier transformed into the frequency domain, the unphysical amplification of
the high frequency portion of the gravitational wave becomes clearly visible (see Appendix C.4,
or e.g. the graph for the SQF in Figure 3 in [31]).

This problematic property of the quadrupole formulation (C.9) is worsened by the fact that
in this equation the density is multiplied by an r4 weighting term. Because of this weighting,
mass elements in the exterior parts of the source are strongly contributing to the signal. On
the other hand, for large radii the resolution of the grid is coarser due to logarithmic spacing
(see Section 5.1.1). As a consequence, the discretization errors and thus the deviation from the
analytic solution become larger.
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C.3 First Moment of Momentum Density Formula

To overcome the problems with the numerical implementation of the standard quadrupole for-
mula (C.8) due to the high order time derivative, one can try to reduce the order of the derivative
by analytic transformations. This can be accomplished by transforming the troublesome time
derivatives into less problematic spatial derivatives. That technique has been applied to the
standard quadrupole formula by Finn [31], and Blanchet et al. [14].

This reduction of the time derivative by one order can be done in different ways, for example
by re-expressing the first time derivative of the mass quadrupole as the divergence of the
momentum density Si. We have chosen another approach, where the weight of the moment
arm r4 is reduced to r3. In this first moment of momentum density formulation, the expression
for the quadrupole moment AE2

20 in the radiation field equation (C.8) reads:

AE2
20 =

d

dt
NE2

20 =
d

dt

(
32π3/2

√
15

∫
ρ
(
vr(3 cos2 θ − 1)− 3vθ sin θ cos θ

)
r3 sin θdrdθ

)
. (C.10)

Compared to the SQF, the numerical computation of the wave signal on the basis of this
formula exhibits much better properties. Because of the reduction of the order of the time
derivative and the smaller effective momentum arm which emphasizes the interior parts of the
matter distribution, the high frequency noise is significantly suppressed.
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C.4 Stress Formula

The technique of reducing the time derivative order can be applied once more to the first mo-
ment of momentum density formulation. Then in the resulting stress formula for the radiation
field, all time derivatives have been absorbed in spatial derivatives, and the time dependence
of AE2

20 comes directly from the variation in time of the single terms in the following expression:

AE2
20 =

32π3/2

√
15

∫
ρ
(
v1v

1(3 cos2 θ − 1) + v2v
2(2− 3 cos2 θ)− v3v

3 − 6rv1v2 sin θ cos θ−

−r∂Φ

∂r
(3 cos2 θ − 1) + 3

∂Φ

∂θ
sin θ cos θ

)
r2 sin θdrdθ, (C.11)

where Φ is the Newtonian gravitational potential, which is calculated by solving the Poisson
equation with the rest mass density as source,

∆Φ = 4πρ. (C.12)

Note that again the weight of the moment arm has been reduced by one power to r2. In our
code we solve the Poisson equation (C.12) for the Newtonian potential Φ by means of expansion
into Legendre polynomials [146].

The appearance of Φ in an equation for the gravitational waves, which are a genuinely
general relativistic effect of a curved spacetime, is no contradiction: According to the post-
Newtonian expansion of the metric gµν , the Newtonian potential can be regarded as a first-
order approximation of certain metric quantities. In the same spirit, the approximation of
gravitational radiation as linearized perturbations of the metric leads to the above use of the
Newtonian potential in the expression (C.11) for the radiation field.

We now want to compare the different methods (C.9, C.10, C.11) for numerically calculating
the gravitational wave signal: For this we have applied all three formulations for extracting
the signal from a typical rotational core collapse simulation. The results for the quadrupole
moment AE2

20 of model A3B1G1 are shown in Figure C.1. Obviously the higher the order of time
derivative involved in the calculation of AE2

20 is, the more the signal is dominated by numerical
high frequency noise. However, the overall shape of the signal, which consists of the lower
frequency contributions, is virtually unaffected by the choice of the wave extraction method.

This becomes particularly clear in the corresponding spectral energy distribution in the
frequency domain, plotted in the upper panel of Figure C.2: Here the high order time derivatives
in the first moment of momentum density formula, and especially in the standard quadrupole
formula lead to an amplification of the high frequency spectrum compared to the stress formula,
whereas the shape of the low frequency spectrum does not depend much on the wave extraction
method. The unphysical amplification of the energy contained in high frequency oscillations
is also expressed in the behavior of the radiated gravitational wave energy Erad over time,
which is shown in the lower panel of Figure C.2. As the calculation of the energy according
to Equation (7.10) involves one more time derivative of the quadrupole moment, the energy
stored in the unphysical high frequency oscillations in the signal obtained by Equation (C.10)
overestimates the total radiation energy release Erad tot, which is the constant value of Erad after
ring-down at about t >∼ 100 ms, compared to the energy obtained from the stress formula by a
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Figure C.1: Comparison of the three numerical wave extraction methods used in our code,
applied to the gravitational wave signal amplitude AE2

20 of model A3B1G1: The signal obtained by
the stress formula (C.11) (upper panel) is smooth, while the signal obtained by the first moment
of momentum density formula (C.10) (middle panel) exhibits unphysical high frequency noise
during and after the bounce. The signal obtained by the standard quadrupole formula (C.9)
(lower panel) is completely superimposed by noise with an amplitude much higher than the
actual wave signal. Note that the vertical scale of the graph in the lower panel is much larger
than the scale of the other two graphs.
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Figure C.2: Comparison of the three numerical wave extraction methods used in our code,
applied to the spectral energy distribution dE/dν (upper panel) and the radiated energy Erad

over time (lower panel) of the gravitational wave signal in model A3B1G1: In the low frequency
range the energy spectra of the signals obtained with the stress formula (solid line, a), the first
moment of momentum density formula (dashed line, b), and the standard quadrupole formula
(dashed-dotted line, c) coincide closely. At high frequencies, the methods involving a first and
second order time derivative exhibit much higher energy contributions due to high frequency
numerical noise in the wave signal, whereas for the stress formula the energy spectrum falls off
exponentially. In the lower panel the time evolution of Erad is plotted for the signal obtained
with the stress formula (solid line) and with the first moment of momentum density formula
(dashed line). The dotted vertical line marks the time of bounce tb.
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large amount. As a result of these apparent problems with the numerical implementation of the
radiation formulas involving time derivatives, we have chosen to use the stress formula (C.11)
for the calculation of waveforms in all our simulations. However, we note again, that this is an
entirely numerical effect, and the three Equations (C.9, C.10, C.11) are analytically equivalent.
The property of the numerical implementation of the stress formula (C.11) to correctly represent
the actual quadrupole wave amplitude is demonstrated for the two collapse models A3B2G4
and A3B3G1 in Figure C.3.
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Figure C.3: Comparison of the gravitational wave signal amplitude AE2
20 obtained by using the

stress formula (waveform I; solid lines) and the first moment of momentum density formula
(waveform II; dashed lines): In the waveform of the regular collapse model A3B2G4 (upper
panel), all features of waveform I are very well captured by waveform II, and the amplitudes of
the oscillations coincide closely for both waveforms. In this model the first moment of momen-
tum density formula yields a waveform with very little noise. The two waveforms for the multiple
bounce models A3B3G1 match also very well; however, during the first peak, waveform I, which
is calculated using the stress formula, develops an offset compared to waveform II. Note the
typical high-frequency noise in waveform II of this model right after the first bounce.
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C.5 Ambiguities of the Quadrupole Formula in Relativ-

ity

In a mathematically strict sense the multipole expansion of the radiation field (C.4) is only
defined on a flat Minkowski background spacetime, on which the gravitational waves propagate
as a linear perturbation. However, the multipole amplitudes and the tensor harmonics, although
defined in flat spacetime, contain information about the wave source, which in general is situated
in the strong field and high velocity region. This situation is resembled in our simulations, where
the formulation for the gravitational waves, calculated by the different quadrupole methods, is
valid only for large radii r � Riron core outside the computational domain. On the other hand,
the quadrupole moment AE2

20 is computed as a spatial integral over the relativistic matter in a
curved spacetime, as the metric gµν is certainly not Minkowskian.

However, in the Newtonian quadrupole formulation for hTT
θθ , the quadrupole moment AE2

20 is
only the Newtonian approximation of the general moment ÃE2

20 for a relativistic source. This
approximation can give rise to several ambiguities in the quadrupole formula, especially in the
stress formulation (which we use in the following investigation):

Covariant velocities:
In the Newtonian quadrupole formula, the physical velocities vphys

i = (vr, vθ, vϕ) are used
instead of the covariant three-velocity components vi, which are the natural velocities of
the general relativistic hydrodynamics. We have chosen the following natural transfor-
mation to get the physical velocities as the Newtonian limit of vi:

vphys
i =

√
δji viv

j =
√
γijvj. (C.13)

This formulation is equivalent to the one used in the boundary condition for the velocity
components (see Equations (5.4–5.6)).

Limit of the density:
The relativistic expressions for the density ρ and ε = ρε have the same Newtonian limit ρ,
which shows up in the stress formula (C.11) directly, and implicitly via the equation for
the Newtonian potential Φ (C.12). In practice, the use of either of the relativistic gener-
alizations of the Newtonian density leads to only marginal differences in the gravitational
wave signal.

Radius coordinate:
Whereas in the Newtonian formulation, which is based on Euclidean geometry, the defini-
tion of the radius coordinate r is no source of ambiguity, in the Riemannian geometry of a
curved spacetime the circumferential radius and the coordinate radius need not coincide.
For example, we can use either the isotropic radius r, or the Schwarzschild radius r̂ in
Equation (C.11), as they have the same Newtonian limit. However, for a strongly gravi-
tating source, whose extent R is of the order of the gravitational mass M , the deviation
between r and r̂ becomes important, which can be seen from the relation between both
radial coordinates for a vacuum spacetime in Equation (5.9).
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We have probed the implications of this ambiguity on the gravitational signal in our
simulations. For this we consider the following transformation between the isotropic
coordinate r and the Schwarzschild coordinate r̂ in the line element of a three-metric
with zero off-diagonal elements:

dσ2 = φ4dr2 + φ4r2dΩ = A2dr̂2 + r̂2dΩ. (C.14)

This yields the transformation expressions for the radial coordinates and the metric func-
tions:

r̂ = φ2r, A =

(
1 +

2r

φ

∂φ

∂r

)−1

. (C.15)

The use the Schwarzschild radius coordinate r̂ instead of the isotropic radius coordinate
r in the expression for the radiation quadrupole leads to an increase of the quadrupole
amplitude AE2

20 of up to 5% without changing the shape and frequencies of the signal
significantly. This amplification of AE2

20 is due to the effective increase in the radius r̂ with
respect to r: r̂(r) > r.

From our point of view, there is no physical motivation to give preference to either of the
two radius coordinates. The waveforms in this thesis have all been obtained using the
isotropic radius, as this is the principal coordinate in our code.

Newtonian gravitational potential:
The most problematic issue in the stress formula (C.11) is the correct treatment of the
Newtonian potential derivative terms, notably the expressions ∂rΦ and ∂θΦ: Let us con-
sider a rapidly rotating axisymmetric neutron star model in equilibrium. Then no matter
how dense the matter distribution is, or how rapid the rotation, as long as the model
is both analytically and numerically stable, the gravitational wave emission should be
zero, because such a configuration, at least in perfect equilibrium, has a constant mass
quadrupole moment. (In practice its gravitational wave signal will oscillate with small
amplitude around zero due to numerical truncation errors.)

This vanishing gravitational wave emission is reflected in the radiation stress formula
by a cancellation of the six single terms in the integral. For an equilibrium solution in
Newtonian gravity, the sum of the terms will be, at least analytically, balanced out to zero.
However, as the radiation stress formula in valid only in Newtonian approximation, for a
relativistic neutron star model the balance between the single terms, particularly the large
terms involving the rotational velocity and the derivatives of the potential Φ, need not
work. This is indeed the case, as the left panel of Figure C.4 illustrates. There we plot the
gravitational wave amplitude AE2

20 , obtained by using the stress formula, for the rapidly
rotating neutron star equilibrium model from Section 6.2. While in a Newtonian model
the wave amplitude would oscillate around zero (due to initial small density oscillations)
and also be damped away to zero, for the relativistic model we see an unphysical non-
negligible positive offset, which is due to the mismatch between the single terms in the
radiation formula. In the formulations (C.9) and (C.10) this problem does not occur, as
no large nonzero terms have to be canceled.

One strategy to get rid of this failed matching between the rotational velocity and the
potential derivatives is to find a modified expression for the potential Φ̂ which takes into
account the relativistic effects better than the Newtonian Φ. In fact there are other
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Figure C.4: Offset in the gravitational wave amplitude AE2
20 of a rotating neutron star model

for different formulation of the potential term in the stress formula: If the Newtonian potential
Φ is used, the wave signal possesses a large positive offset (left panel); if the combination of
metric components Φ̂ is used, the offset is even higher, but negative (right panel). Both signals
initially oscillate due to small oscillatory motions in the neutron star; these oscillations are
damped away within a few rotation periods.

formulations for the gravitational potential which are equivalent up to the first post-
Newtonian order [14]. One possibility is to set−(1+2Φ̂) equal to some metric components.
Two such expressions are the following, where the metric components are the square root
of the trace of gµν , and the conformal factor φ4, respectively:

Φ̂ =
1

2
(1− αφ6), Φ̂ =

1

2
(1− φ4). (C.16)

We have chosen to take the latter expression in Equation (C.16). Replacing Φ by Φ̂ in
the stress formula then yields an even larger, but now negative, offset in the gravitational
wave signal, as can be seen in the right panel of Figure C.4. Thus by combining Φ and Φ̂
as a weighted sum Φ̃ = (Φ̂+aΦ)/(1+a), we can bring the offset to zero. It turns out that
the weight factor is nearly constant for a large variety of rotating neutron star models. By
comparing the wave signal obtained from such a modified potential Φ̃ to for example the
one obtained by the SQF, one can ensure that the offset has been suppressed. This can
be seen for a typical collapse waveform in Figure C.5. Additionally, with this weighting
method, the amplitude and shape of the waveform is captured correctly (see Figure C.3
in Section C.4). With this method we are able to apply the numerically superior stress
formula for gravitational radiation to our relativistic collapse simulations.
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Figure C.5: Reduction of the offset in the gravitational wave amplitude AE2
20 in the rotational

core collapse model A3B2G4 with the weighting method applied to the stress formula: If the
Newtonian potential Φ is used, the wave signal possesses a large positive offset (dashed-dotted
line); if the combination of metric components Φ̂ is used, a large negative offset occurs (dashed
line). A weighted sum of these two signals yields a waveform with practically zero offset (solid
line). This combined signal exhibits no high frequency noise, as its constituents have been
obtained using the stress formula.
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Appendix D

Density Evolution and Gravitational
Wave Signal Catalogue

In this chapter we present plots of the evolution of the central density ρc (or, for the toroidal
A4 runs with A = 107 cm, the maximum density ρmax), and the gravitational wave signal
amplitude AE2

20 for all 26 simulations in both relativistic and Newtonian gravity.

The corresponding maxima of ρc and AE2
20 are listed in Tables 7.1–7.3 and Tables 7.4–7.6,

respectively.

235



APPENDIX D. DENSITY EVOLUTION AND GRAVITATIONAL WAVE SIGNAL
CATALOGUE

90.0 100.0

t [ms]

-2000.0

-1000.0

0.0

A
E

2

20
 [

cm
]

0.0

1.0

2.0

3.0

4.0

5.0

ρ c [
10

14
 g

 c
m

-3
]

90.0 100.0 110.0

t [ms]

-2000.0

-1000.0

0.0

1000.0

A
E

2

20
 [

cm
]

0.0

1.0

2.0

3.0

4.0

5.0

ρ c [
10

14
 g

 c
m

-3
]

A1B1G1N2 A1B2G1N2

80.0 90.0 100.0 110.0 120.0 130.0

t [ms]

-2000.0

-1000.0

0.0

A
E

2

20
 [

cm
]

0.0

1.0

2.0

3.0

4.0

ρ c [
10

14
 g

 c
m

-3
]

60.0 70.0 80.0 90.0 100.0

t [ms]

-2000.0

-1000.0

0.0

1000.0

A
E

2

20
 [

cm
]

0.0

1.0

2.0

3.0

4.0

ρ c [
10

14
 g

 c
m

-3
]

A1B3G1N2 A1B3G2N2

Figure D.1: Evolution of the central density and gravitational wave signal in the relativistic
(solid lines) and Newtonian (dashed lines) simulation of models A1B1G1 (upper left panel),
A1B2G1 (upper right panel), A1B3G1 (lower left panel), and A1B3G2 (lower right panel): The
central density ρc is plotted in the upper graphs, the signal amplitude AE2

20 in the lower graphs.
The horizontal dotted lines in the density plots mark the nuclear density, the vertical dotted
lines mark the times of maximum central density tb.
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Figure D.2: Evolution of the central density and gravitational wave signal in the relativistic
(solid lines) and Newtonian (dashed lines) simulation of models A1B3G3 (upper left panel),
A1B3G5 (upper right panel), and A2B4G1 (lower left panel): The central density ρc is plotted
in the upper graphs, the signal amplitude AE2

20 in the lower graphs. The horizontal dotted lines in
the density plots mark the nuclear density, the vertical dotted lines mark the times of maximum
central density tb.
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Figure D.3: Evolution of the central density and gravitational wave signal in the relativistic
(solid lines) and Newtonian (dashed lines) simulation of models A3B1G1 (upper left panel),
A3B2G1 (upper right panel), A3B2G2 (lower left panel), and A3B2G4soft (lower right panel):
The central density ρc is plotted in the upper graphs, the signal amplitude AE2

20 in the lower
graphs. The horizontal dotted lines in the density plots mark the nuclear density, the vertical
dotted lines mark the times of maximum central density tb.
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Figure D.4: Evolution of the central density and gravitational wave signal in the relativistic
(solid lines) and Newtonian (dashed lines) simulation of models A3B2G4 (upper left panel),
A3B3G1 (upper right panel), A3B3G2 (lower left panel), and A3B3G3 (lower right panel): The
central density ρc is plotted in the upper graphs, the signal amplitude AE2

20 in the lower graphs.
The horizontal dotted lines in the density plots mark the nuclear density, the vertical dotted
lines mark the times of maximum central density tb.
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Figure D.5: Evolution of the central density and gravitational wave signal in the relativistic
(solid lines) and Newtonian (dashed lines) simulation of models A3B3G5 (upper left panel),
A3B4G2 (upper right panel), and A3B5G4 (lower left panel): The central density ρc is plotted
in the upper graphs, the signal amplitude AE2

20 in the lower graphs. The horizontal dotted lines in
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Figure D.6: Evolution of the central density and gravitational wave signal in the relativistic
(solid lines) and Newtonian (dashed lines) simulation of (the toroidal) models A4B1G1 (upper
left panel), A4B1G2 (upper right panel), A4B2G2 (lower left panel), and A4B2G3 (lower right
panel): The central density ρc is plotted in the upper graphs, the signal amplitude AE2

20 in the
lower graphs. The horizontal dotted lines in the density plots mark the nuclear density, the
vertical dotted lines mark the times of maximum central density tb.
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Figure D.7: Evolution of the central density and gravitational wave signal in the relativistic
(solid lines) and Newtonian (dashed lines) simulation of (the toroidal) models A4B4G4 (upper
left panel), A4B4G5 (upper right panel), A4B5G4 (lower left panel), and A4B5G5 (lower right
panel): The central density ρc is plotted in the upper graphs, the signal amplitude AE2

20 in the
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