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Introduction

The visual system is one of the most extensively studied parts of the mam-
malian brain. Nevertheless, it is still largely unknown how visual information
is processed in the cortex so that animals and humans can navigate with ap-
parent ease in a complex environment. Understanding the underlying cortical
circuitry would probably open new ways to treat brain diseases and would
as well solve a difficult problem in the design of autonomous robots, namely
vision.

The cortical area specialized for vision is called the visual cortex. The pri-
mary visual cortex is the subregion where visual information is first relayed
into the cortex. In a pioneering series of experiments, Hubel and Wiesel have
shown that neurons in the primary visual cortex respond to stimulation within
a certain region on the retina, the so-called receptive field. Most cells respond
preferentially to bar-like stimuli of a specific orientation and are activated pre-
dominantly through one of the two eyes (Hubel and Wiesel 1962).

The retinal position of the receptive field, the preferred orientation, and
the ocular dominance of recorded neurons are graded functions of the cortical
position of the recording site. Therefore, the relations between cortical loca-
tion and the various neuronal response properties are referred to as cortical
maps, viz., the retinotopic, the orientation preference, and the ocular domi-
nance map. Current experimental data indicate that the final layout of these
maps is shaped partially by neuronal activity and visual experience during a
certain critical period early in life (Crair et al. 1998, Issa et al. 1999).

Several theoretical studies (von der Malsburg 1973, Linsker 1986a, Linsker
1986b, Miller 1994, Wimbauer et al. 1997a, Wimbauer et al. 1997b, Miller et al.
1999) have proposed that cortical orientation preference may arise from a Heb-
bian learning mechanism (Hebb 1949) driven by correlated activity of the af-
ferent neurons. In the presence of a circularly symmetric lateral wiring within
the cortex, these models predict the emergence of a nicely ordered orientation
map that is formed by the resulting arrangement of afferent connections.

The afferent cells are located in the lateral geniculate nucleus (LGN), where
visual information is relayed from the eyes to the cortex. As opposed to most
cortical neurons, geniculate cells are monocular, i.e., they are activated exclu-
sively by one eye. Hence, the primary visual cortex is the first stage along the
visual pathway to combine input from both eyes, and so there are, precisely
speaking, two separate orientation maps, one for either eye.

As such, the above models of correlation-based map formation have
been challenged by reverse-lid-suturing experiments (Gédecke and Bonhoef-
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4 Introduction

fer 1996, Sengpiel et al. 1998) in which Kittens are raised so that both eyes do
never receive common visual input. If the development of geniculocortical
afferents were driven by activity correlations in the LGN and these correla-
tions were mainly determined by the correlations of the visual input, then the
two maps would form independently and could be expected to be different.
Optical recordings, however, show them to be nearly identical.

Recently, it has been demonstrated that the emergence of ocularly matched
orientation maps can be explained within the framework of correlation-based
development, if an appropriate amount of geniculate inter-eye activity corre-
lations is assumed (Erwin and Miller 1998). Although strong inter-eye corre-
lations have been found to be present in the ferret’s LGN before eye opening
(Weliky and Katz 1999), it is still unclear whether this model can actually ac-
count for the outcome of the reverse-lid-suturing experiments.

An alternative approach is based on a geometric argument (Wolf et al.
1996). As the authors have pointed out, the cortical region in which the ex-
periments have been carried out is shaped as a narrow band. The process of
pattern formation in this area may therefore be subject to strong confinement,
i.e., the layout of the developing orientation map could be predetermined by
the boundary conditions.

In this work we propose a model of layer 4 of the primary visual cortex
consisting of laterally interconnected excitatory and inhibitory spiking neu-
rons. It combines the idea of correlation-based learning of geniculocortical
afferents with Hebbian development of short-range intracortical connections.

Using large-scale computer simulations we demonstrate that in this kind of
network the spontaneous activity of cortical cells alone can drive the plasticity
of lateral connections to produce a connectivity pattern whose overall layout
closely resembles that of a measured orientation map. The formation of such
an intracortical orientation map is independent of feedforward input from the
LGN. It could therefore occur at an early stage of visual development, when
geniculate afferents have not yet innervated cortical layer 4.

Furthermore, we show that a correlation-based development of the genic-
ulate afferents can interact with the pattern of intracortical connections so that
the emerging feedforward orientation map and the intracortical map will be
in accord with each other. Thus, the layout of the feedforward map is more
or less predetermined once the intracortical connectivity is fully established
and remains fixed. This provides a very natural explanation for the remark-
able stability of orientation maps that has been found in various experiments
(Kim and Bonhoeffer 1994, Godecke and Bonhoeffer 1996, Weliky and Katz
1997, Sengpiel et al. 1998, Sengpiel et al. 1999).

An analytic investigation of the network’s learning dynamics helps to un-
derstand the mechanisms leading to these interesting results. In our model,
the efficacy of each neuronal contact is modified in dependence on the relative
timing of the spikes emitted by the cells it is connecting, and so the plasticity
is driven mainly by spike-spike correlations in the network’s activity. Hence,
we first present a mathematical analysis of the spike statistics in recurrent net-
works of spiking cells. We derive approximative expressions for the mean
activity and the two-spike correlation function and compare the results with a
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series of numerical simulations.

Then we use the obtained approximations to study the learning process in
a simplified version of our cortical network model. The simplified network
comprises linear excitatory but no inhibitory neurons. Starting from spike-
based learning rules, we derive two systems of non-linear differential equa-
tions to describe the temporal evolution of the feedforward and of the lateral
connectivity. By means of a linear stability analysis we show how a feedfor-
ward orientation map can emerge and how the development of the map can be
guided by an anisotropic intracortical connectivity pattern. As for the plastic-
ity of lateral connections it turns out that the simplified model cannot account
for the formation of intracortical orientation maps — probably because it lacks
inhibitory neurons to limit the overall network activity.

The thesis is organized as follows. Chapter 1 provides a short survey of the
visual pathways from the eye to the cortex and of their development during
ontogeny. In Chapter 2 we then introduce our model of the primary visual
cortex and examine the synaptic plasticity in this model using numerical sim-
ulations. Chapter 3 is devoted to a mathematical investigation of the spike
statistics in recurrently interconnected networks of spiking neurons. The re-
sults are required in Chapter 4, where we present an analytical study of the
synaptic dynamics using a simplified version of our model.
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Chapter 1

Central Visual Pathways

The developmental model we shall discuss throughout the present work is
concerned with processes of self-organization in the mammalian primary vi-
sual cortex. The following chapter is intended to introduce the most important
biological concepts required for an understanding of this model. To this end,
we will examine the flow of visual information along the visual pathway from
the eye to the cortex and survey the ontogenetic development of the related
anatomical structures. Of course, we will consider the most important stages
only; for a detailed exposition the reader is referred to standard textbooks of
(visual) neuroscience like those of Buser and Imbert (1992), Kandel et al. (1997),
Nicholls et al. (1992), Thompson (1993), and Zeki (1994).

An overall view of the visual pathways from the retina to the primary vi-
sual cortex is given in Fig. 1.1. Light entering the eyes through the lenses is
transformed into electrical signals by the retinae. In particular, light origi-
nating from the left half of the outside visual field, i.e., from the left visual
hemifield reaches the right part of either eye’s retina, whereas light originat-
ing from the right hemifield is mapped onto the left hemiretinae. The resulting
electrical signals leave the eyes along the optic nerves. At the optic chiasm the
nerve fibres are partially crossed so that the fibres from both right hemiretinae
are merged into the right optic tract while the fibres from the left hemiretinae
are bundled into the left optic tract. Each optic tract thus contains a complete
representation of one visual hemifield.

The lateral geniculate nuclei (LGN) are the first relay stations of visual in-
formation outside the eyes. Either LGN is innervated by one optic tract and,
accordingly, receives information from one visual hemifield. Therefore, the left
visual hemifield is represented in the right LGN whereas the right hemifield is
represented in the left LGN. The output fibres of the LGN, called the optic ra-
diation, terminate in layer 4 of the primary visual cortex. Each LGN projects to
the primary visual cortex of its own side so that again either part of the visual
cortex receives a representation of the contralateral part of the visual field.

Before the involved structures and their function can be described in more
detail we must investigate the elements they consist of, the individual nerve
cells. We shall do this in the next section. After that we we will have a closer
look at the retina, the lateral geniculate nucleus, and the primary visual cortex
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8 Chapter 1. Central Visual Pathways
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Figure 1.1: The visual pathways from the retina to the primary visual cortex
are shown schematically. Light originating from the left half of the visual field
reaches the right part of either retina, and vice versa. The electrical signals pro-
duced by the retinae leave the eyes along the optic nerves. At the optic chiasm
the nerve fibres are partially crossed so that the fibres from both right hemireti-
nae and those from both left hemiretinae are merged into the right and the left
optic tract, respectively. The optic tracts innervate the lateral geniculate nuclei
(LGN), which are the first relay stations outside the eyes. The output fibres of
the LGN, called the optic radiation, terminate in the primary visual cortex. As
a consequence of this connectivity, the left LGN and the left part of the visual
cortex receive a complete representation of the right visual hemifield, and vice
versa. (After Nicholls et al. 1992.)



1.1. Neurons 9

in Sects. 1.2 through 1.4. Section 1.5 will then give a survey of the developmen-
tal stages that will be relevant to our model of cortical self-organization. These
include the emergence and the maturation of the cortical layers and the estab-
lishment of the geniculocortical connectivity, i.e., the projections from the LGN
to the primary visual cortex. Finally, we shall summarize the main findings of
this chapter in Sect. 1.6.

1.1 Neurons

The individual nerve cells, or neurons, are the building blocks of the central
nervous system and are commonly thought to be the basic units of biological
information processing. In spite of their conspicuous appearance, nerve cells
are like normal cells in many respects. The major differences to other cells arise
from their special function of transforming and transmitting electrical signals.

1.1.1 Structure and Electrical Properties

A typical cortical neuron is shown in panel (a) of Fig. 1.2, a more schematic
view is given in panel (b). The cell body, called soma, contains the nucleus
and the same organelles as other cells. Several fibres extend from the soma
in different directions. Most of these fibres are to receive signals from other
neurons. They are called dendrites and form a tree-like structure, the dendritic
tree. Exactly one of the fibres is the axon, along which the neuron’s output
signals are conducted to their targets. Once the axon has left the cell body, it
may split and send out numerous axonal collaterals so as to reach different
targets at different locations of the nervous system.

Nerve cells transform and transmit electrical signals. The interior of a neu-
ron that is not activated remains at a resting membrane potential of about
—65 mV with respect to the outside. This potential results from differences in
the concentrations of several types of ions between the intracellular and the
extracellular medium. The most important types of ions include Na™, K,
Cl—, and organic anions. The unequal distribution of ions across the cell mem-
brane is established and maintained by an active mechanism, the metabolically
driven Na*-K* pump, which transports Na™ from the inside of the cell to the
outside and K™ from the outside to the inside. The resting potential provides
the baseline for the electrical signals traveling along the cell membrane. When
the membrane potential becomes more negative then the membrane is said to
be hyperpolarized, whereas a shift of the potential towards zero or positive
values is called depolarization.

A pulse of current that is injected into one of the dendrites — e.g., as a result
of an incoming signal from another neuron — will cause a transient change
of the membrane potential to spread over the neuron and will thus induce a
transient depolarization or hyperpolarization of the cell body. It is commonly
assumed that the dendrites behave like passive cables so that the propagation
of electrical signals along the dendrites can be described using linear cable
theory. As a consequence, the perturbation of the membrane potential at the
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Figure 1.2: Panel (a) visualizes a typical cortical neuron in a drawing by y Ca-
jal (1911). A more schematic presentation (adapted from Kandel et al. 1997) is
given in panel (b). The cell body, or soma, contains the nucleus and the same
organelles as other cells. Several fibres extend from the soma, most of which
are so-called dendrites. They are to receive input from other nerve cells. Ex-
actly one of the fibres, however, is the axon, along which the neuron’s output
signals are conducted to their targets. The axon may split and send out nu-
merous collaterals so as to reach different targets at different locations in the
nervous system.

soma in response to multiple dendritic current injections is simply the sum
of the responses to the individual injections. In this sense, the dendritic tree
can be regarded as an integrator where all the incoming signals are added up
linearly.

In contrast, the propagation of electrical signals along the axon is an active
and non-linear process. When the membrane potential at the soma is depolar-
ized to a value of about —55 mV or beyond, then an action potential, or spike,
is generated at the initial segment of the axon. An action potential is a large
but very short depolarizing pulse in the membrane voltage. It lasts about 1 ms
and reaches a maximal membrane voltage of some +30 mV. Action potentials
are all-or-nothing events: their time course is stereotyped so that there is no
information carried in their shape or amplitude. They emerge as the result of
an exactly timed interplay between voltage-gated Na™ and K* channels that
are embedded in the axonal cell membrane. Once an action potential has been
initiated at the soma it travels down the axon without changing its shape or
amplitude.
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1.1.2 Synapses

How are the output signals, i.e., the action potentials of a nerve cell transmit-
ted to other neurons? In order to answer this question let us have a look at the
interface, called synapse, between two nerve cells. Two fundamentally differ-
ent types of synapses, electrical and chemical synapses have been found. At
an electrical synapse the intracellular media of the involved neurons are cou-
pled via gap-junction channels that enable a direct current flow. At a chemical
synapse, on the other hand, the incoming electrical pulses are first transformed
into chemical signals, which are then reconverted into electrical signals in the
target cell. As chemical synapses represent the predominant type of synapses
in the mammalian brain, the subsequent explanations will be restricted to this
type.

A chemical synapse usually connects the axon of one cell with a dendrite or
the soma of another cell. It is composed of two major components as sketched
in panel (a) of Fig. 1.3. The presynaptic part is formed by the axon terminal of
the incoming neuron. The postsynaptic component is formed by a specialized
region of the target cell’s membrane. The pre- and postsynaptic membranes
are separated by the synaptic cleft, a tiny space about 20 nm wide. The axon
terminal of the presynaptic neuron holds a large number of vesicles containing
the synaptic transmitter substance. The postsynaptic membrane is enriched
with specialized ion channels that are gated by chemical receptor molecules.

When a spike arrives at the presynaptic axon terminal, part of the vesi-
cles fuse with the membrane and release their content of synaptic transmit-
ter into the cleft; see panel (b) of Fig. 1.3. The transmitter molecules diffuse
across the cleft to the postsynaptic membrane where they attach to the recep-
tor molecules. In response, the connected ion channels are opened for a short
period of time. The resulting ionic current depolarizes or hyperpolarizes the
postsynaptic membrane and thus induces an electrical signal in the postsynap-
tic cell.

According to its effect onto the postsynaptic neuron, a synapse is catego-
rized as excitatory or inhibitory. The activation of a depolarizing synapse in-
duces a transient change of the postsynaptic membrane potential towards pos-
itive values. For the duration of this depolarization, the postsynaptic neuron is
left closer to the firing threshold and is therefore more easily excited to fire an
action potential. Correspondingly, a depolarizing synapse is called excitatory
and the induced transient depolarization is called an excitatory postsynaptic
potential or, in short, EPSP.

Conversely, a hyperpolarizing synapse is called inhibitory because its acti-
vation gives rise to a transient postsynaptic hyperpolarization, the inhibitory
postsynaptic potential (IPSP), which may inhibit the emission of an action
potential by the postsynaptic cell. In the mammalian brain, the most im-
portant types of neurotransmitter used at inhibitory synapses are gamma-
aminobutyric acid (GABA) and glycine, while glutamate is the most common
type of excitatory neurotransmitter.

Current experimental data strongly suggest that in the cortex all outgoing
synapses of one individual cell are of the same kind — excitatory or inhibitory
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Figure 1.3: Panel (a) is a schematic of the components of a chemical synapse.
The presynaptic component is formed by the axon terminal of the incoming
neuron. The postsynaptic part is formed by a specialized region of the target
cell’s membrane. Both components are separated by the synaptic cleft. The
presynaptic terminal holds vesicles containing the synaptic transmitter sub-
stance. The postsynaptic membrane is enriched with specialized ion channels.
Panel (b) shows the processes occurring at an active chemical synapse. When
a spike arrives at the axon terminal, part of the vesicles release their content
of synaptic transmitter into the cleft. The transmitter molecules diffuse to the
postsynaptic membrane where they attach to receptor molecules. In response,
the connected ion channels are opened for a short period of time. The resulting
ionic current depolarizes or hyperpolarizes the postsynaptic cell. (Adapted
from Thompson 1993.)
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(Douglas et al. 1989, Douglas and Martin 1990, Douglas and Martin 1992). This
means that a given nerve cell can be classified either as an excitatory neuron
with all its outgoing synapses being excitatory or as an inhibitory neuron with
all its axonal synapses being inhibitory.

1.2 The Retina

The lens of the eye focuses an inverted image of the outside visual scene onto
the retina in the same way as the lens of a camera projects an inverted image
onto the photographic film. The retina is to convert the image into a sequence
of electrical pulses suitable for further processing along the visual pathway.

The first step is taken by the photoreceptor cells. By means of photosensi-
tive pigments, they transform variations in the intensity of the incoming light
into graded changes of their membrane voltage. Two types of photoreceptors
are found in the vertebrate eye, rods and cones. Rods are extremely sensi-
tive to dim stimuli but are relatively slow. The pigment they contain is called
rhodopsin. The cones, on the other hand, are much less sensitive but provide
a better temporal resolution. Moreover, the cones also mediate colour vision:
Different kinds of cones use different variations on the pigment rhodopsin and
are thus sensitive to different wavelengths of light. The retina of humans and
old-world monkeys contains rods and three types of cones, which are sensitive
to red, green, and blue light. Animals lacking appropriate kinds of receptor
cells are colour-blind like, e.g., cats.

The electrical signal produced by the photoreceptors is next relayed via
horizontal, bipolar, and amacrine cells to the retinal ganglion cells. Similar
to the photoreceptors, the horizontal and bipolar cells do not fire spikes but
rather respond to stimulation with graded changes of the membrane potential.
The ganglion cells, in contrast, emit trains of action potentials to code the result
of retinal signal processing. Their axons merge into the optic nerve and leave
the eye for the lateral geniculate nuclei.

Since the retinal ganglion cells are the output neurons of the retina, it is
quite natural to ask how ganglion cells respond to visual stimulation of the
retina. Investigations of this question have revealed that the activity of a
given ganglion cell can be influenced by light directed onto a certain area of
the retina, whereas its activity remains unaffected when other regions illumi-
nated. This specific area was termed the ganglion cell’s receptive field (Hart-
line 1940). As it turned out, the receptive fields of ganglion cells normally
are circular and subdivide into a center and a surround having antagonistic
effects onto the cell’s activity (Kuffler 1953). Two opposite types of such re-
ceptive fields can be distinguished, namely on-center and off-center receptive
fields.

An on-center receptive field consists of an excitatory region in its center
with a surrounding inhibitory area, or, in short, it has an on-center with an
off-surround. As shown in the left column of Fig. 1.4, the corresponding gan-
glion cell is excited by a spot of light directed into the center of the receptive
field, but is inhibited when the outer region is illuminated. Because center and
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Figure 1.4. Retinal ganglion cells have circular receptive fields that are com-
posed of a center area with an antagonistic surround. An on-center ganglion
cell (left column) is excited by a spot of light directed into the center of the re-
ceptive field, but is inhibited when the surrounding region is illuminated. Be-
cause center and surround have antagonistic effects, the cell does not respond
to a diffuse illumination of the receptive field as a whole. Off-center cells (right
column) have the opposite response properties. (After Kuffler 1953.)

surround have antagonistic effects, the cell does not respond to a diffuse illu-
mination of the receptive field as a whole. An off-center receptive field, con-
versely, consists of an off-center with an on surround. The respective ganglion
cell is inhibited by a spot of light in the receptive field’s center and excited by
a stimulation of the surround; see the right column of Fig. 1.4.

Apart from the distinction between on- and off-receptive fields, ganglion
cells in the cat retina can be classified into X , Y, and W cells according to
anatomical and physiological criteria. W cells are specialized for detecting
moving stimuli. In either one of the classes X and Y there are both on-center
and off-center cells, but X cells have smaller receptive fields. Further differ-
ences between X and Y concern the size of the cell bodies and the properties
regarding spatial stimulus summation. In the monkey retina, ganglion cells
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can be categorized into two groups, parvocellular (P) and magnocellular (M),
which are in some respects similar to the classes X and Y in the cat. P cells
have small receptive fields and code for stimulus colour. The receptive fields
of M ganglion cells are larger and rather insensitive to colour. Due to the larger
diameter of their axons, M cells transmit action potentials more rapidly.

1.3 The Lateral Geniculate Nucleus

The retinal ganglion cells project along the optic nerve and the optic tract to
three subcortical regions. In the pretectal area of the midbrain and in the su-
perior colliculus these inputs are used to control pupillary reflexes and eye
movements, respectively. Most retinal axons, however, terminate in the lat-
eral geniculate nucleus (LGN), where they are relayed to the visual cortex. On
their way, the output fibres of the two eyes are partially crossed at the optic
chiasm. As a result, either LGN receives a representation of one half of the
visual field. The right LGN processes the left visual hemifield, whereas the left
LGN processes the right hemifield.

The LGN of the cat consists of three layers of cells, named A, Al, and C.
Inputs to Al are provided by ganglion cells of the eye on the same side of
the animal (ipsilateral), i.e., by axons that do not cross at the optic chiasm.
Laminae A and C, in contrast, are supplied with inputs from the eye on the
other side of the animal (contralateral). In the same way as the retinal ganglion
cells, geniculate neurons fall into two classes, X and Y. Either class of geniculate
cells receives input from the corresponding class of ganglion cells.

The monkey’s LGN is divided into six layers, numbered from 1 to 6. Lay-
ers 2, 3, and 5 are innervated by ganglion cells of the ipsilateral eye; layers 1,
4, and 6 receive input from the contralateral retina. The neurons in laminae 1
and 2 have relatively large cell bodies as compared to those in the other layers.
Accordingly, layers 1 and 2 are called magnocellular, layers 3 to 6 are termed
parvocellular. The magnocellular layers are innervated by M type retinal gan-
glion cells, while the parvocellular laminae are innervated by P ganglion cells.

What do the receptive fields of geniculate neurons look like? Hubel and
Wiesel (1961) were the first to answer this question. They found that genic-
ulate cells have response properties closely resembling those of retinal gan-
glion cells. Their receptive fields are circular and consist of two concentrically
arranged antagonistic regions. As in the retina, there are both on-center and
off-center cells. Interestingly, the geniculate receptive fields are ordered retino-
topically, which means that the receptive fields of neighbouring cells in the
LGN correspond to neighbouring areas on the retina.

It is important to note that the details of the geniculate connectivity and
its function are still unknown. Actually, the projections from the retina to the
LGN are by far outnumbered by connections arriving from other regions like
the reticular formation or the cortex. Not only do such feedback inputs con-
trol the flow of visual information from the eye to the cortex, they are also
likely to be relevant for the generation of activity patterns needed during early
development (Weliky and Katz 1999).
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1.4 The Primary Visual Cortex

Axons originating in the lateral geniculate nucleus form the so-called optic
radiation and innervate the visual cortex, which extends over the occipital lobe
of either cortical hemisphere. The posterior part of the visual cortex, where
most of the geniculate axons terminate, is the primary visual cortex, also called
visual area 1 (V1), area 17, or striate cortex. V1 is immediately surrounded by
and projects to area V2 (area 18). In addition to these projections, however, area
V2 also receives direct afferents from the LGN. Further visual areas include V3,
V4 and V5. Areas V3 and V4 are thought to process information regarding the
form of visual objects; V5 seems to be important for the detection of motion.

The neuronal network model we shall study in the subsequent chapters
is concerned with the interface between the LGN and the primary visual cor-
tex. Therefore, the following survey will concentrate on the organization of
area V1.

1.4.1 Anatomical Structure

In the primary visual cortex, as in other cortical regions, two classes of neu-
rons are predominant: the pyramidal cells and the stellate cells. Pyramidal
neurons have spiny dendrites and relatively large cell bodies shaped as pyra-
mids. Their axonal arbors often span long distances across the cortex. Stel-
late cells are smaller and project to local targets. Their dendrites are either
spiny or smooth. The pyramidals and the spiny stellates are excitatory neu-
rons, whereas the smooth stellate cells are inhibitory.

Perpendicular to the cortical surface, six layers of cells can be distinguished
according to cell density, fiber density, and the principal cell type. Proceed-
ing from the surface to the underlying white matter, the layers are numbered
from 1 to 6. Layer 4 is further divided into sublayers 4A, 4B, and 4C. The ma-
jority of axons sent from the LGN to the cortex (geniculocortical axons) end
on stellate cells in layer 4, but additional terminals can be found in layer 6.
Layer 4 neurons then project to the upper layers 2 and 3, from where pyra-
midal cells project to layer 5 pyramidals. These, in turn, innervate pyramidal
cells in layer 6, which project back to layer 4.

Apart from setting up this kind of internal circuitry, neurons in the different
laminae also provide output signals for subsequent processing. Cells in lam-
inae 2, 3 and 4, e.g., send axons to other cortical regions, especially to higher
visual areas. Axons of cells in layer 5 primarily go to the superior colliculus,
and layer 6 neurons project to the claustrum and supply feedback to the lateral
geniculate nucleus.

1.4.2 Receptive Fields

The receptive fields of most neurons in the primary visual cortex are strikingly
different from those of geniculate cells. As we have seen, cells in the various
layers of the LGN are monocular, i.e. they are driven exclusively by one eye’s
ganglion cells. The majority of cortical cells, in contrast, receive input from
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both eyes and thus respond to visual stimulation of either eye. Normally, the
strength of a cell’s response to a given stimulus depends on whether the stim-
ulus is presented to the left or to the right eye, meaning that the cell “prefers”
one eye to the other (Hubel and Wiesel 1962). This phenomenon is called ocu-
lar dominance.

What type of stimulus is most efficient for activating neurons in the pri-
mary visual cortex? Hubel and Wiesel (1959) found that cells in the cat’s stri-
ate cortex respond best to bright or dark bars of a specific orientation within
their receptive fields. The required orientation and the location of the recep-
tive field vary from cell to cell. According to the detailed response properties,
Hubel and Wiesel classified the neurons as simple cells and complex cells.

The receptive fields of simple cells, like those of geniculate cells, consist
of antagonistic on- and off-subdivisions. Unlike geniculate receptive fields,
however, they are not rotationally symmetric. Instead, they are composed of
elongated subregions lying side by side in various configurations as shown in
panel (a) of Fig. 1.5. Each cell is activated best if the on-regions of its receptive
field are illuminated while the off-regions are left dark. The optimal stimulus
therefore consists of a bar or edge of light presented with a specific orientation
at a specific position within the receptive field so that it coincides with the
subregions; see Fig. 1.5, panels (b) and (c).

A model of how such a simple-cell receptive field may be constructed from
the center-surround receptive fields of geniculate cells has been proposed by
Hubel and Wiesel (1962) and is illustrated in Fig. 1.6. A group of on-center
geniculate cells whose receptive fields are aligned on the retina make excita-
tory synapses onto one cortical neuron. When a bar of light is projected on the
retina in such a way that all the receptive-field centers are illuminated, then
the cortical cell will be strongly excited and increase its firing rate accordingly.
A bar of light projected at a different orientation or location, in contrast, will
produce only a weak, if any, excitation of the cortical cell.

Complex cells usually have larger receptive fields than simple cells. They
also respond best to stimuli consisting of specifically oriented edges or bars of
light. However, as opposed to simple cells, the exact position of the edge or bar
within the receptive field is less important. Hubel and Wiesel (1962) suggested
that this may be the result of a wiring analogous to the one they proposed for
the construction of simple-cell receptive fields. Consider a neuron receiving
strong excitatory input from an array of simple cells whose receptive fields
have similar substructure but are slightly shifted with respect to one another.
Whenever one of these simple cells is activated, it drives the target neuron.
The target neuron therefore behaves like a complex cell — it responds to any
stimulus of the correct orientation, irrespective of the exact position within the
receptive field.

It should be emphasized that the above models probably oversimplify
the true wiring schemes, which are unknown and may vary from species to
species. In the cat, most simple cells in cortical layer 4, the region receiving the
dominant geniculate input, have orientation selective receptive fields as de-
scribed above. This is different in other species like monkey (Hubel and Wiesel
1968, Blasdel and Fitzpatrick 1984, Hawken and Parker 1984), ferret (Chapman
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Figure 1.5; Panel (a): The receptive fields of simple cells consist of elongated
subregions lying side by side in various configurations. Panel (b): A simple
cell responds best to a bar of light whose edges coincide with the boundaries
of the on-region. Panel (c):. As a consequence of the elongated shape of the
receptive field’s subdivisions, simple cell responses are orientation selective.
(Panel (a) after Hubel and Wiesel 1962; panel (c) after Hubel and Wiesel 1959.)
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Figure 1.6: The figure illustrates how a simple cell’s receptive field may be
built up from center-surround receptive fields of geniculate cells. A group of
on-center geniculate cells whose receptive fields are aligned on the retina con-
tact one cortical neuron. When a bar of light is projected onto the retina in such
a way that all the receptive-field centers are illuminated, then the cortical cell
will be strongly excited. In contrast, a bar of light projected at a different ori-
entation or location will produce only a weak, if any, excitation of the cortical
cell. (Adapted from Hubel and Wiesel 1962.)

and Stryker 1993), or tree shrew (Humphrey and Norton 1980). Simple cells
in cortical layer 4C of old world monkeys, for example, are usually monoc-
ular and their receptive fields have a center-surround substructure like those
of LGN cells. Orientation selective receptive fields first occur in the monkey’s
cortical layer 4B, where inputs from layer 4C converge.

Today, it is still a matter of debate whether orientation selectivity in visual
area 1 is primarily set up by converging feedforward projections as suggested
by the model of Hubel and Wiesel or by recurrent intracortical connections
(Ben-Yishai et al. 1995, Somers et al. 1995, Hansel and Sompolinsky 1996, Ben-
Yishai et al. 1997, Adorjan et al. 1999). Currently, there is experimental support
for both types of models. A recent review on this topic has been given by
Ferster and Miller (2000).

1.4.3 Columnar Organization and Cortical Maps

When a recording electrode is driven through the cortex perpendicularly to
the surface, the majority of cells it encounters are found to have similar ocular
dominance, preferred orientation, and retinal position of the receptive field.
On the other hand, tangential penetrations reveal that these properties change
gradually as the recording site is moved across the cortical surface. Hence,
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Figure 1.7: The ocular dominance map can be visualized, e.g., by injecting a
radiolabeled amino acid into one of the eyes, where it is taken up by the retinal
neurons and transported through the lateral geniculate nucleus to the visual
cortex. Cortical cells receiving input from the injected eye can then be detected
using an X-ray sensitive photographic film. The figure shows a drawing of
the ocular dominance map obtained in layer 4C of a monkey’s primary visual
cortex. The black and white stripes indicate the cortical regions where cells
were predominantly driven by one or the other eye. Scale bar, 5 mm. (Adapted
from LeVay et al. 1975)

the cortex seems to be organized into columns of cells with similar response
properties (Hubel and Wiesel 1962). A cluster of cells dominated by the same
eye is referred to as an ocular dominance column; a stack of neurons preferring
similar orientations is called an orientation column.

The above-mentioned observations gave rise to the concept of cortical
maps. The continuous relation between a neuron’s cortical position and the lo-
cation of its receptive field on the retina has been named the retinotopic map.
Analogously the relations of cortical position versus ocular dominance and
preferred orientation have been termed ocular dominance map and orienta-
tion map, respectively.

These cortical maps can be measured in different ways. One method to
visualize the ocular dominance map is to inject a radiolabeled amino acid into
one of the eyes, where it is taken up by the retinal neurons and transported
to the lateral geniculate nucleus. As it turns out, the radiolabel is transferred
across synaptic contacts (!) to the geniculate cells and further transported to the
primary visual cortex. In cortical sections, the cells receiving input from the
injected eye can then be detected using an X-ray sensitive photographic film.
Figure 1.7 shows the typically striped pattern of ocular dominance columns
obtained in layer 4C of a monkey’s primary visual cortex: Cells in the white
regions received input from one eye, neurons in the black areas were inner-
vated by the other eye.

More recent techniques, known as optical imaging, allow the maps to be
visualized in vivo using a CCD camera. To this end, the cortex can be pre-
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pared with a voltage sensitive dye so that the pattern of electrical activity is
converted into an optical signal for the camera (Grinvald et al. 1984, Orbach
et al. 1985). Alternatively, activity-dependent intrinsic signals can be recorded,
such as variations of the tissue’s “colour” resulting from changes of the rela-
tive concentrations of oxy- and deoxy-hemoglobin (Grinvald et al. 1986).

In order to measure an animal’s cortical orientation map by means of op-
tical imaging, the animal is visually stimulated using several gratings of dif-
ferent orientations while its cortical activity is recorded with the camera. By
comparing the observed patterns of activity, the preferred stimulus orientation
can be determined for each point of the recorded area. The resulting map is
usually visualized as an image of the cortical surface in which each pixel is
assigned a color that codes for the preferred orientation found at the corre-
sponding cortical point.

Figure 1.8 (a) shows a colour-coded orientation map that Bonhoeffer and
Grinvald (1993) have recorded from a cat’s area 18. Panel (b) of the same figure
displays an orientation map obtained from the striate cortex (V1) of a monkey
(Blasdel 1992b). The colours coding for the different orientations are indicated
below each panel. In both maps orientation columns appear as curved patches
of uniform colour. A typical feature of such orientation maps is the existence of
point-like singularities where the preferred orientation changes by 90 degrees.
Around each of these singularities, every orientation is represented once. They
have been termed “orientation centers” or “pinwheel centers” (Bonhoeffer and
Grinvald 1993).

From the above explanations it is clear that on the cortical surface sev-
eral different maps are superimposed onto one another. So far we have men-
tioned the retinotopic, the ocular dominance, and the orientation map, but
there is also a map of preferred direction of stimulus movement (Swindale
et al. 1987, Weliky et al. 1996, Shmuel and Grinvald 1996). The question of
how the various maps are woven into one another is a topic of ongoing re-
search (Swindale et al. 1987, Bartfeld and Grinvald 1992, Blasdel 1992a, Blas-
del 1992b, Obermayer and Blasdel 1993, Shmuel and Grinvald 1996, Crair et al.
1997, Hubener et al. 1997). Current experimental data indicate that pinwheel
centers of the orientation map tend to lie in the centers of ocular dominance
bands and that a cell’s preferred direction is approximately perpendicular to
its preferred orientation.

1.5 Development

In the preceding sections we have discussed the main stages of information
processing and transmission along the visual pathway from the retina to the
primary visual cortex. In the next chapter we will present a model of activity-
driven synaptic refinement in layer 4 of cortical area V1 which may explain the
emergence of orientation maps and their marked stability observed in various
experiments. The related processes are thought to occur early in an animal’s
life, when the ontogenetic development of the brain is not yet complete. Let
us therefore survey a few relevant milestones in the development of the mam-
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Figure 1.8: Optical imaging of cortical activity allows to determine the pre-
ferred stimulus orientation for each point of the recorded cortical area. The
resulting orientation map is usually visualized as an image of the cortical sur-
face with colours coding for the preferred orientations. Panel (a) shows an ori-
entation map that Bonhoeffer and Grinvald (1993) have recorded from a cat’s
area 18. Panel (b) displays an orientation map obtained from the striate cortex
(V1) of a monkey (Blasdel 1992b). The colour codes that have been applied are
indicated at the bottom of the panels; the black scale bars are 1 mm. A typi-
cal feature of such orientation maps is the existence of point-like singularities
around which each orientation is represented once; see the arrows in panel (a).
These singularities have been named “orientation centers” or “pinwheel cen-
ters” (Bonhoeffer and Grinvald 1993).

malian brain. In particular, we will focus on the cat’s primary visual cortex.

The mammalian embryo consists of three principal layers, namely an in-
nermost layer called endoderm, an intermediary layer called mesoderm, and
an outermost layer termed ectoderm. By a process named neural induction a
certain region of the ectoderm becomes committed to the formation of the ner-
vous system. This region extends along the dorsal midline of the embryo and
is called neural plate. The detailed mechanisms of its commitment are still un-
known, but they involve some kind of interaction between the ectoderm and
the mesoderm. The edges of the neural plate then begin to move upward until
they fuse at the midline so that the neural plate is folded and finally takes the
shape of a tube termed neural tube.

At its head end, the neural tube forms three swellings that give rise to
the three main parts of the brain: forebrain, midbrain, and hindbrain. The
forebrain further subdivides into the telencephalon (endbrain) and the dien-
cephalon (betweenbrain). Similarly, the hindbrain gives rise to the meten-
cephalon (afterbrain) and the myelencephalon. During later development,
the cerebral hemispheres, including the cerebral cortex, emerge from the te-
lencephalon; the retinae and the thalamus with LGN emerge from the dien-
cephalon.

At the beginning of cortical development the corresponding region of the
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neural tube is only a few cells thick and consists of two layers. The inner layer
is called ventricular zone, the outer layer is the marginal zone. Cells in the
ventricular zone proliferate so that the total number of cells increases continu-
ously. Having divided several times, some cells loose their ability to prolifer-
ate and move outward forming the intermediate zone between the ventricular
and the marginal zone. The upper part of the intermediate zone is the so-called
subplate.

Above the subplate a fourth layer, the cortical plate, emerges. Within the
cortical plate the future cortical laminae are built up. This occurs in an inside-
out sequence, i.e., cells destined for lamina 6 are generated before lamina 5
cells, and so on. All cells are born in the ventricular zone and migrate through
the intermediate zone to their target layer. Thus, the deeper cortical layers are
formed before the upper layers and cells destined for the upper layers have
to pass through the deeper layers. In the cat, for example, layer 2 cells reach
their target position about one month after layer 6 cells have finished their
migration.

At what time is the developing visual cortex innervated by axons from
the LGN? Shatz and Luskin (1986) have found that the cat’s optic radiation
reaches the primary cortex relatively early, when the cells of future layer 4
have just been born in the ventricular zone and are still on the way to their
target locations. Interestingly, however, the geniculate axons do not enter the
cortical plate immediately, but instead “wait” in the subplate for a prolonged
period of time. As a result, layer 4 cells first receive geniculate input about one
week after they have finished their migration.

Itis still an open question how the extending nerve fibers find their targets
so as to set up the intricate circuitry of the adult brain. According to cur-
rent knowledge, several different mechanisms are important (for a review see
Goodman and Shatz 1993). Some fibers seem to grow along gradients in the
concentration of certain molecules. Others may be guided by existing fibres
or by so-called guide-post cells which act as landmarks indicating the correct
pathway. Sperry (1943) was the first to demonstrate that in certain neural sys-
tems an axon’s target can be predetermined very accurately. To this end he cut
the optic nerve of a frog and rotated the eye by 180 degrees. Unlike in mam-
mals, a frog’s optic nerve regenerates and grows back into the optic tectum.
After the frog had regained vision, it struck down to catch a fly that was up,
and vice versa — its visual world was rotated by 180 degrees. Thus, the optic
nerve had reconnected to the optic tectum in the same way as before the rota-
tion of the eye, which shows that, by some mechanism, each axon “knows” its
specific target position.

On the other hand, it is well-known that the fine tuning of the mammalian
cortex is crucially dependent on sensory input and neuronal activity. This has
been demonstrated in several experiments. For example, Wiesel and Hubel
(1963b) have shown that when a kitten’s eye is sutured within the first two
weeks after birth and reopened one or two months later, then the animal is left
practically blind in that eye. While the responses of geniculate cells to stimula-
tion of the deprived eye appear relatively normal, only a few cortical cells can
be driven by the deprived eye and their receptive fields are abnormal (Wiesel
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and Hubel 1963a, Wiesel and Hubel 1965). These effects are reversible if the de-
prived eye is reopened within the first six weeks postnatal and the previously
open eye is closed (Blakemore and van Sluyters 1974). The visual system of
adult cats, in contrast, does not seem to be affected by even prolonged peri-
ods of monocular occlusion. It has thus been concluded that there is a critical
period early in life during which the cortical development is influenced by vi-
sual experience (Crair et al. 1998, Issa et al. 1999). In the cat this critical period
is thought to extend over some three months after birth.

The results obtained from the above experiments might lead to the view
that the disuse of the deprived eye is mainly responsible for the disruption
of normal visual responses. One could therefore expect that binocular depri-
vation results in most cortical cells being unresponsive to both eyes and the
animal being blind. Interestingly, however, it has been found (Wiesel and
Hubel 1965) that after binocular deprivation the majority of cortical cells re-
spond largely normal. Therefore, some kind of competition between inputs
representing the two eyes rather than disuse of the closed eye appears to be
the relevant factor in producing the striking changes during monocular depri-
vation.

Anatomical studies in layer 4 of the cat’s primary visual cortex have shown
that at the time of birth, afferents from the lateral geniculate nucleus represent-
ing the two eyes are intermingled and do not form the typical striped pattern
of ocular dominance described in Sect. 1.4.3. A morphological segregation
of the geniculate axons into ocular dominance columns becomes first visible
about three weeks after birth (LeVay et al. 1978). This segregation does not
appear to require visual experience, but it seems to depend critically on spon-
taneous neuronal activity: The formation of ocular dominance columns is not
prevented by rearing the animal in the dark or with both eyes closed (Stryker
and Harris 1986, Crair et al. 1998), but the geniculocortical afferents do not
segregate if the spontaneous activity of retinal ganglion cells is inhibited by
injecting tetrodotoxin into both eyes (Stryker and Harris 1986).

Other experiments indicate that the development of orientation selectiv-
ity of cortical cells is also activity-dependent. Kittens that are reared in en-
vironments where they can see only contours of a single orientation remain
practically blind for contours of the perpendicular orientation; microelectrode
recordings reveal that the distribution of preferred orientations in the primary
visual cortex of these stripe-reared animals is biased towards the experienced
orientation (Blakemore and Cooper 1970, Hirsch and Spinelli 1970, Blasdel
et al. 1977). Recently, the influence of experience on orientation maps in cat
visual cortex has been analyzed by means of optical imaging techniques (Sen-
gpiel et al. 1999). In stripe-reared animals the total fraction of cortical area rep-
resenting the experienced orientation turned out to be increased as compared
to the area occupied by columns preferring other orientations. Nevertheless,
all orientations were still represented and the overall layout of the maps (e.g.
pinwheel density) appeared largely unaltered. These results suggest that that
the formation of orientation maps is guided by environmental as well as by
intrinsic factors.

Figure 6 summarizes a few important stages in the development of the cat’s
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visual system. Even from this simple scheme it is evident that the circuitry of
the adult brain arises from a complex interplay of a large number of simulta-
neous processes. Many investigations like those described above have shown
that the involved processes are partially dependent on neuronal activity and
on sensory experience. This has been studied extensively in the visual system,
but similar results have been obtained also in other sensory pathways as, e.g.,
in the somatic sensory and the auditory system.

1.6 Summary

In the preceding sections we have presented a survey of the visual pathway
from the retina to the primary visual cortex; an overall view is given in Fig. 1.1.
As prerequisite the basic units of biological information processing — neurons
and synapses — have been introduced in Sect. 1.1. As we have seen, a neuron
or nerve cell is specialized for transmitting and transforming electrical signals.
Most neurons use short electrical pulses, so-called spikes, to code their out-
put. The connection between two neurons is called synapse. Some synapses
provide a direct electrical contact, but the majority of connections are chemical
synapses, where an incoming spike is first transformed into a chemical signal
on the presynaptic side and then reconverted into an electrical signal at the
postsynaptic nerve cell.

The retina is the input stage of the visual system. An inverted image of
the outside visual scene is focused onto the retina by the lens of the eye. The
retina contains photoreceptor cells so as to convert this image into electrical
signals. After some processing, these signals arrive at the retinal ganglion cells
and, from there, leave the eye along the optic nerve. How does a ganglion cell
respond to visual stimulation of the retina? The output of a given ganglion
cell can be influenced only by stimulation of a certain retinal area. This area
is called the ganglion cell’s receptive field. The receptive fields of ganglion
cells are usually circular and can be divided into two concentric subregions
with antagonistic effects on the cells’ output signal (Fig. 1.4) They are therefore
called center-surround receptive fields.

At the optic chiasm, the retinal output fibres are partially crossed and re-
bundled in such a way that the left optic tract carries a representation of the
right half of the visual field, whereas the right optic tract represents the left
visual hemifield. Each optic tract then projects to one of the lateral geniculate
nuclei (LGN), and so each LGN receives information from one half of the vi-
sual field. The receptive fields of neurons in the LGN are very similar to those
of retinal ganglion cells: They are circular, have a center-surround substruc-
ture, and are monocular, i.e., are driven exclusively by one eye. Therefore, the
LGN is often regarded as a simple relay station although it is well known to-
day that most inputs to the LGN do not arrive from the retina but from other
regions of the brain and include massive feedback connections from the cortex.
Notably, the cells in the LGN are arranged retinotopically with neighbouring
cells having neighbouring receptive fields on the retina.

Output fibres of geniculate neurons innervate the primary visual cortex,
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Figure 1.9: Important stages in the development of the cat visual system
are depicted. A few corresponding references are denoted in parentheses.
(1) Hickey and Hitchcock 1984; (2) Shatz 1981; (3) Shatz 1983; (4) Luskin and
Shatz 1985b; (5) Luskin and Shatz 1985a; (6) Shatz and Luskin 1986; (7) Hubel
and Wiesel 1963; (8) Crair et al. 1998; (9) LeVay et al. 1978; (10) Gosh and Shatz
1992.
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also referred to as striate cortex, visual area 1 (V1), or area 17. The visual cortex
consists of six layers of cells, numbered from 1 to 6. The majority of geniculo-
cortical projections end in layer 4, from where the incoming signals are fed into
a complicated intracortical circuitry whose function is largely unknown. Most
neurons in area V1 are orientation selective, meaning that they respond best
when a specifically oriented edge of light is projected onto the retina. Accord-
ing to the properties of their receptive fields, cortical neurons are divided into
so-called simple and complex cells. Simple cell receptive fields consist of elon-
gated antagonistic subregions lying closely side by side as shown in Fig. 1.5.
The response properties of complex cells may result from a nonlinear combi-
nation of several simple cells’ outputs. Although most cortical cells respond to
a stimulation of either eye, one eye is usually preferred. This phenomenon is
called ocular dominance.

As in the LGN, neurons in the primary visual cortex are arranged in a
retinotopic fashion so that the receptive fields neighbouring cells cover neigh-
bouring regions on the retina. Moreover, neighbouring neurons are normally
dominated by the same eye and prefer similar stimulus orientations. When
a recording electrode is moved tangentially to the cortical surface, then the
encountered cells’ receptive field position, ocular dominance, and preferred
orientation are found to change continuously. The relation between a neuron’s
cortical location and the retinal position of its receptive field is referred to as
the retinotopic map. Analogously, the relations of cortical location versus ocu-
lar dominance and preferred orientation are called ocular dominance map and
orientation map, respectively.

During ontogeny the visual cortex develops from a certain region of the
so-called neural tube. All cortical cells are born in the ventricular zone at the
inner surface of the tube and then migrate outward to the cortical layer they are
destined for. The layers are formed in a reverse order, i.e. the deeper layers are
generated before the upper layers. Already at a very early stage, nerve fibers
from the developing LGN arrive immediately below area V1. Interestingly,
however, they undergo a prolonged waiting period before entering their target
region.

How do all the neuronal fibers find their correct targets so as to set up the
complicated wiring of the brain? As we have discussed, current experimen-
tal data indicate that the nervous system uses several different mechanisms
for shaping its circuitry. Some of them appear to depend crucially on neu-
ronal activity. Extensive studies, especially in the mammalian visual system,
have revealed a so-called critical period early in an animal’s life during which
the development of the cortex is influenced significantly by neuronal activity
and sensory experience. Subsequently, we will present a theoretical model of
activity-driven self-organization in the primary visual cortex which provides
a new explanation for some experimental results difficult to understand in the
framework of earlier models.
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Chapter 2

Modeling Self-Organization in the
Primary Visual Cortex

Measurements of neuronal activity in primary visual cortex of cat have shown
that cortical cells respond well to stimulation within a certain receptive field
on the retina. Many cells respond preferentially to bar-like stimuli of a specific
orientation and are activated predominantly through one of the two eyes. The
location of the receptive field, the preferred orientation, and the ocular domi-
nance of recorded cells change gradually as the recording site is moved tangen-
tially to the cortical surface (Hubel and Wiesel 1962). The global organization
of these cortical response properties has been mapped by anatomical, electro-
physiological, and optical imaging methods for cat (Tusa et al. 1978, Bonhoef-
fer and Grinvald 1991, Bonhoeffer and Grinvald 1993), monkey (LeVay et al.
1975, Hubel et al. 1977, Blasdel and Salama 1986, Blasdel 1992a, Blasdel 1992b),
ferret (Law et al. 1988, Chapman and Stryker 1993, Chapman et al. 1996, We-
liky and Katz 1997), and tree shrew (Humphrey and Norton 1980, Humphrey
et al. 1980, Bosking et al. 1997).

It is, however, still a matter of debate how cortical orientation selectivity
is set up. Hubel and Wiesel (1962) originally proposed that geniculocorti-
cal connections are arranged so that the receptive field centers of thalamic
cells projecting onto a single cortical simple cell cover an elongated region
in the visual field. While there are many experimental studies claiming that
the response properties of simple and complex cells are mainly determined
by feedforward projections as suggested by this model (Ferster 1987, Ferster
1988, Reid and Alonso 1995, Ferster et al. 1996, Chung and Ferster 1998), others
find that intracortical links provide the main contribution (Sillito 1979, Sillito
et al. 1980, Crook and Eysel 1992, Nelson et al. 1994). At present it seems
most likely that both feedforward and recurrent intracortical processes of both
excitatory and inhibitory nature participate in the formation of orientation se-
lectivity (Vidyasagar et al. 1996).

Theoretical studies (von der Malsburg 1973, Linsker 1986b, Linsker 1986a,
Kammen and Yuille 1988, Stetter et al. 1993, Miller 1994, Wimbauer et al.
1997b, Wimbauer et al. 1997a) have proposed a Hebbian development of
geniculocortical synapses that is driven by correlated feedforward input
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from thalamic neurons (for a recent review see Miller et al. 1999). In these
correlation-based approaches the intracortical connectivity is assumed to be
rotationally symmetric and fixed. Under relatively general conditions they
predict the emergence of an orientation map for cortical simple cells which is
formed by the resulting arrangement of feedforward connections.

As such, the above explanation of cortical map formation has been chal-
lenged by work of Gddecke and Bonhoeffer (1996) and of Sengpiel et al. (1998).
In their experiments, cats were raised so that both eyes never received visual
input at the same time, which was achieved by reverse lid suture. If genicu-
locortical refinement were driven by activity correlations in the lateral genic-
ulate nucleus (LGN) and these correlations were mainly determined by the
correlations of the visual input, then the left-eye orientation map would form
independently of the right-eye map and the two maps could be expected to
be different. Optical imaging of area 18, however, showed them to be nearly
identical. The authors concluded that the map’s layout was fixed by some in-
ternal mechanism either a priori or during the period when the first eye was
open. They proposed long-range horizontal projections within primary visual
cortex as a potential substrate of this mechanism.

Recently, however, Erwin and Miller (1998) have demonstrated that the
emergence of ocularly matched orientation maps can be well explained within
the framework of correlation-based development, if an appropriate amount of
thalamic inter-eye activity correlations is assumed. Experimental findings of
Weliky and Katz (1999) indicate that strong inter-eye correlations are indeed
present in the ferret’s LGN before eye opening. Nevertheless, it is still unclear,
whether this model can actually account for the outcome of the reverse-lid-
suture experiments.

Wolf et al. (1996) have pointed out that cortical area 18 of the cat is shaped
as a narrow band on the cortical surface, so that pattern formation within this
region is subject to strong confinement. In computer simulations they have
shown that different feedforward orientation maps developing under this con-
straint are always very similar — in accordance with reverse-suturing experi-
ments. The authors argued that experimental results should be qualitatively
different in a larger area as, e.g., area 17, because boundary conditions are less
important. “Unfortunately this idea is difficult to test, as in cats the main part
of area 17 lies buried in the medial bank and is therefore inaccessible to optical
imaging”, as Bonhoeffer and Gédecke (1996) have explained.

In this chapter we propose a model of layer 4 of primary visual cor-
tex consisting of laterally interconnected spiking neurons of both excitatory
and inhibitory type. It combines the idea of correlation-based learning of
geniculocortical afferents with Hebbian development of short-range intracor-
tical synapses. Inhibitory interneurons and plastic inhibitory synapses have
been included into the model so as to control overall network activity.

Large-scale computer simulations show that in this kind of network it is
possible to obtain an intracortical orientation map from a Hebbian learning
process driven by cortical activity alone. The process does not depend on the
presence of feedforward input and could therefore occur at early stages of vi-
sual development, when thalamic axons have not yet entered cortical layer
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4. The resulting map structure resembles that of typical orientation maps ob-
tained from optical imaging experiments. This might indicate that intracorti-
cal circuitry does contribute significantly to the orientation selective response
properties of cells in the primary visual cortex.

Experiments by Ferster (Ferster 1987, Ferster 1988, Ferster et al. 1996) do
indicate, however, that feedforward input from the LGN is relevant as well.
Consistently with these data, we demonstrate that correlation-based develop-
ment of geniculocortical projections can interact with emerging intracortical
connectivity so as to give a matched feedforward and intracortical orienta-
tion tuning for each cortical cell. As a consequence, the developing pattern of
feedforward projections is more or less predetermined, once the intracortical
connectivity is fixed. This provides a very natural explanation of the remark-
able stability of orientation maps that has been found experimentally (Kim and
Bonhoeffer 1994, Weliky and Katz 1997, G6decke and Bonhoeffer 1996, Seng-
piel et al. 1998, Sengpiel et al. 1999). In contrast to the proposition of Wolf
et al. (1996), our model predicts an agreement of orientation maps in reverse-
suturing experiments not only for small but also for larger visual areas such as
area 17 of the cat.

The chapter is organized as follows. In Sect. 2.1, we introduce the model
of spiking neurons that we have used in our simulations. We then turn to a
description of the full network, explain the learning rules that govern synaptic
development, and present our data-analyzing procedure in Sects. 2.2 through
2.4. The numerical simulations in Sect. 2.5 demonstrate that intracortical ori-
entation maps can develop from spontaneous cortical activity alone, without
feedforward input. In Sects. 2.6 and 2.7, we show how this intracortical de-
velopment can be combined with a plasticity of geniculocortical connectivity
and show that such a combined development can explain the outcome of the
reverse-suturing experiments. Section 2.8 provides the values of all simula-
tion parameters that are needed to reproduce our results. At the end, we sum-
marize and give a short discussion. Part of this work has been presented in
preliminary form in (Bartsch and van Hemmen 1999).

2.1 Spiking Neurons

To keep our network as close to biology as possible, we decided to build it
up from spiking neurons. A neuron model that is able to reproduce many
biological features and yet allows to handle large network simulations is given
by the usual integrate-and-fire neuron. For the present investigation we have
chosen the stochastic spike response model (Gerstner and van Hemmen 1992,
Gerstner and van Hemmen 1994), which is a more flexible, extended version
of the integrate-and-fire neuron.

The state of a spike response-neuron is described by its membrane poten-
tial A as a function of time. Every incoming spike evokes a transient change
of this membrane potential called postsynaptic potential and modeled as a
response kernel ¢(t). After spike emission the neuron enters a refractory pe-
riod that is described by a second response function 7(t), the refractory poten-
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tial. Spike generation itself is governed by a generalized Poisson process. This
means that the probability Pf(t,dt) that the neuron emits a spike during the
infinitesimal time interval [¢, ¢ 4+ d¢] can be written

Pt (t,dt) = X (t)dt,

and the probability of more than one spike being emitted during that period
is o(dt). The spike emission rate A(t) is given by some function ¢ of the mem-
brane potential A,

A(t) =qlh ()] .

Each time the neuron generates an action potential, a negative contribution
n(t) is added to the membrane potential to account for the reduced excitability
during the refractory period. At a postsynaptic neuron s each action potential
arriving from a presynaptic neuron j induces a postsynaptic potential that is
given by (¢) multiplied by a synaptic weight .J;;.

Thus the total membrane potential h; of neuron is a sum of a synaptic con-
tribution ;"™ evoked by spikes of other neurons and a refractory contribution
h;?efr as a result of its own spiking,

hi (t) = h2™ (t) + R (1)

where

B = =Y (t-1)

f
ti<t

W) = Y e (t - t§> ,

Jott<t
and ¢! denotes the firing times of neuron i.

2.2 Network Setup and Simulation Algorithm

We have designed a network of spike response neurons that is intended to
model (a) excitatory and inhibitory cells in a small patch of layer 4 in primary
visual cortex as well as (b) excitatory cells in a corresponding patch of LGN,
providing input to cortical layer 4. The full network is separated into three
equally sized square grids with periodic boundary conditions; see Fig. 2.1.
Cortical excitatory and inhibitory cells make up two of these grids. We
have separated them into distinct layers so as to clarify the connectivity struc-
ture within the network; we do not presume that such a separation is present
anatomically. As we assume that every neuron has a limited arborization
range of axon collaterals and dendrites within layer 4, each of the excitatory
neurons receives lateral connections from a region of neighbouring excitatory
cells as well as from a region of inhibitory cells. This region has been chosen
to be a circle centered on the cell under consideration and extending over 11
cells in diameter. In the present version of our model, inhibitory neurons also
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Figure 2.1: The network model we use to study intracortical and feedforward
learning dynamics can be decomposed into three equally sized square grids
of spike response neurons. The two upper layers are designed to represent
a small patch of layer 4 in primary visual cortex. Excitatory and inhibitory
neurons have been separated into distinct layers only for a clear illustration
of the connectivity structure. We do not presume that such a separation is
present anatomically. Each of the excitatory cortical neurons receives lateral
input from neighbouring excitatory and inhibitory cortical cells. Inhibitory
neurons are driven by the activity of excitatory neurons. Feedforward input
into the cortex is provided by LGN neurons in the bottom layer, representing
geniculate relay cells. They produce correlated spike activity of given statis-
tics. All synaptic connections except for those from excitatory to inhibitory
cells (dashed arrow) are subject to activity-driven learning dynamics. Periodic
boundary conditions have been applied throughout each layer. In that part of
our simulations where we consider cortical learning dynamics alone (Sect. 2.5),
the LGN grid is not present so that we are left with the two upper layers only.

receive lateral excitatory input from within a neighbourhood of 11 neurons in
diameter, but do not make synapses with other inhibitory cells. They produce
an inhibitory background of spikes that is used to normalize overall network
activity. The number 11 is not realistic but suffices for simulation purposes.

A third layer in our setup represents geniculate cells, providing input to the
cortex. Since our current investigations are restricted to the case of monocular
input, we need only consider neurons located within one eye-specific lamina
in the LGN, say lamina A. Every excitatory cortical neuron obtains input from
geniculate neurons lying within a circular arborization area centered at the
retinotopic position of the cortical cell. Again the diameter of the circle ex-
tends over 11 neurons. To save computation time, which is a really limiting
factor of our simulations, we only model LGN cells with ON-center receptive
fields and do not account for OFF-center cells explicitly. It will become clear
in the following why this is possible. All synaptic connections in the network,
except for those from excitatory to inhibitory cells (dashed arrow), are subject
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Figure 2.2: Emergence of an orientation selective simple-cell receptive field
through competition between inputs from LGN neurons with ON- and OFF-
center receptive fields (Linsker 1986b, Miller 1994, Wimbauer et al. 1997b,
Wimbauer et al. 1997a, Erwin and Miller 1998). Initially the cell receives in-
put of both ON- and OFF-center type from a circularly symmetric region in
the visual field, indicated by a white and a black circle, respectively (a). In
the course of a symmetry breaking process both input types become restricted
to non-isotropic subfields (b). This symmetry breaking can be thought of as
occurring separately for ON- and OFF-center inputs. An assumed anticorrela-
tion between the activities of the two geniculate cell types ensures that the sub-
fields are in anti-phase with each other. Together they form the receptive field
shown on the right (c), where a black or a white shading indicates whether
dominant input is from OFF- or ON-type cells.

to activity-driven learning dynamics.

In many existing models of correlation-based geniculocortical self-organi-
zation (Linsker 1986b, Miller 1994, Wimbauer et al. 1997b, Wimbauer et al.
1997a, Erwin and Miller 1998), orientation selectivity of simple cells develops
through a competition between inputs from LGN neurons with ON-center and
OFF-center receptive fields. Correlated random activity of geniculate cells is
the driving force for this competition. The typical simple-cell receptive field
structure emerging from such a model can be understood as the result of a
symmetry-breaking process taking place separately for ON- and OFF-center
inputs. This is illustrated in Fig. 2.2 from left to right. There are three stages.
() Initially a simple cell receives input of both ON- and OFF-center type from
a circularly symmetric region in the visual field, indicated by a white and a
black circle, respectively. (b) At the end of the symmetry breaking process
both input types are restricted to non-isotropic receptive fields, which we will
call subfields. An assumed anticorrelation between the activities of ON-center
and OFF-center geniculate neurons ensures that the subfields are in anti-phase
with each other. Together they form the receptive field shown on the right (c),
where a black or a white shading indicates whether dominant input is from
OFF- or ON-type cells.

In our model, like in previous ones, the emergence of orientation selectiv-
ity in the geniculocortical projections is driven by correlated random activity



2.3. Learning Mechanisms 35

of LGN cells. Since, however, ON-OFF competition can be viewed as two cou-
pled but separable symmetry-breaking processes, we take into account only
one geniculate cell type, with ON-center receptive fields, say. It should be
emphasized, though, that we do not presume that OFF-center LGN cells do
not contribute to orientation selectivity. Neglecting OFF-center inputs in our
model is just a computational shortcut. Because of the aforementioned anticor-
relations between ON-center and OFF-center activities, the complete receptive
field structure shown in Fig. 2.2 (c) is fully determined by either one of the
two substructures displayed in Fig. 2.2 (b). It is therefore sufficient to study
the development of geniculocortical synapses from either ON- or OFF-center
LGN cells. The lower part of Fig. 2.2 (b) gives a schematic view of a simple
cell’s typical feedforward input connectivity emerging in our reduced model.

In short, the simulation algorithm that has been applied is as follows. At
the beginning of each time step, the firing probability of every neuron is deter-
mined from its membrane potential h. To be specific, we let

Pr {Spike during At | h} =~ q (h) At
= {l+exp[-(h—0)/T]}""
= (1/2){1 +tanh[(h —0) /2T]} ,

with At = 1 ms denoting the size of the time step, 6 being the neural threshold
and T a noise parameter.

Next, it is decided randomly from the firing probability whether a neuron
emits a spike or remains silent during the current time step. Subsequently,
the membrane potential of each cell is updated using the spike trains of all
the neurons projecting onto it. Both the postsynaptic potential ¢(¢) and the
refractory potential n(¢) have been chosen to be exponentials (see Fig. 2.3),

e(t) = exp(—t/7),
n(t) = noexp(—t/m) ,

for t > 0 and vanishing for ¢t < 0, with 7. = 6 ms, 7, = 10 ms, and ny =
10. At the end of each time step, all synaptic weights are modified as will be
explained in the next section.

The membrane potentials of the LGN neurons are prescribed externally, in
order to simulate correlated thalamic activity. Their values are drawn from
a two-dimensional Gaussian random field. A new realization of this random
field is generated every 10 time steps. In this simple way we obtain spatially
and temporally correlated spike trains from LGN neurons.

Depending on the simulation, these steps are repeated for 2500000 or
5000000 iterations (see simulation parameter values in Sect. 2.8), which cor-
responds to roughly 40 or 80 minutes in real time.

2.3 Learning Mechanisms

There is increasing evidence that synaptic plasticity in the developing brain
is to a large extent dependent on neural activity (Wiesel and Hubel 1963b,
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Figure 2.3: In the spike response model (cf. Sect. 2.1) every incoming spike
induces a transient change of the postsynaptic neuron’s membrane potential.
This postsynaptic potential is described by a response function &(¢), which we
have chosen to be an exponential as displayed in the left panel. To model
refractoriness, a second response kernel 7(¢), shown in the right panel, is sub-
tracted from the membrane potential after spike emission.

Crair et al. 1998, Issa et al. 1999). Originally, Hebb (1949) postulated that the
efficacy of a connection between two cells is increased, if the postsynaptic cell
is repeatedly activated by the presynaptic one. In the meantime, many studies
have shown that by appropriately coactivating a pair of neurons, the strength
of their connection can indeed be modified (Brown and Chattarji 1994, Fregnac
etal. 1994).

In the model presented in this chapter, we have incorporated plastic-
ity of both excitatory and inhibitory connections. Modification of excitatory
synapses is governed by the following rules.

(1) A Hebbian mechanism increases synaptic efficacy, whenever a presynap-
tic action potential is immediately followed by a postsynaptic one (see
the learning window in Fig. 2.4).

(2) Eachtime a neuron emits a spike, the weights of all its incoming synapses
are reduced by a certain amount. Such a process prevents a neuron
from enhancing its inputs ad infinitum, since growing input increases
the neuron’s firing rate, which in turn diminishes the weight of incoming
synapses. As a consequence, different input synapses of the same neu-
ron have to compete for synaptic weight, because an increased efficacy
of one group of synapses leads to a down-regulation of the remaining
ones due to the cell’s increased firing rate. Experimental support for this
mechanism has been provided by work of Turrigiano et al. (1998), who
have found the total input strength of rat cortical pyramidal cells to be
increased or decreased as a function of activity.

Taken together, the rules (1) and (2) effect a synapse to be up-regulated,
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Figure 2.4: Learning window W (t) for excitatory synapses. In our model,
an excitatory synapse is strengthened, whenever a presynaptic spike is im-
mediately followed by a postsynaptic one. The graph displays the change of
synaptic weight (in arbitrary units) that is applied in dependence of the time
difference between post- and presynaptic spike.
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when a postsynaptic spike immediately follows a presynaptic one, and to
be down-regulated otherwise. This is at least qualitatively in agreement
with experimental findings (Markram et al. 1997, Zhang et al. 1998).

The efficacy of every synapse is slowly reduced at a rate proportional to
its current weight. Recently, Engert and Bonhoeffer (1999) gave some in-
direct evidence for such an activity-independent decay in rat hippocam-
pal slice cultures.

Each synaptic weight is enhanced at a constant rate, independent of neu-
ronal activity. Together with rule (3) this means that without activation
a synapse will slowly approach some non-zero efficacy. This process can
be considered as an activity-independent formation of synapses that is
driven by some sort of nerve growth factor.

Finally, we limit each synaptic weight to a finite range between 0 and
some upper bound. Note, however, that in contrast to some previous
models (Miller 1994, Wimbauer et al. 1997b, Wimbauer et al. 1997a, Er-
win and Miller 1998) these bounds are not sticky, i.e., all synapses remain
plastic, whether they are saturated or not.

With J; (t) denoting the excitatory weight from neuron j to neuron i, the
change AJ%(t) that results from contributions (1) to (4) to this weight during
the current time step can be summarized in the following formula,

AT = A [ai(t)ZW(t—t§)+\“i(t)"e,+£f,

<t e @

)

~
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In this expression, W (¢) denotes the learning window (see Fig. 2.4)
W (t) = exp (—t/Tw) ,

where = 11 ms, and «a;(t) is the activity of neuron i at the current time
step, with ¢;(¢) = 1 if an action potential is emitted and a;(¢t) = 0 otherwise.
As in Sect. 2.1, the th indicate the firing times of cell z. Below each term, the
corresponding number of the above list of items is given.

In real cortex, the number of synapses connecting two neurons as a func-
tion of their distance is probably a random quantity (Braitenberg and Schiiz
1991). A similar argument holds for the connections from thalamic relay cells
to cortical neurons and their respective retinotopic coordinates. However, in
our simulations we neglect the statistical nature of this process. Instead, we
have introduced an ‘arbor function’ A;’j, expressing the expected number of
synapses between the neurons j and i. Within this framework, J; is taken to
be the effective weight connecting cell 5 to cell 4, i.e., the efficacy of a single
synapse multiplied by the number of synapses from j to i.

In addition to the above learning rules, an unspecific spread of weight
changes onto neighbouring but non-activated synapses can be included into
the model, as is suggested by measurements of Engert and Bonhoeffer (1997).
Although the results presented in this chapter have been obtained without this
kind of plasticity, we have performed a corresponding set of numerical simu-
lations where such an unspecific modification of excitatory synapses has been
taken into account. Except for a smoothening of the emerging connectivity
patterns, we did not find a qualitative change of our results.

To control overall activation, i.e., to avoid epileptiform bursts, our network
takes advantage of the subsequent learning rules for inhibitory connections,

(1) Whenever an excitatory neuron of the cortical layer generates an action
potential, its incoming inhibitory synapses are enhanced by a certain
amount. This implements a negative feedback loop with a higher fir-
ing rate leading to a cell receiving more inhibition, thereby limiting its
activity.

(2) The efficacy of every synapse is slowly reduced at a rate proportional to
its current weight.

(3) The upper bound 0 prevents inhibitory weights from becoming excita-
tory. In contrast to excitation, there is no lower bound for inhibition.

Using the same notation as above and neglecting the upper bound 0, the
change of the inhibitory efficacy Jg]. (t) that results during one time step can be
written . . . o

AJj;(t) = —Aj; ai(t) o' — 9" Jj;(1) - (2.2)
(L (2)
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Again, we have used an arbor function Aij to express the expected number of
synapses that the inhibitory neuron 5 makes onto cell ;. It should be noted that,
within the framework of the spike response model, inhibitory synapses are
represented by a negative coupling constant J;;. To strengthen an inhibitory
synapse thus means to make its weight .J;; more negative, which is the reason
for the negative sign in front of the first term.

In order to allow inhibition to respond sufficiently fast to changes of ex-
citation during synaptic development, parameters have been chosen so that
the typical relaxation time of inhibitory weights is significantly shorter than
that of excitatory weights. More specifically, we let 9¢ = 2.5 x 1075 for excita-
tory intracortical synapses, 9¢ = 1.25 x 10~ for geniculocortical synapses, and
¥ = 10~* for inhibitory synapses, corresponding to relaxation time constants
of 400 s, 800 s, and 10 s, respectively.

Comparing these time constants with the typical time course of pattern
formation in the visual system of higher mammals during the critical period,
it is obvious that nature takes more time for development than we do in our
simulations. Unfortunately, numerical simulations with spiking neurons are
computationally very expensive, meaning that at the moment it is impossi-
ble to run simulations of suitably sized networks representing periods of a
week or more in real time. We thus have to reduce the relevant time constants
and speed up learning. According to our experience, however, the process of
pattern formation does not become instable, but rather more stable as learn-
ing is slowed down. This is reasonable because reducing the speed of learn-
ing means averaging over a larger number of pre- and postsynaptic spikes,
which reduces the effects of noise. We therefore think that the results pre-
sented throughout the subsequent sections could be reproduced with biologi-
cal learning time constants by simply rescaling time.

2.4 Data Analysis

In the following sections we will investigate the connectivity structures emerg-
ing from the learning mechanisms in the network described so far. To this end,
we will focus on the incoming excitatory synapses of all excitatory neurons.
As it turns out, these coupling structures very often show an elongated shape
of a certain orientation. Here the method is described that we have applied to
determine these orientations.

In our model, the excitatory input efficacies of one cortical cell, say at loca-
tion (0, 0), are given as a two-dimensional synaptic array jxy of 11 x 11 positive
real values. Here the coordinates (x, y) can range through either the geniculate
or the cortical layer while the reference point (0,0) isin V1, cf. Fig. 2.1. In order
to obtain the orientation of a connectivity pattern, we calculate the overlap of
the corresponding synaptic array with a set of Gaussian ‘bars’ Sy,

_ R
Szy(:p) :zexp{ [wcos ¢ +ysing p]}

2-0.52
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. 2
B )
where z,y € {-5,—4,...,5}. The parameter ¢ determines the orientation of
the bar and p controls its position within a frame of 11 x 11 pixels. Sy(¢,p)
is chosen so that ny Szy(¢,p) = 0. For each of the four orientations ¢ €
{0°,45°,90°,135°}, p is varied to determine the maximal overlap

R(¢) := max [Z j:vy Sxy(¢ap)] .

p
I7y

These values are then taken as the lengths of four vectors x(¢) pointing in the
directions given by 2 ¢, i.e.,

x(¢) := [R(¢),24]
in polar coordinates. We sum the four vectors so as to obtain a polar vector
¥ = (Ry. 1) = x(0°) + x(45°) +x(90°) +x(135°) ,

and take the resulting polar angle v, divided by 2 as the required orientation
¢°" of the synaptic weight pattern,

P =1y /2.

The described procedure is a formal method to analyze the neuronal con-
nectivity. It does not directly yield the cells’ preferred orientation as it would
be measured in an optical imaging experiment. To achieve this, we would
have to apply test stimuli to the geniculate layer of our network and record the
activity in the cortical layer. The obtained neural response properties would
then be determined by the feedforward connectivity, the lateral connectivity,
and the nonlinear gain function. In this work, however, we focus on the de-
velopmental interplay of feedforward and lateral projections and thus have to
investigate their structures separately.

2.5 Intracortical Self-Organization

Anatomical studies of the cat’s developing visual system (Shatz and Luskin
1986, Gosh and Shatz 1992) have revealed that geniculate axons have reached
the cortical subplate by embryonic day (E) 36 but do not enter the future cor-
tex during the following week days. Although most of the cells destined for
cortical layer 4 have finished their migration by E55, a geniculate projection to
layer 4 could only be detected by E60. Thus, for layer 4 of area 17 in the cat,
there is likely to be a waiting period of about 1 week between the completion
of neuronal migration and thalamic innervation. This suggests the possibility
of an intracortical synaptic refinement going on for about one week without
feedforward input from LGN.
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As long as the primary visual cortex does not receive external input, spike-
spike correlations of spontaneous activity are determined by lateral interac-
tions. If the lateral connections are shaped by an activity-driven, Hebbian
learning rule, as we assume in our model, their development is in turn de-
termined by the cortical spike-spike correlations. It is therefore an interesting
guestion, what the connectivity patterns emerging under these conditions will
look like.

In order to investigate this, we used the network described in Sect. 2.2 but
removed the geniculate layer. It turned out that under certain conditions de-
pending on network activity the development of excitatory lateral projections
can undergo a symmetry breaking process As a result, every neuron will re-
ceive most of its lateral input from neighbouring excitatory cells lying within
an elongated region of a certain orientation. Without this symmetry breaking
process the emerging patterns of connectivity will be rotationally invariant.

Both cases are illustrated schematically for one excitatory cell in Fig. 2.5.
The panels (a) to (c) display different developmental stages of the cell’s intra-
cortical input as they can arise in our model. As we have explained in Sect. 2.2,
the cell receives lateral excitatory projections from neurons within a circular ar-
borization area. In the different panels of the figure, the outline of this area is
shaded according to the synaptic efficacy of the corresponding inputs. Pro-
jections from dark regions are weak whereas those from light regions are rel-
atively strong. At the beginning of our simulations, all synaptic weights are
zero (a). As the development proceeds, the neuron continually receives more
and more input from the region within its circular arborization radius (b). At
some point the abovementioned symmetry breaking process may lead to the
emergence of an oriented connectivity pattern (bottom of panel ¢). Otherwise
the input region will remain rotationally symmetric (top of panel c).

Figure 2.6 presents the outcome of two different runs of a network com-
prising 16 x 16 excitatory and an equal number of inhibitory neurons. Panels
(a) and (b) visualize the final excitatory lateral input connectivities by means
of two arrays of 16 x 16 grey level plots. In these plots, each of the small
squares consists of 11 x 11 pixels, representing one cell’s incoming synaptic
weights from 11 x 11 neighbouring neurons. As in Fig. 2.5, dark and white
shaded pixels indicate low and high synaptic efficacies, respectively. Lateral
input is restricted to a circular region of 11 cells in diameter, as explained in
Sect. 2.2, i.e, synaptic weights from neurons outside this circle are zero and the
corresponding pixels are black.

For the first network run (a), we have chosen a low value for the parameter
£°in Eg. (2.1). The emerging coupling patterns are rotationally symmetric. For
the second run (b), £° has been increased, resulting in higher synaptic efficacies
on average. In this case, rotational symmetry is broken during the learning
process and the emerging connectivity patterns obtain an elongated shape.

To each of these elongated patterns an orientation can be assigned as de-
scribed in Sect. 2.4. Figure 2.6 (¢) visualizes the resulting array of orientations.
For every neuron, a small rectangle is plotted with a color coding for the orien-
tation of the corresponding input connectivity pattern. The continuous color
code that has been applied is indicated for a few orientations below the plot.
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Figure 2.5: The panels (a) to (c) display different developmental stages of a
cortical cell’s intracortical input that can arise in our model. The cell receives
lateral excitatory projections from neurons within a circular arborization area.
In the different panels of the figure, the outline of this area is shaded according
to the synaptic efficacy of the corresponding inputs. Projections from dark re-
gions are weak whereas those from white regions are relatively strong. At the
beginning of our simulations, all synaptic weights are zero (a). As the devel-
opment proceeds, the neuron continually receives more and more input from
within its circular arborization radius (b). Under certain conditions depend-
ing on network activity an oriented connectivity pattern will emerge due to a
symmetry breaking process (bottom of panel ¢). Otherwise the input region
will remain rotationally symmetric (top of panel c).

no symmetry
breaking

symmetry
breaking

In Fig. 2.7 we display the lateral projections that have emerged in a simu-
lated network whose grid size was 32 x 32. Panel (a) is again a set of grey level
plots showing each cells synaptic input weights. Panel (b) is a color map of the
orientations in the intracortical connectivity. The color code is the same as in
Fig. 2.6.

The global structure of the map resembles that of typical orientation maps
obtained from optical imaging experiments in primary visual cortex (Bonho-
effer and Grinvald 1991, Blasdel 1992b, Bonhoeffer and Grinvald 1993, Chap-
man et al. 1996, Bosking et al. 1997). This is even more obvious in panel (c),
where a smoothened version of panel (b) is presented. It can be seen clearly
that orientation normally changes continuously across the surface of the sim-
ulated cortical patch. The only exceptions are point-like singularities where
orientation changes by 90 degrees. Such singularities are well-known from ex-
perimental maps of preferred orientation and have been termed “orientation
centers” or “pinwheel centers” (Bonhoeffer and Grinvald 1993). Around each
of these pinwheel centers, every orientation is represented once. Two kinds
of pinwheels can be distinguished according to whether orientation changes
clockwise or counterclockwise around the center. Both kinds appear in ap-
proximately equal numbers per unit area of simulated cortical surface. This is
again in agreement with experimental findings.

Our simulations demonstrate that a Hebbian learning mechanism driven
by spontaneous activity can generate oriented patterns of intracortical con-



2.5. Intracortical Self-Organization 43

@

Figure 2.6: The figure shows the outcome of two different runs of a network
without feedforward input. It comprises 16 x 16 excitatory and an equal num-
ber of inhibitory neurons. Panels (a) and (b) visualize the final excitatory lat-
eral connectivities by means of two arrays of 16 x 16 grey level plots. In these
plots, each of the small squares consists of 11 x 11 pixels, representing one
cell’s incoming synaptic weights from 11 x 11 neighbouring neurons. Dark
and bright shaded pixels indicate low and high synaptic efficacies, respec-
tively. For run (a), we have chosen a low value of the parameter £¢ in Eq. (2.1).
The emerging coupling patterns are rotationally symmetric. For run (b), £¢ has
been increased, resulting in higher synaptic efficacies on average. In this case,
rotational symmetry is broken during the learning process and the emerging
connectivity patterns obtain an elongated shape. As described in Sect. 2.4, an
orientation can be assigned to each of these elongated patterns. In panel (c),
we visualize the resulting array of orientations. For every neuron, a small rect-
angle is plotted with a color coding for the orientation of the corresponding
input connectivity pattern. The continuous color code that has been applied is
indicated for a few orientations below the plot.

() (b)

00050

Figure 2.7: The intracortical projections that have emerged from Hebbian
learning in a network without geniculocortical input and with a grid size of
32 x 32 cells are presented as grey level plots in panel (a) and as a colored ori-
entation map in panel (b). Panel (¢) is a smoothened version of (b). The color
code that has been used is shown below panel (b).
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nectivity. The overall organization of this connectivity can be considered as
an intracortical orientation map that is similar to measured maps of preferred
orientation in striate cortex. This suggests that lateral projections may play a
crucial role in the shaping of orientation-selective response properties of cells
in the primary visual cortex.

2.6 Combined Feedforward and Intracortical Plasticity

We are now going to investigate the effect that the existence of an intracorti-
cal orientation map can have on the development of geniculocortical feedfor-
ward projections. To this end, we activate the geniculate layer (that had been
removed for the analysis in Sect. 2.5) and let the geniculocortical connections
evolve according to the Hebbian learning dynamics described in Sect. 2.3. Dur-
ing that process, the pattern of excitatory intracortical projections is kept fixed,
whereas inhibitory synapses remain plastic. This inhibitory plasticity allows
for a normalization of overall network activity on short time scales and thus
helps to avoid epileptiform discharges by shifting the balance of cortical excita-
tion and inhibition towards an increased inhibition (Varela et al. 1999, Douglas
et al. 1995).

As a first step we assume the lateral excitatory connections to have rota-
tional symmetry, which corresponds to the scenario studied in earlier work
(Linsker 1986a, Miller 1994, Wimbauer et al. 1997b, Wimbauer et al. 19973, Er-
win and Miller 1998). These analyses were based on graded-response neu-
rons and did not distinguish between excitatory and inhibitory cortical cells,
whereas the present network consists of spiking neurons with inhibition me-
diated via inhibitory interneurons. It is therefore important to check whether
previous results can be reproduced in our setup, which is closer to biology.

Figure 2.8 (a) visualizes each excitatory cell’s intracortical synaptic effica-
cies in the form of grey-level plots (see Fig. 2.6 for details). Grid size is 32 x 32
cells. As mentioned above, the coupling patterns have been chosen to be ro-
tationally invariant, viz. shaped as a two-dimensional Gaussian. The result
of a simulation of geniculocortical development in this setup is presented in
Fig. 2.8 (b). It shows an array of 32 x 32 grey level plots, each corresponding
to the feedforward input connectivity of one excitatory cortical neuron. All
these small plots consist of 11 x 11 pixels representing the efficacies the input
synapses that an excitatory cortical neuron receives from LGN. A dark shaded
pixel means that the corresponding synapse is weak, whereas a white shaded
pixel indicates a strong synapse. All pixels outside a circle of diameter 11 are
black, because the arborization area of the geniculocortical projection is a circle
of that diameter, i.e., the synaptic efficacy from any LGN cell outside this area
is zero.

Obviously, most of the excitatory cortical neurons receive their feedfor-
ward input from elongated patches on the LGN grid. As we have set forth
in Sect. 2.2, these patches can be considered as the ON-center part of an ori-
entation selective simple-cell receptive field. To extract the orientation of the
connectivity pattern we apply the same method that we have used for the in-
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Figure 2.8: An activity-driven development of geniculocortical afferents in the
presence of an isotropic intracortical connectivity leads to the emergence of a
feedforward orientation map; grid size is 32 x 32. This confirms the results
of earlier studies carried out in models that used graded-response neurons
and/or did not distinguish between excitatory and inhibitory cells (Linsker
1986a, Miller 1994, Wimbauer et al. 1997b, Wimbauer et al. 1997a, Erwin and
Miller 1998, Choe and Miikkulainen 1998). For each excitatory cortical cell,
panel (a) displays the lateral input strengths as a grey level plot, and simi-
larly panel (b) visualizes the efficacies of the feedforward input synapses from
the LGN. Extracting orientations as described in Sect. 2.4, this feedforward
connectivity pattern can be transformed into a color coded orientation map,
which is shown in a smoothened version in panel (c). The color code that has
been used is given in Figs. 2.6 (c) and 2.7 (b).

tracortical projections and which has been explained in Sect. 2.4.

Using again the color code shown in Figs. 2.6 (c) and 2.7 (b) we obtain the
feedforward orientation map presented in Fig. 2.8 (c). We find that the map
is in a good qualitative agreement with experimental data (Bonhoeffer and
Grinvald 1991, Bonhoeffer and Grinvald 1993). This demonstrates that the
results of previous models of correlation-based geniculocortical development
can be nicely reproduced in our more detailed approach.

Now we turn to the case of an anisotropic intracortical connectivity. We as-
sume this connectivity to form an orientation map which has emerged during
a preceding learning process as described in Sect. 2.5. To be specific, we use
the map of Fig. 2.7. The efficacies of the intracortical excitatory synapses are
fixed at their respective values while the spontaneous activity of the thalamic
relay cells drives the development of geniculocortical feedforward projections.
The grey-level coded results are presented in Fig. 2.9.

Panel (a) reproduces the intracortical map. Panel (b) displays the final feed-
forward orientation map. Its overall organization is very similar to that of the
intracortical map. That means that, in our model, a pre-existing intracortical
connectivity can guide the synaptic refinement of geniculocortical afferents.
This may provide a natural explanation for the enormous stability of orienta-
tion maps that has been found in experiments disturbing normal geniculocor-
tical development (Kim and Bonhoeffer 1994, Weliky and Katz 1997, Godecke
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Figure 2.9: Panel (a) reproduces the intracortical map of Fig. 2.7. When feed-
forward connectivity develops in the presence of such an intracortical map,
the resulting feedforward orientation map — shown in panel (b) — is essentially
in agreement with the intracortical pattern, as can be seen from the similarity
between the two images.

and Bonhoeffer 1996, Sengpiel et al. 1998).

2.7 Simulating Reverse Lid-Suture

Models explaining cortical orientation maps to emerge from correlation-based
development of feedforward projections have been challenged by the outcome
of so-called reverse-lid-suturing experiments (Gédecke and Bonhoeffer 1996,
Sengpiel et al. 1998). In these experiments, kittens were raised so that both
eyes never received visual input at the same time. This was achieved using
the following protocol. Immediately after birth, one eye-lid was sutured and
the animal received monocular input through the other eye. After a period of
a few weeks, the cortical orientation map in area 18 was recorded via optical
imaging through the open eye. Then the open eye was closed and the initially
closed eye was opened. After one or two weeks the second eye’s orientation
map in the same cortical area was measured. The two maps turned out to be
nearly identical.

Assuming the activity correlations in the LGN to be chiefly determined by
input from the retinae, the models predict the left-eye map and the right-eye
map to develop independently of each other. Their global layouts can then be
expected to be different, in striking contrast to the experimental finding.

In the meantime there are two different theoretical approaches to explain
the experimental result. The first is based on a geometric argument (Wolf et al.
1996). As the authors pointed out, the cat’s visual area 18 is shaped as a nar-
row band on the cortical surface. The formation of an orientation map in this
area is therefore subject to strong confinement, i.e., the layout of a developing
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map is predetermined by boundary conditions. Numerical simulations have
confirmed that different orientation maps emerging under this condition are
indeed very similar.

The second explanation relies on activity correlations in the LGN. Erwin
and Miller (1998) have shown that with an appropriate amount of inter-eye
correlations in the activity of geniculate relay cells, a Hebbian development of
geniculocortical afferents can nicely produce ocularly matched cortical orien-
tation maps. They assume that these correlations are present in LGN activity
even without visual input. Recently it has been shown that strong inter-eye
correlations can in fact be found in the ferret LGN before eye opening (Weliky
and Katz 1999).

It is also well-known, however, that monocular deprivation over a period
of a few days during the critical period causes most cortical neurons to loose
their responsiveness to stimulation of the deprived eye (Blakemore and van
Sluyters 1974). As a consequence, optical imaging experiments find the orien-
tation map of the deprived eye to be largely eliminated (Kim and Bonhoeffer
1994, Godecke and Bonhoeffer 1996). This may indicate that LGN activity is
strongly affected by monocular occlusion. According to the model of Erwin
and Miller, ocularly matched orientation selectivity can be maintained in a
reverse-suturing experiment if one of the two following conditions is fulfilled.
Either the remainder of the deprived eye’s map is strong enough so as to act as
a seed for the restoration of the original map, or there is a sufficient amount of
geniculate inter-eye correlations during the period of reverse occlusion so that
the deprived map can be reinstated as a copy of the non-deprived map. It is
still an open question whether one of these conditions does indeed hold true.

In consideration of our results presented in Sects. 2.5 and 2.6 we propose
a third mechanism that may reconcile models of correlation-based geniculo-
cortical development with experimental data. As we have shown, a Hebbian
learning mechanism driven by spontaneous cortical activity may lead to the
formation of an intracortical orientation map. This map is set up by lateral
projections of cortical layer 4 neurons and can emerge very early in visual de-
velopment - even before thalamic afferents reach cortical layer 4. The intra-
cortical connectivity can then guide the refinement of thalamocortical inputs,
so that the developing feedforward orientation map is in agreement with the
intracortical map.

Let us now assume that the critical period for the development of short-
range interactions in cat layer 4 ends after about three weeks postnatal. Within
the framework of our model this would mean that at this time the layout of the
intracortical orientation map is fixed, thereby fixing also the structure of both
eyes’ feedforward maps. The outcome of the reverse-suturing experiments can
then be explained as follows.

In the course of — or possibly before — the first period of monocular depriva-
tion, cortical layer 4 cells finish their refinement of short-range lateral connec-
tions. During the same period of time, a feedforward orientation map for the
open eye emerges. At the end, the feedforward and the intracortical map are
in accord with each other. Together they form the orientation map that can be
recorded by means of optical imaging. After the open eye has been closed and
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Figure 2.10: The reverse lid-suturing protocol is mimicked by a sequence of
numerical simulations. Panel (a): Before the onset of geniculocortical develop-
ment an intracortical orientation map is assumed to emerge from a Hebbian
development of lateral connectivity in layer 4 as explained in Sect. 2.5. Panel
(b): The geniculocortical afferents of the initially open eye are learned and
produce a feedforward orientation map. Panel (c): After the first eye has been
closed, the second eye’s afferents develop independently from scratch. This is
simulated by re-running the feedforward learning process but initialized with
a different seed value of the random number generator. Comparing panels (b)
and (c) reveals them to be very similar. This is in accordance with the results
of reverse lid-suture experiments, in which both eyes’ orientation maps have
been found to be virtually identical (Godecke and Bonhoeffer 1996, Sengpiel
et al. 1998).

the closed eye has been opened, cortical neurons reorganize their geniculate
input synapses so that an orientation map for the newly opened eye is formed.
This process is again guided by the intracortical connectivity, which does not
change any more. As a consequence, the second feedforward map develops in
accord with the same intracortical map as did the first one. Optical imaging
at the end of the experiment therefore yields a second orientation map that is
very similar to the previous one.

This mechanism can be demonstrated in the following sequence of numeri-
cal simulations. First, the Hebbian development of short-range lateral connec-
tions in cortical layer 4 is simulated according to the explanations of Sect. 2.5.
This process is driven by spontaneous cortical activity and for simplicity we
assume that it is finished before the onset of thalamocortical input. The emerg-
ing intracortical map is displayed in Fig. 2.10 (a).

In the presence of this intracortical map, two independent network runs as
described Sect. 2.6 are then performed to mimick the development of the two
eyes’ geniculocortical afferents during the reverse-suturing protocol. Starting
the runs with different seed values for the random number generator ensures
that their LGN activities are uncorrelated. Despite the lack of inter-eye cor-
relations in thalamic activity the resulting maps are strikingly similar, as can
be seen in panels (b) and (c) of Fig. 2.10. This similarity arises because both
maps develop in such a way that they are in agreement with the intracortical
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connectivity, which is the same during both runs.

Taken together, our results show that a patterned intracortical connectivity
arising early in visual development can guide the development of feedforward
projections so that the emerging cortical orientation maps are matched in the
two eyes. In our simulations, there were no inter-eye correlations in thalamic
activity. This provides evidence that in the present scenario inter-eye correla-
tions are not necessary for ocularly matched orientation maps to develop.

2.8 Simulation Parameter Values

In order to allow the reader to reproduce our results, this section lists all the
relevant simulation parameter values. A description of the simulation algo-
rithm has already been given in Sect. 2.2.

2.8.1 Intracortical Plasticity

We have assumed the refinement of short-ranged connections within cortical
layer 4 to occur before the onset of geniculocortical input. For the correspond-
ing simulation runs the geniculate layer has thus been removed from our net-
work (Fig. 2.1). The remaining cortical part consists of excitatory neurons and
inhibitory interneurons arranged on two equally sized square grids.

The model neurons (c.f. Sect. 2.1) are determined by specifying the postsy-
naptic potential ¢(¢), the refractory potential n(¢) and the firing probability for
given value of the membrane potential ~. We let (see Fig. 2.3)

e(t) = exp(—t/7), 7. =6ms, (2.3)
n(t) = moexp(=t/m;) , 7 =10ms, ny =10, (2.4)
Pr{Spikein At |h} = {1 +exp[— (h—60) /T]} *, (2.5)

and

#=3,T =05 forexcitatory cells,
=3, T=0.5 forinhibitory neurons.

As mentioned in Sect. 2.2, the size of one simulated time step is Az = 1 ms.
Within a circular arborization region of 11 neurons in diameter, the exci-
tatory neurons connect to one another as well as to the inhibitory neurons,
and the latter project back to the excitatory cells. Thus there is no connection
between two cells if the distance of their grid positions is larger than 11/2.
Within this radius the connections from excitatory to inhibitory neurons
are kept at fixed values

Jij = 0.3 exp [—d(i,j)Q/ (2- 32)} ’

with d(i, ) denoting the distance between the grid positions of inhibitory neu-
ron 5 and excitatory neuron j.
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# | Figure || Gridsize | timesteps | o° | ¢° |
1] 6(@) 16x16 | 25-10° | —0.57 [ 8.0-10~*
2160, 16x16 | 25-105 | —0.57 | 9.5-10°*
3
4

7.9() || 32x32 | 25-10° | —0.57 | 9.5-10~*
10(@) || 32x32 | 25-10° | —0.57 | 9.5-10~*

Table 2.1: Each row specifies the quantities o€, £¢, the total number of sim-
ulated time steps, and the grid size for one network run simulating Hebbian
development of intracortical connections. The values are listed together with
the number of the figure that presents the corresponding results. All the other
simulation parameters are held constant as given in Sect. A.1. Parameter sets
#3 and #4 are equal except for the seed value of the random number genera-
tor.

In contrast, the synapses between excitatory cells and those from inhibitory
to excitatory neurons are plastic. They develop according to the learning rules
described in Sect. 2.3. We use an exponential learning window

w (t) = exp (—t/TVV) , TW = llms,
and Gaussian shaped arbor functions
A5 = 0.025 exp [—d(i,j)Q/ (2- 32)] ,
AL = 0.5 exp [—d (i, 9)%/ (2 32)] :

where d (4, j) denotes again the distance between the grid positions of the re-
spective neurons. An upper limit J™* = 0.8 is applied for the weight of
excitatory synapses. Furthermore, we let

9 =25%x10"5, ¥ =10"", o' =1,

as introduced in Egs. (2.1) and (2.2). The values of the remaining parameters
o®, £° and the grid size are varied from run to run. They are summarized in
Table 2.1.

2.8.2 Geniculocortical Plasticity

For our simulations of geniculocortical development we use the full network
presented in Fig. 2.1. The grid size is 32 x 32. We fix the excitatory intracortical
connectivity, while we let excitatory feedforward and inhibitory intracortical
synapses develop according to Egs. (2.1) and (2.2), respectively.

The postsynaptic potential £(¢) and the refractory potential 7(t) are set as
given in Egs. (2.3) and (2.4). For the firing probability we use again the param-
eterization (2.5) but with different values of  and T,

=13, T =0.25  forexcitatory cells,
0=3,T =025 for inhibitory neurons.
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At the very early developmental stage that we are concerned with, real cortical
cells are still in a process of maturation, i.e., their response properties are very
likely to change with time. Thus, there is no need to assume the response
properties of our model neurons, i.e., # and T to be constant.

The spatiotemporal activity correlations in the geniculate layer that are re-
quired to drive thalamocortical pattern formation, are generated as follows.
Every 10 simulated time steps, the membrane potentials &; of all the neurons
1 on the thalamic layer are drawn as a new realization of a Gaussian random
field and are then kept fixed over the subsequent 10 iterations. Each genicu-
late cell produces a random spike train according to its membrane potential
and the firing probability (2.5) with§ =7,T = 1.

In order to describe the Gaussian random field of membrane potentials, the
expectation values (h;) as well as the correlation matrix (h; h;) must be given.
Throughout this chapter, we have set (h;) = 0 and

(hihj) = 163 exp [~ (i,j)* / (2-1)]
— L82exp|—d(i,j)?/ (2-3%)] |

which is a Mexican-hat-like function of the distance d (i, j) between the respec-
tive geniculate neurons i and j.

The parameters governing the dynamics of inhibitory weights are the same
as specified in the preceding subsection. For the development of feedforward
synapses, we use an arbor function

A2 = 0.0125 exp [—d(z‘,j)2 /(2 32)] ,
and apply an upper weight limit J™#* = 1. Moreover we let
9°=1.25x10"°.

and
w (t) = €xp (_t/TW) , Tw = 11ms .

Table 2.2 lists the values of those parameters that are varied for the different
simulation runs. During each run, the excitatory lateral weights are kept con-
stant. Their values are either taken from a previous simulation of intracortical
development or determined by the Gaussian

Jij = i exp |- (i,j)* [ (2-3%)] (2.6)

where d (i, 7) is the distance between the two cortical cells 7 and j. In the for-
mer case, Table 2.2 references the corresponding intracortical simulation by its
respective number in Table 2.1. In the latter case, the value of J is given.

2.9 Summary and Discussion

In the preceding sections we have introduced a neuronal model of combined
lateral and geniculocortical plasticity in layer 4 of the primary visual cortex.
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| Figure [ timesteps | o¢ | ¢ [ J°[#inT. 21|
8 (b), (c) 5-105 | 0.85|8-107* | 0.7 -
9 (b) 5106 04 [ 8-107% | - 3
10 (b) 5106 04 | 8-107* | - 4
10 (c) 5106 04 [ 8-107% | - 4

Table 2.2: For each simulation of geniculocortical development, the network
parameters ¢¢ and £¢, the total number of simulated time steps, and the cor-
responding figures are listed. In addition, the lateral excitatory connectivity
is specified in the following way. If the pattern of lateral weights is isotropic,
then the amplitude Ji¢, corresponding to Eq. (2.6), is given. If the connectivity
pattern is the result of a previous simulation of intracortical development, then
we indicate that simulation by specifying the respective row of Table 2.1. The
last two parameter sets are identical except for the seed value of the random
number generator.

The network consists of stochastically spiking neurons to model geniculate re-
lay cells as well as excitatory cortical cells interacting with inhibitory interneu-
rons. The development of both lateral and feedforward connectivity is gov-
erned by activity-driven Hebbian learning dynamics. Plasticity of inhibitory
synapses on short time scales has been incorporated so as to stabilize cortical
activity and prevent epileptiform discharges (Varela et al. 1999, Douglas et al.
1995).

We have found that in this model spontaneous cortical activity in the ab-
sence of geniculate input can drive the plasticity of lateral connections to form
an intracortical orientation map. The layout of such an intracortical map re-
sembles that of typical orientation maps obtained from optical imaging exper-
iments in primary visual cortex. It exhibits linear zones, where orientation
changes smoothly across cortical surface, as well as so called pinwheel centers
— point-like singularities at which orientation changes discontinuously by 90
degrees (Bonhoeffer and Grinvald 1991, Blasdel 1992b).

Furthermore, a Hebbian development of geniculocortical afferents in the
presence of intracortical interaction and correlated activity in the LGN leads
to the emergence of orientation selective receptive fields of cortical cells. As
in previous correlation-based models of pattern formation (Linsker 1986b,
Linsker 1986a, Miller 1994, Wimbauer et al. 1997b, Wimbauer et al. 1997a, Er-
win and Miller 1998, Choe and Miikkulainen 1998), an isotropic pattern of
intracortical connectivity is sufficient to obtain nicely ordered feedforward ori-
entation maps very similar to measured ones.

We have then investigated the effect that a non-isotropic intracortical in-
teraction in layer 4 can have on feedforward plasticity. It turned out that a
previously formed intracortical orientation map can guide the development of
geniculocortical afferents. As a consequence, the emerging feedforward map
will be in accord with the existing intracortical map. Comparing the lateral ar-
borization radius of layer 4 cells in the model (< 5.5 cells) with the typical dis-
tance of pinwheel centers in the final orientation maps (see e.g. Fig. 2.10) shows
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that lateral interactions are normally confined to approximately one hypercol-
umn. The intracortical connectivity under consideration is thus short-ranged
and must not be confused with the patchy patterns of horizontal projections
that have been found anatomically to exist in layers 2/3 and 5 (Callaway and
Katz 1990, Katz and Callaway 1992).

Since in our setup the same intracortical connectivity guides the develop-
ment of afferents from both the left and the right eye, orientation maps will be
matched in the two eyes. We have shown that this mechanism may provide a
new explanation of the outcome of reverse lid-suturing experiments (Godecke
and Bonhoeffer 1996, Sengpiel et al. 1998). In contrast to earlier propositions
(Wolf et al. 1996, Erwin and Miller 1998) it is neither dependent on the ge-
ometry of the respective cortical area nor on inter-eye correlations in thalamic
activity.

Further support for our model comes from recent observations of Sengpiel
et al. (1999). The authors raised Kittens in an environment where they could
see contours of only one orientation. The orientation maps that were obtained
from these animals via optical imaging exhibited an only moderate shift to-
wards this orientation. This is in full agreement with a scenario in which the
development of geniculocortical afferents is guided by an existing pattern of
intracortical connectivity and visual experience has an only minor influence.

Current anatomical data (Shatz and Luskin 1986, Gosh and Shatz 1992)
show that in the cat geniculate afferents reach layer 4 of the primary visual
cortex only about one week after the cells in this layer have finished their
migration. This raises the possibility that these cells start an activity-driven
development of lateral interactions at least one week before a Hebbian modi-
fication of feedforward afferents can begin. Although we have focused on the
case of intracortical learning occurring strictly before geniculocortical refine-
ment, the above considerations remain valid in a scenario in which both types
of connections develop jointly for a certain period of time. The crucial require-
ment is that the plasticity of short-ranged lateral synapses in layer 4 ceases
relatively early so that (i) the emerging intracortical map is independent of
visual experience and (ii) the feedforward afferents can adapt to this map.

According to our knowledge, there is only one other spiking network
model dedicated to the problem of combined development of feedforward
and lateral projections (Choe and Miikkulainen 1998). In contrast to the aim
of the present work, however, the authors did not analyze the possibility of an
intracortical map formation and its implications for the refinement of genicu-
locortical afferents. Rather they concentrated on the formation of feedforward
maps and the role that fast-adapting intracortical synapses can take in the seg-
mentation of visual scenes afterwards.

Since our network is made up of spiking neurons and strictly distinguishes
between excitatory cells and inhibitory interneurons, it is closer to biology than
many previous models of the visual cortex. We have verified that in this rela-
tively detailed approach, earlier results on the formation of orientation maps
can be reproduced. This was not obvious a priori because stochastically spik-
ing networks produce noise which may prevent ordered receptive fields to
develop within biologically plausible time scales.
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Quite to the contrary and most importantly, we have demonstrated that the
new synaptic order, viz., the intracortical orientation map, is due to inherent
cortical noise. An external source of noise would be necessary to obtain simi-
lar results in a network consisting of the usual graded-response neurons. The
similarity of such intracortical maps with optically recorded maps of preferred
orientation and the finding that they can guide the refinement of feedforward
afferents emphasizes the role of horizontal connections in shaping neuronal
response properties. Not only are lateral interactions likely to modulate a cor-
tical cell’s tuning curve “on the run”, they can even predetermine its input
connectivity during development.



Chapter 3

Correlations of Activity in
Networks of Spiking Neurons

Throughout the preceding chapters we have introduced a neuronal model that
allowed us to study the plasticity of both lateral and geniculocortical connec-
tions in layer 4 of the primary visual cortex. The network consists of stochas-
tically spiking neurons so as to model geniculate relay cells as well as cortical
pyramidal cells and inhibitory interneurons. The Hebbian development of lat-
eral and feedforward connections has been analyzed by means of numerical
simulations.

In the sequel, we want to gain some analytical insight into the mechanisms
governing intracortical and feedforward development. To this end, we will
have to investigate the dynamics of synaptic weights as induced by the learn-
ing rules described in Sect. 2.3. According to these rules, the modification of a
synapse is determined by the spike trains of the two neurons it is connecting.
Since we are dealing with a network of stochastically spiking neurons, some
knowledge concerning the network’s spike statistics and especially the spike-
spike correlations is a prerequisite for our analysis. We will therefore use the
present chapter to derive analytical expressions for the two-spike correlation
functions in a recurrent network of stochastically spiking neurons. The reader
who is willing to take the results for granted and is mainly interested in an
analysis of the learning dynamics may safely skip this very technical part of
our work and proceed directly to the next chapter.

The subsequent discussion is organized as follows. Section 3.1 first recapit-
ulates the spike response model, which is the neuron model our calculations
will be based on. In Sect. 3.2 we then introduce the concept of a network en-
semble as an entirety of independent random realizations of one given neural
network. Within this framework the spike statistics we are interested in can be
formulated in terms of ensemble averages of the network activity. Section 3.3
presents two methods for obtaining approximations of the input-output statis-
tics of a rather simple network, namely a single neuron without feedback con-
nections. The second of these approaches is then generalized in Sect. 3.4 so as
to find analytical estimates of the average firing rate and the two-spike corre-
lation functions in recurrently interconnected networks of arbitrary architec-

55



56 Chapter 3. Correlations of Activity in Networks of Spiking Neurons

ture. In Sect. 3.5 we compare our theoretical predictions to the corresponding
gquantities as obtained from numerical simulations. At the end we give a short
summary of this chapter’s main results.

3.1 Neuron Model

The model of spiking neurons that we have implemented in our computational
model of primary visual cortex is the spike response model (Gerstner and van
Hemmen 1994), which we have already introduced in Sect. 2.1. To render this
chapter self-contained, we give a short summary in the following.

The state of a spike response-neuron is described by a time-dependent
internal variable h(¢) which can be considered as the membrane potential.
The effects of spike reception and spike generation are modeled as transient
changes of 4, described by two response functions (¢) and 7(t). Spike gener-
ation is governed by a generalized Poisson process that depends only on the
cell’s membrane potential. That means, the probability that neuron number ;
emits a spike during the infinitesimal time interval [¢, ¢ + d¢], given the value
of its membrane potential h;(t), can be written

Pr{Neuron i fires during [t,t 4+ dt) | h;(t) = h} := ¢;(h) dt, (3.1)

and the probability of more than one spike being emitted during that period is
o(dt). We will refer to ¢;(h) as the neuron’s activation function.

Whenever an action potential has been generated at neuron j, it is trans-
mitted along the axon to other neurons. At the same time, a negative contri-
bution —(t) is added to the membrane voltage & ; to account for the reduced
excitability of cell 7 during its refractory period. At a postsynaptic neuron i,
every action potential that arrives from a presynaptic neuron j induces a post-
synaptic potential that is given by the response kernel ¢(¢) multiplied by the
synaptic weight .J;;. Thus, the total membrane potential /; of the postsynaptic

neuron is
hi(t) =Y Tige(t —t5) = > n(t — 1), (3.2)
J

] f f
ti<t th<t

where the ¢! are the firing times of neuron i. Obviously, the membrane poten-
tial h; at time ¢ is determined by the sequence of spikes emitted at cell 7 and its
presynaptic neighbours j up to time ¢.

For each neuron 7, let us now use a sum of Dirac-§ pulses to represent its
spike train a;(t),

a;(t) ==Y ot —1). (3.3)

We can then rewrite Eq. (3.2) in the form

t

t
hi(t) = Jij aj(t)e(t —t')dt' + a;(t")yn(t —t')dt
S f /

— 00

= [rali(t), (3.4)
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thereby defining the linear coupling operator . In the sequel, we will always
assume, that (¢t < 0) = 0 and n(¢ < 0) = 0, so that the upper integration limits
in (3.4) can formally be extended to +oc.

3.2 Network Ensembles

In a network of stochastic spike response-neurons, the cells’ membrane poten-
tials as well as their spike trains are stochastic processes in time. That means
that different ‘runs’ of the same network, started from the same initial condi-
tions, will produce different spike trains and different tracks of the membrane
potentials.

Here we are interested in the statistics of spikes in such a system, as e.g., the
probability (density) of a spike being emitted at neuron i and time ¢, given that
a spike has occurred at cell 5 and time ¢ < . Deriving the probability of such
an event means to consider infinitely many runs of the same network, and to
determine the fraction of those runs in which this event occurs. Instead of an
entirety of infinitely many runs of the same network, we can equivalently con-
sider an ensemble of infinitely many instances of the same network running
all at the same time. Henceforth we will term this an ‘ensemble of networks’
or, in short, an ‘ensemble’.

3.2.1 Notation

To simplify notation, we introduce the following abbreviations for specifying
events of spike emission.
Si(t) - A spike occurs in spike train number 7 at time ¢,
S;(t, At) : At least one spike occurs in spike train number
within time interval [t, ¢ + At),
O;(t,t") : No spike is emitted in spike train number i
within time interval [¢, ),
S, ', {t1,...,tn}) : Exactly n spikes are emitted in spike train number ;
within the time interval [¢,t'), viz., at times ¢1,. . ., t,.

The probability of a given event will be denoted using the symbol Pr(-),
whereas probability densities will be written as pr(-),e.g.,

. Pr[Si(t, At)]

priSOl= i A
Throughout this work, probability densities are to be understood in the sense
of distributions, i.e., they may contain Dirac-delta contributions. We will as-
sume that the probability of more than one spike occurring within an infinites-
imal time interval d¢ is o(dt). The probability of exactly one spike occurring
within that interval is then equal to Pr[S;(¢,d¢)]. This can be written as an
integral

t+dt
Prisittdn] = [ pr{sit)] ot
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which we will often write in a sloppy but shorter notation as
Pr[S;(t,dt)] = pr[S;(¢)] dt .

In the subsequent sections, we will very often perform averages over en-
sembles of networks. We let (z) denote the ensemble average — or expecta-
tion value - of the quantity z. Since the state of a network of spike response-
neurons at a given time 7 is fully determined by the sequence of spikes that
have occurred in the network up to time 7, the quantity z will in general be
a function of all the firing times ¢ < 7 of all neurons 4. If we were given
the probabilities of all the spike trains that the network can produce, then we
could directly calculate the ensemble average (z).

As an example consider a quantity = := z;({t1,...,t,}) that depends on
the spike times of neuron i only. According to the above declarations, the
expression pr[S7(0, 7, {t1,...,t,})] denotes the probability density that up to
time 7 this cell emits exactly n spikes, viz., at the times ¢; ... ¢,. From that we
have

(x;) = T;/OTdtl/t:dtg---/t:_ldtnxi ({t1,...,tn}) Pr[S;(0, 7, {t1,...,tn})]

0 1 T T .
_ nz::ﬁ/o dtl.../o dtn 25 ({t1r-+ tn}) PrISP(0, 7, {t1, - tn})] . (35)

We are now going to analyze two special cases of (3.5) because they will be of
particular importance in this chapter.

3.2.2 The Mean Activity

First, we choose z; to be the spike train of cell 7 as defined in (3.3). As we will
show, the ensemble average of this quantity evaluated at a given time ¢ is equal
to the probability density of spike emission at that time, which is often referred
to as the neuron’s mean activity or firing rate. From (3.5) we have with 7 > ¢,

[oe] 1 T T
(as(t)) = nz:;ﬁ/o dtl---/o Aty ai () prSi(0, 7, {t1, ., tn})]

© 1 g7 ’ n
= T;)m/o dty /0 dt, lgd(t—tk)] pI‘[SZ’(O,T,{tl,...,tn})] .

For n = 0 the sum over k on the right hand side vanishes, because n = 0 means
that the neuron does not spike at all up to time 7, so its spike train is a,(t) = 0.
Therefore we find

o 1 T T .
(as(t)) = HZIE/O dty /0 Aty ai(t) pr [SP(0, 7, {t1, -t })] (3.6)

[oe] 1 n T T
= Z—Z/dtl---/ Aty 0(t — t) pr[SP(0, 7, {t1, ..., tn})] .
1 v =1 /0 0

!
k=
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Since

pI‘[S,?(O,T, {tla"'a tn})] —pI‘[ (OaTa{tkatla"'atkflatk+1a"'atn})] 3

the variables of integration in (3.6) can be rearranged in such a way that

(a;(t)) = Aty -+ [ dtp 6(t — 1) pr[S™(0,7, {t1, ..., ta})
nzl Z/ 1 / D Pr[SPO0,7, {trs - s ta})]

= ;%/0 dty /0 dt, 0(t — t1) pr[S;(0, 7, {t1,...,tn})]
= [53(0 T, {th] +

oo

+ Z O /dtg- /dtnpr 0,7, {t, ta, ..., tn})]
= [leTv{t}]

+ Zﬁ/ dty / dt, pr [SPHN0, 7, {t,t1, .., tn})]
n=1 70 0
(o) 1 T T

= Z_/ dty / dt,, pr [SPHN0, 7, {t b1, ...t })] -
n:On! 0 0

Inspecting the last and the last but one equality we find that the right hand
side represents a sum over the probabilities (densities) of all possible spike
trains in which there is a spike at time ¢. This yields the probability density
for a spike occurring at time ¢, no matter whether and when there are any
additional spikes. We thus find

(ai(t)) = pr[Si(t)] - 3.7)

Atfirst sight, it may be surprising that an ensemble average over sequences
of infinitely thin ¢-spikes yields the probability density pr[S;(¢)], which may
be smooth and finite. A demonstrative way of thinking about the above aver-
aging procedure is to consider every spike as being smeared out by a Gaussian
g(t, o) of finite width o with f_+;° g(t,o)dt = 1. The cell’s spike train then reads

o) = Zg(t —tf,0)

Now perform the ensemble average (a(t, o)), which yields a smooth function
of ¢, and take the limit o — 0 afterwards. In terms of mathematics this ap-
proach is nothing but a replacement of the §-distribution by its representation
as a sequence of functions, but it provides a more intuitive understanding of
the meaning of averages over spike trains.

3.2.3 Joint Probability Density of Two Spike Events

As a second application of Eq. (3.5) we will derive that (a;(t) a;(t')) is equal
to the joint probability density pr [S;(¢) A S;(t')] of a spike occurring at both
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times the intervals ¢ and ¢. To be prepared, let us first see how to write this
probability in terms of pr[S;(0, 7, {t1,...,t,})]

If ¢ # t', we obtain pr[S;(¢) A S;(¢')] by summing the probability densities
of all spike trains with spikes occurring in the respective time intervals, i.e.,

pr [Si(t) A S’i(t')] (3.8)

o0
1 T T

Z_'/ dt, / dt, pr [SIT2(0, 7, {t, ' t1,. .., tn})] , fOrt £ ¢,

5 Jo 0

n=0
with 7 > ¢,¢'. If on the other hand ¢ = ¢/, then there is a spike in [, ¢ + dt')
whenever there is a spike in [t, t+dt). For this case we thus find the probability
pr[S;(t) A S;(t")] dt dt’ of a occurring in both intervals [¢', ¢’ + dt’) and [¢', ¢’ + dt’)

to be equal to the probability of a spike being emitted in [¢,¢ + d¢), which is
pr[S;(t)] dt. Together with (3.8) this implies

pr [Si(t) A Si(t)] =

= Zi'/ dtl---/ dt,, pr [SPT2(0, 7, {t, ¢ t1, ...ty })]
n=0""J0 0

+ pr(Si(t)] o(t - )

(o) 1 T T
= Zﬁ/ dt, / dt,, pr [SPT2(0, 7, {t, ¢ t1, ... 10 })]

+ ot —t) an/ --/OTdtnpr [SPHY 0,7, {t, t1y. . ta})] - (3.9)

Now we start evaluating (a;(t) a;(¢')). With 7 > ¢,¢' we have

< az t, Z / dtl : / dt az az pI" [Sn(o T, {tlv "7tn})]
= Zﬁ/o dty /0 dt, pr[S;(0, 7, {t1, ..., tn})] Z S(t—tx) 6(t' —t5)

k=1
= dty - dt, 6(t — i) (t —t) r[S;0, 7, {t1,. .., tn})]
D L
J

_l’_

(0] 1 n T T
Y= / dty / dt, 6(t — tg) 6(t' — t1) pr[SP(0, 7, {t1,. .., tn})] -
=J

As in (3.6), we rearrange the variables of integration and obtain
(ai(t) ai(t") =
o0 -1 T T
=y %/ dt, / At 6(t — 1) 6(t" — t2) pr [SH(0, 7, {t1, ..., tn })]
. 0 0

n=2

# 30 [ [ dtae— )¢~ ) prSPO7 (11t}
n=1 "0 0
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ni/ dty - / dt, pr [SIT2(0, 7, {t, ' t1,. .. tn})]

i /dtl- /dtn (' —t)pr [SPTHO, 7, {t, t1,. .. ta})] -

Comparing the last equality with Eq. (3.9), we find

(ai(t) ai(t')) = pr [Si(t) A Si(t)] (3.10)
The above calculations can easily be extended to show that quite generally
(ai(t) a;j(t")) = pr[Si(t) A S;(t)] , (3.11)

with arbitrary i, = 1,... N.

3.2.4 Conditional Probability Density

At the end of this section, let us work out an expression for the conditional
probability density of exactly n spikes occurring at times ¢4,...,t, at input 1,
given that there is a spike in some interval [¢, ¢ + At) at the same input. From
the definition of a conditional probability, we have

pr (S0, 7, {t1,...,tn}) A Si(t, At)] .

pr[S7(0,7, {t1,. .. ta}) | Silt, At)] = Pr[S(t, At)]

(3.12)

For a further evaluation of the right hand side, we check whether at least

one of the ¢4, ..., t, is within the interval [t,¢ + At). If this is the case, then the

event S;(0, 7, {t1,...,t,}) implies the event S;(¢, At) and the joint probability

density of both events is equal to that of S;(0, 7, {t1,...,t,}) alone. Otherwise

the events S;(0, 7, {t1,...,t,}) and S;(¢, At) are disjunct and their joint proba-
bility density is zero. Therefore it is

0, ifty,... ta &[t,t+ Al),

priS0.7 .- tn}) A Silh, AT)] = { pr[S2(0,7,{t1,...,t,})] otherwise.

Because of our assumption that the probability of more than two spikes occur-
ring within in an interval [¢,t + At) is o(At), we can take for granted that there
is at most one spike in that interval, if At — 0. With At — 0 we thus write

pr[SP(0, 7, {t1,...,tn}) A Si(t, At)]
t+At n
:/t pr(SP(0, 7, {t1,....ta})] D 0 (s —ti)ds,
k=1

which implies
prST(0,7, {t1, - ta}) A Silt, A)]

At—0 At

= pr[SP(0,7, {t1, ..., ta )] Y 0 (t—tr)
k=1
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Inserting this into Eq. (3.12) yields

Al%glo pr [S’L (07 T, {tla s 7tn}) | Sl(tv At)]

_ pr[SPO, 7 {tr, s tn )] kg 0 (E — tk)
pr [5i(t)] '

Carrying out the limit A¢ — 0 on the left hand side leaves us with

pr[SP0, 7, {t1, ..., tn})] Dop_q 0 (t — k)
pr [S;(t)] '

If n = 0 this is to be read pr [S?(0, 7, {}) | Si(t)] = 0.

pr [P0, 7, {t1,...,tn}) | Si(1)] =

(3.13)

3.3 Feedforward Networks

In this section we will derive approximations for the two-spike correlation be-
tween input and output of a single neuron. It is assumed that the input spike
trains do not depend causally on the output spike train, i.e., there is no feed-
back from output to input.

3.3.1 General Considerations

Let us consider a single neuron receiving N input spike trains from a given
stochastic process and generating an output spike train according to the spike
response model described in section 3.1. We assign the index : = 0 to this
neuron, while the input spike trains are labeled by 7 = 1... N. The input-
output correlation function is defined as

(ao(t1) ai(t2))
{ag(t1)) (a;(t2)) ' (3.14)

where (a;(t)) is given from the statistics of the i*" input process. We thus need
to find suitable expressions for (ao(t)) and {ao(t1) a;(t2)). Subsequently, some
general relations are derived, which will be useful to approximate these quan-
tities.

From Eq. (3.7) we know that (a((t)) is equal to the firing probability density
pr[So(t)]. It is easy to see that this is in turn equal to the expectation value
(qo[ho(t)]), where go(h) is the neural activation function. In order to show that,
we expand

Coi(ti,t2) :=

—+00
pr[So(t)]dt = Pr[Sy(t,dt)] = / dhpr [So(t,dt) A ho(t) = h] , (3.15)
where pr[Sy (¢, dt) A ho(t) = h] is the joint probability density that the cell emits
a spike during [t,t + dt) and the value of its membrane potential h at time
t is h. The first equality is nothing but the definition of the probability den-
sity pr[Sy(t)]. The second equality holds true because the membrane potential
ho(t) must take some value between —oo and +oco. The integral thus sums the
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probabilities of a complete set of disjoint events in which a spike occurs during
[t,t + dt). This yields the probability of the event Sy (¢, dt).

The joint probability density in the integral on the right hand side of (3.15)
can be written as the product of a conditional probability and an unconditional
probability density, resulting in

prisoldr= [ AnPrSy(td0) | ho(r) = Al prlfot) = 1]

— 00

In (3.1) we have defined for our neuron model Pr[Sy(¢,d¢t) | ho(t) = h] to be
equal to gy (h) dt, so that we obtain

pris@lar= [ ao(h)pr{io(t) = A] ahat = faolho 0 .

— 00

This proves the statement

(ao(t)) = (qo[ho(?)]) - (3.16)

In an analogous manner, we can treat the second moment (a(t1) a;(t2)),
where 7 = 1...N. From Eq. (3.11) we know that (ao(t1) a;(t2)) is equal to
pr[So(t1) A Si(t2)]. We start by expanding

pI‘[S() (tl) A S; (tg)]dtl dty = Pr [So (tl, dtl) A Si(tg, dtg)] (3.17)
= /dhpf [So(t1,dt1) A Si(t2,dta) A ho(t1) = h]

= /dh Pr [So(tl,dtl) | ho(t1) =hA Si(tQ,dtQ)] pr [Si(tQadtQ) A hO(tl) = h] .

Since according to the spike response model, the neuron’s firing probability
density does only depend on the value of its membrane potential, it is

Pr [So(tl,dtl) | ho(t) =hA Si(tg,dtg)] = Pr [So(tl,dtl) | ho(tl) = h]
= qo(h)dt: .

Inserting into Eq. (3.17) yields
pr{So(t1) A Si(to)]dt; dty = / go(h) pr [ho(t1) = h A Si(t2)] dh dt dty
- / go(h) pr [ho(t1) = h | Si(t2)] pr[Si(t2)] dhdty d,
= (ai(t2)) dta /qo(h) pr[ho(t1) = R | Si(t2)] dhdty
and that means
(ao(t1) ai(tz2)) = (ai(t2)) /qo(h) prlho(t1) = h | Si(t2)] dh . (3.18)

The integral on the right hand side of this expression is the conditional ex-
pectation of gy[ho(¢1)] given that there is a spike at input 7 and time ¢5. An
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alternative representation of (3.18) can be found by further expanding the con-
ditional probability according to

(a;(t2)) r[ho(tl) —h| si(tg)} - pr[ho(tl) —hA Si(tg)]

= anf dtl /dt pr|h tl)_h /\S(tQ)/\Sn(OT{tl,..,,t%})}

= ini/ dt) - /dt' pr|ho(t1) = h|SP(0, T, {t], ..,t;%})/\Si(tz)}

0
x pr[s 0 T,{tl,...,tn})/\Si(tg)].
We notice that the joint probability density in the last equality is equal to
pr[S;(t2)] times the conditional probability density of S7'(...), given S;(¢2). The

joint probability density can therefore be replaced using Eq. (3.13), multiplied
by pr[S;(t2)]. This results in

(ai(t2)) pr [ho(tl) =h| Si(t2)} = pr [ho(tl) =hA Si(tg)] =

Zi'/ dt’l---/ at prho(tr) = b SO {8, 1)) A Silt2)
n=0 " J0 0

n
X pr[S{b(o,T, {t’l,...,t;})} Zd (t2 —t},)

k=1

Because of the delta functions, the integrand vanishes but when any ¢/, ... ¢,
is equal to t2. That means that the integral is contributed only by events S7'(. . .)
which imply the event S;(¢2). Thus, we can drop S;(¢2) from the conditional
probability density and merge the product of the two densities so as to obtain

(ailt2)) pr | ho(t1) = b si(tzﬁ - (3.19)
= prfho(t) =h A Si(ts)] va/ d, - /dt

pr|:h'0(t1) =h A S?(O,T, {tllv"'vtgb})} 25 (t2 - t;c)

X

1 T T
= ZE/O dt’l---/o dty ai(tz) pr [ ho(t1) = h A SP(O,7, {H,.., £ })]
n=0""

The last equality holds true, because the sum over delta functions can be iden-
tified with the " input spike train evaluated at time ¢,. Inserting this result
into the right hand side of Eq. (3.18) we finally get

(ao(t1) ai(t2)) = (ai(t2)) /QO(h) pr[ho(t1) = h | Si(t2)] dh
= <ai(t2) qo [hO(tI)D . (320)
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Usually, it will be difficult to find an exact expression for (ag(t1) a;(t2)),
depending on the stochastic processes generating the input spike trains. In the
remainder of this section we will introduce two methods that can be used to
obtain approximative results.

3.3.2 Non-Refractory Neuron with a Large Number of Statistically In-
dependent Poisson Inputs

Let us assume that the firing rate of the output neuron is low, such that the
expected time interval between two individual output spikes is large as com-
pared to the decay time of the neuron’s refractory potential. In this case we
may nheglect the effect of the refractory potential and thus obtain from Eq. (3.2)

ho(t) = szoﬁ(t —tf).

AN

If the input spike trains are statistically independent and the number of in-
put synapses is sufficiently large, then we know by the central limit theorem
that, under quite general conditions concerning the distribution of weights Jy;
and the postsynaptic potential (¢), the distribution of h(t) is approximately
Gaussian. Here we will presume, that the input spikes are generated from sta-
tistically independent generalized Poisson processes. This allows for a direct
calculation of mean and variance of hy(t), and the resulting expressions are
simple. A detailed proposition of the inhomogeneous — or generalized - Pois-
son process in the context of neural spike trains has been given by Kempter
et al. (1998).

For a given input synapse 7, we consider the probability density that up
to time 7 exactly n spikes arrive at times ¢4,...,t,. In terms of the previously
introduced spike events S;, this writes

pI‘[Sin(O, T, {tla s atn})] dty---dtp, = Pr[OZ(Oa tl) A Si(tla dtl)
/\Oi(tl + dtl,tg) A\ Si(tg, dtg) VANAN Si(tn, dtn) A Oz(tn + dtn,T)] .

By definition of the Poisson process, disjunct intervals of the input spike train
are statistically independent. The right hand side of the last equation can thus
be factorized, so that

PI‘[OZ'(O, tl) VAN Si(tl, dtl) VAN Si(tn, dtn) A Oz(tn + dit,, T)]
= PI‘[OZ'(O,tl) VAN Oi(tl + dtl,tg) VANERIVAY Oz(tn + dit,, T)]
X PI‘[Si (tl, dtl)] s PI‘[SZ' (tn, dtn)] ,

and for dt¢y,...,d¢, — 0 we obtain
pr[Sz'n(Ov T, {tlv cee atn})] = PI‘[Oi(O, T)] pI‘[Si(h)] T pr[Si(tn)] . (3.21)

After this preparation we are in the situation to derive an expression for
the conditional probability density pr [ho(t) = k| S;(¢')] required in (3.18). For
simplicity, let us consider for a moment only one single input spike train (index
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i = 1) arriving at the output neuron. Let the corresponding synaptic weight be
Jo1. Then, with 7 > ¢, itis

pr [ho(t) = h | Si(t) Z/dtl/dtz / dt,

. pr[S1(0,7, {t1,. .. ta}) | St )]6[h—J01Z (t—tm)].

m=1

Using (3.13) to replace the conditional probability, we have
pr [ho(t) = b | Si(t)] =
1
= 21;/ dty-- / dt, 6 h Jo1 Z (t—tm):|

pr [ST(0, 7, {t1,...,tn})]
§ (¢ —ty)
pr[Si(t)] Z )

_ ZH.Z/ dty- /dtn = JmZ et~ tm)|

pr [ST(0, 7, {t1,...,tn})] ,
" GG R

_ Zn,/dtl [ at. o[- S 3 et )]

m=1
pr S0, 7, {1,y taD)] - 1
) ) I
o~ 1 T T n—1 ,
= nzlm/odtl/o dtn15[h—J01le€(t—tm)—J()lé‘(t—t)]
% pr [S{L(O,T, {tl,...,tnfl,t,})] ‘

pr [S1(#)]

Because of Eqg. (3.21), the rightmost factor in the last equality can be replaced
by pr[S? (0,7, {t1,...,t,_1})]. Furthermore, we substitute (n — 1) — n and
obtain

pr [ho(t) = h| Si(t) Z/dtl /dtn

x 5[h—J01g(t—t)—JmZ (t = t)| prIST(0, 7, {11, )]

m=1

= pr[ho(t) =h— Joe(t —1)] .

Analogously, it is easily proved that for the general case of N input spike
trains with corresponding synaptic weights Jy; we have

pr [ho(t) = b | Si(t")] = pr [ho(t) = h — Joie(t — )] ,
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since the individual spike trains are presumed to be statistically independent.
Inserting this result into equation (3.18) yields

(ao(t1) ai(tz)) = (ai(t2)) /dhqo(h) prlho(t1) =h — Joi ety — t2)]

— {ai(t2) [ dhao(h-+ Jose(ts — 1) prho(tr) = 1]
= (a;i(t2)) (qo [ho(t1) + Joie(t1 — t2)]) -

From that, we can finally calculate the desired input-output correlation
function as defined in (3.14),

(qo [Po(t1) + Joi e(t1 — ta)])

(g0 [ho(t1)]) ’
where we have used Eq. (3.16) to replace {(a(¢1)). Thanks to our assumption
that the distribution of the neuron’s membrane potential A is approximately

Gaussian, the above averages can be carried out at least numerically, once the
first two moments of i are given. According to (3.20) these are

Zm/&m4ﬂﬁw,

Coi(t1,t2) =

and
ZJOZJOJ / / dt'dt"e(t —t') e(t — t") (ai(t') a;(t"))

where all the quantities on the right hand sides are known from the model.
The second moment can be further reduced to

t

(ho(t)?) = 24 Z J3: / dt'e(t — ') {a; (")) ,
because, by the statistical independence of the input spike trains, it is

(ai(t)a;(t")) = (ai(t')) (a;(t")) + 6;50(t" — ") (ai(t')) -
Example
Following Gerstner and van Hemmen (1994) we let

qo(h) == 7'0_1 exp[B (h —0)] .

For this choice, one finds

{qo [Po(t1) + Joie(t —t2)]) = {(qolho(t1)] exp [B Joi e(t1 — t2)])
= {qo[ho(t1)]) exp [B Joi e(t1 — t2)] ,

and therefore
Coi(t1,t2) = exp[B Jos e(t1 — t2)] .
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Note, that we did not make use of the Gaussian approximation to derive this
formula. As a consequence, it remains valid, even if the number of input spike
trains is extremely low.

In some applications, however, the knowledge of Cy;(¢1,t2) may not be
sufficient, but rather (ao(#1) a;(t2)) might be needed. Since (a¢(¢1) a;(t2)) is the
product of Cy;(t1,t2) with (go [ho(t1)]) and (a;(t2)), a good approximation of
(qo [ho(t1)]) is then required. Assuming that the distribution of A, is a Gaus-
sian,

_ 2
prlho(t) = h| =~ \/2;7<3xp [— (hQOéL) ] ,
with
p=p(t) = (ho(t)) , o = a(t)*:= (ho(t)”) — (ho(t))? ,
yields
+00 AT
(o lho(®)]) ~ Wﬁ / dnexp[8 (= 0)] exp [_ =) ]
ex — +oo —n)?
- %/w dh exp B (h — )] exp [—(h%é‘) ]
_ exp[B(p—0)] [T ox ox G
B ToV 2mo? /oo dh exp [5h] exp [ 202]
ex -0 +oo h?
= %/m dh exp [—P—i—ﬁh] .

Fortunately, the integral on the right hand side of the last equality can be car-
ried out analytically (Gradshteyn and Ryzhik 1994), so that we obtain

ial

(a0(0) = {an o] ~ 75 exp { 81t 0] + 25

Finally, we have

(ao(t1) ai(t2)) = (ai(t2)) (ao(t1)) Coi(t,t2)
(ai(t2)) exp {5 [u(th) + Jose(ts — t2) — 0] +

70

Q

where all quantities are known from the model parameters.

3.3.3 Few Input Synapses

If the number N of input spike trains is very small or the inputs are strongly
correlated, then a Gaussian approximation of the distribution of Ay may not
be good enough to achieve an acceptable precision when evaluating Eq. (3.18).
We are now going to present an alternative method, that may help to arrive
nevertheless at satisfactory results. The basic idea is to expand the nonlinear
neural activation function in a Taylor series. As we will show, the moments
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of the output spike train can then be expressed as a series of moments of the
input processes. This approach has been studied in some detail by Kuznetsov
et al. (1965).

The nth order power series expansion of ¢q(k) in h about some given point
x reads

(0)

wh) =¢”+¢" h—x)+ - +a" h—x"+r{ (h-x),  (322)

with appropriate constants q(()o), e q(()") and the remainder r[()”) (h—x). For the
moment we do not specify x. The problem of making a good choice for this
value will be discussed below. We combine the above ansatz with (3.16) and
obtain

(ao(t)) = {qo[ho(t)])
= 4y + a5 (o) —x) + -
+ a0 (ho@® =" + (Ve =x1) . (@29)
On the right hand side of this equation, each term ([h((t) — x]™) can be

computed, if the moments (hy(¢)™) for m = 1...n are known. But the latter
can be derived directly from the input statistics, using the relation

N
ho)™ = > Joji Jojn (3.24)
jlr-':jm:l

t t
/dtl---/ At et —11) -+ £t = tm) g, (£1) - s, (bm)
0 0

X

so that

N t1 t1
(ho(t))™) = > JoJ'l"'Jij/ dt,l"'/ dty,
0

F1yemrjm=1 0
x ety —ty) ety — tr,) (aj, (8) -+~ aj, (th,)) -

Obviously, we are still left with the problem of calculating the value of the

rightmost term in Eq. (3.23), the ensemble average of the remainder r(()"). In
general, this will turn out to be as difficult as the original problem of deter-
mining (qo[ho(t)]). If, however, the activation function ¢ (k) is analytic within
a certain region around y, then we know that within this region r(()")(h - x)
goes to zero as n approaches infinity. If, furthermore, the probability distri-
bution of the membrane potential hy(t) — which is determined by the input
processes — is sufficiently concentrated near x, then we may hope that the av-

erage <r[()”)(h — X)> decreases to zero with increasing n as well. In that case,
the mean activity (ao(t)) can be derived from (3.23) to any degree of precision

by choosing n large enough and neglecting the remainder r(()").
The above considerations emphasize, that an appropriate choice of the
point xy may be crucial for the quality of the results achieved. Since the chances
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for the method to work fine are best if the distribution of /(%) is concentrated
near y, it would be natural to let x be equal to the expectation value of h(%),

x = x(t) ZJOk/dtat—t)< k() .

Notice that, in general, with x being dependent on ¢, the series coefficients

q(()o) - q(()") and the remainder r(()") will also be time dependent.

In order to find an expression for the second moment of the input-output
statistics, (ao(t1)a;(t2)) with s = 1... N, we now insert the expansion (3.22)
into Eqg. (3.20). That yields

(ao(t1) ailt2)) = {ai(t2) o [ho(t1)])
= ¢\ (ai(t2)) + a5 (ai(tz) [ho(tr) — x]) + - -
+a (aatta) o) — x1") + as(e2)r” [ho(t1) — 1) - (3:25)

Let us again postpone the specification of y until the end of the calculations.
The quantities (a;(t2)[ho(t1) — x]™) needed on the right hand side of (3.25) can
be determined from the input processes, because

o)™ = 3 T, / / at, -

Jseensfm=1
x ety —th) - elty — t,) (ai(t2) az (1) -+ aj,, ()
where Eq. (3.24) has been applied to replace h¢(¢1)™. What remains unknown
in (3.24) is the term <ai(t2)r(()n) [ho(t1) — X]>- In the same way as we have de-
rived Eqg. (3.20) from (3.18), it is easily shown that

(ailt) 1§ Tho(t1) = x1) = (ai(t2) / rg (b= x) pr[ho(t1) = h | Si(t2)] dh .
(3.26)
If the conditional probability density pr[ho(t1) = h | Si(t2)] is sufficiently
concentrated within a region about x where ¢o(h) is analytic, then, hopefully,
the conditional expectation on the right hand side of (3.26) approaches zero as
n goes to infinity. Under that condition, the last term in (3.25) can be dropped
if n is chosen large enough.
Presuming that the probability density under consideration is concentrated
near its first moment, it would be natural to choose x as the conditional expec-
tation value of hg(¢1) given S;(t2),

x = x(t1,t2) := /hpr [ho(t1) = h | Si(t2)] dh .

Using Eq. (3.19), this can equivalently be written

(ai(ta)ho(t1)) (ai(ta) ag(t'))
X(ti,t2) = <— ZJOk/ dt'e(ty _t)Wa

and is thus easily derived from the input statistics.
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3.4 Recurrent Networks

In Sect. 3.3 we have analyzed a very simple neural network consisting of a
single neuron receiving at its dendritic synapses input from statistically inde-
pendent stochastic processes that were not causally connected to the output.
Throughout that whole section the neuron’s refractory potential, a sort of self-
input, was neglected. In what follows we want to address the general case of a
fully connected network of spike response-neurons, in which each neuron can
receive input from all the other neurons as well as from itself.

We will concentrate our calculations to the derivation of the mean activity
and the two-spike correlation function in a recurrent neural network, because
these are the quantities that will be needed for an analytical investigation of
the Hebbian learning dynamics in our model of primary visual cortex. Never-
theless, the methods that will be presented can easily be generalized to obtain
expressions for higher-order correlation functions.

3.4.1 Notation

To render expressions as simple as possible, we will extensively use the fol-
lowing conventions of notation.

e Multiplication of functions. For two functions f,g : Nj x R" — R,
with n € IN, we define the product (fg) : IN§ x R" — R as

[fg]zlzn (tlﬂ"'atn) = fllzn(tlaatn)gllzn(tlaatn)
where iy,...,i, € Ny and ¢y, ..., &, € IR. If the function f has no zeroes,

then we can also write

-9 Tyenns = Giy i (150 0y .
Foliy U fiin (b)) T 8

If, furthermore, A is an operator acting upon a function 4 so that the
resultis a function Ah : INj x R" — IR, then we define the operator (f A)

by
[(fﬁ)h} (1, b)) o= [f(Ah)] (.- tn)

11...0n 11...5n

= fiin (b1, tn) [Ah} (t1y- s tn) -

11...0n

e Tensor product of functions. With two functions f,g : Ny x R — IR, we
denote

[f ® glij (t1,t2) == fi(t1) g;(E2) -

e Tensor product of operators. Wi}h two operators A and B acting upon
functions f and g so that (Af), (Bg) : Ny x R — IR, we define

[(A® B)(f ®9)l;;(t1,t2) := [Af];(1) [Byl;(t2) -
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e Time ordering operator. Given a function f;;(t1,t2), let us define the
time ordering operator 7 as

. Lt te), ity <o,
711, (b1, t) o= { P s

e Ensemble average. As in the previous sections, the average of a quantity
x over an ensemble of networks will be written (z). When applying the
average to a function, we will often draw the arguments of the function
outside the brackets, as in

(fiy.in(t1 .. tn))

(Fhiya, e tn) .

3.4.2 General Considerations

We consider a network consisting of N mutually connected spike response-
neurons. The spike train of neuron number i € {1,..., N} is denoted by a;(t)
as introduced in Sect. 3.1, and the two-spike correlation function of two spike
trains s and j is defined as

(a®a);; (t1,12)
(a); (t1) (a); (t2)
Given the the matrix J;; of synaptic weights in the network, i.e., given any
fixed network architecture, it is our aim to find an approximation for this cor-

relation function. We begin by deriving general expressions for the mean and
the second moment of the neural spike activity, namely,

(a) = (qh), ) (3.28)
(a®a) = 7T(a®gh)+6{a), (3.29)

Cij(tl,tg) = ) 'L,j = ]_,. .. ,N . (327)

where a nonlinear operator ¢ and a linear operator 4 have been defined as

[4f]; &) = a[fi(¥)],
[&f} y (ti,ta) = 6;0(ts — t2) fi(t1) ,
with a test function f : Ny x R — R.
Equation (3.28) is easily proved. Recalling the line of arguments that has

led to Eq. (3.16) for the case of a feedforward network, we can quickly convince
ourselves that for a recurrent neural network it is

(ai(t)) = (@[hi(¥)]) , i=1...N,

which is equivalent to (3.28).
In contrast, the derivation (3.29) is a bit more involved, so let us proceed
step by step. In analogy to (3.17), we first find

(a,i(tl) a;j (t2)> dtidis = pr [Sz(tl) A Sj (tg)] dty dty = (330)
= /dh, Pr [Sj(tg, dtg) | h,j(tg) =h A Si(tl, dtl)] pr [Si(tl,dtl) A hj(tg) = h,] .
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Next, we will replace the conditional probability on the right hand side. For
the moment, we presume that either i # j or t1 # t, i.e., the event S;(t1,d¢;)
does not imply S;(t2,dt2). Since within the framework of the spike response
model, a neuron’s firing probability density is coupled to earlier spikes in the
network only via its membrane potential, we have

Pr [Sj(tg,dtg) | hj(tg) =h A Si(tl,dtl)] (331)
= Pr[S;(t2, dt2) | hj(t2) = b] = q;(R)dtz , ifty <tz and (i,t1) # (4, t2)

where g;(h) is the activation function of neuron j as introduced in Sect. 3.1.

Notice, however, that (3.31) does not hold true for t; > t5, because an ac-
tion potential at time ¢; does carry information not only about the membrane
potential but also about the actual presence of action potentials at an earlier
time ¢9: A spike at time ¢; can be generated in response to the postsynaptic po-
tential elicited by a presynaptic spike at 5. Hence, the probability that a spike
has occurred at time t,, given the membrane voltage at ¢, and the presence of
an action potential at ¢, > 5, is different from the probability to find a spike at
t2, given only the corresponding membrane voltage.

Now assume ¢ = j and t; = t5. In that case we have

Pr[Sj(tQ,dtQ) A Si(tl,dtl) A hj(tg) = h,] = PI'[SZ'(tl, dtl) A hj(tg) = h,] 5
so that
Pr[S;(te,dt2) | hj(t2) = h A Si(ti,dt1)] =1, if (i,t1) = (4,12) . (3.32)
Putting together Egs. (3.31) and (3.32), we arrive at
priSj(ta) | hj(ts) = b A Si(t1)] = qj(h) + 0i30(ty — t2), Tt <to.  (3.33)
This can be inserted into (3.30) and thus yields
(@s(t) aj(t2)) = [ A q;(0) + 83861 —t2) pr[Si(12) Ay 22) = B
= 0;j0(t1 — to)pr[Si(t1)] + /dh qj(R)pr[Si(t1) A hj(t2) = h]
= 0;50(t1 —t2) (ai(t1)) + (ai(t1)) /dh qj(h)pr[hj(t2) = h | Si(t1)]

= 6;50(t1 — t2) (ai(t1)) + (ai(t1) g [hj(t2)]) , ift1 <t (3.34)

where the last equality results from applying the same transformations that
have been used to derive Eq. (3.20) from (3.18). In order to put (3.34) into a
more compact form, we define the (nonlinear) operator ¢ by

[gh]; (t) == qi[hi ()],
and the operator 4 as

0155 (t1, t2) := 635 6(t1 — 1) fi(tr)
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so that we can write

(a®a); (t1,t2) = (a ® Gh),; (b, t2) + [5 (a)]ij (t1,12), forty <to.
Instead of continuously keeping track of the constraint ¢ < s, let us now
simply apply the time ordering operator 7 to both sides of this equation. As the
time ordering operator consistently rearranges all arguments of the involved
functions in such a way that the time arguments are in the required order, the
constraint can be dropped and we have

(7 {a® )y (1,12) = [7 ( © an); (0 12) + |75 e (11,82)

for arbitrarily ordered times ¢; and ¢,. Because of the relations

(a ®a); (tr,t2) = (ai(t1) a;j(t2)) = (a;(t2) ai(t1)) = (@ ® a); (t2,11)

and

@) (tte) = [6(a)] (t2it1)
1) Vi
the time ordering operator is lost upon the functions (¢ ® a) and 4 (a). Hence
itis

(0 a)y; (11,12) = [F @ @ ah)); (1, 12) + [§ (@)] (10,12),
or in short

(a®a)=7(a®gh)+6{a) ,

as claimed in (3.29).

3.4.3 Expanding the Activation Function

As motivated in Sect. 3.3, we will now try to gain access to Egs. (3.28) and
(3.29) by expanding the neural activation function ¢;(h) into a power series in
the membrane potential A,

g;(h) = ¢ + ¢ (h—x) +r(h—x).

We will apply this expansion for the purpose of obtaining approximations
of the ensemble averages (¢h) and (a ® gh). Normally, the precision of the
resulting approximations will depend on the choice of x. One may there-
fore consider using two different expansions for approximating (¢h), (t) and
(a ®qh),; (t,t). In the former x might be chosen as a function of i and ¢,
whereas in the latter y might depend on 4, j, ¢, and ¢’. Here we do not need
such a general ansatz so that we simply write

g [hi(®)] = ¢ t) + ¢V () [hit) — xa()] + 7 [ha(t) — xa(8),8] . (3.35)

For convenience, we define a new (non-linear) operator 7 acting on a function
fNxR—R,

[7f); (&) == ri[fi(®), 8] -
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This allows to rewrite (3.35) in the form
k), () = " (1) + " (1) Tha ) — xa(®)] + (b — )], ()
where the arguments can be dropped so as to obtain
gh=q" + ¢V (1@ h - x) +7#(h —x) . (3.36)
Inserting this result into Eqg. (3.28) we obtain
(@) = ¢ +¢W ((h) = x) + (F(h = x)) - (3.37)

In a similar way we proceed for Eg. (3.29) and get
(a®a)="7 <a ® [q(o) +qM (h=x) +#(h — X)]> + 6 (a) . (3.38)

Next, we solve (3.37) for the function ¢(®) and insert the result into (3.38). After
a few simple transformations this leads us to

(@@a) = (0@ (a)+5)+7 [(ae (@) — ()& (¢Vh)]

+ 7{(a®7(h—x))—7[(a)®(F(h—x))] - (3.39)
According to the definition of our neuron model (Sect. 3.1), the membrane

potential ~ of any neuron at any time ¢ is a function of the network’s spike

activity a up to time ¢. To be specific, h can be written as a linear coupling

operator # acting upon a,
h = ka,

as introduced in Eq. (3.4). Using this relation in (3.39), we find

(a®a) =
+

(@) @ (o) + 7 [(E® ¢V&) ((a ® a) — (a) @ (a))] + (a)
T{a®f(ka —x)) — 7(a) ® (F(ka = X)) ,

where E denotes the identity operator, i.e., Ea = a. Analogously, we can
replace 4 in Eq. (3.37) and get

(a) = ¢ + ¢ ((Ra) = x) + (P(Ra — X)) .
After defining the functions
K :=(a®a)— (a) ® (a) (3.40)

and
R:=7(ka—x), (3.41)

we finally obtain the equations

(@) = ¢ +4qV((ha) —x)+(R), (342
(Eek) - #Eeq i) K = da)+7aeR) - o (R), (343
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from which we shall try to determine the mean activity (a) and the second
moment of the spike statistics K.

It should be emphasized that up to now we did not introduce any kind of
approximation, i.e., within the framework of the spike response model, equa-
tions (3.42) and (3.43) are exact. The problem is, however, to determine (R) and
(e ® R). In the following subsections, we will present two simple methods to
handle these quantities and obtain approximations of (a¢) and K. Especially
the second method yields quite respectable results as we will demonstrate in
Sect. 3.5 by means of numerical simulations.

3.4.4 Linear Neurons

Let us now assume that within our network’s operating regime, the neural
activation function g¢;(h) is given by a linear function. Then we have

gi(h) = & + o\"n (3.44)
with two real constants gg-o) and gg.l).

The activation function ¢;(h) is defined to be the probability density that
neuron j emits a spike, given that its membrane potential 4 ; is equal to h.
Since any probability density must be greater than or equal to zero, we have to
require ¢;(h) > 0, which means that gg.”hj (t) > —gg-o) must hold for the mem-
brane potential ; of any neuron at any time. If the network under consider-
ation is free of inhibition and the neurons are non-refractory, then the mem-
brane potentials are always positive or zero, so that the above requirement is

automatically fulfilled for g§-0>, ;” > 0. If on the other hand, the condition
Qg-l)hj(t) > _Qg_o) is not fulfilled in all but in most network runs, then the linear
ansatz may nevertheless yield good approximative results.
A comparison of (3.44) with (3.35) suggests to choose x;(t) = 0 and to
identify
") =0, W =a", ri(ht)=0,

so that Egs. (3.42) and (3.43) read

and
[(E ok) - 7(E® g“h%)] K=6{a) . (3.45)

Assuming that the operators [E — o(Vz] and [(E ® E) — 7(E ® o(V&)] can be
inverted, we arrive at

(@) = [E-oWr] o, (3.46)

K = [(E@E) —#E® Vi) §(a) . (3.47)
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If |o()] is sufficiently small, then |0 | < 1 and |#(E ® o(M&)| < 1. In that
case the inverse operators in (3.46) and (3.47) can be expressed by their von-
Neumann series,

@—gmﬂilzﬁ+gmk+km42+n-, (3.48)

(3.49)

and we can obtain approximations for the left hand sides by summing over a
finite number of terms on the right hand sides.

Hawkes (1971a, b) has presented a set of equations which is equivalent to
(3.45) and (3.46) under the condition that the network ensemble is stationary,
so that (a), is independent of time and K;;(t1, t») does only depend on the time
difference (¢, — t2). The author introduces a matrix v = (v;;) to represent the
coupling operator # as follows,

—0o0

t
o ligl, (0= [t St~ gule)
k
and furthermore defines the Fourier transforms

fjk(w) = /oo dt €_Mt Kjk(t) y ij(w) = /oo dt e—iwt ’ij(t) .

—0o0 — 00

From that he obtains
(a) = [E—G(0)] "o,

where E denotes the identity matrix and G(w) is to be read as the matrix whose
elements are given by G, (w). Then he defines the diagonal matrix

D :=diag ((a); ...,{(a)y) »

and shows that a solution K of (3.45) has a Fourier transform f(w) = [fi;(w)]

given by

f@)=[E-Gw)] "' DE-G"(-w)] "

3.4.5 Non-Linear Approximation

How can we proceed from Eqgs. (3.42) and (3.43), if the linear ansatz shown
in the previous subsection does not yield satisfactory results? In that case we
have to find useful approximations for the terms (R) and (a ® R’). From (3.41)
we notice that both of these are ensemble averages of some nonlinear operator
acting upon the vector of neural spike trains a. Unfortunately, we do not know
the probability density of a so as to calculate these averages. Otherwise we
would not need Egs. (3.42) and (3.43), because we could directly derive (a)
and (a ® a) from the given density.
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A widely-used heuristic technique for estimating complicated averages is
to replace the average (f(z)) of some function f(x) by the value of the function
taken at the average (z) of its argument, i.e.,

(f(z)) = f({z)) - (3.50)
In (3.42) we can take advantage of this method by substituting
(R) = (7 (ha — x)) = 7 (k {a) = x) , (3.51)
so that using (3.36) we arrive at
(a) = ¢ (k(a)) . (3.52)

This is a system of N non-linear integral equations for the IV functions (a),. It
can be solved numerically.

The most simple case arises if the network ensemble is in a stationary and
homogeneous state. Stationarity means that the averaged activities (a), as well
as the mean membrane potentials (h); are constants in time. Homogeneity im-
plies these constants to be the same for all neurons. Let us therefore denote
(a), (t) = ax and (h); (t) = h,. Since neural activity and membrane potential
are related via Eq. (3.4), we have (h) = & (a). The ensemble being in a station-
ary and homogeneous state thus requires 4 to be of an appropriate form so
that for constant (a) = a, this relation writes

(R, (t) = [ (@], (t) = kay = hy Vie{l,...,N},

with some real constant k. Then the system (3.52) reduces to one single non-
linear equation
ax & § (Kas)

which is to be solved for the constant a, € IR. Any root a, of this equation can
be analyzed for stability by linearizing (3.52), and it represents a stationary
and homogeneous network state if it turns out to be stable.

Now we apply the approximation (3.50) to Eq. (3.43). Substituting

(R) = (& (a) — x)
and
(a ® Ry =~ (a) @ 7 (k (a) — x) (3.53)
yields
Eok) -+Ee q(l)/%)] K ~3§(a) (3.54)
and we are practically back to Eq. (3.45), which has been derived for a network
of linear neurons. We are still free, however, to choose the points x,(¢) about
which we apply the expansion (3.35) of the neural activation functions g;(h).
Since this expansion is intended to yield a good approximation for the value

gilhi(t)] at any time ¢, a sensible choice for the point of expansion would be the
expectation (h;(t)) of h; at that time. We thus let

Xi(t) = (h); (t) = [A {a)]; (1) , (3.55)
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so that dai(h)
h=[#{a)];(t)

where (a) is given by the solution of (3.52). Taken together, Egs. (3.52), (3.54),
and (3.56) provide a first non-linear approximation for the moments (a) and K
of the spike activity a in a recurrent neural network.

There is, however, a better way to treat the quantity (¢ ® R). It arises from
the observation that this average can equivalently be written in the form of a
conditional expectation,

(3.56)

(a® R);; (t1,t2) = (3.57)

= (as(10)) [y = x502)ota] prlis(iz) = b Si(e)]
That means that (a ® R),; (t1,t2) is equal to the probability of a spike occur-
ring at neuron ¢ and time ¢; times the conditional expectation of r; given the
presence of a spike at neuron ¢ and time ¢;. This relation is easily verified in
analogy to the derivation of (3.20) from (3.18).
As is suggested by (3.50), we replace in (3.57) the conditional expectation

of the function r; by r; applied to the conditional expectation of its argument,
i.e., we set

[ i1 = x50, 0] pr v 62) = b1 Si(e)]
sy [ [ae st = h iS00 b= xi(h] - @59)
This yields
(08 Ry (t,t2) = Gale) s
where we have used
(ai(t1)) /dhhpr [hj(t2) = h | Si(t1)] = (ai(t1)h;(t2)) ,
which can be proved using (3.19). Let us now introduce the constant function
Lt)=1, (3.60)
and an extended version of the operator 7,
[P flij (b1, t2) =1 [fij(tr, t2), ta] (3.61)

acting upon a test function f : IN? x R? — R. As a result, Eq. (3.59) can be
written in the form

(a®R) ~ (a® 1) 7, (a®h) -1 x| ,

(a ® 1)
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and by choosing y according to (3.55) we obtain

(@a®R) w~ (a®]1}f*:<a;§ﬂ>(a®h)—ﬂ®(h)]
= (a®]1}f*:<a;ﬂ>(a®ka)—ﬂ®fi(a)]
= (a,®]1)f*:<a;ﬂ>(a®f%a>—]1®/%<a)]
= (a®]1)f*:<a;ﬂ>((a®/%a>—(a>®f%(a>)]
= (a®]l}f*:<a;ﬂ>(]]:3®f%)((a®a)—(a)®(a))]
= (a®ﬂ)f*:<a;ﬂ>(ﬁ®&)K].

For the same choice of x we obtain from Eq. (3.51)
(R) = # (i (a) —i(a)) =0,
so that (3.43) yields

A A A ~

(Be®) - +(EeqVn) K~

(3.62)
where ¢(!) is given by (3.56).

We have thus found a second relation that allows us to derive approxima-
tive expressions for K. In difference to the first one, Eq. (3.54), it introduces an
additional term so as to correct for the non-linearity of the neural activation
function. On the other hand, it is this additional term which makes (3.62) dif-
ficult to handle. However, if the operator [(E @ E) — 7(E ® ¢(V&)] is invertible,
then we can proceed writing

K~ [EaB) - #Eoq)5) 1{8(@ 47 [(m 17, (#(E@) H)Kﬂ }
(a) ® 1
(3.63)
and we may hope to obtain useful estimates of K by iterating this last equation,
starting from

KO = [(E o) — B (q“)f%)] "5 a) . (3.64)

3.4.6 External Input

The methods we have presented so far in this section are well suited to analyze
the spike statistics in closed recurrent neural networks that do not receive any
kind of structured external input. Most models of neural systems, however,
are designed to perform some sort of data processing and thus do receive input
from external sources. Our previously developed techniques should therefore
be extended accordingly.
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For this purpose we allow an external voltage ~h®* to be added to each
neuron’s membrane potential. Hence, the total membrane potential of cell
number i is the sum of the synaptic contributions that it receives from within
the network plus its refractory potential plus the external voltage 4¢**, which
is to account for all kinds of inputs that the neuron may receive from outside
the network. Instead of Eq. (3.4) we thus have

t t
Jij a;j(t)e(t —t)dt + a;(t)n(t —t') dt’ + h$<t ()
S /.
= [Ral;(t) + hS (), (3.65)

Most of the calculations that are necessary to extend our previous results
are fully analogous to those we have shown in the preceding subsections so
that we will present only a few major steps in the following. We start from the
relations (3.28), (3.30), and

(a®h™") = ((Gh) ® B™) . (3.66)

In order to prove this last equation we write

ext ()| A L
{a;(t) RS (t)) = /dhnzon!/o dt, /0 dt,,
X ai(t)hpr [BSC(E) = h A SO, T, {t1,...,ta})]

and then adapt (3.19) so as to obtain

(ai(t) S (")) / dhhpr [Si(t) A hZ(t') = h]
- /dh/dh’hpr ) A RSHE) = h A Ry(t) = 1]

/dh/dh’hpr t) | RSN (H') = h A hi(t) = 1]
xpr RS () = h A hi(t) = 1] .

As the probability density of neuron 7 emitting a spike at time ¢ is given by its
membrane potential /,(¢) and is not related to the value of h;‘r’“(t’), we have

pr [Si(t) | hj’“ (t) =hAhi(t) = h’] = pr [Sz-(t) | hi(t) = h’] =q(h'),
From that we find
( he"t /dh/ dh' hg;(h') pr [h (t)=h A h?“(t’) = h] ,
which yields (3.66).

Expanding the neural activation function ¢;(h) in (3.28), (3.30), and (3.66)
according to (3.35) we obtain

(@) = ¢ +q" ((h) =)+ (F(h = x)) (3.67)
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(a®a) = (a)®{a)+6{a)+7 [<a®(q<1>h)> ~ (a) ®<q<1>h>}

+ 7(e®@f(h—x)) —ﬂ( ) ® (F(h =] (3.68)
<a ® hext> <a> ® <hext> <( ) hext> q(l) <h> ® <hext>
+ ([P (h =01 h™) = (i (h = X)) © (K™) (3.69)

where (3.67) has been used to eliminate ¢(°) from Egs. (3.68) and (3.69). Next,
by virtue of (3.65), we can express h in terms of za and h*<*. After defining the
functions

K = (a®a)—(a)® (a),
Kt . <a Q (q(l)hext)> . <a> Q <q(1)hext> ’
and
R :=¢ (ka+ 1™ —x) ,
we thus get

(@) = ¢ +qW ((ga) + (B™) —x) + (R') , (3.70)

+ #(a®@R')—7(a)®(R'), (3.71)
(q(l) ® q( )) (<hext ® hext> _ <hext> ® <hext>)

+ <R’ ® (q(l)he’“)> —(R)® <q(1>hext> . (372)

These expressions generalize Egs. (3.42) and (3.43) so as to account for an ex-
ternal membrane potential 2. They will now be evaluated following our ex-
planations in the preceding subsections. We shall presume that the statistics of
he<t and, especially, its two first moments (") and (h*** @ h®*) are known,
because they describe the properties of the external input that is provided to
the network.

Linear Neurons

If the neural activation function is given by a linear function

gi(h) = QEO) +oh,

)

then we can equate ¢(©) and ¢(!) with o(®) and ("), respectively. This implies
x = 0 and #h = 0 so that Egs. (3.70) through (3.72) reduce to

[E - g(”f%] (a) = o + oM (h)
ok - 2B ®oMR)| K = §(a) + 7K,

|:1]::®1]::_ (Q(l)l%) ®E] Kext — (Q(l) ® Q(l)) (<hext ® hext> - <hext> ® <hext>) )
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Provided the operators on the left hand sides can be inverted we therefore find

(@) = [E-o ] (69 + oM (n=)) (373)
K = [A® g(%)]*l (5(a)+%KeXt) , (3.74)

K = [Ee )®]AE]_1 [CREYRY
X ((he“®hext> (h™*) @ (h™*))] . (3.75)

Non-Linear Approximation

In order to obtain estimates of those terms in (3.70), (3.71), and (3.72) that in-
volve the nonlinear function R’, let us again utilize the heuristic method of
approximating the average of a non-linear function by taking the value of the
function at the average of its argument. This yields

(R')

<Rl®hext> ~ T'A(I%<G>—<heXt>—X)®heXt,

l
=3
—~
x>
—
S
|
N
>

]
ol
=+
~—
|
=<
~—

so that (3.70) and (3.72) read

(a) =~ q(A() <he“>) (3.76)
K~ [Bok- (VR e [V ed)
% (<hext hext > <hext > ® <hext>)] . (3_77)

Equation (3.76) is the analogon to (3.52). It is to be solved numerically for
the functions (a), (¢), from which we determine the mean membrane potential
(h) = & (a) + (™). Then we let

Xi(t) = (h); (t) = [~ (a)]; (t) + (™), (2)

and

1),y dgi(h)

h=xi(t)=[~(a)]; (#)+(he*);(t)

As to Eq. (3.71) we notice that (¢ ® R') can be written in the form of a con-
ditional expectation; see (3.57). Following (3.58) and (3.59) we replace the con-
ditional expectation of r; by the value of r; taken at the conditional expectation
of its argument. Substituting x = (h) and h = #a + h®** we thus find

<a®R'>z(a®]l)f*{< !

IR 4 (1) - ext
570 [(E@q RK + K }}

with 1 and #, as defined in (3.60) and (3.61). This result together with

(R') = 7 (& (a) + (B™") — & (a) — (h™")) =0
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inserted into Eq. (3.71) yields
P . -1 .
K =~ [E@E—%(E@q(”&)] {5(a> + K

(a®1) 7, (quw ((E ® ¢ VR)K + K‘”“))] } , (3.78)

presuming that the inverse operator on the right hand side does exist. Equa-
tion (3.78) is the generalized version of (3.63). We propose it to be iterated
starting from

+ 7

KO [fE Rk - +(E® q(l)/%)] o [5 (a) + %Ke’“] .

3.5 Numerical Simulations

Throughout the previous section we have derived analytical approximations
of the two-spike correlations in recurrent networks of spiking neurons. Subse-
quently, we will compare these estimates with results obtained from numerical
simulations.

3.5.1 Numerical Simulation of an Ensemble of Networks

The network we will use for the numerical simulations is a very simple one.
It consists of two mutually connected spike response-neurons as shown in
Fig. 3.1; refer to Sect. 3.1 for a complete definition of the spike response model.
Each neuron produces a random spike train according to the time course of its
membrane potential. Every spike emitted by cell 1 evokes a transient change
of its own membrane potential due to refractoriness and, in addition, induces a
transient change of the membrane potential at cell 2 via the synaptic coupling
Jo1. Analogously, every spike of neuron 2 induces a refractory contribution
to its own membrane potential as well as a synaptic contribution at neuron 1
due to the coupling Jy2. Formally, the refractory contributions can be consid-
ered as resulting from a sort of self-coupling, which we have denoted by two
connections labeled 7 in Fig. 3.1.

The simulation algorithm is as follows. For a given set of network param-
eters, an ensemble of 4 000 000 networks is constructed. We start at time ¢t = 0
from the condition that no spike has occurred at ¢t < 0, i.e., initially all the
membrane potentials and all the integrators are set to zero.

At the beginning of each simulated time step, every cell’s firing probability
is determined from its membrane potential. We use a sigmoidal activation
function

Pr{Si(t,At) | hi(t) = h} := {1+ exp[—(h — 0)/T]} " = qi[h] At ,

where At = 1 ms is the size of the time step, § = 0.5 denotes the neural thresh-
old, and T" = 0.5 is a noise parameter. From the obtained firing probabilities it
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cell 1 cell 2

Figure 3.1: The network we use to compare our analytical results with numer-
ical simulations consists of two mutually connected spike response-neurons.
Both neurons produce random spike trains according to the time course of
their membrane potentials. Every spike emitted by cell 1 evokes a transient
change of the membrane potential at cell 1 due to refractoriness and in ad-
dition induces a transient change of the membrane potential at cell 2 via the
synaptic coupling J;. Analogously, every spike of neuron 2 induces a re-
fractory contribution to the membrane potential of cell 2 as well as a synaptic
contribution at neuron 1 due to the coupling J;2. Formally, the refractory con-
tributions can be considered as resulting from a sort of self-coupling, which
we have denoted by two connections labeled 7.

is then decided randomly for each neuron whether a spike is emitted during
the current time step.

Next, the membrane potential of each cell is updated according to the in-
coming spikes, which originate from its own activity and that of the second
neuron within the same network. The transient response of a cell’s membrane
potential to a spike occurring at the other neuron is given by the correspond-
ing synaptic weight J;; times the postsynaptic potential ¢(¢). We have chosen
e(t) to be a decaying exponential,

| exp(—t/7), ift>0,
e(t) = { 0 otherwise,

with 7. = 6 ms. Similarly, the refractory potential n(¢) models the response of
a neuron to its own spikes. It is given by

| mno exp(—t/m,), ift>0,
n(t) = { 0 otherwise,

with 7, = 10 ms. The functions ¢(¢) and 7(t) are plotted in Fig. 3.2.

Initially, we repeat the above procedure for 200 time steps, after which we
assume the the ensemble to have relaxed into a stationary state. Then start
measuring the average firing rates and the correlation functions.

To determine the average firing rates (a;(¢1)) and (a2(¢1)) at a given time
t1 we count the number of networks in which a spike occurs at during the
corresponding time step at cell 1 or cell 2, respectively. Dividing these numbers
by At and by the total number of networks in the simulated ensemble yields
estimates of the required average firing rates. We do this for 600 different
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Figure 3.2: Both the postsynaptic potential ¢(¢) and the refractory potential
n(t) have been chosen to be decaying exponentials with corresponding time
constants 7. = 6 ms and 7, = 10 ms.

values of ¢y, viz.,
t1 € {200 ms, 202 ms, 204 ms, ..., 1390 ms} . (3.79)

In an analogous manner approximations of the second moments
(a;(t1) a;(t2)) of the networks’ spike statistics are derived. With i,j = 1,2
and for given times ¢; and ¢; we count the number of networks that emit a
spike at time t, at neuron j and have emitted a spike at time ¢; at neuron
i. We divide this number by At? and by the total number of networks so as
to obtain an estimate of the probability density pr[S;(t1) A S;(t2)], which is
equal to (a;(t1) aj(t2)) by EQq. (3.11). Following this procedure we determine
(ai(t1) a;(t2)) for the 600 different values of ¢; given in (3.79) and for ¢, vary-
ing from ¢; +1 msto ¢; +70 ms in steps of 1 ms. Using definition (3.27) together
with the measured values of the mean firing rates yields 600 traces of the cor-
relation functions C;;(t1, t2) for consecutive values of ¢; with (¢, — ¢;) ranging
from 1 to 70 ms.

3.5.2 Numerical versus Analytical Results

We have performed numerical simulations of network ensembles as described
in the previous subsection for the five different sets of parameters given in Ta-
ble 3.1. In all these sets we have set J;o = Jo1, so that the two cells in each
network are functionally equivalent. As the initial conditions of our simula-
tions are symmetric with respect to cell 1 and cell 2, the spike statistics in the
ensemble must therefore be identical for both neurons. In the sequel we will
thus restrict our analyses to only one mean firing rate, (a;(¢1)) say, and to the
two correlation functions Cq; and Ciq, because Ci; = Coy and Cip = Cyy.
Since by definition of the correlation functions it is C1 (¢, t2) = Cy1(t2,t1) and
Cia(t1,t2) = Cy1(t2,t1), we need only consider Cy; (¢1,t2) and Ci2(t1,t2) with
to > ty.

If our assumption is correct that the simulated ensemble has reached a sta-
tionary state at the time when the measurements are started, then the derived
firing rate (aq(¢1)) must turn out to be independent of ¢; and, similarly, the
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Table 3.1: Numerical simulations of ensembles of

\ # H "o \ J12 \ J21 \ neural networks have been performed for five dif-
1(05]02]02 ferent sets of parameters. The neural threshold
21 1 105105 # = 3, the noise parameter T' = 0.5, and the decay
3 2 105105 time constants 7, = 10 ms, 7. = 6 ms of refrac-
4 2 1 1 tory and postsynaptic potentials were held con-
5 5 1 1 stant, whereas the synaptic weights Ji5, Jo; and

the amplitude 7, of the refractory potential have
been varied.

correlation functions C;;(t1,t2) should depend on the difference ¢, — ¢; only.
We test these conditions by plotting (a1 (1)) against ¢; and C;;(t1, ) against
t; and (to — t1). Figure 3.3 shows the corresponding graphs as obtained from
a simulation using parameter set #1.

In order to reduce the scatter in these plots we do not display every single
measured value but, instead, average our data over bins of 20 consecutive
measurements along the ¢;-axis. The graph in panel (a) displaying (a1 (1))
as a function of ¢; thus consists of 30 data points, each of which represents the
average over 20 consecutively measured values. To be explicit, the ordinate a,,
of the nt" data point has been calculated according to the formula

19
an, = %Z(m(h =200ms + k x 2ms +n x 40ms)) , n €0,1,...29.
k=0
In analogy, each point in the three-dimensional plots of C';; and C15 shown
in panels (b) and (c), respectively, has been obtained from averaging over 20
consecutive measurements along the ¢;-axis.

The figure reveals that for t; > 200 ms both the mean firing rate and the
correlation functions are — within numerical accuracy — independent of ¢;. This
finding supports our presumption that the ensemble of networks has reached
an almost stationary state after the initial 200 simulated time steps. We can
exploit this fact by averaging our data along the ¢;-axis so as to obtain more
accurate estimates of the mean firing rate and the correlation functions. The
firing rate as derived from this approach is 2.44 Hz; the correlation functions
are presented in Fig. 3.4.

Let us now compare these results to the corresponding quantities as ob-
tained from our theory presented in Sect. 3.4. We begin by calculating the
average firing rates by numerically solving Eq. (3.52) under the assumption of
stationarity. This yields

(a1(t1)) = (as(t1)) =~ 2.43 Hz ,

which is close to the value derived from the simulations. From this approxima-
tion of the firing rates we can now compute a first estimate of the correlation
functions using Egs. (3.54) and (3.56) together with the definitions (3.27) and
(3.40). Since we do not have an exact expression for the required inverse of
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Figure 3.3: The average firing rate and the correlation functions are displayed
as they have been obtained from a numerical simulation of an ensemble of
networks using the network topology presented in Fig. 3.1 and the parame-
ter set #1 given in Table 3.1. In panel (a) the average firing rate (a;(¢1)) is
shown as a function of ¢;. Panels (b) and (c) visualize the correlation functions
C11(t1,t2) and Ca(t1,t2) in dependence of ¢; and (¢ — t1). The plots reveal
that for ¢; > 200 ms both the mean firing rate and the correlation functions are
— within the numerical accuracy — independent of ¢;. This indicates that the
simulated ensemble has reached an almost stationary state after the initial 200
time steps.

the operator on the right hand side, we use the von-Neumann series up to the
second order,

. . -1 .. . . 2
[(E ok) — 7R Vi) ~Eok++(EeVi)+ [%(]E ® 9(1)/%)] , (3.80)
taking for granted that it provides us with a helpful approximation. The func-
tions C11(t1,t2) and Ci2(ty,t2) calculated in this way depend only on the time
difference (¢ — ¢1). They are plotted as solid lines in Fig. 3.5. For comparison
the numerically-derived curves from Fig. 3.4 have also been included into the
graphs.

As can be seen from the two panels, the analytical estimates are system-
atically to low in those regions where the values of the correlation functions
are significantly greater or lower than 1. This can be explained in the follow-
ing way. Equation (3.54) is essentially identical to Eq. (3.47), which has been
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Figure 3.4: Since according to Fig. 3.3 the mean firing rate and the two-spike
correlation functions are stationary, we can take their averages over time, i.e.,
we collapse the corresponding graphs along their ¢;-axes. In this way we ob-
tain more accurate estimates of the respective quantities. The resulting corre-
lations C11(t1,t2) and Co(t1, t2) are plotted in panels (a) and (b), respectively;
the value of the mean firing rate is found to be (a;(¢1)) ~ 2.44 Hz.

1.0 1. 4f

(t1,t2)

™

Ci1(t1,t2)
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(t2 — t1) [ms] (t2 —t1) [ms]

Figure 3.5: The solid curves display the correlation functions Cy; and Cyo
as derived analytically for parameter set #1 (Table 3.1) using Egs. (3.54) and
(3.56). For comparison the results of the numerical simulation have also been
included; cf. Fig. 3.4. The discrepancies can be explained by the fact that
Eq. (3.54) does not account for the non-linearity of the neuronal activation
function (see text and Fig. 3.6). As demonstrated in Fig. 3.7, a more elaborate
analytical method can approximately correct for this error.

derived by linearizing the neural activation functions ¢;(h), and does there-
fore not account for the nonlinearity of ¢;(h). For this reason, the correlation
function obtained from (3.54) is the correlation function arising in a network
in which each neuron’s activation function has been linearized about the ex-
pectation value of the corresponding membrane potential.

For the presently considered ensemble of networks with parameter set #1
the resulting linearization is identical for cell 1 and cell 2. It is displayed in
Fig. 3.6 together with the true non-linear activation function. Obviously, in a
wide range around the mean membrane potential, the value of the linearized
activation function is lower than that of the real one. Only at a very large value
of the membrane potential will the straight line cross the sigmoidal curve of
the true activation function. The firing probability as derived from the lin-
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(h1)

Figure 3.6: The neural activation
function used in the network ensem-
ble under consideration (parameter
set #1, Table 3.1) is plotted as a solid
curve, whereas its linearization is

. shown as a dashed line. The dotted
/ lines indicate the values of the mean
4 it membrane potential (ki) = (hg)
Z and the average firing rate (a;) =
(a1) (a2). Since the value of the linearized
2 y activation function is systematically

7 lower than that of the real one, the
/ linear estimates of the correlation
o 7 functions shown in Fig. 3.5 are to low
at small inter-spike time intervals.
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earization therefore underestimates the true value, and this effect is the more
pronounced the more the firing probability deviates from its average. As a
consequence, Eq. (3.54) yields approximations of the correlations that are es-
pecially low in those regions where they differ significantly from a value of 1.

These deviations can in part be corrected by deriving the correlation func-
tions from Eq. (3.63) instead of (3.54), because it accounts for the non-linearity
of the activation function, although it is only an approximation either. Since
the required quantity K is involved on both sides of (3.63) in a way that pre-
vents us from solving for K, we will try to iterate this equation. We start from
K©) given by (3.64), which is just the solution of the linearized problem dis-
cussed so far. After one step of iteration we obtain a function K () that is equal
to K(© plus some correction for the non-linearity of the neural activation func-
tion.

From K1) we can derive corrected estimates of the correlation functions
C11 and Ci2. These are plotted in Fig. 3.7 as solid lines together with the re-
sults of the numerical simulation, which have been taken from Fig. 3.4. The
figure reveals that our non-linear analytical approximation yields very accu-
rate estimates of the true correlation functions arising in the network ensemble
for parameter set #1.

In analogy to the above explanations let us now compare the analytical
method to the numerical simulations for the four remaining parameter sets
given in Table 3.1.

As a first step, we check the numerical results for stationarity of the net-
work ensemble by plotting the mean firing rate and the correlation functions
against the elapsed time ¢; as we did in Fig. 3.3. We do not display the result-
ing graphs because they are qualitatively similar to those of Fig. 3.3 and thus
indicate that for all parameter sets the simulated ensemble has reached a sta-
tionary state after 200 time steps. In order to obtain good numerical estimates
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Figure 3.7: The solid lines display the correlation functions C';; and Cy, as
derived analytically for parameter set #1 (Table 3.1) using one iteration of
Eqg. (3.63). Obviously, the outcome is in very good agreement with the results
of the numerical simulation, which are given by the dotted curves; cf. Fig. 3.4.

Table 3.2: For each parameter set the mean
firing rate (a;) as obtained from a numer-
ical simulation of the network ensemble is
presented together with the corresponding
244Hz | 243Hz theoretically-derived value. The numbers in
2.44 Hz 2.39 Hz the first column correspond to those of Ta-
2.40 Hz 2.29 Hz ble 3.1. Due to the symmetry of the param-
2.46 Hz 232 Hz eter sets and the initial conditions it is always
240 Hz 2.06 Hz (a1) = (as), so that only (ay) is listed.

(a1) from | (a;) from
simulation | theory

Y| W N | H

of the mean firing rate and the correlations, we may therefore average over the
individual measurements taken at different times during one simulation.

For each parameter set, Table 3.2 presents the value of the mean firing rate
as derived from the simulation as well as the corresponding value found by
numerically solving Eq. (3.52). It is clearly visible that the difference between
these two values is smallest for parameter set #1 and largest for #5. The rea-
son is that from parameter set to parameter set in Table 3.1 we have increased
either the synaptic weights .J15 and Jy; or the amplitude ny of the refractory
potential or both. The larger these quantities are the more does a cell’s mem-
brane potential vary in response to a single spike in the network, which gives
rise to a larger variance of the membrane potentials in an ensemble of net-
works. As a consequence of this increasing variance, the approximation of
setting (¢(h)) =~ q((h)) whence we have derived Eq. (3.52) becomes less accu-
rate. The average firing rate as obtained from this approximation thus deviates
more and more from its numerically-derived ‘true’ value.

Next, we compare the auto-correlations C1; and the cross-correlations C14
for parameter sets #2,...,#5 as determined from the numerical simulations
(black squares) with those obtained from the linearized theory (solid curves),
i.e., from Eq. (3.54). Each row of Fig. 3.8 corresponds to one set of simulation
parameters, the left and right panels showing C1; and C4,, respectively. As
we have already found for parameter set #1, the linear predictions of C';; and
C12 deviate substantially from the true correlations. This is especially obvious



92 Chapter 3. Correlations of Activity in Networks of Spiking Neurons

for the auto-correlations, which are predicted to be negative at low values of
(ta—t1). According to Egs. (3.11) and (3.27), however, Cy1 (1, t2) is a probability
density divided by a positive quantity and must therefore be positive or zero.

Consistently with our results for parameter set #1, we find the discrep-
ancies to be largely reduced, when the linear approximations are replaced by
the non-linear estimates obtained from Eqg. (3.63). This is shown in Fig. 3.9.
For most of the parameter sets the theoretical curves are in a remarkably good
agreement with the numerical data. Nevertheless, the bottom row of the figure
also reveals that our analytical estimates quickly deteriorate, when the ampli-
tude of the refractory potential 7, is increased to much. This is due to the
following two reasons.

First, the analytical estimates are based on the approximation (3.58), where
the conditional expectation of a non-linear function r is replaced by the value
of r applied to the conditional expectation of its argument. This approximation
deteriorates for increasing variance of the function’s argument, i.e., of the neu-
rons’ membrane potentials. An increased amplitude of the refractory potential
thus affects the accuracy of the results because it induces a larger variance of
the membrane potentials.

Second, causing the norm of the coupling operator % to increase, a grow-
ing value of 7y will slow down or even prevent the convergence of the von-
Neumann series used in Eq. (3.80). Consequently, the second order expansion
on the right hand side of (3.80) may not yield a good approximation of the
inverse operator on the left hand side resulting in erroneous predictions of the
correlation functions. This is, however, not a fundamental problem of the an-
alytical methods, as it can be solved by calculating an exact or at least a more
accurate expression for the required inverse operator. In the next subsection
we demonstrate how to circumvent this difficulty in a very simple way that
is useful in situations where the focus of interest lies on the cross-correlations
rather than on the auto-correlations.

3.5.3 On the Role of the Refractory Potential

According to Table 3.2, the average firing rates in the network ensemble is
about 2.5 Hz for the investigated sets of parameter values. This means that
the duration of the inter-spike intervals at each cell is typically about 400 ms.
This is much longer than the decay time constant of the refractory potential
1, = 10 ms. Intuitively one might therefore argue that neglecting the refractory
potential will not have to much an effect on the mean firing rate and the cross-
correlation function in the network ensemble. So why not simply neglect the
refractory potential?

On the other hand, it is immediately clear that the time course of auto-
correlation function must strongly depend on the properties of the refractory
potential as it measures the probability of two subsequent spike events occur-
ring at the same neuron. For short inter-spike time intervals this probability is
obviously dominated by the neuron’s refractoriness.

In order to investigate the influence that the refractory potential exerts on
the mean firing rate and the correlation functions we analyze the results of
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Figure 3.8: The correlation functions Cy; and C}5 as derived from the numer-
ical simulations (black squares) and from the linearized theory (solid curves)
are plotted against (¢, — t1); cf. Fig. 3.5. Each row corresponds to one set of
simulation parameters as indicated above the individual panels. The linear
predictions deviate substantially from the true correlations, especially at low
values of (t2 — t1). To a great extent, these deviations are corrected by our
non-linear approximation (3.63), as can be seen in Fig. 3.9.



94 Chapter 3. Correlations of Activity in Networks of Spiking Neurons

Parameter set #2

20 40 60
(tz — tl) [ms]

Parameter set #3

1.0
0.75
0.5
0.25:
0.0

Cr1(t1,t2)

20 40 60
(t2 — t1) [ms]

Parameter set #4

1.0
0. 751
0. 51

Cri(t1,t2)

0. 25;

0.0

20 40 60
(t2 — t1) [ms]

Parameter set #5

20 40 60
(t2 —t1) [ms]

Parameter set #2

Cia(t1,t2)

20 40 60
(t2 — t1) [ms]

Parameter set #3

2.5
. 2.25]
= 20
£ 1. 75
S 1.5
1. 25
1.0

20 40 60
(t2 —t1) [ms]

Parameter set #4

Ci2(t1,t2)
PNWSs AR

20 40 60
(t2 — t1) [ms]

Parameter set #5

Cia(t1,t2)
N R R NS

20 40 60
(t2 — t1) [ms]

Figure 3.9: As Fig. 3.8 but with theoretical curves obtained from Eq. (3.63),
which corrects for the non-linearity of the neural activation function. Except
for parameter set #5 (see Table 3.1) the analytical predictions are in very good
agreement with the numerical data.
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Table 3.3: In order to investigate the influence of

[ # ] mo | Ji2 | o | the refractory potential on the spike statistics in an
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spective values given in Table 3.1.
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Figure 3.10: The auto- and cross-correlation functions obtained from numeri-
cal simulations using the parameter sets of Table 3.3 are compared in this fig-
ure. The legend is given as an inset of the right panel. Each parameter set is
referred to by its respective number in Table 3.3. In addition the legend denotes
for each parameter set the mean firing rate as determined from the simulations.
It can be seen clearly that (i) the mean firing rate and the cross-correlations are
only weakly affected by changing the amplitude 7, of the refractory potential,
whereas (ii) the auto-correlations are strongly dependent on 7.

three different numerical simulations using the parameter values presented in
Table 3.3. The first set of parameters is identical to set #5 in Table 3.1. We
have already seen in the previous subsection that due to the large contribution
of the refractory field it is difficult to obtain good analytical predictions of the
auto-correlations for this set of parameters. In the second parameter set the
amplitude of the refractory potential is even larger. In Fig. 3.10 the results
obtained from these two simulations are compared with those derived from
a third simulation in which the refractory potential has been set to zero. In
the figure legend, which is given as an inset of the right panel, each parameter
set is referred to by its respective number in Table 3.3. In addition the legend
denotes the mean firing rate as determined from the simulations.

Essentially the figure confirms what we have already suspected. Changing
the amplitude 7, of the refractory potential over a wide range of values has
only a weak effect on the firing rate and the cross-correlations C'i2, whereas it
strongly affects the auto-correlation function C11 (¢4, t2) especially at low val-
ues of the inter-spike time (¢ — ¢1). We thus conclude that in an investigation
of neural dynamics where the main interest is on the cross-correlations rather
than on the auto-correlations there may be no harm in dropping the refractory
potential, provided its decay time is much shorter than the typical inter-spike
interval.
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This finding will prove to be very helpful in the following chapter, where
we will present a mathematical analysis of the learning dynamics going on in
the network model of primary visual cortex introduced in Chapter 2. As it will
turn out, the dynamics of a synapse in this model can be expressed in terms of
the spike statistics of its pre- and postsynaptic cells, namely their mean firing
rates and the correlations of their activity. The auto-correlation function of a
given cell’s activity thus determines the plasticity of those synapses that this
cell makes onto itself. In our network there is only one such autapse for each
neuron as compared to a large number of incoming connections from other
cells so that its contribution to the neuron’s membrane potential will normally
be negligible. The dynamics that we are interested in is therefore mainly deter-
mined by the crosscorrelation functions. In regard of the typical firing rates in
the model being a few spikes per second only, this means that we may safely
drop the refractory potential from our analysis so as to simplify the required
calculations.

3.6 Summary

In the present chapter we have developed a mathematical method to derive
analytical approximations of the two-spike correlation functions in ensembles
of networks of stochastically spiking neurons. The underlying neuron model
is the stochastic spike response model suggested by Gerstner and van Hem-
men (1994) and summarized in Sect. 3.1. It is an extended version of the usual
integrate-and-fire model that can be configured by means of two response ker-
nels, viz., the postsynaptic potential and the refractory potential to resemble
the characteristics of real spiking neurons (Kistler et al. 1997). Spikes are gener-
ated from an inhomogeneous Poisson process with a probability density given
by some function of the neuron’s membrane potential, which is called the ac-
tivation function.

The concept of an ensemble of networks has been introduced in Sect. 3.2.
We consider a network ensemble as an entirety of infinitely many different
realizations or independent ‘runs’ of the same stochastically spiking neural
network. Within this framework the probability of an event can be taken as the
fraction of those realizations in which this event occurs. We have derived that
the probability density of a neuron emitting a spike is equal to the ensemble
average of its activity and, similarly, that the probability density of two spike
events occurring at two given cells is given by the ensemble average of the
product of the respective activities.

In Sect. 3.3 we then turned to the problem of deriving expressions for the
input-output correlations of a single non-refractory neuron. In a first approach
we have assumed that the neuron receives are large number of statistically in-
dependent Poissonian input spike trains so that the probability distribution
of the membrane potential is approximately Gaussian. This presumption has
been released in our second approach. From expanding the activation function
into a power series we have obtained an approximative formula converting the
the moments of the input spike statistics into the input-output two-spike corre-



3.6. Summary 97

lations. If necessary, the method can be generalized to higher-order correlation
functions (cf. Kuznetsov et al. 1965).

In the main part of this chapter, Sect. 3.4, we have generalized our previ-
ously introduced methods so as to derive analytical expressions for the aver-
age firing rate and the two-spike correlation functions in networks of arbitrary
architecture. First, we have treated the case of a linear network, i.e., a network
consisting of neurons whose activation function is linear in the membrane po-
tential. We were able to give exact equations for the required quantities in
such a linear network. Then we have presented an extended method that al-
lows to obtain analytical approximations of the firing rate and the correlation
functions in networks of non-linear neurons. Finally, we have further gener-
alized our results so as to account for external input that the network may be
provided with.

We have then compared our theoretical predictions with results obtained
from numerical simulations in Sect. 3.5. The simulations were carried out for
an ensemble of networks where each network consisted of two mutually con-
nected non-linear neurons. Corresponding theoretical results were derived
using both the linear method and its non-linear extension. In order to apply
the linear method each neuron’s activation function was linearized about the
estimated value of the average membrane potential.

It turned out that within the investigated parameter regimes the linear pre-
dictions of the two-spike correlations are systematically below the true values
as obtained from the simulations. This is easily explained as an effect of the
linearization. On the other hand, we have found that our non-linear theory
yields remarkably good estimates of the true firing rate and the correlation
functions except when the refractory potential is very large.

At last, we have shown in our simulations that the average firing rate and
the cross-correlation functions are only weakly affected by modifications of the
refractory potential, provided that the decay time of the refractory potential is
much shorter than the typical inter-spike interval. Under this condition the
refractory potential may therefore be negligible when the main interest of an
investigation is on the cross-correlations rather than on the auto-correlations.
This may prove to be especially helpful in theoretical analyses like the one we
will present in the following chapter because dropping the refractory potential
can significantly simplify the involved mathematical expressions.
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Chapter 4

Analytical Investigation of the
Learning Dynamics

In the previous chapter we have developed a technique that allows to derive
analytical estimates of the spike-spike correlations in recurrent neuronal net-
works. Due to these considerations we are now in the situation to gain some
analytical insight into the dynamics of Hebbian synaptic plasticity in such net-
works. We can thus obtain a mathematical understanding of the basic mecha-
nisms that lead to the emergence of orientation maps in the model of primary
visual cortex presented in Chapter 2.

Since the dynamics of the full model are rather intractable we will instead
concentrate on a reduced version that will be described in Sect. 4.1. Within the
framework of this reduced network, as in the full model, each neuronal spike
train is a random process so that all synaptic weights subject to spike-based
Hebbian plasticity are stochastic processes as well. In Sect. 4.2 a mathematical
approach to the resulting synaptic dynamics will be presented. We will start
from the learning rules set forth in Sect. 2.3 and derive a differential equation
for the temporal evolution of a synapse’s efficacy as a function of the pre- and
postsynaptic spike statistics. By means of the methods provided in the pre-
ceding chapter the required statistics can be expressed in terms of the synaptic
efficacies so as to arrive at a closed system of differential equations describing
the synaptic dynamics.

In Sect. 4.3 we will apply this method and investigate (i) how a cortical
orientation map can emerge from a Hebbian development of geniculocortical
synapses and (ii) how the layout of the emerging map can be influenced by
the structure of the intracortical connectivity. For the sake of simplicity the in-
tracortical connectivity will be assumed to be fixed during the geniculocortical
development. In Sect. 4.4 we will then analyze the Hebbian dynamics of intra-
cortical synapses in the absence of feedforward input. Although the reduced
network model turns out to be too simple as to account for the emergence of
an intracortical orientation map, it will nevertheless be interesting to find out
why it is too simple.

The chapter will be closed by a summary and a short discussion of the
obtained results.

99
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4.1 Reduced Network Model

The network model of layer 4 in primary visual cortex that we have proposed
and investigated numerically in Chapter 2 consists of three distinct layers of
stochastically spiking non-linear neurons. Its architecture is reproduced in the
left panel of Fig. 4.1. The two upper layers are designed to represent cortical
excitatory and inhibitory neurons. Excitatory cortical cells receive lateral input
from neighbouring excitatory and inhibitory cortical cells. Inhibitory neurons
are driven by the activity of excitatory neurons. Geniculate relay cells in the
bottom layer provide correlated feedforward input to the cortex. The statistics
of their spike trains are determined by the statistics of their membrane poten-
tials, which are prescribed externally from a given Gaussian random field. All
synaptic connections except for those from excitatory to inhibitory cells are
subject to activity-driven learning. As compared to the development of excita-
tory synapses the plasticity of inhibitory connections proceeds on a short time
scale and serves to normalize overall cortical activity.

Our large-scale numerical simulations have revealed that in this network it
is possible to obtain an intracortical orientation map from a Hebbian develop-
ment of excitatory intracortical synapses and a feedforward orientation map
from Hebbian plasticity of geniculocortical connections. We have found that
the intracortical map can guide the geniculocortical development so that the
layout of the emerging geniculocortical map is in accord with the layout of the
intracortical map.

The mathematical analysis that will be presented throughout the remaining
sections of this chapter is intended to provide some insight into the underly-
ing processes of pattern formation. The dynamics of the full model, however,
turn out to be extremely involved so that we will study a simplified version
instead. The architecture of this simplified network is shown in the right panel
of Fig. 4.1. Being interested mainly in the development of excitatory intracor-
tical and feedforward connectivity, we have dropped the layer of inhibitory
cells. In addition to this reduction of the network’s topology, we also simplify
the representation of individual neurons by (i) replacing their non-linear acti-
vation function by a linear one and by (ii) neglecting the refractory potential.

Although the reduced model certainly oversimplifies the dynamics of the
full network in many respects it will nevertheless be very useful for an analyt-
ical investigation. We will see that its synaptic dynamics are relatively easy to
understand and yet capture important features of the full model. It will serve
us to understand how a feedforward orientation map can emerge from Heb-
bian development of geniculocortical synapses and how the layout of this map
can be predetermined by an existing intracortical connectivity pattern. On the
other hand, we will also find an essential limitation of the simplified model: It
does not provide a satisfactory explanation of the emergence of an intracorti-
cal orientation map in the absence of feedforward input that we have found in
our simulations of the full model.
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Figure 4.1: The left panel reproduces the architecture of our network model of
layer 4 in primary visual cortex as introduced in Sect. 2.2. It can be separated
into three layers of non-linear neurons. The two upper layers are designed
to represent cortical excitatory and inhibitory neurons. Each of the excitatory
cells receives lateral input from neighbouring excitatory and inhibitory corti-
cal cells. Inhibitory neurons are driven by the activity of excitatory neurons.
Feedforward input into the cortex is provided by LGN neurons in the bot-
tom layer, producing correlated spike activity of given statistics. All synaptic
connections except for those from excitatory to inhibitory cells (dashed arrow)
are subject to activity-driven learning. The full dynamics of this model are
very complicated and rather intractable analytically. For the subsequent study
the network will therefore be simplified in three respects. First, the inhibitory
layer will be removed so as to arrive at the architecture shown in the right
panel. Second, the neurons’ non-linear activation function will be replaced by
a linear one and, third, their refractory potential will be neglected.

4.2 Dynamics of Spike Based Learning

The dynamics of synaptic plasticity in our model are governed by the Heb-
bian learning rules described in Sect. 2.3. According to these rules the effi-
cacy of a synapse is changed in dependence on the spike trains emitted by the
two neurons it is connecting. Within the framework of the stochastic spike re-
sponse model, which we have adopted to represent the individual neurons (cf.
Sects. 2.1 and 3.1), these spike trains are random processes and are thus differ-
ent in each run of the same network. As a consequence, the resulting synaptic
weights are random processes as well.

This consideration raises the question as to whether it is possible to obtain
detailed temporal information concerning the pattern of synaptic connectivity
emerging during one individual network run. In fact, this might be very diffi-
cult in situations where learning proceeds on the timescale of the fluctuations
in neuronal activity as is the case in short term plasticity (Zucker 1989, Thom-
son and Deuchars 1994, Varela et al. 1997, Tsodyks et al. 1998, Varela et al.
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1999). Hebbian plasticity, on the other hand, is usually assumed to occur on
a much longer time scale so that a large number of spike events is needed to
induce a significant change of a synapse’s efficacy. This means that the cur-
rent weight of each synapse is the result of a slow process averaging over the
stochastic fluctuations in neuronal activity (Kempter et al. 1999, Kempter et al.
2000).

In our simulations of intracortical and feedforward map formation we have
chosen the relaxation time constants for excitatory synapses to be 400s and
800s, respectively. In view of all the neuronal time constants being of the order
of a few milliseconds and the neural firing rate being several spikes per second,
the development of excitatory synapses can therefore be considered a slow
process in the above sense. The change that is applied to the excitatory weight
Ji; during one simulated time step of size At is given by Eq. (2.1). As explained
in Sect. 2.3, J;; is taken to be the effective weight connecting cell j to cell i. That
means that J7; is equal to the efficacy K;; of a single synapse multiplied by the
number n;; of synapses from neuron j to neuron 7. In continuous time, the
corresponding dynamics of K7; read

t
%Kfj(t) =v [ai(t) / W (t —t") a;(t') dt' + a;(t)o® + °| — 9°KS;(t) , (4.1)

—00

where v is a constant learning parameter, (¢ := £°/At, and a;(t) denotes the
spike train of neuron 7 as defined in (3.3). Equation (2.1) can be regained from
(4.1) by integrating over the time interval [¢, ¢ + At), multiplying both sides by
the number n;; of synapses from j to 4, and substituting

Afj = vngj,
Ji; = ni Ky
According to the above considerations there is no harm in averaging the

right hand side of (4.1) over temporal fluctuations of neuronal activity as long
as we are only interested in the long-term synaptic dynamics. We thus write

d t
K = v [ai(t) /_oo W (t = ) a(#') dt! + a;(1)o® + | — K1) ,

with z(t) denoting the temporal average of a quantity (%), i.e.,

__ 1 (T

z(t) :== lim — / dt' z(t +t') .
T—00 0

Since by assumption the synaptic efficacies do not change significantly on the

time scale of neuronal activity variations, temporal averaging is to be carried

out with all the synaptic weights held constant. This yields

%K% (t)=v [ /0 T () ai(®)aj(t — ') dt' + a;(H)o® +C°| — 9°K5(t) . (4.2)

Although Egs. (4.1) and (4.2) both describe the long-term dynamics of
synaptic plasticity, they are of course not equivalent on short timescales. The
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right hand side of (4.1) includes Dirac delta-pulses in the form of the neu-
ral spike trains a;(t), so that the resulting weights K7,(¢) are discontinuous
functions of time. On the right hand side of (4.2) in contrast the delta pulses
have vanished due to the procedure of temporal averaging. Equation (4.2) thus
yields weights K;(t) that develop continuously in time. Technically speaking,
Eq. (4.2) results from (4.1) by separating the time scale of long-term synaptic
dynamics from the time scale of short-term random fluctuations.

To proceed from (4.2) we now have to express the temporal averages on
the right hand side in terms of the network’s synaptic weights so as to obtain
a closed set of dynamical equations. How can we do that? The key idea is
to assume that the dynamics of neuronal activity in the network is ergodic,
so that the temporal averages are identical in almost all network runs. Under
this condition a temporal average can be replaced by the respective quantity
averaged over time and over an ensemble of networks as introduced in the
previous chapter, i.e., we may replace

10— (30

where angular brackets denote the average over an ensemble of networks. It
must be emphasized, though, that this is in fact an assumption which is not
guaranteed to hold true for a network of arbitrary architecture consisting of
spike response-neurons with arbitrary response kernels () and n(t).

Numerical simulations (Gerstner 1995, Mar et al. 1999) do indicate, how-
ever, that in an asynchronously firing network of spike response-neurons
with exponentially decaying response kernels the temporal averages a;, () and
a;(t) aj(t') are normally identical to the respective ensemble averages. Since
this is the setup that we are going to investigate, we will take for granted that
in the following we can identify

w®) = (@)= (@), 43)
a;(t)a;(t —t') = <ai(t)aj(t - t’)> = (ai(t)a;(t — 1)) . (4.4)

Here the rightmost equalities arise from exchanging the integration over time
with the summation over the distribution of realizations in the network en-
semble.

Inserting (4.3) and (4.4) into (4.2) we obtain

o0
%Kfj(t) =v [/0 W (') (ai(t)a;(t — ') dt' + (as(t))o® + ¢°| — 9°KG;(¢) -
(4.5)
We will now use the methods developed in the previous chapter to derive
analytical expressions for the required ensemble averages. Averaging these
expressions over time, we turn Eq. (4.5) into a closed system of equations de-
scribing the dynamics of synaptic plasticity in the network under considera-
tion.
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4.3 Plasticity of Feedforward Synapses

How does correlated spike activity in the LGN drive the development of a
feedforward orientation map? How is the layout of this map influenced by
an intracortical orientation map? These questions will be addressed in the fol-
lowing. Earlier mathematical analyses of so-called correlation-based pattern
formation (Kammen and Yuille 1988, Yuille et al. 1989, MacKay and Miller
1990, Stetter et al. 1993, Wimbauer et al. 1994, Wimbauer 1996, Wimbauer et al.
1998) were performed on the basis of graded-response cells and did therefore
not account for the spiking nature of biological neurons. Moreover, they did
not investigate how an emerging orientation map is affected by the presence
of oriented patterns of intracortical connectivity.

In contrast, the investigation that we will give subsequently is based on
spiking neurons. For the sake of simplicity we will utilize the reduced net-
work model described in Sect. 4.1. As in our numerical simulations we will
assume the intracortical connectivity to be fixed during the development of
feedforward synapses. In this way we separate the geniculocortical learning
dynamics from the mechanisms of intracortical plasticity so as to reduce the
model’s dynamical complexity. In the Discussion of Chapter 2 we have al-
ready argued that we need not presume this to be strictly fulfilled in biological
systems.

4.3.1 The Learning Equation

The network that we are going to analyze consists of two square grids of lin-
ear stochastic spike response-neurons, representing geniculate relay cells and
cortical pyramidal neurons, respectively; see Fig. 4.1. We define their linear
activation functions by

q(h):=co+c1h (4.6)

for cortical cells and
qg(h) :=do+di h 4.7

for geniculate cells. Since we neglect the refractory potential, the coupling
operator # introduced in Eq. (3.3) reads

[fal; (t) = > Jj / a;j(t)e(t —t')dt’, (4.8)
j —00
with J;; denoting the total synaptic weight connecting cell j to cell < and «(#)
being the postsynaptic potential
e(t) := exp(—t/e)

for ¢ > 0 and vanishing for ¢ < 0.

Notice that in Eq. (4.8) the sum is to be taken over the cortical and the
geniculate layer. In the following calculations it will be convenient to distin-
guish explicitly between these two layers. To this end we introduce two sets
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L and L comprising the indices of geniculate and cortical cells, respectively,
so that (4.8) reads

o0

ral ()= 3 / a(t) et—t) de'+ 3 / a;(t) e(t—t') dt' . (4.9)

o0
JELG o JELC o

As explained in Sect. 2.2, geniculate cells in our model do not receive input
from other cells within the network but rather have their membrane potential
prescribed externally. This external potential is intended to mimick the effect
of retinogeniculate input as well as feedback from the cortex. In our simula-
tions, the external potential is drawn every 10 ms as a realization of a Gaussian
random field with zero mean and a Mexican-hat-like correlation function of
the form

Mij = exp [=d(i,5)*/(2- 02)] = (1/9) exp [-d(i,5)?/(18 - 02)] ,  (4.10)

where d(i, j) denotes the distance between the two geniculate cells 7,5 € Lg
and o is the correlation length.

The correlation of the membrane potentials of two geniculate neurons ¢
and j taken at times ¢ and t' is therefore determined by A;; if the realization
of the random field does not change during the time interval [¢,¢’). Otherwise
the two values are uncorrelated, as they belong to statistically independent
realizations of the Gaussian random field. With new realizations being drawn
att = 0,t = 10 ms, t = 20 ms, etc., the resulting spatio-temporal correlation
function can be written as

(R R (E) — (R (1)) (h§(H)) = Ho T (t,¢') My,
where i, j € Lg and

T(t t’) _f 1ifn-10ms <t <(n+1)-10ms for somen € Ny,
"7 771 0 otherwise.

Because in our model cortical cells do not receive external input, we have
he*t(t) = 0 for i € L¢ and so the correlation of two cells’ external membrane
potential is zero if at least one of these cells is in the cortical layer. Putting
things together we thus obtain

(R (R () — (b (1)) (RS () = (4.11)
= (i) = { ot 1T € L
and furthermore
(h*'(t)) =0, foranyi € Lo U Lc. (4.12)

In Sect. 3.4, Egs. (3.73) through (3.75) we have found analytical expressions
for the mean activity and the two-spike correlations in a recurrent network of
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linear stochastic spike response-neurons in the presence of an external mem-
brane potential. Subsequently we shall assume that the inverse operators re-
quired in these expressions do exist and can be approximated to a sufficient
degree of precision by their respective von-Neumann series up to second or-
der. Using the above definitions and neglecting all the terms beyond second
order in the weights we thus have

( dy, ifi€eLg,
o =
(ai(t)> _ co + doc1 7 Z Ji]' + cpC1 7 Z Jij
JELG jELC
—i—doC%TEQ Z Z Jiijk—l-C()C%TEQ Z Z Jiijk, ifi € Lo,
\ JELC kKELG JELC kKELG
(4.13)
and, fori € L¢, j € Lg,
(a;(t1)aj(t2)) = cicj + c1Jijaje(ts — ) (4.14)
+ =0t —t)] ] Y Jlka]aj/ dt'e(t; —t')e(t' — t)
k€L
+ od? Z Jik / dt'e(ty — t') (hg™ (¢ RS (t2))
k€ELq
+ 3RS Jadu / at / At"e(tr — £)e(t! — ) (R ()RS (£2) ) |
k€L
€L

where 0(t) is Heaviside’s step function,

1 ift>0,

o(t) = { 0 otherwise. (4.15)

In the derivation of (4.13) and (4.14) we have utilized the fact that J;; = 0

for i € L because in our network there is neither a synaptic connection from

the cortical to the geniculate layer nor within the geniculate layer. Averaging
the above expressions over time yields (a;) = «; and

(ai(t)aj (t — t')) = ;a5 + clJijaja(t') (4.16)
+ [1=0(-t)] ¢ > J,kaja]/ dt"e(t")e(t' — ")
kELC
+oad Y T / at"=(¢") (B (¢ — ) (¢ — 1))
k€eLg
4 Cld2 Z JlJlk/ dt”/ dt///6 // ///)<hext( t”')h?Xt(t—t')>,
k€L
leLg

with i € L¢, 7 € Lg. From Eq. (4.11) we derive the required temporal average
of the external correlation function,

<h§xt (t = "R (t - t’)> = HoM;;T({t—-t"t—1)
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1

= HoM;;0(rc — |t —t"]) (1 -— |t - t”\)
TC

= H()Mi]' A(t, - t”) y

wherei,j € Lg and 7¢ = 10 ms.

Let us now insert these quantities into the learning equation (4.5). As in
our numerical simulations in Chapter 2 we use an exponentially decaying time
window,

W (t) := exp(—t/mw)
for ¢t > 0 and vanishing for ¢ < 0. In addition, we define

2 * I o n ! " ! " TeTw ’
2 = / dt/ dt" W (t) e(t") e(t' — ") =
- . Te + Tw
00 0
# o= [Car [Carwiyeanae -,
—00 —00

T23 — / dtl/ dt”/ dt’”W(tl) S(t”) €(t”/) A(t/ " t///) ,

and thus get

d
EKze] = —'(96Jiej + I/{(d()C()TW + 0% + Ce) + d()ClT*Jiej (4.17)
(docngTW + o d()ClTE Z lc + doCoClTETVV +0° C()ClTE Z Jik
k€ELq k€L
+ (dici 2w + 0%dyci?) Z JuJf, + (dococtt2Tw + 0%coci T2 Z JiJi
keLG kELC
leLo leLg

+ d()C%’T'*2 Z Jik:t]lgj +Cld%T12H0 Z M]C] zk+cld17—2H0 Z JleJJ”C}

keLc keLc kLo
C

withi € Lo and j € L. Here the upper index ‘e’ has been applied only to
the geniculocortical weights so that they can be distinguished clearly from the
intracortical efficacies, which are kept fixed during the course of the learning
process.

Equation (4.17) yields the temporal change of the efficacy K7; of a single
synapse connecting neuron j € Lg to neuron i € L. Since this temporal
change is the same for all the synapses from j to ¢, all their efficacies will be
equal at any given time provided they are equal at the beginning of the learn-
ing dynamics. The total geniculocortical weight Ji; between two cells j and i
can therefore be written as the efficacy K;; of a single synapse multiplied by
the number n;; of synapses connecting j to 4, i.e.,

J5 = ni; K . (4.18)
Thus, Eq. (4.17) multiplied by n;; becomes

d
nz]Ke —° nl]K —i—Vnij{(doC()TVV—i-UeCo —{—C )—{—doClT*nz]K -+
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+ (djer e + 0%doer 7:) Z nik K + (dococimemw + 0°coci72) Z Jik

kelg kelc
2.2 2 e 2 2 e
+ (docngTw-i-U doCITE) Z Jilkalk
k€L
€L
2 2 2 2 2 2
+ (doCoCITETW-f—O'eC[)ClTE) Z Judik + dociTs Z Jik nij,Sj
k€L keLc
leLg
d2r2H, My ni K8, + d?73 H, Ju My nypKS 4.19
+ cidiTi Ho kj nik Ky, + c1diT5 Ho i My Kj ¢ (4.19)
keLg keLq
leL

where n;; is taken to be a constant in time.

4.3.2 Modeling Neuronal Arborization

Before we can go on and investigate the synaptic dynamics described by the
learning equation (4.19) we have to fix the quantities n;;. According to the
above explanations n;; specifies the number of synapses that a given genicu-
late neuron j in our network makes onto a given cortical neuron . Since the n;;
are taken to be constant during the learning process, they are parameters of the
model. To a certain degree, the choice of these parameters predetermines the
patterns of synaptic connectivity that can emerge from the learning dynam-
ics. They can be chosen in several plausible ways; here we will concentrate on
three of them.

Flat Arborization

As a very simple approach let us assume that a cortical neuron i receives ex-
actly one synaptic input from all those geniculate neurons j whose retinotopic
positions are within a certain circular area around the cortical neuron’s posi-
tion and that there is no input from all the remaining geniculate cells. In our
model, a cells retinotopic coordinate directly corresponds to its position within
the respective network layer so that we have

s — 1 ifd(4,7) < rmax
Y1 0 otherwise,
where d(z, j) denotes the distance between the grid positions of cells i and j
— which is proportional to their retinotopic distance. Taking into account that

ng; = n;; and defining the arbor function

Aij = VN (420)
the learning equation (4.19) can now be written

d
&Jiej = —9° Jiej + I/d()ClT*Jiej + Az’j{(dOCOTVV + o%cy + Ce) + (4.21)
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(docngTW + o d()ClTE E lc —+ doCoClTETVV + o® C()ClTE E Jzk

keLg kelc
(doclT ™w + Uedocl’l' g Jady, + (d()C()ClT W + o° C()Cl’l' E Jir Tk
kLG kELG
leLe leLg

+ d()C%’T'*2 Z Jik:t]lgj +Cld%T12H0 Z M]C] k—i—Cld%TQ?’Ho Z leMk:lek}

keLlc keLa ’;EEEG
c

where J7; is the effective weight given in (4.18).

Dense Arborization

Probably a biologically more realistic view of neuronal organization is consid-
ering the number of synapses between a geniculate cell 5 and a cortical cell
7 a random quantity whose expectation value depends on the overlap of the
geniculate neuron’s axonal arbor with the cortical cell’s dendritic arbor (Brait-
enberg and Schiiz 1991). For simplicity we neglect the statistical nature of this
process. Instead we let n;; be the expected number of synapses from j to if the
retinotopic distance of s and j is below a certain maximal value, whereas we let
n;; = 0 beyond this maximal distance. This approach implies a dense arboriza-
tion, where each cortical neuron receives input from all geniculate cells within
the given maximal retinotopic radius. As both the axonal and the dendritic ar-
bors extend over a finite region and are densest in their center, the number n;;
decreases with the retinotopic distance of the two neurons. In our model, the
retinotopic distance of two cells is proportional to the distance d(, j) of their
respective grid positions. Therefore, n;; is a decreasing function of d(i, j). For
the numerical simulations presented in Chapter 2 we have chosen

ni; = ngexp [—d(i,§)?/(2- o?)]

if d(7,7) < Tmax and n;; = 0 otherwise, with ry,, = 5.5 and o, = 3. Using the
arbor function (4.20) the learning equation (4.19) can be put into the form

d
E‘]’ef = —9°J5; + Aij{(docorw + 0% + (%) + doci T S+ (4.22)
+ (dgermerw + 0%dociz) Y T + (dococi e + 0%cocre) Y ik
k€eLg kEL"C
+ (d3ci 2w + o%dpci?) Z Judf, + (dococtt2mw + 0°coci 2 Z Jir ik
keELG keLC
leLq leLq

+ docit? Y Tudiy +aditiHo Y MyjJj, + GditiHy > Jlle]Jlk},

kEL‘,C kEL‘,(, /;EELL::G
C

where J7; denotes the effective weight given in (4.18).
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Sparse Arborization

As in the previous approach we consider n;; a random quantity whose ex-
pectation value n;; depends on the overlap between the axonal and dendritic
arbors of the respective cells 5 and i. Here we presume this expected number
of synapses to be small, n;; < 1. This means that only a small fraction of all
geniculate cells j within the arborization radius of a given cortical cell i do
actually make a synaptic contact onto this cortical neuron and the number of
synapses between j and i is either 0 or 1. Thus, it is n%j = n;; as in the case of
a flat arborization (see above).

Inspecting the right hand side of (4.19) we find that the sums involving the
geniculocortical efficacies are either of the form -, . | Bjiny; K}; or of the form
> kere Mik K Ckj. 1f the functions B, Cy;j, Ky, and nj, vary sufficiently slow
as [ runs over neighbouring neurons on the cortical surface or as k runs over
neighbouring neurons in the LGN, then the above sums are self-averaging and
we can write

e % 7€
> BimiiK{; ~ Y BunjKj;
leLo leLo

e . % e
Y niaKiCri ~ Y niK§Ch; -
kelg kelg

Similarly, averaging over a sufficiently large number N of cortical neurons &
in the vicinity of cell 7 yields

1 !
€~ ¥ €

if Dy;, Kj;, and nj; are slow-varying functions so that they can be considered
approximately constant across the corresponding cortical area.

Taking for granted that the above approximations can be applied we av-
erage both sides of (4.19) over a neighbourhood of 7 so that we arrive at a
learning equation that is formally identical to (4.21) but with the definitions

Jij = n;Ky,

—— *

According to the preceding considerations this provides a good description of
the learning dynamics if the following conditions are fulfilled.

(i) The expected number of synapses n;; connecting a geniculate neuron j
to a cortical neuron : is much smaller than 1 and varies slowly as ¢ runs
over the cortical layer or j runs over the geniculate layer. This implies
that the arborization A;; extends over a large number of cells in both
layers.

(if) The efficacies J;; of intracortical connections and the geniculate activity
correlations M;; vary slowly in ¢ and j.

(iif) The emerging geniculocortical efficacies K7; and, correspondingly, the
effective weights J;; are sufficiently smooth in i and ;.
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The requirements (i) and (ii) can be met by choosing an appropriate set
of network parameters. Specifically, we may take n;; to be a wide Gaussian
function of the retinotopic distance d(s,j) between the neurons i and j. As
a prerequisite, of course, the analyzed network model must be large enough,
i.e., comprise a sufficient number of neurons and synapses. Condition (iii) can
only be verified a posteriori when the emerging connectivity patterns have
been determined. If they turn out to be smooth, then the use of Eq. (4.21) is
justified. Otherwise, the obtained results are probably useless.

4.3.3 Linear Stability Analysis

The learning equations that are to be analyzed in the following, viz., Egs. (4.21)
and (4.22) can be summarized in the formula

d
dtJZe] = —9° Jiej + BijdoclT*JZ-ej + Aij{(doco’rw + UeCO + Ce) + (4.23)
(doclTETW +o d0017'E Z %+ (dococr T + 0%coer 72) Z Jik
k€ELq k€L
+ (d%c%TQTW + O'ed[)ClT Z JaJj, + (doCoClT ™w + o° C[)ClT Z Ju ik
keLG keLc
leLg leLg

+ dOCIT Z Jlk}‘]k:] + Cllel H[) Z Mk}] ik + ClleQ H[) Z Jllelek;}

keLlc kelg keLg

leLg
with B;; = v or B;; = A;j, respectively. Obviously, this is a system of linear
differential equations in the effective weights .J5 (¢). Using vector notation, it
can be written in the form
dye_ 04w (4.24)

dt ’ '
with a constant matrix @ and a constant vector F. If Q@ has only non-zero
eigenvalues, then there is a unique fixed point of the learning dynamics, which
is obtained by setting (d/d¢)J° = 0 in (4.24) and solving for J¢,

Jo=—-0'F.

For reasons of symmetry it follows from (4.23) that the geniculocortical
connectivity at this fixed point must be homogeneous and isotropic provided
the arbor A;;, the geniculate correlations M;;, and the intracortical connectiv-
ity J;; are homogeneous and isotropic. Quite in contrast, we have found in
our numerical simulations that a nice feedforward orientation map can de-
velop under just these conditions; see Fig. 2.8 in Sect. 2.6. The emerging dis-
tribution of geniculocortical synaptic weights is thus neither homogeneous
nor isotropic. This indicates that the rotationally symmetric fixed point can
become unstable, thereby enabling the growth of an anisotropic connectivity

pattern.
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In the sequel, we will therefore analyze the learning dynamics with re-
spect to the stability of the fixed point. To this end we study the temporal
development of a small deviation L of the geniculocortical weights from their
fixed-point distribution. This yields

d

EL =QL. (4.25)
Since (4.25) is a linear differential equation, its solution L(¢) is determined by
the initial conditions and the eigenvalues and eigenvectors of the matrix Q. If
the real part of some eigenvalue ) is positive, then the respective eigenmode
will grow exponentially in time. Conversely, any mode corresponding to an
eigenvalue whose real part is negative will decay exponentially. If the real
parts of all the eigenvalues are negative, then the fixed point of the learning
dynamics is stable. Thus, we have to solve the eigenvalue problem

AL=9QL

or, explicitly, with i € L and j € L¢ as before,

()\ + ﬁe) Lz] = BideCIT*Lij + AZ]{ (d%clTETW + O'ed()ClTE) Z sz
k€eLg

2 2 2 eg 22 2 2
+ (dgeiritw + o®dociT?) E E Ja Lk + doci T E Jit L
keLg leLc keLlc

+ Cld%TIQH[) Z Mlchik: —f—C%d?TQ?’Ho Z Z Jile:lek} . (4.26)
kelLg keLg lELC

Henceforth, it will be convenient to use a slightly modified notation for
specifying individual neurons and synapses. Up to now an integer index i has
been assigned to each neuron so that the quantities belonging to this neuron
could be identified. The membrane potential and the spike train of neuron
number 4, for example, have been denoted as h; and «;. Correspondingly, we
have been using two indices 7 and j to denote the efficacy .J;; of a synapse
connecting the presynaptic cell j to the postsynaptic cell i. As the network we
are dealing with is arranged in the form of two retinotopically ordered grids
of neurons, we can alternatively specify a neuron by giving the layer that it
resides in together with a two-dimensional vector x determining its position
within this layer. Accordingly, a synapse is uniquely identified by the layers
and the coordinates x5 and x; of its pre- and postsynaptic neurons. Therefore,
we can denote individual synapses by means of the postsynaptic cell’s position
x; and the presynaptic cell’s relative position y := x; — x2. Since the arbor
function A;; depends on retinotopic distance only, it can be written as A,.
Analogously, B;; and M;; take the form By, and M,. Thus, Eq. (4.26) becomes

()\ + '(9e) Lx,y = BydoclT*LxJ + Ay{ (d%cngTVV + UedoclTE) Z Lx,y’
yl
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2 2 2 e 2 2 ic 2 2 ic
+ (d§cirimw + o®docit?) Ty Lyt 3 + doci T} § Ty Lyt gy
y !

I,yll y

+ Cld%T%Ho Z My _y1 Ly g + C%d?Tg’Ho My _yr_yn J,icc,y,nyryyu} , (4.27)
y' y

1 Il
Y

where chfy denotes the efficacy of an intracortical synapse, while Ly y corre-
sponds to a geniculocortical synapse.

For simplicity, our stability analysis will be restricted to the case of a ho-
mogeneous intracortical connectivity. This means that the efficacy Jj(fy of an
intracortical synapse depends only on the relative position y of the presynap-
tic cell with respect to the postsynaptic neuron. We can therefore drop the
coordinate x of the postsynaptic coordinate from .Ji¢ so that (4.27) reduces to

()\ + '(96) Lx,y = BydoclT*LxJ + Ay{ (d%cngTVV + UedOCITg) Z Lx,y’
yl

2.2 2 e 2_2 ic 2.2 ic
+ (dgeirimw + 0°dociT?) E Jyi Lx—y gy + doci Ty g Jy_ g Lx—y iy’ y’
yy" y’

2, 2 242 _3 ic
+ Cllel Hy E My—y’Lx,y’ + ClleQ Hy E My_yl_yﬂ Jy'Lx—y’,y”} .
y' Ly

Finally, we perform a Fourier transformation in x and define

Ly = Y Lxyexp(-ikx)
X
S =) T exp (—iky)
y
Tyy = ZMy,y:clJ}iﬁ exp (—iky') ,
yl

for k € (—m, )%, which yields

A+ 9°) Ly = Ay Z{ (Bromw + 0°dor.) Ly (4.28)
yl
+ (dngTW + O'edoTz) cljfffky + doneiik(yiy,)ClJ}i,c_y/zk7yr

1
C1
+ d%T%HoMy,y/Ek’y/ + d%TSHOTk,yfy’Ek,y’ } + doT*Byzkyy .

4.3.4 Numerical Evaluation

What do the eigenfunctions L, look like? Since we do not have an analytic
expression for them, let us approach Eq. (4.28) using numerical methods. For
this purpose all the network parameters must be specified numerically. In
view of the large number of such parameters it is clear that a complete scan
of the parameter space is not feasible. We will therefore investigate only the
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T. 6 ms Table 4.1: For a numerical approach to the eigenvalue
p— 10 ms problem (4.28) the values of all the relevant model pa-
d?Hy || 900 572 rameters must be specified numerically. Since a com-
do 30s L plete scan of the parameter space is not feasible, we
00 15 will vary only the most important parameters and fix

the rest of them at the values listed in this table.

most important scenarios and concentrate on variations of ¢°, ¢, ¢ J'¢, and
of the arborization model. The remaining parameters will be kept fixed at the
values listed in Table 4.1, which have been chosen according to the following
considerations.

The time constants of the postsynaptic potential and the learning window,
7. and 1y, have been chosen in agreement with the respective values used in
the numerical simulations. The quantity d? H, determines the strength of the
geniculate activity correlations. For the development of orientation selectivity
these correlations must be sufficiently strong, i.e., d2 Hy must be sufficiently
large. Before fixing the geniculate mean firing rate do we should recall that our
present computations are based on a linear neuron model. We must therefore
take care that the linear gain function (4.7) does not yield negative firing rates
or, at least, that the probability for a negative firing rate to occur is low because
otherwise the obtained results are useless. Thus, the value of d¢ should not be
smaller than the standard deviation of the firing rate, d,+/Hy; here we let dg :=
div/Hy. The width of the geniculate activity correlations, o, has been chosen
to be a factor of 1.5 larger than in the numerical simulations. The reason for
this difference is that in the following calculations the neuronal arborization
radius will be rescaled by about the same factor so as to obtain larger receptive
fields and hence a better resolution of the emerging connectivity patterns.

As to the intracortical connectivity .Ji° two different scenarios will be inves-
tigated. First, we will determine the eigenfunctions Ek,y with a rotationally
symmetric connectivity J'° so as to obtain insight into the mechanisms gov-
erning the development of a feedforward orientation map in the presence of
an isotropic lateral connectivity; cf. Sect. 2.6, Fig. 2.8. Second, we will analyze
(4.28) with a non-isotropic lateral connectivity. This will help us to understand
how an existing intracortical orientation map can guide the development of
geniculocortical connections; see Figs. 2.9 and 2.10.

With either type of intracortical connectivity we will investigate the three
different arborization models that have been introduced in the preceding sub-
section: flat, dense and sparse arborization. Specifically, let us define

. v ifly] <75,
By=v, Ay:= { 0 otherwise

for the flat,

B a . | vmeexp <y /2 457 iflyl <75,
Y Y 0 otherwise
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for the dense, and

_Iv|? . 4.52 i
By, Ay | 02V e [ ly|? /(2 4.5 )] if |y| < 7.5,
0 otherwise
for the sparse arborization model.

Isotropic Intracortical Connectivity

In order to model an isotropic and homogeneous intracortical connectivity pat-
tern similar to the one shown in panel (a) of Fig. 2.8 we choose

1 Jif == 155" exp |~ |y|* /(2 4.5%)

for |y| < 7.5 and vanishing for |y| > 7.5. Hence, the eigenvalue problem (4.28)
becomes almost circularly symmetric! so that we need to consider only one
direction of the wave vector k. In the sequel, we will therefore assume that the
direction of k is parallel to the z;-axis, i.e., k = (k1,0) with &y € [0,7]. The
eigenvectors for any other direction of k can be derived easily by means of an
appropriate rotation.

Once the values of all the relevant parameters and the wave vector k are
specified, the required eigenvalues and eigenvectors can be determined nu-
merically. To this end, we will utilize the procedure Ei gensyst emof the
mathematical toolkit Mat hemat i ca4. 0 (Wolfram 1999). The only parame-
ter that has not yet been specified is ¢®. According to the learning rules set
forth in Sect. 2.3 o¢ determines the amount by which each synaptic weight is
reduced in response to a spike of the postsynaptic neuron. In order to clarify
its effect onto the process of pattern formation let us first investigate the case
o® = 0 and then see how decreasing o° changes the obtained results.

For o® = 0, Fig. 4.2 displays the largest eigenvalue X of (4.28) as a function
of k1. Either panel is related to one arborization model, viz., flat (left panel)
and dense arborization (right panel). The results for the sparse arborization
model are not shown because they are qualitatively similar. The grey-level
plots at the bottom of the figure visualize the corresponding eigenvector Ek,y
for a few specific values of k. Each one of them comprises two arrays of 15x15
pixels displaying the real part and the imaginary part of fk,y as functions of
y = (y1,y2). The arrays’ horizontal and vertical axes, from left to right and
bottom to top, correspond to the vector components y; and y-, respectively,
and both range over the values {—7,...,7}. White pixels indicate positive
values of ik,y, whereas black pixels indicate negative values. Accordingly,
pixels appearing in a medium grey represent values that are close to zero.

The results presented in Fig. 4.2 allow the following conclusions to be
drawn. First, the eigenvalue A depends on k&, as well as on the model param-
eters 9°, v, ¢1, and ng, as can be seen from the expressions along the vertical
axes of the graphs. With v, ¢1, and ny being positive constants, the value of

! except for slight deviations that are due to the discreteness of the neuronal grid
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(A+9°)/(ver)

(A +9°)/(veino)

Figure 4.2: For o® = 0, the largest eigenvalue )\ of the eigenvalue problem
(4.28) is displayed as a function of the wave vector k. Because of the rota-
tional symmetry of Eq. (4.28) it is sufficient to consider only one direction of
k, e.g., k = (k1,0). Either panel is related to one of the previously introduced
arborization models, viz., flat (left panel) and dense arborization (right panel).
The results for the sparse arborization model are qualitatively similar. Note
that the eigenvalue ) depends on k; as well as on the model parameters ¢, v,
c1, and ngp, as can be seen from the expressions along the vertical axes of the
graphs.

The grey-level plots at the bottom visualize the respective eigenvector Ek,y for
a few specific values of k;. Each one of them comprises two arrays of 15 x 15
pixels displaying the real part and the imaginary part of Ek,y as functions of
y = (y1,y2). The arrays’ horizontal and vertical axes, from left to right and
bottom to top, correspond to the vector components y; and y-, respectively,
and both range over the values {—7,...,7}. A bright pixel indicates a large
value of fk,y, whereas a dark pixel represents a low value.

With v, ¢1, and n( being positive constants, we find that \ is negative over the
whole range of &1, if the parameter 9¢ is chosen large enough. Since the plotted
eigenvalue ) is the largest eigenvalue of (4.28), the remaining eigenvalues are
then negative as well and so the learning dynamics are stable. As the graphs
show, )\ is maximal for k; = 0. Therefore, the first eigenmode to become un-
stable with decreasing ¢ corresponds to k1 = 0, i.e., to the wave vector k = 0.
The leftmost gey-level plot in either panel shows that this eigenmode is rota-
tionally symmetric. Presuming that the final state of the learning process is
dominated by the leading eigenmode it follows that the emerging pattern of
geniculocortical connectivity is homogeneous (k = 0) and isotropic.
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A for given k; is small, if 9¢ is large, and vice versa. Therefore )\ is negative
for all values of k&, if ¥¢ is chosen large enough. Since the plotted eigenvalue
A is the largest eigenvalue of (4.28), the remaining eigenvalues are then neg-
ative as well and so the learning dynamics are stable and converge towards
the fixed point. On the other hand, if ¥¢ is chosen sufficiently small, then A
becomes positive at least within a limited range of k;. In that case the synaptic
dynamics are unstable.

Second, we find that \ is maximal for £&; = 0. The first eigenvector to
become unstable with decreasing ¢ thus corresponds to k; = 0, i.e., to the
wave vector k = 0. The leftmost gey-level plots in either panel of Fig. 4.2 show
this eigenmode to be rotationally symmetric. Presuming that the final state of
the learning process is dominated by the leading? eigenmode we conclude that
the emerging connectivity pattern is homogeneous (k = 0) and rotationally
symmetric and hence does not establish an orientation map.

Third, the grey-level plots of the leading eigenvectors show that all compo-
nents within the maximal arborization radius are positive — the correspond-
ing pixels appear in white or in a light grey. Hence, we conclude that when
the learning dynamics become unstable and the leading eigenmode begins to
grow, then the geniculocortical synapses are either all strengthened simultane-
ously or they are all weakened. As a consequence, the total amount of genic-
ulate input to the cortical network layer is either continuously increasing or
continuously decreasing. This process is, of course, accompanied by an ac-
cording change of the mean cortical activity.

The described behaviour of the synaptic dynamics changes completely
when the parameter ¢° is decreased sufficiently, and it is easy to understand
why. The value of ¢¢ determines the amount by which a synapse’s efficacy is
modified in response to a postsynaptic spike. It thus follows that all the den-
dritic synapses of a given neuron are modified by the same amount whenever
this neuron emits a spike. Choosing a negative value of ¢ therefore establishes
a negative feedback loop in the learning dynamics. When a neuron’s total
synaptic input is increasing then its increasing firing rate results in a grow-
ing contribution of ¢° to the synaptic weights, which in turn counteracts the
growth of the input efficacies. Conversely, a declining synaptic input causes
the cell’s firing rate to decrease. This reduces the effect of o¢ and thereby op-
poses the decrease of synaptic input.

A negative value of ¢° can thus stabilize the sum of synaptic input con-
verging onto a single neuron. As a result, different input synapses of the same
neuron have to compete for their efficacy. The weight of one synapse can be in-
creased only at the expense of another synapse because the sum of all synaptic
weights must remain constant.

The above view is supported by an analysis of the eigenvalue problem
(4.28) for negative o°. It turns out that the eigenvalue of the eigenmode dis-
played in Fig. 4.2 decreases with decreasing o¢. A negative value of ¢° can

2Subsequently, the eigenvalue having the largest real part will be called the “leading” eigen-
value or the “principal” eigenvalue. Accordingly, the related eigenmode will be called the
“leading” or “principal” eigenmode.
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thus stabilize this eigenmode. On the other hand an inspection of Eq. (4.28)
shows that the only terms involving the parameter o° are proportional to a
spatial sum over the eigenvector, Zy, fkyy/. Consequently, a variation of o°
does not affect eigenmodes with a sum equal to zero. We may therefore expect
the eigenvalue of the rotationally symmetric eigenmode shown in Fig. 4.2 to
decrease below the eigenvalues of the leading zero-sum eigenvectors when ¢ ©
becomes small enough.

Figures 4.3 through 4.5 demonstrate that this is true. Each figure is related
to one arborization model and presents the leading eigenmodes for ¢¢ = —0.5
in dependence on the wave vector k. Because of the rotational symmetry of
Eq. (4.28) it is again sufficient to consider only one direction of k, say, k =
(k1,0). In the top panel of each figure the four largest eigenvalues are plotted
as functions of k;. Below this plot the four corresponding eigenvectors are
displayed in a grey-level representation for three different values of k1. The
plots have been arranged in accordance with the sequence of the eigenvalues
so that the leading eigenvector appears in the uppermost row.

As in the case ¢ = 0 all eigenvalues are negative if the model parameter ¢
is chosen sufficiently large (see the expressions along the graphs’ vertical axes).
The first eigenvectors to become unstable when ¢ is reduced, however, are no
longer rotationally symmetric and correspond to non-zero wave vectors with
|k| ~ 7/6. Provided that the final state of the learning process is dominated by
the leading eigenmodes, the resulting geniculocortical connectivity pattern is
determined by a linear superposition of these eigenvectors.

One of the most simple cortical maps would thus emerge from a superpo-
sition of the modes Ly, and Ly, with k = (/6,0). In order to obtain a spa-
tial representation Jy , of this map we perform a Fourier back-transformation
from k to the cortical coordinate x and find

Jxy ~ Ek,y exp (1kx + ip) + E,kyy exp (—ikx — i¢)
= ZRe[Ekyy] cos (k11 + ¢) — QIm[Ek,y] sin (k121 + ¢)
— 2Re[Lyy exp (ikx + i¢)]

where ¢ denotes an arbitrary constant phase. The second and the third equali-
ties of the above expression arise from the fact that f_k,y is the complex conju-
gate of ik,y. Small sections of the connectivity pattern J, y, withz; =0,...,7
and ¢ = 0 are shown at the bottom of the Figs. 4.3 through 4.5. Such a section
consists of a series of 8 small grey-level plots, each of which is a representa-
tion of Jy , as a function of y for fixed x. These small grey-level plots can be
regarded as the receptive fields of neighbouring cortical cells. Obviously, the
emerging receptive fields are orientation selective with their preferred orien-
tation perpendicular to the direction of the wave vector k. This is in full agree-
ment with the results of earlier analytical investigations that have been carried
out on the basis of graded-response neurons (Wimbauer 1996, Wimbauer et al.
1998).

Of course, the actually developing orientation map will look much more
complicated for several reasons. First, all eigenmodes corresponding to wave
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Figure 4.3: The leading eigenmodes are presented in dependence on the wave
vector k for the flat arborization model and with ¢® = —0.5. Because of the
rotational symmetry of Eq. (4.28) it is again sufficient to consider only one di-
rection of k as, e.g., k = (k1,0). In the top panel the four largest eigenvalues
are plotted as functions of k;. Below this plot the four corresponding eigen-
vectors are displayed in a grey-level representation for three specific values of
k1. Each grey-level plot consists of two arrays of 15 x 15 pixels that visualize
separately the real part and the imaginary part of the respective eigenvector;
cf. Fig. 4.2. The plots have been arranged in accordance with the sequence of
the eigenvalues so that the leading eigenvector appears in the uppermost row.
At k1 = m/6 the largest eigenvalue reaches its maximum. The related eigen-
vector Ek,y is shown at the top of the middle column of grey-level plots. A
Fourier back-transformation of this mode from k to cortical position x yields
the corresponding spatial eigenmode Ly, ~ Ek,y exp(ikx), whose real part is
displayed in dependence on z; at the bottom of the figure. This series of plots
can be regarded as a small section of a cortical orientation map with each of
the small squares representing the receptive field of one cortical cell.
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Figure 4.4: As Fig. 4.3 but for the dense arborization model.
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Figure 4.5: As Fig. 4.3 but for the sparse arborization model.
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vectors of the same length are degenerate (cf. footnote 1 on p. 115). There-
fore, the resulting connectivity pattern will be determined by a superposition
of eigenmodes of many different orientations and phases. Second, variations
of the length of the wave vector near the maximum of the leading eigenvalue
induces only small variations of this eigenvalue. As a consequence, a whole
range of wave vectors will contribute to the final map. Third, various non-
linearities of the learning dynamics that have been neglected in the present
analysis may have a significant influence on the emerging connectivity pat-
tern. For example, a non-linearity that takes a very prominent role in our
numerical simulations is established by the upper and lower bounds of the
synaptic weights (see Sect. 2.3).

Non-Isotropic Intracortical Connectivity

Let us now investigate how the presence of an intracortical orientation map
can guide the development of the geniculocortical connectivity as we have
found in our numerical simulations. To this end we choose an intracortical
connectivity

¢y JI = 075571 exp [— yl2 /(2 4.52)] [ —sin(ry/7)]  (4.29)

for |y| < 7.5 and vanishing for |y| > 7.5. This yields an extremely simple in-
tracortical map with all neurons exhibiting the same vertically oriented lateral
receptive field. Applying the color code shown in Figs. 2.6 and 2.7 the colored
representation of this map would appear in a uniform light blue.

Inserting the definition (4.29) into Eq. (4.28) we arrive at an eigenvalue
problem that is no longer rotationally symmetric. As in the previous sub-
section it turns out that for ¢® = 0 and decreasing 9¢ the first eigenmode to
become unstable corresponds to a homogeneous pattern of geniculocortical
connectivity with all synaptic weights either growing or shrinking simultane-
ously. We have already explained what that means: The total geniculate input
to each cortical neuron and to the cortical layer as a whole is unstable. We have
also argued that this problem can be reconciled by choosing a sufficiently small
(i.e., negative) value o°: The total input to each cortical cell is stabilized so that
individual synapses have to compete for their efficacy. In the following, we let
o€ := —0.5.

For each model of neuronal arborization, Fig. 4.6 displays the real part of
the leading eigenvalue X in dependence on the cortical wave vector k. Since
the solutions of (4.28) for a wave vector —k are the complex conjugate of the so-
lutions for the wave vector k, the plots have been restricted to one half-plane
of k. Obviously, the rotational symmetry is broken so that the maximum of
the real part of X\ along the k;-axis is larger than its maximum along the k,-
axis. This is a consequence of the anisotropy of the intracortical connectivity.
Accordingly, the first eigenmodes to become unstable with decreasing ¢ cor-
respond to the wave vectors k = +(k1,0) with k; = 7/6. When ¢ is further
reduced, additional eigenmodes are destabilized, which are related to oblique
directions and different lengths of k. At last, eigenmodes corresponding to
wave vectors directed parallel to the ky-axis will become unstable.
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Figure 4.6: The real part
of the leading eigenvalue
A of Eq. (4.28) is shown
as a function of the wave
vector k for ¢¢ = —0.5
and the non-isotropic in-
tracortical connectivity de-
fined in (4.29). Each
panel of the figure corre-
sponds to one arborization
model, viz., flat (a), dense
(b), and sparse arboriza-
tion (c). Because of the
anisotropy of the intracor-
tical connectivity the ro-
tational symmetry is bro-
ken so that the maximal
value of Re[)\] along the ;-
axis is larger than along
the ky-axis. In the follow-
ing, we will therefore in-
vestigate more closely the
eigenvalues and eigenvec-
tors along these two direc-
tions of the wave vector.

Subsequently, we will investigate more closely the two most prominent di-
rections of k, namely the directions parallel to the k;-axis and the ks-axis. The
real parts of the four leading eigenvalues with k varying along these direc-
tions are displayed in the Figs. 4.7, 4.8, and 4.9. In addition, grey-level plots
of the four leading eigenvectors Ly, are shown for a few specific choices of k.
Each figure corresponds to one arborization model and consists of two panels
presenting the results for k := (k,0) (upper panel) and k := (0, k>) (lower
panel). As in the Figs. 4.3 through 4.5 the grey-level plots are ordered in such a
way that their sequence is in accord with the sequence of the eigenvalues’ real
parts. Hence, the eigenvector corresponding to the leading eigenvalue is plot-
ted at the top whereas the eigenmode corresponding to the fourth eigenvalue
is plotted at the bottom.

In agreement with Fig. 4.6 we find that the real part of the leading eigen-
value A reaches its maximum at k ~ =+(n/6,0) along the k;-axis and at
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Figure 4.7: The real parts of the
four leading eigenvalues are dis-
played in dependence on k for
the flat arborization model. The
wave vector k is varied along
the two directions that are most
prominent in Fig. 4.6, viz., along
the ki-axis (upper panel) and
along the ks-axis (lower panel).
For a few specific choices of k, the
four leading eigenvectors fk,y
are visualized by means of grey-
level plots. The geniculocortical
connectivity patterns that corre-
spond to the maxima of the lead-
ing eigenvalue’s real part along
either direction can be obtained
by a Fourier back-transformation
of the related eigenmode Iy,
from k to the spatial coordinate x.
They are given in Egs. (4.30) and
(4.31) and are plotted at the bot-
tom of the upper panel and to the
right of the lower panel. Each of
these plots can be regarded as a
small section of the cortical map
that would arise if the learning
dynamics were dominated by the
respective eigenmode.
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(Re[A] +9°)/(v 1)

2E O ON
ol BE DN
N SN BN
>o] | LE BN

-—
x

k2
/4 w/2 3m/4 ™

0
0. 26
= 0.25}]
N |
2 0.24}
-~ ]
s> 0. !
s |
+ 0.224
= 0.21}
) !
oo 0.23 4
0.19t0

@
.EEE /" N
py) i
: ] /
,,’
-AlEEERRD
S




126 Chapter 3. Correlations of Activity in Networks of Spiking Neurons

0. 146}
0.144}!
0. 142|!

0.138}!
0.136{ L.~ ~

(Re[A] +99)/(ver)

=H OO ON
O SN DN
Ol OE BN
HE ¢E %ol |

-—
r

ko
w/4 w/2  3n/4 ™

0

0. 146

S 0.1440]
D :
~ 0.142}

=< 0.138}]

0.136/ -

8
N

Figure 4.9: As Fig. 4.7 but for

the sparse arborization model.




4.3. Plasticity of Feedforward Synapses 127

k ~ £(0,7/6) along the ke-axis. Importantly, the maximal value along the
ko-axis is lower than that along the & -axis. Since we are interested in the typi-
cal layout of the orientation maps emerging as a result of the learning process,
we perform a Fourier back-transformation of the respective eigenvectors Ly,
so as to obtain their spatial representations over the cortex. With ¢ denoting
an arbitrary constant phase we thus get the connectivity pattern

J,(clg, ~ Re[zk,y] cos (k1z1 + ¢) — Im[zk,y] sin (k121 + ¢) (4.30)

for k = (k1,0) and, analogously,

J,gz ~ Re[zk,y] cos (kaxo + ¢) — Im[zk,y] sin (koxo + @) (4.31)

for k = (0,k2). As to the flat arborization model, these connectivity patterns
are displayed in Fig. 4.7. At the bottom of the upper panel J>(c1>)' is shown by

means of a series of grey-level plots. Each of them visualizes J>(c1>)' in depen-
dence on y for one fixed value of ;. Between subsequent plots x is increased
in steps of 1. They can therefore be regarded as the receptive fields of neigh-
bouring neurons that would emerge if the learning dynamics were dominated
by the corresponding eigenmode ik,y. In an analogous manner, the connec-

tivity pattern Jf}), is shown to the right of the lower panel. Similar plots can
be found in Figs 4.8 and 4.9 for the dense and the sparse arborization model.
All these plots show that the neuronal receptive fields arising from the con-

nectivity pattern J;Els)' are orientation selective and prefer vertically oriented

stimuli, whereas the receptive fields corresponding to J,(f; prefer horizontally
oriented stimuli. Provided that the final state of the learning dynamics is de-
termined by a superposition of the leading unstable eigenmodes we arrive at
the following view of pattern formation in the presence of the anisotropic in-
tracortical connectivity given in Eq. (4.29).

On the one hand, the value of 9¥¢ can be chosen in such a way that eigen-
modes corresponding to a range of wave vectors parallel and obligue to the
k1 axis are unstable, while all eigenvectors corresponding to wave vectors par-
allel to the k,-axis are stable. In this case the emerging orientation map will
be dominated by receptive fields preferring vertical and oblique orientations
because none of the eigenmodes corresponding to horizontally oriented re-
ceptive fields is unstable. However, such a scenario requires a relatively fine
tuning of the parameter ¢¥¢ and may therefore seem unrealistic.

On the other hand, the value of 1 may be a bit smaller so that eigenmodes
corresponding to all directions of k are unstable. Then the developing recep-
tive fields can be arbitrarily oriented. Nevertheless, the orientation map will
be biased towards vertical orientations because the real parts of eigenvalues
corresponding to wave vectors parallel to the k-axis are larger than the real
parts of eigenvalues corresponding to the ks5-direction. For a given wavelength
the growth rate of a vertically oriented connectivity pattern will therefore be
larger than that of a horizontally oriented connectivity pattern. Moreover, the
range of wavelengths corresponding to unstable eigenmodes is larger along
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the k-axis than along the ks-axis. As a consequence, a random superposi-
tion of unstable eigenvectors will comprise more eigenmodes corresponding
to vertically oriented connectivity patterns than eigenmodes corresponding to
horizontally oriented connectivity patterns.

We conclude that in our reduced network model the presence of a homo-
geneous but vertically oriented intracortical connectivity during the period of
geniculocortical plasticity leads to the emergence of an orientation map that is
biased towards vertical orientations. Hence, the developing geniculocortical
map tends to be in accord with the intracortical “map”, a finding that is in full
agreement with the results of our numerical simulations presented in Sects. 2.6
and 2.7. The above analytical investigations thus demonstrate how an existing
intracortical map can guide the development of the geniculocortical connec-
tivity.

4.4 Plasticity of Intracortical Synapses

In the previous section we have seen how in our reduced model of primary
visual cortex a feedforward orientation map can arise from Hebbian plasticity
of geniculocortical synapses and how the layout of this map can be influenced
by the structure of intracortical connectivity. The numerical simulations pre-
sented in Sect. 2.5 have shown that under appropriate conditions a Hebbian
development of intracortical synapses — in the absence of feedforward input
— leads to the emergence of a map-like structure of oriented connectivity pat-
terns.

Here we will present an analytical investigation of intracortical plasticity
on the basis of the reduced network model established in Sect. 4.1. As we want
to study the development of lateral connections in the absence of input from
the LGN we further simplify the reduced network by removing its geniculate
layer. Hence, we are left with only one layer of linear stochastic spike response-
neurons representing excitatory cortical cells.

Our analysis of the learning dynamics in this network will lead us to an
eigenvalue problem quite similar to the one we have obtained for the feed-
forward dynamics. Despite this similarity, however, we will also find a fun-
damental difference between the dynamics of feedforward and intracortical
synaptic plasticity, which is probably the reason for the fact that we could
never observe a formation of an intracortical orientation map in numerical
simulations using the reduced network model (results not shown). The fol-
lowing investigations will thus reveal the limitations of the reduced model
and indicate how these limitations are overcome in the full network, in which
the emergence of intracortical orientation maps is a robust phenomenon.

4.4.1 The Learning Equation

As in the previous section we use the stochastic spike response model to rep-
resent individual neurons and define their linear activation function as

q(h) = Cp +ech.
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Neglecting the refractory potential, we have the coupling operator

ZJU/ a;(t") e(t —t")dt",

where J;; denotes the total synaptic weight connecting the presynaptic cell j
to the postsynaptic cell < and £(t) is the postsynaptic potential,

e(t) := exp(—t/)

for ¢ > 0 and vanishing otherwise.

Since we are studying the intracortical plasticity in the absence of feedfor-
ward input, we need not account for an external membrane potential when
calculating the mean activities and the spike-spike correlations so that we can
use Egs. (3.46) and (3.47) instead of the more complicated expressions (3.73)
through (3.75). Applying the von-Neumann series up to second order to ap-
proximate the required inverse operators we have

o = (al(t)) =cy+cy Z Jzy Te Co + €] Z JZ]J]]C T co , (432)
J Jk
and

(ai(t1)a;(t2)) =
= qja; + 61’]’ (5(t1 — tg) o; + Cp J]’Z’ Q; € (tQ — tl) +c Ji]' a; &‘(tl — tQ)

+ O(ta —t1) CIZJ]]CJ]CZOQ/ dt'e(ty —t') e(t’ — t1)

o0

+ 9(t2 —tl)C%ZijJik Otk/ dtI&‘(tQ —tl) 6(t1 —tl)
k

— 00

+ [1—=0(ts — t1)] clszka]a]/ At'e(t; — ') e(t' — ty)

+ [1—0(ty —t))]c? Z Jire Tk ak/ dt’e(t; —t') e(ty — '), (4.33)
k

with 6(t) denoting Heaviside’s step function as defined in (4.15).

Next we carry out the integrals on the right hand side of Eq. (4.33) and
substitute «; from Eq. (4.32). We consider only terms of up to quadratic order
in the synaptic weights and obtain

(ai(t1)a;(t2)) =
= cy+chert Z Jik + cierTe Z Jik

22 2
+ el ijk ][+Cocl7' ZJZkal+COCIT ZJ]kal
ki ki

+ 0 0(t —t2) (co + coc1Te Z Jik + C[)C%TEQ Z Jikaz>

k kl
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to — t
+ 9(t2 — tl)C()Clei exp (— 2 1)

Te

Te

t1 — 1
+ [1 — 9(t2 — tl)] C()ClJij exXp <_ - 2)

to —t
+ Oty — t1)coci T Jji Z Jik €xp (—Q>
k

Te

Te

t1 —t
+ [L=0(t2 — t1)] cociTe Jij Z Jjk exp <— . 2)
k

to — 1
—+ 9(t2 — tl) C()C% Z ijJ]“' . (tQ — tl)exp (— 2 1)
k

Te

t1 — 1
+ [1 — 0(t2 — tl)] C[)C% Z JZka] . (tl — tg) exp (— ! 2)
k

Te

Te

: t—t
+ Coc%% Z ijJik exp <—M> . (434)
k

Finally, we insert (4.32) and (4.34) into the learning equation (4.5). Again
we use an exponentially decaying time window

W (t) := exp(—t/mw)

for ¢ > 0 and vanishing for ¢ < 0. This yields

d
EKU = —ﬁeKij +v (C%TW + o%co + (e) + coc1 T Jjj (4.35)
+ CoC%TgT*Jij Z Jjk + (cgcngTW + O'eC()ClTE) Z Jir + C%CngTW Z Jjk
k k k
+ (C%C%TETW + UeCOC%Tg) Z Jir Ik + C%C%TEQTW Z ijJkl
kl kl

22 2 2 _2 2Te
+ COCITgTWZJiijl+CoclT* ZJikajJrCoﬁ?T*ZijJik ;
kil k k

with

TW Te

Ty 1= .
TwW + Te

Since we are dealing with a network consisting of only one layer of cortical
pyramidal cells, there is no need to distinguish different types of synapses. In
(4.35) we have therefore dropped the upper indices ‘e’ from J;; and K;;. As
explained in the previous section, J;; is to be regarded as the effective weight
linking cell j to cell 7 and is equal to the efficacy K;; of a single synapse multi-
plied by the total number n;; of synapses from j to . Within the framework of
our model, n;; is taken to be constant in time. After multiplying Eq. (4.35) by
n;; and substituting

Jij = nini' (436)
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we thus obtain

d
aninij = —9° ninij +vng; (C%TW + UeCO + Ce) + C()ClT*ni]'Ki' (4.37)
2 2
+  coc) T Kij Z N Kk + (CoclTETW + O'eC[)ClTE) Z nipKp
k k
2 22 2 2 2
+ CoC1TeTW ankKjk + (COCITg ™wW + UeCOCITE) ZnikKiknlekl
k kl
222 K K 22 2 Ko K
+ cAatimw ) njpKigng K + ol Tomw ) nigKipmgi K
kl kl

2 2 9 Te
+  cociTy Z nip Kigpngj Kij + cocy 5T Z N Kjpmip K
k k

4.4.2 Modeling Neuronal Arborization

As a prerequisite for the further analysis of (4.37) we must specify the n;;.
Representing the number of synapses between a given pair of neurons, each
n;; may be regarded as the result of the overlap between the axonal arbor of
the presynaptic cell 5 with the dendritic arbor of the postsynaptic cell i. In
this way, the entirety of the n;; establishes a set of boundary conditions for
the learning dynamics. In close analogy to our propositions of the preceding
section we will consider three possible models of neuronal arborization: flat
arborization, dense arborization, and sparse arborization.

Flat Arborization

In this approach it is assumed that a cortical neuron 7 receives exactly one
synaptic input from all those neighbours j whose retinotopic positions are
within a certain circular area around the cortical neuron’s position. Con-
versely, no input is provided from any neuron outside this area. Therefore,

we write
e 1 ifd(4,5) < rmax
Y1 0 otherwise,

where d(i, j) denotes the distance between the grid positions of cells < and j.
Because of the relation n?j = n;; the learning equation (4.37) takes the form

d

Ejij = —9°J; + veperiJij + v COC%TET*JZ-]- Z ik (4.38)

k

+ Aij (C%TW +ocy + Ce) + (C%ClTETW + O'eCOClTE) Z Jir + C%ClTETW Z ij
k k
22,2 2,2 2.2, 2
+ (cocng ™wW + UeCOClTE) Z Jikal + CoC1TzTW Z ijJkl
kl kl

292 92 7 2 2 : ) 27e 7
+ eI TS TW % JirJji + coci Ty ;J,k,]kj + coc] 5 Ty ; JikJik |
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with
Ai]' = UVNgy (439)

and the effective weight J;; as defined in (4.36).

Dense Arborization

Alternatively, the number n;; of synapses from cell j to cell : may be re-
garded as a random quantity whose expectation value depends on the overlap
between the respective axonal and dendritic arbors (Braitenberg and Schiiz
1991). We presume that neuronal arborization is dense so that (i) there is
at least one synapse between each pair of cells whose retinotopic distance is
below a certain maximal radius and (ii) there is no connection between cells
beyond this radius. Neglecting the statistical fluctuations we let n;; be the ex-
pected number of synapses from j to i. Specifically, we choose a Gaussian
arborization

nij =ngexp [—d(i,5)?/(2 - o5)]
for d(i,j) < Tmax and n;; = 0 otherwise. This ansatz corresponds to the ar-
borization used the numerical simulations. Defining the effective weight J;;
and an arbor function A;; as in Egs. (4.36) and (4.39), respectively, we thus
obtain

d

Ejij = —ﬁeJi]‘ + Ajj|coe1TiJij + COC%TET*JU Z Jjk (4.40)
k
+ (C%TW + aeco + Ce) + (c%cl'rgTW + gecocng) Z Jir + C%Cﬂ}TW Z ij
k k
+ (C%C%TETW + O'eC[)C%Tg) Z Jirdw + cairimy Z JikJki
kl kl

2 2.9 Z 2 QZ 27e Z
+ CoC1 T TW Jichjl + COCY Ty Jikaj + CoCq 57'* ijJik
kl k k

Sparse Arborization

Let us now consider a network in which the expectation value n}; of the ran-
dom number n;; of synapses between two neurons is very low, n}; < 1. In this
case we may assume that the random value n;; is either 0 or 1, so that n; = n;;
as in the case of a flat arborization. If n;; and K;; vary sufficiently slow in the
neighbourhood of 7 and j, then the sums on the right hand side of (4.37) are
self-averaging, i.e.,

S K = > niKi,
P P

> naKpnuKy ~ Y nhKigni Ky,
Kl Kl

Y niKipniiK; ~ Y nhKigng Ky,
k k
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~ * *
E nikKignjnKjr = E i Kikn, Kk
s s

By averaging both sides of (4.37) over a neighbourhood of neuron i we arrive
at

d

Ejij = —ﬁeJi]' + I/C()ClT*JZ'j + VCOC%TET*JU Z ij (4.41)

k

+ Aij (C%TW +oco + Ce) + (C%ClTETW + O'eCOClTE) Z Jir + C%ClTETW Z ij
k k
2.2 2 2,2 2.2 2
+ (COClTE ™ + UeCOClTE) Z Jichkl + CoC1TzTW Z ijJkl
kl kl

-
+ C%C%TETW Z JikJﬂ + C()C%Tf Z Jikaj + C()C%EET* Z ijJik ,
kl k k
which is formally identical to Eq. (4.38) but where

ES

i
- —_ * ..

Aij = vn

The requirement that n;; is a slow-varying function of the positions of cells
7 and j can be met easily if the network under consideration is large enough so
that the radius of neuronal arborization extends over sufficiently many neu-
rons. For the present analysis we will choose n}; as a wide Gaussian. In con-
trast, the additional requirement that K;; varies slowly can only be verified a
posteriori when the emerging connectivity patterns are known. If they turn
out to be sufficiently smooth, then the use of Eq. (4.41) is justified. Otherwise,
the obtained results are probably useless.

4.4.3 Fixed Points and Linear Stability Analysis

In the preceding parts of this section we have first derived the basic learning
equation (4.37) governing the dynamics of intracortical synaptic plasticity in
our reduced model of primary visual cortex. Depending on the assumed dis-
tribution of intracortical synapses — the neuronal arborization — we have then
obtained different dynamical equations describing the development of the ef-
fective intracortical connectivity, viz., Egs. (4.38), (4.40), and (4.41). We are now
going to investigate the basic fixed-point properties of these equations so as to
obtain some insight into the emerging patterns of intracortical connectivity.
For the sake of a short notation we introduce the summarizing formula

Ejij = —ﬁeJij-f—Bij

COCIT*Jij + C()C%TET*JU Z ij (4.42)
k

+ Ay (C%TW + 0% + (%) + (C%ClTETW + 0®cocr 72 Z Jik

k
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2 2.2 2 e 2.2
+ e TeTw E ij—i-(COClTETw—i-U 000175) E Jire Tkl

k kl
2 2 2 2 2 2
+ cyeiTiTw Z Jik Ik + ol TS TW Z JirJji
ki ki

2 2 2Te
+ 60017*2 Jikaj+COC1§T*E Jidik |
k k

where we set B;; = v for the flat or the sparse arborization and B;; = A;; for
the dense arborization.

Suppose we were given a fixed point of the above learning dynamics, i.e.
a configuration J;; = J};P that yields (d/d¢)J;; = 0 when inserted on the right
hand side of (4.42). In order to determine the stability of this fixed point we
study the temporal evolution of a small perturbation L;;(¢) that we add to J}}P.
If it turns out that any small perturbation L;; approaches zero (or remains con-
stant) as ¢ goes to infinity, then J}“}P is a stable fixed point. On the other hand,
J}}P is unstable if there is a perturbation L;; that grows with time. In the latter
case we are especially interested in the shapes of these growing perturbations
because they may be related to the network’s final connectivity pattern at the
end of the learning process.

Inserting J;; = J55" + Ly into Eq. (4.42) we obtain

d

ELU = —ﬁeLZ‘j + Bj;

coc1 Ty Lij + COCITL T, Z (JijPLij + JgPij) (4.43)
k

+ Ai]’

2 e 2
(CocngTW +o COCITE*) E L, + cye1 7w E ij
k k

+ (cgc%TgTW + O'eCOC%Tg) Z (chPLkl + J,EZPLik)
kl
+ C%C%TEQTW Z (JjF;CPLkl + JEZPL]']C) + C%C%TEQTW Z (JZ-P,;PL]'Z + JﬁPLik)
kl kl

+ C[)C%T*2 Z (Jil;;Pij + JE]'PLZ']C) + C[)C%%T* Z (JjP;CPLik + JZL;CPij) ,
k k
where it has been taken into account that L;; is small so that terms of second
order in L;; are negligible. Since (4.43) is a linear differential equation, its so-
lution L;;(t) is determined by the eigenfunctions of its right hand side and the
corresponding eigenvalues. If the real parts of all the eigenvalues are negative
or zero, then J};P is a stable fixed point. Conversely, if the real part of some
eigenvalue is greater than zero, then the corresponding eigenmode will grow
exponentially with time so that J}“}P is unstable. Therefore, we have to solve
the eigenvalue problem
>\Lz’j = —ﬁeLi]' + Bij C()ClT*Li]' + C()C%TET* Z (J]P;CPLW + JZI;PLJIC) (444)
k

+ Ajj (C%ClTETW + O'eCOClTE) Z L + C%CngTW Z o

k k
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+ (CgC%TQTW +0° C()Cl’l' ) Z (J Ly + J,CFZPLM)
kl

+ coclT W Z ij Ly + Jkl yk:) + COCIT W Z zk Lj + J Lik)
kl kl

+ cocd 2 Y (T Ly + Jif Lig) + COC%%T* > (T Liw + T L)
- P

Subsequently, it will be convenient to make use of a slightly changed no-
tation. In the same way as explained in the previous section, let us replace
every neuronal index i by a two-dimensional vector x specifying the position
of the corresponding neuron within the network. This is possible because the
network under consideration is arranged as a (retinotopically ordered) two-
dimensional grid so that each cell can be identified uniquely by specifying its
position on this grid. Correspondingly, a synapse can be identified by giv-
ing the two-dimensional coordinates of its pre- and postsynaptic cells, x5 and
x:. Here we will use the following convention. The postsynaptic neuron will
be specified by means of its absolute position x1; the presynaptic neuron will
be given by means of its relative position y := x; — x5 with respect to the
postsynaptic cell. Hence, Jx , will denote the synaptic weight connecting the
presynaptic cell located at x — y to the postsynaptic neuron located at x. With
the arbor functions A4;; and B;; depending only on the distance between the
two neurons ¢ and j they can be written as Ay and By, where y is the relative
position of cell j with respect to 4 as introduced above.

In the new notation the eigenvalue problem (4.44) reads

ALyxy = By |coe1TuLy + cociTeT Z (Soy Ix—yy + JiE

X—y.y' Lx7y) (4.45)
yl

2 e 2
+ Ay (CoclTETW +o CoClTE) g Ly y + cye1 ey g Ly_yy
y' y'

2.2 2 e, 22 FP
+ (00017'E W+ o C()CITE) g (Jx7y/Lx_y/ gy + JEP v/ y//Lx7y/)
yl y//

2 92
+ cgcitiTw E Jx yy’LX y-y .y + T y—y' y”Lx—y,y’)

FP
+ 00017 ™ E , xy’Lx v,y + Jx yy”LX,yl)
v,y

2 2 FP FP
+ cpCi Ty E (nyy’foy’,y y' T JX yy— y/nyy/)
!

2Te FP FP e
+ ¢y ET* Z (Jx,y’LX—YJ'—Y + Jx v,y yL ,Y') -9 LX:Y .
yl

Before we can approach this problem we must determine the relevant fixed
point(s) J*¥ of the learning dynamics by setting (d/d¢).J;; = 0 on the left hand
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side of Eq. (4.42), which yields the fixed-point equation

_ e 7FP FP 2 FP FP
0=-9 thy + By coclT*thy + C[)CITET*JXJ g foyyy/
y/

2 e e 2 e FP
+ Ay (COTVV + 0%+ ¢ ) + (CoclTETW +o cocng) g ey
yl
2 FP 2 .22 e 2,2 FP ;FP
+ g1 TeTW E Jy—yyr T (COCITE W +o C()CITE) E Sy Ix—yt g
y/ yl’yll
22 2 FP FP 22 2 FP 7FP
+ eI TETW g Iy y sy gty T QT T g Jxy'Ixy g

vy vy

2 2 Z FP ;FP 2Te Z FP ;FP
+ COCIT* Jx,y’Jx—y’,y—y’ + C[)Cl 57—* Jx,y/ Jx—y,y’—y
v’ y’

Unfortunately, this equation is non-linear in the required weights J,f}; so that
we will have to use an approximative method to find a solution. Moreover,
there may be not only one but a whole bunch of solutions — each correspond-
ing to a fixed point. In our numerical simulations we have found that for an
intracortical orientation map to emerge the parameter £° in Eq. (2.1) must be
chosen sufficiently large. Otherwise, the developing pattern of intracortical
connectivity is approximately homogeneous and isotropic; cf. Sect. 2.5. This
indicates that within a certain parameter regime the learning dynamics con-
verge towards a homogeneous and isotropic fixed point which becomes unsta-
ble outside this regime, thereby giving rise to the emergence of an orientation
map. In the present analysis we will therefore concentrate on fixed points J}f};
that correspond to homogeneous intracortical connectivity patterns.

Since in such a homogeneous connectivity pattern the weights J,fg’, are in-
dependent of the postsynaptic cell’s position x, we can write JU = J3¥ so
that the fixed-point equation becomes

0 = By [CoT*ClJEP + CoTET*ClJEP Z CIJ}ITIP] (4.46)
y/
+ Ay [(C%TW + 0%y + Ce) + co7e (2c0Ti + 0°) Z 01J5,P
y-/

2
+ cng (3comw + 0°) (Z 01J5P>
yl
2 2 ;FP ;FP Te 2 ;FP ;FP e 7FP
+oart AR g Yy BP0 T
y

!

y

Analogously, Eq. (4.45) reduces to

ALy y = By |:C()61T*Lx7y + C()C%TET* Z (J}FPLx—y,y’ + J}EPLXJ)}
yl
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2 e 2
+ Ay [(COCITETW +o CoClTE) E Ly gy + cge1 Ty g Ly_yy
y' y'
2 2 2 e, 2.2 FP FP
+ (CoclTa W + 0O C()CITE) E (Jy/ Lx,ylyy// + Jy// nyy/)
ylyy//
22 2 FP FP
+ T TW E (Jy’ Lxy—y yr + Jyn foy,y’)
yl,y”
22 2 Z FP FP
+ COCIT€ T™W (Jy/ Lx—y,y” + Jyn Lx7yl)
yl,y”
2_2 FP FP
+ coa Ty E :(Jy’ Ly—yy—y + Jy—y’Lx,y’)
yl
2Te FP FP e
+ ey (B Iy iy + TRy Ly)| = 9 Ly -

yl

In this equation we perform a Fourier transformation of Ly , in x and denote
Ek,y = Z Ly yexp (—ikx) ,

jifp = ZJ;Pexp(—iky),
y

for k € (—m, ]?. Thus, we arrive at the eigenvalue problem
1
c1

= ¢ (T*By + TgT*cljg;PBy> Lyy + coTeTic1 J“EPByeﬂ-ky Z Ly y

!

A+ 0°) Ly =

y

(COTgTW + 2COTETWCIj§P> (1 + e*iky> + oechlng

+ co Ay Z
yl

: T
+ 0°7. + coriTWen jEP (1 + eﬂky) + UechleP + EET*clJ}I;P_y

+ chngfy, (1 + e_ik(y_y’)> + %T*e_ikyclJF&y

S (4.47)

which we are now going to analyze numerically.

4.4.4 Numerical evaluation

Since we do not have analytic solutions of the fixed-point equation (4.46) and
the eigenvalue problem (4.47), we will try a numerical approach. To this end,
we must fix the numerical values of all the relevant network parameters. The
specific values that we will use in the subsequent investigations are given in
Table 4.2; they are slightly different for the different arborization models.

The time constants of the postsynaptic potential and the learning window,
7. and Ty, are the same as in the numerical simulations presented in Chapter 2;
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‘ arbor H flat ‘ sparse ‘ dense ‘ Table 4.2: For a numerical ap-
. 6 ms 6 ms 6 ms proach to the f|xed-p(_)|nt equa-
tion (4.46) and the eigenvalue

™w 10 ms 10 ms 10 ms problem (4.47) the values of all
¢* 1s™! 08s™' | 1s7! the relevant parameters must
o° —0.6 —0.5 —0.6 be fixed. This table lists the

co 1s7! 1s7! 1s7! specific values that will be used

19e/01 1.6-10%1139-10"4 0 SUbsequentIy.

cf. Sect.2.8. Similarly, the parameters (¢ = £°/At and o° have been chosen in
approximate agreement with the respective values used in these simulations.
As in the dynamics of the feedforward connectivity it turns out that ¢® must
be sufficiently small so as to stabilize the total synaptic input converging onto
one cortical cell. A value of 1 Hz seems to be a plausible choice for the spon-
taneous firing rate ¢y of our model neurons in view of the typical spontaneous
firing rate of cortical pyramidal cells being a few spikes per second (Buser and
Imbert 1992). The quantity 9°/c; has been chosen in such a way as to obtain
the required distribution of eigenvalues from Eq. (4.47), as will be explained
below. In addition, we define the arbor functions A, and By as

0.025 if |y| < 7.5,

By :=0.025, Ay := { 0 otherwise

for the flat,

0.2 -0.025 exp [— |2 /(2 4.52)] if |y| < 7.5,

By :=0.025, A, :=
Y Y {0 otherwise

for the sparse, and

B 0.025exp |~ ly[? /(2-4.5%)| if[y] <75,

By = Ay = .
0 otherwise
for the dense arborization model.

Let us now turn to the problem of deriving the fixed-point connectivity
patterns JyFP that arise from Eq. (4.46). First, we recall that our present calcu-
lations are all based on the learning equation (4.37), which, in turn, is based
on the approximations (4.32) and (4.33). These approximations have been ob-
tained from second-order von-Neumann series expansions of the inverse op-
erators appearing on the right hand sides of Egs. (3.46) and (3.47). For (4.32) to
yield a useful estimate of the mean firing rate we must therefore require

Teer Y Jyt < 1; (4.48)
y

otherwise the involved von-Neumann series does not converge. Note, how-
ever, that (4.48) is also a physical limit of the reduced network model because
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the network’s mean firing rate would diverge if the total lateral input converg-
ing onto each neuron reached the above limit, i.e., the network would enter a
self-exciting state. This is a direct consequence of Eq. (3.46).

Second, we recognize that for arbitrary y we have

FP FP
Tyt <Y T
yl

if the total synaptic weight ny J}I*:,P is distributed evenly over a large number
of synapses. Thus, we may write

rodyt Ly eyt <1

!

y

and hence obtain
2
2 Z C%J}EPJ‘E_P},/ < 72 (Z c1 J;P> < T Z clJ}If,P .
y' y' y'

Because of the above relations the fixed-point equation (4.46) can be sim-
plified by neglecting the two rightmost sums over y’ so that one is left with

0 ~ By [COT*clJ}FP + C()TET*ClJ;‘P Z c1 JE,P} (4.49)
yl

+ Ay [(C%TW + 0%y + Ce) + co7e (2c0Ti + 0°) Z clJ}EP

!

y

+ cng (3comw + 0°) (Z 01J5P>2] — ﬁeJ}FP .
¥

Concerning the flat and the sparse arborization model, this can be turned into
a quadratic equation for the total weight Zy, 01J5,P by summing over y on
both sides. The same approach is possible in the dense arborization model,
if 9¢ = 0 as in the parameter set given in Table 4.2. Without discussing the
details, we simply state that in the parameter regime we are investigating the
resulting equation has one positive and one negative root. Since J}FP denotes
the efficacies of excitatory synapses the subsequent stability analysis will be
restricted to that fixed point which corresponds to the positive solution. Re-
inserting the obtained value of 3, ¢ Ji'¥ into Eq. (4.49) and solving for Ji'®
finally yields the required approximation of the synaptic weights at the fixed
point of the learning dynamics.

Figures 4.10 and 4.11 show the leading eigenvalues and eigenvectors of the
eigenvalue problem (4.47) for the flat and the sparse arborization model with
J}I*:P derived in the way just explained. They are arranged the same as Figs. 4.2
through 4.5. In the upper part of either figure the four largest eigenvalues are
plotted as functions of the wave vector k. In the lower parts the four corre-
sponding eigenvectors are displayed in a grey-level representation for three
specific values of k. As JEP is rotationally symmetric, the eigenvalue prob-
lem is also rotationally symmetric so that it is sufficient to consider only one
direction of the wave vector, e.g., k = (k1,0).
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Figure 4.10: The leading eigenvalues and eigenmodes obtained from Eq. (4.47)
are presented in dependence on the wave vector k for the flat arborization
model and the parameter values given in Table 4.2. The corresponding fixed
point of the intracortical learning dynamics, JEP has been approximated us-
ing Eq. (4.49) and is rotationally symmetric. As a consequence the underlying
eigenvalue equation (4.47) is rotationally symmetric as well so that it is suffi-
cient to consider only one direction of the wave vector as, e.g., k = (k1,0). The
arrangement of the figure is analogous to that of Figs. 4.2 through 4.5. In the
upper part the four largest eigenvalues are plotted as functions of k1. In the
lower part the four corresponding eigenvectors are displayed in a grey-level
representation for three specific values of k;. Each grey-level plot consists of
two arrays of 15 x 15 pixels that visualize separately the real part and the
imaginary part of the respective eigenvector. The plots have been arranged in
accordance with the sequence of the eigenvalues so that the leading eigenvec-
tor appears in the uppermost row while the fourth eigenvector is shown at the
bottom.
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Figure 4.11: As Fig. 4.10 but for the sparse arborization model.

Obviously, the functional dependence of the principal eigenvector and its
eigenvalue upon the wave vector k is qualitatively similar to what we have
found in the Sect. 4.3.4 with regard to the geniculocortical development; cf.
Figs. 4.3 and 4.5. Due to our particular choices of ¥¢ (see Table 4.2), the leading
eigenvalue in both the flat and the sparse arborization model is negative ex-
cept within a relatively narrow range of wavelengths. Under these conditions
we may expect that the intracortical learning dynamics lead to the emergence
of anisotropic connectivity patterns in the same way as an orientation map
can develop from the plasticity of geniculocortical synapses. However, in the
course of our investigations we have never found such an intracortical ori-
entation map to develop in any numerical simulation that was based on the
reduced network model.

This may be attributable to a fundamental difference between the dynam-
ics of geniculocortical and intracortical plasticity as will be explained in the
following. The development of feedforward synapses is mainly driven by
correlations that are inherent to the activity of the geniculate relay cells and
that are therefore prescribed externally. In contrast, the development of in-
tracortical connections is driven by correlations in the activity of cortical cells
and these correlations are induced by the intracortical connections themselves.
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As a consequence, there is an important difference between the correspond-
ing learning equations (4.23) and (4.42) and between the eigenvalue problems
(4.28) and (4.47).

Obviously, in both eigenvalue equations the value of o° only affects eigen-
modes fk,y with a non-vanishing sum 3 Ek,y # 0. The real parts of their
eigenvalues will normally decrease with decreasing ¢¢ as in the case of the
eigenvectors shown in Fig. 4.2. Eigenvectors whose sum over y is zero, on the
other hand, remain unaffected by changes of €. It is thus plausible to assume
that for a sufficiently negative value of ¢ the principal eigenvector will have a
vanishing sum Zy Ek,y = (. This hypothesis is supported by analytical inves-
tigations of similar eigenvalue problems (MacKay and Miller 1990, Wimbauer
1996, Wimbauer et al. 1998) as well as by a numerical investigation of the lead-
ing eigenvectors presented in Figs. 4.3 through 4.5 and in Figs. 4.10 and 4.11.
Within the numerical accuracy their sum is vanishing and their eigenvalues
are independent of o°.

For these zero-sum eigenmodes the eigenvalue problems (4.28) and (4.47)
reduce to

L 409y = 4 Z[dm o Ky Jie (4.50)
y'

+ drPHMy g+ d%TQ?’HoTk’y,y/} Tny +domuByLicy »

C1

for the geniculocortical plasticity and

1 - .
a ()\ + 19e) Lk,y C()T*A Z [ ClJFP ;e_ZkyclJ}}jl:_y (4.51)

+ T*Cljgfy/ (1 + e_zk(y_y >>] Ly y + o7 By (1 + 7.1 j§P> Ek,y ,

for the intracortical learning dynamics. A comparison of the above equations
reveals that in (4.51) all the terms within the square brackets depend on the
fixed point of the intracortical learning dynamics, while the corresponding
terms in (4.50) do not depend on the fixed point of the geniculocortical plas-
ticity. This is a result of the fact that the related terms in the learning equation
(4.42) are quadratic in the dynamic variables, viz., the intracortical weights
Jij, whereas the respective terms in (4.23) are linear in the geniculocortical
weights J;

Thus, the process of pattern formation in the geniculocortical connectiv-
ity can be described, at least approximately, by a system of linear differential
equations. The emerging structure is determined by the eigenmodes of a corre-
sponding eigenvalue problem. In contrast, the dynamics of intracortical plas-
ticity is described by a system of essentially non-linear differential equations
— a linear approximation and its related eigenvalue problem can be valid only
within a certain range in the vicinity of a fixed point. As an intracortical ori-
entation map did not develop in our numerical simulations, this range seems
to be too narrow in the reduced network model for the emerging intracortical
connectivity to be determined by the eigenmodes of the linearized learning
dynamics.
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Figure 4.12: The first 16 eigenmodes of Eq. (4.47) are presented for the dense
arborization model with k = 0 and the parameter values given in Table 4.2
(sequence: top row from left to right, then bottom row from left to right). The
corresponding fixed point of the intracortical learning dynamics, JEP has been
approximated using Eq. (4.49).

There is also an important difference between Egs. (4.50) and (4.51) con-
cerning the size of the terms within the square brackets. The quantities H, M,
and HyYy , in (4.50) are determined by the geniculate activity correlations.
The strength of these correlations and hence the size of Hy My and Hy Ty , are
prescribed by some external mechanisms and are not limited by the properties
of our network model. In Eg. (4.51), on the other hand, all the terms within
the square brackets are determined by the intracortical connectivity J§ P and
so their size is fundamentally limited by the upper bound (4.48).

As a matter of fact, the contribution of the respective terms to the eigen-
value problem (4.47) is so small that the eigenvectors resulting for the dense
arborization model are almost identical to the eigenmodes that would arise if
the contribution of these terms were exactly equal to zero. Figure 4.12 shows
that these eigenmodes do not resemble the typical bilobed shape of orienta-
tion selective receptive fields. That means that even in the vicinity of the fixed
point of the learning dynamics a growth of oriented intracortical connectivity
patterns is prevented by the properties of the reduced network model.

Since the derivation of the eigenvalue problem (4.47) involved a second-
order von-Neumann series expansion of the inverse operators in (3.46) and
(3.47) the following approach may provide a possible way to circumvent this
problem. Suppose the intracortical connectivity JEP at the fixed point is close
to its limit given by (4.48). In that case a second-order approximation of the
inverse operators will no longer be precise enough so that higher-order terms
must be taken into account. If > JyFP is sufficiently close to its maximal value,
then the number of required terms can become arbitrarily large. Since each of
them will contribute to the square brackets in Eq. (4.51), their total contribution
may also become arbitrarily large.

However, this approach raises new difficulties. First, the model parameters
must be tuned very accurately so as to obtain a fixed point of the learning
dynamics that is close to the limit (4.48). Second, it must be ensured that the
network does not become self-exciting during the process of learning. With
the network being already very close to a self-exciting state at the fixed point
of the learning dynamics, this will also require an extremely exact adjustment
of parameters.
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We may therefore conclude that the reduced network model introduced in
Sect. 4.1 is too limited as to account for the mechanisms which can, in a more
elaborate model, robustly lead to the development of intracortical orientation
maps as seen in Chapter 2.

4.5 Summary

In this chapter we have presented an analytical investigation of spike-based
Hebbian plasticity in a simple model of the primary visual cortex. The pur-
pose of this investigation was to understand the processes of pattern forma-
tion which we have found in our numerical simulations in Chapter 2. Because
of the high complexity of the neuronal network used in these simulations we
have introduced a simplified version in Sect. 4.1 so as to obtain an analyti-
cally tractable model. This reduced network comprises one geniculate and
one cortical layer consisting of linear stochastic spike response-neurons that
are intended to model geniculate relay cells and excitatory cortical cells, re-
spectively.

According to the learning rules set forth in Sect. 2.3 each synaptic weight
is modified in dependence on the pre- and postsynaptic spike trains, which
are random processes. Starting from these learning rules we have derived a
differential equation describing the temporal evolution of a synapse’s efficacy
as a function of the two-spike cross-correlations and the mean firing rates of
the involved spike trains. Applying the methods developed in Chapter 3 the
required spike statistics can be expressed in terms of the network’s connectiv-
ity, i.e., in terms of the synaptic weights. In this way, it is possible to arrive at
a closed system of differential equations for the temporal development of all
synaptic weights.

Using this description of the learning dynamics we have investigated the
plasticity of geniculocortical synapses in the presence of a fixed intracortical
connectivity. First, the intracortical connections were assumed to be homo-
geneous and rotationally symmetric. A numerical evaluation of the resulting
learning equation revealed that within a certain regime of network parame-
ters the translational and rotational symmetries can be broken and an orienta-
tion selective connectivity pattern can emerge. As a prerequisite, however, the
total synaptic input converging onto each neuron must be stabilized so that
individual synapses have to compete for their efficacies. In agreement with
earlier investigations (Kempter et al. 1999, Kempter et al. 2000) we have found
that this can be achieved by inducing an appropriate reduction of the synaptic
weights in response to every postsynaptic spike. To this end, the value of the
parameter o° in EqQ. (2.1) must be chosen sufficiently small (negative).

In order to mimick the presence of a previously established intracortical
orientation map during the period of geniculocortical development, we then
introduced a non-isotropic pattern of intracortical connectivity. The layout of
the corresponding intracortical “orientation map” was very simple with all
neurons’ lateral receptive fields being identical and oriented vertically; its col-
ored representation using the color code shown in Figs. 2.6 and 2.7 would
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appear in a uniform light blue. A numerical investigation of the learning
equation shows that the geniculocortical connectivity patterns emerging un-
der these conditions can still form an orientation map. The resulting map,
however, will be biased towards vertical orientations and thus tends to be in
accord with the intracortical map. This finding is in agreement with the out-
come of the numerical simulations presented in Sects. 2.6 and 2.7 where we
have seen that a pre-existing intracortical orientation map can guide the de-
velopment of the geniculocortical connectivity.

The above results are in accordance and extend the findings of earlier
analytical investigations of cortical pattern formation (Kammen and Yuille
1988, Yuille et al. 1989, MacKay and Miller 1990, Stetter et al. 1993, Wimbauer
1996, Wimbauer et al. 1998). These investigations, based upon networks con-
sisting of graded-response neurons, have shown how a Hebbian plasticity of
geniculocortical synapses driven by correlated activity can induce the devel-
opment of orientation selective receptive fields. In accordance with experi-
mental data (Rauschecker and Singer 1979, Wiesel 1982) a competition of dif-
ferent synapses for synaptic weight turned out to be a prerequisite for pattern
formation. Here we have demonstrated that in a biologically more realistic
network of spiking neurons a similar process can result in an emergence of
orientation selectivity and we have seen that synaptic competition plays a cru-
cial role as well. As in the previously analyzed models the presence of an
isotropic pattern of intracortical connectivity is sufficient to obtain nicely or-
dered orientation maps. However, we have also shown how the geniculocor-
tical development can be guided by a non-isotropic intracortical connectivity.

Our numerical simulations presented in Sect. 2.5 have revealed that such
a non-isotropic intracortical connectivity pattern, viz., an intracortical orienta-
tion map can develop from a Hebbian self-organization of lateral connections
in the absence of feedforward input. Therefore, we tried to obtain some ana-
lytical insight into this process by investigating the properties of intracortical
plasticity in the reduced model. We derived the corresponding learning equa-
tion and calculated the rotationally symmetric fixed point. Next, we linearized
the learning dynamics about the fixed point so as to determine the connectivity
patterns that would start growing when the fixed point is destabilized. Within
an appropriate regime of network parameters these patterns turned out to be
similar to those obtained previously for the geniculocortical development.

Hence, one may expect that the intracortical learning dynamics lead to the
emergence of a map-like connectivity pattern in the same way as an orientation
map can develop from the plasticity of geniculocortical synapses. However,
we have never found an intracortical orientation map to emerge in a numeri-
cal simulation based on the reduced network model. We have discussed two
possible sources of this discrepancy.

First, the differential equation describing the learning dynamics is essen-
tially non-linear in the intracortical synaptic efficacies. Therefore, the results
obtained from the linearized version of the learning equation are valid only
within a certain range in the vicinity of the fixed point. This range may be
too narrow for the linear solutions to determine the final state of the synap-
tic dynamics. Second, with the reduced network consisting merely of linear
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excitatory neurons, the total synaptic input converging onto each cell at the
fixed point must be limited by Eq. (4.48) so as to prevent the network from
entering a self-exciting state (see also Douglas et al. 1995). Because of this limit
the relevant terms in the learning equation are very small. We have thus con-
cluded that the reduced network model introduced in Sect. 4.1 is too simple as
to account for the mechanisms which can, in a more elaborate model with in-
hibitory neurons, robustly lead to the development of intracortical orientation
maps, as we have seen in Chapter 2.



Summary

In the eye, an inverted image of the outside world is focused onto the retina,
where it is converted into sequences of electrical spikes emitted by the reti-
nal ganglion cells. Via the lateral geniculate nucleus (LGN), these electrical
signals are relayed to layer 4 of the primary visual cortex. Detailed investi-
gations have revealed how nerve cells in the primary visual cortex respond
to visual stimulation (see Chapter 1). Normally, a given neuron can only be
driven by stimulating a certain area on the retina, which is called its receptive
field. The majority of cortical neurons respond to stimulation of either eye but
are dominated by one eye. The best response is usually evoked by a specifi-
cally oriented linear edge of light projected onto the receptive field. As it turns
out, there is a continuous relation between a cell’s cortical location and each
of its various response properties as, e.g., ocular dominance or preferred ori-
entation (Hubel and Wiesel 1962). These relations are referred to as cortical
maps; prominent examples are the ocular dominance map and the orienta-
tion map. Current experimental data suggest that the underlying neuronal
circuitry is partially shaped by some kind of activity-driven learning mecha-
nism during the so-called critical period early in an animal’s life (Wiesel and
Hubel 1963b, Blakemore and van Sluyters 1974, Stryker and Harris 1986, Crair
et al. 1998, Issa et al. 1999).

In this work, we have investigated the development of orientation maps in
a network model of layer 4 in the primary visual cortex. The network consists
of stochastically spiking cells to mimick geniculate neurons as well as exci-
tatory and inhibitory cortical neurons. The geniculate neurons provide feed-
forward input to the cortex. They are assumed to produce correlated spike
activity of given statistics. The cortical cells are recurrently interconnected
by lateral synapses. Both the geniculocortical feedforward connections and
the recurrent intracortical connections are subject to activity-driven Hebbian
learning (Chapter 2).

In a first set of numerical simulations we have considered a situation in
which cortical cells produce random spontaneous activity but do not yet re-
ceive feedforward input from the LGN. This is an interesting scenario because
anatomical investigations in the cat’s developing brain have in fact demon-
strated that geniculate afferents do not innervate layer 4 of the primary visual
cortex until about one week after the target cells have finished their migration.
The simulations in our model have revealed that spontaneous activity of corti-
cal cells can drive the plasticity of lateral synapses to form an inhomogeneous
and anisotropic connectivity pattern, even in the absence of geniculocortical
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input. Since the overall organization of the emerging pattern typically resem-
bles the layout of orientation maps recorded from real visual cortex (Bonhoef-
fer and Grinvald 1991, Blasdel 1992b), we have called it an intracortical orien-
tation map.

Next, we have demonstrated that a Hebbian development of the genicu-
locortical afferents driven by correlated activity in the LGN leads to the for-
mation of orientation selective receptive fields of cortical cells. As in pre-
vious models of correlation-based learning (von der Malsburg 1973, Linsker
1986b, Linsker 1986a, Miller 1994, Wimbauer et al. 1997b, Wimbauer et al.
1997a, Erwin and Miller 1998, Choe and Miikkulainen 1998), a uniform and
circularly symmetric pattern of intracortical connectivity is sufficient for these
receptive fields to arrange into a nicely ordered orientation map, which we
refer to as a feedforward orientation map.

In view of these results, it was interesting to investigate how an intracorti-
cal orientation map would influence the development of the feedforward map.
In a third series of numerical simulations we have therefore analyzed the learn-
ing dynamics of the feedforward connectivity in the presence of a previously
formed intracortical map. Strikingly, the plasticity of the geniculocortical affer-
ents can be guided by the lateral connections so that the emerging feedforward
map is in accord with the intracortical map.

Since the same intracortical map guides the development of afferents from
both eyes, the final orientation maps will be matched in the two eyes auto-
matically. We have demonstrated that this mechanism provides a new expla-
nation of the outcome of so-called reverse lid-suturing experiments (Godecke
and Bonhoeffer 1996, Sengpiel et al. 1998), by which previous theoretical ap-
proaches had been challenged. In these experiments, cats were raised so that
both eyes never received common visual input. Nevertheless, the two eyes’
orientation maps were found to be nearly identical. Our model is further sup-
ported by experiments in which Kittens were raised in environments contain-
ing contours of only one orientation (Sengpiel et al. 1999). The orientation
maps recorded from these animals exhibited only moderate shifts towards
this orientation. This result is in full agreement with the assumption that
the geniculocortical development is guided intracortically so that visual ex-
perience has only a minor influence regarding the distribution of orientation
preferences.

In order to obtain a deeper understanding of the developmental processes
observed in our network, we then turned to a mathematical analysis of the
underlying learning dynamics. The neuronal contacts, i.e., the synapses in
the network are modified according to a Hebbian learning mechanism. This
means that a synapse is strengthened or weakened in dependence on the rela-
tive timing between the spikes emitted by the two cells it is connecting. Hence,
the synaptic dynamics are primarily governed by the spike-spike correlations
of the network’s activity.

Chapter 3 was therefore devoted to an investigation of the spike statistics in
recurrently interconnected networks of spiking neurons. We have introduced
the concept of a network ensemble as an entirety of infinitely many realiza-
tions or independent ‘runs’ of the same stochastically spiking neural network.
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Within this framework we have first derived expressions for the input-output
correlations of a single neuron without feedback. Then we have generalized
our approach so as to obtain analytical approximations for the mean activity
and the two-spike correlation functions in arbitrarily interconnected networks
of linear or non-linear neurons. A comparison with the results obtained from
a series of numerical simulations has shown that for a suitable choice of net-
work parameters our analytical expressions yield good approximations of the
true spike statistics.

At that point we were prepared for a mathematical investigation of pattern
formation in a recurrent network of spiking neurons (Chapter 4). The dynam-
ics of the full model studied in Chapter 2, however, turn out to be extremely
involved so that we have analyzed a simplified version. This reduced network
comprises two layers of stochastically spiking linear neurons that are intended
to model geniculate and cortical cells. Starting from the Hebbian learning rules
used in the numerical simulations we have derived a differential equation de-
scribing the temporal evolution of a synapse’s efficacy in dependence on the
statistics of the pre- and postsynaptic spike trains.

Combining this equation with the methods developed in Chapter 3 we
have studied the plasticity of geniculocortical synapses. First, the lateral con-
nections were assumed to be circularly symmetric. A linear stability analysis
of the learning dynamics has revealed that in an appropriate parameter regime
a symmetry breaking process can lead to the formation of a feedforward ori-
entation map. The underlying processes involve a competition of individual
synapses and are quite similar to the mechanisms found previously (Kammen
and Yuille 1988, MacKay and Miller 1990, Wimbauer et al. 1998) in models
consisting of non-spiking neurons.

Then we have introduced a non-isotropic lateral connectivity so as to in-
vestigate its influence onto the developing feedforward map. The lateral pro-
jections established a very simple intracortical “orientation map” with all neu-
rons’ connectivity patterns being identical. In our investigation of the resulting
learning equation we have seen that under these conditions orientation selec-
tive receptive fields can develop basically in the same way as with a circularly
symmetric intracortical connectivity. The emerging feedforward orientation
map, however, is biased towards the intracortical orientation because synaptic
patterns corresponding to this orientation grow fastest. Thus, the feedforward
map tends to be in accord with the intracortical map.

How does an intracortical orientation map arise? In order to address this
guestion we have analyzed the dynamics of intracortical plasticity in the re-
duced network. At first glance, the results suggest that symmetry breaking
may occur much like in the development of the geniculocortical connectivity.
On the other hand, we have never found an intracortical orientation map to
emerge in a numerical simulation based on the reduced model. As we have
discussed, this discrepancy is probably a consequence of a linearization in the
mathematical analysis. We have concluded that the reduced model is too sim-
ple as to account for the formation of intracortical orientation maps. One of its
basic limitations results from its lack of inhibitory neurons, which are present
in the full model — and also in real cortex.
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The model of activity-driven cortical development that we have proposed
and investigated provides a simple and natural explanation for experimental
observations that were difficult to understand in the framework of earlier the-
oretical approaches. The key feature is an interaction of the geniculocortical
development with an intracortical map. We have demonstrated that the re-
quired pattern of lateral connectivity can arise from activity-driven learning
of intracortical synapses. Since our network consists of spiking neurons and
strictly distinguishes between excitatory and inhibitory cells, it is significantly
closer to biology than many previous models of the primary visual cortex.

Further investigations may extend the present model in several ways. In
particular, it may be worthwhile to concentrate on the following questions.
How does the layout of the emerging intracortical map depend on the model
parameters and the details of the network’s architecture? How well does it
fit with the layout of measured orientation maps? Why are inhibitory neu-
rons relevant for the development of an intracortical map? What is the role of
the long-range lateral projections that have been found in cortical layers 2/3
and 5 (Callaway and Katz 1990)? How does the intracortical map influence
the development of an ocular dominance map (Miller et al. 1989, Erwin and
Miller 1998) or the development of a direction selectivity map (Wimbauer et al.
1997a, Wimbauer et al. 1997b)? Do the relations between the various emerging
maps fit with experimental data (cf. Sect. 1.4.3)?

Hopefully, such theoretical studies will help to achieve a deeper under-
standing of cortical information processing and to arrive, some day, at a bi-
ologically realistic model of the visual cortex. For the moment, however, we
do not have more than a faint idea about its functional organization and the
underlying circuitry.
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